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Summary. Diarrhoeal disease is one of the leading causes of illness and death in young

children, a problem exacerbated by a lack of access to safe sanitation facilities. But the

effects of different types of sanitation facilities, and the relationship between their levels of

coverage in an area and disease risk remain uncertain. We specify a hierarchical model

that allows us to estimate the disease risk response surface across the multi-dimensional

space of the composition of sanitation facilities in an area. This permits a non-linear re-

lationship between coverage of improved sanitation, differential effects by sanitation type,

and unobserved differences between countries. The model is used to estimate the change

in risk associated with different types of sanitation facility, from which it is estimated that

only increases in the coverage of sewerage and private improved sanitation facilities will

achieve clinically meaningful reductions in the risk of adverse outcomes.

1. Introduction

The increasing pace of urbanisation over the last few decades has led to the substantial

growth of slums and informal settlements. It is estimated over one billion people will soon
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live in such areas world wide, with almost all of these in low and middle income countries

(LMICs) (Ezeh et al., 2016). Africa is predicted to become 56% urban by 2050 (UN-

HABITAT, 2014). As a result there has been an increase in the prevalence of health and

social issues associated with living in slum conditions (Ezeh et al., 2016). A lack of clean

water and effective sanitation has meant childhood diarrhoea is now one of the leading

causes of death in the under fives, and the single greatest cause in urban areas (Naghavi

et al., 2015). Goal 6 of the United Nations’s Sustainable Development Goals (SDGs) is to

“ensure availability and sustainable management of water and sanitation for all.” (UN,

2018). However, in many urban areas worldwide there has been a notable lack of progress

in achieving this goal. Of the 2.6 billion people living without ‘improved’ sanitation

worldwide, around 800 million are in urban areas, a figure set to rise substantially

(WHO/UNICEF, 2014).

The ‘Gold standard’ of sanitation facilities is often considered the private flush toilet

connected to a sewer system that transports waste to treatment plants or other means of

disposal. However, these systems have a relatively high capital cost to install, and require

a constant supply of water and maintenance to remain effective. These barriers can be

prohibitive in lower income countries. Alternative solutions often involve improvements

to the basic latrine by, for example: adding ventilation to reduce the presence of flies;

improving the slab to facilitate use, enable flushing, and cover the pit; or by improving

the pit to allow for composting or leaching. And while latrines with improvements linked

to sewers, septic pits, and tankers, are collectively referred to as ‘improved’ sanitation

(WHO/UNICEF, 2014), they represent a broad range of interventions each likely have a

different level of effectiveness in reducing adverse endpoints. The interventions are even

ranked in a ‘ladder’ by international agencies (WHO/UNICEF, 2014).

Owing to the transmissible nature of the diseases and resulting disease dynamics, the

type of sanitation facility an individual uses is perhaps less important than the type of

facility used by the community around them (Geruso and Spears, 2014). Transmissible

diseases often exhibit non-linear relationships with the level of coverage of preventative

measures. Despite this, the majority of previous empirical work in the area has exam-

ined the effect of dichotomous ‘treatments’ either at the household level - whether the
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household has access to ‘improved’ sanitation - or at the cluster level - whether the level

of ‘improved’ sanitation coverage is at a certain level, which is often case for cluster

randomised controlled trials (cRCT).

Two comprehensive systematic reviews have been published on the topic, Clasen et al.

(2010) surveyed only trials, including 13 cRCTs, while the more recent Wolf et al. (2018)

also included observational studies (this was an update of their earlier review Wolf et al.

(2014)), and compared 22 results from 19 studies. Cluster trials in this area typically

investigate an intervention of providing a high level of coverage of improved latrines

(including ventilated latrines, slab latrines, latrines connected to sewers, etc.) compared

to the status quo ‘standard’ sanitation, which could be anywhere between 0 and 100%

improved latrines (e.g. Pickering et al. (2015); Luby et al. (2018); Clasen et al. (2014)),

depending on the context. Statistical inference is then on the basis of either unadjusted

or adjusted comparisons, of treatment and control clusters or households, of risk ratios

for diarrhoea typically among young children.

Methods of analysis used for observational data are similarly limited. Most studies

are retrospective analyses of household survey data, particularly single-country Demo-

graphic and Health Surveys (DHS). Fan and Mahal (2011); Kumar and Vollmer (2013);

Begum et al. (2011a); and Capuno et al. (2015) used DHS (or similar household level sur-

vey) data and propensity score matching methods to compare households with ‘improved

sanitation’ (typically improved latrines) to households with unimproved sanitation. Ko-

marulzaman et al. (2017) similarly used an adjusted logistic regression approach and

Godfrey et al. (2014) use a difference-in-differences method to estimate the effect of im-

proved sanitation on diarrhoea risk at the household level. Aziz et al. (1990); Garrett

et al. (2008); Moraes et al. (2003); and Messou et al. (1997) conducted non-experimental

intervention studies and, with the exception of Moraes et al. (2003), who use longitu-

dinal data and reasonably comprehensive adjustment, all evaluate the effect of their

interventions with crude before-after analyses of a diarrhoea risk ratio. As far as we are

aware, most if not all studies are conducted at household or similar level, and compare

individual sanitation access with no assessment of the effect of overall community cov-

erage, except Kumar and Vollmer (2013), who use socio-economic status as a proxy for
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community coverage. Similarly, different types of sanitation are not compared directly

in multi-intervention studies and the privacy or level of sharing is not assessed. In a now

retracted study, due to data coding errors, Hunter and Prüss-Ustün (2016) did look at

the effect of coverage of improved sanitation at the country level using a semi-parametric

fixed-effects modelling approach.

There are two aspects of sanitation that remain understudied. The effect of the type

of facility in the community, despite differences in effectiveness by type being assumed by

agencies such as the WHO, and their coverage in the community. At the community level

there is an overall composition of sanitation facilities: the proportions of people using

each of a number of different types of facility add up to one and thus form a simplex.

