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Abstract

The statistical inference of socio-economic variables in public health is key to the
design of interventions to address the many health inequalities that exist across the
world. However, such inferences are achieved commonly using a small standardised
library of statistical methods. Meanwhile other fields such as computer science and
systems biology have seen the development of many new methods allowing for more
varied and useful analyses.

Here we present analyses in three important contextual areas of socio-economic
variables in public health, bringing in modern and sophisticated methods in order to
develop highly useful and flexible results and further expand the library of statistical
methods in public health.

In the first, we further develop and apply a non-linear temporal model to analyse
the spread of health aspects such as mood and weight over US adolescent friendship
networks by a process known as social contagion. The use of this model improves
our ability to more realistically reflect patterns we expect to see result in the data
from contagion. This was achieved using analysis of the Add Health dataset.

In the second, we use the flexibility and complex features of Gaussian processes
to analyse two different aspects of pregnancy in rural South Africa using the Ag-
incourt HDSS dataset. First, the modelling of fertility-patterns over combinations
of variables where some have established models and others do not, allowing us to
incorporate such variables into our model without risking the enforcement of unjus-
tified assumptions. Second, analysing social contagion of pregnancy risk behaviour
where no social network data exists, demonstrating how the use of sophisticated
methods can enable us to attempt complicated research questions.

Finally, in the third we build three possible Bayesian belief network models of house-
hold food security in the Agincourt study area. The structural features of these
models make them potentially highly useful causal tools that enable us to model a
wide range of interventions on our system.

Through these analyses we demonstrate the importance of expanding the library of
statistical methods in public health to include the many modern and sophisticated
methods being developed in other fields, whilst also producing findings and tools of
great robustness, flexibility, and utility.
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CHAPTER 1

Introduction

1.1 Socio-economic variables in public health

Public health is core to ensuring the health and welfare of a population, standing

alongside other key areas of government policy such as education. According to the

Centre for Disease Control (CDC), public health is defined as the “science of pro-

tecting and improving the health of families and communities through promotion

of healthy lifestyles, research for disease and injury prevention and detection and

control of infectious diseases” (CDC, 2017). This enables governments and interna-

tional organisations like the World Health Organisation (WHO) to try and improve

overall health at a population level. Through research and evidence based policies

and interventions, public health has made great achievements in vaccinations, in-

fectious disease control, motor vehicle safety, reduced child mortality, prevention

and treatment of HIV/AIDS, and so much more (CDC, 1999; CDC, 2011a; CDC,

2011b).

Socio-economic variables, otherwise known as social determinants, are assuming an

ever increasing importance in how public health tackles health problems throughout

society. Such variables are usually thought of as “any non-medical factors influencing

health, including health-related knowledge, attitudes, beliefs, or behaviour” (Brave-

man et al., 2011). Even as far back as the 1800s, many saw a correlation between
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the socio-economic status of individuals and their health. Biologists such as Rudolf

Virchow are reported to have said that “medical science is intrinsically and essen-

tially a social science” (Pellegrini Filho, 2011). In 1948, the constitution of the

WHO recognised that health involves the social wellbeing of the individual, as well

as the physical and mental (Pellegrini Filho, 2011).

Though knowledge of the social impact on health has existed for quite some time,

it is only in the last decade or so that is has come in to focus within the aims

of public policy and research. Social aspects such as the eradication of poverty,

universal education, reduced inequality, and economic growth form core parts of

both the United Nations Millennium Development Goals and their more recent

Sustainable Development Goals (UN, 2015a; UN, 2015b). Most revealing of all is

the establishment of the Commission on the Social Determinants of Health by the

WHO, which delivered its final report in 2008 where it presented evidence of a social

gradient in health that exists throughout all countries of the world (WHO, 2008).

The addressing of this social gradient has become a central focus of public policy

for many countries, such as both Sweden (Hogstedt, 2004) and the UK (Acheson

et al., 1998).

Many different socio-economic aspects of our lives have been shown to impact on

our health, including our class and race (Bleich et al., 2012); levels of social support

and capital (Phongsavan et al., 2006); education (Cutler and Lleras-Muney, 2006);

whether we have a job and the quality of that job (Barbeau et al., 2004; Bartley

and Plewis, 2002); wealth (Pollack et al., 2007); and health knowledge (Coveney,

2005). In many health measures there are obvious disparities between different kinds

of populations. For instance, the life expectancy of Japan was 81.9 years in 2005,

whilst at the same time was only 34 years in Sierra Leone (Marmot, 2005). Many

have argued that this therefore forms an issue of social justice (Marmot, 2005).

Considering the relative youth of active research in this area (despite how far back

knowledge of its importance goes), we are still at a stage where evidence must be

gathered to help inform the development of interventions and policies to address the

inequalities in health across different socio-economic variables. Of great importance

is the gathering of quantitative evidence to ensure that we can distinguish signals

from noise in dealing with population level effects. Due to the nature of the variables

involved, which include the existence of social support networks, employment, and

wealth, much of this evidence must be inferred from observational data rather than

experimentation which would prove both costly and possibly even unethical. How-

ever, inference from observational data comes with many difficulties, particularly in
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the inference of causality. As such, it is of utmost importance that we establish a

library of statistical methods that can make these inferences with the greatest level

of robustness, flexibility, and usefulness possible.

1.2 Statistical modelling in public health

The state of statistical methodology in the realms of public health, epidemiology,

and medicine is that of a high level of standardisation. A small set of accepted

methods are typically used for analysis of observational data. These methods form

the core recommendations of medical statistics textbooks (Munro, 2005; Armitage

et al., 2008; Kirkwood and Sterne, 2010; Petrie and Sabin, 2009; Zhou et al., 2009;

Clayton and Hills, 2013; Peat and Barton, 2008), and see the most frequent use in

journals of public health (Levy and Stolte, 2000; Nitta et al., 2010; Hayat et al.,

2017) as well as in other medical disciplines (Brailsford et al., 2009; Horton and

Switzer, 2005; Rigby et al., 2004).

Most of these methods are of three basic types: summarising data, hypothesis test-

ing, and generalised linear modelling. Summarising data usually involves the cal-

culation of summary statistics, or providing graphical plots of the data, and then

drawing conclusions from what is directly observed in that particular data sample.

Hypothesis testing is usually a dichotomous analysis of different possible realities.

One in which the effect of interest (such as a medicine being effective) occurs, and

one in which it does not. Data is gathered, and some suitable statistic of the data

related to the effect of interest (such as the mean rate of symptom reduction in

patients receiving the medicine) is measured. A p-value is then calculated from this

statistic, in order to ascertain the probability of such a value for the statistic (or

a more extreme one) occurring in one of the two possible realities. If the p-value

crosses some chosen level, then it is deemed statistically significant, and is offered

as evidence that the data sampled is unlikely to have occurred in the tested reality.

Neither of these are strictly speaking models in the more traditional mathematical

sense, though hypothesis testing is sometimes performed on models.

The most common form of actual modelling is done using generalised linear models

(GLMs). Here the relationship of some unknown variable of interest (such as whether

the medicine is effective or not) with certain known variables (e.g. height, weight,

etc.) is modelled as being linear using a parameterised linear equation (which is

described in more detail in Section 2.1). Often the values of the parameters of
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these models (which measure the association between the known variables and the

unknown variable), or simply that they are non-zero, is what is of interest. As

such, these are also subjected to hypothesis tests to try and ascertain evidence for

them being non-zero. Use of GLMs are widespread, and they form the standard

for statistical modelling throughout health statistics. They are even commonly

used to take care of quite subtle and complex modelling issues such as causational

confounding (Müllner et al., 2002).

The hypothesis testing side of this methodology has already seen great and widespread

criticism. Particularly with the use of p-values, due to many reasons including that

significant results can be discovered purely by chance as standard significance levels

are often associated with high false positive rates (Cumming, 2014; Greenland et al.,

2016; Goodman, 1999; Colquhoun, 2014). This, alongside issues related to practi-

cal research standards, has lead to the questioning of the validity of much medical

research (Ioannidis, 2005; Leek and Peng, 2015). In addition, criticism has been lev-

elled at the dichomotous nature of hypothesis tests, arguing that estimates of effect

size rather than just the existence of an effect are what is really needed (Wilkinson,

2014). This stands as an effective argument for why modelling rather than testing

can lead to higher utility. However, when effect size is being estimated it has been

shown that great difficulties can arise if the real effect size is small. Attempting to

estimate effects that are in reality close to zero can lead to estimation errors where

the size of the effect can be grossly overestimated, or the sign of the effect can be

wrongly estimated (Gelman and Weakliem, 2009).

Some of these issues already hint to the particular issue that we are concerned with

in the research presented here. Namely the lack of use of more modern and sophis-

ticated methods in modelling socio-economic variables in public health, that are

better suited to capturing the nuances of the underlying system producing the data.

Despite what link function is used in a GLM, and whether any of the independent

variables are put under non-linear transforms, there is still an assumption of addi-

tive linearity built in. Due to the many subtle issues that can plague inference from

observational data, relying on linear models can sometimes be far too restricting.

Often a linear model is all that is needed, but when the question being asked comes

with great levels of complexity from the system of which it is being asked, relying

on a linear model can lead to issues that severely undermine the robustness of the

results. On top of this, linear models come with only a certain level of flexibility,

whilst other models may enable us to ask questions we could not with more standard

methods.
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Some more modern methods from areas such as machine learning have made their

way to use in health science, but are still used sparsely and largely in only certain

areas such as medical diagnosis (Crown, 2015; Kononenko, 2001; Altman, 2000).

Effort has been made to design more robust versions of the standard methods (Erceg-

Hurn and Mirosevich, 2008; Farcomeni and Ventura, 2012) but these do not answer

the issue we attempt to establish here about the limitations of these methods.

1.3 Research aims

The core aim of this research is to utilise more modern methods better suited to more

complex problems (that have seen use in areas such as machine learning, computer

science, and systems biology) in selected areas of analysis of socio-economic variables

in public health where such methods have seen much less use. In so doing, we aim

to increase the flexibility of the models and the robustness and utility of the findings

and research performed above the limitations that have been found in using linear

models. We perform these analyses in different areas with different purposes, seeking

to show various different ways where these more complex models can improve upon

the traditionally used linear models. In addition to this, either finding results of

greater robustness or building tools of greater flexibility and therefore providing

greater usefulness to the public health literature on socio-economic variables.

In Chapter 2, we introduce two mathematical methods from outside the standard

methodology that we use throughout many of the analyses performed here. These

are the semi-parametric Bayesian methods of Gaussian process regression and clas-

sification, as well as Bayesian belief network modelling. We give basic explanations

in order to aid the completeness and understanding of the work presented here. We

also give a brief overview of the GLM methodology used commonly in most public

health research.

In Chapter 3, we examine the spread of behaviours such as weight changes and mood

over US adolescent friendship networks in a process known as social contagion. In

doing so, we hope to first find results that pass the extreme criticisms those from

past studies have had (which we describe in the chapter), and second show how the

use of non-linear parametric models can be much more robust in causal inference

than linear models due to the greater assumptions built in to them.

In Chapter 4, we look at two possible analyses, related by the context of pregnancy in

rural South Africa and the use of Gaussian processes. First we employ a combination
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of non-linear parametric and semi-parametric methods in the estimation of fertility

patterns over different socio-economic variables, arguing that the use of flexible

non-linear methods like Gaussian processes can overcome the issue of having to

make unjustified a-priori assumptions of linear relationships between these variables.

Second we take advantage of certain features of Gaussian process classification to

examine the possibility of social contagion of adolescent pregnancy risk behaviour

in a data set that contains no social network data, therefore demonstrating how

the flexibility of non-linear complex methods can allow for a much greater range

of possible research into questions we would find difficult to answer by relying on

linear methods.

In Chapter 5, we build a causal Bayesian belief network model of household food

security in rural South Africa. Here we aim to employ community involvement in

the model building process, and seek to build a tool that can be of great use in

future research for this community and communities like it. By doing this, we also

aim to show the greater utility of complex models that involve probabilistic indirect

relationships and built in directional structure rather than simply providing single

measures of direct effects.

Finally, in Chapter 6, we argue for the status of public health as what is known

as a complex system, due largely to its emphasis on population level behaviour,

and how this forms a core justification for this research. We summarise and discuss

the advantages in the methods we have used, from the methodological advantages

over the linear models that have come before to the significance of the findings, also

considering the importance of trying to involve those who will be most affected by

the research in the design and performance of the research. Then we examine the

limitations of the analyses we performed, both in terms of more practical limitations

as well as more subtle issues such as the rise of more powerful black box models and

the issues involved in causal modelling. At the end, we demonstrate how we have met

the aims described here, what potential there is for future work, and why in addition

to all the main benefits this type of research also demonstrates the continuing need

for collaboration between mathematical and social scientists.

Overall we hope to demonstrate the need for greater use of modern and sophisticated

statistical methods in what is in most areas of the world an urgent area of health

research. We do not aim to fully supplant the standard methodology, but rather to

improve in areas where the methodology can be shown to be unsuitable.
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CHAPTER 2

Mathematical preliminaries

Here we present the core mathematical methods that will see widespread mention

in several chapters. The first is a very brief description of generalised linear models,

as mentioned in Section 1.2. The second is Gaussian processes which we use in

both Chapter 3 and Chapter 4. The last is Bayesian belief networks that we use

in Chapter 5.

2.1 Generalised linear models

Generalised linear modelling (GLM) involves the modelling of some variable Y that

is of great interest as a random variable with expectation E pY |Xq linearly depen-

dent on a set of independent variables X. The mathematical form of this model is

then

E pY |Xq “ g´1
`

XTβ
˘

(2.1)

where g is some link function related to the nature of Y , and β are a set of parameters

governing by how much a change in each independent variable (when all others are

held fixed) results in a change in the expectation of Y . These parameters are

therefore related to the correlation between each independent variable and Y given

all the other independent variables.
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There are many different variations of GLM, each defined by a particular link func-

tion g. Standard linear regression models an infinite and continuously valued Y P R
as simply just a linear combination of the independent variables X, and therefore

has link function

g pyq “ y (2.2)

i.e. the identity function.

Another common model is logistic regression, which models a binary valued Y P

t0, 1u on the independent variables X using the logit function as a link function

g pyq “ log

ˆ

y

1´ y

˙

. (2.3)

Another common form for Y is when it forms count data, where Y P N0 (i.e. the set

of non-negative integers). Here we use Poisson regression, which has link function

g pyq “ log pyq . (2.4)

There are many other variations, all dependent on the the nature of Y . Even for

the ones mentioned here, there are sometimes alternative link functions such as the

inverse probit function Φ´1 pyq for logistic regression. However, at their core they

all model the expectation of the variable of interest as some function of an additive

linear combination of the independent variables. It is possible to further complicate

these models by inserting simple non-linear functions of the independent variables,

such as non-parametric functions of individual variables or products of two or more

of them, as effectively new variables in the linear equation. For example,

E pY |Xq “ β0 ` β1 log pX1q ` β2X2X3 . (2.5)

This still requires no further parameterisation beyond the additive linear parameters,

which is essentially what constrains the usefulness of GLMs. They are still of great

use in many situations, but many systems being analysed are complicated enough

such that additive linear parameterisation can not effectively aid the finding of useful

inferences. More sophisticated methods, such as those described in the rest of this

chapter, are necessary.
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2.2 Gaussian processes

Gaussian process regression and classification are semi-parametric Bayesian methods

that make only minimal assumptions about the relationships being modelled, such

as smoothness and continuity, letting the data dictate the shape of said relationships.

An indepth explanation of the method is given in Rasmussen and Williams (2006).

Here we give a brief simplified explanation to aid the understanding of the models

used in later chapters.

2.2.1 Regression

Gaussian process regression is a method that aims to find a distribution over func-

tions f p¨q that relate a set of covariate observations X “ txiu to a set of dependent

variable observations y “ tyiu by yi “ f pxiq ` εi where εi is Gaussian noise (Fig-

ure 2.1). By incorporating data we can calculate a posterior distribution of possible

functions, where predictions of new function values f˚ for new observations with

covariates X˚ can be drawn from the posterior predictive distribution

f˚|X˚, X,y „ N pµµµ,Σq (2.6)

where

µµµ “K pX˚, Xq
`

K pX,Xq ` σ2nI
˘´1

y (2.7)

Σ “K pX˚, X˚q ´K pX˚, Xq
`

K pX,Xq ` σ2nI
˘´1

K pX,X˚q (2.8)

where the noise variance σn, acting on the identity matrix I, accounts for the noise

in the data. The best prediction, and therefore the typically chosen function, comes

from the mean of the distribution.

The method is called semi-parametric as we do not get a parametric relationship

between the dependent and independent variables as a result, but instead param-

eters are used to define the covariance function K pxi,xjq. In so doing we let the

data dictate the shape of how the distribution of f pxq varies over x, whilst being

able to assert assumptions about such things as the level of smoothness and the ex-

istence of trends and periodicities. There are many different covariance function to

choose from, but a standard choice is the squared exponential covariance function,

which results in a smooth and continuous relationship between the dependent and
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f(
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Figure 2.1: Example of a Gaussian process regression. The regression is performed
on a set of noisy data (black crosses). The resulting distribution is Gaussian with
a mean shown by the red line and 95% posterior intervals shown by the red shaded
region. Three possible other functions for the regression drawn from this distribution
are shown by the blue dashed lines.

independent variables, and is defined as

KSE pxi,xjq “ σ2f exp

„

´
1

2
pxi ´ xjq

T M pxi ´ xjq



(2.9)

where xi is the covariate vector for observation i, and the parameters of our covari-

ance function are the signal variance σ2f , which governs the size of the covariance

between pairs of observations, and M “ diag plq´2 where l is the vector of length

parameters (one length parameter for each covariate). The length parameter for

a particular covariate essentially governs how much our function varies over that

covariate. For a small length parameter, f pxq would vary greatly over x, and for

a large length parameter the relationship would be almost flat. This essentially

implements automatic relevance detection, where fitting the covariance function pa-

rameters will result in large length parameters for variables that have little relevance

to f pxq therefore forcing f pxq to be (close to) constant over those variables (Fig-

ure 2.2) (Rasmussen and Williams, 2006).

Other potential covariance functions that result in similar smoothly varying func-

tions to the squared exponential, but with greater flexibility, include the Matérn
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Figure 2.2: Gaussian process regression mean functions generated from the same
dataset (shown as black crosses) with different lengthscale values of 0.1 (a), 0.5
(b), 1 (c), 5 (d), 100 (e). Note how the functions get smoother and flatter as the
lengthscale increases. At the extreme value of l “ 100 the function is completely
flat, whilst at the other extreme of l “ 0.1 it is clearly overfitting to the data.

and rational quadratic covariance functions. The Matérn has the form

KM pxi,xjq “σ
2
f

21´ν

Γ pνq

´

2ν pxi ´ xjq
T M pxi ´ xjq

¯ν{2
ˆ

Iν

ˆ

b

2ν pxi ´ xjq
T M pxi ´ xjq

˙ (2.10)

where Γ p¨q is the Gamma function, Iν p¨q is the modified Bessel function, and the

positive parameter ν dictates the noisiness of the functions drawn from the resulting

distribution. In the limit ν Ñ 8 the Matérn function becomes the squared expo-

nential, though the cases of ν “ 3{2 and ν “ 5{2 are usually considered the most

interesting and highly used. The rational quadratic has the form

KRQ pxi,xjq “ σ2f

˜

1`
pxi ´ xjq

T M pxi ´ xjq

2α

¸´α

(2.11)

where positive parameter α gives extra control over the smoothness of the functions

drawn from the resulting distribution. The rational quadratic is an infinite sum of

squared exponential functions at different lengthscales. In the case αÑ 8, similar

to the Matérn function, it tends to a squared exponential with lengthscale matrixM .

Other covariance functions, such as the periodic, linear, and Brownian covariance
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functions, can also introduce features like periodicities and trends therefore making

further assumptions beyond just the smoothness and continuity assumed by the

above covariance functions. The values of the parameters of the covariance function

can be found using maximisation of the marginal log likelihood, more details of

which can be found in Rasmussen and Williams (2006).

2.2.2 Classification

Gaussian process regression assumes that the noise in the observations y is Gaussian

distributed, which naturally requires the range of values for each y to be infinite and

continuous. However, even if this is not the case, like for binary classification where

each y P t0, 1u, it is still possible to use Gaussian processes to model the dependent

variables in terms of the covariates. In this case we model the outcome, for in-

stance the classification probability π pxq “ Pr py “ 1 | xq, indirectly by performing

a Gaussian process regression on a latent function f related to the outcome via a

link function σ, i.e.

π pxq “ σ pf pxqq (2.12)

where in the case of binary classification σ is usually taken to be a logistic or probit

function. The posterior predictive distribution for the class variable is then

π̂ px˚q “ Pr py˚ “ 1 | X,y, X˚q

“

ż

σ pf˚q p pf˚ | X,y, X˚q df˚
(2.13)

where the predictive posterior distribution of the latent function f is given by

p pf˚ | X,y, X˚q “

ż

p pf˚ | X,X˚, fq p pf | X,yq df

“

ż

p pf˚ | X,X˚, fq p py | fq p pf | Xq

p py | Xq
df .

(2.14)

As the likelihood p py | fq “ σ pfq is non-Gaussian, this integral on the bottom line

of (2.14) is analytically intractable. However, various methods exist to approxi-

mate the integral in order to find a solution, such as the Laplace approximation and

expectation propagation (Rasmussen and Williams, 2006). The Laplace approxima-

tion is a method in which the posterior p pf | X,yq is approximated by a Gaussian

distribution calculated from the second order Taylor expansion of the log posterior
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about the maximum of the posterior

q pf | X,yq9 exp

ˆ

´
1

2

´

f´ f̂
¯T

H
´

f´ f̂
¯

˙

(2.15)

where the posterior maximum f̂ and the negative log posterior Hessian

H “ ´∇2 log p pf | X,yq |f“f˚ (2.16)

can be calculated analytically, enabling us to approximate the integral in (2.14) and

make predictions (see Rasmussen and Williams (2006) for more detail).

2.3 Bayesian belief networks

2.3.1 Introduction

As with Gaussian processes, an in-depth description of Bayesian belief networks can

be found in many other sources (Murphy, 2012; Korb and Nicholson, 2003; Koller

and Friedman, 2009). Here we give a short introduction to them, followed by a brief

description of the concepts of d-separation and inference using Bayesian networks

which will be of importance during the research in Chapter 5.

In purely mathematical terms, a Bayesian network is a probabilistic graphical model

in the form of a directed acyclic graph (DAG) representing a particular factorisation

of the joint probability of the system (Figure 2.3). Essentially each set of in-going

links in the network going in to a particular node represents a factor in the joint

distribution that is the marginal conditional distribution of the variable that node

represents. The distribution is conditioned upon the nodes that those links are out-

going from. These nodes are referred to as the ‘parents’ of the node of interest, and

the node of interest is a ‘child’ of those nodes. The joint distribution of the system

is then given by

Pr pXq “
ź

i

Pr pXi | pa pXiqq (2.17)

where X is the set of variables defining our system, Xi is one of these variables, and

pa pXiq are the set of parents of that variable.

Within public health, Bayesian networks are often used to give a causal represen-

tation of a system (or at the very least a representation of a set of causal beliefs

about the system often obtained from experts on the particular system). We define
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(a)

(b)

Figure 2.3: Graphical representations of specific factorisations of the joint dis-
tribution over the variables A, B, C, D, E, and F . (a) Pr pA,B,C,D,Eq “
Pr pE | DqPr pD | CqPr pC | BqPr pB | AqPr pAq. (b) Pr pA,B,C,D,E, F q “

Pr pF | EqPr pE | C,DqPr pC | BqPr pD | BqPr pB | AqPr pAq.

our system by a set of variables, and then a link going from variable A to variable

B implies that A causes B (as well as that B is directly probabilistically dependent

on A). For example, consider we have a small dog called Merlin. As Merlin is a

greedy dog, sometimes when he is taken out on a walk he will eat something off

the floor that is bad for him. This can potentially cause him to vomit later. There

is always some chance that he may not be walked on a particular day, and even

if he is walked he may not find anything to eat. If he is not walked, he may find

something accidentally left on the kitchen floor to eat that could also be bad for

him. Potentially he may be ill, which could also lead to him vomiting despite not

eating anything bad for him. If he is ill then he may also show other symptoms.

These relationships are encoded in a Bayesian network shown in Figure 2.4.

As we have described, each of the possible states of each variable are inherently

probabilistic in their possibility. We encode these probabilities as conditional prob-

ability tables (CPTs) for each variable. Each entry in a table states the probability

of a given state of that variable given the particular states its parents are inhabit-

ing. Which variables are linked to which other variables forms the structure of our

model, and the conditional probability tables form the parameters of our model, i.e.

θjki “ Pr pXi “ j | pa pXiq “ kq . (2.18)

Note that for Bayesian network model parameters we signify nodes by lower indices

and states (or node and parent state combinations) by upper indices.

As we can see in our example of Merlin the dog, we are now able to ask questions
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Figure 2.4: Bayesian belief network for the “Merlin the dog” example. Each of
the variables has two states, yes (Y) or no (N). W - Merlin was walked. A - Merlin
ate something bad for him. I - Merlin is ill. V - Merlin has vomited. S - Merlin has
exhibited other illness symptoms (e.g. temperature, diarrhoea etc). Each node is
accompanied by their conditional probability table, showing the likelihood of each
state dependent on the parents of that node (if any).
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(a)

(b)

Figure 2.5: Examples of d-separation relationships. (a) A K G || tB,Cu. (b)
A K G || tB,F u.

such as “if we can prevent him from eating something he should not, how much

can we reduce the likelihood of him making a mess of our floors?” and “if Merlin

is ill and vomits, what is the likelihood that he has also eaten something he should

not?”. These types of queries rely on concepts of conditional independence which

we describe next.

2.3.2 D-separation

As mentioned before, one factor that makes a Bayesian belief network suitable for

modelling causal systems is how they are able to model conditional independencies

between variables where conditioning on one or more variables renders two or more

other variables probabilistically independent of each other, which we will write as

A K B | C (2.19)

when A is independent of B given C.

There are three basic structures in Bayesian networks involving triplets of linked

nodes where conditioning on one node in particular renders the other two either

independent or dependent of each other depending on the structure type. Each of

these are exhibited in our example of Merlin the dog (Figure 2.4).

The simplest is a chain (or causal chain) shown by the triplet W Ñ A Ñ V . Here

V , whether Merlin vomits or not, is indirectly dependent on W , whether he has

been walked or not. However, if we condition on A then V K W | A as knowing

whether he has been walked or not supplies no extra information to whether he will

vomit or not if we already know he ate something he should not have done.

The second is a fork (or common cause) shown by the triplet V Ð I Ñ S. Here if
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we do not know whether Merlin is ill, I, then knowing whether he exhibits further

symptoms, S, affects our belief of whether he will vomit or not, V , as it affects our

belief of whether he is ill in the first place. If we condition on I then V K S | I as if

we know he is ill then we do not need to infer the possibility of him vomiting from

the other symptoms he exhibits.

The final structure is a collider (or common effect) shown by the triplet AÑ V Ð I.

Here there is no effect from I on A until we condition on V , so we find A M I | V .

If we know Merlin has definitely vomited, then finding out he is ill impacts on the

probability of him having eaten something he should not have eaten (for example

we may find it reduces the likelihood he ate something as the illness explains the

vomiting, and so ‘explains away’ the possibility of him having eaten something bad).

What is more useful is being able to find conditional independencies between nodes

far away from each other in the network. This can be done using the concept of

d-separation (directional separation), which we will use later as a way to validate

our Bayesian belief network model structure in Chapter 5. Two nodes are said to

be d-connected if at least one path between them does not have a collider on it,

such that there are no independencies on the path effectively ‘blocking’ the ‘flow of

information’ via the probabilistic relationships between the nodes. If all paths are

‘blocked’ then the nodes are d-separated. A node A is d-connected to a node B

given some other set of nodes C (A M B || C) if any paths with a collider on them

pass through C, i.e. by conditioning on C we ‘unblock’ the paths between A and B,

and are d-separated by C otherwise (A K B || C) as conditioning on C ‘blocks’ (or

fails to unblock) the paths between them. Two examples of d-separation are shown

in Figure 2.5.

Though d-connectedness does not necessarily imply dependence, d-separation always

implies independence. Therefore by finding all the d-separation relationships in the

network we can also find all the independencies (conditional and otherwise) in the

network. This can be useful for both validating against expectations of how the

system should act and for finding out previously unknown independencies in the

system. Efficient algorithms for finding d-separation relationships can be found

elsewhere (Koller and Friedman, 2009; Smith, 2010).

2.3.3 Inference

In order to answer queries like those detailed in Section 2.3.1, we need to per-

form inferences on our network. This gives the greatest mathematical advantage of
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(a) (b)

Figure 2.6: Stages of inference from the “Merlin the dog” example (Figure 2.4). (a)
The moralized graph (see Section 2.3.3), providing an equivalent undirected graph
to the Bayesian network. (b) The junction tree graph, where each node represents
a clique in (a). Clique 1 contains W and A, 2 contains A, I, and V , and 3 contains
I and S.

graphical representations of joint distributions such as a Bayesian network. Typi-

cally to answer a query such as “what is the likelihood Merlin will vomit given he

ate something he should not have eaten” (from the network in Figure 2.4) requires

calculations such as

Pr pV |W “ Y q “

ř

aPSA
ř

iPSI
ř

sPSS Pr pV,W “ Y,A “ a, I “ i, S “ sq

Pr pW “ Y q
(2.20)

where SX is the set of states of variable X. In this calculation, enumeration of

the joint distributions can require an exponentially large number of calculations

depending on the number of nodes and states involved.

