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   Abstract 
The number of utilised features could increase the system's computational effort when 
processing large network traffic. In reality, it is pointless to use all features considering 
that redundant or irrelevant features would deteriorate the detection performance. 
Meanwhile, statistical approaches are extensively practised in the Anomaly Based 
Detection System (ABDS) environment. These statistical techniques do not require any 
prior knowledge on attack traffic; this advantage has therefore attracted many 
researchers to employ this method. Nevertheless, the performance is still unsatisfactory 
since it produces high false detection rates. In recent years, the demand for data mining 
(DM) techniques in the field of anomaly detection has significantly increased. Even 
though this approach could distinguish normal and attack behaviour effectively, the 
performance (true positive, true negative, false positive and false negative) is still not 
achieving the expected improvement rate. Moreover, the need to re-initiate the whole 
learning procedure, despite the attack traffic having previously been detected, seems to 
contribute to the poor system performance.   

This study aims to improve the detection of normal and abnormal traffic by 
determining the prominent features and recognising the outlier data points more 
precisely. To achieve this objective, the study proposes a novel Intrusion Detection 
Scheme for Identifying Known and Unknown Web Attacks (I-WEB) which combines 
various strategies and methods. The proposed I-WEB is divided into three phases 
namely pre-processing, anomaly detection and post-processing. In the pre-processing 
phase, the strengths of both filter and wrapper procedures are combined to select the 
optimal set of features. In the filter, Correlation-based Feature Selection (CFS) is 
proposed, whereas the Random Forest (RF) classifier is chosen to evaluate feature 
subsets in wrapper procedures. In the anomaly detection phase, the statistical analysis is 
used to formulate a normal profile as well as calculate the traffic normality score for 
every traffic. The threshold measurement is defined using Euclidean Distance (ED) 
alongside the Chebyshev Inequality Theorem (CIT) with the aim of improving the 
attack recognition rate by eliminating the set of outlier data points accurately. To 
improve the attack identification and reduce the misclassification rates that are first 
detected by statistical analysis, ensemble-learning particularly using a boosting classifier 
is proposed. This method uses using LogitBoost as the meta-classifier and RF as the 
base-classifier. Furthermore, verified attack traffic detected by ensemble learning is then 
extracted and computed as signatures before storing it in the signature library for future 
identification. This helps to reduce the detection time since similar traffic behaviour will 
not have to be re-executed in future. 

The I-WEB performance is evaluated with different sets of performance metrics (True 
Positive, True Negative, False Positive, False Negative, False Alarm Rate, False 
Negative Rate, Attack Detection Rate, Normal Detection Rate, Accuracy Rate and 
Detection Time), including four publicly available benchmark intrusion detection 
datasets (DARPA 1999, NSL KDD, ISCX 2012 and UNSW-NB15). The experimental 
results demonstrate that I-WEB is comparable, accurate and more efficient in detecting 
both known and unknown attacks compared to the traditional approaches. In addition, 
the detection time is significantly reduced when the attack signature is employed as part 
of the detection strategy. Thus, I-WEB is a better solution for anomaly detection in 
detecting both known and unknown web attack traffic. 
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              Chapter 1 

Introduction 

1.1 Background 

The continuous growth of the Internet technologies and massive data exchange have 

created a new paradigm named big data. One of the challenges is when a huge amount 

of sensitive information stored in the servers and transmitted over the Internet 

becomes a primary target. Web-based applications and web servers have been a popular 

target in recent years considering that most communications involving client-server 

queries. A comprehensive analysis carried out by Symantec (2017) revealed that 76% of 

websites were scanned and found to have vulnerabilities, where 9% fall into the critical 

category. 

Cyber-attack is usually performed by unethical users, either from organisations or 

individuals, against vulnerable systems such as computer systems, network 

infrastructures or business information, with the intention of modifying, destroying or 

stealing information. The types of problems caused by cyber-attack include web 

defacement, denial of service, password stealing and root access. For example, the 

attack on 21st October 2016 was specifically designed to target Dyn, a major Internet 

infrastructure company (Cyber Attacks, 2016). The attack is recognised as one of the 

largest attacks with millions of source IP addresses used to request DNS lookup. Dyn is 

responsible for providing DNS service translations, i.e. translating human-friendly site 

names into machine-readable Internet addresses. The attack nearly brought down the 

entire US Internet service. Vulnerable Internet of Things (IoT) devices such as 

webcams and digital videos can be used to distribute malicious software and spam. 

Mirai is an example of software that was designed to exploit the vulnerabilities in IoT 

devices by infecting them. The infected devices were turned into slave or zombie 
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devices and formed an army of bots that was used to perform large scale Distributed 

Denial of Services (DDOS) attacks from multiple different locations. The attacks 

caused outages and slowness for many of Dyn’s customers including Twitter, Paypal, 

CNN, and some businesses hosted by Amazon.com Inc. 

A more recent massive cyber-attack took place on 12
th May 2017 and had a major 

impact on a significant element of the UK’s National Health Service (NHS), other 

health industries and created chaos in hospitals across England (Jones, 2017). 

Thousands of computers at hospitals and GPs’ surgeries became victims of global 

ransomware attacks, derivatives of the WannaCry attack, which are believed to have 

exploited a vulnerability first discovered by the National Security Agency (NSA). In 

particular, the attack exploited a vulnerability in the Windows Server Message Block 

(SMB) protocol and installed backdoor tools to deliver and run a WannaCry 

ransomware package. Although the Internet is widely recognised as a convenient means 

for providing real-time information services to the public, the potential threats to 

confidentiality, integrity and availability (CIA) issues need to be addressed more 

effectively and permanently (Thakare and Gore, 2014). 

1.2 Motivation 

In the early Internet era, most hackers needed a high knowledge level to assist them in 

developing their own methods to break into a system. Unfortunately, the existence of 

readily available intrusion and hacking tools has allowed almost anyone to initiate an 

attack. Today, in digital communications, cyber-attack can be compared to a missile 

used during the war. Figure 1.1 indicates cyber-attack events collected from the global 

major cyber events among the published open sources. The timeliness produced by 

Passeri (2017) illustrates an overview of the threat landscape. For instance, the total 

cyber-attack events have significantly increased by 182 cyber-attack events (with total of 

1061 cyber-attack events) in the year 2016, compared with 2014 (with total of 879 

cyber-attack events). 
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Figure 1.1: Monthly Attack Events Activity for Year 2014, 2015 and 2016 

One of the biggest concerns of information security is to protect or defend the 

information infrastructure (Tirenin and Faatz, 1999). This further explains the need to 

identify the source of threats and then analyse them for future preventive action. The 

process complies with the International Organization for Standardization (ISO) 17799 

and the identical British Standard (BS) 7799 that act as the codes of practice for 

information security management systems (ISMS) (Chan et al., 2005). Recent 

developments of the Internet have given rise to the enhanced capability of the Internet 

of Things (IoT) to ease people’s lives, particularly in solving issues related to 

communication, financial and time constraints.  
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Figure 1.2: Top Attack Techniques in Year 2014, 2015 and 2016 

Figure 1.2 shows the top attack techniques represented in total percentage for each year 

from 2014 until 2016. It demonstrates that “unknown” attacks had recorded an increase 

of almost 10% in 2016 compared to 2014 (Passeri, 2017). The highest proportion of 

“unknown” attacks each year has emphasised the serious need for defence mechanisms. 

The unknown attack is generally known as a zero-day attack in the network security 

field (Levy, 2004). The persistent growth of vulnerability and threats has also 

emphasised the serious need for defence mechanisms. The main technology of network 

security focuses on access control, firewall and information encryption. However, it is 

also important to acknowledge the common issues related to bugs and deficiencies. For 

instance, a firewall alone is unable to detect intrusions occurring from within the 

network (Wankhade and Chatur, 2014). This further explains why the intrusion 

detection system (IDS) has become a popular option. In addition, IDS is recognised as 

one of the components in the security arsenal as “defense in depth” (Northcutt et al., 
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2008), that acts as a complement to the existing security appliances. Although the IDS 

does not guarantee the security aspect, it will be greatly enhanced if integrated with 

other security measures, such as vulnerability assessments, data encryption, user 

authentication, access control, and firewalls. 

1.3 Problem Statement 

1. The rapid growth of Internet communication has led to the creation of myriad 

data. Hence, longer processing time is needed due to the high dimensionality of 

data communication, which is believed to significantly affect the system 

performance by reducing the attack detection speed (Davis and Clark, 2011). 

The main factor that contributes to performance reduction is due to the system 

having to process redundant and irrelevant features; thus it is crucial to develop 

a method that could efficiently remove them. 

 

2. Despite the fact that numerous statistical detections have been developed and 

studies made in the past, achieving exceptionally low false detection with high 

attack recognition capabilities still remains a major challenge (Acarali et al., 

2016). Most of the previous statistical detection managed to achieve an 

unsatisfactory attack detection rate (referred to as true positive). This action has 

led to the generation of a high false detection rate due to the traffic being more 

likely to be classified as anomalous. 

 

3. In classifying data type, the chosen algorithm plays an important role because it 

is highly associated with the derived features. For example, the classification 

process is inefficient if the derived features are not able to contribute enough to 

help the algorithm in the decision-making process. This will lead the algorithm 

to misclassify normal data as attack data (false positive) and attack data as 

normal data (false negative). The inaccurate result has compromised the 

reliability of the system to flag a true attack. 
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4. In a conventional detection approach, researchers often disregard the time need 

for the re-execution process for every piece of traffic, which further delays the 

determination of the traffic pattern. In some cases, the re-initiation of the whole 

procedure can be a mess when processing huge amounts of traffics. As such, 

the detection system should be fast enough to alert the administrator to prevent 

information loss. In addition, due to the number of incidents rising significantly, 

the incidents should be sorted according to their severity level. For instance, a 

critical incident would requires a quick response from a security analyst 

compared to less critical incidents (Anuar et al., 2013). Furthermore, such an 

approach could provide better insight for security analyst regarding incident 

responses. 

1.4 Research Question 

In this thesis, this research attempts to address the overarching question: “How could 

system detection performance be improved in order to identify known and unknown web attacks? Four 

sub-questions then follow hereafter: 

1. What approach can be used to select prominent features within the dataset? 

 

2. How can the false detection rate produced using conventional statistical techniques be reduced? 

 

3. What is the suitable combination of classifiers in boosting algorithms that could improve the 

attack detection performance? 

 

4. How can the detection ability be improved in order to identify similar attacks in the future? 
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1.5 Thesis Outline 

This section presents the structure of the thesis as follows: 

Chapter 2 contains related studies on the subject matter including intrusion detection 

system (IDSs), feature selection, statistical, and data mining-based anomaly detection.  

Chapter 3 describes the research methodology adopted in this study. The chapter gives 

an overview on how the proposed scheme is designed and implemented. It also covers 

the experimental setup. The selection of the required methods for the research and the 

criteria used to evaluate the performance are also highlighted. 

Chapter 4 describes the proposed scheme that is based on three major phases: pre-

processing, anomaly detection and post-processing. The overview of steps taken in pre-

processing, anomaly detection as well as post-processing is also discussed in this 

chapter. 

Chapter 5 presents the implementation of three major phases in the proposed 

detection scheme using WEKA data mining tools, SQL script and MySQL database. 

The procedure for each step of implementation is explained in this chapter. 

Chapter 6 discusses the performance evaluation and analysis of the proposed scheme. 

The effectiveness of Pre-Processing, Anomaly Detection and Post-Processing is 

assessed using four widely used IDS datasets with various performance metrics. 

Chapter 7 summarises the entire thesis. The limitations and the proposals for the 

possible future enhancement to this research are briefly mentioned. 
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                     Chapter 2      

Literature Review 

2.1 Introduction 

This chapter aims to review most of the published works that are relevant to the field 

of IDS as well as its implication. Section 2.2 begins with a discussion of attacks on web 

traffic. Section 2.3 highlights an overview of IDS. Section 2.4 presents the pre-

processing phase, particularly using a feature selection procedure. Section 2.5 discusses 

the anomaly detection employed as statistical and data mining (DM) approaches in 

classifying attack traffic. Section 2.6 emphasises the post-processing phase and the 

existing techniques. Finally, Section 2.7 summaries the overall findings. 

2.2 Web Attacks 

Recent development of online web systems has attracted numerous users to further 

utilise the infrastructure. The web traffic is analysed through the responses of requests 

that come from the clients and servers via the HTTP and HTTPS protocol. The 

security aspect of the web application is crucial because it stores countless sensitive user 

information and provides the means to access beneficial venture assets such as e-

banking, online purchase, online stock trading and services with the financial 

organisation. For instance, the service will be considered unreliable if it fails to protect 

the sensitive credit card information of the users. In those cases, the service provider 

will incur heavy losses concerning data, money, and business opportunity or availability. 

For example, the recent massive attack was targeted at the online banking system. 

Almost 40,000 Tesco bank customer accounts were undergoing suspicious transactions, 

with 9,000 of the customers losing money (Tesco Banks, 2016). This incident is the 

largest breach to have hit a UK bank. Pending investigation, banks have taken 
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immediate action by freezing all online transactions in order to prevent more customers 

from being the victim of further unlawful activity. It was reported that the said attack 

had cost Tesco a hefty £25 million. The attack also resulted in the biggest drop in the 

value of Tesco stock on record. Hence, it becomes imperative to secure the related 

information assets with robust and reliable security systems. 

SQL-injection is a commonly used attack employed to exploit a vulnerability known as 

command injection. Typically, SQL-injection is a technique that is employed to inject 

fictitious data into an SQL statement or query for malicious purposes through web page 

input. The SQL-injection attack makes it possible to alter, delete, or insert information 

from the affected web service and compromise its security system (Jang and Choi, 

2014). Critical information such as full name, date of birth, previous or current home 

address can be collected from the server as part of identity fraud (Abdallah et al., 2016). 

Another popular target for hackers is the banking sector. It is understood that the credit 

card information stored in the banking server’s database is the most valuable 

information. Hence, the breach of credit card information will definitely cause major 

disruption, and most importantly, the compensation for the loss resulting from this 

action is unimaginable. There are known solutions to alleviate the impact of these 

attacks, which include encrypting the database system, limiting user privileges, and 

implementing data validation.  

Another type of web attack is known as cross-site scripting (XSS) which comes under 

cross-domain security issues. The improper system coding writing style provides a good 

opportunity for the attacker to exploit the known vulnerability. The attack does not 

target the victim directly, but exploits the vulnerability of the victim who visits the 

website. In other words, the vulnerable website acts as a medium for the attacker to 

deliver malicious code to the victim's web browser (Razak et al., 2016). First, the 

attacker must find a way to inject the malicious codes onto the targeted vulnerable 

website to launch the XSS attack. This vulnerable website usually allows user input on 

its pages, which then enables the attacker to insert the malicious code that subsequently 

is executed by the victims. The executed malicious input allows the attacker to access 

the victim's cookies, webcam, geolocation, microphone, or at worst the specific user's 

file system that can grant access to control of the victim's computer. 
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The exposure of the vulnerable web applications and sensitive information on the 

Internet has further emphasised the need to investigate the network security element. 

This has resulted in an increasing number of aggressive attacks incidents that caused 

serious damage to the targeted web-based information system. According to the top 10 

applications of security risk by Open Web Application Security Project OWASP (2017), 

the injection flaws attacks became the most critical security risk to web applications, 

which subsequently led to more studies being conducted in this field. The research by 

Laranjeiro et al. (2010) proposed a learning-based approach to secure web servers 

through the detection of SQL and Xpath injection attack. The detection is based on 

input query where the attacker usually adds extra conditions to the original SQL 

commands. The proposed methods required examination of the structure as well as the 

type of inputs and outputs of the operation that exist in the XSD file. After the 

necessary information is collected, the workload generator is used to inspect the set of 

data that access the SQL/Xpath presented in the source code. In detection mode, the 

SQL query is compared with the normal SQL query that does not store any attacks in 

the lookup map. The execution will stop processing the query to avoid probable 

hazardous requests if the SQL query is not found. This approach is capable of alerting 

developers and service administrators to stop the XPath/SQL injection before the 

system is harmed. 

Another way of identifying attack is by analysing a user’s access request. The research 

by Threepak and Watcharapupong (2014) assumed the attack patterns to be more 

complex than the common access request. This complexity is used as a benchmark in 

detecting attacks. The recorded request log is inspected using Shannon entropy analysis 

and utilised to calculate the complexity level. In defining the entropy level, a normal log 

requests in training set is used as the benchmark of the legitimate profile. Meanwhile, 

the boundaries (threshold) in detection are measured using the average and standard 

deviation of the period for each entropy. Log requests that surpass the predefined 

complexity threshold are flagged as a potential intrusion. However, the false detection 

rate needs further improvement, although the proposed attack detection approach is 

able to detect attacks at a satisfactory rate.  
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The research conducted by Zolotukhin et al. (2014) was focused on payload, where 

HTTP log requests were extracted. The normal HTTP log requests have been used as a 

training set that describes the model of normal users’ behaviour. This approach is 

similar to work performed by Kim and Lee (2014) in which they made use of the query 

to detect SQL attacks. Initially, the query trees are converted to dimensional vectors for 

feature extraction and feature transformation. The work has been carried out using a 

DM technique by utilising the SVM algorithm for classification purposes. The result has 

demonstrated conspicuous performance improvement concerning computational time 

reduction and attacks detection accuracy rate.  

Traditionally, IDS works with the principle of "deep packet inspection" whereby the 

packet contents are inspected in order to detect any malicious activities. The increased 

usage of network communication has led to more demands for secure communication 

using a cryptography approach. In an encrypted traffic environment, SSL, VPN or 

IPsec protocols are utilised to offer better privacy and confidentiality. Most established 

works in detecting web attacks are mainly focused on investigating the log/payload 

content. As the traffic is encrypted, the payload (log) is unavailable as the content is 

indecipherable.  

2.3 Intrusion Detection System 

An IDS is an application system or device that functions to identify either hostile 

activities or policy violation activities within a network. Anderson (1980) in a technical 

report described how audit trails containing patterns of legitimate information (user 

behaviour) could be utilised to distinguish and identify abnormal behaviour. The main 

interest in securing a network infrastructure is to design a network that is able to 

protect the confidentiality and integrity of data information while also ensuring the 

resource’s availability. According to Thai and De Oliveira (2013), a defective network 

design with limited misconfiguration of the software can lead to a more serious 

vulnerability issue, which makes it easier for an attacker to attack an organisation. 
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2.3.1 Types of IDS 

With regard to IDS deployment, the scope can be classified as host-based IDS (HIDS) 

and network-based IDS (NIDS) (Muda et al., 2011a). The scope is based on the location 

of IDS which is deployed to inspect suspicious traffic. More specifically, NIDS captures 

the whole network segment and analyses it to detect for signs of hostile traffic. 

Meanwhile, HIDS focuses on a specific host and analyses information such as system 

calls, logs, and packets. In that manner, HIDS is regarded to be the better option in 

helping to identify internal attacks compared to NIDS (Iii, 2007).  

2.3.2 IDS Detection Methods 

The IDS detection methods are divided into two types: misuse-based detection system 

(MBDS), referred to as signature-based detection and anomaly-based detection system 

(ABDS) known as behaviour-based detection (Chen et al., 2010).  

2.3.2.1 Misuse Based Detection System (MBDS) 

MBDS adopts predefined signatures that were previously stored in the library to detect 

known attacks. MBDS is more similar to a virus scanner in term of using signature as 

the detection approach. The example of tools that use MBDS are given in Snort (2002). 

The signatures are in the form an understandable and straightforward structure that 

helps to identify attack activities (Fugate, 2012). The signature is used to identify 

specific known threats considering that each signature represents a unique threat. This 

approach is believed to significantly reduce the false negative because it initially contains 

collections of attack signatures. The implementation requires the signature to be 

compact and straightforward to minimise the signature size to allow it to work under 

heavy networks. Besides, MBDS approaches can also be employed to examine 

incoming traffic (packets) to find relevant attributes such as IP addresses, protocols, 

bytes length, and ports, which can mostly be obtained from packet headers information 

and payloads (Fugate, 2012). However, MBDS has its limitations, considering that it 

depends solely on regular signature updates. Consequently, it is impossible to recognise 

unknown or new attacks that are passing through the system (Louvieris et al., 2013).  In 

view of the rapid growth of threats, it is difficult for misuse detection to keep up with 
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higher detection rates. Despite its limitation in maintenance and detecting an unseen 

attack, MBDS has been recognised as an efficient system for identifying the 

considerable number of attacks, and being easy to use and suitable for huge 

environmental diversity. 

2.3.2.2 Anomaly Based Detection System (ABDS) 

An anomaly is a state of action or behaviour that deviates from the legitimate state 

(Wang, 2004). The anomalies are initiated through the variation of unusual activities 

that are vital for data inspection, such as cyber-attacks, e-banking fraud, and social 

engineering. It is important to define the state of abnormality in determining anomaly. 

According to Ahmed et al. (2016), the category of anomaly can be classified into the 

following three types: 

1) Collective anomaly: In this case, a collection of a similar event that is different 

from the entire dataset is classified as a collective anomaly. Sync flood is one of the 

Denial of Service (DoS) attack types that occur when there is a superfluous request 

made in an attempt to flood the targeted server. Hence, it would not be considered as 

an anomalous event if a single request were detected to be unresponsive. Meanwhile, an 

abnormal phenomenon is bound to occur when the collective of the unresponsive 

pattern is received from clients, which will cause the targeted server to be unresponsive 

to any other requests. 

2) Contextual anomaly: Conditional or contextual anomaly is recognised when the 

data are performed abnormally in a specific context. For example, port scanning is 

usually performed when a security expert conducts penetration testing in order to 

discover the system’s vulnerability to prevent it from being exploited by hackers. These 

scheduled activities normally generate more traffic flows inside the network during the 

testing. The traffic is considered to be an anomaly if the testing is permitted, despite the 

high network traffic caused by the scanning activities. On top of that, the increasing 

amount of traffic flow caused by the scanning activities during the non-scheduled 

program can be interpreted as a contextual anomaly.  
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3) Point anomaly: A point anomaly occurs when a particular single data instance 

from the dataset is different from the normal scheme. For instance, normal users will 

access their account daily on average, and there is the possibility that they might insert 

an incorrect password probably one or two times. However, point anomaly involves 

attempts to access the account, which may be more than average, considering that the 

attacker launches a brute force attack to gain unauthorised access to the account. 

In ABDS, the point anomaly detection scheme has been widely applied. It is crucial to 

note that the statistical measurement (Chen et al., 2010), distance-based measurement 

(Bayarjargal and Cho, 2014) and clustering (Louvieris et al., 2013) are the main factors 

that help to identify or estimate the point anomaly (outliers). Chen et al. (2010), in their 

research constructed a normal profile by clustering the traffic attributes from the packet 

headers, in which any attribute’s value that deviates from this profile is considered as an 

outlier. Concerning this, Bayarjargal and Cho (2014) employed Mahalanobis distance on 

selected packet attributes to compute the distance between normal and abnormal 

traffics. Meanwhile, Louvieris et al. (2013) performed outlier detection using the nearest 

neighbour algorithm by calculating the distance between connection vectors. Unlike 

MBDS, this detection-based method does not require specific knowledge about an 

attack to be known beforehand. According to Guo et al. (2016), anomaly-based 

detection usually elevates more false alarm, compared to the misuse-based detection. 

False alarm occurs when ABDS inaccurately defines the normal traffic as abnormal 

traffic. The main focus of ABDS is to design high detection and prediction with smaller 

amounts of false alarms to avoid IDS performance reduction. 

