
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/110215  

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/110215
mailto:wrap@warwick.ac.uk


M

A

E

G

NS

I

T A T

MOLEM

U
N

IV
ERSITAS  WARWIC

E
N

S
IS

Rare events in optical fibers

by

Antonino Savojardo

Submitted to the University of Warwick for admission to

the degree of

Doctor of Philosophy

Department of Physics

September 2018



Contents

Acknowledgments I

Declarations II

Abstract III

Abbreviations IV

List of Figures VI

Introduction 1

Part I Introductory material 4

1 Nonlinear fiber optics 5

1.1 Optical fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Light propagation in optical fibers . . . . . . . . . . . . . . . . . . . 6

1.2.1 Nonlinear effects in optical fibers . . . . . . . . . . . . . . . . 6

1.2.2 Generalized nonlinear Schrödinger equation . . . . . . . . . . 8

1.2.3 Generalized nonlinear Schrödinger equation for wide pulses . 10

1.2.4 Nonlinear Schrödinger equation and solitons . . . . . . . . . . 11

1.3 Energy conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Soliton generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Split-Step Fourier Method . . . . . . . . . . . . . . . . . . . . . . . . 15

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Rogue waves in optical fibers 19

2.1 Introduction to rogue waves . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Experimental results for optical rogue waves . . . . . . . . . . . . . . 21



2.3 Generating optical rogue waves with third-order dispersion term . . . 23

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Part II Results 26

3 Massive parallel simulation of rogue waves 27

3.1 Massive parallel integration of the gNLSE . . . . . . . . . . . . . . . 27

3.2 Probability density functions . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Rogue wave trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 30

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Quasi-solitons in a β3 6= 0 medium 35

4.1 Quasi-solitons approximation . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Dark and bright quasi-solitons . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Decomposition soliton – radiation . . . . . . . . . . . . . . . . . . . . 39

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Interacting quasi-solitons 44

5.1 Two quasi-soliton scattering . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Two quasi-soliton decomposition . . . . . . . . . . . . . . . . . . . . 48

5.3 Semi-analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . 50

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Cascade model 53

6.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Initial conditions: PDF(P) . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Interaction: εeff calculation . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Traces and PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Further details and applications of the cascade model 67

7.1 Calm before the storm . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Autocorrelation function . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 Probability to become a rogue wave . . . . . . . . . . . . . . . . . . 70

7.4 Fitting the PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5



8 Cascade Model for Raman term 77

8.1 Quasi-solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Energy transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3 Initial conditions: PDF(P) . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4 Traces and PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.5 Calm before the storm for Raman interaction . . . . . . . . . . . . . 87

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Experimental proposal for soliton interaction 91

9.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4 Optical amplification . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.5 Fit for the energy transfer function . . . . . . . . . . . . . . . . . . . 99

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Conclusions 104

Bibliography 105



Acknowledgments

I would like to thank my supervisor Rudolf Römer for guiding me during my PhD. I

particularly appreciate his practical advices on how to do scientific research. I thank

Marc Eberhard, Akihiro Maruta and George Rowlands for stimulating discussions

on solitons and rogue waves.

I am grateful to the Engineering and Physical Science Research Council (EPSRC) for

financial support. I thank the Centre for Scientific Computing of Warwick (CSC),

the MidPlus Regional HPC Centre, the Hartree Centre, and the national facilities

HECToR and ARCHER for provision of the computing resources that were used to

perform my research.

For the pleasant company, I thank both my friends in the UK and those scattered

around the world. Finally, I am grateful to my family and Anna for all the support

they have given me over the years.

I



Declarations

I declare that the content of this thesis is original work except where referenced within

the text and has not been submitted as part of any other degree or qualification.

Chapters 1 and 2 provide introductory information gathered from the literature as

referenced.

Chapters 3, 4 , 5, 6 and 7 are based on the paper

• M. Eberhard, A. Savojardo, A. Maruta, and R. A. Römer, Rogue wave gen-

eration by inelastic quasi-soliton collisions in optical fibers, Optics Express 25

(23), 28086 (2017).

Results in chapter 8 are not published. Chapter 9 is based on the paper

• A. Savojardo, M. Eberhard, R. A. Römer, Dispersion map induced energy

transfer between solitons in optical fibers, arXiv: 1710.07.15.

The entirety of the work was conducted under the supervision of Prof. Rudolf A.

Römer and the content of the chapters highlighted above was performed in collabo-

ration with the indicated authors.

II



Abstract

This thesis examines the topic of rogue waves and interacting quasi-solitons in optical

fibers. We demonstrate a simple cascade mechanism that drives the formation and

emergence of rogue waves in the generalized non-linear Schrödinger equation with

third-order dispersion. Such generation mechanism is based on inelastic collisions

of quasi-solitons and is well described by a resonant-like scattering behavior for the

energy transfer in pair-wise quasi-soliton collisions. Our theoretical and numerical

results demonstrate a threshold for rogue wave emergence and the existence of a

period of reduced amplitudes — a "calm before the storm" — preceding the arrival

of a rogue wave event. Using long time window simulations we observe the statistics

of rogue waves in optical fibers with an unprecedented level of detail and accuracy,

unambiguously establishing the long-ranged character of the rogue wave probability

density function over seven orders of magnitude. The same cascade mechanism

also generates rogue waves in the generalized non-linear Schrödinger equation with

Raman term.

To comprehend the physics governing rogue wave formation, we propose an exper-

imental setup where soliton amplification is induced without third order dispersion

or Raman term. In an optical fiber with anomalous dispersion, we replace a small

region of the fiber with a normal dispersion fiber. We show that solitons colliding

in this region are able to exchange energy. Depending on the relative phase of the

soliton pair, we find that the energy transfer can lead to an energy gain in excess of

20% for each collision. A sequence of such events can be used to enhance the energy

gain even further, allowing the possibility of considerable soliton amplification.
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Introduction

Figure 1: The Great Wave off Kanagawa. The painting depicts a rogue wave threat-
ening boats off the coast of the town of Kanagawa. The image was painted by the
Japanese artist Katsushika Hokusai between 1829 and 1833.

Optical "rogue" waves are rare and very high intensity pulses of light that occur in

optical devices such as communication fibers [1–6]. They appear suddenly and can

cause transmission errors and damage in optical communication systems [7]. Indeed,

the physics governing their dynamics is very similar to "monster" or "freak" waves

on the Earth’s oceans, which are known to harm shipping [8–10]. This link between

seemingly unconnected physical effects is not surprising when one recalls that the

generalized nonlinear Schrödinger equation models the dynamics of waves propagat-
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ing in optical fibers as well as in deep oceans [11–14]. Hence the physics of rogue

waves is of fundamental as well as very applied interest. It is therefore important to

characterize rogue wave generation, dynamics and, if possible, predictability [15].

Rogue waves are quantitatively described with the help of their probability density

function [2, 5, 6]. This statistical curve generally has a typical “L-shaped” profile

[2, 5, 6], characterizing the occurrence of many small events as well as, in the hori-

zontal part of the "L", some very rare and extremely powerful events. Its statistical

signature has been experimentally observed and numerically reproduced. However,

what drives the formation of this "L"-shaped probability is not yet clear [16]. Pos-

sible mechanisms could be linear focusing of wave superpositions [17–21] and wave

amplification due to inelastic scattering [22–25]. In this last scenario the largest

solitons collide multiple times with the smaller ones increasing their energy in most

of the cases. Such pulses will have accumulated most of the energy in the system

and have become rogue waves.

In this thesis we want to ascertain quantitatively whether inelastic scattering is in-

deed sufficient to generate rogue waves of the required exceptionally high peak pow-

ers. We will propose an effective model for rogue wave formation where solitons are

able to exchange energy during collision process. We will also suggest an experiment

to clarify the physics underlining the collision-induced soliton energy transfer.

Chapter 1 gives an overview of the basic ideas necessary to understand how light

propagates in nonlinear optical fibers. In chapter 2, we discuss some experimental

and numerical results regarding rare events in optical systems. We will also see how

the generalized nonlinear Schrödinger equation can describe optical rogue waves.

Our first results on rogue wave statistics and dynamics are presented in chapter 3.

Those results were obtained by a massive parallel simulation of nonlinear optical

fibers. In chapter 4 we show that the generalized nonlinear Schrödinger equation

has soliton-like solution and we introduce the quasi-soliton approximation. Chapter

5 shows that during a two quasi-soliton collision energy is transferred from one pulse

to the other. An approximation is also proposed for the collision-induced energy

gain. In chapter 6 and 7 we present a cascade model that produces rogue waves

without the need to integrate the full generalized nonlinear Schrödinger equation.

The model is based on the previews results found for quasi-soliton propagation and

interaction in the nonlinear Schrödinger equation with third order dispersion. The

Raman term is another important correction to the nonlinear Schrödinger equation,

its role in rogue wave formation is explored in chapter 8. Here we show that the

2



cascade model can describe rogue waves also when the Raman term is considered.

Finally, in chapter 9 we propose an experimental setup to study collision-induced

soliton amplification. In this setup, energy transfer from one pulse to the other does

not require a third order dispersion or Raman term. Such numerical experiment

gives some insights on the physics governing rogue wave formation.
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Part I Background



Chapter 1

Nonlinear fiber optics

This first introductory chapter provides an overview of the basic ideas necessary to

understand how light propagates in nonlinear optical fibers. Section 1.1 introduces

optical fibers and theirs properties. In section 1.2 we derive the basic equation that

governs the propagation of optical pulses, the generalized nonlinear Schrödinger

equation. Energy conservation for the optical field is discussed in section 1.3. In

section 1.4 we explain how solitons can be generated experimentally. Finally, section

1.5 is devoted to the split-step Fourier method, the standard approach used to solve

numerically the optical field propagation equation.

1.1 Optical fibers

Optical fibers are flexible and transparent cables made of glass or plastics. Their

most common use is in optical communication to transmit signals of light over long

distances. Optical fibers typically consists of a transparent core surrounded by a

cladding layer. The core index of refraction n1 is higher than the cladding index of

refraction nc because of this difference light is trapped in the core and fibers can be

used as a waveguides. Figure 1.1 shows the cross-section and refractive-index profile

for an optical fiber [26].

Light that travels inside an optical fiber consists of an electromagnetic field that

oscillates in the plane perpendicular to the direction of propagation. A particular

pattern of the electromagnetic field is called transverse mode. Fibers that support a

single mode are called single-mode fibers (SMFs) whereas fibers that support multiple

modes are called multi-mode fibers (MMFs). Single-mode fibers are usually cheaper

and better at retaining the accuracy of light signals than multi-mode fibers. Indeed,

5



Figure 1.1: Cross-section and refractive-index profile for an optical fiber (image from
[26]).

MMFs are reliable for communication lengths up to ∼ 600m while SMFs have an

upper limit of ∼ 2Km [26]. For these reasons, SMFs are preferred to MMFs in

optical communication. Given their more widespread application, we will use the

term optical fiber to refer to a SMF.

1.2 Light propagation in optical fibers

In this section we introduce the generalized nonlinear Schrödinger equation which

describes the propagation of optical pulses in nonlinear fibers.

1.2.1 Nonlinear effects in optical fibers

Some optical material properties respond non-linearly to intense electric fields. This

produces optical effects that are not observed in linear devices [26]. Examples of

such nonlinear effects are [26]

• Raman effect: a loss of energy exhibited by some of the photons scattered in

6



a nonlinear medium. The effect depends on the molecules that cause it, and

therefore can be used in spectroscopic analysis.

• Frequency doubling: a process in which two photons with the same frequency

are combined to generate a new photon with twice the frequency of the initial

ones.

• Kerr effect: a change in the refractive index of a material in response to an

applied electric field. The difference in index of refraction, is given by 4n =

λK|E|2 where λ is the wavelength of the light, K is the Kerr constant, and E

is the electric field. The effect allows to control the amount of light transmitted

through a nonlinear material, therefore can be used to build optical switches.

Nonlinear effects in optical fibers can be explained using the Maxwell’s equations

[26]

∇× Ē = −∂B̄
∂t
, (1.1a)

∇× H̄ = J̄ +
∂D̄

∂t
, (1.1b)

∇ · D̄ = ρf , (1.1c)

∇ · B̄ = 0, (1.1d)

where Ē and H̄ are the electric and magnetic field vectors, D̄ and B̄ are the electric

and magnetic flux densities, J̄ is the current density vector and ρf is the free charge

density. The flux densities D̄ and B̄ are related to the electric and magnetic fields

through the relations

D̄ = ε0Ē + P̄ , (1.2a)

B̄ = µ0H̄ + M̄, (1.2b)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and P̄ and M̄

are the electric and magnetic polarizations. The wave equation that describes light

propagation can be obtained considering that in an optical fiber J̄ = 0, M̄ = 0 and

ρf = 0. The Maxwell’s equations under such conditions yield to the wave equation

7



∇2Ē − 1

c2

∂2Ē

∂t2
= µ0

∂2P̄

∂t2
, (1.3)

where c is the speed of light given by the relation c2 = 1/µ0ε0. The properties of a

medium are described by the polarization vector P̄ . In an optical fiber P̄ responds

non-linearly to an electric field Ē, and can be written as a sum of two terms [26]

P̄ = P̄L + P̄NL, (1.4)

where

P̄L(r̄, t) = ε0

ˆ t

−∞
χL(t− t′)Ē(r̄, t′)dt′ (1.5)

is the linear part, and

P̄NL(r̄, t) = ε0KNLĒ(r̄, t)

ˆ t

−∞
R(t− t′)

∣∣Ē(r̄, t)
∣∣2 dt′ (1.6)

is the nonlinear part of the polarization vector. In the two equations above, χL is

the linear susceptibility, KNL is a constant that depends on the material and R(t)

is the nonlinear response function, normalized such that
´ +∞
−∞ R(t)dt = 1. In Eq.

(1.6) only the nonlinear correction up to the third order in the electric field has been

considered. For highly nonlinear fibers higher order terms need to be taken into

account [26].

The system of equations (1.3, 1.4, 1.5, 1.6) is not easy to handle because it is nonlin-

ear and contains both integrals ad derivatives of the electric field. To have a model

treatable analytically and numerically it is necessary to make several simplifying

approximations.

1.2.2 Generalized nonlinear Schrödinger equation

The generalized nonlinear Schrödinger equation (gNLSE) is an approximation for

Eqs. (1.3, 1.4, 1.5, 1.6) that allows to describe pulses of light inside an optical fibers.

The gNLSE can be derived under the assumptions [26]

1. Light propagates along the z direction and the electric field has a constant

polarization along the x direction.

2. The electric field is quasi-monochromatic, i.e., the spectral width 4ω is much

smaller that the carried frequency ω0.

8



3. For the previous two assumptions and the cylindrical symmetry of fibers, the

electric field can be written as

Ē(r̄, t) = x̂F (x, y)u(z, t)eiβ0z−iω0t, (1.7)

where β0 is the carried wave number and u(z, t) is the pulse envelope (or optical

field), which describes the variation of the electric field along the z direction

and the time t. F (x, y) describes the variation of the electric field along the x

and y directions and it is usually approximated by a Gaussian distribution

F (x, y) ' exp[−(x2 + y2)/w2], (1.8)

where the width parameter w is determined experimentally.

4. PNL is a small perturbation to PL , i.e.

PNL � PL. (1.9)

5. The linear part of the dispersion βL(ω) can be expanded in a Taylor series

around the carrier frequency ω0 as

βL(ω) =
nL(ω)ω

c
= β0 +β1(ω−ω0)+

1

2
β2(ω−ω0)2 +

1

6
β3(ω−ω0)3 + ... (1.10)

where

nL(ω) =
√

1 + Re[χL(ω)] (1.11)

is the linear part of the refractive index.

6. The loss α(ω) can be expanded in a Taylor series around the carrier frequency

ω0 as

α(ω) =
ω

nL(ω)c
Im[χL(ω)] = α0 + α1(ω − ω0) + ... . (1.12)

7. The nonlinear term γ, defined as

γ(ω) =
KNL

2nL(ω)

ω

c

´ ´∞
−∞ |F (x, y)|4dxdy´ ´∞
−∞ |F (x, y)|2dxdy

, (1.13)
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can also be expanded around the carrier frequency ω0

γ(ω) = γ0 + γ1(ω − ω0) + ... . (1.14)

8. u(z, t) is assumed to be a slowly varying function of z , i.e., the second derivative

∂2u/∂2z is neglected under the assumption∣∣∣∣∂2u

∂z2

∣∣∣∣� ∣∣∣∣β0
∂u

∂z

∣∣∣∣ . (1.15)

As we will see later a pulse with power P has wave number k ∼ γ0P
2 and

amplitude
√
P , thus ∂u

∂z ∼
√
P γ0P

2 and ∂2u
∂z2 ∼

√
P
(
γ0P

2

)2
. Therefore

the above condition is equivalent to γ0P
2 � β0. Typical values for the

nonlinear term and the carried wave number in optical communication

fibers are [26] γ0 ∼ 0.01 W−1m−1 and β0 ∼ 2π
λ0

= 2π · 106m−1, where λ0

is the carried wave length. With these numbers approximation (1.15) is

valid for powers P � 4π · 108W.

