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Abstract

Clinical practice guidelines (CPGs) document evidence-based information and recommendations on treatment and man-

agement of conditions. CPGs usually focus on management of a single condition; however, in many cases a patient will be

at the centre of multiple health conditions (multimorbidity). Multiple CPGs need to be followed in parallel, each managing a

separate condition, which often results in instructions that may interact with each other, such as conflicts in medication.

Furthermore, the impetus to deliver customised care based on patient-specific information, results in the need to be able to

offer guidelines in an integrated manner, identifying and managing their interactions. In recent years, CPGs have been

formatted as computer-interpretable guidelines (CIGs). This enables developing CIG-driven clinical decision support sys-

tems (CDSSs), which allow the development of IT applications that contribute to the systematic and reliable management of

multiple guidelines. This study focuses on understanding the use of CIG-based CDSSs, in order to manage care complexities

of patients with multimorbidity. The literature between 2011 and 2017 is reviewed, which covers: (a) the challenges and

barriers in the care of multimorbid patients, (b) the role of CIGs in CDSS augmented delivery of care, and (c) the approaches

to alleviating care complexities of multimorbid patients. Generating integrated care plans, detecting and resolving adverse

interactions between treatments and medications, dealing with temporal constraints in care steps, supporting patient-

caregiver shared decision making and maintaining the continuity of care are some of the approaches that are enabled using

a CIG-based CDSS.
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Introduction

Clinical practice guidelines (CPGs)1 document care
instructions used by caregivers, representing high-
quality best practice, based on available evidence.2

CPGs focus on specific health conditions such as dia-
betes, hypertension, chronic heart failure and obesity.
The Guidelines International Network (GIN), the
Institute for Clinical Systems Improvement (ICSI)
and the UK National Institute for Health and Care
Excellence (NICE) are examples of sources of such
guidelines. Some of the major benefits of CPGs include
supporting clinical decision-making, improving quality
of care, guiding health resource use and decreasing
healthcare costs.3–5

Since early 2000, many types of guideline-driven

computerised platforms, also known as, clinical deci-

sion support systems (CDSSs) have been developed to

support clinicians in the delivery of care.6,7 CPGs ini-

tially need to be formatted as computer-interpretable

guideline (CIG)8,9 in order to be represented and exe-

cuted by computers. This involves formalising the
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concepts included in CPGs in an unambiguous and

computer interpretable notations. Ontologies are one

type of such formalism.10 The existing CIG formalisms

adopt different approaches that supply computer inter-

pretable representations, such as ontologies,10 for
knowledge acquisition, clinical task management and

decision-making activities, along with execution

engines that can run the CIGs on computers.11 For

example, approaches include decision rule models

(e.g. Arden Syntax12–14), documentary models (e.g.

guideline elements model (GEM)15) or process-flow
models also known as task-network models (TNMs)8

(e.g. Guideline Interchange Format version 3

(GLIF3),16,17 Asbru,18 SAGE,19 EON,20 GUIDE21

and PROforma22–24).
The prevalence of multimorbidity25 (i.e. patients

with multiple diseases) increases with age. More than
95% of multimorbid patients age 65 years and over.26

Of them, 60% have at least two health conditions,27

and 58% constitute 78% of all GP patient visits.28,29

Multimorbid conditions affect each other, and are

closely associated with mortality, severe disability,

care variations, increased health resource use and
costs.30 The management of multimorbid patients is

complex because the number of risk factors increases

with the number of clinical conditions.31,32 To handle

these patients, care plans need to be customised for

each individual considering their needs and conditions

(e.g. allergies, syndromes, signs) as well as social infor-

mation, which incorporate a number of multi-
disciplinary stakeholders, such as nurses, doctors,

therapists and clinical technicians.33 Patients have

varied care requirements considering aspects such as

allergies, preferences and drug intolerances. Patient

preferences (e.g. meal times, or individual-monitoring

schedules),34 in particular, are one of the main factors

affecting patient non-adherence to guidelines, which
increases the risk of undesired patient outcomes.

Nonetheless, few existing CPGs refer to multimor-

bidity; instead they consider conditions in isolation.35

Thus, following multiple guidelines, developed in iso-

lation, may result in conflicting or inconsistent advice
for therapy. For instance, multiple drug usage (i.e. pol-

ypharmacy36) offered by multiple guidelines, can lead

to adverse interactions between drugs. Therefore, coor-

dination complexity of multiple guidelines, the medica-

tions taken and dynamic changes in patient health

states, as well as maintaining patient-adherence to

guidelines, are some of the main reasons why patient-
centred care (PCC)2 (which aims to personalise care

and treatments to the specific needs and circumstances

of each patient) is needed, especially, in the case of

multimorbidity. Many existing CIG-based CDSSs can

generate patient-tailored recommendations31,37–45 and

enhance the guideline adherence of patients over paper-
based CPGs.11,46

In this paper, we performed a systematic literature
review on three strands that were identified as the main
stages of integrating individual condition guidelines,
to delivering actionable CDS recommendations to
patients and caregivers (see Figure 1): (a) the major
challenges and barriers in multimorbidity care; (b) the
role of computer-interpretable guidelines in CDSS aug-
mented delivery of care involving existing CIG formal-
isms, and the ability of CIGs to achieve a patient-
centred care; and lastly (c) approaches to address
the challenges of multimorbidity care using CIG-
driven CDSSs.

The major challenges involve limitations of CPGs,
the polypharmacy issue, conflicts occurring in patient-
care flows, complexity of managing temporal con-
straints between actions in CPGs and non-adherences
of patients to care. We reviewed a body of work pro-
posing multimorbidity management approaches to
cope with these challenges in a number of ways, i.e.
studies that combine multiple guidelines and create a
unified guideline in return.33,39,40,47–50 This helps to
eliminate clinical task duplications and to provide
health resource management. A number of works51–65

propose automatic discovery and resolution methods
for dealing with adverse guideline interactions and
their associated clinical knowledge constructs and
some66–69 work on how to handle temporal constraints
(e.g. start time, end time and duration of treatments) in
multiple guidelines. These help caregivers to manage
temporal interactions in guidelines and recommend
safe care plans as a result. Lastly, some
approaches31,37–45 aim to enhance adherence of multi-
morbid patients to guidelines and maintain their care
continuity to improve the quality of care through
using CIGs.

The scope of this review does not include CIG-based
applications developed for single-disease management.
However, some of the main applications are reviewed
(see section ‘The role of CIGs in CDSS-augmented
delivery of care’), as introductory material to provide
more insights of the field to the reader.

Materials and methods

We reviewed the literature with the objective of finding
the answers to the following research questions.

1. What are the obstacles faced in CPG implementa-
tions to supply care for multimorbid patients?

2. How can CIGs be used and applied at the point of
care for the management of complex patients?

3. How can CIG-based CDSS approaches offer capa-
bility to improve the outcome of multimorbid
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patients, their caregivers and the treating medi-

cal centres?

To identify the relevant works, we adopted the

Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) statement (www.

prisma-statement.org) (Figure 2).

Identification

We first selected and limited our search by querying

Science Direct and PubMed for peer-reviewed publica-

tions on the management approaches to alleviate chal-

lenges and barriers for caring patients with many

health conditions, using CIG-driven CDSSs. The

search was conducted and included publications from

January 2001 until 1 July 2017 by using the following

terms: (‘clinical decision support systems’ OR ‘decision

support systems’) OR (‘multimorbidity’ OR ‘comor-

bidity’) OR ‘adverse events’ OR ‘guideline adherence’

with the key terms (‘clinical guidelines’ OR ‘clinical

practice guidelines’ OR ‘computer-based guidelines’

OR ‘computerised guidelines’ OR ‘computer-interpret-

able guidelines) OR ‘care workflows’ in title and

abstract screening. Following the two-electronic data-

base searches, we also conducted a Google Scholar

(http://scholar.google.co.uk) search with the objective

of potential inclusion of additional studies, again rele-

vant to our search criteria.
In total, our electronic database searches yielded

9906 results. This number was obtained by searching

the keywords that appeared in PubMed and Science

Direct. In addition, 826 publication results of other

sources (e.g. Google Scholar) were added, bringing

the total to 10,732 publications. Afterwards, computer

filtering was again applied considering the number of

years and publication fields to refine subject fields relat-

ed to Data Science, Medical Informatics, Engineering,

Mathematics and Decision Support Systems. At this

stage 8482 records were. Thus, 2169 results were

obtained from the PubMed and Science Direct search

and 81 results obtained from other sources (Figure 2).