Generally, anomalous behaviour is regularly defined as an intrusion in detecting 

anomaly traffic. Considering this assumption, the traffic behaviour can be divided into 

two classes: (1) intrusion caused by anomalous behaviour and (2) intrusion caused by 

non-anomalous behaviour. As stated by Ahmed et al. (2016) with regard to the three 

types of anomaly, it can be indicated that anomalous activities may not totally be 

demonstrated as true intrusion action. In many cases, the abnormal behaviour is flagged 

as intrusion; however, it is considered as legitimate activity after the investigation. 

Furthermore, it is difficult for anomaly detection to define abnormal behaviour when it 

is not really different from the normal pattern (Liao et al., 2013). Hence, this will cause 
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the system to flag abnormal data instances as normal instances. Therefore, the aforesaid 

situation has generated another two types of classes known as: (1) legitimate action 

caused by normal behaviour, and (2) legitimate action caused by intrusion behaviour. 

The four major classes used in measuring the IDS performance and effectiveness are 

(1) True Positive, (2) False Positive, (3) True Negative, and (4) False Negative. In most 

established works, various techniques have been performed in anomaly detection such 

as statistical and DM approaches. 

2.3.3 IDS Datasets 

There are many synthetic datasets available in the field of IDS. This includes DARPA 

1999 (Lippmann et al., 2000), KDD 99 (1999), NSL KDD (Tavallaee et al., 2009), 

CAIDA (2011), DEFCON (2000), The Internet Traffic Archive (2008), LBNL (2005), 

ISCX 2012 (Shiravi et al., 2012) and UNSW-NB15 (Moustafa and Slay, 2016). Most of 

these datasets are unlabelled, and it requires comprehensive search activity to tag attack 

traffics.  

The DARPA 1999 was constructed to simulate the traffic of a medium sized US Air 

Force Base. Despite heavy criticism by McHugh (2000) and Brown et al. (2009) on their 

limited ability and accuracy in demonstrating real-live traffic, the dataset remain to be 

extensively adopted in the field of IDS. A similar simulation environment was 

employed to generate a KDD 99 dataset where the difference is that the dataset was 

captured under the DARPA 1998 project. The NSL KDD dataset was recognised as an 

improved version of the KDD 99 dataset in the way that it has removed huge numbers 

of redundant and duplicated records in both training and testing sets.  

In the CAIDA dataset, most of the attacks were generated according to very specific 

and particular events that make it suitable for researchers to develop a solution for 

detecting certain attacks. However, some of the backbone traces are anonymized by 

payload, with some other information such as protocol information and destination 

being completely unavailable.  

The DEFCON dataset was known as a commonly employed dataset to evaluate IDS 

performance. It was generated during the competition named Capture The Flag (CTF) 
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and does not represent a real network environment. This is due to the dataset 

containing a substantial amount of attack traffic, compared to benign traffic, which has 

made this dataset suitable for alert correlation methods.  

Other datasets such as The Internet Traffic Archive and LBNL, have suffered from 

heavy anonymization which resulted in a lack of packet information, such as individual 

IP address. On top of that, the datasets were developed in the ‘90s, which create further 

questions regarding their relevancy to represent the modern traffic environment.  

The recently published datasets ISCX 2012 and UNSW-NB 15 were claimed to be 

more realistic due to their containing of recent sophisticated attacks. It is appropriate to 

adopt these datasets for a better projection of presenting the modern network traffic 

environment. 

2.4 Pre-processing Phase 

In IDS, the pre-processing phase is required with aim of easing data analysis and 

improving the processing time. Feature selection is widely employed to reduce high 

dimensionality data while removing insignificant information. This procedure is vital in 

order to improve the detection speed when processing the huge amount of traffic (Ji et 

al., 2016). 

2.4.1 Feature Selection 

Feature selection is a foundation of machine learning that has been studied for many 

years (Liu and Motoda, 1998). It is commonly used as a pre-processing phase in IDS to 

discover the most prominent features of learning algorithms. In this case, the most 

useful data will be utilised to obtain better future projection. Hence, the redundant or 

irrelevant features will be removed to prevent a biased classifier. The algorithm that is 

adopted in selecting the best feature is one of the principal elements in determining IDS 

effectiveness. It is important to minimise the error of selecting feature that can reduce 

the detection of abnormal behaviour. This is because the effectiveness of the selected 

algorithm is highly dependent on the features selection. There are a few advantages of 

feature selection that particularly reduce the data dimension, enhance the projection 
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accuracy, and improve the processing time to be significantly faster and efficient. 

The two general methods for feature selection are the filters and wrappers approaches 

(El-Khatib, 2010). The filters approach is divided into two categories: filter-based 

feature ranking (FBFR) and filter-based subset evaluation (FBSE). FBFR ranks the 

relevant features by assigning weights to features individually. The assigning is based on 

the score of every single feature to the target classes without paying attention to the 

interaction between features. Feature ranking is faster than FBSE that processes 2
n 

(n=number of features) because it only computes the features once. However, it is 

impossible to get rid of redundant features due to the fact that filter ranking processes 

each feature independently (Khammassi and Krichen, 2017). Hence, FBSE was 

introduced to overcome these problems (redundant feature). It examines the whole 

subset (not just selecting the relevant features) and explores the degree of relationship 

between features. Overall, FBSE is more desirable in selecting feature in IDS compared 

to FBFR (Nguyen et al., 2010). 

2.4.1.1 Filter and Wrapper Methods 

FBSE is a heuristic-based method that employs probabilities and statistical measures to 

search and evaluate the usefulness of all the identified features. Alternatively, wrapper-

based subset evaluation (WBSE) utilises a classifier to estimate the merit of each feature 

subset. Commonly, WBSE is known to have a better predictive accuracy than FBSE 

considering that the selection approach is optimised when evaluating each feature 

subset with a particular classification algorithm. Conversely, it is very expensive to be 

executed considering it evaluating each set of features (Bolón-Canedo et al., 2015). 

Moreover, the wrapper can become uncontrollable when dealing with a large database 

that consists of many features (Hall, 1999). Wrappers are also associated with the 

classifier's algorithm, which makes it more difficult to shift from one classifier to 

another considering that the selection process needs complete re-initiation. Unlike 

wrappers, the selection criteria of filters use distance measures and correlation functions 

because they do not require re-execution for different learning classifiers (Cleetus, 2014). 

It has been observed that the execution is much faster than that of the wrapper 

approach. Filters are best suited to large database environments that contain many 
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features. On top of that, researchers have often used the filter as an alternative to the 

wrapper, since the latter is more expensive and time-consuming. 

The feature selection process has attracted the interest of many researchers due to its 

potential in reducing high dimensional data. According to Mukkamala et al. (2004), the 

feature ranking algorithm was introduced merely to select the top six features based on 

rank. They adopt three ranking algorithms, namely support vector machines (SVM), 

multivariate adaptive regression splines (MARS), and linear genetic programming (LGP). 

The algorithm will select the best feature and then compare the performance of each 

algorithm. The detection will be programmed to detect Probe and DoS attacks. The 

LGP can achieve a higher accuracy rate in detecting both types of attacks compared to 

other algorithms. However, this approach is only effective to specific types of attacks. 

The speedy computation ability of the filter ranking has made it suitable to be applied 

for huge datasets. For instance, Wald et al. (2013) used filter ranking to reduce 480 

features to a total of 40. They compared three different approaches of feature selection 

which are filter-rank, FBSE, and WBSE in order to find the best method to select the 

relevant features. Three different feature selections with six different classifiers, five-

nearest neighbours (5-NN), logistic regression (LR), multi-layer perceptron (MLP), 

Naive Bayes (NB), RF with 100 trees (RF100), and SVM were utilised to achieve the 

best results. As recommended by these authors, the filter ranking process executed in 

high dimension data tends to perform better with SVM classifier techniques. Although, 

they claimed that the filter ranking method is more competent compared to the FBSE 

and the WBSE. However, there was no explanation of the methods implemented in 

choosing the top 40 features from the ranking table, which might affect the final 

optimal set of features, considering the irrelevant features. 

Another filter ranking was implemented by Ambusaidi et al. (2014) in which a hybrid 

selection was performed by combining both mutual information (filter ranking) and 

wrapper. The wrapper approach utilised least square-SVM (LS-SVM) for features 

optimisation. Mutual information provides a good measurement to find the relevant 

features by quantifying the amount of information to the output class. However, the 

false positive and the detection rate can still be improved, despite the significantly 

reduced number of features. In relation to the calculation of features selection relevancy, 
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El-Khatib (2010) proposed the information gain ratio (IGR) to replace the traditional 

information gain (IG) calculation method, considering that IG is normally biased 

towards features that contain high distinct value. The selected features are ranked based 

on score derived from the IGR calculation. The K-means classifier is then used to 

determine the best-fit feature-set based on the performance results accuracy. The 

selection process will end when the current subset performance drops below the 

previous subset accuracy. Next, the selected features are tested with three types of 

artificial neural network (ANN) architecture listed as follows: (1) perceptron, (2) 

multilayer backpropagation perceptron (MBP), and (3) hybrid multilayer perceptron 

(HMP). HMP was found to have a lower false positive rate and required the longest 

time in the learning model; however, its classifier has outperformed both the 

perceptron and the MBP. Nevertheless, there were no significant detection rate 

differences between the proposed HMP and MBP. 

The classifier was shown to be less accurate when used solely to evaluate performance 

accuracy compared to the ensemble technique (combining more than one classifier) 

(Mukkamala et al., 2005). Another research by Zainal et al. (2008), proposed adaptive 

neural fuzzy inference system (ANFIS) and LGP algorithms in detecting four main 

types of attacks, namely Probe, DoS, R2L, and U2R. This ensemble technique was 

implemented with a reduced set of features (between six to eight) for each type of 

attack. This technique has managed to achieve more than 99% detection rate for R2L 

and U2R attack types, including an average of 99.15% accuracy for all attack types. 

In selecting the best-fit classifier, Zaman and Karray (2009) have compared their 

approach with two different classifiers which are neural network (NN) and SVM. They 

proposed a novel method called the enhanced support vector decision function 

(ESVDF) to select features based on rank, while backward elimination ranking (BER) 

and forward selection ranking (FSR) are used to calculate the correlation between 

features. The comparison of both algorithms revealed that the NN performed better 

than the SVM. The proposed enhanced method further reduced the number of features 

and the time taken to build a model, by a negligible margin of 0.08% and 0.11% for NN 

and SVM, respectively. Nevertheless, the accuracy rate is still lower than the full 

features. The need to achieve low false detection and high attack recognition 



Chapter	
  2:	
  Literature	
  Review	
  

	
   20	
  

capabilities is still a major challenge despite the introduction of numerous feature 

selection approaches.  

Table 2.1: Comparison of Previous Work (Feature Selection) 

Authors Features Techniques Pros Cons Dataset 

Mukkamala 
et al. (2004) 

 

41 

Ranking using 
SVM, MARS 
and LGP 

Useful in 
detecting Probe 
and DoS attack 
types 

Not suitable for 
detecting R2L and 
U2R attack types 

KDD 
99 

Zainal et al. 
(2008) 41 

Linear Genetic 
Programming 
ensemble with 
Adaptive 
Neural Fuzzy 
Inference 
System 

Effective in 
detecting DoS 
and R2L using 
ensemble 
approaches 

Not effective for 
detecting Probe and 
U2R attack types KDD 

99 

Zaman and 
Karray, 
(2009) 

41 

Enhanced 
Support 
Vector 
Machines 

Time effective in 
building model 

Reduced features 
output was lower 
when compared with 
using full features 

KDD 
99 

Ravale et al. 
(2015) 

41 

Hybrid 
Selection using 
K Means & 
RBF Support 
Vector 
Machines  

Reduced 
features 
achieved better 
detection rate 
compared with 
using all 
features, with 
improvement 
around 9%  

Single classifier using 
SVM has 
outperformed the 
proposed hybrid 
approaches 

KDD 
99 

Kakavand 
et al. (2016) 

256 

Dimensionality 
Reduction 
using Text 
Mining Model 

The features had 
reduced from 
256 to 25 
features. The 
model had 
achieved 97% 
detection rate 
with 1.2% false 
alarm rate 

The experiment was 
conducted on 
payload traffic which 
required additional 
computational effort. 
In addition, only 
25% of testing data 
used when compare 
to training data 

ISCX 
2012 

Aljawarneh 
et al. (2017) 

41 

Hybrid 
selection using 
Information 
Gain 

Reduced 
features from 41 
to 8 features 
with 99.81% 
accuracy rate 

The classification 
model is built by 
combining seven 
classifiers which are 
expensive to execute 

NSL 
KDD 
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2.4.2 Summary 

Figure 2.1: The components of the pre-processing phase 

The previous work had highlighted the function of selecting prominent features is to 

minimise the data dimensionality in order to achieve a better discrimination boundary 

in classifying attack behaviour.  

Figure 2.1 shows the two components proposed in the pre-processing phase. In line 

with this, two selection methods of FBSE and WBSE are further discussed in this study. 

According to Nguyen et al. (2010), FBSE can be easily deployed and is capable of 

removing redundant features effectively. Meanwhile, the better feature optimisation can 

be achieved using WBSE where the merit of the feature set is measured by the 

classification algorithm (Cleetus, 2014). However, WBSE is expensive to be executed 

compared to FBSE (Bolón-Canedo et al., 2015). Hence, the combination of both FBSE 

and WBSE methods are further investigated with the aim of assist the selection of 

prominent features.	
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2.5 Anomaly Detection Approaches 

There are two detection methods that are regularly employed in the anomaly detection 

field: statistical and DM approaches. The advantages and limitations of both 

approaches are further discussed in the next sub-sections. 

2.5.1 Statistics based Anomaly Detection (SBAD) 

The statistical method in IDS was first introduced by Denning (1987). The detection 

approach primarily relies on a collection of data history to create normal profile 

behaviour. In this approach, only benign traffic data collected over a period of time is 

utilised to detect intrusion (Denning, 1987). The collected benign traffic is utilised to 

generate a profile behaviour, in which any incoming traffic that deviates from the 

profile will be recognised as suspicious traffic. As a result, the intruder behaviour form 

can be detected as a possible attacker through this detection approach (Patcha and Park, 

2007). The main advantage of this approach is its ability to employ statistical procedures 

that could extract the traffic features in representing the behaviour pattern of the data, 

which can either be normal or attack traffics. A considerable amount of established 

works have employed statistical measures, e.g. Mahoney and Chan (2001), Shamsuddin 

and Woodward (2007), Chen et al. (2010), and Xiong et al. (2013). 

On top of that, some of the published works proposed a statistical model in more 

specific areas such as Packet Header Anomaly Detection (PHAD). In PHAD, packet 

characteristics and behaviours are used to recognise abnormal patterns. According to 

Mahoney and Chan (2001), PHAD uses statistical measurements from activities history 

to construct a normal profile. The traffic that deviates from the normal profile and 

behaves abnormally will be identified as an intruder through this detection method 

(Patcha and Park, 2007). PHAD uses all information inside the packet header instead of 

just IP addresses and port numbers (Mahoney and Chan, 2001). The 33 attributes in the 

packet header represent the information of 3 layers in the OSI 7 layers model, i.e. data 

link, network, and transport layers.  
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The information in the attributes was used to measure the probability of each packet, 

either towards benign or abnormal behaviour. An anomaly score will be given when any 

dissimilarity is detected from the match against normal data. Finally, the sum anomaly 

score of each packet is summed up and flagged as anomalous if the score surpasses the 

pre-set threshold.  

In contrast to conventional PHAD systems, Shamsuddin and Woodward (2007), 

proposed Protocol-based Packet Header Anomaly Detection (PbPHAD) in two 

different environments, namely network-based and host-based. The proposed method 

adopts three main protocols which are TCP, UDP, and ICMP to construct a normal 

profile that contains normal behaviour. Similarly to the traditional PHAD system, this 

approach uses all 33 packet header attributes to produce an anomaly score. The score 

will individually rate the degree of incoming traffic. There is still room for further 

improvement, despite the fact that PbPHAD exceeds the results from the PHAD and 

DARPA best System (Lippmann et al., 2000), with 57.83% detection rate. 

To identify malicious packets present in within TELNET traffic, Chen et al. (2010) 

proposed the Lightweight Network Intrusion Detection (LNID) System. In LNID, 

benign behaviour extracted from training data is used to construct a normal profile. 

Additionally, the normal profile is used as the indicator to compute the anomaly score 

that was given during the matching process between testing and training data. The 

packets are flagged as malicious when the score surpasses the pre-set threshold. 

Insignificant features from training data are removed during the pre-processing phase 

to reduce the computational cost.  

Although the scoring approach in LNID managed to achieve higher detection rate for 

U2R and R2L up to 86.4%, it still has the opportunity for further improvement. For 

instance, the traffic processed by LNID uses whole features derived from the packet 

header and payload data which may contain some redundant and irrelevant attributes 

that will increase the computation effort. Another area of concern is the need for re-

execution for each set of traffic, regardless of whether the traffic has been determined 

earlier.  
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In addition, it is difficult for the detection approach to identify an attack that possesses 

similar behaviour to normal traffic. This is due to the anomaly approach being solely 

dependent on a normal profile as a baseline in determining the traffic status (normal or 

attack). It is important to note that the traffic could be anomalous if several outliers are 

present in the traffic, particularly taking into account that the predefined threshold is 

determined without performing further analysis. Besides, the detection methods only 

emphasise R2L and U2R without giving any concern to other risky attack types such as 

Probe and DoS. On top of that, the approach requires payload extraction that is limited 

to unencrypted traffic environment.  

Profile generation has led Xiong et al. (2013) to propose catastrophe and equilibrium 

surface theory to extract common behaviour present within the network. The standard 

equilibrium surface is used to indicate the change of packet behaviour, which makes it 

suitable for inspecting incoming traffics. The real challenge is to obtain the best 

detection rate together with the lowest false alarm rate, despite the fact that the 

evaluation of true positive slightly increased over 86% for TELNET traffic. 

Table 2.2 presents the established works that employed the statistical approach based 

on the DARPA 1999 dataset. The methods presented in the table solely depend on 

anomaly scores to differentiate between actual attack and normal data. Therefore, the 

results achieved are not particularly encouraging and still have room for further 

improvement.  Alternatively, DM approaches are extensively employed and can be 

continuously improved for better detection capabilities. 
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Table 2.2: Comparison of Previous Work (Statistical Approaches) 

Authors Techniques Pros Cons Dataset 

Mahoney and 
Chan (2001) 

Statistic based, 
Anomaly score, 
predefine 
threshold 

Recognise 70 
attacks out of 
180 with 39% 
detection rate 
and 10% false 
alarm rate 

The proposed 
method could 
not achieve 
higher 
detection rate 

DARPA 1999 

Shamsuddin 
and Woodward 
(2007) 

Statistic based, 
stationary 
model, 
Anomaly score 
method, 
predefine 
threshold 

Detection Rate 
57.80% 
(Identified 48 
out of 83 
attack 
instances)  

The detection 
rate recorded 
by proposed 
method has 
room for 
further 
improvement 

DARPA 1999 

Chen et al. 
(2010) 

Statistic based, 
stationary 
model, Feature 
Extraction, 
Anomaly score 
method, 
predefine 
threshold 

Achieved 
72.70% of 
detection rate 
with 1.36% 
false alarm rate 

Only focusing 
on detecting 
R2L and U2R 
attacks inside 
Telnet traffic 

DARPA 1999 

Xiong et al. 
(2013) 

Statistic based, 
Catastrophe 
Theory, 
distance based, 
predefined 
threshold 

Detection rate 
average at 
86.3% with 
3.2% false 
alarm rate 

The predefined 
threshold has 
generated high 
false alarm rate  

DARPA 1999 
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2.5.2 Data Mining Based Anomaly Detection (DMBAD) 

DM is a technique for discovering a systematic data relationship as well as determining 

the fundamental data information (Louvieris et al., 2013). DM can be divided into two 

broad categories, which are unsupervised and supervised approaches. Furthermore, 

clustering and classification are the respective examples of unsupervised and supervised 

algorithms. In clustering, the group of objects is categorised based on the characteristic 

data points. In this case, every single data point in a cluster is similar to those within its 

cluster but different from those in different clusters (Hair et al., 2009). The purpose of 

grouping similar data into one or more clusters is simply to ease the abnormality 

identification. However, this approach will potentially increase the false alarm rate 

(Hubballi et al., 2013). In view of the fact that the IDS performance is highly dependent 

on low false alarms, its capabilities can be downgraded if high false alarms continuously 

occur. Hence, classification is considered the better approach for classifying data (e.g. 

benign or anomalous), especially in reducing the false alarm rate.  

Meanwhile, in supervised learning, the knowledge structure is created to recognise and 

classify newly found instances into predetermined classes. The collections of samples 

provided are inserted into machine learning to further classify them into classes. On 

another note, a classification model is developed as an output of the learning process 

based on the instances information provided in the learning stages. In short, the focus 

of supervised learning is to model the input/output relationships with the objective of 

recognising a mapping from input attributes to an output class. The output, such as the 

regularities among attributes of the same class or differences between them, can be 

demonstrated as a decision tree, a flowchart, and classification rules, which are to 

classify a novel unseen instance.  

There are two stages required in classification: training and testing. In training, the 

labelled data provided (training dataset) are examined using a classification algorithm to 

construct a classification model. The model that is created during training is able to 

recognise instances. The model is then used to classify the testing dataset (unlabelled 

dataset) which contains the unseen instances. The outputs are calculated based on the 

classifier used in constructing the model. Overall, four classification metrics managed to 
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be produced: True Positive, True Negative, False Positive, and False Negative. 

2.5.2.1 Classification Techniques 

Classification is a supervised approach that is able to differentiate unusual data patterns, 

thus making it the most suitable option to identify unseen attack patterns (Farid et al., 

2014).  A classifier will gather the knowledge by training the pre-classified sample 

representing the classes. Furthermore, it can act as a predictor for some unknown 

samples, or a descriptor for classified samples. On top of that, classification has been 

widely used considering its strong ability to identify attack and normal structure 

accurately, which helps to reduce false detection (Muda et al., 2011a). Most of the 

established works employed the following as a single classifier in the field of intrusion 

detection: artificial immune systems (AIS), fuzzy logic (FL), one rule (OneR), hidden 

markov model (HMM), genetic algorithm (GA), neural network (NN), naïve bayes 

(NB), decision table (DT), decision tree (J48), random forest (RF), support vector 

machine (SVM) and multilayer perceptron (MLP). 

AIS was inspired by natural immunity models. The implementation algorithm that was 

inspired by the immune system has been widely applied to various real world 

applications. In view of ABDS, the AIS performs the detection by generating the 

pattern of abnormality given from a given set of normal data (Wu and Banzhaf, 2010). 

The abnormal pattern is used as a benchmark for detecting the anomaly data. In the 

learning process, the efficiency of the algorithm is highly dependent on the traffic 

contents (Hosseinpour et al., 2014). Hence, the dataset that contains continuous 

attribute values will ease the process of generating the abnormal pattern. 

Apart from AIS, another artificial intelligence classification technique is FL. FL is able 

to differentiate an object that belongs to a different class at the same time. In the 

intrusion detection field, a model that was built from numeric data is bound to produce 

errors due to the behaviour that slightly deviates it from the model, thus causing false 

detection. The FL technique is believed to achieve low false detection rates. However, 

the major drawback of this classifier because it requires IF condition- THEN 

conclusion rules to encounter the problem as well as attention on fine tuning to success. 
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OneR classifier is known as a rule-based algorithm that generates rules with the basic 

purpose of selecting the features and appropriately ranking them. The algorithm 

establishes rules for every value in the feature by testing a single feature at a time. In 

this algorithm, a set of classification rules for the particular tested features is generated 

based on the value of a single feature, whereby the feature with the lowest error rate is 

chosen as "one rule". The error rate is generated by the proportion of instances that do 

not belong to the majority class of the corresponding feature. Overall, it is very helpful 

in selecting features but not for classifying data that contains many features because 

OneR only considers one feature (Muda et al., 2011b). 

