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SUM M ARY

The local likelihood method of ('opas (1995a) allows for the incorporation 
into our parametric model of influence from data local to the point t at which 
we are estimating the true density function g(t) . This is is achieved through 
an analogy with censored data; we define the probability of a data point 
being considered observed, given that it has taken value x,, as

where K  is a scaled kernel function with smoothing parameter h. This leads 
to a likelihood function which gives more weight to observations close to I, 
hence the term ‘ local likelihood’ .

After constructing this local likelihood function and maximising it at I, 
the resulting density estimate can be described as semi-parametric in
terms of its limits with respect to li. As h oo, it approximates a standard 
parametric' fit f ( I .O)  where as when li decreases towards 0, it approximate's

the non - parametric kernel density estimate!.
My thesis develops this idea, initially proving its asymptotic superiority 

over the standard parametric estimate under certain conditions.
We then consider the improvements possible by making smoothing pa 

rameter h a function of /, enabling our semi parametric estimate to vary from

believe the true density to be low. Our improvement in accuracy is demon 
st rated in both simulated and real data examples, and the limits with respect

li and ft are given and evaluated, along with a procedure for incorporating 
prior belief about the true form of the density into these choices.

Kurt her piaci ¡cal examples illusi rate the effectiveness of I liese ideas when 
applied to a wide range of data sets.

approximating y(l )  in regions of high density to f ( t ,0 )  in regions where we

to li and the new adaption parameter n  are examined. Methods for choosing

IX



N O T A T IO N  U S E D  IN  T H IS  T H E S IS

I'Ik- following notation appears regularly throughout this thesis. This guide 
is neither exhaustive or essential, hut may save the reader the trouble of 
referring back to preceding chapters when working through equations.

g The true distribution whose density function we are attempting to esti­
mate.

X =  x\,...,xn A random sample of n observations from distribution g.

I Target point I at which we are estimating the density function of the 
true distribution.

g( t )  The probability density function defining true distribution g.

n The size of our sample of random observations.

W , 0 )  1 hobability density function defining the parametric family / which
we believe to be the distribution which produced data set .V.

0 Maximum Likelihood Kstimate (M LK) of parameter 0.

0t Maximum Ixical Likelihood Kstirnate (M LLL) of parameter 0 at t.

I\ ( ti) Scaled kernel function performing the weighting in our local like­
lihood function.

h band width or smoothing parameter list'd in the kernel function, constant 
with respect to /. ‘Overall bandwidth1 in adaptive semi parametric method.

hi Loeal band width; locally variable' version of h.

n Adaption parameter which determines how much our local bandwidth 
varies from the overall bandwidth //.

Local bandwidth lormed using amount of adaption <>
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1 Introduction and Literature Survey

1.1 Setting the scene

How exactly one should estimate the probability density function defining 

the true distribution g of a random quantity Z  is a fundamental question 

in statistics. The various methods used for density estimation can be split 

into two groups. Parametric estimation assumes that the observed data 

X  =  x\,.. . ,xn are from a member of a standard parametric family of dis­

tributions /, with density function f ( t ,0 )  at our target point t at which we 

are attempting to estimate true density function g(t). The p-dimensional 

parameter 0 =  (0i,...,0p) is then estimated, for example by maximum likeli­

hood, and an estimate 0 =  (0\,...,0V) is obtained. We now have a paramet­

ric estimate f ( t ,0 ) .  Non-parametric estimation differs from this in that no 

constraints are imposed as regards to the data coming from any particular 

parametric family. Instead the data are allowed to speak for themselves, the 

only assumption being that the distribution of the data has a ‘ true’ probabil­

ity density function g(t ) ,  our non-parametric estimate of this being defined 

as g(t) .

The aim of this thesis is to produce a technique incorporating the best
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aspects of parametric and non-parametric estimation, and eliminating their 

respective weaknesses as far as possible. Various methods have been proposed 

in the past which are semi-parametric in that they attempt to provide a 

link between g(t)  and f ( t ,0 ) .  My work concentrates on the development, 

improvement and theoretical justification of a particular technique built on 

the concept of local likelihood. This method was first applied in a density 

estimation setting by Copas (1995a), though local weighting of observations 

has been established in the field of regression analysis for some time.

1.2 Local likelihood and regression

Local fitting is a standard procedure in estimating the dependence of a re­

sponse variable Y  on a predictive variable X.  Assume we have a sample 

(X i, V j), ..., (X n, Yn). We are searching for a regression function

m (X ) =  E(Y\X) ,

the best mean squared error predictor of Y  given X , and our response shall 

then be modelled as

Yi =  m (X ,) +

where the mean of the e<’s is 0 for each i.
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Cleveland (1979) and Chambers (1983) both give examples of Scatterplot 

Smoothers. For a scatterplot (X ), V)), i =  l,...,n , the fitted value at x is the 

value of a polynomial fit to the data using weighted least squares. The weight 

of a particular point is dependent upon the distance between the X  variables 

only, such that it will be large for (X t, Vi) if X ; is close to x, and small if not. 

A  common choice of weight function is

u>(*,XitA ) « f f ( ^ j p i )  ( 1)

where A'(u) is a scaled non-negative kernel function which satisfies the fol­

lowing conditions:

(i) It is symmetrical about 0.

(ii) It is a decreasing function of |u|.

(iii) It has a maximum of 1 at u =  0.

For example, if we are estimating response y at predictor value x =  xo, 

we fit a straight line

y =  ¿o -f box

where a0 and bo are the values of coefficients a and b which minimise

(2)



4

at x =  x0. Smoothing parameter h, often called the bandwidth, controls 

the degree of local weighting; when it is large this method approximates 

ordinary least squares. Our regression estimate at x0 is simply the height o f 

the fitted line (2) at x0. At a different point xi we repeat the procedure, but 

with the weighting now dependent on the distances of the A ) ’s from xj. Plot 

la, adapted from Wand and Jones (1995), Fig 1.2, illustrates this method 

clearly.

The result is a non-linear fit to the data, with the extent of the departure 

from linearity depending on the size of h. This method is also known as the 

locally weighted running lines smoother or LOWESS. Cleveland (1979) gives 

a more robust iterative fitting method.

Scatterplot smoothing can be seen as semi-parametric in that we are 

assuming a model for Y  given X  at every point. In general the literature 

describes this as non-parametric regression.

Tibshirani and Hastie (1987) make the extension to likelihood based re­

gression models. Likelihood based methods assume that m (A ,) =  m (X { ,0 )  

and then attempt to estimate parameter 0. For example in the quadratic 

model

Y{ = 0o + 0\Xi + 0iX} + e, (3)



The solid curve is the estim
ate The dotted curves are the kernel w

eights 
and straight line fits at points x„ and x,

log (income)
12 13 14 15

P
LO

T 1a: S
catterplot S

m
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with

t i ~ N (  0,<r2),

we estimate 0  =  (0o,0i ,0j )  by 0  =  (0O, fa, fa), the maximum likelihood 

estimate found by maximising log-likelihood function L(0 ,Xi ,Y{ )  summed 

over the data. Our parametric estimate of response y given any predictor 

value x, found via likelihood, would thus be the curve

y =  0o +  fax +  fax2 +  et.

Tibshirani and Hastie replace the function m of predictor value and pa­

rameter 0 in (3) by an unspecified smooth function s(x). They then use 

‘ local likelihood’ to estimate s (x ) from the data. In this process the data is 

weighted with respect to x, the weight of an observed pair (A",-, Yi) decreasing 

the further A, is from x. We then find parameters fa =  (fa,x, 0liX, fa,x) which 

maximise the ‘ local likelihood function’

¿u»(*,A.-,A)L(A,A4,lf5)
1=1

at predictor value x, where w(x, A<, h) controls the weighting. Our estimate 

of s(x)  is then defined as

i (x )  =  faiZ +  fa'Zx +  fa,zx 2.
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In the Gaussian case, this local likelihood regression technique is equiva­

lent to LOWESS, since maximising the local likelihood is equivalent to least 

squares minimisation. This procedure has a range of applications, such as in 

the proportional hazards model of Cox (1972). Hastie and Tibshirani (1990) 

discuss several drawbacks of this method, such as the difficulties of incorpo­

rating different smoothing methods and the cost of the estimation procedure. 

However they suggest that the method is worthy of further study.

Other work of interest in this field has been produced by Jianqing Fan, 

in particular Fan and Gibjels (1992) which explores the use of a variable 

bandwidth hx. Explicit formulae for the optimal choice of this parameter are 

given.

1.3 Density estimation through local likelihood

In the words of Copas (1995a), there is a “crucial distinction” between the 

use of locally weighted likelihood methods in regression and in density esti­

mation. In the former, the weight of an observation is a function of time or of 

the covariates which are fixed (i.e. we are interested in estimating response 

Y  conditional upon fixed X ) ,  thus our weight function can be considered
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fixed. In the density estimation scenario, the weight needs to depend on the 

distance between the observed data X  and the target point t at which we 

are estimating the true density. Because the weight function is a function of 

X  and hence a random variable, we have to allow for the random nature of 

the weights in our likelihood function.

Copas uses an analogy with censored data to motivate a local likelihood 

function. As in parametric estimation we assume the data to be from a para­

metric family /. However, we consider a proportion of the data to have been 

observed and the rest to have been censored. Given that we are estimating 

at any target point t, the probability that any particular observation is taken 

as being observed, conditional on the value that it takes arriving from the 

experiment, is given by a weight function

w(n,t ,h )  =  K

In other words, the weighting on each observation, which is dependent on 

its distance from t, is performed by a scaled kernel function A '(u) defined in 

equation (1). Smoothing parameter h controls the overall degree of censoring; 

given a fixed target point t, then if h is large with respect to maxIt |ar, —1|, the 

probability of being observed will be large for all observations, but when h
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decreases, only the observations local to t are likely to be considered observed.

Considering our sample X  to have been thinned by this artificial censoring 

process, we now construct our local likelihood function. The probability that 

an observation is observed and takes the value x, is

p (ith  data point considered observed|ith data point takes value X j )p (a  data point takes value X ,')

=  w(Xi, t, h)f(X{, 6).

Likewise the probability that a data point is censored and takes a value in 

the range of / can be written as

B(6) — J (1 — w(x, t, h ) ) f (x ,  0)dx =  1 — J w(x,t,  h) f (x,0)dx.

With /, as the indicator random variable for the censoring status of obser­

vation x, having been observed, then our standard log-likelihood is of the 

form

l (xi ,0) -  /¿log/(x,,0) -I- 7; log ui(x,, t, h) +  (1 -  I i ) l ogB(O).  (4)

We can omit the second term since it is constant with respect to model 

parameter 0. Then taking the expectation over the 7,’s to get the ‘average’ 

log-likelihood obtained under our weighting mechanism, using the fact that

£(/,|x,) =  w(xi ,t ,h)
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and summing over the data, we have the local likelihood function at t,

n

L w(X , t ,0 ,h )  =  ^2w(x i , t ,h )\ogf (x i ,0 )  +  (1 -  w(ii ,  t, h) )  log B(0). (5)
1=1

For any target point t , we evaluate our maximum local likelihood es­

timate (M LLE) 0t which maximises (5). Our density estimate is 

Copas (1995a) gives further technical details, demonstrating that although 

the variance of the MLLE 6t is greater than that of the standard maximum 

likelihood estimate (M LE ) 0, 0t is a consistent estimate of 0 for all h.

This method is semi-parametric in terms of its limits with respect to h. 

Assuming n fixed, as h —> oo our local likelihood function converges towards 

the standard log-likelihood L (X,0 ) ,  which is maximised by MLE 0, and so 

our density estimate will approximate the standard parametric estimate.

It is important to note that this convergence is not always uniform for 

all t. That is to say, however large our value of h is, if the domain of / is 

unbounded then

t —* oo => w(ii ,t ,h)  —* 0 Vxj,

and L w(X , t ,0 ,  h) will not approximate the log-likelihood. For practical use 

of this semi-parametric method this is not a problem, since we will either be 

interested in density estimation at a single point, or over a bounded interval
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which contains the data. In these cases |x,- — <| will be bounded, and as 

h —* oo the aforementioned convergence is uniform. So if we want our local 

likelihood to approximate the log-likelihood for all t we just choose h to be 

very large with respect to |x, — t\ for all the observations x,.

However, later in this thesis I use this large h approximation to the lo­

cal likelihood in a theoretical context, which involves integrating our semi- 

parametric estimate with respect to t over an unbounded interval. Despite 

the lack of uniform convergence of L w( X , t , 0 ,h )  to L ( X ,0 )  as h —> oo, it 

is possible to split the integrals concerned into three parts and demonstrate 

that the unbounded end sections converge to 0 as the probability of them 

containing observed data decreases. We can then use the bounded middle 

section integral as an approximation to the whole integral. This is explained 

in greater depth in section 2.3. Obviously if the domain of / is bounded 

anyway, then convergence is uniform and we do not have a problem.

Copas also demonstrates that as h —► 0, then f ( t ,6 t ) converges to the 

ordinary non-parametric kernel estimate g ( t )  in the sense that as h —► 0, 

then

/Mi) 
g ( t )

l



12

where

<6)
In equation (6), which is our definition of g(t )  for the remainder of this thesis, 

we have

as the normalising constant for kernel function K,  X\, ..x„ as our sample and 

h as the smoothing parameter or bandwidth.

In the semi-parametric method, bandwidth h controls the relative influ­

ence of the imposed parametric model compared to that of the data. As 

it spans the continuum between 0 and oo, so f ( t , 0 t) spans the continuum 

between g( t )  and f ( t ,0 ) ,  though it should be noted that the non-parametric 

end of this is a ’moving target’ , since g(t )  is itself dependent on h.

One drawback with this method is that f ( t ,O t) does not necessarily in­

tegrate to 1. Obviously this condition is satisfied at the limits of h, and for 

the Normal distribution with large h it was proved by Copas (1995a) that

¡ f ( t , 0 t)dt =  l +  O(h~4).

When the semi-parametric method has been used with a two-parameter fam­

ily such as a Normal, Weibull or Gamma, the numerically calculated integral
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has been very close to one, whereas it has been noticeably less for a one 

parameter family such as the exponential. As Copas suggests, this may be 

because of the greater flexibility of the two parameter case in matching all 

values of g. In all the examples in this thesis, the density estimate 

f ( t , 9 t) has not been normalised unless otherwise stated.

Two further papers have been concerned with demonstrating the superi­

ority o f this semi-parametric method, using small and large h approximations 

to f ( t , 9 t) respectively. Copas (1995b) produces a small h approximation to 

the mean squared error of f ( t , 9 t) and demonstrates a gain in accuracy over 

the ordinary kernel estimate if / is modestly misspecified. Meanwhile, taking 

h to be large, Copas and Stride (1995) give a proof of the semi-parametric 

method’s asymptotic improvement in accuracy over parametric estimation 

under certain restrictions on the form of /. This is contained in chapter 2 of 

this thesis.

There exist other so-called semi-parametric density estimators which have 

similar properties to the method described above. Olkin and Spiegelman 

(1987) build the bridge between f ( t ,9 )  and g(t )  in a simpler if somewhat ad- 

hoc manner, without the direct motivation through likelihood. They propose
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a density estimate of

+  (1 -  7T)$(<),

a weighted sum of parametric and non-parametric estimates. This method 

also requires selection of a further parameter 7r € [0, 1], possibly by cross- 

validation.

The semi-parametric method of Hjort and Jones (1994) bears a closer 

resemblance to that of Copas. At t they suggest choosing a value of 0 to 

maximise their local likelihood function

L n(t, 0) =  n ~ ' ± K  ( ^ )  log / (*,, 0 ) ~  l  K  ( ^ )  f ( x ,  0)dx (7)

which is simpler than that of Copas (1995a), but lacking the direct motivation 

through weighted censoring of observations depending on their distance from 

our target point. The function defined in (7) has a useful property in that the 

parameter 0(t) which maximises its large n approximation at t also minimises 

a locally weighted version of the Kullback-Leibler distance between the true 

and the approximating parametric density at t. As h —> oo, (7) converges to 

the standard log-likelihood minus 1, which is maximised by MLE 0. Equally 

when h decreases to moderate and small values so reducing the influence of 

the model, the resulting mainly non-parametric estimate has approximately
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the same variance as g(t )  but a smaller bias term, resulting in a smaller mean 

squared error with respect to true distribution g(t). Using the notation from 

(5), equation (7) can be rewritten as

n

L n( t , 0) =  n~l w(xi, t, h) log /(*,-, 0) -  1 -f- B(0).
i=i

Some rewarding conversations about this work with Dr Shinto Eguchi 

(Institute of Statistical Mathematics, Tokyo) led to his suggestion of the 

following local likelihood function, where we choose 6 =  6j  to maximise

M M )  =  n ~ x  log/(*.-, 0) -  h) log(l -  B{0)) .1=1
(In the special case where we are using a rectangular “neighbourhood-type” 

weight function, this method is equivalent to ‘ truncating’ rather than cen­

soring. The weight function determines the size of the interval around target 

point t containing the observations which we shall consider. We ignore all 

observations outside this region, thus truncating the data.)

This method gives its strongest results when h is large. As for the method 

of Copas, we can show that under certain distance measures the resulting 

semi-parametric estimate offers an improvement in accuracy over

parametric estimation (see chapter 2). However the result is stronger since 

in this case there are no restrictions on parametric family /. This truncation
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method loses out when h is decreased to a small value, since unlike the 

procedures of Copas or Hjort and Jones it does not possess the equivalence 

to, or the asymptotic improvement over non-parametric kernel estimation. If 

we believe the departure of g(t )  from f ( t ,  6) to be very slight, making a large 

value of h suitable, then this method could be effective, but it will perform 

poorly if h is small.

From now on in this thesis, the terms semi-parametric estimation and 

local likelihood will refer exclusively to f ( t ,6 , )  and (5) respectively unless 

otherwise stated. It should also be assumed that in all practical ex­

amples and simulations in which I have evaluated semi-parametric 

density estimates via maximising the local likelihood, I have taken 

the weighting function A'(u) to be the scaled Gaussian kernel func­

tion exp( — y ) .  It has convenient continuity properties and makes it possible 

to find B(0)  analytically for many choices of /. Unless clearly stated other­

wise, this assumption applies for the whole of this thesis.
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1.4 Kernel density estimation and related methods

At the lower limit of smoothing parameter h, our semi-parametric method 

approximates to a non-parametric ordinary kernel density estimate g( t ) with 

bandwidth h (6), first suggested by Parzen (1962). This itself has been sub­

ject to a large amount of research, much of which becomes relevant in the 

later chapters of this thesis. Silverman (1986) gives a good introduction to 

the subject as well as going into finer detail on several facets of it. Wand 

and Jones (1995) performs a similar role, with special attention given to the 

choice of the bandwidth h. As in the histogram, o f which the kernel is simply 

a smoothed version, the choice of h will significantly effect the appearance of 

our density estimate. Parzen (1962) developed a plug-in formula for h based 

on minimising a small h approximation to the mean squared error of the es­

timate. This performs well when the true density is close to that of a Normal 

distribution, but otherwise tends to oversmooth, especially when estimating 

multimodal densities. Hall et al (1990) suggest an improvement involving 

a higher order asymptotic representation of the optimal bandwidth. Least 

Squares Cross-Validation, first applied in this context by Rudemo (1982), 

and Likelihood Cross-Validation (Duin (1976)) are also cited by Silverman
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as possible methods of selecting h. For a comparison of these methods see

Sheather (1992), which demonstrates that there is no single best method for 

all samples.

Just as Fan suggests a variable h when using the kernel as a weight func­

tion in regression analysis, so the concept of kernel estimation with a variable 

h has also been explored. The principle of using a non-constant bandwidth 

is particularly appealing when true distribution g appears to be long-tailed. 

In these circumstances it makes sense to use a large bandwidth in areas of 

low density, smudging the few observations over a wide area and reducing 

the risk of noise around the datapoints. In the smaller regions of high den­

sity a smaller value of h would be more suitable to avoid oversmoothing and 

subsequent underestimation of the density around the mode.

Two methods have arisen, both of which can be described as ‘adaptive’ or 

‘variable’ kernel methods. I shall use the definitions from the review paper of 

Jones (1990). This defines a varying kernel density estimate at t given data 

X  =  i t , ...,x„ as

with the change from the ordinary kernel density estimate being that a dif-
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ferent bandwidth is employed for each data point. Varying kernels were 

introduced by Briemen, Meisel and Purcell (1977), who suggested that the 

bandwidth would vary through a choice of hXl =  hg(xi )~1 with h a constant 

of proportionality. Abramson (1982) proved that a choice of hXt =  hg(x , ) ~ 2  

reduced bias, while Silverman generalised the choice of bandwidth to

g (* .)
exP(£*,(logff(xi)))

with new adaption parameter a chosen between 0 and 1. Notable further 

work in this area with respect to bias minimisation has been written by 

Hall and Marron (1988) and Hall (1990). Hall (1992) considers choosing our 

variable bandwidth with respect to minimising a weighted version of the in­

tegrated squared error of the resulting density estimate, and demonstrates 

the optimality of selection by weighted squared error cross-validation. Note 

that the formula for varying bandwidth hx, given above requires the estima­

tion of a pilot estimate of the true density for further use. Brieman et al, 

Abramson and Silverman all indicate that the quality of our density estimate 

will be insensitive to the fine detail of the pilot estimate, for which Silverman 

suggests the use of ordinary kernel density estimation.

Local kernel estimation varies the bandwidth with location. At each



20
target point t, our density estimate is

This is equivalent to the ordinary kernel estimate at t with h =  ht. But 

unlike the varying kernel, which provides a global density estimate once we 

have placed the kernels of varying bandwidth over the n points, the local 

kernel estimate at t, which places kernels of identical bandwidth ht over the 

data points, is not applicable at any other point than t. In fact our local 

kernel estimate over the range of t is made up of a continuum of individual 

ordinary kernel estimates with different bandwidths for each t. This means 

that does not necessarily integrate to 1, and is not a probability density 

function itself, unlike g(t )  and gv(t) . The optimal choice of ht will be the 

same as for the ordinary kernel estimate when considering estimation at a 

single point; we can use the same small h approximation to the MSE at t 

which tells us that our best choice is

l

See Jones (1990) for further details. Over the range o f t this will run into 

difficulties when the second derivative of g(t )  is equal to zero. Schucany



21
(1989) attempts to sidestep this problem but his solution involves the awk­

ward proposition of estimating the fourth and sixth derivatives of g(t ) .  For 

these reasons the varying kernel has a greater chance of being adopted as a 

regular method of density estimation; indeed Silverman (1986) demonstrates 

its worth in several examples. However Chapter 3 of this thesis involves local 

kernels in the weighting of the local likelihood function; a situation in which 

their lack of integrability to 1 is less important. A new method of bandwidth 

selection is proposed avoiding awkward derivative estimation, using a form 

similar to that for the varying kernel.

1.5 How this thesis aims to improve upon these meth­
ods

Very few distributions are perfectly modelled by any single parametric family. 

One answer is not to impose any parametric family on the data, and let 

it speak for itself by using non-parametric methods. Yet methods such as 

histograms are hardly practical for precise estimation of a density and even 

non-parametric kernel estimation is far from ideal in'some situations. As well 

as lacking the convenient structure of parametric estimation, the problem of 

choosing a suitable bandwidth h often becomes a balancing act, where some
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roughness is allowed in the tails to enable a good estimate to be achieved in 

regions of high density.

A motivation for semi-parametric methods of the sort reviewed in this 

chapter comes from cases where the true distribution is thought to resem­

ble a parametric family but differs in shape and size in a few small areas. 

The following data set will be considered throughout this thesis since it is a 

good illustration of how both parametric and non-parametric methods can 

simultaneously fail.