Afterwards, journal names were electronically filtered

based on publication titles resulting in 1796 records

removed for duplication.

Screening

We performed title and abstract screening by reading

the remaining 454 papers. We excluded 171 publica-

tions that did not discuss computerised guidelines,

computerised guidelines in the context of multi or
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Figure 1. Scope of the review, under three themes.
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co-morbidity care and/or its complexity (e.g. medica-

tion error, guideline non-adherence, adverse events).

Eligibility

Of the 283 remaining papers, posters, workshops and

conferences papers that were also published in a peer-

reviewed journal were excluded. Literature reviews

were chosen as background and introductory material,

but the aim of the review was to focus on primary

sources and hence were excluded. Afterwards, papers

that did not meet the eligibility criteria set were

removed. These involved publications where no clear

reference to the studied guideline was provided, unclear

data collection strategy was used, or publications were

of inadequate methodological quality. At this stage,

212 papers were removed in total.

Included

The remaining 71 were included in the analysis, and

publications were categorised based on the chosen

three themes accordingly. Selected full text articles

were evaluated for their relevance and quality. Their

inclusion in this review is outlined as follows: the

need of formalisation of CPGs as CIGs and their appli-

cation approaches to handle patients with multimorbid

clinical conditions.
Our review aims to provide more insights into the

role of computerisation of guidelines in the delivery of

care for multimorbid patients, by addressing the con-

tributions and limitations of existing works in order to

indicate future research directions.

Results

The studies included in the current review were pub-

lished between 2001 and 2017: 77% (n¼55) of records

were obtained from PubMed and Science Direct, and

23% (n¼16) of records were obtained from the Google

Scholar search, where 13 of them were conference

papers published as book chapters, and three of them

published in other databases. The top four journals

with the largest number of articles were the Journal

of Biomedical Informatics, Journal of the American

Medical Informatics Association, Artificial

Intelligence in Medicine and the International Journal

of Medical Informatics.
In Table 1 characteristics of the included publica-

tions, in terms of publication year and the number of

publications with their percentage distributions,

are given.
Of the studies 26.76% (n¼19) were published

between 2001 and 2006, 16.90% (n¼12) of them were

published between 2007 and 2012, and 56.34% (n¼40)

of them were published between 2013 and 2017.

Theme identification

After reading 35 full-text papers and literature reviews,

published in peer-reviewed journals on the life-cycle of

Table 1. Characteristics of the included publications (n¼71).

Characteristics Number of publications (%)

Publication year

2001–2006 19 (26.76)

2007–2012 12 (16.90)

2013–2017 40 (56.34)

Searches

PubMed 26 (36.62)

Science Direct 29 (40.85)

Google Scholar 16 (22.54)

Database search:
PubMed and
science direct

(n =2,169)

Google
scholar
(n =81)

Records removed
involving duplications

(n =1,796)

Records screened
(n =454)
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Figure 2. PRISMA publication search strategy along with the
number of studies
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computerised-guideline based CDSSs and their appli-

cations, we identified our themes.
The themes of the publications reviewed are pre-

sented in Table 2. The first two themes can be consid-

ered as the building blocks of the last theme. In other

words, these two themes provide introductory and

essential information for the last theme.

Challenges and barriers in multimorbidity care

Co-existence of multiple health conditions in an indi-

vidual is steadily increasing, and aging is one of the

main factors of the occurrence of these conditions.27–

29 The combinations of genetic functions, lifestyle

choices, environmental issues, multiple drug usage,

complications of past diseases and aging, generate

patients with various combinations of multimorbidity.

This creates several challenges and barriers to imple-

ment care for patients with multimorbid needs. The

most prominent ones are: shortcomings of CPGs; com-

plexity of managing temporal constraints between

actions in CPGs; conflicting actions affecting care;

and issue of care non-adherence.

Shortcomings of CPGs to treat multimorbidity

CPGs can offer substantial benefits for the healthcare

system and patients, such as helping to reduce health

costs, improving consistency and quality of care.3,4

However, they are not sufficient for developing person-

alised therapy plans, especially for multimorbid

patients.35,70 For the treatment of a patient with mul-

tiple diseases, more than two CPGs need to be imple-

mented along with associated clinical knowledge and

patient data during the patient consultation.

Evaluating the patient health status individually and

developing a patient-tailored care plan as a result, is
not a trivial task due to several reasons.

CPGs are often in the form of texts/schemas that
cause difficulties to caregivers in the interpretation of
guideline contents during patient–caregiver encounters,
and subsequently their implementations in care.5,38

This also causes dissemination and maintenance diffi-
culties (e.g. updates and versioning) across healthcare
organisations.37,71 When handling a patient with multi-
morbidity, caregivers may prefer a personalised
version of a guideline.71 CIGs facilitate this care-
personalisation process (see section ‘Care personalisa-
tion and continuity’), as there can be instances of a
CPG tailored to the specific information of a patient
(e.g. preferences, allergies, drug intolerance and social
needs), which due to their computer executable nature
can also be adapted to dynamic changes of the patient’s
status. Versioning of guidelines plays a significant role
for managing them, as defined by Grandi et al.71 with
several dimensions such as valid time (i.e. the time of a
guideline belongs to the state-of -the art) and transac-
tion time (i.e. the time the guideline is applied in a
computerised platform). The chosen guideline version,
and its personalised version, have to be mutually tem-
porally consistent, which is important to evaluate
whether the guideline is being properly applied by care-
givers.37 Evaluating patient data, as well as the vast
number of clinical knowledge elements manually, is a
process susceptible to medical errors.72,73

In multimorbidity care, many CPGs need to be fol-
lowed in parallel.51 However, CPGs are mostly
designed for the treatment of a single disease, and
there is little guidance on a CPG regarding how to
merge strategies and recommendations to cope with
multimorbid conditions, and the needs of these com-
plex patients.54 The simultaneous combination of mul-
tiple guidelines is also prone to adverse interactions

Table 2. The themes of the publications reviewed (n¼71).

Themes Publications

Challenges and barriers in multimorbidity care 30, 31, 35, 37, 40–44, 51, 54, 61, 66–68, 71, 79, 92, 97

The role of CIGs in CDSS augmented Delivery of care 8, 11-24, 31, 33, 38-42, 45,47–64, 69, 74, 91,

101–106, 108–111, 113, 114, 119, 127

Management of multimorbidity care using CIG-based CDSS approaches

• Combined care plan generation 33, 39, 40, 47–53, 55, 56

• Dealing with temporal constraints 32, 61, 66–69

• Management of adverse interactions 51–63

• Care personalisation and continuity 31, 33, 37, 39–45,71

Bilici et al. 5



(see section ‘Adverse interactions affecting care’). For

instance, a multimorbid patient may have obesity with

hypertension along with ulcer, diabetes and depression,

or stroke with coronary heart failure, with Alzheimer’s

and stable angina. The concurrent implementation of a

clinical task – start Aspirin – to treat a duodenal ulcer

(DU) in the guideline for DU, and a clinical task – stop

Aspirin – to treat a transient ischemic stroke (TIS) in

the guideline for TIS, can cause conflicting actions due

to their different goals (see Wilk et al.51). Moreover,

different guidelines may recommend different drugs

that can be adversely interacted with each other.

Thus, conflicting and/or inconsistent actions need to

be mitigated before supplying any care and treatment

to a patient. This process is referred to by Wilk et al.51

as the guideline reconciliation problem. CPGs do not

involve information about conflicting clinical actions

given patients’ varied health conditions.
Detecting conflicts and inconsistencies in multiple

guidelines during the patient consultation is crucial,

but at the same time cumbersome, and error-

prone task.

