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Abstract

The increased availability and improved quality of new sensing technologies have catalyzed a growing body of re-
search to evaluate and leverage these tools in order to quantify and describe urban environments. Air quality, in
particular, has received greater attention because of the well-established links to serious respiratory illnesses and the
unprecedented levels of air pollution in developed and developing countries and cities around the world. Though
numerous laboratory and field evaluation studies have begun to explore the use and potential of low-cost air quality
monitoring devices, the performance and stability of these tools has not been adequately evaluated in complex urban
environments, and further research is needed. In this study, we present the design of a low-cost air quality monitoring
platform based on the Shinyei PPD42 aerosol monitor and examine the suitability of the sensor for deployment in
a dense heterogeneous urban environment. We assess the sensor’s performance during a field calibration campaign
from February 7th to March 25th 2017 with a reference instrument in New York City, and present a novel calibration
approach using a machine learning method that incorporates publicly available meteorological data in order to im-
prove overall sensor performance. We find that while the PPD42 performs well in relation to the reference instrument
using linear regression (R2=0.36-0.51), a gradient boosting regression tree model can significantly improve device
calibration (R2=0.68-0.76). We discuss the sensor’s performance and reliability when deployed in a dense, heteroge-
neous urban environment during a period of significant variation in weather conditions, and important considerations
when using machine learning techniques to improve the performance of low-cost air quality monitors.
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1. Introduction1

Air quality is an important quality of life concern2

with well-established links to serious respiratory ill-3

nesses, cardiovascular disease, and increased mortality4

rates (Pope III and Dockery, 2006). Cities in particular5

often experience high levels of fine particulate matter6

(PM2.5), especially in developing countries where in-7

dustrial expansion has created unprecedented levels of8

poor air quality (Cheng et al., 2016). In order to mon-9

itor and evaluate levels of PM2.5, government agen-10

cies often operate air quality monitoring stations that11

provide ambient PM2.5 concentration measurements.12

These networks, however, often fail to capture the gran-13

ular spatiotemporal variations in PM2.5 levels that can14

occur over short distances (<1km) (Castell et al., 2017).15

Urban environments, in particular, contain widely vary-16

ing mixing ratios with diverse and complex emission17

sources that require high resolution spatial and tempo-18

ral monitoring networks to adequately quantify and de-19

scribe air quality (Mead et al., 2013).20

The proliferation of low-cost sensor technologies of-21

fers new opportunities to monitor and study air qual-22

ity in urban environments. A growing body of research23

has begun to use low-cost aerosol monitors to provide24

high resolution spatiotemporal measurements by creat-25

ing dense spatial networks that can inform local and26

regional emission sources’ contribution to total pollu-27

tion levels, as well as increase the ability to identify28

pollution hot-spots (Heimann et al., 2015; Jerrett et al.,29

2005; Shusterman et al., 2016; Manikonda et al., 2016;30

Moltchanov et al., 2015). Furthermore, these low-cost31

technologies are often compact, low-powered, and easy32

to operate, thus offering the ability to establish and facil-33

itate participatory networks(Jovašević-Stojanović et al.,34

2015; Snyder et al., 2013). High density air qual-35
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ity monitoring networks enable community-based feed-36