Analysis of compositional data, either as outcome or independent variable in a model,

has a long history in other fields, particularly geosciences. Pearson (1896) was one of

the first to point out the difficulty in analysing data of this type due to the ‘spurious

correlation’ created due to the necessary change in all elements of compositional data

when any one element changes. Appropriate methods for compositional data analysis

have therefore been developed over time. Examples in public health are relatively rare,

but are finding increasing application, for example Trinh et al. (2018) explore the role

of socio-economic factors on the macronutrient composition of diet in Vietnam. In this

article, we propose to try to address these issues to explore the effectiveness of the

composition of sanitation facilities in urban communities in Sub-Saharan Africa.

2. Data description

The sample used in this study comprises all urban clusters in Sub-Saharan Africa from

the DHS for which household, individual, and location data could be matched and

which surveyed both sanitation type and whether the sanitation was shared. The DHS

program conducts or supports nationally representative surveys across the world. The

surveys cover a broad range of demographic, health, and socioeconomic data. The

DHS comprises surveys conducted with households located in clusters, selected through

a probability sampling approach using the most recent national census as a sampling

frame. The specific DHS surveys included are listed in Table A in the Supplementary
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Information. In total, data from 7,209 clusters from 29 countries between 1992 and 2015

were extracted. With two exceptions, surveys prior to 2000 did not ask about sanitation

sharing.

2.1. Outcome variables

Three outcome variables are used that relate to adverse health outcomes likely to be

affected by poor sanitation. In the DHS data on these variables are only captured

for children under the age of five. The outcome variables are: at least one episode of

diarrhoea in the last two weeks, at least one episode of bloody diarrhoea (dysentery)

in the last two weeks, and childhood stunting, which is defined as being below the fifth

percentile of height for age. For each cluster and year we derive the number of children

with each outcome and total number of eligible children.

2.2. Sanitation variables

From the DHS we extracted the type of sanitation facility used by each household and

whether or not it was shared with other households. Typically, empirical studies of

sanitation facilities compare ‘improved’ to ‘unimproved’ facilities. However, we are con-

cerned here also with the type of sanitation facility and how it is used since there may be

different levels of effectiveness associated with each type or use. Aggregated to the clus-

ter level, the types of facilities used by the household are a composition, the analysis of

which we discuss in Section 3.1. We consider two ways of categorising the sanitation facil-

ities. Firstly, we define three types of sanitation facility: unimproved, improved latrines,

and sewers (the ‘unimproved-latrine-sewer’ composition). ‘Sewer’ facilities include any

response where the household indicates the use of a flush toilet or piped sewerage sys-

tem. ‘Improved latrines’ include latrines installed with a slab and ventilated improved

latrines. ‘Unimproved’ generally includes all other facilities, in particular outdoor defe-

cation and pit latrines. Secondly, we break the composition into: unimproved, shared

improved facilities, and private improved facilities (the ‘unimproved-shared-private’ com-

position). Sanitation facilities are often not considered fully safe or improved if they are

shared between many households (WHO/UNICEF, 2018). ‘Improved’ includes sewers
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and improved latrines as defined above.

2.3. Other variables

Explanatory variables were extracted from the DHS on the basis of previous studies that

have examined potential correlates with childhood diarrhoea and stunting (Carlton et al.,

2016; Bhavnani et al., 2014; Genser et al., 2006; Walker et al., 2007). For each household

we extracted the number of children in the household, the average age of the children

in the household, a binary variable indicating whether the mother had completed at

least primary education, and a binary variable indicating whether the household was in

the top two wealth quintiles. We aggregated these data to the cluster level by taking

arithmetic means.

On the basis of the location of the cluster we also determined the average rainfall and

temperature for the month in which the survey took place. NASA provide model and

observation based estimates on very fine spatial (3 arc-second, ∼5km) and temporal (3-

hourly or monthly) grids from the Global Land Data Assimilation System (GLDAS). We

extracted data on the period 1990 to 2015 to determine average rainfall and temperature.

These climate variables are intended to control for some of the seasonal and geospatial

variation in weather and climate that has previously been shown to be correlated with

risk of diarrhoea in children (Bhavnani et al., 2014; Carlton et al., 2016). To preserve

anonymity the DHS randomly displaces the location of urban clusters by up to 2km.

Given the resolution of the spatial grid on which the climate data are provided, we

do not envisage this to lead to any erroneous inferences. However, some clusters are

randomly displaced into bodies of water for which climate data are not provided - for

these clusters we assign average rainfall and temperature from the nearest land-based

cluster location.

Access to ‘improved’ water sources may also have an effect on the outcomes we are

considering and be correlated with the availability of different types of sanitation. For

example, for sewage systems to be effective there is a minimum amount of water required

to flow through the system, thus necessitating piped water. However, issues about what

constitutes ‘improved’ water are at least as complicated as for sanitation. While piped
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water is generally considered the highest standard, there are many instances of broken

or damaged pipes leading to unsafe water. And there is a multitude of different water

facilities, including tubewells, boreholes, standpipes, and pipes. Water is not the focus

of this study, and so we define a single variable indicating the proportion of household

with access to what is typically described as ‘improved’ water.

3. Statistical Methods

The analysis is carried out in a hierarchical Bayesian framework at the cluster level. The

aim of this study is to estimate the effect of different levels of coverage of different types

of sanitation, however this is complicated by a number of issues. At an aggregate level

the mix of sanitation facilities in an community forms a composition, which cannot be

treated as a simple multivariate object despite being intrinsically multivariate since the

effect of any one part of the composition cannot be interpreted in the absence of the

other components. The functional form of the response surface across the simplex is also

unknown and may well be linear with respect to any of the components.

3.1. Compositional data

An observation x of a D-part compositional variable X consists of a D-dimensional

vector belonging to the simplex,

SD =

{
(x1, ..., xd, ..., xD) : xd > 0, d = 1, ..., D;

D∑
d=1

xd = c

}

where c is positive constant. At issue with the analysis of compositional data is that the

components only carry relative information so that no one component can be interpreted

in the absence of any other. This hinders interpretation of results from multivariate

regression approaches. However, given that the components provide relative information,

Aitchison (1982) proposed log-ratio transformations of compositions, which mapped the

simplex to a real space. For example, a centered log-ratio transformation is often used

in a regression framework as each coefficient can be related to an original component.