The Hidden Markov Model (HMM) approach has been widely used in various fields of 

application such as speech synthesis, crypto analysis, speech recognition, and 

classification problem-solving. In the ABDS classification model, HMM has the 

capability to distinguish between normal and abnormal behaviour. Unfortunately, the 

model is more suitable for one-dimension sequence classification, such as wave 

spectrum or voice (Choraś, 2015). As in ABDS, the data are in multi-dimensional 

sequences (continuous and discrete) mixed together, which makes them unsuitable for 

detecting anomalous traffics. 

Apart from HMM, GA has been widely applied as a selection feature in the field of 

intrusion detection (Kamarudin et al., 2016). In the view of GA as a classification 

approach to achieve high accuracy, unfortunately, the drawbacks have outweighed the 

advantages of this algorithm. The main downside refers to the computational effort in 

processing the crossover, mutation, selection, iteration, and combination stages (Tsai et 

al., 2009). The methods seem to be unsuitable to be used as a detection approach in 

dealing with high volumes of traffic. 

After reviewing and considering the deficiency of AIS, FL, OneR, HMM, and GA (Raj 

Kumar and Selvakumar, 2011; Farid et al., 2014; Kosamkar and Chaudhari, 2014;  Aditi 

and Hitesh, 2013; Farnaaz and Jabbar, 2016) the research continues to investigate 

several other classification algorithms namely MLP, NB, J48, SVM, DT, and RF which 

are the notable common methods used in the field of intrusion detection that are 

capable of producing easily understandable and realistic detection results.  
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1. Multilayer Perceptron (MLP) 

Mapping a set of input data into outputs can be performed using simple feed-

forwards NN or MLP. In MLP, multiple layers of neurons are placed in layers 

that always flow towards the output layer. Single perceptron refers to only one 

layer, while multilayer perceptron has multiple layers. The class of multilayers 

usually operates in a feed-forward way. Each neuron placed in a layer is 

connected directly to another neuron on a subsequent layer. The algorithm 

applies a sigmoid function as an activation function. These classification 

algorithms have been popular to be applied in back propagation techniques in 

training the network. Using this technique, the predefined error-function value 

is computed by comparing the output values with the correct answer. The error 

generated is then fed back through the network. The information gathered from 

the previous stage is used to calibrate the weight of each connection with the 

aim of reducing the error function. The process is repeated for an adequate 

number of rounds until it reaches the state where the calculation of error is 

small. In this state, it shows that the network has acquired a certain level of 

function. Normally, there will be an issue for the algorithm in classifying 

instances that were not present in the training set. In some cases, this is vital, 

considering that the training sample is limited in availability. As a result, the 

algorithm tends to over-fit and is unable to capture the true statistical process in 

producing the data. In the area of neural networks, there is an early stopping 

criterion for simple heuristics in ensuring that the algorithm can be well-

generalised to instance that does not exist in the training data. 

2. Naive Bayes (NB) 

In classification, the NB classifier can be described as having a simple 

probability classifier which has a strong independence assumption among the 

attributes, depending on the class variable. It is typically used to generate 

conditional probability when analysing relationships between independent and 

dependent features. The NB theorem delivers a way to measure posterior 

probability P(H/X) based on the equation P(H/X)=[P(X/H).P(H)/P(X)], 

where P (H) represents the class prior to the probability and P(X) corresponds 

to the predictor prior probability (Muda and Yassin, 2011). NB classifier has 
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been implemented in various fields with the aim of solving classification down 

side, such as low detection accuracy and false detection rates. Moreover, it is 

also effective in handling continuous data and missing values alongside its 

simple and easy implementation (Farid et al., 2014). 

3. Decision Tree (J48) 

The J48 classifier is one of the present notable methods used in DM techniques. 

The algorithm was first introduced by Quinlan (1986), and can be viewed as a 

tree from a set of attributes to a particular class. It consists of three 

indispensable sections: the root node that illustrates the stipulation on a data 

point, the branch that corresponds to the probability feature values, and a leaf 

node that is labelled with the decision value for a classification category in order 

to classify its entity. The process of constructing a decision tree is similar to the 

procedure of divide and conquer. Hence, the IG criterion is used to select 

attributes that can provide maximum information in forming a decision to 

achieve the finest feature splitting (AL-Nabi and Ahmed, 2013). It then seeks to 

calculate the information content by attempting to produce the answer in a 

series of bits. Therefore, a one-bit answer is encoded in the bit of yes or no. The 

conventional approach to constructing a J48 algorithm is called the 

classification and regression tree (CART). The J48 algorithm with discrete class 

labelled is known as a classification tree, while the regression tree can be 

described when J48 algorithm contains a scale of continuous values.  

4. Support Vector Machines (SVM) 

Most of the early works adopted SVM, which was first proposed by Cortes and 

Vapnik (1995). In the intrusion detection field, SVM is frequently used as a 

supervised learning to design binary classification. Specifically, it works by 

obtaining an optimal separating hyper-plane by first mapping the input vector 

into the high dimensional feature space. The set of training vectors are isolated 

into normal (class +1) and abnormal (class -1) data points. The aim of using 

SVM is to determine a linear optimised hyper-plane where the decision 

boundary among classes is maximised. Finally, the specified parameter is used as 

a penalty factor to allow the user to make a trade-off between the misclassified 

instances and the width of a decision boundary (Tsai et al., 2009). 
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5. Decision Table (DT) 

Among other classifiers, DT is one of the most straightforward and easily 

understood classifiers. The classifier can be viewed as a programming tool that 

helps to represent discrete functions. Additionally, the matrix table is used to 

represent conditions and actions. In the matrix table, the upper row of the 

matrix is used to correspond to the sets of conditions, while the action that 

needs to be taken when a condition is satisfied will be placed in the lower rows. 

Hence, the column is called a rule that represents a set of procedures "if 

conditions, then actions" (Aditi and Hitesh, 2013). In processing unlabelled 

data, the table classifier first looks for correct matches in the decision table 

using features in the scheme. The majority class of all matching instances will be 

returned if the instances managed to be found or else the decision table itself 

will be returned. The induction algorithm needs to decide the appropriate 

features to be inserted in the scheme or to the body before building the decision 

table. 

6. Random Forest (RF) 

The RF (Breiman, 2001) algorithm is classified as an ensemble CART which is 

widely used in DM techniques for prediction, pattern recognition and 

probability estimation (Zhang et al., 2008; Attal et al., 2015;  Khoshgoftaar et al., 

2007). RF is a combination of many tree predictors where each tree is 

constructed by a different bootstrap sample from the original dataset. RF is an 

example of a bagging technique in an ensemble where more than one decision 

trees is used to build a classification model. In RF, the trees are composed 

independently with random samples. The outputs are chosen based on votes 

from each tree, which indicate the tree’s decision on the class object. The most 

votes for the object are from the best individual trees. The forest chooses the 

class with the most votes for the object. The main advantages and strength of 

RF are its robustness in handling high dimensional data (Hastie et al., 2009) 

while solving over-fitting issues. Additionally, this method is effective to use 

with a small number of available learning samples. This is because, during tree 

creation (Htun and Khaing, 2013), the pruning stage is discarded and only the 

small set of data is used to perform the searching procedure. 
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The above algorithms, which include MLP, NB, J48, SVM, DT, and RF, have been the 

focus of the research in the field of intrusion detection due to their effectiveness in 

processing and producing excellent detection outputs. The processing time for each 

classifier is different and highly dependent on the simplicity of the algorithm used in 

data processing. This will further lead to a longer processing time (a large number of 

instances) to be executed in building a model to detect attacks that may lead to higher 

misclassification rates (Panda et al., 2012). Conversely, some of the classifiers took a 

longer processing time to build a detection model, but most of the time, they will 

achieve better detection results due to the complex procedure of deep analysis of data 

instances. For instance, MLP is able to achieve better detection accuracy compared to 

SVM and J48 (Raj Kumar and Selvakumar, 2011), but at the same time, the algorithm 

has consumed more time compared to DT, J48, and RF (Tribak et al., 2012). In 

addition, RF is the ensemble approach that consists of many decision trees with an 

added advantage that allows it to process both numerical and categorical data, thus 

enabling a finer prediction output to be produced compared to J48 alone. Hence, the 

RF classifier has turned out to be more feasible than an individual J48. 

The selection of an effective and rigorous method is crucial in the DM approach, 

especially in classifying the level of accuracy, detection, and misclassification rate that 

are highly dependent on the classifiers. According to Ben Amor et al. (2004), the 

comparative analysis between J48 and NB has concluded that the J48 managed to 

produce finer results in terms of detection accuracy considering that the decision node 

was made by the best features selected during the tree creation. Meanwhile, the 

algorithm in NB has made tight independence assumptions during the probation 

(observation) among attributes, which then leads to lower detection accuracy. However, 

NB is much faster than J48 in terms of execution procedure in developing the detection 

model (Ben Amor et al., 2004). In detecting a known attack, (Panda and Patra, 2007) 

managed to discover that NB had outperformed J48 in detecting known attack 

behaviour, while J48 was found to be successful in recognising new attack behaviour. 
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As reported by Hasan et al. (2014) in their research, both RF and SVM are widely used 

in intrusion detection areas with the aim of solving issues caused by complex and 

dynamic datasets. Their experiment was carried out to investigate the performance of 

both algorithms in terms of detection accuracy and time taken to build the detection 

model. According to the results, SVM was slightly better with 1.5% in terms of 

detection capabilities over RF. However, RF was shown to be four times faster than 

SVM in the aspect of time taken to build the detection model. In addition, in terms of 

misclassification, the performances for both classifiers were inadequate with more than 

30% instances being misclassified. Hence, according to their research, the performance 

outcome from both classifiers is an on going process and needs to be extensively 

explored to achieve better results. The performance of SVM over several classifiers 

such as NB and MLP has been evaluated by Nyakundi (2015) in his thesis. The 

proposed SVM managed to achieve the highest detection rate over MLP and NB, with 

NB showing the lowest detection rate. 

In another study, Jain et al. (2016) compared several classification algorithms which 

include DT and RF. Their experiments were tested on multi-class attack types with the 

objective of finding the best algorithm for a specific class of attack type. For example, 

DT was found to be the fastest algorithm for detecting U2R attack based on the lowest 

time taken to build the detection model in comparison with RF that took eight times 

longer. RF achieved the highest detection accuracy in detecting U2R and DoS attack 

types, despite its longer processing time. In another work conducted by Jalil et al. 

(2010), the researchers compared multiple classifiers which include J48, SVM, and NN 

to detect network intrusion. The results of the experiments revealed that J48 managed 

to achieve better accuracy rates compared to SVM and NN. 

The experiments conducted by Aziz et al. (2016) investigated the capabilities of single 

classifiers to detect an intrusion with a limited attack sample in the training data by 

comparing the NB, RF, J48, and MLP classification algorithms. The outcome revealed 

that NB excellently recognised attacks with a limited amount of samples in training 

such as U2R and R2L attacks. Other types of attack, such as DoS and Probe, were 

successfully dominated by RF, while J48 showed slightly lower results compared to RF. 

A study performed by Abhaya et al. (2014) reviewed the performance of different 
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classifiers such as SVM, NB, and J48. The focus of the performance matrix was to 

measure detection accuracy, false detection, and execution time in building a detection 

model. Most of the studies found that SVM was able to achieve higher detection 

accuracy, even with a small set of data, compared to J48, which is more suitable to be 

used in a large dataset. Regarding the time taken to build the detection model, NB was 

discovered to be a more suitable option because its implementation is fast and 

straightforward compared to J48 and SVM which are more time -consuming.  

Research conducted by Farnaaz and Jabbar (2016) claimed that RF is better than J48 

algorithms, considering the fact that RF is more robust in handling dimensional data 

(Hastie et al., 2009), while J48 highly depends on a single tree for prediction analysis 

(Thaseen and Kumar, 2013). The advantage of combining more than one classifier 

(ensemble) to achieve a better accuracy rate while preserving the low false alarm rate, 

has attracted many researchers to explore the field intensively. This technique is further 

discussed in the next section. 

2.5.2.2 Ensemble-based Classifiers 

The ensemble technique in classification has attracted an increased number of 

researchers to perform a combination of several classifiers to obtain better predictions 

on accuracy performance (Chebrolu et al., 2005; Folino et al., 2010;  Nguyen et al., 2011) 

and. Previous research conducted by Dietterich (2000) and Mukkamala et al. (2005) had 

shown that the use of ensembles techniques is preferred, compared to the single use of 

a classifier in measuring the overall classification accuracy. The ensemble methods are 

divided into three main approaches: bagging, stack generalisation, and boosting. 

1. Bagging 

Bagging was first introduced by Breiman (1996), and is one of the first 

ensemble-based techniques that utilises natural and simple ways to achieve high 

accuracy. Bagging is often known as bootstrap aggregating, which can improve 

detection accuracy by fusing the outputs of learned classifiers into a single 

prediction with the use of a majority vote. An example of an approach 

originating from bagging is RF. The RF is built from a number of decision trees 



Chapter	
  2:	
  Literature	
  Review	
  

	
   35	
  

(Breiman, 2001). The algorithm achieved high classification accuracy by fusing 

random decision trees based on a bagging technique. 

2. Stack Generalisation 

Stack generalisation, or stacking, basically involves the combination of 

predictions from several learning algorithms. In some cases, the instances are 

difficult to be classified because they are too close to the decision boundary 

which makes it easier to be misclassified by the classifier. In some of the cases 

that are very straightforward, the instances are placed far behind the decision 

boundary, which allows it to be well classified. This generates the question of 

whether the classifier will perform consistently correct outputs or vice versa. 

Hence, the idea behind stacking generalisation proposed by Wolpert (1992), 

describes how the prediction output from base-level classifiers serves as the 

input to another second level meta-classifier to achieve high generalisation 

accuracy. 

3. Boosting 

Boosting is mainly used to boost a weak classifier or weak learner in order to 

achieve a higher accuracy classifier (Kamarudin et al., 2017). In other words, 

boosting can be considered as a meta-learning algorithm. In relation to this, the 

incorrectly classified instances from the previous model are used to build an 

ensemble. The weak classifier such as a decision stump, which is based on a 

decision tree with a root node and two leaf nodes, is regularly used in boosting 

techniques (Fakhraei et al., 2014). Adaptive boosting (AdaBoost) is the most 

popular boosting algorithm which was first introduced by Freund and Schapire 

(1995). Hence, the ability of this algorithm to produce good accuracy has 

attracted researchers, such as Hu et al. (2008), Panda and Patra (2009) and Li 

and Li (2010), to apply it in the IDS field.  

The combination of multiple sources of information for analysis has improved the 

ability of IDS to identify threats (Folino et al., 2010). According to the distributed IDS, 

data information from each IDS is combined to give insight of the overall network 

traffics for the purpose of enhancing its ability to detect malicious attack more 

accurately. One of the advantages is that when an IDS is temporarily unavailable; the 



Chapter	
  2:	
  Literature	
  Review	
  

	
   36	
  

other available IDS could still provide information for detection analysis. Folino et al. 

(2010) proposed the use of a genetic programming (GP) classifier considering that it 

can be used in large dataset. The GP classifier is used to build a decision tree classifier. 

The generated classifier from each IDS is combined into an ensemble using the 

AdaBoost technique, particularly the AdaBoost.M2 algorithm. The evaluation utilised 

KDD 99 dataset as the data source. The experimental results showed that the proposed 

method is in the same class as the other two top winners in KDD Cup 1999. However, 

this approach is only limited to recognise the DoS type of attack despite the fact that it 

is suitable to be deployed in a distributed environment, in which the finding found the 

inability to detect R2L and U2R attack types with only 3.6% and 5.18% of detection 

accuracy, respectively.  

Similarly to Folino et al. (2010), Nguyen et al. (2011) in their approach, build a single 

dataset collected from multiple sources, such as system log, system audit, and network 

traffic. The experiments were performed on the benchmark KDD_99 dataset. The 

dataset was labelled by domain expert knowledge with certain classification techniques 

to create the training set which will be split into proportions of 75% training and 25% 

validation. In the earlier stage, the data were first pre-processed with a K-means 

clustering algorithm to produce secondary features. Subsequently, the approach chose 

to employ the J48 algorithm to create an ensemble of different individual classifiers. 

The ensemble was measured using the weighted mean, which is dependent on the 

classification abilities of the individual classifier derived from the validation stage. The 

results reported that the proposed approaches managed to achieve the highest detection 

rate compared to other ensemble techniques such as boosting and bagging. The 

approach took 257 times longer than the boosting during the training phase although 

the approach managed to outperform other ensemble techniques. In some cases that 

combination of multiple sources of information could achieve better outcome, but the 

process can be infelicitous due to encrypted traffic (unreadable payload), privacy 

restriction (system audit), or failure of some IDS (limited information).  

  



Chapter	
  2:	
  Literature	
  Review	
  

	
   37	
  

In another ensemble-based approach, Gaikwad and Thool (2015) conducted a bagging 

scheme and compared it with the other different classifiers, namely NB, bagged NB, 

C4.5, bagged C4.5, partial decision tree (PART), and bagged PART. A total 41 input 

features were reduced to 15 using GA during the pre-processing phase. The 

experiments were conducted using a well-known NSL KDD dataset. The results 

obtained from the experiment revealed that the proposed ensemble bagged PART is 

slightly better than C4.5 with 99.72% and 99.69% detection accuracy, respectively. The 

proposed approach took 7.6 times longer than C4.5 in building the training model 

despite performing slightly better in terms of detection accuracy. Hence, it can be 

concluded that the approach is not suitable for online detection. It is also important to 

note that the results are only based on detecting known attacks. 

In another work, Syarif et al. (2012) investigated three ensemble techniques (bagging, 

boosting, and stacking) in detecting known and unknown network intrusion. The main 

objective of their research was to enhance detection accuracy and minimise the false 

detection rate in the NSL KDD dataset. For bagging and boosting, the method was 

performed along with four classification algorithms, namely J48, JRip, IBK, and NB. 

Meanwhile, the stacking approach employed the four algorithms that were previously 

mentioned as meta-level classification. The experiment reported that the approach 

managed to successfully achieve more than 99% detection accuracy in detecting known 

attacks. In contrast, the approach was found to be unsuitable to be used in detecting 

novel attack because it only managed to achieve 60% detection accuracy. 

In a study conducted by Hu et al. (2008), AdaBoost with decision stump was proposed 

as a weak classifier. The noise and outliers existing in the dataset were initially removed 

by training the full data. The sample data that contained high weight are considered to 

be noise and outliers. The false alarm rate (FAR) was still at 8.9%, although the 

detection rate was almost 92%. Similarly, in Folino et al. (2016), Cellular Genetic 

Programming (CAGE) was proposed to evolve the combination function presented in 

ensemble approaches. The approach was tested on the ISCX 2012 dataset and managed 

to achieve a 91.37% attack detection rate. The recorded high false alarm rate constitutes 

a limit to the system's capability despite the high detection rate. 
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In choosing the right weak classifier for AdaBoost, Panda and Patra (2009) compared 

four classifiers, namely non-nested generalised exemplars (NNge), extended repeated 

incremental pruning (JRip), ripple-down rule (RIDOR), and DT as a base classifier for 

AdaBoost. The proposed AdaBoost with NNge managed to achieve the highest 

detection rate in detecting U2R and R2L types of attack. Meanwhile, the combination 

of AdaBoost with decision tables was found to be efficient in detecting DoS attacks. In 

a similar concept to Hu et al. (2008), Li and Li (2010) proposed the NB algorithm as a 

weak classifier. The overall performance (84% detection rate with 4.2% false alarm rate) 

is still much lower compared to Hu et al. (2008) although the proposed algorithm had 

recognised all of the DoS attacks. 

The introduction of the LogitBoost algorithm was by Friedman et al. (2000) as an 

alternative solution to address the drawback of AdaBoost in handling noise and 

outliers. The LogitBoost algorithm uses binomial log-likelihood that changes the loss 

function linearly. On the other hand, the AdaBoost employed an exponential loss 

function that changes exponentially with the classification error. This further indicates 

why LogitBoost turned out to be less sensitive to outliers and noise. Furthermore, no 

research to date has investigated the performance of the LogitBoost algorithm in the 

field of ABDS. A comparison of previous work is presented in Table 2.3. 
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Table 2.3: Comparison of Previous Work (Ensemble Classifications) 

Authors Techniques Pros Cons Dataset 

Hu et al. (2008) 
AdaBoost with 
decision stump 

Low 
computational 
complexity 

High false alarm 
rate KDD 99 

Panda and Patra 
(2009) 

AdaBoost with 
Non-Nested 
generalised 
exampler 

Effective in 
detecting rare 
attack such as 
U2R and R2L 

Was not tested 
on unseen 
attacks 

KDD 99 

Folino et al. 
(2010)  

AdaBoost with 
genetic 
programming  

Suitable for 
distributed 
intrusion 
detection 
environments 

Unable to 
perform in single 
environment or 
with limited 
information 
resources 

KDD 99 

Nguyen et al. 
(2011) 

K-Means 
Clustering 

Suitable for 
distributed 
intrusion 
detection 
environments 

Was not tested 
on unseen 
attacks KDD 99 

Syarif et al. 
(2012) 

Bagging, stacking 
and boosting 

Suitable for 
detecting known 
attack types 

i) Unable to 
detect new attack 
ii) No significant 
improvement on 
boosting and 
bagging in 
detection 
accuracy. 

NSL KDD 

Gaikwad and 
Thool (2015) 

 

Bagged Partial 
Decision Tree 
scheme 

Ensemble 
approach 
achieved better 
detection 
accuracy 
compared to 
using single 
classifier 

Not suitable for 
online detection 
because it is 
more time-
consuming to 
construct 
training model 

NSL KDD 

Folino et al. 
(2016) 

Cellular Genetic 
Programming 
(CAGE) 

The complexity 
load was reduced 
through parallel 
approach where 
the algorithm is 
independent 
from each other 

The detection 
rate exceeds 
90%, false alarm 
rate was not 
recorded 

ISCX 2012 
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2.5.3 Summary 

Figure 2.2: The components of the anomaly detection phase 

Figure 2.2 shows the two components proposed in the anomaly detection phase. 

Following is the justification behind the proposed methods. 

The statistical analysis adopted in previous work such as Mahoney and Chan (2001) and 

Chen et al. (2010) has revealed the capability of these methods to detect unknown attack. 

On the one hand, the detection approach does not require any attack information 

beforehand. On the other hand, the method would easily flag the normal data as an 

attack or vice versa (false positive and false negative) since it is highly dependent on 

outliers found in the traffic. Thus further analysis using traffic size is possible to 

overcome this drawback. 

Based on the recent evidence shown in the literature, the classification approach is 

capable of achieving a high detection rate with a lower false detection rate compared to 

the clustering method (Jalil et al., 2010; Aziz et al., 2016). However, the discriminative 

model generated by classification is highly dependent on the features and the selection 

of the classification algorithm. Thus, it is important to select a suitable classifier to 

achieve a better detection capability. The usage of more than one classifier has been 

proven to produce better results (Folino et al., 2010), for which the ensemble methods 

are further recommended to be investigated in this study.   
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2.6 Post-Processing Phase 

In the IDS, the post-processing phase is frequently employed to manage and examine 

incidents (attacks) with the objective of storing and mapping them with appropriate 

action based upon their criticality. For example, true attacks detected are analysed and 

stored as historic information for future attack detection, where at the same time, the 

attacks are sorted according to their priorities. 