The advantage of a Bayesian network is that we can use the structure of the net-

work to simplify these calculations. There are many different small variations on the

algorithms used to achieve this, typically coming under the heading of belief prop-

agation and variable elimination (Murphy, 2012; Koller and Friedman, 2009). In

our inferences in Chapter 5 we use the Lauritzen-Spiegelhalter (LS) algorithm (Lau-

ritzen and Spiegelhalter, 1988), as implemented by the gRain package in the software

R (Højsgaard, 2012).

The LS algorithm is simply a specialised variation of belief propagation. When

performing inferences on a Bayesian network, we take advantage of the specific

factorisation of the joint distribution of the system that the network structure implies
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in order to simplify the calculations involved in the marginalisation necessary. This

is achieved by summing out the different variables in a specific order that reduces

down the number of calculations needed as much as possible, which is a process

known as variable elimination.

Belief propagation is a specific form of variable elimination performed on tree-like

networks. The tree structure defines a specific ordering to the marginalisation that

results in the smallest number of calculations possible. We start at the leaf nodes and

enact a so-called ‘message passing’ process where the factors in the joint distribution

associated with each node are summed over and passed on to the next node until

we reach the root node. To introduce evidence, or condition on a variable being in

a particular state, we simply disclude from the summations all contributions where

the observed variables are not in their observed states (and then normalise the result

at the end of the calculations).

In the LS algorithm, in order to perform the belief propagation we first need a tree

structure equivalent to our network. This is done by finding the clique tree network

(Figure 2.6). We first moralise the graph, which finds the equivalent undirected

network to our directed network by forming links between unlinked parent nodes

with common child nodes and then removing the directions. Then the network is

triangulated by placing links within loops such that the largest loops with no links

crossing through them only contain three nodes. Finally, we find the set of smallest

possible cliques (every smallest set of nodes fully linked to each other) and perform

belief propagation on the graph formed by these cliques. The LS algorithm uses a

variant of belief propagation that finds a factorisation of the joint distribution of

our system in terms of the marginal distributions of the cliques, further simplifying

and speeding up the calculations needed to perform inferences.
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CHAPTER 3

Non-linear parametric modelling of social contagion

3.1 Social contagion of mood and weight changes

Depression and other associated mood disorders, as well as obesity and being over-

weight, form an increasing burden upon the health of modern society. The World

Health Organisation estimates that 350 million people are affected by depression

throughout the world, leading to morbidity through a reduced ability to work and

socialise, as well as mortality due to suicide (WHO, 2014). Meanwhile, being over-

weight has been associated with greater incidence of comorbidity such as cardio-

vascular disease, type 2 diabetes, and osteoarthritis (Must et al., 1999). Between

1976 and 2010, prevalence of obesity amongst children and adolescents in the United

States almost tripled (Fryar et al., 2012).

Evidence suggests both mood change and weight changing behaviour may spread

from person to person via a process known as social contagion. Past research has sug-

gested various plausible mechanisms over which social contagion could occur. Previ-

ous studies have found social support and befriending to be beneficial to mood dis-

orders in adolescents (Dean and Ensel, 1982; Ueno, 2005; Rueger et al., 2010; Mead

et al., 2010), whilst recent experiments suggest that an individuals emotional state

can be affected by exposure to the emotional expressions of social contacts (Kramer

et al., 2014). Associations have also been found between social norms and weight
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perception, suggesting that the weight of our peers can skew our idea of a healthy

weight (Etilé, 2007). Studies have shown that average population weight has in-

creased inline with changing perception of what weight is considered overweight in

both the UK and US (Johnson et al., 2008; Burke and Heiland, 2007).

In recent years, evidence has been found to suggest that some behaviour-based

health aspects, including happiness and obesity as well as others such as smoking

cessation, can spread from person to person via social contagion (Hill et al., 2010a;

Christakis and Fowler, 2013; Ali et al., 2012; Christakis and Fowler, 2007, 2008;

Hill et al., 2010b; Fowler and Christakis, 2008; Balbo and Barban, 2014; Centola,

2010). However, such work has come under criticism for being unable to distinguish

contagion from other possible phenomena that could confound any positive findings

of contagion (Lyons, 2011; Cohen-Cole and Fletcher, 2008a; Thomas, 2013; Aral

et al., 2009; Noel and Nyhan, 2011). The two simplest confounding phenomena are

homophily, where individuals become friends due to sharing the same behaviour,

and shared context, where individuals tend towards the same behaviour whether

they are friends or not due to some outside influence (Lyons, 2011).

Hill et al. (2015) recently developed a model that distinguishes contagion from ho-

mophily and shared context. In this approach, they assess statistically whether the

probability of an individual changing between binary states over time forms a better

fit to the data when risk is stratified by the number of same or opposing state friends

the individual has, or when risk is independent of the state of the individuals friends.

This showed that while healthy mood spreads, depression does not, although treat-

ing a complex set of mood states as either ‘ill’ or ‘not ill’ can be an oversimplification.

Doing this in the case of depression ignores all individuals with sub-threshold levels

of depressive symptoms, despite their public health importance (Das-Munshi et al.,

2008).

In previous work we generalised the model of Hill et al. (2015) to multiple mood

states (Eyre, 2014). In doing so it was shown that mood is generally socially con-

tagious, i.e. having more friends with better mood increases the likelihood of an

individual improving in mood and decreases their likelihood of worsening, and vice

versa for worse mood friends. This stands in seeming contradiction to the results

of Hill et al. (2015) and shows the importance of considering non-binary states.

Doing so reveals greater detail of the phenomena occurring and therefore provides

greater information to effect policy and the design of health interventions. However,

this is not to say that these results render those of Hill et al. (2015) invalid, and it

is important to explore the reason behind this contradiction further.
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In this chapter we first introduce our generalised multi-state social contagion model,

describing how it overcomes the criticisms of previous work and shows the impor-

tance of using non-linear multi-state models to analyse complex health systems and

overcome the criticisms of using generalised linear models (GLMs). We apply this

model to social contagion of weight change as a further validation and to provide

insight into the spread of obesity amongst adolescents, an issue we have seen to

be of great concern due to the health implications to said adolescents as described

above. Following this we employ a Gaussian process regression model to reconcile

our previous results for mood with those of Hill et al. (2015). Finally, we explore

some possible ways to further improve this model in order to more accurately reflect

what is occurring within the system.

3.2 Multi-state model for social contagion

Typically social contagion models in the previous studies have been performed using

GLMs (Christakis and Fowler, 2013), with a form like

g
`

E
“

Y i
t`1

‰˘

“ β0 ` β1y
i
t ` β2y

j
t`1 ` β3y

j
t `

M
ÿ

k“4

βkxk (3.1)

where g p¨q is the link function of the particular generalised regression, yit is the state

of individual i at time t, xk are any other covariates considered in the regression,

βk are the regression parameters, and the model is considering effects between pairs

of friends. The claim is then that if the coefficient β2 is significantly positive this is

evidence of a causal influence on the state of individual i by the state of individual

j.

The model protects against homophily due to the inclusion of the yjt term. Modelling

yit`1 as dependent on yit leads to the model acting as a Markov chain, resulting in

yit`1 being independent of both the state of individual i and that of individual j

at the time they became friends. It protects against shared context by a found

asymmetry in the impact of individual j on i from that of individual i on j.

As mentioned, this method has come under a lot of extreme (in some cases perhaps

too extreme) criticism. One such criticism is that considering β2 to be the effect of

interest is a strange choice as causality should occur over time, so rather β3 should

contain the contagion effect (Lyons, 2011). Another argued that the model can be

used to provide evidence for contagion of nonsensical things such as height (Cohen-
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Cole and Fletcher, 2008a). Yet another argued that whilst the lagged friend term

may control for homophily causing the initial creation of the friendship, it does

not control for homophily causing the retention of the friendship (Noel and Nyhan,

2011). There were also criticisms as to the size and directions of the effects found,

such as that commonly β2 and β3 were found to be of opposing sign (which would

produce a negative homophily effect insinuating that any possible homophily leads

to dissimilarity rather than similarity) and that the differences in the impact of

individual j on i from that of individual i on j were commonly found to be insignif-

icant (Lyons, 2011). Despite all these criticisms it has been shown that the model

can successfully support the null hypothesis of no contagion (VanderWeele et al.,

2012).

However, the sheer amount of criticism, and the lack of support for the models

ability to show a significant result of actual social contagion, shows the difficulty

in using such linear models when attempting the difficult task of inferring evidence

for causal effects that are highly prone to confounding. It is therefore here that

we present our first application of a more sophisticated statistical model to what is

arguably a complex underlying system involving socio-economic variables by way of

the social connections. This is done in the form of a non-linear parametric model,

specifically that initially developed by Hill et al. (2015), where we also show how

the model must be generalised to improve its applicability.

If we let a component of mood for an individual at time t with k` friends with

better mood and k´ friends with worse mood be represented by an integer random

variable Y ptq, we can imagine a very general probabilistic model for mood in which

PrpY pt` 1q “ y1 | yptq “ yq “ fpy1, y, k`, k´q . (3.2)

In practice, finding an appropriate function f for such a general model becomes too

difficult and so we will normally need to consider special cases of this general model.

In the work of Hill et al. (2015) they considered only binary states Y ptq “ D for an

individual with depressive symptoms at time t and Y ptq “ N for a non-depressed

(healthy) individual, and sought to distinguish between sigmoidal dependence on

the number of friends in a given state and no such dependence.

Such an approach is robust to confounding from homophily and shared context, as

shown in Hill et al. (2015). In simplified terms, this comes from the fact that this

model considers transition probabilities between states, which are distinguishable

for contagion and the other basic phenomena that could confound it, rather than
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stationary distributions, which are not. If it can be shown that the transition prob-

ability for an individual of going from being depressed to not depressed is stratified

by the number of friends they have who are depressed at the initial time point, i.e.

that the probability PrpY pt ` 1q “ D |Y ptq “ Nq is higher, and the probability

PrpY pt ` 1q “ N |Y ptq “ Dq is lower, for individuals with more friends in state D

than the baseline values (with zero friends in state D), then we can infer evidence of

social contagion that is not confounded by the typical confounding phenomena. If

homophily or shared context were occurring within the data, rather than contagion,

then we would simply expect to see more clusters of same state individuals in the

dataset and we would expect individuals within these clusters to transition together.

We would not expect either of these phenomena to result in the stratification of the

transition probability by the number of contagious state friends.

It is possible that some more complicated phenomena could be confounding the

method, but that does not negate the improvement this method presents over pre-

vious methods. There is also the argument that the simplest possible explanation is

the most likely. If this is true here, then ruling out shared context and homophily

leaves contagion as the simplest explanation.

Despite the robustness this method does not account for the possibility of non-binary

states, such as the different continuous numerical scores for the weights individuals

have. To relax this assumption we now let Y ptq be an integer (for discrete states)

or a continuous number (for continuous states), and consider a trinomial model

specified by three probabilities: the probability of increasing state, the probability

of decreasing state, and the probability of remaining in the same state

Pr pYi pt` 1q ą Yi ptqq “ p ,

Pr pYi pt` 1q ă Yi ptqq “ q ,

Pr pYi pt` 1q “ Yi ptqq “ 1´ p´ q .

(3.3)

We can then examine whether these probabilities were dependent on the states of

an individuals friends relative to their own at the first time point by comparing

two different functional forms for p and q. The first is conditioned on the number

of friends an individual had who had a higher/lower score at the first time point,

k. This takes the form of a discrete S-shaped (sigmoidal) function, appropriate for

behavioural contagion being a type of complex contagion (Centola and Macy, 2007;

24



Centola, 2010; Valente, 1996), with the following mathematical formulation:

pk “ α` β
k
ÿ

l“0

ˆ

10

l

˙

γl p1´ γq1´l ,

qk “ δ ` ε
k
ÿ

l“0

ˆ

10

l

˙

ζ l p1´ ζq1´l .

(3.4)

Here the parameters α and δ correspond to the baseline transition probabilities.

The contribution to the transition probabilities by each additional friend is given by

the binomial terms dependent on the parameters γ and ζ with an overall amplitude

given by β and ε, which leads to the sigmoidal complex contagion form required.

For each individual with k higher or lower scoring friends, k binomial terms (from

a binomial distribution with up to 10 possible successes, reflecting the maximum

number of friends an individual is allowed to list in the data set) are added to the

baseline transition probability to give the individual’s transition probability given

their friends’ states. The second functional form for p and q is independent of the

states of the friends:

pk “ α , qk “ δ . (3.5)

Each one is dependent on only the baseline transition probability. Using each pos-

sible combination of these two functional forms gives us four models to compare.

Model 1, where pk and qk are given by (3.4), has both increasing and decreasing

state being dependent on friend states. Model 2, where pk and qk are given by (3.5),

has neither increasing nor decreasing state being dependent on friend states. Model

3, where pk is given by (3.4) and qk by (3.5), has increasing state alone being de-

pendent on friend states. Model 4, where pk is given by (3.5) and qk by (3.4), has

decreasing state alone being dependent on friend states.

These models can each be fitted to data using maximum-likelihood estimation

(MLE), with separate model variants conditioned either on higher scoring friends

or lower scoring friends. The likelihood takes the form

L pn,m|p,q,Nq “
ź

k

ˆ

Nk

nk,mk, Nk ´ nk ´mk

˙

pnk
k q

mk
k p1´ pk ´ qkq

Nk´nk´mk

(3.6)

where nk was the number of individuals with k higher / lower scoring friends who

worsened, mk was the number of individuals with k higher / lower scoring friends

who improved, Nk was the total number of individuals with k higher / lower scoring
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friends, and the multinomial coefficient is

ˆ

Nk

nk,mk, Nk ´ nk ´mk

˙

“
Nk!

nk!mk! pNk ´ nk ´mkq!
. (3.7)

Competing models are then compared using their Akaike Information Criterion

(AIC) values in order to find the preferred model in each case

AIC “ 2ν ´ 2 logL pn,m|p̂, q̂,Nq (3.8)

where ν is the number of parameters in the model, and p̂ and q̂ are the values of p

and q dependent on the fitted parameters (Akaike, 1974).

We initially used this method to model social contagion for discrete mood states (Eyre,

2014). We now apply it to continuous weight states in order to examine the possi-

bility of contagion of mood changes in an adolescent population.

3.3 Weight change contagion

3.3.1 Data

We applied the model to data from the National Longitudinal Study of Adolescent to

Adult Health (Add Health), which includes health and socio-demographic data of a

nationally representative group of US adolescents taken at different time points over

several waves starting in 1994 and repeated in 1995-96, 2001-02, and 2008 (Harris

et al., 2008). We used data from the first two waves of the in-home interview survey

of Add Health, which were performed 6-12 months apart. These included records

of adolescents’ in-school friends.

To be included in our study sample analysing weight state, at both time points the

adolescent student had to be from a saturated school (in which all students were

given the in-home interview, eliminating selection bias and ensuring as complete a

social network as possible), have provided complete height, weight, age, and gender

information at both time points, and have been the least restricted in the number

of school friends they were allowed to list (each student was either asked to list up

to five male and five female friends, or were limited to only listing one male and one

female friend). This gave us a sample size of 2161 individuals.

We defined the adolescents’ weight states by their Body Mass Index (BMI) z-score,

which is calculated by a Box-Cox transformation (which transforms non-normal
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variables to approximate normality) of their BMI score (Must and Anderson, 2006;

Cole and Green, 1992)

BMI z-score “

$

&

%

pBMI{MqL´1
LS if L ‰ 0

logpBMI{Mq
S if L “ 0

(3.9)

with parameters M , L, and S dependent on the individual’s age and gender, the

values of which were taken from the Centre for Disease Control and Prevention

(CDC) 2000 growth charts (CDC, 2009). The BMI score is a measure of the ratio

of weight to body size, often taken as a clinical measure of body fat, given by

BMI “
weight [lbs]

pheight [in]q2
ˆ 703 (3.10)

and the BMI z-score is then simply a measure of the position of the individual within

the overall standardised distribution of BMI scores for some greater population. By

using BMI z-scores instead of BMI scores this allows us to compare the states of

adolescents with different age and gender, as BMI itself is confounded by these

factors (CDC, 2014). It is worth noting that there is significant evidence that BMI

can often be a poor measure of obesity, even misclassifying individuals as unhealthy

when their cardiometabolic health is good (Tomiyama et al., 2016). It is arguable

that BMI still works as a population level measure in studies such as this, but it is

worthwhile in future studies considering other possible measures related to obesity

and being overweight.

The weight state then is continuous with infinite range, and centered at zero. Due

to this continuous nature, some changes in weight state were found to be incredibly

small, which could obviously be due to measurement noise or expected variations

in weight. The analysis described above was therefore performed twice in this case.

Once where all changes in weight state were considered, no matter what their size.

The second time, where only clinically significant changes in weight state were con-

sidered, taken as being any weight state change of magnitude greater than or equal

to 0.2, a value taken from clinical trials (Sacher et al., 2010).

3.3.2 Results

When considering all weight changes (even non-clinically significant ones), the pre-

ferred model according to AIC value is Model 1 (Figure 3.1 and table 3.1). This

would imply that both having more friends of a higher weight and more friends of
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Figure 3.1: Probability of changing weight state as a function of either the number
of lower weight state friends or the number of higher weight state friends. Observed
data (black circles) is shown with 95% confidence intervals alongside the results
of fitting (red diamonds) of the state change model to the Add Health data. The
preferred model in this case for both lower weight and higher weight friends had
both increasing and decreasing state being dependent (Model 1). Parameter values
are shown in Table 3.1. For higher weight friends the AIC values were 91.89 for
Model 1, 119.68 for Model 2, 113.54 for Model 3, and 123.02 for Model 4. For lower
weight friends they were 96.45 for Model 1, 109.31 for Model 2, 108.84 for Model 3,
and 111.77 for Model 4.
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Figure 3.2: Probability of changing weight state by a clinically significant amount
as a function of either the number of clinically significantly lower weight state friends
or the number of clinically significantly higher weight state friends. Clinically signif-
icant refers to a difference in weight state, defined as BMI z-score, of 0.2 or more in
size. Observed data (black circles) is shown with 95% confidence intervals alongside
the results of fitting (red diamonds) of the state change model to the Add Health
data. The preferred model in this case for higher weight friends had both increas-
ing and decreasing state being dependent (Model 1). For lower weight friends, it
had increasing state alone being dependent (Model 3). Parameter values are shown
in Table 3.2. For higher weight friends the AIC values were 99.71 for Model 1, 125.56
for Model 2, 104.89 for Model 3, and 128.21 for Model 4. For lower weight friends
they were 100.69 for Model 1, 132.73 for Model 2, 99.50 for Model 3, and 133.83 for
Model 4.
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Parameter
Higher weight friends model Lower weight friends model

Value Lower CI Upper CI Value Lower CI Upper CI

α 0.5411 0.5168 0.5655 1.000 -1.6194 3.6194

β 0.3908 0.2641 0.5175 -0.4824 -3.0771 2.1123

γ 0.4960 0.4055 0.5866 0.0222 -0.1160 0.1604

δ 0.3664 0.3425 0.3903 0.2007 -0.1492 0.5506

ε -0.2983 -0.4221 -0.1745 0.1940 -0.1333 0.5214

ζ 0.4820 0.3653 0.5987 0.0612 -0.0951 0.2173

Table 3.1: Fitted parameter values for the preferred model (Model 1) of weight
change dependent on higher or lower weight friends, with upper and lower val-
ues for their 95% confidence intervals calculated using the asymptotic normality of
maximum-likelihood estimates.

Parameter
Higher weight friends model Lower weight friends model

Value Lower CI Upper CI Value Lower CI Upper CI

α 0.3456 0.3164 0.3745 0.5590 0.3154 0.8026

β 0.2630 0.1418 0.3841 -0.2555 -0.4766 -0.0343

γ 0.3357 0.2133 0.4582 0.0723 -0.0316 0.1761

δ 0.2180 0.1970 0.2390 0.2064 0.1893 0.2234

ε -0.1470 -0.2572 -0.0369 - - -

ζ 0.4368 0.2360 0.6377 - - -

Table 3.2: Fitted parameter values for the preferred model (Model 1 for higher
weight friends, Model 3 for lower weight friends) of clinically significant weight
change dependent on clinically significant higher or lower weight friends, with upper
and lower values for their 95% confidence intervals calculated using the asymptotic
normality of maximum-likelihood estimates. Clinically significant refers to a differ-
ence in weight state, defined as BMI z-score, of 0.2 or more in size.
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a lower weight impacts on an individuals likelihood of changing weight.

Indeed it can be seen that having an increased number of higher weight friends

has the expected positive impact on the probability of weight increase and negative

impact on that of weight decrease we would expect to see from contagion. The

impact also appears quite large in magnitude, with the probability of increasing

weight being driven from a baseline value of between 0.5 and 0.6 to up to above 0.9

for the maximum possible number of higher weight friends, and that of decreasing

weight going from a baseline of just below 0.4 to below 0.1.

The same cannot be said for the impact of lower weight friends. There is a slight

change between not having higher or lower weight friends and having at least one,

but the confidence intervals in our data, as well as those of the model parameters

themselves (Table 3.1), are large enough to undermine this possibility.

If we consider only clinically significant weight changes (Figure 3.2 and table 3.2)

these results become more apparent. Model 1 is still preferred for the impact of

higher weight friends, still supporting the conclusion of contagion from these (though

with a much smaller impact on the probabilities of changing weight). However, for

the impact of lower scoring friends Model 3 is preferred, so we see no evidence of an

impact on the probability of an individual decreasing in weight. Therefore we find

no evidence of a contagion effect from lower weight friends.

Although the results show a particular shape to the weight change probabilities over

the number of higher and lower weight friends, due to the large confidence intervals

about the data for high numbers of friends (caused by the lack of data in these

regions) most conclusions that could be inferred from these shapes would not be

particularly robust. Yet they do appear to highlight only a very small threshold on

the number of friends with higher or lower weight needed to result in a contagion

effect.

Goodness of fit tests were performed by comparing observed residuals of state

changes to the empirical distributions of residuals found using parametric bootstrap-

ping on the fitted model, the results of which support these conclusions (see Ap-

pendix A).

The fact that only higher weight friends are found to have an impact supports the

possibility of contagion of obesity over that of weight change in general. However,

it does not undermine the point of considering non-binary states, as it shows it is

still important to consider higher weight friends in general, not just obese friends,

when considering the risk of an individual becoming obese. Certainly such a con-
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tagion effect could imply a trend towards weight increases in US adolescents over

time, consistent with results shown in the literature (Fryar et al., 2012). It is also

important to consider this more general version of the method for a similar reason

argued in our previous work on mood (Eyre, 2014), in that being sub-threshold to a

clinical diagnosis of obesity still presents significant health risks and therefore it is

important to not ignore such individuals and the risk to any individuals of getting

closer to the obesity threshold in weight (Must et al., 1999).

Previous studies using methods such as the GLM discussed above have lead to

conclusions similar to ours (Hill et al., 2010b; Ali et al., 2012; Christakis and

Fowler, 2007). However, as mentioned before, these studies have come with some

controversy, with other studies arguing that significant findings of obesity conta-

gion are rendered insignificant when controlling for appropriate environmental fac-

tors (Cohen-Cole and Fletcher, 2008b). This is one of the core issues of trying to

infer causal effects from observational data using GLMs. The legitimacy of results

relies on successfully controlling for any other possible basic explanation for the

outcome, which is notoriously difficult to do. Non-linear parametric models, such

as that used in our method here, are in a way almost ‘physically’ modelling the

phenomena we are looking for. By tailoring the assumptions of the model to the

phenomena we make it more robust against confounding, such that if the model is

found to be preferred in the dataset from an alternative devoid of such assumptions

then we gain much more robust inferences of a causal effect.

As such, the results we have found here using this more robust contagion model

provides much stronger evidence in support of obesity contagion that can give much

more informed aid to the design of public policy and interventions against adolescent

obesity.

3.4 Reconciling the multi- and bi-state results for mood

contagion

Though the weight contagion results we have presented here largely agree with

previous work, there was a noted contradiction between our previous work on mood

contagion and other studies performed in that area (Eyre, 2014). In particular,

the results of our mood contagion work seemed to contradict those of Hill et al.

(2015). Here we introduce a complementary Gaussian process model that helps to

demonstrate why our previous results are consistent with those of Hill et al. (2015).
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Figure 3.3: Gaussian process model results for the average numbers of better and
worse mood friends dependent on the mood states at each time point.
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Our mood contagion work was performed using the same method and same dataset

as that used here for weight contagion. Instead of considering changes in weight

states, defined as continuous BMIz values, we considered discrete mood states de-

fined for each individual as their Centre for Epidemiological Studies Depression scale

(CES-D) score calculated from the set of 18 CES-D questions asked within the Add

Health survey (Radloff, 1977). This gave a discrete integer mood state for each in-

dividual ranging from 0 to 54, where a higher state indicated a worse mood. In the

work of Hill et al. (2015), binary states of depressed and not depressed were defined

relative to a threshold value in CES-D score. Individuals above the threshold were

marked as depressed, and below were marked as not depressed.

The model described in Section 3.2 deals with the probability of a change of state

Y ptq Ñ Y pt ` 1q given a number k of better or worse scoring friends. We might

instead assume that the initial state Y ptq and the state at the next time point

Y pt`1q are known and treat the number of friends k (either better or worse) as the

random variable to be modelled. As can be seen in the top row of Figure 3.3, the

data in this form is very noisy and so we smooth the function kpY ptq, Y pt`1qq using

Gaussian process regression (see Section 2.2 and Rasmussen and Williams (2006)).

In order to take into account the fact that k has both an upper and lower bound, we

used warped Gaussian process regression (Snelson et al., 2004). In this variation of

the method we pass the output k through a warping function in order to transform it

to an infinite and continuous variable that the regression performs better in learning.

The warping function we used was the inverse probit function.

The smoothing was performed using a squared exponential covariance function with

lengthscales constrained to have a minimum value of 20 each in order to ensure high

levels of smoothing. The hyperparameters of the covariance function were fitted to

the data using maximisation of the marginal likelihood.

This Gaussian process model shows that most of the individuals with a greater

number of higher scoring friends who were initially below the threshold for depression

remained that way at the second time point, whilst the individuals with a greater

number of lower scoring friends are more spread out in their score combinations

such that many that started off above the threshold for depression passed below the

threshold at the second time point (Figure 3.3).

To explain Figure 3.3, it shows the Wave 1 and Wave 2 CES-D scores for (a,b) our

empirical sample and (c,d) the Gaussian process model. The left column (a,c,e) is

coloured by the mean number of friends with worse mood k̄` and the right column
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(b,d,f) is coloured by the mean number of friends with better mood k̄´. The set of

states for those who have not changed in state is shown by the diagonal solid red

line. The gender-averaged threshold boundary between the states of depressed and

not depressed for each wave are shown by the dashed red lines, and the plots (e,f)

show how to interpret the delineated quadrants. Individuals with greater numbers

of worse or better mood friends (who we expect to experience a stronger contagion

effect) are concentrated in the lighter regions of the plot. We see that individuals

with more friends with worse mood (corresponding to higher scoring friends) are

contained in the bottom left quadrant, meaning they remain below the depression

threshold at both time points with any negative shift in mood caused by contagion

seldom enough for the individual to transition to being classified as having depres-

sive symptoms. Individuals with more better mood friends (corresponding to lower

scoring friends) are spread out over the bottom two quadrants, meaning that they

relatively often improve in mood to such an extent that they cross from being classed

as depressed to being healthy in wave 2.

This then suggests that both better and worse mood are contagious, but whilst

better mood is contagious enough to push individuals over the boundary from de-

pressed to not depressed worse mood is not contagious enough to push individuals

into becoming depressed. Consequently, we would not expect to find contagion-like

characteristics for depression using a binary model.

We therefore observe a difference between depression, which we found not to spread,

and relatively low mood below the threshold for depression, which we found did

spread. This supports the view that there is more to clinical depression than sim-

ply low mood (although the latter may be indicative of the former). It is also in

keeping with a tendency for a reduction in the normal social interactions that lead

to spreading of mood during an episode of depression (Cruwys et al., 2014).

Of existing studies by other authors, the work of Hill et al. (2010a) is closest to

ours, and using a different dataset these authors concluded that ‘neutral’ moods did

not spread but both ‘content’ (threshold CES-D score 12 on the positively worded

questions only) and ‘discontent’ (threshold CES-D score 16) moods did. This work

tested models of the form pk “ α ` βk using an ordinary least-squares fitting ap-

proach, selecting a spreading model if the p-value for a slope-free null hypothesis is

under 0.05. While we argue that our methodology using a complex contagion of the

form (3.4), maximum-likelihood estimation, and information-theoretic model selec-

tion is preferable to such an approach, we believe that the most important difference

with the results presented here is our use of a CES-D threshold score of 20 (or 21)
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for presumptive depression - and in particular that the spreading of ‘discontent’ at

CES-D scores in the 16-20 range is consistent with our results about the spreading

of sub-threshold levels of depressive symptoms.

These results help emphasise the importance of generalising the model to non-binary

states to be performed alongside use of the binary state version of the model. It

would be of interest in future work to perform an analysis of binary obesity states

using this method to compare with the results presented in this chapter.

3.5 Towards a combined friend model for social conta-

gion

So far our social contagion analysis has modelled the effect of higher state and lower

state friends separately. One possible way to further develop the model is to try and

create a version dependent on the combined effect of both higher and lower state

friends. In doing so this would create a more complete and realistic model of social

contagion that would allow us to gain further insight into the possible contagion

phenomena of different health aspects occurring within different populations. Here

we present and compare a few possible ways of achieving this.

Our approach is to consider the effect of each individual friend to be like an impulse

towards the individual themselves changing state, i.e. a higher state friend would

contribute a positive impulse, a lower state friend would contribute a negative im-

pulse, and a same state friend would contribute no impulse towards state change.

We consider different models for how these impulses impact on the probability of

an individual changing state.

