

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/112008

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk

A Complexity Theory of
Parallel Computation

Ian Parberry

A dissertation submitted for the degree of
Doctor of Philosophy

University of Warwick
Department of Computer Science

May 1984

Dedicated to my wife and my parents,
without whose support and encouragement

this work would not have been possible.

Contents.

Chapter 1: Introduction .. 1

Chapter 2: Designing a Parallel Machine Model .. 9
2. 1. The Basic Model .. 10
2.2. The Unit-Cost Measure of Time .. IS
2.3. The Assignment of Programs to Processors 18
2.4. Processor Activation .. 22

Chapter 3: Relationships with Other Models ... 27
3.1. A Fixed-Structure Model .. 28
3.2. Shared Memory Machines .. 32
3.3. Reasonableness and Practicality .. 35
3.4. A Practical Model ... 40
3.5. Speedup of Sequential Machines .. 44

Chapter 4: Programming Techniques for Feasible Networks 49
4.1. Interconnection Patterns and Programming Tools 50
4.2. Recurrent Interconnection Patterns 56
4.3. Some Useful Algorithms ... 62
4.4. Reducing the Number of Processors 67

Chapter 5: Practical Simulations ... 76
5.1. A General Simulation Theorem .. 77
5.2. A Universal Parallel Machine ... 82
5.3. A Hardware Measure .. 85
5.4. Circuits and Turing Machines .. 96

Chapter 6: High-Arity Machines 100
6.1. A High-Arity Model 101
6.2. The Computational Power of High-Arity Machines 103
6.3. A Constant-Degree Universal Machine 109
6.4. Examples of High-Arity Algorithms ... 113

Chapter 7: More on Universal Machines .. 120
7.1. Some Lower Bounds ... 120
7.2. A Non-Literal Simulation .. 126
7.3. Oblivious Simulations ... 129

Chapter 8: Conclusion ... 138

References .. 140

Diagrams.

Figure 2.4.1 ... 24
Figure 4.1.1 ... 52
Figure 4.1.2 .. 53
Figure 4.1.3 .. 55
Figure 4.2.1 .. 59
Figure 5.3.1 ... 87
Figure 5.3.2 .. 88
Figure 8.2.1 104
Figure 8.2.2 .. 106
Figure 6.4.1 115
Figure 6.4.2 117
Figure 6.4.3 .. 119

Tables.

Table 2.4.1 26
Table 4.3.1 63
Table 4.3.2 65
Table 4.3.3 66
Table 4.3.4 67
Table 5.1.1 81
Table 5.1.2 81
Table 6.2.1 107
Table 6.4.1 116
Table 6.4.2 ... 119

Acknowledgements.

1 would like to thank my supervisor. Mike Paterson, for his expertise

and guidance during all stages of this work. 1 would be satisfied if it

could be said that the technical content comes close to meeting his

exceptionally high standards for conciseness, clarity and elegance. 1

am grateful to a number of people who helped keep me up-to-date with

the latest developments in parallel complexity theory by sending

manuscripts and correspondence. These Include Allan Borodin. Patrick

Dymond, Zvl Galil. Tom Leighton Frtedhelm Meyer auf der Heide. Nick

Pippenger. Uzi Vishkin and Avi Wlgderson. The Commonwealth Scholar­

ship Commission, via their awarding body in Australia, provided the

financial support which enabled me to travel to England and undertake

this degree. Finally. 1 would like to> thank Tony Cohn for assistance with

typesetting problems. Rod Moore for the loan of drawing equipment,

and Meurlg Beynon for the use of his office while preparing this

manuscript.

Declaration

In the interests of rapid dissemination, preliminary versions ot the results

in section 4.4, chapter 5 and sections 8.1*6.3 have been published as internal

Theory of Computation Reports. Material from chapters 4, S and 6 can be found

in [51], [50] and [52] respectively.

Summary.

Parallel complexity theory is currently one of the fastest growing fields of
theoretical computer science. This rapid growth has led to a proliferation of
parallel machine models and theoretical frameworks. Our aim is to construct a
unified theory of parallel computation based on a network model. We claim that
the network paradigm is fundamental to the understanding of parallel computa­
tion. and support this claim by providing new and Improved theoretical results,
and new approaches to old questions concerning "reasonable" and "practical"
models.

This thesis is made up of eight chapters. Chapter 1 contains the introduc­
tion. In chapter 2 we define the basic model, and justify our choice of a unit-
cost measure of time, a uniform assignment of programs to processors, and
simultaneous processor activation. Chapter 3 compares the network model to a
variety of others, including ' fixed-structure networks and shared-memory
machines. We explore the concepts of "reasonableness” and "practicality" in
parallel machine models, and show that even "reasonable" parallel computers
are much taster than sequential ones. ------

Chapter 4 is devoted to programming techniques for a "practical” network
model, (which we call a feasible network), covering interconnection patterns,
useful algorithms, and some processor-saving theorems. In chapter 5 we find
efficient simulations of the general network model on more practical machines,
including a universal feasible network, and uniform circuits. Chapter 6 extends
the network model, and defines a new resource, that of arify. Although increas­
ing arlty Increases computing power, some efficient constant-arity universal
machines are found. Chapter 7 takes a final look at universal networks, concen­
trating on lower-bounds and the conditions under which they hold. Chapter 6
contains the conclusion.

-1 -

Chapter 1
Introduction

As recently aa I960. Schwartz [62] complained of an apparent lack of

theoretical reaulta concerning the computational complexity of parallel or

concurrent algorithma.

"In the aerial caae, the deeign o f algorithms haa come to be illuminated by a

growing body of thecretieal knowledge concerning the ultimate limits of algorithm

performance.... Until a like body of theoretical knowledge has been developed for

highly concurrent algorithms, we will have little basis for judging the extent to

which a given concurrent approach can be improved."

Two of the most important and fundamental papers in the field of parallel

complexity theory (that of Goldschlager [23], later to become [27], and that of

Plppenger [S3]) had already appeared by the time Schwartz’s paper reached

publication Since then the flow of results has increased from a trickle to a

steady stream, and is now threatening to become a flood. Today, parallel

complexity theory must be ranked as one of the fastest-growing fields of

theoretical computer science.

A theoretical treatment of parallel computation is an attempt to formalize

the intuitive concept of a "parallel computer" based on practical experience or

reasonable expectations. Amongst the questions which should be addressed by

such a formal exposition are the following:

What do we mean by a parallel computation?

What la a good model of a parallel computer?

What are the resources of Interest, and how should they be defined?

- 2 -

How should wa design a parallel programming language?

Are parallel machines necessarily faster than sequential ones?

What kind of problems can be solved significantly faster by using a parallel

algorithm?

Can we obtain asymptotically optimal upper and lower bounds on the

parallel resources needed to compute some "natural” functions?

The latter problem appears to be the most popular, judging by sheer volume of

contributions (tor some examples, consult [56,73] and the references contained

therein). In comparison, relatively little attention has been paid to the first four

questions, resulting in a proliferation of parallel machine models in the current

literature. Even the most popular model, the shared-memory machine

(consisting of a collection of RAMs communicating via a shared memory, see. for

example, [20.27]) has many variants. There is a growing tendency to

“customize" a machine to allow short, elegant proofs of a particular upper or

lower bound, with scant regard to the suitability of the model as a vehicle for

further research.

Intuitively, a parallel machine should consist of many processors which in

some way co-operate in order to compute a result. Obviously there are many

ways of formalizing this intuition. Compare the S1MDAG of Goldschlager [27] to

the model of Galll and Paul [21]. The processors of the former are RAMs, the

latter allow RAMs, RACs or even finite-state machines. Lev, Plppenger and

Valiant [42] insist that they must be RACs. Goldschlager has almost identical

processors which are all started simultaneously at the start of the computation,

and communicate via a shared memory. Galll and Paul have sim ilar processors

which start up at run-time, and communicate via direct proeessor-to-processor

links. Some of the more obvious variations on those models Include the

Instruction-set (for example, should multiplication be allowed?), and memory

- 3 -

access conflicts (should multiple attempts to write to a shared register be

allowed as in [27], or should even multiple reads be disallowed, as in [42]?).

Some of these differences are merely cosmetic in nature, but some are

extremely Important. In order to design a useful parallel machine model, we

must first determine which choices matter. We have chosen a model which

consists of a network of interconnected RAMs; each RAM can in one step perform

an internal computation, or read from or write to a register belonging to one of

its neighbours. We believe that the network paradigm is fundamental to the

understanding of parallel computation. One attraction is the fact that it

possesses a certain theoretical elegance. A RAM is just a network consisting of

one processor. A shared-memory machine is just a network where all

processors can communicate with a single distinguished processor and no other,

and that distinguished processor remains idle throughout the computation. The

number of extant papers which use the shared-memory model attest to its ease

of programming, and its usefulness as a tool for proving and communicating

theoretical results. It is widely accepted, however, that the shared-memory

model is not in itself a viable architecture. By placing restrictions on our

network model, it is possible to define a practical variant in a far more natural

way than is possible with shared-memory machines. This makes the network

approach doubly attractive.

The aim of this thesis, then, is to shed some light on the nature of parallel

computation. We shall do this by presenting a unified theory of parallel

computation based on our network model. We shall demonstrate its utility by

providing some fairly eonelse and elegant alternate proofs of results from the

eurrent literature, which will quite often lead to Improved resource bounds or

more general theorems. We will also attempt to provide answers to the

questions posed at the start of this Introduction, based on this theory.

- 4 -

The main body of this thesis Is made up of six chapters. In chapters 2 and 3

we design and justify our parallel machine model. In section Z. 1 we define the

basic model, and in section 2.2 discuss the consequences of choosing unit-cost

RAMs as opposed to log-cost RAMs as processors. This decision can be summed

up by what we call the unit-cost hypothesis: "the unit-cost measure of time is a

valid one for parallel processors". We will refer to this hypothesis often

throughout the thesis, and conclude that it holds in most situations of Interest.

Section 2.3 discusses our assignment of programs to processors, comparing and

contrasting it to the S1MD and M1MD approaches of Flynn [19], and section 2.4

our decision to have all processors activated simultaneously at the start of the

computation

Chapter 3 compares the basic network machine to a selection of other

models. In section 3.1 we propose an alternative fixed-structure variant. It Is

shown that a fixed-structure network of 2°(n> processors and a non-recursive

interconnection pattern can compute any single-valued Boolean function in a

constant number of steps, using an instruction-set consisting of addition,

subtraction and logical shifts. In section 3.2 we compare networks to shared-

memory machines,and conclude that they are almost identical. In section 3.3

we discuss the possible bounds which need to be placed on the resources of our

parallel machines in order to make them "reasonable" or "practical” . The

parallel computation thesis of Goldschlager [27] states that time on a

''reasonable'’ model of parallel computation should be polynomially equivalent to

sequential space. Goldschlager places strong restrictions on his SIMDAGs (a

variant of the shared-memory model considered in section 3.2) in order to make

them obey the parallel computation thesis. We find that much less strict bounds

are sufficient.

In the light of this discussion, in section 3.4 we define a practical variant of

- 5 -

our network model, which we call a faaaibla network. This has:

(1) Constant degree.

(2) A constant number of registers per processor.

(3) An easy-to-compute interconnection pattern.

(4) Fixed structure.

We will And later that there is an efficient feasible network which is universal for

the general model of section 2.1. Thus the user of such a universal machine has

the freedom to program in a high-level language which corresponds to a more

powerful architecture at little cost, and the theoretician is provided with a

motivation for studying the more abstract models.

Section 3.5 is devoted to exploring the speed-ups which can be made by a

parallel machine as opposed to a sequential one. Let B:N-»N be an arbitrary

function. Then a T(n) time-bounded deterministic Turing machine can be

simulated In time 0(T(n)/B(n)) by a network of 20<B*B>*)+T(n) processors. By

choosing B (n)*T (n) we And that every function in NP can be computed in

constant time by a network of 2n°(1> processors. Choosing B(n) * T(n)1_* for some

c>0 we And that an arbitrary polynomial speed-up is possible on a machine

which obeys the parallel computation thesis. This is a striking result, because

an exponential speed-up is not possible for certain natural problems in P unless

Pc POLYLOGS PACE.

In chapter 4 we develop the techniques necessary for the construction of

our universal feasible network. Section 4.1 demonstrates the usefulness of the

shuffle-exchange [66] and cube-connected-cycles [55] interconnection patterns.

In section 4.2 we present a recurrent Interconnection pattern CCL* with &

processors and degree 3 with the property that for all kajkO, CCL* has at lsast

gk-l-1 disjoint subgraphs which are Isomorphic to CCLj. yet it is at least as

our network model, which we call a/eaafhle nat-work This has:

(1) Constant degree.

(2) A constant number of registers per processor.

(3) An easy-to-compute interconnection pattern.

(4) Fixed structure.

We will And later that there is an efficient feasible network which is universal for

the general model of section 2.1. Thus the user of such a universal machine has

the freedom to program in a high-level language which corresponds to a more

powerful architecture at little cost, and the theoretician Is provided with a

motivation for studying the more abstract models.

Section 3.5 is devoted to exploring the speed-ups which can be made by a

parallel machine as opposed to a sequential one. Let B:N-*N be an arbitrary

function. Then a T(n) time-bounded deterministic Turing machine can be

simulated in time 0(T(n)/B(n)) by a network of 20<B<,'),)+T(n) processors. By

choosing B(n) * T(n) we And that every function in NP can be computed In

constant time by a network of 2I>0(>> processors. Choosing B(n) *T(n)'~* for some

t> 0 we And that an arbitrary polynomial speed-up is possible on a machine

which obeys the parallel computation thesis. This is a striking result, because

an exponential speed-up is not possible for certain natural problems In P unless

PCPOLYLOGSPACE.

In chapter 4 we develop the techniques necessary for the construction of

our universal feasible network. Section 4.1 demonstrates the usefulness of the

shuffle-exchange [66] and cube-connected-cycles [55] Interconnection patterns.

In section 4.2 we present a recurrent Interconnection pattern CCL* with 2k

processors and degree 3 with the property that for all k*J»0, CCL* has at least

8M-* disjoint subgraphs which are isomorphic to CCLj. yet it is at least as

powerful as the cube-connected-cycle«. Further, using the techniques of

Meertens [43] we show that any similar interconnection pattern with 2k_1 such

disjoint subgraphs cannot share this property. Section 4.3 contains some useful

algorithms, and section 4.4 some processor-saving theorems. The latter show

that for any machine based on the above interconnection patterns, a P(n)

processor network can be simulated on one with F(n) processors, with a time-

loss of 0 (P (n)/F (n)) for each step. Thus constant multiples in processor-

bounds can be ignored without asymptotic time-loss, a fact which simplifies

many of our later proofs. A preliminary version of the results of section 4.4 has

appeared in [51].

Chapter 5 considers simulations of networks by more practical models. In

section 5.1 a general machine-independent simulation theorem is given.

Specific instances of this theorem have been seen before in the literature (see,

for example. [4.8,21.42,45.71,73]). We use it in section 5.2 to construct our

universal feasible network, and again in section 5.3 to simulate networks on

width and depth bounded uniform circuits and space and reversal bounded

deterministic Turing machines. In section 5.4 we build upon the latter results to

improve Pippenger's [S3] simulation of space and reversal bounded Turing

machines by width and depth bounded uniform circuits. More specifically, a k-

tape Turing machine with space S(n) and reversals R(n) can be simulated by a

uniform circuit of width 0(S(n)k) and depth 0(R(n).logaS(n).loglog S(n)). A

preliminary version of the work In chapter 5 has appeared In [50].

Chapter 6 generalizes our model to allow high-arlty processors, that is,

processors which have the power to communicate with more than a constant

number of Its neighbours in unit time (and the power to make good use of this

ability). High-arlty machines have appeared in [8,60,70]. Section 6.1 contains

our high-arlty model. In section 6.2 we show that increasing artty gives more

- 7 -

computing power. In particular, a network with arity A(n) and a polynomial

number of processors needs time f) (, J1.) to add n numbers, each oflog A(n;

polynomial size, even in the presence of write-conflicts. Thus, for example, a

polynomial-processor PRAM with multiple-writes needs time O(log n) to add n

polynomial-bit numbers. This is the first lower-bound of this nature to be

achieved on a model which allows write-conflicts. Section 6.3 explores

simulations of high-arlty machines on constant-degree universal machines of

arity 1. As a corollary, we obtain an improved proof of theorem B of [81]. A

preliminary version of sections 6.1, 6.8 and 6.3 has appeared in [58]. Section 6.4

contains some examples of high-arity algorithms, most notably the parallel

prefix problem.

Section 7.1 is devoted to lower-bounds for universal machines. The

universal machine of chapter 5 is found to be optimal for simulations of that

nature. The universal machine of chapter 6 is optimal for the simulation of

degree-3 machines (Meyer auf der Heide [31] had earlier found it to be optimal

for the simulation of constant-degree machines). Section 7.8 contains a new

proof of a result of Meyer auf der Heide [33]. In section 7.3 we obtain

asymptotic upper and lower bounds of 0 (j + log P(n)) for the oblivious

simulation of a P(n) processor network on a constant-degree universal machine

with P(n) processors. This extends the results of Borodin and Hopcroft [8] and

Lang [39], who prove the same lower and tipper bound respectively for

P (n)-P (n).

It should be noted that this is a theoretical treatment of parallel

computation, and as such Is based upon a number of assumptions which are

widely accepted amongst workers in the field of parallel complexity theory.

Although our model Is synchronous (In the sense that the instruction-cycles of

- 8 -

the processors are synchronized), we will see in section 3.4 that this is not an

important restriction. The advantage of having a synchronous theoretical model

is that it is easy to program and reason with. We assume that inter-processor

communications can take place within a single instruction-cycle. In the real

world, this assumption is unlikely to be true for large numbers of processors; a

complexity theory based on this observation will differ quite radically from ours

[81], However, we feel fairly safe in making the assumption for networks

consisting of a small number (say in the millions) of fairly large processors

(about the size of a microprocessor), even though it is unlikely to hold for. say,

individual gates in a VLSI chip.

Finally, the reader should note that throughout this work, all logarithms are

to base 8, N denotes the set of non-negative Integers. Z the set of integers, and if

ceN. deZ. then d mod c is defined to be the unique integer acN such that

0 £ a < c and there exists beZ such that a+bc = d. For those unfamiliar with the

"order" notation, we provide the following reminder. Let f,g;N-»R4' (where R*

denotes the set of positive real numbers). We say that:

(1) f(n) = 0(g(n)) if there exists ceR+, NeN such that for all nfeN, f(n)<c.g(n).

(2) f(n) = 0(g(n)) if g(n) * 0(f(n)).

(3) f(n) * 0(g(n)) if f(n) * 0(g(n)) and f(n) = 0(g(n)).

(4) f(n) = o(g(n)) if U m ^^-=0 .

- 9 -

Chapter 2
Designing a Parallel Machine Model

In this chapter we present our basic parallel machine model, and attempt

to justify some of the decisions which contributed to its present form.

Informally, the model consists of a network of interconnected random-access

machines, or RAMs. In the first section we give a more formal description,

providing illustration by way of an example RAM instruction-set. We define the

major resources of interest; processors (number of RAMs). time (number of

Instructions executed), degree (degree of the interconnection pattern), space

(number of registers required) and word-siss (the size of those registers). In

order to simplify the presentation of algorithms, a high-level pseudo­

programming language is sketched.

The second section is devoted to a discussion of our choice of a unit-cost

measure of time. We have chosen to charge a single unit of time for each

instruction executed, rather than charge according to some notion of

"difficulty". This raises an interesting question: for which instruction-sets is this

a valid measure of time? We shall see in subsequent chapters that the answer

can be provided in many different ways.

Our basic machines have a single program for all processors. In the third

section we Justify this approach, comparing and contrasting it with the S1MD and

MIMD machines of Flynn [19]. In a SIMD machine, the processors have their

program-counters synchronized, with each individual processor either executing

the common current instruction or remaining dormant for a step. In contrast,

we allow each processor to be at a potentially different point in the program. A

MIMD machine has a different program for each processor. Our model is seen to

be equivalent to a SIMD one, and to a reasonable subset of the MIMD model.

- 10-

Flnally, In the fourth section we justify our decision to start the

computation with all processors active, rather than have them become active at

run-time. This latter approach places a not altogether unreasonable upper-

bound on the number of processors used in a computation, in relation to time.

We shall see in chapter 3 that it is sometimes profitable to consider machines

with a larger number of processors. Within this limitation, however, the two

models are equivalent.

2.1. The Basic Model

Our parallel machine model can be loosely described as an infinite

collection of interconnected -random-access machines, only finitely many of

which are active in any particular finite computation. By "random-access

machine" we refer to a variant of the RAM. which is already well-known as a

sequential machine model (see, for example, [1,12,63]); and by "synchronous"

we mean that the instruction-cycles of the RAMs are synchronized. Each RAM

has an infinite number of general-purpose registers r0.ri.... each of which is

capable of storing a single integer, and a number of read-only registers which

are Initialized at the start of a computation. These include the processor

identity register PIO and the input-size register SIZE. The PID of the Ith RAM is

preset to l, for i ■ 0,1....

More formally, a network M consists of a program and a processor-bound.

The program of M is a finite list of instructions; each instruction has the form

either:

(1) Read a value from a register of a neighbouring processor.

(U) Write a value to a register of a neighbouring processor.

-11 -

(ill) Perform an Internal computation.

(iv) Conditional transfer of control, or halt.

For example, let denote a binary operation defined on integers. For

convenience we divide our example instruction-set into two categories. Local

instructions have the form:

goto m if r, > 0 (conditional transfer of control)

Communication instructions have the form:

r(«-(rrj of r*) (read)
(rr, of rj)«-!^ (write)

The program is to be executed synchronously in parallel by the (finitely

many) active processors. As far as local instructions are concerned, their

behaviour is that of independent RAMs, that is. references to registers in local

instructions are treated as references to their respective local registers.

Execution of a read instruction:

by processor p has the following effect. Suppose registers rj, n, of processor p

contain the values q and p' respectively. Then the contents of register r , of

processor p' are read and placed into register r, of processor p. Similarly,

execution of a write instruction:

by processor p has the following effect. Suppose registers rt, rj of processor p

contain the values q and p‘ respectively. Then the contents of register rii of

processor p are written into register r, of processor p'.

ri«-cons tant
r,*-rj~n,

(load register with constant)
(binary operation)
(indirect load)
(indirect store)
(store read-only register R)
(end execution)

ri*-(rr, of rk)

(r^ of rj)«-n,

- 12-

Multlple reads of the same register are allowed. In the case of multiple

writes to a single register, we adopt some reasonable convention whereby a

single processor succeeds and is allowed to write its value, whilst all others fall.

For example (after [27]) the lowest-numbered processor attempting to write

succeeds, or (as In chapter 5), the processor which Is attempting to write the

smallest value succeeds, with ties being broken In favour of the lowest-

numbered processor. A local Instruction must compete with incoming data on

the same basis.

Suppose f:Z*-»Z* and xs<xo.X|........x„-i>. where XieZ for 0 * i< n We will

say that x has sis• or Isngth n. and write |x| =n. Let m = max|f(x)I and
1*1 ■»

f„:Zn-»Zm denote the restriction of f to n arguments (we adopt the convention

that unused output places are filled by zeros). We will variously refer to x as an

input or input string, and each x, as an argument or input symbol.

Suppose M is a network with processor-bound P:N-*N. Let p = P(n) A

computation of M on input x is defined as follows. Place X| into register r|/pj of

processor (i mod p), and set all other general-purpose registers to zero. Set

register SIZE of all processors to n. Simultaneously activate processors

0,1....p-1. These synchronously execute the program of M. For 0 « i< m let y,

denote the contents of register r|/p| of processor (i mod p) when all processors

have finally halted. We say that M computss t it for all ns 0 and inputs x with

|x| « a f»(x) ■ <y0.yt........y«-i>.

The interconnection pattern of H is an infinite family of finite graphs

Q«(Go.G,....). one for each input-size. For nk 0. G„ has vertex-set

(0,1....P (n)-1 {, and an edge between vertices i and J if at any time during the

computation of M on an input of length a processor i attempts to read from or

write to a register of processor J. Let D:N-»N. M is said to have degree D(n) if for

all nftO. G* has degree D(n).

- 13-

Let T,S,W:N-*N. M Is said to compute within Kmi T(n) if for all inputs of size

n. all active processors have halted within T(n) steps. For 0 «t£ T (n), let St(n) be

the maximum (over all Inputs of size n) number of registers of M with non-zero

contents after t instructions have been executed. Then M uses space S(n) if

S(n) * o«t*^n) 11 hM tuordsiwt W(n) if every value which appears in a

register during such a computation has absolute value less than 2w(n) (note that

this includes the inputs, outputs and processor Identity registers).

Notes. (1) We have chosen a unit-cost measure of time. This choice will be

discussed in more detail in section 2.2.

(2) The space bound is a measure of the number of registers used in a

computation It is slightly unusual - the more usual method (see, for example.

[1] for the case of a single RAM) is to define space to be the number of registers

which are assigned non-zero contents at any point during the computation. Our

reasons will become more apparent in chapter S.

(3) The word-size is a measure of the width of (inter- and intra-processor) data

paths, and a measure of register size. This can be combined with our unit-cost

measure of space to provide an upper-bound on log-cost space.

Consider the example instruction-set given earlier in this section. So far,

we have not specified exactly which binary operations can be used for "•*•". In

particular we will be Interested in four types of instruction-sets. Each has two-

input Boolean functions (defined on single-bit quantities) and the following

Integer operations.

(1) The minimal instruction-set allows addition, subtraction, shifts of a single

bit, and extraction of the least-significant bit.

r,«-rj*rk
n -lr/ 2)

ri«-rj mod 2

- 14-

(2) In addition, the rwMtricttd arithm atic instruction-set allows larger shifts and

extractions. Suppose rv > 0

ri«-rj mod 2 ~ *

(3) The fu ll arithmmtic instruction-set is the minimal instruction-set plus

multiplication, integer division and remaindering.

rtt-rj’ rk

rt«-rj mod r*

(4) The aztwndid arilhmatic instruction-set is the full arithmetic instruction-

set plus exponentiation.

ri*-r/k

A number of questions spring to mind. Are these instruction-sets reasonable?

Are they powerful enough? Too powerful? Natural? Clearly an unrestricted

instruction-set which allows any computable function as a local instruction is too

powerful, but what kind of Instruction-set is reasonable? We will return to these

questions in the next section.