The data set consists of line transect measurements of deer (Buckland 

(1992)). The unit of measurement of perpendicular distance from the line 

is metres. Line transect surveys are a technique used to measure ‘species 

abundance’ , defined as the average number of specimens of the species per 

unit area. A straight line is drawn between two points and an observer walks 

along it, recording the perpendicular distances from the line of individual 

sightings of the relevant species. If L is the length of the line, then abundance 

can be estimated by

J _  rcg(O)
2 L

where n is the sample size and g(t)  is the probability density function of



PLO
T 1b: H

istogram
 of deer line transect data



24

the observed distances, which itself must be estimated first. See section 2 of 

Copéis (1995b) for a more detailed inspection of the formula for abundance.

Initially we consider producing a parametric estimate of g(t ) .  A his­

togram of the distances of the deer data (plot lb ) suggests an exponential fit 

is sensible, but overestimates in the region around t =  0. However, the alter­

native, a non-parametric kernel estimate, will struggle especially in this case, 

as much because of the shape and bounded nature of the distribution éis the 

usual problem of choosing h to balance oversmoothing and undersmoothing. 

Thus the retention of the structure of a parametric family which is defined 

on a limited range is convenient here; our density estimate cannot logically 

take any value other than 0 for t <  0 when we are considering distances from 

a line. Plot lc illustrates just how poor our parametric and non-parametric 

estimates are around t =  0, the non-parametric method being an ordinary 

Gaussian kernel density estimate with bandwidth h handpicked to avoid noise 

in the tails yet minimise oversmoothing in regions of higher density. For 

a similar motivating example for semi-parametric methods see the remand 

times example from Copas (1995a), section 3. Further information on line 

transect sampling can be found in Burnham et al (1980).

Semi-parametric methods allow us to keep the neat parametric structure
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but gives us flexibility to deal with local departures from the model. In par­

ticular the semi-parametric method derived from the local likelihood function 

(5) of Copas has the advantages of a clearly motivated structure, convergence 

to non-parametric and parametric estimates at the lower and upper limits of 

A, and asymptotic proof of its superiority over kernel estimation when f ( t , 0) 

does not differ too much from g(t). The first aim of this thesis is to demon­

strate its superiority over parametric estimation under certain conditions (see 

chapter 2).

However the problem of choosing a suitable smoothing parameter A trans­

lates to semi-parametric estimation too, since we are using a kernel function 

for the weighting. Our ‘balancing act’ when selecting A is now between non- 

parametric and parametric estimates; we have to decide how much of the 

structure of the observed data we want to reveal compared to how close we 

want our estimate to stay to the standard parametric fit. This can pose 

problems in cases where we are certain that one region of the true density 

g(t )  will be akin to our parametric estimate but another may differ

noticeably. Chapter 3 of this thesis suggests a way of sidestepping this prob­

lem, by introducing a variable A allowing a more non-parametric estimate in 

some regions and a more parametric one in others. Having explained and



developed a structure for this, chapters 4 and 5 proceed with the thorny ques­

tion of how to select a value of h and a value of the new adaptive parameter 

a. Various ideas for plug-in values of these parameters based on minimising 

small h approximations to the mean squared error of our estimate are given. 

Chapter 6 suggests a revised approach, incorporating an index of prior belief 

concerning the true distribution. There are regular examples with real and 

simulated data sets throughout the thesis, with a couple of more detailed 

examples and conclusions contained in chapter 7.

27
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2 The superiority of semi-parametric esti­

mation when h is large

2.1 Introduction

The semi-parametric method of Copas (1995a), introduced and outlined in 

greater detail in chapter 1, combines the structure of parametric estimation 

through likelihood with the flexibility given by smoothing techniques that 

are normally associated with non-parametric procedures. Given a sample 

* i ,  ...,x„ assumed to be from model f ( x ,0 ) ,  the usual log-likelihood function

L(0)  =  ± \ o g f ( x i,0)
i=i

is replaced by a local likelihood function (chapter 1, equation (5 )) which 

gives extra weighting to the observations in the region of our target point t , 

the location at which we are estimating the true density. If all the weight 

in the analysis is placed on observations close to t, then the model is less 

influential, and we will obtain a mainly non-parametric density estimate. 

As the weighting is reduced, the model becomes more influential, with the 

evenly weighted case being equivalent to the full parametric fit produced by 

choosing 0 =  6 which maximises L(0).
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The bandwidth h smoothing kernel function A'(u), which performs the 

weighting within the local likelihood function, has overall control of this 

weighting. If h is large then the weighting will be even throughout the ob­

servations, but if h is very small then all the weight is placed on observations 

close to our target point.

Useful approximations to the equations given in chapter 1 can be found 

for both large and small values of h. For the latter it can be proved that 

provided n is sufficiently large, the asymptotic mean squared error (MSE) of 

the semi-parametric estimate must be smaller than that of the parametric fit 

whenever the model is misspecified. Details of the argument proposing this 

can be found in Copas (1995b), section 3.

We can consider the size of h to be relative to the scale of the data. 

For example, if h is large we interpret this as v being large, where h =  sv, 

with s =  a denoting one sample standard deviation, and v constant. The 

approximations to be examined in more detail in section 2.2 rely on large h in 

terms of assuming that ( x — t)h~l is small. Given a fixed value of h for all t, as 

i - t o o w e  will find that this assumption doesn’t hold. However large h is, we 

can always choose t such that (x — t)h~' is not small. This dilemma can only 

be resolved if h is chosen relative to the distance between the target point t
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and the data point furthest from t. Since this chapter aims to substantiate 

the advantage of the semi-parametric method with large fixed h over a range 

of points, which involves integrating over t from infinity to minus infinity, we 

need to use another approximation as |f| gets very large. This is defined at 

the start of section 2.2.

Copas (1995a) derives several formulae based on fixed large h approxima­

tions of the weight function which determines the extent of the censoring of 

observations. For example, we can replace the kernel function A '((x  — t)h~l ) 

by its large h expansion, explained in more detail in section 2.2, producing 

the following equation,

Lw(t ,X ,0,  h) —

¿ lo g  /(x,,0) -  -  t f  (log/(x„0) -  log(<r92 + (fie -  <)2)) + 0(h~4).

( 1)

Differentiating and omitting all terms of order greater than A-2 we find 

that

± L w( t , X , 0 , h ) ~ ± L ( 0 ) + l-bS*nT (2)

where 6 =  A '"(0 ) <  0, 6 =  /i-1, n is the sample size and 

T  =  n_I ^(x, -  f )2 ^ l ° g  /(*■>*) ~  ^  1°g(°'e2 +  (t ~ ( 3 )
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with fie and <7$2 being the mean and variance under density f (x ,6 ) .

Under the assumption that model f ( x ,0 )  is correct, T  has mean 0, but if 

model / does not fit well in the neighbourhood of t, then E ( T )  ^  0. Thus T  

can be used as a test of local fit, with the null hypothesis being that its true 

value is 0. Copas (1995a) pursues this further.

By considering these approximations we are seeing how much our MLE 

0 is modified by a small amount of ‘ local influence’ from the data. If T  ss 

0, then at any target point t we would expect little departure of 6t from 

0. However if the data local to t suggests that true distribution g differs 

substantially from our model / in this region, then 0t will differ from 6. 

Intuitively we will expect this change to improve our estimate at t more 

often than not, with being closer to g(t)  than f ( t ,0 )  was, since it has

given greater weight to the data in the neighbourhood of t.

In sections 2.2 and 2.3 large h approximations are extended and then ap­

plied in an attempt to quantify any general advantage of the semi-parametric 

method, if indeed any exists. When considering estimation at a specific tar­

get point t, using the semi-parametric method is not always preferable. As 

illustrated in section 2.5 example 1, there will always be at least one value of 

t at which the parametric estimate will equal the true distribution, a level of
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accuracy which the semi-parametric method may not be able to match and 

obviously not better. However, despite not being uniformly better over the 

whole range of t, the semi-parametric method can be shown to be superior 

under certain conditions when using some sensible loss functions to compare 

the performance of itself and the parametric method. Section 2.2 gives some 

results for when we assume both n and h to be large.

2.2 Some approximations for large h

Several approximations for large h proposed in this section can be used to 

show the superiority of the semi-parametric method under certain conditions. 

Three loss functions will be employed to measure and compare the relative 

performance of parametric and semi-parametric estimation.

Given data X  =  (xj , . . .x„ ), the local likelihood function at target point 

t, L w( t ,X ,6 ,  h), is driven by our weight function

w(xi, t, h) =  K

where bandwidth h controls the amount of smoothing. For all t we can find 

0 =  0, which maximises Lw(t, X,0, h). As h increases towards infinity, 0t will 

tend towards the parametric estimate 6. In this section we assume h to be
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where
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and hence, using the standard variance approximation

Var(0t) =  n - 1 ^ ^ l w(t,x,0, h ) ^ j  Var ( ^ l w(t, x,0, h) ĵ ,

that

Var(Òt) ~  log/ ( * , « ) ) )  +  0(h~*).

Thus when h is large, the variance of 0t will be close to that of 0.

Continuing in a similar vein, we can also can also derive equation (2) from 

( 1), and from this the following approximation,

(0, _  0) ~  log/ ( * , * ) ) )  T, (5)

where 6 =  h~x and T  is defined in section 2.1, equation (3).

(0 — 0) is of order n s  so as n —♦ oo then 0 —* 0. With b\ as above, we 

define

l ( 0 ) - ' = b , log/ (* , « ) ) )

which is positive semi-definite. For example, if / is a Normal density with 

variance <r2 and A'(u) is the Gaussian kernel, then

1 0 

0 Ì
(6 )
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Thus, using (3) and (5) we find

E,(Ot - B ) ~

-  j ( t  -  x f  (jL  log/ (* , 9 ) log( E j ( t  -  X ? ) j  g(x)dx  (7)

which after expanding

=  J ( l ~  f (x ,0 )g (x )dx

~ ^ d logE , ( t ~ x ^ E^ t ~ x ) ic ( t ^°)

=  - \ l ( 0 T X62 J ( t - x f ^ \ o g f ( x , 9 ) ( g ( x ) - c ( t , 0 ) f ( x , 0 ) ) d x  (8)

where

/ j „> _  Eg(t -  x )2 _  fx(t -  x )2g(x)dx 
£/(< -  x )2 /*(< -  x )2/(x, 0)dx

We can find another useful approximation from the Taylor series of f ( t , 0 t) 

expanded around 0, using the fact that (6t — 9) is small for large h.

For all t we have

(0, -  0) +  o(6'). (9)

These approximations can now be used in evaluating the performance of

the semi-parametric method in estimating the true distribution g.
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2.3 Comparing semi-parametric and parametric esti­
mation for large h

2.3.1 Using the loss function L\

We shall now attempt to quantify the improvement gained by using the 

semi-parametric method, initially through loss function L\. This is simply a 

weighted version of the integrated squared error (ISE), and when considering 

the accuracy of any parameter estimate 0 =  0° over a range of target points 

i, it is defined as

the Kagan divergence between f ( t ,  0°) and g(t). See Clarke and Baron (1990)

which is distributed approximately x2*-i if the data is divided up into ap­

( 10)

where 0 is the limit of Maximum Likelihood Estimate 0 as n —» oo. Note

that if we assume that (0° — 0) is small for all t, then

(11)

for further details of this function. It is analogous to the chi-squared goodness

of fit statistic

^  (F r -  E j ( F r) f

r  Ef(Fr)

proximately k groups. Fr is the number of observations in group r and Ej(Ft )
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is the expected number in group r given that the data has true distribution 

/. The smaller U is, the better the fit of / to the data.

Thus the smaller the value of L\( f ( t ,0° ) ,g ( t ) ) ,  the better our parameter 

estimate 0° is. With sample size n being very large, the variance of our 

estimate will be very small. Since the M1SE can be written as a sum of the 

integrated variance and the integrated squared bias of in the limiting

case as n —» oo L\ is measuring the weighted bias of our density estimate.

We can calculate the expectation of C\, the difference between the per­

formance under L\ of the semi-parametric method (where 6° =  0t) and the 

parametric (where 0° =  0), defined as

Cl = L i ( f ( t , 0 t) , 9 ( t ) ) - L i ( n t ,0 ) , g ( t ) ) ,

-  7, { ------------------7 M ) ------------------) dt

r tw .».)- /«.«))(/(<.»,) - '/(¡)+/(!,#) - swn,.
= 1. { ---------------------------- jm ---------------------------- )

(12)
Ht,0 )

where the integral is evaluated over the domain of f ( t ,0 ) .  To make further 

progress, we need to use the large h approximations to our semi-parametric 

method developed in section 2.2. These are really small |i, — <|A-1 approxi­

mations; it is possible to select a single fixed value of h to satisfy this criterion 

for all t in the domain of f ( t ,0 )  if this domain is bounded. If it is unbounded
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we appear to have a problem, since for any fixed choice of h we can always find 

a large enough value of t within the domain such that |x, — i|/i—1 is large too, 

contradicting the assumption underlying our approximations. The integral 

in equation ( 12) is calculated over the domain of f ( t ,0 ) ;  if this is unbounded 

we cannot choose h to validate the use of small |x, — t\h~' approximations 

to f ( t , 0 t) everywhere.

However, suppose, without loss of generality, that we examine the case 

where the domain of f ( t ,0 )  is unbounded at both ends. Splitting up the 

integral gives

C l - f ( ^  

■ C ( m

) - / M ) ) ( / M « ) - g (0  +  / M ) - g ( 0 )
/ M )

Ot) -  -  9(t)  +  f ( t , 0 ) -  g(t ) )\

) -  -  g ( t )  +  f ( t ,0 )  -  g ( t ) ) '

j  dt

dt

dt.

As |<| —► oo, we will pass the last data point and K  ( ^ 1) will become small 

for all i and fixed h, so our semi-parametric estimate will approximate the 

kernel estimate g(t )  defined in equation (6) of chapter 1. We will assume 

that l\ (u) has been chosen to have tails at least as tight to zero as those o f
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When / is a Gamma, Weibull or Normal distribution, the popular Gaussian 

kernel function K(u )  =  exp( —|u2) satisfies this restriction.

Consider values of 71 and 12 such that the integrals f ( t ,0 )dt  and 

f n  are both very small, and |< — x,\ is very large for all t in the

intervals ( —oo,/ l) and (12, oo). Assuming throughout that n is large such 

that 0 ~  0, this implies that the second and third components of the sum of 

integrals given above can be approximated by

Int 1 =  j f "  -  l )  (g( t )  — g(t )  +  f ( t ,  0) -  g(t ) )dt

and

Int 2 =  j T  -  l )  (g( t )  -  g( t )  +  f ( t ,0 )  -  g(t ) )dt

respectively.

Then for sufficiently large |/1| and \I2\,

0 < g (0 < vm

for some constant u*, so
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we get

£ (C .) *

¿2 /  j ( t - x ) 2pT( t ) I ( 0 ) - ' p ( x ) ( g ( t )  -  f ( t ,  0) ) (g (x)  -  c(t, 0) f (x ,  0))dxdt, (15)

where

P(x ) =  ^ lo g  f (x ,0 ) .

Expanding this we find that if c(t,0) =  1, then E ( C t ) =  —262zTI (0 )~1z <  0, 

where z is a vector, implying that the semi-parametric method is at least as 

accurate as the parametric under this loss function if E j ( t  — x )2 =  Eg(t — x )2 

This condition holds in cases where / matches the mean and variance of any 

distribution to which it is fitted. For example, this occurs if / is a Normal 

distribution with mean p and variance a2. In this case I (0 )~ l is as 

given in equation (6), and defining

g(x)  =  g(x)  -  f (x ,0 ) ,

we have
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E ( C t ) =

=  - 262a2

 ̂ & lo9f(,x,0)v(x) j  o i  y £ log f(t ,0 )g (t )  ;

/ , \ T / \ / . \
L x £;logf(x,0)r) (x)dx 1 0 f t t±logf ( t ,0)T] ( t )dt

k L x £logf (x ,0 )g (x )dx  j  \ 0 3 / \ f ( t ,0 )g ( t )d t  J

= —2¿J<72 / x — logf(x,0)rj (x)dx f  t —  logf( t,0)g( t)dt  
J x  (ifi  Jt dfL

- 6 2a2 J  x-j-logf(x, 0)g(x)dx Jt-£-logf(t,0)T)(t)dt

=  - 6 2<t~4( F 3 -  G3)2,

where F3 and G3 are the third moments of / and <7 respectively. As one 

would expect, a relationship exists between the gain in accuracy realised when 

choosing the semi-parametric method ahead of the parametric method, and 

the difference in the shapes of f ( t ,0 )  and g(t). The following graphs show 

this visually. In both cases I have taken a large random sample of 2000 points 

from a ‘ true’ distribution g, chosen an ‘ incorrect’ family parametric family 

/, and used a computer package to find 0t and 0 for my semi-parametric 

and parametric estimates f ( t ,0 t) and f ( t ,0 )  respectively, over a large range 

of t's. Smoothing parameter (bandwidth) h is chosen large in both cases
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(h ~  5&), complying with the assumptions of the earlier theory. The value 

of Ci is estimated by numerical integration using my knowledge of g. To 

demonstrate that it is shape rather than variance which is related to the 

semi-parametric method’s improvement, true distribution g has the same 

variance in both cases.

In Plot 2a the true distribution g is a Gamma[A,M] distribution, with 

parameters A — 1 and M  =  \/0 . It is highly skewed unlike /, a Normal 

distribution which we are trying to fit to the random sample from g. The 

application of a very small amount of local influence has made the semi- 

parametric method move slighly away from the parametric estimate and to­

wards the true distribution in most regions. This is reflected in a much larger 

negative value of Ci than in plot 2b where / is again a Normal distribution 

and g is a shifted Gamma with different shape parameters but with the same 

variance as in plot 2a. The shapes of f ( t ,0 )  and g(t) are similar with no 

substantial local departures of the true distribution from the model. De­

spite sampling variability, the semi-parametric and parametric estimates are 

virtually co-incident throughout the range of t.
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2.3.2 Using the Kullback-Leibler Distance.

Suppose as our loss function L2 we take the Kullback-Leibler distance be­

tween two distributions with density functions g( t )  and namely

Hall (1987) studies the properties of the Kullback-Leibler distance in 

measuring the accuracy of density estimates, though only in terms of non- 

parametric methods.

The Kullback-Leibler distance requires both density functions to inte­

grate to 1. Semi-parametric estimate does not necessarily possess

this property; so we use the normalised semi-parametric estimate

Then another comparison of the relative accuracy of the semi-parametric 

and parametric methods can be achieved by calculating

(16)

instead.

Eg(C2) =  Eg( L 2( f ( t , 0 t) ,g ( t ) )  -  L2( f ( t , 0 ) , g ( t ) ) ) , (17)

which can be written as
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=  ~ E g  ( / log ( /(*’ ¿ ) )  • ( 18) 

To evaluate this we must integrate over a possibly unbounded interval of t, 

and use small |(t — X { ) h ~ l | approximations to f ( t ,  0t ). As in subsection 2.3.1, 

for any fixed h our ‘small |(< — condition will be violated as t —► oo.

It is trivial to show that if two density functions are close everywhere then 

the Kagan Divergence between them, which in our example is approximated 

by Li for large n, is roughly twice the Kullback-Leibler distance between 

them. As |<| —* oo, the differences g( t )  — f ( t ,6 )  and g( t )  — f ( t ,Ot) between 

the true density and the parametric and semi-parametric estimates will both 

take very small values. Therefore we can approximate C\ by \C\ in the 

extreme tails, and use the theory of subsection 2.3.1 on page 37, which solves 

this limiting problem when we are evaluating loss function C\.

Applying equation (9) and using the large h and n approximations

•og 1 + ( o , - o ) £ n t,Q) log f ( t ,0 )
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and

log ( l  +  ¡ ( 0 ,  - * ) ^ / M ) )  -  / (««  -  O )^ \og f ( t , 0 ) f ( t , 0 )d t ,

we then have

E [C2) ~ - j  Ea(0t -  0)T±  log /(*, 0)(g( t )  -  f ( t , *))<«, (19)

which via equations (7) and (8) equals

Jt f ( x - t ) 2p(t )TI (0 )~xp ( x ) ( g ( t ) - f ( t ,  0 ) ) ( g ( x ) - c ( t ,  0 ) f (x ,  0))dxdt. (20)

If / satisfies c(t,0) =  1 we once again have shown that the semi-parametric 

method is at least as accurate as the parametric. Note that in this case,

E (C 2) =  i£ (C . )  (21)

indicating that again a relationship exists between the gain in accuracy when 

choosing the semi-parametric method ahead o f the parametric method, and 

the difference in the shapes of f ( t , 0 ) and g(t ) .  We would expect equation 

(20), having stated earlier that the Kagan Divergence between two functions 

is roughly twice the Kullback-Leibler distance between them if they are close 

everywhere in the region of interest.
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2.3.3 Using the mean integrated squared error

FjOss function L\ given in equation (10) is effectively a weighted version of 

the more commonly used ISE between g(t)  and f ( t ,0° ) ,  defined as

/S£?(/(i, « • ) . * ( « ) )  =  Jt(f(t,0°)-g(t)Ÿdt.
Define the mean integrated squared error (MISE) as

M I S E ( f ( t , 0 ° ) , g ( t ) )  =  Eg { I S E ( f ( t , 0 ° ) , g ( t ) ) ) .

Attempting to use this to measure the expected difference in performance 

between the estimation methods, with the same conditions as before and 

using the same conditions as above, produced the following integral. In 

otfier words, if

c 3 =  I S E ( f ( t , Ô t) , g ( t ) )  -  I S E ( f ( t , 0 ) ,  g(t ) ) ,

then

E (C 3) =  M I S E ( f ( t , 0 t) ,g( t ) )  -  M I S E ( f ( t , 0 ) , g ( t ) )  ~

jJy-x)2p(t)Tl(0)~' p(x)(g(t)~ f(t,0)(g(x)-c(t,0)l(x,0))f(t,0)dxdt
(22)

which 1 was unable to simplify algebraically for general g(t ) ,  though I have 

shown this to be less than or equal to 0 for specific cases. For example if



g(t )  is the density function for an exponential distribution and f ( t ,6 )  is the 

density function for a Normal distribution, then the integral can be calculated 

algebraically. If our true exponential distribution has parameter A, then

C3 ~  —0.303i2A-1

which implies that the semi-parametric method is better under these criteria 

and this measure. As suggested in Section 2.1, we can define h =  to 

be large when it is equal to v standard deviations of the true distribution g , 

where v is large. An exponential (A ) distribution has variance A -2 so

C3 =  —0.30362A-1 =  —0.303r_2A.

As for loss functions L\ and Lj,  the larger the variance of the true distri­

bution, the smaller the advantage we accrue by using the semi-parametric 

method instead of the parametric method. Alternatively this can be seen 

in terms of shape; the smaller the value of A (and thus our gain over the 

semi-parametric method), the flatter the density function will be, improving 

the Normal fit. Even then this is an admittedly impractical example, since 

it is unlikely that one would be attempting to fit a Normal distribution to 

data from an exponential distribution.
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For the case where the true distribution g has a Gamma density, / is 

Normal distribution and all previously stated conditions hold, it is possible 

to obtain algebraically a formula for the integral in equation (24) in terms 

of the shape parameter M  of the Gamma distribution. If g ~  r[.4,A/], 

/ ~  t2], with smoothing parameter h and sample size n both large,

then taking A =  1 without loss of generality we find that

E ( a > *  ¿ v W  (t  + = ^ ( - « ( 1  + *«») 

~“ P(ICw + U*”  ' l'8" '  + + I"8« ’ - 1 M ‘  + •

where 4>(<) is the normal c.d.f. and

^  = r uM̂ exp(_y )</li-

Plotting this formula against M  we see that as M  increases (and thus 

the variance of distribution g increases causing shape of g(t )  to become less 

skewed and closer to that of the Normal density function), then our gain 

in using the parametric method once again decreases (plot 2c). Note that 

for all M  the semi-parametric method appears to outperform the parametric 

method. Thus both these results for the MISE support the comments made

at the end of section 2.3.1. It should also be noted that both the above



results are the MISE’s calculated over the range (0, oo) i.e. only where g ( t ) is 

defined. This gives more powerful results than those obtained by integrating 

over ( — 00, 00), since examples for the g ~  T [A, M],  f  ~  Af[/i,cr2] case (e.g. 

see plot 2d) indicate that in the left tail where t <  0 and g(t )  =  0, f ( t , 9 t) is 

closer to 0 and thus a better estimate than f ( t ,  0). It suggests that integrating 

over ( — 00, 00) will produce results showing a much larger gain from using 

the semi-parametric method.