Similar to the model we presented in Section 3.2, we consider the trinomial prob-

abilities of increasing state p, decreasing state q, and remaining in the same state

1´p´q, this time dependent on both the number of higher state friends k` and the

number of lower state friends k´. As before, for each different possible combined

friend model, we compare different versions corresponding to different possibilities

of p and q depending on k` and k´ or not using their AIC values, therefore at-

tempting to capture whether a contagion or a no contagion model is preferred by

the data. The fits are achieved through maximum likelihood estimation, where the
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Figure 3.4: Empirical frequencies of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have.

likelihood is this time given by

Lpn,m|p,q,Nq “
ź

k`,k´

ˆ

Nk`,k´

nk`,k´ ,mk`,k´ , Nk`,k´ ´ nk`,k´ ´mk`,k´

˙

ˆ p
nk`,k´

k`,k´

ˆ q
mk`,k´

k`,k´
ˆ
`

1´ pk`,k´ ´ qk`,k´
˘Nk`,k´´nk`,k´´mk`,k´ (3.11)

where Nk`,k´ is the number of individuals with k` higher state friends and k´ lower

state friends, nk`,k´ of whom have increased in state between the two time points,

and mk`,k´ of whom have decreased in state between the two time points.

In order to compare the different models we present here, we use them to model social

contagion of mood, like in our previous work (Eyre, 2014). We fit the various models

to the same dataset as discussed in that work and Section 3.4. In this case as a higher

state corresponds to a higher CES-D value, p is the probability of worsening mood, q

is that of improving mood, k` is the number of worse mood friends, and k´ is that of

better mood friends. Aside from comparing the AIC values of each proposed model,

we will also compare how well they appear to capture the empirical frequencies of

improving and worsening mood that occur within the dataset (Figure 3.4).
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3.5.1 Impulse probability product model

The first possibility we propose is that, rather than p and q being explicitly depen-

dent on the impulses provided by friends towards changing state, we define them as

functions of the probabilities of receiving these impulses, i.e.

pk`,k´ “ g
`

k`
˘ `

1´ h
`

k´
˘˘

,

qk`,k´ “
`

1´ g
`

k`
˘˘

h
`

k´
˘

(3.12)

where g is the probability of getting a positive state change impulse from higher

state friends and h is that of getting a negative state change impulse from lower

state friends. These probabilities then take on two possible forms, a sigmoidal

friend-dependent form

g
`

k`
˘

“ α` β
k`
ÿ

l“0

ˆ

10

l

˙

γl p1´ γq1´l ,

h
`

k´
˘

“ δ ` ε
k´
ÿ

l“0

ˆ

10

l

˙

ζ l p1´ ζq1´l

(3.13)

and a constant friend-independent form

g
`

k`
˘

“ α , h
`

k´
˘

“ δ (3.14)

like those seen in the separate friends models given by (3.4) and (3.5). Like before

we then have four possible forms of this model to compare. Form 1 where both g

and h are given by (3.13). Form 2 where g is given by (3.13) and h is given by (3.14).

Form 3 where they are vice versa. Form 4 where both are given by (3.14).

The resulting preferred form by AIC value was found to be Form 1 (Figure 3.5).

The model does successfully capture the changes in state change probability we see

in the dataset (Figure 3.4) but not the gradient of these changes. For middle values

of k` and k´ the probabilities remain reasonably constant. The extreme values of

the probabilities also fail to stretch as far in value as the empirical frequencies do,

remaining quite low throughout the range of k` and k´. Overall this implies that

the model performs poorly in capturing what is occurring within the dataset.
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Figure 3.5: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have ac-
cording to the impulse probability product model. General contagion was preferred
with AIC value 2235.7.

3.5.2 Equal and opposite impulse models

An alternative approach is to define each friend as applying an individual impulse,

where an impulse from a higher state friend is equal and opposite to that from a

lower state friend. The overall impulse is then defined as

K “ k` ´ k´ . (3.15)

We can then define p and q as being dependent directly on this overall impulse

p “ α` βf pKq ,

q “ δ ` εf pKq
(3.16)

or independent in the case of no contagion

p “ α , q “ δ . (3.17)

As before we then have four possible forms of our model to fit and compare, similar

to those seen in Section 3.2 and Section 3.5.1. We do this for five possible functional

forms of (3.16), acting as five separate proposed combined friend social contagion

models.
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The simplest of these models, Model A, has linear contagion forms

p “ α` βK ,

q “ δ ` εK .
(3.18)

This ignores the status of social contagion as a form of complex contagion, where a

threshold number of friends exhibiting the contagion behaviour are required to exist

before the individual takes on that behaviour (Centola and Macy, 2007; Centola,

2010; Valente, 1996). We can bring in this model behaviour by incorporating an

infinite discrete sigmoidal function of K. Here we choose the Poisson cumulative

distribution function (CDF)

PoissonCDF px, λq “ e´λ
txu
ÿ

i“0

λi

i!
(3.19)

where t¨u is the floor function.

There are four possible sigmoidal contagion forms for p and q we can consider, of

varying complexity and flexibility. Model B has

p “ α` β signpKq PoissonCDFp|K| , λq ,

q “ δ ` ε signpKq PoissonCDFp|K| , µq
(3.20)

where

signpKq “

$

’

’

’

&

’

’

’

%

1 if K ą 0

´1 if K ă 0

0 if K “ 0

. (3.21)

In this case positive and negative overall impulses are assumed to have impacts

on state change probabilities of equal magnitude where the threshold that must be

passed to have an effect will also be equal. Model C has

p “ α` pβ 1pK ą 0q ` γ 1pK ă 0qq PoissonCDFp|K| , λq ,

q “ δ ` pε1pK ą 0q ` ζ 1pK ă 0qq PoissonCDFp|K| , µq
(3.22)

where

1pxq “

$

&

%

1 if x is true

0 if x is false
. (3.23)

This case assumes that the impact of positive and negative impulses on state change
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Figure 3.6: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have ac-
cording to the equal and opposite impulse Model A. General contagion was preferred
with AIC value 376.5.

probabilities have different magnitudes but equal thresholds. Model D has

p “ α` β pPoissonCDFp|K| , λq 1pK ą 0q ´ PoissonCDFp|K| , ηq 1pK ă 0qq ,

q “ δ ´ ε pPoissonCDFp|K| , µq 1pK ą 0q ´ PoissonCDFp|K| , νq 1pK ă 0qq .

(3.24)

Here the impact of positive and negative impulses on state change probabilities have

equal magnitudes but different thresholds. Finally, model E has

p “ α` β PoissonCDFp|K| , λq 1pK ą 0q ` γ PoissonCDFp|K| , ηq 1pK ă 0q ,

q “ δ ` εPoissonCDFp|K| , µq 1pK ą 0q ` ζ PoissonCDFp|K| , νq 1pK ă 0q .

(3.25)

In this last case the impact of positive and negative impulses on state change prob-

abilities have both different magnitudes and different thresholds.

For every one of these models, the form where both p and q are dependent on K are

preferred (Figures 3.6 to 3.10). In terms of then comparing AIC values between these

different possible models, Models C and D come out as preferred (with only a narrow

difference between them). All of the models manage to capture the variations in p

and q that we see in the data (Figure 3.4) much better than the impulse probability

product model (Figure 3.5). There is an expected difference between the linear

model and the sigmoidal models, where the gradient of variation in p and q is much
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Figure 3.7: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have ac-
cording to the equal and opposite impulse Model B. General contagion was preferred
with AIC value 376.9.
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Figure 3.8: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have ac-
cording to the equal and opposite impulse Model C. General contagion was preferred
with AIC value 373.6.

42



0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

k+, no. of worse mood friends

k−
, n

o.
 o

f b
et

te
r 

m
oo

d 
fr

ie
nd

s
a

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

k+, no. of worse mood friends

k−
, n

o.
 o

f b
et

te
r 

m
oo

d 
fr

ie
nd

s

b

0.3

0.4

0.5

0.6

0.7

Figure 3.9: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have ac-
cording to the equal and opposite impulse Model D. General contagion was preferred
with AIC value 373.4.
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Figure 3.10: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations of
number of worse mood (k`) and better mood (k´) friends the individuals have ac-
cording to the equal and opposite impulse Model E. General contagion was preferred
with AIC value 377.8.
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smoother for the linear model. The sigmoidal models manage to capture the much

coarser variation seen in the data that we would also expect of complex contagion,

giving further reason to prefer Models C and D.

3.5.3 Sigmoidal impulse models

Instead of having equal and opposite impulses from higher and lower state friends,

we can consider the opposing impulses to each be individual sigmoidal functions of

k` and k´ respectively, therefore imposing the threshold effect of complex contagion

on the impulses rather than the probabilities.

Using similar functional forms to the equal and opposite impulse models, we have

four different possibilities which again allow for varying levels of complexity and

flexibility. Model F where p and q are given by

p “ α` β
`

PoissonCDF
`

k`, λ
˘

´ PoissonCDF
`

k´, λ
˘˘

,

q “ δ ´ ε
`

PoissonCDF
`

k`, µ
˘

´ PoissonCDF
`

k´, µ
˘˘

.
(3.26)

In this case the impulses from k` and k´ are defined to have the same magnitude

and thresholds. Model G where

p “ α` β
`

PoissonCDF
`

k`, λ
˘

´ PoissonCDF
`

k´, η
˘˘

,

q “ δ ´ ε
`

PoissonCDF
`

k`, µ
˘

´ PoissonCDF
`

k´, ν
˘˘

.
(3.27)

Here the impulses have the same magnitude but different thresholds. Model H where

p “ α` β PoissonCDF
`

k`, λ
˘

` γ PoissonCDF
`

k´, λ
˘

,

q “ δ ` εPoissonCDF
`

k`, µ
˘

` ζ PoissonCDF
`

k´, µ
˘

.
(3.28)

For this case the impulses have different magnitudes but same thresholds. Finally,

Model I where

p “ α` β PoissonCDF
`

k`, λ
˘

` γ PoissonCDF
`

k´, η
˘

,

q “ δ ` εPoissonCDF
`

k`, µ
˘

` ζ PoissonCDF
`

k´, ν
˘

.
(3.29)

This final model has both different magnitudes and thresholds on the impulses.

As with the previous cases, for Models F, G, and H the forms for p and q dependent

on k` and k´ (the so called contagion forms) are found to be preferred by the data

over constant forms (i.e. no contagion forms) (Figures 3.11 to 3.13). The differences
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Figure 3.11: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have
according to the sigmoidal impulse Model F. General contagion was preferred with
AIC value 375.2.
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Figure 3.12: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have
according to the sigmoidal impulse Model G. General contagion was preferred with
AIC value 377.1.
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Figure 3.13: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have
according to the sigmoidal impulse Model H. General contagion was preferred with
AIC value 373.6.
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Figure 3.14: Fitted probabilities of individuals (from our sample from the Add
Health dataset) worsening mood (a) and improving mood (b) for all combinations
of number of worse mood (k`) and better mood (k´) friends the individuals have
according to the sigmoidal impulse Model I. The preferred model here had only the
probability of improving in mood qk being dependent on the states of the friends,
with AIC value 496.7.
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between the results for most of these models appear very minor, though by AIC value

Model H comes out as preferred. Model I on the other hand is the only model to

have general contagion of mood not preferred, which stands in seeming contradiction

to both the data and our previous results (Figure 3.14). For the remaining models,

the major difference comes in comparing them to those of the equal and opposite

impulse models. There we saw variations along the direction k` “ ´k´, whilst here

the variations curve round from the k` axis to the k´ one. This can be expected

from the functional forms we applied, where k` and k´ were each allowed to make

an individual impact to p and q. However, when compared to the data (Figure 3.4)

these models therefore fail to capture the pattern of variation that the equal and

opposite impulse models succeed in capturing.

3.5.4 Model comparison and discussion

Overall Models C and D of the equal and opposite impulse models and Model H

of the sigmoidal models perform better than each of the others, though show little

difference in performance from each other. However, as noted above, the sigmoidal

models such as Model H fail to capture the pattern of variation in state change

probability that we see in the data. Therefore, out of all these possibilities, Models

C and D show the most promise as combined friend effect models for future work.

This is interesting due to its various implications, such as the fact that either the

magnitudes of positive and negative impulse effects, or the thresholds on K after

which these effects start to take place, must be equal. Too much flexibility worsens

the performance of the models in the case of mood in the Add Health dataset. It

also implies that the effects from higher and lower state friends are indeed equal and

opposite, which appears consistent with our previous results using separate models

for higher and lower state friends effects (Eyre, 2014).

This now gives us an avenue for further developing and applying the model, allowing

us to refine it to better capture the complexities of the behaviour of social contagion

and ensure more robust results and research into for what health aspects social

contagion does occur.

One final possible extension of the model would be in considering state changes of

individual sizes rather than simply the directions of those changes. We could then

47



model the probability of changing state as

p “ Pr pY pt` 1q ´ Y ptq “ εq

“ f
`

k`, k´, Y ptq , ε
˘

.
(3.30)

This would then give us a general model that would allow us to look at both binary

and non-binary states, as knowing the size, direction, and starting points of each

state change allows us to know when individuals cross the boundaries separating

binary states. Though this is an interesting direction for future work, it would also

come with great difficulties both from having to design a valid functional form and

for having to obtain enough data to perform inferences on each individual possible

state change.
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CHAPTER 4

Gaussian process modelling of pregnancy

4.1 Adolescent pregnancy in sub-Saharan Africa

Adolescent pregnancy (i.e. pregnancy occurring at or before the age of 19) is a major

social concern throughout much of the world, and in particular in large parts of the

developing world. In sub-Saharan Africa adolescent pregnancy is still considered

to be at unacceptably high levels (Panday et al., 2009). This is considered also

true for South Africa, though it has the lowest adolescent pregnancy rates in all of

sub-Saharan Africa (Kaufman et al., 2001). An overall decline in fertility has been

observed in South Africa for the last several years but this decline is much slower

for adolescents (Garenne et al., 2007).

There are many reasons for the high prevalence of adolescent pregnancies. There is

an apparent lack of use and knowledge about contraceptives (Kaufman et al., 2001;

Ehlers, 2003). In fact young individuals in sub-Saharan Africa have less knowledge of

general contraceptive methods than in any other developing parts of the world (Khan

and Mishra, 2008). There is also a troubling lack of access to contraception for many

young people due to the social stigma of adolescent sexuality from adults. Nurses

at clinics in South Africa, for instance, were found to sometimes block access to

contraceptives based on the idea that the individuals requesting them were too

young or needed parental permission (Wood and Jewkes, 2006; Ehlers, 2003). This
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social stigma from adults also results in a lack of communication on sexual matters

between them and adolescents, leaving the adolescents to find out information from

their peers (Mkhwanazi, 2010).

Pregnancy termination comes under a lot of social stigma throughout sub-Saharan

Africa, resulting in them being quite rare (Khan and Mishra, 2008; Panday et al.,

2009). In South Africa adolescent pregnancy terminations are often carried out

using illegal means even though legal procedures are available, in order to try and

hide the pregnancy from family members (Panday et al., 2009). This itself puts

pregnant adolescent girls at great risk.

Other contributing factors are gender and age imbalances existing within the culture

of the country and the sexual relationships adolescents are participating in. Ado-

lescent women who become pregnant have often become so from a relationship with

an older man. Such age gaps can result in power imbalances leading to an increased

likelihood of forced sex and pregnancy occurring (Jewkes et al., 2001). Adolescent

men are also often reluctant to admit paternity due to the ramifications for their

education and employment prospects (Kaufman et al., 2001). This then leaves the

burden of the pregnancy on the woman.

In addition to the risks of financial burden, illegal termination, and social stigma,

adolescent pregnancy also results in a much greater likelihood of dropping out and

not returning to education (Panday et al., 2009; Timæus and Moultrie, 2015). There

is also a higher risk of poverty and unemployment (Panday et al., 2009), as well

as increased susceptibility to HIV (Panday et al., 2009; Christofides et al., 2014).

Beside all that there is an increased risk of neonatal mortality from an adolescent

pregnancy (Ramaiya et al., 2014).

Considering all this, adolescent pregnancy, and pregnancy overall, is a pertinent

context to perform analyses in. In Section 4.3 we consider the modelling of fertility

patterns over different socioeconomic variables, which is important to the general

study of populations including that of adolescents. As such we focus on all ages, not

simply adolescents, for this analysis. In Section 4.4, following on from the results

of Chapter 3, we explore the possibility of social contagion of pregnancy risk be-

haviour amongst adolescents. The aim of both of these analyses is to provide robust

results that will help in understanding adolescent pregnancy in rural South Africa

and therefore provide information for the development of policy and interventions

in mitigating against it.

In both these analyses we find the need to employ methods other than parametric
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regression. In exploratory modelling like that performed in Chapter 3 with the aim

of inferring causal relationships, using non-linear parametrisation to build further

structure and assumptions justified from established knowledge in to the model

enables us to more realistically represent the causal phenomena and improve our

modelling of it. In descriptive modelling, where we aim to discover patterns within

our data, if no established patterns exist in previous knowledge then the use of

non-linear parametrisation can enforce unjustified a priori assumptions on to the

results. When attempting to address complicated research questions, a justifiable

parametrisation can be difficult to formulate from established knowledge. These

issues necessitate the ability to employ methods other than just parametric models.

As described in Section 2.2, Gaussian process regression and classification are semi-

parametric Bayesian statistical methods allowing patterns in the data to become

manifest without imposing too much a priori structure on the model.

The first analysis presented takes advantage of the flexibility of Gaussian processes

for modelling fertility patterns over socio-economic variables where we have no a

priori justification for assuming a strict parametric model of these patterns. The

second involves trying to take advantage of the covariance functions of observations

that result from Gaussian processes when attempting to model social contagion using

data that have no social network information, seeing whether the more complex

aspects of the method that help differentiate it from GLMs can increase its usefulness

over such methods. Both of these analyses are performed using data from the

Agincourt Health and Socio-demographic Surveillance System (HDSS) dataset, an

annual update on a baseline census collecting information on the health and socio-

demographic status of individuals living within a poor rural region of South Africa.

4.2 The Agincourt HDSS dataset

The Agincourt HDSS is run by the Medical Research Council / University of the Wit-

watersrand Rural Public Health and Health Transitions Research Unit (Agincourt).

Details on its methodology have been published in greater detail elsewhere (Kahn

et al., 2012, 2007).

The Agincourt HDSS is an annual update round of a baseline census performed

on a poor rural South African population initially in 1992. The HDSS was set

up as part of the changes in health services in South Africa post-Apartheid. Its

main areas of focus include analysing health, population, and social transitions;
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household responses to shocks and stresses; and the effectiveness of policy changes

and interventions (Kahn et al., 2012).

The Agincourt HDSS study area is located in North-East South Africa, across the

Kruger national park from the Mozambican border (Figure 4.1). It is a former

‘Bantustan’ area, i.e. a so-called ‘homeland’ for black people established under the

Apartheid regime to enforce racial segregation (SAHO, 2017). The area is charac-

terised by rudimentary sanitation, poor quality education, and poor quality land

that makes agricultural farming difficult. Healthcare access is limited, with the

closest hospitals being 25-60 km away and only health centres and clinics existing

within the area (Kahn et al., 2012). There is high unemployment, electricity ac-

cess only affordable to the minority, and a consistently rising HIV seroprevalence

which is estimated to have changed from 1.7% in 1992 to 25% in 2003 (Kahn et al.,

2007). Originally the study area covered 57600 people in 8900 household in 20 vil-

lages (Kahn et al., 2007), and by 2011 it had increased to 90000 people in 16000

households in 27 villages (Kahn et al., 2012). A third of the population is formed

from Mozambican refugees who came over in the early to mid-1980s in response to

their civil war (Kahn et al., 2007).

In each update round demographic data is collected including births, deaths, and

migration. Health information is collected at regular bases and since 2006 a new

system allows the linkage of census data with morbidity data at the existing Primary

Health System in the study area. Various socio-economic characteristics such as

education, socio-economic status, and aspects related to food security are collected

amongst this health information.

The Agincourt research unit takes great care to involve the community with the

HDSS. The fieldworkers who perform the census are trained individuals from the

study area. In addition, the LINC (Learning, Information dissemination, and Net-

working with Community) office undertakes regular meetings with the Community

Advisory Group (CAG) to keep the community up to date with findings and oper-

ations of the HDSS and to gauge their opinions (Kahn et al., 2012).

Research using this dataset proves valuable at the basic level in simply allowing us to

affect policy and improve health for the individuals living within the Agincourt study

area. Beyond that, this population can be thought of as representative of poor rural

populations existing within sub-Saharan Africa as a whole (though admittedly with

generally better welfare), as well as possibly other economically similar countries to

South Africa such as India, China, and Russia. Though high quality research has
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Figure 4.1: (a) Location of the Agincourt Health and Socio-demographic Surveil-
lance System (HDSS) study area in South Africa. (b) Boundary of the Agincourt
HDSS study area. (c) Agincourt HDSS study area and sub-district indicating po-
sitions of villages and health and education facilities. Reprinted from Kahn et al.
(2012) with permission from Oxford University Press.
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been done using this dataset, most have failed to involve the use of models suitable

for analysing such complex systems as the population dynamics and interactions of

household characteristics within the populations, as we shall see in the following

analyses in this and the next chapter. This provides us with the opportunity to

employ more suitable models to improve the robustness of current results and allow

for the findings of new ones.

4.3 Modelling fertility patterns over socio-economic vari-

ables

4.3.1 Modelling of fertility rates

The measurement of fertility rates and their relationships to socio-economic vari-

ables are essential to the analysis of the population dynamics of a society. For South

Africa, whose history of Apartheid has resulted in a very socio-economically diverse

population, the ability to examine trends and patterns in fertility is even more

important when trying to assess the development of the country. In the last few

decades the country has experienced a number of health and demographic shifts in-

cluding the HIV pandemic, the rise in prevalence of noncommunicable disease (Houle

et al., 2014), and the decline over time of fertility itself since 1960 (Burger et al.,

2012). The calculation of fertility rates from various data sources across the country

and sub-Saharan Africa as a whole has proven useful in looking at the impact of

HIV/AIDS (Camlin et al., 2004; Arthur et al., 2013), increased education (Kravdal,

2002), delayed marriage (Arthur et al., 2013), premarital reproduction (Garenne

et al., 2000; Palamuleni and Adebowale, 2014; Arthur et al., 2013), contraceptive

use (Arthur et al., 2013), and the development of refugee populations (Williams

et al., 2013), as well as more administrative issues such as the evaluation of poten-

tially unreliable Apartheid-era data (Moultrie and Timæus, 2003).

Most of this research, similar to what we have seen before in Chapter 3 and sec-

tion 1.2, has relied on established statistical analysis methods of parametric and

generalised linear regression (GLMs), despite more recent innovation in statistical

analysis in recent years. Fertility rates are often only examined empirically, leaving

the conclusions drawn vulnerable to noise that could exist within the data (Garenne

et al., 2007; Kirk and Pillet, 1998; Palamuleni et al., 2007; Nilses et al., 1997; Moul-

trie and Timaeus, 2002; Garenne and Zwang, 2006). Linear and logistic regression

techniques are commonly used, but are very constraining in their assumption of a
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linear relationship between fertility and (transforms of) the various covariates con-

sidered (Camlin et al., 2004; Palamuleni and Adebowale, 2014; Ayele, 2015). Often

there is no reason to believe these relationships to be linear at all. A variety of

non-linear models for fertility over age have been developed, such as the Hadwiger,

Gamma, and Beta functions (Garenne et al., 2000; Peristera and Kostaki, 2007).

However, these models fail to incorporate further covariates in anything more than

a linear fashion (Burger et al., 2012), and also impose their own strong assumptions

(although these are potentially much better justified than generalised linearity).

Here we present a more general method for examining the relationship between

fertility and various covariates, focusing on age and socio-economic status, by com-

bining a standard non-linear parametric model of fertility rates over age with the

use of Gaussian process regression to bring in further covariates that we do not have

well-established models for. In using a parametric model over age, we make sure

to capture the non-linear relationship shown to exist between fertility and age in

other work (Garenne et al., 2000; Peristera and Kostaki, 2007). Gaussian process

regression then allows us to find potentially non-linear relationships between fertility

and these other covariates without having to define a precise parametric form to the

relationships that would force possibly unfounded assumptions onto the results. We

then apply this method to data from the Agincourt HDSS.

4.3.2 Data

We created a dataset out of the Agincourt HDSS by selecting women who were living

in a household in the HDSS dataset during the years that socio-economic status data

was collected (2001, 2003, 2005, 2007, 2009, and 2011). The inclusion criteria for

each year were individuals of all ages who had a recorded date of birth and no date

of death proceeding the selected year, and belonged to a household that supplied

enough information to calculate an absolute socio-economic status (SES) index.

The total sample size was 224643, where an observation was defined as a woman

in an individual year who meets all inclusion criteria. Some women were counted

as multiple observations due to appearing in the census dataset in multiple years.

Though we did consider the inclusion of other covariates such as education (measured

in number of years of education achieved), our analysis focused on fertility (defined as

the fraction of women associated with each set of covariate values who experienced a

live birth) over age (measured in years) and SES (measured by Agincourt’s household

absolute SES index, which averages a set of quantitative measures of the amounts

of different types of assets the household possesses (Collinson et al., 2009)), both of
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Age SES
Year

2001 2003 2005 2007 2009 2011

10-20

1-2 3063 2883 1772 1033 828 788

2-3 5333 5784 6497 6402 8097 6769

3-4 370 362 356 651 1156 1819

20-30

1-2 2046 1915 1183 716 578 570

2-3 3718 4291 5214 5223 6980 6305

3-4 254 241 279 567 1125 1832

30-40

1-2 1537 1331 827 502 445 409

2-3 2644 2960 3439 3427 4448 3842

3-4 187 210 178 401 678 1104

40-50

1-2 990 911 558 337 278 275

2-3 1631 1797 2115 2392 3067 2598

3-4 115 105 108 247 482 809

Table 4.1: Sample sizes for different ranges of age (in years) and socio-economic
status for each year, given to aid comparison of the analytical results to the data.
Each value is given for chosen example intervals of age and SES values taken from an
overall continuous range, where the lower age/SES value of the interval is inclusive
and the upper age/SES value is exclusive.

which we measured at the midyear point for each year.

In order to calculate sensible values for the empirical fertility rates so that it could be

used as the dependent variable of a regression, we binned the observations to set co-

variate values by splitting them into quantiles and then setting their covariate values

to the midpoints for the quantiles they belong to. The precise number of quantiles

used for binning each covariate was chosen by a combination of cross-validation and

goodness-of-fit techniques, more detail of which is given in the description of the

model below. In the end, the preferred quantiles were 125-quantiles for age and

25-quantiles for SES.

Examples of sample sizes and average fertility rates in our chosen dataset for various

age and SES ranges in each year are shown in Tables 4.1 and 4.2.
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Age SES
Year

2001 2003 2005 2007 2009 2011

10-20

1-2 0.0501 0.0501 0.0608 0.0580 0.0724 0.0516

2-3 0.0386 0.0352 0.0504 0.0472 0.0519 0.0408

3-4 0.0355 0.0423 0.0349 0.0310 0.0497 0.0320

20-30

1-2 0.1006 0.1140 0.1296 0.1357 0.1269 0.1252

2-3 0.0998 0.0959 0.1059 0.1060 0.1104 0.1120

3-4 0.0645 0.0969 0.0777 0.0919 0.1057 0.1021

30-40

1-2 0.1000 0.0795 0.0918 0.0885 0.0846 0.1281

2-3 0.0912 0.0754 0.0944 0.0756 0.0773 0.0936

3-4 0.0798 0.0749 0.0912 0.0897 0.0814 0.0715

40-50

1-2 0.0355 0.0310 0.0206 0.0322 0.0273 0.0191

2-3 0.0156 0.0242 0.0157 0.0179 0.0183 0.0207

3-4 0.0077 0.0111 0.0077 0.0229 0.0223 0.0120

Table 4.2: Average fertility rates for different ranges of age (in years) and socio-
economic status for each year, given to aid comparison of the analytical results to the
data. Each value is given for chosen example intervals of age and SES values taken
from an overall continuous range, where the lower age/SES value of the interval is
inclusive and the upper age/SES value is exclusive.
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4.3.3 Method

In order to obtain insight into what is happening within our dataset, we relied on

regression methods where fertility rate acted as our dependent variable and covari-

ates such as age, SES, and education acted as independent variables. Though there

are no generally accepted non-linear models of fertility over the other covariates,

some have been described for fertility over age typically using functions that result

in a bell curve with a peak skewed to lower ages (Peristera and Kostaki, 2007).

Indeed such a relationship can be seen in both the kernel density estimate of women

experiencing live births over various years (Figure 4.2) and in plots of the empirical

fertility rates calculated for individuals grouped into age centiles (Figure 4.3). In

order to be certain that we captured this relationship, we used a parametric model

for fertility over age and incorporated further covariates by allowing the parameters

of our parametric model to be dependent on the other covariates. Various work has

shown the age-pattern of fertility to contain a secondary earlier age peak credited

to premarital fertility (Garenne et al., 2000). However, as our data does not show

significant evidence of this second peak (perhaps due to the nature of the binning

we used) we therefore chose the Gamma distribution, a standard model for fertility

over age (Peristera and Kostaki, 2007), as our parametric form for our fertility rate

for individual i, pi pa,xq, over age a and dependent on further covariates x, i.e.

pi pa; xq “ Pr pYi “ 1|a,xq

“ Gamma pa|α pxq , β pxqq

“
aαpxq´1e´a{βpxq

Γ pα pxqqβ pxqαpxq

(4.1)

where the fertility indicator Yi of individual i is equal to 1 if the individual experi-

enced a live birth for covariates a and x and equal to 0 otherwise, Γ p¨q is the gamma

function, and α pxq and β pxq are our shape and scale parameters which depend on

our other covariates. It should be noted here that the Gamma distributions used

here are normalised over age for each combination of the other covariate values.