Complexity of managing temporal constraints

between actions in CPGs

Therapies can be one time or spread over time. Correct

timing of guideline actions plays a significant role upon

achieving safe therapy implementation.68 Thus, care-

givers need to perform proper time management and

chronological ordering of clinical activities (e.g. labo-

ratory tests, or drug recommendations) accordingly.

However, the complexity of managing care plans

grows with the number of patients’ health conditions.
Caregivers need to sequence all treatment steps,

arrange parallel processes and consider time con-

straints such as start, end and duration of treatments/

signs/symptoms, and frequency of interventions to be

appropriate.66 When a caregiver is not experienced or

needs to manage complicated care plans, there is an

obvious need for help with time constraints that

should be included in the guidelines. Piovesan and

Terenziani61 supply the following instance about the

potential sequence related interactions in guidelines.

Calcium carbonate intake leads to alkalinisation of

the urine, interacting with the nalidixic acid absorption.

Thus, nalidixic acid should be given after calcium car-

bonate intake to avoid any conflicts. Arranging drug

administration sequences can make both of them ben-

eficial for the patient, and thus perhaps not causing any

health risk. We refer readers to Anselma, Piovesan and

Terenziani67 for further information on temporal inter-

actions between guidelines. In ‘Approaches to manag-

ing multimorbidity care using a CIG-based CDSS’

below, we discuss how temporal interactions and con-

straints can be managed in guidelines.

Adverse interactions affecting care

A patient physiology can display pharmacodynamic

(i.e. the resulting effect that drugs do on the body) or

pharmacokinetic (i.e. the disposition of drugs through

the body) changes.75,76 Pharmacokinetics can be affect-

ed by patient-associated factors such as demographics,

allergies, genetic structures, or drug intolerances that

may also affect the pharmacodynamics. For instance,

the issue of polypharmacy36 (the use of multiple med-

ications by an individual) has become one of the main

concerns in caring for elder patients who are fragile and

have multiple health conditions.77 CPGs do not ade-

quately address the polypharmacy issues that can be

induced by multimorbid conditions.35 Some of the

main outcomes of polypharmacy-related issues are

inappropriate medication prescribing, poor adherence

to care and adverse drug events (ADEs)78 (i.e. an injury

arising from medical intervention related to a drug).79

These are significant contributors of increased health

risk, hospitalisation and subsequent increased health

resource use and costs.80,81 For instance, ADEs consti-

tute more than 6% of unplanned patient attendances

and are responsible for 4% of hospital bed occupancy

in the UK.82 ADEs are mainly preventable and arise

from inadequate drug management.83

Treatments of multimorbid conditions involve both

pharmacological (e.g. drugs) and non-pharmacological

(e.g. patient-education, surgery, rehabilitation, psycho-

therapy, etc.) activities Pharmacological activities

offered by each guideline are susceptible to adverse

interactions with recommendations offered by other

guidelines in varied forms such as drug–drug interac-

tions, drug–disease interactions and drug–patient inter-

actions that can reduce the efficacy of the care or affect

the life expectancy of a patient.84 The two main classi-

fications of interactions are single-action interactions

and multi-action interactions. A single action interac-

tion appears as two guidelines have different recom-

mendations for the same therapy. For instance, drug-

dose variation may occur where two guidelines recom-

mend different dose levels for the same drug. Multi-

action interactions appear when medications recom-

mended by different guidelines interact with each

other. Drug–drug, drug–disease, drug–patient as well

as drug–food interactions, can be considered as multi-

action interactions, see the GuideLine INteraction

Detection Architecture (GLINDA)85 project, for fur-

ther information on guideline interactions. Some of

the widely occurring conflicts in guideline implementa-

tions are as follows.
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Drug–drug interactions occur in the case of two
(or more) drugs, which (in the case of multimorbidity)
may be recommended by two different guidelines.
There are two main groups of drug–drug interac-
tions:86 (a) pharmacodynamic interactions that may
occur when two drugs are taken together, and their
concurrent usage causes serious health outcomes, and
(b) pharmacokinetic interactions that may occur when
one drug affects the other drug’s efficacy. Adverse drug
reactions73 are, in general, linked with pharmacokinetic
drug interactions.87 Overdose of medication, if it
results from multiple guideline medication recommen-
dations, can cause serious adverse reactions with other
drugs, as well as with the physiology of the patient.
Drug–disease interactions occur when the intake of a
drug interacts with a disease. For instance, a patient
with asthma should not use non-selective beta-blocking
drugs.88 Drug–patient interactions occur if a patient
has allergies or intolerances for (a) prescribed drug(s),
and intake(s) of this drug(s) may have an adverse effect
upon the patient.

To illustrate the above, let’s consider a patient with
the following chronic diseases: diabetes mellitus and
hypertension. These two diseases involve different sets
of clinical information (e.g. drugs to be taken, or side
effects) and associated care flows. In the study of
Kovalov and Bowles,54 guideline interactions of these
diseases are considered. Here, the medication Nadolol
offered for the care of hypertension conflicts with dia-
betes that causes a major drug–disease conflict; the
medication Sitagliptin conflicts with a patient charac-
teristic that causes a moderate level of patient allergy;
and the use of Metformin and Acarbose medications
cause a minor drug–drug conflict. Consequently, con-
flicting activities need to be detected and resolved
before any treatment provision to maintain safe care.
Interactions can be between drugs and foods that occur
when drugs interact with foods or beverages such as
coffee, alcohol, orange juice, grapefruit juice, etc.,
that destroys or worsens the effect of drugs on the
body. Lastly, CPGs mostly supply information about
specific time elements such as the consecutive imple-
mentation of two certain drugs. These can temporally
interact in time (i.e. two drugs interact with each other
if they are administered within a specific time window).

Issue of care non-adherence

Patient-centred care can be defined as providing care
that encompasses patient’s preferences,34 needs and
values, and where patients have seized opportunities
to take part in their care and treatment.2 This can be
achieved through fulfilling the following fundamental
aspects such as understanding patients’ feelings, and
their personal context, finding common points of

agreement and decisions for care management, increas-
ing health support (e.g. increasing prevention, reducing
risk and providing early detection of illnesses), and
increasing the patient–caregiver relationship.89,90

Patient adherence, as defined by Christensen,93 is
‘the extent to which a person’s actions or behaviour coin-
cides with advice or instruction from a health care pro-
vider intended to prevent, monitor, or ameliorate a
disorder’. It can be affected by the patient him/herself
(e.g. patient demographics, lack of information regard-
ing disease and care), the disease (e.g. poor detection of
disease symptoms), the treatment (e.g. the amount of
drug intake, or existence of side effects), or the patient–
caregiver partnership (e.g. patients’ preferences,
doubts, beliefs and expectations shared with caregiv-
er).94–96 Patient adherence to interventions decreases
when the amount of medication use increases, because
multimorbid patients need to understand and follow a
significant amount of medical information regarding
several medications.97 Thus, maintaining patient
adherence to recommended interventions is a crucial
factor in decreasing the risk of hospitalisation and in
improving patient outcomes.92,96 To do so, the follow-
ing three steps need to be considered. The first step is to
achieve patient–caregiver agreement on a care plan,
which is the product of their shared-decision making,
as defined by Elwyn et al.,98 ‘where patients and care-
givers make decisions together using the best available
evidence by considering available care or management
options with advantages and harms of each so that they
can communicate with patients’ preferences and help to
choose the best practice for them’.