52
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2.4 Discussion

While we have no more proven examples, I would suggest that the loss of the 

semi-parametric method would be less than that of our parametric estimate 

under the M1SE for at least as wide a range of cases as it is under L\. Loss 

function L\ puts extra weighting on the tails where, given a sensible choice of 

/, all o f f ( t , 9), f ( t ,  9t) and g(t)  will take very small values and therefore there 

will be little scope for improvement by using the semi-parametric method. 

However nearer the modes of / and g there will be more data, there may be 

a greater difference between the values of f ( t ,0 ) ,  f ( t , 0 t) and g(t ) ,  and thus 

more scope for the semi-parametric method to improve our estimate. Since 

the MISE is evenly weighted it will pick out this improvement to a relatively 

greater extent than L\ will.

However it must be remembered that the semi-parametric method is never 

going to be uniformly better than parametric estimate, which will always 

cross the true distribution at at least one point (see example 1, section 2.5.1).

While the condition requiring distribution / being such that c(t, 0) equals 

1 may seem quite restrictive, it does at least encompass the ubiquitous Nor­

mal distribution. For other choices of / and g, I have taken a large random
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sample from a distribution g, then used a computer package to obtain values 

of 0t by maximising the local likelihood function (for a wide range of target 

points t) and 6 for my semi-parametric and parametric estimates f ( t ,  0t) and 

f ( t , 6 )  respectively. It is then possible, by integrating numerically and using 

ones knowledge of what the true distribution really is, to calculate sample 

values for C\, C j and C3.

None of the results that I obtained required any approximations and all 

suggested that the semi-parametric method was superior for a far wider range 

of distributions and with less restrictive assumptions about h and n than in 

the cases we have examined so far. Indeed no counter example emerged 

where, when h was chosen to be large, the parametric method gave better 

results. They also suggested that as h decreased from a large value, the 

semi-parametric method increased in accuracy and thus showed even greater 

improvement over the parametric method. This is discussed further and some 

of these ‘ tests’ are given in examples in the next section. We must remember 

the asymptotic nature of the results in sections 2.2 and 2.3, and that they 

require taking the expectation  ‘over the true distribution’ . They neither 

prove or disprove any advantage of semi-parametric estimation in cases where 

h and n are not large, and nor do they prove that it will always give more
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accurate results when h and n are large.

In practical use, we would expect the semi-parametric method to perform 

less well than parametric estimation when for all t, f ( t , 0 )  =  g(t). Then as 

n —+ oo, the parametric estimate f ( t ,6 )  will fit the data perfectly and cannot 

be bettered. The variability of any sample will cause 0t to deviate from 0 

along the range of t and so the semi-parametric estimate will be less accurate. 

It thus follows that when working with finite samples, the semi-parametric 

estimate may also be worse if f ( t ,0 )  and g(t) are very close to one another 

for all t.

2.5 Case studies

In examples 1 and 3, we have generated large random samples (n =  2000) 

from distributions, chosen a large value of h (~  5 sample standard deviations 

of the data) to use in our semi-parametric estimate, and considered the case 

where, with no knowledge of the source of the data, we incorrectly believe it 

to be from another parametric family. I have limited the examples to cases 

where this is a reasonable mistake to make - previous tests have confirmed 

what one would expect; that in cases where our parametric guess f ( t ,0 )



58

differed more wildly from the true density function g(t)  with very large local 

differences in shape and size, the semi-parametric method had an even more 

substantial advantage in accuracy over the parametric method than in the 

more plausible cases below. However it is unlikely that initial analysis of 

a large sample from g will suggest that it comes from a distribution with a 

totally different shape and form to g(t)\ A preparatory viewing of a histogram 

or kernel estimate from the data before selecting / should generally give a 

rough indication of the shape of the true density function g(t) .

Since we know g(t), in these cases we can assess the performance of the 

parametric and semi-parametric methods of estimation, both subjectively 

by considering the graph and numerically by calculating the difference in 

performance under the three loss functions as explained in section 2.4. When 

using loss function ¿ 2, the Kullback-Leibler distance, it was necessary to scale 

our semi-parametric estimate to ensure that it was a legitimate probability 

density function. It was multiplied by a constant such that it integrated to 

the same value as the parametric estimate over the equivalent range.

For example 2 we have no explicit density function to represent the true 

distribution; however it is useful as an illustration of a ‘real data’ case where 

applying the semi-parametric method gives additional accuracy in regions of t
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in which we suspect that the true distribution may differ from our parametric 

family in shape.

When considering these examples it is important to remember that h is 

large and so the parametric and semi-parametric estimates will be very sim­

ilar. As stated in section 2.4, examples have shown that the semi-parametric 

method improves substantially upon the parametric for a smaller choice of h 

though no theory has been produced to confirm this. An illustration of this 

improvement is given in example 1, plot 2e. We can also use these exam­

ples to demonstrate that the semi-parametric method does not offer uniform 

improvement for all t (see plot 2f).

2.5.1 Example 1

We have taken a random sample of 2000 points from a Gamma[l,4] distribu­

tion.

We now believe that the data are distributed Normally, thus our paramet­

ric estimate will be the probability density function of a Normal distribution 

with both mean and variance approximately equal to 4. The largest differ­

ences between this and the true distribution occur to the left of the mode and 

in the left tail. In these regions the local influence of the data has caused
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the resulting semi-parametric estimate to move away from the parametric 

estimate towards the true density (see plot 2d). We can use the difference 

C* between the squared errors of the two methods i.e.

C* = ( /M « )  - * ( * ) ) *  - ( / ( * ,« )  - i? (0 )2

to identify the location and magnitude of our gains and losses under the 

semi-parametric method (see plot 2f and compare with plot 2d). This shows 

that the semi-parametric estimate has moved from the parametric estimate 

towards the true density in most areas, especially in the left tail and around 

the mode of g(t ) ,  but this behaviour is not uniform, with the paramet­

ric method being closer to g(t )  (and thus pushing C* above 0) in small 

regions around where it crosses the true density function. All three loss 

functions indicate that the semi-parametric estimate is more accurate for 

the majority of the range of t, the extra weighting of the L\ loss func­

tion, particularly in the left tail, accounting for its larger value. While 

L,2( f ( t , d t) , g ( t ) )  and ¿ 2(/(/, ¿), j(< )) are not defined for t <  0, equation (13) 

is, taking a value of 0 in the region t <  0. Thus we can use the Kullback- 

Leibler distance over the whole range, though we cannot pick out numerically 

the advantage of the semi-parametric method in the left tail.
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Plot 2e shows the aforementioned improvement in the accuracy of the 

semi-parametric method as h decreases from large values (i.e. from around 5 

sample standard deviations to around 2 sample standard deviations) which 

allow only the very small amount of local data influence assumed in the 

theory of this chapter, by plotting C\, Cj  and C3 all against h, with loss 

functions calculated as described in Section 2.4.

2.5.2 Example 2

As introduced in section 1.5, the data used is a sample of 350 line transect 

measurements. In this case the distances are taken from the observation line 

to the deer that were sighted. An exponential fit appears reasonable, but 

we might expect the true distribution to flatten out very close to the mode 

(since one is as likely to see a deer one metre away as two metres away). The 

histogram featured on plot 2g supports this theory.

While much better results have been achieved for this data set when 

using a smaller h value, even using large values of h our estimate is slightly 

more realistic as we approach the mode. At t =  0, the importance of which 

was outlined in section 1.5, we find f (0,0t) <  /(O,0) for h =  12, which is 

around 2.5 standard deviations. Since the parametric method substantially
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overestimates the density at this point, we have gained in accuracy by using 

the semi-parametric method. When a smaller value of h =  6 is applied, 

the local improvement appears to be greater (see plot 2g). This example is 

discussed further in forthcoming chapters.

2.5.3 Example 3

Example 3 illustrates our suggestion in section 2.4 that the semi-parametric 

method may well be superior to the parametric method under more gen­

eral conditions than we have been able to prove in this chapter. Here / 

is not a two parameter family ‘matching the mean and variance’ as be­

fore. We have taken a sample of 2000 points from true distribution Nor- 

mal[10,9] and wrongly modelled these data as from parametric family /, 

where / ~  T[/l, M].  Smoothing parameter h is taken equal to approximately 

3 sample standard deviations.

Our semi-parametric estimate again moves away from the parametric es­

timate towards the true density in several regions and is coincident with the 

parametric estimate elsewhere (see plot 2h). The calculations reflect this 

with the semi-parametric method once again performing better under all 3

loss functions considered.
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3 Introducing the ‘adaption’ parameter

3.1 The motivation for a variable bandwidth

Having considered large h approximations to the semi-parametric method 

outlined in chapter 1, we now return to exploring the more general advantages 

and problems of this method compared to those of parametric and non- 

parametric estimation in their own right, which we touched upon in section 

1.5.

Ordinary kernel density estimation struggles to find a balance between 

achieving an accurate estimate in areas of high density and avoiding noise in 

the tails. Our choice of bandwidth h is central to this dilemma. We often find 

that in order to smooth the tails, we must accept a degree of oversmoothing 

and therefore underestimation of the true density elsewhere.

The rigidity of parametric estimation is both its principal advantage and 

drawback. Once we have chosen a parametric family from which we believe 

the data to have come, we have a simple structure to work with. It allows 

the incorporation of prior belief and requires only the estimation of a finite, 

usually small number of parameters in order to estimate the true distribution 

at any point t. However problems can occur in the initial step, since while
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many data sets appear to emanate from a particular parametric family, it is 

unlikely that this models the true distribution g perfectly. For example, the 

histogram of the deer line transect data (plot lb ) suggests that the distances 

from the line are distributed exponentially, except for a small region around 

t =  0 where the density flattens off. If we fit an exponential family to 

this data, our parametric estimate of the true density will be accurate in 

most regions, but will overestimate g(t )  as t approaches zero. Parametric 

estimation lacks the responsiveness to the data local to our target point t, 

which makes non-parametric methods very useful.

To an extent, our semi-parametric method allows us to solve the prob­

lems posed by both parametric and non-parametric estimation. We can fit a 

smooth parametric curve to the data and use bandwidth h, which smooths 

the weight function driving the local likelihood function, to determine how 

much influence the data has locally. As h increases this local influence will 

decrease. If h is chosen small and the data suggests that g differs substan­

tially from our chosen parametric family /, then this will be reflected by the 

values of 0t, which maximise the local likelihood at t, differing substantially 

from the MLE 0. Yet if our true distribution resembles a member of the 

parametric family in most areas but departs substantially from it in shape
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and size in small regions, then we find ourselves performing a balancing act 

similar to that necessary when selecting the bandwidth for ordinary kernel 

estimation. Consider again the line transect data. If we choose h large thus 

producing the smooth exponential curve which we believe to be an accurate 

representation of the true distribution in the tails, then there is not enough 

local influence of the data to pick out much of the flattening of the true 

density near t =  0 though, as illustrated in plot 2g, it is a clear improvement 

over the parametric estimate. Yet if we decrease h to produce the latter 

effect with a more non-parametric estimate, then the estimate in the right 

tail is no longer smooth and suffers from unwelcome local influence! Plot 3a 

shows this graphically, with compromise value h =  1.2 overestimating the 

mode slightly and failing to smooth the right tail completely.

The logical solution to this problem is to vary the weighting with respect 

to t, and therefore the amount of influence given to the data local to our 

target point t. This can be achieved by making bandwidth h a function of 

t , therefore changing the ordinary kernel A'(u) which we use as our weight 

function

w(x, t ,h)  =  u>(ar) =  K  ( “ y " )
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to a local kernel function, such that

w(x, t ,h)  =  w(x) =  K  ■ ( ! )

At any fixed <, when h, is large we approximate a parametric estimate, and as 

ht decreases to zero we now move towards the non-parametric kernel estimate 

g(t) of g(t ) .  We want ht to decrease in areas where the shape of f ( t ,0 )  differs 

from g( t )  and to make it large elsewhere. This leads to the next question; 

how do we formulate htl

3.2 Incorporating the local kernel function into semi- 
parametric estimation

The local kernel function is just one member of the family of adaptive or 

variable kernels, which is characterised by the non-constant nature of the 

bandwidth. Variable kernel functions can be divided into two distinct sub­

families, depending on whether our variable bandwidth is directly related to 

data points X  =  (x j,...,x „ ) or target point t.

Ordinary kernel estimation places kernel functions with constant band­

width h on each data point. However varying kernel estimation (as intro­

duced in Chapter 1 and outlined by Silverman (1986); he defines this method 

as adaptive kernel estimation) allows the bandwidth to vary from one data
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point to the next. On the other hand, local kernel estimation described 

in Jones (1990) varies the bandwidth between target points at which we are 

estimating, so that given a fixed target point t, we place a kernel function 

with bandwidth ht over each data point. At any one target point t, the local 

method gives the same estimate of g( t )  as the ordinary kernel method would 

with h =  ht. The local kernel density estimate over all t is actually a contin­

uum of ordinary kernel estimates with different bandwidths for each value of 

t. For more detailed discussion and references on these two types of variable 

kernel, refer back to section 1.4.

We cannot logically insert the varying kernel into our local likelihood 

formula. This requires a fixed structure before the data are inserted, and if 

we use the varying kernel then the censoring process incorporated in the local 

likelihood function becomes directly dependent on the location of the data. 

Secondly, the motivation for using a variable kernel is to be able to vary the 

degree of censoring relative to the location at which we are estimating. It 

thus follows that we want the bandwidth to vary with each target point t 

rather than with the data points x,, implying that our bandwidth must be 

a function of t. Therefore, as suggested, we use the local kernel function, 

defined in ( 1), as the weight function driving the local likelihood.
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We are now required to choose a ‘ local’ bandwidth ht for each value of 

t. Jones (1990) uses the fact that at any one point t, the local method is 

the same as the ordinary kernel estimate with h =  ht. He suggests that we 

should proceed in a similar manner to the ordinary kernel case, by choosing 

ht to minimise the MSE of the kernel estimate at t.

Splitting the MSE up into a sum of squared bias and variance, and using 

small h and large n approximations, we find our optimal choice of smoothing 

parameter is
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or bounded function. For example, the exponential case poses complications 

around t =  0, where a discontinuity exists.

A preferable method of choosing ht is suggested by the varying kernel 

density estimation method briefly discussed earlier. The following idea is 

well suited to our reasons for introducing a non-constant bandwidth into the 

weighting procedure. In regions of high density, where we will have lots of 

data helping to give an accurate kernel estimate, we want the bandwidth 

to take small values (and therefore cause the semi-parametric estimate to 

err towards non-parametric kernel estimation). There is also greater scope 

for a large difference between f ( t , 0 ) and g(t) , and a subsequent advantage 

of our semi-parametric method over the parametric estimate in these areas. 

In regions of low density we would prefer h, to take large values, so that 

the semi-parametric method approximates parametric estimation. Density 

functions f ( t ,6 )  and g(t )  will both be small, and can therefore differ little 

in shape and size. There will be few data points here, making the smooth, 

largely parametric estimate preferable to a more non-parametric type esti­

mate, which is liable to noise.

The varying kernel method places a kernel function over each data point
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x,-, with bandwidth hXt¡a chosen as

9(x i )\ 0 <  a <  1 (3)A

where

(See Silverman (1986), chapter 5). I propose an adjustment of these formulae

Our local bandwidth of hlta is now a function of three variables; the loca­

tion t and two parameters h and a. Here h can be thought of as the base­

line smoothing parameter or overall bandwidth, controlling the underlying 

level of smoothing. A separate parameter a controls the extent to which ht,a 

varies locally from h. For the remainder of this thesis, we defíne the 

amount of adaption applied as the size of adaptive parameter a. 

The direction in which h,ia varies from h is determined by the density at t\

to make them functions of t, so that at any point t , the suggested local

bandwidth is

(4)

with

A =  exp (^ ff(< )l°g íf(O d<)
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if g(t )  is less than its geometric mean A then ht,a >  h, and similarly g(t )  >  A 

implies ht_a <  h. When q is large we find that ht,a will decrease dramatically 

as g ( t ) increases and vice-versa. As a - t  0, the effect of adaption becomes 

less. When a  =  0, we have ht<a =  h for all values of t, and w(x)  is simply a 

scaled ordinary kernel function as before.

Our choice of bandwidth given in equation (4) differs from that used in 

varying kernel density estimation (3), both in its dependence on t rather than 

on data x,, and on the removal of the upper-bound of 1 on a. There appears 

no reason for any specific upper-bound on a, though the semi-parametric 

method performs poorly if a is too large, as it would for very small h. If 

q is raised too high we find that the increasingly large h,<a values in the 

tails makes our estimate approximate the parametric estimate very closely, 

whereas in regions of high density, the resulting non-parametric estimate 

produced by the very small ht,a becomes just a series of spikes at the data 

points.

However it is logical to retain the lower bound of 0 on q given in (3). 

Negative values of a will lead to non-parametric tails and possibly a poor 

parametric estimate around the mode. The former is more serious, since if 

f ( t ,0 )  is defined on an unbounded range of t, then as it becomes small the
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monotonically decreasing ht,a will produce spikes at the data points and a 

density estimate ~  0 elsewhere. Hence a should always remain greater than 

or equal to 0.

3.2.1 Determining a pilot estimate

Our suggested choice of ht,a requires the calculation of g(t ) .  Since true dis­

tribution g is of course unknown, we require a pilot estimate g(t)  of the true 

density at t. We are not seeking fine accuracy from this estimate (if that 

was always possible then there would be no need for the semi-parametric 

method!); rather an indication of whether t is in an area of high or low den­

sity. When g(t )  is used in the varying kernel, Silverman recommends use 

o f the nearest neighbour or ordinary kernel methods for this purpose when 

applying the varying kernel method, but such non-parametric methods have 

significant drawbacks when used in a local kernel situation. These stem both 

from the difficulties in finding A, the geometric mean of the pilot estimate, 

and from the need to find g( t )  over a very large range of points rather than 

just at the data points. For the varying kernel we calculate the sample ge­

ometric mean over the data points so that it is proportional to a sum of 

logarithms of the n non-parametric estimates. The local kernel method dif-
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fers in that function ht,a, unlike hXlia, is continuous and we calculate g(t )  

for all t. So instead of a discrete approximation to the geometric mean, we 

would have to integrate over t , giving

A = CXP U t^  ' (5)
As long as it is a reasonable representation of the shape and size of g(t) , our 

priorities when choosing a pilot estimator are ease and rapidity of calculation. 

Thus the difficulty in calculating (5) when g(t )  is found by non-parametric 

estimation of some sort is unwelcome. At best this value can be evaluated 

by numerical integration, but it cannot be found analytically. Using a ker­

nel estimate for g(t )  also creates another problem, namely how to choose a 

bandwidth for this estimate. Poor bandwidth selection in this situation could 

cause a breakdown in the whole semi-parametric process. For example, if we 

choose too small a bandwidth, then g(t)  will become a series o f spikes at the 

data points and will equal zero elsewhere. This in turn will produce small 

ht,a values at the data points, and very large ones when t ^  x,-. Our eventual 

semi-parametric estimate will be identical to a parametric estimate except 

for a series of spikes at the data points. This is an interesting representation 

of data especially for a small sample, but a poor density estimate!
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This method of finding a pilot estimate is unsatisfactory in the local kernel 

context. Instead I suggest taking

the parametric estimate of the true density function g(t) . Presuming that 

our choice of parametric family / was made after consulting a histogram of 

the data, or at least indicates the approximate size and shape of g(t ) ,  this is 

an effective pilot estimate. It is simple to calculate for all t, and

A — exp / ( i ,  !°g / ( / ,  (6)

can be calculated analytically for many choices of parametric family /.

This method has proved successful in all situations. For example, in the 

line transect case, even though fitting an exponential distribution to the data 

fails to pick out the flattening at the top (near t =  0) of the true density 

function g(t ) ,  it will produce a large pilot estimate in this region, reflecting 

that the true distribution is similar in shape to an exponential distribution. 

If adaption is applied, small ht,a values will follow here, and therefore the 

semi-parametric method will move towards a more non-parametric estimate 

around t =  0. This w ill pick out the flattening o f the true density around

0. Our final estimate will be accurate to the data here and have a smooth
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parametric estimate in the tails where f ( t , 0 ) is small causing ht,a to be 

large. Plot 3b shows this improvement, with handpicked values of h =  3 and 

a =  1.2. The selection of parameters h and a is discussed in the next section 

and some ideas for optimal selection are suggested in chapter 4.

From this point onwards we define our adaptive semi-parametric es­

timate of the density at target point t as f ( t , 0 t<a), where 0t<a is the MLLE of 

0 calculated by maximising the local likelihood function at t , with weighting 

controlled by smoothing parameter A(,a. When a =  0, this is equivalent to 

the ordinary semi-parametric estimate f ( t , 0,).

3.3 Limiting properties of ht a

We now examine the limiting behaviour of the function ht,a with respect to 

its three arguments h, t and a. Without loss of generality we shall assume 

our data set is X  =  (x i, ...,xn) with n finite. The simplest limiting properties 

are those corresponding to our baseline h value. If t and a are fixed, ht,a 

follows the behaviour of A as it decreases to zero or increases to infinity. For 

all t and a,

h —» oo => ht,a —> oo
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and

h —» 0 => ht'a —» 0.

Now taking t and h to be fixed, we consider the limits of ht_a with respect 

to a. When a =  0 we have the ordinary semi-parametric method with 

ht,a =  h everywhere. As a increases from 0 the behaviour of ht<a, and thus 

our estimate, depends on the location of t. Define

T(<) =
f ( t j )  

A ’ (7)

which is constant with respect to a. Then if Y(<) is greater than 1,

ht,a =  h exp(—a log T(<))

will decrease towards zero as a increases, the rate dependent on the value 

of T ( i ) .  Alternatively if T ( t )  is less than 1, an increase in a  will send ht,a 

towards infinity. If t is such that T ( i )  =  1, then applying adaption will have 

no effect on our estimate, the amount of smoothing being totally governed 

by the size of h. We define the set

B '  =  ( t : T (t )  =  1) (8)

as the set of Boundary Points, since they are the values on the boundary 

between ht,a becoming greater or less than h as a increases. Using the Mean
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Value Theorem, it is trivial to show that B * is non-empty for any probability 

density function f ( t , 0 ).

The limiting behaviour with respect to t is itself dependent on the function 

f ( t ,0 ) .  Given fixed h and a, then since T ( f )  is bounded above by

max( f ( t ,  0 )
maxT ( = --------------

i '  A

ht<a will have a greatest lower bound which is positive and attained at the 

mode. The existence of an upper bound depends on the range of t on which 

f ( t ,0 )  is defined. If this is bounded at both ends (for example, when / is a 

uniform distribution), and a minimum value ¿ 0 is attained by then

ht,a will have a least upper bound when h and a are fixed. However, if the 

range is unbounded at either end, we can always find t such that and

therefore T(<), can take a value arbitrarily close to zero. Then, as T ( t )  —* 0, 

we get ht a —» oo.