However, as Bruno et al. (2016) argue the centered log-ratio is inappropriate in non-

parametric settings as it generates a singular design matrix that requires a sum-to-zero
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constraint for model estimation. So following Bruno et al. (2016) we adopt an isometric

log-ratio (ilr) transformation, which defines an isometry between SD and RD−1. The ilr

transformed variable is w = ilr(x) = [w1, w2, ..., wD−1] where

wi =
1√

i(i+ 1)
log

(∏i
j=1 xj

(xi + 1)i

)
.

Since ilr preserves distances between the components of the composition, it can be

used to estimate the relationship between the composition and the response variable

of interest. As the transformation requires all components of the composition to be in

(0, 1), i.e. strictly greater than zero and less than one, we set zero-components to 0.65

times the smallest non-zero value for the component, which we consider to be a lower

detectable limit, as suggested by Aitchison (1982). The same amount was subtracted

from components equal to one. In this analysis we consider a three dimensional simplex

and the ilr transformation therefore defines a two dimensional variable.

3.2. Model Specification

The analysis is conducted at the cluster level to account for the aggregate effects of

sanitation compositions on infectious disease. For each cluster j = 1, ..., J at time

t = 1, ..., T in country k = 1, ...,K we have the number of cases of the outcome of

interest (diarrhoea, dysentery, or stunting) yjkt ∈ N and the number of children under

five njkt ∈ N. We specify a binomial model with logisitic link function:

yjkt ∼ Binomial(njkt, pjkt)

pjkt = Λ
[
z′1jktγ + αj + τt + g(xjkt)

] (1)

where z1jkt is a p× 1 vector of mean-centered standardised explanatory covariates (see

Section 2.3) including an intercept term, γ is a p×1 vector parameters, αj ∼ N(0, σ2
α) is

a country-specific random effect, τt are year ‘fixed’ effects. Time dummies were specified

into five year periods (1991-5, 1996-2000, 2001-5, 2006-10, and 2010-16) given the high

correlation between individual years and countries, and the low and zero outcome counts

for some years for rare outcomes, such as dysentery.

There are a number of choices for the specification of the function g(.):
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(a) Dichotomous regressor : A dichotomous ‘treatment’ variable defined on the basis

of the level of ‘improved’ sanitation, g(xjkt) = ∆Tjkt, where Tjkt is equal to one

if there is greater than, say, 50% coverage of any improved sanitation and zero

otherwise, and ∆ is a parameter to be estimated.

(b) Linear ilr transformed components: ilr components specified as additive, linear

effects: g(xjkt) = ∆1w1,jkt+∆2w2,jkt, where ∆1,∆2 are parameters to be estimated.

(c) Univariate smooth functions: Additive non-parametric smooth functions of each

of the ilr -transformed variables: g(xjkt) = h1(w1,jkt) + h2(w2,jkt). The univariate

functions are estimated using a low rank thin plate spline, which are a low rank

approximation to a penalised spline with penalty defined by a solution to the thin

plate smoothing problem (Wood, 2003).

(d) Bivariate smooth function: a bivariate smooth surface: g(xjkt) = h(wjkt). The

bivariate function is determined by the tensor product of the univariate thin plate

smooth functions (Wood, 2003).

The choice among possible specifications for g(.) is a trade-off. The dichotomous

regressor approach, which reflects the method of many previous studies, may introduce

bias and show poor predictive performance. However, while the bivariate smooth spec-

ification imposes the least structure, it may add significant computational complexity

to the model without improving model fit or predictive performance. To select among

the specifications we conduct a short simulation study and a series of model checks in

Section 4. For comparison we also estimate ‘unadjusted’ models (i.e. γ = 0).

3.3. Prior distributions

Weakly informative priors are specified for the model parameters. Following Gelman

et al. (2008) continuous covariates are rescaled to have zero mean and 0.5 standard devi-

ation. Unlike ‘uninformative priors’ which specify an equal probability mass on extreme

values of parameters and values near zero, ‘weakly informative’ priors are intended to

provide a degree of regularization and stabilize computation while providing little in-

formation about the location of the parameter. Coefficients for covariates are given

standard Cauchy priors. This implies a 95% prior credible interval for each parameter of
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Fig. 1. Ternary diagram showing composition values for clusters in Benin.

[-12.7, 12.7] on the logit scale, equivalent to odds ratios in [6× 10−6, 1.6× 105], which is

considered highly plausible. The low rank thin plate spline functions are specified as per

(Wood, 2003); the parameters for each basis function are assigned hierarchical, normally

distributed coefficients with unknown standard deviation (Wood, 2017). The priors for

the standard deviation of these coefficients and the other hierarchical parameters are

assigned half-t4 priors (Gelman, 2006), which imply a prior 95% CrI of [0,3.5]. Less

informative priors were considered, including half-Cauchy(0,25) priors, however, these

distributions have relatively large tails and it was considered that the scale parameter

was not likely to be large enough to justify such a prior.

Estimation was conducted using Stan implemented through the rstan package in R

(Carpenter et al., 2017). Stan is a probabilistic programming language that provides

Bayesian inference using Hamiltonian Monte Carlo (Carpenter et al., 2017; Betancourt,

2018). We used four chains for a minimum of 2,000 iterations each. Convergence of the

chains was assessed graphically through trace plots and using the R-hat statistic. Code

is available in the Supplementary Information.

3.4. Plotting results

Data on a three-dimensional simplex can be plotted on a ‘ternary diagram.’ Figure 1

plots the composition values for all clusters in Benin, as an illustration. Three points,

A, B, and C, are marked. For each point the value of the three components of the

composition can be found by tracing along the relevant colour-coded lines. Point A
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indicates a point with 100% unimproved sanitation, Point B indicates a point with 30%

unimproved, 55% sewers, and 15% improved latrines, and Point C indicates a point

with 25% unimproved, 25% sewers, and 50% improved latrines. Ternary diagrams were

plotted using the R package ggtern.