back loops that can be used to both protect those indi-37

viduals susceptible to poor air quality and identify spe-38

cific causes of particulate matter pollution.39

While low-cost devices offer new opportunities for40

large-scale air quality monitoring, there are several im-41

portant limitations to be considered. Central to the is-42

sue of using low-cost devices is ensuring data quality43

(Snyder et al., 2013; Kumar et al., 2015). Though fed-44

eral, state and local monitoring devices operate at sig-45

nificantly higher costs, they also operate under stan-46

dard procedures for calibration, data collection, and47

data post-processing methods, which ensure consis-48

tency across devices. In contrast, low-cost devices often49

suffer from a lack of manufacturer information about the50

specific operation and limitations of the device, as well51

as employ simplistic sampling techniques that funda-52

mentally inhibit the device’s performance ability. Fur-53

thermore, low-cost sensors often require individual and54

frequent calibration, which involves regular access to55

expensive equipment and expertise, and can be imprac-56

tical for a large-scale deployments. To address many57

of these challenges, a number of studies have eval-58

uated multivariate calibration using machine learning59

techniques (De Vito et al., 2018; Fishbain and Moreno-60

Centeno, 2016).61

In this study, we present the design of a low-cost62

air quality monitoring platform based on the Shinyei63

PPD42 aerosol monitor and examine the suitability of64

the sensor for deployment in a dense spatial network65

configuration. We assess the sensor’s performance dur-66

ing a field calibration campaign from February 7th to67

March 25th 2017 with a reference instrument in New68

York City and present a novel calibration approach us-69

ing a machine learning method that incorporates pub-70

licly available meteorological data in order to improve71

the sensor’s performance.72

This work is a part of a long-term study, the Quan-73

tified Community, aimed to understand neighborhood-74

scale interactions between the environment and man-75

made infrastructure and their effects on individuals and76

communities Kontokosta (2016). To understand this77

complex interaction, we aim to leverage low-cost tech-78

nologies to create a dense sensor network in neighbor-79

hoods throughout New York City that provides real-time80

and granular spatiotemporal environmental data. The81

air quality monitoring platform described in this work is82

one aspect of a multi-sensor platform being developed.83

2. Materials and Methods84

2.1. Node Design85

The Quantified Community sensor platform was de-86

veloped using commodity hardware and designed to87

capture environmental parameters including fine partic-88

ulate mater, ambient noise level, air temperature, rela-89

tive humidity and luminosity. To achieve a high den-90

sity monitoring network, the selection of sensors and91

platform hardware required careful consideration in or-92

der to find a balance between performance, reliability,93

accuracy, cost and scalability. Our sensor platform is94

designed to be deployed in a variety of urban environ-95

ments, including dense, high-rise neighborhoods with96

comprehensive digital infrastructure to low density, eco-97

nomically disadvantaged communities with incomplete98

access to power and wireless network connectivity.99

The Shinyei PPD42 was selected to measure PM2.5100

because of its low cost, ease of use, and performance ca-101

pability demonstrated in previous work (Holstius et al.,102

2014; Gao et al., 2015; Kelly et al., 2017; Austin et al.,103

2015; Jovašević-Stojanović et al., 2015; Wang et al.,104

2015). The PPD42 uses a light scattering technique to105

estimate particle concentration and is capable of mea-106

suring particles greater than 1µm in diameter. Particles107

pass through a lighting chamber where the combination108

of a light emitter and photodiode detector measure the109

amount of light scattered by particles passing through110

the chamber. A 0.25W thermal resistor, located at the111

bottom of the sensing chamber, increases the air tem-112

perature inside the chamber relative to the surrounding113

outside air temperature to create an updraft that draws114

particles into and through the chamber.115

The PPD42 generates two output signals in the form116

of digital pulses that are referred to by the manufacturer117

as Low Pulse Occupancy (LPO) and are proportional to118

particle count concentration. In order to distinguish par-119

ticle size, output P1 is used to measure particles greater120

than 1µm and output P2 is used to measure particles121

greater than 2.5µm. Particles with a diameter between122

1µm and 2.5µm are determined by subtracting P2 from123

P1. The PPD42 outputs are connected to the interrupt124

pints (INT0 and INT1) of an Atmega microcontroller in125

order to accurately capture pulses that range from 10-90126

milliseconds in length. The raw sensor output is con-127

verted into LPO readings and sent to a Raspberry Pi128

microcontroller via USB every 10 seconds to be stored129

locally. Though the Raspberry Pi is capable of transmit-130

ting the data to a central server for real-time processing,131

there was no available Wi-Fi connectivity in the study132

area.133

2



A factory calibrated Bosch SHT31 sensor was used134

to measure air temperature and relative humidity with135