Instead of writing algorithms in the low-level RAM language, we will follow

the common practice of using a high-level language which can easily be

translated Into Instructions of this form. We use the usual high-level constructs

for flow-of-control, based on sequencing, selection and iteration. Variables of

the form (x at processor 1) will be taken as a reference to variable x of processor

1. An unmodified variable x will be taken to mean (x of processor P1D), that Is, a

local variable. For example, execution of the statement

ri«-rJ*2^**r|‘l

r,«- [r/ 2 °̂* '“'I]

- 15-

if y < (y of prop— or iPID/ 2j)
than statement!
•1m statement«

by a network of P(n) processors causes the 1th processor. 0*ei<P(n). to

simultaneously compare its variable y with variable y of processor k/2]. If It

finds that the former is less than the latter, then it executes statement^

otherwise it executes statement«. To aid synchronization, we assume that

statement and statement« are translated into blocks of code containing the

same number of instructions, by filling with NO-OPs (such as r0*-r0) as necessary.

All of the algorithms in this thesis will maintain synchronization by virtue of this

simple arrangement. As a notatlonal convenience we may occasionally use

multiple, concurrent and conditional assignments.

2.2. The Unit-Coat Measure of Time

In section 2.1 we defined the running-time of our parallel machines to be

the number of instructions executed (synchronously) before all active

processors have halted. That is. we. charge a single unit of time for each

instruction executed. This is termed a unit-cost measure of time. The use of

unit-cost charging is a contentious issue. The alternative is log-coat charging,

whereby the cost of an instruction is expressed as a function of the size of its

arguments, thus tying the time required for a particular computation to its

word-size.

Ve follow Cook [14] in the belief that the major parallel resources of

interest are Mmi and hardware. We also believe that the important issues in the

design of a parallel machine are more clear-cut If these two resources are kept

completely Independent. A hardware measure should take into account the

•mount of memory used, which is related to word-size. This makes the unit-cost

measure of time more attractive, since it alone is independent of word-size, and

thus hardware.

Even for purely sequential machines, the selection of unit-cost measures

versus log-cost is of fundamental importance. Inter-simulations between various

log-cost models (for example [1], Turing machines and log-cost RAMs) can be

achieved with only a polynomial increase in time, whereas no such simulation

can be obtained between unit-cost and log-cost models. For example, in time t a

unit-cost RAM with multiplication can compute (without input) a value as large

as whereas the same machine with log-cost charging can only compute a

value as large as 2t+#(l).

From a purely practical standpoint, the choice of charging mechanism

depends on the type of computation in question. If the word-size is sufficiently

small, then the unit-cost measure is more applicable. Alternatively, if the values

being manipulated grow very quickly with input-size, requiring the use of multi­

word Instructions for quite modest input lengths, then the log-cost measure Is

preferable. For example, log-cost would more accurately model a small

microprocessor, and unit-cost a large mainframe.

This issue is neatly encapsulated In what Goldschlager and Lister [29] call

the “sequential computation thesis". This states that time on all “reasonable"

sequential models is polynomlally related. This is motivated principally by the

polynomial-time simulations of one log-cost model by another, but in fact breaks

the models into two disjoint classes, those with unit-cost and those with log-cost

measure of time. Members of the same class are polynomlally related, but two

models from different classes are not. Given this observation, the Important

question which must be addressed by any theoretical treatment is not “which

model is better", but "whloh model is more accurate for the Intended

application".

- 18-

measure of time more attractive, since it alone is independent of word-size, and

thus hardware.

Even for purely sequential machines, the selection of unit-cost measures

versus tog-cost is of fundamental importance. Inter-simulations between various

log-cost models (for example [1], Turing machines and log-cost RAMs) can be

achieved with only a polynomial increase in time, whereas no such simulation

can be obtained between unit-cost and log-cost models. For example, in time t a

unit-cost RAM with multiplication can compute (without input) a value as large

as 2*1***1’, whereas the same machine with log-cost charging can only compute a

value as large as 2t+,(l).

From a purely practical standpoint, the choice of charging mechanism

depends on the type of computation in question. If the word-size is sufficiently

small, then the unit-cost measure is more applicable. Alternatively, if the values

being manipulated grow very quickly with input-size, requiring the use of multi­

word instructions for quite modest input lengths, then the log-cost measure is

preferable. For example, log-cost would more accurately model a small

microprocessor, and unit-cost a large mainframe.

This issue is neatly encapsulated in what Goldschlager and Lister [29] call

the "sequential computation thesis". This states that time on all "reasonable”

sequential models is polynomlally related. This is motivated principally by the

polynomial-time simulations of one log-cost model by another, but in fact breaks

the models into two disjoint classes, those with unit-cost and those with log-cost

measure of time. Members of the same class are polynomlally related, but two

models from different classes are not. Given this observation, the important

question which must be addressed by any theoretical treatment is not "which

model 1s better", but “whioh model is more accurate for the intended

application".

- 17-

The parallel analogue of the sequential computation thesis is the so-called

"parallel computation thesis" [9.87]. This states that time on all "reasonable”

parallel models Is polynomially related. Furthermore, It attempts to

characterize parallel computers by relating parallel time to a sequential

resource. More precisely, it states that time on a "reasonable" parallel

computer Is polynomially equivalent to log-cost sequential (for example, Turing

machine) space. This has two Implications. Firstly, a machine which Is too weak

to simulate an S(n) space-bounded Turing machine In time S(n)0(t> Is not

powerful enough, to be called a parallel machine. Secondly, a machine which Is

so strong that a T(n) time-bounded computation cannot be simulated in space

T(n)0(l) by a Turing machine is too powerful to be called parallel. We will be

concentrating mainly on the latter aspect of the parallel computation thesis,

since networks with an unrestricted Instruction-set are obviously extremely

powerful. Henceforth, by "reasonable" we will mean "not too powerful", in the

sense that It Is "reasonable" to expect a parallel computer to have only a

moderate amount of resources at its disposal.

One way of making our model obey the parallel computation thesis is to

restrict the processors to the minimal instruction-set of section 2.1 (this

approach was taken by Goldschlager for his SIMDAG [27]). This ensures that the

word-size grows by at most one In every time-step, and so the log-cost of the

individual Instructions executed in any given computation is at most a

polynomial in the unit-cost running-time, provided the input integers are

sufficiently small. In this case, unit-cost and log-cost are polynomially related.

It makes sense to restrict the word-size of parallel processors since (as we saw

in the second paragraph of this section) the extra power of unit-cost RAMs over

log-eost RAMs seems to stem from their ability to generate large Integers

quickly. Indaed, a single unit-cost RAM with either the restricted [S4] or full

- 18-

arithmetic [30] instruction-sets obeys the parallel computation thesis, so is

itself as powerful as a parallel machine.

We claim that the unit-cost measure of time is a valid one for parallel

processors. We shall call this the writ-cost hypothesis. It is framed as a

hypothesis because it depends upon the way in which the word "valid" is to be

interpreted; we will meet several Interpretations in the remainder of this work.

Whilst It is intuitively obvious that the unit-cost measure of time is unrealistic

for very powerful instruction-sets which allow the computation of infeasible

functions in a single step, we may reasonably expect it to be realistic for fairly

weak instruction-sets, such as the minimal instruction-set of section 2.1.

This raises a number of interesting side-issues. We are in effect asking

when a unit-cost model Is "reasonable". We have seen that restricting the

processors to the minimal instruction-set makes our model "reasonable" in the

sense that it obeys the parallel computation thesis. But what do we actually

mean by "reasonable"? Do models which satisfy the parallel computation thesis

successfully formalize the idea of "parallel computers"? What do we really

expect from a parallel machine model? These are amongst the issues that we

will address in chapter 3.

2.3. The Alignment of Programs to Processors

Although every processor of our parallel machine executes the same

program, our model does not fall precisely into the S1MD category of Flynn [19].

This is because the conditional goto Instruction takes action depending on the

value of a local register, the contents of which may vary from processor to

processor. Thus different processors may be at different points in the program

at any given time. However, It is fairly easy to show that our model is equal in

- 19-

power to a SIMD one. and to a reasonable subset of M1MD models, including that

of Galil and Paul [21],

For the sake of discussion, we will call our assignment of programs to

processors a uniform, one. We use the term "uniform" in the sense of Karp and

Upton [36], meaning that every machine has a finite description (in our case,

the program and processor bound). A MIMD model is non-uniform in the sense

that it allows a different program for each processor; thus an Infinite family of

finite descriptions (one for each input size) is needed. Some authors (for

example [7,14.59]) use the term "uniform" to denote the fact that an external

"constructibility" condition has been enforced on a non-uniform model in order

to restrict Interest to machines with finite descriptions.

A SIMD machine is a uniform one in which, at any given point in time, all

active processors are either executing the same instruction, or are dormant.

Our high-level pseudo-programming language allows the user to write non-SIMD

programs; we believe that this keeps the language simple, elegant and flexible

(It may be argued that it gives the user the flexibility to get into a lot of trouble,

but the same is often said of the goto statement in modern programming

languages). Furthermore, it is not really necessary to force the programmer to

write SIMD programs, since a uniform machine can be simulated by a SIMD one

without asymptotic time-loss, using the same number of processors and degree,

with space and word-size Increasing by only a constant.

Suppose M Is a P(n)-processor uniform machine. We will construct a SIMD

machine to simulate M as follows. Processor 1 of the SIMD machine, 0 «l<P (n),

simulates processor 1 of M. using variables PC. VPC, NPC, PR. A and V, and an

Infinite array R. PC keeps track of the program counter of the simulated

processor, whilst for J*0, R[J] contains the current contents of Its register rj.

VPC (the virtual program counter) will cycle from 1 to the program length

- 20 -

(whlch la a constant, independent of n); when PC = VPC the PC01 instruction of

the program of M Is simulated. NPC receives the new program counter value,

and If the Instruction involves a data-transfer. A and PR receive the address and

PID respectively of the register to be updated, and V its new value. At the end of

the cycle, the arrays R are updated to reflect the new register contents, using

the information in PR. A and V. whilst PC is updated using the contents of NPC.

The process is completed at the end of a cycle In which a halt instruction is

simulated.

We present the algorithm in the high-level language of section 2.1. A

different interpretation is placed on the control constructs however, in order to

make them SIMD. The branches of a selection statement (such as if or ease

are tried one at a time, with a processor executing a particular branch if its

register contents satisfy the entry condition; all other processors remain

dormant during that period. This is opposed to the general (non-SIMD) uniform

case, in which all processors are free to start their respective branches at the

same time, or to enter and leave the construct at different times.

Suppose M has the example instruction-set of section 2.1. Then the

program of the simulating machine is as follows:

-21 -

JL»V:*0
PC=VPC*1
while PC > 0 4 »

for VPC * 1 to program length do
if VPC = PC then

PR.A.V * com PC01 instruction of M of
"^•-constant" PID.i, const ant
•'ri^-rj-rii": PID, i. R[j]~R[Ic]
"r.«-rrj" PlD.i.R[R[j]]

”rn»q":PIDIR[t].R[j]
"r,-PID"PlD.i.PID
"ri-rrj of rk" PlD.i.(R[R[j]] of proca -o r R[k])

” (*>, of rj,-ni":RU].R(l].R[k]

NPC = com PC*11 instruction of M of
"halt'O
"goto m if r, >0":lf R[i] >0 then m
"others": PC+1

(R[A) o f proceeeor PR) «V
PC*NPC

Thus we see that our uniform model is equivalent to a S1MD one Now, a

MIMD model allows a different program for each processor Let AN-»N be such

that A(i) is a reasonable encoding of a RAM program (say. using the example

instruction-set of section 2.1). for ikO. By "reasonable encoding" we mean that

a universal RAM should be able to decode this program, using negligible

resources, into a format which allows efficient simulation. A MIMD variant of our

model is identical to that of section 2.1, except that processor i of a P(n)-

processor network has program A(i). 0 * i< P (n) A is called the processor

assignment function

Let M be a P(n)-processor MIMD machine which uses resources R|(n). whose

processor assignment A Is such that A*a<A(0).A(l)........A (P (n)-l)> can be

computed by a P(n)-processor uniform parallel machine using resources Rs(n).

- 22 -

Then clearly there Is a uniform P(n)-processor machine which can simulate M in

resources Rj(n)+Rt(n), simply by computing A*, and then having processor l,

0 * i< P (n) simulate program A(i). Each processor of the uniform machine has

an Identical program made up of two parts, a part to compute A*, and a

universal RAM.

Thus we see that (provided the resources needed to compute A are kept to

a feasible level) a uniform machine can efficiently simulate a MIMD one. This can

be summarized as follows: if a MIMD machine is easy to specify, then it can be

specified as a uniform machine. Thus a uniform model is equivalent to a useable

subset of the MIMD model.

2.4. Processor Activation

In our model as presented so far, all P(n) processors are activated

simultaneously at the start of the computation, and begin synchronously

executing the first Instruction of the program at time t=l. We call this the

in itia l activation model. An alternative formulation ((asy activation) is to

start off with some small number of active processors (for example, just

processor 0, or just those which receive input), postponing the activation of the

remainder until run-time. This convention has been adopted by Galll and Paul

[21] and Savltch [80],

There are two essentially different ways of approaching lazy activation. The

first requires that an active processor explicitly activate an Inactive one by

executing a special "call" instruction (as in, for example. [60]). This implies that

the number of active processors can at most double in each time-step.

Alternatively, Galll and Paul [21] allow the inactive processors to execute a

polling-loop, In order to decide when to become active. This is really only

feasible for machines with constant degree, in which case it is asymptotically

- 23 -

equivalent to the first approach.

Note that this Implies that a T(n) time-bounded machine can have at most

n gontn)) (in the case when only input-bearing processors are initially active), or

2 °(T(n)) (^ the case when processor 0 Is initially active) processors. Our model Is

more general than this, and we shall see In section 3.3 that it doss make good

sense to talk about T(n) time-bounded machines with ¿ W * 11 processors.

For definiteness, we will assume that:

(1) Initially, only processor 0 is activated.

(2) In a computation on an input of size n, processor 0 is initially given the

value of P(n) as part of its input.'

(3) If an Inactive processor has a value written into it for the first time in a

computation during time-step t. it becomes active and executes the first

instruction of the program during time-step t+1. Thereafter, it is

indistinguishable from any other active processor. A processor which has

halted cannot be reactivated.

Lazy activation Is essentially the same as initial activation, provided

P (n)*2 0(T<,')). Clearly an initial-activation machine can simulate a lazy-

actlvatlon one without asymptotic loss In resources, by simply maintaining an

activation flag in each processor. Simulation in the other direction is only

slightly more difficult. The problem Is to activate P(n) processors and

synchronize them so that they begin the execution of the program of M at the

same time. If M has P(n) processors and runs in time T(n), we will show that the

simulating (lazy) machine runs in time 0(T(n)+log P(n)). whilst increasing space

and degree by only a constant amount.

To simplify the presentation, assume that P(n) is of tha form 2k- l tor some

k>0. We will activate P(n) processors using an interconnection pattern In the

- 24-

shape of a binary tree (aae figure 2.4.1).

F l f m 1.4.1.The binary tree interconnection pattern with 10 verticee.

Each proceaaor has variables C and P. P holds the value of P(n) (we assume

that P of processor 0 Is set to P(n) at the start of the computation), and C the

number of processors activated so far (we assume that C of processor 0 starts

out at 0). The algorithm consists of a single loop. At each Iteration a new level

of the tree is activated; C is used to detect termination. Upon exiting the loop,

all processors are synchronized, and execution of the program of M can begin.

Processor 1 activates its children at the next level (processors 21+1 and

21+2) using the high-level statements

(C.P) of prooswor 2i+1 ; ■ C.P
(C.P) of processor 21+2 :■ C.P

This also initializes their variables C, P so that they can join in the loop at the

appropriate stage. Note that the left-hand child is activated before the right-

hand, and so potentially enters the loop earlier. We can avoid this by making

odd-numbered processors wait for a steps (where a is a suitably chosen

constant) before entering the loop. In order to synchronize the newly-activated

processors entering the loop with those already inside it. it is necessary to add

- 28 -

another delay, this time of fi atepa (where fi la another auitably chosen

constant). Note that the values a, fi depend only on the exact form of the RAM

Instruction-set, and the ability of the compiler to generate succinct code from

high-level statements. In a high-level form, the algorithm is:

Odd-numbered processors wait for a steps
Wait for fi steps
C:*2C+1
while C < P do

(C.P) of prooeseor 2i+l := C.P
(C.P) of processor 2H-2 : « C.P
C:*2C+1

To make the synchronization method completely transparent, this program

would generate the following' code (using an instruction-set similar to that of

section 2.1, with certain acceptable liberties taken with arithmetic and Boolean

expressions in order to ensure brevity). In this case, a = 2 and fi= 1.

1. goto 4 if PIO mod 2 = 0
2. NOOP
3. NOOP
*. NOOP
5. C«-2*C+1
6. goto 13if C *P
7. (C of 2*PID+ 1)»-C
8. (P of 2*PID+1)«-P
9. (C of 2*PID+2)«-C
10. (P of 2*PID+2)«-P
11. C«-Z*C+1
12. goto 8
13. ate.

Table 2.4.1 gives a trace of this algorithm for P(n) ■ 7 processors.

26

¥2 ___O___ ___ 1____ 3 ____3_____ ___3____H pft p pf p £ P9 p G PC p G P f p £ PC p £ PC p ft
0 1 7 0
1 4 7 0
2 3 7 0
3 6 7 1
4 7 7 1
3 8 7 1 1 1
6 9 7 1 2 7 1
7 19 7 1 3 7 1 1 |
s ll 7 1 4 7 1 4 7 1
9 12 7 3 3 7 1 3 7 1

10 6 7 3 6 7 3 6 7 3
7 7 ? 7 7 3 7 7 3

12 8 7 3 8 7 3 8 7 3 1 3 1 3
13 9 7 3 9 7 3 9 7 3 2 7 3 2 7 3

. 1 1 19 7 19 7 3 19 7 3 3 7 3 3 3 7 3 1
15 ll 7 3 n 7 3 ll 7 3 4 7 3 4 7 3 4 7 3 4 7 3
16 12 7 7 12 7 7 12 7 7 3 7 3 3 7 3 3 7 3 3 7 3
17 6 7 7 6 .7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7

-ifl 7 7 7 13 7 7 13 7 7

*-«•»- I A 1 Activation and synchronization o f 7 proceaaora in a lazy-activation

modal. Table entry show* the value of the program-counter (PC) and variables P.C

for each proceeoor initially (at time 0). and after each of 16 «tape.

- 27 -

Chapter 3
Relationships with Other Models

The main aim of this chapter ia to compare our network machines to a

number of other models. In the first section, we propose a fixed-structure

variant of the network model, that is. one in which the interconnection patterns

of the machines can be predicted. The more general model computes its own

interconnections, which makes it rather difficult to construct as a physical

device without increase in degree. It is observed that more efficient machines

can be constructed by expending more resources, for example a machine with a

non-re cursive interconnection function can compute arbitrary (non-recurslve)

single-valued Boolean functions in constant time, given sufficiently many

processors.

The second section compares our model to a shared-memory one. In a

shared-memory machine, the processors communicate indirectly via a common

shared memory, rather than by direct register access. The two models are

easily seen to be almost identical in computing power. The third section

investigates the concept of a "reasonable" parallel machine touching on such

Issues as the parallel computation thesis, bounds on word-size, and restrictions

on inter-processor communication.

In the fourth section we define a practical variant of the network machine,

the so-called "feasible network". We expound the desirability of a feasible

network which Is universal for the more general model of section 2.1. Various

types of universal machines are considered, according to the manner In which

they achieve their simulations. In the fifth and final section, we Investigate

possible speedups of sequential machines by parallel ones. Any computable

function can be computed In constant time if sufficiently many processors are

present. Alternatively, an arbitrary polynomial speedup In time can be obtained

- 28 -

on a muahin» which obeys the parallel computation thesis (and. as we shall see

in section 3.3. no such exponential speedup is likely).

3.1. A Fixed-Structure Model

The basic model described in section 2.1 (alls into Cook’s [14] category of

machines with "modifiable structure" (since processor interconnections are

computed at run-time). This implies that a resource-bound (or such a machine

is made up of two parts, corresponding to the resources required to compute

the interconnections and those required to perform the actual computation In

a "fixed-structure" machine these two components are separated. The former

reflects the cost of building the machine, and the latter the cost of using it.

This separation can become significant when the two components differ by a

large amount. For example, consider a machine with the example instruction-

set of section 2.1, whose only allowable binary operations are (single-bit) two-

input Boolean functions, integer division by 2 and multiplication by 2. Let

f:(0,lj*-*{0,lj* be defined by f(xo........x„_|)»<yo.........yn-i> where for 0 « i< n ,

y(= x, © X(|+i) modn' An coprocessor, constant-degree machine can compute f in a

constant number of steps, provided processor i knows the value of (141) modn.

0 < K n , However, the same machine requires (l(log n) steps to actually compute

those values. Thus in a model with modifiable structure, the run-time of this

machine is O(log n), under a fixed-structure model the run-time is 0(1) (and any

reasonable fabrication device which Includes addition as part of its instruction-

set can compute the Interconnections in parallel in a constant amount of time).

A fixed-structure analogue of our basic model can be defined as follows.

Qalil and Paul [21] call this a model with "predictable communication", since the

Inter-processor connections need to be known in advance of actually running the

machine. Note that all machines have "predictable communication" In the sense

- 29 -

that they can be fabricated aa a completely-connected machine (with each

processor connected to every other), but this may involve an unacceptable

Increase in degree.

Our fixed-structure model has the same format as the basic model of

section 2.1, with a number of minor modifications. Each processor is given a

number of additional read-only registers which are preset at the beginning of a

computation These correspond to values which are "hard-wired" into the

machine during the fabrication process. They consist of the DEGREE register,

and an infinite number of port registers Po-Pi.... each of which is capable of

holding a single integer.

More formally, a parallel machine consists of a program and an

interconnection scheme. The program is a finite list of instructions, each of

which may have the following form (where p is a port register). Either:

(1) Read a value from a register of processor p.

(2) Write a value to a register of processor p.

(3) Perform an internal computation.

(4) Conditional transfer of control, or halt.

In the example instruction-set of section 2.1, the read instruction:

r,«-(rrj of nJ

would be interpreted as meaning "read the (rj)th register of processor p^ and

place the result into register r|". and the write Instruction:

(fu of rj)«-iìi
would be Interpreted as meaning "write the value from register n, into the (ri)th

register of processor p,(".

An infercofmecHon scheme consists of three functions, a processor function

P:N-*N, a degree function D:N-*N and an interconnection function

- 3 0 -

G:{11 Osi < P(n) j x (d | Owd <D(n) J xN -» {1 1 Owi <P(n) J.
In a P(n)-processor computation, processor i is connected to processors

G(i,d,n). 0«d<D (n). We adopt the convention that it ie(G(j,d,n) | Os: d < D(n) J

then je { G(i.d.n) | Ow d <D(n) A computation of M, where M has Interconnection

scheme (P.D.G), is defined similarly to section 2.1, with the following addition.

Before the processors are activated, the DEGREE register is set to D(n). and for

Owd <D(n), Osi <P(n), register p* of processor 1 is set to G(i.d.n). The resources

of space and word-size are modified to include the new registers (the word-size

of the port registers may be measured according to their absolute contents, or

some concise relative encoding, if such is applicable).

Note that a resource bound for computing any given function must Include

reference to the complexity of the Interconnection scheme. This is because, as

might be expected, more efficient machines can be built by investing more

resources in their construction. Information can be stored in the

interconnection pattern, to be used later as a kind of "look-up table". Take for

example the problem of computing an arbitrary (perhaps non-recurslve) single-

valued Boolean function f:(0,lj*-»(0,l(. We will show how to compute f on n inputs

in a constant number of steps, using n.2" processors.

If x»<Xo........Xn-i> is an input of size n, let be a binary

encoding of x as an integer. The n.2“ processors are broken up into 2n teams Tt,

0wi<2n. For Owl<2P, team Tj consists of the n processors l.n+J, for Owj<n.

The smallest-numbered processor of each team is a distinguished processor

called the team-leader. For each input x, the team-leader of will have the

value f(x) encoded as part of its interconnection pattern. Our problem then,

given an input x, is to notify the appropriate team-leader.

This Is achieved as follows. Each team-leader sets a specified register a to

zero. For O s K P , 0* j <n the j * member of team T(compares the j * symbol of

- 31-

the Input to the j0* bit of i. If those two values are different, it writes a one to

register a of its team-leader. The team-leader of T ^ ,) will be the only team-

leader which is not written to; it then consults its interconnection pattern for

the value of f(x), and writes this value to processor 0 for subsequent output.

The following is a high-level implementation of this algorithm. Assume that

initially variable x of processor p contains the p1*1 bit (x,) of the input, 0 * p < n

Each processor has two variables i and j which (as in the previous paragraph)

record that processor's team number and position within that team. Variable a

of the team-leaders will be used for communication with its team members. The

result f(x) will end up in variable r of processor 0.

The interconnection pattern is as follows. For 0 « i< 2 n, 0<j<n . processor

n.i+j (the member of Tt) is connected to processor j (the processor in charge

of the j1*1 bit of the input), and processor n.i (its team-leader). For each input x,

processor alnt(x) is connected to processor f(x) via a special link. It can

determine the value of t(x) by reading the PID of that processor.

a:*r:=0
i.j: = |piD/ nJ.PID mod n
If (x of processor J) *• 0th bit of i)

then (a of processor l*n):»l
if (j *0) and (a *0)

then (r of processor 0) :■ PID of processor special link

Notes. (1) The algorithm as presented uses the extended arithmetic

instruction-set. The restricted arithmetic instruction-set can be substituted by

increasing the number of processors in each team to 2". If the minimal

instruction-set is used, the run-time is 0(log n). Note that the values l.n.

0 *i<2 ", are not computed at run-time, but are stored as part of the

Interconnection pattern.

(2) The degree can be reduced to a constant by the use of binary trees for

- 32 -

routing. Information about f(x) Is encoded using the technique of theorem 4 of

Galll and Paul [21]. The run-time is increased to O(log n) on either the full

arithmetic, restricted arithmetic or minimal instruction-sets.

(3) The number of processors can be reduced to 2n*’* [21]. This increases the

run-time to 0(n). although it does reduce the degree to a constant, and uses

only flnite-state machines as processors.

3.2. Shared Memory Machines

A popular alternative model is obtained by constraining processors to

communicate via a common memory, rather than communicating by direct

processor-to-processor links. Let D.P,S,T.W,Z:N-»N.

A short d m tm ory mac h int consists of an infinite number of processors

attached to a globally accessible shared memory. Each processor possesses an

infinite number of general purpose registers, and a unique read-only processor

identity register PID which is preset to i in the 1th processor. ieN. A program for

this machine consists of a finite list of instructions: each instruction is of the

form either:

(l) Read a value from a specified place In the global memory.

(li) Write a value to a specified place In the global memory.

(ill) Perform an Internal computation.

(tv) Conditional transfer of control, halt.

The allowable internal computations usually consist of direct and indirect

register transfers, logical and arithmetic operations.