Through shared decision-making, patient preferen-
ces (such as therapy choices or daily life preferences)
can be involved in care-personalisation process, which
especially enhances patients’ adherence to care plans by
supplementing more insights into the treatment and
thus reducing anxieties, and providing alternative
options of care.99,100 The second step is to apply care
based on the agreed care plan, and the last step is to
pursue care according to an agreed time.95

Nonetheless, CPGs face integration difficulties in a
PCC process and, they alone, are not best suited for
showing adaptation to shared decision-making between
patient and caregiver, patient preferences or requests
while providing a care plan. To customise care for
each patient, caregivers need to interpret clinical guide-
lines and patient’s input individually. However, this is
not straightforward in the case of multi-morbidity,
which involves multiple guideline interactions and inte-
gration of numerous clinical knowledge elements.
Patients with many conditions who are in general are
elder, fragile people, may have disabilities (e.g. cogni-
tive impairment)30 and limited possibility to visit their
caregivers. Hence, these people may need remote

Bilici et al. 7



support (e.g. taking medication warnings or care mod-

ifications based on actual health state) to appropriately

continue their care without interruptions. Several

authors31,40–44 propose guideline-based computerised

systems that have been used to assist caregivers (e.g.

involving patient preferences in the delivery of care) to

achieve patient-centred and continuous care. We

review these approaches in ‘Care personalisation and

continuity’ below.
In the following section, we discuss the existing CIG

approaches and the life-cycle of a patient care journey

with a CIG-based CDSS to address how computer sup-

port can be integrated with healthcare services, whilst

offering benefit for the complexity of customising

patient care plans for multi-morbid patients.

The role of CIGs in CDSS-augmented
delivery of care

Decision support systems (DSSs) unify large amount of

knowledge in one platform to help users in their

decision-making processes. There are many types of

DSSs (e.g. data, model, document, communication,

or knowledge oriented) that differ based on their capa-

bilities and scope.100 For example, knowledge-based

DSSs are one of the widely used systems in clinical

settings to provide clinical decision support, see for

example, Zhang et al.101 and Goldstein et al.102

In the clinical context, the general purpose of

CDSSs35 is ‘providing clinicians or patients with

computer-generated clinical knowledge and patient-

related information, intelligently filtered or presented at

appropriate times, to enhance patient care’. CDSSs are

designed to help caregivers for a variety of clinical

issues such as data access, disease diagnosis and prog-

nosis, treatment, monitoring and prevention. They also

offer early warnings103 to caregivers on potential issues

that may not be seen in time, due to the complex struc-

ture of morbidity.

Existing CIG formalisms

Guidelines are usually represented in the form of ontol-

ogies10, which are used to define knowledge to be

expected by computerised systems. Ontologies have

been used for knowledge representations by supplying

formal and clear definitions of data in healthcare stud-

ies. Similarly, ontologies can be used to capture the

knowledge in clinical guidelines, enabling the develop-

ment of computerised techniques to discover, and

coordinate many types of interactions between recom-

mendations produced from guidelines, and to facilitate

knowledge sharing and dissemination across professio-

nals and institutions.

Based on the requirements for automatic application

of CPGs to support caregivers in their clinical actions,

many formalisms and supporting tools have been

developed to make guidelines computer-interpretable,

and to cope with their complexities and associated clin-

ical knowledge constructs. Some of the well-known

approaches include languages used to represent and

structure information in guideline documents (e.g.

guideline elements model (GEM)15); frame-based

models (e.g. GASTON127); rule-based models which
consider algorithms to establish information flows in

guidelines such as Arden Syntax.12–14 Task-network

models (TNMs)8 represent guidelines as graphical net-

works of tasks, defined as hierarchical graphs, in which

nodes denote the actions to be executed and arcs

denote the discerned relationships between them such

as GLIF3,16,17 Asbru,18 SAGE,19 EON,20 GUIDE,21

Proforma,22–24 and GLARE.69,104,105

A GEM15 uses an XML (extensible mark-up lan-

guage)-based knowledge model to represent heteroge-

nous information (e.g. multiple recommendations)
involved in guidelines. It supplies a standardised repre-

sentation of guideline contents but not fulfil the logic of

a guideline which unfolds over time. For instance,

BRIDGE-Wiz application (building recommendations

in a developer’s guideline editor) that built upon GEM,

supports and helps the development of guidelines and

the authoring of their implementable care recommen-

dation statements.106

Arden Syntax12–14 has been developed as a rule-

based language and uses medical logic modules

(MLMs) (i.e. data, event, logic and action slots) main-
tained by a Health Level Seven (HL7) International

standard (www.hl7.org) for clinical knowledge repre-

sentation and execution. However, MLMs have limited

capability in identifying the complicated interacting

recommendations of guidelines and coping with the

representation of temporal constraints, such as repeti-

tions, starting and end time of clinical actions. To

resolve these issues, TNM-driven guideline representa-

tions have been proposed that provide modelling prim-

itives, describing the steps of CPGs and the temporal

relationships between tasks.
TNM-based approaches may involve several task

models like plan, action and decision. Plan denotes

the collection of tasks that aims to achieve a certain

objective. Action denotes the collection of tasks such as

medication prescription, or tests that need to be per-

formed during the execution of a guideline. Decision

denotes the rules associated with conditions that are

shaped with the patient’s health states. A significant

portion of formalisms use TNMs that include patients’

states, execution states, eligibility criteria, classification

schemes, goals, decisions and actions.64
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GLARE69,104,105 was developed as a graph-based
model, in which vertices represent actions to be execut-
ed and edges represent relations between them.
GLARE uses two types of actions:74 atomic actions
(e.g. work actions, pharmacological actions, decision
actions, query actions and conclusions), and composite
actions (plans). Atomic actions represent actions in a
CIG, composite actions represent their components.
GLARE represents a wide set of temporal constraints,
treatment repetitions and periodicities in CIGs.104

Bottrighi and Terenziani105 introduced a recent exten-
sion of GLARE, called META-GLARE, that supports
fast prototyping of clinical tasks.

Asbru18 is a task-specific, time-oriented (see
‘Discovery and resolution of adverse interactions’
below ) and intention-based language107 that developed
to represent CPGs and their inter-relationships as a
group of skeletal plans (i.e. possible steps in a CPG)
in XML involving knowledge roles such as preferences,
intentions, conditions and effects. Picard103 execution
engine is designed to execute CIGs, encoded in this
formalism. Asbru has been used in many projects
(e.g. González-Ferrer et al.38, Peleg et al.41) and
OncoCure CDSS project111 is one of that helps the
oncologists in their decision-making phases for the
treatment of breast cancer patients.

PROforma22–24 was designed to represent and exe-
cute medical knowledge in guidelines as a set of tasks
such as decision, action, enquiry and plan, and data
elements. Decisions, actions and enquiries are atomic
tasks whereas plans are collections of tasks denoting
the objective of the treatment. A clinical task is
linked with an objective, defined in the red representa-
tion language (R2L), which is a time-oriented, control-
flow representation language. Then, R2L is translated
into a language based on predicate logic, called logic of
R2L (LR2L). Plan can describe logical and temporal
constraints. Tallis tool of Proforma22 is used to support
authoring, publishing and execution of guidelines.
Proforma representation was used in Health Care
Services (HeCaSe2)45,108 that suggested an agent-
based healthcare system for modelling CPGs and
their interactions between agents (e.g. nurse, cardiolo-
gist, physician).

GLIF316,17 involves action, decision, branching and
synchronization steps. The support language of GLIF3
is Resource Description Framework (RDF). Unlike
Arden Syntax, GLIF3 can manage complex guidelines
with many care steps.109 In Peleg et al.,110 web-based
interactive clinical algorithms were developed based on
this formalism for the sequencing of tasks to analyse
patients with particular clinical conditions. We refer
readers to Mulyar et al.11 where the workflow patterns
of Asbru, GLIF and Proforma were extensive-
ly compared.

Lastly, SAGE19 uses activity graphs that define the
relationships among several clinical and computational
actions in terms of a workflow process model.
SNOMED-CT (i.e. medical vocabulary)112 and
LOINC (https://loinc.org/) are adapted in SAGE for
the use of terminologies and ontologies. In SAGE,
guideline ontology is represented in RDF format.
Like GLIF3, SAGE is also supported by GELLO113,
based on HL7 reference information model (RIM).
SAGEDesktop114 is the testing tool of SAGE that
can test one CIG implementation at a time.