2.6.1 Incident Prioritisation  

An incident in the field of network security can be described as an event or intrusion 

detected by the system that may be a potential threat to or violation of the system 

(Anuar et al., 2013). Hence, it is important to prioritise the most urgent incidents instead 

of the normal ones in order to enable a quick response from the security analyst. The 

first alert ranking computational model used in incident prioritisation is known as the  

M-Correlator which was introduced by Porras et al. (2002). There are two scores used 

by the model: relevance and priority scores. More specifically, the relevance score 

measures the validity of an incident, while the priority score calculates the severity of 

the incident by focusing on the assets worth. Similarly to Porras et al. (2002), Noel and 

Jajodia (2008) proposed an alert prioritisation model, whereby the metric measures the 

proximity of the targeted critical asset. Hence, the alert that is the closest to the critical 

assets would be assigned as top priority compared to those that are far away.  

Another work by Zomlot et al. (2011) proposed a prioritisation model that is based on 

Dempster-Shafer (DS) theory. The function of DS is to measure the degree of belief for 

each alert that is generated by a correlation system to allow the incidents to be sorted. 

The experiment was performed using an open source IDS Snort rule. In another study, 

Anuar et al. (2013) employed a ratio scale approach to measure the weight of the 

incident critically. The ratio scale adopts a simple sequence of numbers which is 1, 2, 3, 

and 4, to illustrate the rank of the incident. In this case, the value illustrates that the 

value of 2 is twice the value of 1, while the value of 4 is two times better than the scale 

of 2 and four times better than the scale of 1. Meanwhile, Chakir et al. (2017) proposed 

an alert prioritisation model that is based on risk assessment to solve the issues related 
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to the high amount of alerts identified by IDSs. The Snort rule was employed and only 

highly critical alerts that represent real threats were presented to the security 

administrator. However, there are some limitations that need to be taken into account, 

although the aforementioned previous work had shown the ability to prioritise incidents. 

For instance, the datasets used were lacks of modern dynamic intrinsic network 

environments and the methods employed are solely based on network knowledge, 

which is restricted to ranking incident for a known attack signature (MBDS). As a result, 

incidents generated through ABDS remain unsorted. 

To date, there are two unresolved problems that impede the effectiveness of the 

conventional anomaly detection system. First, the overall detection process requires a 

longer time to reinitiate the whole process in detecting similar observed behaviours. 

Second, the attack generated by the system must be analysed and processed by the 

security analyst for further incident response. In this case, the absence of proper attack 

severity (prioritisation) instruction will lead the security analyst to end up analysing the 

most recent attack first, or even worse if the detected attack turns out to be a false 

attack. As a result, it will lead to a more serious impact if the security analyst frequently 

overlooks the true detected attacks.  

2.6.2 Summary 

Figure 2.3: The components of the post-processing phase 

Figure 2.3 shows the two components proposed in the post-processing phase. The 

following gives the justification behind the propose methods. 
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From the literature, the ability of the MBDS approach to quickly recognise a known 

attack that was previously detected has made it suitable to employ in the field of IDS 

(Meng and Kwok, 2014). The MBDS method is capable of achieving a high detection 

rate; however, it is limited to recognising known attacks (Louvieris et al., 2013). Thus, in 

this study, the usage of MBDS as part of the detection strategy in the ABDS 

environment could reduce the re-initiation procedure for detecting similar attacks in the 

future.  

In addition, prioritising attack traffic is important in order to obtain a quick response 

from the security analyst (Porras et al., 2002; Noel and Jajodia, 2008). With a prioritising 

approach, the incident is measured based on its criticality. For instance, a critical 

incident requires a quicker response from a security analyst compared to less critical 

incidents. The advantages of prioritisation have been highlighted by Anuar et al. (2013) 

and Chakir et al. (2017); however, less focus has been given to adopting this technique 

in the ABDS environment. Thus, more attention should be given to the adoption of 

this approach in the ABDS environment.	
   

2.7 Summary 

This chapter has reviewed several aspects related to the topic of this study, which 

include the fundamentals of the IDS and a description of its deployment, detection 

category, and the techniques that are widely employed in this field. Apart from that, this 

chapter also underlined the current state-of-the-art on various methods such as feature 

selection, statistical analysis, and DM based detection that are adopted in the field of 

intrusion detection. A comparison table was generated to discuss the advantages, 

limitations, techniques, and the results of previous works.  

Several limitations to the previous studies are acknowledged and further examined, 

while their advantages should be adopted as a guideline to design a solution that could 

enhance and improve the detection capability in general. In response, this study 

proposed a new detection scheme to address the aforementioned drawbacks.  
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Figure 2.4: The conceptual framework 

Figure 2.4 shows a conceptual framework of the proposed detection scheme that is 

divided into three phases, namely Pre-Processing (Feature Selection), Anomaly 

Detection (Statistical and Classification) and Post-Processing (Misuse and Incident 

Prioritisation). The proposed scheme is presented with the aim of addressing the 

overarching question: “How could system detection performance be improved in order to identify 

known and unknown web attacks?” The specific research questions mention in Section 1.4 

are answered based on the following: 

1) In the pre-processing phase, the FBSE method is adopted to overcome the 

issues related to feature ranking where the correlation between features is 

ignored (Talavera, 2005). The approach measures the merit of each feature to its 

class and eliminates any redundant features by exploring the strength of a 

relationship between the features (Wald et al., 2013). In WBSE, the merits of 

each feature are optimised using the classification algorithm (Louvieris et al., 

2013). In this study, the Hybrid Feature Selection (HFS) is proposed with the 

purpose of improving the detection ability, while also reducing the data 

dimensionality. The HFS consists of a combination FBSE and WBSE methods 

by leveraging the strength of both methods to form a better-synergised 

approach. 
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2) In the anomaly detection phase, a 2-stage detection approach that consists of 

statistical analysis and ensemble classification methods is proposed. In the first 

stage detection, statistical analysis uses the normal profile utilised in Chen et al. 

(2010) as a benchmark for normal traffic behaviour. To identify the outliers in 

the traffic, Euclidean distance (ED) is employed, given its adequacy in 

computing basic distances. Meanwhile, the Chebyshev Inequality Theorem 

(CIT) is utilised to measure traffic regularity, whereas the mean and variance of 

traffic size from anomalous source traffic is extracted and compared with 

normal web traffic. The CIT has been chosen due to its excellent performance 

in defining the threshold in previous works, such as Thomas and Balakrishnan 

(2009) and Martignoni et al. (2010).  Next, the second stage of the detection 

process is employed to complement the first stage detection using the ensemble 

classification technique. This approach shares similar objectives with the 

previous statistical approach, which is to achieve high detection accuracy with 

low false alarm rate. The ensemble classification consists of a LogitBoost 

classifier as meta-learning, and RF as a weak classifier. LogitBoost is one of the 

well-known ensembles boosting in the classification algorithm family. The 

advantage of LogitBoost over AdaBoost is its robustness in handling noisy and 

outlier data (Zhang and Fang, 2007).  

3) The inability to re-initiate a detection procedure and attack processing has led to 

the creation of a signature with severity prioritisation model that is designed and 

proposed as part of the solutions in the post-processing phase. The true attacks 

detected by the system are extricated and transformed as attack signatures, 

which are then stored in the signature library to detect new entry web traffic 

(testing data). Hence, this further reduces the detection time because similar 

attack behaviour can be easily filtered out. Meanwhile, the intrusion 

prioritisation model (IPM) is introduced to ease the post attack analysis with the 

purpose of classifying each detected attack by severity level, namely highest, 

high, low, and lowest. 

In the next chapter, the research design and experimental setup will be presented along 

with the justification for the methods selected.	
  



Chapter	
  3:	
  Research	
  Methodology	
  

	
   46	
  

            Chapter 3 

Methodology 

3.1 Introduction 

This chapter describes the methodology and methods used in this study. Section 3.2 

discusses the research design proposed in this study. In Section 3.3, the experimental 

setup is outlined along with the experimental design and evaluation measurement. 

Finally, Section 3.4 summarises the overall development process. 

3.2 Research Design 

In this study, the quantitative approach is preferred as the main method due to certain 

characteristics, such as performance measures, dataset evaluations and the usability of 

the results. This research has employed a deductive cycle because it seems to be more 

appropriate to test the proposed solutions. Based on the proposed framework, the 

research design is categorised into 3-phases, namely Pre-Processing (Hybrid Feature 

Selection), Anomaly Detection (Statistical and Ensemble Classification), and Post-

Processing (Signature and Severity Generation), which will further discussed in the next 

sub-sections. 

3.2.1 Pre-Processing Phase 

Feature selection is a part of the pre-processing phase in IDS that aims to reduce the 

data dimensionality by removing irrelevant and redundant features. According to El-

Khatib (2010), there are two general methods for feature selection: filter and wrapper. 

Based on the literature, two types of filter methods are filter rank and FBSE. Filter rank 

is faster than FBSE, but its limitation in removing redundant features have made it 

unsuitable to employ in this study (Talavera, 2005). Mutual information and 
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information gain are examples of filter ranks. On the other hand, FBSE uses 

Correlation-based Feature Selection (CFS), which was found to be more effective in 

removing redundant features by measuring the correlation between the features and its 

class label (Bolón-Canedo et al., 2015). Wrapper-based subset evaluation (WBSE) 

employed a specific algorithm to evaluate the merit of each feature which in turn could 

produce better selection (Louvieris et al., 2013).  

Due to the advantages of FBSE and WBSE, the Hybrid Feature Selection (HFS) is 

proposed in this study. The HFS consists of a combination of FBSE and WBSE 

methods by leveraging the strength of both methods to form a better-synergised 

approach. In view of both the filter and wrapper subset evaluation methods requiring a 

heuristic search to produce a feature subset, the four most employed search techniques 

in feature selection named: best-first, greedy stepwise, genetic search (GS) and particle 

swarm optimisation (PSO), are evaluated for choosing the best combination (Wald et al., 

2013) and (Khammassi and Krichen, 2017). Furthermore, five widely used classification 

algorithms named: MLP, SVM, NB, J48 and RF are examined with 10-fold cross 

validation as this could provide good generalisation performance, as suggested by De 

La Hoz et al. (2014). 

3.2.2 Anomaly Detection Phase 

Based on the literature, two widely used approaches in anomaly detection are based on 

statistical analysis and classification. In statistical analysis, a normal profile is created as a 

baseline that represents the normal traffic in order to examine the behaviour of 

incoming traffic by divulging irregular patterns. The usage of benign traffic as a profile 

is deemed more appropriate than the abnormal behaviour because the intruder tends to 

employ certain evasion techniques. The basic idea of generating a normal profile is 

proposed by Mahoney and Chan (2001) using a non-stationary model. The non-

stationary model is developed based on the time of an event, which is highly dependent 

on its last occurrence. The traffics’ discrepancy probability is calculated using statistical 

techniques. The techniques will then assigns an anomaly score function in order to 

determine the difference between anomalous and benign traffic. The advantage of this 

method is that it does not require any prior knowledge about the attack. On the other 
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hand, as it solely relies on a normal profile, this method suffers from outlier’s 

drawbacks, which could easily flag normal traffic as attack traffic or vice versa (false 

positive and false negative).  

The study performed by Chen et al. (2010) concluded that the non-stationary model is 

not suitable to detect similar attacks that occur in a different time scale. For instance, 

two httptunnel attacks share the same traffic content T and T’, where T occurs 1 second 

after the previous attack, while T’ takes place 30 mins after T. As such, the differences 

in T value between the two attacks (T=1 and T’= 1800) seemed to result in different 

anomaly scores. The different anomaly scores for both packets reflect the gap time that 

occurred between T and T’. As a result, the anomaly score for T’ is 1800 times greater 

than T. As both attacks are sharing similar content, conveniently they should have 

similar anomaly scores. Therefore, if T’ occurs before T and the threshold is set to a 

certain level of anomaly score, T might be ignored by the system after ‘T’ has been 

detected. Chen et al. (2010) introduce stationary models that ignore the time dependent 

scheme in order to address the problem of the non-stationary model. 

Unlike statistical analysis, the classification technique uses both normal and attack 

traffic as a sample to develop a discriminative model to distinguish between legitimate 

and illegitimate traffic. This method is able to recognised unknown traffic effectively, 

but the decision is highly dependent on the selected algorithm. The two basic types of 

commonly used approaches are known as single classifier and ensemble classifier 

(Aburomman and Reaz, 2017). In a single classifier, the detection performance is 

measured using only one classifier or learner. In contrast to a single classifier, an 

ensemble classifier technique is a combination of multiple classifiers that is used to 

perform classification. The combination of more than one classifier is found to be 

superior than using a single classifier as it can capitalise on the strength of multiple 

classifiers (Wozniak et al., 2014). Boosting algorithms are one of the ensemble 

classifications, which were first introduced by Freund and Schapire (1995). Generally, in 

boosting methods, the distribution of the training sets is adaptively changed depending 

on how complex it is to classify each instance. The main drawback of these techniques 

is that they have to reinitiate the training phase for several rounds. This will result in 

consuming more time and processing large datasets can be difficult. 
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Due to the advantages of statistical analysis and classification in recognising unknown 

attacks, both methods are adopted in this study as a hybrid approach. In this study, the 

hybrid approach consisting of statistical analysis as the first stage detection, followed by 

the classification technique as second stage detection, is proposed. 

In first stage detection, this study adopted the previous work by Mahoney and Chan 

(2001) and Chen et al. (2010) in generating a normal profile. The purpose of choosing 

these approaches lies in the fact that they are able to demonstrate the degree of traffic 

characteristics. Nevertheless, the proposed approach is different in the following three 

ways from the approaches introduced by Mahoney and Chan (2001),  and  Chen et al. 

(2010). 

1) First, superfluous and irrelevant features are eliminated using the proposed HFS 

method in the proposed scheme, while less attention is given to adopt this 

approach in the previous work (Mahoney and Chan, 2001),  and  (Chen et al., 

2010). 

2) Second, the normal score is employed in conjunction with the traffic size in 

order to produce a better threshold mechanism. In this research, the normal 

score measurement is utilised instead of calculating the anomaly score. The 

main reason for calculating the normal score as an alternative to the anomaly 

score proposed by Mahoney and Chan (2001), Shamsuddin and Woodward 

(2007) and Chen et al. (2010) is because the latter is not sufficiently sensitive to 

consider new attribute values.  Chen et al. (2010) emphasise that benign traffic is 

likely to have a higher distinct attribute value than malign traffic. Furthermore, 

in real environments, there is more benign traffic compared to malign traffic. 

Thus, analysing the degree of normal field values in the traffic is more 

appropriate and easier, rather than analysing attack traffic.  

3) Third, in the previous works, a statistical approach has been solely employed for 

attack detection. This approach has greater potential to generate a high false 

alarm rate, considering that its high dependency on outliers exists within the 

traffic. 
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To overcome the drawbacks of outliers’ pre-set threshold in the conventional statistical 

approach, two methods are proposed in this study. The first method employs Euclidean 

distance (ED) to measure the distance between normal and attack traffic due to its 

simplicity in calculating distance between two points (Mitchell and Chen, 2014). The 

second method adopted is the Chebyshev Inequality Theorem (CIT) for threshold 

measurement. The previous work by Thomas and Balakrishnan (2009) and Martignoni 

et al. (2010) has highlighted the advantage of using CIT considering that it does not rely 

on the knowledge of how the data are distributed. 

In second stage detection, a classification technique that employs the ensemble 

classification approach is proposed. The boosting technique is proposed in this study 

over other ensemble approaches such as bagging and stacking due to its excellent 

performances demonstrated in the previous work by Hu et al. (2008), Li and Li (2010) 

and Syarif et al. (2012). An example of a boosting algorithm that is commonly used is 

known as the AdaBoost classification method. However, this method is not suitable 

when dealing with outlier and noisy data, despite its good performance in classifying 

instances. The AdaBoost uses a loss function that changes exponentially with the 

classification error which will make it sensitive to noise and outliers (Cao et al. 2012). 

Unlike AdaBoost, LogitBoost uses log-likelihood that changes the loss function linearly 

to be less sensitive to outliers and noise (Li and Bradic, 2018). In view of the AdaBoost 

limitation, LogitBoost is proposed as meta-classifier due to its strength in handling 

noisy and outlier data compared to the AdaBoost algorithm (Zhang and Fang, 2007). 

To date, no research has investigated the performance of the LogitBoost over 

AdaBoost algorithm in the field of ABDS environment. 

3.2.3 Post-Processing Phase 

In IDS, the post-processing phase is usually a phase when attacks that have been 

identified by the system are further processed. The re-initiation procedure of detecting 

similar attacks in the future seldom disregard which will result in consuming more time 

and resources. The advantage of the signature approach is to reduce the detection time 

for detecting similar attack in the future (Meng and Kwok, 2014). Thus in this study, 

the signature approach is proposed as part of th detection strategy whereby the true 
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attacks detected by the system are transformed into a set of signatures. Further analysis 

is important to make sure the detected attack is responded to as soon as it has been 

identified. Hence, the requirement to propose attack prioritisation is vital in the field of 

ABDS. Previous studies have focussed on prioritising known attacks where fewer 

studies have adopted this technique for prioritising unknown attacks (Noel and Jajodia, 

2008; Zomlot et al., 2011;  Anuar et al., 2013). In this study, the intrusion prioritisation 

model (IPM) is proposed to sort unknown attacks from the most critical attacks 

followed by the less critical attacks according to four-severity levels: highest, high, low 

and lowest. 

3.2.4 Data Source Selection 

The current need to employ more than one synthetic dataset is caused by several factors, 

including dataset age, data size, updated malicious activity and new attack portion 

residing in the test data. On top of that, all these elements will result in different 

complexity between the datasets. Based on the aforementioned factors, four synthetic 

publicly available datasets, namely DARPA 1999, NSL KDD, ISCX 2012 and UNSW-

NB15, have been chosen to evaluate the proposed methods in this study. These 

datasets are labelled and have been used as a standard benchmark by many researchers 

in this field. 

DARPA 1999 and NSL KDD were generated in early year 2000. Basically, they consist 

of massive traffic volume with different attack types. In most cases, these datasets are 

still relevant due to their complex characteristics of having varieties of attack types. In 

such an event, it makes the comparison tasks against other approaches easier. Moreover, 

the advancements in modern network technology has further emphasised the increased 

need for more updated datasets. Despite heavy criticism by McHugh (2000) and Brown 

et al. (2009) on their limited ability and accuracy in demonstrating real-live traffic, both 

datasets continue to be extensively adopted in this field.  

In view of the research communities increasing demand for more and recent datasets, 

the performance of the proposed approaches is evaluated using the updated benchmark 

ISCX 2012 and UNSW-NB 15 datasets. The recently published datasets ISCX 2012 and 



Chapter	
  3:	
  Research	
  Methodology	
  

	
   52	
  

UNSW-NB 15 are incorporated with various types of recent sophisticated attacks 

which are claimed to be more realistic in the modern network traffic environment. The 

use of updated datasets for the proposed approaches will create a new platform for the 

future benchmark. The next sub-section describes in detailed the datasets used in this 

study. 

3.2.4.1 DARPA 1999 

MIT Lincoln Lab has made DARPA 1999 dataset publicly available. The 5-week dataset 

consists of three weeks of training and two weeks of testing data. The traffic is captured 

in tcpdump format and contains comprehensive TCP/IP information which is useful 

for traffic analysis. Weeks 1, 2 and 3 represent benign traffic and free from attack. 

Meanwhile, in weeks 4 and 5, the data contain attacks in the middle of benign traffics.  

Figure 3.1: Block diagram of DARPA 1999 test bed (Lippmann et al., 2000) 

Figure 3.1 shows the generated simulation based on a scripting technique that is 

performed to produce live benign and attack traffics. The scenario is equivalent to the 

flowing traffic from the internal Eyrie Air Force Base (EAFB) to the Internet at large. 

The test bed generates rich background traffic to simulate as the traffic is initiated by 
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thousands of hosts from hundreds of users. All attacks are set to be automatically 

launched against the targeted machines (UNIX OS) and the external hosts router. The 

sensors known as ‘sniffers’ are placed within the internal and external network to 

capture all the traffic that is broadcasted through the network.  

Table 3.1: Distribution of Web Traffic for DARPA 1999 Dataset 

Dataset Date Normal Traffic Attack Traffic 

Training Week 4 03/29/1999 8,998 728 

03/30/1999 101 643 

03/31/1999 5,202 456 

04/01/1999 11,413 605 

04/02/1999 0 0 

04/03/1999 0 0 

04/04/1999 0 0 

Testing Week 5 04/05/1999 6,632 723 

04/06/1999 6,873 993 

04/07/1999 5,800 1,807 

04/08/1999 77,039 640 

04/09/1999 0 8,073 

04/10/1999 174 62 

Total 136,962 

In the DARPA 1999 dataset, both weeks 4 and 5 data have different attack distributions. 

In other words, some of the attacks in week 5 do not appear in week 4. The different 

attack distribution provides an opportunity for researchers to seek methods that can 

detect new or novel attacks. According to the total traffic generated, 28,146 http traffic 

are produced in week 4 and 108,816 http traffics are from week 5, as described in Table 

3.1. 
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3.2.4.2 NSL KDD 

The Network Security Laboratory Knowledge Discovery and Data Mining (NSL KDD) 

dataset was generated by Tavallaee et al. (2009) based on the KDD 99 dataset. The 

dataset is part of the DARPA 1998 Intrusion Detection System (IDS) Evaluation 

dataset project that was created by Lincoln Lab (Lippmann et al., 2000). The lab 

simulates the traffic environment using artificial data in a closed network environment. 

Some of the networks are proprietary network traffic with manually injected attacks.  

Table 3.2: Distribution of Web Traffic for NSL KDD Dataset  

NSL KDD 

dataset 

Training Data Testing Data 

Normal Attack Normal Attack 

3,817 683 2,856 2,785 

The simulation is a replication of the medium sized traffic found in US Air Force bases 

in collaboration with Air Force Research Laboratory (AFRL). Since KDD 99 suffered 

from some drawbacks, the dataset has been revised by Tavallaee et al. (2009) to remove 

the duplicated and redundant traffic within the dataset. NSL KDD has managed to 

undergo further improvement through the removal of 78% and 75% of duplicated 

traffic in the training and testing data respectively. Table 3.2 presents the reduced 

dataset generated, with a respective total of 4,500 and 5,641 instances in the training 

and testing datasets of http traffic. 

3.2.4.3 ISCX 2012 

The ISCX 2012 dataset was developed by Shiravi et al. (2012) from University of 

Brunswick (UNB) with the aim of addressing the issues in other existing datasets such 

as DARPA, CAIDA and DEFCON. The distribution model is based on the dataset 

effectiveness in relation to realism, evaluation, malicious activity and capabilities. A 

considerable number of multi-phase attacks events are induced to create the anomaly 

trace for the dataset which include HTTP DoS, Botnet, Distributed Denial of Service 

(DDoS) and Brute Force SSH. The simulation is performed by mimicking user 

behaviour activity. Meanwhile, profile-based user behaviour is created by executing a 



Chapter	
  3:	
  Research	
  Methodology	
  

	
   55	
  

user-profile that was synthetically generated at random synchronised times. The dataset 

is labelled to assist the researcher in the process of testing, comparison and evaluation. 