More formally, each machine is specified by a program P and a processor

bound P(n). A computation proceeds roughly as follows. An input of sise n

(where the "sise" measure depends on the problem in question) is broken up

- 33 -

into a unit-size pieces, and the 1th piece is stored in global memory location i.

0 « i< n . All other memory locations and general purpose registers are set to

zero. Processors 0.1....P(n)-1 are activated simultaneously; they synchronously

execute the program P. When all processors have halted, the output is to be

found in some specified place in the global memory.

The processor bound P(n) is a measure of the number of processors used as

a function of input size. The space S(n) is the maximum number of non-zero

entries in the global memory and registers at any time during the computation.

(Note that this includes the input and the processor identity registers). The

machine is said to have word-stss W(n) if the maximum value in any register or

global memory location during any computation on an input of size n has

absolute value less than 2w(n). The time bound T(n) is the number of instructions

executed before all processors have halted, again as a function of input size.

Variants of this model have appeared. for example. in

[8.14.20.21.27,42,47,62,64.68.69,71.72]. We assume some reasonable protocol for

dealing with memory access conflicts, as in those references. The general

consensus of opinion is that whilst the shared memory model is a powerful

theoretical tool, It is not feasibly buildable using any foreseeable technology.

A shared-memory machine M can be simulated by a network with Identical

internal instruction-set, without asymptotic loss of resources. Suppose M has

P(n) processors. Then the network has P(n)+1 processors. Processor 0 remains

idle throughout the computation whilst processor i, l « l * P (n) simulates the

action of processor 1-1 of M. A reference to global memory location m is

replaced by a reference to register rm of processor 0. The extra processor can

be eliminated by having processor 0 reserve the odd-numbered registers for its

own use, and the even-numbered registers for the contents of the shared

memory. A reference to global memory location m is then replaced by a

- 3 4 -

reference to register r*m of processor 0.

Alternatively, the global memory contents can be divided up amongst the

processors of the network, provided the instruction-set is sufficiently powerful.

Suppose M has P(n) processors and space S(n). Processor i of the network,

0 « i< P (n). simulates processor i of M. and in addition holds the values of global

memory locations i+j.P(n). JkO. A reference to global memory location m is

replaced by a reference to register rs.|n/p(B)J of processor m mod P(n) (each

processor can reserve its even-numbered registers for memory locations, and

the odd-numbered registers for its own use).

This assumes that the instruction-set is at least as powerful as the full

arithmetic instruction-set of section 2.1. If the restricted arithmetic

instruction-set is used, P(n) should be replaced by 2,l°« I. For a minimal

instruction-set, the time-loss is O(log P(n)) per instruction, using P(n)

processors. If sufficiently many processors are used (so that each processor

holds at most one memory location) this time-loss can be reduced to a constant

multiple.

Similarly, a network M can be simulated by a shared-memory machine

without asymptotic loss in resources, provided the instruction-set is sufficiently

powerful. The registers of the network are stored in the common memory - each

processor of the shared-memory machine need only have a constant number of

local registers (note that a similar trick serves to reduce the local-memory

requirements of all shared-memory machines, subject to similar conditions). A

reference to register ri of processor j is replaced by a reference to global

memory location P(n).l+J.

Diis replacement costs only a constant number of steps per access for

machines with the full arithmetic instruotlon-set. As before, if P(n) is replaced

by gO«« it also costs a constant number of steps with the restricted

arithmetic instruction-set. For machines with the minimal instruction-set, a

similar result can be obtained by storing, along with each register rt, the

contents of r(multiplied by P(n). This requires time proportional to

Thereafter, these values

can be maintained and used for register access with a constant loss in time for

each step of M. Alternatively, the multiplication by P(n) can be computed at

access-time, at a cost of 0(log P(n)) per access.

3.3. Reasonableness and Practicality

In section 2.2 we raised the following important question: what constitutes a

"reasonable" model of parallel computation? In particular, what is a reasonable

instruction-set for our processors, given that we have chosen a unit-cost

measure of time? Goldschlager, in [27], placed certain restrictions on his

SIMDAG's (a variant of the shared-memory model considered in section 3.2) to

ensure that they obey the parallel computation thesis: time on any "reasonable"

parallel model is polynomially equivalent to sequential (log-cost) space.

Evidence for this thesis is provided by a multiplicity of "reasonable" models, for

example, alternating Turing machines [9], uniform circuits [7] and vector

machines [54], as well as Goldschlager's S1MDAG and conglomerate.

As we shall see later in this section, in order to make networks and shared-

memory machines obey the parallel computation thesis, it is necessary to place

upper bounds on the word-size and type of instructions allowed. These

restrictions can be accepted as "reasonable" purely on practical grounds - for

example, one can argue that the word-size of problems tackled in practice

should not grow too rapidly with input-size. In this sense, "reasonable" can be

equated to "practical".

- 36 -

The parallel computation thesis also provides us with a powerful theoretical

tool. Suppose that we are interested in those problems from P which have an

exponential speedup in parallel, that is. those members of P which can be solved

in time log0(,)n by a "reasonable" parallel machine. If a "reasonable" machine is

one which obeys the parallel computation thesis, then these are precisely the

members of P which can be solved in polylog space by a Turing machine.

Let POLYLOGSPACE denote the class of languages which can be accepted in

space log0(l,n by a Turing machine. It is widely conjectured that

PC POLYLOGSPACE (although it is not known for sure whether either class

contains the other). Evidence is provided for this conjecture by the existence of

log space complete problems (see, for example. [24.25,26.28.34.35.37]); that is.

problems which are members of P. yet if any one of them is a member of

POLYLOGSPACE then PcPOLYLOGSPACE. Thus log-space complete problems

probably do not have an exponential speedup on any "reasonable" parallel

machine, where the parallel computation thesis is used as a criterion for

"reasonableness".

Thus we see that there are two facets to the concept of "reasonableness",

that which is reasonable from a practical point of view, and that which is

reasonable from the theoretical point of view. It may be theoretically

interesting to consider networks with an exponential number of processors (as

in section 3.4), but it is certainly not reasonable to consider them as a practical

proposition for all except the smallest values of n. A theoretical model is an

attempt to capture the essence of an Intuitive notion of "parallel computation";

a practical model is, in addition, governed by physical and technological

constraints.

The remainder of this section is devoted to a closer look at some ways of

defining a "reasonable" model. Earlier in this section we referred to some

additional conditions which ensure that networks obey the parallel computation

thesis. What exactly are these conditions? Firstly, an S(n) space-bounded

nondeterministic Turing machine can be simulated by a network with the

minimal instruction-set. In time and word-size 0(S(n)). using the techniques of

theorem 2.1 of Goldschlager [27]. Conversely, we have:

Theorem 3.3.1 A T(n) time-bounded network M with word-size W(n) can be simu­

lated by a deterministic Turing machine using space T(n).W(n)+S(n), where S(n)

is the space required for the Turing machine to simulate a single instruction of a

processor of M.

Proof. Similar to theorem 2.2 of [27], □

This enables us to throw some light on the unit-cost hypothesis. As far as

the parallel computation thesis is concerned, it is reasonable to charge a single

unit of time for instructions which can be computed by a Turing machine in

space T(n)0(l^ where T(n) is the number of steps in the intended computation.

Given this condition, networks obey the parallel computation thesis provided

W(n) * T(n)0(,). Note that this allows machines with as many as 2T(n)0<0

processors; although those who support lazy activation (see section 2.4) insist

that P(n) ■ 2°fr(n)\ and some authors insist that P(n) = n°*l> (for example,

[16,17.42,53]).

To summarize, here are a number of restrictions on network and shared-

memory models which can be used to define so-called "reasonable" machines.

(1) Rastrlcthan* on thm instruction-sat.

Restrictions on Instruction-set are motivated by a desire to see that the

unit-cost hypothesis holds.

(a) The first premise Is that individual processors should behave like log-

coot sequential machines. In particular, the resource of time should

- 38 -

be polynomi&lly related to time on an accepted log-coat sequential

machine model, such as the deterministic Turing machine (c.f. the

sequential computation thesis, section 2.2). Thus instructions which

are valid for a T(n) unit-cost-time bounded computation should

individually take no more than Tin)0**1 steps on a deterministic Turing

machine.

(b) Instructions should be computable in space T(n)0(1) by a Turing

machine. This helps to ensure that the parallel computation thesis

holds. Note that this condition is implied by part (a) above.

(2) Bounds upon processors and tim e.

Upper-bounds on the number of processors are usually motivated by the

observation that, given enough processors, every computable function can

be computed in constant time (see section 3.5), which makes time a

singularly uninteresting resource.

(a) P (n)*20fr(n)). This is a consequence of the lazy-activation approach

(see section 2.4).

(b) P(n) =n0(1), T(n) = log0(1)n. Machines with these two properties are

sometimes called small and fast respectively. See, for example.

[16,17,53,59].

(3) Bounds upon wordsiss.

Upper-bounds on word-size are usually motivated by the observation that

(as previously noted in section 2.2) single-processor machines with the full

[30] or restricted [54] arithmetic instruction-sets obey the parallel

computation thesis, and so can be considered "reasonable" parallel

machines In themselves. This makes the processor-bound an uninteresting

resource.

(a) W(n) = 0(T(n)). This can be achieved indirectly (as in Goldschlager

[27]) by restricting the instruction-set and the size of the input-

symbols.

(b) W(n) = T(n)0(,V This condition guarantees that the parallel computation

thesis holds, subject to the additional conditions on the instruction-set

mentioned in 1 (b) above.

(c) W(n) = n0(1). This ensures that the input encoding is "concise" in the

sense of [22]. If the input symbols are allowed to be Integers with more

than a polynomial number of bits, then n is no longer a reliable (to

within a polynomial) measure of input-size.

Other restrictions are often made in the literature, motivated, it Is often

claimed, by practical considerations. These include the following:

(1) Restrictions on degree. It is widely accepted that a completely-connected

machine is impractical. Some authors (for example, Galil and Paul [21])

think that degree should be constant (i.e. independent of input-size).

(2) Restrictions on the interconnection pattern In the case of fixed-structure

networks (see section 3.1) it is desirable to restrict oneself to machines

with an Interconnection pattern which is in a sense easy to compute (see.

for example, [21]). This is also the case for uniform circuits [59] and

conglomerates [27]. One advantage of this approach is that it avoids the

kind of machine described in section 3.1, which can compute a large class

of functions (which may even be non-recursive) in an unnaturally small

amount of time.

(3) Restrictions on register access. Even if higher-degree machines are

acceptable, should every processor necessarily have the freedom of being

able to read any register of Its neighbours? An alternative is to provide

each processor with a special communication register, which is the only

- 40 -

register accessible to other processors. This approach is taken, for

example, in [21,36.68]. We will call machines of this kind restricted-access

networks.

(4) Restrictions on multiple register access. Some authors (for example. [20])

insist that simultaneous writes to a single register be disallowed, others (for

example. [42]) insist that simultaneous reads of a single register also be

banned.

We will have more to say on these matters in later sections.

3.4. A Practical Model

In the last section we saw various constraints which can be placed on our

network model in order to make it "reasonable" or "practical". We are now

ready to define our own practical variant of the network model. A feasible

network H is a fixed-structure network (see section 3.1) with interconnection

scheme (P.D.G), such that:

(i) Each processor has a constant number of general-purpose registers.

(li) The degree, D(n), Is a constant.

(lii) The interconnection function G can be computed in time 0(log P(n)) by a

deterministic Turing machine.

These three conditions ensure that the machines are in a sense easy to

construct. Each processor has a small amount of memory, and a small number

of easy-to-compute interconnections. Machines with similar characteristics

have appeared, for example, in [21,46,46,55,62.66,69]. Note that we have made

no attempt to make the model "reasonable” by placing bounds on the number of

processors, space, time, word-size, or the complexity of the instruction-set,

according to the guidelines laid down in the last section. The reader is

-*1 -

completely free to make whatever additional restrictions are required,

according purely to taste, or In order to model a particular kind of computing

environment.

Even if we accept the feasible network as being feasibly constructlble, it is

unlikely that the fabrication costs would be so low that the average user would

be willing to build a new machine for each application. More likely, the user

would prefer to present each new machine (in the form of a program) to a

universal parallel computer which can simulate it at a small cost In resources.

The user would thus be able to trade the fabrication cost of a feasible network

for a small Increase in resources at run-time.

A further advantage is to be gained if we can And an efficient feasible

network which is universal for the general model of section 2.1. From a

practical point of view, it would provide the user of a feasible network with a

new, Aexible high-level programming language. Programs which are written in a

high level programming language similar to that of section 2.1 could (although

they may correspond to machines which are not feasibly constructlble) be run

on a feasible universal machine, for a small extra cost in resources. By building

a single feasible network the user gains the use of a flexible and elegant virtual

architecture, corresponding to a completely-connected network. From a

theoretical point of view, we obtain a practical motivation for studying the more

esoteric parallel machine models of chapter 2.

Note that the universal machine is far more attractive than the machines

that it can simulate. For example:

(1) It is a fixed-structure machine with a small number of easy-to-compute

interconnections per processor.

- 42 -

(2) The number of registers per processor is small. The problem of whether to

allow access to arbitrary registers of neighbouring processors thus

vanishes; each processor can be restricted to communicating via a single

communication register (as mentioned in section 3.3) without asymptotic

time-loss.

(3) Because its degree is constant, the problem of whether to allow

simultaneous access to those communication registers also vanishes.

Accesses in the universal machine can be restricted to exclusive reads

without asymptotic time-loss (by use of a polling loop).

(4) The requirement that the universal network is synchronized is no longer

essential (see [21]).

Yet the machines being simulated need share none of these restrictions.

Exactly what do we mean by a "universal machine"? Suppose U is a P(n)

processor (feasible) network. M is an arbitrary network, and x * <Xo....x„-,> is an

input of size n. A simulation of M on input x by U is to proceed as follows. Let

p=P(n). Place X| into register r||/pj of processor (i mod p). Place into the

remaining registers of processor 0 a concise finite encoding of the program of M.

Set all other general-purpose registers to zero, and simultaneously activate

processors 0.1....p-1 on the program of U. Suppose M computes a function f.

and fn(x) * <y0........ym-i> (for definitions see section 2.1). U is said to be

unit;ersol if for all machines M and Inputs x. when all processors of U have

halted, register rv » j of processor (i mod p) contains yt, for 0 « l <m.

Ve are Interested in a particular kind of simulation, which we shall call

"step-wise”. A simulation of a T(n) time bounded network M on an Input of size n

is said to be sfsp-iUss if;

- 43 -

(1) For O il<S (a), 0 <T «T (n) each register 1 of M has a corresponding

dscttcoted processor d(l.r) In U. Note that we may allow d(i,r) = d(j.r) when

l * * J

(2) Suppose t:N-»N. The simulation consists of three phases:

(a) Initialization. This includes the assignment of. and routing of the Input

values to the dedicated processors, as well as any pre-computations

required for phase (b).

(b) Computation. The computation phase is to take t(n).T(n) steps. For

0 «rx T (n) we require that after t(n).r steps of this phase, processor

d (l.r) has a distinguished. register which contains the contents of

register i of M after r steps of M. Os i < S(n).

(c) Termination. This includes routing of the output from the dedicated

processors to the output processors.

Such a universal machine is said to have da Lay t(n). The sa tup tona is the

time required for phases (a) and (c) combined. Note that the set-up time must

be independent of T(n). A step-wise simulation is also said to be Maral if a

data-transfer from registers 1 to register j of M. Osi.j <S(n), during time-step r,

l « r < T (n) , gives rise to a communication between processors d (i.r - l) and d(j.r)

of U between time-steps (r - l) . t (n)+ l and r.t(n) of phase (b). More formally,

define a directed multi-graph Gn as follows (Gn is to reflect the information flow

between processors of U during the simulation of time-step r of M). Gn has

vertex-set (0.1....P '(n)-l| (where U has F(n) processors), and an edge from

vertex u to vertex v, labelled 6. if during time step (r - l).t (n)+ d of phase (11).

processor v of U reads a value from processor u. l « 4 « t (n) . (Recall that

processors of l) use only exclusive-reads for inter-processor communication).

We require that there be a path from d (l.r - l) to d(J.r) in Gn with monotonie

increasing labels on the edges. Thus in a literal simulation, a data transfer

- 44 -

between registers of the simulated machine can give rise to a data transfer

between the corresponding dedicated processors within the simulation of that

time-step. In a nan-litoral simulation, the required data may (for example) have

started out during the simulation of the previous step of M, and been kept up-

to-date by auxiliary processors along the way (see sections 7.1, 7 2).

Later, we will consider a more restrictive form of literal simulation in which

the dedicated processor assignment does not change with time. We will call this

type of simulation strongly litora l In section 8.3 we give an upper-bound of

O(log P(n)) on the delay for a strongly-literal simulation of a P(n) processor,

constant-degree, restricted-access machine, and match this with a lower-bound

in section 7.1.

3.5. Speedup of Sequential Machines

In section 3.3 we briefly touched on the following question: which problems

In P have an exponential speedup in time on a "reasonable" parallel machine,

where "reasonable" is defined using the parallel computation thesis? The only

answer which is currently available is "probably not all of them". Here we tackle

an easier question: what speedups ore offered by our networks (reasonable or

otherwise), as opposed to sequential ones. As a partial answer, we provide the

following result.

Theorem 3.5.1 Let B:N-*N. A T(n) time-bounded deterministic Turing machine

can be simulated in time 0(q^ ~) by a network with 20(B(n,% T(n) processors,

word-size 0(B(n)*+log T(n)) and a constant number of registers per processor.

Proof. (Outline). Let M be a T(n) time-bounded k-tape deterministic Turing

machine. A configuration of M consists of k.T(n) tape symbols corresponding to

the tape contents, and k Integers corresponding to the head positions on the k

tapes. The network has T(n)+1 processors devoted to holding the current

configuration of M In an easlly-accessible manner. Processor 0 holds the k head

positions, and for 0< t*T (n) processor 1 holds the 1th symbol of each tape. The

simulation will consist of Is fé r i phases, each corresponding to B(n) steps of M

The Initial configuration of M is easy to set up, and the simulation will endeavor

to maintain It from phase to phase.

A situation consists of that portion of the tape which may be altered during

the current phase, that is, the k.(2B(n)-l) tape-cells that are within distance

B(n) from a head at the start of the phase. During each phase the simulation

will be conducted using these situations - at the end of each phase the final

situation will be used to update the stored configuration. To be more precise, a

situation consists of k (2B (n)-l) tape symbols, and k head-pointers (each of

O(log B(n)) bits).

Before the first phase, some pre-computation is carried out. A computation

of M consists of a string of B(n)+1 situations. The processors are broken up into

2°Wn,l) teams (one for each computation), each of B(n)+1 processors. The

lowest numbered processor of each team is a distinguished processor called the

leader of that team. Our aim is to notify the leaders of the teams which

correspond to valid computations of M.

The 1th team is made up of processors for which iPID/ (B(n) + l)J = J The i01

member of this team has PID mod (B(n)+1) » i. The value j is interpreted as the

encoding of a computation (note that this computation is the same for all

members of a team). The 1th member of each team 0 <i<B (n) verifies that the

1th situation of the computation follows from the (i - l) th one by the rules of M.

where the situations of a computation are numbered 0,1....B(n). If not. then

that processor is said to fa il The team-leader verifies that tha heads of the

initial situation of tha computation are all at cell B(n) of their respective tapes.

Processors which fall notify their team-leader as follows. Each team-leader

sets a pre-determined register r to zero. Failed processors then attempt to

write a one to register r of their team-leaders. A number of team-leaders will

have their register r remain at zero. The computations of their teams

correspond to valid computations of M. They extract the initial and Anal

situations I.F of their respective computations, and write F to processor I.

Each phase is broken up into three parts.

(1) Determine the initial situation from the initial configuration of the phase.

This time the processors are broken up into 2 °<B(n» teams (one for each

possible situation), each of 2B(n)—1 processors. The lowest numbered

processor Of each team is a distinguished processor called the leader of

that team. Processors which are not members of a team remain idle.

The Ith member of the j*** team (i.jfeO) has i = P1D mod (2B (n)-l) and

j s |piD/(2B(n)-l)J. Each processor first computes i and j. The value j is

interpreted as the encoding of a situation (note that j is the same for all

members of any particular team). The 1th processor of each team,

0sci<(2B(n)-l) decodes the head positions and the i1*1 symbol of each tape

from this situation. Every processor of every team then compares its

symbols to the corresponding symbols of the stored configuration. If they

disagree, the processor is said to fa il. Each team-leader sets a pre­

determined register r to zero. Failed processors then attempt to write a

one to register r of their team-leaders.

The team leader whose head-pointers are equal to B(n), and whose register

r remains at zero knows that its value of J is an encoding of the initial

situation of the phase. It writes this value to processor 0 for safe-keeping.

- 47 -

(2) Determine the final situation of the current phase. Processor 0 can obtain

this information from processor I. where I is the initial situation of the

current phase computed in (1) above. Processor I obtained this

Information during the pre-computation stage.

(3) Determine the Anal configuration of the phase from the final situation.

Those processors holding symbols of the configuration which are within

distance B(n) from a head update their values using the final situation

stored in processor 0. Processor 0 likewise updates its head positions.

The network is then in a position to begin the next phase. T(n) steps of M

every phase each take a constant number of steps, assuming that each

processor has the extended arithmetic instruction-set. With care, the restricted

arithmetic instruction-set can be substituted, by using 20 B̂(n),) processors per

team in the pre-computation, and 20(Btn,) processors per team in each phase.

Note that processor 0 is to be given the value of B(n) before the start of a

simulation on an input of size n. This result implies that any computable

function can be computed in constant time if sufficiently many processors are

present. By taking B(n) * T(n) we can extend the simulation to nondeterministic

Turing machines. Thus, for example, every function in NP can be computed in

constant time by a network of Z"*1’ processors. This is an improvement over the

result of Savltch [60], who obtains time 0(log n) on a network of n0<1)

nondeterministic processors. But what about simulation by a “reasonable"

machine? Suppose we require that the parallel computation thesis holds. It is

sufficient in this case to bound the word-size to be a polynomial in the parallel

running time. This means we can choose B(n) to be T(n)l_* for 0<c < 1. Thus a

T(n) time bounded deterministic Turing machine can be simulated in time T(n>*

are simulated by repeating this for phases. The pre-computation and

The entire simulation takes 0() steps, using 2°<B<n),)+.T(n) processors. □

4 8 -

by a "reasonable" network, for 0 <e < 1. Thus an arbitrary polynomial speedup is

possible. This is an extremely strong result, since, as we observed in section 3.3,

there are natural problems in P which probably have no exponential speedup on

a parallel machine which obeys the parallel computation thesis.

Dymond [IB] has achieved a superior resuit in the case where word-size is

to be linear (instead of just polynomial) in the parallel running-time. He obtains

parallel time 0(VT(n)) on 2°<VT(n)) processors, compared to our 0(T(n)e/s) on

2 °(r(n)*^*) processors. We can duplicate his result by doing the pre-computation

sequentially, in time 0(B(n)) using 2°(B(n» teams, each of one processor. This

gives time 0 (g ^ - + B(n)) on 2°Wn» processors. By using standard techniques it

is possible (Blum [6]) to simulate a T(n) time-bounded deterministic Turing

machine in time O(log T(n)) using 2°fr(B» processors, without the use of multiple

writes. We can achieve the same result by choosing B(n) = I M , and doing the

pre-computation recursively. Blum thinks that parallel machines with this many

processors are "reasonable", and attacks the parallel computation thesis on this

basis.

- 49 -

Chapter 4
Programming Techniques for Feasible Networks

In chapter 3 we suggested the possibility of finding a feasible network which

is universal for the general network model. Before we actually tackle this

problem, it is instructive to Investigate the methods at our disposal. This

chapter consists of four sections. The first section deals with possible

interconnection patterns, concentrating on the shuffle-exchange of Stone [66]

and the cube-connected-cycles of Preparata and Vuillemin [55]. The latter

paper also provides us with a useful programming tool - a large class of fast

algorithms on the multi-dimensionai cube (called com poritt algorithms) which

can be simulated without loss of resources on either the cube-connected-cycles

or shuffle-exchange. This will allow us to express the program of our universal

machine in a high-level form which is to a certain extent independent of

interconnection pattern.

The second section deals with recurrent interconnection patterns, that is,

interconnection patterns G= (G0.Gi,...) such that for all kaj%0, G* is made up of

a collection of disjoint subgraphs, each of which is isomorphic to Gj. We present

a recurrent interconnection pattern called the cube-connected-lines, which is

equal to the cube-connected-cycles in its ability to simulate composite

algorithms. It is shown that a recurrent interconnection pattern with twice as

many subgraphs as the cube-connected-lines cannot share this property.

The third section contains some composite sub-algorithms which we will

later find useful for constructing universal machines. The fourth and Anal

section presents some theorems which allow a reduction in the number of

processors in machines with the shuffle-exchange, cube-connected-cycles or

- 50-

cube-connected-lines interconnection patterns, at a cost in time. A reduction in

processors from P(n) to P'(n) results in a delay of 0(P(n)/P'(n)). Thus constant

multiples in processor bounds can be ignored without asymptotic time-loss, a

fact that we will use often in later chapters. A preliminary version of the

material contained in the last section has appeared in [51].

4.1. Interconnection Patterns and Programming Tools

As suggested in section 3.4, our aim is to construct a feasible network which

can efficiently simulate any general network. There are a number of

interconnection patterns available in the literature which we might use for this

universal machine. These appear to be roughly equal in computing power.

Rather than tie ourselves to one particular interconnection pattern, it would be

more instructive to express our program in a language which can be

implemented efficiently on several interconnection patterns.

Fortunately, the literature already provides us with some tools. Preparata

and Vuillemin [55] consider various algorithms which use a multi-dimensional

cube as the Interconnection pattern. Although this has non-constant degree,

they find that a large class of useful algorithms have strong properties which

allow them to be simulated without asymptotic time-loss on a feasibly-buildable

machine which they call the cube-connected-cycles.

First, let us Introduce some useful notation. Suppose v and 1 are non­

negative Integers. If ife 1, let v(denote the 1th least-significant bit in the binary

representation of v, that is, vt = [v/ J mod 2. Where convenient, we may

confuse the Integer v and a binary representation

vfcVk-i • • • V| (where kfc llog vj+1) of ▼. Also let v0* denote the Integer which

-51 -

differs from v precisely in the t°* (least-significant) bit, that is.

v M* v + (— l i v e (O.lJ. let V denote v*1*. the complement of v.

Suppose k is a non-negative integer. The k-cubt Ck has vertex-set

(v | 0 *v < 2 k|, and each vertex v is joined to vertices v® for K is k . Ck has 2*

vertices and degree k; it is this high degree which makes it unsuitable as a

realistic interconnection pattern. However, it has played an important part in

motivating the degree-3 interconnection patterns which we shall meet below.

