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Abstract. Approximate Entropy (ApEn) and Sample Entropy (SampEn) are 

measures of signals’ complexity and are widely used in Heart Rate Variability 

(HRV) analysis. In particular, recent studies proved that almost all the features 

measuring complexity of RR series statistically decreased during the stress and 

therefore, thus showing ability to detect stress. However, the choice of the simi-

larity threshold r and minimum data length N required for their computation are 

still controversial. In fact, most entropy measures are considered not reliable for 

recordings shorter than 5 minutes and different threshold values r have shown to 

affect the analysis thus leading to incorrect conclusions. 

Therefore, the aim of this study was to understand the impact of changing 

parameters r and N for the computation of ApEn and SampEn and to select the 

optimal parameters to detect stress in healthy subjects. To accomplish it, 84 RR 

series, extracted from electrocardiography signals acquired during real-life stress, 

were analyzed. ApEn and SampEn were estimated for two different values of r 

computed using previously published methods and for N={100, 200, 300, 400, 

500) data points. The statistical significance for the differences in mean ApEn 

and SampEn values was assessed by non-parametric tests.  

The two methods used to compute r produced entropy values significantly 

different over different N values. In contrast, ApEn and SampEn showed con-

sistency in differentiating rest and stress conditions for different input parame-

ters. More specifically, ApEnChon and SampEnChon showed to have a better dis-

crimination power between stressed subjects and resting subjects on ultra-short 

recordings (N < 500). 

Keywords:  Entropy, Heart rate variability, Ultra-short term 

1 Introduction  

Heart rate variability (HRV), the variation of the time interval between consecutive 

heartbeats (i.e. R-to-R intervals), is a consequence of the dynamical and complex reg-

ulation of the heart rate. Since the overall cardiac response to external stimuli and the 

related state of the autonomic nervous system can be investigated noninvasively by 

HRV, a large number of indices to characterize the latter have been developed [1]. In 

particular, entropy measures have shown great potential for physiological time-series 
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analysis [2]. Hence, they have been widely used to quantify HRV [3], with the hypoth-

esis that decreasing entropy values reveal perturbations of the underlying physiological 

mechanisms or disease. Moreover, recent studies have proved that almost all measures 

of complexity of RR series statistically decreased during stress, therefore were deemed 

able to detect it [3].  

Generally speaking, Approximate Entropy (ApEn) and Sample Entropy (SampEn) 

measure the probability that vectors of length m built from a time-series of length N 

that are similar within a tolerance range given by ±r times the standard deviation of the 

time-series, remain similar for vector of length m+1. Hence, for any fixed m, their com-

putation requires the selection of parameters N (data length) and r (similarity threshold). 

The use of m=2 has been previously suggested [2, 4]. As for N, values normally range 

between 100 and 5000, whereas for r values usually range between 0.1 and 0.25 [2, 4]. 

However, there are still open questions about the minimal data length (N) and the opti-

mal threshold value r required to compute ApEn and SampEn measures. In fact, some 

studies have shown that ApEn values for recordings shorter than 3 minutes are consid-

ered unreliable [7, 8]. Additionally, some studies have shown that the selection of r, the 

similarity threshold, is critical in human HRV studies [5, 6]. In this regard, a study 

recommended that the threshold value r is the one that provides the maximum ApEn 

value [5], whereas another study recommended to compute r using a formula proposed 

by its authors [9]. 

Therefore, this study aimed to understand the impact of changing parameters N and 

r for the computation of ApEn and SampEn and to select the best parameters to detect 

stress in healthy subjects based on ultra-short recordings (N < 500). 

2 Methods and Materials 

2.1 Data description 

Eighty four stationary RR series extracted from electrocardiographic recordings ac-

quired during real-life stress were analyzed. The dataset consisted of 42 students with 

an age range from 18 to 25 years old. The data were acquired using a commercial elec-

trocardiograph (Easy ECG Pocket. ATES MEDICA Device s.r.l., Verona, Italy), which 

allows 3-lead clinical research ECG acquisitions, with a sampling frequency of 500 Hz 

and a resolution of 12 bits. The data were acquired on two different conditions: rest and 

stress. The stress session was recorded during a university verbal examination. The 

participants were examined under standard conditions during rest and stress phases: in 

the same quiet room, at a comfortable temperature, while sitting. From each record, 

subsequent RR time series of 5-minute length were extracted. A detailed description of 

the protocol can be found in [3].  

2.2 Algorithms for ApEn and SampEn computation 

A detailed description of the algorithms for the computation of ApEn and SampEn can 

be found elsewhere [3]. Briefly, given a RR time series of length N, such as RR1, RR2, 

…, RRN, a sequence of vectors of length m: X1, X2, …, XN-m+1 is constructed as follows: 
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Xi=[RRi, RRi+1, …, RRi+m-1]. The distance d[Xi , Xj] between vectors Xi and Xj is de-

fined as the maximum absolute difference between their respective scalar components. 