an accuracy of ±0.3◦C and ±2% relative humidity. The136

electronics were contained in a 6”x4”X2” gray ABS137

plastic enclosure with a 5VDC fan attached to the bot-138

tom in order to draw air into the enclosure through a 1139

1/2” filtered vent. Based on the manufacturer specifi-140

cations, we estimate complete air exchange inside the141

enclosure occurs approximately three times per second.142

The PPD42 sensor used in this study cost approx-143

imately $15USD. Additional sensors, the microcon-144

troller platform, and enclosure materials added an ad-145

ditional $80 USD resulting in an overall cost of approx-146

imately $100 USD, which is several orders of magni-147

tude less than reference instruments operated by state148

and federal agencies.149

2.2. Reference Instrument150

The reference instrument for this study was a Thermo151

Scientific tapered element oscillating microbalance152

(TEOM) 1400 that provides continuous PM2.5 mass153

measurements at hourly intervals. TEOM instruments154

employ a size selective inlet that accumulates particles155

on a sampling filter located atop of an oscillating ele-156

ment whose resonant frequency changes proportionally157

to particle mass (Kulkarni et al., 2011; Amaral et al.,158

2015). The device is owned and operated by the New159

York State Department of Environmental Conservation160

(NYS DEC) and costs approximately $30,000. Data161

from the reference instrument were obtained directly162

from the Department of Environmental Conservation1.163

It was observed that the data contained 32 observations164

with negative values due to the processing procedure165

performed by the NYS DEC; these measurements were166

subsequently removed from the analysis.167

2.3. Study Location168

The study site was located at an elementary school169

(PS 104) rooftop on Division Street in Lower Manhat-170

tan. The location is a dense urban area with varying in-171

frastructure comprised of approximately 11% commer-172

cial buildings, 10% residential buildings, 22% mixed173

residential and commercial and 2% industrial buildings174

within 1000m, based on information from NYC’s Pri-175

mary Land Use Tax Output (PLUTO) database. Ta-176

ble S3 provides a description of the surrounding char-177

acteristics. Of important note, the site is located less178

than 50 meters from the Manhattan Bridge with an179

average of 115,000 vehicles crossing every day (New180

1www.dec.ny.org

York State Department of Transportation, 2017). The181

study area also contains approximately 56 buildings that182

use oil boiler systems, which are known to be signif-183

icant sources of particulate matter in New York City184

(Clougherty et al., 2013).185

The individual nodes were fixed on a custom mount-186

ing platform at a height of approximately 1.5m above187

the rooftop (approximately 12m from ground level) and188

3m from the rooftop edge. The design of the mounting189

platform positioned two devices facing east towards the190

Manhattan bridge and one device facing west away from191

the bridge. The devices were located approximately 5m192

from the intake of the reference instrument due to logis-193

tical reasons.194

2.4. PPD42 Performance Evaluation195

An initial evaluation of the PPD42 was conducted to196

assess the accuracy and precision of the three individ-197

ual deployed devices. Raw LPO readings were aggre-198

gated to an hourly average in order to match data from199

the reference monitor, and pairwise plots were used to200

compare individual sensor responses with the reference201

monitor. To evaluate the linear relationship between202

individual devices and the reference monitor, an Ordi-203

nary Least Squares (OLS) regression was performed on204

the matched hourly data and the coefficient of determi-205

nation (R2) and the root mean squared error (RMSE)206

values were used to evaluate the strength and accuracy207

of the relationship. In this study, measurements from208

the TEOM monitor are used as the dependent variable209

and measurements from the PPD42 are the independent210

variable.211

A sensitivity analysis was performed using multiple212

meteorological parameters to determine their potential213

influence on sensor measurements. The coefficient of214

determination was used to evaluate the strength of the215

relationship between meteorological parameters (inde-216

pendent variables) and the PPD42 and TEOM measure-217

ments (dependent variables). Temperature and humidity218

measurements were taken directly from individual sen-219

sor platforms using the SHT31 sensor located inside the220

enclosure directly adjacent to the PPD42. Other meteo-221

rological parameters were also assessed including baro-222

metric pressure, wind speed, dew point, and precipita-223

tion. These measurements were obtained from a nearby224

weather station located at La Guardia airport. Figure225

1 shows the meteorological conditions during the study226

period.227

In order to determine the device’s sensitivity in low228

concentration environments, the lower limit of detection229

was calculated as:230
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Figure 1: Meteorological measurements taken from La Guardia airport over the study period. (a) Temperature (blue) and sea level pressure (red),
(b) precipitation (blue) and humidity (red line), and (c) wind speed (blue line) and wind direction (red points).