Figure 4.1.1 shows the four-dimensional cube (commonly called the hyper-cube)

C4. which has 16 vertices and degree 4.

Dimension:

figure 4.1.1 The hyper-oube, C«.

Consider a network baaed on the k-cube. with a constant number of

registers per processor. The link between v and v® Is said to be In dimension l.

Suppose k '«k . An algorithm la termed simpte-ascend (after [85]) If all data

- 53 -

transfers occur synchronously along dimension 1, then dimensions 3,3....k' in

monotone increasing order. Similarly it is called simple-descend if the data

transfers occur in the opposite order, from k' down to 1. An algorithm is called

simple it it is either simple-ascend or simple-descend, and composite it it is

either simple or made up from local instructions and modules which are

themselves composite. We learn from [55] that there are fast composite

algorithms for a rich selection of data routing problems (such as permutations,

merging and sorting).

The shuffle-exchange SEj, of Stone [68] has vertex-set (v | Osv<2*1 j. and

each vertex v is joined to vertices v*1*. (2v) mod 2k+vit and |y/2j +v1.2k_l.

Relative to processor v, these three edges are called exchange, shuffle and

unshuffle links respectively. SE* has 2k vertices and degree 3. Figure 4.1.2

shows the B vertex shuffle-exchange SEg. As an interconnection pattern,

SE = (Sq.Si ,...) where for ifeO. St = SEha(i|.

Figure 4.1JI The B vertex ehuffle-exchanfe, SE«.

From this point onwards, to help avoid possible confusion, we will often call

the processors of the simulated machine processes in order to distinguish them

from the processors of the simulating machine. This is consistent with the view

that the simulated machine is presented to the simulator as a program, not as a

physical collection of processors and wires.

Theorem 4.1.1 A shuffle-exchange with & processors can simulate a 2k process

composite algorithm with constant delay.

Proof. (Outline) Suppose k '«k . Without loss of generality we will prove the

result (or algorithms whose data transfers occur synchronously along

dimensions 1,2........ k - l .k .k '- l2.1 in turn. Both simple-ascend and

simple-descend class algorithms At into this category with constant delay, the

former by taking the last k1 data transfers to be null, and the latter the first k’.

Applying the same technique to each simple module shows that the result also

holds for composite algorithms.

Each processor will be assigned the task of simulating one process. Since

each process has only a constant number of registers, it is possible to have a

simulation in which the processor assignments are Aexible. To move a process

from one processor to another, we need only transfer the contents of its

registers. If this transfer is to take place between neighbouring processors, the

entire process can be moved In constant time. We start off with processor i of

the shuffle-exchange simulating process 1, 0 s i< 2 k. Most importantly where

composite algorithms are concerned, we also end up in this configuration.

Initially, we can manage the data transfers along dimension 1. since for 0 « i <2k,

processor 1 is connected to processor l(l> via an exchange link.

Next we simply move the entire process from processor 1 to processor

lilklk-i • • • 1« via the unshuffle link out of processor 1 (which the processor at the

other end views aa a shuffle link). After this has been done in parallel for all 1,

0 s i< 2 k, we see that process i(a) is then resident in processor (l|iklk-i ' la)('\

which Is adjacent to processor l|iklk-i • • • i* via the exchange link. Thus the

necessary transfers between processes 1 and l(,) can take place over the

exchange links. After a second unshuflle of processes, data transfers In

dimension 3 can take place over the exchange links. This continues up to

- 55 -

dimenston lc*. and then la reversed back down to dimension 1. □

The cube-cormectsd-cycles CCCk of Preparata and Vuillemin [55] is deflned

as follows. Let r be such that 2,_ ,+ r - l <k<2N-r. CCCk has vertex-set

{ (v.p) | 0 «v < 2 k~r, 0 *p < 2 r j. and each vertex (v,p) is joined to vertices:

(i) (v^M),p), provided 0 * p < k-r,

(ii) (v,(p+ l) mod 21). end

(ill) (v . (p - l) mod S').

The first link is called a cube edge, the remaining two cycle edges. Relative to

processor (v.p), the first cycle-edge is called vpcyclt, the second dotuncycle.

CCCk has 2* vertices and degree 3. Figure 4.1.3 shows the 16 vertex cube-

connected-cycles. CCC4. As an-Interconnection pattern, CCC* (G0.G,,...) where

for lk 0. G, * CCCigg ,|

Hgms 4.1J Ths 16 vert« eube-eonMcted-eyelM, CCC«.

Theorem 4.1.S A cube-connected-cycles with 2* processors can simulate a 2*

process composite algorithm with constant delay.

Proof. Preparata and Vuillemin [55] prove this result (or Vc' (the upper

dimension In the simple modules) equal to k. A straightforward modification to

the pipelining argument and to LOOPOPER gives us the desired result. □

By application of these theorems we have:

Theorem 4.1.3 A feasible network with at most 2,a* processors can permute n

items according to some fixed permutation in time O(log n) (provided some pre-

computation is allowed).

Proof. The algorithm is just a simulation of the permutation network of

Waksman [75]. See Schwartz [62] or Preparata and Vuillemin [55]. □

Theorem 4.1.4 A feasible network with at most 2,0i 01 processors can perform the

pre-computation mentioned in theorem 4.1.3 in time 0(log4n).

Proof. See. for example, Nassimi and Sahni [46], Schwartz [62], Opferman and

Tsao-Wu [48] or Lev, Pippenger and Valiant [42]. □

Theorem 4.1.5 A feasible network with at most 2,0< 111 processors can sort n items

in time 0(log*n).

Proof. The algorithm is a composite realization of the odd-even or bltonic sorts

of Batcher [4], See. for example. Schwartz [62] or Preparata and Vuillemin [55].

□

4.2. Recurrent Interconnection Patterns

An interconnection pattern G » (G0.G,...) with P(n) processors is said to bo

Pin)recurrent If for all n,m with Osman, G„ has 0() dl»jolnt subgraphs which

are isomorphic to Gm. The simplest form of recurrence one might choose is to

have Gn constructed from precisely p ^) auctl ,ub* raPhr Unfortunately this

typo of recurrent interconnection pattarn is much lass powerful than the

shuffle-exchange or cube-connected cycles met in section 4.1. Later in this

- 57 -

Suppose c Is a fixed positive integer (independent of n). More precisely, a

racursive interconnection pattern is one in which Gn (n >c) is made up of

exactly c disjoint copies of G^/ej (with fixed graphs for n<c), joined by extra

edges from some graph G‘n.

Theorem 4.2.1 No constant degree recursive parallel machine with 0(n) proces­

sors can can permute n items in O(log n) steps.

ft-oof. For a contradiction, suppose G = (G0,G|,...) is a recursive interconnection

pattern with degree d and 0(n) processors which can be used to permute n

items in time O(log n). The following technique is due to Meertens [43].

Suppose n = ck for some kfc 0. Let

Pk denote the number of vertices in Gn,

Ek denote the number of edges in Gn,

Ek denote the number of edges in G'BI

Note that rk< jp (Let Sk be the sum over all vertices v in G„ of the number of

edges Incident with v. Clearly Sk£d.Pk. But every edge is counted twice, so

Skse.E^). Also, Pj, = 0(ck).

We claim that for OssKk.

EkH-CKSj— ¡ -) (*)

Consider one of the subgraphs of G ^ Isomorphic to G n • Pick a permutation
o» «»♦«

- 57 -

section we will meet a recurrent interconnection pattern where Gn is made up of

at least g p ^ y copies of Gm, which is equal to the cube-connected-cycles in its

ability to simulate composite algorithms.

Suppose c is a fixed positive integer (independent of n). More precisely, a

recursive interconnection pattern is one in which Gn (n >c) is made up of

exactly c disjoint copies of G^oj (with fixed graphs for n<c), joined by extra

edges from some graph G'„.

Theorem 4.2.1 No constant degree recursive parallel machine with 0(n) proces­

sors can can permute n items in O(log n) steps.

Proof. For a contradiction, suppose G= (G0,Gi....) is a recursive interconnection

pattern with degree d and 0(n) processors which can be used to permute n

items in time 0(log n). The following technique is due to Meertens [43].

Suppose n = ck for some kfc 0. Let

Pk denote the number of vertices in Gn.

Etc denote the number of edges in G„.

E*k denote the number of edges in G'n,

Note that Tk< jp (Let Sk be the sum over all vertices v in G„ of the number of

edges Incident with v. Clearly Sk*»d.Pk. But every edge is counted twice, so

Sk = 2.H,). Also, Pk^Sic11).

We claim that for 0 * i <k,

E'¡•k -t-fH S j-j-)

Consider one of the subgraphs of G ^ Isomorphic to G „ .
e» «w»

(•)

Pick a permutation

- 58 -

which takes a data Item trom each (input bearing) vertex of the subgraph to a

vertex of outside that subgraph. These data items must pass along the
e»

edges of G'^, since these are the only edges linking the subgraph with the rest

of Gj^ Thus in one step, at most E'k_t items can be moved. By hypothesis we
e>

can move all the items in O(k-t) steps. There are n(Pk-t_i) = n(ck*‘" 1) items to

be moved. Hence ck-‘ ' 1 = 0(E’k-,.(k-i)) as required.

Now

Ek = E‘k+c.Ek-1

This is in contrast to the corresponding result (theorem 4.1.3) for the cube-

connected-cycles and shuffle-exchange.

The following is a recurrent interconnection pattern which is as powerful as

the cube-connected-cycles, at least In its ability to simulate composite

algorithms. The cube-connscfed-Hnss, CCL* is simply a copy of CCCk with the

edges from vertices (v.O) to (v .^ - l) , 0 * v < 2k_r deleted. That is. the cycles of

the cube-connected-cycles are broken, and thus become lines. Figure 4.2.1

shows some cube-connected-lines graphs with 2,4.8 and 16 vertices. CCLk has 2k

vertices and degree 3.

* 0(£) by re-indexing
ial i

Thus Tk= 0 (£ t-). which diverges as k-*<■«. But this contradicts the fact“k (a | i as k-*<■>. But this contradicts the fact

that Pk* a constant independent of k. Thus no such parallel machine can

exist. C

- 59 -

<o.o> < 1.0)

< 0 . 0)

<0 . 1)

< 1 . 0)

<1.1)

<0 . 0) (

<0 . I K

<2 . 1) 1 ^*<3 . 1)

ilfiir i 4J.1 The 2.4.6 end 16 vertex cube-connected-linee graphs. CCLj through

CCt*.

Theorem 4.2.2 For 0 *J * k, CCL* has at leaat 2k_1M disjoint subgraphs which are

isomorphic to CCLj.

Proof. Lot kfcJfcO, and r be such that 2,- ‘ + r - l < J i2 r-*-r. For r * 0 we call

CCLf,4.r a fu ll cube-connected-lines graph.

First suppose that J «k -1 . that is. we wish to break the 2* vertex CCL* into

half-sized (2k_l vertex) CCLk-i's. There are two cases to consider, according to

whether or not CCLj is full.

i . o >

1 . 1 »

1 . 2 >

1 . 3)

- 60 -

(1) k - l *2 r+r. CCLk-i has vertices (v.p) with 0<v<2k-,- ,1 O ip i ? . Vartax

(v.p) la jolnad to vertical:

(I) (v&**>,p). 0 < v < 2 k- '- ,1 0 < p < 2 '1

(II) (v.p+1), 0 * v < 2 k_,_l. 0 *p < 2 r- l .

(III) (v.p-1). 0 < v< 2 k-r- ,1 0 < p < 2 r.

CCU has vartlcas (v.p) with 0 * v < 2 k_r~1, O ^ p ^ * 1. Vertex (v.p) is joined

to vortices:

(l) (v&*».p). 0<v<2 '«- '- ‘ . 0 *p < 2 r.

(ii) (v.p+1). 0 *p < 2 r* ,- l .

(Ill) (v.p-1). O i v « ^ - 1-». 0 < p < 2 r* ‘ .

Thus CCI* looks exactly like CCLk., with lines extended to double the length

using vertices without cube links. So CCL* has only one subgraph which is

isomorphic to CCLk_| (see figure 4.2.1 for the case when k = 2 and k = 4).

(2) k - l< 2 rfr . CCLfc-i has vertices (v.p) with 0 *v < 2 k_r~l, 0<p<2r. Vertex

(v.p) Is joined to vertices:

(i) (vfrM\p). 0 * v < 2 k_,-,1 0 « p < k - r - l ,

(ii) (v.p+1). 0 * v < ^ ,,- -̂ ,. 0 *p < 2 r- l ,

(ill) (v.p-1). 0 < v< 2 k-r- ,i 0 < p < 2 r.

CCIa has vertices (v.p) with 0 * v < 2 k' r. 0 *p < 2 r Vertex (v.p) is joined to

vertices:

(t) (v^'J.p). 0 < v < 2 k-r, 0 < p < k -r .

(li) (v.p+1). 0 * v < 2 k“, l 0 *p < 2 r- l .

(Ul) (v.p-1). 0 * v < 2 k-r. 0<p<2r.

Deleting the cube-edges from (v.p) to (v<**l),p) with p ■ k -r-1 from CC1*

gives two disjoint graphs which are isomorphic to CCl*_, (see figure 4.2.1

tor the oase when k ■ 3).

- 61 -

Thua for 8f- ,+r—1 < j « k « 8 , +r wo can break CCL* into 2k_1 subgraphs

isomorphic to CCLj, by Iterating the procedure In (2) above. By then applying

(1). we see that CCI* has 2k-J_l subgraphs isomorphic to CCLj when j * 2r-,+ r - l.

It remains to show what happens when j and k are separated by more than one

full CCL

Now suppose k = 2r+r and j « 2r'+r’ for some r * r’* 0. CCLj has vertices (v.p),

0 iv < 2 ^ , 0<p<21'. Vertex (v.p) is joined to vertex:

(1) (vfc*l\p). 0*v<2**'. 0xp<2?'.

(li) (v.p+1), 0<v<2*^, 0sBp<2r'—1.

(Ui) (v.p-1). 0<v<2*r, 0<p<2r'.

CCL* has vertices (v.p), 0 *v< 2 *r, 0 «p < 2 r Vertex (v.p) is joined to vertex:

(l) (vk+,>.p). 0 *v< 2 *r, 0 *p < 2 r.

(ii) (v,p+l), 0 *v< 2 *r, 0 «p < 2 r- l .

(ili) (v ,p -l). 0 *v<2 *r, 0<p<2r

Deleting the line-edges between vertices (v.l.2,' - l) and (v . i^) for 0 * v < 2*r,

Oasi <2r' r’ serves to break CCL* into 2k~1 graphs isomorphic to CCLj Thus a full

CCL* has 2k~1 disjoint subgraphs isomorphic to a full CCLj.

Finally, we now have the tools to prove the result for general j and k.

(a) First reduce CCL* into subgraphs Isomorphic to the next smaller full CCL,

using (1) and (2) as mentioned above. If CCLj is encountered along the way,

then this Is sufficient. If j and k are separated by precisely one full CCL.

further Iterations of (2) are sufficient.

(b) Next, reduce the full CCL Immediately below CCL* into subgraphs

isomorphic to the CCL immediately above CCLj. The latter can be reduced

to CCLj by subsequent iterations of (2).

- 62 -

In this entire process we only once have to reduce a non-full CCL to

subgraphs which are isomorphic to full ones. Thus CCL* consists of 2k' 1' 1

subgraphs isomorphic to CCLj. □

Note that any attempt to increase the number of subgraphs from 2k_1' 1 to

2k_1 is doomed to failure. For if CCL* had 2k~1 subgraphs isomorphic to CCLj, it

would then be recursive. Thus by theorem 4.2.1 it would be much weaker than

the cube-connected-cycles for computing arbitrary permutations. However we

have:

Theorem 4.2.3 A cube-connected-lines with 2* processors can simulate a 2k pro­

cess composite algorithm with constant delay.

Proof. Similar to theorem 4.1.2. C

Relf and Valiant [57] have independently discovered a graph which is almost

identical to the cube-connected-lines. A degree-4 graph with similar properties

was earlier devised by Meyer auf der Heide [31,32].

4.3. Some Useful Algorithms

Having developed the idea of a composite algorithm in section 4.1, we are

now ready to describe some simple sub-algorithms which we will And useful in

the next three chapters. The algorithms are given for the k-cube

interconnection pattern, but can be simulated without asymptotic loss of

resources on either the shuffle-exchange, cube-connected-cycles or cube-

connected-lines Interconnection patterns, as described In sections 4.1 and 4.2.

It is Important to note that the algorithms are SIMD In nature; synchronization

is maintained by the fact that (as we earlier insisted in section 2.1) the code

generated for each branch of a selection statement (such as if-then-else, even if

the "else" branch la null) has the same number of instructions.

Algorithm 1. Broadcast.

Suppose processor 0 has a value v which it wishes to broadcast to all &

processors of a k-cube. This can be achieved in time 0(k) by the following

simple-ascend algorithm, which terminates with variable V of every processor

equal to v.

V:=if PID = 0 then v elaeO
for b: = l to k do

UPIDb-1 then V : = (V of processor PID(b>)

If O s i t ! 11, define the b-block (after [45.47]) of processor i to be the set of 2*

processors { |l/2bJ.2b4j | 0 * j <2b|. It is easy to prove by induction that after the

b01 iteration of the for-loop, variable V of all processors in the b-block of

processor 0 is equal to v. for b = 0.1....k. (By the 0* iteration, we mean the point

Immediately before the loop is entered for the first time). Table 4.3.1 shows a

trace of the algorithm for W=4. The concept of a b-block will play an Important

part in the next two algorithms.

M le 4J.I Traoe of algorithm 1 on IS procoaoor*. Toblo entry ohows tho oontonts

of vorloblo V of ooeh procoaoor after b iterations of tha for-loop.

- 64 -

Algortthm 2. Local Rank.

Suppoaa every processor of a k-cube holds an integer value in some variable

V. The focal rank of processor i, 0 « i< 2 k is defined to be the number of

processors j. 0 « j< l . such that for all processors p with j s p i i, V of processor p

equals V of processor 1. The following is a simple-ascend class algorithm which

sets variable R of each processor to its local rank, and runs in time 0(k).

VT:=V

R:«RT:»0
for b: = 1 to k do
if (PIDb « 1) and (VT of processor PIDM) ■ V

than R := R+(RT of proce—or PID(b)) + 1
if (VT of processor PID^’) =VT

than RT:* RT+(RT of processor P ID ^)* 1
else if PIDb = 0 then (VT.RT): » (VT,RT) of processor PID(b)

At the end of the b**1 iteration of the tor-loop, 0 « b*k , variable R of

processor l. 0 * i< 2 k holds that processor's local rank within its b-block. At the

same time, variables VT and RT contain the values V and R (respectively) of the

topmost processor In its b-block (l.e. processor |i/ 2bj.2b+2h- l) . The

correctness of the algorithm follows by Induction. Table 4.3.2 shows a trace for

k*3, with V of processor 1 initially equal to 0,0.0.6,6,6.6.1 for i = 0.1....7

respectively.

- 65 -

n 1 2 3 5 7
__wo__ __wo__ v-0
ff VT RT p VT RT p IT0 0 0 0 0 0 0 0 0 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 010 0 1 1 0 i 0 6 0 0 6 0 0 6 i 1 6 10 1 0 0 1 02 0 6 0 1 6 0 2 6 0 0 6 0 0 1 0 1 1 0 2 1 0 0 1 0

j , SL 1 0X 1 A X _ i__a o 1 OX _JL_X 2 X -a X

U k 4 JJ Trace of aleorithm 2 on 8 proceaaora. Table entry ahowe the contents

of »enable» R, VT and RT of each processor after b iterations of the for-loop.

Algorithms. Fan-out.

Suppose every proceuor of a k-cube holds two Integer values x and y (which

may be different for each processor). Our aim is to produce a value fanout(i) for

each processor l. where for O iK # , fanout(i) is defined to be the y-value of the

smallest numbered processor) such that for all p with J *p * l, x of processor p Is

equal to x of processor l. The following is a simple-ascend class algorithm which

sets variable Y of processor l to fanout(i), 0 < i< 2 k, in time 0(k).

Y :«y
XT.YT: = x.y
for b :* l tolc do

if (PIDb « l)and(XT of processor PID'b) = x)
then Y: = YT of proooeaor PID'b>

if (XT * XT of procsssB r PIDtb')e*(PIDb = 1)
than (XT.YT): « (XT.YT) of processor PID(b>

At the end of the b1*1 Iteration of the for-loop. 0 < b *k , variable Y of

processor 1 contains the value of fanout(l) restricted to its b-block. At the same

time, variables XT and YT contain the values of X and Y (respectively) of the

highest-numbered processor In Its b-block (l.e. processor |t/8bj.8b + 8b- l) . The

correctness of the algorithm follows by Induction. Table 4.3.3 shows a trace for

k « 3 with (x,y) of processor 1 equal to (0.06). (0.89). (0.69). (6.95). (6,19), (6.88).

(6,56). (1.44) for 1« 0.1....7 respectively.

- 66 -

0 1 2 3 6 3 6 7
X-O x - o x - o X -6 X -6 X -6 X -6 X - 1
V -9 9 V eS 9 V -69 v - 95 V - 19 v -3 6

n y r r y t Y XT YT Y XT YT Y XT YT Y XT YT Y XT YT
0 9 9 0 99 89 0 89 6 9 0 69 93 6 93 19 6 19 2 8 6 28 56 6 56 44 1 44
1 99 0 99 99 0 99 6 9 6 93 93 6 93 19 6 19 19 6 19 36 1 44 44 1 44
2 9 9 6 93 99 6 95 99 6 93 93 6 93 19 1 44 19 1 44 19 1 44 44 1 44
2 ■22. 1 M 11 1 44 ? ? i, 4 4 99 1 9 9 1 4 » 99 1 » 4 * * i * *

T lM » O .S Trace o f algorithm 3 on 8 procenora. Table entry ehowe the contents

at variable« X, XT and YT of each processor after b iterations of ths for-loop.

Aliorltbm 4. Scatter

For the moment we briefly step away from the main theme of this chapter,

and allow the processors of our machines to have more than a constant number

of registers each. In particular, we want each of the 2k processors of a k-cube to

have an array of 2k elements. Suppose processor 0 has 2k items of data in its

array, and wishes to scatter these amongst processors 0.1....2k- l in such a

manner that each processor receives precisely one value. The algorithm

consists of k stages. At the end of the 1th stage, the 2* processors p. 0 * p <2*. are

each in possession of 2k data items. Stage 1 consists of processor p. 0 * p < 2*

sending 2k~i of its data items to processor pw. In the following Implementation,

processor 0 starts off with 2k items of data In an array dfl. ^]. Each processor

receives its value into variable d [l].

for i: = l to k do
fo r J :-l to 2 kH do

If PIDj ■ 1
than d[J] :■ (d[J+2k-‘] of prooeeeor PID<‘>)
oiaa d[J+2^-,]:»0

Table 4.3.4 shows a trace for k »3 , with d[i] of processor 0 initially containing l,

1*1*6.

The algorithm runs in time 0 (f]2 k*') ■0(2k) on a k-cube, but la not strictly

- 67 -

simple-ascend (because dimension 1 is used 2k_l times in succession, not merely

once). This makes very little difference as far as the shuffle-exchange is

concerned (see the proof of theorem 4.1.1). A minor modification to the proofs

of theorems 4.1.2 and 4.2.3 serves to give the same result for the cube-

connected-cycles and cube-connected-lines Interconnection patterns, the key

point being the fact that after the 1th iteration. O sisk, only 2‘ processors are in

possession of data items.

M b U 4 Tree« of algorithm 4 on • prooMSora. Tabla tntry ahowa the contants

afdUlaf aach processor for various values of J after i Iterations of the outer for-

loop. A blank entry denotes a content of 0.

4.4. Reducing the Number at Proceeeore

In this section we examine a particular kind of time/processor trade-off.

namely, the question of whether a reduction In the number of processors of a

network baaed on the shuffle-exchange, cube-connected-cycles or cube-

connected-lines interconnection patterns can be made at a reasonable cost in

time. We And that a small machine based on these interconnection patterns can

simulate a larger one by having each processor of the former simulate many of

the latter. The fact that this simple approach works is of course due to the

highly regular form of the interconnection patterns under consideration.

This section is partly motivated by a result of Galil and Paul. In [21] they

transform the standard n-processor algorithm for bitonic sort into an algorithm

which can sort n numbers using m *n processors in time G(~ l°8 m.iog n) on

any of the graphs considered above. This raises some interesting questions. Do

Similar results hold for all algorithms on these graphs? Does the result of Galil

and Paul depend on some special property of the sorting algorithm? We are able

to provide an affirmative answer to the first question. With regard to the second

question, (as one might expect) the time-bounds achieved by our general

transformations are slightly Inferior to that of the special-purpose

transformation for bitonic sort. The results work both for the general model of

register access proposed in section 2.1, and the restricted-access model.

Our processor-saving theorems have many applications. Firstly, as pointed

out in [21], in many situations the input to a parallel computer cannot be read

in parallel (this assumption has been made, for example, in [44,49,76]). In this

case our results can be applied to slow down various fast parallel algorithms to

the speed at which the input becomes available, and thus make a large decrease

in the number of processors without any observable increase in time. Secondly,

we can throw some light on the importance of constant factors in processor

bounds. For example, Galil and Paul [21. theorem?] are able to reduce the

number of processors in their universal parallel machine from 0(p) to p while

increasing time by only a constant multiple. We are able to extend this result by

- 69 -

showtng that tha number of processors In any parallel machine based on many

popular Interconnection patterns can be reduced by a constant factor without

asymptotic time-loss.

Constant multiples in processor-bounds pervade the current literature, due

to the fact that the commonly used Interconnection patterns come only in

certain sizes, typically 2k or k2k for some non-negative integer k. Thus to

process n inputs may take more than n processors. For example, it has been

shown (see theorem 4.1.3) that it is possible to permute n items on a 2,1#* nl

processor cube-connected-cycles or shuffle-exchange in time 0(log n) by

simulating Waksman's [75] permutation network. In this case it may be

necessary to use as many as 2n-2 processors. Our results enable us to remove

these "hidden" constants without asymptotic time loss.

Our technique is motivated by the following result.

Theorem 4.4.1. For all dfe 0. Ck can simulate Ck«.a with delay 0(2*).

Proof. In order to simulate a single step of Cm, every processor i, 0 * i <2k will

synchronously execute a single step of processes 2*1 + j, for 0 * j <2* This takes

place in two stages.