3.4 Quantifying the improvement offered by adaption

In the example above we can visually observe the improvement caused by 

applying adaption. But it is not clear whether applying adaption always 

improves our estimate, and when it does offer an improvement, how much
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of one is possible. We can examine these questions in two ways. Initially 

we shall consider extending the large h approximations of chapter 2 to large 

ht,a approximations, and observing the effect of increasing the amount of 

adaption a very slightly from 0. Alternatively we can assume a  >  0, and 

ignore the tail regions where ht,a will become very large as a —♦ oo, causing 

f{t,0t,a) to approximate f ( t ,0 ) .  Instead we concentrate on the target points 

t for which ht,a <  h for all a >  0, where adaption could dramatically change 

our estimate from being largely parametric to being largely non-parametric.

3.4.1 Some approximations when ht,a is large

We assume that ht,a large for all t, which in turn places a restriction on 

our examination of the effects of adaption. As a increases towards infinity, 

ht<a will decrease from h towards zero in areas where the pilot estimate is 

large, contradicting any large ht,a assumptions. So as well as assuming our 

baseline h value to be large, we also restrict our considerations on the effect 

of adaption to the effect of a small increase of a from zero, such that ht,a is 

still large everywhere. Given a fixed overall bandwidth h, we cannot consider 

evaluating the performance of / (f ,0(,a) as a increases further.
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Taking

s *  =  r ~ ,

the small 6 approximations of Copas (1995a) and chapter 2 can simply be 

changed to small ¿,,a approximations. Replacing 6 =  £ by 6t,a, our weight 

function can be approximated by

K  (¿«.„(z, - < ) ) = !  +  M a(Xi -  <)2 +  0 « J , (9)

where 6, =  A'"(0). Our adaptive local likelihood score can be written such 

that

^ L w( X , t , 0 ) ~  ^ L ( X , t , 0 ) + 1-b l 6t,anT.  (10)

Then, for example, we have

(0,,a - 0 ) ~  - l- S l  ( e ,  ( ¿ l o g / (* ,< ? ) ) )  ‘ T

and this leads to

c(t,0) JAl -  x)2g(x)dx 
Jz(t ~ xYf (x ,0 )dx'

where



1(0) - ' =  bt log/ (* , « ) ) )

and

T  =  n ~ l  ¿ ( * .  “  0 * ~  ^ log(£r» +  (< ~ 

as before.

3.4.2 Examining the effect of a small amount of adaption

We can now determine whether increasing a from 0 will automatically im­

prove our estimate. As in chapter 2 we will use the Kullback-Leibler distance 

to measure the accuracy of our estimates to the true distribution. Consider 

the risk function Cj  introduced in subsection 2.3.2. This was the expected 

difference between the Kullback-Leibler distance of our semi-parametric es­

timate f ( t ,O t ) from g(t )  and the Kullback-Leibler distance of the ordinary 

parametric estimate from g(t ) .  A negative value of E ( C i )  indicated

that we would expect the semi-parametric estimate to be more accurate. 

Define Ci,ai the adaptive analogue to Cj, as

c ìl0 =  H f ( t , è tta) ,g(t))  -  L2( f ( t ,0 ) ,g ( t ) ) ,

86

where f ( t ,9 t ,a ) ¡s the normalised version of f ( t ,Ot,a) and loss function L 2 is
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the Kullback-Leibler distance between two density functions, first defined in 

chapter 2, equation (18).

To progress we will need to use the large ht,a approximations given in 

the preceding subsection, which are really small |x, — t\h^l approximations. 

When t is fixed we can always select an overall bandwidth h to fulfil the 

latter criterion but, as in the non-adaptive case of chapter 2, when we need 

to integrate over an interval of t and require small |x, — t\h^l approximations 

throughout the interval, such a selection of h may be impossible.

If the domain of f ( t ,0 )  is bounded at both ends, then there is no problem 

because \t — x,| is then bounded. We can take h as any fixed value larger 

than max(iX| |(< — xt)T (< )“ °|i>, where v is a large constant and a° is the value 

of o  up to which we shall consider our large ht,a approximation valid. The 

greater the amount of a we want to be able to consider being applied, the 

larger we will have to choose v.

Unfortunately f ( t ,0 )  is often defined on an unbounded interval of t, and 

when examining the performance of f ( t ,Ot,a) over all t we will face similar 

problems to those encountered in the non-adaptive case, namely that for any 

fixed h and data set xj, ...,x„ we can always choose t such that |xj — is

large. However because of the local nature of which increases as f ( t , 0 )
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decreases, it maybe that these problems are limited to only certain choices 

of /. For example, if / is a Normal distribution, then |<| —+ oo such that 

11 — a:,-1 —* oo for all x;, but

i ( i - * t) / M n  = -  ( j £ t )  " p ( ' I  ( V 1) )

which will converge to 0 as |t| —♦ oo. Thus |(< —x,)T(<)"| will be maximised at 

a target point within the interval ( —00,00) rather than diverging to infinity 

as |<| becomes large. An appropriate choice of

h =  v max |(< — x,-)T(<)"*| (12)

where v is a large constant will ensure that |< — x,|/i|,a_I is small everywhere 

for values of a up to Q°.

However this does not work for all parametric pilot estimates f ( t ,0 ) .  A 

counter example is provided by the Cauchy(O) Distribution. If

then

1
7T(1 + f 2) ’

( t -  Xj)T(i)“ — jt-'A -“«'-2“

as |f| increases, which in turn diverges to infinity if a takes values less than
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However large we choose h, we will always be able to find a value of t 

large enough such that |< — a\|fc<t0-1 is no longer small.

This hurdle is overcome by mirroring the argument given in subsection

2.3.1 which, as explained in subsection 2.3.2, is equally valid when we are

using the Kullback Leibler distance as our loss function. After replacing 

f ( t , 01) by this limiting argument transfers automatically to the

adaptive case.

When a  is equal to zero, then Ci,a is equivalent to C2 ', calculating the 

expectation of this over the data we can refer to the results of subsection

2.3.2 which proved that you would expect the semi-parametric method to 

be superior under certain conditions. Because of the continuous nature of 

ht_a over the range o f t, it follows that, under the same conditions, we can 

always choose an a value greater than 0 such that we expect the adaptive 

semi-parametric estimate f ( t , 0 (,a) to still be closer to the true distribution 

than parametric estimate f ( t , 0 ) under both distance measures considered in 

subsections 2.3.1 and 2.3.2. Therefore as a —► 0,

/ (< A „ )  -> /(«,#.) =» Et (C2,a) Eg(C t ) <  0.

However we are less interested in this than in whether applying adaption will
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actually improve upon our ordinary semi-parametric estimate. So instead we 

consider

^  U=o E ( C t ,a).

The Kullback-Leibler distance of the parametric estimate f ( t ,0 )  from g(t )  is 

independent of a so this is effectively just measuring the direction of change 

in the distance from f ( t , 0 (,0) to g(t )  as a  becomes positive. The sign of this 

value will indicate whether increasing a  slightly from zero, thus applying a 

small amount of adaption, will make our semi-parametric estimate more or 

less accurate when the overall bandwidth h =  j  is large.

From the extensions from chapter 2 given in subsection 3.4.1, we can 

substitute for ¿ in subsection 2.3.2, equation (19), giving

I I I  ' p i t f w r ' p w w * )  -  f ( x , 0 W t ,0 ) M t )d x d t  (13)

where

P(x) = ^*°g/(*.0),

g(x)  =  g(x )  -  f ( x , 0 )

and sample size n is assumed large. The square of our inverted local band-
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width, 6} a, can be written as

and after differentiating with respect to a we can construct the following 

formula in terms of 6 ;

62 I t I j X ~  ‘ / »(* )(«(* ) “  f (x ,O)c( t ,0) )r i ( t ) logT( t )dxdt.  (14)

This integral has proved intractable when attempting to calculate it for gen­

eral / and g, but it can be evaluated analytically for some specific examples, 

and numerically for any specific / and g. First we consider a case where we 

can calculate ¿ U = 0^ (C ,2,o) analytically.

Take / ~  Normal, in which case c(t ,0)  =  1. Without loss of generality, 

we can assume that true distribution g has mean equal to 0 and variance a 2. 

We first evaluate logT(<) and integral (14) can then be written as

4 -6 } =  624~ e x p (-2a log T ( f )) =  262T (< )"2“ log T (t). do. da

Evaluating this at a =  0 and inserting into equation (13) we get

d_
da
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Using the working and notation of subsection 2.3.2, equation (14) reduces 

further to

_  S +  ts( i  -  (15)

We will now work on the integral part of the second half of this sum.

^  J  t2(x — t ) 2p( t )T 1 (0 ) 1p(x)r](x)r)(t)dxdt =

I L ( t ~ x)2t2
¿ lo g  f ( x , e ) t ] ( x )  

k ¿ l o g f ( x , 0 )t) (x)

y /
1 0

/ V

¿ lo g  f(t,0)ri(t)

A. /V*
dxdt

=  J  t3j ^  log f(t,0)ri(t)di j f  - 2 z j^  log /(z, 0)rj(x)dx 

+ Jt log /(<, 0)i)(t)dt J  x2- ^  log f (x,  0)rt(x)dx 

+  ̂ / <3̂ l ° S f^l ' e ) ^ d t  J  - 2 x ± \ o g f(x,0)r,(x)dx

+ \ j t <2<ia log °)r,(t)dt Jxx2̂  log f ( xt°)v(x)dx

=  ^ ( G 3 -  F3)2 +  ¿ j (G 4 -  F<)2 -  ¿ ( G 3 -  F3)(G 5 -  F .)

where G3, G4, G5, and F3, F4 and F5 are the third, fourth and fifth moments 

of g and / respectively. Our knowledge of the density function of / tells us 

that both F3 and F5 will be 0, and that F4 =  3a*. Thus equation (14) is now
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of the form

d_
da

E ( C 2,a) P  (  3Gl (G4 -  F<Y

( - 2<x6 +
J3G5 \ 
«T6 ) ■

(16)

The sign of equation (16) determines whether increasing a from 0 will 

initially improve or lessen the accuracy of f ( t ,  6t,a) to g(t) . This is dependent 

on the moments of g. For example, if g is symmetric around zero, then if G 3 

and G5 exist they will be equal to 0, and

d_
da E ( C 2,a) ~  - ^ 2̂  <  0.

Then an initial application of adaption will cause a decrease in the value 

of E ( C 2<a), indicating that L 2( f ( t ,O t,a) , g ( t ) )  is decreasing and that our semi- 

parametric estimate is thus increasing in accuracy. Plot 3c illustrates this 

result in the form of a practical simulation. A random sample of 5000 points 

was taken from a bimodal distribution, which was an equal mixture of two 

Normal distributions with means of plus and minus 1, and both with variance 

2. An adaptive semi-parametric estimate was constructed, where / ~  Normal 

and using large h ~  8 sample standard deviations. Estimate f ( t , 0 t,a) was 

scaled such that it integrated to the same value as the parametric estimate 

over the same range. This was necessitated by our use of the Kullback- 

Leibler distance measure, which requires both functions to be probability
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density functions. Then C2,a was estimated by numerical integration. Plot 

3c shows the expected initial decrease of C2,a, reaching a minimum at a ~  6 

and then increasing as the very large values of a cause the density estimate 

around the mode to become noisy and inaccurate.

However when g(t )  is non-symmetric, increasing a from 0 does not guar­

antee immediate improvement. For example, if g is a Gamma distribution 

then we find that the differential of E (C 2,a) with respect to a, given in (16), 

is greater than 0 when a =  0. So the improvement in accuracy emanating 

from applying a small amount o f adaption is not uniform for all g(t) .

This can be illustrated by calculating C2,a hy numerical integration for 

some large random samples from non-symmetric g, where / is assumed Nor­

mal, and then plotting against a. Plot 3d shows this result, using a random 

sample of 5000 points from a Gamma[l,4] distribution and fitting a Normal 

distribution to these points using the adaptive semi-parametric method, with 

the final density estimate appropriately scaled as in the previous example. 

Again h is large, being taken ~  8 sample standard deviations.

So it appears that the result o f increasing a slightly from 0 when h and n 

are large is dependent on the contrasting shapes of f ( t , 0) and g(t) . Since the 

extreme tails, where T(<) 2? 0, are where a very small amount of adaption
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will have the greatest effect, it would be logical to assume that it is the 

behaviour in these regions which determines the response of C2a to the initial 

application of a.

However since T (i) is so small, and f ( t , 8 l}a), f { t , 6 )  and g(t)  are all 

likely to be close to one another and to 0, the effect of a  in these regions 

compared to its effect in regions of high density (where our parametric 

and true distributions may differ more substantially) will decrease rapidly as 

a increases. Thus in plot 3d, after a is greater than 0.3, the relationship 

between C2,a and a  will be dominated by regions where g( t)  and f ( t ,  6) 

differ more more in value; we examine this phenomenon in the next section.

3.4.3 Considering ht,a on a restricted range

While we cannot extend the above proof to predict the behaviour of /(<, 0t,a) 

for larger values of a or for different choices of /, by restricting our examina­

tion to certain subsets of the range of t we can at least come to some useful 

conclusions.

In both examples above, the overall bandwidth h is chosen large enough 

such that our large h,t0 approximations would be valid for all t up to around 

a =  0.8. However, since in these examples our adaptive semi-parametric
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estimate is calculated directly without reliance on any approximations, then 

as well as supporting our theoretical results over the large ht<a range of (0 <  

a  <  0.8), we can also examine the behaviour o f our f ( t , 6 t-a) outside this 

range. In plots 3c and 3d we see that the maximum improvement over our 

parametric estimate (and therefore the minimum Kullback-Leibler distance 

between g(t )  and f ( t , 0t,a)) is attained at a much larger value of o, at which 

our large /i(i0 approximations would be invalid.

Whilst the behaviour of the two cases differs for very small a , as it in­

creases both follow the pattern we would expect given the motivation behind 

introducing adaption. Having seen the minimum of C2,a attained, the effect 

of a further increase in q is as foretold in section 3.2, page 76, producing 

increasingly noisy estimates in areas of high density. Our motivation be­

hind the introduction of adaption and the method used was to have a more 

parametric estimate in regions where both distributions / and g have low 

density, and a more non-parametric estimate in regions where both were of 

higher density with greater scope for f ( t , 6 ) to differ from g( t )  in shape and 

size. We rely on our chosen parametric family, being realistic so that the high 

and low density areas of / and g coincide. The choice of / is crucial since 

our pilot estimate f ( t , 0 ) determines whether adaption increases or decreases
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hti0 from h.

Define the region of high density as D *, where

£>* =  (<: T(<) >  1). (17)

Thus D " and D ‘c partition the range of t on which f ( t ,0 )  is defined, with 

the cuts of the partition being the boundary points defined by equation (8) 

in section 3.3. Consider D ' c  where, as all of f ( t ,Ot,a), and g(t )  are

relatively small, increasing a and thus ht,a will have little effect on increasing 

or decreasing the accuracy of f ( t , 6t,a) to g(t) , especially if h is already large 

ensuring that f ( t , 0 tiO) ~  f ( t ,0 ) .  The principal action will occur in D* where 

we will move towards a more locally influenced non-parametric estimate. 

Assume that overall bandwidth h is at least large enough to ensure that the 

tails of /(<, 6t,a) are ‘parametric enough’ to be smooth. Ignore the small gain 

or loss in accuracy that will occur in D mC and concentrate solely on D " .

If g( t )  differs noticeably from f ( t ,0 )  in shape over D ’ , then for nearly all 

t € D ‘ (obviously not at all t since the parametric estimate may cross the 

true distribution at some t £ D*)  a more non-parametric estimate is likely 

to improve our accuracy to g(t ). Increasing a to a value greater than 0 will 

be necessary to achieve this. Quite how much is needed will depend on the
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difference from f ( t ,  6 ) to g( t )  and the size of h. Consider the examples above; 

the shapes of the density functions defining / and g differ less in the first 

example, so our adaptive semi-parametric estimate has to move less towards 

a local kernel estimate to minimise C 2,a than it does in the second example, 

resulting in the smallest value of C2,a in plot 3c occurring at a smaller value 

of a than in plot 3d.

Thus when h is large there will exist a value of a in the interval (0, oo) 

which will maximise our accuracy in D m and will be close to the overall opti­

mum value of a when considering the full range of t. Devising an automatic 

method for choosing an optimum a using this restriction on the range of t is 

discussed in chapter 5, and the relationship between results over D " and the 

full range of t are examined further with a few practical examples.

3.4.4 The effect of a  when h is small

Having considered the behaviour of our estimate for large h as a is increased 

from 0 through to large a, we now turn our attention to the case where 

overall bandwidth h is smaller. We initially restrict ourselves to considering 

the regions of high density, with f ( t , 0 ) again differing noticeably in shape 

from g(t ) .  As h becomes smaller, less a will be need to reduce ht a from h to
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its optimum value for all t G D ' . So in terms of maximising accuracy over D* , 

as h —» 0, our optimum choice of a will also decrease towards 0. The sketches 

in Plot^fe show the way we would expect the relationship between C'2,0 and 

ck to respond as h decreases from a very large value. The cases when g is 

symmetric and non-symmetric are both considered. However, if h is small, 

the effect of adaption in D"c  becomes significant. If f ( t , 0 )  differs from g(t )  

in D ’ c , then increasing adaption may lead to a small but noticeable loss of 

accuracy here causing our optimum a over the whole range to be slightly 

smaller than the optimum choice when just considering D m.

If h is so small that f ( t ,0 tia) is a noisy non-parametric estimate with 

spikes at the data points, then a significant improvement in our estimate of 

g( t )  in D ' c will occur as a increases producing a smoother estimate. However 

this increase will be making our estimate in £)* even more non-parametric, 

though the upper-bound on T(<) and the greater amount of data in this 

region will temper the problem. Whether our optimum value of a  is at 0 or 

in the range (0, 00) in this situation will once again depend on the difference 

between f ( t , 0 ) and g(t) , but it is clear that having a very small overall 

bandwidth h is undesirable. If h is small enough to make our estimate in 

D m too noisy before adaption is even applied, then a larger value of h should
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be chosen. In all of the above discussion we are assuming n fixed and large. 

Given h fixed and large, we would expect less a to be required for optimal 

accuracy as n decreases, since with a smaller sample size we will want larger 

local bandwidths ht,a for all t € D m.

3.5 Comment

Adaption offers the possibility of significantly improving the accuracy of our 

semi-parametric estimate. It is at its most effective when /(<,<?) — g(t )  in the 

tails, but differs significantly in D *. We must now consider when to apply it

and how much to apply.
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4 An automatic method for choosing overall 
bandwidth h

4.1 Introduction

Having discussed the theory behind our semi-parametric density estimation 

method and the role of adaption in improving it, we now turn our attention 

to the more practical topic of choosing ‘best’ values of h and a. Section 4.2 

proposes an automatic method of selecting the overall bandwidth h, while 

the incorporation of prior belief into this procedure is introduced in chapter 

6. The method of choosing h developed in this chapter has similarities with 

those suggested in Silverman (1986) for choosing the bandwidth used in or­

dinary kernel density estimation, in that we select it to minimise the mean 

squared error (MSE) of our density estimate.

4.2 Choice of h

The introduction of adaption makes our choice of a suitable overall bandwidth 

a much easier task. It is no longer a balancing act between attaining accuracy 

around the mode and smoothness in the tails of our density estimate; now 

both of these ideals can be simultaneously achieved. Using the notation of
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chapter 3, hl-a is defined for all t as

ht,a =  AT(<)-Q, ( 1)

where

and

T(<) = A

A =  exp(Ej (\ogf ( t ,e ) ) ) .

Applying adaption will cause ht,a to diiTer from h in areas where the density 

function of / is larger or smaller than A. This will produce a smooth para­

metric density estimate in the tails and a more non-parametric kernel type 

estimate around the mode. Therefore when choosing an overall bandwidth 

for use in the adaptive semi-parametric method, it makes sense to consider 

the behaviour of our f ( t ,0 t,o ) in the regions where ht,a — h for all a. These 

areas are centred around the boundary points, defined in chapter 3, equation 

(8), where adaption has no effect. If we choose h such that we obtain a 

sensible estimate in these regions, then a small amount of adaption should 

bring the required smoothness to the tails of our estimate. At the same time, 

given a reasonable choice of parametric family /, it will cause f ( t , 0 lia) to
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move towards an accurate non-parametric estimate in areas where we have 

the greatest amounts of data.

4.2.1 Constructing the selection method

Having established a policy for choosing h, we now examine the methodology. 

The first requirement is to locate the boundary point mentioned above by 

calculating A =  exp(£/(log f ( t ,  0) ) )  and finding the value of t =  i* such that 

=  A. Parameter A is the geometric mean of f ( t ,0 )  over distribution 

/. At least one boundary point will always exist for any continuous function 

f ( t ,0 ) .  Section 4.3 discusses how to deal with cases where more than one 

boundary point exists.

We then find h', where choosing h =  h' minimises the MSE of the semi- 

parametric method at the boundary point. To obtain a workable formula 

for the MSE, we initially assume bandwidth h is small, sample size n is 

large, and use the following approximations and theory from Copas (1995b). 

These concern the ordinary semi-parametric method without the application 

of any adaption. However, we are only interested in the behaviour of the 

adaptive semi-parametric method at the boundary points, where adaption 

has no effect, so this is not a problem. In the following equations, scaled
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kernel function A'(u), defined in chapter 1, equation (1), is the weighting 

function w(xi , t ,h )  which controls the probability of an observation x* being 

censored in the semi-parametric procedure. We define

c =  / K(u)du,
Ju

K\ =  \  [  K (u fdu

and

k2 =  — f  u2K(u)du.
C Ju

Using small h expansions similar to used to approximate the MSE of an 

ordinary kernel estimate in Silverman (1986), section 3.3, we find that the 

two components of our local likelihood function have the following asymptotic 

values. If we define u =  (x — t)h~l , then

K  ( - y - )  ^

A »  (log f (U9)  + hu jt log f ( t ,0)  +  log/(<,<?))

l o g ( l - c / j A ' ( ^ )  /(x,0)dx) ~ - c h f ( t , 0 ) -

¿ ¿ v n u o y  -  l Ch3k2 ^ f ( t , o )  -  x-<?h3 f ( t , o y .
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When h is small, the partial derivative of the local likelihood function with 

respect to 0,, the ith component of 0, can be approximated as

h) —

cnh ^(g(t )  -  f { t , 0 )) l°g /(<, 0)^ + c h  (¿ (f ) -  f ( t , 0 ) )  +

* ’ ( * '  *> ) - 5 1»

+ ‘ ‘m m »  (¿/«.»>) + \ r  ( ¿ s '°8/IM )) ) )  ’ (2)

where

m  - ¿ ¿ “ ( n r )

is the ordinary kernel density estimate of g(t) , using h as its bandwidth,

S’  =

The expectations of Sm and 7”  are g' ( t )k2 + 0 ( h 2) and g(t )k2 +  0 ( h 2) respec­

tively.

As we would expect, if / =  g, which implies that our model for the data 

is correct, then the expectation of equation (2) is 0. This can be shown by
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substituting in g(t )  for f ( t , 0 ) in (2), and calculating the small h approxima­

tion to the expectation of g(t) , up to the order of h2. The latter, given in 

Silverman (1986), section 3.3, is

E(g( t ) )  = g(t) +  +  0(h 4 ) .  ( 3)

Using equation (2), we can now show that when bandwidth h is small, our 

semi-parametric estimate differs from g(t )  only by a term of order h2.