Using Eqs. (1.3, 1.4, 1.5, 1.6) and the above assumptions we can derive the general-

ized nonlinear Schrödinger equation for the pulse envelope u(z, t) to be

∂u

∂z
+

1

2

(
α0 + iα1

∂

∂t

)
u− i

∞∑
n=1

inβn
n!

∂nu

∂tn
=

i

(
γ0 + iγ1

∂

∂t

)(
u(z, t)

ˆ ∞
0

R(t′)
∣∣u(z, t− t′)

∣∣2 dt′) . (1.16)

1.2.3 Generalized nonlinear Schrödinger equation for wide pulses

For pulses that last more than 100 fs the nonlinear response R(t) of the medium can

be considered almost instantaneous [26]. In the integral part of Eq. (1.16), we can

therefore use the approximation

|u(z, t− t′)|2 ≈ |u(z, t)|2 − t′∂|u(z, t)|2

∂t
. (1.17)

From experimental measurements we also have α1 ≈ 0 and γ1 ≈ γ0/ω0 [26]. Thus

Eq. (1.16) can be simplified as
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∂u

∂z
+
α

2
u+ i

β2
2

∂2u

∂t2
− β3

6

∂3u

∂t3
= iγ

(
|u|2u+

i

ω0

∂

∂t
(|u|2u)− TRu

∂|u|2

∂t

)
, (1.18)

where we have dropped the subscript 0 for the parameters α and γ. To derive Eq.

(1.18) we used the transformation t → t − β1z and therefore the time variable t is

measured in the frame of reference moving with the pulse group velocity (the group

velocity is vg =
(
dβ
dω

)−1

ω=ω0

= 1
β1
). The Raman term TR is defined as

TR =

ˆ ∞
0

R(t) tdt, (1.19)

and it is responsible for a pulse self-frequency shift, a linear change of the pulse

frequency with the propagation distance [27]. The parameter β3 in Eq. (1.18) is called

third order dispersion (TOD) term. Its main effect is to induce a pulse to radiate

energy [28]. The term 1/ω0 is responsible for the phenomenon of self-steepening, an

asymmetry in the pulse shape [29]. The term α causes a pulse to lose energy in form

of heat. The transmitted power over a distance z is approximately PT = PIe
−αz

[26], where PI is the input power.

The parameters in Eq. (1.18) depend on the type of optical fiber, typical values for op-

tical communication fibers are [26] α ∼ 10−4−10−3m−1, β2 ∼ ±
(
10−4 − 10−2

)
ps2m−1,

β3 ∼ 10−6 − 10−4ps3m−1, γ ∼ 10−3 − 10−2W−1m−1, ω0 ∼ 103THz and TR ∼
10−4 − 10−3ps.

1.2.4 Nonlinear Schrödinger equation and solitons

The Raman term, self-steepening and TOD can be neglected for pulses of width

T � TR, 1/ω0 and |β3/β2|. Considering propagation distances of few hundred

meters the loss α can also be disregarded. Under such conditions Eq. (1.18) is

further simplified as

∂u

∂z
+ i

β2

2

∂2u

∂t2
= iγ|u|2u. (1.20)

Eq. (1.20) is called the nonlinear Schrödinger equation (NLSE), and can be solved

analytically [30, 31] for a single pulse if the intensity goes to a constant value (zero

or a finite number) for t→ ±∞. The solution depends on the sign of β2. For β2 < 0
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we have bright-solitons with pulse envelope

u(z, t) =
√
P sech

[
t− v−1z

T

]
exp

[
i

(
β2

2
Ω2 +

γP

2

)
z − iΩt

]
, (1.21a)

whereas for β2 > 0 we have dark-solitons with pulse envelope

u(z, t) =
√
P tanh

[
t− v−1z

T

]
exp

[
i

(
β2

2
Ω2 + γP

)
z − iΩt

]
. (1.21b)

The term T =
√
|β2|/γP is the pulse width, P is the peak power, v−1 = β2Ω is

the inverse of the pulse velocity and Ω is the frequency shift. In Fig. 1.2 we show

the intensities |u|2 corresponding to Eq. (1.21a) and Eq. (1.21b), as function of the

variable t′ = t − v−1z. As we can see the two solutions behave differently. Around

t′ = 0 a bright soliton has a localized increase of intensity while a dark soliton has

a localized reduction of intensity compared to the background. A bright soliton can

be seen as a peak of light whereas a dark soliton is a pulse of "darkness" within a

continuous wave.

The soliton solutions Eq. (1.21a) and Eq. (1.21b) can be found solving Eq. (1.20) in

the following way. We write the optical field as

u(z, t) = ψ(t− β2Ωz) exp [iKz − iΩt] , (1.22)

where ψ is a real function and K is a constant. Then, we insert Eq. (1.22) into Eq.

(1.20) and get the equation

β2

2

d2ψ

dξ2
+

(
K − β2

2
Ω2

)
ψ − γψ3 = 0, (1.23)

where the new variable ξ is defined as ξ = t−β2Ωz. Integrating Eq. (1.23) in ψ and

using the relation
´ d2ψ

dξ2 dψ = 1
2

(
dψ
dξ

)2
, we get the differential equation

β2

2

(
dψ

dξ

)2

+

(
K − β2

2
Ω2

)
ψ2 − γ

2
ψ4 = 0, (1.24)

which can be written in the integral form
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Figure 1.2: Intensity |u(t′)|2 as function of the time t′ = t− v−1z for a bright soliton
(full blue line) and a dark soliton (dashed black line) corresponding to Eq. (1.21a)
and Eq. (1.21b) respectively. The intensity is represented in peak power unit P , and
the time in pulse width unit T .

ξ =

ˆ
dψ√

γψ4−(2K−β2Ω2)ψ2

β2

=

T sech−1
(

ψ√
P

)
for β2 < 0

T tanh−1
(

ψ√
P

)
for β2 > 0

. (1.25)

Inverting Eq. (1.25) we have a bright-soliton solution for β2 < 0, otherwise, for

β2 > 0 we get a dark-soliton.

Generally, solitons are defined as localized waves that travel in space or time without

changing their shape [26, 32]. In the literature [26, 32] the term “soliton”, without

any further connotation, refers to bright-solitons. In this manuscript we will use the

same convention.

1.3 Energy conservation

The energy of the optical field u(z, t) is defined as
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E (z) =

+∞ˆ

−∞

|u(z, t)|2dt (1.26)

and it is a conserved quantity for both Eq. (1.18) and Eq. (1.20). Thus ∂E/∂z = 0

at every point z. The energy conservation can be easily proved for the NLSE. We

start differentiating the intensity |u(z, t)|2 with respect to the space variable z

∂|u|2

∂z
= u∗

∂u

∂z
+ u

∂u

∂z

∗
, (1.27)

using Eq. (1.20) and its complex conjugated we obtain

∂|u|2

∂z
= −iβ2

2

(
u∗
∂2u

∂t2
− u∂

2u

∂t2

∗)
= −iβ2

2

∂

∂t

(
u∗
∂u

∂t
− u∂u

∂t

∗)
. (1.28)

Integrating in the time variable we get

∂E

∂z
=

+∞ˆ

−∞

∂|u|2

∂z
dt = −iβ2

2

[
u∗
∂u

∂t
− u∂u

∂t

∗]+∞

−∞
= 0, (1.29)

where we have used the fact that for t → ±∞ we expect the optical field to be

constant and therefore ∂u/∂t = ∂u∗/∂t = 0.

For a single bright-soliton described by Eq. (1.21a) the energy can be calculated

analytically and its value is E = 2PT . When multiple pulses are present in an

optical fiber, we can define the energy Ei of pulse i, integrating the intensity in an

interval [ti − τ, ti + τ ]

Ei =

ti+τˆ

ti−τ

|u(z, t)|2dt, (1.30)

where ti is the time corresponding to peak power of pulse i and τ is typically chosen

larger than 3T . The total energy of the optical field defined in Eq. (1.26) is always

conserved, whereas, the one pulse energy defined in Eq. (1.30) can change with z,

for example when a pulse radiates energy because of a perturbation to Eq. (1.20).

Solitons do not radiate dispersive waves or exchange energy with others solitons,

i.e., solitons are stable pulses and always collide elastically [26]. As we will see in

the later chapters there are soliton-like pulses, called quasi-solitons, that can have
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inelastic collisions and energy is transferred from on pulse to another [22–25].

1.4 Soliton generation

Optical solitons have not only been predicted analytically but also observed experi-

mentally [33] and used for optical communication [34]. From practical point of view,

a single soliton can be created using a semiconductor laser that converts an electric

signal into a light signal [34]. Once the pulse of light is generated it can be launched

into an optical fiber.

A train of solitons can be produced using the so called modulation instability ef-

fect [34]. In the process a continuous-wave radiation of light plus a small noise are

launched into a nonlinear fiber with anomalous dispersion (β2 < 0). After a certain

distance the optical field is spontaneously modulated and bright solitons are created.

Supercontinuum generation is the effect of modulation instability observed in the fre-

quency domain. It consists in a broadening of the intensity spectrum from an initial

narrow-band input wave [35, 36]. Note that modulation instability is theoretically

predicted for a system extended on an infinite time window, but in practice it is also

observed in systems with finite time window [34].

Modulation instability and supercontinuum generation are both important in the

early stages of rogue wave generation [2, 5, 6]. Theirs effect on rogue wave formation

will be discussed in more details in chapters 2 and 3.

1.5 Split-Step Fourier Method

The gNLSE can be solved analytically only in some specific cases, when this is

not possible numerical methods are used instead. A common numerical technique

utilized to solve Eq. (1.18) is the split-step Fourier method [26, 37–39]. To understand

the method we need to rewrite (1.18) in the form

∂u

∂z
=
(
L̂+ N̂

)
u, (1.31)

where L̂ and N̂ are the linear and nonlinear operators defined as

L̂ = −α
2
− iβ2

2

∂2

∂t2
+
β3

6

∂3

∂t3
, (1.32)

15



N̂ = iγ

(
|u|2 +

i

ω0u

∂

∂t
(|u|2u)− TR

∂|u|2

∂t

)
. (1.33)

When the optical field u(z, t) propagates for a small distance h the exact solution of

Eq. (1.31) is given by

u(z + h, t) = exp
[(
L̂+ N̂

)
h
]
u(z, t). (1.34)

In the split-step Fourier method the previous equation is approximated with

u(z + h, t) ' exp
(
L̂h
)

exp
(
N̂h
)
u(z, t), (1.35)

i.e., the linear and nonlinear operators are assumed to act independently on u(z, t).

Eq. (1.35) can be numerically solved applying the fast Fourier transform to the

optical field. The split-step Fourier method solution is

u(z + h, t) = ẑ−1
{

exp
(
L̂(ω)h

)
ẑ
[
exp

(
N̂h
)
u(z, t)

]}
, (1.36)

where

L̂(ω) = −α
2

+ i
β2

2
ω2 + i

β3

6
ω3 (1.37)

is the Fourier transform of the linear operator (1.32), while ẑ and ẑ−1 are the fast

Fourier transform operator and its inverse. Note that the nonlinear operator N̂ is

an ordinary complex function therefore can be directly applied to the optical field

without further transformations. In comparison to the discrete Fourier transform,

the fast Fourier transform has the advantage of reducing the number of operations

to calculate n Fourier coefficients from order n2 to order n ln(n).

To estimate the error committed when we factorize Eq. (1.34) we need to look at

the Baker-Campbell-Hausdorff formula for two non-commuting operators

exp
(
L̂h
)

exp
(
N̂h
)

= exp

[
L̂h+ N̂h+

1

2
(L̂N̂ − N̂L̂)h2 +O(h3)

]
. (1.38)

Eq. (1.38) shows that the split-step Fourier method is accurate to the order h2. The

typical length scale for a pulse of power P is (γP )−1 thus convergence is guarantied

choosing h� (γP )−1, usually h is taken in the range 10−4 − 10−3 (γP )−1 [26, 40].

Note that the use of the fast Fourier transform imposes periodic boundary conditions
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on the optical field, hence to guaranty numerical stability, the temporal window

has to be chosen at least 10 times the pulse width [26]. Selecting the appropriate

time window and step, the fast Fourier transform algorithm makes the split-step

Fourier method up to two orders of magnitude faster than most finite-difference

approaches [41]. For this reason, the method is considered the standard scheme

to find numerical solutions of the gNLSE. The numerical results presented in this

manuscript, that involve the use of the gNLSE, have been obtained using the split-

step Fourier method.

Summary

In this chapter, we introduced optical fibers and the concepts and tools that we are

going to use in the next chapters. The main points of the chapter are:

• Optical fibers are flexible and transparent cables made of glass or plastics used

to transmit signals of light over long distances. The response of an optical fiber

becomes nonlinear for intense electric fields.

• The propagation of optical pulses in a nonlinear fibers is described by the gener-

alized nonlinear Schrödinger equation (gNLSE). For wide pulses such equation

is given by

∂u

∂z
+
α

2
u+ i

β2

2

∂2u

∂t2
− β3

6

∂3u

∂t3
= iγ

(
|u|2u+

i

ω0

∂

∂t
(|u|2u)− TRu

∂|u|2

∂t

)
.

• For pulses of width larger than 5ps and propagation distances of few kilometers,

the gNLSE is simplified into the nonlinear Schrödinger equation (NLSE)

∂u

∂z
+ i

β2

2

∂2u

∂t2
= iγ|u|2u.

• Solitons are defined as localized waves that travel in space or time without

changing their shape. The NLSE equation has bright and dark soliton solutions

given respectively by

u(z, t) =
√
P sech

[
t− v−1z

T

]
exp

[
i

(
β2

2
Ω2 +

γP

2

)
z − iΩt

]
and

u(z, t) =
√
P tanh

[
t− v−1z

T

]
exp

[
i

(
β2

2
Ω2 + γP

)
z − iΩt

]
.
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• In the gNLSE equation the total energy, defined as

E =

+∞ˆ

−∞

|u(z, t)|2dt,

is conserved along z. A single pulse energy is not always conserved.

• The gNLSE can be solved numerically using the split-step Fourier method, the

solution is

u(z + h, t) = ẑ−1
{

exp
(
L̂(ω)h

)
ẑ
[
exp

(
N̂h
)
u(z, t)

]}
.

In the following chapter, we will discuss the concept of rogue waves in optical fibers,

the main object of this work.
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Chapter 2

Rogue waves in optical fibers

In this second introductory chapter, we discuss some experimental and numerical

results gathered from the literature regarding rare events in optical systems. Section

2.1 introduces rogue waves. In section 2.2 we examine experimental results by Solli

et al. [42] on optical rogue waves. Finally, section 2.3 considers numerical results by

Taki et al. [43] on extreme events generated when the third-order dispersion term is

added to the NLSE.

2.1 Introduction to rogue waves

Historically, reports of "monster" or "freak" waves [8–10] on the Earth’s oceans

have been seen largely as sea men’s tales [44, 45]. However, the recent availabil-

ity of reliable experimental observations [44, 46–49] has proved their existence and

shown that these "rogues" are indeed rare events [50], governed by long tails in their

probability density function [51], and hence associated with very large wave ampli-

tudes [14, 52]. Optical rogue waves are the optical analog of oceanic rogue waves,

they are rare and very high intensity pulses of light that occur in optical devices

such as communication fibers. They appear suddenly and can cause transmission

errors and damage in optical communication systems [7]. It is therefore important

to characterize rogue wave generation, dynamics and, if possible, predictability. As

both deep water waves in the oceans and optical waves in fibers can be described by

similar generalized non-linear Schrödinger equations [11–14] they both show rogue

waves (RWs) and long-tail statistics [51, 53, 54]. The case of RW generation in

optical fibers during super-continuum generation has been observed experimentally

[42, 55–61] and numerically [1, 43, 62–69].
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Figure 2.1: Examples of rogue events (a) in multifilament dynamics, (b) the oceano-
graphic context (Draupner data set), and (c) soliton dynamics in a nonlinear fiber.
Abscissae in (a) and (b) have been rescaled to equal units in terms of autocorre-
lation width. Solid lines: long-term averages. Dashed horizontal lines: significant
wave height (SWH) (image from [15]).

Recently, experimental data of long tails in the probability density function (PDF)

have been collected [42, 70, 71], as well as intensities and time correlations in various

wave phenomena with RW occurrence [15]. RWs and long-tailed PDFs have also been

found during high power femtosecond pulse filamentation in air [72], in non-linear

optical cavities [73] and in the output intensity of optically injected semiconductors

laser [74], mode-locked fiber lasers [75, 76], Raman fiber lasers [77] and fiber Raman

amplifiers [7]. Fig. 2.1 shows real data intensities and time correlations [15] for three
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different systems (a) a multiple filamentation in a gas cell, (b) ocean waves recorded

on the Draupner oil platform and (c) a nonlinear optical fiber. In the figure SWH

indicates the significant wave height defined as the average of the largest third of

waves in a record. Although the correlation time differ from system to system, in all

three cases we can find events that exceed the SWH. There is not agreement on how

to define exactly a rogue wave. One possibility is to considered a wave rogue when

its height is more than twice the SWH [15]. Another possibility is to call rogue only

events that are observed on the long tail part of the PDF [5, 78].