Figure 3.2: ISCX 2012 Testbed Network Architecture (Shiravi et al., 2012) 

Figure 3.2 shows the ISCX 2012 test bed network, which contains a total of 21 

interconnected Windows workstations. Those workstations are equipped with Windows 

operating system as a platform to launch attacks against the test bed environment. More 

specifically, a total of 17 workstations are installed with Windows XP SP1, two with 

SP2, one with SP3 and a workstation with Windows 7. The network architecture 

divides the workstation into four distinct LANs with the purpose of representing a real 

connectivity network environment. The servers located at the fifth LAN provide Web, 

E-mail, Domain Name Server (DNS), and Network Address Translation (NAT) 

services. The NAT server (192.168.5.124) is placed at the entry point of the network to 

ensure that the firewall only permits authorised access. The primary main server 

(192.168.5.122) is accountable for email services, delivering websites and performs as 

internal name resolver. The secondary server (192.168.5.123) is made responsible for 

handling internal ASP.NET applications. It sits on Windows Server 2003 machines. It 

is important to note that both main and NAT servers run on Linux operating system 

and are configured with Ubuntu 10.04.  
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Table 3.3: Distribution of Web Traffic for ISCX 2012 Dataset  

Date Training Data Testing Data 

Normal Attack Normal Attack 

6/11/2010 0 0 0 0 

6/12/2010 528 0 2,074 0 

6/13/2010 0 84 0 108 

6/14/2010 826 873 782 1,096 

6/15/2010 1,468 2,757 1,973 27,125 

6/16/2010 432 0 1,237 0 

6/17/2010 1,032 0 562 0 

Total 4,286 3,714 6,628 28,329 

The whole datasets are captured for seven days, with 3-days of attack-free traffic and 4-

days mixed benign and malign traffic. Table 3.3 illustrates the portion of training and 

testing dataset which respectively consist of 10,914 and 32,043 for both normal and 

attack web traffic in the ISCX 2012 dataset. 

3.2.4.4 UNSW-NB 15 

The UNSW-NB 15 was simulated by Moustafa and Slay (2016) using the IXIA 

PerfectStorm tool in the Cyber Range Lab at the Australian Centre for Cyber Security 

(ACCS). The dataset is developed based on the combination of synthetic attack 

activities along with real modern normal behaviours.  
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Figure 3.3: UNSW-NB15 Testbed Network Architecture (Moustafa and Slay, 2016) 

Figure 3.3 illustrates the test bed configuration of the UNSW-15 dataset. The full 

dataset contains captured raw traffic of 100GB with the following nine synthetic types 

of attacks: Backdoors, DoS, Analysis, Fuzzers, Generic, Worms, Reconnaissance, 

Shellcode and Exploits. 

Table 3.4: Distribution of Web Traffic for UNSW-NB 15 Dataset  

UNSW-NB 
15 

Dataset 

Training Data Testing Data 

Normal Attack Normal Attack 

4,013 4,274 5,348 13,376 

The features and the class label are generated using Argus and Bro-IDS tools, in 

conjunction with to the 12 algorithms. The total recorded traffic captured is 2,540,044. 

However, several parts of these data are divided into two sets, namely training and 

testing that consist of 175,341 and 82,332 instances respectively. As shown in Table 3.4,  

a total of 8,287 and 18,724 of http traffics is obtained from training and testing data 

respectively. 
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3.3 Experimental Setup 

The details of the experimental setup, design and evaluation measurement of the 

proposed detection scheme are discussed in the following sub-sections. 

3.3.1.1 MySQL 

In this study, the amount of web traffics applied for evaluations are varied. The 

experiments are conducted using MySQL Database Management System (DBMS) for 

the purpose of managing a significant amount of web data traffic. Moreover, it also 

aims to assist data management and analysis tasks. In addition, the DBMS has 

simplified the data analysis process in terms of time taken and efforts spent compared 

to the conventional filing approach. The DBMS is also used to store true attack 

signatures, which can simplify future attack detection. 

3.3.1.2 WEKA Data Mining Tools 

The data are further processed and analysed using the statistical WEKA DM tool 

(Frank et al., 2016). WEKA is described as a collection of machine learning algorithms 

and pre-processing tools that was developed at the University of Waikato in New 

Zealand. Moreover, WEKA is written in Java under GNU general public license. 

Moreover, processing data using WEKA DM tools is straightforward compared to 

other machine learning workbenches because it contains a variety of classifiers for 

feature analysis and classification. In addition, it is easier for beginners as the package 

comes with GUI without having to deal with the programming task. The WEKA is 

chosen as a tool in this study because it has been widely adopted by many researchers 

due to its flexibility of open source license and availability of many classifiers (Amancio 

et al., 2014). 
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3.3.2 Experimental Design 

Experiment 1: Hybrid Feature Selection 

The HFS design involves the combination of the strength of both FBSE and WBSE. In 

HFS, four different search techniques are compared to find the finest search method 

that could produce the highest detection accuracy rate, namely best first, greedy, genetic 

search, and PSO. The preliminary experiments are conducted by eliminating irrelevant 

and redundant features in order to select the optimal features. 

Initially, the purpose of employing FBSE is to reduce the computational effort of 

WBSE by filtering the insignificant and redundant features. In addition, the process is 

continued with a search for the optimal subset in order to improve the classification 

performance selected earlier by the FBSE. The final features subset generated from the 

hybrid process is tested using RF classifier and 10-fold cross-validation. 

Experiment 2: Statistic based Anomaly Detection (First stage detection) 

The experiments and analysis are carried out to find the finest threshold in 

distinguishing normal and abnormal web traffic. The thresholds are defined by the 

combination of ED and CIT. The usage of ED is to measure the distance of each 

testing and normal data as presented in the standard profile. On the other hand, the 

CIT is used to produce the finest threshold by calculating the mean distance and how 

far it deviates from the normal data. The goal of producing the finest threshold is to 

obtain better normal and attack detection rates. Although the statistics method is 

capable of demonstrating some level of detection ability, it is affected by numerous 

voluminous false alarms. The setback is due to the non-existence of an attack sample in 

the training stage. Thus, further improvement using ensemble classification algorithm is 

necessary. 
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Experiment 3: Single Classification Algorithms (Second stage detection) 

The classification algorithm is introduced to improve the false alarm and detection 

accuracy that was achieved in the first stage detection. A preliminary experiment is 

conducted by evaluating six single classifiers to select the best one (e.g. MLP, J48, DT, 

RF, SVM, and NB). The single classifier that is able to achieve the highest performance 

will be further induced with LogitBoost to achieve better detection accuracy and 

maintain low false alarms. 

Experiment 4: Ensemble-based Classification 

In the boosting algorithm, LogitBoost is chosen as meta learning instead of AdaBoost 

due to its robustness. The best classifier identified in the previous experiment is chosen 

to be induced with the LogitBoost classifier. The comparitive performance between the 

chosen individual classifier and the previously adopted AdaBoost is presented. The 

training model is built using the set of training data and 10-fold cross-validation 

approach. 

Experiment 5: Misuse-based Web Attacks Detection 

The signature generation process is to detect any identified attack behaviour in the past. 

An evaluation is conducted to further assess the use of signature in detecting attack. 

The purpose of generating the signature is to reduce the whole re-initiation procedure. 

The true attack (true positive) identified during the anomaly detection phase will be 

transformed into signature for the purpose of future attack detection. 
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3.3.3 Evaluation Measurement 

This sub-section analyses the performance metrics used in this study. The main 

performance metrics used in the IDS field are measured in terms of their detection, 

accuracy and false alarm rates. However, to compute the main performance metrics, 

other major indicators such as (True Positive, True Negative, False Positive and False 

Negative) are also needed. Thus, four indicators are considered as the main 

contributors because the detection capability is highly dependent on the value produced. 

For instance, misclassification rate (false positive and false negative) is caused by the 

system that mistakenly flagged normal data as attack and vice versa and would reduce 

the detection accuracy. Conversely, a low misclassification rate indicates higher data 

detection accuracy rate. The experiment output for the current research is analysed with 

additional performance metrics, which include false alarm rate, attack detection rate, 

normal detection rate, and accuracy. It is worth noting that the time taken by the 

classification model to identify attack records is measured as detection time.  

The following describes the four standard performances used in the intrusion detection 

evaluation of the proposed detection scheme: 

I. True Positive (TP) is described as the quantity of true attack data that has been 

flagged correctly. 

II. True Negative (TN) refers to the quantity of true normal data that has been 

classified correctly. 

III. False Positive (FP) is defined as the quantity of normal data that was falsely 

detected as attack data. Ideally, the detection system should achieve a lower false 

detection rate for better incident handling responses. 

IV. False Negative (FN) is the quantity of attack data that was falsely detected as 

normal data. The attack can be damaging due to its failure to be detected by the 

system. Generally, FN is difficult to compute as no flaw can be found by the IDS 

when it happens. An ideal detection system should achieve a lower FN, 

particularly close to zero. 
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An ideal IDS requires high detection and good detection rates, including the need to 

maintain low false detection rates. The additional performance metrics used to evaluate 

the proposed approach performance are shown in the following equations: 

False  Alarm  Rate   FAR =   
FP

FP+ TN                                                                                                                                     (3.1) 

Attack  Detection  Rate   A− DR =   
TP

TP+ FN                                                                                                         (3.2) 

Normal  Detection  Rate   N− DR =   
TN

TN+ FP                                                                                                     (3.3) 

Accuracy   ACC =   
TP+ TN

TP+ TN+ FP+ FN                                                                                                                             (3.4) 

I. FAR is a total percentage of normal data that was falsely detected as actual 

attack data from the total of the normal data 

II. A-DR is the total percentage of true attack detected over the total attack 

available. An ideal detection system is capable of achieving attack records close 

to 100%. 

III. N-DR is the total percentage of actual normal data detected over the total 

normal data available. 

IV. The ACC rate is a total percentage of true attack and normal data detected with 

the exclusion of false detection 

3.4 Summary 

In this chapter, the general methodology is presented, which includes research design 

and experimental setup for the proposed detection scheme. The rationale of designing 

the solution has been briefly explained along with the performance metrics that are 

used to evaluate the proposed scheme. In addition, a more specific detail for each 

contribution of the proposed detection scheme and its implementation are explained in 

detail in Chapters 4 and 5 respectively. 
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                 Chapter 4 

An Intrusion Detection Scheme for 
Identifying Known and Unknown Web 
Attacks (I-WEB) 

4.1 Introduction 

As briefly discussed in Chapter 2, various approaches that utilise feature selection, 

statistical-based anomaly detection and ensemble classification have yet to achieve 

satisfactory performance and should be further improved. This chapter aims to 

highlight the proposed scheme based on the reviewed literature and studies in the 

intrusion detection field. The rest of the chapter is organised as follows: Section 4.2 

describes the overview of the proposed scheme. Sections 4.3, 4.4 and 4.5 present the 

details of the proposed detection scheme with the aim of minimising data 

dimensionality, improving the known and unknown web attack traffic, and simplifying 

the re-initiation process for future detection. Section 4.6 summarises the overall 

proposed detection scheme. 

4.2 The Proposed I-WEB 

In this study, several methods are proposed for feature selection, statistical analysis, 

ensemble classification and signature detection specifically for better attack detection 

capability. The proposed detection is developed based on the advantages and 

limitations identified from previous works. The proposed scheme is divided into three 

phases, namely Pre-Processing (Hybrid Feature Selection), Anomaly Detection 

(Statistical and Ensemble Classification) and Post-Processing (Signature and Severity 

Generation). The details of each phase are presented in the next sections. 
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4.3 Pre-Processing Phase 

This research proposed the novel hybrid approach by leveraging the strength of both 

filter and wrapper-based selections to form a better synergies approach (Kamarudin et 

al., 2017a). The hybrid selection aims to select the most prominent features that can 

reduce data dimensionality together with the purpose of maximising the accuracy of the 

classifier. In the pre-processing phase, FBSE is adopted due to its ability to measure the 

redundancy level among features (Bolón-Canedo et al., 2015). Moreover, the approach 

measures the merits for each features towards its class as well as eliminates redundant 

features by exploring the degree of relationship between the features (Wald et al., 2013). 

The main purpose of employing FBSE along with WBSE is to reduce the WBSE 

complexity by only processing the reduced set of features instead of all the original 

features.  

Figure 4.1:  Hybrid Feature Selection (HFS) design (Kamarudin et al., 2017a) 
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Figure 4.1 shows the process flows in building HFS.  The process is classified into three 

stages and these are explained in the next sub-sections. 

4.3.1 Filter-subset Evaluation (Stage 1) 

In this stage, the FBSE method is employed to process the original features M and 

produce a new set L of reduced features, where L ⊆ M. The CFS approach is adopted 

to measure the correlation between features and features to class due to its robustness 

in removing redundant and irrelevant features (Bolón-Canedo et al., 2015). This 

approach is able to overcome the issue of redundant features because the relationship 

between features is measured using eq. (4.1). The CFS is described as an intelligible 

filter algorithm that evaluates subsets of features based on heuristic evaluation 

functions. 

𝑀𝑠 =
𝑘𝑟𝑐𝑓

𝑘 + 𝑘 𝑘 − 1 𝑟𝑓𝑓
                                                                                                                                                  (4.1) 

Eq. (4.1) shows how the merit function, M, is used to select a subset S that contains k 

number of features. Both redundant and irrelevant features are determined by the rcf 

which represents the mean of the relationship of each feature to its class while rff is 

represented as the mean of the relationship among the features.  

The deployment of a high complexity exhaustive search is not feasible because it only 

works in a small dataset (Guyon, 2003). Alternatively, heuristic search techniques are 

employed and Genetic Algorithm (GA) is selected as the search function. This is 

because the preliminary experiment reveals that GA is able to provide a global optimum 

solution and is more robust than the best-first, greedy and PSO search methods. This 

stage is crucial as the wrapper computational effort will be truncated because it only 

deals with the reduced set of features instead of the original set. 

4.3.2 Wrapper-subset Evaluation (Stage 2) 

In this stage, the reduced feature set L gathered from the FBSE is further processed 

with WBSE in order to produce the final optimal features K, where K ⊆ L ⊆ M. The 
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proposed hybridisation approach leverages the strengths of each to produce a much 

better result in terms of accuracy, false detection rate and fewer redundant and 

irrelevant features. This is because the filter approach alone is unable find the best 

available subset, since it is less dependent on the classifier (Peng et al., 2010). On the 

other hand, the wrapper approach is proven to be more effective and able to produce 

better accuracy (Wahba et al., 2015). Nevertheless, it is computationally expensive when 

dealing with large datasets. In view of the above limitations, the strength of both 

methods is leveraged to form a better-synergised approach. In WBSE, an RF classifier 

is used to evaluate the selected features along with the genetic search in order to 

determine the final K feature subset. The searches will continue to train a new model 

for each subset and will only stop once the final optimum subset is found. 

4.3.3 Classification (Stage 3) 

In the final stage, the final optimum subset K, produced by WBSE is tested using the 

RF classifier with 10-fold cross-validation. The overall classification accuracy derived 

from HFS is then compared with the performance of all original features.  

In this study, the feature selection procedures are conducted using training data that 

consist of a mixture of normal and attack traffic. The significance features are measured 

using a correlation function in the filter process. The features that managed to achieve 

high merit scores and are highly correlated to the class will be selected. Conversely, 

those features that are highly correlated with other features are considered to be 

redundant. Meanwhile, a classifier is used to identify subsets of relevant features in the 

wrapper process. As such, irrelevant and redundant features will be removed in Stages 1 

and 2. Further analysis on the features selected by the proposed method will be further 

discussed in Chapter 6: Results and Discussion. 
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4.4 Anomaly Detection Phase 

In the anomaly detection phase, a 2-stage detection strategy comprising statistical and 

ensemble classification approaches is proposed and briefly explained in the next sub-

section. 

4.4.1 Statistical-based Anomaly Detection (First stage detection) 

Work undertaken in the past had indicated how the abnormalities can be identified 

using header traffic (Mahoney and Chan, 2001; Chen et al., 2010); however, it still does 

not take into account the influence of packet size as the additional steps to differentiate 

between benign and abnormal traffic. Therefore, in this research, the attack detection is 

computed by calculating the traffic normality along with the analysis of the feature size 

through statistical analysis. 

4.4.1.1 Normal profile 

Normal profile is described as a profile that represents a benchmark of normal 

characteristic behaviour (Shenzheng, 2009). The profile contains attributes scores that 

represent normal web traffic which is created using distinct values of attack-free traffics 

that consist of historic information and unique values for each host within the network. 

In addition, the profile is used as a benchmark of normal web traffic against incoming 

web traffic. Previous works for example Mahoney and Chan (2001), Shamsuddin and 

Woodward (2007) and Chen et al. (2010) measured packet abnormality by summing up 

the anomaly scores given to the traffic field. This process of identifying the outliers was 

unfeasible since it relied solely on the anomaly score without further analysing the 

observed traffic. To overcome the aforementioned issues, a normal score is proposed 

along with further analysis on the feature size. 
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Table 4.1: Normal Profile of DARPA 1999 

k Features/Attributes Label Rk  Nk  Normal 
Score 

1 ethersize 235 53533 0.0836 

2 ethersourcehi 4 53533 0.1463 

3 ethersourcelo 5 53533 0.1429 

4 iplength 36736 53533 0.0058 

5 ipfragid 236 53533 0.0835 

6 ipsource 15 53533 0.1259 

7 tcpsourceport 5134 53533 0.0361 

8 tcpheaderlen 2 53533 0.1569 

9 tcpflag 5 53533 0.1429 

10 tcpwindowsize 382 53533 0.0761 

Total Score 1 

 

During the first stage detection, the reduced features derived from HFS are processed, 

while the normal score for each traffic feature is measured based on eq. (4.2). In 

relation to this, the normal profile for DARPA 1999 is demonstrated in Table 4.1.  

𝑁𝑜𝑟𝑚𝑎𝑙  𝑆𝑐𝑜𝑟𝑒 = log!" 𝑅𝑘 − log!"𝑁𝑘         
!

!!!

                                                                                                          (4.2) 

The attributes are indexed as k, where k = 1,2,3,4,…n. Rk is a distinct accumulation of 

normal packet characteristic while Nk refer to the total number of traffics related to 

each attribute. As Rk and Nk vary greatly, the score is computed in the form of a 

logarithm.  
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𝑇𝑟𝑎𝑓𝑓𝑖𝑐  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦  𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑖 ∗ 100
!

!!!

                                                                                                                (4.3) 

The traffic normality score is utilised to determine the degree of normality for every 

traffic as computed in eq. (4.3). Let Mi be equivalent to the normal score of feature as k, 

where k = 1,2,3,4,…n. Each feature score is converted into a percentage to indicate the 

basic pattern of the traffic either normal or anomalous. 

Table 4.2: Example of Computation Score for Traffic (n) in DARPA 1999 

Http Traffic n  

k  Attributes field name Passive Score Active Score Traffic 
Normality 

Score 
1 ethersize 0.0836 0.0000 0.00 
2 ethersrchi 0.1463 0.1463 14.63 
3 ethersrclo 0.1429 0.1429 14.29 
4 iplentgh 0.0058 0.0058 0.58 
5 ipfragid 0.0835 0.0835 8.35 
6 ipsource 0.1259 0.1259 12.59 
7 tcpsrcport 0.0361 0.0000 0.00 
8 tcpheaderlen 0.1569 0.0000 0.00 
9 tcpflag 0.1429 0.1429 14.29 
10 tcpwindowsize 0.0761 0.0761 7.61 
Total Normal Field 7 
Total Anomalous Field 3 
Distance Value  0.1814 
Traffic Normality Score 72.34% 

Table 4.2 presents the feature with its score value, including the newly generated 

features such as anomalous, normal, distance value and traffic normality score created 

during the matching procedure. These newly generated features are also known as 

derivative features. According to Louvieris et al. (2013), the information composition 

may improve the performance of detection ability for both normal and abnormal 

behaviours. Next, the feature that contains normal scores other than a zero score is 

counted as a normal field while the remaining are labelled as anomalous field.  
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Figure 4.2:  An example of attributes matching on testing data (DARPA 1999) 

Figure 4.2 illustrates the score derived from matching procedure between normal 

profile and testing data. The basic Euclidean Distance (ED) is proposed to measure the 

distance between passive and active scores. The ED is employed as it is adequate to 

compute a basic distance between the two points (benign and outliers) (Mitchell and 

Chen, 2014). The distance is computed by transforming PS and AS into data point, 

whereby PS is converted into a Passive Point (PP) while AS is transformed into an 

Active Point (AP). In short, PS represents normal behaviour while AP is described as 

mixed traffic that contains normal and abnormal behaviour. On top of that, the degree 

of normality is defined by calculating the distance between active and passive data point. 

The distance between active and passive data points is computed as follows: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝐴1 − 𝑃1)! + (𝐴2 − 𝑃2)! +⋯ (𝐴𝑛 − 𝑃𝑛)!        (4.4) 

Thus, the distance between AP and PP can be simplified into:  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝐴𝑃 =    (𝐴𝑘 − 𝑃𝑘)!  
!

!!!

                                                                                                                                              (4.5) 

where Ak is the active point, while Pk represents the passive point and n is the total 

number of features. The traffic will be notified as suspicious if the distance of the tested 

traffic differs from that of the benign traffic.  
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Figure 4.3: Example of Anomalous traffic behaviour (DARPA 1999) 

Figure 4.3 presents an example of anomalous traffic behaviour in which active points 

are separated from passive points, which leads to the production of some outliers. If 

the threshold depends only on the outliers and scores, the tendency of normal traffic to 

be recognised as anomalous traffic is high. In reality, the number of outliers that exist 

within the traffic is unknown. Thus, it will be good to perform further traffic behaviour 

analysis for a better threshold mechanism instead of depending solely on the score. 

Further analysis should be performed to measure the feature size of each suspected 

anomalous traffic. To do this, the flagged anomalous source is further compared against 

its normal records. Previous works performed by Estévez-Tapiador et al. (2004), 

Kruegel et al. (2005), Yamada et al. (2007), Zhang and White (2007) and Louvieris et al. 

(2013) have proven that the feature size (in bytes) can be used to measure traffic 

regularity. Moreover, this fact has been validated by the nature of client-server input 

service request.  

4.4.1.2 Influence of Feature Size 

In normal client-server access, the increase in packet size will be filled with a small 

number of bytes when the requests are made from the same source address. In return, 

the server will respond with a large number of bytes. Thus, a large number of requests 

can be considered as or suspected to be abnormal. For that reason, the inconsistent 

input size is expected to cause anomalous action. This normally happens when 

malicious input is bound together within the legitimate traffic. For instance, one of the 
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top web attacks, XSS may target web pages in an attempt to add scripts to the website 

(OWASP, 2017). However, this activity requires more data that significantly exceed the 

length of the average parameter.  

With regard to the SQL injection attack type, the attacker’s input may include malicious 

code that can misdirect the program execution. The code is in special strings which 

make it possible to alter the SQL statement with the intention of compromising the 

intended database files. Consequently, the malicious packets may contain up to several 

thousand bytes. Thus, the feature size of anomalous source traffic is statistically 

measured to identify anomalous traffics.  

To measure the difference between queried and normal traffic, the mean and variance 

are calculated for CIT measurement. The mean (𝑥) known as the average in simple 

arithmetic is calculated by summing up the total bytes of a particular source address and 

dividing by the total number of traffic for that specific feature. Let n be the total 

number of traffic for a particular source while sum 𝑥𝑖 is the total size of feature that is 

derived from the same source. Therefore, the equation to measure the mean 𝑥  is as 

follows: 

  𝑥 =    𝑥𝑖
𝑛                                                                                                                                                                                                   (4.6) 

In this case, the standard deviation (SD) is used to quantify the variation of a set of data 

values from the mean. The bigger the variation for each feature, the greater the 

deviation value from the mean. Thus, the formula to calculate SD is shown as follows: 

                        𝑆𝐷 =   
𝑥𝑖 − 𝑥   !

𝑛 − 1                                                                                                                                                           (4.7) 

In this study, CIT is applied to find the right boundary as well as to determine the finest 

threshold to achieve higher detection rate. The theorem defines the right upper bound 

(threshold) for a random distribution of a particular source IP address, which has 

deviated from its average in attack-free data.  
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The mean and variance of normal activity are used to determine the regularity in the 

testing data. Then, the probability of traffic to become irregular is measured based on 

the following equation: 

                          𝑃 𝑥 − 𝜇 ≥   𝜏   ≤
𝜎!