LOD = 3σblk ∗ β1

where σblk is the standard deviation of the PPD42231

measurements obtained when TEOM measurements232

were below 5.0µg/m3, 3.0µg/m3 and 1.0µg/m3, and β1233

is the slope of the line obtained from the OLS regres-234

sion analysis. We include multiple calculations of the235

LOD in order to provide statistically significant results236

given the small number of samples from the TEOM be-237

low 1.0µg/m3 (14 samples). This approach was estab-238

lished by Kaiser and Specker (1956) and also used in239

similar studies (Austin et al., 2015; Wang et al., 2015;240

Kelly et al., 2017).241

2.5. Calibration Approaches242

Three statistical approaches were evaluated to deter-243

mine the best-fit calibration model. All three models244

were based on measurements from the individual sen-245

sor platforms, as well as meteorological data that in-246

cluded air temperature, relative humidity, barometric247

pressure, dew point, and precipitation. As noted in pre-248

vious work, the PPD42’s response is non-linear across249

the entire range of the device and therefore a quadratic250

term was also included into the model (Gao et al., 2015;251

Austin et al., 2015; Wang et al., 2015). A final param-252

eter was added to account for the time of day based253

on an analysis of diurnal readings from the PPD42 de-254

vices, which showed a 1.5 standard deviation difference255

between the reference instrument during the afternoon256

hours from 10:00-15:00 (Figure S1). This difference is257

likely caused by solar radiation affecting the sensor’s258

optics and the inclusion of a time parameter is intended259

to capture this phenomenon. R2 and RMSE were used260

to compare calibration accuracy.261

The first calibration method used a standard multiple262

linear regression model in the form of:263

y = β0 + β1x1 + β2x2 + . . . + βpxp + ε

where y is the reference instrument values, β0 is264

the intercept, x1 . . . xp are the predictors including the265

PPD42 measurements, and ε is the error term. The266

model was specified using best-subset selection, which267

iteratively finds the combination of features that result268

in the greatest reduction in the residual sum of squares269

for each subset of size k where k = p − 1 . . . p. The270

single best model from M0 . . . Mk was chosen based271

on Bayesian Information Criterion scores. To detect272

and account for multicollinearity between variables, the273

variance inflation factor (VIF) was calculated for all fea-274

tures, and the feature with the highest score was re-275

moved. This process was performed recursively until all276

features’ VIF scores were below the threshold of five.277

The final model included only statistically significant278

features.279

The second calibration technique used a regulariza-280

tion method to address some of the problems with least281

squares regression. Regularization adds a penalty term282

(λ) to large model coefficients in order to reduce mul-283

ticollinearity between features. The ridge regression284

model used here applies an `2 penalty to the sum of the285

squared coefficients. Ridge coefficients (β̂R) are values286

that minimize:287
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n∑
i=1

yi − β0 −

p∑
j=1

β jxi j

2 + λ

p∑
j=1

β2
j

where λ controls the amount of penalization. The λ288

parameter was determined through a five-fold cross val-289

idation and set to 0.4. In order to evaluate the signifi-290

cance of individual features, we rank each feature based291

on the absolute value of the coefficient (β j). The larger292

the coefficient, the larger the impact on the model and293

hence the greater significance of the feature.294

The final calibration approach used a gradient boost-295

ing regression tree (GBRT) model. GBRT is a deci-296

sion tree-based regression model that implements boost-297

ing to improve model performance. Boosting is a sta-298

tistical technique that sequentially builds many ’weak’299

models (learners) that are combined into a final consen-300

sus model (Schapire, 2003). A ’weak’ learner is one301

whose performance is only slightly better than random302

guessing. The final model is built in an additive for-303

ward stagewise manner where at each step a new learner304

is added that minimizes the negative gradient by least305

squares. The residuals of the current model are then306

used as the input for the next tree allowing the model307

to ’learn’ from the errors of the previous models (Fried-308

man et al., 2001).309

Parameter tuning is an important element to opti-310

mize the GBRT model performance. Tree-specific pa-311

rameters include the depth of each tree, the minimum312

number of samples to form a terminal node (leaf), and313

the maximum number of features included in each tree.314

Boosting parameters include the number of trees used in315

the model and the contribution of each tree to the final316

model (learning rate). Tree depth, the number of trees,317

and the maximum number of features in each tree con-318

trol the degree of interaction between features. Since319

trees are grown sequentially, a large number of shallow320

trees are preferred in order to fully explore the feature321

space, at the expense of computation time. The learning322

rate and the minimum number of samples per leaf are323

used to control overfitting. A low learning rate is gener-324

ally preferred, but will require a larger number of trees325

to maintain performance.326

To build the ridge and GBRT models, data were first327

randomly split into train (80%) and test (20%) sets.328

The training set was used to evaluate model parame-329

ters through an exhaustive grid search with 5-fold cross-330

validation and the final model was evaluated on the331

test set. All three models were implemented using the332

scikit-learn package for Python (Pedregosa et al., 2011).333
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Figure 2: Pairwise plots between three Shinyei PPD42 devices and
a reference TEOM based on hourly data collected from February 7th
2017 to March 25th 2017.

3. Results and Discussion334

All three platform nodes collected data continuously335

throughout the 47-day study period with the exception336

of four days in which all three devices experienced a337

power outage. Figure 2 shows pairwise plots from the338

co-located PPD42 devices. A total of 1128 hourly ob-339

servations were recorded from all three devices. Hourly340

PM2.5 measurements from the TEOM ranged from341

1µg/m3 to 28.1µg/m3 with an average of 7.8µg/m3.342

Figure 3 shows a scatter plot of the linear fit model343

between the TEOM and PPD42 devices. Based on the344

calculated R2 values from a linear model fit, individual345

PPD42 devices demonstrate a moderate level of agree-346

ment compared to the TEOM with R2 values of 0.48 and347

0.53 for two devices and the third device slightly lower348

at 0.37. These results are similar to previous work by349

Holstius et al. (2014) who conducted an eight-day field350

calibration campaign at a regulatory site in Oakland,351

California and found that a linear correlation was suf-352

ficient to explain 55-60% of the variance (RMSE=3.4-353

3.6) in the federal equivalent method instrument at a354

one hour interval and 72% at a 24 hour interval. Kelly355

et al. (2017) also found moderate correlation (R2=0.59-356

0.8) between the PPD42 and a commercial grade optical357

device (TSI DustTrak II Model 8532) during ambient358

wind tunnel tests, and Gao et al. (2015) found similar359

correlations (R2=0.53) with 24h gravimetric measure-360

ments during a four-day calibration campaign in Xi’an,361

China. Gao et al. (2015), however, also observed signif-362
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icantly higher hourly correlations (R2=0.87-0.88) with363