Independently of the exact definition, rogue waves appear to be a real phenomenon.

Despite the experimental evidence, it still remains largely unknown how they emerge

[5, 79, 80] and theoretical explanations range from high-lighting the importance of

the non-linearity [52, 81–83] to those based on short-lived linear superpositions of

quasi-solitons during collisions [17, 18].

2.2 Experimental results for optical rogue waves

Optical rogue waves are created in supercontinuum generation, a nonlinear effect in

which a broad spectrum is developed from a narrow-band input wave [35, 36]. In the

process a continuous-wave radiation of light is launched into a nonlinear fiber with

anomalous dispersion (β2 < 0). After a broadening of the spectrum the optical field

is spontaneously modulated and solitons are created.

Rogue waves in a nonlinear optical fibers were observed for the first time in 2007

by Solli et al. [42]. In the experiment, pulses created during supercontinuum gen-

eration gave rise to the L-shaped statistics. The histograms of the intensity showed

heavy-tailed statistics with rogue events reaching intensities of 30–40 times the av-

erage value. Fig. 2.2 shows intensities and associated histograms for a time window

containing roughly 15000 pulses [42]. The plot includes results for three different

average power levels of 0.8 mW, 3.2 mW and 12.8 mW. In the experiment a real-

time digital oscilloscope was used to measure a large number of events in a single

shot, this allowed to characterize rogue waves. The measurements highlighted three

results:

1. Large intensity values occur rarely, yet more frequently than expected from

an exponential statistics, that is, rogue wave statistics is sub-exponential (L-

shaped PDF).
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Figure 2.2: Intensities for a time window containing roughly 15000 pulses and asso-
ciated “L” shaped histograms for average power levels 0.8 mW (red), 3.2 mW (blue)
and 12.8 mW (green) (image from [42]).

2. The fraction of rare events can be increased by raising the power of the input

wave.

3. Rogue waves are rare, high power, soliton-like pulses.

Since optical rogue waves are real events that occur in communication fibers, a

theoretical description has both practical an fundamental interest. Considering that

the generalized nonlinear Schrödinger equation describes pulses in nonlinear optical

fibers, it make sense to use this equation to model optical rogue waves [84]. Note

that for the standard NLSE the PDF of |u| is a Rayleigh distribution and therefore

the PDF of the intensity |u|2 is exponential [14], that is why the NLSE without extra
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terms is not sufficient to describe rogue waves. In the next sections we will discuss

numerical results obtained solving the gNLSE.

Figure 2.3: (a) Power spectrum as function of the wavelength and (c) instant power
(i.e. the intensity |u(z, t)|2) as function of time, taking into account only the second-
order dispersion β2. (b) Power spectrum and (d) instant power when the third-order
dispersion β3 is added to the simulation. The black solid lines correspond to the
average spectra (image from [43]).

2.3 Generating optical rogue waves with third-order dis-

persion term

Taki et al. [43] studied rogue wave formation numerically using the generalized non-

linear Schrödinger equation. Particularly the authors investigated the TOD contri-

bution, i.e., they considered the gNLSE in the form

∂zu+
iβ2

2
∂2
t u−

β3

6
∂3
t u− iγ|u|2u = 0, (2.1)

with second order dispersion β2 = −2.6 · 10−28s2m-1, third order dispersion β3 =

3.5 · 10−41s3m-1 , nonlinear coefficient γ = 10W-1Km-1 and a fiber length of 400m.

To simulate the effect of supercontinuum generation, a plane wave of 10W plus a
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Figure 2.4: (a) PDFs corresponding to Fig. 2.3, as function of the peak power (i.e.
the maximum intensity of the single soliton). The data are calculated with only β2

(blue crosses) and with both β2 and β3 (red circles). (b) Same PDFs than in (a) in
logarithmic scale. The PDFs are not normalized to 1 (image from [43]).

small Gaussian noise was chosen as initial condition. The authors found that the

TOD term influences both the spectra and the PDF statistics of the system and

consequently the RW appearance.

The spectra resulting from the integration of Eq. (2.1) are shown in Fig. 2.3. In Fig.

2.3 (a) only β2 is taken into account, in Fig. 2.3 (b) both β2 and β3 are considered.

As we can see the NLSE with TOD term generates a spectrum that is wider than

the pure NLSE case and asymmetric with respect to the input wavelength. The

instant powers, as function of time, are plotted in Fig. 2.3 (c) and (d) respectively

for the pure NLSE and the NLSE with TOD case. Although Fig. 2.3 (c) and (d)

look similar, the addition of β3 term creates more powerful events.

The probability density functions of the peak powers are displayed in Fig. 2.4, in (a)

linear and (b) logarithmic scales. The PDF generated by the pure NLSE has super-

exponential tails, whereas when the TOD term is considered, the PDF has a hint of

sub-exponential tails and above ∼ 45W rare events are more likely than when only

β2 is considered. Note that a direct comparison between the PDFs in Fig. 2.2 and

the ones in Fig. 2.4 is not possible, since Solli et al. [42] calculated the PDFs of the

intensity whereas Taki et al. [43] show the PDFs of the peak power. Note, moreover

that in both cases the distributions are not normalized to 1. The idea of using the

gNLSE to describe rogue waves seems promising but Taki et al. [43]. PDFs have low

accuracy on the tails, the more important region for rare events. To obtain better

statistics requires more events, i.e. a larger time window of integration. Moreover it

is not clear whether or not integrating over distances longer than 400m will produce

24



more powerful rogue waves.

Summary

In this chapter, we introduced optical rogue waves (RWs). We looked at Solli et al.

[42] experimental results and we discussed Taki et al. [43] numerical results. The

main lessons learned from these previous results are:

• Optical rogue waves are rare, high power, soliton-like pulses.

• Rogue waves have L-shaped probability density function.

• Optical rogue waves can be described by the generalized nonlinear Schrödinger

equation. Particularly Taki et al. [43] could generate RWs using the gNLSE

with third order dispersion term

∂zu+
iβ2

2
∂2
t u−

β3

6
∂3
t u− iγ|u|2u = 0.

• To obtain good RW statistics from the numerical integration of the gNLSE,

requires large time windows and distances of propagation.

In the next chapter, we will show how to deal with this last point and present some

rogue wave results obtained from a massive parallel simulation of the gNLSE.
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Part II Results



Chapter 3

Massive parallel simulation of

rogue waves

As seen in the preceding chapter the generalized nonlinear Schrödinger equation can

describe optical RWs. In this chapter we present results obtained by a massive par-

allel simulation of nonlinear optical fibers. In section 3.1 we discuss the advantages

of a massive parallel integration of the gNLSE for RW statistics. The calculated

probability density functions are shown in section 3.2. The role of the TOD term,

on supercontinuum generation, is examined in section 3.3. Finally, in section 3.4 we

consider a representative example for the propagation of the optical field in a short

time range and extrapolate some insights on how RWs are generated.

3.1 Massive parallel integration of the gNLSE

The results of Taki et al. [43] show that the gNLSE with TOD produces RWs.

Despite this achievement, the PDFs presented have low accuracy on the tails, the

more important region for rare events. Furthermore at the distance of 400m, the

fiber length used for the simulation, RWs are not fully developed. Results similar to

Taki et al. [43] have been reported previously in the literature [62–65] although no

high precision PDFs and no clear L-shaped statics has been given.

To have a better PDF statistics requires to simulate an adequate number of events,

i.e. to integrate over a long time window, and to follow RW evolution demands

integration over long distances. A single machine simulation cannot satisfies both

conditions in a reasonable run time. Indeed to simulate a system with ∼ 1000 pulses
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Figure 3.1: Parallel speedup (left axis) and efficiency (right axis) curves for the par-
allel implementation of the split-step Fourier method for the gNLSE. Runs for 3
different computational loads, each double in work size, are shown by different sym-
bols with the solid line showing perfect linear scaling while the dashed line indicating
100% efficiency. The arrows indicate the corresponding axes. The computations were
performed on the BlueGene/Q of the Hartree Centre.

that propagates for 1.5Km requires ∼ 1 day on a single processor [40], and as we will

see later a good RW statistics is obtained when the number of pulses is larger than

107. This is equivalent to ∼ 30 years run time on a single processor. Therefore we

used a massive parallel numerical procedure [40] to integrate the gNLSE with TOD.

An implementation of the split-step Fourier algorithm based on the overlap/save

method [85] was used to integrate Eq. (2.1) with 231 intervals of ∆t = 1.8fs and

hence long time windows up to 3.865 × 106ps and 1.5 kilometers in propagation

distance [40]. The overlap/save method is a numerical algorithm that allows the

parallelization of the fast Fourier transform (FFT). The idea is to compute the FFT

of short segments on different machines and then concatenate the segments together

to obtain the FFT of the full time window [85].

We assumed periodic boundary conditions in time and, as usual, a coordinate frame

moving with the group velocity. We parallelized the fast Fourier transform part of

the code to take advantage of high-performance computing machines. In Fig. 3.1,
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Figure 3.2: PDFs of the intensity |u|2 from the gNLSE Eq. (2.1) with β3 = 2.64 ×
10−42s3m−1 using a large time window of ∆t = 3.865× 106ps. The PDFs have been
computed at distances z = 100m, 200m, 500m, 1000m and 1500m. The left vertical
axis denotes the values of the normalized PDF while the right vertical axis gives the
event count per bin. The inset shows results for β3 = 0.

we show the speedup and efficiency of a test run on the 98k cores at the Hartree

Centre. The results show linear scaling and nearly 100% efficiency.

We start the simulations with a continuous wave of P0 = 10W power. For the fiber,

we assume the parameters β2 = −2.6 × 10−28s2m−1, β3 = 2.64 × 10−42s3m−1 and

γ = 0.01 W−1m−1 . Due to the modulation instability, we observe, after seeding

with a small 10−3W Gaussian noise, a break-up into individual pulses within the

first 100m of the simulation, then rogue waves start to appear. The PDF of |u|2 is

computed as the simulation progresses. Throughout the simulation, we check that

the energy (1.26) remains conserved.

3.2 Probability density functions

The PDF for the complete set of & 17×106 pulses propagating over 1500m is shown

in Fig. 3.2 for selected distances using a highly-optimised, massively parallel and
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linearly-scaling numerical procedure [40]. After 100m, the PDF exhibits a roughly

exponential distribution as seen in Fig. 3.2. With β3 = 0 this exponential PDF

remains stable from this point onwards (cp. inset). However, with β3 6= 0 the

inelastic collision of soliton like pulses leads to an ever increasing number of high-

energy RWs. After 500m, a clear deviation from the exponential distribution of the

β3 = 0 case has emerged and beyond 1000m, the characteristic L-shape of a fully-

developed RW PDF has formed. The PDFs in Figs. 3.2 then continue to evolve

towards higher peak powers.

3.3 Spectra

In Chapter 2 we saw that optical rogue waves are created during supercontinuum

generation, a broadening of the power spectrum from a narrow-band input wave

[35, 36]. In this section we look at the spectra generated by our numerical integration

of Eq. (2.1). In Fig. 3.3 (a) and (b) we show the power spectra |u(ω)|2 as function of

the frequency ω, respectively for β3 = 0 and β3 = 2.64× 10−42s−4m−1. The spectra

are displayed for various distances z up to 1500m. The much broader spectrum

for β3 6= 0 shows how the TOD has led to wave excitation across a broad range

of frequencies. This is directionally related to the higher intensity observed in the

PDFs, indeed the most powerful pulses will have wider spectra. Fig. 3.3 (b) also

shows an asymmetry in the spectra, particularly we can see a peak between the

frequencies 200ps−1 and 400ps−1. This peak is related to a presence of radiation

in the optical field background [28] and corresponds to the inversion of sign in the

dispersion (β(ω) = β2

2 ω
2 + β3

6 ω
3) that occurs at ω = −3β2/β3 ' 300ps−1. Note that

in the Fig. 3.3 the spectra are plotted only in the frequency range [−800,+800]THz

but the actual range of integration is
[
− π
4t ,+

π
4t

]
' [−1750,+1750]THz according

to the value used for ∆t.

3.4 Rogue wave trajectories

In Fig. 3.4, we show a representative example for the propagation of u(z, t) in a

short 15ps time range out of the full 3.865 × 106 ps. A small initial noise leads

to differences in the pulse powers and velocities and hence to eventual collisions of

neighbouring pulses. We call these soliton like pulses quasi-solitons because although

they are localized their energy is not conserved. In the enlarged trajectory plots of
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Figs. 3.4(b) and 3.4(c), we see that for β3 = 0 the solitons interact elastically

and propagate on average with the group velocity of the frame. However, for finite

β3 in Fig. 3.4(c), most collisions are inelastic and one quasi-soliton, with higher

energy, moves through the frame from left to right due to its higher energy and

group velocity mismatch compared to the frame. It collides in rapid succession with

the other quasi-solitons traveling, on average, at the frame velocity. In almost all

cases, energy is transferred from the quasi-soliton with less energy to the one with

more energy leading to a cascade of incremental gains for the more powerful quasi-

soliton. This pattern is visible throughout Fig. 3.4(a) where initial differences in

power of quasi-solitons become exacerbated over time and larger and larger quasi-

solitons emerge. These accumulate the energy of the smaller ones to the point that

the smaller ones eventually vanish into the background. In addition, the group

velocity of a quasi-soliton with TOD is dependent on the power of the quasi-soliton

[26]. Thus, the emerging powerful quasi-solitons feature a growing group velocity

difference to their peers and this increases their collision rate leading to even stronger

growth. This can clearly be seen from Fig. 3.4(a) where larger-energy quasi-solitons

start to move sideways as their velocity no longer matches the group velocity of

the frame after they have acquired energy from other quasi-solitons due to inelastic

collisions. Indeed, the relatively few remaining, soliton-like pulses at 1500m can

have peak powers exceeding 1000W. They are truly self-sustaining rogues that have

increased their power values by successive interactions and energy exchange with less

powerful pulses.

Fig. 3.4 shows how rogue waves are created by a cascade of incremental energy

gains. In the next chapters we will see that it is possible to implement this cascade

mechanism into an effective model that produces PDFs directly without the need

for integrating the gNLSE. Such model requires to understand the nature of quasi-

solitons and how they interact, therefore we will dedicate the next two chapters to

these topics then we will go in detail into the effective cascade model.
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(a)

(b)

Figure 3.3: (a) Spectrum |u(ω)|2 as function of the frequency ω for β3 = 0. The
results are displayed at distances z = 100m, 200m, 500m, 1000m and 1500m. (b)
Spectrum |u(ω)|2 for β3 = 2.64× 10−42s−4m−1 at the same distances as in (a).
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(a)

(b) (c)

Figure 3.4: (a) Intensity |u(z, t)|2 for β3 = 2.64 × 10−42s3m−1 of the gNLSE Eq.
(2.1) as function of the time t and distance z in a selected time frame of ∆t = 15ps
and distance range ∆z = 1.5km. (b) |u|2 with β3 = 0 for a zoomed-in distance and
time region, (c) |u|2 with β3 value as in (a) for a region of (a) with ∆t and ∆z chosen
identical to (b).
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Summary

In this chapter, we presented numerical results from our massive parallel simulation

of the generalized nonlinear Schrödinger equation. The main points of the chapter

are:

• Using a parallel implementation of the split-step Fourier algorithm we can

integrate the gNLSE with more than 17× 106 pulses propagating over 1500m.

• The gNLSE with TOD generates clear L-shaped PDFs. Longer space distances

of integration produce heavier tails in the PDFs.

• The gNLSE with TOD term β3 generates asymmetric and wider spectra that

when β3 = 0. The asymmetry is related to the presence of radiation in the

background whereas the broadening is due to the higher intensity observed in

the PDFs.

• Looking at the propagation of the optical field u(z, t), it seems that rogue

waves are created by a cascade of incremental energy gains.

In the following chapter, we will introduce the concept of quasi-soliton and derive

some analytical approximations that will be used in later chapters.
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Chapter 4

Quasi-solitons in a β3 6= 0 medium

In this chapter we show that the gNLSE has soliton-like solutions. Section 4.1 in-

troduces the quasi-soliton approximation. The difference between dark and bright

quasi-solitons is considered in section 4.2. Finally, in section 4.3 we discuss a decom-

position into soliton–radiation for the gNLSE.