𝜏!                                                                                                                                                 (4.8) 

The advantage of using CIT is that it does not rely on the knowledge of how the data 

are distributed, since in a real environment the traffic distribution varies. The upper 

bound is placed based on the possibility that the deviation between the value of the 

random variables 𝑥 and 𝜇 is greater than the threshold 𝜏 for a random distribution with 

variance σ! and mean 𝜇. The threshold 𝜏 is substituted with the difference between 

feature size S and the mean 𝜇 of the feature size distribution. The probability of upper 

bound is defined when a particular source IP address feature size tends to deviate more 

than the mean in comparison to the normal traffic. The probability value P(S) for 

feature size S is calculated as below: 

  𝑃 𝑥 − 𝜇 ≥    𝒮 − 𝜇   ≤ 𝑝 𝒮 =
𝜎!

𝒮 − 𝜇 !                                                                             (4.9) 

Several additional features, such as normality_score, predicted_field, normal_fields, 

anomaly_field, and distance_value are further utilised in the ensemble classification 

algorithm to improve the discriminative model of the proposed algorithms. In the next 

stage, the proposed ensemble classification techniques (second stage detection) are 

further discussed. 
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4.4.2 Ensemble Classification Algorithm (Second stage detection) 

The high dependency of the first stage detection on normal traffic tends to limit the 

ability of the system to classify traffic behaviour at a satisfactory level. Alternatively, the 

second stage detection is proposed to complement the first stage detection using an 

ensemble classification technique. The method uses supervised approaches that contain 

samples of both normal and abnormal web traffic in generating the classification model. 

Particularly, LogitBoost is employed with a combination of Random Forest (RF) in this 

study. 

In the LogitBoost algorithm, a training data set with N samples is divided into two 

classes (abnormal and normal). They are defined as y ∈ {-1,+1}, e.g. samples in class 

y=+1 are normal traffic while y=-1 are the samples of attack traffic. Let the set of 

training data be {(x1, y1),….., (xi,yi),… (xn,yn)}, where xi is the feature vector, and yn is 

the target class. Thus, the ensemble classification algorithm is implemented as follows: 

1) Input data set N= {(x1, y1),….., (xi, yi),… (xn, yn)}, where xi∈ X and yi ∈ Y = 

{-1,+1}. Input number of iterations K. 

2) Initialize the weights wi= 1/N, i= 1, 2, …, N; start committee function F(x)=0 

and probabilities estimates P(xi)=1/2. 

3) Repeat for k= 1,2,…, K: 

a. Calculate the weights and working response 

𝑤𝑖 = 𝑝(𝑥𝑖)(1− 𝑝 𝑥𝑖 )                                                                                                                                (4.10) 

 

𝑧𝑖 =
𝑦𝑖 − 𝑝(𝑥𝑖)

𝑝(𝑥𝑖)(1− 𝑝 𝑥𝑖 )                                                                                                                                 (4.11) 

b. Fit the function 𝑓𝑘 𝑥  by a weighted least squares regression of zi to xi using 

weights wi. In the case of this study, RF is employed as a weak classifier to fit 

the data using weights wi. 
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c. Update 

𝐹 𝑥 ← 𝐹 𝑥 +
1
2 𝑓𝑘 𝑥                                                                                                                             (4.12) 

and 

𝑝 𝑥 ←
𝑒! !

𝑒! ! + 𝑒!! !                                                                                                                            4.13  

5) Output the classifier: 

𝑠𝑖𝑔𝑛   𝐹 𝑥 = 𝑠𝑖𝑔𝑛   𝑓𝑘(𝑥)
!

!!!

                                                                                                (4.14) 

At this point, sign [F (x)] is a function that has two possible output classes: 

𝑠𝑖𝑔𝑛   𝐹 𝑥 = +1, 𝑖𝑓  𝐹 𝑥 < 0
−1, 𝑖𝑓  𝐹 𝑥 ≥ 0                                                                           (4.15) 

One of the key factors that influence the performance of the boosting algorithm is the 

construction of the weak classifier. The weak classifier 𝑓𝑘 𝑥   chosen in eq. (4.12) 

should be resistant to data over-fitting and be able to manage data reweighting. Based 

on the preliminary experiment conducted in Appendix [A.2], RF algorithm is chosen as 

the weak classifier for LogitBoost classification. Therefore, in this research, the base 

algorithm for LogitBoost is RF. 

4.5 Post-Processing Phase 

The two major stages involved in the post-processing phase are attack signature 

generation and attack prioritisation assignment. Signature generation is mainly 

employed to reduce the processing time whereby previously detected unknown attacks 

are stored in the signature library for the future detection process. The prioritisation 

assignment is designed to assist the security analyst to further process the attack for 

better incident handling. The attacks are categorised into a four-severity level (highest, 

high, low and lowest). Both stages are crucial in reducing detection time and achieving 

better incident handling. Further details on both stages involved are discussed in the 

next sub-section.	
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4.5.1 Attack Signature Formation 

The ability of MBDS in detecting a known attack in a short period of time as well as 

achieving a high detection rate has made many organisations adopt this method. Unlike 

MBDS, ABDS is a combination of many approaches that require more time to discover 

the abnormal behaviour pattern, thus further results in excessive computational 

utilisation. In addition, the detection procedure still needs to undergo the re-execution 

process that is deemed unnecessary, even though the same pattern or behaviour has 

been previously detected in ADBS. 

The drawback of ABDS that is related to its adoption can be alleviated by leveraging on 

the strength of MBDS signature formation. Moreover, the new attack must be 

frequently updated to reduce the computational effort in detecting attack. Thus, the 

deployment of the proposed MBDS signature formation as part of detection strategy in 

ABDS deployment will be able to favourably improve the attack detection rate. 

Meanwhile, it also preserves the ability to detect unknown attack behaviours. In other 

words, the distinct behaviour of a true attack detected by the ensemble classification 

technique should be further transformed into attack signature for any future attack 

detection process. 

Binary Formation: 0111110011 

 

Attributes 
Contents 

ethersize ethersrchi ethersrclo iplength ipfragid 

60 X00C04F XA357D
B 

40 62181 

ipsource tcpsourceport tcpheader
len 

tcpflag tcpwindowsize 

172.016.1
13.084 

9271 X60 X10 32120 

Statistical 
Analysis 

Total 
Normal 

Attribute 

Total 
Anomalous 
Attribute 

Traffic Normality Score 

7 3 72.34% 

Figure 4.4: An example of attack signature stored in the signature library 
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Figure 4.4 illustrates the example of attack signature that is used for future detection 

(incoming traffic 1 and 2) process. The signature matching procedure is computed 

using binary formation and traffic attributes content. 

Incoming Traffic 1 

Binary Formation: 0111110011 

Attributes 

Contents 

ethersize ethersrchi ethersrclo iplength ipfragid 

60 X00C04F XA357DB 40 62181 

ipsource tcpsourceport tcpheaderlen tcpflag tcpwindowsize 

172.016.113.084 9271 X60 X10 32120 

Figure 4.5: An example of new incoming traffic 1 

Figure 4.5 presents incoming traffic 1 that contains both binary formation and attribute 

contents. The signatures in the signature library are used to match the incoming traffic 

1. The traffic will be flagged as attack if the value for both binary formation and traffic 

attribute value are matched. 

Incoming Traffic 2 

Binary Formation: 0111111010 

Attributes 

Contents 

ethersize ethersrchi ethersrclo iplength ipfragid 

60 X00C04F XA357DB 40 62181 

ipsource tcpsourceport tcpheaderlen tcpflag tcpwindowsize 

172.016.113.084 9271 X60 X10 8192 

Figure 4.6: An example of new incoming traffic 2 
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Conversely, if mismatched, meaning the incoming traffic 2 does not tally with the 

signature, the traffic is considered to be unknown traffic. As a result, the traffic needs 

to undergo statistical analysis and ensemble classification to further identify the traffic 

attack type either as attack or normal. Figure 4.6 shows that the content attribute 

"tcpwindowsize" is not matched with the signature. 

The algorithm for the signature matching procedure is as follows: 

Start, 

If the binary formation and the attribute value are matched or exist  

Update the traffic by flagging the traffic as an attack traffic 

Else,  

Export the traffic into anomaly detection phase for further traffic analysis and classification 

operation 

End 

The attack behaviour will be converted to attack signature once the unknown attack 

traffic is detected from the ensemble classification output. The formulation of the 

signature for the mentioned behaviours is represented in the following algorithm: 

Start, 

Select distinct attack traffic and additional features from testing data 

Insert the information into attack signature file 

If the information exists, the insertion for this row is disregarded and continues with another 

row 

Else 

Insert all the information into the attack signature file 

End	
    



Chapter	
  4:	
  I-­‐WEB	
  

	
   79	
  

4.5.2 Attack Prioritisation 

In this research, IPM is specifically introduced to aid security analyst to perform better 

incident handling process. The incidents are measured using this model based on its 

importance and urgency. The assumption is made to measure the risk level for each 

attack and map it into different types of group based on the severity level and quadrants. 

For instance, the critical incident will require a quicker response from the security 

analyst compared to the less critical incidents. In this research, the severity level 

generated by IPM employs a combination of the two decision factors of traffic 

normality score and attack frequencies. The attacks are ranked quantitatively according 

to the severity level generated. 

4.5.2.1 Decision Factors for IPM 

In this research, a combination of two decision factors is employed for event 

prioritisation. Although previous works utilised multiple indicators to index the 

intrusions, this research is limited to two indicators only. This is due to the limitation of 

indicators available, considering that the proposed method is solely employing ABDS 

using a traffic header. According to Anuar et al. (2013), the fewer the number of 

indicators employed, the easier they are to obtain, measure and process.  

The four-quadrant level in Figure 4.9 is based on two decision factors namely: 

normality score and attack frequency. Eq. (4.16) is employed to measure the boundary 

of normality score, either low or high. Meanwhile eq. (4.17) is performed to determine 

the attack frequency and its boundary which can be either low or high.  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑜𝑓  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦  𝑆𝑐𝑜𝑟𝑒 =
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦  𝑆𝑐𝑜𝑟𝑒
𝐴𝑡𝑡𝑎𝑐𝑘  𝑇𝑟𝑎𝑓𝑓𝑖𝑐                                                             (4.16) 

whereby, Lower boundary < Average Normality Score; Higher boundary > Average 

Normality Score 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝐴𝑡𝑡𝑎𝑐𝑘  𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝐴𝑡𝑡𝑎𝑐𝑘  𝑇𝑟𝑎𝑓𝑓𝑖𝑐
𝐴𝑡𝑡𝑎𝑐𝑘𝑠  𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦                                                                 (4.17) 
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whereby, Lower boundary < Average Attack Frequency; Higher boundary > Average 

Attack Frequency 

4.5.2.2 Severity Formation 

In this research, the time management concept is applied in severity formation. Kirillov 

et al. (2015) demonstrate four different severity levels that represent priorities of actions 

based on the time management concept. The concept measures the tasks based on two 

distinct elements: urgent and important. Based on this concept, two distinct types of 

normality score and attack frequency are chosen to generate the severity level. 

The fundamental of this concept, known as the Eisenhower Matrix has been widely used 

by many researchers for easy prioritisation. Such examples include risk management 

(Haimes, 2001), time management (Gonzalez et al., 2008), email prioritisation (Yoo et al., 

2011) and incident prioritisation (Anuar et al., 2013). 

Figure 4.7: Severity Quadrants 

Figure 4.7 illustrates four different quadrants that can be categorised into: 

1) 1st Quadrant: Low Normality Score and High Attack Frequencies. This quadrant alerts 

the highest priority incidents. In this category, the attack traffic represents a 

critical incident and requires immediate action by the security analyst. For 

example, the low normality score indicates that the traffic behaviour is more 

towards attack traffic behaviour. 
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2) 2nd Quadrant: High Normality Score and High Attack Frequencies. This quadrant 

indicates a less urgent situation compared to the 1st quadrant. Although it is less 

urgent, an adequate action is still required by the security analyst as it is still 

considered to be a top primacy quadrant. For example, the high attack 

frequencies indicate more attempts have been launched by an intruder and are 

therefore still  to be considered dangerous. 

3)  3rd Quadrant: Low Normality Score and Low Attack Frequencies. This quadrant is 

categorised as low level since fewer attack attempts are detected. In view of the 

traffic normality level also being low, some attention by the security analyst is 

still needed. This situation can be similar to the 1st quadrant in a way of 

recording a low normality score. However, for demonstration purposes, the 3rd 

quadrant is considered as lower priority than the 2nd quadrant due to its 

recorded lower attack frequency.  

4) 4rd Quadrant: High Normality Score and Low Attack Frequencies. This quadrant 

indicates the lowest priority and minimum attention required from a security 

analyst. For example, this category represents attack traffic that is more similar 

to the 3rd quadrant, and at the same time is less dangerous.  

4.6 Summary 

In this chapter, the proposed detection scheme has been briefly discussed with the aim 

to minimising data dimensionality, improving the known and unknown web attack 

traffic, and simplifying the re-initiation process for future detection. In addition, a more 

specific detailed implementation of the proposed detection scheme is now discussed in 

the next Chapter 5. 
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           Chapter 5  

The Implementation of I-WEB 

5.1 Introduction 

This chapter discusses the overall implementation of the proposed work using WEKA 

tools (Frank et al., 2016) and SQL script. Details of each process will be explained in the 

following sections. Sections 5.1 highlights the overview of the proposed detection 

scheme. Section 5.2 presents the steps taken in the pre-processing phase. Section 5.3 

performs the steps under the anomaly detection phase whereby the SQL scripts and 

ensemble learning procedure are performed. In Section 5.4, the attack signature and 

script for signature detection are formulated and presented, followed by a summary of 

the chapter in Section 5.5. 

Figure 5.1: The Proposed Detection Model (I-WEB) 
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Figure 5.1 illustrates the whole procedure required in the proposed detection model. 

There are three major phases involved in this proposed scheme: pre-processing, 

anomaly detection and post-processing phases. 

In the pre-processing phase (shown as Step 1.1), the intrusion dataset used in the 

experiment needs to go through the HFS process. The HFS procedure is comprised of 

two selection approaches: filter and wrapper. The purpose of employing this procedure 

is to reduce the data dimensionality by removing irrelevant and redundant features. 

Meanwhile, the anomaly detection phase consists of two stages of detection methods. 

In the first-stage detection, the distinct normal (attack-free) records in (Step 2.1) are 

extracted to compute a normal profile that will be used as a benchmark for identifying 

novel (unseen) abnormal behaviours. Subsequently, each training and the testing data 

field value is compared with the feature value of distinct normal records as laid out in 

(Steps 3.2 and 3.4). If the feature value matches with the value in the normal records, 

the binary value of ‘1' is assigned, otherwise a value ‘0’ will be awarded. The entire set 

of binary values for each traffic is computed to form binary formation. For example, 

“1111111000” represents 10 features of a single traffic. The processes are continued 

with the computation of the normal score, distance measurement and threshold 

mechanism. In (Step 3.5), the normal scores are computed by shifting the binary 

formation value ‘0’ and ‘1’ with the scores derived from the normal profile. At this 

point (Step 4.1), two scores i.e. PS and AS, are produced. The total scores for each 

feature are summed up to represent the degree of normality traffic. Both scores are 

transformed into data points that represent coordinates in order to measure the 

distance between AS and PS. In (Step 4.2), the ED is used to measure the distance 

between normal and outlier points. Moreover, CIT in (Step 4.3) is deployed to further 

define the traffic with the threshold measurement. The traffic is flagged as anomalous if 

it surpasses the threshold value while others will be considered to be normal traffic.  
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In second-stage detection, (Step 5.1) is performed to improve the detection ability 

derived from the earlier first-stage detection process. The training and the testing data 

that consist of normal and attack behaviours are used to train and test the ensemble 

LB-RF classifiers model. Finally, the classification output that is comprised of true 

attacks behaviour is exported to the attack detection file for signature formation (Step 

6.1).  

In the post-processing phase, the signature generated will be kept and stored in the 

signature library (Step 6.2). The usage of attack signature as part of the detection 

strategy has reduced the re-computation process for incoming traffic. For example, 

(Step 3.6) is performed to identify attack traffic that matches with the signature library. 

For every matched signature found, the attack detection file will be updated for further 

incident response by the security analyst. However, if the signature is not matched, the 

remaining (Steps 4.1 to 6.2) need to be performed. Finally, (Step 7.0) is employed to 

prioritise the attack based on the four-severity levels, which are highest, high, low and 

lowest. The next section discusses in detail the implementation steps involved in each 

phase. 

5.2 Pre-Processing Phase 

Initially, in the pre-processing phase, feature selection is employed to remove all 

irrelevant and redundant features with the aim of reducing the overall data 

dimensionality. There are three steps taken in implementing HFS using WEKA DM 

tools.  

Step 1: The training data contains both attack and normal samples with ARFF format 

exported into the WEKA explorer. 
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Figure 5.2: Process of selecting features using FBSE 

Figure 5.2 illustrates the process taken in FBSE in the DARPA 1999 dataset. The 34 

attributes represent 33 original features and an additional one feature for a class label. 

The experiment is conducted using the 10-fold cross-validation test method. 

Figure 5.3: Process of selecting features using WBSE 
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Step 2: The selected features by FBSE are further analysed using WBSE with RF as a 

classifier. Figure 5.3 presents the process taken by WBSE in the DARPA 1999 dataset. 

The same testing method using 10-fold cross-validation is executed in WBSE.  

Figure 5.4: Classification method on final selected features 

Step 3: The final set of selected features are evaluated with RF 10-fold cross-validation. 

The remaining features set has indicated its importance in determining attack and 

normal traffic in the dataset.  

Figure 5.4 demonstrates the evaluation of the final set of features. In this phase, the 

irrelevant and redundant features that could increase the computational effort are 

efficiently removed. Those selected features will be cross-validated as a benchmark in 

the subsequent anomaly detection process. The feature selection procedures are 

conducted using the training data, which contains normal and attack traffics. The 

significant feature in the filter is measured using a correlation function. Meanwhile, in 

wrapper, a classification algorithm is used. The features with high merit and correlated 

to the class are selected. In the event that the selected feature is found to be redundant, 

it will then be removed as indicated in the Steps 2 and 3. Further analysis of the features 

selected by the proposed method is discussed in the next Chapter 6: Results and 

Discussion. 
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5.3 Anomaly Detection Phase 

Step 1: A normal profile is generated from attack free data using SQL script and act as a 

benchmark of standard behaviour normal http traffic. Following is the example of an 

SQL query executed to generate a normal profile. 

I. Calculate Rk 

UPDATE `normal_profile` SET R= (SELECT COUNT (DISTINCT `ethersize`) 

FROM `week3_DARPA1999`) WHERE field =`ethersize`;  

II. Calculate Nk 

UPDATE `normal_profile` SET N= (SELECT COUNT (`ethersize`) FROM 

`week3_DARPA1999`) WHERE `field` =`ethersize`; 

III. Calculate normal score for each feature 

UPDATE `normal_profile` SET `traffic_score`= (SELECT log10(R)-log10(N)); 

Step 2: Traffic matching is the process of matching features content between attack free 

data in the normal profile with traffic in the testing data. The binary form is used to 

ease score allocation and to illustrate the sum of normal and anomalous fields. The 

SQL scripts related to binary form application are presented in the following manner: 

I. Traffic matching procedure 

The distinct feature value in the attack-free data is compared with the 

corresponding feature value in the testing data. The scores derived from the 

normal profile are assigned to the test dataset. All values within the test dataset 

are closely examined. If their unique values are matched with the profile, a binary 

value ‘1’ will be awarded. However, if the test dataset values are absent in the 

normal profile, a value of ‘0’ is assigned to the particular attributes as follows: 
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UPDATE `testdata_DARPA1999` SET `ethersize_label`=0; 

UPDATE `testdata_DARPA1999` SET `ethersize_label`=1 WHERE `ethersize` IN 

(SELECT DISTINCT `ethersize` FROM `week3_DARPA1999`); 

II. Binary formation creation procedure 

A binary value of ‘0’ or ‘1’ for each feature is consolidated as a binary sequence 

(e.g. 1111100101 to represent a series of binary over 10 features of the traffic). 

The SQL scripts used for generating the binary sequence are as follows: 

UPDATE `testdata_DARPA1999` SET `binary_form`= CONCAT (`ethersize_label`, 

`ethersrchi_label`, `ethersrclo_label`, `iplength_label`,…..); -- Binary sequence for 

testdata_DARPA1999 

III. Process of calculating normal and anomalous columns 

From the binary sequences, the amounts of normal and anomalous columns in 

the traffic are further computed. Both amounts of normal and anomalous 

columns are used as additional features in the ensemble learning. The queries to 

compute both columns are as follows: 

§ Normal Column 

UPDATE `testdata_DARPA1999` SET `normal_column` = (SELECT 

(SUM(IF(`ethersize_label`=0,0,1)))+(SUM(IF(`ethersrchi_label`=0,0,1)))…..+ 

(SUM(IF(`tcpwindowsize_label`=0,0,1))); 

§ Anomalous Column 

UPDATE `testdata_DARPA1999` SET `anomalous_column`= (10-`normal_column`); 

IV. Scores Designation 

The binary sequence generated from the matching process in the testing data, is 

used to ease score allocation. The passive score (PS) is generated to represent a 

fixed normal score for each column as in the normal profile. The query is as 

follows: 
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UPDATE `testdata_DARPA1999` SET `ethersize_passive_score` = (SELECT 

`feature_normal_score` FROM `normal_profile` WHERE `feature_field` LIKE 

‘ethersize’); 

The active score (AS) is generated based on binary designation series in the 

testing data. For instance, the binary value of ‘1’ is awarded with normal scores 

while field value ‘0’ will remain: 

UPDATE `testdata_DARPA1999` SET `ethersize_active_score` = (SELECT 

`feature_normal_score` FROM `normal_profile` WHERE `feature_field` LIKE ‘ethersize’) 

WHERE `ethersize_label`>0; 

UPDATE `testdata_DARPA1999` SET `ethersize_active_score` =0 WHERE 

`ethersize_label`=0; 

Next, the active score in the testing data is computed. The sums of the active 

scores represent the degree of normality for each traffic in the testing data. 

UPDATE `testdata_DARPA1999` SET `traffic_normal_score` = (SELECT SUM 

(`ethersize_active_score`+`ethersrchi_active_score`+`ethersrclo_active_score`+`iplength_active_

score`+…..)); 

Step 3: To identify outliers in the testing data, the distance between active score and 

passive score is measured using ED. The SQL scripts to calculate the distance are as 

follows: 

UPDATE `testdata_DARPA1999` SET `distance_value`= 

SQRT(POWER(`ethersize_passive_score`-

`ethersize_active_score`,2)+POWER(`ethersrchi_passive_score`-

`ethersrchi_active_score`,2)+….); 

UPDATE `testdata_DARPA1999` SET `predicted`= (`Normal`) WHERE 

`distance_value`=0; 

UPDATE `testdata_DARPA1999` SET `predicted`= (`Anomalous`) WHERE 

`distance_value`>0; 
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UPDATE `testdata_DARPA1999` SET ‘source_anomalous` = (`Anomalous’) 

WHERE `ipsrc` IN (SELECT `ipsrc` FROM `testdata_DARPA1999` WHERE 

`tag` IN (‘Anomalous’)); 

In conjunction with ED, CIT is employed to find the right boundary and determine the 

finest threshold to achieve a higher detection rate. The SQL query to measure the upper 

bound and the threshold is as follows: 

UPDATE `week3_DARPA1999` SET `mean_tcpwindowsize`= 

AVG(`tcpwindowsize`); 

UPDATE `week3_DARPA1999` SET `variance_tcpwindowsize`= 

(POWER(‘mean_tcpwindowsize`-`tcpwindowsize`)) WHERE `source_anomalous` IN 

(`Anomalous’); 

UPDATE `week3_DARPA1999` SET `standard_deviation_tcpwindowsize`= SQRT 

(`variance_tcpwindowsize`); 

UPDATE `week3_DARPA1999` SET `upper_bound`= 

(`mean_tcpwindowsize`+`standard_deviation`); 

UPDATE `testdata_DARPA1999` SET `predicted`=(‘Normal’) WHERE 

`tcpwindowsize`<(SELECT `upper_bound` FROM `week3_DARPA1999`) and `source` 

in (‘source_anomalous’); 

Step 4: The ensemble classification is performed whereby LogitBoost + RF are 

employed to classify the traffic of either normal or attack. Figure 5.5 presents the 10 

features that are selected by HFS. The five additional features generated during 

statistical analysis: “predicted”, “normality_score”, “distance_value”, “normal_columns” and 

“anomalous_columns” are also induced to the WEKA DM tool. 
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Figure 5.5: The week 4 data of DARPA 1999 dataset 

Step 5: As depicted in Figure 5.6, the classification model is built and executed by 

training the week 4 data using 10-fold cross-validation. Thereafter, the week 5 dataset 

that consists of 108,816 instances is selected as the supplied test set in this experiment. 