the DustTrak instrument and suggest the higher corre-364

lation is likely due to the increased levels of PM2.5365

concentrations observed in Xi’an (range: 77-889µg/m3)366

compared to Holstius et al. (2014) (range: 0.3-30µg/m3)367

since the PPD42’s measurement errors increase at lower368

concentration levels.369

Individual PPD42 devices show high correlation with370

R2 values of 0.93-0.96 and a linear response across the371

concentration range (Figure S3). This high correla-372

tion between PPD42 devices has been largely consistent373

across studies by Holstius et al. (2014), Gao et al. (2015)374

and Kelly et al. (2017), who all report high inter-device375

correlations (R2 > 0.9) with the exception of one exper-376

iment by Kelly et al. (2017) reporting a correlation of377

R2=0.72.378

3.1. Ambient Conditions379

The average temperature during the study period was380

4.5◦C (range: -10.0-20.6◦C) with an average humidity381

of 52% (range: 0-100%). Rapid fluctuations in meteo-382

rological conditions were observed throughout the study383

period. For example, the average temperature during384

the week of February 9th-17th was 0.8◦C (range: -7.2-385

8.2◦C) and increased significantly to an average temper-386

ature of 10.7◦C (range: 1.7-20.6◦C) the following week.387

Other extreme weather conditions were also observed388

including 20 days with high winds (>30m/s), three sep-389

arate snow days with a total accumulation of five inches390

and two days with freezing rain. The observed ranges391

in temperature, humidity, and precipitation are signif-392

icantly greater than those of previous field calibration393

studies.394

Table S1 shows the sensitivity test results. Dew point395

temperature measurements show the highest correlation396

between both the PPD42 and the TEOM (R2 = 0.38-397

0.41 and R2 = 0.18) compared to other meteorological398

parameters. Temperature and relative humidity are both399

weakly correlated (R2 = 0.24-0.25 and R2 = 0.13-0.19)400

with the PPD42 measurements, and show only minor401

influence on the TEOM (R2 = 0.15). Previous work402

by Holstius et al. (2014) evaluated the affect of tem-403

perature, relative humidity and light levels on PPD42404

measurements and found only relative humidity had mi-405

nor correlation (R2 = 0.25-0.28). While we observe406

the affect of relative humidity to be slightly lower and407

the affect of temperature to be significantly higher than408

findings by Holstius et al. (2014), it should be noted409

that the meteorological conditions during the Holstius410

et al. (2014) study varied significantly from this study411

with temperatures ranging from 20 to 30◦C and relative412

humidity ranging between 10-60%. Gao et al. (2015)413

also found that temperature and relative humidity effects414

were significant, noting the differences in meteorologi-415

cal conditions between their work and findings by Hol-416

stius et al. (2014).417

Differences between these studies may be explained418

by the convective technique used to create air flow419

through the sensing chamber. Since the convective flow420

generated by the resistor is proportional to the surround-421

ing air temperature, fluctuations in ambient temperature422

will have a direct effect on the sensor’s ability to draw423

particles through the sensing chamber. As observed in424

this study, and noted by Gao et al. (2015) and Kelly425

et al. (2017), cooler ambient temperatures will more sig-426

nificantly affect the PPD42 measurements than higher427

ambient temperatures. Furthermore, Kelly et al. (2017)428

also compare the PPD42 with a similar optical aerosol429

monitor, the Plantower PMS3003, and suggest that the430

improved performance of the PMS3003 may be due to431

the use of a fan to control air flow through the sensing432

chamber.433

3.2. Limit of Detection434

Table 1 shows results for the PPD42’s lower limit435

of detection. The average LOD is 4.83µg/m3 for con-436

centrations below 5.0µg/m3 (323 samples), 3.6µg/m3
437

for concentrations below 3.0µg/m3 (90 samples) and438

2.8µg/m3 for concentrations below 1.0µg/m3 (14 sam-439

ples). These findings are in the range of laboratory tests440

performed by Austin et al. (2015) (1.0µg/m3) and Wang441

et al. (2015) (4.59µg/m3 and 6.44µg/m3).442
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Table 1: Results from calculating the lower limit of detection for the PPD42 during a field calibration campaign with a TEOM reference instrument.
Units are in µg/m3

Concentration Sample Size Shinyei 1 Shinyei 2 Shinyei 3 TEOM

< 1µg/m3 14 3.34 2.90 2.30 0.79
< 3µg/m3 90 3.35 3.30 4.45 2.75
< 5µg/m3 323 4.82 4.65 5.12 3.37