4.1 Quasi-solitons approximation

In chapter 1 we saw that the NLSE has a soliton solution. In the case of the gNLSE

with TOD (2.1), the solution can be approximated with a soliton-like pulse [26, 86]

u(z, t) =
√
P sech

[
t− q
T

]
exp

[
i

(
β2

2
Ω2 +

β3

6
Ω3 +

γP

2

)
z − iΩt− iC t2

2T 2

]
. (4.1)

In Eq. (4.1) P , T and C represent the amplitude, duration and chirp. The other two

parameters are the temporal shift q of the pulse envelope and the frequency shift Ω

of the pulse spectrum. The unknown parameters can be found using the momentum

method [26, 87, 88]. The idea is to treat the optical pulse as a particle with momenta

T 2 =
12

π2E

ˆ +∞

−∞
(t− q)2|u|2dt, C =

i6

π2E

ˆ +∞

−∞
(t− q)

(
u∗
∂u

∂t
− u∂u

∗

∂t

)
dt,

q =
1

E

ˆ +∞

−∞
t|u|2dt, Ω =

i

2E

ˆ +∞

−∞

(
u∗
∂u

∂t
− u∂u

∗

∂t

)
dt,

(4.2)
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where the energy E is defined as usual by Eq. (1.26). In (4.2) T measures how far a

pulse is spread out, C represents the time dependence of the instantaneous frequency

(the temporal derivative of the phase), q is the average position in time of the pulse

intensity and Ω is the average frequency of the power spectrum.

Using Eqs. (2.1, 4.1, 4.2) we obtained the distance-dependence of the parameters

dT

dz
= (β2 + β3Ω)

C

T
,

dC

dz
=

(
4

π2
+ C2

)
(β2 + β3Ω)

T 2
+

4γP

π2
,

dq

dz
=β2Ω +

β3

2
Ω2 +

β3

6T 2

(
1 +

π2

4
C2

)
,

dΩ

dz
=0.

(4.3)

The equations can be solved for C = 0, resulting in

u(z, t) =
√
P sech

[
t− v−1z

T

]
exp

[
i

(
β2

2
Ω2 +

β3

6
Ω3 +

γP

2

)
z − iΩt

]
, (4.4)

with T and v−1 given by

v−1 = β2Ω +
β3

2
Ω2 +

β3

6T 2
, (4.5)

T =

√
|β2 + β3Ω|

γP
. (4.6)

The TOD changes the soliton shape, particularly the pulse width T and group ve-

locity v are modified by the β3 term.

Numerically solving Eq. (2.1), with initial conditions given by Eq. (4.4, 4.5, 4.6),

we can see the limitations of our approximation. In Fig. 4.1 we show the intensities

|u(z, t)|2, of a soliton (β3 = 0) and a quasi-soliton (β3 = 2.64 × 10−42s3m−1), as

function of the time t for various distances. The simulation parameters are β2 =

−2.6 × 10−28s2m−1, γ = 0.01 W−1m−1, P = 100W and Ω = −10THz. In Fig. 4.1

(a) and (c) we can see the soliton propagation, respectively in linear and logarithmic

scale. As expected the soliton moves in space and time without changing its shape.

Fig. 4.1 (b) and (d) display the quasi-soliton intensity, respectively in linear and

logarithmic scale. Unlike the previous case, the pulse radiate energy as dispersive

wave and its peak power decreases. This process slows down with the distances and

the quasi-soliton radiates less and less energy. Fig. 4.1 highlights that approximation

(4.4) (used as initial condition) roughly describes the peak part of quasi-solitons but
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(a) (b)

(c) (d)

Figure 4.1: (a) Intensity |u(z, t)|2 as function of the time t for gNLSE with β3 = 0.
The Intensity has been computed at distances z = 0m, 250m, 500m, 750m and
1000m. (b) Intensity as function of time for β3 = 2.64 × 10−42s3m−1and same
distances used in (a). Figures (c) and (d) show respectively the same results of (a)
and (b) in logarithmic scale.

fails to describe the process of energy emission.

Fig. 4.2 (a) and (b) illustrate the spectra of the same soliton and quasi-soliton shown

in Fig. 4.1. The spectra are similar close to the frequency shift ω = Ω and differ

faraway from this value. The quasi-soliton spectrum deviates from a soliton spectrum

between the frequencies 200ps−1 and 400ps−1. Here we see a second peak generated

by the radiation in the optical field background [28]. This peak corresponds to

the inversion of sign in the dispersion (β(ω) = β2

2 ω
2 + β3

6 ω
3) that occurs at ω =

−3β2/β3 ' 300ps−1. As we can see, the radiation peak has actually a higher value

than ω = −3β2/β3, this can be understood as a recoil effect to stabilize the soliton.

Indeed the soliton peak, in order to be more stable, moves away from the critical

frequency towards lower frequencies, but because the average frequency is conserved,

the radiation peak compensates this change moving towards higher frequencies.

37



(a) (b)

Figure 4.2: Spectrum |u(ω)|2 as function of the frequency ω at z = 1000m for (a)
β3 = 0 and (b) β3 = 2.64× 10−42s3m−1.

4.2 Dark and bright quasi-solitons

Until now we have discussed bright quasi-solitons supported by Eq. (2.1). The same

equation sustains also dark quasi-solitons. The type of solution depends on the value

of the frequency shift Ω. Let’s write the optical field as

u(z, t) = U(z, t)eiKz−iΩt, (4.7)

where K = β2

2 Ω
2 + β3

6 Ω
3 is the pulse wave number. Replacing Eq. (4.7) into Eq.

(2.1) we obtain

∂zU +K ′∂tU +
iβ∗2
2
∂2
t U −

β3

6
∂3
t U − iγ|U |2U = 0. (4.8)

The previous equation is similar to Eq. (2.1). The term proportional to K ′ =

β2Ω + β3

2 Ω
2 can be eliminated using the transformation t→ t−K ′z. The effective

second order dispersion

β∗2 = β2 + β3Ω (4.9)

determines the type of quasi-soliton. For β∗2 < 0 the solution of Eq. (4.8) is a bright

quasi-soliton (see Fig. 4.1 (b) and (d)), for β∗2 > 0 we get a dark quasi-soliton. The

sign of β∗2 depends on the frequency shift, with critical value given by Ω∗ = −β2

β3
.

When Ω > −β2

β3
and β3 � β∗2 , Eq. (2.1) has the approximated dark quasi-soliton

solution
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(a) (b)

Figure 4.3: (a) Dark quasi-soliton intensity |u(z, t)|2 as function of the time t for
distances z = 0m, 250m, 500m, 750m and 1000m and β3 = 2.64× 10−42s3m−1. (b)
Spectrum |u(ω)|2, corresponding to (a), as function of the frequency ω at z = 1000m.

u(z, t) =
√
P tanh

[
t−K ′z
T

]
exp[i (K + γP ) z − iΩt] , (4.10)

with T given by Eq. (4.6). Fig. 4.3 (a) and (b) show a dark quasi-soliton intensity as

function of the time t and the corresponding spectrum as function of the frequency

ω. The result are obtained numerically solving Eq. (2.1) with initial conditions given

by Eq. (4.10). The quasi-soliton frequency shift is Ω = 210THz and the initial power

is P = 10−3W. We chose such a small value because higher powers lead to instability

of the dark soliton. Indeed Eq. (4.10) is not exact solution of Eq. (2.1) therefore a

reshaping radiation is emitted during the pulse propagation, because dark pulses are

not localized such radiation is emitted across the full simulation time window. For

this reason dark solitons are less stable than bright solitons.

4.3 Decomposition soliton – radiation

In section 4.1 we saw that bright quasi-solitons have a soliton and a radiation part.

In this section we will find a differential equation for each of the two parts. We start

writing the optical field as a sum of two terms

u(z, t) = [S(z, t) +R(z, t)] eiKz−iΩt, (4.11)

where S is the soliton part and R is the radiation part. The oscillatory term eiKz−iΩt

reflects the fact that our quasi-soliton has frequency shift Ω and wave number K =
β2

2 Ω
2 + β3

6 Ω
3. Replacing Eq. (4.11) into Eq. (2.1) we obtain a differential equation
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(a) (b)

Figure 4.4: (a) Bright soliton intensity |S(z, t)|2 as function of the time t for dis-
tances z = 0m, 250m, 500m, 750m and 1000m. (b) Radiation intensity |R(z, t)|2
corresponding to (a) and generated using Eq. (4.13).

with mixed terms proportional to powers of S and R. We want an equation for each

of the two quasi-soliton parts. This task is not easy because there is not criterion on

how to assign each term to the corresponding equation. Akhmediev and Karlsson

suggested the approximation [28]

∂zS +K ′∂tS +
iβ∗2
2
∂2
t S − iγ|S|2S = 0, (4.12)

∂zR+K ′∂tR+
iβ∗2
2
∂2
tR−

β3

6
∂3
tR =

β3

6
∂3
t S, (4.13)

where the soliton part does not interact with the radiation part and the term β3

6 ∂
3
t S

acts as a source for R. In the above equations all the mixed terms containing both

S and R have been neglected. The soliton part has the exact solution

S(z, t) =
√
P sech

[
t−K ′z
T

]
exp

(
i
γP

2
z

)
, (4.14)

where T =
√
|β∗2 |/γP . Fig. 4.4 shows (a) |S|2 as function of time for various distances

and (b) the corresponding radiation intensity |R|2 obtained integrating numerically

Eq. (4.13). The initial values of power and frequency shift are the same used in Fig.

4.1. In Fig. 4.4 (b) the |R|2 value on the right side of the soliton peak at 1.5Km, is

∼ 3 · 10−3W, whereas in Fig. 4.1 (d) we observe a value of ∼ 1.5 · 10−3W. We have

such discrepancy between the two radiation values because the energy in Eq. (4.13)

is not conserved. The reason is that the source term β3

6 ∂
3
t S keeps generating more

and more radiation during the pulse propagation. Indeed, in Fig. 4.1 (d) the amount
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of radiation emitted by the quasi-soliton decreases with the distance, while in Fig.

4.4 (b) it increases.

We numerically tested several decompositions of Eq. (2.1) in soliton and radiation

part. The test was performed comparing the spectra of the full gNLSE |u(ω)|2,
calculated using Eq. (2.1), and the spectra obtained from the decompositions |S(ω)+

R(ω)|2. We found that the following coupled equations describe well a quasi-soliton

and its radiation

∂zS +K ′∂tS +
iβ∗2
2
∂2
t S − iγ|S|2S = 2iγ|S|2R+ iγS2R∗, (4.15)

∂zR+K ′∂tR+
iβ∗2
2
∂2
tR−

β3

6
∂3
tR− iγ|R|2R =

β3

6
∂3
t S + 2iγ|R|2S + iγR2S∗. (4.16)

In the above equations we still have β3

6 ∂
3
t S as source term for the radiation, but

now the two optical fields are linearly coupled with each other. The same type of

coupling was suggested by Karpman and Solov’ev [22] for a two soliton systems, that

is for β3 = 0, when no radiation is involved in the process. Fig. 4.5 (a) displays the

comparison between the two spectra |u(ω)|2 and |S(ω)+R(ω)|2. As we can see there

is a good agreement between the two results considering that the Eqs. (4.15, 4.16)

are an approximation (linear decomposition) of Eq. (2.1). In Fig. 4.5 (b) we show

the intensity |u(z, t)|2 as function of time for different distances. The corresponding

soliton |S(z, t)|2 and radiation |R(z, t)|2 intensities are shown respectively in Fig. 4.5

(c) and (d).

Although the soliton-radiation decomposition is an interesting results we do not have

an analytical solution for Eq. (4.15) and Eq. (4.16). On the other hand, the quasi-

soliton approximation Eq. (4.4, 4.5, 4.6) does not describe the radiation part but it

is a good description of the peak propagation. We observe that the radiation part

is more than 4 orders of magnitude smaller than the soliton part, therefore for the

purpose of our work we will use the simple quasi-soliton approximation (4.4).
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(a) (b)

(c) (d)

Figure 4.5: (a) Comparison between the spectra |u(ω)|2 and |S(ω) + R(ω)|2. (b)
Intensity |u(z, t)|2 as function of time t for distances z = 0m, 250m, 500m, 750m and
1000m. (c) Soliton |S(z, t)|2 and (d) radiation |R(z, t)|2intensities corresponding to
(b).

Summary

In the this chapter, we introduced the concept of a quasi-soliton and derived an

analytical approximation based on the momentum method. The key points of the

chapter are:

• The gNLSE with TOD has soliton-like solutions called quasi-solitons. The

optical field of such pulses can be approximated by

u(z, t) =
√
P sech

[
t− v−1z

T

]
exp

[
i

(
β2

2
Ω2 +

β3

6
Ω3 +

γP

2

)
z − iΩt

]
,

with T =
√
|β2+β3Ω|

γP and v−1 = β2Ω + β3

2 Ω2 + β3

6T 2 .

• The main difference between a soliton and a quasi-soliton is that the later

radiates energy during its propagation.
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• The gNLSE with TOD sustains both bright and dark quasi-solitons. Whether

the solution is a bright or dark quasi-soliton depends on the sign of the effective

second order dispersion β∗2 = β2 + β3Ω.

• It is possible to decompose the gNLSE with TOD in soliton and radiation part

of a quasi-soliton. The radiation part is much smaller than the soliton part.

In the next chapter, we will discuss the interaction between two quasi-solitons, an

important ingredient for rogue wave generation.
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Chapter 5

Interacting quasi-solitons

Energy gain is an important concept for rogue wave generation. In this chapter

we consider the interaction between two quasi-solitons, particularly we focus on the

energy transfer during the scattering process. Section 5.1 presents some numerical

results for the collision of two quasi-solitons. In section 5.2 we discuss an attempt

to calculate analytically the energy transfer using a two quasi-soliton decomposition

of the gNLSE. Finally, in section 5.3 we show that a functional form of the energy

transfer can be found using some general assumptions on the interaction.

5.1 Two quasi-soliton scattering

In this section we study the two quasi-soliton scattering in a β3 medium. Eq. (2.1)

is numerically solved with an initial condition consisting of two pulses

u (z, t) =
√
P 1sech

(
t− t1
T1

)
e−iΩ1(t−t1) +

√
P 2sech

(
t− t2
T2

)
e−iΩ2(t−t2)+iφ. (5.1)

The two waves have a relative phase difference φ, and are characterized by power

Pi, temporal shift ti and frequency shift Ωi for each pulse i = 1, 2. From these

initial conditions we can calculate their inverse velocity v−1
i = β2Ωi + β3

2 Ω2
i + β3

6T 2
i

and period Ti =
√
|β2+β3Ωi|

γPi
.

In Fig. 5.1 we show an example of scattering between two quasi-solitons. The initial

conditions for both collisions have been chosen to be identical apart from the relative

phase between the two quasi-solitons, in Fig. 5.1(a) φ = 0.27π whereas in Fig. 5.1(b)

φ = 1.13π. For both cases an earlier quasi-soliton with initially large power (200W)

is met by a later, initially weak pulse (50W). Clearly, the collision of these two
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(a) (b)

Figure 5.1: Intensities |u(z, t)|2 of the scattering between two quasi-solitons for
β3 = 2.64 × 10−42s3m−1. The phase difference φ was chosen to correspond to (a)
the minimum and (b) the maximum of ∆E1/E2(φ) plotted in Fig. 5.2. The two
black lines correspond to the prolongations of the initial trajectories. The red arrow
indicates a dispersive wave induced by the collision.

quasi-solitons as shown in Fig. 5.1(a) is (nearly) elastic, they simply exchange their

positions, while retaining their individual power. This situation retains much of

the dynamics from the β3 = 0 case. In contrast, in Fig. 5.1(b), we see that after

collision three pulses emerge: an early, much weaker quasi-soliton (∼ 24W), a later

very high power quasi-soliton (∼ 245W), and a final, very weak and dispersive wave

(∼ 0.002W) — the collision is highly inelastic. We note that this process is similar

to what was described in Refs.[22–25] for other NLSE variants. We emphasize that

although the dispersive wave is fundamental for the energy transfer, its peak power

is more than 4 orders of magnitude smaller than the soliton powers.

Systematically studying many of such collisions, we find that the relative energy

transfer as function of the phase difference φ can be modeled quite accurately with

the formula

∆E1

E2
= A sin2

(
φ− φo

2

)
, (5.2)

where ∆E1 is the amount of energy absorbed by the larger quasi-soliton, E2 is the

energy of the smaller quasi-soliton, φ0 is the phase difference for which the gain

has a minimum and the parameter A is the maximum value for the ratio ∆E1/E2.