The limitations of the existing works are mainly
about guideline interoperability (e.g. merging concur-
rently applied more than two guidelines) and/or
execution strength (e.g. adverse interaction detection
and resolution).

Towards patient-centred care: The life-cycle of a
patient care journey with a CIG-based CDSS

CIG-based CDSSs can provide access to, and thus
inform caregivers of, updated clinical and patient
data.38,91,119 They can use the information and recom-
mendations, which are generated from the system, to
discuss with their patients how to customise care for
them. The main data sources of such a system may
involve: (a) CPGs, and care work flows (encoded as
CIGs); (b) patient data obtained from other informa-
tion sources such as electronic health records (EHRs),
medication sources, and health information systems
(HISs); and (c) experiences from patient–caregiver
encounters. Some of the objectives of CDSS applica-
tions that supplement CIG-based recommendations,
are to provide remote care31,41,45 to improve the
patients’ satisfaction and reduce their health risks,42

or to support caregivers in managing patients with mul-
tiple health conditions.33,39,40,47–63 The use of CIGs and
their integrations into the care can be synthesized into
three stages. To this day, only a limited number of
works have covered all the specified stages, with some
limitations (see ‘Approaches to managing multimor-
bidity care using a CIG-based CDSS’ below).

At the first stage, patients are usually registered to
an EHR system of a medical centre. Studies have
shown that the integration of EHRs with CDSSs pro-
vides considerable improvement in patient safety and
economies of scale for hospitals in reducing length of
stays and health costs.120,121

The second stage involves the patient consultation
process, wherein treatment goals and scheduling of care
steps are specified. The patient shares their concerns,
doubts, beliefs, or requests about illnesses with the
caregiver. CDSS can initially be used to get more infor-
mation about the patient and make initial judgements
about the patient’s care going forward; then, the
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caregiver may provide assessments about this patient to
the system along with the patient’s input in order to
initialise the analysis and decision-making. This infor-
mation relates to the evidence-based CPGs as well as
several data obtained from, for example, HISs, EHRs,
medical devices, such as physiological monitoring or
treatment equipment, etc. The guideline formalisation
process begins with the medical staff’s clinical knowl-
edge interpretations of CPGs; CPGs involve definitions
and descriptions of clinical procedures, aims and spe-
cific objectives to achieve it with associated recommen-
dations. Afterwards, a knowledge engineer employs
one of the formalisms to represent and share the med-
ical knowledge as CIGs using their execution engines
(e.g. Picard103 for Asbru and Tallis110 for Proforma).

Further procedures can also be provided by other
caregivers, independently, or can be jointly conducted
by many of them (e.g. nurse, physician, diabetologist)
that are not necessarily co-located with the support of a
CDSS. Hence, the interactions between patients, care-
givers and the system itself reflect in the produced care
plan, which serves as a map of care flow. CIG-based
CDSSs can also help to detect and resolve (possible)
conflicts before supplying any care, to predict health
risks of an existing treatment or future likelihood of a
disease, and to make updates when necessary, to pro-
vide a safe care plan for this patient.

At the last stage, patients are discharged.
Nevertheless, observations of daily living of patients,
such as blood glucose level, blood pressure, physical
activity or medication intake, could be further collected
using mobile applications or web services, which can
then be integrated with patient data repositories and
EHR systems within a CDSS (see Peleg et al.41,42).

Approaches to managing multimorbidity care
using a CIG-based CDSS

In this section, we discuss the approaches used in the
management of multimorbid patients through CIG-
based clinical decision support technologies. We first
review methods that use CIGs to create a combined
care plan. Afterwards, we review methods to deal
with temporal constraints in multiple guidelines; the
issue of polypharmacy and management of adverse
interactions in guideline actions and associated knowl-
edge elements and finally, we address CIG-based
approaches used for care personalisation and maintain-
ing continuity of care.

Combined care plan generation

Over the past decades, many methodologies have been
developed to cope with the unification and execution of
multiple CIGs. 33,39,40,47–50 The Semantic Web based

formalism, is one of the broadly applied approach
that merge many CPGs by initially formalising them
as CIGs. Semantic Web technologies such as the W3C
web ontology language (OWL),122 is characterised by
formal semantics that have been used to represent clin-
ical knowledge in CPGs. For instance, Abidi et al.48

proposed an OWL-based CDSS to represent multiple
guidelines and generated a unified knowledge model for
handling comorbid patients. In the study of Jafarpour
and Abidi49, multiple guidelines were merged using the
merge criteria. To do so, a merging representation
ontology was developed to identify the potential
merge points between guidelines. OWL-driven execu-
tion engine and SWRL (semantic web rule language)123

rules were used to achieve guideline merging according
to the merge criteria. The major common limitations of
these works were representing and merging more than
two tasks of concurrently implemented guidelines. In
their later work,50 the authors extended their guideline
execution approach. Initially, they used OWL1 DL
(description logic)-based124 execution engine to repre-
sent clinical task transitions between executional states
and rules for managing the clinical task satisfaction
criterion. Afterwards, OWL2 DL-based execution
engine was used that provide more functionalities
(e.g. cardinality restrictions and data type expressivity)
than OWL1 DL. Here, OWL2 DL supports automatic
comparisons of patient values with predefined values.
Lastly, an OWL2 DLþ SWRL-based guideline execu-
tion engine was used that also supports mathematical
calculations and iterative clinical actions. Authors
emphasized that combined guideline execution
approaches supply more executional performance for
reasoning on complicated guideline workflow patterns
like iterative clinical actions than OWL1 DL. Lack of
representation and execution of temporal constraints in
guidelines were the main limitations of this work.

There are also other approaches for merging guide-
lines such as Ria~no and Collado33 that adopted a
divide and conquer approach (i.e. divides the problem
into sub-problems until it can be solved) to merge
many treatment plans of multiple guidelines consider-
ing the severity of the patient disease. Here, three main
knowledge elements were considered: decision elements
which are related to the acuteness of a patient condi-
tion; action blocks denoting a set of actions such as
tests to discover the severity of a condition; and table
blocks denoting the treatment matrices involving treat-
ment, patient symptom and the recommended treat-
ment. However, concurrency relations of multiple
CIG actions and how to handle parallel tasks were
not discussed.

Logic-based methods (e.g. Wilk et al.51–53 and
Michalowski et al.55,56), which are formal approaches
to representing and reasoning the knowledge involved
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in CPGs, are also widely used in the literature for com-
bining care plans of multiple guidelines. Since merged
guidelines may involve duplicated clinical actions (e.g.
laboratory tests, examinations, medications) and pos-
sible contradictory or inconsistent actions, these should
be discovered and eliminated before initialising any
care to ensure patient safety. In the subsequent sec-
tions, we address these issues and associated works.

Dealing with temporal constraints

Clinical actions defined in CPGs have to be performed
according to a set of temporal constraints.68,125 These
constraints can be qualitative (e.g. simultaneously,
after, or before) or quantitative (e.g. days, delays, or
durations such as ‘3 consecutive days’, and clinical task
T1 starts ‘1 hour’ after clinical task T2) constraints
between clinical actions, periodic/repeated actions or
the temporal constraints which can be the part of the
relations between these actions.32 To avoid the occur-
rence of any duplications and/or conflicts in care steps,
temporal statements need to be checked for their valid-
ity when implementing guidelines.61,66 Temporal con-
straints are particularly important to apply correct
prognosis,126 and multiple medication administrations
in a certain time window. Anselma et al.67 presented an
instance on how temporal knowledge about the medi-
cation Anticoagulant has an impact upon the medica-
tion action of Warfarin administration.