4. Simulation and Model Checking

The data generating mechanism for the simulated data sets is based on that posited in

the main study. In particular, we simulate data uniformly across the three-dimensional

simplex x = {(x1, x2, x3) : xd > 0, d = 1, 2, 3;
∑3

d=1 xd = 1}. We also simulate two

normally distributed covariates z = [z1, z2] from N(0, 0.52) and set the hierarchical effect

standard deviation to τ = 0.01. Parameters β1 = [β1,1, β1,2] were generated randomly

from N(0, 0.5), and an intercept β0 was chosen to give an approximate mean outcome

probability of 20%. Data were then simulated for cluster j = 1, ..., J clustered in country

k = 1, ...K:

αj |τ ∼ N(0, τ)

pjk|xjk, zjk, αk, β = Λ(β0 + β1 × zjk + f(xjk) + αk)

yjk|pjk, njk ∼ Bin(njk, pjk)

(2)

the number of individuals in each cluster was assumed to be uniformly distributed be-

tween 20 and 50. We considered two different data generating functions f :

(a) Planar surface: f(x) = λ1x1 + λ2x2 + λ3x3.

(b) Parabolic surface: f(x) = λ1x
2
1 + λ2x

2
2 + λ3x

2
3.

For each simulation we generated data of sample sizes 500, 1,000, and 5,000, each

clustered equally into 50 countries. The parameters λ1, λ2, λ3 were randomly generated

for each function from a N(0, 0.752) distribution, which would give an average most

extreme difference of around 20 percentage points on the simplex. For each simulated

data set we estimated the model described above with each of the specifications of g(.)

described in Section 3.2. Thus, for four model specifications, three sample sizes, and

two different data generating functions, for which we simulated 500 data sets each, there

were 12,000 models estimated. Given the time required to estimate each model using
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MCMC (in the order of hours), mean field variational inference estimation was used in

the simulations (Blei et al., 2017).

4.1. Posterior predictive model checks

To assess the models we considered their predictive performance for values across the

composition simplex. Given observed (or simulated) data Y and set of model parameters

Θ the posterior predictive distribution of new data given an assumed model M is

pŶ (Ŷ |Y,M) =

∫
Θ
pŶ (Ŷ |Θ, Y,M)pΘ(Θ|Y,M)dΘ (3)

For each model and replication r with simulated data set Y (r) we estimated the posterior

predictive mean for each point on a regularly-spaced lattice, xl, l = 1, ..., L, across the

simplex at intervals of 0.02:

p̂Ŷ |lr = pŶ (Ŷ |Y (r),M,x = xl, z1,jk = 0) (4)

The median absolute deviation (MAD) for each replication r is then:

MADr = medianl=1,...,L(|p̂Ŷ |lr − f(xl)|)

We also conduct a series of posterior predictive model checks, using posterior predic-

tive p-values. For a test statistic of the data T (Y ) the posterior predictive p-value is

defined as:

pc(Y ) = pŶ (T (Ŷ ) ≥ T (Y )|Y,M) (5)

We estimate the posterior predictive p-value for each simulated data set. The distribu-

tion of the p-value should be concentrated around 0.5 if the models are a reasonable fit to

the data (Gelman, 2013). Values close to zero or one indicate the actual data fall at the

extremes of data the model would produce, indicating poor model fit. We consider the

mean and standard deviation of the posterior predictive distribution of the probability

of experiencing the outcome. We conduct a graphical check of the p-value distributions

for the simulated data.
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Fig. 2. Median absolute deviation of posterior predictive mean across the simplex

4.2. Simulation results

As Figure 2 shows, the univariate smooths model demonstrates the best performance

with the simulated data with a mean MAD at a sample size of 5,000 in the parabolic case

(λ = [−0.12,−0.50,−0.42]) of 0.008 and 0.013 in the planar case (λ = [−0.35, 0.32,−1.89]).

All other specifications had higher MADs. Unexpectedly the bivariate smooth specifica-

tion is the worst performing of all models, with performance getting worse with larger

sample size. The MADs are larger in the planar case given the larger magnitude of the

randomly generated λ parameters. The p-value distributions also reflect this finding

with the univariate smooth specification p-value densities consistently demonstrating a

concentration around 0.5 whereas the other specifications’ posterior predictive distri-

butions tending to over- or underestimate the standard deviation (Figure 3) and mean

(Figure 7, Supplementary Information).

4.3. Model selection and checking

On the basis of the above simulation results the model specification with univariate

smooth terms of the individual ilr components was selected as the primary specification.

To examine whether the primary model specification provides a reliable fit to the actual

data we conduct a graphical posterior predictive model check of the density of outcome

probabilities with the actual density in the data and examine posterior predictive p-

values for the mean and standard deviation of the outcome probabilities.

The models showed good fit for dysentery and stunting outcomes, but relatively
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Fig. 3. Density of posterior predictive p-values for standard deviation with planar function data

generating process

Fig. 4. Density of diarrhoea probability from draws from the posterior predictive distribution (red

lines) and actual data (black line) from main model specification (left) and with added overdis-

persion parameter (right).
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poor fit for diarrhoea. As Figure 4 (left) shows for the diarrhoea outcome, the originally

specified model appears to underestimate the variation in outcomes. This is supported by

the p-values, which do not suggest a poor fit for the mean (p=0.70), but underestimation

of the standard deviation (p<0.01). Similar potential overdispersion was observed for

the other outcomes as well. To account for this overdispersion we re-estimate the model

with the following specification, which includes an observation-level random effect:

pjkt = Λ
[
z′1jktγ + αj + τt + g1(w1,jkt) + g2(w2,jkt) + ejkt

]
ejkt ∼ N(0, σ2

e)
(6)

Figure 4 (right) shows that this appears to provide a much better fit to the data, also

reflected by the p-values for the mean (p=0.68) and standard deviation (p=0.85). How-

ever, examining the Widely Applicable Information Criterion (WAIC)–an estimate of

pointwise out-of-sample predictive performance with smaller values indicating better

performance–reveals the overdispersed model to have worse out-of-sample performance.