In order to determine the energy transfer we estimate the individual pulse energies

in the gNLSE via
´

∆t |u(z, t)|2dt with ∆t = 1ps symmetric with respect to the

maximum peak power. The parameter A depends on the two quasi-soliton initial
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values P1, Ω1, P2, Ω2 and on the fiber characteristics β2, β3, γ . In Fig. 5.2,

we show that agreement between Eq. (5.2) and the numerical simulations is indeed

remarkably good. Such agreement improves when the difference |v−1
1 −v

−1
2 | increases,

moreover the parameter A decreases with |v−1
1 − v−1

2 | (A is the amplitude of the

curves in Fig. 5.2). Although Eq. (5.2) has a simple dependence in φ, we do not

know the dependence of A on the two quasi-soliton initial values and on the fiber

characteristics. An explanation for the functional form of Eq. (5.2) will be given in

section (5.3).
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Figure 5.2: (a) ∆E1/E2(φ) for various choices of initial speeds. The data points
represents results obtained integrating the gNLSE (2.1) while the lines denote the fit
(5.2). The red squares correspond to the energy transfer for the scattering displayed
in Fig. 5.1. (b) Amplitude A of ∆E1/E2(φ) as function of |v−1

1 − v
−1
2 |.
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5.2 Two quasi-soliton decomposition

In the following sections we discuss possible approaches to calculate the energy trans-

fer analytically. To start with, we attempted to calculate the energy transfer ∆E1

in the two quasi-soliton scattering by decomposing Eq. (2.1) into two coupled differ-

ential equations

∂zu1 + iβ2

2 ∂
2
t u1 − β3

6 ∂
3
t u1 − iγ|u1|2u1 = 2iγ|u1|2u2 + iγu1

2u∗2, (5.3a)

∂zu2 + iβ2

2 ∂
2
t u2 − β3

6 ∂
3
t u2 − iγ|u2|2u2 = 2iγ|u2|2u1 + iγu2

2u∗1, (5.3b)

where u1 and u2 are partial fields and the total optical field is given by u = u1 +

u2. Karpman and Solov’ev [22] suggested a similar decomposition for a two soliton

system at β3 = 0. The idea is to write an equation for the variation of intensity |u1|2

in the form

∂z|u1|2 = G(β2, β3, γ, P1,Ω1, P2,Ω2; z, t, φ), (5.4)

where the function G represents the rate of variation. From such equation the energy

transfer can be calculated as [89]

∆E1 =

ˆ
G(β2, β3, γ, P1,Ω1, P2,Ω2; z, t, φ)dzdt. (5.5)

Unfortunately such approach does not work because after the collision the two quasi-

solitons mix in the optical fields u1 and u2, and the mixing depends on the initial

phase difference φ and on the other quasi-soliton parameters, that is, the partial

fields u1 and u2 do not represent the physical pulses.

Figs. 5.3 (a) and (b) show the intensity |u|2 as function of time t at distance 100m and

220m corresponding, respectively, to the elastic and inelastic scattering displayed in

Fig. 5.1. In the same figure we plot the results obtained now integrating Eqs. (5.3a)

and (5.3b). The intensity of the first field |u1|2 is shown in Fig. 5.3 for (c) the elastic

and (d) the inelastic case. Fig. 5.3 (e) and (f) illustrate the intensity of the second

field |u2|2 corresponding to the same cases of (c) and (d) respectively. As we can

see for the elastic case, after the collision, the two quasi-solitons simply exchange

their position in the optical fields u1 and u2. In the full inelastic scattering, after the
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collision, both solitons go into the field u1. We emphasize that the mixing depends

on the quasi-soliton parameters in a non trivial way.

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: (a+b) Intensity |u|2 as function of time t at distance 100m and 220m.
The phase difference φ was chosen to correspond to (a) the minimum and (b) the
maximum of ∆E1/E2(φ) plotted in Fig. 5.2. (c+d) Intensity |u1|2 for (c) elastic
and (d) inelastic scattering. (e+f) Intensity |u2|2 for (e) elastic and (f) inelastic
scattering.

We tried other decompositions beside (5.3a) and (5.3b) but all of them where un-
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successful. For example we tried the decomposition

∂zu1 + iβ2

2 ∂
2
t u1 − β3

6 ∂
3
t u1 = iγ|u1 + u2|2u1, (5.6a)

∂zu2 + iβ2

2 ∂
2
t u2 − β3

6 ∂
3
t u2 = iγ|u1 + u2|2u2, (5.6b)

but in this case the two quasi-soliton scattering was always elastic, with no energy

transfer independently of the initial phase difference. We also tried to invert the

interaction in Eqs. (5.3a) and (5.3b), that is

∂zu1 + iβ2

2 ∂
2
t u1 − β3

6 ∂
3
t u1 − iγ|u1|2u1 = 2iγ|u2|2u1 + iγu2

2u∗1, (5.7a)

∂zu2 + iβ2

2 ∂
2
t u2 − β3

6 ∂
3
t u2 − iγ|u2|2u2 = 2iγ|u1|2u2 + iγu1

2u∗2. (5.7b)

This attempt was one of the worst because the numerical integration reaches insta-

bility after few meters of propagation. The two pulses lose completely their initial

soliton shape and are dispersed in the background.

Although the decomposition approach fails to describe the two quasi-soliton scatter-

ing, Eq. (5.5) is completely general and can give some insights on the energy transfer

problem.

5.3 Semi-analytical solution

In this section we will give a semi-analytical solution for the problem of two quasi-

soliton energy transfer. In Fig. 5.2 we observe an energy transfer due to inelastic

scattering. This energy gain of quasi-soliton 1 from quasi-soliton 2, can be written

as

∆E1 =

ˆ
G(β2, β3, γ, P1,Ω1, P2,Ω2; z, t, φ)dzdt, (5.8)

where we have not made any assumption on the type of interaction G. It is convenient
to study the scattering in the center of mass of the two quasi-solitons, therefore we
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use the new variables s = t− z/v1, w = t− z/v2. Then (5.8) becomes

∆E1 =
1

| v−1
1 − v

−1
2 |

ˆ
G (β2, β3, γ, P1,Ω1, P2,Ω2; s, w, φ) dsdw. (5.9)

Eq. (5.9) suggests that a large difference between the (inverses of the) vi results in a

reduced energy gain for the larger quasi-soliton in agreement with the results shown

in Fig. 5.2. The same figure also shows the importance of φ for the energy transfer.

Fourier-expanding (5.9), we can write

∆E1

E2
=

1

| v−1
1 − v

−1
2 |

∞∑
n=0

εβ2,β3,γ,P1,Ω1,P2,Ω2(n) cos [n(φ− φ0)] , (5.10)

where ε(n) are Fourier coefficients (we suppress indices for a moment) and φ0 is the

phase difference for which the gain has a minimum (as we will see later from Eq.

(5.12)). The value of the phase φ0, can in principle be calculated imposing that

the two quasi-solitons have initial phase difference φ so that at the point of collision

(z0, t0) the total phase difference is π/2 (no interference), that is

φ0 +

[
β2

2

(
Ω2

2 −Ω2
1

)
+
β3

6

(
Ω3

2 −Ω3
1

)
+
γ

2
(P2 − P1)

]
z0 − Ω2 (t0 − t2) + Ω1 (t0 − t1) =

π

2
, (5.11)

but because the superposition of the two pulses is non-linear the above formula does

not predict the correct value of φ0.

In order to calculate the energy transfer we approximate Eq. (5.10) with just the first

two coefficients n = 0, 1. These two coefficients are related; the larger quasi-soliton

always gains energy (∆E1 > 0), hence ε(0) ≥ |ε(1)| and because for a certain φ the

energy gain is zero, we have ε(0) = −ε(1). Thus we can write

∆E1

E2
'
εβ2,β3,γ,P1,Ω1,P2,Ω2

|v−1
1 − v

−1
2 |

sin2

(
φ− φo

2

)
, (5.12)

where we have used 1 − cos (φ) = 2 sin2
(
φ
2

)
and defined ε = 2ε(0). The value of

ε is yet undetermined while the dependence on the group velocities and the phase

difference it is clear. As shown in Fig. 5.2, Eq. (5.12) provides an excellent descrip-

tion of the energy gain in pair-wise quasi-soliton collisions. The value of ε will be

determined numerically in the following chapter, particularly we will study the de-

pendence on the β3 term. We will also show how approximation (5.12) is sufficient

to generate RWs in a many quasi-soliton system. Indeed, once we know the shape
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of every quasi-soliton (4.4) and how they interact (5.12), the dynamic of the system

can be implemented and the PDFs can be calculated without the need of integrating

the gNLSE.

Summary

In this chapter, we discussed the interaction between quasi-solitons in the gNLSE

with TOD. We also derived a semi-analytical approximation to describe the energy

transfer from one pulse to another. The main points of the chapter are:

• In contrast to standard solitons, quasi-solitons exchange energy when they

collide. The amount of energy transfer depends on the initial phase difference

between the two waves and on the other pulse parameters.

• The gNLSE with TOD can be decomposed in two equations with partial fields

u1 and u2. Unfortunately, the partial fields u1 and u2 do not represent the

physical pulses.

• The energy transfer during the two quasi-soliton collision can be approximated

by

∆E1

E2
'
εβ2,β3,γ,P1,Ω1,P2,Ω2

|v−1
1 − v

−1
2 |

sin2

(
φ− φo

2

)
,

where the the function εβ2,β3,γ,P1,Ω1,P2,Ω2 is to be calculated.

In the following chapter, we will make use of the results on quasi-soliton propagation

and interaction to implement a cascade model that is able to generate rogue waves

without the need to integrate the full gNLSE.
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Chapter 6

Cascade model

In chapter 3 we discussed how the gNLSE with TOD generates RWs. In this chapter

we present a cascade model that produces rogue waves without the need to integrate

the full gNLSE. The model is based on the previews results found for quasi-soliton

propagation and interaction. Section 6.1 introduces the cascade model with its main

assumptions. In section 6.2 we discuss the initial conditions given as input for the

cascade model. Section 6.3 is dedicated to the calculation of the effective coupling

constant in the two quasi-soliton interaction and its dependence on the β3 term.

Finally, in section 6.4 we show the traces and PDFs generated by the cascade model

and compare them with the gNLSE results.

6.1 The model

It still remains largely unknown how RWs emerge [5, 79, 80]. The results from the

gNLSE in the presence of a TOD term [90, 91] suggest that quasi-solitons are created

by modulation instability, then they exchange energy through inelastic scattering.

Based on this observation we can now replace the full numerical integration of the

gNLSE with a cascade model (CM) that tracks the collisions between quasi-solitons.

The key points of such a model are

1. We assume a number of pulses, generated by modulation instability, according

to the distribution of peak power

ρ(P ) = bP−b0 (P )b−1 exp

[
−
(
P

P0

)b]
, (6.1)
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where P0 and b are parameters fitted on the real distribution generated using

the gNLSE.

2. For every quasi-soliton with index q the pulse speed is given by the pulse peak

power, according to

v−1
q = β2Ωq +

β3

2
Ω2
q +

β3

6T 2
q

, (6.2)

where

Tq =

√
|β2 + β3Ωq|

γPq
, (6.3)

and larger pulse powers imply larger speeds (into the same direction).

3. From the speed and separation of pulses, we compute the time until the next

collision.

4. At the collision point, we compute a random phase φ between the pulses which

determines the amount of energy transferred. This is modeled using a formula

similar to the particle collision process (5.12)

∆E1

E2
=

εeff

|v−1
1 − v

−1
2 |

sin2

(
φ

2

)
. (6.4)

Here, ∆E1 is the energy gain for the higher energy quasi-soliton and E2 is

the energy of the second quasi-soliton involved in the collision. The group

velocities at the point of collision are v1 and v2. Energy is only transferred

towards the larger energy pulse. In Eq. (6.4), εeff is an empirical cross-section

coefficient, it depends on β3 and will be justified and calculated later on from

the gNLSE.

5. The process then repeats until a distance of 1500m has been reached.

6. At regular distance intervals, every pulse energy can be reassociated with a

soliton pulse shape,

uq(z, t) =
√
Pq sech

[
(t− tq)− z/vq

Tq

]
exp[iφq] . (6.5)

All such pulse shapes are sampled with a certain temporal resolution to produce

instant power values along the fiber. These values are then used to compute the
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Figure 6.1: Probability density function of the peak power PDF(P ) for β3 = 0 at
1.5 km. The points (blue squares) denote the data while the solid (red) line shows
the fit with Eq. (6.6). The dashed black line is at the fitted value P0 = 31.4 W.

probability density function (PDF). In the following paragraphs, we will discuss the

above points in more detail.

6.2 Initial conditions: PDF(P)

As initial condition for the cascade model we compute the PDF of the soliton peak

power, Pq, in the gNLSE case β3 = 0. We select a distance of z = 1.5km such that

the system has stabilized (see inset of Fig. 3.2). We find that the resulting PDF(Pq)

can be described approximately by a Weibull distribution [38]

ρ(Pq) =
b

P0

(
Pq
P0

)b−1

exp

[
−
(
Pq
P0

)b]
, (6.6)

where P0 = 31.4 ± 0.6W and b = 1.69 ± 0.04 are fitting parameters. The PDF(Pq)

and its fit are shown in Fig. 6.1 . To calculate the probability distribution of the

peak power we solved the NLSE and then counted all the local maxima of |u|2 (see
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Figure 6.2: Intensity |u|2 as function of time in the case β3 = 0 at 1.5 km. The
results have been generated using the NLSE.

Fig. 6.2) in bin intervals of 4P = 2W. Our effective model aims to describe the

soliton part of the NLSE, hence to put more emphasis on the peaks rather than the

background the fit has been performed taking the log of the data and the log of

the fitting function (6.6). The value P0 can alternatively be estimated using energy

conservation. Indeed we start with a continuous wave (CW) power of PCW = 10W.

An average time between two peaks of ∆T = 0.170 ± 0.008 ps was measured from

the autocorrelation

Cz(τ) =

ˆ
dt′
[
|u(z, t′)|2 − 〈|u(z, t)|2〉t

]
·
[
|u(z, τ − t′)|2 − 〈|u(z, t)|2〉t

]
, (6.7)

shown in Fig. 6.3. In the above equation 〈〉t denotes the time average. Hence the

initial energy contained in the time window ∆T is Einit = PCW∆T = 1.70 pJ. At

distances when quasi-solitons have been created the average energy contained in ∆T ,

using Eq. (6.3) and Eq. (6.6), is
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Figure 6.3: Normalized time autocorrelation Cz(t)/Cz(0) for the NLSE in the case
β3 = 0 at 1.5 km. Cz(t) is calculated using Eq. 6.7.

Efinal =

ˆ ∞
0

2PqTq(Pq)ρ(Pq)dPq ' 1.796

√
|β2|P0

γ
. (6.8)

From energy conservation, Efinal = Einit, we find

P0 '
γ

|β2|

(
PCW∆T

1.796

)2

= 34± 3W. (6.9)

This is in agreement with the value P0 = 31.4 ± 0.6W found from the fit (6.6).

Note that the initial conditions have been calculated from the case β3 = 0 because

for β3 6= 0 the previous procedure is not possible. For β3 6= 0 the intensity has a

noisy signal of radiation in the background [28]. This radiation shows many local

maxima that are wrongly counted as solitons, therefore the calculated PDF(Pq) is

not exploitable to implement the CM (the CM describes the soliton part of the

optical field).
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6.3 Interaction: εeff calculation

In addition to the initial conditions for our effective model, we also need to know the

amount of energy transfer in the two quasi-soliton collision. In chapter 5 we showed

that most of the physics underlying the interaction can be captured by considering

the simple formula (5.12). The value of ε is yet undetermined while the dependence

on the group velocities and the phase difference it is clear. As shown in Fig. 5.2, Eq.

(5.12) provides an excellent description of the energy gain in pair-wise quasi-soliton

collisions. The parameter εβ2,β3,γ,P1,Ω1,P2,Ω2 depends on seven quantities, the individ-

ual power and frequency shift of each quasi-soliton pair and the three constants that

characterize the fiber. We want to model a system of many colliding quasi-solitons

as shown in Fig. 3.4(a). In order to devise a tractable model, εβ2,β3,γ,P1,Ω1,P2,Ω2 is

replaced with an effective εeff that describes the average properties of the interaction.

Our effective energy transfer becomes (6.4). To calculate εeff we choose a distance

z = 500m. At such length, well-developed quasi-soliton pulses exist (see traces in

Fig. 3.4(a)), but the situation is not yet RW dominated as shown in the PDF in

Fig. 3.2. We then use a trial value for εeff and apply Eq. (6.4) to all quasi-soliton

collisions in the cascade model and compute the PDFs. The calculation is repeated

again with another trial εeff . For different εeff , we compare the PDF created from

the cascade model with the PDF obtained from the gNLSE and choose εeff such that

the agreement is best, according to criteria defined below.

Since we are interested in RWs we want that agreement to be good in the tail region

of |u|2 > 150W (value beyond which the PDF shows fat tails according to Fig.

3.2), for this reason we "give a weight" to the PDFs by taking their logarithm. We

therefore define the relative variance

r(εeff) =

∑
i

[
log PDFgNLSE(|ui|2)− log PDFCM(|ui|2, εeff)

]2∑
i log [PDFgNLSE(|ui|2)]2

(6.10)

and minimize it with respect to εeff as shown in Fig. 6.4. The εeff at minimum is our

estimate with accuracy εeff

√
r(εeff). To further stress the link between energy trans-

fer and β3, in Fig. 6.5 we have plotted εeff calculated using this variance minimization

(red line) for the different β3 values.