(1) For 0 * j< 2 * simulate the communication between process 2* t + J and its

neighbouring processes. Suppose, for example, process 2 fi + j wishes to

communicate with process (2 *l+ j)(m> for some m with l « m « k + d. If m «d

then no Interprocessor communication is necessary. Otherwise d < m *k + d

and so process (2*. 1 ♦ J)*m* * 2fl<m-4> +J is being simulated by processor

|(m-4) since processor l<m**> is a neighbour of processor 1 In Ck, the desired

communication can be carried out in 0(1) steps, the exact constant being

dependent on the type of instruction-set in use. Note that communications

with process 2 fl+J may be Initiated by processes 2*.l(m~*l 'f j, l « m « k ,

resident In every neighbour t(m) of processor 1. We

- 70-

assume that the communication protocol of Ck deals with these possible

clashes in the same manner as that of Ck«*. Clashes involving a

communication between two processes resident in the same processor are

to be dealt with in a manner which is compatible with this protocol.

(2) Finally, simulate the current step of processes 2*.i+ j. 0 * j< 2 d. making

possible use of the information obtained in (1). This is assumed to »ake 0(1)

steps per process (the constant again being dependent on the instruction-

set).

At this point. Ck is ready to simulate the next step of Ck»4 . Thus we have

simulated a single step of a 2k+d processor machine Ck** on a 2k processor Ck

with a time-loss of only 0(2d).Q

Note that the simulation of theorem 1 can be carried out in such a manner

that it maintains the simple-ascend or slmple-descend property of section 4.1.

Thus it is strong enough to achieve the desired savings in processors for

composite algorithms.

As observed earlier in this section, in some instances the Input to a parallel

machine may not be available in parallel. The example taken by Galil and Paul

in [21] is that of matrix multiplication. It is well-known [55] that two nxn

matrices can be multiplied in time 0(log n) using 0(ns) processors on any of the

graphs listed in sections 4.1 and 4.2 provided the input can be read in parallel.

Suppose, to the contrary, that the input can only be read sequentially, so that

there is an a p rio ri lower bound of 0(n*). By applying theorem 1 with

k * llog(n.log n) J and d » f3.log nl -k . we have a linear-time (l.e. 0(n*)) algorithm

on n.log n processors. If a row (or column) of the input can be read in parallel,

theorem 1 with k « |log(n*.log n) J and daf3.1ogn1-k gives us an 0(n) time

algorithm on 0(na.log n) processors. This improvement over the corresponding

results in [21] stems from the fact that they have used a universal parallel

-71 -

machine, which leada to a significant degradation in performance.

Whilst theorem 1 gives the claimed savings in processors for an important

class of algorithms on the shuffle-exchange, cube-connected-cycles and cube-

connected-lines, our aim is to produce a stronger result which holds for all

algorithms on these graphs. Fortunately the interconnection patterns are

sufficiently like the k-cube for similar techniques to work. The shuffle-exchange,

for instance, is particularly amenable.

Thaorem 4.4.2 For all datO. SEk can simulate SEkt.d with delay 0(2*).

Proof. In order to simulate one step of SEk+d, every processor l, 0 s i< 2 k will

synchronously simulate one step of processes 2*.i + J, for 0s»j<2i . As in the

proof of theorem 1, this takes place in two phases - each processor first carries

out any communications required by its processes from their respective

neighbours, then updates their configurations once all the information has been

gathered.

Suppose 0*J <2* and process 2*.i+J wishes to communicate with one of its

neighbours In SE|c«.d. There are three cases to be considered, according to

whether process 2*.i+j wishes to communicate with its neighbour along the

exchange, shuffle or unshuffle edge.

Either

(1) Exchange link. It wishes to communicate with process (2 fl + j) (l>. In this

case, no Interprocessor communication is necessary, since process

(2*.i+J){,) ■2 *.i+ ji,) is also being simulated by processor 1.

(2) ShtuJJIs link. It wishes to communicate with process

!k-iik-s ' ' ' iiJaie-i ' • - Jilk- This process Is being simulated by processor

ik-ib-s ' • • t|Jd. There are two cases to consider:

- 72 -

(a) ik = jd. Processor i s jslk-iik-s • • ti can communicate with processor

ik-iik-t ■ iijd directly through its shuffle link.

(b) ik »• jd Processor i =Jdlk-iik-a it can communicate indirectly with

processor ik-iik-s ■ • • iijs by utilizing the shuffle '.ink to processor

ik-ilk-s' • 1 Je. end the exchange link from there to processor

Ik-Uk-t • liJe-

(3) CMshufflt link. It wishes to communicate with process

JiMk-i1 * ' hield-i js- 'This process is being simulated by processor

JiMk-i ' i* Again, there are two cases to be considered:

(a) i|*J|. Processor i*ifcik-i • • igji can communicate directly with

processor j|ikik-i is through its unshuffle link.

(b) iiP ji- Processor i—ikik-i • • ■ l*Ji can communicate indirectly with

processor jiikik-i ig by utilizing the exchange link to processor

ikik-i • • ■ tali and the unshuffle link from there to processor

jilklk-i •••!«■

Thus we have shown how to simulate one step of the 2k*d processor SEk«.d on

the 2k processor SEk with a time-loss of only 0(2^). the constant multiple being

dependent on the instruction-set used. □

The results for the variants of the cube-connected-cycles are proved in a

similar manner.

Theorem 4.4.3 For alldkO,

(i) CCCk can simulate CCCk»s. and

(«) CCLfc can simulate CCL*»*.

with delay 0(2*).

Proof. We will demonstrate the technique for d ■ 1. This can be looked upon as a

recursive algorithm for the processor assignment, along with a proof that the

- 73 -

assignment la valid. Ve conaider CCCj, first.

First, suppose that k la of the form 2r + r for some integer r>0. Then the

processors of the simulating machine are of the form (v.p) where 0 * v < 2*r,

0 *p < 2 r. In contrast, the processes of the simulated machine have the form

(v.p) with 0 «v< 2 *r, 0 *p < 2 r*1. Processor (v.p), 0 * v < Z r , 0 < p < 2r will simulate

processes (v.p) and (v .^ ^ '-p - l). As before, each processor synchronously

carries out the communications requested by all its processes, and then updates

their configurations internally.

Suppose process (v.p) wishes to communicate with one of its neighbours.

There are three cases to consider.

(1) Cuba link. It wishes to communicate with process (v*pM,.p). This process is

being simulated by processor (v^ '^.p) which is directly connected to

processor (v.p) via a cube link.

(2) Upcycla link. It wishes to communicate with process (v.p + 1). If

0 «p < 2 r- l then process (v.p + 1) is being simulated by processor (v.p+ 1),

which is directly connected to processor (v.p) by an upcycle link. Otherwise

p *2 r- l and process (v ^) is also being simulated by processor (v,p), so no

interprocessor communication is necessary.

(3) Downeycla link. It wishes to communicate with process (v ,(p - l) mod 2rM).

If 0<p<2r then process (v ,p - l) is being simulated by processor (v ,p -l),

which is directly connected to processor (v.p) by a downcycle link.

Otherwise p = 0 and process (v,2r* ' - l) is also being simulated by processor

(v,p), so no interprocessor communication is necessary.

Now suppose that process (v,2fM- p - l) wishes to communicate with one of

its neighbours. This Is handled similarly to (2) and (3) above (remembering that

processes of this form have only cycle links).

- 74 -

This computes the case where k Is of the form 2f + r. Now suppose k is not

of that form. Let r be such that 2F~* + r-1 < k < 2r + r The processors of the

simulating machine are of the form (v.p) where 0ssv<2k_r. 0 sp < 2 r The

processes of the simulated machine are of the form (v.p) where 0 *v < 2 k' r*1,

0e>p<2f.

Processor (v,p) will simulate processes (v.p) and (v + Zk_r.p). As always, in

order to simulate a single step, each processor first carries out the

communications required by its processes, and then updates their

configurations internally.

Suppose process (v.p) wishes to communicate with one of its neighbours.

There are two cases to consider.

(1) Cub* link. It wishes to communicate with process (v^ 'V p). I fp < k -r th en

process (v^*'>,p) is being simulated by processor (vk+,\p). Otherwise

p = k -r and process (v****\p) = (v + 2k_r,p) is also being simulated by

processor (v.p), so no interprocessor communication is necessary. Note

that p cannot exceed k -r since processes (v.p) with p > k -r have no cube

links.

(2) Cycle Unie*. It wishes to communicate with process (v,(p ± l) mod 21) This

process is being simulated by processor (v,(p 1 1) mod 2r) respectively,

which is connected to processor (v.p) by a cycle link.

This computes the simulation of process (v.p). Process (v + 2k~r,p) is

handled similarly.

Thus we have shown how to simulate a step of CCCk»a on CCCk in time 0(2*).

Since CCI« is a subgraph of CCCk, part (i i) of the theorem follows immediately.□

Note that the set-up times for theorems 4.4.1 and 4.4.2 are far superior to

that of theorem 4.4.3. Not only are the assignments of processes to processors

- 75 -

easler to computa, but alao the Input symbols ara placad into tha correct

processors at tha start of a computation according to tha convention

established in section 2.1.

- 76 -

Chapter 5
Practical Simulations

This chapter is devoted to simulations of our general network model on

more practical models of parallel computation. The first section contains a

general theorem which characterizes the computational power needed to

simulate a resource-bounded network. Many specific Instances of this theorem

(for particular machine models) have already appeared in the literature

[4,8,21,42,45,71,72]. In the second section we construct our universal feasible

network. This feasible network is, as has already been mentioned, to be

universal for the general network model. The result follows as a fairly

straightforward corollary to the general theorem of the first section, by

application of the techniques developed in chapter 4.

In the third section we propose a hardware measure for general networks.

This hardware measure is compared to popular definitions of hardware which

have appeared in the literature (including size and width of uniform circuits),

using simulations based on the result of section 1. We examine the extended

parallel computation thesis [16,17] as a criterion for "reasonableness" based on

the resources of time and hardware. This states that time and hardware on any

reasonable parallel machine model are simultaneously polynomially related to

space and reversals on a deterministic Turing machine. The fourth and final

section Is devoted to obtaining Improved simulations of space and reversal-

bounded deterministic Turing machines by width and depth-bounded uniform

circuits.

A preliminary version of the material In this chapter can be found In [50].

- 77 -

5.1. A General Smulation Theorem

The central result of this section is a theorem which describes the

computational power needed to simulate a resource-bounded network. As a

fairly easy corollary, we will in section 5.2 be able to construct a feasible

network which is universal for the general model of section 2.1. In order to keep

the proof as manageable as possible, the simulation will be functional rather

than machine-based.

If n>0, define an n-tupU X (for n>0) over some set S to be a sequence of n

elements <Xo-X|........X„_i>. such that X(€S, Osi<n. Let S" denote the set of all

n-tuples over S and SxT denote (<s,t>|seS,teT) for arbitrary sets S and T.

Ordering of n-tuples is done lexicographically (first-field-first), fo r example, if

X.YeZ", then X<Y iff there exists j with 0 < j< n such that Xj<Yj and for 0 « i< j ,

Xj = Y(. L e ts * » o S".1 n»0

Let M be a P(n) processor. S(n) space bounded network. To simplify the

presentation we will assume that:

(i) All local instructions operate only on registers r0.rt.r2. Only registers r, for

lk 3 can be read from, or written to.

(ii) Read instructions have the form "extract values p,a from ro.ri respectively,

read register ra of processor p and place the value obtained into ro".

(ill) Write instructions have the form "extract values p.a.w from registers r0,r|,rs

respectively and write w into register ra of processor p".

(lv) Multiple reads are allowed, and in the case of write conflicts, the smallest

value being written into a register is the one which succeeds.

Note that (i), (ii) and (111) are sufficient for the example instruction-set of

section 2.1, since a processor can address Its own registers by the use of reads

and writes. The general case follows In a similar manner.

- 7 8 -

For convenience we define a special null element null and adopt the

conventions that for all X and n. null is always a member of X", and that for all

i i 0, nu lli = S(n). Define the configuration of M to be a member of

C„ = (ZsxN)p<n>x(N8xZ)s(n). For example, we take

«xo.xi, ■ • • ,xpfe)-i>,<y0.yi, • • • ,yS(B) - i »

to indicate the following. If Xi = <aj,b),ci,di> then processor i has values ai,bi,C| in

its registers r0.r,,ra respectively, and it is to execute the d/* instruction of the

program of M next (with d| out of range indicating that the processor has

halted). If nu ll * yt = <p,,ai,vi>, a*fc 3, then register of processor pi contains v(.

In particular, where the latter is concerned we insist that:

(i) Only registers with non-zero contents are listed. These are listed left-

justified in increasing order of <pi,ai>.

(ii) The remaining entries are filled, if necessary, with nulls

Definitions. We now define some useful functions. Let sorted((Zn)m)c(Zn)m be

the set of m-sequences X such that X o^X i* • • ■ <Xm_i. For convenience, if

Xe(Z")m, let (X-i)o = (X,„)o = -1. Then

(1) sort:(Za)"-»(Zs)n maps unsorted sequences of ordered pairs into sorted ones.

More precisely,

{Xj if l=|ik|0*k<n.Xk<XjJ|
sort(X),*|nuU otherwlie

(2) merge:sorted((Zs)B)xsorted((Zs)m)-»(Z4)n+ra merges two sorted sequences of

ordered pairs.

merga(X.Y)i ■

<(Xj)o*(Xj)„(Xj)s.l> if Xj* null, l * |}k|Xk<Xj|| ♦
I Jk | <(Yk)0.(Yk) , > * <0q)o.(Xj),>J |

<(Y1)o.(Y1)„(Yj),,0> if Yj* null, 1* |(k|Yj|<Yj{| +
Ilk | <(Xk)0.O tói> < «(YjM Y j) ,» ! |
otherw isenull

(3) fanout:sorted((Z4)n)-»(Z*)n achieves the fan-out of data values to multiple

read requests.

fanout (X)i =

<PO*.(XJ)g> If there exists j * l such that (Xj)0 = (Xj)0 and (Xj)i = (X,),
and < (X j- ,) 0.(X|- i) , > » * <(Xj)e.(Xj),> and (Xj)3 = 0

<(X|)g.0> If there exists j such that (Xj)0 - (Xt)0 and (Xj), = (X,),
and < (X j- i)o . (X j- i) i> # < (X j) o.(X j) i > and (Xj)3 = 1

nu ll otherwise

(4) deliver: (Z4)n-»(Zs)n performs the fan-in of multiple write requests.

deliver(X)i

<(X,)0.(X,),.(Xt),> if (X,)8 * 0 and X,*, w <(X))0.(Xt)„v .l> for all veZ.
or (X|)3 = 1 and (X»)g * 0 and Xj_i * <(Xj)o.(X,)i,v. 1>
for all veZ.

null otherwise

(S) concentrate:(Z*)n-*(Z*)n moves all non-nuii entries to the left-hand end of

the sequence.

IX , if Xj »»ruiil and i * | (Xfc | Xk»*null. 0< k < j(|
concentrate(X)(= olherwiSe

Let dy:C||-*Cn be the next-configuration function of M. That is. if CeCjj then

¿n(C) is the configuration which follows from C according to the program of M.

Let M' be the machine obtained from M by changing all read and write

Instructions to null operations (for example, add zero to a register), and define

- 80 -

Ib sen m 5.1.1 Suppose a machine can compute the functions:

(I) Merge using resources Rt(n+m).

(II) Fanout, deliver and concentrate using resources R|(n).

(Hi) Sort using resources Rs(n).

(Iv) i ’n using resources R4(P(n)).

Then it can compute in using resources

Rl(P(n)+S(n))+Rt(P(n)+S(n))+Rs(P (n »+R 4(P(n)).

Proof. We make the assumption that the model is capable of storing

configurations of M in such a manner that they can be dismantled and

reassembled using negligible resources. For example, we assume that

re adrequest, write request: Cy -• (Zs)P!n). data:Cg-»(Za)s<n) defined by

readrequest(X.Y)i ■

write reque st (XY)i :

data(XY) s Y

can be computed easily.

<(X)c.(X)i.i> if the (Xîi*1 instruction
of M is a read

mill otherwise

<(Xi)o'(Xi)i'(Xt)s> if the (X)i1* Instruction
of M is a write

null otherwise

Let CeCH be a configuration of M. The aim is to simulate a single step of M

starting in configuration C. Internal computations can be handled directly by

application of 6'u. Read requests are satisfied by computing:

X » sort(readrequest(C))
y * merge(x,data(C>)

The new processor configurations can then be obtained from

sort(eoncentrate(fanout(y))). For example, suppose In a particular step,

processors 0,1,2 and 3 wish to read register 4 of processor 3, register 6 of

processor 0, register 7 of processor 1 and register 6 of processor 0 respectively.

- 81 -

Further suppose that the only non-zero registers at that time are register 6 of

processor 0. register 9 of processor 1 and register 4 of processor 3. which

contain the values 99. 89 and 69 respectively. Table 5.1.1 gives the simulation

steps in this case.

R ta d r tq u ia t
s o r t
Morso

wonout
C oncon trato

0 . 4 . 0 »
< 0 .0 . I »

< 0 .0 . • * .0 »
n u ll

< t.00>
<0.60 >

< 0 .6 .I »
< 0 .0 .3 »

< 0 .0 .1 .1 »
< l.00>
<3.00»
<1.00»

« l . “ . i »
< i . T . a »

< 0 .0 .3 .1»
<3 .00 »

<a.o>

< 0 .0 .3 »
<3 .4 .0 »

< 1 .0 .0 0 .0 »
nu ll

<0.00>

< 0 .0 .0 0 »
< 0 .0 .0 0 »
< 1 .7 .2 .1»

<2 .0 »
n u ll
n u ll

<1 .0 .0 0 »
<1 .0 .0 0 »

< 3 .4 .0 0 .0 »
n u ll
n u ll

< A•4 ,00 »
< 3 .4 .0 0 »
< 3 .4 .0 .1 »

<0 .00 »
n u ll

-------u _____ L - M L -

M i l & 1 . 1 Simulation of road requests by 4 processors.

Write requests are simulated by computing:

x = sort(write request(C))
y = merge(x.data(C))

The new register contents can then be computed from concentrate(deliver(y)).

For example, suppose processors 0. 1. 2 and 3 wish to write values 0. 7?, 50 and

28 to register 4 of processor 3, register 6 of processor 0. register 7 of processor

1 and register 6 of processor 0 respectively. Further suppose that the current

register-contents are exactly the same as In the read-request example above

(see table 5.1.1). Table 5.1.2 gives the simulation steps in this case.

w n to ro q u o o t
s o r t

s o rs o
D o liv o r

<A .4 .0 »
< 0 .0 .2S»

< 0 .0 .0 0 .0 »
n u ll

<0 .0 .77 »
<0 .0 .7 7 »

< 0 .0 .2 0 .1 »
<0 .0 .20 »

< 1 .1 .0 0 »
< 1 .7 .SO»

< 0 .0 .7 7 .1 »
n u ll

< 0 .0 .so »
< 3 .4 .0 »

< 1 .7 .0 0 .1 »
<1 .7 .00 »

< 0 .0 .0 0 »
< 0 .0 .0 0 »

< 1 .0 .0 0 .0 »
< 1 .0 .0 0 »

< 1 .0 .0 0 »
< 1 .0 .0 0 »

< 3 .4 .0 0 .0 »
n u llnul 1

< 3 .4 .0 0 »
< 3 .4 .0 0 »
< 3 .6 .0 .1 »

n u ll

□
Tkble & U Simulation of write requests by 4 processors.

- 82 -

5.2. A Universal Parallel Machine

Specific instances of theorem 5.1.1 (the simulation of networks or shared-

memory machines on other parallel machine models) have appeared many

times over in the current literature. Theorem 5.1.1 is a powerful general result.

It can be used to:

(1) Provide general communication between the processors of a feasible

network (which is equivalent to simulating a network on a feasible network)

[45].

(2) Simulate restricted-access networks on a universal network with constant

degree and easy-to-compute interconnections [21].

(3) Simulate shared-memory machines on a network with constant degree and

easy-to-compute interconnections. This has been observed in the case

where no memory access conflicts are allowed [42], or P(n) = S(n) [8].

(4) Remove memory access conflicts from shared-memory machines [72].

(5) Simulate shared memory machines on a variant of the feasible network

which uses a small number of "large" processors (with a large amount of

local memory and "powerful" instruction set) and a larger number of

"small" processors (with a constant amount of local memory and minimal

instruction set) [71].

(6) Construct a multi-access memory [4] to provide a practical implementation

of a shared-memory machine as a physical device.

(7) Simulate space and reversal bounded Turing machines by width and depth

bounded uniform circuits (and vice-versa) [53].

This latter application will be explored further in the next two sections. In

this section we will concentrate on the first application.

Corollary 8.8.1 There is a feasible network which can simulate any network of

P(n) processors and space S(n). using S(n) processors, the same word-size as

the simulated machine, set-up time 0(log S(n)) and delay

log2P(n)
[log S(n)-log P (n)+F +*°®

Proof. A P(n)+S(n) processor feasible network can be used as follows. Note that

S(n)fen. so initially every processor has at most one input symbol. The first P(n)

processors are to simulate the processes (keeping only registers r0. r,. r8 of

their respective process); the remaining S(n) are to hold the remaining register

contents. The set-up time comes from the need to first concentrate the input

values (to get rid of any zeros), and route them out to the register-holders using

procedures Rank and Concentrate from [45,47]. An additional 0(log P(n)) steps

are required to broadcast the program of the simulated machine to the first

P(n) processors using algorithm 1 of section 4 3. The result then follows from

theorems 5.1.1 and 4.4.1, noting that a P(n)+3(n) processor feasible network

based on either the shuffle-exchange or cube-connected-cycles can:

(1) Sort P(n) items in time 0 togaP(n)
log S(n)-log P(n)+1 i-log P(n) using the

algorithm of [47],

(3) Merge P(n)+S(n) items in time 0(log S(n)) by using a Batcher [4] merge

(see for example [55,63,66]).

(3) Fan-out P(n)+S(n) items in time 0(log S(n)) by using algorithm 3 of section

4.3. Alternatively, procedures Rank, Concentrate and Generalize from [45]

can be utilized, as in that reference.

(4) Deliver P(n)+S(n) items in time O(log S(n)) by using procedure Concentrate

from [45,47].

- 84 -

(S) Concentrate P(n)+S(n) items in time O(log S(n)) using procedures Rank and

Concentrate from [45,47]. G

The time complexity of theorem 5.2.1 is dominated by the cost of sorting

the read and write requests. This can be reduced by substituting the sorting

algorithm of Ajtai, Komlds and Szemerddi [2] for (1). Although this results in a

better asymptotic time-bound, the constant multiple is too large to be of any

practical use. The algorithm as presented in [2] has a constant multiple of

several million, although this has more recently been reduced to around 1400 by

M. S. Paterson. For our purposes, corollary 5.2.1 is to be regarded as superior.

There are a number of ways of making the substitution. P(n) values can be

sorted in time 0(log P(n)) by using 0(P(n).log P(n)) processors, giving rise to:

Corollary 5.2.2 There is a feasible network which can simulate any P(n) proces­

sor. S(n) s 0(P(n).log P(n)) space bounded network using 0(S(n)) processors, the

same word-size and delay 0(log S(n)).

Alternatively. P(n) values can be sorted in time O(log P(n).loglog P(n)) on

0(P (n)) processors, by pipelining a P(n)/log P(n) processor sorting network, and

merging the log P(n) sorted sequences that result using a Batcher merge. This

has also been noted in [40]. More recently, Leighton [41] has discovered an

elegant method for sorting P(n) items in time 0(log P(n)). using only P(n)

processors. Thus we have:

Corollary 5.2.3 There is a feasible network which can simulate any S(n) space-

bounded network using 0(S(n)) processors, the same word-size and delay

0(log S(n)).

What if the processors of the universal machine are allowed to have more

than a constant amount of memory? Then:

(1) O(log S(n)) delay, with a more reasonable constant multiple, can be

achieved on a probabilistic machine (with overwhelming probability) on S(n)

processors by using the sorting algorithm of [57],

(2) The processor-bound in (1) can be reduced to P(n), increasing the delay to

0(log2P(n)), by using the techniques of Upfal [68].

(3) The bounds of (2) can be achieved on a deterministic machine for the

simulation of restricted-access networks [45], (The delay can also be

reduced by the use of the technique of corollary 5.2.3).

Note that the universal machine conserves many of the notions of

"reasonableness" mentioned in section 3.3. For example

(1) If the machine being simulated obeys the parallel computation thesis, then

so does the universal machine.

(2) If the simulated machine is small and fast (provided T(n) = log0(l)P(n)) the

universal machine is small and fast.

(3) Bounds upon word-size are maintained.

5.3. A Hardware Measure

In this section, we attempt to capture the Idea of a hardware measure on

our network model. The amount of hardware needed to build a universal feasible

network is governed by the amount of memory needed, and the complexity of

the instruction-set. To simplify matters, we will concentrate on networks with

the minimal instruction-set. We claim that spacexwordslze is a good hardware

measure for such a machine (or Indeed, any machine where memory-costs

dominate the cost of a processing-unit). In order to Justify this claim, we can

relate this to the measures of hardware on other popularly-accepted models,

whilst maintaining time to within a polynomial.

- 86 -

A uniform circu it is an Infinite family C = (Co.C^...) of combinational

circuits, one for each input size (see, for example [7,13,53,59]). Without loss of

generality we assume that the circuits are built using gates which realize

functions drawn from the class Bg of two-input Boolean functions. An input of

size n is presented, in some suitably encoded form, to the inputs of Cn. The

output of Cn is then taken as the output of C. C is said to have depth D(n) if the

length of the longest path from an input to an output in C„ is at most D(n), for

niO. It has width W(n) if C„ has width (as defined in [53]) W(n) and sise Z(n) if

C„ has Z(n) gates We assume D(n) = Q(log W(n)).

The function f:N*x{left,right|-»N where for n i 0 the j-input of gate l i n is

connected to the output of gate f(i.n,j). is called the interconnection function of

C. We assume that gates 0.1....n-1 are distinguished gates representing the

inputs. The function g:N*-»Bg, where for n iO gate i » n of Cn is a g(i.n)-gate, is

called the pate function of C. We insist that the interconnection and gate

functions be computable in space O(log Z(n)) by a deterministic Turing machine

Corollary 5.3.1 Every network with P(n) processors, space S(n), time T(n) and

word-size W(n) can be simulated by a uniform circuit of depth

0(T(n).log S(n).log W(n)) and width 0(S(n) W(n)).

Proof. (Sketch). The circuit consists of T(n) levels, one for each simulated

time-step. Each level has P(n) sub-circuits corresponding to a single step of a

processor, and a further S(n) sub-circuits carrying register values. Between

each level is a circuit for carrying out inter-processor communication, built out

of a sorter, merger, concentrator etc. as in corollary 5 2 2. Each processor unit

takes as input the program-counter, current values of registers ro. r t and r*. and

Incoming values from read requests. It produces outgoing read and write

requests, and updated values for the aforementioned program-counter and

registers (see figure 5.3.1). These units fit together as in figure 5.3.2.