For each vector Xi, the number of vectors Xj for which d[Xi , Xj]<r is computed as  
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Finally, the approximate entropy is computed as:  

 (r)Φ(r)ΦN)r,ApEn(m, 1mm   (3) 

In this study, we computed the ApEn for N={100, 200, 300, 400, 500} samples, m=2 

and two different values of the threshold r: 

 r =rMax, that is, the value of r in the interval (0.01 * SDNN, 1.0 * SDNN) which 

maximizes the ApEn; 

 r=rChon that is the value computed according to the formula proposed by Chon [9]: 

  4 1000//)/26.0036.0( NSDNNSDDSrChon   (4) 

where SDDS and SDNN are the short-term and long-term variability of the RR se-

quence, respectively. Formally, SDDS is the standard deviation of the difference se-

quence of the series RR, that is, [RRi+1 - RRi, RRi+2 - RRi+1,…, RRN - RRN-1], and; 

SDNN is the standard deviation of the RR series. 

To compute SampEn, Ci
m(r)  is computed as reported in equation 5, Φm(r) as reported 

in equation 2 and finally SampEn as in equation 6.  

 

ij
mN

rXXdofnumber
rC

jim

i 





1

}],[{
)(                      (5) 

  

)(

)(
log),,(

1 r

r
NrmSampEn

m

m




           (6) 

Note that ApEn and SampEn differ in that the latter does not take into account vector 

self-matches. Additionally, the dependence on the parameter r is different: SampEn 

decreases when increases. On the other hand, it has been shown that SampEn and ApEn 

often provide comparable results for large values of N and r [10]. 



4 

2.3 Statistical analysis  

Since a previous study showed that ApEn and SampEn did not follow normal distri-

bution [11], the following descriptive statistics were computed: median (MD), standard 

deviation (SD), and the 25th and 75th percentiles.  The statistical significance of the 

differences in median values estimated using the two methods to compute r for N={100, 

200, 300, 400, 500} were assessed by a non-parametric statistical test (namely, the Wil-

coxon signed rank test). Moreover, Spearman’s correlation coefficients (rho) and their 

associated p-values (prho) were computed between the estimates of ApEn and SampEn 

varying N and r for rest and stress.  The differences between ApEn and SampEn values 

for different N and r were also investigated to assess whether Apen and SampEn calcu-

lated for different N and r could discriminate between rest and stress conditions.   

In-house Matlab scripts were used to compute ApEn and SampEn and perform the 

statistical analysis.  

3 Results   

Table 1 and 2 show summary statistics for ApEn computed for N={100, 200, 300, 400, 

500} and r={rChon, rMax} during rest and stress, respectively. Moreover, Table 1 and 2 

also report the p-values calculated using Wilcoxon signed rank and the Spearman’s 

correlation coefficient (rho). Statistically significant differences (p<0.001) were ob-

served between the ApEnMax and ApEnChon, as shown in Table 1 and 2 for rest and stress 

respectively. These results were supported by rho values below 0.7, which demonstrate 

a very low correlation. Moreover, Fig. 1 shows the median and standard deviation for 

ApEnMax and ApEnChon during rest and stress, over different N values with m=2.  

Table 1. ApEn during rest computed for N={100, 200, 300, 400, 500} and r={rChon, rMax}  

  rChon  rMax  rChon vs rMax   

N  MD SD 25th 75th  MD SD 25th 75th  p-value rho 

100  0.350 0.901 0.001 0.278  0.323 0.088 0.260 0.381  <0.001 0.232* 

200  0.820 1.341 0.003 1.161  0.538 0.098 0.477 0.599  <0.001 0.070* 

300  1.301 1.692 0.042 2.411  0.730 0.091 0.685 0.790  <0.001 -0.108* 

400  1.821 1.953 0.212 2.642  0.897 0.101 0.831 0.931  <0.001 -0.283* 

500  1.896 1.954 0.219 2.662  0.896 0.101 0.836 0.931  <0.001 -0.283* 

* prho < 0.05  

Table 2. ApEn during stress computed for N={100, 200, 300, 400, 500} and r={rChon, rMax} 

  rChon  rMax  rChon vs rMax   

N  MD SD 25th 75th  MD SD 25th 75th  p-value rho 

100  0.021 0.131 0.000 0.002  0.398 0.142 0.322 0.496  <0.001 -0.075* 

200  0.305 0.912 0.012 0.06  0.609 0.124 0.510 0.691  <0.001 0.195* 

300  0.523 1.070 0.044 0.376  0.772 0.123 0.671 0.854  <0.001 0.151* 

400  0.716 1.532 0.021 0.766  0.853 0.125 0.759 0.920  <0.001 -0.019* 

500  0.895 1.586 0.21 1.041  0.954 0.101 0.905 1.016  <0.001 0.027* 

* prho < 0.05  
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Fig. 1. ApEnMax and ApEnChon for N={100, 200, 300, 400, 500} with m=2. Error bars represent 

the standard deviation. 