The experiment is executed and the outputs are presented in the confusion matrix. 
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Figure 5.6: The evaluation process of DARPA 1999 dataset 

5.4 Post-Processing Phase 

There are three steps required in this phase as follows: 

I. Extraction of detected attack traffic behaviour from the testing data 

II. Importing of selected signature behaviour into the signature library 

Steps I and II are performed using the following SQL query, 

UPDATE `output_test_week5_with_signature` SET `signature`= CONCAT 

(`ethersize`,`ethersrchi`,`ethersrclo`,`iplength`,…..) WHERE `predicted` IN (‘Attack’); -- 

signature formation for detected true attack by LB-RF 
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UPDATE `signature_library` SET `signature` = 

`signature.output_test_week5_with_signature`; 

To eliminate redundant attack signature in the future, the signature library is frequently 

updated using the following query. 

SELECT DISTINCT `signature` FROM `signature_library`; 

Step III is performed to match the current signature with the incoming traffic. 

III. The following query is used to match any incoming future traffic with signature in 

the signature library:  

UPDATE `new_test_data` SET `signature`= CONCAT 

(`ethersize`,`ethersrchi`,`ethersrclo`,`iplength`,…..); -- signature formation for new data 

UPDATE `new_test_data` SET `signature_label`= 1 WHERE `signature` in 

(SELECT DISTINCT `signature` FROM `signature_library`); 

The incoming traffic that matched the signature in the signature library is further 

analysed by the security analyst, while the remaining unmatched traffic is further 

processed in the anomaly detection phase. 

SELECT * FROM `new_test_data` WHERE `signature` IN (‘1’); -- 1=’Attack’ 

The following scripts are used to determine the boundary of normality score. The 

boundary is computed based on the eq. (4.16) under Section 4.5.2.1. 

UPDATE `darpa_1999_severity` SET score_lohi='low' WHERE 

normality_score<(‘average_normality_score’); 

 UPDATE `darpa_1999_severity` SET score_lohi='high' WHERE normality_score> 

(‘average_normality_score’); 

Meanwhile, the following scripts are to determine the boundary of the attack frequency. 

The boundary is computed based on the eq. (4.17) under Section 4.5.2.1. 
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UPDATE `darpa_1999_severity` SET freq_lohi=low' WHERE attack_frequency< 

(‘average_attack_frequency); 

UPDATE `darpa_1999_severity` SET freq_lohi='high' WHERE attack_frequency> 

(‘average_attack_frequency); 

The severity is computed according to (highest, high, low, lowest) using the following 

SQL scripts: 

UPDATE `darpa_1999_intrusion_prioritisation` SET severity_level='highest' WHERE 

score_lohi='low' AND freq_lohi='high'; 

UPDATE `darpa_1999_intrusion_prioritisation` SET severity_level='high' WHERE 

score_lohi='high' AND freq_lohi='high'; 

UPDATE `darpa_1999_intrusion_prioritisation` SET severity_level='low' WHERE 

score_lohi='low' AND freq_lohi='low'; 

UPDATE `darpa_1999_intrusion_prioritisation` SET severity_level='lowest' WHERE 

score_lohi='high' AND freq_lohi=low'; 

The quadrant level is determined by executing the following script. 

UPDATE `darpa_1999_intrusion_prioritisation` SET Quadrant=1 WHERE 

severity_level IN ('highest'); 

UPDATE `darpa_1999_intrusion_prioritisation` SET Quadrant=2 WHERE 

severity_level IN ('high'); 

UPDATE `darpa_1999_intrusion_prioritisation` SET Quadrant=3 WHERE 

severity_level IN ('low'); 

UPDATE `darpa_1999_intrusion_prioritisation` SET Quadrant=4 WHERE 

severity_level IN ('lowest'); 
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Figure 5.7: The intrusion prioritisation process of the DARPA 1999 Dataset 

Figure 5.7 presents the prioritisation table in MySQL for attack detected by the 

proposed system. The table are illustrated according to quadrant (1,2,3,4) with aim to 

assist the security analyst for further incidents response. 

5.5 Summary 

This chapter described the implementation procedure of the proposed detection 

scheme. Several formulas, algorithms and SQL scripts are employed in this chapter. The 

effectiveness of the proposed approach is evaluated with a series of experiments. The 

results derived from the experiments are now presented and discussed in Chapter 6. 
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     Chapter 6 

Results and Discussion 

6.1 Introduction 

This chapter presents the results and analysis discussion of the proposed detection 

scheme (I-WEB). Section 6.2 presents several preliminary experiments that were 

specifically conducted during the pre-processing and anomaly detection phases. Section 

6.3 details the experimental results of the proposed detection scheme that consists of 

the pre-processing, anomaly detection and post-processing phases. Section 6.4 presents 

the discussion of attack analysis with the comparison of previous work using DARPA 

1999, NSL KDD, ISCX 2012 and UNSW-NB15 datasets respectively. Finally, Section 

6.5 summarises the whole chapter. 

6.2 Preliminary Experiments 

There are two preliminary experiments conducted in this study. The first experiment is 

to seek a suitable search algorithm for selecting the most prominent features during the 

pre-processing phase. The second preliminary experiment is performed in the anomaly 

detection phase, in which a suitable base classifier is selected for combination with the 

LogitBoost algorithm.  

6.2.1 First Preliminary Experiment 

In the early pre-processing phase, FBSE is employed using CFS. The approach is tested 

with four different search algorithms: best-first, greedy-stepwise, genetic-search and 

PSO. Subsequently, the performances of all search techniques are compared and the 

best performer is chosen to fuse with the wrapper in the subsequent stage. Thereafter, 

the WBSE is employed for further features optimisation procedure. 
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Figure 6.1: Comparison of Filter Approaches Performance over IDS Datasets 

Figure 6.1 shows the accuracy rate performance of the DARPA 1999, NSL KDD, 

ISCX 2012 and UNSW-NB15 datasets. It can be seen that both best-first and greedy 

stepwise search algorithms have recorded similar performance for all datasets. This is 

because of both algorithms are sharing a similar searching algorithm technique where 

the only different is that best-first algorithm could go back to track the previous subset 

if the search output is found to be less promising. Among the four search algorithms 

employed, genetic search had indicated the highest accuracy over different datasets. 

With a view to good detection system performance, ideally the lowest false detection 

with highest detection accuracy is preferred. Considering those factors, the genetic 

search algorithm seems to be the most suitable to be adopted as the search algorithm in 

the pre-processing phase. 
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Figure 6.2: Comparison of Performance Accuracy between Filter and HFS 

In the previous stage, the genetic-search algorithm has shown comparable performance 

compared to other search methods. Moving on, the selected features are forwarded to 

WBSE for a further feature optimisation process. In WBSE, the features merit is 

measured using the RF classifier. The combination of Filter and Wrapper is known as 

HFS. Figure 6.2 shows that the new hybrid HFS had recorded significant improvement 

performance over the Filter. The improvement is contributed by the convincing 

performance of filter and wrapper in eliminating redundant and irrelevant features 

efficiently. The results had justified the need for combination approaches between filter 

and wrapper methods for selecting prominent features. 
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Figure 6.3: Comparison of Classification Algorithms Performance on HFS 

In the classification stage, the features identified by HFS are further evaluated for 

classification accuracies with five widely known classifiers, which are MLP, SVM, NB, 

J48 and RF, using 10-fold cross-validation. Figure 6.3 shows the RF classifier had 

consistently achieved highest accuracy performance over other classifiers. Thus, it has 

been chosen as a benchmark to evaluate the HFS performance. The analysis of the 

selected features are further explained in the Section 6.3.1. 
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6.2.2 Second Preliminary Experiment 

The second preliminary experiment is performed in the anomaly detection phase, where 

a suitable base classifier is selected to combine with the LogitBoost algorithm. As the 

LogitBoost requires a base classifier to fuse with, the classifier with the highest 

detection accuracy and lowest false detection rate within a reasonable processing time is 

preferred. Based on past initiatives, six well-known classification algorithms MLP, SVM, 

NB, DT, J48 and RF are compared, evaluated and briefly discussed. 

Figure 6.4: Comparison of Classification Algorithms Performance on IDS Datasets 

Figure 6.4 shows the accuracy rate performance on DARPA 1999, NSL KDD, ISCX 

2012 and UNSW-NB15 datasets. It can be seen that RF had recorded consistent 

performance over other classification algorithms on four different datasets. Although in 

DARPA 1999, the performance of MLP is better than RF by 0.1%, the processing time 

taken by MLP is higher when compared to RF [Appendix A.2]. Thus, considering 

aforementioned factor, RF has been chosen as the base classifier to ensemble with 

LogitBoost. 
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6.3 Performance Evaluation of Proposed Detection Scheme 

6.3.1 Pre-Processing Phase 

Figure 6.5: Feature Count and Time taken to Built Training Model over IDS Datasets 

Figure 6.5 presents the performance result of the proposed HFS approach and original 

features over DARPA 1999, NSL KDD, ISCX 2012 and UNSW-NB15 datasets. The 

HFS ability to efficiently identify prominent features has improved the overall attack 

detection. Thus, it became the main contribution to the feature reduction process. The 

time taken by HFS is much lower than using full features. This is because the time 

taken in building the classification model is highly dependent on the feature counts. 

The fewer feature counts executed the quicker the classification model is built. 

In the DARPA 1999 dataset, the proposed HFS shows significant improvement with 

69.7% and 30% in feature reduction and time taken in building the classification model 

respectively. The 10 significant features selected by HFS are ethersize, ethersrchi, ethersrclo, 

iplength, ipfragid, ipsrc, srcport, tcpheaderlen, tcpflag, and tcpwindowsize. Further in-depth study 

has revealed that the most relevant features are needed to classify traffic behaviour 
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status (normal or attack). For instance, the U2R attack named ‘perl’, usually has 

tcpwindowsize and iplength range values above 18,980 and between 40 and 219 respectively. 

Conversely, normal traffic behaviour contains tcpwindowsize and iplength range values 

between 4416 to 8760 and between 40 and 80 respectively. These behaviours have 

justified the finding that those features are significantly important to differentiate 

between normal and attack traffic behaviour. 

Meanwhile in the NSL KDD dataset, the proposed HFS shows significant 

improvement with 75.6% and 50% in feature reduction and time taken in building the 

classification model respectively. Upon closer investigation, the 10 significant features 

selected by HFS are src_bytes, count, srv-count, same_srv_rate, srv_diff_host_rate, 

dst_host_srv_count, dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_srv_diff_host_rate 

and dst_host_srv_serror_rate.  Further in-depth study has revealed that the most relevant 

features are needed to classify traffic behaviour status (normal or attack). For instance, 

the DoS attacks named ‘apache2’ and ‘neptune’, are triggered when there is a huge number 

of connections establish by the same host. Thus, the features such as ‘count’, ‘srv_count’ 

are important in identifying those attacks. Similar to ‘portsweep’ and ‘ipsweep’ attacks, these 

attacks are performed with the aims of finding the system vulnerabilities. As the nature 

of the attack itself need to examine the innumerable hosts, ‘srv_diff_host_rate’ and 

‘diff_host_serv_rate’ are important to measure the connection establish by the different 

hosts. Conversely, normal traffic behaviour usually contains the range values of ‘scr_bytes’ 

between 140 and 340. These behaviours have justified the finding that those features 

are significantly important to differentiate between normal and attack traffic behaviour. 

Furthermore in the ISCX 2012 dataset, the proposed HFS shows significant 

improvement with 69.2% and 47% in feature reduction and time taken in building the 

classification model respectively. Upon closer investigation, the four significant features 

selected by HFS are totalSourceBytes, source, sourceTCPFlagsDescription and sourcePort. Further 

in-depth study has revealed that the most relevant features are needed to classify traffic 

behaviour status (normal or attack). For instance, attack behaviour instances usually 

contain sourcePort range values between 29190 and 31537. On the other hand, normal 

traffic behaviour normally contains totalSourceBytes range values between 64 and 6,385. 



Chapter	
  6:	
  Results	
  and	
  Discussion	
  

	
   103	
  

These behaviours have justified the finding that those features are significantly 

important to differentiate between normal and attack traffic behaviour. 

Finally in the UNSW-NB15 dataset, the proposed HFS shows significant improvement 

with 69.2% and 47% in feature reduction and time taken in building the classification 

model respectively. Upon closer investigation, the five significant features selected by 

HFS are sbytes, tcprtt, synack, dmean and response_body_len.  Further in-depth study has 

revealed that the most relevant features are needed to classify traffic behaviour status 

(normal or attack). For instance, the attack named ‘DoS’, usually has low range values of 

response_body_len between 100 and 700 and range values of synack are above 0.05 

respectively. Conversely, normal traffic behaviour contains sbytes range values between 

4770 and 10168 and syncack range values less than 0.04. These behaviours have justified 

the finding that those features are significantly important to differentiate between 

normal and attack traffic behaviour. 

In the next phase, the reduced set of features selected by the proposed HFS is further 

processed using statistical analysis and classification approaches. 
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6.3.2 Anomaly Detection Phase 

Figure 6.6: The Accuracy Rate Performance over IDS Datasets 

Figure 6.6 shows the accuracy rate performance of the DARPA 1999, NSL KDD, 

ISCX 2012 and UNSW-NB15 datasets. In this study, the SAD (ED) and SAD 

(ED+CIT) are known as first stage detection while SAD+RF and SAD+(LB-RF) are 

known as second stage detection. The significant improvement performance of 

SAD+(LB-RF) over SAD and SAD+RF on four different datasets indicates that the 

proposed ensemble classification method is suitable for detecting known and unknown 

web attacks.  

In DARPA 1999, it can be seen from Figure 6.6, SAD (ED+ CIT) had significantly 

improved the detection accuracy of SAD (ED) alone, at 92.67%. The significant 

improvement of 14.60% accuracy rate had justified the need for using the CIT method 

to improve the detection performance in first stage detection. To improve the 

performance recorded in first stage detection, the ensemble classification approach is 

proposed as second stage detection. The convincing performance recorded by 

SAD+(LB-RF) over SAD has demonstrated that the second stage detection is capable 
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of identifying an additional 6.74% of detection accuracy that was first missed out by 

SAD (ED+CIT) during its first stage of detection process. 

Meanwhile in the NSL KDD dataset, it can be seen that the employment of SAD 

(ED+CIT) has significantly improved the detection accuracy of SAD (ED) alone with 

99.68%. To improve the performance recorded in first stage detection, the ensemble 

classification approach is proposed as second stage detection. The convincing 

performance recorded by SAD+(LB-RF) over SAD has demonstrated that the second 

stage detection is capable of identifying an additional 1.05% of detection accuracy that 

was first missed out by SAD (ED+CIT) during its first stage of detection process. 

Furthermore in the ISCX 2012 dataset, the significant improvement of the SAD 

(ED+CIT) approach over SAD (ED) with 4.69% accuracy rate had highlighted the 

contribution of the CIT method to improve the performance of first stage detection. 

To further improve performance in first stage detection, the ensemble classification 

approach is proposed as the second stage detection. Figure 6.6 shows that the 

improvement by SAD+(LB-RF) over SAD (ED+CIT) indicated the need for ensemble 

classification to further identify an additional 0.53% of detection accuracy that was 

missed out by SAD (ED+CIT) in the first stage detection. 

Finally in the UNSW-NB15 dataset, the improvement of 1.17% accuracy rate of SAD 

(ED+CIT) over SAD (ED) indicated the need for CIT employment to improve the 

performance of first stage detection. The ensemble classification approach is proposed 

as second stage detection to improve the detection performance of first stage detection. 

The performance recorded by SAD+(LB-RF) over SAD has demonstrated that the 

second stage detection is capable of identifying an additional 1.75% of detection 

accuracy that was first missed out by SAD (ED+CIT) during its first stage of detection 

process. 
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6.3.3 Post-Processing Phase 

Figure 6.7: The Necessity of Signature Implementation over IDS Datasets 

Figure 6.7 shows the effectiveness of the proposed detection scheme by employing the 

attack signature as part of the detection strategy. Initially, the attacks detected by 

SAD+(LB-RF) are transformed into signatures and stored in the signature library where 

only the significant header contents that are first selected by HFS are extracted. In view 

of the fact that the signatures with straightforward structure are employed, the 

detection time is significantly reduced. 

In the DARPA 1999 dataset, the total numbers of attacks available in the testing data 

are 12,298 while the attack signatures generated by SAD+(LB-RF) are 11,787.  Figure 

6.7 shows the detection time recorded by the proposed detection scheme (108,816 

instances without attack signature) is 2.21 seconds. However, with the implementation 

of signature as part of the detection strategy, the detection time has significantly 

reduced by 95% to 0.11 seconds. This is due to the reduction in attack instances when 

the system is processing only the remaining 511 attack instances that were not matched 

with the signatures along with 96,518 normal instances. 
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Meanwhile in the NSL KDD dataset, the total numbers of attacks available in the 

testing data are 2,785 while the attack signatures generated by SAD+(LB-RF) are 2,768. 

Figure 6.7 shows the detection time of the proposed detection scheme (5,641 instances 

without attack signature) is 0.26 seconds. However, with the implementation of 

signature as part of the detection strategy, the detection time has significantly reduced 

by 96% to 0.01 seconds. This is due to the reduction in attack instances when the 

system is processing only the remaining 17 attack instances that were not matched with 

the signatures, along with 2,856 normal instances. 

Furthermore in the ISCX 2012 dataset, the total numbers of attacks available in the 

testing data are 28,329 while the attack signatures generated by SAD+(LB-RF) are 

28,234. Figure 6.7 shows the detection time recorded by the proposed detection scheme 

(34,957 instances without attack signature) is 2.3 seconds. However with the 

implementation of signature as part of the detection strategy, the detection time has 

significantly reduced by 99.13% to 0.02 seconds. This is due to the reduction in attack 

instances when the system is processing only the remaining 95 attack instances that 

were not matched with the signatures, along with 6,628 normal instances. 

Finally in the UNSW-NB15 dataset, the total numbers of attacks available in the testing 

data are 13,376 while the attack signatures generated by SAD+(LB-RF) are 12,046. 

Figure 6.7 shows the detection time of the proposed detection scheme (18,724 

instances without attack signature) is 1.24 seconds. However, with the implementation 

of the signature as part of detection strategy, the detection time has significantly 

reduced by 87% to 0.16 seconds. This is due to the reduction in attack instances when 

the system is processing only the remaining 1330 attack instances that were not 

matched with the signatures, along with 5,348 normal instances. 

In this phase, the reduction in detection time is only tested on the same traffic. 

However, in a real traffic environment, the incoming attack traffic usually contains 

similar behaviour to the previously detected attack traffic. Thus, by implementing an 

attack signature approach in the initial stage, similar attack behaviour could be 

recognised and filtered out. As a result, the remaining traffics that are not identified by 

those signatures will turn out to be fewer when compared to the original traffic volume.	
    



Chapter	
  6:	
  Results	
  and	
  Discussion	
  

	
   108	
  

6.4 Attack Analysis and Comparison of Previous Work  

6.4.1 DARPA 1999 Dataset 

Table 6.1: Performance of proposed I-WEB using the DARPA 1999 testing dataset 

Table 6.1 lists six types of attack available in both weeks 4 and 5 from the DARPA 

1999 dataset. The four types of attack existed in week 4 (training dataset) are back, 

ipsweep, perl and phf. Subsequently on week 5 (testing dataset), five types of attack: back, 

ipsweep, perl plus two new attacks named secret and tcpreset are identified. The proposed 

approach successfully recognised 95.84% of attack instances in the testing dataset. The 

attack types with the highest detection rate are U2R (100%) and DATA (100%), 

followed by DoS (75.71%) and Probe (67.56%).  

Upon closer analysis, the poor performance of Probe is due to the nature of the attacks 

themselves that share similar characteristics with normal traffic behaviour. As the Probe 

attacks nature is to gather system information and to discover known vulnerabilities, the 

relevant kind of traffic seems to be legitimate and mostly classified as normal by the 

system. With regard to the DoS attack type, the low detection percentage of back attack 

is caused by the lack of samples available in the training dataset. The sample is 52 times 

smaller than the attack in the testing dataset. However, it is worth mentioning that the 

Attack 
Category Attack Name 

 
Attack 

Traffic in 
Training 
Dataset 

Attack 
Traffic in 
Testing 
Dataset 

Attack 
Traffic 

Detected 
by I-WEB 

 
%age of 
Detected 

Attack 
traffic 

DoS 
back 25 1,300 983 

75.71 
tcpreset - 5 5 

Probe ipsweep 106 598 404 67.56 

U2R perl 1,677 10,333 10,333 100 

R2L phf 624 - - - 

DATA (New) secret - 62 62 100 

Total - 2,432 12,298 11,787 95.84 
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proposed approach has successfully identified two new attacks, namely tcpreset and secret 

that are only present in the testing dataset. 

Table 6.2: Performance comparisons using the DARPA 1999 dataset 

Methods False Alarm Rate (%) Detection Rate (%) Accuracy (%) 

Improved IDS with 
Fuzzy Logic by 
Shanmugam and Idris 
(2009) 

6.10 88.71 N/A 

Lightweight IDS by 
Chen et al. (2010) 

1.36 72.70 N/A 

Ensemble Neural 
Classifier by Raj 
Kumar and 
Selvakumar (2011) 

3.70 99.40 N/A 

Sequential 
Differentiate Method 
by Raja et al. (2012) 

3.38 100.00 N/A 

Hybrid Data Mining 
by Agarwal and Mittal 
(2012) 

2.75 97.25 N/A 

Distribution IDS 

by Hakimi and Faez 
(2013) 

N/A 96.00 N/A 

Catastrophe Theory 
by Xiong et al. (2013) 

3.38 87.39 N/A 

I-WEB (2018) 0.13 95.84 99.41 

 

Table 6.2 shows the proposed I-WEB performance in terms of FAR, DR and ACC 

compared with the previous methods tested on the DARPA 1999 dataset. The 

comparisons are for reference only due to many researchers having used different 

proportions of traffic types, sampling methods and pre-processing techniques. The 
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proposed detection approach has demonstrated a comparable performance in terms of 

detection rate. Although the study by (Raja et al., 2012) achieved 100% detection rate,  

the false alarm produced is relatively high compared to other approaches. In addition, 

the significant reduction on the false alarm rate, which had validated the proposed 

detection approach, is suitable to employ in the field of IDS. 