As a second test, we perform a Kolmogorov-Smirnov (KS)-like two-sample test [38]

between the |u|2 histograms of the gNLSE and the CM. As we are looking at rare

events the standard KS is not suitable to compare the tails of distributions. For this
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Figure 6.4: Relative variance r (filled squares) and largest differenceD (open circles)
calculated for different values of εeff at β3 = 2.64 × 10−42s3m−1. Parabolic fits to
the data are shown as lines. The vertical dashed-dotted line denotes the estimated
εeff = (1.23± 0.05)fs/m at which r is minimal, the gray region indicates the error of
that estimate. The vertical dotted line denotes the estimate εeff = (1.32± 0.05)fs/m
from D.

purpose we renormalize the data count as Ñi = log(1 + Ni) with each i denoting a

|ui|2 bin and overall Ñ =
∑Nbins

i=1 log(1 +Ni). Hence the effective number of data is

given by

Ñe =
ÑgNLSEÑCM

ÑgNLSE + ÑCM

. (6.11)

Following the KS prescription, we calculated the cumulative density functions given

by

CDF(i) =

∑i
j=1 log(1 +Nj)∑Nbins
j=1 log(1 +Nj)

(6.12)

and minimize the quantity

D = max
i∈[1,Nbins]

|CDFgNLSE(i)− CDFCM(i)| (6.13)
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with respect to εeff as shown in Fig. 6.4. As usual, with λ = (

√
Ñe + 0.12 +

0.11/

√
Ñe)D, a KS-like accuracy can be given as

QKS(λ) = 2
∞∑
j=1

(−1)j−1e−2j2λ2
, (6.14)

although it should no longer be interpreted probabilistically since the data count

have been transformed according to Ni → log(1+Ni). The results for εeff calculated

using this KS-like test are also shown in Fig. 6.5 with QKS given for each β3 value.

In Fig. 6.4, we show the εeff dependence of the test while Fig. 6.6 displays the CDFs.

We have checked that similar results for εeff can be obtained by using z = 400m and

z = 600m as the starting point of the analysis (we observed variations of less than

4% in εeff). The value z = 500m was chosen because for smaller distances RWs are

not well-developed, conversely lager distances were not used because we wanted to

predict RW behavior for z > 500m.

Once εeff is determined, we use it to compute the results for the cascade model,

starting at z = 100m and "propagating" all the way to 1500m. We emphasize the

good agreement of the PDFs for z 6= 500m. As shown in Fig. 6.5 εeff depends on β3.

The transition from a regime without RWs to a regime with well pronounced RWs

appears rather abrupt. RWs emerge when β3 is large enough as shown in Fig. 6.5.

Their appearance is very rapid in a short range 0.8 . β3/2.64 × 10−42s3m−1 . 1.

This can be understood as follows: the dispersion relation, in the moving frame, is

β(ω) =
β2

2
(ω − ω0)2 +

β3

6
(ω − ω0)3. (6.15)

The anomalous dispersion region of β(ω) < 0, with soliton-like excitations, ends at

ωc − ω0 ≥ −3
β2

β3
(6.16)

beyond which β(ω) ≥ 0 and dispersive waves emerge, ωc is the critical frequency

at which the transition happens. From Eq. (6.3), we can estimate the typical RW

spectral width as

2(ωc − ω0) = 2π

√
γP

|β2|
. (6.17)

This leads to the condition

β3 ≥
3|β2|
π

√
|β2|
γP
≈ 0.9× (2.64× 10−42)s3m−1, (6.18)
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Figure 6.5: Effective coupling εeff values obtained comparing the PDF from the
gNLSE and the cascade model at distance z = 500m. Results for εeff calculated
using this variance minimization (red line), using the modified version of the KS test
(blue line) and the corresponding significance (green line). The black dotted line
indicates the prediction (6.18).

which is in very good agreement with the numerical result of Fig. 6.5. In Eq. (6.18)

the β3 threshold that leads to fibers supporting RWs depends on the peak power

P . In deriving the numerical estimate in (6.18) we have used an initial RW power

P ∼ 50W as appropriate after about ∼ 100m (see Fig. 6.2). Once such initial, and

still relatively weak RWs have emerged, the condition (6.18) will remain fulfilled

upon further increases in P due to quasi-soliton collisions, indicating the stability of

large-peak-power RWs. Our estimation of the effective energy-transfer cross-section

parameter εeff can of course be improved. However, we believe that Eq. (6.4) captures

the essential aspects of the quasi-soliton collisions already very well.
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Figure 6.6: CDFs for for the gNLSE (blue line) and for the cascade model (red line)
calculated for β3 = 2.64 × 10−42s3m−1 using the modified version of the KS test.
The dashed black line at 365.75 W corresponds to the value D .

6.4 Traces and PDFs

In Fig. 6.7 we show a representative result — a selected 15ps time range out of the

full ∼ 5×106 ps of |u(z, t)|2 calculated using the cascade model. As our initial condi-

tion we generated a list of quasi-solitons by randomly choosing the power levels Pq in

accordance with the statistics found in Eq. (6.6). The phases φq are drawn randomly

from a uniform distribution in the interval [0, 2π] and the frequency shifts Ωq have

been optimized, with the same procedure used for εeff , at the value Ωq = −0.1
√

γPq

β2
.

The density of quasi-solitons is ρ = 1/∆T = 5.88(ps)−1, namely the inverse of the

average time between two peaks observed in the correlation function (∆T = 0.17ps is

the average distance between two peaks in Fig. (6.3)). In the gNLSE quasi-solitons

emerge around 100m, to mimic this the cascade model only generates data from

100m onwards. As can be seen in Fig. 6.7 the small initial differences in the pulse

powers and velocities leads to eventual collisions of neighbouring pulses. Most colli-

sions are inelastic and energy is transferred from the quasi-soliton with less energy
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to the one with more energy leading to a cascade of incremental gains for the more

powerful quasi-soliton. Initial differences in energy of quasi-solitons become exac-

erbated over time and larger and larger quasi-solitons emerge. These accumulate

the energy of the smaller ones to the point that the smaller ones eventually van-

ish into the background. In addition, the group velocity of a quasi-soliton with

third-order dispersion is dependent on the power of the quasi-soliton. Thus, the

emerging powerful quasi-solitons feature a growing group velocity difference to their

peers. This increases their collision rate but because of Eq. (6.4) the energy transfer

diminishes and the process of RW formation tends to slow down. The relatively

few remaining, soliton-like pulses at 1500m can have peak powers exceeding 1000W.

They are truly self-sustaining rogues that have increased their power values by suc-

cessive interactions and energy exchange with less powerful pulses. Solving the CM

is much faster than the numerical integration of the gNLSE. Indeed, as we saw in

chapter 3 solving the gNLSE for ∼ 17 × 106 pulses requires a total run time of

∼ 30years ∼ 1.6 · 107minutes whereas for the CM we need a total run time of just

∼ 3 · 102minutes. The CM algorithm is a factor ∼ 5 · 104 faster than the split-step

Fourier method, if both algorithms are run on a single machine. The reason for this

huge difference is that, in the gNLSE simulation, for every step in space we need

to calculate two times a fast Fourier transform (ẑ and ẑ−1) for the full time win-

dow. This requires much more time than the CM approach where we just change

the energy of two solitons when they collide. Naturally the parellalized split-step

Fourier algorithm can be faster than the CM algorithm if an appropiate number of

processors is used.

The PDF for the complete set of ∼ 30×106 pulses propagating over 1500m is shown

in Fig. 6.8. At 100m, the PDF shows a roughly exponential distribution. After 500m,

a clear deviation from an exponential distribution has emerged and beyond 1000m,

the characteristic L-shape of a fully-developed RW PDF has formed. Starting with

an average power of 10W after 1.5Km there is a probability of ∼ 2× 10−6 to find a

RW with power between 999 and 1000W.

In the inset of Fig. 6.8, we compare the long tail behavior of PDFs for the CM and

gNLSE. We see that the agreement for PDFs is excellent taking into account that

we have reduced the full integration of the gNLSE to only discrete collision events

between quasi-solitons. The essence of the emergence of RWs in this system is very

well captured by a cascade increment of quasi-soliton power due to inelastic collisions.

We find that the results of the full gNLSE integration and the cascade model exhibit
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Figure 6.7: Intensity |u(z, t)|2 for β3 = 2.64 × 10−42s3m−1 of the effective cascade
model as function of the time t and distance z in a selected time frame of ∆t = 15ps
and distance range ∆z = 1.5km. Note that we start the effective model at z0 = 100m
to mimic the effects of the modulation instability in the gNLSE.

the same quantitative, long-tail PDF. This agreement highlights the importance

of (i) a resonance-like two-soliton scattering coupled with (ii) quasi-soliton energy

exchange in giving rise to RWs.
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Figure 6.8: PDFs of the intensity |u|2 from the the cascade model at β3 =
2.64 × 10−42s3m−1. The PDFs have been computed at distances z = 100m, 200m,
500m, 1000m and 1500m. The left vertical axis denotes the values of the normalized
PDF while the right vertical axis gives the event count per bin. The inset shows
a comparison between the results from the gNLSE (colored lines) and the cascade
model (black lines and symbol outlines) for z = 500m, 1000m and 1500m. Only
every 50th symbol is shown.

Summary

In this chapter, we proposed a cascade model for quasi-solitons with TOD, that is

able to generate RWs without the need of integrating the full gNLSE. The key points

of the chapter are:

• The cascade model require initial conditions that are taken from the gNLSE

integration. The initial probability density function of the peak power can be

modeled as

ρ(Pq) =
b

P0

(
Pq
P0

)b−1

exp

[
−
(
Pq
P0

)b]
,

where P0 = 31.4 ± 0.6W and b = 1.69 ± 0.04 are fitting parameters.

The initial time distance between two quasi-solitons was measured to be
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∆T = 0.170± 0.008 ps.

• The cascade model is implemented using an effective energy transfer

∆E1

E2
=

εeff

|v−1
1 − v

−1
2 |

sin2

(
φ

2

)
,

where the effective coupling εeff is calculated numerically.

• The effective coupling εeff presents an abrupt transition from a regime without

RWs to a regime with well pronounced RWs.

• The full gNLSE integration and the cascade model give the same quantitative

long-tail PDFs.
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Chapter 7

Further details and applications of

the cascade model

In the previous chapter we showed that the cascade model generates rogue waves.

In this chapter we present further results and details of the model. Section 7.1 is

dedicated to the effect of “calm before the storm” observed in both the CM and the

gNLSE. In section 7.2 we compare the autocorrelation functions of the two models.

The probability to become a rogue wave, calculated using the CM, is shown in section

7.3. Finally, in section 7.4 we discuss some attempts to fit rogue wave PDFs with

analytical functions.

7.1 Calm before the storm

RWs appear suddenly and can cause transmission errors and damage in optical com-

munication systems [7]. It is therefore important to characterize RW predictability

[15]. Looking more closely at the temporal vicinity of waves with particularly large

power values, we find that these tend to be preceded by a time period of reduced

power values. This “calm before the storm” phenomenon [15] can be observed in

Fig. 7.1. In Fig. 7.1(a) we can clearly see an asymmetry in the normalized power

〈|u(∆t)|2〉RW /〈|u(∆t)|2〉All relative to the RW event at ∆t = 0 (∆t < 0 denotes

events before the RW). The average 〈|u(∆t)|2〉RW includes RWs, defined here as

large power events above a threshold of 150W and also two independent simulations

of the gNLSE, both with parameters as in Fig. 3.4. The value 〈|u(∆t)|2〉All is the

average intensity of the full time window of integration (constant value of 10W).
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Figure 7.1: Normalized averaged powers 〈|u(∆t)|2〉RW /〈|u(∆t)|2〉All for times ∆t
in the vicinity of a RW event at ∆t = 0. Panel (a) and (b) correspond to distances
of 200m and 500m, respectively. Solid lines in both panels indicate averaged results
for two gNLSE runs (with parameters as in Fig. 3.4), while dashed lines show the
corresponding results for the cascade model. In both panels, we identify RWs as
corresponding to powers equal to or larger than 150W.
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The period of calm in power before the RW occurs lasts about ∆t = 1.5ps at z =

200m. It broadens for larger distances, but an asymmetry is retained even at 500m.

Physically, this effect can be understood as follows: a RW moves more slowly than

the non-RW solitons. Upon interaction with a soliton, the RW gains in energy, but

due to Eq. (6.3) and Eq. (6.2), slows down even more (see Fig. 3.4); the soliton,

having overtaken the RW, has lost some of its energy, therefore leading to a reduction

in intensity before the RW.

This finding is further supported by Fig. 7.1(b), where we note that the “calm before

the storm”, already observed for the gNLSE, is even clearer and more pronounced

for the cascade model. We observe strong oscillations away from ∆t = 0. These

describe the simple quasi-soliton pulses which we used to model u(t) in the cascade

model. For the gNLSE, these oscillations are much less regular, although still visible.

The time interval of the period of calm appears shorter in the cascade model while

the amplitude reduction is stronger. We note that the apparently more regular

oscillations in the cascade model at 200m is an artifact of our starting condition with

solitons chosen perfectly equidistant at z = 100m to reproduce the same density as

in the gNLSE.

We note that the “calm before the storm” phenomenon has meaning only in statistical

terms, i.e. when the average over many events is taken. When a single event is

consider, we can observe optical field fluctuations that create a period of calm not

followed by a RW (false positives). The phenomenon therefore can not be used to

predict RWs.

7.2 Autocorrelation function

The autocorrelation function is another quantity that allows to compare the CM with

the gNLSE. Physically, it is a measure of how a signal correlates with a delayed copy

of itself as a function of delay. It is useful in order to find repeating patterns such

as periodic peaks of intensity. Indeed, the reshaping of the autocorrelation is related

to the evolution of the field from a continuous wave to a peaked structure during

propagation along the fiber. Results are summarized in Fig. 7.2. In Ref. [15], the

authors studied RW events in three data sets, one from ocean waves and two based

on optical devices. They compute, e.g., the time-series autocorrelation function

Cz(τ) =
´
dt′
[
|u(z, t′)|2 − 〈|u(z, t)|2〉t

] [
|u(z, τ − t′)|2 − 〈|u(z, t)|2〉t

]
. In Fig. 7.2, we

show Cz(τ) for our gNLSE data as well as for the cascade model at various distances.
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Figure 7.2: Time autocorrelation Cz(t)/Cz(0) for the gNLSE (squares and solid lines)
and for the cascade model (dashed lines) at selected z values as indicated (β3 =
2.64× 10−42s3m−1). The circles with solid lines indicate the case β3 = 0.

At 100m quasi-solitons are clearly correlated because of the initial conditions in

both models, but from 200m onwards Cz(τ) is nearly zero after a small fraction of

picoseconds supporting the notion of largely independently traveling quasi-solitons

that interact only when in close spatial and temporal proximity. In agreement with

Ref. [15], we hence find a quick decay of Cz(t) after z > 100m which supports the

notion of well-separated individual quasi-solitons (cp. Fig. 7.2). Furthermore, the

agreement between gNLSE results and the cascade model is very good. Also, the

correlation Cz(τ) is close to what has been reported in Ref. [15].

7.3 Probability to become a rogue wave

One of the advantages of the cascade model is that we can keep track of every single

quasi-soliton. For example we can look at which pulses are more likely to absorb

energy from other pulses depending on their initial power. Fig. 7.3(a) shows the

probability that a pulse increases its power after a certain distance z as function of
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its initial power PI measured at 100m. Such probability has a sigmoid-like shape,

for low initial power it goes to zero and for high power it goes to one, at ∼44W the

probability is ∼50%. The probability has been computed as

Probability(PF > PI) =
NF

NI
, (7.1)

where NI the total number of pulses with initial power in the interval PI ± 1W

and NF is the number of the ones that have increased their power after a certain

distance z. The statistics has been performed with a total number of 109 pulses. In

Fig. 7.3(b) we show the transition power PT as function of β3. This value corresponds

to a 50% probability that a pulse increases its initial power. The power PT grows

with β3, i.e. for large TOD only the more powerful pulses gain energy. For β3 <

0.8 · 2.64 · 10−42s3m−1 the effective coupling εeff goes to zero (see Fig. 6.5) therefore

there is no energy transfer and PT cannot be defined.

Table 7.1: Values of the coefficients a , b and F0 needed to fit the various PDF(|u|2)
distributions from Fig. 3.2 at three representative distances z = 500 m, 1000 m and
1500 m, using (W) the Weibull function of Eq. (7.2), (F) the stretched exponential
of Eq. (7.4) and (P) the Pareto function as in Eq. (7.3). The reduced χ2 value is
also displayed.
Distance Model Fit a [W] b/10−1 F0/10−3 [W] χ2

500 m

gNLSE
W 4.0 ± 0.5 4.94 ± 0.15 1
F 9 ± 21 6 ± 3 8 ± 30 50
P 15 ± 0.3 28 ± 2 3700

cascade model
W 3.0 ± 0.5 4.60 ± 0.16 9
F 12 ± 3 6.3 ± 3 6 ± 2 1060
P 13 ± 3 26 ± 2 560

1000 m

gNLSE
W 0.9 ± 0.4 3.2 ± 0.2 4
F 8 ± 10 47 ± 10 4 ± 5 136
P 5.5 ± 2 15.7 ± 1.5 160

cascade model
W 0.7 ± 0.2 3.04 ± 0.14 11
F 11 ± 5 4.9 ± 0.4 2 ± 1 3400
P 4.6 ± 1.5 15.1 ± 1.2 660

1500 m

gNLSE
W 0.07 ± 0.03 2.1 ± 0.1 15
F 0.006 ± 0.001 2.1 ± 0.4 50 ± 70 240
P 1.0 ± 0.2 10.0 ± 0.5 64

cascade model
W 0.04 ± 0.01 1.94 ± 0.05 22
F 0.008 ± 0.016 2.1 ± 0.3 120 ± 140 490
P 0.55 ± 0.16 8.7 ± 0.5 6
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(a)

(b)

Figure 7.3: (a) Probability that a pulse increases its power after a certain distance
z as function of its initial power PI measured at 100m. The probability has been
computed for β3 = 2.64 × 10−42s3m−1 at distances z =300m, 400m, 500m, ..... ,
1500m. (b) Transition power PT that corresponds to a 50% probability that a pulse
increases its power after 1500m as function of β3.