Whilst the shape of the relationships inferred will be accurate, this normalisation

should be taken into account when wanting to use any inferred numerical values

for the fertility rates in decision making. It should also be noted that this model

represents only interaction effects between each of the other covariates and age, but

not any main effects from each individual covariate.

For the functional forms of α pxq and β pxq, due to the lack of established models, we
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Figure 4.2: Non-parametric kernel density estimate of the distribution over age of
women experiencing live births in the years 2001, 2005, and 2009 in the Agincourt
health and socio-demographic surveillance system (HDSS) study area in rural South
Africa. The distributions show the standard skewed hill-shaped age-pattern for
fertility as found in most other work.
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Figure 4.3: Empirical fertility rates, i.e. fractions, of the number of women ex-
periencing live births for each age centile, calculated for individuals living in the
Agincourt health and socio-demographic surveillance system (HDSS) study area in
rural South Africa in the years 2001, 2005, and 2009. The empirical probabilities
show the standard skewed hill-shaped age-pattern for fertility as found in most other
work.

59



employed Gaussian process regression for its flexibility and potential non-linearity.

A description of Gaussian process regression can be found in Section 2.2. As it is a

standard choice that satisfies our needs of resulting in smooth continuous functional

forms for α pxq and β pxq we use the squared exponential covariance function

K pxi,xjq “ σ2f exp

„

´
1

2
pxi ´ xjq

T M pxi ´ xjq



(4.2)

for both. The covariance function parameters (i.e. the lengthscales and signal and

noise variances) were fitted by maximisation of the marginal log likelihood.

One way to think of this method of combining Gaussian process regression with

parametric regression is that the Gaussian process regression smooths over the other

covariates the parameters of our model for the role of age. Fitting Gaussian distri-

butions of functions to the estimates of α pxq and β pxq found from parametrically

fitting over age allows the data to both give an initial noisy estimate of the func-

tional forms of α pxq and β pxq and then to smooth over them by defining, given

these initial estimates, the magnitude and frequency of how α pxq and β pxq vary

over x.

We guarded against overfitting of the Gaussian process through use of a smoothing

prior for the length parameter for SES, a gamma distribution with shape parameter

6 and scale parameter 0.25. Wider and thinner priors were also tried to see what

effect the prior choice had on the results, but little to no differences were found.

In order to find which combination of covariates would be best to include in the

model, as well as to decide on how many quantiles should be used for binning as

described in the previous section, a combination of cross validation and goodness-

of-fit tests were used. To measure the predictive performance of each possible model

choice 10-fold cross validation was used, where the performance was measured by

their Briers score (Brier, 1950)

SB “
1

N

N
ÿ

i“1

pYi ´ pi pa,xqq
2 (4.3)

which compares the fitted probability of fertility to the actual fertility status of each

of the N observations. Due to the treatment of the problem as a regression, and

therefore having to bin the data, goodness-of-fit tests to the unbinned data could not

be performed. Instead we performed Kolmogorov-Smirnov (KS) tests (Wasserman,

2013) comparing the fitted marginal fertility probabilities over age (with cumulative
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distribution function F̂ paq) to the empirical marginal fertility rates over age (with

cumulative distribution function Fn paq) using test statistic

Dn “ sup
a

ˇ

ˇ

ˇ
Fn paq ´ F̂ paq

ˇ

ˇ

ˇ
. (4.4)

Model choices were rejected at a 5% significance level, where the Bonferonni method

of correcting this significance level by a factor of one over the number of tests

performed was used to mitigate against the possibility of rejecting by chance due

to performing a large number of tests (Bland and Altman, 1995). It was found

that, though it was possible to include education in addition, it was best to simply

focus on age and SES. This is down to two reasons. First, there are more missing

values for the Agincourt HDSS education data than the SES data. Second, that

introducing more covariates leads to worse fits when using maximum likelihood on

the parametric model over age. Results of the cross validation and statistical tests

can be found in Appendix B.

4.3.4 Results

The resulting fitted forms for fertility rate over age and SES for a range of years

between 2001 and 2011 can be seen in Figures 4.4 and 4.5. Figure 4.4 shows how

fertility rate varies over age. We can see that the model has captured the standard

skewed relationship, as we would expect from our choice of parametric model. Fer-

tility increases rapidly from mid-adolescence to peak in mid- to late-20s, before more

gently decreasing until early-50s. We observed little age-pattern fertility changes for

different SES values. However, there is a slight increase in peak fertility over age as

time increases, which goes against the fertility decline which has been observed else-

where (Burger et al., 2012). This is an interesting detail as it appears to contradict

work done on fertility trends over time that have found a significant decline in fertil-

ity over the past several decades (Burger et al., 2012; Kirk and Pillet, 1998; Moultrie

and Timaeus, 2002; Moultrie and Timæus, 2003; Garenne and Joseph, 2002). This

could simply be a quirk of the data (such as the result of recording errors or other

such biases), or could be due to some local phenomenon happening in the study

area in recent years. On the other hand it is consistent with an increase in peak

fertility we see in the raw data (Figures 4.2 and 4.3).

The relationship between fertility rate and SES can be seen in Figure 4.5 for a

variety of ages and years. It must be first noted that fertility rate varies little

over SES for any year or age, which would be consistent with how homogeneous
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Figure 4.4: Fertility rate over age as fitted by our combined parametric and semi-
parametric model, for socio-economic status values of 1.445, 2.46, and 3.44, and
years 2001, 2005, and 2009. Parametrically bootstrapped confidence intervals (from
1000 samples of the model) are shown for the 50% level (dashed lines) and 95% level
(dotted lines). The model has managed to capture the standard skewed hill-shape
of the age-pattern as found in the raw data and in many fertility age-patterns in the
literature.
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Figure 4.5: Fertility rate over socio-economic status (SES) as fitted by our com-
bined parametric and semi-parametric model, for age values of 18, 28, and 38, and
years 2001, 2005, and 2009. Parametrically bootstrapped confidence intervals (from
1000 samples of the model) are shown for the 50% level (dashed lines) and 95% level
(dotted lines). The model manages to capture various details of the fertility-SES
pattern, such the time trends of fertility for the different age groups.
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we know the individuals in the study area to be. Overall it would appear to be

almost constant over SES for the individual age-year combinations. The fertility-

SES relationship varies over time but differently for different ages, where the plots

suggest that adolescent pregnancy has actually increased over time and late-30s

pregnancy has actually decreased over time. Late-20s pregnancy, which is closer to

the peak in the fertility age-pattern, has a very small magnitude of variation over

time with no consistent trend.

We also performed the same analysis (using the same covariates and quantiles) on

the individual refugee and non-refugee populations, achieved by splitting the dataset

into refugee and non-refugee sub-datasets according to whether the individuals were

marked out as refugees in the dataset or not. Significant differences have been shown

in fertility levels between the Mozambican refugee population who came over to the

study area in response to the civil war, and the South African population, though

it has been shown that the populations have converged in recent years (Williams

et al., 2013). The results here (Figures 4.6 and 4.7) do show some differences, though

indeed the fertility patterns of each population appear to have become quite similar.

The non-refugees show the same increase in peak fertility as the overall population,

whilst the refugees have lower fertility at both earlier and later years. The fertility

patterns over SES remain constant, and for individuals in their late teens and late-

30s we see the same patterns over time as we have before. However, there is more

variation over time for individuals in their late-20s for both populations, though

in opposite directions, with refugee fertility increasing substantially in 2005 before

settling back down again by 2009 and non-refugee fertility varying in the opposite

direction before coming back as well. It should be noted that there is a severe

overlap in the confidence intervals of the fertility SES-patterns for most ages and

years. Overall this implies that there is not a great deal of variation from the overall

population when differentiating by refugee status, consistent with the convergence

of fertility in the refugee and non-refugee populations.

By combining a parametric regression of fertility rate over age with the use of

Gaussian process regression to bring in further covariates such as SES, we produce

an improvement in robustness to the modelling of fertility. The parametric part

of our model successfully captures the well known skewed hill relationship between

fertility and age that can be seen both in empirical plots of our own data shown

in Figures 4.2 and 4.3, as well as in many other research papers that have used

empirical calculations or other similar parametric models to model the fertility age-

patterns of sub-Saharan Africa (Camlin et al., 2004; Garenne et al., 2007, 2000; Kirk
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Figure 4.6: Fertility rate over age as fitted by our combined parametric and semi-
parametric model, for socio-economic status values of 1.445, 2.46, and 3.44, and
years 2001, 2005, and 2009, for the refugee (blue) and non-refugee (red) populations
of Agincourt. Parametrically bootstrapped confidence intervals (from 1000 samples
of the model) are shown for the 50% level (dashed lines) and 95% level (dotted lines).
These fertility age-patterns only show slight differences between the populations and
the overall population, reflecting the convergence of fertility between them.
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Figure 4.7: Fertility rate over socio-economic status (SES) as fitted by our com-
bined parametric and semi-parametric model, for age values of 18, 28, and 38, and
years 2001, 2005, and 2009, for the refugee (blue) and non-refugee (red) populations
of Agincourt. Parametrically bootstrapped confidence intervals (from 1000 samples
of the model) are shown for the 95% level (dotted lines). Some slight differences
between the refugee and non-refugee populations are shown, particularly in varia-
tion of fertility over time for 28 year old individuals. However, these differences are
slight, reflecting the convergence of fertility between the two populations.
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and Pillet, 1998; Peristera and Kostaki, 2007; Moultrie and Timaeus, 2002; Garenne

and Zwang, 2006).

The semi-parametric part of our model, using Gaussian process regression over other

covariates, successfully manages to model the SES pattern of fertility without simply

assuming the relationship to be linear as other work has done (Burger et al., 2012;

Camlin et al., 2004; Ayele, 2015). This gives the potential to capture more detail

within the relationship and provide greater insight in to what has been happening

to fertility in the Agincourt study area between 2001 and 2011. We found that the

magnitude of variation of fertility over SES is quite small, suggesting that SES does

not have as big an impact on fertility as we would think, reflecting the homogeneity of

the population built into the model by the smoothing prior. In fact it would appear

to be almost constant, and certainly quite linear. Though this means that a GLM

could have been used in this case, the incorporation of this modelling technique into

fertility modelling is still useful. We had no a priori justification for a linear model,

and using one would definitely have restricted our results such that we would have

no chance of capturing possible non-linearities. It is also bad practise to justify

heavy assumptions a posteriori on the relationships we are modelling. For other

similar modelling problems where linear models are commonly used, and for further

fertility modelling itself in other types of populations, this method allows for much

more relaxed assumptions about relationships where we have no a priori justification

for stricter assumptions. Otherwise, our results have also shown that adolescent

fertility does appear to have increased over time, whilst later life fertility appears to

have decreased. Overall, the flexibility and non-linearity of the method allows for

the potential capture of much more information than a single linear coefficient can

show, and therefore increases the robustness of the results.

4.4 Social contagion of adolescent pregnancy risk

4.4.1 Social contagion without social network data

Research on social contagion of pregnancy risk behaviours is scarce. Instead of

considering populations where pregnancy has a more negative impact, such as ado-

lescents in rural South Africa, most of the few studies that exist in this area have

considered only young couples in central Europe (Lois and Becker, 2014; Bühler

and Fratczak, 2007; Bernardi et al., 2007; Keim et al., 2009) or women in the work

place (Pink et al., 2014). Much of the work uses either qualitative or mixed meth-
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ods approaches and focus on specific mechanisms of the spread of behaviour such

as social learning (i.e. an individual forming decisions based on information gained

from their social network) and social influence (e.g. social norms, peer pressure, so-

cial conformity etc) rather than attempting to build a quantitative model of social

contagion in general (Bernardi et al., 2007; Bernardi, 2003; Keim et al., 2009). The

work done on implementing quantitative models commonly uses generalised linear

models similar to the research into mood and weight contagion discussed in Chap-

ter 3 and are therefore subject to the same criticisms (Lois and Becker, 2014; Bühler

and Fratczak, 2007; Pink et al., 2014; Montgomery and Casterline, 1996).

Considering this gap in the literature concerning social contagion of pregnancy risk

in rural South African, or sub-Saharan African, communities, as well as the severe

consequences adolescent pregnancies can have for individuals living in such commu-

nities (as discussed in Section 4.1), it is of great interest to see if the social contagion

model presented in Chapter 3 can be used to find whether evidence of social conta-

gion of pregnancy risk does or does not exist within this data. The difficulty with

achieving this is in the lack of social network data present within the Agincourt

HDSS dataset. Whilst the Add Health study (Chapter 3) collected information on

the friends of each individual, the Agincourt HDSS contains only basic information

on who an individuals parents are, who their partner is, birth events, household

membership, and their relationship to the head of their household. Such informa-

tion could be used to construct a social network but there is no ground to assume

such a network would be complete. Also such a network would largely not be useful

for modelling social exposure of adolescents to each other, only to their family mem-

bers. This problem is not unique to Agincourt. It is generally not commonplace

to collect social network data outside of the environment of online social networks

(where network information can be very easily extracted).

The social contagion model discussed in Chapter 3 considered state change transi-

tion probabilities (which in this case would be the probability of becoming pregnant

between two time steps) stratified by the number of contagious state friends k (in

this case the number of pregnant friends) at the first time point of the transition.

In the following analysis we attempt to overcome the issue of no social network

data by replacing the parametric model used previously with a Gaussian process

classification. We then replace k with a contagion variable measuring an individuals

likelihood of exposure to the contagious behaviour. This is done so by taking advan-

tage of the covariance matrix present in the Gaussian process classification. We then

apply this model to pregnancy amongst adolescents in the Agincourt HDSS dataset.
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In doing so we aim to gain insight into the social mechanisms behind adolescent

pregnancy in the Agincourt study area, which can then inform interventions against

adolescent pregnancy. We also aim to show the usefulness in applying Gaussian pro-

cesses in situations where designing a precise functional form is difficult, therefore

generally showing how the use of methods with more complex features opens up the

possibility of researching questions we could not before.

4.4.2 Pregnancy risk contagion model

Due to the lack of social network data in the Agincourt HDSS dataset, which makes

it difficult to assign a precise functional form to the transition probability of becom-

ing pregnant, we employ the method of Gaussian process classification as detailed

in Section 2.2. For an individual i at a given time point t we model their probability

of becoming pregnant over t

πi ptq “ Pr pYi ptq “ 1 | xi ptqq , (4.5)

where Yi ptq P t0, 1u is their pregnancy status at t and xi ptq are their values for

whatever covariates are included in the model, as a latent function f modelled by

a Gaussian process then passed through a link function σ : R ÞÑ r0, 1s (in this case

an inverse probit function) as is standard for Gaussian process classification. We

do this in two different ways. First with dependency only on a set of established

pregnancy risk factors, i.e. the covariates xi, such that Model 1 is

πi ptq “ σ pf pxi ptqqq . (4.6)

Second with dependency on both these covariates and a new pregnancy contagion

variable Ci ptq, i.e. Model 2 is

πi ptq “ σ pf pxi ptq , Ci ptqqq , (4.7)

where we define the contagion variable either as

Ci ptq “
ÿ

i‰j

Yj pt´ 1qKt´1 pxi ptq ,xj pt´ 1qq (4.8)
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for global contagion, i.e. someone can be affected by a pregnancy occurring anywhere

within the study area depending on the similarity to that individual, or as

Ci ptq “
ÿ

i‰j

1pVi “ VjqYj pt´ 1qKt´1 pxi ptq ,xj pt´ 1qq (4.9)

for local contagion, where we restrict the contagion variable for individual i to

influences from pregnancies occurring only within the same village as them Vi with

1pVi “ Vjq “

$

&

%

1 if Vi “ Vj

0 if Vi ‰ Vj
. (4.10)

Here Kt´1 p¨, ¨q is the covariance function for Model 1 fitted from the previous time

point. Therefore Ci ptq effectively measures the similarity of individual i in terms of

pregnancy risk to all the pregnant individuals from the previous time point either

throughout the study area (global contagion) or in their village (local contagion).

This is a very precise and constraining definition of contagion, i.e. that an individual

is most likely to be influenced by those in their community exhibiting similar risk

traits to them, but it is also the most practical one. It enables us to take advantage of

the covariance matrix from the Gaussian process classification therefore preventing

us from having to invent some more definite measure and a parametric functional

form for πi ptq to go with it. Doing that would involve making a great deal of

assumptions about what is going on within the data, whilst this method requires

us to make minimal assumptions beyond what we already make when modelling

social contagion (that the probability of becoming pregnant would be stratified by

the level of influence from other pregnancies if contagion is indeed occurring). It

is worth seeing how this method performs as it presents an innovative combination

of two already innovative methods in the form of Gaussian processes and the social

contagion model we have used up until now. Using pregnancy risk variables when

considering similarity is largely a practical measure due to the fact that such risk

factors are already established in the literature (see Section 4.4.3) whilst alternatives

such as risk factors of exposure to behaviour are not so well established.

The modelling procedure involves first fitting Model 1 to the data from some initial

time point, and then proceeding to fit both Models to the data from each time

point, using the resulting fit of Model 1 from the previous time point to form the

contagion variable for Model 2 in the current time point. We consider two different

time periods between our time points: one year (annual fit) and two years (biennual
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fit). The biennual fit may be using a time period too long for causal effects to take

place. On the other hand, due to the continuous occurrences of pregnancy events

in the Agincourt HDSS dataset, there is a risk of overlap between the pregnancy

of individual i at time t and pregnancies that occurred for other individuals at the

previous time point. Trying both of these time periods will help safeguard against

the issues both present.

Due to the rather experimental nature of the methodology we are using here, we

expand beyond simply using the standard choice of a squared exponential covariance

function

K pxi,xjq “ σ2f exp

„

´
1

2
pxi ´ xjq

T M pxi ´ xjq



, (4.11)

instead fitting and comparing the performance of four contending covariance func-

tions. These include the squared exponential, as well as the Matern 3/2

K pxi,xjq “ σ2f

ˆ

1`

b

3 pxi ´ xjq
T M pxi ´ xjq

˙

exp

ˆ

´

b

3 pxi ´ xjq
T M pxi ´ xjq

˙

,

(4.12)

the Matern 5/2

K pxi,xjq “σ
2
f

ˆ

1`

b

5 pxi ´ xjq
T M pxi ´ xjq `

5

3
pxi ´ xjq

T M pxi ´ xjq

˙

ˆ exp

ˆ

´

b

5 pxi ´ xjq
T M pxi ´ xjq

˙

,

(4.13)

and the rational quadratic

K pxi,xjq “ σ2f

˜

1`
pxi ´ xjq

T M pxi ´ xjq

2α

¸´α

. (4.14)

As each of these are isotropic they will result in smoothly varying continuous func-

tions, increasing the interpretability of both the resulting functions and contagion

variables. Definitions of the various covariance hyperparameters can be found in Sec-

tion 2.2. The hyperparameters are fitted to the data using the Laplace approxima-

tion for Gaussian process classification, detailed in both Section 2.2 and Rasmussen

and Williams (2006). We then choose the preferred covariance function by compar-

ison of their Bayesian Information Criterion (BIC) values

BIC “ ν logN ´ 2 log L̂ (4.15)

where ν is the number of hyperparameters, N is the sample size, and L̂ is the fitted

71



marginal likelihood (Schwarz et al., 1978).

In order to compare between Model 1 and Model 2 fitted to each time point we

measure the performance of each method in predicting pregnancies occurring in the

following time point. A standard method of doing this would be by calculating the

area under the ROC (receiver operating characteristic) curve (AUROC). However,

it has been suggested that as the AUROC value does not take into account the

predicted risk values it is therefore a poor choice for examining the contribution

of covariates to the predicted risk (Cook, 2007), which is essentially what we are

attempting here in examining the impact of adding a contagion variable. We also

avoid using a likelihood based measure such as information criteria due to our use

of the BIC in comparing covariance functions. We therefore resort again to using

the Brier’s score (Brier, 1950)

SB ptq “
1

N

N
ÿ

i“1

pYi ptq ´ πi ptqq
2 . (4.16)

The combination of this and the contagion variable lengthscale (recalling this mea-

sures the relevance of the contagion variable to the fitted pregnancy probability) give

us a satisfactory indicator as to whether the contagion variable contributes a signif-

icant enough increase in predictive performance to indicate evidence of contagion of

pregnancy risk occurring within the dataset.

4.4.3 Data

Common pregnancy risk factors for adolescents include low socioeconomic status

(SES), low education, and belonging to a minority group (Pradhan et al., 2015), as

well as whether they have had any previous pregnancies (implied by expert knowl-

edge from members of the Agincourt research unit). Based on the relationship

observed between age and fertility rates in Section 4.3, we also include age as a risk

factor. These then act as our five covariates.

Our dataset was comprised of data from the Agincourt HDSS dataset captured in

the years between 2001 and 2011 inclusive, restricted to women aged 15-19 years

and living in the study area in their respective year of inclusion. SES and age were

calculated from the data in the same way as described in Section 4.3.2. Education

was measured in years completed, and in the census was collected in 2002, 2006, and

2009. We used the closest previous years data for education for each individual in

each respective year of analysis. Whether the individual had South African national
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Year Sample size

2001 796

2002 3909

2003 4194

2004 4223

2005 4251

2006 4212

2007 4368

2008 4888

2009 5126

2010 4935

2011 4639

Total 45541

Table 4.3: Sample sizes for each year.

status or not was taken from their refugee status listed in the data. As for their

pregnancy status (i.e. the outcome) at the year of analysis t, to have value Yi “ 1

they must have experienced a pregnancy event with any outcome (i.e. live birth, still

birth, abortion etc) listed as coming to fruition any time within the year of analysis,

otherwise Yi “ 0. For their status of ever having had a previous pregnancy, this

had value 1 if they had experienced any pregnancy events of any outcome that had

come to fruition any time previous to the start of the year of analysis, and was

otherwise 0. Individuals were only included if they had complete data on age, SES,

and refugee status, as well as having provided education data at some point either

up to or including the year of analysis.

This resulted in a sample size of 45541 split up amongst the different years, a

breakdown of which can be seen in Table 4.3.

4.4.4 Results

The preferred covariance function by BIC in the majority of cases was found to be

the rational quadratic (4.14) (Appendix C), and using an annual contagion period

produced an increase in predictive performance above that found when using a

biennual contagion period, so the results presented here are for these specific cases.

Further results for a biennual contagion period can be found in Appendix D.
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Figure 4.8: Fitted marginal pregnancy probabilities over contagion variable value
for each year from the global contagion analysis (with the contagion variable ranging
up to the maximum value within the data). Few years show much variation, but
those that do show an increase in influence from past pregnant individuals appearing
to cause a decrease in the likelihood of becoming pregnant.
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Year No contagion SB Contagion SB Contagion lengthscale

2002 0.0771 0.0775 3.512

2003 0.0728 0.0728 2137

2004 0.0732 0.0732 4362

2005 0.0877 0.0882 0.6110

2006 0.0750 0.0750 384.8

2007 0.0773 0.0776 4251

2008 0.0864 0.0866 0.7619

2009 0.0869 0.0871 1.568

2010 0.0735 0.0737 3.683

Average 0.0789 0.0791 3.683

Table 4.4: Comparison between Model 1 (no contagion) and Model 2 (contagion)
from the global contagion analysis for each year shown by the Briers scores (SB) from
predicting the pregnancies for the next timestep. Contagion lengthscale values from
the Gaussian process classification for Model 2 are also included. There is little
difference in performance between Model 1 and Model 2. The lengthscales vary
greatly, but are mostly greater than 1 implying the contagion variable has little
relevance to the shape of the pregnancy probability. Note the average lengthscale is
the median, whilst for Briers scores they are means.
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Figure 4.9: Fitted marginal pregnancy probabilities over contagion variable value
for each year from the local contagion analysis (with the contagion variable ranging
up to the maximum value within the data). The variation of pregnancy probability
over the contagion variable is decreased compared to the case of global contagion
(Figure 4.8).
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Year No contagion SB Contagion SB Contagion lengthscale

2002 0.0771 0.0771 8.897

2003 0.0728 0.0729 15.37

2004 0.0732 0.0732 9365

2005 0.0877 0.0877 3252

2006 0.0750 0.0757 7.094

2007 0.0773 0.0771 3.205

2008 0.0864 0.0864 8.722

2009 0.0869 0.0864 1.665

2010 0.0735 0.0735 6512

Average 0.0789 0.0789 8.897

Table 4.5: Comparison between Model 1 (no contagion) and Model 2 (contagion)
from the local contagion analysis for each year shown by the Briers scores (SB)
from predicting the pregnancies for the next timestep. Contagion lengthscale values
from the Gaussian process classification for Model 2 are also included. The contagion
variable performs better here than in global contagion (Table 4.4), though the values
of the lengthscales are more commonly large enough to imply the contagion variable
is irrelevant. Note the average lengthscale is the median, whilst for Briers scores
they are means.
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The results (Figure 4.8 and table 4.4) for global contagion were unfortunately a little

ambiguous. Model 1 performed better for most years, but the difference between it

and Model 2 was minimal. The contagion variable lengthscale in Model 2 was found

to leap to extremes presumably based on characteristics of the data for each year.

However, for the majority of years the lengthscales were larger than 1 (the variation

in the standardised data), implying that it was rare for the contagion variable to

have much contribution to the changes in pregnancy probability. In the years when it

did the impact was counter-intuitively negative. Overall the model does not provide

evidence for pregnancy risk behaviour contagion amongst adolescents in Agincourt,

but the ambiguity of the results means we cannot conclude we have convincing

evidence that contagion definitely does not occur.

Restricting the contagion variable to only local contagion does little to reduce this

ambiguity (Figure 4.9 and table 4.5). We find a marginal increase in predictive

performance, and actually see Model 2 being preferred for some years. However,

we still observe counter-intuitive negative effects from the contagion variable on the

pregnancy probabilities, and the lengthscales are more commonly greater than 1.

As such we still see no evidence for the existence of contagion, though if contagion is

occurring it seems more likely it is occurring at the village level rather than across

the study area. This makes sense due to the localised nature of the lives of the

individuals living there.

Overall these results give no evidence of pregnancy risk behaviour contagion occur-

ring amongst adolescents in the Agincourt study area. The ambiguity produced by

the method employed is unfortunate, but we can still see the benefits in using a

more complex method such as Gaussian process classification over the more simpli-

fied methods commonly applied in public health. The flexibility of the method is

what allowed us to attempt an analysis like this in the first place. Relying on a sim-

ple method for an obviously complex problem at best results in weak conclusions, as

shown in our previous analyses, but here would simply have prevented the analysis

from even being attempted.

4.4.5 Possible future directions

Though there was great merit in showing how using Gaussian process classification

provides increased flexibility to address more difficult problems, the ambiguity in

the results found here provide incentive to try alternative methods for examining

social contagion in datasets devoid of social network data.
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The biggest limitation of the method presented here was in defining the contagion

variable in terms of the other covariates. One part of future work in this area must

include some more in-depth assessment of what covariates should be included. In

this particular case of pregnancy risk contagion in Agincourt it may be more sensible

to define the contagion variable in terms of variables associated with the likelihood

of individuals being exposed to each others behaviours rather than on the other

pregnancy risk covariates. However, such variables would be difficult to determine

and in most cases are unlikely to be included in the provided dataset.

Another possible limitation might be in the choice of a semi-parametric method

such as Gaussian processes which may have provided too much flexibility making it

hard to distinguish between the contagion and no contagion models (particularly if

contagion is not actually occurring). A non-linear parametric model similar to those

presented in Chapter 3 would include strict enough assumptions making it much eas-

ier to distinguish the contagion from the no contagion model when comparing model

performance. To get around the issue of having no social network data we could

use a similarity graph (Aggarwal, 2015), i.e. a network where the nodes represent

the observations in our data and weighted links are formed between them based on

the similarity of certain covariate values between them, which in this case would be

either pregnancy risk factors or behaviour exposure risk factors. The disadvantage

of using a parametric model would be in having to design a justified functional form

for the model, an issue that Gaussian processes allowed us to bypass.

79



CHAPTER 5

Bayesian belief network modelling of household food security

5.1 Food security in rural South Africa

The Food and Agriculture Organization of the United Nations defined food security

as “access of all people at all times to sufficient, nutritionally adequate, and safe food,

without undue risk of losing such access” (FAO, 2006). The lack of such security has

been a concern of governments over the world for many years now. Large scale sur-

veys have been performed in many developed countries including the UK (Holmes,

2008; Pilgrim et al., 2011), USA (Anater et al., 2014), and Canada (Tarasuk et al.,

2014) in order to assess the severity and impact of food insecurity, and in many

cases to inform the development of new policies.

It is also a current concern of the citizens living within the Agincourt Health and

Socio-demographic Surveillance System (HDSS) study area. It is this concern that

lead to a meeting between the Agincourt Community Advisory Group (CAG) and

the author on 29th July 2015 to discuss food security in the area. The CAG are

individuals who live in the Agincourt study area and act as liaisons from the com-

munity to the research unit. The perception of individuals within the CAG was of

food insecurity being a persistent and widespread issue in the area, with high finan-

cial contraints, intermittent water access, poor land quality, and the unfashionable

status of subsistence farming amongst young people making it difficult to attain
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enough food each month to live a healthy and active lifestyle.

Results from national surveys showed that the number of food insecure individuals

in South Africa decreased between 1999 and 2008 (Labadarios et al., 2011), and the

United States Department of Agriculture International Food Security Assessment

2014-2024 forecasts that the number of food insecure individuals throughout sub-

Saharan Africa will fall by 13% in that time (Rosen et al., 2016). However, previous

to this it was found that around 42% of individuals in South Africa lived below

the food poverty line (Rose and Charlton, 2002), and even during the time between

1999 and 2008 over a third of children still had low dietary diversity (Labadarios

et al., 2011). Pertinent to the individuals living in the Agincourt study area the

food insecurity rate in rural areas of South Africa has been shown to be twice that

of urban areas (Rose and Charlton, 2002). Therefore it is understandable that food

insecurity should be a concern of the CAG, and there is value in pursuing research

that addresses concerns of the individuals we are performing research on.