- 87 -

ProgramCounter Registers Incoming
Values

PC Reg Read
Processor
Reo Refid write

New
Program
counter

New
Register Contents

U h l Block diagram representation of a circuit to compute a single step of

a processor.

-88-

Regiatarcontant*

F i l m B i l l Block diagram of a circuit to compute a »ingle atop of a network.

-89-

Each processor-unit has circuitry which

(1) Deals with incoming data which has arrived in response to a read request in

the last step.

(2) Performs a single instruction, issuing a read or write request as necessary.

The processor units have width 0(W(n)) and depth O(log W(n)) The circuits

tor sort, merge, concentrate etc. have width 0(5(n).W(n)) and depth

O(log S(n) log W(n)). The register contents have width 0(S(n).W(n)). Thus the

complete circuit has width 0(S(n).W(n)) and depth 0(T(n).log S(n).log W(n)).Q

Note that in the general case, if the internal instructions can be computed

by a uniform circuit of depth d|(n) and width W|(n). then the above circuit has

depth 0(T(n).(log S(n).log W(n)+di(n))) and width 0(S(n).W(n) + P(n).W|(n)).
In section 3.3 we saw a number of different ways of characterizing a

"reasonable" parallel machine model. For example, the parallel computation

thesis states that a parallel machine model is reasonable if time on that model

Is polynomlally related to sequential space. Dymond [16,17] gives an extended

version of the parallel computation thesis which takes into account both the

time and the amount of hardware used. This can be loosely summed up as

follows: time and hardware on any reasonable parallel machine model are

simultaneously polynomially related to Turing machine reversals and space

respectively (a reversal is said to occur when any tape-head changes direction).

This raises an obvious question: when are our network machines a

“reasonable" parallel machine model according to the extended parallel

computation thesis, given that spacexwordstzo Is taken as a measure of

hardware? We And that a T(n) time, P(n) processor bounded network which uses

space S(n) and has word-size W(n) obeys the extended parallel computation

thesis provided:

(0 Local Instructions can be computed by a deterministic Turing machine

using space (W(n).S(n))0<l) and Tfn)0*** reversals.

(11) P(n) = ¿W 00’ .

Part (i) provides more evidence for the unit-cost hypothesis. Note that the

Turing machine is to be given the value of P(n) in binary along with any input of

size n.

In particular, for a machine with the minimal instruction-set:

Corollary 5.3.2 Every P(n) processor network which runs in time T(n), space S(n)

and word-size W(n) can be simulated by a deterministic Turing machine using

space 0(S(n).W(n)) and reversals 0{T(n).(log*P(n) + log S(n))).

Proof. (Sketch). This result follows from theorem 5.1.1 much in the same

manner as corollary 5.2.1, substituting the sorting algorithm of theorem 4.1.5

(Batcher sort) for that of [47]. The composite sub-algorithms used thus have

simple modules whose upper dimension is easy to compute.

Consider a simple-ascend class sub-algorithm which ascends to the full

value of k. and uses the minimal instruction-set. Suppose the n inputs are

initially encoded as binary strings on tape 1 of the Turing machine, each

separated by a special blank symbol. The Turing machine computes in k phases

(one for each dimension), each of which consists of a constant number of passes

over two tapes. The first phase does the following. First, copy every alternate

string on to tape 2. In a constant number of left-to-rlght scans over the tapes,

perform the necessary data transfers in dimension 1, and the internal

operations. Copy the (updated) strings from tape 2 back to tape 1. The word-

size can Increase by only a constant, so the overflow from each string can be

stored temporarily by using a large tape alphabet, and the tape contents can be

moved along as part of the copying process by making extra use of the second

tape. (Extra tapes may be necessary for more powerful instruction-sets which

-91 -

Increase the word-size more rapidly). This Is the end of the first phase. Phase 1.

2 «l*ck achieves data transfers In dimension i by similarly copying alternate

blocks of 2*—* strings from tape 1 to tape 2. performing the transfers in a

constant number of left-to-rlght scans, and copying the strings back to tape 1.

Take for example algorithm 1 of section 4.3, the algorithm to broadcast a

single value to all processors. On Input

• • • • ! ■ I'W 'W ■ ■ i'i«w > i ■ I'l'M O ■ (•M ill) ■ ■ PM .M

copy every alternate string to tape 2. leaving a special mark on tape 1 at the

end of every copied string.

i l i m l » n i >m «m n -------- n m n i i in M -W 'i

, r

i m

;

Perform data transfers In dimension 1 in a single left-to-rlght scan of both tapes.

i l m i l I n M'T'T'I n — in i *i*i*i*i ~ l ---------1nFUTüü

í

1 - - l id

• • • • i i i ■ F m n i

Now copy the stringi back to tape 1.

To handle transfers In dimension 2. first copy every alternate block of two

strings to tape Z (again leaving a special mark at the end of every copied block).

- 93 -

î i i i i i i m m I n n ['TTr-M ■ (iMiT.l I

i:___ I

UI

Perform the date transfers,

l l 1 1 1 1 I I n n i I I I n f 'M 'i 'i ■ f I

i ___ I £2 I 1 1 1 1 I l i m i looooi looooi 1

33=33

and copy back.

l i m i l I n n i l i i n i I 1 1 1 1 I « l o o o o l lo o o o l looo ol l o o o o l « I

J
I

9 °01 lo ^o

T I M ' I T L I I

Finally, for dimension 3. first copy across every alternate block of four strings.

Perform transfers,

- 95 -

Note that tha sorting algorithm of [47] can ba uaad (as In corollary 5.2.1) to

glva an Improved reversals bound, provided the upper dimensions in the simple

sub-modules can be computed by a deterministic Turing machine within the

stated resources.

- 96 -

5.4. Circuits and Turing Machines

In order to justify his extended parallel computation thesis. Dymond [16,17]

appeals to a seminal paper by Pippenger [53] which relates depth and size of

uniform circuits to Turing machine reversals and time. Dymond prefers to use

Turing machine space instead of time, and circuit width as a measure of

hardware (rather than size) since it is a measure of the amount of hardware

which comes into play at any given instant in time. We can use the results of

this chapter to gain improved simulations of space and reversal bounded Turing

machines by uniform circuits.

We follow the general structure of the proof appearing in [53]. Pippenger

simulates a Turing machine on an oblivious Turing machine, and then simulates

this by a uniform circuit. We will simulate a Turing machine on a network. We

can then build a uniform circuit by application of corollary 5.3.1.

Theorem 5.4.1. An S(n) space, R(n) reversal bounded k-tape deterministic Tur­

ing machine can be simulated on a network with processors and space

0(l0g ĝ|n)) • tune 0(R(n).log S(n)) and wordsize O(log S(n)).

Proof. Let M be a k-tape deterministic Turing machine which runs in space S(n)

and reversals R(n). Following [S3] deflne a phase to be all the steps of M from

one reversal to the next (the first move is counted as a reversal for this

purpose), and a rituatlon to be the control state and head positions of M. It may

be assumed that all transition rules of M which write a new value onto a tape cell

also move the head away from that cell. This implies that symbols written

during one phase cannot bo read until the next. Let d(n) = 2,u* ,0« s(n) 1 and call a

situation special if it has at least one head on the (l.d(n))01 cell of its tape, for

-97-

some leN. Note that there are at most 0() different special situations.

and that at moat 0(log S(n)) steps of M can occur between one special situation

and the next.

In order to make the proof more readable, we will present the algorithm on

a shared-memory machine. This reinforces the observation in section 3.2 that

completely-connected networks are almost Identical to shared-memory

machines. The simulation proceeds roughly as follows. The tape contents at the

start of the current phase, the head directions and the Initial situation for the

current phase are stored in the global memory. This is easy to do at the start of

the initial phase; the algorithm will maintain this information from phase to

phase. We reserve one processor (and two global memory locations) for each

special situation. The aim is to have these processors confer, via the global

memory, and decide which special situations are involved in the current phase.

The processors corresponding to these special situations then simultaneously

update the tape cell contents in global memory; the final situation (which is

detected by an attempted reversal) determines the head directions and the

initial situation tor the next phase. This proceeds for a total of R(n) phases.

The simulation of a phase is achieved as follows. Processor i handles the 1th

special situation. Firstly, each processor 1 computes in parallel the special

situation which follows from special situation i. by doing a step-by-step read-only

simulation of M on the tape contents In global memory (by "read-only

simulation" we mean that the tape-contents are not updated). This value is

stored into array element s[l] in global memory. If an illegal situation occurs

during this process, or a reversal Is detected (determined by examining the

head directions for the current phase, which are stored in global memory) then

s[l] la set to 1. All processors t execute the following code synchronously in

parallel. Upon termination global array element actlve[l] will be set to true iff

- 90 -

speclal situation i occurs in the current phase. Each processor can determine

whether Its special situation is the first special situation to occur in the current

phase by using a step-wise read-only simulation of M starting at the initial

situation of the phase.

active[t]:= if (first special situation in this phase) = i
than true
•lao false

for b:si to flog S(n)1 do
If active[i] then active[s[i]]:=true
s[l]:*s [s[i]]

Those processors i with active[i] * true can then update the tape contents; the

last special situation Is readily available (in all entries of s). from which the final

situation of the current phase can be determined.'

The running time is dominated by O(log S(n)) for each phase. This comes

from;

(1) Decoding of PIDs (each of O(log S(n)) bits) into special situations.

(8) Determining the first special situation from the initial situation and the

final situation from the last special situation by simulating at most

0(log S(n)) steps of M.

(3) Computing the special-situation transition function by simulating

0(log S(n)) steps of M.

(4) Computing the active array In 0(log S(n)) steps.

(6) Updating the tape contents by simulating 0(log S(n)) steps of M.

Repeating this for R(n) phases gives us the required result. 3

CoroQuy 8.4.8. An S(n) space, R(n) reversal bounded deterministic k-tape Tur­

ing machine can be simulated by a uniform circuit of depth

0(R(n).log*S(n). log log S(n)) and width O ^ n)1*).

Proof. By theorem 5.4.1 and corollary 5.3.1. □

Corollary 8.4.3 A T(n) time, R(n) reversal bounded deterministic k-tape Turing

machine can be simulated by a uniform circuit of depth

0(R(n).log*T(n).log log T(n))
and size

0(R(n).T(n)k.logaT(n).log log T(n)).

This is a small improvement over the results of Pippenger [53] who obtains

depth 0(R(n).log^Hn)) and size 0(R(n).T(n)k log4T(n)),

Chapter 6
High-Arity Machines

In the general network model as described in section 2.1. a communication

line between two processors A and B is made up of two bidirectional links, one

under the control of A. and the other under the control of B. We call a

processor's links active if they are under its control, and passive otherwise. The

active links of processor A are those which it can use to initiate communication

(by executing a read or write Instruction), whereas its passive links are used for

communication initiated by its neighbours (attempts to read from or write to a

register of A).

In section 2.1 we made the assumption that during any time-step, each

processor can make use of only one of its active links (albeit a potentially

different one at each time-step). In this chapter we extend our network model

to give each processor the use of more than one active link simultaneously (and

the power to make efficient use of the information thus obtained). We call the

number of active links which can be used by a single processor in any time-step

the arity of the network.

Although machines with non-constant arity have already appeared in the

literature, there has so far been no systematic investigation into the extra

computing power offered by high-arlty Instructions. For example, the random

routing results of [69.70] initially appeared in a high-arlty form, although this

has since been redressed [3,6,57,67]. The oblivious lower-bound of [8] is also

presented for high-arlty machines.

In the first section we present our high-arlty model. In the second section

we show that machines of arity and degree A(n) are potentially more powerful

than those of arity o(A(n)). In particular we are interested in networks with

- 101 -

reasonably small arlty and degree; more precisely, those with P(n) processors

and arity and degree O(log P(n)). Whilst it is apparent from section 2 that these

machines are more powerful than those of constant degree, we will show in

section 3 that they are not too much more powerful, in the sense that there

exists an efficient constant-degree universal machine. Finally, section 4 gives

some examples of the speed-ups which can be obtained by increasing arity. A

preliminary version of the material contained in the first three sections of this

chapter has appeared in [52].

a i . A High-Arity Model

Our aim is to generalize the network model to give each processor the

ability to communicate with asymptotically more than a constant number of its

neighbours in unit time, and sufficient power to make good use of this ability.

The basic high-arity model is defined in the much the same manner as the

constant-arity one of section 2.1, except for the fact that we allow the

processors to have instructions which can be simulated in time A(n) by the

processors of that section. A(n) is then called the arity of the machine. For

example, we can replace the example instruction-set of section 2.1 with the

following:

(1) r, [r¿ «- constant]
(8) n ir ,« -^]
(3) r ift «-rk ~ n]
(4) r([rj«- ~rk]
(8) rt [rj *- r^]

(«) ri [*V, *■ Hi]

(block-load constant)
(duplicate register)
(element-by-element operation)
(prefix ~)
(indirect loads)
(indirect stores)

(7) rj»-PlD
(8) halt
(9) goto m If rj > 0
(10) r,[rj «- (r^ of r,)] (write)
(11) r,[(rrjo f rk)»-ri] (read)

Instructions (7-9) are as in section Z. Instructions (1-3.8.6.10.11) have the same

effect (in unit time) as the high-level statement:

for m:*0 to rt- l do S
where statement S is respectively

(I) fj+m =constant,

(8) *>„:**■*

(3) rJ(.m:«rk«.m~n4.m.

(5) rj*m: * r ^ —,

(8) r^^ xrk»^.

(10) rJ4.m: * r ^ _ of proc eeeor n»m

(II) (% . « * proooaBorrk«.m):«n *m

Instruction (4) has the same effect as

rj:»rk
fo rm :« l torj-1 do

In this particular model, a parallel machine has artty A(n) if for all Inputs of

sise naO, the largest value present in register r(during the execution of

Instructions of the form (1-6,10,11) Is at most A(n).

- 103-

A fixed-structure variant of this model can be defined by augmenting the

processors with an infinite collection of read-only port registers, and

interpreting communication instructions after the manner of section 3.1. In

section 6.3 we will consider a restricted-access, fixed-structure model. Each

processor is augmented with a communication register COM, and

communication instructions are restricted to allow reads and writes of those

registers only. Instructions (10) and (11) of the example instruction-set are

replaced by:

(10’) rt[rj*-C0M of p^] (read)
(11) r,[(COM of p,J)«-rk] (write)

which have the same effect as the high-level statements:

(10’) for m: =0 to r ,- l do
«Vm-COM of processor priMi

(11’) for m: =0 to rt—1 do
(COM of processor prj+J:=rk*m

respectively.

6.2. The Computational Power of High-Arity Machines

Some of the power of high-arity machines comes from the fact that they

have high degree. It is easy to show that a machine with degree D(n) is

asymptotically faster that any machine of degree o(D(n)) (with arity kept

constant). Consider the problem of broadcasting a single value amongst n

processors. More formally, we wish to compute, in parallel, the function f:N*-»N*

defined by f(xo........xn- i) * (y 0.........yn- 1) where y(«xo fo rO sK n . Suppose d a 3.

The following is an n processor, degree d, arity-1 algorithm for computing f on

inputs of sise n in time 0(°) . Assuming that initially variable x of processor

i contains Xt. the algorithm terminates with variable x of processor 1 containing

xq. 0 «t< P (n). The interconnection pattern used is a (d-l)-ary tree Figure 6.8.1

shows (our levels of a D-ary tree, (or arbitrary D.

b :* l
while b < n do

b :*b .(d -l)

The time-bound attained by the above algorithm is asymptotically optimal.

regardless of how complicated its interconnections are, how many processors

are used, or what the arity of those processors is. This follows from the

observation that there must be a path in the interconnection graph of size n

from processor 0 to processor i. 0 *i<P (n). From this we can conclude that a

degree D(n). constant arity parallel machine with n processors is asymptotically

faster than than any machine of degree o(D(n)). Indeed, the latter machine may

even be allowed to have a different non-recursive program for each processor,

which may vary with input size.

Plgwe as.1 A >ary tree.

Furthermore, we wish to show that increasing the arity of a parallel

machine Increases its power. Unfortunately there are no good lower-bounds

- U n ­

available for even constant-arity machines with simultaneous writes (an

exception is the recent paper by Wigderson and Vishkin [74], which uses a very

restrictive model). Even without simultaneous writes, an argument based on

"information-flow" is often quite difficult, for in many cases, the concept of

"information” is subtle. Even though a single processor can only receive one

communication in each time-step, it may receive it from potentially many

different sources, depending on the input values. Information can be encoded

both in the value written, and the identity of the source.

Even without simultaneous writes, the situation may not be as easy as it

looks. For example, information can even be passed by a processor choosing not

to write. Suppose processor A has a value ve(0,lj which it wishes to

communicate to processor D. Although A must be connected to D by a path in

the interconnection graph of the machine, every subgraph which corresponds to

a particular computation may have A and D disconnected, as follows. Two extra

processors each Initialize a register r to zero. In the first step, A writes a one to

register r of processor B if v s 1, and a one to register r of processor C if v = 0.

(Thus register r of processor B holds v. and register r of processor C contains its

complement). In the second step. B writes a zero to processor D if its register r

is zero, and C writes a one to processor D if its register r is zero. Thus processor

D has the value v written to it by a processor which has had no direct

communication with A (see figure 6.2.2). Therefore, we see that not every input

symbol need be connected to the output node by a path in the computation

graph which corresponds to the action of a network on a particular input.

- 106-

- 107-

s,b:«x,l
while b < n do

pnxd+d
s:=x+ V (s of processor i)

l « P lD d t 1

b:=b.d
if PID>0 thens=0

_ L _ _ b 2 3 4 5 6 7

0 1 x o X 1 X 2 X3 x * X3 X6 X 7
I 3 X 0*X »* X 2*X 3 x , - x 4 . x s . x 6 X2*X 7 X 3 X4 X S X 6 X 7
2 9 *o*•••*x 7 X 1*X4*X 3*X6 X 2 -X 7 X3 X4 X3 X 6 x 7

R esu1t X0........... X 7 0 o 0 0 0 0 0

Table U 1 Trace of summation algorithm on 8 processors of arity 3. Table entry

shows the value of b and variable a of each processor after i iterations.

Thus for D (n)i2 , an n processor, arity D(n). degree D(n)+1 parallel machine

can compute the sum of n integers in time G() • This algorithm is

asymptotically optimal for all machines of arity 0(D(n)). In fact, we will show

that an arity D(n) machine must take at least |[0g | steps to sum n

Integers.

Suppose M Is a P (n)»n processor parallel machine of arity D(n) which can

sum n Integers In time T(n). and let x = <Xo x„_i> be an Input string consisting

of n symbols, each of which Is a non-negative Integer. Let Gs be the directed

graph with vertices (p,t), 0 *p<P (n), (X tsT (n), and an edge from (pi,tt) to

(ps.ts) If t* = t i+ 1 and either Pi * p« or during time-step tf of the computation of

M on Input x, either processor ps reads a value from pi, or pi successfully writes

a value to pa. The l**1 symbol of x Is said to be rsacKabls if there is a path from

vertex (1,0) to vertex (0,T(n)) In Gs. The rsaahabls string Is the string derlvsd

from x by deleting all unreachable symbols. The unraachabla string Is similarly

derived by deleting all reachable symbols.

Suppose the values to be added together are all less than N. We claim that

(provided N is sufficiently large) there is an input string with all symbols

reachable. For a contradiction, suppose that every Input has at least one

unreachable symbol. Fix a graph G, and consider the strings y such that Gz = Gy.

Each reachable symbol of y can take on N possible values, giving a total of N1-

possible reachable strings, where r< n is the number of reachable symbols.

Further, for each reachable string, the corresponding unreachable string must

sum to a fixed value, dependent only on the reachable string In question. This

follows because M must give the same result Tor two inputs y t. y8 such that

Gyj = GTi and yt. y* have identical reachable strings. Since m i l non-negative

integers can sum to a fixed value at most Nm_l times, we see that there are at

most Nn~r~t unreachable strings which can appear with any reachable string,

and thus there are at most N"-1 choices of y. That Is, each graph Gs can be used

for at most N " '1 different input strings x.

Let G (n)s |{G,|x€Nnj|. By the pigeonhole principle, at least one graph

must be used for at least NV G(n) input strings. If N is chosen such that N >G(n)

then this value is greater than N"_l. which contradicts the result of the previous

paragraph. Thus there must be an Input string for which all symbols are

reachable. Since for all x, G, has ln-degree D(n)+2, this implies that

Unfortunately, this proof is based heavily on the use of extremely large

integers as summands. Indeed, it may be necessary to choose N to be as large as

p (a)(D(a)«’i).P(n)T(ii). Thus:

- 109-

(1) It we insist that W(n)*T(n)0(>> (which, as we saw in section 2. ensures that

the parallel computation thesis holds), then the lower-bound is not valid.

(2) For machines with W(n) = n0(I> (which is a reasonable restriction since it

ensures that the input encoding is "concise" in the sense of [22]). the

lower-bound holds provided P(n) = n°*l).

(3) If the word-size is arbitrary, the lower-bound holds regardless of arity or

number of processors. This is despite the fact that machines with large

word-size are (as observed in section 3.5) exceptionally powerful.

6.3. A Constant-Degree Universal Machine

From the results in the previous section, it is apparent that high-arity

machines are more powerful than those of constant degree. In this section we

propose to show that they are not too much more powerful, in the sense that

efficient constant-degree universal machines exist. We will concentrate mainly

on a fixed-structure, restricted-access model (see section 6. i). Each dedicated

processor will be initialized with the processor-identities of the neighbours of its

processes. We shall see that slightly more efficient simulations are made

possible by the prescence of this extra information (which cannot be provided in

a model with modifiable structure). In a fixed-structure model, it is quite

reasonable to expect the user to provide this information (perhaps in the form

of an easy-to-compute interconnection function, in which case its resource

requirements should be added to the setup time for the universal machine),

since it forms part of the specification which would be required by a fabrication

device, should the network be realized in hardware.

- 1 1 0 -

Ih aon a i 6.3.1 There la a P(n).D(n) processor universal parallel machine which

can simulate any P(n) processor machine of arity-and-degree D(n). with delay

0(logP(n) + D(n)) and setup time 0(log4P(n) + D(n)).

Proof. (Outline). Suppose m = flog P(n)l and m’ * hog D(n)l. We describe our

algorithm on an (m + m')-cube. Let M be a P(n) processor parallel machine with

degree and arity D(n). Processor i. 0*1 <P(n) of the universal machine will

simulate processor i of M. Let l[d] denote the d01 neighbour of processor i of M.

in order of ascending PID. For 0*1 <P(n) let W, be the m'-cube consisting of

processors 2m.k+ i. for 0 *k < 2 m\ of the universal machine.

As part of the initialization, each processor i 0 * i< P (n) will receive D(n)

identification numbers Î dj for 0 * d < D(n) such that:

(1) 0 *I^d]<D(n) for all 0 * i< P (n), 0*d<D (n), and

(2) For all 0 * i.i'.j < P(n), if If and If are both defined, and 1/ = If then i = i'.

In particular, processor i will be the (I^d))01 neighbour of processor i[d] in

ascending order of PID.

This is achieved as follows. Processor 1 0 * i< P (n) prepares D(n) packets

(i[d].i). 0*d<D (n). and scatters them around the 2m'%D(n) processors of W,. at

most one packet per processor, using algorithm 4 of section 4.3. These packets

are then sorted within the (m + m ') - c u b e m lexicographic (flrst-fleld-flrst) order.

Each processor J, 0 * j< 2 m+m' thus receives some packet (ij[d].ij). It then sets

variable V to tj[d]. Running algorithm 2 of section 4 3 on the (m + m')-cube

computes the local rank of each processor, which in this case is I^dj. Armed

with this information, for 0 * i< P (n) the processor in charge of packet (l[d].l)

transforms it into (L lfd],!^)). These packets are sorted back to their respective

W|‘s, and then gathered back into processor i by reversing the scattering

algorithm.

- I l l -

After the Initialization phase, each step of the simulation proceeds as

follows. First, requests to read communication registers are fulfilled. Processor

i O iK P (n) prepares D(n) request packets (i[d].l^j.t). 0<d<D(n) These are

scattered at most one-per-processor around the processors of W(, using

algorithm 2. Once this has been carried out. let n be the permutation which

carries packet (l[d].I^j.l) to processor 3m.l̂ dj i [d] . for 0 * i<P (n). Once n has

been applied, Wt contains the D(n) requests from the neighbours of processor i of

M, O il <P(n). Processor i can then fulfill the D(n) requests by broadcasting the

contents of the communication register of processor 1 of M around the

processors of Wt using algorithm 1 of section 4.3. The fulfilled requests are

routed back to their originating processors by reversing the above process.

Processor i of the universal machine can then simulate the internal computation

of processor i of M. 0 * i< P (n). Finally, requests to write to communication

registers are handled in a similar manner.

Repeating this t times enables us to simulate t steps of M. Note that n is

the same for each step. It is well-known (see theorem 4.1.3) that a fixed

permutation can be carried out in time O(log P(n)) by simulating one of

Waksmans permutation networks. This requires 0(log4P(n)) setup time,

however (see theorem 4.1.4). The total setup time is thus comprised of:

(1) 0(log*P(n) + D(n)) to compute the identification numbers l^j. The log8 term

comes from sorting using a straightforward simulation (see theorem 4.1.5)

of one of Batcher’s sorting networks. The D(n) term comes from the use of

algorithm 4 of section 4.3 to scatter D(n) values.

(2) 0(log4P(n)) to set up n.

- 1 1 2 -

The delay la comprised of:

(1) 0(D(n)) to prepare and scatter the request packets.

(2) O(log P(n)) to compute n.

(3) O(log D(n)) to fulfill the request packets,

which gives us the required result.Q

Corollary 6.3.2 There is an 0(P(n).log P(n)) processor universal parallel machine

which can simulate, with delay O(log P(n)), any P(n) processor parallel machine

of arity and degree O(log P(n)).

The proof of theorem 6.3.1 can be modified slightly to give

Theorem 6.3.3 There is a P(n).D(n) processor universal machine which can simu­

late any P(n) processor, degree D(n). arity-1 machine, wtth delay O(log P(n)) and

setup time 0(log4P(n) D(n)).

Note that by making D(n) constant in theorem 6.3.3. and using the

processor-saving theorems of section 4.4 we obtain a shorter proof of theorem 8

of [21] (a P(n) processor universal machine which can simulate any P(n)

processor, constant degree parallel machine wtth delay O(log P (n))). In section

7.1 we will see that this result is optimal for this type of literal simulation

(although in section 7.2 we will see that more efficient non-literal simulations

are possible, using polynomially more processors). In comparison, corollary

6.3.2 uses only log P(n) times as many processors to achieve the same delay for

simulating machines of arity and degree 0(log P(n)). Thus in a sense, networks

with non-constant arity and degree are not much more powerful than those with

constant arity and degree, provided the former are kept to a reasonable level.