To date, several formalisms, such as Arden
Syntax,12–14, GLIF3,16,17 EON,20 GUIDE,21

PROforma,22–24 GASTON,127 and SDA128 have been
used to represent temporal constraints in guidelines
and their associated clinical processes. However,
Asbru18 supplies the most temporal functionality. It
is a time-oriented and intention-based language that
can denote temporal patterns of clinical actions (e.g.
offer a specific medication) or patient states to be
attained, or avoided.107 It also uses time annotations
to constrain the temporal occurrences of plan elements
such as in starting and finishing interval and duration
interval of a clinical action.38 Intervals are stemmed
from instants that denote certain time points on the
time frame and bounded by the two-time instants.
For instance, duration interval can be represented as
a [minDur, maxDur] tuple.125 Temporal reasoning
approaches have also been used to improve expressive-
ness of guidelines, handle inconsistencies and detect
interactions occurring between CIG actions. For exam-
ple, Duftschmid et al.68 proposed a simple temporal
problem (STP)-driven temporal constraint propagation
method based on Asbru to discover temporal inconsis-
tencies in clinical activities. They checked the consis-
tency of temporal scheduling constraints that was
implied by the guideline’s care flow and ordering of

CIG actions. The main limitation of this work was ver-
ifying temporal constraints on the execution of unor-
dered sequential clinical tasks in guidelines. Like
Asbru, GLARE can deal with complex temporal con-
straints in CIGs.

For instance, Anselma et al.66 proposed temporal
guideline formalism based on GLARE to represent
temporal constraints in clinical guidelines, and used a
constraint-based temporal reasoning approach to
detect inconsistencies and get minimal temporal con-
straints among them. Initially, non-repeated tasks of
CPGs were modelled using STP,129 whose temporal
constraints specify single intervals on any temporal
location. STP can supply the minimal temporal con-
straint network that can be defined as a directed
graph where vertices denote the time point of the exis-
tence of specific actions, and edges denote the temporal
distances (intervals) between these actions.68 These
intervals were used for the execution of guideline
actions. Since repeated, periodic and composite actions
cannot be handled with STP, STP-tree approach was
adopted that the root of the tree consists of the action
representing the whole CPG. This approach has also
been adopted by Anselma et al.32 and Bottrighi et al.69

for temporal reasoning. The main contribution of this
work was to enable caregivers to check the possible
temporal interactions between multiple CIG actions
that can happen in time. Handling disjunctive con-
straints (e.g. non-overlapping constraint) such as per-
forming actions which have unordered precedence
relations at different times, and assumptions made on
the applications of the instances of actions, were the
major limitations of this paper.

Even though several studies deal with the represen-
tation of time in CIGs and consider temporal reasoning
methodologies, only a few of them have focused on
multimorbidity. In their recent work, Anselma et al.67

suggested a methodology for detection and analysis of
temporal interactions between the CIG actions based
on the extended GLARE104,105 formalism. They coped
with the CIG actions, intensions (goals) and effects
(variations), and interactions (e.g. intention, variation
and drug interactions) that happen in time. The
authors proposed a temporal ontology which is able
to represent temporal constraints in CIGs that involve
temporal constraints between CIG actions, in logs that
store execution times (e.g. days) of the CIG actions
implemented on the certain patients, and in medical
knowledge that represents temporal constraints
between clinical actions, their effects and interactions.
They adopted a STP-based temporal reasoning
approach.32,61,66 Because of the temporal reasoning
restrictions (e.g. partonomic, class-instance or hypo-
thetical reasoning) of this approach, Anselma et al.
extended it with the use of Floyd-Warshall’s algorithm
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to STP constraints. Thus, temporal interactions can
be detected by reasoning over the ontologically-
represented guideline knowledge. The major limitation
of this work was the lack of practical implementation
such as considering different guidelines that have
varied conflicting actions.

Consequently, CIGs significantly improve the time-
liness of care processes.130 Dealing with temporal con-
straints and performing reasoning about them, play a
chief role on providing a safe treatment plan to achieve
consistency and avoid adverse interaction of care
actions that overlap in time.

Discovery and resolution of adverse interactions

Adverse interactions can be induced by contradicting
targets of the guideline actions, the effects of CIG
actions, the medication conflicts offered by different
guidelines or inappropriate timing of medical process-
es.59 Discovery and resolution of them are imperative
to generate reliable and safe combined therapies.
Studies have demonstrated that CIG-driven computer-
ised systems facilitate the elimination of medication
administration errors and ADEs by recommending
safe drug dose levels, arranging drug frequencies and
associated durations of medications. For instance,
Koutkias et al.64,65 proposed a CIG driven clinical deci-
sion support model based on GASTON127 to help iden-
tification of drug safety risks and produce alerts and
recommendations for caregivers to prevent ADEs.

Besides the use of logic-based models for represent-
ing and merging knowledge elements of guidelines, they
have also been used for discovering adverse interac-
tions caused by the synchronous implementation of
multiple guidelines. Wilk et al.52 proposed a constraint
logic programming (CLP)-based115 model to represent
guidelines and mitigate conflicting clinical actions
which may occur between pairs of concurrently applied
CPGs in order to provide guidance to caregivers for
revising therapies in managing multimorbid patients.
This work built upon their previous work which
expanded with the involvement of interaction and revi-
sion operators for describing required therapy modifi-
cations, and new mitigation algorithm to identify and
address adverse interactions.51 In this paper, guidelines
were represented as actionable graphs (AGs) that are
directed acyclic graphs (DAGs) used for representing
guidelines, and involve incomplete information. Yet,
there were several assumptions made regarding the
model (e.g. temporal constructs of CPGs were not con-
sidered) and mitigation algorithm (e.g. iterative clinical
tasks were not considered and only binary variables
were used). In their latter work,55 assumptions related
to the mitigation algorithm that can handle cycles and
numerical measurements were relaxed, while

reconciling guidelines. Medication dosage adjustment
was supported.

The issues of temporal and related precedence rela-
tionships between guideline actions were addressed in
Michalowski et al.56 To handle them, authors extended
CLP to first-order logic (FOL) theories for developing
a generalised mitigation framework. The major short-
comings of this work were the need to automate the
maintenance of the precedence relationships between
guideline actions, and the lack of parallel tasks and
temporal characteristics. A similar adverse interaction
mitigation strategy was proposed by Zhang and
Zhang,57 which adopted the answer set programming
(ASP) -based131 approach. Like Wilk et al51,52 and
Michalowski et al.55, the authors identified conflicting
actions between treatments offered by two guidelines
and then used mitigation operators to modify them.
Zhang and Zhang57 provided mathematical definition
of the mitigation process that aimed to supply more
insights into readers about how conflicting actions
can be identified, addressed and modified in two con-
currently applied guidelines.

In the recent work of Wilk et al,53 they addressed
limitations of their previous works51,52,55 such as han-
dling parallel tasks of multiple guidelines while gener-
ating a reconciled treatment. Besides parallel clinical
tasks, temporal actions like time offset (i.e. lag between
care steps) and duration in care steps were also consid-
ered. Patient-preferences were involved while generat-
ing combined care plans for multimorbid patients. To
do so, authors introduced preference related revision
operators to modify treatments. The major limitations
of this study were the lack of complex decision nodes
(i.e. more than two options) that represent real-world
cases, with many decision options and lack of practical
applications to prove the efficacy of their approach. A
similar study, proposed by Kovalov and Bowles,54

translated clinical information into logical expressions.
However, the authors mainly focused on drug conflicts
offered by different guidelines and represented care
pathway using pharmaceutical graphs (i.e. DAGs
whose nodes denote drug administrations).
Additionally, the SMT solver was used to extract the
set of drugs with their levels of conflicts (e.g. safest) to
be offered to caregivers. The major limitation of this
work was the lack of discussion on characteristics of
guidelines, such as temporal constraints and drug dose
information.

While some works (e.g. Wilk et al.51–53 and
Michalowski et al.55) use AGs or pharmaceutical
graphs,54 some58,117,118 prefer other methods such as
petri nets-based models to represent guidelines. For
instance, Tan58 presented the situation calculus ontol-
ogy of petri nets (SCOPE) framework for the mitiga-
tion of adverse interactions on CIG actions based on
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petri nets and situation calculus132 that enable users to
handle iterative complex actions, represent time in
guidelines, facilitate handling parallel paths and per-
form execution-time modifications. SCOPE aimed to
generate combined therapy plans without adverse inter-
actions. The major limitations of this work were the
manual mitigation of two guidelines and not being
able to adapt to execution-time modifications. There
was also no evidence on the applicability and efficiency
of their method when more than two guidelines are
concurrently implemented.