3.3. Calibration Results443

Table 2 and Figure 4 compare OLS, Ridge, and444

GBRT results from the hourly test data and show that445

the GBRT model significantly outperforms both the446

OLS and Ridge models with an average R2 of 0.72.447

While it is expected that the more complex model will448

outperform other models, there are two observations449

that should be highlighted. First, the overall magni-450

tude of improvement by the GBRT model is significant,451

increasing by approximately 20-30% over the Ridge452

model. Second, the GBRT model also reduces the range453

of scores between devices from 0.16 points in the Ridge454

model to 0.08 points in the GBRT model. This ability455

to reduce device variability is a significant enhancement456

for relative calibration and large-scale deployments.457

Figure 5 compares OLS, Ridge and GBRT calibrated458

hourly measurements. Overall, the OLS and Ridge459

models show similar R2 values and track well against460

the TEOM monitor. However, results from the OLS461

and Ridge models periodically under- and over-estimate462

TEOM measurements. Significant under-estimates by463

the PPD42, for example, are observed on February464

11th and February 16-19th, in which the TEOM in-465

strument reported higher PM2.5 concentrations during466

both periods. Over-estimates are often found during the467

evening hours (e.g. Mar 9-12th) and are likely due to468

the low PM2.5 concentration levels that fall below the469

PPD42’s lower limit of detection. The GBRT model,470

however, does not demonstrate the same under- and471

over-estimates observed in the OLS and Ridge models.472

Figure S2 compares feature importance between the473

ridge model and GBRT model. The most significant474

features in the ridge model are the PPD42 output, sea475

level pressure and the squared PPD42 sensor output,476

while the GBRT model identifies pressure, dew point,477

the PPD42 output and the squared PPD42 sensor out-478

put. These results also show that the ridge model places479

greater weight on only a few parameters, while relative480

feature importance is distributed across features in the481

GBRT model. This is expected given that the GBRT482

model is a more robust model capable of learning com-483

plex relationships across a large set of input parameters.484

In this case, the model is able to better establish the re-485

lationship between sensor measurements and meteoro-486

logical conditions to improve the calibration. Table S2487

shows the complete OLS model results with computed488

significance values for each parameter for comparison.489

3.4. Main Findings490

The aim of this study is to examine the viability of491

a low-cost air quality platform based on the PPD42492

aerosol monitor to measure PM2.5 in a dense urban493

environment. Based on an extensive field calibration494

campaign, we find the PPD42 performs reasonably well495

throughout a variety of environmental conditions and496

can be a suitable device for measuring PM2.5, es-497

pecially considering the difference in cost from other498

commercially-available instruments. The high corre-499

lation between PPD42 devices is particularly signifi-500

cant for high-density sensor networks that rely on rel-501

ative measurements to inform the spatial distribution502

and variability of PM2.5 across a study area. Fur-503

thermore, while measurement errors increase at lower504

PM2.5 concentrations (< 5 µg/m3), the limit of detec-505

tion falls below the range of ambient concentration lev-506

els expected in many urban environments. For example,507

New York City’s average annual PM2.5 concentration508

level is 11.55µg/m3 with a range of 5.17-26.48µg/m3
509

(Matte et al., 2013).510

An important consideration in evaluating acceptable511

detection limits is the specific application and use of512

the recorded particulate matter observations. Larger513

measurement errors from low-cost devices may still be514

acceptable to compare ambient PM2.5 levels between515

communities, identify local hot spots, and provide feed-516

back to local residents. Furthermore, the temporal res-517

olution offered by many low-cost devices, including the518

PPD42, can be useful in measuring transient emission519

sources that may significantly exceed ambient concen-520

tration levels over short time periods.521

Through comparing various calibration techniques,522

this study found that a GBRT model that uses publicly523

available meteorological data can significantly improve524

the performance of a low-cost aerosol monitor. While525
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Table 2: Comparison of results from three calibration techniques.

OLS Ridge GBRT

Parameter R2 RMSE β0 Slope R2 RMSE β0 Slope R2 RMSE β0 Slope

Shinyei 1 0.452 3.28 3.60 0.59 0.466 3.24 3.35 0.62 0.716 2.36 1.84 0.79
Shinyei 2 0.507 3.11 3.28 0.64 0.521 3.07 2.99 0.67 0.762 2.16 1.47 0.83
Shinyei 3 0.360 3.55 4.74 0.44 0.364 3.54 4.31 0.48 0.678 2.52 2.48 0.72
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Figure 4: Scatter plots of three Shinyei PPD42 sensors calibrated with three different techniques. Sensors are calibrated through a multi-linear
regression, ridge regression and gradient boosting regression tree model.
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Figure 5: Comparison of calibration results with a reference instrument using different calibration techniques including multiple linear regression,
ridge regression and gradient boosting regression tree models. Hourly PM2.5 measurements were obtained from three Shinyei PPD42 sensors
co-located with a TEOM reference instrument from February 7th through March 25th, 2017.
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this calibration process does not necessarily establish526