In contrast, for a modifiable-structure machine we have:

- 113 -

U m o n d 8.3.4 There ia an A(n).P(n) processor, constant degree universal paral­

lel machine which can simulate, with delay 0(A(n)+log P(n)). any P(n) processor

machine of arity A(n).

Proof. Substitute the sorting technique of [41] for the permutation n in the

proof of theorem 6.3.1. □

We should note that the improvement of theorem 8.3.4 stems from the use

of the sorting algorithm of [Z\ so as such, the constant multiples are too large

for the result to be of any practical use.

Finally, we turn to the simulation of high-artty machines by feasible

networks. We can prove a theorem which is analogous to theorem 5.2.1 by

having each arity-A(n) processor represented by a feasible network of A(n)

processors. The delay of that theorem Is increased by the time for these

subnetworks to simulate local Instructions. For fairly simple instruction-sets

similar to that of section 6.1, this is an increase of only O(log A(n)), which is

dominated by routing costs. The use of the techniques of theorem 6.3.1 thus

leads to a delay of 0(log P(n)) on a feasible network of 5(n) processors.

6.4. Example« of High-Arity Algorithms

In section 6.2 we saw some examples of functions which can be computed

faster by increasing arity. These examples were simple in nature, but sufficient

to meet the lower-bounds of that section In this section we give two slightly

more difficult examples, designed to illustrate that the same speed-ups can be

achieved for a much wider range of problems. As we have already observed,

time-bounds for some routing problems can be reduced by simply increasing

degree (while the arity remains fixed at 1).

Suppose we have n processors, and processor l, 0 « l < n has a pair of input

values (at,X|). Suppose also that for 0 « l,j < n:

- 114-

(1) If 0 * ai.aj <n and i * j then a< i*aj, and
(8) la i-a jl« 11—j|

For 0 * i< n , we wish to route xt to processor â . In [45,47], Nassimi and Sahni

provide a 2*®* ,‘l processor algorithm which achieves this process (which they call

concentration) in time O(log n). We made good use of this algorithm in corollary

5.2.1. when constructing our universal feasible network. Our aim is to produce a

processor, degree D(n) algorithm which runs in time 0 log n
log D(n)

Definitions. Suppose k i d * 0 Define the functions shufTle£.unshufTle£:N-*N and

exchange£:N8-»N by

shufflei(i) >
2 ^ 1 +(i mod 2k-d).2d

unshulfle£(i) = sh u flle i^ i)

exchangei(i.j) = |^j- 2d+j

Suppose k i d i O . The d inay shuffle graph s£ is defined as follows (a similar

graph appears in [69]). S$ has vertex-set (0,1, ,2k-l|, and each vertex v is

joined to vertices:

(1) shuffle£(v)

(8) unshufflei(v)

(3) exchange£(v,j). 0«J<2*

(4) shuffle^ -(v)

(5) unshuffle^ "•4 4(v)

S i has 2** vertices and degree at most 2*+4. Figure 6.4.2 shows the d-way shuffle

for d ■ 8, k ■ 3.

- 115-

MAI The S vertex 2-wey ahufflc, Sf. Shuffle and unahuffle links appear

above the vertices; the remainder are exchange links.

The following It t 2k processor algorithm based on the d-way shuffle, for

concentrating 2k items in time 0(k/ d). Suppose initially variables a and x of

processor i contain ai and xt respectively. Each processor has an extra register

r to help with the transfer of data. The latter is achieved with the help of a

special procedure, defined as follows.

Procedure transfer(p)
r :*0
i f a < n then (a.x.r) of processor p : = (a.x, 1)
i f r = 0 then a :=n

The main body of the algorithm is then:

for b :» l to Ik/ dj do
(1) transfer(exchangej?(PID,a mod 2*))
(2) transfer(unshufflej?(PID))
(3) If a < n than a: =unshuflle£(a)

(♦) tranafer(exchanged ma* d(PID,a mod 2k’~ 4d))
(5) transfer(unshufflejfmod i (PID))

Table 6.4.1 shows a trace of this algorithm for d*2. k = 3 and a i *0 , a3= 1,

a« *2, a r *3 and X|>1, On l <7, with all other a values equal to B. Those

processors with a-valuas equal to 8 have an empty entry in the table.

- 118-

1____________________ <a .3O O f proces SOT________________________1Steo o 1 2 3 4 5 6 7
Input < 0 . 0 (1 .3) (2 .4) (3 . 7)

< l) < 0 . 0 <1 .3) (2 . 4) <3.7)
(2) <0. 1) < 1.3) (2 .4) (3 . 7)
< 3) (0 .1) <2.3) (4 .4) (6 . 7)
(4) < 0 . 0 (2 .3) (4 .4) (6 . 7)
<S)___ <0 . o <2 . 3) (4 . 4) <6.7)

___ i___ ___3___ ___ &___ ___z___

TiH » U .1 Trace of concentration algorithm for d * 2, k * 3. Table entry ihowe the

values of variables a and a of each processor initiallj (at input) and after each la­

belled step of the algorithm.

The correctness of the algorithm follows from exactly the same argument as

used by Nasslmi and Sahni In [47]; essentially, every one of our parallel data

transfers achieves the same result as d of theirs.

In section 8 2 we gave an arity D(n) algorithm for summing n items in time

0(jj-jStlL—). in fact, we can compute the parallel prefix sum in asymptotically

the same amount of time. Let denote an arbitrary associative binary

operation. Let prefix: N*-*N* be defined by preflx(xo........xn_,) = (y0.........yn- t)

where y0 * Xo and for 1 « l < n. y, * yt_1~xl. Then the parallel prefix problem is the

problem of computing the function prefix using a parallel machine whose

processors can compute in unit time. Nassiml and Sahni [45] give a 2*°*n*

processor algorithm (which they call Rank, using the operation of integer

addition for "•*•") for the parallel prefix problem, which runs in time O(log n) and

has degree 3 and arity 1.

Ladner and Fischer [38] provide a parallel prefix circu it which has depth

O(log n)> and uses 0(n) two-input "•'•''-gates. An easy generalization gives us a

parallel prefix circuit of depth 0(^) ■ using 0(n) d-lnput "•'•"-gates. Let P«(n)

denote an n-lnput prefix circuit built from gates of arlty d. Figure 6.4.2 shows a

recursive construction of P*(n) from Pg(fn/d1-l).

Figure C 4 A Recursive construction of an n-input prefix circuit from one with

b / d l- 1 Inputs. Solid dots ere connections, circles denote ""'"-fete«.

Let Te(n) and Ze(n) denote the depth and number of "''•"•gates in an artty-d

prefix circuit, respectively. Clearly Te(n)*Te(fn/d1-l)+2, and thus

Tg(n) ■ 0(Also, Ze(n)<(n-fn/d1)+Ze(ln/dl-l)+(n-fn/dl-d-H), from

- 118-

which ws can conclude that Zd(n)*g(n-1) - (d -1). }°* , and so Zd(n) = 0(n) as
lo g a

claimed. Prefix circuits using gates with unbounded fan-in have been studied in

detail by Chandra, Fortune and Lipton [10,11]. Note that our results cannot be

compared with theirs, since they use the number of wires as a measure of the

size of a circuit. Our construction uses many more wires than theirs, but a large

number of the wires carry the same value. This is sufficient for us to be able to

construct a high-arity parallel machine for the parallel prefix problem.

Definition. Suppose 2 «d «n . Define the function ga N-»N by

d f li/d] if i mod d = d- 1

8 b(1)= | fn/ dl + li/ d J.(d—l)+ (i mod d) otherwise

The following algorithm uses n processors of arity d. degree d+1. and runs

in time 0(j j) . Assume X| is initially held in variable x of processor 1, 0< i < n

(0) b:=n
while b > 1 do

(1) If PID<b
PtD

* 4 x ° * procw,or 1
(2) x at proceeeor g^(PID): » x
(3) b:»|b/d]

while b < n de
(4) x :»x of processor g*(PID)
(6) b: = bd
(8) if (PID < b) and (P1D mod d *• d-1) and (IPID/ dj > 0)

than x:»x~x of prooseear (|PID/ dj d -1)

Table 6.4.2 shows a trace of this algorithm for n o 8 and d *3, and figure 6.4.3

shows the interconnection graph used by the algorithm for those values.

119-

7

flaw * &4S Interconnection pattern used bp the parallel prete algorithm for

n “ 8, d » 3. The arrows point from rOrtez i to rertez 0 * i < 8.

< 1)
(2)
Í 3)

8
8
4

(0 . 0)
(0 . 1)
(0 . 1)

(0 . 1)
(2 . 3)
(2 . 3)

(2 . 2)
(4 . 3)
(4 . 3)

(2 . 3)
(6 . 7)
(6 . 7)

(4 . 4)
(0 . 0)
(0 . 0)

(4 . 3)
(2 . 2)
(2 . 2)

(6 . 6)
(4 . 4)
(4 . 4)

(6 . 7)
(6 . 6)
(6 . 6)

< l)
(2)

< 2 ?

4
4

2

(0 . 1)
(0 . 3)
(0 . 3)

(0 . 3)
(4 . 7)
(4 . 7)

(4 . 3)
(2 . 2)
(2 . 2)

(4 , 7)
(6 . 6)
(6 . 6)

(0 . 0)
(0 . 1)
(0 . 1)

(2 . 2)
(4 . 5)
(4 . 3)

(4 . 4)
(0 . 0)
(0 . 0)

(6 . 6)
(4 . 4)
(4 . 4)

< l)
(2)

2
2
1

(0 . 3)
(0 . 7)
(0 . 7)

(0 . 7)
(6 . 6)
(6 . 6)

(2 . 2)
(4 . 3)
(4 . 3)

(6 . 6)
(4 . 4)
(4 . 4)

(0 . 1)
(0 . 3)
(0 . 3)

(4 . 5)
(2 . 2)
(2 . 2)

(0 . 0)
(0 . 1)
(0 . 1)

(4 . 4)
(0 . 0)
(0 . 0)

(4)
(3)
< $ >

1
2
2

(0 . 3)
(0 . 3)
(0 . 3)

(0 . 7)
(0 . 7)
(0 . 7 1

(2 . 2)
(2 . 2)
(2 . 2)

(6 . 6)
(6 . 6)
(6 . 6)

(0 . 1)
(0 . 1)
(0 . 1 1

(4 . 3)
(4 . 5)
(4 . 3)

(0 . 0)
(0 . 0)
(0 . 0)

(4 . 4)
(4 . 4)
(4 . 4)

(4)
< 3)
(6)

2
4

4

(0 . 1)
(0 . 1)
(0 . 1)

(0 , 3)
(0 . 3)
(0 . 3)

(4 . 3)
(4 . 3)
(0 . 3)

(0 . 7)
(0 . 7)
(0 . 7)

(0 . 0)
(0 . 0)
(0 . 0)

(2 . 2)
(2 . 2)
(2 . 2)

(4 . 4)
(4 . 4)
(4 . 4)

(6 . 6)
(6 . 6)
(6 . 6)

< 4)
< 3)

4
8

(0 . 0)
(0 . 0)
(0 . 0)

(0 . 1)
(0 . 1)

(2 . 2)
(2 . 2)

(0 . 3)
(0 . 3)

i f l . a i

(4 . 4)
(4 . 4)

(0 . 3)
(0 . 3)

(6 . 6)
(6 . 6)

(0 . 7)
(0 . 7)

1 0 + 2 1

U l e t t l T r a c e « f the parallel prete algorithm for n ■ 8, d ■ 3. Table entry show*

oontenta of variable i of oaeh proceeeor after each labelled atep o f the alforlthm.

[a,b] donotee « (i o f p m e w 1).

- 1 2 0 -

Chapter 7
More on Universal Machines

We close the main body of this thesis with a Anal Look at some universal

networks. The first section is devoted to lower-bounds on literal simulations.

The delay of corollary 3.2.3 is easily seen to be asymptotically optimal for a

literal simulation. However, no such elementary lower-bound can be found for a

simulation which is not literal, as is demonstrated by the existence of a

nondeterministic universal machine which has constant average delay. We find

that the delay of theorem 8 3.1 is optimal for a strongly-literal simulation of

degree-3, arity-1 networks.

In the second section we find that the latter lower-bound can be beaten by a

non-literal simulation, by giving a simplified presentation of a result of Meyer auf

der Heide [33]. The third section considers oblivious universal machines. A

literal simulation is said to be oblivious (after Borodin and Hopcroft [8]) if the

routes taken by data packets sent in response to read or write requests depend

only upon their respective sources an<l destinations. By extending the work of

Borodin and Hopcroft [8] and Lang [39] we obtain asymptotically matching

upper and lower-bounds of 8 (log P(n)) for the delay required for an

oblivious simulation of a P(n) processor network on a P'(n) processor, constant-

degree universal machine.

7.1. Sacne Lower Bounds

In section 8.2 we saw several examples of an S(n)-processor feasible

network which can perform an 0(Log S(n>) delay literal simulation of any S(n)

space-bounded network (see section 3.4 for definitions). It Is easy to see that

this delay Is optimal for a literal simulation. For suppose T:N-»N is such that

- 121 -

T(n)<n. Consider the n-processor machine with the following program, where x

of processor 1 Is initially the Ith piece of Input, O ^ K n

y= x
for i:=0 to T (n)- l do

y:=y + (x of processor l)

M runs In time 0(T(n)), yet every constant-degree universal machine must

take time fl(T(n).log n) to perform a literal simulation of M (no matter how many

processors are available), even if the universal machine is allowed to have more

than a constant number of registers per processor. For if there are at most

0 (dedicated processors then one processor must be looking after

O(log n) registers of M. which requires time f)(log n) to keep up to date

(assuming the universal machine has asymptotically the same arity as the

simulated machine). Otherwise, since the simulation is literal, there is ample

opportunity for the contents of the requisite register to be broadcast to the

0 (l 5 Fir> other dedlcated processors during each iteration, which takes time

O(log n) on a constant-degree machine (see section 6 .2).

In section 5.2 we also saw that a P(n) processor universal machine can

achieve delay 0(log P(n)) when simulating a P(n) processor restricted-access

network. Machine M above also serves to give us a matching lower-bound in this

case. Note that these lower-bounds rely on two Important facts, the limited

data-carrylng capacity of constant-degree networks, and the fact that a literal

simulation creates a large amount of traffic. If we relax the requirement that

the simulation be literal, then no such simple lower-bound technique Is

available. For example a nondetermlnistlc universal machine can achieve a

constant average delay.

We define a nondetermlnistlc network similarly to the deterministic model

of section 2 .1 , with the following modifications:

- 1 2 2 -

(1) Two extra instructions are allowed.

(a) rt«-random (rj). and

(b) fall.

The former assigns to register rj a value between 0 and the contents of rj,

and is called a guess. The latter is a special kind of halt instruction. A

processor which has executed it is said to have failed.

(2) A computation is said to succeed if no processor has failed. A

nondeterministlc parallel machine M is said to compute a relation RcN*xN*

if for every input x. <x.y>cR iff there is a sequence of guessed values such

that M succeeds and produces output y. Resources are defined in the

obvious manner.

Theorem 7.1.1 There is a P(n).log P(n) processor, constant-degree nondeter-

ministic universal parallel machine which can simulate any T(n) time, P(n) pro­

cessor bounded nondeterministic restricted-access network in time

0(T(n)+log P(n)).

Proof. Suppose U is a T(n) time, P(n) processor bounded restricted-access

network. For the present, assume T(n) = O(log P(n)). Fix n, and let

m = hog P(n)l, m' = hog ml. We will describe our algorithm on an (m+m'+2)-cube.

Processor i of the universal machine will simulate process 1, 0< i<P (n). The

algorithm consists of phases, each of which corresponds to m steps of M.

The first phase proceeds as follows. Suppose at the t * step of M, K t i m ,

process 1 wishes to read the communication register of process Jf. Instead of

obtaining the correct value from processor J*1. it nondeterministically guesses

some value dt which it uses Instead, having recorded it, along with the value jf,

for later verification. The m values ct. l< t< m , where ct denotes the contents of

the communication register of processor i at time t, are also recorded. The

- 123-

efleets of possible write-attempts are also guessed and recorded In a similar

manner

For each i such that 0 < K P (n) let Wt be the (m>2)-eube consisting of

processors 2m j+l, 0 £ j<2 m‘*(. Having simulated m steps with guessed data

values, the verification procedure is as follows. Processor i, 0 « i< P (n) prepares

m read-request packets (jf.t). each being a request for the contents of the

communication register of process jj* at time t. It also prepares m data packets

(i.t.Ct). and similarly m write-request packets. These are scattered around the

2m'**st4m processors of W(. at most one packet per processor, using algorithm 4

of section 4.3. The request packets are fulfilled using the techniques of theorem

5.1.1. The guessed data values are then compared to the fulfilled requests, and

any processor which detects a discrepancy fails immediately.

Thus m steps of M can be simulated in time O(log P(n)+m) = O(m). Note

that 0(P(n).log P(n)) items can be sorted in time 0(log P(n)) using

0(P(n).log P(n)) processors by guessing a set of switch positions of the Waksman

permutation network (see theorem 4.1.3), and verifying afterwards that the

permuted values are in sorted order. By repeating this for 3M.
m phases we are

able to simulate T(n) steps of M in time 0(T(n)) as required. A set-up time of

O(log P(n)) is required to broadcast the program of the simulated machine,

using algorithm 1 of section 4.3. This extra term in the time-bound also takes

care of the case when T(n) = o(log P(n)). □

In section 6.3 we saw a very special kind of literal simulation of a P(n)

processor, constant-degree, restricted-access network M on a universal machine

U. This had the property that

(1) Each processor 1 of M has a dedicated processor d, in U

- 1 2 4 -

(2) This dedicated processor looks after all registers of processor i of M.

(3) d|*d jforl# j.

(4) The initial dedicated-processor assignment is the same for all simulated

machines.

(5) The dedicated processor assignment does not change with time.

Under these very strict conditions, a delay of 0(log P(n)) was achieved using

only P(n) processors. We will call simulations with property (5) strongly-literaL.

Meyer auf der Heide [31] has shown that the above delay is optimal tor a

strongly-literal simulation of a constant-degree, restricted-access network. We

can strengthen this to show that thé delay is optimal even for the simulation of

networks with degree 3.

Theorem 7.1.2 A strongly-literal universal parallel machine with P(n)aP*n) proces­

sors. where a < and degree D(n) must have delay Q(|°g) when simulat­

ing a P(n) processor, degree-3 network.

Proof. Suppose we have an m-processor. degree-d universal parallel machine

which can carry out a strongly literal simulation of any degree-3, p-processor

network with delay k. We will show that k = 0(?°^ f?) when simulating a speciallog a

kind of machine whose interconnection pattern is a degree-3 graph called a

matched-cycle. A p-vertex matched-cycle has vertex-set {0.1. - .p—1 { and

(1) Vertex v is joined to vertices (v ± l) mod p (cycle links).

(2) The remaining edges form a graph of degree 1 (that is. they constitute part

of a matching).

Let M be a network with one register per processor, whose interconnection

pattern is a matched cycle. Each processor i of M. OstKp is assigned a

dedicated processor d< in the universal machine. Without loss of generality we

- 1 2 5 -

will assume that each processor of the universal machine is to be assigned to at

most one processor of M (for each multiply-assigned dedicated processor of U

can be replaced by a ring of distinct dedicated processors, without disturbing

the time or processor bounds in the statement of the theorem). Let

N = the number of matched-cycle graphs.

N(= the number of dedicated processor assignments which work for at least one

matched-cycle graph, and

N* = the maximum number of matched-cycles for which any given assignment

can be used.

Claim 1. N * —¡¡¡2-----

Without loss of generality suppose p is even. Then there are

(p - l). (p -3).(p — 5)...l = J?'---- matchings on p vertices At most 2* of these

2 * < f *

matchings can give rise to the same matched-cycle (by Ailing in the missing

cycle edges), so there are at least ¡J?'-----matched-cycles.

Claim 2. N,*m.dkfr-,>.

If a particular processor assignment is to work for a matched-cycle, then

processor dj must be at distance at most k from d(i+ o mod „ in the

interconnection pattern of the universal machine, 0 « l< p . Thus there are m

oholces for do. but at most dk choices for dt, and similarly dk choices for each of

de.da........ dp-i-

Claim 3. Notfd1’’ .

Fix a processor assignment. Consider the machines M for which that processor

assignment works. Each processor i of M can be adjacent to the (a t most) dk

- 128-

processors j auch that d< and dj are at dlatance at moat k in the interconnection

pattern of the universal machine. Thus each vertex in the interconnection

pattern of M can be adjacent to at most dk other vertices via a matching link.

If the universal machine is to simulate all matched-cycles within the stated

resource-bounds, then we must have N,.N8i N. Thus

-----* m .d«*-'>

1 • f ' 10« P < k(2 p-l).log d * log m + 0 (p)

Hence if m < p,p for all a < 3 -: we see that k = 0(¡28-E-) □
c log a

Thus a constant-degree universal machine must have delay 0(log P(n)).

Here is yet another approach to the unit-cost hypothesis. It is valid to charge

one time-step for an interned computation which takes time O(log P(n)) on the

instruction-set of the universal machine.

7.2. A Non-Literal Simulation

In section 7.1 we saw an O(log P(n)) lower-bound on the delay of a strongly-

literal simulation of a P(n) processor, constant-degree restricted-access

network. Here we will see that relaxing the literalness condition allows a more

efficient simulation of flxed-structure machines. In a literal simulation there is

ample opportunity during the simulation of a single step for the data to be

routed from the dedicated processors in response to read or write requests. In

a non-literal (but step-wise) simulation, this information may start out from the

dedicated processors at an earlier point in time, being kept up-to-date along the

way by auxiliary processors. Using this technique, Meyer auf der Heide [33]

obtains a constant delay (on average) for the simulation of constant-degree,

flxed-structure, restricted-access machines. The following Is a much-simpllfled

presentation.

- 127-

Theorecn 7.2.1 Thera la a constant-degree universal machine with P(n)1** pro­

cessors for any e > 0 which can simulate any P(n) processor, T(n) time-bounded,

constant-degree, flxed-structure, restricted-access network In time

0(T(n)+ log4P(n)).

Proof. (Sketch). Suppose the machine to be simulated has degree d. Without

loss of generality we can assume that it communicates by reads alone. The

universal machine has P(n) dedicated processors, one for each process. Each

dedicated processor is the root of a complete binary tree of depth t. Hog dl,

where t>0 is some value to be determined later. Vertices at depth i. flog dl,

0<lact are said to be on the 1th level The dedicated processors are thus on the

0 th level.

The simulation will proceed in fT(n)/t1 phases, each corresponding to t

steps of the simulated machine. The trees will be Initialized so that each

processor on the 1th Level will be attempting to simulate one of the processes

which are adjacent to the process of its predecessor on the (i—1)M level. Each

process thus has many processors attempting to simulate it. A request from a

process in a processor on the Ith level, 0 s i< t , to read the communication

register of one of its neighbours is passed on to whichever (i+ l)*-level successor

of that processor is attempting to simulate that neighbour. A request by a

process in a processor on the t*11 level to read the communication register of one

of its neighbours is Ignored.

Thus aftsr 1 stops have been simulated, the processors on level t - l + 1 have

probably been led astray in their simulation of a process by being misinformed

by processors on the next level. All other processors have simulated correctly.

After t steps, only the dedicated processors can be guaranteed to have not

deviated. This part of the simulation takes 0 (t) steps.

- 128-

Meanwhile, the dedicated proceisors have been saving the communication

register contents of their processes at each of the t simulated time-steps.

These t values are to be routed to the processors on all levels which are

attempting to simulate the same process. Armed with this information these

processors can re-compute the last t steps internally, and get back to a correct

state. The trees are then ready to simulate another t steps without further

initialization.

Suppose ail processors of the trees are at the head of a distinct sub-cube of

2»o « tl processors, and that further edges are added to make the whole structure

into a multidimensional cube (with embedded trees) of 2*a,l,.P(n) d* processors.

The correction stage can be carried out by having each level-1 processor. 1 * i < t.

prepare t requests for the correct communication register contents at each of

the t steps of the phase. The dedicated processors prepare t packets which

provide this information. We then

(1) Scatter them around the sub-cubes in time 0(t) using algorithm 4 of section

4.3.

(2) Permute the requests and data into sorted order. Note that the

permutation is the same for each phase, so theorem 4.1.3 can be applied to

give time O(t+log P(n)).

(3) The techniques of corollary 5.2.1 are then used to satisfy these requests in

time 0(t+ log P(n)).

(4) The satisfied requests are gathered back by reversing (1) and (2).

This gives a time-bound of O(t+log P(n)) to simulate t stops. A total of

0(P(n).t.dl) processors are needed. Choosing t*e .log 4P(n)-log<|log4 P(n) for

some *> 0 gives a constant average delay using 0(P(n)'**) processors. The set­

up time consists of:

- 129-

(a) Tima to assign processes to processors at each level of the trees.

(b) Initialization of the permutation used to sort the requests in part (2) above.

(c) Distribution of Inputs, outputs and the program of the simulated machine.

The process In (a) can be achieved level-by-level starting at the dedicated

processors, at a cost of 0(logaP(n)) per level for routing the identities of the new

processes from the dedicated processors by use of sorting. This cost of

0(log*P(n)), and the cost of (c). is dominated by the 0(log4P(n)) required in

theorem 4.1.4 for (b).

All algorithms which use the cube-part of the interconnection pattern are

composite, and thus the interconnection pattern can be thought of as a shuffle-

exchange or cube-connected-cycles with embedded trees, of degree 6 . □

7.3. Oblivious Simulations

We complete this chapter by considering a very strict form of a strongly

literal simulation of a restricted-access network, which we shall call oblivious.

Consider a single step of a strongly literal simulation with dedicated processors

d,. If process l wishes to read the contents of the communication register of

process j, then during this simulated time-step the required value can be

provided by dedicated processor dj and routed to d(. (Similarly, if process i

wishes to write into the communication register of process j, the value can be

routed from d(to dj). If the routes taken by these data items depend solely on

the source dj and the destination d< (respectively d, and dj in the wrlte-mode

case), then the strongly literal simulation is said to be oblivious. If in addition

the next step in the route depends solely on the current location of the data

packet and the eventual destination, than it is said to be source-obiiviour

- 130-

Ttae following lower bound Is a generalization of theorem 1 of [8].

Theorem 7.3.1 An oblivious simulation of a P(n) processor parallel machine on a

constant-degree. F (n) processor universal parallel machine must have delay

n(̂ r +l°*p(n))
Proof. Fix n. and let p = P(n), p’ = P'(n). Suppose the universal machine has

degree d. dedicated processors dj. 0< i < p. and interconnection graph G.