The WAIC values for the original and overdispersed models are 27,426 and 53,043, re-

spectively, for the diarrhoea outcome, with similar differences estimated for the other

outcomes. The WAIC is equal to (-2 times) the expected log pointwise density (ELPD)

for new observations less a penalty term for the effective number of parameters. While

the ELPD was greater in the overdispersed model (-26,521 versus -13,713), the overdis-

persed model had a far higher penalty term (15,606 versus 393). This suggests the

overdispersed model is overfitting, which accounts for its in-sample performance. A

beta-binomial model was also investigated but no reasonable convergence of the HMC

chains could be achieved. As a result we adopt the non-overdispersed model for all

outcomes.

5. Results

5.1. Descriptive statistics

Overall 7,209 clusters from 29 countries were included in the sample, urban clusters in

the DHS comprise an average of 24 households. Table 1 provides descriptive statistics

of the key outcome and explanatory variables by general composition of sanitation facil-

ity. The majority of clusters, 51.4%, in the sample have a majority of households using
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unimproved sanitation facilities. The general composition of sanitation facilities shows

little relationship with household characteristics, except that those clusters with a ma-

jority of households using a sewage system of some type or private improved facilities are

generally better educated and wealthier than other clusters (Table 5.1). For example,

84% of mothers have secondary education or higher in majority sewage system clusters

compared to 51% in majority unimproved clusters and 53% in majority improved latrine

clusters.

Mean proportions of children with diarrhoea and dysentery are lower in clusters with

majority sewage systems (9.8% and 0.6%, respectively) than in majority improved latrine

(10.8% and 1.0%) and unimproved sanitation (10.9% and 1.1%) clusters. Dysentery

point prevalence in clusters with majority sewers (0.6%) or private improved sanitation

(0.6%) is less than half that in clusters with unimproved sanitation (1.4%). The crude

mean differences in the outcomes between clusters with almost exclusive coverage of each

type of sanitation are reported in Table 2.

5.2. Main results

For the unimproved-latrine-sewer composition, Figure 5 shows the estimated response

functions for the adjusted and unadjusted models. Figure 6 shows the same for the

unimproved-shared-private composition. Table 3 reports estimated parameters from the

model with the unimproved-latrine-sewer composition treatment variables. Results from

the models with the unimproved-shared-private composition variables are qualitatively

highly similar as would be expected (Table A, Supplementary Information).

For both the umimproved-latrine-sewer and unimproved-shared-private compositions,

evidence of reduced risk is only apparent for high (>60%) levels of coverage of sewer

systems and private sanitation. The unadjusted models show more variation across

different compositions of sanitation than the adjusted models, suggesting much of the

difference is accounted for by differences in observed covariates between survey clusters.

This is also reflected by the estimated parameter estimates in Table 3.

Table 4 reports the estimated ‘treatment effects’ of altering the coverage of sanita-

tion. High levels of coverage of ‘improved latrines’ compared to ‘unimproved’ has little
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Table 1. Summary statistics of the study sample of urban clusters by majority type of sanitation

facility. Values are mean (95% CrI) unless stated otherwise.

Variable Unimproved >

50%

Improved

latrine > 50%

Sewer > 50% Private im-

proved > 50%

Shared im-

proved > 50%

N (%) 3,708 (51.4) 1,457 (20.2) 1,410 (19.6) 1,105 (15.3) 1,515 (21.0)

Diarrhoea (%) 10.9 (0.0, 33.3) 10.8 (0.0, 38.1) 9.8 (0.0, 39.8) 9.1 (0.0, 33.3) 11.0 (0.0, 40.0)

Dysentery (%) 1.1 (0.0, 10.0) 1.0 (0.0, 10.0) 0.6 (0.0, 7.7) 0.6 (0.0, 7.7) 0.9 (0.0, 10.0)

Stunting (%) 28.9 (0.0, 64.3) 29.2 (0.0, 68.7) 29.9 (0.0, 71.4) 28.4 (0.0, 66.7) 31.1 (0.0, 75.0)

Children per

household

1.3 (1.0, 1.8) 1.3 (1.0, 1.8) 1.3 (1.0, 1.7) 1.3 (1.0, 1.8) 1.3 (1.0, 1.7)

Mean child age

(months)

19.2 (2.8, 34.2) 20.5 (4.7, 36.4) 20.2 (1.6, 36.3) 21.2 (2.4, 36.3) 20.4 (4.0, 37.5)

Secondary edu-

cation (%)

51.2 (0.0, 100.0) 53.3 (0.0, 100.0) 83.6 (20.0,

100.0)

76.1 (10.0,

100.0)

66.0 (0.0, 100.0)

Top wealth

quintiles (%)

64.7 (0.0, 100.0) 78.7 (0.0, 100.0) 93.7 (13.5,

100.0)

87.8 (0.0, 100.0) 85.3 (0.0, 100.0)

Rainfall

(kgm−2s−1)

0.9 (0.1, 2.2) 1.0 (0.0, 2.4) 0.9 (0.0, 2.7) 0.8 (0.0, 2.4) 1.0 (0.0, 2.6)

Temperature

(C)

23.6 (15.0, 28.9) 24.3 (16.5, 28.3) 23.6 (18.0, 26.7) 22.6 (17.9, 28.0) 24.0 (16.5, 27.7)

Improved water

(%)

81.3 (8.3, 100.0) 85.9 (21.2,

100.0)

92.5 (44.1,

100.0)

90.2 (33.9,

100.0)

88.6 (29.6,

100.0)

1991 - 1995 137 (1.9) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

1996 - 2000 95 (1.3) 0 (0.0) 15 (0.2) 12 (0.1) 1 (0.0)

2001 - 2005 352 (4.9) 444 (6.2) 99 (1.4) 152 (2.1) 359 (5.0)

2006 - 2010 803 (11.1) 497 (6.9) 305 (4.2) 270 (3.7) 440 (6.1)

2010 - 2016 2,321 (32.2) 516 (7.2) 991 (13.7) 671 (9.3) 715 (9.9)
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Table 2. Crude mean differences. A: unimproved sanitation > 95%, B: improved latrines > 95%,

C: sewers > 95%, D: shared improved > 95%, E: private improved > 95%. Effects are reported as

percentage point changes.