an equivalence between the devices, it does provide a527

method for converting raw sensor readings into standard528

units (µg/m3) and improve the sensor’s performance by529

identifying meteorological conditions that cause mea-530

surement error and adjusting the sensor’s response ac-531

cordingly. Furthermore, the implementation of a ML532

model to calibrate low-cost instruments can be a step to-533

wards a universal calibration curve and standardize sen-534

sor deployments. A properly trained ML model could535

be publicly distributed and implemented in similar hard-536

ware deployments by citizen science communities and537

nonspecialists, which could reduce the need to calibrate538

devices individually, improve long-term device stability,539

and standardize data generation and collection methods.540

3.5. Limitations541

A significant limitation when using the PPD42 is the542

inability to explain measurement errors and variability543

between the PPD42 devices. This is largely a result of544

the optical sensing technique employed. Unlike other545

sampling techniques, the light scattering approach used546

by many low-cost aerosol monitors is unable to evalu-547

ate the physical properties of particles such as composi-548

tion, type, mass, or optical characteristics. For example,549

organic particles tend to absorb moisture from the sur-550

rounding environment making them more susceptible to551

changes in humidity. Similarly, different particle types552

have different optical properties that can vary depending553

on the wavelength of light used in the sensor.554

This work is also limited by the use and compari-555

son of three sensing units, which limits a full evalua-556

tion of inter-device variation. Though our analysis is557

consistent with previous work showing high correlation558

(R2=0.93-0.96) between PPD42 devices, a more robust559

statistical analysis that includes greater than 10 devices560

has yet to be performed. Similarly, while the calibra-561

tion campaign does provide sufficient data to assess the562

sensor’s performance in concentration ranges typical for563

New York City, these ranges may vary significantly in564

other urban areas around the world. To ensure accurate565

calibration, especially when using ML techniques, the566

devices should be exposed to the entire range of con-567

centrations expected during deployment in order to in-568

clude the training data necessary for the model to es-569

tablish the proper input-response relationship. Further-570

more, the study duration also limits an evaluation of571

long-term stability (>1yr) and time-in-use effects such572

as the gradual accumulation of particles inside the sens-573

ing chamber, which may effect the sensor’s optics.574

There are also several important limitations to imple-575

menting machine learning algorithms for sensor calibra-576

tion. One significant challenge is the potential to overfit577

the model to either the specific environment in which578

the calibration took place, or to the sample data used for579

the calibration. The latter is a general concern whenever580

using machine learning models and can be addressed581

with various techniques such as cross validation, as im-582

plemented in this analysis. Overfitting the calibration583

environment, however, can occur by incorporating pa-584

rameters into the calibration model that are either spe-585

cific to the calibration location, or do not include the586

full range of conditions that the sensor will be exposed587

to during deployment. It is essential that individual pa-588

rameters contain sufficient variance to properly capture589

potential deployment conditions, while excluding any590

spatial parameters that could potentially affect the in-591

put stimulus (i.e PM2.5). During this study, for exam-592

ple, wind direction was observed to explain 10% of the593

variance of the TEOM monitor and the inclusion of this594

parameter in the GBRT model improved results on av-595

erage by 5%. However, the affect of wind direction on596

PM2.5 in this specific location may result from varia-597

tions in the built environment that potentially include598

PM sources (e.g buildings with specific boiler types),599

which will likely differ from deployment locations. In-600

cluding wind direction would therefore train the calibra-601

tion model based on the specific conditions of the study602

location instead of identifying the interaction of non-site603

specific variables that affect the PPD42. Similarly, the604

inclusion of a time-of-day parameter could led to erro-605

neous calibration errors since diurnal PM2.5 trends may606

be affected by local emission sources that vary per loca-607

tion.608

Furthermore, while a machine learning model can in-609

crease overall performance, it is unable to explain mea-610

surement error nor provide information about particle611

properties. Feature importance is one method to un-612

derstand how the model is using features to make pre-613

dictions and adjust the sensor response, but it does not614

necessarily describe the affect of certain meteorological615

parameters, or combinations of parameters, on the sen-616

sor’s response.617

4. Conclusion618

This study demonstrates the suitability of a low-cost619

aerosol monitor to measure intra-urban PM2.5 concen-620

trations. Over a 47-day study period, three PPD42 sen-621

sors, integrated with a Raspberry Pi microcontroller and622

Bosch SHT31 temperature and relative humidity, were623

deployed on the roof of an approximately 12m high624

building proximate to a TEOM instrument installed and625

operated by the NYS DEC. The devices were exposed626
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to wide variations in ambient temperature, relative hu-627