Many studies have already been performed on household food security in the Agin-

court study area, including on the impacts of factors such as adult mortality (Twine

and Hunter, 2011; Hunter et al., 2007) and the food retail sector (Pereira et al., 2014),

the quality of different food security indicators (Kirkland et al., 2013), and how

household food security in the area varied over the 2008 financial crisis (Nawrotzki

et al., 2014). All these studies share a reasonably common set of methodologies

including linear models, summary statistics, and statistical tests, similar to many of

the studies we referenced in the previous chapters. However, in this chapter we do

not argue that there is something fundamentally wrong with these methods that our

more complex methods fixes, such as how the lack of assumptions opened up causal

linear models to confounding in Chapter 3 and how the strict linear assumptions of

linear regression models introduced unfounded a priori assumptions on the relation-

ships between our variables in Section 4.3. Instead here we aim to show how complex

methods can improve upon the limitations of traditional methods, similar to how

the flexibility of Gaussian processes allowed us to attempt analyses in Section 4.4

that would be impossible with traditional methods. The methods used so far in the

analysis of household food security in the Agincourt study area are limited in what

they are able to tell us about what is arguably a complex system. Statistical tests

are undermined by the many issues discussed in Section 1.2, summary statistics

have limited ability to differentiate between different sets of data, and most linear

models are only able to provide us with simplistic measures of direct effects from a

set of independent to one dependent variable.
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When analysing the role of sugar in UK food security, Barons et al. (2014) applied the

method of Bayesian belief networks, the basics of which we described in Section 2.3.

Such a network gives a graphical representation of the probabilistic dependencies

and independencies in a system. In doing so it presents more of a many-to-many

view of the system where each variable is represented as a random variable with the

potential to have a direct relationship with any other variable. Therefore though

we are interested in food security, we can technically make observations of any

variables in the model to make inferences on any of the other variables. This is

more representative of complexity within a system than the many-to-one view of

many other models (including both linear models and those we have used in pre-

vious chapters) where we always have one set dependent random variable being

inferred from a group of set observed independent variables. It also allows us to

reason probabilistically about the system, and by applying a probabilistic structure

to the system it gives us the ability to ask questions of how each variable proba-

bilistically impacts on each other variable. As such it gives us a flexible tool that

can be used in a variety of analyses, overcoming many of the limitations of the

models inferred in previous studies. Bayesian belief networks have already seen suc-

cessful use in many areas, including for example semantic search (Koumenides and

Shadbolt, 2012), information retrieval (de Campos et al., 2004), analysis of gene ex-

pressions (Friedman et al., 2000), medical diagnosis (Jiang and Cooper, 2010), and

filtering, smoothing, and prediction (Weiss et al., 2010). Many machine learning

techniques, including naive Bayes classifiers and hidden Markov models, are types

of Bayesian belief networks (Murphy, 2012). Due to their structure providing di-

rected relationships amongst variables, and to the inbuilt modelling of conditional

independence, Bayesian belief networks are also well suited to act as causal models

of systems, which then enables us to make interventional, counterfactual, and other

more complicated queries of our model (Pearl, 2013).

Though Barons et al. (2014) have already built a Bayesian network model of food

security, they have only done so for a developed country at an infrastructural level.

An attempt to use this method for analysing household food security in sub-Saharan

Africa has yet to be made. In this chapter we build a Bayesian belief network model

with the specific aim of providing a causal representation of the interrelations be-

tween various characteristics of households in the Agincourt study area within the

context of food security. Though we aim for the resulting model to provide causal

insights into the system, we note later that validating such a causal model is difficult.

However, such a model forms at least a starting point in achieving this aim (perhaps

to be later improved by interventional trials), and can act as a basis for the develop-
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ment of future Bayesian network models of household food security in other similar

populations. In the rest of this chapter we give details of the construction of our

specific Bayesian network from choosing the variables, through learning the struc-

ture and parameters, to attempting quantitative validation of the model. Finally,

we give some elementary applications of the networks in interventional inferences.

5.2 Building the Agincourt food security belief network

5.2.1 Variable selection and data

As the initial justification for developing the Agincourt food security Bayesian belief

network came from members of the community (see Section 5.1), it is of interest

to see whether using expert knowledge from members of the community can aid in

learning the structure of the network. This not only introduces a strong element

of community involvement in the work, if the expert knowledge forms an accurate

representation of the system it can also improve the possibility of discovering an

actual causal structure which is difficult to achieve when learning from data (Smith,

2010). This is based on the assumption that there are no latent variables not covered

in the variables considered, and that the knowledge of the experts is expansive

enough.

We perform variable selection with the aim in mind of learning a causal structure

from expert elicitation. When performing the expert elicitation, we follow a protocol

stated in Smith (2010) designed specifically for eliciting a causal structure from the

knowledge of our experts. The actual protocol is detailed in Section 5.2.2.1. Here we

focus on the first step, which involves a literature search to discover the variables.

The literature search was performed over literature based on the Agincourt HDSS

dataset (for further details of which, see Section 4.2) for household characteristics

related to food security. The search involved finding variables in steps. The first

step involved searching the literature for household characteristics that form possible

causes of change in household food security, which is our utility variable. The second

step then involved searching the literature for household characteristics that form

possible causes of changes in the characteristics found in step one. The third step

looked for characteristics that form possible causes of those from step two, and so

on and so forth. This is repeated for as many steps as we are practically able to

complete, though we were also limited by two other factors. First, we could only

select variables that are practically measurable using data in the Agincourt HDSS
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dataset, or any other relevant datasets available to us. Second, the number of

variables were limited to those of greatest importance and relevance to simulation

of food security in order to avoid placing too much of a burden on the experts when

eliciting the structure of the network.

Household food security in the Agincourt study area was found in the literature to be

influenced by whether households participate in subsistence or commercial farming,

forage for food from the local environment, receive aid from the community, or re-

ceive government child welfare grants; as well as on their socio-economic status, how

well educated the household members are, what the gender of the household head is,

how many individuals in the household are too young or old to work, and how many

working age adults live in the household (defined as aged 15-59 as individuals make

their greatest economic contribution to the household from the age of 15 (Twine

and Hunter, 2011), and the age at which individuals in South Africa can claim an

older persons grant is 60 (SASSA, 2017a)) (Hunter et al., 2007; Kirkland et al., 2013;

Nawrotzki et al., 2014; Pereira et al., 2014; Twine and Hunter, 2011; Kaschula, 2011;

Lemke et al., 2003; Sedibe et al., 2014). Whether a household forages for food from

the environment was found to be influenced by the numbers of individuals in the

household too young or old to work, as well as the number at working age (Dovie

et al., 2007), and is obviously also affected by the level of local vegetation in the

local area. Whether a household is likely to receive communal aid (e.g. food or

money) was found to be influenced by their socio-economic status, the gender of

their household head, and whether the household contains refugees (i.e. individuals

not defined in the dataset as South African nationals, usually due to being Mozam-

bican refugees) (Kaschula, 2011; Pronyk et al., 2008). Households selling crops and

livestock is obviously influenced by whether they grow or rear them in the first place.

Whether households claim child support grants was found to be influenced by how

well employed the household members are and their socio-economic status (which is

unsurprising as the grant is means tested (SASSA, 2017b)), as well as their refugee

status and obviously by whether the household has any children (Pereira et al.,

2014; Kaschula, 2011; Twine et al., 2007). Whether the household grows crops and

livestock was found to be influenced by their socio-economic status, how good their

access to water is, and whether they have enough household members to perform the

farming (Hunter et al., 2007; Pereira et al., 2014). Household socio-economic status

was found to be influenced by the household levels of employment and education, as

well as their refugee status and the gender of their household head (Pereira et al.,

2014).
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Variable Definition States Data source

Food

insecure

Whether the

household has

or has not had

enough to eat

over the

previous year.

0 - had enough to

eat.

1 - did not have

enough to eat.

NotEatYear variable

in the Agincourt

Food Security

module.

Table 5.1: Agincourt food security belief network variables on level 1 of the causal
ordering. The data source specifies how the variable is calculated from the data,
and the states specify how the discrete variable states relate to the values resulting
from the calculations described in the data source.

Variable Definition States Data source

Use of wild

foods

Whether the

household uses

wild foods.

0 - do not use wild

foods.

1 - gather wild

foods OR wild

herbs.

2 - gather wild

foods AND wild

herbs.

Sum of the

SupGather and

SupGatherHerbs

variables from the

Agincourt Food

Security module.

Receipt of

communal

aid

Whether the

household gets

financial aid

from friends,

neighbours, or

family.

0 - receive no aid.

1 - receive aid.
SupDonate variable

from the Agincourt

Food Security

module.

Table 5.2: Agincourt food security belief network variables on level 2 of the causal
ordering. The data source specifies how the variable is calculated from the data,
and the states specify how the discrete variable states relate to the values resulting
from the calculations described in the data source.
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Variable Definition States Data source

Local

vegetation

level

Amount of

vegetation that

grows in the

local area of the

household.

1 - up to 0.161.

2 - 0.161-0.302.

3 - 0.302-0.443.

4 - 0.443-0.584.

5 - 0.584-0.725.

6 - greater than

0.725.

Sum of the average

NDVI values from

the MODIS Terra

satellite data in a

2000km by 2000km

area around the

household divided

by the number of

households in that

area.

Selling of

crops and

livestock

Whether the

household sells

crops or

livestock to

supplement

their income.

0 - sell no crops or

livestock.

1 - sell crops or

livestock.

Sum of the

SupSellGoods and

SupSellStock

variables from the

Agincourt Food

Security module.

Child grant

status

Number of child

grants the

household

receives.

State is equal to

number of grants

received that year.

Count of grants

received using the

ReceivedYear

variable from the

Agincourt Child

Grant module.

Table 5.3: Agincourt food security belief network variables on level 3 of the causal
ordering. The data source specifies how the variable is calculated from the data,
and the states specify how the discrete variable states relate to the values resulting
from the calculations described in the data source. Value intervals are inclusive of
the upper values.
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Variable Definition States Data source

Number of

dependents

Number of

household

members aged

less than 15 or

greater than 59.

1 - up to 9.5.

2 - 9.5-19.0.

3 - 19.0-28.5.

4 - 28.5-38.0.

5 - 38.0-47.5.

6 - greater than

47.5.

Count of household

members

(membership

counted at midyear)

with the appropriate

age (calculated at

midyear) in the

Agincourt dataset.

Use of crops

and

livestock

Whether the

household grows

its own crops or

keeps its own

livestock.

0-7+. Sum of the

MaizePlot,

MaizeField,

OtherCropsPlot,

and

OtherCropsField

variables from the

Agincourt Food

Security module

with the Cattle,

Goats, Poultry, and

Pigs variables from

the Agincourt Asset

Status module.

Table 5.4: Agincourt food security belief network variables on level 4 of the causal
ordering. The data source specifies how the variable is calculated from the data,
and the states specify how the discrete variable states relate to the values resulting
from the calculations described in the data source. Value intervals are inclusive of
the upper values.

87



Variable Definition States Data source

Water

access

Availability,

stability, and

quality of the

water supply to

the household.

1 - up to 10.5.

2 - 10.5-16.0.

3 - 16.0-21.5.

4 - 21.5-27.0.

5 - 27.0-32.5.

6 - 32.5-38.0.

7 - 38.0-43.5.

8 - greater than

43.5.

Product of the

WaterDistMetre,

WaterAvail, and

WaterSup variables

from the Agincourt

Asset Status

module.

Table 5.5: Agincourt food security belief network variables on level 5 of the causal
ordering. The data source specifies how the variable is calculated from the data,
and the states specify how the discrete variable states relate to the values resulting
from the calculations described in the data source. Value intervals are inclusive of
the upper values.

Variable Definition States Data source

Socio-

economic

status

Socio-economic

status of the

household.

1 - up to 1.262.

2 - 1.262-1.648.

3 - 1.648-2.033.

4 - 2.033-2.419.

5 - 2.419-2.804.

6 - 2.804-3.190.

7 - 3.190-3.575.

8 - greater than

3.575.

SESAbsolute

variable from the

Agincourt SES

index module.

Table 5.6: Agincourt food security belief network variables on level 6 of the causal
ordering. The data source specifies how the variable is calculated from the data,
and the states specify how the discrete variable states relate to the values resulting
from the calculations described in the data source. Value intervals are inclusive of
the upper values.
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Variable Definition States Data source

Employment

level

Number of

household

members with

current

employment.

0-6+ employed

household mem-

bers.

Count of household

members

(membership

counted at midyear)

who replied yes to

the

CurrentlyWorking

variable in the

Agincourt Labour

Status module.

Household

head gender

Gender of the

head of the

household.

0 - male.

1 - female.
Household head

gender as specified

in the Agincourt

dataset.

Refugee

status

Whether any

household

members are

refugees or

non-South

African

nationals.

0 - no refugee

members.

1 - one or more

refugee members.

Refugee variable

from the Agincourt

dataset.

Table 5.7: Level Agincourt food security belief network variables on level 7 of the
causal ordering. The data source specifies how the variable is calculated from the
data, and the states specify how the discrete variable states relate to the values
resulting from the calculations described in the data source.
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Variable Definition States Data source

Number of

working age

adults

Number of

household

members aged

15 to 59.

1 - up to 13.29.

2 - 13.29-26.57.

3 - 26.57-39.86.

4 - 39.86-53.14.

5 - 53.14-66.43.

6 - 66.43-79.71.

7 - greater than

79.71.

Count of household

members

(membership

counted at midyear)

with appropriate

age (calculated at

midyear) from the

Agincourt dataset.

Table 5.8: Agincourt food security belief network variables on level 8 of the causal
ordering. The data source specifies how the variable is calculated from the data,
and the states specify how the discrete variable states relate to the values resulting
from the calculations described in the data source. Value intervals are inclusive of
the upper values.

Variable Definition States Data source

Education

level

Average years of

completed

education by

the household

members.

1 - up to 3.

2 - 3-6.

3 - 6-9.

4 - 9-12.

5 - greater than 12.

Average of the

EducationInYears

variable from the

Agincourt

Education module

for household

members

(membership

counted at midyear)

for that year.

Table 5.9: Agincourt food security belief network variables on level 9 of the causal
ordering. The data source specifies how the variable is calculated from the data,
and the states specify how the discrete variable states relate to the values resulting
from the calculations described in the data source. Value intervals are inclusive of
the upper values.

90



These relationships gave us a causal ordering of the different household variables,

as shown by the breaking up into levels of the variables in Tables 5.1 to 5.9. The

variables of each level can only be caused by a variable in a higher numbered level,

and can only cause those in a lower numbered level, according to this ordering. For

example, water access in level 5 (Table 5.5) is possibly a cause of variables such

as use of crops and livestock, use of wild foods, and food security itself which are

all in lower numbered levels, but is disallowed from causing variables such as socio-

economic status, refugee status, or education level which are in higher numbered

levels. This ordering is important for attempting to ensure a causal structure when

eliciting the network structure from experts.

Each variable was calculated as specified in Tables 5.1 to 5.9. For most, this involved

a suitable combination of appropriate variables in the Agincourt HDSS dataset,

calculated at or aggregated to the household level. There are two variables worth

providing further details for.

Food security was calculated from a single variable in the Agincourt dataset spec-

ifying whether the household had enough food to eat over the past year. This

admittedly lacks the nuance of most definitions of food security commonly used in

past studies. However, most other variables related to food security in the Agincourt

HDSS dataset feature large amounts of missing data, whilst this variable does not.

It also provides a strong relation to actual food security despite being simplistic.

When considering the results of applying the completed Bayesian network, we must

simply remember that food security in this case is defined as having had enough

food to eat over the past year.

Following Nawrotzki et al. (2014), we calculate local vegetation level from the Nor-

malised Difference Vegetation Index (NDVI) (Tucker, 1979). NDVI data was ob-

tained from the MODIS/Terra sensor satellite images, which contains NDVI val-

ues for 250m by 250m areas averaged over 16 day periods (Didan, 2015). As

per Nawrotzki et al. (2014), local vegetation level is calculated for a particular

household as the NDVI over the 2000km by 2000km region around the household

(not including land within villages so as to avoid including privately owned land)

averaged over the households within that region. Though Nawrotzki et al. (2014)

averaged these values over the preceding three years of the year of analysis, we

only average them over the year of analysis to avoid removing detail of differences

between each year.

Variables that were calculated from the Agincourt food security module were done so
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for the years 2007, 2010, and 2013, i.e. the years in which the module was performed

during the census. For the other variables, their value from the nearest previous

year when the data to calculate them was collected was used for each household at

each of the three food security module years. Our sample was formed by households

that provided complete enough data to calculate values for each of the variables for

at least one of the food security module years. For each household, the latest entry

from either 2007, 2010, or 2013 was taken, as it was found that allowing households

to have multiple entries for different years reduced the performances of the models

seen in the model validations and comparisons. The sample size for our dataset was

11739 households.

Though it would be possible to construct a dynamic Bayesian network with nodes

for the different variables at each of the different time points (Koller and Friedman,

2009), it was decided instead to produce only a simple static network due to each

year only providing a small amount of data, and only three years worth of data

being available with a significant gap of three years between each year. Eliciting

dynamic as well as static relationships from the experts would also create an even

greater burden upon them. Construction of a dynamic network, which would be

more suitable for the causal modelling we aim for, should be an immediate concern

of future work where greater resources and access to experts are available.

Several of the variables were discretised, as detailed in the states shown in Tables 5.1

to 5.9, in order to reduce the number of possible states and simplify the calculations

involved in finding the parameters of the model and performing inferences. This

was done in such a way in order to still coarsely approximate the distribution of

the variable, either by combining neighbouring states that occurred rarely, or by

binning the data for that variable to an appropriate number of histogram bins.

5.2.2 Structure learning

5.2.2.1 Expert elicitation

As mentioned in Section 5.2.1, one method of learning a causal structure is via

expert elicitation. Here we rely on the knowledge of a set of experts who can inform

us of how our network should be structured based on how changes in each variable

affect their beliefs about the states of other variables. We performed an expert

elicitation to find a possible causal structure for the Agincourt food security belief

network, relying on the knowledge of members of the Community Advisory Group
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(CAG).

To perform this elicitation we relied on the protocol described in chapter 7 of Smith

(2010). The first step, in which we established a set of variables and a causal

ordering for them, was described in Section 5.2.1. The next step involved the actual

elicitation. The design of the elicitation was piloted on various academic colleagues

(including some from a non-mathematical background) to attempt to make the

process more understandable for the experts. The elicitation was performed by

Rhian Twine of the Agincourt LINC office following our design and instructions in

the MRC/Wits Agincourt offices on 28th October 2016. The experts were guided

through a list of the variables, in the order defined by the causal ordering starting

with the highest level variables (which our ordering specifies have no possible causes

within the other variables, but are possible causes for all the other variables) and

finishing with the lowest level variable food security (which is specified to cause none

of the other variables, and can be caused by all other variables). For each variable,

we attempted to establish based on the local knowledge of our experts which of the

previous variables in the list would have an effect on the beliefs of the experts on

what state the variable in question would take for a generic household.

The difficulty in this is in trying to capture conditional independencies, i.e. that we

only want the experts to tell us of direct effects between the variables rather than

indirect effects where variable A affects our belief of variable B because it actually

impacts on C which impacts on B. As such, we carefully designed our questions to

attempt to capture this by asking them to first consider the hypothetical situation

where they already know the states for a household of all the variables previous in

the list except one, and then whether learning the state of that one extra variable

would provide any extra impact on their belief of the variable of interest. Say the

experts have gone through variables A, B, C, and D, and are now on variable E.

Formally, they were shown a list of A, B, C, and D and were asked the following.

Consider each of the characteristics in the list below separately and answer

the following question. If you already knew a households status for the other

characteristics listed, would knowing the households status for this characteristic

have any additional impact on your estimate of their status for E (given you

are unable to ask them)?

Often this was reframed in more informal language to make it easier for the experts

to understand.
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We know B, C, and D for the household (sometimes picking example states),

and want to know E. Would knowing A help you know E if you already know

the others?

In order to suitably prepare the experts for the elicitation, they were first told the

purpose of the work and what outcomes are hoped for, as well as a brief laymans

explanation of Bayesian networks. They were guided through a set of example

questions on a different smaller system taken from the Agincourt study area in

order to help them understand how to answer the questions, and to get them used

to answering them before having to answer the ones we cared about. They were also

reassured that none of their answers would be incorrect in order to avoid any biases

such as adjusting their answers to try and get to the ‘right one’. The elicitation was

performed with the experts as a group rather than individually to further reduce

the burden on them.

The resulting network from the expert elicitation (Figure 5.1) already shows some

interesting discrepancies from findings in the literature. For instance, the experts

determined that household head gender has no impact on any of the other variables.

Refugee status is also shown to have minimal direct impact. Also water access has no

impact on the growing of crops, supposedly due to individuals relying on rainwater

rather than the water supply to water their crops and gardens.

5.2.2.2 Learning from data

Whilst expert elicitation has the advantage of being able to learn the structure in

such a way as to maximise the chances of learning an actual causal structure, it also

relies entirely on the knowledge of the experts which could be narrowed by their

life experiences. Unlike the experts used by Barons et al. (2014) who came from

a variety of backgrounds and who had studied the problem, ours were experts in

living in the locality. An alternative to expert elicitation is learning the structure

algorithmically from the data. There are many different algorithms that can be

used to learn the structure of a network, broadly broken up in to two groups known

as constraint-based and score-based structure learning where constraint-based algo-

rithms are generally considered more suitable for causal learning due to their aim of

discovering local independencies between variables rather than simply maximising

some information theoretic measure of the model (Koller and Friedman, 2009).
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Figure 5.1: Agincourt food security belief network structure learned from the ex-
pert elicitation. CGS - child grant status. EdL - education level. EmL - employment
level. FS - food security. HHG - household head gender. LLV - level of local vege-
tation. ND - number of dependents. NWAA - number of working age adults. RCA
- receipt of communal aid. RS - refugee status. SCL - selling of crops and livestock.
SES - socio-economic status. UCL - use of crops and livestock. UWF - use of wild
foods. WA - water access.
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In order to learn an alternative possible causal network for our system we used a

constraint-based algorithm known as Max-Min Parents and Children (MMPC) (Tsamardi-

nos et al., 2003, 2006). For each node X, the MMPC algorithm attempts to discover

the set of parents and children of X. It first builds a candidate set of parents and

children (CPC). This is done by performing conditional independence tests between

X and each node not yet in the CPC set given all possible subsets of the nodes

already in the CPC set. Any node found by the test to be independent of X given

any subset of the CPC set are discluded for the rest of the iterations. From the

remaining, the node with the highest minimal association with the node of interest

(measured by the independence test p-values, where minimal refers to the smallest

association between X and the node found by conditioning on every possible subset

of the CPC set) is then added to the CPC set. This is repeated, increasing the CPC

set by one each time (and also possibly increasing the set of nodes that have been

found to be independent and can therefore no longer be considered for the CPC

set), until the CPC set can no longer be increased. To check for false positives of

the test, a backwards run is then performed through the CPC set where nodes are

removed if they can be rendered d-separated from X given some subset of the other

nodes in the CPC set.

The MMPC algorithm can be performed for each node to find all the local struc-

tures and construct a skeleton of the network (i.e. with no directions). This was

performed for our Agincourt household food security dataset using the asymptotic

normal Jonckheere-Terpstra test for conditional independence (which tests the null

hypothesis of the distribution of e.g. A given B and C being equal for all values of

B against the alternative hypothesis of the distribution having a stochastic ordering

over B) to take into account the ordinal nature of the variables (Jonckheere, 1954).

Links that would go against the causal ordering provided by the levels described

in Section 5.2.1 were disallowed from the start. The order of the variables used in

the expert elicitation was used to gain directions in the skeleton network achieved

by the algorithm.

The resulting network (Figure 5.2) shows some substantial differences to the expert

elicited network (Figure 5.1), which is unsurprising given the very different sets of

information each network was built upon. Most different is the much greater level

of sparseness in the data-learned network. Household head gender is also linked

in to the data-learned network, unlike the expert elicited one, but selling of crops

and livestock is now disconnected. Child grant status has no directed path to food

security either, meaning that neither of these nodes would be effective means of
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Figure 5.2: Agincourt food security belief network structure learned from the data.
CGS - child grant status. EdL - education level. EmL - employment level. FS -
food security. HHG - household head gender. LLV - level of local vegetation. ND
- number of dependents. NWAA - number of working age adults. RCA - receipt
of communal aid. RS - refugee status. SCL - selling of crops and livestock. SES -
socio-economic status. UCL - use of crops and livestock. UWF - use of wild foods.
WA - water access.
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intervention according to this network.

5.2.2.3 Combining expert and data learning

One final means of constructing a causal network is to combine both the expert

results and data-based learning by using the expert network as a prior for algorithms

to use the data to build upon. Whilst this is difficult to achieve using constraint-

based algorithms, it is attainable quite easily using score-based methods where the

expert network can be used as a starting point for the search. For this we relied on

a standard algorithm that has shown good performance in the past known as Tabu

search (Bouckaert, 1995; Tsamardinos et al., 2006).

Tabu search, in the case of Bayesian networks, is a score-based algorithm where a

greedy search over the possible network structures is performed (by either adding

or deleting edges as necessary) in order to maximise some score assigned to each

structure. The score we used was the Akaike information criterion (AIC) (Akaike,

1974)

AIC “ 2ν ´ 2 logL
´!

θ̂jki , n
jk
i

)¯

(5.1)

where θ̂jki are the fitted network parameters (defined as the local conditional proba-

bilities that variable i is in state j given its parents are in states k as stated in (2.18)),

ν are the number of such parameters that exist within the particular network struc-

ture, njki are the number of observations in the data with variable i in state j given

its parents (as defined by this structure) are in states k, and the likelihood is

L
´!

θjki , n
jk
i

)¯

“

N
ź

i“1

ź

jPSXi

ź

kPSpapXiq

´

θjki

¯njk
i

(5.2)

where SX is the set of states of variable X. The AIC avoids penalising non-sparse

networks in ways that other information criteria such as the Bayesian information

criterion would.

Tabu differs from a regular hill climbing algorithm in that once it has found a local

optimum it attempts to check for other possible better local optima nearby. This is

achieved by allowing the algorithm to take steps that slightly reduce the score for a

set number of steps in which it can attempt to find a better solution. Once the set

number of steps have been taken the algorithm is allowed to return to the original

solution if no better ones have been found.
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Figure 5.3: Agincourt food security belief network structure learned from the data
with the expert network as a prior. CGS - child grant status. EdL - education level.
EmL - employment level. FS - food security. HHG - household head gender. LLV -
level of local vegetation. ND - number of dependents. NWAA - number of working
age adults. RCA - receipt of communal aid. RS - refugee status. SCL - selling of
crops and livestock. SES - socio-economic status. UCL - use of crops and livestock.
UWF - use of wild foods. WA - water access.
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This final resulting network (Figure 5.3) appears sparser than the other two but also

has all nodes linked into the network. There are also more leaf nodes in the network

with no children such as selling of crops and livestock, level of local vegetation,

and child grant status again. As before, these nodes would therefore be definitely

ineffective for any interventions against food insecurity according to this network.

Despite the efforts to ensure relationships going against causality were avoided,

some seemingly counter-intuitive ones still appeared such as the number of working

age adults and refugee status having a causal impact on household head gender.

However, perhaps these relationships are not as counter-intuitive as they appear.

Refugee households are perhaps far more likely to have household heads of one

gender, whilst non-refugee households are more likely to have household heads of

the other.

5.2.3 Parameter estimation

Though it is possible to elicit the network parameters θjki from experts as well, we

instead estimated them from data. This both avoids the many cognitive biases that

the experts could be prone to, and avoids placing an additional and immense burden

on the experts on top of what we have already asked of them.

The parameters were estimated by their maximum a posteriori (MAP) values found

by maximising the product of the likelihood (5.2) with a Dirichlet prior

π
´!

θjki , α
jk
i

)¯

“
1

B
´!

αjki

)¯

N
ź

i“1

ź

jPSXi

ź

kPSpapXiq

´

θjki

¯αjk
i ´1

(5.3)

where B p¨q is a Beta function. This results in MAP estimate values of

θ̂jki “
njki ` α

jk
i ´ 1

ř

j1PSXi

´

nj
1k
i ` αj

1k
i ´ 1

¯ (5.4)

where the values are being normalised over the J “ |SXi | possible states of the

variable i. We used a prior with αjki “ 2@ i, j, k resulting in parameter values of

θ̂jki “
njki ` 1

ř

j1PSXi
nj
1k
i ` J

(5.5)

which is equivalent to add-one smoothing (Murphy, 2012). This adjusts for cases

where no occurrences of a particular combination of i, j, and k appear in the data.
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Figure 5.4: Marginal probability distributions for each of the variables in the
Agincourt food security belief network with structure learned by expert elicitation.
The variable acronyms are described in Figure 5.1.
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Figure 5.5: Marginal probability distributions for each of the variables in the Ag-
incourt food security belief network with structure learned from data. The variable
acronyms are described in Figure 5.2.
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Figure 5.6: Marginal probability distributions for each of the variables in the
Agincourt food security belief network with structure learned from data with the
expert network as a prior. The variable acronyms are described in Figure 5.3.
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Though the amount of parameters is too vast to show all their values here, the

marginal probability distributions of the variables for each possible network struc-

ture are shown in Figures 5.4 to 5.6 in order to give an indication of the probabilistic

values within each network. There is no substantial different between the marginals

of each network, which is unsurprising as the marginals should be close to the em-

pirical frequencies observed in the data despite the networks structure.

5.2.4 Model validation

5.2.4.1 D-separation checks

The expert elicitation protocol defined in chapter 7 of Smith (2010) specifies one

last step. Independence relationships such as A K B | C implied by the network

structure can be found using d-separation (see Section 2.3.2). Smith (2010) suggests

finding such relationships between nodes not directly connected in the network, and

checking them against the beliefs of the experts to see if the implications of the

network match the knowledge of the experts. If not, then the network should be

adjusted accordingly to remove these relationships.