Sanitation Diarrhoea Dysentery Stunting

B-A 0.9 -0.5 -2.3

C-A -0.9 -0.6 2.8

C-B -1.9 0.0 5.0

D-A 0.9 -0.5 4.2

E-A -3.3 -0.8 -7.3

E-D -4.2 -0.3 -3.1

Table 3. Parameter estimates and model diagnostics

Parameter Diarrhoea Dysentery Stunting

(Intercept) -0.67 (-1.02, -0.33) -8.79 (-10.47, -7.26) -0.64 (-0.92, -0.37)

N. children -0.65 (-0.74, -0.55) -0.61 (-0.89, -0.32) -0.65 (-0.71, -0.58)

Mean age -0.01 (-0.01, -0.01) -0.02 (-0.03, -0.01) 0.05 (0.05, 0.05)

Mother education -0.42 (-0.51, -0.32) -0.62 (-0.90, -0.35) -0.09 (-0.16, -0.02)

Top two wealth -0.06 (-0.14, 0.01) 0.07 (-0.16, 0.29) -0.06 (-0.11, 0.01)

Rainfall -0.08 (-0.13, -0.03) 0.03 (-0.09, 0.15) -0.03 (-0.06, 0.01)

Temperature 0.01 (0.00, 0.02) 0.02 (-0.01, 0.05) -0.01 (-0.02, 0.00)

Imp. water 0.04 (-0.04, 0.13) -0.05 (-0.29, 0.19) -0.02 (-0.08, 0.03)

1991 - 1995 Ref. Ref. Ref.

1996 - 2000 -0.68 (-0.91, -0.45) -0.82 (-5.07, 2.73) 0.50 (0.34, 0.65)

2001 - 2005 -0.24 (-0.41, -0.08) 3.71 (2.51, 5.11) 0.16 (0.04, 0.27)

2006 - 2010 -0.38 (-0.56, -0.18) 5.28 (4.03, 6.78) -0.04 (-0.17, 0.09)

2010 - 2016 -0.36 (-0.55, -0.18) 5.23 (4.00, 6.70) -0.05 (-0.17, 0.05)

σα 0.12 (0.07, 0.21) 0.38 (0.21, 0.69) 0.14 (0.08, 0.23)

WAIC 27,426 7,904 30,984

pc, mean 0.71 0.59 0.14

pc, SD <0.01 0.26 0.24
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Fig. 5. Estimated response surface for risk of stunting for an unimproved, improved latrine, and

sewer composition for adjusted (top row) and unadjusted (bottom row) models

Fig. 6. Estimated response surface for risk of stunting for an unimproved, shared, and private

improved sanitation composition for adjusted (top row) and unadjusted (bottom row) models
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Table 4. Treatment effect estimates, posterior mean (95% CrI). A: unimproved sanitation > 95%,

B: improved latrines > 95%, C: sewers > 95%, D: shared improved > 95%, E: private improved

> 95%. Effects are reported as percentage point changes.

Sanitation Diarrhoea Dysentery Stunting

A→B 0.5 (-2.7, 4.2) -0.2 (-2.2, 1.1) 0.8 (-3.6, 5.6)

A→C -0.6 (-4.1, 2.5) -0.7 (-3.8, 0.3) -2.2 (-7.4, 1.7)

B→C -1.1 (-5.0, 1.9) -0.5 (-3.0, 0.5) -3.0 (-8.6, 1.2)

A→D 1.8 (-1.4, 6.4) -0.2 (-2.2, 1.1) 0.8 (-3.6, 5.7)

A→E -1.9 (-6.0, 1.0) -0.5 (-3.3, 0.5) -2.4 (-7.7, 1.6)

D→E -3.6 (-9.4, 0.0) -0.3 (-2.4, 0.8) -3.2 (-9.1, 1.1)

association with a reduction in risk of any outcome, whereas high levels of coverage of

sewerage systems is associated with reductions in all outcomes. High coverage of sewage

systems is associated with a change of -0.7 percentage points (pp) (95% CrI: -3.8, 0.3)

for dysentery, compared to unimproved sanitation against a mean value of 1.0% (0.0%,

9.7%) across all clusters; a -2.2 pp (-7.4, 1.7) for stunting, which has a mean value of

29.1% (0.0%, 66.7%); and, -0.6 pp (-4.1, 2.5) for diarrhoea when compared to improved

latrines against a sample mean of 10.7% (0.0%, 35.7%). Similar effect sizes are esti-

mated for clusters with high levels of private santitation compared to unimproved or

shared sanitation.

5.3. Temporal Confounding

While there are dummies in the model for five year periods, there may still be a degree of

temporal confounding given the rapidly changing nature of sanitation policy over the last

two decades, and scale of other water, sanitation, and hygeine interventions. To explore

whether this affects our inferences, we re-estimate the models using data from only the

period 2010 to 2015 (inclusive). These data include 4,828 clusters from 26 countries.

The mean proportions of children reporting diarrhoea, dysentery, and stunting in this

sample were 10.9%, 1.2%, and 27.2%, respectively.

The posterior predicted mean function across the simplex was qualitatively similar

to those using the complete data set. Treatment effects from these models are reported
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Table 5. Treatment effect estimates with 2010-15 data only, posterior mean (95% CrI). A: unim-

proved sanitation > 95%, B: improved latrines > 95%, C: sewers > 95%, D: shared improved

> 95%, E: private improved > 95%. Effects are reported as percentage point changes.

Sanitation Diarrhoea Dysentery Stunting

A→B 0.0 (-3.9, 4.3) -0.1 (-1.7, 1.4) 0.8 (-4.0, 7.1)

A→C -2.1 (-7.9, 2.9) -0.5 (-3.6, 1.2) -2.9 (-10.9, 3.8)

B→C -2.1 (-8.8, 2.9) -0.5 (-3.5, 1.2) -3.8 (-13.2, 3.7)

A→D -0.1 (-4.0, 3.5) -0.2 (-2.2, 1.3) -0.9 (-7.0, 4.0)

A→E -2.2 (-8.3, 2.9) -0.6 (-3.9, 1.2) -2.9 (-10.9, 3.8)

D→E -2.1 (-8.3, 2.9) -0.4 (-2.8, 1.2) -2.1 (-9.6, 3.8)

in Table 5, which show a similar pattern to the complete data set, albeit with greater

estimated improvement associated with high sewerage coverage.