The same analysis was run also for SampEn. Table 3 and 4 show summary statistics for 

SampEn evaluated for N={100, 200, 300, 400, 500} and r={rChon, rMax} during rest and 

stress, respectively. Moreover, Table 3 and 4 also report the p-values calculated using 

Wilcoxon signed rank and the Spearman’s correlation coefficient (rho). Statistically 

significant differences (p<0.001) were observed between the SampEnMax and SampEn-

Chon, as shown in Table 1 and 2 for rest and stress respectively. However, rho showed 

to be above 0.7 highlighting a correlation between SampEnMax and SampEnChon over 

different N values.  

Fig. 2 shows the median and standard deviation of SampEnMax and SampEnChon during 

rest and stress over different N values with m=2.  

Table 3. SampEn during rest computed for N={100, 200, 300, 400, 500} and r={rChon, rMax} 

  rChon  rMax  rChon vs rMax   

N  MD SD 25th 75th  MD SD 25th 75th  p-value rho 

100  1.130 0.203 1.005 1.250  2.134 0.398 1.788 2.319  <0.001 0.716* 

200  1.290 0.166 1.169 1.394  2.120 0.361 1.907 2.386  <0.001 0.861* 

300  1.403 0.156 1.321 1.497  2.082 0.266 1.859 2.284  <0.001 0.621* 

400  1.447 0.142 1.319 1.542  2.075 0.281 1.847 2.294  <0.001 0.704* 

500  1.457 0.148 1.329 1.543  2.073 0.283 1.848 2.294  <0.001 0.704* 

* prho < 0.05  

 

Table 4. SampEn during stress computed for N={100, 200, 300, 400, 500} and r={rChon, rMax} 

  rChon  rMax  rChon vs rMax   

N  MD SD 25th 75th  MD SD 25th 75th  p-value rho 

100  0.845 0.292 0.668 1.059  1.876 0.503 1.557 2.174  <0.001 0.490* 

200  0.962 0.327 0.683 1.171  1.898 0.425 1.595 2.247  <0.001 0.702* 

300  0.946 0.301 0.746 1.148  1.777 0.469 1.477 2.131  <0.001 0.806* 

400  1.028 0.308 0.833 1.236  1.785 0.466 1.490 2.073  <0.001 0.769* 

500  1.068 0.343 0.852 1.347  1.692 0.503 1.385 2.180  <0.001 0.854* 

* prho < 0.05  
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Fig. 2. SampEnMAX and SampEnChon over different N values with m=2. Error bars represent the 

standard deviation. 

Table 5 presents the p-values for differences in ApEnChon, ApEnMax, SampEnChon and 

SampEnMax values between rest and stress conditions for different lengths N.  ApEnChon 

showed ability to discriminate between rest and stress for N={200, 300, 400}. ApEnMax 

could not discriminate between rest and stress conditions for N < 500. SampEnChon and 

SampEnMax showed discriminative power between rest and stress conditions for all data 

lengths analyzed in this study.  

Table 5. Wilcoxon signed rank test between Rest and Stress for ApEnChon, ApEnMax, SampEnChon 

and SampEnMax 
 

 ApEnChon  ApEnMax  SampEnChon  SampEnMax 

N  p-value  p-value  p-value  p-value 

100  0.001  0.120  <0.001  0.031 

200  <0.001  0.180  <0.001  0.004 

300  <0.001  0.254  <0.001  0.002 

400  <0.001  0.088  <0.001  0.006 

500  0.002  <0.001  <0.001  0.004 

4 Discussion and conclusion 

In this paper, we reported the methods and results of an analysis performed on 84 

RR series to assess the appropriateness of using two different values of the parameter 

r, namely rChon and rmax, for the computation of ApEn and SampEn on ultra-short HRV 

time series. ApEnChon was significantly different from the ApEnMax over different N for 

both rest and stress conditions. These findings were consistent with those of previous 

studies on smaller time series (N=120) [6, 11] and larger time series (N=500) [12].  On 

the other hand, SampEnChon was significantly different from but highly correlated to 

SampEnMax over different N for both rest and stress conditions. These results make ev-

ident that entropy values computed using different r parameter values should be care-

fully compared.    
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Additionally, the ApEnChon and SampEnChon appeared to be able to discriminate better 

than ApEnMax SampEnMax between rest and stress in ultra-short recordings (N < 500). 

Consequently, this may lead to the conclusion that the ApEnChon and SampEnChon have 

a good discrimination power in distinguishing stressed subjects from resting subjects.  
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