As we were unable to perform more than one extra elicitation, it was decided that

this d-separation check would be used as a test of validation against the beliefs of the

experts and that no further changes would be made to the structure of the expert

network (Figure 5.1). Changing the structure would result in new independence

relationships that would have to be rechecked against the experts, which we were

unable to do.

As over 8000 different independence relationships are implied by the networks struc-

ture, the number was severely reduced in a structured fashion. In order to make

it simpler for the experts, only relationships of the kind A K B | C where A and

B only contained one variable each and B came before A in the causal ordering

described in Section 5.2.1 were questioned. From these, examples where the fact

that A is at all independent of B appears counter-intuitive were selected as these

seemed the most pertinent to check. Finally, for each possible pair of A and B in the

remaining relationships, the relationship A K B | C where C contained the smallest

set of nodes was selected, again to make it easier for the experts. This resulted in

34 relationships to check against the beliefs of the experts, which were phrased in

the following way.
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A tells us nothing about B if we already know C. True or false?

This elicitation was performed with a new set of experts, still taken from the CAG.

It was again performed by Rhian Twine of the Agincourt LINC office following our

design and instructions, located in the MRC/Wits Agincourt offices in March 2017.

It must be admitted that there was possible confusion from the experts as to the

meaning of the questions. It is possible that they often ignored C when considering

whether A should be independent of B. This possibly undermines the results.

That being said, it appears that the initial elicited structure proved quite robust

against these checks. Only 11 out of 34 of the relationships were deemed to be

false (though 2 were unanswered). Typically this was due to the new set of experts

thinking that household head gender does impact on certain variables, Mozambican

refugees are now indistinguishable from South African nationals, and that both

age and education impact on attitudes which in turn impact on things such as the

willingness to farm, forage for food, and claim welfare.

5.2.4.2 Predictive validation

When validating the three possible network structures it was most important to

try and measure their performance in approximating the actual causal relationships

occurring within the system. Unfortunately this is a difficult thing to measure.

An easier aspect to measure is the performance of each possible network when

attempting to predict the food security status of a test set of households. Though

this does not give us any indication of being a good causal model, it does tell us

how useful a tool the networks are in at least one respect and gives us information

about what the networks can tell us about the food security of observed households.

To achieve this we performed a 10-fold cross validation for each network, where

the network structures were kept constant but parameter values were allowed to

vary dependent on the data subset they were being fitted to. Due to the fact that

predictive performance does not capture what we really need, we used three different

measures of predictive performance for probabilistic classifiers to allow us to best

distinguish between the networks.
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The first is the Briers score, as used in Sections 4.3 and 4.4, defined as

SB “
1

M

M
ÿ

i“1

pYi ´ p̂iq
2 (5.6)

where M is the number of observations in the cross validation set being predicted for,

Yi P t0, 1u is the food security status of household i as defined in Section 5.2.1, and

p̂i P r0, 1s is the fitted marginal probability of Yi “ 1 (Schwarz et al., 1978). Briers

score gives a heavier penalisation the lower the predicted probability of the correct

food security state of the household, with severe penalisation given for particularly

extreme incorrect results.

The second is information reward, defined as

SIR “
1

M

M
ÿ

i“1

p1` log2 p̃iq (5.7)

where

p̃i “

$

&

%

p̂i if Yi “ 1 ,

1´ p̂i if Yi “ 0 .
(5.8)

Information reward prefers models that estimate probabilities of the correct state

that are better than random, i.e. 0.5, and penalises ones that are worse (Good,

1952).

The final measure is Bayesian information reward, defined as

SBIR “
1

M

M
ÿ

i“1

ˆ

1´
log p̃i
log π̃i

˙

(5.9)

with

π̃i “

$

&

%

π if Yi “ 1 ,

1´ π if Yi “ 0
(5.10)

where π is some chosen prior probability of any given household being food insecure.

Bayesian information reward prefers models that estimate probabilities of the correct

states that are better than the chosen prior probabilities π and 1 ´ π, and then

penalises ones that are worse (Hope and Korb, 2004). We take π to be equal to the

empirical frequency of food insecure households in the training data. This measure

then indicates whether a given network structure allows for better prediction of food

insecurity than what we can tell by simply looking at the data.

106



Learning method SB SIR SBIR

Expert elicitation 0.1321 0.3908 -1.9004

Data-learned 0.0851 0.5577 -0.0270

Data-learned with expert prior 0.0846 0.5590 0.0057

Table 5.10: Model comparison of predictive performance for the different network
structures learned as described in Section 5.2.2 from a 10-fold cross validation. Briers
score, information reward, and Bayesian information reward indicate that learning
from data massively outperforms learning from experts, but using expert knowledge
as a prior provides an additional small increase in performance.

Unsurprisingly learning the structure from data gives much greater predictive per-

formance than relying on the expert elicitation (Table 5.10). The data gives a

greater population view of what is happening than the experts. It is surprising,

though, that the data gives no improvement on performance over simply relying

on the empirical data frequencies. Interestingly, relying on data-learning with the

expert network as a prior results in a small increase in performance over even the

data-learned method. It is also the only method to improve upon relying on the

empirical frequencies.

5.2.4.3 Causal validation

There is no established and widely accepted way to measure the faithfulness of a

model to the causal relationships of the system it represents using observational

data. Indeed it is arguably impossible to do so. The best way to measure the

causal validity of these three networks would be to perform interventional studies

in the Agincourt study area, examining how implementing interventions focused

around particular variables whilst other variables are controlled for impacts upon

the food security of households. Beyond the ethical difficulties of such experiments,

they would also come at great expense and would take a great deal of time and are

therefore well beyond the scope of this work.

In order to attempt some kind of causal validation we relied upon an imperfect

method of simulating past food security interventions performed on similar popu-

lations on the models and see which (if any) successfully capture these results. To

do this we performed a thorough search of the literature, looking for interventions

aimed at food security in populations similar to that of the Agincourt study area.
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It was found that several agricultural interventions have been performed in the form

of community agricultural projects, homestead food production, and the develop-

ment of gardens in countries and regions such as Bangladesh, South-East Asia, Latin

America, Rwanda, South Africa itself, and other low to middle income countries (He-

len Keller International, 2010; Bushamuka et al., 2005; Galhena et al., 2013; Gaihre

et al., 2016; Rose, 2008; Nsabuwera et al., 2016; Faber et al., 2011). Various financial

interventions have also been performed, such as providing public sector employment

and cash transfers in Latin America and Ethiopia (Rose, 2008; Coll-Black et al.,

2012), as well as micro-loans and micro-credit in sub-Saharan Africa (Stewart et al.,

2010; Van Rooyen et al., 2012). In addition to these, we also found interventions on

water quality throughout Asia and Africa (Gaihre et al., 2016).

These past interventions gives us six possible simulations, where we can simulate set-

ting the values for the ‘use of crops and livestock’ (UCL), ‘child grant status’ (CGS),

‘selling of crops and livestock’ (SCL), ‘socio-economic status’ (SES), ‘employment

level’ (EmL), and ‘water access’ (WA) variables individually and look at the impact

on the probability of the household being food secure. If the networks capture these

interventions, then increasing the state of each of these variables should increase the

probability of a household being food secure.

It should be noted that whilst some of these interventions were parts of controlled

studies, others were reports of government strategies that therefore may not have

successfully controlled for confounding variables which may undermine any causal

implications we can take from them. However, ignoring these interventions would

severely reduce the already small number that can be checked. As there are only

six simple interventions to check, there is already a severe courseness to this test.

Also though the populations may be similar, they may also be different enough that

interventions that work on them may not work on the Agincourt population. One

notable difference between South African populations in general and those from

less economically developed countries is their access to welfare. However, there is

still value in seeing whether our networks capture these past interventions, and if

not then why. This is the closest we can get to a true test of causal faithfulness

without performing actual studies and experimentation in the field. Even if we

cannot consider it a test of such faithfulness, if we assume this faithfulness to be

true then it highlights possible differences between the system we study and other

similar systems.

The queries were performed using the inference techniques described in Section 2.3.3.

For each possible query where we wish to find the probability of FS “ 0 given
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Figure 5.7: Simulations of setting the state of ‘use of crops and livestock’ (UCL)
in order to alter the probability of a household being food secure (FS “ 0) on
the different possible Agincourt food security belief networks. a - expert elicited
structure. b - data-learned structure. c - data-learned structure with the expert
network as a prior.

that some variable E is set to state e, we must calculate the marginal conditional

probability Pr pFS “ 0 | do pE “ eqq. Note here that do pE “ eq indicates we have

gone into the system and artificially set the value of E regardless of the values

of its parent nodes. Therefore we find that often Pr pFS “ 0 | E “ eq is different

from Pr pFS “ 0 | do pE “ eqq as the former is merely the probability of observing

a household that is food secure given it has E “ e. Calculating this observational

marginal probability is as simple as taking the complete network and performing the

inference on it as described, with E set to e. To calculate Pr pFS “ 0 | do pE “ eqq

we must first remove the links from the parents of E to E, representing how our

interference with the system has rendered E now independent of its parents, before

performing the same inference as described with E set to e. This small difference

is what differentiates interventional queries from observational ones (Koller and

Friedman, 2009).

The simulation results (Figures 5.7 to 5.12) show that all three networks fail to

capture the literature interventions. The expert elicited network even shows very

counter-intuitive results for employment level, child grant status, and selling of crops

and livestock, where increases in these lead to decreases in the probability of being

food secure. This is also observed for employment level in the data-learned network.

As the expected result of increasing the states of these variables, which is that the

frequency of food secure individuals should increase, largely appears in the data we

must conclude that the other links existing between the interventional nodes and

food security are what lead to these unexpected relationships. It is possible that

what we expect to see may not actually be true and these other links are helping to
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Figure 5.8: Simulations of setting the state of ‘child grant status’ (CGS) in order
to alter the probability of a household being food secure (FS “ 0) on the different
possible Agincourt food security belief networks. a - expert elicited structure. b
- data-learned structure. c - data-learned structure with the expert network as a
prior.
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Figure 5.9: Simulations of setting the state of ‘selling of crops and livestock’
(SCL) in order to alter the probability of a household being food secure (FS “ 0)
on the different possible Agincourt food security belief networks. a - expert elicited
structure. b - data-learned structure. c - data-learned structure with the expert
network as a prior.
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Figure 5.10: Simulations of setting the state of ‘socio-economic status’ (SES)
in order to alter the probability of a household being food secure (FS “ 0) on
the different possible Agincourt food security belief networks. a - expert elicited
structure. b - data-learned structure. c - data-learned structure with the expert
network as a prior.
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Figure 5.11: Simulations of setting the state of ‘employment level’ (EmL) in order
to alter the probability of a household being food secure (FS “ 0) on the different
possible Agincourt food security belief networks. a - expert elicited structure. b
- data-learned structure. c - data-learned structure with the expert network as a
prior.
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Figure 5.12: Simulations of setting the state of ‘water access’ (WA) in order to
alter the probability of a household being food secure (FS “ 0) on the different
possible Agincourt food security belief networks. a - expert elicited structure. b
- data-learned structure. c - data-learned structure with the expert network as a
prior.

control for confounding, or it could also be that they are introducing further levels

of confounding.

Another explanation for the failure of expected patterns to appear could be the

courseness in our definition of the food security variable. Food security may change

in more subtle ways throughout the year, so only considering lack of food over an

entire year may fail to capture these subtleties. However, as mentioned before the

food security Agincourt module has enough issues with missing data to make the

calculation of a more intricate food security measure difficult.

For the data-learned networks, with and without expert priors, we see some nodes

have no impact at all upon food security. In particular, variations in use and selling

of crops and livestock, child grant status, and water access lead to no change in

the probability of being food secure in both these networks, as does employment

level for the data-learned network with expert prior alone. For many this is largely

unsurprising due to the much sparser structures of the networks. If we step in and

control these nodes, via the mechanisms of do-calculus as described above we should

expect the probabilistic relationships between many of them and food security to

be cut off.

For use of crops and livestock and water access, the expert elicited network shows

some more unusual variations in the food security probability. However, for water

access in particular this does not lead to any meaningful pattern of variation. On

the other hand, use of crops and livestock does show some increase in food security

probability for low values which then turns in to a decrease at higher values. This
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is not entirely what we expect to see, but is at least closer than many of the other

results.

The only intervention that performs roughly as expected is socio-economic status,

probably due to how well connected it is to food security in all three networks. This

implies that socio-economic status is as important to food security as we expect

it to be, perhaps more so than any other household characteristic. Given how it

relates so heavily to many household characteristics it is not surprising that it could

capture much of what makes a household food secure or not.

As mentioned before, the issues with what is arguably a naive test mean that these

results to not negate the possibility of these networks being good causal models.

They do, however, stress that much more must be done to test the causal validity of

these networks and work towards a true causal representation of the system which

would give the greatest utility in informing interventions against food insecurity.

As said, such work should involve interventional studies, but perhaps could also

consider a more indepth search through current methods of causal validation from

observational data with perhaps the aim of developing a widely accepted (though

still obviously inferior) alternative to experimentation. Unfortunately this is well

beyond the scope of this current work. However the results presented here may give

possible focuses for these future experiments.

5.3 Applications of the Agincourt food security belief

network

5.3.1 Sensitivity analysis

Though the validation tests did not enable us to confirm the causal validity of

the different possible networks (Section 5.2.4.3), it is still of interest to look at

possible applications of them. One such interesting application is in using them to

find which of the variables have the greatest probabilistic impact on food security,

namely through a sensitivity analysis. This was performed following Barons et al.

(2014) by calculating values for mutual information reduction and expected change

of belief.
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The mutual information reduction is defined as

I pFSq “ H pFSq ´H pFS | Xq “
ÿ

fsPSFS

ÿ

xPSX

log2
Pr pfs, xq

Pr pfsqPr pxq
(5.11)

where the summations are taken over all the possible states of food security FS and

node X, and

H pXq “ ´
ÿ

xPSX

Pr pxq log2 Pr pxq (5.12)

is the information of node X. This essentially measures how learning the state of X

changes our uncertainty about the food security FS of the household, and can also

be expressed as a percentage of H pFSq i.e. our uncertainty about FS. The expected

change of belief is defined as

S2 pFSq “
ÿ

fsPSFS

ÿ

xPSX

Pr pfs, xq rPr pfs | xq ´ Pr pfsqs2 (5.13)

and measures the change in the posterior probability of food security upon learning

the state of node X. Both of these measures essentially give an indication of which

nodes have the most impact on food security.

The expert elicited network shows food security having a greater sensitivity to a

wider range of variables, including child grant status, vegetation and employment

levels, use of wild foods, and selling of crops and livestock (Table 5.11). This could

perhaps be due to the experts exhibiting a more nuanced understanding of food

security that is beyond the relative simplicity of our network building methodology

and variable definitions. The data-learned network, being much sparser, shows

smaller effects (Table 5.12) though socio-economc status, use of wild foods, receiving

communal aid, and employment level all show reasonable impact. Finally, the data-

learned network using the expert network as a prior is sparser still, and therefore

unsurprisingly most of the variables have only very small impact on food security.

Socio-economic status is the only one to still have some substantial effect, with use

of crops and livestock and use of wild foods both having slightly smaller impacts

that are at least bigger than those of all the other variables.

These results indicate possible avenues for interventional studies if these networks

are taken with a causal interpretation. Otherwise it shows us the variables with the

greatest probabilistic relationships with food security, which may aid in streamlining

efforts to identify potential food insecure households which may be helpful given how

rarely food security information is collected compared to other information. The
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Variable I I{H S2

CGS 0.0099 0.0115 0.0030

EdL 0.0078 0.0091 0.0023

EmL 0.0177 0.0205 0.0052

HHG 0.0000 0.0000 0.0000

LLV 0.0264 0.0307 0.0079

ND 0.0021 0.0025 0.0006

NWAA 0.0007 0.0008 0.0002

RCA 0.0083 0.0097 0.0025

RS 0.0000 0.0000 0.0000

SCL 0.0108 0.0126 0.0034

SES 0.0067 0.0078 0.0020

UCL 0.0039 0.0046 0.0011

UWF 0.0334 0.0388 0.0101

WA 0.0049 0.0056 0.0014

Table 5.11: Sensitivity analysis results showing mutual information reduction I
(also as a percentage of food security information H) and expected change of belief
S2 for food security given each of the other variables for the expert elicited network.
CGS - child grant status. EdL - education level. EmL - employment level. HHG -
household head gender. LLV - level of local vegetation. ND - number of dependents.
NWAA - number of working age adults. RCA - receipt of communal aid. RS - refugee
status. SCL - selling of crops and livestock. SES - socio-economic status. UCL -
use of crops and livestock. UWF - use of wild foods. WA - water access.

115



Variable I I{H S2

CGS 0.0002 0.0004 0.0000

EdL 0.0001 0.0001 0.0000

EmL 0.0082 0.0165 0.0013

HHG 0.0000 0.0001 0.0000

LLV 0.0028 0.0056 0.0005

ND 0.0008 0.0016 0.0001

NWAA 0.0005 0.0011 0.0001

RCA 0.0066 0.0133 0.0010

RS 0.0003 0.0005 0.0000

SCL 0.0000 0.0000 0.0000

SES 0.0114 0.0228 0.0017

UCL 0.0008 0.0017 0.0001

UWF 0.0066 0.0133 0.0012

WA 0.0001 0.0003 0.0000

Table 5.12: Sensitivity analysis results showing mutual information reduction I
(also as a percentage of food security information H) and expected change of belief
S2 for food security given each of the other variables for the data-learned network.
CGS - child grant status. EdL - education level. EmL - employment level. HHG -
household head gender. LLV - level of local vegetation. ND - number of dependents.
NWAA - number of working age adults. RCA - receipt of communal aid. RS - refugee
status. SCL - selling of crops and livestock. SES - socio-economic status. UCL -
use of crops and livestock. UWF - use of wild foods. WA - water access.
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Variable I I{H S2

CGS 0.0000 0.0000 0.0000

EdL 0.0000 0.0000 0.0000

EmL 0.0001 0.0002 0.0000

HHG 0.0002 0.0004 0.0000

LLV 0.0000 0.0000 0.0000

ND 0.0001 0.0001 0.0000

NWAA 0.0007 0.0014 0.0001

RCA 0.0000 0.0001 0.0000

RS 0.0007 0.0016 0.0001

SCL 0.0000 0.0000 0.0000

SES 0.0112 0.0244 0.0014

UCL 0.0011 0.0025 0.0001

UWF 0.0043 0.0093 0.0007

WA 0.0000 0.0000 0.0000

Table 5.13: Sensitivity analysis results showing mutual information reduction I
(also as a percentage of food security information H) and expected change of belief
S2 for food security given each of the other variables for the data-learned network
with the expert network as a prior. CGS - child grant status. EdL - education
level. EmL - employment level. HHG - household head gender. LLV - level of local
vegetation. ND - number of dependents. NWAA - number of working age adults.
RCA - receipt of communal aid. RS - refugee status. SCL - selling of crops and
livestock. SES - socio-economic status. UCL - use of crops and livestock. UWF -
use of wild foods. WA - water access.
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Figure 5.13: Interventional inference on the impact of ‘education level’ (EdL) on
the probability of being food secure (Pr pFS “ 0q). a - expert elicited network. b -
data-learned network. c - data-learned network with the expert network as a prior.
Depending on the network, education has either a negative impact or none at all on
food security.

expert elicited network results also give an indication of what variables have the

greatest impact on the beliefs of a member of the community when considering

what other households may be food insecure.

5.3.2 Interventional inferences

The most useful application of a causal Bayesian network is in simulating possible

interventions on it to see whether they should be attempted in actuality. As such,

for the final part of this chapter we show some possible interventional inferences

based on findings from the literature. Unlike in Section 5.2.4.3 these are not based

on any established interventions, but simply on what the literature has determined

should have some effect on food security in the Agincourt study area.

For instance, various observational studies imply that education, communal aid,

local vegetation, and being a refugee should each individually have a substantial

effect on food security (Leyna et al., 2007; Kaschula, 2011; Nawrotzki et al., 2014).

However, our inferences imply that these variables actually have only negative, if

any, impact on food security (Figures 5.13 to 5.16) dependent on the network used.

This only matches the literature for refugee status, where it implies we should expect

a negative impact. However, we must note that the networks show only at best a

small effect from refugee status.

Dovie et al. (2007) found that use of wild foods is prevalent in the Bushbuckridge

area. Performing an inference on it finds that increased use of wild foods leads
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Figure 5.14: Interventional inference on the impact of ‘receipt of communal aid’
(RCA) on the probability of being food secure (Pr pFS “ 0q). a - expert elicited
network. b - data-learned network. c - data-learned network with the expert network
as a prior. Depending on the network, receipt of communal aid has either a negative
impact or none at all on food security.
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Figure 5.15: Interventional inference on the impact of ‘level of local vegetation’
(LLV) on the probability of being food secure (Pr pFS “ 0q). a - expert elicited
network. b - data-learned network. c - data-learned network with the expert network
as a prior. Depending on the network, local vegetation has either a negative impact
or none at all on food security.
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Figure 5.16: Interventional inference on the impact of ‘refugee status’ (RS) on
the probability of being food secure (Pr pFS “ 0q). a - expert elicited network. b -
data-learned network. c - data-learned network with the expert network as a prior.
Depending on the network, refugee status only a slight negative impact on food
security.
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Figure 5.17: Interventional inference on the impact of ‘use of wild foods’ (UWF)
on the probability of being food secure (Pr pFS “ 0q). a - expert elicited network. b
- data-learned network. c - data-learned network with the expert network as a prior.
Use of wild foods consistently has a negative impact on food security irrespective of
the network.
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Figure 5.18: Interventional inference on the impact of both ‘employment level’
(EmL) and ‘selling of crops and livestock’ (SCL) simultaneously on the probability
of being food secure (Pr pFS “ 0q). a - expert elicited network. b - data-learned
network. c - data-learned network with the expert network as a prior. Only the
data-learned network with expert prior shows a positive impact on food security,
whilst the others show only negative impacts.
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Figure 5.19: Interventional inference on the impact of ‘level of local vegetation’
(LLV), ‘use of wild foods’ (UWF), and ‘use of crops and livestock’ (UCL) on the
probability of being food secure (Pr pFS “ 0q). a - expert elicited network. b - data-
learned network. c - data-learned network with the expert network as a prior. Only
the two data-learned networks show substantial variation of food security probabil-
ity.
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Figure 5.20: Interventional inference on the impact of ‘child grant status’ (CGS),
‘employment level’ (EmL), and ‘selling of crops and livestock’ (SCL) on the probabil-
ity of being food secure (Pr pFS “ 0q). a - expert elicited network. b - data-learned
network. c - data-learned network with the expert network as a prior. Only the two
data-learned networks show substantial variation of food security probability, which
is only positive for the one with the expert prior.
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to lower probability of food security (Figure 5.17) completely irrespective of the

network. It is possible here that the direction of the relationship is incorrect, as

perhaps more food insecure households use foraging as a coping strategy so that use

of wild foods only occurs after food insecurity has been attained.

Mabuza et al. (2016) found that non-farming income provides for greater food se-

curity than farming income. If we look at a combined inference of selling of crops

and livestock and employment level at the same time (Figure 5.18) we find that

selling crops and livestocks makes largely no difference. Controlling for it though

does allow for an impact from employment level, though this is only positive for the

data-learned network with the expert prior where the effect is also quite small.

MKaibi et al. (2015) examined the impact of both agriculture and the environment

on food security. We can do the same by performing a combined inference on level

of local vegetation, use of wild foods, and use of crops and livestock (Figure 5.19).

Both vegetation level and use of crops and livestock have little to no impact, but

holding them fixed again allows an impact from use of wild foods (though not so

much for the expert elicited network). As we have seen before, this impact is still

negative for both data-learned networks which perhaps lends greater support to our

earlier hypothesis of the relational direction between food security and use of wild

foods being opposite to that in the models.

Finally, Pereira et al. (2014) examined the impact of income on food security. We

can look at different income sources by performing a combined inference on selling

of crops and livestock, child grant status, and employment level (Figure 5.20). As

expected from the sensitivity analysis, child grant status and selling of crops and

livestock have little impact. Therefore we conclude that actual income is more

important to food security than welfare or commercial farming, though it is only a

positive impact for the data-learned network with expert prior again. This implies

that it is perhaps the paths going through these other nodes in the network that

leads to the switching of the relationship between employment and food security to

being negative.

Though we have failed to definitively determine a causal model for our system, we

have shown the great advantages of Bayesian networks over linear models. There

is far more utility in Bayesian networks, where the inbuilt aspects of representing

conditional independence, encoding both direct and indirect causal relationships,

and modelling a many-to-many set of relationships allows us to perform far more

useful simulations such as these interventional inferences. In addition, Bayesian
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networks are far more intuitively understandable for non-technical individuals such

as medical practitioners and government policy-makers who need to rely upon the

models we build for making decisions. This is also achieved whilst encoding a

great amount of detail and complexity. Instead of strict coefficients showing precise

effects (which is an unrealistic result to attain from any model) we have probability

distributions allowing us to measure the impacts of different actions on the likelihood

of something happening. Overall, we find much more usefulness and flexibility in

these models than in what has been used before. They can now stand as justifications

for interventional studies and funding decisions, as well as starting points for the

building of further models of food security in similar populations.
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CHAPTER 6

Discussion

In this research we have attempted to address the need to move beyond generalised

linear models in the statistical modelling of various different health aspects depen-

dent on socio-economic variables. This has included using non-linear parametric

models to introduce greater assumptions needed to overcome basic confounding in

the causal modelling of social contagion, the use of the semi-parametric method of

Gaussian processes to overcome unjustified a priori assumptions of linearity in the

modelling of fertility patterns, the additional use of the more complicated aspects

of Gaussian processes to enable us to analyse social contagion with datasets lack-

ing in social network variables, and finally modelling household food security using

Bayesian belief networks to provide more realistic and flexible models that allow us

to consider indirect causal relationships when modelling interventions.

In this final chapter we consider the research as a whole, in the context of our initial

aims as outlined in Section 1.3. We first present the concept of a complex system

which gives a core justification for the overall aim of the research. We then explore

both the strengths of the work as well as the weaknesses, with specific focus given to

the importance of community involvement from those the research is about, the lack

of use of more powerful modern black box models, and the difficulty in capturing

causality. We then consider how well the analyses performed have allowed us to

achieve our aims, both in terms of the individual contexts as well as within public
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health as a whole, before looking towards where this research can lead in the future.

Finally, we briefly discuss a side benefit of the work in showing the importance of

collaboration between scientists of different disciplines.

6.1 Public health as a complex system

A complex system is commonly defined as “a dynamic network of agents acting in

parallel, constantly reacting to what the other agents are doing, which in turn influ-

ences behaviour and the network as a whole” (Foundation, 2010). The key aspect

of this definition is that a complex system is one formed of many parts that either

have many complex interactions or exhibit some kind of complex dynamics. For so-

cial systems that consider populations, the complexity usually arises from the large

amount and complicated nature of the interactions between the various members

and factors of the population at different scales alongside the various structural, geo-

graphical, environmental, historical, cultural, and other such elements that influence

the population. There are many common characteristics of complex systems, such as

emergence of large scale phenomena resulting from the small scale dynamics and in-

teractions, nestedness within other systems, high levels of connectivity between the

different elements of the system, inherent non-linearity, and self-organisation (Plsek

and Greenhalgh, 2001; Foundation, 2010). It is these characteristics that lead to

the difficulties of effectively modelling and applying interventions to such systems.

Now many are calling for the consideration of complexity and complex systems in

the analysis and implementation of many aspects of healthcare. This includes the

considerations of healthcare infrastructure as complex systems, including financial

transactions (Bar-Yam, 2006) and transferral of knowledge (Smith and Joyce, 2012),

as well as different aspects of healthcare such as nursing (Chaffee and McNeill,

2007), clinical care (Wilson and Holt, 2001), primary care (Ellis, 2010), and GP

consultations (Love and Burton, 2005). It has also been argued that complexity must

be considered in both the management of healthcare systems (Plsek and Greenhalgh,

2001), as well as the education of healthcare professionals (Fraser and Greenhalgh,

2001). Health in general has been proposed as a complex system as it is dependent

on many different aspects from the biological to the social at a continuous variety

of scales (Topolski, 2009).

The word ‘complex’ has also become a central part of the design of health inter-

ventions, where complex interventions have risen up as an intervention design that
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includes multiple components designed to address the different aspects of the prob-

lem (Campbell et al., 2007; Craig et al., 2008; Hawe et al., 2004). It should be

noted there is a definite distinction between complex interventions and complex

systems (Shiell et al., 2008). However, that does not take away from the fact that

designing complex interventions allows us to more effectively address the needs of

complex systems.

It is clear that the systems that public health research deal with, which tend to

be on the population scale, are indeed complex. According to Sawyer, “societies

are complex configurations of many people engaged in overlapping and interlocking

patterns of relationships with one another” (Sawyer, 2005). Due to the many and

varied interactions we have with each other, any social system must be treated as

complex in order to be effectively modelled (Poli, 2013; Ramos, 2016; Goldspink,

2000). All of this commentary has lead to the call from many for a re-evaluation

of the methods of thinking about and modelling our health and healthcare systems,

including in public health research (Sterman, 2006; Smith and Joyce, 2012; Rutter

et al., 2017).

The consideration of public health systems as complex systems provides much fur-

ther support to the need to introduce the methods we have used to the library of

those available to public health researchers, on top of the improvements we have

seen in the actual analyses. That is not to say that all of our methods have com-

pletely addressed the complex nature of the systems. We have still tended to focus

on single aspects of the system, which admittedly is mostly a practical necessity

caused by restrictions in both the data available and the need to avoid the mathe-

matics getting more complicated than is useful. Overall the use of Bayesian belief

networks probably most closely captures the spirit of complex systems thinking and

whollistic approaches. Our analyses do, however, address a large factor of complex

systems thinking: the need to employ models that can better address the subtleties

introduced by the complex nature of the systems being modelled.