5.4. Dichotomous regressor specification

We compare the results above to the more common specification of a dichotomous re-

gressor for ‘improved’ sanitation. The treatment variable was specified as equal to one if

the cluster had greater than 50% improved sanitation and zero otherwise. These results

are reported in Table 6. They suggest that increasing the level of improved sanitation

to over 50% is associated with a reduction in the risk of dysentery and stunting, but not

diarrhoea. Conceptually, this specification estimates a weighted average effect across the

different levels of sanitation. The estimated treatment effects suggest little benefit of

improved sanitation. However, on the basis of the WAIC these models appear to have

moderately better predicted out-of-sample performance.

6. Discussion

In this article we have examined the effects of different types of sanitation on the risk

of three key childhood outcomes thought to be sensitive to the effects of improved san-

itation. Generally, we have shown that high levels of coverage of private, improved

sanitation facilities are associated with the lowest risk of all three outcomes net of the



22 Richard J. Lilford

Table 6. Treatment effect estimates from dichotomous regressor specification and model diagnos-

tics. A: unimproved sanitation > 50%, B: improved sanitation ≥ 50% .

Sanitation Diarrhoea Dysentery Stunting

A→B 0.0 (-3.5, 3.2) -0.3 (-3.0, 0.7) -0.6 (-5.1, 3.7)

σα 0.10 (0.06, 0.17) 0.35 (0.19, 0.60) 0.12 (0.07, 0.20)

WAIC 23,959 6,952 28,964

pc, mean 0.85 0.65 0.15

pc, SD <0.01 0.28 0.11

effects of socio-economic characteristics, weather, or country and cluster level unobserved

heterogeneity. In relative terms, private improved sanitation was associated with an ap-

proximate 40% drop in diarrhoea incidence, 30% in dysentery, and 10% in stunting,

compared to unimproved sanitation. However, there was a fair degree of uncertainty

about effect sizes. Sewers and improved latrines were lower risk than unimproved facili-

ties, but the differences in risk were smaller in magnitude that those between unimproved

and private, improved facilities. This provides some evidence to support the scales of im-

provement used by organisations such as the WHO/UNICEF Joint Monitoring Program

(WHO/UNICEF, 2018).

Previous studies of sanitation interventions generally point to sanitation improve-

ments as being protective against diarrhoeal disease (Wolf et al., 2018; Fewtrell et al.,

2005; Clasen et al., 2010). Observed pooled effect sizes can be compared to those pre-

sented here. For example, Wolf et al. (2018) reports a pooled relative risk (95% CI) for

diarrhoea of unimproved sanitation versus sewer connections of 0.60 (0.39, 0.92), whereas

this study suggests an equivalent relative risk of approximately 0.8. When unimproved

is compared to private improved though, the relative risk is approximately 0.6 for diar-

rhoea risk. Some of the heterogeneity between studies included in that review may be

then explained by the sharing of sanitation facilities or differing socio-economic status

between included households. Certainly, there have been a small number of previous

studies to have used DHS or similar household survey data to address the question of

sanitation effectiveness (e.g. Begum et al. (2011b); Capuno et al. (2015); Fan and Ma-
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hal (2011); Kumar and Vollmer (2013)). A strength of this study is that it compares

different types of sanitation intervention, different levels of coverage of those facilities,

allows for a non-linear relationship with health outcomes, and pools data from multiple

countries. On the basis of these results, one may suspect that small effects observed in

some studies could be a result of either insufficient coverage of improved sanitation, or

perhaps more importantly that the sanitation was shared rather than private, and vice

versa.

The etiology of childhood diarrhoeal disease is complex and multi-faceted. While

sanitation interventions play a key role in its prevention, type and coverage of sanitation

does not appear to explain much of the variation in outcomes. The estimated response

surfaces across the sanitation simplex presented in this article reveal variation by type

and coverage of intervention masked in simpler models like the ‘dichotomous regressor’

specification. Nevertheless, the dichotomous specification had better predicted out-of-

sample performance according to the WAIC, which penalises models for additional pa-

rameters. The models for diarrhoea showed poor overall fit to the data, under-predicting

the variance in outcomes.

A wealth of previous evidence has shown a relationship between socio-economic sta-

tus and disease risk. Better educated or wealthier areas have longer life expectancies

and suffer less ill health. We have endeavoured to control for these differences, which are

likely to be correlated with access to type of sanitation facility. In particular, we took

account of maternal education, wealth, allowed for unobserved heterogeneity between

countries, and examined heterogeneous effects by education and wealth levels. Never-

theless, our results may well not represent the causal effect. The causes and correlates

of infectious disease are numerous and complex, and the statistical adjustment is not

perfect. However, these analyses, as we have argued, represent an improvement on pre-

vious observational work, conform to our a priori expectations of effectiveness, and are

similar to previous studies where they are comparable.

There may be further weaknesses with the analysis resulting from the nature of the

data. Diarrhoea and dysentery are both self-reported outcomes and are subject to recall

bias (Alam et al., 1989; Boyer, 1995). We have used the DHS standard two week recall
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period, but this has been shown to not be as reliable as shorter recall periods (Alam

et al., 1989). Diarrhoea is also arguably a subjective outcome and may be ‘reactive’

to upgrades in water, sanitation, or hygiene improvements in the sense that mothers

may not want to reveal childhood sickness. We also use stunting as an outcome, which

is defined on the basis of anthropometric measurements as is therefore not subject to

the aforementioned problems. However, stunting manifests as a result of influences over

the child’s life course, such as malnutrition or other disease, and not just the impact of

diarrhoea or other factors amenable to better sanitation. A ‘better’ clinical outcome is

certainly warranted to investigate the effects of better sanitation, for example analyses of

pathogenic microbes, but these data are often not available, especially in observational

contexts.