6.4.2 NSL KDD Dataset 

Table 6.3: Performance of proposed I-WEB using the NSL KDD testing dataset 

 

Attack 

Category 
Attack 

Name 

Attack Traffic 

in Training 

Dataset 

Attack 

Traffic in 

Testing 

Dataset 

Attack Traffic 

Detected by I-

WEB 

%age of 

Detected 

Attack 

Traffic 

DoS 

back 203 1112 1112 

99.75 apache2 434 302 301 

neptune 44 1334 1328 

Probe 

portsweep 1 16 13 

74.19 

ipsweep - 7 3 

satan - 7 6 

nmap - 1 1 

saint 1 - - 

R2L phf - 6 4 66.67 

U2R - - - - - 

Total - 682 2,785 2,768 99.39 
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Table 6.3 lists nine types of attack available in both training and testing of the NSL 

KDD dataset. The five types of attack that existed in the training dataset are back, 

apache2, neptune, portsweep and saint. Subsequently in the testing dataset, eight types of 

attack: back, apache2, neptune, portsweep plus four new attacks named ipsweep, satan, nmap 

and phf are identified. The proposed approach has successfully recognised 99.39% of 

attack instances in the testing dataset. The attack type with the highest detection rate is 

DoS (99.75%), followed by Probe (74.19%) and the lowest is R2L (66.67%). 

Upon closer analysis, the poor performance of R2L is due to the feature value in 

“src_bytes” containing similar values to the features of normal traffic. Thus, the system is 

keen to recognise R2L attacks as normal traffic. This is justified by the nature of the 

attack itself being when the users tried to access the server remotely, as the relevant 

kind of traffic seems to be legitimate and mostly the traffic is classified as normal by the 

system. 

With regard to the Probe attack type, the low detection percentage is caused by the lack 

of samples available in the training dataset. For instance, the sample of portsweep is 16 

times smaller than the amount of attack available in the testing dataset. However, it is 

worth mentioning that the proposed approach successfully identified all four new 

attacks, namely ipsweep, satan, nmap and phf that are only present in the testing dataset.  
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Table 6.4: Performance comparisons obtained on KDD and NSL KDD datasets 

Methods Feature 
Selection 

Featur
es 

Norma
l 
Detecti
on 
Rate 

DoS Probe R2L U2R Dete
ction 
Rate 

False 
Alarm 
Rate 

ACC 
by Tsang 
and Kwong 
(2006) 

Yes N/A 98.8 97.3 87.5 12.6 30.7 N/A N/A 

GP-
Transformati
on Function 
by Faraoun 
and Boukelif 
(2006) 

No 41 99.93 98.81 97.29 45.2 80.22 N/A N/A 

Hierarchical 
SOM by 
Gunes 
Kayacik et al. 
(2007) 

No 41 98.40 96.90 67.60 7.30 15.70 90.6 1.57 

MOGFIDS 
by Tsang et 
al. (2007) 

Yes 25 98.36 97.20 88.59 15.78 11.01 92.76 N/A 

Multinomial 
Naïve Bayes 
by Panda et 
al. (2010) 

No 41 N/A N/A N/A N/A N/A 96.5 3.00 

GHSOM-
MOF by De 
La Hoz et al. 
(2014) 

Yes 29 N/A N/A N/A N/A N/A 99.12 2.24 

N-KPCA-
GA-SVM  
by Kuang et 
al. (2014) 

Yes N/A N/A N/A N/A N/A N/A 95.26 1.03 

OS-LEM by 
Singh et al. 
(2015) 

Yes 21 99.07 99.14 90.35 78.10 56.75 97.67 1.74 

TVCPSO-
SVM by 
Bamakan et 
al. (2016) 

Yes 17 99.13 98.84 89.29 67.84 40.38 97.03 0.87 

Ramp-
KSVCR by 
Bamakan et 
al. (2017) 

No 41 99.14 99.49 93.58 91.09 68.75 98.48 0.86 

I-WEB 
(2018) Yes 10 99.96 99.75 74.19 66.67 N/A 99.39 0.04 
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Table 6.4 shows the comparison of proposed I-WEB performances over the previous 

methods tested on KDD and the NSL KDD datasets (Bamakan et al., 2017). The best 

performances are highlighted in the bold face. However, it should be noted that the 

comparisons are for reference only due to many researchers having used different 

proportions of traffic types, sampling methods and pre-processing techniques.  

In this study, the proposed detection approach has achieved a significant improvement 

in detecting th DoS type with 99.75%, except for Probe and R2L attack types with 

74.19% and 66.67% respectively. Further investigation has revealed that the poor 

performances recorded are due to the fewer attack samples existing for both Probe and 

R2L attack types in the training set. However, it is worth mentioning that despite only 

using 10 features, the proposed detection method has indicated a significant 

improvement in half reduction in false alarm rate compared to the recent study by 

(Bamakan et al., 2017). 

6.4.3 ISCX 2012 Dataset 

Table 6.5: Performance of proposed I-WEB using the ISCX 2012 testing dataset 

 

As shown in Table 6.5, attack instances in the testing dataset are at least 7.6 times 

higher than attack instances in the training data. Although only a limited number of 

attacks are available in the training dataset, it is worth mentioning that the proposed 

approach is able to recognise attack instances in the testing dataset with a 99.66% 

detection rate. 

  

 
Attack 

Traffic in 
Training 
Dataset 

Attack Traffic in Testing 
Dataset 

Attack Traffic Detected 
by I-WEB 

 

%age of Detected 
Attack traffic 

3,714 28,329 28,234 99.66% 
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Table 6.6: Performance comparisons obtained from the ISCX 2012 dataset 

Methods False Alarm Rate 
(%) 

Detection Rate 
(%) 

Accuracy (%) 

Packet Header 
Anomaly Detection by 
Yassin et al. (2014) 

N/A 99.04 N/A 

SVM Anomaly 
Detection by Nyakundi 
(2015) 

4.50 99.10 N/A 

Computer Vision 
Techniques by Tan et al. 
(2015) 

3.70 99.40 N/A 

Payload based Anomaly 
Detection by Kakavand 
et al. (2016) 

1.20 97.00 N/A 

Evolved Specialized 
Ensembles by Folino et 
al. (2016) 

N/A 91.37 N/A 

Distributed SVM by 
Huang et al. (2017) 

1.10 98.50 N/A 

I-WEB (2018) 0.08 99.66 99.71 

Table 6.6 shows the proposed I-WEB performance in terms of FAR, DR and ACC 

compared with the previous methods tested on the ISCX 2012 dataset. The 

comparisons are for reference only due to many researchers having used different 

proportions of traffic types, sampling methods and pre-processing techniques. In this 

study, the proposed detection approach has demonstrated a slight improvement in term 

of detection rate and false alarm rate compared to the recent study by Huang et al. 

(2017) with 1.16% and 1.02% respectively. The proposed detection method achieved a 

detection rate above 99% along with a false alarm rate less than 0.1%. This had 

indicates that the proposed detection approach is suitable to employ in the field of IDS. 
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6.4.4 UNSW-NB15 Dataset 

Table 6.7: Performance of proposed I-WEB using the UNSW-NB15 testing dataset 

Dataset Backd

oor 

Fuzze

rs 

Reconn

aissanc

e 

Exploit

s 

DoS Worm

s 

Generic Anal

ysis 

Training 

(instances) 
9 251 470 2804 493 34 213 - 

Testing 

(instances) 
83 836 1603 8677 1216 114 289 558 

Detected 

by I-WEB 
83 787 1592 7730 1065 114 265 410 

Detection 

Rate %age 
100.00 94.14 99.31 89.09 87.58 100.00 91.70 73.48 

Table 6.7 lists the attacks available in both training and testing of the UNSW-NB15 

dataset. As mentioned in Section 3.2.4, this dataset is comprised of variety imbalanced 

synthetic attack traffic, which resulted in this dataset being more challenging to evaluate. 

In the training dataset, there are seven types of attack presents: backdoor, fuzzers, 

reconnaissance, exploits, DoS, worms and generic, whilst eight types of attack: backdoor, fuzzers, 

reconnaissance, exploits, analysis, DoS, worms and generic are in the testing dataset. As can be 

seen, the main difference between the training data and the testing data is that the latter 

contains a new attack named “analysis”.  

The proposed approach successfully obtained 90.06% detection rate among all attack 

traffic existing in the testing dataset. The attack types with the highest detection rate are 

backdoor and worms with (100%), followed by reconnaissance (99.31%), fuzzers (94.14%), 

generic (91.70%), exploits (89.09%), DoS (87.58%) and the lowest is analysis with (73.48%). 
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The result has indicated five out of eight types of attack have achieved more than 90% 

detection rate by the proposed approach. Upon closer analysis, the poor performance 

of analysis is due to the unavailability of samples residing in the training dataset, which 

makes it difficult for the system to classify it as an attack. However, it is worth 

mentioning that the proposed approach is still able to recognise analysis in 73.48% of 

the time.  

Table 6.8: Performance comparisons obtained on the UNSW-NB15 dataset 

Classifiers Accuracy Rate %age False Alarm Rate %age 

DT 85.56 15.78 

LR 83.15 18.48 

NB 82.07 18.56 

ANN 81.34 21.13 

EM clustering 78.47 23.79 

I-WEB (2018) 90.56 8.19 

 

Table 6.8 shows the proposed I-WEB performance in terms of ACC and FAR 

compared with the previous methods tested on the UNSW-NB 15 dataset, as reported 

in Moustafa and Slay (2016). The comparisons are for reference only due to the 

different proportions of traffic types, sampling methods and pre-processing techniques 

used in the study. In this study, the proposed detection approach has demonstrated 

significant improvement in term of overall accuracy with fewer false alarm rates of 

5.00% and 10.29% respectively over the best performance of Moustafa and Slay (2016). 

In addition, the results have indicated that the proposed detection approach is able to 

perform well in identifying sophisticated attacks within the modern network 

environment. 
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6.5 Summary 

This chapter presented the results and discussion of the proposed detection scheme 

which is divided into 3-phases (pre-processing, anomaly detection and post-processing). 

The comparative performances of each method are analysed and compared with 

existing methods.  

Table 6.9: Performances of four different datasets 

Dataset/ 
Metrics DARPA 1999 NSL KDD ISCX 2012 UNSW-NB15 

Normal 
Detection Rate 
(N-DR) 

99.87% 99.96% 99.92% 91.81% 

Attack 
Detection Rate 
(A-DR) 

95.84% 99.39% 99.66% 90.06% 

False Alarm 
Rate (FAR) 0.13% 0.04% 0.08% 8.19% 

False Negative 
Rate (FNR) 4.16% 0.61% 0.34% 9.94% 

Accuracy Rate 
(ACC) 99.41% 99.68% 99.71% 90.56% 

Known Attack 
Detected 95.82% 99.64% - 90.78% 

Unknown 
Attack 
Detected 

100% 78.57% - 73.48% 

Table 6.9 shows the summary of the proposed detection performances on four 

different datasets. The performance of the proposed method varying over different 

datasets is due to the nature of the dataset itself. Overall, the proposed approach had 

recorded above a 99% accuracy rate on DARPA 1999, NSL KDD and ISCX 2012 

datasets. Despite the poor performance shown in the UNSW-NB15 dataset, the 

proposed method is still able to achieved 90.56% detection accuracy rate. In the next 

chapter, the overall conclusion, contribution of this research and potential for future 

work are discussed. 
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                Chapter 7 

Conclusion and Future Work 

7.1 Introduction 

This chapter presents the concluding chapter of the thesis. It has several sections, in 

particular, the conclusion of the thesis and the findings are presented according to the 

research questions, followed by contributions, limitations of the study and the future 

work recommendation. 

7.2 Main Findings and the Summary of the Thesis 

In this study, the proposed detection scheme consists of three major phases which are 

known as Pre-Processing, Anomaly Detection and Post-Processing. The detection 

scheme is specially designed to address the main research question on “How chould system 

detection performance be improved in order to identify known and unknown web attacks?” Thus, four 

specific research questions are discussed in the following sub-sections. 

7.2.1 Research Question One 

The first question was “What approach can be used to select prominent features within the dataset?” 

The usage of all features that may contain redundant and irrelevant features can 

deteriorate the attack detection performance. In addition, to process all features, 

significant resources are needed which will make the system expensive. In this study, 

the proposed HFS had leverages both in strengths from filter and wrapper methods to 

efficiently obtain the most prominent features that could contribute to reducing the 

data dimensionality and improving the overall detection accuracy. This work has been 

published in (Kamarudin et al., 2016). 
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7.2.2 Research Question Two 

The second question was  “How can the false detection rate produced using conventional statistical 

techniques be reduced?” The conventional statistical technique was solely dependent on 

outliers presented in the traffic for attack identification, which cause it to generate a 

high false detection rate. Thus, this study investigates the effect of feature size along 

with the implementation of ED and CIT to overcome the aforementioned drawback. 

The experimental results have demonstrated significant improvement in terms of 

overall false detection rate reduction. This work has been published in (Kamarudin et al., 

2017b). 

7.2.3 Research Question Three 

The third question was “What is the suitable combination of classifiers in boosting algorithms that 

could improve the attack detection performance?” In view of boosting technique required base 

algorithm, in this study, several experiments were conducted to choose a suitable base 

algorithm that could perform well with LogitBoost. LogitBoost was selected as an 

alternative solution to address the drawback of Adaboost in handling noise and outliers. 

The results indicated that the Random Forest (RF) algorithm is the most suitable base 

algorithm to combine with LogitBoost. The combination of LogitBoost and RF 

(LB+RF) demonstrated improvement on detection accuracy with lowest false detection 

rate when compared with other algorithms. This work has been published in 

(Kamarudin et al., 2017a). 

7.2.4 Research Question Four 

The fourth research question was “How can the detection ability be improved in order to identify 

similar attacks in the future?” Protecting the business needs requires IDS to quickly 

identify and respond to any possibility of attacks. The total re-initiation procedure can 

be reduced by truncating some unnecessary processes such as detecting similar attacks 

in the future. In this study, it was found that the implementation of attack signature as 

part of the detection strategy has significantly reduced the system detection time. 

Moreover, the prioritisation model proposed in this study had eased the task of security 

analysts for further incident management. 
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It is undeniable that ABDS approaches have been extensively applied in the past. 

Nevertheless, methods using statistical and DM particularly classification, still remain 

the most popular choice and have become active research areas. This is due to their 

capability in determining patterns that could identify and distinguish known and 

unknown attack traffic more efficiently. The effectiveness and performances of the 

proposed detection scheme have been evaluated under four different datasets namely 

DARPA 1999, NSL KDD, ISCX 2012 and UNSW-NB15 for the purpose of allowing 

different integration testing environments that contain multiple types of attack traffics. 

The experimental results have demonstrated that the proposed detection scheme has 

successfully recognised some unknown attacks and achieved comparable performance 

with other established state-of-the-art IDS algorithms. 

7.3 Contributions of the Study 

This research has presented a significant contribution to network security in both 

theory and practice. From a theoretical perspective, the proposed detection scheme is 

smartly designed to recognise and identify known and unknown attack traffic more 

precisely. In terms of dimensionality reduction, this study has proposed hybrid 

approaches that leveraged the strengths of both filter and wrapper selection to 

effectively select the optimal features in detecting intrusion. In addition, the synergy 

between statistical analysis and classification approaches has significantly improved 

overall detection accuracy as well as reduced the false detection rate. Furthermore, the 

employment of a signature approach to recognise a similar attack has truncated the total 

re-initiation process as the similar attack can be filtered out. Moreover, the introduction 

of IPM in this study has made the incident response procedure remarkably 

straightforward. The thesis also makes a practical contribution through the findings in 

this study. This study offers substantial benefits to organisations, particularly in terms of 

identifying attack traffic and reducing the system’s operational costs at the same time. 

The experimental results have demonstrated that the combination of detection methods 

has enabled I-WEB to identify a variety of unknown attacks. Due to these factors, most 

organisations today find an IDS to be an important component to complement other 

security measures that could enhance overall network security strategy. 
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7.4 Limitations of the Study 

In Chapter 6, the proposed detection scheme has adequately achieved its aims and 

objectives. However, some limitations have been found in this research and they are 

listed as follows for future consideration: 

1. Datasets. The datasets used for experiments and evaluations are limited to 

synthetic datasets only. This is because a real-live dataset is difficult to obtain 

due to confidentiality and privacy issues. 

2. HTTP Traffic. The employment of HTTP traffic is due to the unavailability of 

HTTPS traffic in the synthetic dataset. To represent HTTPS protocol, a 

traffic header is employed without the payload information.  

3. Computational Cost. The aim of the signature generation is to reduce the total 

re-initiation process of detecting similar attacks in the future. However, less 

focus was given to reducing the computational cost of the statistical and 

ensemble approaches. 

4. Attack Signature. The attack signatures generated in this study are not tested 

in a real traffic environment. Thus, the time reduction may not reflect the 

real performance. 

5. Attack Prioritisation. The prioritisation technique proposed in this study is 

limited to demonstration purposes and easy understanding. The study 

considers assumptions in order to obtain the severity level. Thus, the 

generated attack quadrant may not illustrate the real criticality level because it 

is not tested with real data.  
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7.5 Future Work 

To deal with myriad traffic connection each day, the IDS would require adequate, 

proficient and updated normal traffic behaviour to maintain detection accuracy. One of 

the solutions is to frequently update the normal profile on a regular basis. Thus the 

adaptive approach is highly recommended in an effort to keep the normal profile 

relevant at all times. 

It is essential to employ a hybrid detection system in the real environment whereby the 

MBDS and ABDS methods are combined. The strength of fast detection in MBDS and 

the convenience of ABDS in detecting unknown attacks could enhance the detection 

system ability. However, further investigation to reduce the impact of generating a false 

signature is required as it could reduce the system performance. 

To cope with the current demand for a more secure communication environment, 

some cryptography techniques such as IPSec, VPN and SSL protocols are implemented 

within the networks. As such, in future, the proposed detection model can be used to 

experiment on such protocols to discover attacks over encrypted traffic.  

The identified attacks will usually require further processing by a security analyst to 

discover its impact on the system. This procedure can be damaging if the attack’s 

criticality is not appropriately managed. The prioritisation model requires further 

evaluation in order to determine its true effectiveness. 
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Appendix A 

A.1 First Preliminary Experiment 

A.1.1.1 DARPA 1999 Dataset 

Figure A.1: Building Time and Feature Selected by Search Algorithm with DARPA 
1999 
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Figure A.2: Comparison of Filter Approaches on DARPA 1999 Dataset 

Figure A.3: Building Time of Feature Selection Methods on DARPA 1999 Dataset 
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Figure A.4 Comparison of Feature Selection Methods on DARPA 1999 Dataset 

Figure A.5: Comparison of Classification Algorithms on DARPA 1999 Dataset 
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A.1.1.2 NSL KDD Dataset 

Figure A.6: Building Time and Feature Selected by Search Algorithm with NSL KDD 
Dataset 

Figure A.7: Comparison of Filter Approaches on NSL KDD Dataset 
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Figure A.8: Building Time of Feature Selection Methods on NSL KDD Dataset 

Figure A.9 Comparison of Feature Selection Methods on NSL KDD Dataset 
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Figure A.10: Comparison of Classification Algorithms on NSL KDD Dataset 

A.1.1.3 ISCX 2012 Dataset 

Figure A.11: Building Time and Feature Selected by Search Algorithm with ISCX 2012 
Dataset 
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Figure A.12: Comparison of Filter Approaches on ISCX 2012 Dataset 

Figure A.13: Building Time of Feature Selection Methods on ISCX 2012 Dataset 
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Figure A.14: Comparison of Feature Selection Methods on ISCX 2012 Dataset 

Figure A.15: Comparison of Classification Algorithms on ISCX 2012 Dataset 
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A.1.1.4 UNSW-NB15 Dataset  

Figure A.16: Building Time and Feature Selected by Search Algorithm with UNSW-
NB15 Dataset 

Figure A.17: Comparison of Filter Approaches on UNSW-NB15 Dataset 
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Figure A.18: Building Time of Feature Selection Methods on UNSW-NB15 Dataset 

Figure A.19: Comparison of Feature Selection Methods on UNSW-NB15 Dataset 
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Figure A.20: Comparison of Classification Algorithms on UNSW-NB15 Dataset 
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A.2 Second Preliminary Experiment 

A.2.1.1 DARPA 1999 Dataset 

Figure A.21: Building Model and Detection Time Taken by Single Classifier Using 
DARPA 1999 Dataset 
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Figure A.22: Comparison Performances of Single Classifier Using DARPA 1999 
Dataset 

Figure A.23: Building Model and Detection Time Taken by Boosting Classifiers Using 
DARPA 1999 Dataset 
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Figure A.24: Comparison Performances of Boosting Classifiers Using DARPA 1999 
Dataset 
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Figure A.26: Comparison Performances of Single Classifier Using NSL KDD Dataset 

Figure A.27: Building Model and Detection Time Taken by Boosting Classifiers Using 
NSL KDD Dataset 
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Figure A.28: Comparison Performances of Boosting Classifiers Using NSL KDD 
Dataset  

A.2.1.3 ISCX 2012 Dataset 

Figure A.29: Building Model and Detection Time Taken by Single Classifier Using 
ISCX 2012 Dataset 

0.04% 0.04% 

0.68% 0.61% 

99.32% 99.39% 99.96% 99.96% 

99.65% 99.68% 

0.00% 

20.00% 

40.00% 

60.00% 

80.00% 

100.00% 

120.00% 

Adaboost+RF Logitboost+RF 

False Positive Rate (FPR) False Negative Rate (FNR) True Positive Rate (TPR) 

True Negative Rate (TNR) Accuracy Rate (ACC) 

0.5	
  

34.41	
  

0.22	
  

0.11	
  

0.13	
  

0.26	
  

22.83 

35.22 

0.06 

0.17 

0.08 

0.28 

0 5 10 15 20 25 30 35 40 

MLP 

SVM 

NB 

DT 

J48 

RF 

Time (sec.) 

C
la

ss
ifi

er
 

Training Time Testing Time 



Appendix	
  

	
   158	
  

Figure A.30: Comparison Performances of Single Classifier Using ISCX 2012 Dataset 

Figure A.31: Building Model and Detection Time Taken by Boosting Classifiers Using 
ISCX 2012 Dataset 
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Figure A.32: Comparison Performances of Boosting Classifiers Using ISCX 2012 
Dataset 
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Figure A.34: Comparison Performances of Single Classifier Using UNSW-NB15 
Dataset 

Figure A.35: Building Model and Detection Time Taken by Boosting Classifiers Using 
UNSW-NB15 Dataset 
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Figure A.36: Comparison Performances of Boosting Classifiers Using UNSW-NB15 
Dataset 
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Appendix B 

B.1 Performance Evaluation on DARPA 1999 

Figure B.1: Performance of HFS Using DARPA 1999 Dataset 
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Figure B.2: Performance of Statistical Analysis Detection on DARPA 1999 Dataset 

Figure B.3: Performance of proposed approaches on DARPA 1999 Dataset 
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B.2 Performance Evaluation on NSL KDD 

Figure B.4: Performance of HFS Using NSL KDD Dataset 

Figure B.5: Performance of Statistical Analysis Detection on NSL KDD Dataset 
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Figure B.6: Performance of Anomaly Detection Approaches on NSL KDD Dataset 

B.3 Performance Evaluation on ISCX 2012 

Figure B.7: Performance of HFS Using ISCX 2012 
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Figure B.8: Performance of Statistical Analysis Detection on ISCX Dataset 

Figure B.9: Performance of Anomaly Detection Approaches on ISCX 2012 Dataset 
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B.4 Performance Evaluation on UNSW-NB15 

Figure B.10: Performance of HFS Using UNSW-NB15 Dataset 

Figure B.11: Performance of Statistical Analysis Detection on UNSW-NB15 Dataset 
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Figure B.12: Performance of Anomaly Detection Approaches on UNSW-NB15 Dataset 
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