To do this, we choose 6 at any particular t such that f ( t ,0 )  matches the 

non-parametric estimate at that point. Define this value of 0 as 0t", where

f ( t ,0 t’ ) =  g(t ) .  (4)

Then

=  m  +  h2g(t) [ ± \ e=e, . f ( t ,0 ) }  ( s - j t ±  I,.,.. log/(< ,*) +

+0(‘ ,)- (5)
When 0 is a scalar, O '  is simply found from equation (4), assuming such a 

value of 0 exists. When 0 is a vector, then the estimate f ( t ,0 t) is found from 

solving the simultaneous equations produced from (2). To solve these, we 

must choose 0 ’ such that the multiple of h2 in (5) is the same for all values 

of t.
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Using equation (3) and the expectations of S’ and T ’ given above, it is 

simple to calculate the expectation of equation (5), the small h approximation 

to the semi-parametric estimate. (From now on, all derivatives (o f  any 

function ) w ith respect to t w ill be written using ‘ p r im e ’ notation; 

•-e - T,9W =  »'(< ). J%9(t) =  9" ( t ) ,  etc.) For small h,

0,)) = g ( t ) +  l-h *k 2 (g" ( t )  -  f " ( t , 0 t’ ) +  2&(<)) +  0 (h3), (6)

where

A (0
/ ¿ - k  =*.:/'(t,Q)

\ 5571e.=o,;f(UO)
f \ t , 0,m) \ 

9(t) )
W ( t ) ~  f \ t , 9 t’ ) ) - (7)

Function /3,(<) is equal to zero for all i when 6 is of vector form, such as when 

/ ~  Normal, as opposed to when 0 is of scalar form (for example, when / ~  

exponential). This is because 0 ’ is chosen such that the bias term in (6) is 

identical for all i. Since f ' ( t ,  O ’ ) will take different values

for different component vectors 0,, in order for the bias term to be constant 

we must have the asymptotic equality

A M . ' )  =  !7'(0- (8 )

Thus when 0 is a vector, our choice of 0 ’ in equation (5) and in the following 

equations is simply the value which satisfies (4) and (8). (P lot 4a illustrates



Ill

the choice of parameter 0 =  0 '  when 0 is a vector. Our chosen parametric 

family here is / ~  Normal and we consider the limiting case, where as n —» oo 

and h —+ 0, we take g( t )  ~  g(t ) . )

As our small h approximation to the semi-parametric estimate differs 

from g(t )  only in terms of order h2 and above, their asymptotic variances 

will be approximately the same. We use the variance approximation for g(t )  

given in Silverman (1986), section 3.3, such that for small h and large n,

V a r ( / M , » - ^ .

It now follows that the asymptotic MSE of the non-adaptive semi-parametric 

estimate can be written as

M S E ( f ( t , 0 t) )  =  +  l-h *k S (g " ( t )  -  f " ( t , 0 , ' )  + m * ) ) 2, (9)nn 4

which simplifies to

M S E ( f ( t , 0,)) =  +  h * k 22 (g" ( t )  -  f " ( U t' ) Y
nn 4

when 0 is a vector.

The logical next step would be to choose h to minimise (9). However it 

is impractical to directly use the above theory to choose h, since we must 

first calculate O ' . This initial step requires h itself in order to construct g(t)\





Sidestepping this problem, we consider equation (3). We expect our non- 

parametric kernel estimate to differ from the true distribution by a term of 

order h2. Obviously we cannot attempt to choose 6 ’ by selecting it such that 

f ( t , 6 " )  =  g(t) (and f ' ( t , 0 ’ ) =  g '(t ) in the vector case), as the true density 

function g (t )  is unknown. Instead we replace g(t) and the first derivative of 

the true distribution in (4) and (8) by further ‘preliminary’ kernel estimates 

g "(t )  and g’ \t).

As the following subsection will outline, we will choose a bandwidth hm 

used to smooth these kernel functions under the same large n and small h 

assumptions as before, attempting to maximise the accuracy of these esti­

mates to the true distribution. Equation (3) shows that we expect both g(t) 

and gm(t )  to differ from g(t) only in terms of the of order the squares of their 

respective bandwidths h and hm. Since we’ve assumed that h is small, and 

that n is large implying that our choice of h" will be small too, then the 

difference between h2 and h"2 will be small and preliminary kernel estimate 

gm(t )  should be close to g(t). Similarly we expect our estimate of g ' ( t ) to dif­

fer from the true value by a term of order h2. Subsection 4.2.2 will consider

113

kernel derivative estimation in more detail.
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So in the practical application of this method we choose 9 =  9 '  such that

/ (< ,«« ') =  gm(t )  ( 10)

in the scalar case, or if a solution to ( 10) does not exist, as the minimiser of

( / M « * ) - * W -

When 9 is a vector, we choose 9 =  9 <* such that

/ M . * )  =  $*(0

and

f \ t , e n  =  </■*'(«). ( 11)

We then return to equation (9) as an estimate of the MSE of f ( t ,9 t).

The construction of this preliminary estimate is outlined in the next sub­

section. Despite the reliance of all of the above theory on small h and large n, 

this method of choosing h has performed satisfactorily for smaller samples, 

and has selected large values of h when this has been appropriate. Several 

of the examples given in chapters 5, 6 and 7 illustrate this.

4.2.2 Finding a preliminary estimate of true distribution g

Ordinary kernel estimates of g(t), g '(t ) and g"(t ) are now required, initially to 

evaluate 9,’ . We also need them as estimates of the true density function g(t )
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and its derivatives g '(t ) and g"(t ) ,  for use in (9) and in subsequent theory 

on choosing a in chapter 5. A reliable procedure for constructing them is 

therefore vital to these suggested methods for selecting the best values of h 

and q . We now require a bandwidth h" for use in evaluating these preliminary 

kernel estimates.

Silverman (1986) gives several methods for choosing h*. Most of these 

are designed to minimise the loss in accuracy of the density estimate gm(t )  

to g(t). Define A'*(u) as the kernel function used in our kernel estimation of 

g (t )  and its derivatives. K m(u) may or may not be the same kernel function 

as A'(u), which is used as the weighting function in the censoring process 

driving the semi-parametric method. Then

A'.* =  4  / A " (u )sdu
C  J  u

and

&2* =  — / u2A"(uWu
c* Ju

Silverman proves that the choice of hm which minimises the MISE of the 

kernel estimate of g(t )  is approximately

V 'A ' i ' i  (^Jg"(t)2dt  ̂ i n~», (12)
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where hm is initially assumed small and the sample size n is large.

In this case we are interested not only in g(t) but its first and second 

derivatives as well. So for example, while h" chosen to minimise the MISE of

gm(t)  =

will produce a good estimate of g(t) , it may not lead to accurate estimates

and

(t2 1 A  K  ( Xj -  t\
dt2 nh-c* V h* )

of g ' ( t ) and g " ( t )  respectively. This problem is likely to occur if h* is too small 

and errs towards undersmoothing our density estimate; then at any point t, 

the kernel method will give us g(t ) ~  g(t )  but any noise in our kernel density 

estimate around t will mean that we obtain very poor estimates of the first 

and second derivatives both in terms of magnitude and sign. Therefore we 

need a procedure for selecting h' with respect to the expected accuracy of 

g ' ( t )  and especially the extremely volatile g"(t ) .

A simple formula for choosing a best h" can be obtained by minimising the 

MISE of our estimate of the second derivative. Several combinations of this
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along with the formulae for best /i* resulting from minimising the MISE of our 

estimate of the first derivative and of g(t) itself were also tried, but involved 

more calculation and did not perform as well, occasionally choosing h* too 

small. Bandwidth hm selected by this method will be slightly larger than 

that given by equation ( 12), thus avoiding any of the noise in our estimate 

of g(t) which causes poor estimates of g"(t). Such oversmoothing produces 

an estimate of g(t) which is marginally less accurate than that obtained 

when using the bandwidth given in equation ( 12), especially in regions of 

high density, but does ensure that the potentially larger inaccuracies when 

estimating the first and especially the second derivative do not occur.

Now assume that A'"(u) is the Gaussian kernel function such that

(This assumption will cause difficulties when the true distribution is clearly 

non-Gaussian in the tails, for example in the g ~  exponential case. Such 

situations are dealt with later). If A'*(u) is the Gaussian kernel, then using 

small h‘ approximations given in Silverman (1986) and Wand and Jones 

(1995), we find that

M IS E (g - " ( t ) )  =  Jt (E (g ’ " ( t ) )  -  g " ( t ) )2 dt +  f  var ( g ' " ( t ) )  dt



118

“ T /(»*•<'»’ + 8 ^ -
To minimise this quantity we choose

<13»

Following the policy of Silverman (1986), we now estimate g,v(t )  by re­

placing g with a suitable parametric family whose density function we believe 

to be similar in shape to g(t). The logical next-step in this setting is to use 

the fourth derivative of our parametric ‘guess’ f ( t ,0 )  to estimate g‘v(t), and 

insert it into equation (13). We use the MLE 0 to estimate 6 where necessary. 

For example, if /  is a Normal distribution, with variance <r2 estimated by <72, 

where 6 =  ( j i ,a2)T, then

j(r(t,o)?dt 105
32y/jF<79 ’

and so we choose

It is also recommended (as in Silverman (1986)) that since hm is dependent 

on the variability of the data, that a more robust measure of spread than the 

sample standard deviation is used, such as

A * =  min(sample s.d <7, interquartile range/1.34).
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For some choices of /, it may be impossible to find

J(r(tj))*dt

analytically. Since our choice of hm is based on the shape and variance of the 

distribution we seek to estimate, our best option in these case is to estimate 

it by

J (p iv( t ) ) 2dt,

where p(t) is the probability density function of similar shape to f ( t ,0 )  and 

g (t ).  For example, when our chosen parametric family / is a Gamma or 

a Weibull distribution, with fitted parameters indicating a shape roughly 

similar to that of a Normal distribution, then choosing p ~  Normal has 

proved a satisfactory solution. In fact, in all cases where a histogram of 

the data has appeared unimodal or multimodal, without suggesting 

that g(t ) has a bounded domain, taking

= (H)

has led to adequate estimates of the derivatives of g (t ) .

Therefore I recommend using formula (14) as the bandwidth for the pre­

liminary kernel estimate in all cases. Though it may oversmooth, especially
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when the data appears multimodal, the fine accuracy of our estimate is of 

limited importance. The essential requirement is to avoid large random er­

rors. If we choose hm from formula (14), it is simple to calculate and provides 

sensible rough estimates of g(t), g '(t), and g"(t ) for selecting 8t*, evaluating 

(9), and for further use in later chapters.

To handle cases where the true distribution is drastically different in shape 

from a Normal distribution we require a slight adjustment to our approach. 

Data sets which appear to come from an exponential distribution are the 

most common example of this. Problems in producing preliminary estimates 

occur due to the combination of a discontinuity at t =  0 and the bounded 

interval of t on which the density function is defined. If we have taken / ~  

exponential, then neither using a Gaussian kernel, nor replacing f ( t ,0 )  by 

p(<), where p(t) is the Normal density function, is appropriate. However, 

rather than advocating a totally different method for these cases, a more 

sensible solution is to use reflected kernel density estimation. Instead of 

considering the data set X  =  (x j , ..., x „), we augment it by its reflection 

in the y axis giving a data set X * =  ( —X j,...,— xn, x\,...,x„). We now use 

the above methods to evaluate estimates g (t ), g '(t ) and g "( t )  of the density 

function of the true distribution of X *, and its derivatives. Using these
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methods is now justified since the true distribution of X * is of unimodal 

shape roughly similar to that of a Normal distribution. To get our final 

estimates g*(t), g " ' ( t )  and g '" ( t ) ,  we consider g only to the right of the y axis 

and multiply by 2, so that for the nth derivative,

g -n( t )  =  2gn( t )  Vi >  0,

and

g ’n(t )  =  0 Vi < 0. (15)

See Silverman (1986), page 30 for further discussion of this method.

This worked passably well when tried on several data sets with den­

sity functions sharing the bounded domain, discontinuity and extreme non- 

Normality of the exponential distribution. When selecting an overall band­

width for our adaptive semi-parametric method we are only interested in 

estimating behaviour around the boundary point t =  t”, which is located at 

the sample mean for the / ~  exponential case. The reflection method sug­

gested above gives good estimates of g (t )  and its derivatives in this region, 

enabling the suggested method of selecting h to perform satisfactorily.

But in several of the methods of selecting a to be introduced in chapter 

5, estimates of the true density and its first two derivatives are required for
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all t. The reflected kernel technique gives poor results around t =  0, where 

due to the structure of (15), our estimate is flat. Therefore these methods of 

selecting a perform poorly for distributions which we believe to be similar in 

shape to an exponential. However, given the general awkwardness of coping 

with bounded distributions, these difficulties and inaccuracies have to be 

suffered, since several other solutions for choosing h* and estimating g(t), 

g '(t )  and g "( t )  that I investigated do no better, and lack the simplicity of 

this idea. As a whole, our semi-parametric method deals very well with data 

which come from bounded and discontinuous distributions. For example, if 

we believe the true distribution to be exponential, we can fit this distribution 

to the data, which we cannot do in non-parametric estimation. Errors in 

these preliminary rough estimates of g(t ) and its derivatives can largely be 

tolerated since they are not at the sharp end of the actual semi-parametric 

density estimation process; they are just being applied in suggested methods 

for selecting h and a.

Kernel density estimation using hm as given in equation (14), with the 

adjustment described applied when the domain of / is bounded, is simple to 

use and gave us sufficiently accurate estimates of g (t ) ,  g ' (t )  and g "( t )  for use 

in selecting an overall bandwidth for our adaptive semi-parametric method.
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We now employ these estimates to do just that.

4.2.3 An automatic formula for ‘best’ h

Differentiating equation (9) with respect to h, setting equal to 0 and solving, 

leads us to our best choice of h for use in our adaptive semi-parametric 

method in terms of minimising the MSE at the boundary point <*. This is

h =  h' =  ( g " ( n  - n r  A » * )  +  2f t ( n r * * r * n - l / r , i y ( n * .  ( ie )

Appropriately our overall bandwidth is chosen with respect to the difference 

between / and g. An increase in this difference indicates that the parametric 

family is becoming less accurate to g ; thus the resultant decrease in the value 

of h chosen is desirable, since we would want a more non-parametric estimate. 

When 6 is a scalar, our choice of h is dependent on the differences between 

the first derivatives (within /?,(<)) and between the second derivatives of the 

density functions defining the true and parametric distributions. If 6 is a 

vector, it is dependent only on the differences between the second derivatives. 

The selection of 0 =  0(*, the parameter value at which the density function 

of our chosen parametric family is evaluated in (16), is explained in section

4.2 and illustrated in plot 4a.
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Rather like the formula (12) for the bandwidth for an ordinary kernel 

estimate of g(t), equation (16) contains the unknown true probability den­

sity function g (t )  and its derivatives. However we need only to choose h to 

be suitable at one point t =  t" rather than to find a value which performs 

acceptably over a whole range of <; using adaption should ensure that. As 

outlined in subsection 4.2.2, we can obtain sufficiently accurate point esti­

mates of the true density and its first and second derivatives using a slightly 

oversmoothed ordinary kernel density estimate.

In cases where g is extremely non-Normal, such as when it resembles an 

exponential distribution, formula (16) has occasionally produced values of 

h which were too small. An adjustment of this automatic method, to be 

introduced in Chapter 6, which facilitates the choosing of a larger overall 

bandwidth with respect to an index of prior belief about g, is recommended 

in these or any other circumstances which have resulted in too small a value 

o f h being produced.

As our sample size n —► oo, our optimal choice of h will move towards 

zero at a very slow rate. The MSE of the semi-parametric method at i ”,
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given the optimal choice of h =  h', is equal to

which is a monotone decreasing function of n. Because the application of 

adaption obviously affects this limiting behaviour of our estimate elsewhere in 

its range, it is considered in more detail for the different methods of choosing 

the amount of adaption a, which are explored in chapter 5.

4.3 When more than one boundary point exists

For many distributions /, there is more than one boundary point because 

there are several values of t such that f ( t ,0 )  =  A. For example, if / is a 

Normal distribution there will be two boundary points located at one sample 

standard deviation either side of the sample mean. If given / ~  jV[/i,<72], it 

is clear that

A =  exp ^ J f ( t ,0 )\ o g f ( t ,d )d t j

=  —J = — exp( — i ) .
\PTia KV V

Thus when f ( t ,0 )  =  A, then
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implying that

t =  ¡i ±  a.

Our suggested ‘automatic’ choice of h is made by minimising the MSE 

of the semi-parametric method at a boundary point. In the case of multiple 

boundary points, a method that has given good results is to select the value of 

h which minimises the MSE at the ‘ Maximum Difference Boundary Point’ , 

denoted MBP. This point has the property that, given that there exist m 

other boundary points ¿>i,...,Am, then

( g (M B P )  -  f (M B P ,  9 ) f  >  (g(b,) -  / (6„0 ) )2

where 1 <  » <  m. In other words, the MBP is the boundary point at which 

there is the greatest difference between the true distribution g (t )  (which we 

estimate using kernel density estimation as described in subsection 4.2.2) and 

our parametric guess f ( t ,0 )  (with 0 estimated by MLE 9).

While this may appear a somewhat ad-hoc procedure, it has some use­

ful properties in addition to being relatively straightforward to implement. 

Minimising the MSE at the boundary point at which the difference in f ( t ,0 )  

and g (t )  is the greatest will require the choice of a smaller h, which has two

advantages.
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Firstly it conforms with our original assumption o f small h when using 

the approximation for the MSE. Except for the occasional case where the 

extreme non-Normality of the true density function posed problems in the 

preliminary estimation stage described in subsection 4.2.2, our values of h 

chosen in this way have still been large enough to ensure smooth tails for our 

semi-parametric estimate. In fact, in a large series of trials, only when we 

chose / ~  exponential did our automatically selected bandwidth ever lead 

to an inadequately smoothed adaptive semi-parametric density estimate.

Secondly, consider the case where f ( t ,0 )  is a very poor estimate of g(t) 

at a boundary point (at which adaption has no effect). Erring on the side 

of small h here will at least reduce the influence of parametric family / and 

instead provide a more non-parametric estimate. This should give a more 

accurate reflection of the amount of data in the region, and run smoothly 

into the even more non-parametric estimate prodifeed in the neighbouring 

region where adaption is making ht,a <  h.

However, if we have a larger overall bandwidth we may encounter prob­

lems at the boundary points. If f ( t ,0 )  differs dramatically from g (t )  here, 

then our largely parametric estimate will be poor. As well as this, we 

will need to choose a large value of a to get a more accurate largely non-



128

parametric estimate in the regions of high density, where ht,a <  h. But if 

a is too large, we will move rapidly from a region where ht,a is very small 

towards the boundary point, where ht<a =  h is large. An awkwardly sharp 

change in the size and shape of our density estimate f ( t ,O t,a) can occur, as 

it moves between approximating <7l (<) and approximating f ( t ,0 )  over a very 

small interval of t.

A smaller choice of h means that we require less adaption to get small 

enough values of ht,a to provide the best estimate in areas where f ( t ,0 )  

and g(t )  are large. How exactly to choose the right amount of adaption is 

discussed in the next section. A further brief summary of this chapter in the 

light of the ideas developed in the next is given at the start of section 5.4.
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5 Several automatic methods of choosing a

5.1 Defining a region of interest

The following methods for selecting a will attempt to maximise the accuracy 

of our adaptive semi-parametric method only over the region D*, defined in 

chapter 3 as

D" =  (t : h,,a <  h). (1)

This restriction is both convenient and justifiable.. When choosing a  it is 

necessary to use either small or large ht o approximations to the adaptive 

semi-parametric method, since no exact expansion for f ( t ,  0(i„ ) exists. If a is 

greater than zero, ht<a could vary dramatically in size over t, so we cannot use 

a single approximation for f(t,0t,a) for all t. Either we attempt to combine 

approximations to cover the whole range of t , or we concentrate on one of 

the two distinct regions formed when a takes a positive value, which are D m, 

and its complement D ’ c  where ht,a >  h.

The region D~ is where the greatest scope exists for improving the accu­

racy of our estimate by applying the right amount of adaption. We allow a 

to ‘ take care’ of the distinct region D ’ c , where applying adaption will see
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our adaptive semi-parametric estimate tend towards a smooth parametric 

estimate, with any resultant loss in accuracy being both small and bounded.

In the following methods of selecting an optimal value of a, we will 

ignore D ' c  and concentrate solely on Z)*, enabling us to use small 

ht,a approximations to our adaptive semi-parametric estimate. We assume 

that h and a are always chosen large enough such that the tails of f ( t ,9 tiCI) 

are sufficiently smoothed. The possibility of this not being the case is one 

motivating factor behind the ideas of chapter 6. These suggest different 

methods for choosing the overall bandwidth, which ensure that it is large 

enough to avoid a noisy density estimate in D*c . In, terms of minimising the 

loss in accuracy of f ( t ,0 t,a) to g (t )  over all i, the choices of a given by the 

following methods may well be sub-optimal since we are ignoring a subset of 

the range of t, but their practical use is demonstrated in section 5.3.

There is a final advantage of working on D m alone. In all of the following 

methods integration will be necessary, and when the integral has no simple 

analytical solution, numerical methods such as Simpson’s Rule will have to 

be applied. The accuracy and ease of these calculations is enhanced if we are 

integrating over a finite interval. By definition, D* must always be bounded, 

since the probability density function f ( t ,0 )  which determines its location
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must either be defined only on a bounded domain, or decrease to 0 as |f | —» oo. 

If the latter happens, as |<| —> oo we will eventually pass the ‘ last’ boundary 

point before infinity and enter D mC.

5.2 Four automatic selections of a

The design of the automatic method for choosing the overall bandwidth in­

troduced in section 4.2 produces values of h which are likely to err on the 

small side of optimal. It makes sense to use the following methods for choos­

ing a in conjunction with an automatically chosen bandwidth h. Then the 

small /i(iQ approximations which underpin the following procedures should 

hold fairly well for the region D m. By definition

h,,a <  h Vi € D\

thus if h is small, ht,a will be.

Problems do occur when we want to use a larger (handpicked) value of h 

than that chosen automatically. At values of t in D" near to the boundary 

point(s), T (< )- “ is only marginally less than one, and so ht,a — h. If h is 

large, then in these areas the inaccuracy of our approximations will affect 

our ‘best’ choice of a. This difficulty is examined in more detail for each of
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the methods and examples.

Under several of the following procedures for selecting a, the choices of 

h and a can be made in any order. I will show that when both h and a are 

chosen automatically, our selection of a is independent of the sample size, 

and the type of kernel used in the censoring process which is at the heart of 

the semi-parametric method.

5.2.1 Method (i): Approximating to a local kernel density esti­

mate

Copas (1995a) states that when h is very small, the semi-parametric esti­

mate at t approximates the ordinary kernel estimate with bandwidth h at 

that point. To see this, consider the small h approximation of chapter 4, 

equation (5), and ignore all terms of order h2 and above. If we are varying 

our bandwidth with t, then our adaptive semi-parametric estimate approxi­

mates to the local kernel density estimate, where the local bandwidth at any 

point t is ht,a-

Therefore, as an automatic method of selecting or, we could choose a =  

a' where a' is the best choice of adaption parameter for the local kernel 

method over region D ‘ . Previous work on kernel density estimation with a
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variable bandwidth has been concerned with finding an optimal value of a 

when considering estimation of g (t ) over the full range of t. This has made 

any small or large ht,a approximations impossible. As referred to in section 

1.4, choosing a =  0.5 for the slightly different varying kernel method has 

useful bias reduction properties, but a fixed value of a for all cases would 

be inappropriate here. Instead we use the fact that h,i0 will always be small 

when t e  D ’ , and extend the small h approximation to the MISE of an 

ordinary kernel density estimate to the local case. We then choose the value 

of a  which minimises this loss function over D ‘ .