For 0 * i, j <p let Rp be the path in G corresponding to the route taken by a

data packet sent from processor dj to processor d| of the universal machine in

response to a request by process i to read the communication register of

process j. Since the simulation is to be oblivious, these paths are. invariant with

time. Note that a path may consist of a single vertex (in the case where d(= dj),

and that two paths may coincide along part, or even all. of their length. For

0 < K p le t G| be the graph obtained from G by removing all edges which do not

lie on some route Rp. for 0< j <p

Suppose kfeO. For each i. O S K p construct a set of vertices V, from the

vertices of G« as follows. Initially V, consists solely of vertex dt (the destination of

the routes which comprise Gt). Repeat the following until no new vertices are

added: if | {J|v lies on Rpj| ask (I.e. v lies on at least k routes In G,) and v is

adjacent to some vertex VcVj in G|. then add v to V|. Thus V, consists of the

largest set of vertices of G,. clustered around the destination d(, which are on k

or more routes.

Let T|W |V||, and denote the set of vertices of G not in V,. Let q be the

maximum number of processes to be simulated by any dedicated processor (l.e.

q ■ jnax I f JI 0 «J < p and d|*dj| |). Then at most Tt.q routes of Gt start from

vertices In Vla so at least p-T|.q start from Vj. In order to get from the vertices

of V, to vertex 1, these must pass through the vertices of Vj which are adjacent to

- 131 -

vertices of V(in G|. By the definition of Vjf each of these can carry at most k-1

routes of G|. Hence there must be at least such vertices. Furthermore,

since G has degree d. there can be at most T j.(d -l) vertices of V, which are

adjacent to vertices if V, in G. Hence

T,.(d -1)* £ ¿ ^ 3 .

t e T‘ * (d—l) (k —l)+q

Let T = jmlnT|, and for each vertex j of G, Os:j <p'. let

Cj* | (l| 0 < i< p and jeV,j |. N o w C j * pT. so there must be (by the pigeonhole
]«o

principle) a vertex v with

r * ¿ L * ________ e ! _________
P' p '. ((d - l)(k - l)+ q)

Choose k : ^ ^ ^ — ♦ 1. If k<2 then the result follows: If q>

then a lower bound of 0 (̂ r) follows immediately (assuming the universal

machine has asymptotically the same arlty as the machine being simulated),

otherwise ^ j r * 0 (1), and so a lower bound of 0 () is trivial.

Now suppose k * 2. Then Cv> If q> then a lower bound

of 0(̂ r) follows Immediately. Otherwise k > and so v lies on at

least k> routes to vertex 1 tor C,k choices of destination

1. Thus there Is a com bination of req u ests which re su lts In p ack e ts

being routed through v ertex v; furtherm ore, e ach p ack et con tain s a different

d a ta item , which p rec lu d es the am algam ation of p ack e ts (assum ing the

universal m achine h as the sam e word-size a s the m achine being sim ulated).

V ertex v thus form s a bottleneck, giving us a tim e-loss of 0 (-9 r) for each step
VP

- 132-

of the simulation. This gives us a delay of (1(tor oblivious simulation.

This lower bound very quickly becomes trivial, in fact whan P‘ (n)sO (P (n)*) it

gives us no information at all. In this case, theorem 7.1.2 gives us a lower bound

of O(log P(n)). □

The proof of theorem 7.3.1 was motivated by theorem 1 o f Borodin and

Hopcroft [8], where they prove the same result using essentially the same

methods in the special case where P(n) = P(n) and all dedicated processors are

assumed distinct. Lang [39] gives a matching upper bound for the case where

P*(n) * p(n) and the data-transfers form a permutation (which, in particular,

means that there can be no read or write conflicts in the machine to be

simulated). By extending his technique we can derive a general upper bound

which asymptotically matches the lower bound of theorem 7.3.1.

Theorem 7.3.2 Suppose P (n)«P '(n). There is a P'(n) processor universal net­

work based on the shuffle-exchange which can carry out a source-oblivious simu­

lation of a P(n) processor network with delay 0(

Proof. Fix n. and let m=* (log P(n)l, m‘ = flog P '(n)1 -m . we will describe our

algorithm on an (m-t-m')-cube. Processor t.2m' will simulate process 1 .

Oei <P(n). The simulation of a single step proceeds as follows. Suppose process

1, 0 *t< P (n) wishes to read the communication register of some process J«.

0 « j, <P(n). Then each processor l.Z1*. 0 < i<P (n) makes up a request packet

(Jt,l). These packets are routed to the respective processors ji.2m'. with multiple

requests being combined as necessary. The requests are fulfilled and routed

back to their sources along the same paths. Once read-requests have been dealt

with in this manner, write-requests are handled analogously with a single

routing.

The routing of read-requests is broken up into three parts. In each part we

assume that the packets (jj.l) are held In variables (j.l) of the requisite

processor. Processors not in possession ot a packet are deemed to hold the null

packet (null.null). A collision is said to occur if two packets are resident in the

same processor.

(a) Route the packets from i.2m' to i.2*1* -*- (j, mod 2m). This can be done quite

easily using the following algorithm.

fo rb :*l to m' do
if PIDfc = (j of processor P ID »)b

then (J.i):=(j.i) of processor PID(b>
else (j.i)=(null,null)

There can be no collisions during this stage of the routing, since a packet

from processor i remains in processors l.2 m‘+x for some 0 « x < 2 m'.

(b) Route the packets from i.2 m'-*-(Jl mod 2 m) to |i/2 ra"m'J.2 m+jl.

m bits nr bits
r >/--------*--------

l.2ra'+(Jlmod2m) f I j, mod 2*"

m*rrv m«1 m mr*1 nr 1
|l/2m-"']2m+Ji J l l/ 2 nvmj __________________ ii__________________ I

This Involves changing bits m > l through m ot the current location ot each

packet, which were previously the low-order bits (bits 1 through m -m) of 1.

into the high-order bits (bits m'+l through m) of j.

To simplify our presentation let us assume at first that there are no read-

conflicts, so provided 1*1’. We will return to the problem of read-

conflicts later. Each processor has a queue, with unit-cost operations

enqueue(x.y) (which places packet (x.y) at the tail of the queue), and

dequeue (which removes the packet from head of the queue, and returns its

value as a result). An attempt to dequeue an empty queue returns the null

packet.

This stage of the algorithm consists of m-m' phases. During the k°* phase,

l « k « m - m ’. we move each packet (Ji.i) so that bit m'+k of its current

location is the same as bit m‘+k of |i/2 m_m'J.2 m+j,. This is sufficient to

move packet (j,.l) from i.2m'+(j< mod 2m') to |i/2m~ra'J.2m+j(. Many collisions

will occur - this is why each processor has a queue. In order to move every

packet in the system in this manner, we must completely flush the queues

at each phase. Let m* be the maximum number of items in each queue at

the start of phase k. l « k < m —m’, to be determined later.

initialize queue to empty queue
for k: = 1 to m-m' do
for t: = l to mk do

if (J ** null) and (Jm'»k = PIDm «.|«)
then enqueue(j.i)

if (J of processor P!D<m>k) *• null) and
(PIDh,«* - (J of prooo—or PID<m'*k>)w*k)

than enqueue((j,l) of processor PID(m>k))
(J.t): »dequeue

To make our analysis easier, we will include the packet (j.i) as part of the

queue, since we have used variables (j.i) as a dummy head-of-queue in the

algorithm. At the beginning of phase 1, the queues are empty, so mt »1.

After phase k has terminated, a request from process i to process j will And

Itself in the queue of processor |i/2kJ.2m>k+(J mod 2B,>k). Each request

oomes from a different source, and 1s bound for a different destination.

- 135-

Thua if two different requests, one from process i to process J.

end another from process i’ to process j' end up in the same

queue at the end of the k**1 phase, then i# i', j * j' and

[i/ 2 k mod 2 m+k) = [iV S*1 mod 2 m>k).

How many different choices of 1 and i' are there? Since i * i ' and yet

[i/ 2 *1] = |i'/2 kJ, we are forced to assume that 1 and i' differ in the last k bits.

Thus there are at most 2k choices for the source, and so m *« 2* Similarly,

since J *) ' and yet j mod 2m'*k * j' mod 2m*k we are forced to conclude that

J and j' differ in the leading m-m '+k bits. Thus there are at most 2m_m~k

choices for the destination, and so m]l« 2 m~m'~k. Putting both of these

together, we conclude that mit*m in (2 k.2 ra-ra'*k).

Thus the algorithm will work if we set m* = min(2k.2m_m‘_k). The delay is

proportional to

m'£ " ,min(2 k.2 m-m-k).
k-0

If m-m' is even the latter is equal to 2*m“m'*'3)/’*-3, and if it is odd it is equal

to 3 .2 <m-«f>/«-3 . Thus the delay is 0(>/2iK=fir).

The case where read-conflicts are allowed is a little more complicated. As

well as a queue, arm each processor with a stack, and the usual stack

operations. Instead of enqueuing a packet, first check to see whether the

queue already contains a packet bound for the same destination. If so, the

newly arrived packet is relegated to the stack. This ensures that only

packets with different destinations are put in any Individual queue, which

preserves the invariants necessary for the above timing analysis.

Whan, much later, the fulfilled request is routed back along the same path,

the stack is checked before it is entered on the queue, and any requests for

the same data item are fulfilled. By also stacking the time at which a

- 138-

duplicated request was received, the processor can tell when to unstack

and despatch each fulfilled request in the return routing.

jt.2m'+(ji mod 2m'), and then from there to These two parts correspond

to the two for-loops below.

for b:=m+m' downto m '+1 do
If PIDb = (j of proceeoor PID(b))b

then Q.t):*(J.i) of processor PID^
for b:=m' downto l do
If PIDb * 0
than (j.i):-(j.l) of processor PI

Since at all times there are at least m bits of j present in the location of

each packet (j.i). and at the end of stage (b) above there are no two distinct

packets bound for the same destination, there are no collisions.

Thus by applying the algorithms of parts (a), (b) and (c) consecutively, we

can route the request packets in time

on an (nn-m')-cube. Part (a) is a simple-ascend class algorithm, and part (c) is

simple-descend. Thus by the use of theorems 4.1.1 and 4.1.2 they can be

realized on the cube-connected-cycles or shuffle-exchange Interconnection

patterns without asymptotic time-loss, using P'(n) processors.

The implementation of (b) needs special care however. It would be simple

ascend class except for the fact that m* data transfers occur along dimensions

m'+k, Instead of the usual 1. A careful analysis of the proof of theorem 4.1.1

shows that this is easy to handle in the shuffle-exchange case. This does not

(c) Thirdly and finally, route the packets from processor |i/2m-m'J.2ra+j, to

2 m' j1. This is done in two parts. First route it from |i/2 ra' m'J 2 m+jt to

- 137-

appear to be the case with theorem 4.1.2 however, due to the pipelining

technique used. In the implementation of part (b) on the shuffle-exchange,

processes must be moved around at the end of each phase. It takes time

proportional to mk to move the queue at the start of the k0 1 phase, giving

asymptotically the same delay as above.

We have not yet described how the fulfilled requests are to be routed back

to their sources along the same paths. We simply reverse the above algorithm,

by making each ascending loop descend, and vice-versa. In the case where

conflicts are allowed, the stacks need not be moved from processor to processor

in the simulation of theorem 4.1.1. They are simply implemented as an array at

each processor, and elements .to be stacked are stored in the processor that the

process is currently residing in. Since the algorithm returns the fulfilled

requests in a mirror-image of the original routing, each process will be back in

the correct place when it wishes to remove a particular item from its stack. □

- 138-

Chapter 8
Conclusion

We have presented a complexity theory of parallel computation baaed on a

network model, and have argued that this model is a good one, from both a

practical and a theoretical point of view. The concept of a universal network is

central to our arguments. We have found a practical universal machine which

can efficiently simulate the more general model. Thus the user of a practical

universal machine is free to program in a high-level language whose virtual

architecture corresponds to. and the theoretician is provided with a motive for

studying, the more abstract models.

We have seen various kinds of universal machine. A literal simulation is

often more efficient than a strongly-literal one, in the sense that slightly less

processors are needed (this is tied in strongly with our non-standard definition

of space in section 2.1). On the other hand, the number of processors can be

reduced even further, and the simulation made strongly-literal. if the machines

being simulated are restricted-access networks. Upper bounds on the time

required for these simulations can be asymptotically matched by lower-bounds.

The situation is quite the opposite, however, in the non-literal case.

We have seen that networks with a large word-size and number of

processors are very powerful, even when those processors have a modest

instruction-set. In particular, any computable function can be computed in

constant time if sufficiently many processors are present. Furthermore, an

arbitrary polynomial speed-up of a sequential machine is possible on a network

with "reasonable" resources, although an exponential speed-up is probably not.

The choice of a unit-cost measure of time, although controversial in

sequential models, can be defended in the parallel case. We have seen a

139-

diversely-mottvated collection of evidence in favour of the unit-cost hypothesis.

(a) Networks with a unit-cost measure of time are "reasonable" in the sense

that they obey the parallel computation thesis, provided a T(n) time-

bounded network has instructions which can be simulated by a Turing
e

machine using space T(n)0(1>. (Section 3.3).

(b) To ensure that individual processors behave like log-cost sequential

machines, replace Turing machine space by deterministic Turing machine

time in part (a) above. (Section 3.3).

(c) Networks with a unit-cost measure of time are "reasonable" in the sense

that they obey the extended parallel computation thesis, provided an S(n)

space-bounded network with word-size W(n) has instructions which can be

computed by a deterministic Turing machine using space (W(n).S(n))0(l) and

Tin)011* reversals. (Section S 3).

(d) In practice, the average user would probably prefer to own a universal

network, rather than go to the expense of fabricating special-purpose

networks for each application. In this case, it is valid to use unit-cost

charging for a P(n) processor machine whose local instructions take time

0(log P(n)) on the universal machine. (Section 7.1).

Thus the unit-cost hypothesis holds for a wide range of instruction-sets (not

Just the commonly-used arithmetic instruction-sets proposed in section 2.1),

Including a large class of high-arity machines considered in chapter 6 .

- 140-

Referencea

1. A. V. Aho, J. E. Hopcroft. and J. D. Uliman. The design and analysis o f

computer algorithms, Addison-Wesley (1974).

2. M. Ajtai, J. Komlds, and E. Szemeredl, "An 0(n.log n) sorting network".

Proceedings o f the 15th Annual ACM Symposium on Theory o f Computing,

(Apr. 1963).

3. R. Aleliunas, "Randomized parallel communication". Proceedings o f the

ACM Symposium on the Principles o f Distributed Computing, (August 1962).

4. K. E. Batcher, "Sorting networks and their applications", Proceedings

AFIPS Spring Joint Computer Conference 38 pp. 307-314 (April 1966).

5. P. Beams, "Random routing in constant-degree networks". Technical

Report 161/82, Dept, of Computer Science, University of Toronto (1962).

6 . N Blum, "A note on the parallel computation thesis'", Information

Processing Letters 17 pp. 203-205 (1963).

7. A. Borodin "On relating time and space to size and depth” , SIAM Journal

on Computing 6(4) pp. 733-744 (Dec. 1977).

6 . A. Borodin and J. E. Hopcroft. "Routing, merging and sorting on parallel

models of computation", Proceedings o f the 14th Annual ACM Symposium

on Theory o f Computing. (May 1962).

9. A K. Chandra. D. C. Kozen. and L. J. Stockmeyer, "Alternation", Journal o f

the ACM 8 B(l)(Jan. 1961).

10. A K. Chandra, S. J. Fortune, and R. Upton, "Unbounded fan-in circuits and

associative functions", Proceedings o f the 15th Annual ACM Symposium on

Theory o f Computing, (April 1963).

- 141 -

11. A. K. Chandra. S. Fortune, and R. Upton, "Lower bounds (or constant depth

circuits (or prefix problems". Procaadings o f tha 10th ICALP, Springar-

Ihrlog La dura Not as in Computar Science 154<July 1983).

12. S. A. Cook and R. A. Reckhow, "Time-bounded random access machines".

Journal o f Computar and Systam Sciences 7(4) pp. 354-375 (1973).

13. S. A. Cook. "Deterministic CFL's are accepted simultaneously in polynomial

time and log squared space". Proceedings o f tha llth Annual ACM

Symposium, on Thaory o f Computing. (Apr. 1979).

14. S. A. Cook. "Towards a complexity theory o(synchronous parallel

computation", L Ensaignamant Mot ha matiqua 30(1980).

15. S. A. Cook and C. Dwork. "Bounds on the time (or parallel RAMs to compute

simple (unctions". Procaadings of tha 14th Annual ACM Symposium on

Thaary o f Computing, pp. 231-233 (May 1982)

16. P. W. Dymond, "Simultaneous resource bounds and parallel computations",

Ph. D thesis, issued as Technical Report TR145/80, Dept. o(Computer

Science. University o(Toronto (Aug. 1980).

17. P. W. Dymond and S. A. Cook, "Hardware complexity and parallel

computation", Procaadtngs o f tha Slat Annual IEEE Symposium on

Foundations o f Computar Science, (Oct. 1980).

18. P. W. Dymond. "Speedup o(multi-tape Turing machines by synchronous

parallel machines". Invitad oddrasa at tha special session on thaoraticol

computar science, meeting 792. American Mathematical society. (Nov.

1981).

19. M. Flynn, "Very high-speed computing systems". Procaadtnga o f tha IEEE

M pp. 1901-1909 (Dec. 1966).

- 142-

20. S. Fortune and J. Wyllie, "Parallelism in random access machines",

Proceedings o f the 10th Annual ACM Symposium on Theory o f Computing,

pp 114-118 (1978).

21. Z. Galil and W. J. Paul, "An efficient general purpose parallel computer",

Journal o f the ACM 30(2) pp. 360-387 (Apr. 1983)

22. M. R Garey and D. S. Johnson, Computers and intractability: a guide to the

theory o f NCom pleteness. W. H. Freeman (1979).

23 L M. Goldschlager, "Synchronous parallel computation", Ph. D. Thesis,

issued as TR-114, Dept, of Computer Science, University of Toronto

(December 1977).

24. L M. Goldschlager, "The monotone and planar circuit value problems are

log space complete for P", SIGACTNews 9(2)(1977).

25. L M. Goldschlager, "Epsilon-productions in context-free grammars".

Technical Report TR13, Dept, of Computer Science, University of

Queensland (Apr. 1980).

26. L M. Goldschlager, R. A. Shaw, and J. Staples, "The maximum flow problem

is log space complete for P". Technical Report TR28, Dept, of Computer

Science, University of Queensland (June 1981).

27. L M. Goldschlager, "A universal Interconnection pattern for parallel

computers", Journal o f the ACM 20(4) pp. 1073-1086 (Oct. 1982).

28. L M. Goldschlager and I. Parberry, "On the construction of parallel

computers from various bases of boolean functions". Theory of

Computation Report No. 48, Department of Computer Science, University of

Warwick (March 1983).

29. L. M. Goldschlager and A. M. Lister, Computer science: a modem

introduction, Prentice-Hall (1983).

- 1 4 3 -

30. J. Hartmanls and J. Simon. "On the power of multiplication in random

access machines", Proceedings o f the 15th Annual IEEE Symposium, on

Switching and Automata Theory, pp. 13-23 (1974).

31. F. Meyer auf der Heide. "Efficiency of universal parallel computers". Acta

fnform atica 19 pp. 269-296 (1963).

32. F. Meyer auf der Heide. "Infinite cube-connected cycles", Inform ation

Processing bettors 16 pp. 1-2 (Jan. 1963).

33. F. Meyer auf der Heide. "Efficient simulations among several models of

parallel computers", Interner Bericht 2/83. Fachbereich Informatik.

Universität Frankfurt (1963).

34. N. D. Jones. Y. E. Lien, and W. T. Laaser. “ New problems complete for

nondeterministic log space". Technical Report TR-75-1, Dept, of Computer

Science, Kansas University (Apr. 1975).

35. N. D. Jones and W. T. Laaser, "Complete problems for deterministic

polynomial time", Theoretical Computer Science 3pp. 105-117 (1977).

36. R. M. Karp and R. J. Lipton, - "Turing machines that take advice".

Symposium über Logik und algorithmik” in honour o f Ernst Specker,

L'Enseignmsnt Mathematiqus 30(Feb 1980).

37. R. E. Ladner, "The circuit value problem Is log space complete for P".

SIGACTNews 7(1) pp. 18-20 (1975).

36. R. E. Ladner and M. J. Fischer, "Parallel prefix computation", Journal o f the

ACMteHA) pp. 631-838 (October 1960).

39. T. Lang. "Interconnections between processors and memory modules using

the shuffle-exchange network", IEEE Transactions on Computers C-

96(5) (May 1976).

40. F. T. Leighton, "Problem P44". Bulletin o f tha European Association fo r

Theoretical Computar Scianca. (22) p. 110 (February 1964).

41. T. Leighton. "Tight bounds on the complexity of parallel sorting",

Proceedings o f tha 18th Annual ACM Symposium on Thsory o f Computing.

(Aprtl-May 1984).

42. C. F. Lev. N. Pippenger. and L. G. Valiant, "A fast parallel algorithm for

routing in permutation networks", IEEE Transactions on Computers C-

30(2) (Feb 1961).

43. L G. L. T. Meertens, "Recurrent ultracomputers are not log n - fast".

Technical Report IW118/79, Dept, of Computer Science, Mathematisch

Centrum (Sept. 1979).

44. G. Miranker, L. Tang, and C. K. Wong. "A zero-time VLSI sorter". IBM

Journal o f Research and Development 27(2) pp. 140-148 (Mar. 1983).

45. D. Nassimi and S. Sahni, "Data broadcasting in S1MD computers", IEEE

Transactions on Computers C-30(2) pp. 101-106 (Feb 1981).

46. D. Nassimi and S. Sahni. "Parallel algorithms to set up the Benes

permutation network". IEEE Transactions on Computers C-31(2)(Feb.

1982).

47. D. Nassimi and S. Sahni. "Parallel permutation and sorting algorithms and a

new generalized connection network", Journal o f the ACM 28(3) pp. 642-667

(July 1982).

48. D. C. Opferman and N. T. Tsao-Wu, "On a class of rearrangable switching

networks". Bell Systems Technical Journal 80pp. 1579-1618 (1971).

49. J. Orensteln, T. H. Merrett, and L. Devroye, "Linear sorting with 0(log n)

processore". B IT 23 pp. 170-180 (1983).

- 145-

50. I. Par berry, "Some practical simulations of impractical parallel

computers", Theory of Computation Report No. 58, Dept, of Computer

Science. University of Warwick (December 1983).

51. I. Par berry, "Some processor-saving theorems for synchronous parallel

computers". Theory of Computation Report No. 53, Dept, of Computer

Science, University of Warwick (October 1983).

53. I. Parberry, "On the power of parallel machines with high-arity instruction

sets". Theory of Computation Report No. 57, Dept, of Computer Science,

University of Warwick (November 1983, Updated February 1984).

53. N. Plppenger, "On simultaneous resource bounds", Proceedings o f the 80th

Annual IEEE Symposium.'on Foundations o f Computer Science, (Oct. 1979).

54. V. Pratt and L. J. Stockmeyer, “ A characterization of the power of vector

machines", Journal o f Computer and System Sciences 12 pp. 198-221

(1976).

55. F. P. Preparata and J. Vuillemin, "The cube-connected cycles: a versatile

network for parallel computation", Communications o f the ACM 24(5) pp.

300-309 (May 1981).

56. M. J. Quinn and N. Deo. "Parallel algorithms and data structures in graph

theory", Technical Report CS-82-098, Computer Science Department,

Washington State University (Oct. 1982, Revised June 1983).

57. J. Reif and L. Valiant, "A logarithmic time sort for linear size networks",

Proceedings o f the 15th Annual ACM Symposium on Theory o f Computing,

pp. 10-16 (Apr. 1963).

58. R. Relschuk, "A lower time-bound tor parallel random-access machines

without simultaneous writes". Research Report RJ3431, IBM Research, San

Jose (Mar. 1962).

- 146 -

59. W. L Ruzzo, "On uniform circuit complexity". Journal o f Computer and

System Science« 28(3) pp. 365-383 (June 1961).

60. W. J. Savitch. "Parallel random access machines with powerful instruction

sets", JUathtmaHcal Systems Theory 15 pp. 191-210 (1982).

61. A. Schorr. "Physical parallel devices are not much faster than sequential

ones", Inform ation Processing Letters 17 pp. 103-106 (August 1983).

82. J. T. Schwartz. "Ultracomputers". ACM Transactions on Programming

Languages and Systems 2(4) pp. 484-521 (Oct. 1980).

63. J. C. Sheperdson and H. E. Sturgis. "Computability of recursive functions",

Journal o f the ACM 10(2) pp. 217-255 (1963).

64. Y. Shiloach and U. Vishkin, Finding the maximum, sorting and merging in a

parallel computation model", Journal o f Algorithms 2 pp. 88-102 (1981).

65. H. Simon, "A tight Cl(log log n)-bound on the time for parallel RAM's to

compute nondegenerated Boolean functions", Inform ation and Control

55 pp. 102-107(1982).

6 6 . H. S. Stone. "Parallel processing with the perfect shuffle", IEEE

Transaction« on Computers C40(3) PP 153-161 (Feb. 1971).

67. E. Upfal, “ Efficient schemes for parallel communication", Proceedings o f

the ACM Symposium on the Principles o f Distributed Computing. (1962).

6 8 . E. Upfal, "A probabilistic relation between desireable and feasible models

for parallel computation", Proceedings o f the 16th Annual ACM Symposium

on Theory o f Computing, (Aprll-May 1984).

69. L. 0. Valiant and G. J. Brebner, "Universal schemes for parallel

communication", Proceedings o f the 13th Annual ACM Symposium on

Theory o f Computing, pp. 263-277 (1961).

- 147-

70. L G. Valiant, "A scheme (or fast parallel communication", SIAM Journal on

Cbmputmg 11pp. 350-361 (1962).

71. U. Vishkin, "A parallel-design space distributed implementation space

(PDDI) general purpose computer". Research Report RC9541, IBM Thomas

Watson Research Centre, Yorkown Heights (1962)

72. U. Vishkin. “ Implementation of simultaneous memory address accesses in

models that forbid It", Journal o f Algorithms 4(1) pp. 45-50 (Mar. 1963).

73. U. Vishkin. "Synchronous parallel computation - a survey". Technical

Report #71, Dept, of Computer Science. Courant Institute. New York

University (April 1963).

74. U. Vishkin and A- Wigderson. "Trade-offs between depth and width in parallel

computation". Proceedings o f the 24th Annual IEEE Symposium on

Foundations o f Computer Science, (November 1983).

75. A Waksman. "A permutation network", Journal o f the ACM 15(1) pp. 159-

163 (Jan. 1966).

76. Y. Wallach. "Alternating sequential/parallel processing". 9pringer~\Mrlag

Lecture Notes in Computer Science 127(1962).