6.2 Advantages of the research

6.2.1 Methodological advantages

The analyses presented here come with a great many advantages over previous work.

The analyses were performed using methods that provided great improvements over

past work, and show a general improvement over the statistical methodology that
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is common to public health research (see Section 1.2). Here we summarise these

improvements, many of which have already been stated within the individual chap-

ters. In summarising them here, we hope to fully demonstrate the benefit of having

used more complex methods in these analyses, and the importance of implementing

and developing such methods further in future research.

Chapter 3 dealt with the difficulty in making robust causal inferences in the face of

highly probable confounding in the area of social contagion. The method involved

comparing how well two competing models of behaviour state transition probabilities

performed, one where the transition probabilities were stratified by friends of the

contagious behaviour state in a form suitable for complex contagion and the other

where no such stratification existed. As described in Section 3.2, most previous

studies such as those of Christakis and Fowler (2013) have implemented generalised

linear models where the state of one individual is modelled on the state of one friend,

with controlling variables in the form of the states of the two individuals at the

previous time points in order to control for confounding. Such studies are essentially

examining the state probabilities of the individuals, where contagion cannot be

distinguished from homophily or shared context. By abandoning generalised linear

models and instead examining whether the transition probabilities are stratified by

friends we have overcome this issue, as at least for the basic confounding phenomena

of homophily and shared context we would not expect such stratification to occur,

as we argued heuristically in Section 3.2 (a more formal explanation can be found in

the electronic supplementary material of Hill et al. (2015)). It may do so for more

complicated confounding variables, which certainly presents directions for future

improvements, but it is arguable that if any simpler explanations can be ruled out

then contagion, as the next simplest, may very well be the most likely.

For studies that did implement methods similar to ours, such as that of Hill et al.

(2010a), they still modelled the contagious transition probabilities as linear func-

tions of the number of contagious state friends. This ignores the established status of

social contagion as a type of complex contagion (Centola and Macy, 2007; Centola,

2010; Valente, 1996). Also, by modelling social contagion as a complex contagion,

we have used a functional form with greater structure which makes it more distin-

guishable in terms of performance from the non-stratified alternative. The many

criticisms levelled against p-values and small linear coefficient values with no errors

provided, as described in Section 1.2, also undermine the methods used in these

previous studies. The maximum likelihood fitting, combined with information the-

oretic model comparison measures, that we used are more robust and trustworthy
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than measures of statistical significance.

In the more general context of public health modelling, the social contagion analyses

presented in Chapter 3 show how going beyond generalised linear models into the

realm of parametric non-linear models fitted using maximum likelihood methods

result in much more robust findings. This is achieved by the introduction of greater

assumptions in the analysis, which as we state in Section 6.3.3 is necessary to really

be able to build an effective causal model. Whilst previous studies attempted to

build in such assumptions via the controlling variables, this does not do so in a strict

enough way to really be able to avoid confounding.

In Chapter 4 we presented two analyses linked by their use of Gaussian processes and

the context of pregnancy in rural South Africa. The first fitted a descriptive model

of fertility patterns dependent on age and socio-economic status using a combined

non-linear parametric and semi-parametric method. Previous studies again relied

on generalised linear models, only introducing non-linear terms for age where non-

linear parametric models are already established (Camlin et al., 2004; Palamuleni

and Adebowale, 2014; Ayele, 2015; Burger et al., 2012). This meant that fertility

patterns were consistently assumed before any analysis was performed to be linear

over any variables such as socio-economic status where no set model is established

in the literature. By bringing in further variables via a Gaussian process regression

of the fertility-age parameters over them, we have avoided any unjustified a priori

assumption of linearity. Our method has allowed for building in structure where

it has been justified, and allowing the data to dictate the structure when no set

structure is known. Gaussian process regression involves few assumptions, so is

perfect for modelling potentially non-linear relationships where all we require is for

the relationship to be smooth and continuous (Rasmussen and Williams, 2006). It

has to be admitted that we found the fertility patterns over socio-economic status to

be linear, but this does not undermine our method as we had no a priori justification

to assume this would be so. Future research involving the building of descriptive

models for public health should take this into consideration, and implement Gaussian

process regression to avoid the unfounded assumption of linearity that could lead

to the failure to capture more subtle and complicated relationships that could be

occurring.

The second analysis examined the possibility of social contagion of pregnancy risk

behaviour amongst rural South African adolescents. Like many datasets, the Ag-

incourt HDSS dataset used does not include social network data (unlike the Add

Health dataset used in Chapter 3). If we relied on standard methods, we would quite
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possibly not be able to perform this analysis. By using more complex methods we

overcame this issue, demonstrating how the use of more complex methods such as

Gaussian process classification opens up many further avenues in public health re-

search. The results we found were admittedly ambiguous, so future research should

focus on the building of a pregnancy contagion measure for data lacking social net-

work variables and a first principles parametric model for such a measure. However,

the more complicated features of Gaussian processes, in this case the covariance ma-

trix, allowed us to attempt to bypass the difficulty of establishing such a measure

and model.

Finally Chapter 5 considered the building of three different potential causal Bayesian

belief network models of household food security in rural South Africa. Like with

each of the other analyses, this is another area where the primary research has been

performed using generalised linear models, statistical tests, and summary statis-

tics (Twine and Hunter, 2011; Hunter et al., 2007; Pereira et al., 2014; Kirkland

et al., 2013; Nawrotzki et al., 2014). This has produced many worthwhile results,

but there are limitations with what can be inferred from, and what actions can be

justified by, these models. The Bayesian network models we presented better reflect

the complexity inherent within the system, as argued in Section 6.1. This is achieved

by the inbuilt modelling of indirect probabilistic relationships. In this way we end

up with more of a ‘many-to-many’ model rather than the ‘many-to-one’ model that

linear regression gives us. Accompanied by a causal explanation, this enables us to

more effectively model different possible actions, events, and interventions on the

system.

On top of this better reflection of complexity, network models also come with a

higher level of interpretability. They better reflect what we see in the world around

us, where many things cannot be simply considered as having direct and linear rela-

tionships with each other. The resulting models are therefore much more satisfying

in both their utility and their ability to represent the system.

Though we were unable to test the causal faithfulness of our models to the system,

this is a problem that is shared by all the methods that came before. Our models

are still much more suitable for causally modelling the system, as they have the

directional structure that is necessary in order to do so (Pearl, 2009). Even struc-

tural equation models that model linear one-to-one relationships are accompanied

by a path diagram displaying the directional structure. The lack of such structure

undermines the ability to make any causal inferences from the models of previous

studies. Also on the topic of causality, with both this analysis and the social conta-
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gion analysis we always considered probabilistic causality, stopping us from making

much more precise inferences that would be much less robust.

6.2.2 Significance of results

Though our core focus is on how these methods have provided improvements on

those that have come before, it is also important to consider the significance of

what each analysis found. Combined with the methodological advantages these

show the full benefit of the research performed.

The results found in Chapter 3 can inform public health policy and the design

of interventions against both depression and obesity in adolescents. Sub-threshold

levels of depressive symptoms in adolescents is an issue of great current concern

as they have been found to be very common, to cause a reduced quality of life,

and to lead to greater risk of depression later on in life than having no symptoms at

all (Bertha and Balázs, 2013; McLeod et al., 2016; Klein et al., 2013). Understanding

that components of mood, as well as mood in general, can spread socially suggests

that while the primary target of social interventions should be to increase friendship

because of its benefits in reducing the risk of depression, a secondary aim could

be to reduce spreading of negative mood. This is something that was not shown

when only considering binary depression states (Hill et al., 2015). On the other

hand, as the findings suggest that though negative mood spreads it does not do so

to such an extent to push most individuals over into depression, we therefore find

evidence to support that depression is not simply a case of low mood. Depression

must clearly operate via different mechanisms from general mood and individual

depressive symptoms.

Whilst we found general contagion of mood previously (Eyre, 2014), we did not find

strong enough evidence for the spreading of lower weight, only higher. This lends

support to the conclusion of obesity spreading, whilst weight changes in general

do not. Interventions should therefore focus on the reduction of the spreading of

obesity, rather than on the benefits of friendship in reducing the risk of obesity. As

described in Section 3.1, obesity in children and adolescents has been a concern for

a long time now, so these findings are significant in terms of improving the health

of adolescents in order to ensure their health in later life.

The analysis in Section 4.3 on fertility patterns was entirely focused on method-

ological improvements rather than providing any important findings. As such, we

simply re-establish the fertility age-pattern we have seen in both the data and the
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literature (Garenne et al., 2000; Peristera and Kostaki, 2007). More interestingly,

our results imply that socio-economic status has no significant impact on the fertility

patterns of the population, which stands in contradiction of past research that only

examined empirical frequencies (Williams et al., 2013). It also raises implications of

differences between the Agincourt population and other similar populations (Prad-

han et al., 2015). This could perhaps be due to the homogeneity of the Agincourt

population in terms of wealth compared to the wider South African population.

Overall this implies that socio-economic status should not be a significant factor

when choosing populations for actions or interventions focused around pregnancy in

the Agincourt study area.

Given further work to more strongly reinforce the results, the findings of Section 4.4

could inform public health policy and intervention design against adolescent preg-

nancy in the Agincourt study area as well as possibly other similar populations.

Though ambiguous, the findings do imply a lack of support for contagion of preg-

nancy risk behaviour amongst the adolescent population. Considering the high

number of risks involved with adolescent pregnancy (Panday et al., 2009; Timæus

and Moultrie, 2015; Christofides et al., 2014; Ramaiya et al., 2014), as well as the

unacceptably high numbers of them occurring in sub-Saharan Africa (Panday et al.,

2009), such interventions are of great concern. These findings imply that social

effects should not be of great concern in designing these interventions. Therefore

focus should be applied to the great many other factors which have been shown to

contribute to increased risk of adolescent pregnancy (Pradhan et al., 2015).

If the causal interpretation of any one of the three possible household food security

models presented in Chapter 5 can be confirmed, then that model will be a valuable

tool in designing and simulating basic interventions against food insecurity in the

Agincourt study area. In particular, the model can be evolved via an iterative

process of using it to inform intervention trials and then using the results of these

trials to further develop the model. Though food insecurity is decreasing in sub-

Saharan Africa (Labadarios et al., 2011; Rosen et al., 2016) it is still a great concern

of the Agincourt community, as discovered by our meetings with the Agincourt

Community Advisory Group described in Section 5.1. Demonstrating actions and

improvements in this area would obviously be of great importance to them, and

may therefore further reinforce their support of the research unit (though support

is already great due to the benefits the census already provides the area). Beyond

Agincourt, the models could also form the basis for the design of similar models in

similar populations across the world.
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In addition, the results from the expert elicitation produced some very counter

intuitive findings, as described in Section 5.3.2. The findings may be heavily related

to the nature of the experts we used, as our experts were experts in life in the

locality. Other studies, such as that of Barons et al. (2014), used experts that had

a greater overview of a wide range of evidence on the topic in question and great

understanding of that evidence. This is an obvious limitation of our work, though

one borne from the desire for greater community involvement in research, but it

raises the interesting possible future research area as to the effect of using different

expert groups. We thought that perhaps the people living within the study area

might be experts on what causes what within the area, but life experience may

not be sufficient for these types of expert elicitations. Despite this it may be that

the model can give insight into local views and assumptions within the study area

population.

6.2.3 Community-driven research

Though the results we obtained in Chapter 5 from our expert elicitations are quite

possibly biased by the locality of their knowledge, the community-driven nature of

that particular analysis can still be viewed as a great advantage. It is important

in public health, considering the complexity of the systems analysed, the public

nature of research funding, and the possibility of biases in our research due to lack

of knowledge or perspective, to involve the individuals who our research is based on

into that research.

Avoiding community involvement comes from a research paradigm where we as

researchers like to think of ourselves as objective observers separated from the sys-

tem (Israel et al., 1998). However, a complex systems view of our world contradicts

this idea. Due to factors ranging from politics and economics to culture and gen-

der we may be limited in our own interpretations of the systems we study and the

importance of which parts of these systems to study.

Staniszewska and Denegri state that community-driven research “aims to enhance

the quality, appropriateness, acceptability and relevance of research, ensuring it ad-

dresses issues of importance to patients and the public” (Staniszewska and Denegri,

2013). By bringing in the perspective of the CAG, we gained greater insights into

what is important to members of the community and accessed greater resources in

terms of their local knowledge than we could have done if we did not involve them.

Many medical researchers support community-driven research due to the benefits
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it provides their research (Goldberg-Freeman et al., 2010). Above all, community-

driven research increases the relevance and usefulness of public health research to

those who are the intended end users.

There are many difficulties with community-driven research (Israel et al., 1998;

Staniszewska and Denegri, 2013), not least of which for us was the language diffi-

culties in conveying complicated mathematical concepts to non-mathematical indi-

viduals (Colquhoun et al., 2013). This specific challenge was overcome using careful

design of the expert elicitation questions as described in Section 5.2.2.1. An ad-

ditional challenge, as has been mentioned many times before, is the possible bias

inherent in the local nature of the expert knowledge used in elicitation. This can be

overcome in future with further elicitations incorporating a wider range of expert

knowledge. Despite this, involving the community was still advantageous in the

initial proposal and justification of the research.

Community-driven research is a key part of the Agincourt HDSS (Kahn et al.,

2012, 2007). Though this aspect is not the focus of this research, we feel it adds

substantially to the part of the analysis where it was used.

6.3 Limitations of the research

6.3.1 Practical limitations

All research comes with limitations, and the analyses presented here are certainly

no exception. Though a lot of effort is undergone by the Agincourt research unit

to ensure the reliability of the Agincourt HDSS data, as detailed by Kahn et al.

(2012), there are some errors, misreporting, and missing data that we are unable

to account for. The dataset is of a size and quality though that these only produce

minimal issues and do not seriously undermine the results presented here (Fottrell

et al., 2008). Similar issues must also exist for the Add Health dataset, and due to

our need to subset the data to only the students from so-called saturated schools

this could possibly undermine the work. However, such subsetting was necessary in

order to ensure the most complete and detailed social network could be analysed, as

the saturated schools are the only ones where all students were allowed to list more

than only one friend of each gender.

As just mentioned, there is certainly missing data within each dataset which we

treated simply by ignoring observations with missing variables. It is possible that
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use of methods such as multiple imputation (Gelman et al., 2014) or expectation

maximisation (Murphy, 2012) could have mitigated for this. However, when per-

forming initial exploratory data analysis no obvious missing data patterns appeared

that would have strongly implied the use of these methods to be necessary. We do

admit though that performing a thorough missing data analysis of both the Agin-

court and Add Health datasets would have been useful in order to establish exactly

what missing data patterns exist.

There also exist various methodological limitations for each of the analyses. For

the social contagion work of Chapter 3, as noted in Section 3.2 we were not able

to formulate from first principles a fully general model for the individual’s state as

a function of friends’ states, though efforts were made towards this in Section 3.5.

We were also unable to learn such a model from data due to the sample size of the

study being constrained by the necessity of constructing as complete a friendship

network as possible, as mentioned above. The friendship network itself may also not

be complete. However, as the majority of individuals failed to list the maximum

number of friends allowed, this implies that the network may, in fact, approach

completeness. One other issue lies in the measure of BMI used to measure body fat in

the weight change contagion analysis (Section 3.3) as evidence exists to suggest that

it is a poor measure of how someone’s physique is related to their health (Tomiyama

et al., 2016). It is arguably still a good course measure at the population level, so

the use of it does not necessarily negate the results of this analysis, but further work

should consider other possible measures.

The methodology used in Section 4.3 to analyse fertility patterns also comes with

some limitations, principally produced by the use of a parametric model and the de-

cision to use regression techniques. The parametric regression must be performed for

each combination of values for the non-age covariates, which means that introducing

further covariates reduces the performance of the regression, a situation that can

only be mitigated by using more data or not relying on a parametric model. How-

ever, the use of the parametric model allows us to definitely capture the age-pattern

shown in our empirical data and in fertility age-patterns for many populations in

the literature (though admittedly prevents us from being able to capture possible

details such as a second fertility peak). In order to use regression techniques we

have to bin the observations in the data to quantiles, which results in the removal

of information. We mitigated against this by using cross validation and goodness-

of-fit techniques to choose between different numbers of quantiles to use. The use of

regression techniques also ensures we can produce visualisations of the relationships
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that can give us insight in to what is going on, and not just predictions alone. The

age-pattern model also includes normalisation terms, resulting in accurate inferences

for the shapes of the relationships but inaccuracies in the inferred numerical values.

The model also results in interaction effects from each other covariate with age, but

no main effects from the individual covariates.

Similar to our inability to formulate a general first principles model of an individual’s

state given their friends’ states in the earlier social contagion work, when analysing

possible contagion of pregnancy risk behaviour in Section 4.4 we were also unable

to formulate a first principles model for social contagion that could be applied to

datasets lacking any social network data. Unlike the earlier work, we did have a large

enough sample size to attempt to learn such a model from the data, though as far

as the data was concerned the contagion variable as defined had little to no impact

on the pregnancy probability. That fact highlights another limitation in the choice

of covariates. Though these covariates were chosen in an informed fashion based

on known pregnancy risk factors, it is still true that for this method the contagion

variable is entirely dependent on this choice. Instead of defining contagion in terms

of similarities in risk, it may be better to look at the risk of exposure to each

others’ behaviours. However, this comes with much greater difficulties as there is

less research into what factors make individuals more likely to note each others’

pregnancy risk behaviours, and such factors are also not as commonly available in

the data. We also noted an ambiguity in the results, leading to the conclusion of

no evidence of social contagion but also not enough evidence to completely rule it

out. A parametric approach, though more difficult to formulate, may overcome this

ambiguity. Such a formulation is beyond the scope of this work, and despite the

ambiguous results this does not undermine the advantages in using a more flexible

model like Gaussian processes. If such methods did not exist, we would have much

greater difficulties even attempting research like this.

Finally, limitations in the Bayesian network models of household food security pre-

sented in Chapter 5 focus mainly around the difficulties in statistically modelling

a causal system. The lack of incorporating time certainly undermines the mod-

elling of causality, as that is arguably an essential part of doing so. This could have

been overcome by designing a dynamic Bayesian network, but doing so would have

severely limited the amount of data that could be used to estimate each parameter

as well as requiring the uncertain assumption that causal effects last over three years

due to the gap between collection of the food security census module. It would have

also presented a much greater additional burden to our experts in the elicitation,
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which we were expressly unable to do due to our limited resources. There are also

issues in the learning of the networks. On one side, the experts showed possible

substantial bias which is unsurprising given the similarities in their life experiences

to one another, though this does present the possibility of the network as a useful

model of said biases. On the other side, the algorithms used to learn the networks

incorporate assumptions as to the completeness of the data in terms of its ability to

cover all variables needed to fully causally model the system without the need of any

latent variables. This means that again the choice of variables is a great limitation

as it is possible that latent variables may have been missed, though this was again

mitigated by choosing the variables in an informed way. Overall, these limitations

do not undermine the usefulness of developing these models, though do emphasise

the need to perform more research with much greater resources before the models

can be fully put into practise to model interventions.

6.3.2 More complex methods

Though research within the areas of public health and epidemiology still rely heavily

on generalised linear models and hypothesis testing for all statistical modelling,

researchers from the areas of machine learning and computer science have been

making in-roads into many areas including medicine with the use of more modern

methodology. Over the last few years, we have seen the rise of deep learning as

a very powerful statistical technology with great successes seen across science and

technology (LeCun et al., 2015). Deep learning refers to neural networks where

variables in the data (such as the pixel values of an image) are passed through

many levels of linear combination and non-linear transformation before outputting

a result (usually a classification). In doing so, the algorithm manages to capture

deeply complex patterns that exist within the data (such as combinations of edges in

images). Alongside many further developments, such as convolution, recurrency etc.,

such algorithms are currently allowing for dramatic leaps in the realms of prediction,

data representation, computer vision, and much more (Goodfellow et al., 2016).

Given all this, it seems a reasonable question to ask why we relied on what can

be argued as possibly predictively weaker methods such as non-linear parametric

regression, Gaussian processes, and Bayesian networks. Essentially there is a very

different purpose behind the methods of deep learning and what we have tried to

achieve in the analyses presented here.

The core interest of social science is in being able to discover what phenomena are
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occurring within the systems our data come from. In a way, we are attempting

to naively model parts of the actual data generating process. In doing so we can

attempt to understand the systems, and better develop actions and interventions

to influence them. As such we are more interested in explanatory or descriptive

models, rather than predictive models which are typically the aim of deep learning.

There is a distinct difference between such models, as emphasised by Shmueli (2010).

Explanatory models are “statistical models for testing causal explanations”, such as

those we used to model social contagion and household food security. Descriptive

models are “aimed at summarising or representing the data structure in a compact

manner”, such as our method for modelling fertility patterns. Predictive modelling,

on the other hand, is “the process of applying a statistical model or data mining

algorithm to data for the purpose of predicting new or future observations” which

describes the most common purpose of deep learning. In this way a predictive

algorithm has a strict technological purpose, whether that be telling a company

what customers to aim adverts at or helping a car to drive itself, but does not

concern itself with the causality involved.

This is not to say that predictive models are not useful in science. They can aid

in many ways, from distinguishing patterns that can direct the formation of new

hypotheses to providing more effective methods of comparison between competing

explanatory models as well as perhaps even helping us pick out the individuals who

could most benefit from the interventions designed via causal modelling (Shmueli,

2010). By examining versions of the system undergoing different interventions,

invariance in predictions can also be used to identify causal predictors of an outcome

of interest (Peters et al., 2016). However, they still rarely give results that can

be deemed interpretable, which is especially true of deep learning. There is some

argument as to what ‘interpretable’ means (Lipton, 2016). Many consider deep

learning to be ‘black box models’ where we cannot tell what is going on inside (Lou

et al., 2012), but mathematically they are not that complicated. Here we deem

the lack of interpretability to be due to the fact that deep learning models take

the variables to such a level of mathematical abstraction that it is impossible to

discover the actual causal or structural relationships between variables from these

algorithms in any human interpretable way. Some researchers are attempting to

discover interpretations as to why deep learning is so powerful (Voosen, 2017), but

for most applications the algorithm makes its predictions in a way unrelated to the

world around us in a way most individuals can understand.

It is possible that we should focus on predictive ability over the construction of
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explanatory or descriptive models because of the immense difficulties in inferring

causality from observational data (Breiman, 2001). Doing so, however, would present

a great restriction on the research we are able to perform which is impractical given

the needs of public health, medicine, and the design of public policy. As we have

shown in our analyses here, we can focus on improvements in explanatory and de-

scriptive models that can therefore lead to more worthwhile results rather than

abandoning them completely.

Aside from the argument between predictive and explanatory/descriptive models,

there are also further reasons for using less complicated methods than deep learning.

The individuals who have to use the results of this research (including medical

practitioners) are arguably more likely to trust a method that produces results in a

way they can better understand or interpret themselves (Vellido et al., 2012). This is

an area where Bayesian networks have the potential to thrive due to their structural

interpretability, where modelling directed relationships between components of a

system allows us to build a narrative for the system that users can appreciate.

Finally, there is also the argument that due to the size of our datasets we simply do

not need algorithms as powerful as deep learning (Leek, 2017). Deep learning has

especially come in to focus due to the rise of ‘big data’ (i.e. data of a great enough

size or complexity that standard computational resources are not enough to process

them, for instance data from internet services that are able to collect vast arrays of

variables on global populations or biological data on complicated structures such as

genomes). Though our datasets are large by public health standards they do not

come under this definition of ‘big data’ so there is no need to introduce unnecessary

complexity in to our modelling particularly when it risks reducing interpretabillity.

Throughout these analyses we have attempted to introduce enough complexity to

deal with subtle issues that arise in public health modelling, and to increase the

flexibility in such modelling, but in doing so we have attempted to maintain the

interpretability of the models to further aid their usefulness in public policy and

intervention design.

6.3.3 Causal modelling

Modelling causality is a subject that comes with great controversy, as we saw

in Chapter 3. At the same time, modelling causality is something that researchers

within public health will always need to do. The core aim of public health is the

design and implementation of interventions to improve the health of populations.
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Interventions involve some action or combination of actions that influence the sys-

tem of interest, and to be able to choose these actions in an effective way we must

know how different parts of the system affect each other. We want to know for

instance that if we vaccinate this portion of the population, it will definitely prevent

the spread of a disease throughout the entire population.

Unfortunately, due to the ethical and resource issues involved in experiments on

health aspects and behaviours of large populations, such causal modelling will often

need to be performed on observational data. It is technically impossible to observe

causality in observational data (Schield, 1995; Lyons, 2011). It can only be inferred

and therefore we can only claim inferred causality in our results here.

By modelling causality in observational data we inevitably introduce a weakness in

our analyses and results that we cannot avoid, which further demonstrates the need

we have argued throughout for moving beyond simpler methods like generalised lin-

ear models. Such models can only infer associations, not causal effects. Pearl (2009)

states that causal models must have assumptions built in, usually in the form of a

structure that can show the directionality of relationships and more importantly the

lack of effects between variables. This incorporation of assumptions and structure

forms a large part of many of the methods we have used here, especially for Bayesian

network models (Pearl, 2009). All of this does mean, however, that we must come

to modelling with some knowledge and assumptions of what causal relationships ac-

tually exist a priori. This is a limitation we have attempted to overcome by relying

on the established knowledge base contained within the literature (often developed

from experimentation) to inform our assumptions.

The approach of Pearl (2009) is not the only one when trying to infer causal effects.

There are many different concepts of and approaches to causality, some related

and some coming from different view points, reflecting the complicated nature of

inferring causal effects. Hume (1738) developed a set of necessary conditions for a

relationship to be causal: namely that the cause must precede the effect in time,

they must be universally associated, and spatio-temporally connected.

More mathematical approaches to causality, such as Granger causality, tried to for-

malise these conditions and create a practical way to determine that a relationship

is causal. In Granger causality, some variable Xt (measured at time t) can be con-

sidered a cause for some effect Yt`1 (measured at time t ` 1) if Yt`1 can be better

predicted with Xt than without Xt given knowledge of all other pertinent vari-

ables (Lechner, 2010). Our approach in the social contagion modelling of Chapter 3
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is most similar to this, in that we rely on observed occurrences within the data to

establish a causal effect. However, instead of considering the contribution to predic-

tive ability, we established the possibility of a causal contagion effect by determining

whether adding a contagion part to the transition probability of changing state im-

proves the trade off between goodness-of-fit and model complexity measured by the

information criteria.

A more practical approach favoured in epidemiology is given by the Bradford-Hill

criteria, which are simply a set of nine criteria for the consideration of whether an

effect may be causal (Hill, 1965). These include that the effect is strong, reproducible

across multiple studies, specific in nature to e.g. a particular location or context,

and coherent with experimental findings, as well as various other criteria. Similar

to Granger causality, there are elements of Humean causality in that the cause

proceeding the effect is yet another criteria. Unlike Granger causality, the Bradford-

Hill criteria are not mathematically formalised. The more criteria the effect meets,

the more justified we are in concluding it is causal. The social contagion modelling

of Chapter 3 also includes at least one of these criteria, that of plausibility i.e.

whether we have good reason to believe the effect is causal. This we established

from experimental findings in the literature, as discussed in Section 3.1.

An alternative mathematical approach is that of potential outcomes, where the im-

pact of different possible values of the causal variable Xt on the effect Yt`1 are con-

sidered counterfactually (i.e. instead of considering actual observed occurrences we

consider different potential realities of what could have happened if Xt had achieved

a different value) (Lechner, 2010). Alongside the use of directional structure, poten-

tial outcomes are core to the conceptualisation of causality favoured by Pearl (2009)

and used in the methods of structural equations and Bayesian belief networks. We

considered potential outcomes in the interventional inferences of Chapter 5 where we

followed the approach of Pearl (2009) implicit in the use of Bayesian belief networks.

As mentioned before, there are also approaches that link causal modelling with

predictive modelling. Peters et al. (2016) showed that the marginal distribution of

some outcome of interest conditioned on a set of direct causal predictors of that

outcome does not change no matter what interventions are made to variables (other

than the outcome) within the system. Therefore invariances in conditional marginal

distributions under different interventions within a system can help identify causal

predictors of an outcome.

There are many other conceptualisations of causality established in philosophy,
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mathematics, and applied science. In our analyses we relied on the approaches

most suitable to the needs of the data, methodology, and context of the problem.

There is no one definitive approach to causal inference, so a practical choice of

direction must always be made.

As a further measure to mitigate against making conclusions of causality that are

too forceful, we have consistently relied on inferring probabilistic causality. In prob-

abilistic causality we simply infer that taking some action has an effect only on

the probability of some outcome, and not directly on the outcome such as in other

defined forms of causality (Parascandola and Weed, 2001). This definition is not

only more inclusive, but also not as strong as stating that “changing X by amount

α makes Y change by an amount β”.

Causal modelling is not the central point of this work, but is an important and

necessary part of public health research as a whole and in more than one of these

analyses we have shown how using more complex methods can improve the causal

inferences performed. We cannot claim our causal inferences to be robust enough

to give definite observations as there may indeed be confounding variables we were

unable to develop assumptions against that would undermine the conclusions, but by

using methods that build in heavier assumptions in more mechanistic and structural

fashions we have been able to mitigate against confounding in a better way than

generalised linear models and hypothesis testing.

6.4 Concordance with research aims

We believe the advantages that our analyses have provided have enabled us to

meet the research aims outlined in Section 1.3. Our core aim was to utilise more

modern and complex statistical methods that have seen use in fields such as machine

learning and computer science in different analyses of socio-economic variables in

public health where such methods have seen no substantial use before, in order to

increase the robustness, flexibility, and utility of the findings and research performed

above the limitations that have been found in standard methodology. Overall we

believe this has been achieved.