The equations for the bias and the variance of the ordinary kernel density 

estimate translate automatically to the local case, so we can say that for any t 

such that ht,a < h, if we approximate our adaptive semi-parametric estimate 

/ ( f ,0<,a) by the local kernel density estimate with small /i(i0 and assume a 

large sample size n, then

bias(f(t ,6t,a) )  =  £ ,(/ (!, 0,,a))  — g (t )  =  \htJ g " ( i ) k i  +  0 (h 3)

and

va r( f ( t ,0 tia)) ~  n~l hti0,~ 'g(t)K i. (2)

The MSE is the sum of the squared bias and the variance of the estimate.
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Writing ht,0 as in equation (1) of chapter 4 and estimating 8 by its MLE 6, the 

MISE of the adaptive semi-parametric method over D * can be approximated 

as

M l S E D. ( f ( t ,8 t,a )) =  j D, T ( t )~4ag " ( t )2dt

+  n ~ 'h - 'K l f  T ( t ) ag(t)dt. (3)
J D •

In the above equations h is our chosen overall bandwidth. The definition of 

T ( ( ) ,  a function of t, is given in equation ( 1) of chapter 4. Constants A'i 

and k2 were defined in subsection 4.2.1. We now find the value of a that 

minimises the above equation. Differentiating with respect to a and setting 

equal to zero, we see that our best choice of a, which minimises (3), will 

solve the equation

W n A 7 ‘ /  r ( t ) - 4a log r ( t ) g " ( t ) 2d t =  f  T ( t ) a \og r  ( t ) g ( t )d t .  (4)

I found this easy to solve using a simple minimisation programme on a com­

puter. Since D" will always be bounded, numerical approximations to the 

integrals are straightforward to calculate. Also required are ordinary kernel 

density estimates for g(t) and its second derivative, the evaluation of which

are described in subsection 4.2.2.
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Inserting formula (16) from chapter 4 for the best overall bandwidth h 

into the above equation, we see that when h is chosen by the automatic 

method of chapter 4, our automatic choice of a using method (i) satisfies

] D. (</"(<) V ' ( n  -  /"(<*,**,.)+2/?i(<*))-2sf(i*)T(<)-4a

- S(<)T(<)“ )logT(<)rf< =  0, (5)

and is thus independent of both sample size n and the type of scaled kernel 

function A'(u) used to perform the weighting in the local likelihood function. 

This convenient property does not hold for general h, giving us another reason 

to use the automatic method of selecting h.

When h is selected in this way, then in the vector case where /?,•(<) =  0, a 

will be dependent on the difference between the second derivatives of )

and g(t ) at tm. The larger this difference is, the smaller the optimal a value 

will be; a desirable property, since it reduces the possibility of roughness in 

our density estimate at the boundary points. This is likely to occur when 

a is large and the behaviour of our model based upon parametric family / 

around a boundary point differs dramatically from that of true distribution 

9-

There are two problems with this method, namely the need to estimate
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g "(t )  and, when h gets large, the aforementioned poor approximation of 

f(t,0t,a) by g i ( t ) near to the boundary points.

We can consider the first to be a necessary evil, and it can be tolerated as 

long as we err towards oversmoothing our preliminary kernel estimate g ' ( t ) ,  

for reasons given in subsection 4.2.2.

However the poor quality of the approximation underpinning method (i) 

when h is large is a more serious handicap. Practical tests of this method for 

a variety of different distributions / and g have shown that it produces good 

choices of a when the overall bandwidth h is small. In this case ht<a will also 

be small for all t G £>*, and the approximation we are using is reasonable. 

As h increases, both this approximation and our choice of a become less 

satisfactory, with the latter increasing at too fast a rate. Even for overall 

bandwidths o f around 1 or 2 sample standard deviations, method (i) chooses 

an a value so large that /i(i„ is very small in regions of high density, leading to 

a spiky, uneven density estimate in much of D". As the examples in section

5.3 demonstrate, this will give a much larger non-approximated MISE of 

f(t,0t,a) than a smaller value of a would, and is a poor estimate of the true

density.
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5.2.2 Method (ii): Least Squares Cross-Validation

Using the same range limitation and small ht,a approximation as in method 

(i), we can sidestep the problem of having to estimate g "( t )  by using Least 

Squares Cross-Validation (LSCV). Silverman (1986) outlines the procedure 

for ordinary kernel density estimation and there is a simple analogy for the 

local kernel method over a restricted range.

As before we seek to minimise the MISE over D”,

/ ( g ( t ) - f ( t , 0 t,a) )2dt,
Jd ‘

with respect to a, where f ( t ,O t,a) is approximated by the local kernel density 

estimate gL,a(t). That is, assuming htiC, is small, we take

f ( t ,  0<,o) ~  ¿i,l0(<) =  ht,a~ 'n~l c~l £  K  h X,Sj  , (6)

where c is as defined in subsection 4.2.1.

Since g(t )  is independent of a, the choice of a which minimises the MISE 

over the region D m will also minimise

R ( f )  =  « ( / ( « , 0,,a)) =  Jd t f ( t , 0t,a)2dt -  2 f(t, 0,,a)g(t)dt. (7)

We can rewrite the first integral in (7) using our approximation (6). For the 

second half of R ( f )  we use (6) again, enabling an initial approximation of
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(7) by

JD' SIlA 1)2̂  -  2 J  St,o(< )i(0di-

We then consider the expectation of the second term using the following 

formulae.

Define gL,a,(-i) to be the local kernel density estimate of true density 

function g(t )  constructed from all of the n data points except for x,. When 

estimating at t , this is written as

ffr,,»,<-•)(<) =  (n -  Y  K

Assume there are / data points within region D m, and that n is large, enabling 

us to approximate the probability of any observation being in D * by ln~l . 

Since the expectation of gL,a(t) depends only on the kernel function and not 

on the sample size, then

E 9L,a(i )9(t )dt =  E j D. 9 L.a.{-i)(t)g(t)dt

=  E  (gL,a,(-i)(xi)/xi € D *) J  g(t)dt ~  l- E  (¿t.a,(-.)(*<)/*. 6 D *)

=  - £ ’ (/ - ' Y .  9l ,„ ,< - , ) (* < ) )= £  in -*' Y  (8)
”  \ i:x,eD* / \ i: x.€D* /

So using this expectation to estimate the second term in equation (7), we
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choose a to minimise the score function

M 0(a )  =  f  gi,a( t ) 2dt -  2n" 1 53 9L,a.{-i)(xi). (9)
JD‘ i:x,€D*

This score can be expressed in a more suitable form for computation, such 

as

M 0(a) =  f  gL,a( t)2dt - 2 n -1 5 3  (n -  l ) - , c -1 5 3  hXt_a~l K

= f  9L,a(tfd t  -  2 n_1 53 (n “  l ) -1c-1 53 A*!»*' ( ~T—— )
JD * i:x t£ D *  j  * V /

+  2n_l 53 (n — l ) _ Ic- 1Ar,lC,-1 A'(0). (10)
i:x,6D*

The first part of this sum can be calculated using numerical integration. We 

then found the value of a which minimised A/0(a ) using a simple computer 

minimisation routine, though obtaining this for any particular example re­

quired slightly more computer time than when using method (i).

The advantages of using LSCV are that we no longer need to estimate 

the second derivative of the true distribution, or to use the small ht,0 approx­

imation to the MSE of a local kernel estimate. Yet the results gained from 

using this method were very similar to those from method (i). Sensible ap­

plicable choices of q were achieved when the overall bandwidth h was small, 

but for larger values of h, the values of a  chosen were too great. When used

(  Xj -  Xj \

V A,.,, J
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in the adaptive semi-parametric method, this gave a spiky estimate in region 

D ”, with sharp changes in gradient appearing around the boundary points 

in some cases. Despite the use of a large n approximation, the success of this 

method did not appear dependent on sample size, working well with small 

samples provided h was small.

Like method (i), method (ii) relies upon a small ht<a approximation of 

the adaptive semi-parametric method in D * by the local kernel estimate. It 

is the inaccuracy of this approximation as the overall bandwidth h increases 

which results in the poor performance of both these methods. Method (i) and 

method (ii) achieved good results when used in tandem with the automatic 

method of choosing h, and are worth considering in this context. They are 

also convenient for cases where / differs dramatically from the Normal dis­

tribution, since they rely less than the following methods on the preliminary 

derivative estimation of the true distribution for all t, outlined in subsection

4.2.2.
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5.2.3 Method (iii): Using a direct small ht<a approximation to the 

M SE  of the adaptive semi-parametric method

The small ht-a approximation used in method (i) is really a double approxi­

mation. We initially use the fact that our adaptive semi-parametric density 

estimate converges to a non-parametric local kernel estimate as ht,a decreases 

to zero, and having assumed that ht,a is small, we use a further approxima­

tion to the MSE of the local kernel density estimate. It is possible to cut 

out a stage by adapting the small h approximation to the MSE of the semi- 

parametric method from Copas (1995b), with a resultant gain in simplicity 

and accuracy. This approximation was introduced and derived in chapter 4, 

equations (2) to (9). Though it also relies on n being large, this method has 

still performed well with smaller sample sizes.

To find the MSE of the adaptive semi-parametric method at i, we replace 

h in chapter 4, equation (9), by ht%a, which is defined in chapter 4, equation 

(1). After integrating over D m, the region in which a small htia approximation 

will be valid, we choose a to minimise this integral, which is the approximate 

MISE over D ’  of the adaptive semi-parametric method. It can be written as
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M I S E D. ( f ( t , 0 tiO) )  =  \h*k22 [  T ( t ) - 4o( g " ( t ) - f " ( t , 0 t" )  +  2pi( t ) )2dt
4 JD*

+  n~xh~*K\ [  g ( t )T ( t )adt, (11)
Jd ‘

where f ( t ,0 <“) and /?,(/) are defined in section 4.2.

(This differs from the MISE of the local kernel estimate over O '  given in 

equation (3), which was used as an approximation to the MISE of f ( t ,O t,a) 

in method (i), only in that g "(t )  is replaced by

g " ( t ) - f " ( t , O t' )  +  (12)

Since this term is independent of a, the following results can be obtained by 

simply replacing g " ( t ) in equations (4) and (5) by equation (2)).

Differentiating (11) with respect to a and setting equal to zero, we find 

that the best choice of a  evaluated using method (iii), which aims to minimise 

(11), solves the equation

h 'k S n K ;1 [  T ( 0 - °  log r ( t ) ( g " ( t )  -/ " (< , « ,* )  +  2/?,( t ) ) 2dt
Jd ‘

=  [  T(<)“ \ogT(t)g(t)dt. (13)
Jd ’

If we assume that the overall bandwidth is chosen by our automatic method, 

with the maximum difference boundary point being at t =  t‘ , then the best
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choice of a also satisfies

J D , ((g ' v ) -  + 2  m ) W n  -  /"(<*,«,*.)+2 A (o r* i(O T (i)~ 4a

— T(<)“s(< ))logT(f)< ff =  0. (14)

Both equations (13) and (14) were easy to solve using numerical integra­

tion and a computer minimisation package. We used ordinary kernel density 

estimation to estimate g(t ) and its derivatives as outlined in subsection 4.2.2. 

However, unlike in method (ii), we need estimates for g(t), g '(t ) and g"(t ) 

over a range of target points, rather than just at a single boundary point. 

In cases where preliminary kernel estimates of these values are liable to be 

inaccurate at some values of t, such as when g appears to be an extremely 

non-Normal distribution such as the exponential, then this method is less 

appropriate. Method (iii) has the same properties as method (i) when used 

in conjunction with the automatically chosen h, namely that it is indepen­

dent of the sample size n, and of the scaled kernel function K (u )  defined 

in chapter 1, equation (1), which performs the weighting within our local 

likelihood function.

This method again performs well for small values of our overall band­

width. But while the choices of a for larger values of h were not as excessive



144

as those from methods (i) and (ii), they still lead to overly small values o f 

ht a. It shares with method (i) the problem of estimating g"(t ) but this time 

not just a one point. While the small /i(iQ approximation to the MISE o f 

f(t,0t,a) is better than that used in (i) and (ii), it still limits our scope when 

we want to use a larger bandwidth.

5.2.4 Method (iv ): Minimising the difference from ht,a to the op­

timal local bandwidth at t

The ongoing problem of the small ht,a approximation breaking down is fi­

nally solved by method (iv), using a combination of making the accuracy o f 

this approximation less crucial to our result, and introducing a ‘safety net’ . 

Instead of attempting to minimise the difference between our estimate and 

the true distribution, we will design a method which chooses a to minimise 

the integrated distance between ht,a and the ‘ best’ choice of local bandwidth 

at each value of t. We work over the same interval D '  as before, though 

we rely on different approximations to those used in previous methods. A t 

any point t , our optimal local bandwidth is defined as hopt(t), and is chosen 

with respect to minimising the small h approximation of the MSE of the 

semi-parametric method. We use exactly the same formulation as when au-
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tomatically selecting our best overall bandwidth h, which is given in chapter 

4, equation (16). However, here we apply it at any value of t within D" 

rather than just at a single boundary point.

Consider the choice of a defined as the maximum of (0, a "), where a  =  a ' 

minimises

and /?,(<), A'i, k2 and O '  as defined in section 4.2. As previously stated, our 

definition of the latter involved a large n approximation, but once again this 

method appears to work equally well with smaller sample sizes. Differenti­

ating with respect to a, and setting the resulting equation equal to zero, we 

find that a* solves

(15)

with

/ log T(i)/ l( a(/l0pi(<) — ht,a)dt =  0 
Jd•

(17)

which, if h is chosen automatically, is equivalent to

j D' logT(0  (T (t )- °  (</"(!) -  +  2 A (0 )“ l * (0 *

-  ( g ' x n  -  +  2ft(nrM t*)tx(t)-“ )<« = o. (18)
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The fundamentals of this idea are well illustrated by plots 5a, 5b and 5c. 

In these three cases we are calculating ht<a having chosen to fit a Normal 

distribution to a set of data, hence the two boundary points. Given our 

function hopt( t )  over D ’ and a fixed overall bandwidth h, then applying 

adaption pulls ht,a away from h and towards hopt(t). When h is small, as it 

is likely to be if chosen by the automatic method, a" will be very close to 0, 

or possibly less than 0 giving us a best choice of a  =  0 (see plot 5a). As h 

increases in order to minimise the distance between ht<a and hopl(t), a lot of 

adaption is required to ‘pull down’ ht,a from h (see plot 5b).

Yet again we find that this idea works well for small h and improves on 

previous methods in its treatment of medium sized h values. It retains the 

‘ invariance’ advantages of methods (i) and (iii) in that sample size and type 

of kernel do not affect our choice of a. As well as this it has an advantage 

over methods (i) and (iii) with respect to the thorny problem concerning 

the unknown second derivative of the true distribution. In method (i) (see 

equation (4 )) and method (iii) (see equation (13)), our choice of a depends on 

g (t )  and </"(<), both to the powers of magnitude 2. Preliminary estimates of 

these values are provided by kernel density estimation and are also required 

for the evaluation of O’ . As explained in subsection 4.2.2, these estimates can
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be inaccurate when g is clearly non-Normal. While method (iv ) still requires 

estimates of the true distribution and of its second derivative for use directly 

in equation (18), with the latter being liable to large random errors, the 

power to which they are taken has been reduced to | and — | respectively. 

Thus any inaccuracy in our kernel derivative estimate of g "( t )  will have less 

effect than it had in the previously considered methods. But like method 

(iii), method (iv) is not recommended for use with distributions such as 

the exponential, where the shape, discontinuities and bounded nature of the 

density function can lead to very inaccurate preliminary kernel estimates of 

g ( t ), g '(t ) and g"(t ) in some regions of t. Most significantly, this will produce 

poor estimates of hopt(t )  in these regions.

‘Large h' problems also occur and are visually apparent in plot 5c. When 

h gets much bigger than the average of hopt(t), the value of a required to 

minimise equation (15) will increase dramatically, resulting in very small ht,a 

values around the mode of /. This is more a structural problem than one 

caused by a poor approximation. Our value of ht,a will always be equal to h 

at the boundary points, so as h increases a large amount of a is needed to 

pull /i(,a down to a value below hopt elsewhere in D m, in order to minimise 

(15). We can solve this problem by a placing a simple restriction on the
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size of a. Assume that difficulties caused by having too small a handpicked 

value of h are unlikely to occur, since it is improbable that we would want 

to deliberately cause noise in the tails by choosing a very small value of 

h. On the other hand, it is possible that we would want to use a much 

larger overall bandwidth than that chosen automatically, so as to ensure a 

smooth parametric estimate in the tails. Thus the problem of having too 

small a value of h should only arise from the automatic method. However, 

our automatically chosen overall bandwidth is the optimal local bandwidth 

value hopt( t ) at the maximum difference boundary point t =  f”, so

h =  hopt(t" ) >  min hopt(t).

Therefore we have a lower bound on our automatically chosen h, and are 

assuming that we would not want to handpick a smaller bandwidth than 

this. Overall bandwidth h is the least upper bound for local bandwidth ht,a- 

Method (iv) involves extending this bound to h,¡a. I suggest the following 

restriction on the best choice of o given in (18). Define the restricted best 

choice of a, method (iv), as

m¡n(max(a*,0),á). (19)

Value a of a is achieved when the smallest value of ht,a equals the smallest
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value of hopt(t ) ,  t 6 D m, such that

min h, a =  hm\nT(t)~a =  minhor>,(t).

Equation (19) places a bound on how small ht,a can become, by stopping 

a  being chosen greater than a. We now translate this bound on htiC, alge­

braically to the corresponding bound a on a, writing the latter as

.  log (A) -  log(minD. hopi( t ) )  
a = ------------ :-----=77T----------• (20)

min/j- T(<)

For specific choices of parametric family / we can reduce this formula still 

further. Since A is fixed for all t , minp. T(<) will always occur at maxt f ( t ,0 ) .  

If we know the mode of /, which will always be located in region D ' , then 

equation (20) simplifies even further. For example, when f ( t ,  0) is the density 

function of a Normal distribution, equation (20) reduces to

d =  2(log (*) -  log(min hopt( t ) ) ) ,

and when f ( t ,0 )  is the density function of an exponential distribution, 

a  =  log(/i) -  log(min(/iopi(t)).

The value taken by mine. hopt(t) can be found by using a simple minimi­

sation program. In a practical case, where one is estimating the true distri-
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bution on a fine grid of points, it may be easier just to calculate hopt( t )  for all 

these points in D m and use the smallest value as an estimate of mine« hopt(t).

Plot 5d illustrates method (iv) showing how min/j. hopt( t ) creates an up­

per bound for a via ht<a, by preventing ht,a from becoming very small around 

the mode of /  when h is large. Compare this with what happens in plot 5c. 

Here no restriction is applied to the same example. We simply minimise (15), 

allowing a very large a to be chosen, which results in ht<a ~  0 for much of 

t € D". The smallest value of ht,a will always be at point t where f ( t ,9 )  is 

largest which is the mode.

By placing a restriction on the minimisation of equation (15), we are 

attempting to ensure that /i(,0 will never get so small that our adaptive semi- 

parametric estimate in region D * becomes just a series of spikes at the data 

points, as it does for very large h values in methods (i), (ii) and (iii). For 

a large range of examples considered, method (iv) worked very successfully. 

It required less computer time to select a  than the other methods. For 

most examples, the restriction on the size of a came into action when overall 

bandwidth h was between 1 and 2 sample standard deviations.

For small to medium values of h it tended to choose slightly smaller values 

of a than the other methods. This too is an advantage, when we consider
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the range over which a is chosen and the range over which it is applied. 

In methods (i) to (iii) we select a with the aim of minimising the MISE 

of the adaptive semi-parametric method over D*. Since choosing o  much 

greater than zero will take our adaptive semi-parametric estimate in D mC 

towards our parametric estimate f ( t ,6 ) ,  in cases where / differs from the 

true distribution g we will incur a loss in the accuracy of our estimate in that 

region. As originally suggested in subsection 3.4.4, the best choice of a  in 

terms of minimising the MISE over the whole range of t can be noticeably 

smaller than that chosen to minimise the MISE over D " .

This problem is most likely to manifest itself in cases where the overall 

bandwidth h is of small to medium size. Our best choices of a  over all t and 

over D * will be virtually identical when h is very large, because our adaptive 

semi-parametric estimate will already approximate the parametric estimate 

in D mC before any a  is applied. When h is very small our best choice of a 

over D * is likely to be zero. Refer back to section 3.4.4 and plot 3e for further 

details.

If h is so small that the estimate in D ‘ c  is bumpy, it may be that the 

best choice of a in terms of minimising the MISE over all t is slightly greater 

than zero in order to smooth the tails. However, in this unlikely situation
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the best procedure would be to reselect a slightly larger value of h.

But as a general rule, our best choice of a for minimising the MISE over 

all t on which / is defined will always err on the small side of the best choice 

over D m. Given that h and a are both large enough to avoid excessive noise 

in the tails, we will never expect it to be greater than the best choice of 

a over D*. Any choice greater than this will by definition cause a loss of 

accuracy in D ", and will also cause a loss of accuracy in D "c for the reasons 

outlined above, assuming that n is large and / is misspecified. This is 

demonstrated in the examples given in section 5.3.

Unless we believe g to be extremely non-Normal, such as when it is an ex­

ponential distribution, then method (iv), which tends to give slightly smaller 

choices of a than methods(i), (ii) or (iii), is an effective method of automati­

cally choosing a value of a for our adaptive semi-parametric method in terms 

of providing an accurate estimate of g(t ) for all t. It also has the necessary 

upper bound on a for when h is large.
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5.3 Some examples of these methods in action

Noting that methods (i) to (iv) choose a with regard to a limited range 

of t, it is interesting to observe and compare these choices of a  with each 

other, and with the ‘observed best choice’ when integrating over both the 

limited range D m used in our methods and the more practically relevant full 

range of t. We define the observed best choice as that which minimises 

the observed ISE. It is possible to evaluate this when using a synthetic data 

set from a known true distribution g , with numerical integration used to 

calculate the ISE. A large sample size was used to reduce random error. I 

generated large synthetic data sets for different choices of distributions g and 

applied semi-parametric methods with different choices of /, a sensible yet 

incorrect parametric family chosen after observing a histogram of the data 

from true distribution g. The results from several of these are discussed in 

detail below. It is important to remember that using these synthetic data 

sets introduces sampling error, but they illustrate'the above ideas, theory 

and effectiveness of the various methods quite well. Note that all plots are 

located after the three examples, on pages 167 to 181.
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5.3.1 Example 1

I took a random sample of 5000 points from g, a bimodal distribution con­

sisting of an equal mixture of two Normal distributions, which had means of 

plus and minus 2 respectively and identical variances equal to 1.52. Thus

g (t )  =  0.5(s,(<) +  02(<)),

where

5, ~JV [-2,1 .52]

and

02 ~  Af[2,1.52].

Attempting to fit /, a Normal distribution, to this sample using the adap­

tive semi-parametric method, I produced plots 5e to 5g, showing the ISE’s 

calculated over D m and the full range of t for various values of a, for each 

of the 3 values of h. In other words I have plotted a vs ‘ ISE over Z?*/‘full 

range of t' for the adaptive semi-parametric method for 3 different choices of 

h, one the optimal choice via equations (16) of chapter 4, the others hand­

picked. The ‘automatic choices’ of a were then calculated for each one of 

the methods outlined in this section, for each of the three h values (see table
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5A). Observed best choices of a  over both D * and the whole range of t were 

visually apparent from the plots.