Zamborlini et al.62 is one of the significant works
that extensively focuses on how to handle interactions.
The authors proposed a transition-based medical rec-
ommendations model for detecting interactions called
TMR4I, which is able to infer and classify interactions
between multiple recommendations within multiple
CIGs. They demonstrated that interactions may not
only occur in CIG actions which were mainly consid-
ered as drug–drug interactions in the existing
works,51,55 but also in CIG-independent interactions.
In TMR4I, two types of interactions were defined as
internal interactions (e.g. repetition interaction because
of the same action, contradiction interaction because of
the inverse transitions and/or same action, and alterna-
tive interaction because of the inverse transition) and
external interactions (e.g. incompatible drugs and alter-
native drug interactions). Authors introduced FOL
rules to detect these interactions and used external
information source, DrugBank (www.drugbank.ca),
for automatic detection of drug interactions. OWL122

and SPARQL133 were used for the implementation. In
their latter work,63 they extended the interaction detec-
tion approach62 by enhancing its reusability of FOL
rules to detect interactions and involving systematic
evaluation of the interaction types. Lack of temporal
constraints (e.g. duration, delay, frequency) in CIGs
and temporal interactions between their actions were
the major limitations of these works.

While some papers have been published on single
reasoning standards, like agent-based modelling45,69,134

or logic-based modelling,51–53,55–57 a number of them
focus on multiple reasoning-based standards. For
instance, Piovesan and Terenziani61 extended their pre-
vious works59,60 and proposed a mixed-initiative
approach based on GLARE formalism for discovering
alternative ways to reconcile guidelines while handling
adverse interactions on CIG actions. To do so, three
reasoning methodologies were introduced. These
involve a backward CIG navigation approach to
extract alternative CIG care paths; temporal reasoning
approach to analyse if an interaction occurs in time;
and goal-based planning approach to provide care-
givers a set of interaction management options (e.g.
safe alternative option, dosage adjustment and effect

monitoring) to follow. OWL-DL and SWRL rules
were used for the implementation. Enhancing reason-
ing capability by recommending the most suitable
option to caregivers given many options was addressed
as a future work.

Care personalisation and continuity

To integrate CPGs into the patient-centred care, sever-
al CIG-based CDSSs have emerged to personalise
guideline knowledge to supply patient-tailored recom-
mendations, considering patients’ multiple health con-
ditions, clinical history and preferences, that help to
enhance patient guideline adherences.130 Some of
these works also supply remote personalised care and
support care continuity of patients. Remote care sup-
port helps to reduce care costs (e.g. decrease health
resource use), improve the mobility and independence
of the patient, as well as provide treatment for elder
patients with multimorbidity that may have mental
and/or physical disability.42

Isern et al.45 suggested an agent-based K4Care
(knowledge-based home-care e-services for an ageing
Europe) platform that supplies personalised home-
care services for patients with multiple conditions. To
personalise care, each patients’ health conditions and
their social context were considered. State-decision-
action (SDA)-based128,135 formalism was adopted
which represent CPGs as diagrams with a set of varia-
bles to determine the health condition of a patient; to
choose a clinical or administrative task among a set
clinical or management options, to represent the clini-
cal or administrative tasks. As the part of the K4Care
project, Ria~no et al.40 proposed methodologies for per-
sonalisation of patients’ conditions (e.g. clinical and
social information about the patient), and intervention
plans to discover clinical and social inconsistencies in
the patient data. Authors represented CIGs as SDA
diagrams and presented a visualisation tool to edit
and unify the diagrams of all intervention plans recom-
mended for a multimorbid patient. The major limita-
tions of these two works were on the generation of
patient-specific intervention plans where the combina-
tion of therapy plans and personalisation processes
were manually performed. This may also limit the gen-
eration of alternative interventions when the number of
diseases grows. In their later works,33,39 therapy plans
were combined, considering the patient’s health condi-
tions and adverse drug interactions; however, interac-
tions can occur in many different levels of CIG actions
(see Piovesan et al.50).

Likewise, Lasierra et al.31 proposed an ontology-
driven home-based tele-monitoring system for complex
patients. To do so, patient profile ontology was intro-
duced that involves patients’ measurement results (e.g.

Bilici et al. 13

http://www.drugbank.ca


weight, blood pressure, glucose, pulse), patient infor-
mation and indications obtained by caregivers to
manage the patient’s health condition. Caregivers can
generate customised CIGs for each patient.
Nonetheless, lack of distinction was made between
CIG knowledge customisation level, which covers all
patients with varied multimorbid conditions, and per-
sonalisation level with patients’ contextual data that’s
associated with the customised guideline constructs.

In many studies, the shared-decision making process
was considered as an integral part of a CDSS, that
guideline-driven advice can be addressed when needed
and alternative care recommendations can be obtained
involving patient’s preferences and personal context (e.g.
wedding, or holidays). For instance, Quaglini et al.43

proposed a methodology for integrating shared deci-
sions into a CIG-based CDSS. This work was the part
of the MobiGuide project (www.mobiguide-project.eu)
that supplies guideline-based personalised care recom-
mendations through a mobile phone interface for
patients with chronic diseases. Herein shared decisions
were represented using decision trees with an embedded
Markov model,136 which is a stochastic model used to
define a sequence of possible health states where the
probability of each depends on the state reached in the
prior one. Recommendations, e.g. for medication
administration, were made according to these shared
decisions and guidelines that are represented with
Asbru formalism. Lack of generality issue of the pro-
posed methodology (e.g. not appropriate for all
patients) limits the applicability of this study. In their
later work, Peleg et al.44 introduced two types of patient
preferences as local preferences, and global preferences.
Local preferences denote personalisation of a certain
CIG action, such as arranging the blood glucose mea-
surement alert after a specific meal time, whereas global
preferences denote choosing a CIG branch among alter-
natives such as preferring Warfarin medication instead
of Asprin. Guidelines were represented using Asbru and
a graphical framework, called, GESHER.137 Lack of
clinical implementation, parallel paths and methodolo-
gies for detection of interactions occurred between mul-
tiple CIGs and resolution of them were the major
limitations of this work.

In their recent work,41 the authors extended their
approach by proposing methods for acquiring and
specifying information of parallel paths in care work-
flows based on CIG recommendations, and making
CIGs patient-centred by customising them with
patient’s personal preferences and psychosocial con-
text. Parallel and customised CIGs were applied using
Asbru, with the Picard Asbru103 execution engine to
execute the model with patient data and to get patient
preferences. Patient preferences were achieved through
a shared decision model43 that uses decision trees to

choose a CIG-based care option which best suits the
patient. Patients could state their preferences captured
by CIGs, used for generating personalised care plans,
for example by recording meal times. In the personal-
isation phase, the patient’s personal contexts (e.g. vaca-
tion) or events that the caregiver may have found
dangerous for the patient health (e.g. teeth bleeding)
were also considered. Enhancing the patient’s percep-
tion of safety and involvement in clinical decision
making were the major findings of this work.
However, this work falls short in conflict detection
and resolution application, creating multi-versions of
CIGs,37,71 and including extensive personalisation pro-
cesses (see Ria~no et al.40) for patients with varied multi-
morbid conditions.

CIG-driven computerised systems help to achieve
easy access to evidence-based information and help to
improve partnership between caregivers and their
patients by personalisation of care for each patient
where risk factors, pros and cons of care options can
be discussed together, and patient preferences can be
involved in clinical decision making.98,99 Moreover,
achieving care continuity through remote support
such as mobile applications that facilitate patient man-
agement, help to improve quality of care and have
potential to reduce health care costs by reducing com-
plications and hospital stays in the future.42

Discussion and future work

Multimorbidity management is an increasingly relevant
topic of research in the health informatics community,
due to its care challenges and concerns of providing
personalised therapies31,40–45 for each patient, which is
the main aim of patient-centred care.2,138 Traditional
CPGs face difficulties in presenting a detailed consider-
ation of strategies and recommendations to coordinate
conditions of a multimorbid patient.