The results of this study tentatively agree with the current sanitation ‘ladder’ used by

monitoring agencies. Our results are of a similar order of magnitude to other studies of

sanitation interventions and provide some potentially useful context to heterogeneity be-

tween results from different studies. Beyond a simple improved/unimproved dichotomy,

the use of the facilities and how they’re shared is important, as well as the level of cover-

age in clusters of households. Extensions could be to extend to a multinomial-Dirichtlet

model to allow for correlation across outcomes, and to embed the model in a larger

structural equation framework to allow for endogeneity in sanitation compositions. We

suggest this as an area for future research.

There remains a lot of unexplained variation in childhood adverse outcomes, and

even with private improved sanitation, levels of the outcomes were predicted to still be

high by any conventional standard. This points to a need to better understand disease

transmission mechanisms in order to better design public health interventions, particu-

larly when, in resource poor settings, providing private improved sanitation universally

is currently infeasible.
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A. Additional results

This supplementary text provides some additional results and plots. The next section

discusses heterogeneous effects.

Fig. 7. Density of posterior predictive p-values for mean

B. Heterogeneous Effects

As an extension to the models analysed so far, we now consider heterogeneous effects

through interaction. Parental education, in particular that of the mother, has been

shown in a number of previous studies to be associated with access to sanitation, child-

hood health outcomes, and the effectiveness of, and interaction with, sanitation facilities

(e.g. Ali et al. (2004); Bouzid et al. (2018); Fink et al. (2011); Kumar and Vollmer

(2013)). However, reflecting our earlier discussion, these effects in individual-level or

household-level models may well be confounded with cluster-level coverage. As a result
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Table 7. Included DHS surveys

Country Survey year(s) N

Burkina Faso 2010 176

Benin 2001 & 2011-12 428

Burundi 2010-11 75

Chad 2014-15 163

Comoros 2012 108

Cote d’Ivoire 2011-12 160

Cameroon 2011 295

Dem. Rep. Congo 2013-14 161

Ethiopia 1992 & 2003 323

Gabon 2012 183

Ghana 2003 & 2008 & 2014 567

Guinea 2012 107

Kenya 2003 & 2008-9 & 2014 398

Liberia 2006-7 & 2013 175

Lesotho 2009-10 & 2014 210

Madagascar 2008-9 149

Mali 2001 & 2006 & 2012-13 392

Malawi 2000 & 2004-5 & 2010 & 2015-16 506

Mozambique 2011 256

Nigeria 2013 371

Namibia 2013 256

Rwanda 2005 & 2007-8 124

Sierra Leone 2008 & 2013 303

Senegal 2010-11 147

Togo 2013-14 128

Tanzania 2009-10 79

Uganda 2006 & 2011 143

Zambia 2007 & 2013-14 421

Zimbabwe 2005-6 & 2010-11 & 2015 461

TOTAL 7,209
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Fig. 8. Estimated response surface for risk of diarrhoea for an unimproved, improved latrine,

and sewer composition
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Figure (8) shows the distribution of each outcome for clusters by general type of sanita-

tion facility.
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Table 8. Parameter estimates and model diagnostics for unimproved-shared-private composition

model

Parameter Diarrhoea Dysentery Stunting

(Intercept) -0.69 (-1.04, -0.34) -8.73 (-10.53, -7.17) -0.65 (-0.93, -0.38)

N. children -0.64 (-0.73, -0.55) -0.60 (-0.89, -0.31) -0.65 (-0.71, -0.58)

Mean age -0.01 (-0.01, -0.01) -0.02 (-0.03, -0.01) 0.05 (0.05, 0.05)

Mother education -0.40 (-0.47, -0.31) -0.69 (-0.96, -0.41) -0.13 (-0.20, -0.06)

Top two wealth -0.07 (-0.14, -0.05) -0.03 (-0.25, 0.19) -0.08 (-0.13, -0.03)

Rainfall -0.10 (-0.14, 0.05) 0.03 (-0.09, 0.15) -0.04 (-0.07, 0.01)

Temperature 0.01 (0.00, 0.02) 0.02 (-0.01, 0.05) -0.01 (-0.02, 0.00)

Imp. water 0.04 (-0.04, 0.12) -0.02 (-0.27, 0.22) -0.02 (-0.07, 0.04)

1991 - 1995 Ref. Ref. Ref.

1996 - 2000 -0.72 (-0.94, -0.49) -0.85 (-5.23, 2.74) 0.47 (0.32, 0.62)

2001 - 2005 -0.27 (-0.43, 0.10) 3.82 (2.60, 5.31) 0.20 (0.09, 0.31)

2006 - 2010 -0.41 (-0.59, -0.23) 5.39 (4.11, 6.93) 0.01 (-0.12, 0.13)

2010 - 2016 -0.38 (-0.56, -0.20) 5.31 (4.03, 6.82) -0.02 (-0.19, 0.10)

σα 0.12 (0.07, 0.21) 0.39 (0.21, 0.69) 0.13 (0.07, 0.22)

WAIC 27,386 232 31,007

pc, mean 0.68 0.57 0.16

pc, SD <0.01 0.64 0.72
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we extend the model to allow the smooth terms to vary by maternal education. The

smooth function g(w) can be represented as a linear combination of P basis splines:∑P
p=1 δpbp(w). Interaction with a variable z is specified as zg(w) =

∑P
p=1 δpzbp(w)

(which can be implemented in R using the mgcv package as s(w,bs="tp",by=z)).

Figure 9 (Supplementary Information) shows the posterior predicted mean across the

simplex for the unimproved-latrine-sewer composition at two levels of maternal educa-

tion. There is a large difference in average risk of each outcome at the two levels of

education. For dysentery and stunting a similar pattern of predicted risk is observed

across the simplex, with the lowest risk associated with higher sewer coverage, although

there is more variation for the high education group. This pattern doesn’t appear to be

explained by low coverage, given clusters with both high and low sewerage coverage ob-

served in low education clusters (Figure 10, Supplementary Information). For diarrhoea,

little to no variation is observed across the simplex at either level of education.
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Fig. 9. Estimated response surface for risk of stunting for an unimproved, improved latrine, and

sewer composition
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Fig. 10. Hexagonal binning plot showing frequency of sewerage coverage and maternal

education