midity, barometric pressure, and precipitation in an en-628

vironment characterized by a diversity of urban land use629

types. Potential point sources of pollution included 56630

surrounding buildings using oil boilers for heating and631

the vehicular traffic along the Manhattan Bridge.632

We evaluate three machine learning methods to cal-633

ibrate the deployed sensors, including traditional OLS634

regression, Ridge regression, and a GBRT decision tree635

model. Our results indicate that the GBRT model signif-636

icantly outperforms the OLS and Ridge models. Over-637

all, we find that low-cost aerosol devices can be used to638

inform community air quality monitoring efforts in het-639

erogeneous urban environments. The GBRT calibration640

method provides superior performance when combined641

with meteorological data that can be used to convert raw642

sensor readings to standard units. Importantly, this ma-643

chine learning approach can also be used to standardize644

readings across field-deployed sensors to improve rela-645

tive performance.646
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Figure S1: Average hourly measurements between three Shinyei PPD42 sensors and a TEOM reference instrument during a multi-week field
calibration campaign. Z-scores are computed to compare uncalibrated sensor outputs and the reference instrument.

Table S1: Results of a sensitivity test to evaluate the relationship between meteorological conditions and the Shinyei PPD42 sensor response.

R2

Parameter Shinyei 1 Shinyei 2 Shinyei 3 TEOM

Temperature 0.25 0.24 0.30 0.15
Humidity 0.19 0.18 0.13 0.03
Dew Point 0.41 0.38 0.38 0.18
Sea Level Pressure 0.01 0.01 0.00 0.02
Wind Speed 0.10 0.11 0.09 0.10
Gust Speed 0.10 0.11 0.09 0.09
Wind Direction 0.12 0.11 0.12 0.02
Precipitation 0.00 0.00 0.00 0.00
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Figure S2: Feature importance for the ridge regression model (A) and the gradient boosting regression model(b).

Table S2: Multiple linear regression results for each PPD42 device based on test data. The target variable is the reference instrument (TEOM) and
individual predictors are selected using best-subset selection.

Sensor Model
Summary

Explanatory
Variable

Collinearity
Analysis

R2 BIC β1 p value VIF Cond. No

Shinyei 1 0.452 4729 β0 8.18 6.76
PPD42 4.46 0.000 1.89
Humidity -1.11 0.000 1.84
Pressure -0.71 0.000 1.69
PPD422 -0.28 0.000 2.22
Temperature -0.29 0.046 1.77

Shinyei 2 0.507 4613 β0 8.21 6.98
PPD42 4.73 0.000 1.81
Humidity -1.18 0.000 1.78
Pressure -0.75 0.000 1.67
PPD422 -0.31 0.000 2.22
Temperature -0.30 0.009 1.71

Shinyei 3 0.360 4924 β0 7.96 4.75
PPD42 3.31 0.000 1.99
Pressure -0.86 0.000 2.21
Humidity -0.56 0.000 2.03
Precipitation -0.26 0.031 1.94
PPD422 -0.09 0.210 1.36

13



0 5 10 15 20 25 30

TEOM µg/m3

0.0

0.5

1.0

1.5

2.0

2.5

P
P
D

4
2

 (
LP

O
)

PPD42 Reponse

Mean Response

Figure S3: A comparison of individual PPD42 devices and their mean response with the TEOM reference instrument.

Table S3: Spatial characteristics surrounding the study location including land cover type and land use type.

{Data Type} Class 50m 100m 250m 500m 1000m

Land cover

Tree canopy 5.85 7.99 5.16 12.96 11.88
Grass/shrub 0.55 0.30 0.75 2.09 2.30
Bare earth 0.0 0.0 0.0 0.25 0.10
Water 0.0 0.0 0.0 0.0 12.83
Buildings 42.05 30.69 36.63 36.27 30.87
Roads 22.90 33.31 29.42 22.96 20.52
Other paved surfaces 28.65 27.71 28.03 25.47 21.50

Total 100.0 100.0 100.0 100.0 100.0

Land Use

Commercial 2.03 7.42 9.53 7.12 10.93
Industrial 9.06 4.90 3.70 2.20 2.18
Mixed Residential & Commercial 3.88 7.09 19.75 28.21 22.69
Open / Recreational Space 0.00 0.00 1.87 7.34 4.26
Other 61.03 42.06 22.07 14.13 12.25
Residential 0.00 2.83 5.54 10.00
Vacant Land 6.59 12.92 4.77 1.29 1.75
Not Specified 17.41 25.61 35.48 34.17 35.92

Total 100.00 100.00 100.00 100.00 100.00

Boilers 0 0 1 6 56
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