For personalisation, diverse information related to
all of a patient’s health conditions, clinical history,
health records, as well as personal context need to be
consolidated. Evaluation and amendment of many
co-existing care plans, as well as coping with possible
adverse interactions, make multimorbidity care much
more challenging. Caregivers struggle with supplying
care to patients under such complexities, without caus-
ing any treatment conflicts or making any inconsistent
and/or unnecessary recommendations. When these
complexities are poorly managed, they may negatively
affect the duration of care and the healing process of a
patient, which may result in several undesired out-
comes. Moreover, eliminating care interruptions of
patients after their encounters with their caregivers
and sustaining their adherence to the agreed care plan
are also crucial for their outcome.
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CIG-driven CDSSs support caregivers in attaining

these goals. They help to generate a combined care plan

by merging multiple guidelines that have been encoded

as CIGs. This helps to eliminate clinical task duplica-

tions and improve health resource use. They support

detection of adverse and contradictory activities

between guidelines. They facilitate resolution of con-

flicts associated with causal relationships between

guideline entities (e.g. drug, disease, patient, time).

CIGs, involving drug information, when integrated

with appropriate algorithms can alleviate the risk of

drug interactions by checking them before any therapy

provision. Using CIGs, temporal constraints can be

translated into a machine-readable format and moni-

tored by CDSSs. The integration of CIGs into the

patient and caregiver shared decision-making process

helps to involve patient preferences in clinical decision

making, plays a significant role upon the care custom-

isation process and in maintaining patient adherence.

Consideration of patient preferences in clinical

decision-making phases enhances patients’ adherence

to recommended interventions. Many CIG-based

CDSSs supply remote support for patients, in manag-

ing their care, by suggesting evidence-based life-style

recommendations involving their preferences and per-

sonal contexts. The use of CIG-based CDSSs can help

to increase patients’ adherences to their health records

and clinical contexts, reduce medication errors, health

care costs and workloads of caregivers.
The review identified a broad range of challenges

and barriers in multimorbidity care:

• limitations of CPGs, complexity of managing tem-

poral constraints in clinical procedures with concur-

rently applied narrative CPGs;
• conflicting actions affecting therapies that can be

induced by polypharmacy (e.g. ADEs);
• patient characteristics and/or poor timing of clini-

cal actions;
• patients’ poor guideline adherences and care inter-

ruptions which can stem from the cognitive and/or

physical disability of a multimorbid patient.

The core concepts of managing multimorbidity care

through using CIG-based CDSSs are:

• the unification of multiple guidelines, the mitigation

and resolution of contradictory and inconsistent

activities within them and of their associated knowl-

edge elements;
• the handling of temporal constraints (e.g. start/end

and duration of therapies, and temporal scheduling

of clinical processes) in synchronously imple-

mented guidelines;

• involving patients’ preferences and integrating their

psychological context into a computerised decision

support setting to achieve care personalisation for

each patient;
• maintaining care continuity of complex patients with

remote support.

Ontology-based CDSSs, in recent years, are gaining

substantial importance due to their benefits.139

However, they have still several limitations. For

instance, most of the ontologies used in these systems

were designed for the treatment of a single disease140,141

and provided substantially detailed ontologies that are

not easily adaptable, generalizable or re-usable. Some

of the published works provided general models for

multimorbid disease management, yet they did not

supply enough instances that can reflect real-life appli-

cations and face difficulties in merging more than two

concurrently applied clinical actions together, offered

by multiple guidelines. There is no single way to repre-

sent CPGs as CIGs, there are several different formal-

isms (e.g. process-flow models, rule-based models, etc.)

with different granularities. While some of the existing

works47,48,59 mainly focus on a particular issue, such as

ontological representation of CPGs, merging multiple

CPGs, mitigating contradictory and inconsistent activ-

ities, temporal constraint verification and more, some

of these works41,53,54,58,63,67 consider combinations of

these issues. Nevertheless, coping with all these

complexities together is still a challenging issue in the

existing literature. Especially some of the logic-based

formalisms (e.g. Wilk et al.51–53, Michalowski et al.,55,56

and Zhang and Zhang57) need to prove their applica-

bility in real-life cases due to their theoretical

approaches and assumptions made. There is also a

need for more research on considerations of shared

decisions, patients’ preferences and their social con-

texts, broader automatic interaction detection and

resolution methodologies involving new types of

interactions such as drug-food interactions and suffi-

cient considerations of temporal constraints

under uncertainty such as delays occurring between

clinical tasks. Dealing with temporal constraints for

managing multimorbid patients were addressed in a

few papers, yet still need more attention from research-

ers. Future research can cover the following

open areas:

• developing methodologies for merging more than

two simultaneously applied clinical actions of multi-

ple CIGs;
• developing approaches for discovery and resolution

of adverse interactions such as patient–guideline,

patient–food, drug–food interactions;
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• developing models to cope with temporal constraints
in multiple CIGs and associated medical process-
es; and

• further CIG-based approaches to ensure continuity
of care69 for patients with multimorbidity or patients
with limited ability to frequently visit health service
providers, due to their economic condition, severity
of health condition and/or proximity, and who need
help for care plan adjustments considering their
actual health condition and personal occasions.42

This paper has made several contributions to the exist-
ing literature. To our knowledge, there is a limited
number of studies that review treatment complexities
and management of multimorbidity care using CIGs by
providing in-depth analysis on the following themes:
challenges and barriers in providing care for multimor-
bid patients; shortcomings of existing CPGs, and the
reasons why CIGs are needed in multimorbidity care;
and lastly, several approaches reviewed show how mul-
timorbid care complexities could be handled through
using CIG-driven CDSSs. The main strength of this
work is to provide a greater perspective to people
who aim to understand the complexities of supplying
care for patients with multimorbid needs, and the role
of CIGs upon their management and maintenance of
patient-safety. We also made recommendations directly
to readers for future research opportunities; thus,
aiming to contribute to the development of future stud-
ies based on the gaps addressed in this work.

There are some limitations that need to be consid-
ered for future studies. We mainly considered two jour-
nal platforms, Science Direct and PubMed, and
performed a Google scholar search using limited key-
words. The number of scientific journal repositories
and keywords can be extended involving polyphar-
macy, personalised care, patient centrality or precise
medical terms in the abstract, and title screening to
prepare a widely searched literature review. We con-
ducted this review up to 1 July 2017, and only the
main points that convey the gist of the issues were
presented. Thus, these sections can be enlarged in
future studies.

Conclusions

Clinical practice guidelines provide evidence-based
knowledge about treatment of a patient generally
with a single disease. CPGs have many benefits in
care such as supporting clinical decision-making, bring-
ing standardisation into practice, and improving the
quality of care. When patients have multimorbidity,
many of them need to be combined that may cause
contradictory recommendations in care because of the
possible adverse interactions between entities such as

drug–patient, drug–drug or drug–disease, or adverse

timing interactions between therapies. Therefore, treat-

ments need to be personalised for each patient to be

both safe and applicable. To make it possible, CPGs

need to be integrated with the patient care workflow

and patient-specific data (e.g. allergies, drug intoleran-
ces, genetics and past treatment history). Formalisation

of CPGs in the form of CIGs and then adopting them

in a CDSS could eliminate any limitations (e.g. passive

knowledge dissemination, static design, or lack of

patient data), and can increase their effectiveness

in care.
In this paper, a systematic literature review is per-

formed with the objective of providing insights into the

fundamental challenges and barriers occurring in mul-

timorbidity care, the role of CIGs in the delivery of

care and the management methods to handle multi-

morbid patients. This work can be useful for the

health informatics community, engineers, researchers,

healthcare actors or data scientists, who aim to under-

stand the treatment complexities of multimorbid

patients, and how CIGs can help to manage
them and become an integral part of the patient-

centred care.
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