In using and further developing a non-linear parametric model of social contagion, we

managed to make causal inferences of the spread of mood and weight over adolescent

friendship networks whilst successfully controlling for basic confounding in a way

that generalised linear models cannot. In modelling social contagion as a form of
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complex contagion, and relying on maximum likelihood estimation and information-

theoretic model selection, we achieved a more robust model comparison than that

which could be done using linear contagion and statistical significance measures.

This has enabled us to make robust contributions to the knowledge of what health

aspects are and are not socially contagious.

In utilising Gaussian processes we were able to both increase the robustness of

descriptive models of fertility patterns against being undermined by possibly wrongly

assuming linear patterns, as well as open up social contagion analysis to the use of

datasets that do not include social network data. The minimal assumptions made by

Gaussian processes allow the data to dictate the shape of relationships the method

finds, therefore overcoming the need to make unjustified a priori judgements of what

these relationships should be like. The greater wealth of features built into a more

complex method such as Gaussian processes, namely the use of covariance functions,

can be utilised to overcome boundaries in approaching research questions using data

that may not allow the use of more standard methods. This has enabled us to make

much more flexible contributions to the literature on pregnancy in rural South Africa

than studies that have come before.

In building Bayesian belief network models of household food security in rural South

Africa, we have introduced directional structure as a key aspect of the model which

is not so for the generalised linear regressions performed in past studies. This has

enabled us to build models much more suited to causal modelling. On top of that,

the indirect relationships modelled by the networks provide a much better reflection

of the complexity inherent within the system. These models then provide us with

a strong base from which to develop further models and simulate interventions in

a much more effective fashion. This has enabled us to make contributions of much

greater utility to the work against food insecurity within the Agincourt study area.

Overall, by looking to other areas of science that involve data analysis and have

already adopted a greater range of methods, we have contributed to the library of

public health methodology in a positive way. Alongside other researchers attempting

to introduce much more suitable methods, we have established the importance and

usefulness of these more complex methods. That stepping beyond linear models

and hypothesis tests enables us to do better research and, equally importantly, do

more research. Modern statistics and machine learning is home to a wealth of

methods that public health researchers have often ignored in favour of standardised

methodology that often cannot meet the needs of research in such a complex area.

The methods we have used here are just some of those that must be taken on
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generally by public health researchers, and emphasises the importance of being

more thoughtful about what the right methods for our research questions are.

Beyond the issue of methodology, we have been able to make good quality contribu-

tions to the pool of knowledge of three key areas of public health - social contagion

amongst adolescents, adolescent pregnancy in rural South Africa, and household

food security in rural South Africa. Though our focus was on the methodologi-

cal improvements, we should not dismiss the end findings of each analysis (or the

potential future findings of improved versions of these analyses). In the end, it is

such findings that will inform public policy and help improve the health of many

populations. We seek to improve the methods used in order to improve the conclu-

sions reached, and therefore improve the actions taken by public health bodies. We

believe the research performed here contributes significantly to this effort.

6.5 Future work

Our research here only covers select areas within the wider spectrum of public health

research, and is certainly not the end point in using and developing more suitable

methods for this research. Like all science, it is part of an iterative process that will

lead to better research, more robust conclusions, and greater health implications for

the general public. Probably the most key part of future work that must be done

in this area is to take the methods presented here, and other such methods used

in machine learning, computer science, and statistics, and apply them to further

areas of public health research on socio-economic variables where they could lead

to improvements over the methods that have been used before. Beyond that, there

is also much we could still do in terms of further research and improvements in the

individual analyses presented here.

We anticipate that future work in social contagion can further enhance the models

used in Chapter 3 and section 4.4 in order to cope with a wider range of datasets and

more realistically reflect the mechanisms underlying social contagion. We already

presented movements in this direction in Section 3.5, where we presented various

possible models of social contagion combining both higher and lower state friends

to overcome the necessity of analysing these friend groups separately. The method

used in Section 4.4 already presents an enhancement over that of Chapter 3 due

to its ability to be applied to datasets with no social network data. However, the

results from this method were a little ambiguous, so the development of a para-
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metric method must be attempted. Possibilities in this direction were described

in Section 4.4.5, including the use of similarity graphs to develop social contagion

measures that could be used in a parametric model. Beyond these methodologi-

cal developments, we must also take the methods used here (which already present

improvements of those used in other studies) and apply them to other health be-

haviours such as smoking, suicide, and sex, as the proven existence of social effects

could have great impact on the development of public health interventions.

Further research to extend our method used to model fertility patterns in Section 4.3

might include the following. First, to overcome the limitations mentioned, Gaussian

process regression could be used for age rather than relying on a parametric model.

A probabilistic classification technique such as Gaussian process classification could

be used instead of regression techniques to overcome the issue of having to bin the

observations together. In order to examine the apparent lack of a fertility decline

in our results, and to make the research into the fertility decline more robust, non-

linear modelling techniques such as Gaussian process regression could be applied to

the fertility time series of the study area. In addition, other outcomes than fertility

that have also been analysed using less innovative methods could be explored with

this same technique. Finally, various work has shown the age-pattern of fertility

to contain a secondary earlier age peak credited to premarital fertility (Garenne

et al., 2000). It would also be of interest to see what happens when the parametric

fertility-age model used here is replaced with a double peaked model such as that

proposed by (Peristera and Kostaki, 2007).

We believe that the Bayesian belief network models of household food security we

presented in Chapter 5 can form the basis of the iterative generation of a robust

causal model of household food security in the Agincourt study area. As there is

no established test of causal faithfulness beyond experimentation, the models can

be used to inform possible interventional studies that could then be used to further

develop the model and so on. In addition, it is possible that methods of testing

causal faithfulness from observational data could be explored, but this comes with

obvious limitations. An alternative to experimentation would be to use further

expert elicitations. We did not have the resources to perform elicitations beyond the

ones we did. With greater resources and more time, future work could perform more

and larger elicitations, even involving a greater range of experts such as members of

the Agincourt research unit. Another way to improve the causal applicability of the

methods would be to develop them into dynamic Bayesian networks that include

temporal relationships, which would also require further resources in terms of data
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and expert elicitations. Beyond the further development of these models, they can

also form the basis of developing similar models of household food security for other

similar populations.

6.6 The importance of collaboration

One final strength of this research that we wish to briefly discuss is the collaborative

nature of it. Though this is the work of the author it was achieved via collaboration

and discussion with scientists of many different backgrounds. Commonly though

these scientists either came from a social science or mathematical background.

The development of the methods used in these analyses could only be achieved out

of collaboration, and the development of further models will also require collab-

oration. Mathematicians bring a greater range of methodology such as those we

have used here. As discussed in Section 1.2, textbooks in statistical methodology

aimed at social scientists concern themselves only with the standard methodology

of GLMs, hypothesis testing, and summary statistics. The work of a social scientist

is context heavy such that they may have little time to go beyond these standard

methodologies. However, social scientists are still essential in this work for framing

the problem, developing the assumptions needed especially in causal modelling, and

bridging the knowledge gap between experts and non-experts (Lowe et al., 2013).

Given this collaboration is essential for the improvement of methodology in public

health analysis.

There are also further benefits to collaboration. It has been shown that paper au-

thorships crossing a range of disciplines correlates with more citations and favourable

responses from peer reviewers (Franceschet and Costantini, 2010). It has also been

argued that mutually beneficial relationships can develop between different fields

such as mathematics and biology where mathematical methodology can improve

biological research and biological findings can spur the development of new math-

ematics (Cohen, 2004). Such a relationship could also exist between social science

and statistics.

There are many barriers to collaboration (Fischer et al., 2011). It has been argued

that due to these difficulties collaboration for its own sake is not worthwhile, but

is extremely worthwhile when it can provide new possibilities (Sonnenwald, 2007).

This research (alongside other similar research attempting to bring new methodology

to public health) has shown how such collaboration can be fruitful due to the new
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possibilities in terms of increased robustness, flexibility, and usefulness they present.
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CHAPTER 7

Summary

The modelling of socio-economic variables in public health is integral to the design

of interventions related to social determinants of health in populations across the

world. Such research has now become a central part of the aims of the World

Health Organisation in order to address the health inequalities and inequities that

exist in all countries. Due to the expense and ethical difficulties of experimenting

on socio-economic variables, statistical inference from observational data is key to

this research. However, these inferences are commonly done using a small library

of conventional, but simplistic, methods such as hypothesis testing and generalised

linear regression. Moving beyond these methods is essential to improving statistical

inference in public health and addressing the criticisms many established studies

have drawn. We addressed this issue in three key areas: social contagion in US

adolescents, adolescent pregnancy in rural South Africa, and household food security

in rural South Africa.

In Chapter 3 we used a non-linear parametric model to analyse the possibility of

social contagion of mood and weight across the friendship networks of US adoles-

cents using the Add Health dataset. We further generalised an already established

model of social contagion where transition probabilities of possibly contagious be-

haviour states are stratified by the number of friends of the contagious state. By

examining stratified transition probabilities, we were able to correctly distinguish
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contagion from other possible confounding phenomena. By modelling the contagion

as a complex contagion, and using maximum likelihood and information-theoretic

statistical techniques, we improved on similar studies that relied on linear contagion

and statistical significance tests. By generalising from binary behaviour states to

ranges of behaviour states we were able to capture greater subtleties of the contagion

phenomena occurring. As such, we were able to find evidence of one-sided contagion

of increasing weight, supporting the possibility of contagion of obesity. We were also

able to help reconcile our previous findings of contagion of mood with the lack of

contagion of depression found in previous studies using a simple Gaussian process

regression model. Finally, we presented several possibilities of generalising the model

further. Overall we were able to increase the robustness of causal inferences made

about social contagion.

In Chapter 4 we used Gaussian processes to address two separate problems in mod-

elling pregnancy in rural South Africa using the Agincourt HDSS dataset. The

first involved building descriptive models of fertility-patterns over socio-economic

variables such as age and socio-economic status, where established models exist for

age but not for any other variable. By using Gaussian process regression combined

with parametric regression over age, we were able to capture the pre-defined fertil-

ity age-pattern whilst also being able to infer fertility-patterns over other variables

without making unjustified a priori assumptions of linearity. Gaussian process re-

gression makes minimal assumptions, allowing the data to govern the shape of the

relationship found and allowing for the possible findings of non-linearities. Though

the fertility-pattern over socio-economic status was found to be constant, this does

not diminish the importance of not assuming linearity when we have no reason to

do so. We also analysed differences here between refugee and non-refugee subsets of

the population, but found no substantial deviations of interest.

The second part of Chapter 4 involved taking advantage of the more unique features

of Gaussian process classification, namely the covariance function, to perform an

analysis of the possibility of social contagion of pregnancy risk behaviour on the

Agincourt HDSS dataset that includes no social network data. This was achieved

by defining a contagion variable derived from the covariance function fitted to a non-

contagion model from the previous time step. In doing so, we were able to address

a research question we could not have done otherwise without resorting to the much

more difficult task of justifying a first principles parametric model of a non-social

network contagion measure. We found no evidence for social contagion of pregnancy

risk behaviour, though admittedly the results were somewhat ambiguous. As such,
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further research is needed, but we have still established the flexibility relying on

more complex methods gives us.

In Chapter 5 we built three possible causal models of household food security in the

Agincourt study area using the method of Bayesian belief networks. One learned

from expert elicitation using the expert local knowledge of members of the Ag-

incourt Community Advisory Group. The second learned from the data using a

contraint-based structure learning algorithm. The third learned from a combination

of the experts and the data by using the expert network as a prior for a hill climbing

greedy search algorithm across the possible network structures. The inbuilt features

of directional structure, modelling of indirect relationships, and conditional inde-

pendence make Bayesian belief networks much more suitable as causal models we

can make causal inferences from rather than any typical linear model or statistical

test. Testing the causal faithfulness to the system was not possible, but various

comparisons were performed including simulating a small set of established inter-

ventions on the networks. These implied that the data-expert combined structure

performs the best. These networks can be used for more effective simulations of

possible interventions, as well as informing the building of similar network models

for other populations.

The social population level systems considered in public health have been long estab-

lished as complex systems, therefore rendering simple dichotomous or linear models

insufficient for many inference tasks on these systems. Though the methods we

have used here include many limitations, not least the difficulties in establishing

causal models from observational data, they achieve great improvements over previ-

ous studies in the key areas of robustness, flexibility, and utility. Not only have we

contributed key findings to the contextual areas we considered, we have also brought

methods in from areas such as machine learning and computer science to help grow

the library of statistical methods in public health research. In doing so we hope to

encourage more thoughtful analyses with more suitable and stronger methodology.

We also hope to further encourage collaboration between social scientists and math-

ematical scientists, continuing the tradition already established by many, to ensure

the quality of public health research in socio-economic variables to come.
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Marcus Müllner, Hugh Matthews, and Douglas G Altman. Reporting on statistical

methods to adjust for confounding: a cross-sectional survey. Annals of Internal

Medicine, 136(2):122–126, 2002.

Barbara Hazard Munro. Statistical methods for health care research, volume 1.

Lippincott Williams & Wilkins, 2005.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

A Must and SE Anderson. Body mass index in children and adolescents: consider-

ations for population-based applications. Int J Obes, 30:590–594, 2006.

Aviva Must, Jennifer Spadano, Eugenie H Coakley, Alison E Field, Graham Colditz,

and William H Dietz. The disease burden associated with overweight and obesity.

Jama, 282(16):1523–1529, 1999.

Florence K MKaibi, Nelia P Steyn, Sophie Ochola, and Lisanne Du Plessis. Effects

of agricultural biodiversity and seasonal rain on dietary adequacy and household

food security in rural areas of kenya. BMC Public Health, 15(1):422, 2015.

Raphael J Nawrotzki, Kristin Robson, Margaret J Gutilla, Lori M Hunter, Wayne

Twine, and Petra Norlund. Exploring the impact of the 2008 global food crisis on

164



food security among vulnerable households in rural south africa. Food security, 6

(2):283–297, 2014.

Carin Nilses, Gunilla Lindmark, Stephen Munjanja, and Lennarth Nyström. Trends

in fertility patterns of women in rural zimbabwe. Health Care Women Int, 18(4):

369–382, 1997.

Hiroshi Nitta, Shin Yamazaki, Takashi Omori, and Tosiya Sato. An introduction

to epidemiologic and statistical methods useful in environmental epidemiology.

Journal of Epidemiology, 20(3):177–184, 2010.

Hans Noel and Brendan Nyhan. The unfriending problem: The consequences of

homophily in friendship retention for causal estimates of social influence. Social

Networks, 33(3):211–218, 2011.

Vincent Nsabuwera, Bethany Hedt-Gauthier, Mohammed Khogali, Mary Edgin-

ton, Sven G Hinderaker, Marie Paul Nisingizwe, Jean de Dieu Tihabyona, Benoit

Sikubwabo, Samuel Sembagare, Antoinette Habinshuti, and Peter Drobac. Mak-

ing progress towards food security: evidence from an intervention in three rural

districts of rwanda. Public Health Nutrition, 19(07):1296–1304, 2016.

Martin Palamuleni, Ishmael Kalule-Sabiti, and Monde Makiwane. Fertility and

childbearing in south africa. In Families and households in post-apartheid South

Africa: Socio-demographic perspectives, pages 113–134. 2007.

ME Palamuleni and AS Adebowale. Patterns of premarital childbearing among un-

married female youths in sub-saharan africa: Evidence from demographic health

survey. Scientific Research and Essays, 9(10):421–430, 2014.

Saadhna Panday, M Makiwane, C Ranchod, and T Letsoala. Teenage pregnancy

in south africa: with a specific focus on school-going learners. Human Sciences

Research Council, 2009.

Mark Parascandola and Douglas L Weed. Causation in epidemiology. Journal of

Epidemiology & Community Health, 55(12):905–912, 2001.

Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3:

96–146, 2009.

Judea Pearl. Graphical models for probabilistic and causal reasoning. In Computing

Handbook, Third Edition: Computer Science and Software Engineering, Volume

I., pages 1–29. 2013.

165



Jennifer Peat and Belinda Barton. Medical statistics: A guide to data analysis and

critical appraisal. John Wiley & Sons, 2008.

Alberto Pellegrini Filho. Public policy and the social determinants of health: the

challenge of the production and use of scientific evidence. Cadernos de Saude

Publica, 27:s135–s140, 2011.

Laura M Pereira, C Nicholas Cuneo, and Wayne C Twine. Food and cash: under-

standing the role of the retail sector in rural food security in south africa. Food

security, 6(3):339–357, 2014.

Paraskevi Peristera and Anastasia Kostaki. Modeling fertility in modern popula-

tions. Demographic Research, 16(6):141–194, 2007.
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APPENDIX A

Section 3.3 goodness of fit test results

Here we present the details and results of the goodness of fit tests for the results

presented on weight contagion in Section 3.3.

We follow Hill et al. (2015) by adapting the Hosmer-Lemeshow test (HL) test, which

analyses the distribution of residual errors, to the kind of regression we have per-

formed (Hosmer and Lemeshow, 2001). The residual error function for our model

stratified by number of friends is defined as

E “

˜

10
ÿ

k“0

pNk ´Mk pθqq
2

¸1{2

(A.1)

where Nk is the number of individuals with k higher/lower state friends who in-

creased/decreased in state in the data, and Mk pθq is the modelled number of such

individuals given parameters θ. By definition, E ě 0 and will tend to zero for models

that perfectly capture the data.

As an analytical distribution of E is not available, we use a parametric bootstrap

method to simulate the fitted models. This involved applying the models to the

initial friendship network from wave 1 of the data N “ 104 times. The proportions

of individuals with k higher/lower state friends who increased/decreased in state

were extracted and used to calculate residuals.
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Figure A.1 Figure A.2

a 0.792 0.940

b 0.752 0.751

c 0.854 0.927

d 0.861 0.980

e 0.603 0.892

f 0.590 0.605

g 0.595 0.834

h 0.586 0.699

i 0.577 0.565

j 0.595 0.725

k 0.565 0.548

l 0.589 0.653

m 0.576 0.565

n 0.595 0.606

o 0.567 0.554

p 0.569 0.694

Table A.1: p-values from the goodness of fit test results of the weight contagion
analysis. Figure and subfigure labels refer to those in Figures A.1 and A.2.

Figures A.1 and A.2 show the observed and simulated residual values for increas-

ing/decreasing state stratified by higher/lower state friends for general weight change

and clinically significant weight change for the four different models (with p-values

given in Table A.1). Model 1 has both increasing and decreasing state dependent

on friend states. Model 2 has neither dependent on friend states. Model 3 has in-

creasing state alone dependent on friend states. Model 4 has decreasing state alone

dependent on friend states. It should be noted that E has no asymptotic properties

that imply it can be used for model selection in a manor similar to AIC, so no

threshold of p-value should be considered. Simply, a larger p-value shows the model

to form a better fit to the data. Overall, these results support our conclusions about

which models are preferred in all cases.
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Figure A.1: Residual cdfs (in red) with observed residuals (in grey) for the fitted
models for weight change. The first row (a-d) are for Model 1. The second row (e-h)
are for Model 3. The third row (i-l) are for Model 4. The fourth row (m-p) are for
Model 2. In each row, the left two plots are for the models dependent on higher
weight friends, and the right two for those dependent on lower weight friends. In
each of these pairs, the left plot shows the increasing state residuals and the right
shows the decreasing state residuals.
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Figure A.2: Residual cdfs (in red) with observed residuals (in grey) for the fitted
models for clinically significant weight change. The first row (a-d) are for Model
1. The second row (e-h) are for Model 3. The third row (i-l) are for Model 4.
The fourth row (m-p) are for Model 2. In each row, the left two plots are for the
models dependent on higher weight friends, and the right two for those dependent
on lower weight friends. In each of these pairs, the left plot shows the increasing
state residuals and the right shows the decreasing state residuals.
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APPENDIX B

Section 4.3 cross validation and statistical test results

Here we present the results of the cross validation and statistical tests for the results

presented in Section 4.3. The main results are shown in Table B.1, whilst more

detailed results for particular models are shown in Tables B.2 to B.7.
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Covariates Age quantiles SES quantiles Average Briers score KS p-value

s

50 10 0.04147 see table B.4

100 20 0.04147 see table B.4

125 25 0.04147 see table B.4

150 30 0.04146 see table B.4

t

50 - 0.04620 4.219ˆ 10´15

100 - 0.04253 4.540ˆ 10´14

125 - 0.04193 0.0001

150 - 0.04167 1.366ˆ 10´14

e

50 - 0.04487 see table B.6

100 - 0.04448 see table B.6

125 - 0.04449 see table B.6

s, t

50 10 0.04155 0.04526

100 20 0.04155 0.0008

125 25 0.04155 0.0001

150 30 0.04155 0.00001

s, e
25 10 0.04442 see table B.2

50 10 0.04439 see table B.2

t, e

50 - 0.04248 0.0004

100 - 0.04216 0.0053

125 - 0.04217 0.0017

s, t, e
25 10 0.04221 0.3928

50 10 0.04219 0.0672

Table B.1: Average Briers scores from cross validation and Kolmogorov-Smirnov
test p-values of the different possible model and resolution combinations. The differ-
ent possible models are formed from combinations of the different possible covariates
of socio-economic status (SES) s, education in years e, and time in years t. The
different possible resolutions are the the number of quantiles the data was binned to
for age and SES. Briers scores for the s, e, and ts, eu covariate combination models
are averaged over years. Non-time-averaged Briers scores, as well as p-values, for
these models can be found in Tables B.2 to B.7.
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Resolution
Year

2001 2003 2005 2007 2009 2011

25x10 0.9854 0.9999 0.9960 0.9997 0.9998 0.9962

50x10 0.7786 0.9805 0.9097 0.9497 0.9533 0.9180

Table B.2: p-values for individual years and resolutions for the ts, eu covariate
combination model.

Resolution
Year

2001 2003 2005 2007 2009 2011

25x10 0.05790 0.03826 0.04382 0.04141 0.04267 0.04244

50x10 0.05784 0.03827 0.04382 0.04136 0.04268 0.04237

Table B.3: Briers scores for individual years and resolutions for the ts, eu covariate
combination model.

Resolution
Year

2001 2003 2005 2007 2009 2011

50x10 0.8057 0.9466 0.8226 0.9092 0.9234 0.8662

100x20 0.3353 0.6500 0.3976 0.5790 0.6000 0.4667

125x25 0.2358 0.4824 0.2269 0.3548 0.4472 0.3141

150x30 0.1703 0.3563 0.1697 0.3315 0.3546 0.2129

Table B.4: p-values for individual years and resolutions for the s covariate combi-
nation model.

Resolution
Year

2001 2003 2005 2007 2009 2011

50x10 0.04004 0.03813 0.04379 0.04161 0.04279 0.04249

100x20 0.04002 0.03813 0.04378 0.04160 0.04278 0.04248

125x25 0.04002 0.03813 0.04378 0.04159 0.04278 0.04248

150x30 0.04002 0.03813 0.04379 0.04159 0.04279 0.04248

Table B.5: Briers scores for individual years and resolutions for the s covariate
combination model.
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Resolution
Year

2001 2003 2005 2007 2009 2011

50 0.8318 0.9531 0.9185 0.9438 0.9796 0.9376

100 0.4922 0.6741 0.5458 0.6145 0.7812 0.5885

125 0.4312 0.5330 0.4490 0.4897 0.6633 0.4440

Table B.6: p-values for individual years and resolutions for the e covariate combi-
nation model.

Resolution
Year

2001 2003 2005 2007 2009 2011

50 0.05823 0.03822 0.04407 0.04159 0.04311 0.04398

100 0.05814 0.03822 0.04381 0.04156 0.04273 0.04244

125 0.05818 0.03821 0.04381 0.04154 0.04273 0.04245

Table B.7: Briers scores for individual years and resolutions for the e covariate
combination model.
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APPENDIX C

Section 4.4 covariance function comparison results

Here we present the Bayesian information criterion values used in Section 4.4 to

compare the different possible covariance functions. Tables C.1 to C.5 show these

for the different analyses performed.
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Year
Covariance function

Squared exponential Matern 3/2 Matern 5/2 Rational quadratic

2001 334.3 333.0 333.5 331.8

2002 1168 1165 1166 1165

2003 1194 1193 1194 1193

2004 1206 1205 1205 1205

2005 1390 1389 1390 1388

2006 1228 1227 1228 1226

2007 1305 1304 1304 1304

2008 1575 1574 1574 1573

2009 1660 1659 1659 1658

2010 1405 1404 1404 1404

Average 1247 1245 1246 1245

Table C.1: Bayesian information criterion values for Model 1 (no contagion) of both
the global and local contagion analyses for each of the different possible covariance
functions. The rational quadratic covariance function is generally preferred.

Year
Covariance function

Squared exponential Matern 3/2 Matern 5/2 Rational quadratic

2002 1174 1172 1172 1173

2003 1202 1202 1202 1202

2004 1213 1214 1214 1213

2005 1397 1396 1396 1395

2006 1236 1235 1235 1234

2007 1312 1310 1310 1312

2008 1582 1581 1582 1581

2009 1666 1665 1666 1666

2010 1411 1411 1411 1411

Average 1355 1354 1354 1354

Table C.2: Bayesian information criterion values for Model 2 (contagion) of the
global contagion analysis with an annual contagion period for each of the different
possible covariance functions. The rational quadratic covariance function is gener-
ally preferred.
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Year
Covariance function

Squared exponential Matern 3/2 Matern 5/2 Rational quadratic

2003 1202 1202. 1202 1202

2004 1214 1213 1213 1213

2005 1397 1397 1398 1396

2006 1236 1235 1235 1234

2007 1311 1311 1311 1311

2008 1581 1581 1580 1581

2009 1667 1666 1666 1665

Average 1373 1372 1372 1372

Table C.3: Bayesian information criterion values for Model 2 (contagion) of the
global analysis with a biennual contagion period for each of the different possible
covariance functions. The rational quadratic covariance function is generally pre-
ferred.

Year
Covariance function

Squared exponential Matern 3/2 Matern 5/2 Rational quadratic

2002 1175 1173 1174 1173

2003 1202 1202 1202 1201

2004 1214 1214 1214 1213

2005 1399 1398 1398 1396

2006 1235 1233 1234 1233

2007 1313 1312 1312 1311

2008 1582 1581 1581 1580

2009 1668 1666 1667 1664

2010 1414 1412 1412 1412

Average 1356 1355 1355 1354

Table C.4: Bayesian information criterion values for Model 2 (contagion) of the
local contagion analysis with an annual contagion period for each of the different
possible covariance functions. The rational quadratic covariance function is gener-
ally preferred.
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Year
Covariance function

Squared exponential Matern 3/2 Matern 5/2 Rational quadratic

2003 1202 1202 1202 1202

2004 1214 1214 1214 1213

2005 1399 1398 1398 1396

2006 1236 1234 1235 1234

2007 1311 1310 1311 1308

2008 1581 1580 1581 1579

2009 1669 1667 1668 1665

Average 1373 1372 1373 1371

Table C.5: Bayesian information criterion values for Model 2 (contagion) of the
local contagion analysis with a biennual contagion period for each of the different
possible covariance functions. The rational quadratic covariance function is gener-
ally preferred.
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APPENDIX D

Section 4.4 biennual contagion period results

Here we present the results from Section 4.4 when contagion of pregnancy risk be-

haviour is assumed to happen over the span of two years rather than just one. As

mentioned in Section 4.4.4 using a biennual contagion period generally results in

reduced performance, so in the main analysis we focused on the results from using

an annual period. The results here show that despite the worsening in performance

a biennual contagion period produces very similar results to those shown in Sec-

tion 4.4.4.
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Figure D.1: Fitted marginal pregnancy probabilities over contagion variable value
for each year of the global contagion analysis (with the contagion variable ranging
up to the maximum value within the data). Results are similar to those with an
annual contagion period (Figure 4.8).
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Year No contagion SB Contagion SB Contagion lengthscale

2003 0.0891 0.0891 4.465

2004 0.0761 0.0761 24.47

2005 0.0797 0.0797 772.9

2006 0.0874 0.0874 924.3

2007 0.0879 0.0878 5.397

2008 0.0742 0.0742 4.088

2009 0.0736 0.0739 2.457

Average 0.0811 0.0812 5.397

Table D.1: Comparison between Model 1 (no contagion) and Model 2 (contagion)
from the global contagion analysis for each year shown by the Briers scores (SB) from
predicting the pregnancies for the next timestep. Contagion lengthscale values from
the Gaussian process classification for Model 2 are also included. The performance
of both models is generally worse than when using an annual contagion period
(Table 4.4). Otherwise the results are similar. Note the average lengthscale is the
median, whilst for Briers scores they are means.

Year No contagion SB Contagion SB Contagion lengthscale

2003 0.0891 0.0891 145.7

2004 0.0761 0.0761 5196

2005 0.0797 0.0797 2327

2006 0.0874 0.0870 8.312

2007 0.0879 0.0880 1.342

2008 0.0742 0.0742 5.538

2009 0.0736 0.0739 0.8944

Average 0.0811 0.0811 8.312

Table D.2: Comparison between Model 1 (no contagion) and Model 2 (contagion)
from the local contagion analysis for each year shown by the Briers scores (SB) from
predicting the pregnancies for the next timestep. Contagion lengthscale values from
the Gaussian process classification for Model 2 are also included. The performance
of both models is generally worse than when using an annual contagion period
(Table 4.5). Otherwise the results are similar. Note the average lengthscale is the
median, whilst for Briers scores they are means.
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Figure D.2: Fitted marginal pregnancy probabilities over contagion variable value
for each year of the local contagion analysis (with the contagion variable ranging
up to the maximum value within the data). Results are similar to those with an
annual contagion period (Figure 4.9).
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