72



7.4 Fitting the PDFs

In order to describe RW statistics the PDFs of Fig. 3.2 and Fig. 6.8 have been

fitted with functions that typically describe L-shaped probabilities [5]. We used the

Weibull function [15]

W (|u|2) = ba−b(|u|2)b−1 exp

[
−
(
|u|2

a

)b]
, (7.2)

and, following Ref. [64], a Pareto function

Q(|u|2) =
bab

|u|2(b+1)
. (7.3)

The fits are shown in Fig. 7.4(a) for the gNLSE and Fig. 7.4(b) for the CM. Every fit

has been performed taking the log of the PDF(|u|2) and the functions W (|u|2) and

Q(|u|2), the resulting coefficients are in Table 7.1. Our results suggest that while a

Weibull and Pareto fit are indeed possible for the tails, a systematic and consistent

variation of the fitting parameters with distance traveled is not obvious. While, e.g.,

the PDF for 200, 500 and 1500m as shown in Fig. 3.2 appears sub-exponential in the

tails, we find that the tail of the PDF for 1000m is super-exponential for z & 600m.

This means that typical functions, used to describe rare events, are unable to grasp

the evolution of optical RW PDFs.

We also fitted the tails of PDF(|u|2) with a stretched exponential

F (|u|2) = F0 exp

[
−
(
|u|2

a

)b]
. (7.4)

The fits are shown Fig. 7.5 from both the gNLSE and the CM. The resulting coeffi-

cients are given in Table 7.1. For all fits, the results are not convincing as documented

by the rather large χ2 values found. This hints towards a continuing development of

the shape of the PDF as the propagation continues.
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Figure 7.4: PDFs calculated for (a) the gNLSE and (b) the CM at 500, 1000 ad
1500m (β3 = 2.64 × 10−42s3m−1). The PDFs have been fitted using the Weibull
function of Eq. (7.2) (full black lines) and Pareto function of Eq. (7.3) (dashed black
lines).
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Figure 7.5: Fits for the cascade model (dashed black lines) and for the gNLSE (full
black lines) PDFs using the stretched exponential of Eq. (7.4).

Summary

In this chapter, we discussed further results obtained using the cascade the model

and the gNLSE. The main points of the chapter are:

• Rogue waves in both the gNLSE and the CM are preceded by a time period

of reduced power values.

• After an initial reorganization quasi-solitons become uncorrelated in both the

gNLSE and the CM supporting the notion that pulses interact only when in

close spatial and temporal proximity.
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• Using the CM we can keep track of every single quasi-soliton. We could,

for example, calculate the probability that a pulse increases its power after

a certain distance z as function of its initial power. Such probability has a

sigmoid-like shape.

• It is possible to fit the gNLSE and CM probability density functions but the

fitting parameters do not show a consistent variation with distance.

In the following chapter, we will show that the cascade model can be implemented

also when quasi-solitons exchange energy through Raman interaction.
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Chapter 8

Cascade Model for Raman term

In the previous chapters we have demonstrated that a simple cascade mechanism

allows the formation of rogue waves in the generalized nonlinear Schrödinger equa-

tion with third-order dispersion. In this chapter we show that a similar mechanism

generates rogue waves when the Raman term is considered (while β3 = 0). Sec-

tion 8.1 introduces quasi-solitons for the the gNLSE with Raman term. The energy

transfer is calculated in section 8.2. In section 8.3 we discuss the initial conditions

given as input for the cascade model. In section 8.4 we present the traces and PDFs

generated by the cascade model and compare them with the gNLSE results. Finally,

section 8.5 is dedicated to the effect of “calm before the storm” for the Raman case.

8.1 Quasi-solitons

Our starting point to study RWs with Raman interaction is the gNLSE

∂zu+
iβ2

2
∂2
t u− iγ|u|2u+ iγTRu∂t|u|2 = 0, (8.1)

where TR is the Raman term (see chapter 1 Eq. (1.18)), which is responsible for the

pulse self-frequency shift, a linear change of the pulse frequency with the propagation

distance [27].

To implement a cascade model we need to describe pulses of light in term of quasi-

solitons. The solution of Eq. (8.1), similarly to the case with TOD, can be approxi-

mated as a soliton-like pulse [26]

u(z, t) =
√
P sech

[
t− q
T

]
× exp

{
i

(
β2

2
Ω2 +

γP

2

)
z − iΩt− iC t2

2T 2

}
, (8.2)
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where P , T and C represent the amplitude, duration and chirp. The other two

parameters are the temporal shift q of the pulse envelope and the frequency shift Ω

of the pulse spectrum. The distance-dependence of the parameters can be obtained

using the momentum method [26, 87, 88]. This gives

dT

dz
=β2

C

T
,
dC

dz
=

(
4

π2
+ C2

)
β2

T 2
+

4γP

π2
,

dq

dz
=β2Ω,

dΩ

dz
=− 8

15

TRγP

T 2
z.

(8.3)

The equations can be solved for C = 0, resulting in

u(z, t) =
√
P sech

[
t− q
T

]
exp

[
i

(
β2

2
Ω2 +

γP

2

)
z − iΩt

]
, (8.4)

with T , Ω and q given by

T =

√
|β2|
γP

, (8.5)

Ω = − 8

15

TRγP

T 2
z, (8.6)

q = t0 −
4

15

TRγβ2P

T 2
z2, (8.7)

where t0 is the quasi-soliton initial temporal shift. Note that because Ω increases

linearly with z the temporal shift q of the quasi-soliton changes quadratically with

the distance. In Fig. 8.1 we compare the intensity |u(z, t)|2 of a pulse against the

theoretical prediction for the temporal shift Eq. (8.7). The simulation has been run

for soliton peak power P = 10W and Raman term TR = 0.0005ps. As we can see

the theoretical prediction for the temporal shift q is in good agreement with the

numerical results.

78



−0.1 0.0 0.1 0.2 0.3 0.4
t [ps]

0

100

200

300

400

500
z [

m
]

100

101

102

|u
|2  [

W
]

Figure 8.1: Intensity |u(z, t)|2 of a soliton with peak power P = 10W and Raman
term TR = 0.0005ps as function of the time t and distance z in a selected time
frame of ∆t = 0.6ps and distance range ∆z = 0.5km. The black line represents the
theoretical prediction (8.7) for the soliton temporal shift.

8.2 Energy transfer

Another ingredient of our cascade model is the energy transfer between quasi-solitons.

Fig. 8.2(a) shows a representative result for the collision of two pulses for Raman

term TR = 0.05ps and peak powers of 100W and 25W respectively. The intensity

|u(z, t)|2 is plotted as function of the time t and distance z. The initial phase dif-

ference between the two pulses is φ = 0.27π and the collision corresponds to the

maximum energy transfer ∆E1/E2 of ∼ 20% plotted in Fig. 8.2(b). As for the

case with TOD, we observe an energy transfer form the smaller to the larger quasi-

soliton. Fig. 8.2 shows ∆E1/E2 as function of the phase difference φ for various

initial powers P2. In comparison with the TOD case (cf. Fig. 5.2), ∆E1/E2 cannot

be approximated with a sin2(φ) and for P1 � P2 it becomes independent of φ.
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Figure 8.2: (a) Two soliton collision using Eq. (8.1) with TR = 0.0005ps. The
intensity |u(z, t)|2 is plotted as function of the time t and distance z. The phase
difference φ corresponds to the maximum energy transfer ∆E1/E2. (b) Energy
transfer ∆E1/E2 as function of the phase difference φ for various initial powers P2.
The power P1 is kept at the constant value of 100W.
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Following the same procedure used in Sec. 5.3, ∆E1/E2 can be written as

∆E1

E2
=

1

| v−1
1 − v

−1
2 |

∞∑
n=0

εβ2,TR,γ,P1,Ω1,P2,Ω2(n) cos [n(φ− φ0)] . (8.8)

For scattering in presence of RWs, P1 � P2, the energy transfer is φ independent

and the series (8.8) can be stopped at zero order. Thus we can write

∆E1

E2
=
εβ2,TR,γ,P1,Ω1,P2,Ω2(0)

|v−1
1 − v

−1
2 |

. (8.9)

The parameter εβ2,TR,γ,P1,Ω1,P2,Ω2(0) depends on seven quantities, the individual

power and frequency shift of each quasi-soliton and the three fiber parameters. In

order to devise a tractable model, as done for the TOD, εβ2,TR,γ,P1,Ω1,P2,Ω2(0) is re-

placed with an effective εeff that describes the average properties of the interaction

of a many quasi-soliton system. Our effective energy transfer becomes

∆E1

E2
=


K for εeff

|v−1
1 −v

−1
2 |

> K ,

εeff

|v−1
1 −v

−1
2 |

for εeff

|v−1
1 −v

−1
2 |
≤ K .

(8.10)

The cut-off K has been introduced because the term 1/|v−1
1 − v−1

2 | in the energy

transfer diverges for v1 = v2 and can produce the unphysical result ∆E1/E2 > 1.

This artifice is necessary for the Raman case because at z = 0 all quasi-solitons have

velocity v−1 = dq
dz = 0 and when two pulses scatter for the first time at a point

z → 0 we have |v−1
1 − v−1

2 | → 0. As for the case with TOD, we calculate εeff and

K minimizing the relative variance r(εeff ,K) of the PDFs (cf. Sec. 6.3). Unlike for

the TOD case, we choose a distance z = 300m to calculate r(εeff ,K), that because,

as we will see later, the process of RWs formation is faster for the Raman term

than for TOD. The optimized values for εeff and K are εeff = (0.85 ± 0.03)ps/m

and K = 0.099 ± 0.004. Note that the energy transfer in the Raman case (Eq.

(8.10)) differs from the energy transfer in the TOD case (Eq. (6.4)). Such difference

depends on the value of the coefficients ε(n) of Eq. (8.8). Unfortunately we do not

know how to calculate the ε(n) analytically therefore we cannot give an explanation

for their values, we can only consider the ε(n) as input parameters of our model to

be determined empirically.
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8.3 Initial conditions: PDF(P)

As initial condition for the cascade model we computed the PDF of the soliton peak

power P , integrating the gNLSE with Raman term up to a distance z = 100m. We

approximated the resulting initial PDF(P ) with the distribution

ρ(P ) =
a

log(1 + exp(ab))

1

1 + exp(a(P − b))
, (8.11)

where a = (0.314± 0.002)W-1 and b = (65± 3)W are fitting parameters. The initial

PDF(P ) and its fit are shown in Fig. 8.3(a). Our effective model aims to describe

the soliton part of the gNLSE, hence to put more emphasis on the peaks rather than

the background the fit has been performed taking the log of the data and the log of

the fitting function (8.3). As shown in Fig. 8.3(a), the fit is in good agreement with

the data on the tails (P > 60W) but we see differences towards low powers. Despite

Eq. (8.11) not being a perfect approximation for the initial PDF(P ), as shown in

Fig. 8.3(b), the cascade model generates a PDF(|u|2) that is in good agreement with

the gNLSE results.

8.4 Traces and PDFs

In Fig. 8.4(a) and (b) we show a representative result — a selected 10ps time range

out of the full ∼ 2.5 × 105 ps — of |u(z, t)|2 calculated using the gNLSE with

Raman term and the cascade model respectively. As initial condition for the cascade,

we generated a list of quasi-solitons by randomly choosing the power levels P in

accordance with the statistics found in Eq. (8.11). The phases φ are drawn randomly

from a uniform distribution in the interval [0, 2π] and the quasi-solitons trajectories

are calculated accordingly to Eq. (8.7) . The density of quasi-solitons is ρ = 1/∆T =

4.5/ps, namely the inverse of the average time between two peaks observed in the

correlation function. In the gNLSE quasi-solitons emerge around 100m, to mimic this

the cascade model only generates data from 100m onwards. In Fig. 8.4 we observe

a behavior similar to the TOD case, colliding quasi-solitons that exchange energy.

Most collisions are inelastic and energy is transferred from the quasi-soliton with

less energy to the one with more energy leading to a cascade of incremental gains for

the more powerful quasi-soliton. Initial differences in energy of quasi-solitons become

exacerbated over time and larger and larger quasi-solitons emerge. These accumulate
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the energy of the smaller ones to the point that the smaller ones eventually vanish

into the background.
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Figure 8.3: (a) Probability density function of the peak power PDF(P ) for TR =
0.0005ps at 100m. The blue squares denote the data while the solid (red) line shows
the fit with Eq. (8.11). (b) PDFs of the intensity |u|2 for the NLSE+Raman term
(blue squares) and the cascade model (red line) at z = 100m.
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For the TOD case, the group velocity of a quasi-soliton depends on the peak power.

Raman quasi-solitons change their group velocity not only because of the change in

peak power but also because of the self-frequency shift dependence on the distance

as predicted by Eq. (8.6). This spontaneous acceleration of quasi-solitons allows the

system to create rogue waves at higher rate than in the TOD case. Indeed, for the

Raman case, we observe peak powers exceeding 1000W already at 500m rather than

at 1500m like for the TOD (cf. Fig. 3.4).

The probability density function (PDF) for the complete set of ∼ 55 × 103 pulses

propagating over 500m is shown in Fig. 8.5 for selected distances. The results are

very similar to the TOD case, after 100m, the PDF shows a roughly exponential

distribution, but the characteristic L-shape of a fully-developed RW PDF appears

already at 400m rather than at 1000m (cf. Fig. 3.2). Starting with an average

power of 10W after 500m there is a probability of ∼ 5 × 10−5 to find a RW with

power 1000W. In Fig. 8.5 we compare the PDFs for the CM and the gNLSE. The

agreement for the PDFs is not as good as for the TOD case, but the cascade model

can still capture the essence of the emergence of rogue waves. The disagreement is

more pronounced at early stages, then at 500m the two model show similar results.

Such behavior is presumably due to the quasi-soliton acceleration in the Raman

case. Indeed, because the dynamics is accelerated, small differences in the initial

conditions produce large differences at long distances. After a certain distance the

process of RW formation has stabilized, acceleration is not important anymore in

energy exchange and the gNLSE and CM produce again similar PDFs. Note that

Eq. (8.10) is an approximation of the real energy transfer and therefore the two

quasi-soliton scattering is not modeled in all its details. Our results can only be

improved with a better theory of the two quasi-soliton scattering, which has not

beed developed yet [22–25].
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(a)

(b)

Figure 8.4: (a) Intensity |u|2 of the NLSE+Raman term as function of the time t and
distance z in a selected time frame of ∆t = 10ps and distance range ∆z = 0.5km.
(b) Intensities |u|2 as computed from the effective cascade model with Raman term
using the same shading/color scale as in (a). Note that we start the effective model
at z0 = 100m to mimic the effects of the modulation instability in (a).
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Figure 8.5: PDFs of the intensity |u|2 for the NLSE+Raman term (colored squares)
and the cascade model (colored squares with black edges). The PDFs have been
computed at distances z = 100m, 200m, 300m, 400m and 500m.

8.5 Calm before the storm for Raman interaction

In chapter 7 we saw that in an optical fiber with TOD, RWs are preceded by a

time period of reduced power values. We observe the same “calm before the storm”

phenomenon for the Raman interaction, at list for the gNLSE calculation. In Fig.

8.6 we can see an asymmetry in the normalized power |u(∆t)|2/〈|u(∆t)|2〉 relative
to the RW event at ∆t = 0 (∆t < 0 denotes events before the RW). The average

includes all RWs, defined here as large power events above a threshold of 150W. Fig.

8.6 (a) and (b) correspond, respectively, to the gNLSE and CM results. In both

models at z = 200m the period of calm lasts about ∆t = 0.75ps and the intensity is

reduced of more than 60%. At z = 300m the two models behave differently. For the

gNLSE case we can still observe a clear asymmetry with “missing energy” preceding

the RW.
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(a)

(b)

Figure 8.6: Normalized averaged powers |u(∆t)|2/〈|u(∆t)|2〉 for times ∆t in the
vicinity of a RW event at ∆t = 0, computed at distances 200m, 300m, 400m and
500m. Panel (a) and (b) correspond respectively to the gNLSE and CM when Raman
interaction is considered. In both panels, we identify RWs as corresponding to powers
equal to or larger than 150W.
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In the CM case the intensity before the RW peak is actually shallower than after the

event, though the depth lasts for a longer time and therefore there is more “missing

energy” on the left than on the right of the event. From z = 400m in both cases the

normalized intensity starts to became symmetric around the RW.