T A B LE  5A

Automatic choices of a  for example 1 under the four different 

selection methods (rounded to 2 decimal places)

h Method (i) Method (ii) Method (iii) Method (iv )

0.49 0.14 0.00 0.00 0.00

1.00 3.09 4.22 1.86 1.12

5.00 13.8 17.4 11.8 4.83

Plot 5e shows the observed best choice of a for small h. In this case 

the overall bandwidth of h =  0.49 was chosen by the automatic method of 

chapter 4. Sampling variability and slightly bumpy tails have caused the 

optimal a over all t to be just above zero, but all the automatic methods of 

selecting a work well. For the medium sized h value, h =  I, shown in plot 5f, 

the methods relying on approximations to the local kernel density estimate 

fare badly, choosing too large an h value. Method (iii) gets close to the best 

value over D m but the best observed a over all t is nearest to that chosen 

by method (iv). For large h (see plot 5g), method (iv ) is the only one to
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give a realistic choice of a, the ‘restriction’ idea working to good effect. All 

other methods choose a  values so large that the density estimate produced 

consisted of a series of spikes at the data points in D * and a purely parametric 

estimate in D ' c . Note that for large h, the best choice of a over D * is almost 

identical to that over the full range of t , for the reasons suggested at the end 

of subsection 3.2.4.

Considering the observed ISE’s in plots 5e to 5g, the combination of h and 

a which produces the smallest loss in accuracy occurs in plot 5e, where h is 

chosen by my automatic method of chapter 4, equation (16), and the observed 

best a  is very close to any of those chosen by the various automatic methods 

of choosing q . Plot 5h shows the result of taking the automatic choice of 

h =  0.49, the corresponding best choice of a =  0 under method (iv), and 

then producing an adaptive semi-parametric density estimate. Its accuracy 

to the true distribution compared to the performance of the parametric esti­

mate is outstanding. Plot 5i compares our adaptive semi-parametric density 

estimate to a normalised histogram of the data and an ordinary kernel den­

sity estimate, demonstrating both how we avoid the oversmoothing of the 

latter method, and the loyalty to the data of the adaptive semi-parametric 

method. When constructing this kernel estimate, the bandwidth was chosen
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using the simple ‘plug-in’ formula from Silverman (1986), stated in equation 

(12) of chapter 4. Using a smaller bandwidth to increase accuracy around 

the modes lead to slight roughness in the tails of our kernel estimate.

5.3.2 Example 2

On this occasion the true distribution is Gamma[l,4], from which 500 random 

points were sampled. We again attempted to fit a Normal distribution to this. 

The procedure used in example 1 was then followed exactly. Plots 5j to 51 

show results calculated over D * and the equivalent results over the whole 

range of t. Table 5B gives the automatic choices of a from methods (i) to 

(iv).

T A B LE  5B

Automatic choices of a  for example 2 under the four different

selection methods (rounded to 2 decimal places)

h Method (i) Method (ii) Method (iii) Method (iv )

0.51 0.16 0.00 0.00 0.00

1.00 1.84 3.10 1.50 0.72

5.00 12.1 14.2 10.1 4.61
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The results are very similar to those from example 1. Our automatic 

methods all choose practical values of a when h is small ( h =  0.51, chosen 

by the automatic method). Plot 5j illustrates that a choice of a  around zero 

is appropriate if we want to minimise the ISE. For the larger values of h, 

only method (iv ) gives choices of a close to the observed best choice over the 

full range. Our smallest observed ISE occurs when Ti =  0.51, and a is small. 

Plot 5m shows the resulting adaptive semi-parametric density estimate if we 

use h =  0.51 and a as chosen by method (iv). This is a visible improvement 

over the parametric estimate almost everywhere. In plot 5n this estimate is 

superimposed onto a normalised histogram to demonstrate its accuracy to 

the data. This is again excellent, though a slightly larger value of a may be 

preferable in order to smooth the small bump in the upper right tail. Plot 

5j indicates that a =  0.2 gives the smallest observed ISE. However this is 

a much smaller sample size than in example 1, so we should not expect an 

equivalent level of accuracy.

5.3.3 Example 3

For our third example we attempt to fit a Weibull distribution to data (sample 

size 1000) drawn randomly from true distribution g, where g is a mixture of
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two Gamma distributions. Its density function is defined as 

g (t )  =  0.5(<7i (<) +  32(1)),

where

91 ~ r [i,2 .5 ]

and

9 2  ~  T [ l , 5 ] .

In this example, the distance between f ( t ,0 )  and g (t )  is much smaller ev­

erywhere than it was in examples 1 and 2. In both left and right tails, the 

density function of the parametric family fitted to the data is almost coin­

cident with that of the true distribution (see plot 5r). As a result of this, 

the observed ISE’s of f ( t ,O t,a) for the different choices of h and a are much 

smaller than in examples 1 and 2. The accuracy of the parametric fit to the 

true distribution in the tails also means that the majority o f the observed ISE 

of f ( t ,0 t,a) over all t emanates from region D’ , where the density functions 

of / and g differ slightly in shape.

This is apparent in plots 5o, 5p and 5q. In plot 5o, h is chosen by the 

automatic method and is fairly small. Since f ( t ,0 )  is already so close to g(t) 

in the tails, as a increases there is little room for improvement there. The
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initial removal of noise in the tails of our estimate accounts for the observed 

best a over all t being slightly greater than 0; the best value evaluated over 

D m only is equal to 0. In the region of high density D *, increasing a  above 

1 causes a noticeable loss in accuracy due to our adaptive semi-parametric 

estimate becoming too non-parametric and spiky. There is a similar pattern 

for h =  1 and h =  5; the tail regions have little to no influence on the best 

observed choice of a  as long as it is large enough to prevent any noise. For 

h =  5 (see plot 5q), the best observed choices of a for minimising the ISE 

over D m and over all t are almost equal. The observed best choices of a 

over the two regions differ rather more for the ‘medium-sized’ h =  1 case 

(see plot 5p), but for both regions the observed ISE’s stay at the same levels 

(~  0.00012 and ~  0.00025 respectively) until a is greater than 2.5.

Method (iv ) is still the best automatic method in terms of choosing a 

closest to its best observed value. All four methods again work well for the 

small value of h, but for the medium and large values, method (iv ) is the only 

one which avoids choosing too large a value of a (see table 5C and compare 

with plots 5o, 5p and 5q).
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Automatic choices of a  for example 3 under the four different 

selection methods (rounded to 2 decimal places)

TABLE 5C

h Method (i) Method (ii) Method (iii) Method (iv )

0.55 0.58 0.00 0.00 0.00

1.00 3.11 6.10 0.90 0.27

5.00 13.6 8.99 13.6 5.33

Over the three choices of h and the range of a values used alongside 

them, the smallest observed ISE over all t, which equalled 0.00021, occurred 

when h =  0.55, «=0.25 and when h =  1, a =  0.28. The combination of 

automatically chosen h =  0.55 followed by a =  0, selected using method 

(iv ), gives an observed ISE very close to this (it equalled 0.00022). Similarly, 

if we handpick the overall bandwidth h =  1, then method (iv ) chooses a 

almost identical to the best observed value. Plot 5r shows the adaptive semi- 

parametric estimate resulting from the latter case, and plot 5s compares it 

to an ordinary kernel estimate (bandwidth chosen as for example 1) and a 

normalised histogram of the data. The adaptive semi-parametric estimate 

exhibits two advantages over the kernel density estimate. Firstly it does



not take values greater than zero when t is less than zero, and secondly 

it does not oversmooth around the mode of the true distribution. Plot 5r 

shows the adaptive semi-parametric method’s advantage in accuracy over the 

parametric estimate around the mode.

166
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5.4 Selecting h and a  - a summary

Given that it was designed with parallel use of an adaptive constant a in 

mind, my selection procedure for h given in chapter 4 appears to work well 

on its own. In many of the practical examples attempted, I found that even 

before attempting to choose a and apply some adaption, I could obtain a good 

density estimate f ( t ,Ot,a) with h as chosen and a =  0. It was very often the 

case that as in the simulated examples 1 to 3 of section 5.3, the automatic 

methods would choose a small h, and a ~  0. Despite being dependent on 

the differences between / and g at only one point, and having been derived 

via large n and small h approximations this method of choosing h has proved 

effective over a wide range of examples. Any problems that have occurred 

have been limited to small samples from extremely non-Normal distributions 

such as the exponential, when the value of h chosen has occasionally been 

too small to smooth the tails or provoke the selection o f any adaption when 

combined with the automatic methods of choosing a. Various methods for 

dealing with these cases are given in chapter 6. Depending on the situation, 

the automatic value can be used as given or, especially in small sample cases 

where our estimates of g(t )  and of its derivatives will be less reliable, as a
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rough guide to what a suitable size for h would be.

Of the four suggestions for choosing adaption parameter a, the first three, 

which all attempt to minimise small ht,a approximations to the MISE of 

f ( t ,  6) over £)*, gave good choices of a until we began to contradict the small 

/i(l0 criterion, when performance became poor. The alternative method (iv) 

chooses a to minimise the distance between ht-a and the small h approxima­

tion to the optimum local bandwidth at t , over a restricted range of t. This 

enabled the introduction of an upper bound on the size of o, however large 

the overall bandwidth h. As h increased, only method (iv ) gave sensible re­

sults. For cases where a histogram of the data suggests that the true density 

function is exceptionally non-Normal, bounded or discontinuous, method (ii) 

is recommended (as long as the overall bandwidth h is not too big), since it 

relies least on preliminary kernel derivative estimation. However it still re­

lies on an initial small hl<a approximation from the adaptive semi-parametric 

method to the local kernel estimate, and is therefore not foolproof!

It must be noted that the above ideas are only a limited range of sug­

gestions; also that a computer is required to evaluate our ‘ best’ h's and c*’s, 

though the minimisation routines used are simple and fast. A further ad­

vance would be to develop plug-in formulae for h and a, of equal simplicity to
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6 Choosing h with reference to prior belief

6.1 Introduction

Like all automatic procedures, the methods for choosing h and a  suggested 

above may not always be satisfactory. Method (iv), outlined in subsection 

5.2.4, incorporates a safety net enabling us to avoid poor automatic choices 

of a. We now develop several safeguards for use when choosing h.

Since it is derived using small h and large n approximations of, rather 

than directly from the MSE of the semi-parametric method, our suggested 

automatic choice of h first given in equation (16) of chapter 4,

h = (</"(<*) -/"(<*,*;.) + 2A (i* ))-»£ ,n - l * 1* * (0 * , (1)

cannot be guaranteed to work well if the small h and large n criteria are vi­

olated. Equation (1) also requires estimation of g(t)  and its first two deriva­

tives at boundary point t =  t*, which introduces a further margin for error. 

As a result of this, principally in small sample cases where we believe g( t )  to 

extremely non-Normal in shape, our automatic selection of h has occasionally 

been too small. This results in a noisy, largely non-parametric estimate be­

fore adaption is applied. Since h is already small in the areas of high density,
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our automatic methods of choosing the amount of adaption will select a close 

or equal to zero. Some noise in the tails will remain, unless we handpick a 

larger value of a which, while smoothing f ( t ,Ot â) when t 6 D mC, will result 

in very small values of hto for t 6 D m, making our estimate in this region 

even more volatile.

Alternatively, even when h is large enough to give reasonably smooth 

tails, we may believe that the true density is very close to that defining our 

parametric family / in the tails. Therefore we will want to use an even larger 

bandwidth and select a large value of a. Such situations motivate a procedure 

for increasing the size of overall bandwidth in line with our prior beliefs about 

the properties of the sample, without having to resort to handpicking h.

It must be emphasised that the methods given in this chapter are simply 

suggestions for dealing with problems I have occasionally encountered when 

applying the ideas of chapters 4 and 5. In the vast majority of examples 

tackled, choosing h as recommended in chapter 4 combined with a chosen 

hy method (iv ) from chapter 5 has proved satisfactory, at least as a rough 

indication o f the optimal values of h and a.
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6.2 A  method for incorporating prior belief

Consider the formula for our best choice of overall bandwidth h, most recently 

given in equation (1). We will argue in section 6.3 that an effective way of 

incorporating prior belief leads to replacing the first and second derivatives 

of the true distribution at boundary point <*, g ' ( t ' )  and g"(t*),  by

(i -p)g'(n+pf(t‘,o:-) (2)

and

(i-p)g"(f) + Pf"(r,o;.) (3)

respectively, where 0 <  p <  1.

This adjustment to equation (1) replaces

M ’ " U/i'--»;-) ~ “ i i r r j (9( 1 “ / ( ■ ")l
by

Note that /3‘ (t) =  0 when 6 is a vector. Subsection 4.2.1 gives further 

details. These changes now give an optimal choice of h defined as

h ' =  ( i  - P) -> (</"(<•) -  +  (4)
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From now on we will consider this to be the formula for automatic 

selection of the overall bandwidth unless otherwise stated.

As p increases from 0, at which our formula for choosing h is unchanged 

from ( 1), towards its upper limit of 1, our choice of h will become larger. 

Given that / ^  g, we now require an increased value of a to achieve optimum 

accuracy to the true distribution in D *. (As before we consider optimum 

accuracy to have been attained when the MISE over the region in question 

is minimised). These larger values of a and h will cause f ( t ,  0t a ) to move 

towards when t € D mC.

Parameter p can be thought of as a smoothing index related to  the likely 

proximity of f ( t ,  0) to g(t). We could handpick p with regard to our personal 

prior belief, but it would be useful to have an automatic selection procedure, 

at least as a guide to an appropriate choice of p. Replacing g ' ( t )  and g"(t )  

by formulae (2) and (3) is motivated by the theory of section 5.3, which 

shows how, after taking parametric family / as a prior distribution of g , 

the posterior expectation of our true density function given the data can be 

written in the form

(1 - p ) g ( t )  +  pf(t ,0).
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Equation (4) uses a similar arrangement. Though (2) and (3) are weighted 

sums of first and second derivatives of the density functions defining / and 

g , it seems reasonable to allow our choice of p to be related to the proximity 

of the density functions themselves. The value which p takes will affect 

our choice of bandwidth. This controls the ‘placing’ of our semi-parametric 

density estimate between the parametric and kernel density estimates.

6.3 The motivation for and formulation of p

We want parameter p to measure how well our parametric model / fits the 

data from true distribution g. To quantify the performance of / we consider 

g unknown with prior mean /, and choose p relative to how much the data 

suggests that g varies from this mean.

One way of approaching this is to suppose that, given data x i , ..., x„, then 

xt, our ith observation, is equal to

ii +  hti

where i =  l,...,n , are i.i.d </(£,) and the error e,- are i.i.d. Normal[0,l]. 

Writing X{ in this way motivates the non-parametric kernel density estimate, 

if we think of each observation Xi being measured with standard deviation
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h. We assume that n is large and that the x/s are measured with the error 

distributed Normally with mean 0 and variance h2. Standard deviation h 

is small relative to the overall variance of the &’s. Then the posterior 

density function of given X{ is approximately

Let nt be the number of £,’s in the interval ( t , t  +  dt). We find that

n

E (n t\X) =  E  ̂ 2 (1 if t <  {« <  t +  dt , 0 otherwise )
t=i

=  t e < <  < 6  < i + * )  =

Now take

gt =  P ( t  <  (  <  t +  dt) =  g(t)dt,

and let the distribution of the vector of gt's over a fine grid of width dt 

be Dirichlet(/c,/() where f t =  f ( t ,0)dt  and f ( t ,0 )  is our chosen parametric 

density. Then the prior mean of g, is f, and the prior variance of gt is 

/i(l — /<)(* +  l ) -1. Therefore, when k is small, gt varies substantially from 

ft, but if k is large, the variance is small. By using the resulting beta- 

binomial structure we can define our smoothing index in terms of k , s o  that 

it is related to closeness of f ( t ,0 )  to g(t) .
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Since n( given g, is distributed binomially such that

nt\gt ~  binomial(n,5T(),

and

gt ~  beta((c/,,/c(l -  /,)), (5)

then this implies that

gt\nt ~  beta(/c/, +  n(, /c(l — /,) +  n — nt), (6)

so that

E9(gt\nt) =
lift +  n, 

k +  n

Hence

E(gt\X) =  E nt (E , (g t\X,nt)) =  En, ( ^ ± £ - 1 * )

k +  n

But as ~  g (l), ~  / (i,0 ) and

5 (0  =

which is the kernel density estimate of g(t) using a Gaussian kernel and with 

bandwidth h, then the posterior expectation of the true distribution is of the





193

tive semi-parametric estimate which we are attempting to produce. These 

methods rely on the dependence of p on k, h on p, and if the adaption pa­

rameter is chosen automatically, the dependence of a on h. The relationships 

can be summarised as follows;

k is small (vague prior) => p is small =>•'h stays small,

or alternatively

k is large => p is large => h increases .

6.4 An estimate of k

A possible procedure for estimating k is to use the following empirical Bayes 

argument. We discretise the data into l class intervals (A t, A 2) , ..., (A/, A/+i), 

the choice of which shall be discussed later, and then define nij to be the 

number of observations in the j th class interval (A j, A J+i)  and

V’i =  / </({)<#■J&t

Since we are considering distribution / as a prior for true distribution g , 

from equations (5) and (6) we deduce that

¡l>i ~  beta(/crj,/c(l — ry))
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where

r&t+i
ri =  f ( t ,0)dt.

JA,

Assuming that h is small relative to the size of class intervals |AJ+i — Aj|, 

from section 6.3 we have

~  binomial(n, ipj).

This implies that

E ( m j )  =  £ ( £ ( m y |V > j)) =  n £ ( t /> > )  =  n r „  ( 9 )

where r; is the probability of an observation being in interval j  given that 

the true distribution of the data is defined by our parametric family /. We 

can estimate this value by

r&j+t
f j =  f ( t ,0)dt.

J&,

Now

V a r ( m j )  =  E  (Var^m^xpj)) +  Var (E(mj\tl>j))

=  E(nrpj( 1 -  V>j)) +  Var (nxpj)

j M i - M  . « M i  - M
=  n r i  — n r i  — n  — —  + ------------------------

* +  1 a +  1

= (1 + 7+t) ("Mi -M) (10)
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V a r im j )  / (m, -  n r,)2\ =  n -  1

nr>(l — rj )  \ nrj ( l - ri ) /  * + l ‘
( 11)

The sum of the left hand side of this equation is similar to the expectation 

of , defined as

£  i f  K -  rirj )2

1 1 nri

in that it is a weighted sum of the squared differences between the observed 

frequency and expected frequency of observations, assuming that the true 

distribution of the data is given by parametric family /. We can estimate 

this expectation by approximating rj by f ,  and taking the sample mean over 

the / intervals, which we define as

=  1 ' (m, -  nr, Y

1 * » f » ( l  — f » )  '
( 12)

When choosing the size and number of class intervals, follow similar guide­

lines to those for the discretisation of data for calculation of the statistic,

a nr>y
H  nri

This implies choosing as many class intervals as is possible under the restric­

tion that nr, is greater than about 5, ensuring that the denominator of the 

fraction in equation (12) never becomes too small. If n is large, then our
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intervals will be chosen small, rj will be close to zero for all j ,  and I Z ‘ can be 

approximated by the y 2 statistic. There is still a great deal of scope for the 

choice of these intervals, which is a disadvantage o f this discrete procedure. 

Different choices of intervals (A i, A 2) , ..., (A/, A/+i ) will produce different es­

timates of k and therefore different choices of p.

After rewriting equation (9) in terms of k, we have

l  v a r ( m j j  \

(  varirrij) \ ’

which we estimate by

(13)

An automatic value of p is now chosen by inserting formula (10) into 

equation (8). Our estimate of k and hence our choice of p has the desired 

property of being directly related to how much the observed data differs from 

what we would expect to observe if their true distribution was our chosen 

parametric family /.

If / is a very bad fit to the data from true distribution g, then Z * will be 

large, giving small values of k and p. Our automatic methods of choosing h 

and a from chapters 4 and 5 both tend to give small values unless / and g are 

very close. In this case we will end up with the appropriate choice of a small
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bandwidth and little if any adaption. In cases where h is still very small, 

this confirmation of our original selection of h could be seen as a suggestion 

that / is a very bad fit to the data from g, and that we should try fitting a 

different parametric family.

Alternatively if the data indicates that f ( t ,0 )  and g(t )  are very close 

almost everywhere, then the resulting small value of Z* will lead to k being 

large, p being near to 1, and we will choose a larger overall bandwidth h. 

This in turn will provoke a larger automatically chosen value of a, so that 

will approximate the parametric density estimate f ( t ,0 )  in the tails. 

This is a suitable outcome, since the data suggests that f ( t ,0 )  appears to be 

close to g(t) .

Assume that we consider our automatically selected bandwidth using 

equation (1) somewhat small. Then finding p as suggested and using equa­

tion (4) to give a new automatically chosen bandwidth, the dependencies of 

section 6.3 can be extended to

/ bad fit to data from g => Z ’ large =► k small (vague prior) => p small

=> h stays small => a stays small =» estimate largely non-parametric ,
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or

/ good fit to data from g =$■ Z m is close to 1 => it large =► p is close to 1 

=> h increases => a increases => estimate becomes more parametric .

One flaw with this method is that equation (13) will take values less 

than zero when Z * is less than 1. Plot 6a of k against Z m for a sample 

size of n =  1000 also features the discontinuity which occurs when Z ’ =  1. 

Equation (8) will give values of p outside [0,1) if our estimate of k is less 

than zero, a scenario that we must therefore avoid. A simple solution is to 

replace k in equation (8) by

Plot 6b of the modulus of k against Z m shows the effect of this change.

The problem of Z * taking values in the interval [0,1], while awkward to 

solve, is not one that I have regularly encountered. Assuming that g differs 

from / enough to have motivated a small choice of h in the first place, it 

is unlikely that the data from g will be distributed closely enough to the 

expected frequencies under / to give a very small value of Z ' . In fact, given 

a fixed value of « , if / ^  g, then as n - *  oo,

P ( Z - >  1) -  1.
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On the rare occasions that the value of Z* is between 0 and 1, the idea 

of estimating k by the modulus of k is acceptable. It does not possess the 

intuitively desirable property of decreasing as Z * increases; plot 6b shows 

how this breaks down when 0 <  Z* <  1. However it does preserve the 

essential characteristic of being large whenever Z"  is small, giving a large 

value of p. This property is simple to show, since

Z m< \ = > \ k \ >  n,

therefore p estimated |k|(|k| +  n)-1 must always be greater than i  whenever 

Z ” is less than 1.

Another possible idea is to redefine p such that it takes a fixed value close 

to 1 whenever Z '  takes values in [0,1]. This lacks the simplicity of using |/c| 

and requires the subjective choice of a suitable value: should it be p =  0.9, 

p =  0.99 or p =  0.999?!

Problems will still occur when Z* =  l! In any situation where Z* € [0,1], 

either handpicking a very large overall bandwidth h or even ignoring semi- 

parametric methods altogether in favour of parametric density estimation are 

equally logical and far simpler proposals!
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6.4.1 An example

Selecting values of k , p and thus h as suggested in above worked fairly well 

for a number of examples. The case given below is a typical situation in 

which introducing p is useful.

We return to the deer line transect data previously encountered and ex­

plained in fuller detail in sections 1.5 and 3.3. The data consists of per­

pendicular distances of deer sightings from a straight line. A histogram of 

the data, given in plot lb, suggested that an exponential fit is plausible, 

but some local influence will be necessary around the mode. Constructing a 

parametric density estimate confirmed that the exponential distribution fits 

the tails very well indeed. When we used adaptive semi-parametric density 

estimation on this data set in chapter 3, we handpicked values of h and a, 

but now we have the tools necessary to attempt an optimal selection of these 

parameters.

First we try the methods given in chapters 4 and 5. Selecting h auto­

matically without prior belief (using equation ( 1) from this chapter), we get 

a small overall bandwidth of h =  1.01. We now use methods (i) and (ii) 

of choosing a from subsections 5.2.1 and 5.2.2 respectively (since methods
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(iii) and (iv ) are particularly unsuitable for use with exponential distribu­

tions due to problems in accurately estimating derivatives and finding hopt(t) 

around t =  0). Both methods used gave very similar small values of a; we 

will take a =  0.05 as chosen by method (i). An adaptive semi-parametric 

estimate using these choices of h and a is shown in plot 6c. Our density 

estimate is adequate in high density regions where there is a lot of data, but 

its non-parametric nature results in poor performance in the right tail, where 

we get bumps at the data points.

Changing our method of selecting li to that of equation (4), thus incorpo­

rating prior belief, after calculating k and p we find that h is increased to a 

value of 1.6. This in turn provokes a larger value of a. The resulting density 

estimate is shown in plot 6d. The right tail is now smoothed adequately, and 

our density estimate near the mode is neither too noisy nor too large.

6.5 Two possible improvements for special cases

In section 6.4 the value of Z ‘ depends on equally weighted differences between 

observed and expected frequencies under parametric model /, over the range 

of the / intervals. We can adapt the method of sections 5.2 to 5.4 by weighting
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the Z '  function so that differences between f ( t ,0 )  and g ( t ) in certain regions 

carry more weight than they do in others.

6.5.1 A  tail-weighted method of estimating k

For example, the initial motivation for introducing p was to avoid the bumpy 

tailed estimates caused by the overall bandwidth being too small. When 

selecting h, we are least concerned about our final estimate of the true dis­

tribution in areas of high density. Our adaptive semi-parametric estimate 

should be good here provided h is not very small, since we choose a to max­

imise the accuracy of f ( t , 0 t,o) to g(t )  over the range of t € D m. However, 

when h is small initially, this restriction to t € D * means that our automatic 

methods will choose small values of a and the tails of our density estimate 

will stay unsmoothed.

In extreme cases it may be that the shape and size of /(<, 6) and g( t ) differ 

dramatically in areas of high density but the tails of / and g are virtually 

identical, so a large overall bandwidth would be most suitable. Assume that 

we initially select h using equation ( 1), therefore ignoring any prior belief 

about g, and this chooses a small value. The method of estimating «  given 

in section 6.4 will result in a small value of p, because f ( t , 0) and g(t )  differ so



207

dramatically in D * that the value of Z* is still large, despite their similarity 

in the tails. Thus, when using equation (4) to choose our overall bandwidth, 

h will remain very small.

Here the introduction of a tail-weighted version of the Z* function is a 

feasible solution. We replace Z* in equation (9) by Z*( a l which calculates 

the difference between expected and observed frequencies only in D *c , where 

t is such that hta >  h for all t. We take

,  n  —  ¿ ’ tail
K ~  7* i — 1 ’"  tatl A

having divided the region D ' c  into /’  class intervals

( A i ,  A ? ) , . . . ,  ( A j ,  A J + i ) , . . . ,  ( A | . ,  A ( . + 1 ) .

Once again, a suggested guideline for constructing these classes is to create 

as many as possible, whilst ensuring that nfj is greater than or equal to 5. 

Then

Z * _  I  v  (m> zJUL>)2
y '0*' i - ^ ) ’

with rtij and r} defined as before, as is

P = k +  n
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Since we are now only concerned with the difference between f ( t ,0 )  and 

g(t )  in the tails, when our parametric family is a very good fit in D*c  this 

method will give a larger estimate of k. This in turn leads to larger values 

of p, h and a, and the subsequent accuracy of f ( t ,0 t,a) to g(t )  in the tails.

6.5.2 A n  example

This example considers a simulated data set consisting o f a mixture of 100 

random points from an exponential(l) distribution and 150 random points 

from a Gamma[l,2] distribution. A histogram of this data indicates that its 

density function will be roughly exponential but will flatten off around the 

mode. It also suggests that the density will be bounded at zero, making a 

kernel density estimate inherently poor.

Fitting an exponential distribution to the data and using equation (1) to 

select the overall bandwidth resulted in the very small value of h =  0.24 be­

ing chosen. This was sufficiently small to give a good, largely non-parametric 

estimate around the mode, but also left the right tail rather bumpy, as il­

lustrated in plot 6e. Attempting to apply adaption, I found that automatic 

selection methods (i) and (ii) both chose a =  0. Obviously a larger band­

width would be more suitable, but using the theory of sections 6.2 to 6.4
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gave a value of p very close to 0, because of the large difference between 

the true distribution and our parametric estimate as we approach t =  0. 

The tail-weighted version of Z * is well suited to this situation; using Z'ail 

in the estimation of k led to a larger value of p =  0.51 being chosen, and h 

was increased by approximately 50 percent when chosen using equation (4). 

Using method (i) to select a, this larger bandwidth in turn provoked the 

choice of the small amount of adaption necessary to smooth the left tail of 

our estimate. The improved adaptive semi-parametric estimate is illustrated 

in plot 6f. Since in this case we actually know the true distribution and its 

density function, this is also plotted. Note the small sample size which is 

largely responsible for the variations of f ( t ,0 tia) from g(t).

6.5.3 A  boundary point-weighted method of estimating k

Alternatively we may want to increase the value of our automatic choice of 

h, but feel that the previous suggestions run the risk of moving too far in the 

opposite direction and producing too large a bandwidth which subsequently 

provokes the use of too much adaption. This can cause sharp fluctuations 

in our density estimate near to or at the boundary points, since when a  is 

large we find f ( t ,0 t,a) switching rapidly from approximating a parametric
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in Silverman (1986), with
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and

h+ =  1.069"5(Tfl.,

where

<7Bm =  sample standard deviation of the set of boundary points.

When there is only one boundary point, another method of choosing h+ will 

have to be devised. Taking h+ equal to one sample standard deviation of 

the data seems to work well if / is an exponential distribution. As h+ —» oo, 

then Z * —» Z* and choosing a very large value of h+ gives results equivalent 

to those from using the standard method of evaluating k and p introduced 

in section 6.4.

We estimate k and calculate p with Z ' w replacing Z* in the modulus of 

formula (13), such that

. _  rc ~  Z*
"  Z Z - l

and

k
P = ----- •

k +  n

This adjustment in the procedure of estimating k is appropriate when there 

exists a large local difference between f ( t ,0 )  and g(t) around the boundary
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point(s). Since hta is a continuous function of t, our adaptive semi-parametric 

estimate f ( t ,0 tjC,) will be a smooth curve at the boundary point, but it will 

possess a very steep gradient here when h and a are large, giving our den­

sity estimate in this region an unsatisfactory appearance. The weighted Z ‘ 

function is likely to detect and prevent problems of this nature.

6.5.4 An example

Example 3 illustrates a situation where this approach for choosing p proved 

useful. We are attempting to construct a density estimate of brightness re­

flected from cornfields and detected by satellite. Scott and Factor (1981) 

apply kernel density estimation to this data set, given in table 3 of their 

paper. A parametric structure would be preferable, since the non-negativity 

of the brightness measurements can be accounted for by selecting a para­

metric family defined only on a positive domain. Copas (1995a) performs 

semi-parametric density estimation, fitting a Weibull distribution to these 

data but allowing for local variation.

A histogram of these data, given in plot 6g, confirms a Weibull distribu­

tion is indeed a sensible choice, though a purely parametric density estimate 

underestimates around the mode. Reverting tp semi-parametric estimation,
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Copas handpicked a bandwidth of h =  5; f ( t ,6 t,a) slightly underestimated 

the true density around the mode, but was a clear improvement over the 

parametric estimate.

I began by choosing h and a  using the automatic methods introduced 

in chapter 4 and chapter 5, method (iv) respectively. These gave values 

of h — 4.1 and a =  0. The resulting density estimate showed improved 

accuracy around the mode, but now failed to totally smooth out the bumps 

in the right tail. Handpicking a larger value of h, and again using method 

(iv ) of chapter 5 which chose a  =  1.1, gave the density estimate shown in plot 

6h, in which the increased overall bandwidth h and amount of adaption a 

has successfully smoothed the right tail. However at the left boundary point, 

around which f ( t ,9 )  and g(t )  differ noticeably, the increase in adaption has 

caused an awkward bump in the density estimate.

A bandwidth larger than 4 appears necessary, but not one so large as 

to provoke method (iv ) into choosing too large a value of a. Instead of 

resorting to handpicking a smaller value of a than that chosen automatically, 

we use the boundary point-weighted method to select a more suitable overall 

bandwidth. We need to select a value of p which will increase h from the value
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of 4.1 chosen by equation (1), but which takes into account the difference 

between f ( t ,0 )  and g(t) at the boundary points. This is achieved by using 

Z', as defined above, which leads successively to chosen values of p =  0.39, 

h =  5.05 and a =  0.21. These produce an excellent density estimate shown 

in plot 6i. It smooths the right tail satisfactorily, without any problems at 

the boundary points.

6.6 Estimating k using a continuous analogy to Z *

One major problem with the methods outlined in sections 6.4 and 6.5 is that 

they necessitate the discretisation of the data into l classes. There is no 

standard procedure for choosing the size of classes, though my suggestion in

6.4 to imitate the standard procedure for the x2 statistic worked well in all 

examples tried, leading to choices of p and h which improved the estimation 

of the true density. However even within this restriction, slight variations in 

the choice of (A j ,  A 2) , ..., (A ;, A/+i) caused p to vary by as much as 0.3 in 

the various examples which I examined.

The following idea sidesteps the discretisation of the data by forming a 

continuous equivalent to Z “. Consider that the data have been divided up
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into l intervals, of width e, with t being small. If the midpoints of the intervals 

are defined as ait then the vector of probabilities of an observation being 

in each interval is approximately

eg =  ,cgi)T,

where gt =  the true density at the ¿th midpoint. This approximation

improves as l —► oo, causing t —♦ 0. We suppose that vector tg is distributed 

Dirichlet given prior distribution e f,  where /; =  /(a,, 6) is the density func­

tion of our chosen parametric family at the ¿th midpoint, such that

£f  =  (e / 1, . . . , £/ ,)T

and

£g|£f  ~  Dirichlet(/c, £f ) .

The number of observations in each interval is given by vector m, where 

m|£g ~  Multinomial(n, £g)

As in the discrete formulation of section 6.4, we use conditional expecta­

tions to calculate

£(m.) = E ( E ( m i \ g i ) )  =  E  ( n i g t )  =  n t f {, (15)
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and following the same procedure as in equations (9) to (11), we get 

Var  (m,) = Var (£(m;|ÿ,)) +  £(V(m;|0t))

=  ne/,(l — t f i )  ( l  +  • (16)

The covariances can also be evaluated, using

C<w(m,,mj) =  E  (Cov(mi,mj\gi,gj ) )  +  Cov (£(m,|<7,), E(rrij\gj))

=  nE(tgi tgj )  +  n2Cov(egi,egj)

=  ~ne2f i f j  +  (n2 -  n)Cov( tgi ,tgj )

= (i + ^ j ) .  m

We now smooth the mt’s, defining

i
Mi =

j=i

a weighted sum of the number of observations in the / intervals, with w,} 

chosen as

Calculating the expectations and variances of Mi using the expectation, 

variance and covariance calculations of equations (15) to (17), we find that

E ( M i )  =  ¿2 ntf i wH (18)
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and

(19)

/ /
Var (M i )  =  Y ,  Var(mjWij ) + Cov(mjWi j ,mkwik) 

j = 1

= ( l  +  —r r )  ( H u’une-M1 -  £/>) -  Y  WijWikne3f j f k \
\  K  +  i  /  \ j = l  ■k .j f k  J

-  ” ( ‘ + S t) ( ¿ ^ ‘ -  ( ¿ “'» ^ •#> )) ■

If we now take the limit as e —► 0, implying that / —> oo, then

the ordinary kernel estimate of true density g (t )  at target point t =  a,-, using 

a Gaussian kernel with bandwidth h®.

Applying this limiting procedure to our expectations and variances we 

find that

E (M ,) =  y I j  ( ^ i )  t f j  -  l  I j  ( ^ ) ./(«, * )* « =  E , »•(«.-)).

(20)

and similarly the variance converges such that

*'"<"<> = ; ( l + S t)
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{hi, h** i r w ) ^ e)d"- ( I ( t ^ )  « “ • H ’ )  • <2 1 >

Under the limit t —► 0, the variance of Mi can also be written as 

Var (Mi )  =  E ( g ° (ai ) -  E j (g\ai)))2 ,

so rearranging as before and writing in terms of the target points we have

n — 1'

E , m t ) ~  E f m t ) ) ?
\

Ki ( v f .  U 2 M  /(«.«)*• ~(SuM i l? )  / ( « , 2)
We now estimate the right-hand side of this equation by

z :  =

1 1

\

. i Oh  (#) f(u’d)du - (/. (#) /

f ( t ,0 )d t.

( 22)

Bandwidth /i° is chosen using the simple plug-in formula suggested in Sil­

verman (1986). The integral over t is evaluated using numerical integration 

over a fine grid of i ’s. Parameter «  is now estimated by

k = (23)
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and p is again taken as

K
p =  ------ .

k +  n

The statistic Z* is a continuous analogy to the Z* statistic defined in equation

( 12).

When calculating k and thus p from equations (19) to (22), I rapidly 

performed the necessary numerical integration by Simpson’s Rule using a 

computer.

I have only been able to apply this method when the integrals with respect 

to u in equation (22) have been analytically calculable in terms of t. This is 

the case when we take parametric family / to be Normal or exponential. If it 

is possible to use this method, it has much to recommend it, since it removes 

the need to choose class intervals. Different choices of class intervals will give 

different results in the discrete method outlined in section 6.4. This makes it 

hard to compare results from the continuous and discrete methods. In many 

cases the value of p extracted by the continuous method was close to that 

chosen by the corresponding discrete method with one particular division of 

the data, but differed noticeably from the value found via another division.

It is also possible to build weighting into the continuous method of esti-
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mating k , as was done for the discrete method. A continuous analogy exists 

for the discrete tail-weighted method of subsection 6.5.1. Rather than inte­

grating with respect to t over the domain of /, we could integrate only over 

the interval t 6 D ' c , where D m is as defined in Chapter 3. An analogy to the 

boundary point-weighted version of subsection 6.5.3 could be constructed by 

inserting an appropriate weight function into equation (22), such as a kernel 

density estimate of the boundary points themselves.

6.7 Comment

It is worth reiterating that the methods outlined above are more in the nature 

of sketched suggestions than the final word on choosing our overall bandwidth 

h for use in the adaptive semi-parametric density estimation procedure.
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7 Real data examples and Conclusions

7.1 Birth prediction error data

This data set was taken from a British doctor’s Medical Diary and Visiting 

List dating back to the year 1916. The “Obstetric Engagements” section 

contained records of expected and actual birth dates for 127 women who had 

passed through pregnancy under the doctor’s care. I have converted this data 

into a record of birth date prediction error, defined as the difference 

in days between the date when a birth was expected and when it 

actually took place. Premature births are recorded as negative values. 

The 22 patients for whom at least one of the dates was not recorded were 

ignored, leaving a sample size of 105.

The medical diary was discovered by Dr Stephen Senn in the mid-seventies 

and an initial analysis of various data sets extracted from it are given in Senn 

(1979). More recently he has concentrated in particular on this obstetric 

data, with Senn (1995),“A General Practitioner’s Obstetric Diary” , currently 

submitted for publication. This paper suggests that estimating the density 

of prediction error would be an interesting avenue to explore, a histogram of 

the prediction error data, shown in plot 7a, illustrating why. A Normal fit
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to the data seems possible in the tails which appear to be of similar shape. 

However this is ineffective in capturing the behaviour around the mode, where 

the histogram suggests that the true density takes slightly larger values than 

those of the parametric estimate shown in plot 7b. The data exhibits a 

small degree of skewness which our parametric estimate also fails to pick out. 

Meanwhile, non-parametric kernel estimation struggles because of the small 

sample size, with the large bandwidth necessary to smooth the tails leading to 

oversmoothing at the mode. Plot 7c illustrates this dilemma, with two kernel 

estimates shown. The estimate which used the smaller bandwidth of 5, chosen 

by the plug-in method from Silverman (1986), has a noticeable bump in the 

left tail, while the use of a larger handpicked bandwidth of 7 causes some 

underestimation of the density in high density regions. The smoothness and 

accuracy of our estimate in the tails are especially important with particular 

dataset; prediction interests are likely to concern the probabilities o f births 

being overdue or premature by a certain number of days, and calculating 

these probabilities requires accurate estimation in tail areas.

Our adaptive semi-parametric method would appear to be ideal for use 

in this situation, enabling us to leave the tails well smoothed whilst picking 

out local deviations from the parametric Normal fit in areas of high density.
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We used the automatic method of chapter 4, equation (16) to select our 

bandwidth, along with method (iv) of chapter 5 for automatically selecting 

a. These gave values of h =  15.2 and a  =  1.7 respectively, resulting in the 

adaptive semi-parametric density estimate pictured in plot 7d. While there 

may still be some slight underestimation of the density at the mode, it is 

a clear improvement on both the parametric and kernel density estimates, 

picking out the skewness and the high modal density. Though the data set is 

relatively small, the automatic selection methods for h and a appear to have 

performed well again. Slightly different values of these parameters produced 

estimates which were no better than that depicted in plot 7d.

7.2 A  small data set example

This next data set can be found in “Small Data Sets” , Hand et al (1995). 

It consists of ‘cycles until failure’ of deep-groove ball-bearings, and was orig­

inally published by Lieblein and Zelen (1956), who argued that these data 

could be modelled as a Weibull distribution. Estimation of failure time would 

obviously be a major part of any analysis of these data. A histogram of the 

data shown in plot 7e confirms the plausibility of a Weibull fit, though the
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density around the mode appears to be slightly underestimated. A non- 

parametric kernel estimate, with bandwidth chosen by the plug-in method of 

Silverman (1986), struggled to deal with the bounded left tail of the density 

function and gave a positive density estimate ‘behind’ zero. An adaptive 

semi-parametric density estimate retains the bound at zero due to its para­

metric structure, and should cope better around the mode as it will be locally 

influenced by the data.

This is a very  small data set, containing only 22 observations, and the 

use of semi-parametric methods is perhaps not ideal. Comparisons with other 

methods are foolhardy though we can show that f(t,thctat,a) is at least a 

reasonable density estimate. However, it is a significant test of our automatic 

methods for selecting the parameters h and a used in the construction of our 

adaptive semi-parametric estimate. These selection procedures were based 

on small h and large n approximations, but they again perform very satisfac­

torily, with the adaptive semi-parametric estimate pictured in plot 7f giving 

a slightly higher density estimate at the mode. We would not want our esti­

mate to follow the shape of the normalised histogram too tightly since it is 

such a small data set, with plenty of scope for sampling error. Our selections 

of h and a, again made using equation (16) of chapter 4 and method (iv )
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from chapter 5 respectively, appear to have allowed exactly the right amount 

of local influence given the small sample size.

7.3 Problems and avenues for further research

Local likelihood related semi-parametric density estimation is a very new field 

of study, and as such there exist many opportunities for further research 

based upon the ideas of this thesis and the other literature touched upon 

in chapter 1. Throughout the writing of this thesis several problems and 

possibilities have emerged, for which there has not been sufficient time to 

solve or explore further.

7.3.1 Introducing adaption into other semi-parametric methods

In chapter 1, two alternative semi-parametric methods based upon maximis­

ing different local likelihood functions were outlined, one of which (that of 

Hjort and Jones) has already been published. It too provides a continuum 

between parametric and non-parametric estimation controlled by a smooth­

ing parameter. There is no reason why this smoothing value should not vary 

with the target point at which we are estimating, as does in the adaptive 

semi-parametric method considered in this thesis.. This could be achieved
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simply by replacing the weight function in equation (7) of section 1.3 by a 

local kernel function. Locally varying bandwidth ht could again be taken 

as ht,a given in equation (4) of chapter 3. The different structure of Hjort 

and Jones’s local likelihood function would require new approximations and 

different methods of selecting h and a. Similarly, the practice of varying the 

bandwidth locally could be applied in the local likelihood function developed 

by Eguchi, though the poor performance of his technique as the bandwidth 

decreases makes this a less attractive proposition.

7.3.2 The formulation of htt0 in the local kernel function

The local kernel function is used in the weighting of our local likelihood 

function, but can be used as a density estimation method in its own right. In 

the past, one drawback has been the lack of a straightforward procedure of 

selecting the local bandwidth ht. Previously the accepted method has been 

to choose ht for each target point to minimise the small h approximation 

of the MSE at t. This process involves estimating the second derivative of 

the true distribution, and breaks down when this estimate is equal to 0. My 

construction of ht =  ht:a avoids these problems, and the two parameter set 

up allows for greater flexibility in how and from where our bandwidth varies.
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7.3.3 Varying a  with respect to location

A further extension to the ideas of chapter 3 would be to vary a  with respect 

to location. One advantage of this would be to enable a to decrease as we 

approach any boundary points. This would be useful in cases where the 

parametric and non-parametric density estimates differ substantially at one 

or more boundary points, but where we would still like to select a large 

overall bandwidth and have large a  values in other areas. It would be an 

alternative to using the ideas of subsection 6.5.3, which reduce h and thus our 

automatic selection of a, so avoiding a sudden jump in our adaptive semi- 

parametric estimate from approximating gL,a{t) to approximating A

gradual reduction in a as we approach the boundary points, thus making the 

convergence of ht,a to h from either side of the boundary point less rapid, 

would ensure smoother estimates in this region. How exactly to formulate a 

location-variable a value is an open question.

One possibility is to use a similar structure to that of our local bandwidth 

ht,a- We could locally vary the amount of adaption from a baseline or overall 

adaption value a, such that at target point t, the amount of adaption applied
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is defined as

at — a(t)a.

Function a(t) controls how much and in which direction our local adaption 

at differs from a.

Bearing in mind the motivation described above, we could for example 

reduce the amount of adaption used as we approach the boundary points, by 

choosing

a ( 0 = ( 1 _ ^ )  » 0 - * ( * ) ) ’ .

Then our local bandwidth at t would become

ht,a, =  hT(t)~°" =  / íT ( í^ " (1- T(‘))^

As t —* <*, where t* is a boundary point, then

a(t )  —> 0 => a, —> 0 => ht,a, —> h.

The behaviour at the boundary points will not be affected; T ( t )  =  1 at t =  tm, 

so adaption had no effect there anyway. If the domain of the density function 

defining / is unbounded, at —* a as |<| —* oo. When choosing a, we should 

bear this in mind, as well as the fact that at will only exceed a when f ( t ,0 )

gets very large.
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7.3.4 A  plug-in selection method for h and a

Chapters 4 and 5 gave several ideas on how to select h and a. However 

all involved the use of computer-based minimisation procedures and in some 

cases numerical integration. While they were very quick and easy to compute, 

the option of a neater plug-in formulae is desirable. Something similar to that 

given in Silverman for choosing the bandwidth in ordinary kernel estimation 

would be ideal, if just to give a rough guide as to what values of h and a we 

should consider implementing, without the use of a computer.

7.3.5 Dealing with awkwardly shaped distributions

Finally a continual problem in evolving methods for parameter selection 

has been dealing with cases where the data is from a distribution which 

is bounded, contains discontinuities and differs drastically in shape to the 

Normal distribution. Such cases cause problems due to the need for pre­

liminary estimation of g (t ) and its first two derivatives, for which we use 

kernel estimation. Our choice of a Gaussian kernel results in poor prelim­

inary estimates of extremely non-Normal density functions; bounded and 

discontinuous functions will always pose difficulties for the kernel method.
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An example of a distribution which exhibits all of these problematic charac­

teristics is the exponential. Apart from producing density estimates which 

integrate to values noticeably less than one, the adaptive semi-parametric 

method is ideal for dealing with exponentially distributed data since it is 

able, through the incorporation and imposition of a parametric family, to 

retain shape and boundaries, unlike non-parametric methods such as ordi­

nary kernel estimation. See, for example, the frequently used example of the 

deer line transect data, or the remand data example from Copas (1995a). 

However the methods suggested for selecting h and a require preliminary 

rough estimates of the true density and its derivatives, which on occasions 

have been so poor as to cause these methods to break down. New techniques 

to deal with such cases would be helpful.
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