Summary

In this chapter, we used the cascade model to study rogue waves in the case of

Raman interaction. The key points of the chapter are:

• The gNLSE with Raman term has quasi-soliton solution. The optical field of

such pulses can be approximated by

u(z, t) =
√
P sech

[
t− q
T

]
exp

[
i

(
β2

2
Ω2 +

γP

2

)
z − iΩt

]
,

with T =
√
|β2|
γP , Ω = − 8

15
TRγP
T 2 z and q = t0 − 4

15
TRγβ2P
T 2 z2.

• The cascade model for Raman interaction is implemented using an effective

energy transfer

∆E1

E2
=


K for εeff

|v−1
1 −v

−1
2 |

> K ,

εeff

|v−1
1 −v

−1
2 |

for εeff

|v−1
1 −v

−1
2 |
≤ K ,

where the effective coupling εeff and the cut-off K are calculated numer-

ically.

• The cascade model require initial conditions that are taken from the gNLSE

integration. The initial probability density function of the peak power can be

modeled as

ρ(P ) =
a

log(1 + exp(ab))

1

1 + exp(a(P − b))
,

where a = 0.314 ± 0.002W-1 and b = 65 ± 3W are fitting parameters.

The density of quasi-solitons was measured to be ρ = 1/∆T = 4.5/ps.

• The full gNLSE integration and the cascade model with Raman term produce

long-tail PDFs. Although the agreement between the two methods is not per-

fect, the cascade model can still capture the essence of the emergence of rogue

waves.
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• As for the TOD case, when Raman interaction is considered rogue waves are

preceded by a time period of reduced power values.

In the next chapter, we propose an experiment to comprehend the underling physics

governing quasi-soliton energy transfer.
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Chapter 9

Experimental proposal for soliton

interaction

In the previous chapters we have shown that quasi-solitons exchange energy in the

gNLSE with TOD or Raman term. In this chapter we propose an experimental setup

to study collision-induced soliton amplification. In an optical fiber with anomalous

dispersion (β2 < 0), we replace a small region of the fiber with a normal dispersion

fiber (β2 > 0). We show that solitons colliding in this region are able to exchange

energy. In section 9.1 we describe the experimental setup. The analytical model

used for the simulation is introduced in section 9.2. In section 9.3 we discuss the

numerical results obtained from the simulation, especially we will focus on the energy

transfer between solitons. Section 9.4 explains how our device can be exploited for

soliton amplification in optical fiber systems. Finally, in section 9.5 we propose a fit

for the energy transfer function.

9.1 Experimental setup

Energy transfer in pairwise soliton collisions usually requires the additional presence

of TOD [78, 90] or Raman term [62–64, 92] in the NLSE. In this chapter, we describe

a dispersion map that leads to inelastic soliton collisions without any such additions.

Consider a fiber with standard anomalous dispersion in which two solitons, with

different group velocities, propagate as stable pulses and eventually collide. The trick

is now to replace the section of the fiber, where the soliton collision takes place, with

a section of normal dispersion fiber (cf. Fig. 9.1). In the normal dispersion regime,
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Figure 9.1: Schematic representation of the optical fiber used for the thought exper-
iment. The horizontal fiber is indicated in blue. The light blue region corresponds to
the anomalous-dispersion fiber (β2 < 0) while the normal-dispersion fiber (β2 > 0)
of length δ is indicated in dark blue. The light propagation direction is indicated by
a thin horizontal line including the point of collision z0.

the solitons are unstable, hence able to exchange energy under collision. Keeping

this normal dispersion section short avoids excessive pulse-width broadening which

would otherwise destroy the solitons. We optimize the dispersion map to maximize

energy transfer between the solitons while keeping the disturbance of the soliton

shape as small as possible. Hence two stable solitons emerge into the anomalous

dispersion regime and continue to propagate.

9.2 The model

To model the situation proposed above, we use the NLSE [26] with a dispersion map

β2(z)

∂zu+
iβ2(z)

2
∂2
t u− iγ|u|2u = 0. (9.1)

Here u(z, t) is the pulse envelope, z is the distance of propagation, t is the time in

the frame moving with the average group velocity of the carrier wave and γ the non-

linear coefficient. The dispersion β2(z) is equal to a constant β2 > 0 in the region[
z0 − δ

2 , z0 + δ
2

]
and equal to −β2 elsewhere; δ denotes the length of the normal

(β2 > 0) fiber symmetrically around the point of collision z0. We start with an

initial condition consisting of two solitons at z � z0, such that we can write initially

u (z, t) =
√
P 1sech

(
t− t1
T1

)
e−iΩ1t +

√
P 2sech

(
t− t2
T2

)
e−iΩ2t+iφ. (9.2)

The two pulses have a relative phase difference φ, and are characterized by power

Pi, temporal shift ti and frequency shift Ωi for each pulse i = 1, 2. From these initial
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conditions we can calculate their inverse velocity v−1
i = β2Ωi, period Ti =

√
|β2|
γPi

and

energy Ei = 2PiTi. Note that Eq. (9.1) can be derived from Maxwell’s equations

assuming that the linear polarization PL is space dependent (see section 1.2), but

we do not get extra terms, beside the standard NLSE terms, because the Maxwell’s

equations contain only time derivatives of PL.

9.3 Numerical results

Fig. 9.2 (a) and 9.2 (b) show representative results for the collision of two solitons for

the experimental setup described in Fig. 9.1. The intensity |u|2 is plotted as function

of time t and distance z. The initial conditions in both collisions are identical apart

from the relative phase φ between the two solitons, in (a) φ = 0.13π and in (b) φ =

1.87π. The initial power and frequency are P1 = 100W, Ω1 = −10THz, P2 = 70W

and Ω2 = −6THz. The length δ of the optical fiber with normal dispersion is 0.6m.

The optical fiber specifications are |β2| = 0.01ps2m−1 and γ = 0.003W−1m−1.

In Fig. 9.2, a first soliton (100W) collides with a second soliton (70W). After the

collision both solitons emerge with peak power different from the initial one. In Fig.

9.2 (a) energy is transferred from the second to the first soliton, the emerging pulses

have peak power of ∼ 138W and ∼ 24W respectively, the first soliton has gained 38W

in amplitude. In Fig. 9.2 (b) we observe the opposite behavior, the emerging pulses

have peak power of ∼ 50W and ∼ 73W respectively, although in this case the second

soliton gains just 3W and half of the power of the first soliton is radiated. In Fig. 9.3

(b) we show the maximum peak power of Fig. 9.2 (a) in order to highlight details of

the process. The initial peak value is 100W, then after the collision it oscillates and

slowly dampens to the value 138W when away from the collision region. This peak

power mostly corresponds to the value of the first soliton.
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Figure 9.2: Two soliton collision for the experimental setup described in Fig. 9.1. The
intensity |u|2 is plotted as function of time t and distance z. The phase difference φ
corresponds to (a) the maximum and (b) minimum energy transfer ∆E1/E2 plotted
in Fig. 9.3 (a). The horizontal blue line indicates the point of collision z0 in the
normal-dispersion fiber.
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(a)

(b)

Figure 9.3: (a) Energy transfer ∆E1/E2 as function of the phase difference φ for
various lengths δ of the normal-dispersion fiber. (b) Maximum peak power (contin-
uous blue line) as function of the distance z, calculated for the intensities in Fig. 9.2
(a). The dotted red line indicates the average power of 138W after the collision.
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The numerical experiment confirms our hypothesis, instability leads to soliton energy

exchange. We note that energy transfer occurs without TOD and Raman term

[90, 92]. The artificial instability, due to the change of sign in the second order

dispersion term, is sufficient to mimic the effect of higher order terms for the two

soliton collision.

To determine the influence of the phase difference φ and the length δ on the energy

transfer, we studied collisions varying these two parameters. For each value of φ and

δ, we calculate the percentage of energy transfer ∆E1/E2, from soliton 2 to soliton 1.

Fig. 9.3 (a) shows the result of these calculations. The energy transfer changes with

φ, it can be positive or negative meaning that energy can go from the second soliton

to first one and vice versa. The local maximum and minimum are at φ = 0.13π

and φ = 1.87π respectively. The maximum value of ∆E1/E2 corresponding to the

collision in Fig. 9.2 (a) is ∼ +22%, the minimum corresponding to the collision in

Fig. 9.2 (b) is ∼ −35%. This asymmetry towards the minimum is an indication of

energy loss and can be understood as energy that is radiate during the scattering

process. The energy transfer increases with δ and it is null when δ is zero, confirming

that the unstable region is fundamental for the process to occur.
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Figure 9.4: Experimental setup for two consecutive amplifications. One normal-
dispersion segment is placed at every point of collision. The colors are chosen as in
Fig. 9.1.

9.4 Optical amplification

The above results show that the system in Fig. 9.1 is an amplification device. Partic-

ularly, assembling many of such devices in series, a soliton can be amplified several

times. For example, with three initial solitons and two devices in series as in Fig.

9.4 , we get the amplification shown in Fig. 9.5 (a).

In this case a first soliton (100W) collides with a second (70W) and then a third

soliton (70W) absorbing energy at every collision. The first soliton emerges with an

amplitude of ∼138W from the first collision and an amplitude of ∼178W from the

second collision as shown in Fig. 9.5 (b). The initial phase differences are chosen

so that the energy transfer is maximized at every scattering. In principle, there is

no limit to the number of amplification devices that can be assembled and the early

soliton can be amplified at every collision as long as it has a certain phase difference

with the other colliding pulses.
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(a)

(b)

Figure 9.5: (a) Intensity |u|2 plotted as function of time t and distance z for a
three soliton collision process. An early soliton (starting at z = 0 m and t = 4
ps) is amplified twice in consecutive collisions. The horizontal blue lines indicate
the points of collision in the normal-dispersion fiber. (b) Maximum peak power
(continuous blue line) as function of the distance z, calculated for the collisions in
(a). The dotted red and green lines indicate the average power of 138W and 178W
after the first and second collision respectively.
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Figure 9.6: Energy transfer ∆E1/E2 as function of the phase difference φ and the
length δ. The data points represents result of the simulations while the lines denote
the fit according to Eq. (9.3).

9.5 Fit for the energy transfer function

For the collisions in Fig. 9.2 and 9.3 we used two solitons with initial powers P1 =

100W and P2 = 70W. When P2 � P1, the energy transfer can be approximated as

4E1 = εL + εT sin (φ− φ0) , (9.3)

where εL, εT and φ0 are coefficients to be fitted. Fig. 9.6 shows a representative result

for P1 = 100W and P2 = 10W. The data points represent results of the simulations

while the lines denote a fit with (9.3). The fit coefficients depend on the parameters

{δ, β2, γ, P1, Ω1, P2, Ω2}. (9.4)
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A dimensional analysis shows that εL and εT can be written in the form

εL = g1γδ
λ1 |β2|λ1−1 (∆Ω)2λ1−3 P η1

1 P 2−η1
2 , (9.5)

εT = g2γδ
λ2 |β2|λ2−1 (∆Ω)2λ2−3 P η2

1 P 2−η2
2 . (9.6)

The coefficients g1 and g2 are dimensionless. Note that λ1, η1, λ2 and η2 are di-

mensionless by construction and ∆Ω = |Ω1 − Ω2|. In order to fit Eq. (9.5) and

(9.6), we have calculated the energy transfer for a number of initial conditions by

varying the set of parameters (9.4). We find the following values for the fit coeffi-

cients g1 = −2.74 ± 0.08, λ1 = 1.67 ± 0.02, η1 = 1.417 ± 0.007, g2 = 3.01 ± 0.19,

λ2 = 1.13± 0.04 and η2 = 1.529± 0.015. Fig. 9.7 and 9.8 show the fits of εL and εT
using Eq. (9.5) and (9.6). The six dimensional fits are projected into two dimension

at constant values δ = 0.5m, |β2| = 0.02ps2m−1, γ = 0.002W−1m−1, P1 = 100W,

Ω1 = −10THz, P2 = 10W and Ω2 = −5THz. The multidimensional fit and the

numerical results are in an overall good agreement. While a fit using rational ex-

ponents such as λ1 = λ2 = η1 = η2 = 1.5 (or λ1 = η1 = η2 = 1.5 and λ2 = 1) is

possible, the results are much worse.
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Figure 9.7: Functional dependence of εL on each of the six parameters given by Eq.
(9.4). The data points represents numerical results of Eq. (9.1) while the red lines
denote the fit (9.5), the pink region indicates the 68% confidence level on the fit.
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Figure 9.8: Functional dependence of εT on each of the six parameters given by Eq.
(9.4). The data points represents numerical results of Eq. (9.1) while the red lines
denote the fit (9.6), the pink region is as in Fig. 9.7, indicating the 68% confidence
levels.
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Summary

In this chapter, we proposed an experimental setup to study the underling physics

governing soliton energy transfer. The main points of the chapter are:

• The experimental setup consists in a dispersion map between an optical fiber

with anomalous dispersion (β2 < 0) and a normal dispersion fiber (β2 > 0).

This can be modeled as

∂zu+
iβ2(z)

2
∂2
t u− iγ|u|2u = 0,

where the dispersion β2(z) is equal to a constant β2 > 0 in the region[
z0 − δ

2 , z0 + δ
2

]
and equal to −β2 elsewhere.

• Our numerical experiment indicates the energy transfer between two unstable

bright solitons in the normal-dispersion regions of a fiber. The energy gain

that can exceed 20% for each collision.

• The width δ of the normal dispersion region is important for the process to

occur, as well as the phase difference φ between the two solitons.

• The device in Fig. 9.1 can be exploited for soliton amplification in optical fiber

systems.

We want to highlight that the device in Fig. 9.1 can be built in a real world lab-

oratory and our predictions for the energy transfer (Fig. 9.3 (a)) can be verified

experimentally.
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Conclusions

In this work we have examined several aspects of rogue wave formation and quasi-

soliton interaction in optical fibers. Our results emphasize the crucial role played

by quasi-soliton interactions in the energy exchange underlying the formation of

RWs via the proposed cascade mechanism. While interactions are known to play an

important role in RW generation [62–65, 93–99], the elucidation of the full cascade

mechanism including its resonance-like quasi-soliton pair scattering and details such

as the "calm before the storm", might be essential ingredients of any attempt at

RW predictions [78, 100]. In addition, these features are quite different from linear

focusing of wave superpositions [17–21] and allow the experimental and observational

distinction of both mechanisms.

RWs emerge when β3 is large enough and their appearance is very rapid in a short

range 0.8 . β3/2.64 × 10−42s3m−1 . 1. Though, in chapter 6, we could analyti-

cally estimate a transition value of β3 ≈ 0.9 × (2.64 × 10−42)s3m−1 using stability

arguments, the full analytical dependency of εeff on the other parameters remains

unknown. We attempted to calculate the energy transfer analytically but, because

of the non-linearity of the problem, standard perturbative approaches fail to give a

solution [101].

We find that simulations of the gNLSE with β3 = 0 but including an added Raman

term also affirm the essential role of quasi-soliton collisions and are also well described

by the cascade model. Unfortunately a quasi-soliton solution is not known for the

complete gNLSE (all terms considered at the same time) [102, 103], therefore we

could not verify the cascade model in the more general case. This front requires more

analytical research which it is not an easy task given the intrinsic not integrability

of the problem.

Up to now, we have used the term RW only loosely to denote high-energy quasi-

solitons as shown in Figs. 3.4 and 3.2. Indeed, a strict definition of a RW is still an
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open question and qualitative definitions such as a pulse whose amplitude (or energy

or power) is much higher than surrounding pulses are common [5]. Our results now

suggest, in agreement with recent work [5], a quantifiable operational definition at

least for normal waves in optical fibers described by the gNLSE: a large amplitude

wave is not a RW if it occurs as frequently as expected for the PDF at β3 = 0 (cp.

Fig. 3.2). We emphasize that both high spatial and temporal resolution are required

to obtain reliable statistics for RWs in optical fibers.

We find that RWs are preceded by short periods of reduced wave amplitudes. This

“calm before the storm” has been observed previously [15] in ocean and in optical

multifilament RWs, but not yet in studies of optical fibers. We remark that we first

noticed the effect in our cascade model, before investigating it in the gNLSE as well.

This highlights the usefulness of the cascade model for qualitatively new insights

into RW dynamics.

Last, we showed that a suitable dispersion engineering for NLSE even without TOD

or Raman term could destabilize the solitons and lead eventually to the formation of

RWs. Our numerical experiment indicates the energy transfer between two unstable

bright solitons in the normal-dispersion regions of a fiber. We find that the width

δ of the normal dispersion region is crucial for the process to occur, as well as the

phase difference φ between the two solitons. Our experimental proposal can have

fundamental implications in the field of soliton interaction and rogue wave generation

[42, 90] and the device in Fig. 9.1 can be exploited for soliton amplification in optical

fiber systems. We highlight that the device in Fig. 9.1 can be built in a real world

laboratory and our predictions for the energy transfer (Fig. 9.3 (a)) can be verified

experimentally. In this regard we finish quoting the physicist Richard Feynman [104]:

“It doesn’t matter how beautiful your theory is, it doesn’t matter how

smart you are. If it doesn’t agree with experiment, it’s wrong.”
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