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Abstract

Originating from passenger air transport, revenue management has evolved into a gen-

eral and indispensable methodological framework over the last decades, comprising tech-

niques to manage demand actively and to further improve companies’ profits in many

different industries. This article is the second and final part of a paper series surveying the

scientific developments and achievements in revenue management over the past 15 years.

The first part focused on the general methodological advances regarding choice-based the-

ory and methods of availability control over time. In this second part, we discuss some of

the most important generalizations of the standard revenue management setting: product

innovations (opaque products and flexible products), upgrading, overbooking, personaliza-

tion, and risk-aversion. Furthermore, to demonstrate the broad use of revenue management,

we survey important industry applications beyond passenger air transportation that have

received scientific attention over the years, covering air cargo, hotel, car rental, attended

home delivery, and manufacturing. We work out the specific revenue management-related

challenges of each industry and portray the key contributions from the literature. We

conclude the paper with some directions for future research.
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1. Introduction

The original purpose of revenue management (RM) – as it evolved in passenger air

transport in the 1970s after the deregulation of the US airline market – was the task of op-

timally selling a fixed and perishable inventory within a given time horizon. More precisely,

having defined products based on a set of common services using price differentiation (e.g.,

standard and saver fares in case of airline tickets), the idea was to dynamically control

the availability of these products over time to maximize overall obtainable revenues (or

profits).

Until today, this concept lies at the heart of many RM systems. In general, RM

research incorporates work on increasingly sophisticated approaches to model, estimate

and forecast demand, as well as to optimize subsequent demand management decisions

with a high level of automation. The introduction of such automated systems led to

significant revenue improvements in various industries as illustrated by some finalists in

the prestigious INFORMS Franz Edelman award competition. For example, the award in

2017 went to Holiday Retirement, a large senior housing operator in the United States.

As reported by Kuyumcu et al. (2018), implementation of a RM system increased revenue

from new rentals by approximately 9% (corresponding to $88m). The finalists in 2018

included Europcar with their implementation of an integrated RM system that they claim

has led to $584m increase in revenue.

The paper on hand is the second and final part of a series surveying the theoretical

and practical developments of RM as they are documented by scientific publications in the

field. The first part of the survey, Strauss et al. (2018), is dedicated to methodological

advances in choice-based RM, where we dynamically control the availability of products

under consideration of substitution effects. This second part gives an overview of various

extensions to the standard RM setting and of advances in industrial applications. Again, we

focus on ‘quantity-based’ RM, as opposed to ‘price-based’ RM, where demand is influenced

by changing prices for products, and include scientific contributions that have been made

between 2004 and 2018, i.e., since the seminal book by Talluri and Van Ryzin (2004).

Using the term “revenue management” in the standard search of ScopusTM delivers

2,114 results for the time range given above. Clearly, we can only present a subset of the

existing generalizations and applications. To select these, we have restricted the discussion

to topics which, in our opinion, are either representative for a particular class of generaliza-

tions and applications, or which will have a considerable impact on the future development
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and use of RM. Still, some further restrictions have been necessary. For example, combin-

ing the term “revenue management” with the terms “overbooking” or “hotel” leads to 105

and 303 results in ScopusTM, respectively. Hence, this paper builds on the one by Strauss

et al. (2018) and aims at elaborating the challenges from a modeling and methodological

point of view when going beyond the traditional setting, in particular, in choice-based RM.

Again, we prioritize decision making on an operational level for our presentation. The

basic idea is to give researchers and practitioners a reference point concerning models and

methods when they want to address new generalizations or applications instead of giving

an all-encompassing overview.

The paper is structured as follows: In §2 we state the standard (network) RM framework

using a stochastic dynamic program (DP) and we introduce essential notation. Further-

more, we briefly describe how the resulting control problems can be solved. §3 builds upon

this foundation and is devoted to generalizations. All the generalizations have in com-

mon that they require to be adapted to the basic framework. Beyond overbooking, which

is the oldest generalization, they are induced by new technological capabilities allowing

more flexible services, by new business models, or by an alternative objective. For each

of the generalizations, we give a detailed description and analyze in which way it gener-

alizes the standard setting. For this purpose, we reconsider the DP and discuss how to

adapt it appropriately. Furthermore, we portray the evolvement in the recent scientific

literature. We then discuss today’s most prominent industrial applications of RM includ-

ing traditional ones (§4) as well as emerging non-traditional ones (§5). However, as it

turns out, these applications lead to control problems which are less structured than the

generalizations described in §3 and cannot easily be fitted into the standard framework in

all cases. Therefore, we no longer state the DP in all cases but restrict to more general

descriptions. Where possible, we show how the applications presented relate to the gen-

eralizations presented in §3. Regarding the non-traditional applications, we consider two

representatives of online-to-offline services (attended home delivery and manufacturing).

As it turns out, those applications share the commonality that some scheduling of the

services is required. For each industry application, we analyze the specific challenges and

recent scientific contributions. In §6, we conclude the review with an outlook on future

research opportunities.

Our paper complements other general reviews that have appeared since 2004, namely

Chiang et al. (2007), Shen and Su (2007), and Weatherford and Ratliff (2010).
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Chiang et al. (2007) elaborate on only three industries: cargo and freight, Internet services,

and retailing. Other industries are covered by brief tabular overviews, referring to relevant

literature and giving a description of similar practices “in one sentence”. Shen and Su

(2007) exclusively concentrate on methodological contributions concerning different types

of customer behavior. Likewise, Weatherford and Ratliff (2010) focus on models and meth-

ods under dependent demand exclusively for the airline industry. They do not consider

any generalizations. Note that there exist some other surveys solely focusing on specific

generalizations or industries that we also cover, such as, e.g., Gönsch (2017) who focuses

on risk-based RM. We will discuss such literature later on in the corresponding sections.

2. The (network) revenue management problem

Most research in the area of RM deals with controlling the sales process at an opera-

tional level. We introduce one of the most frequently used methods to frame such problems,

namely a stochastic dynamic program (DP). After a general description of the correspond-

ing control problem in §2.1, we formally describe the two basic types of control in §2.2 and

§2.3, which differ concerning the assumption on the behavior of customers and introduce

some essential notation. §2.4 sketches methods for solving the DPs obtained.

2.1. General description

We consider a firm that sells products to customers with heterogeneous preferences.

Products usually correspond to services and are linked to some sales restrictions or other

conditions to segment the market. The prices of the products are fixed. The customers’

demand is stochastic and materializes over time during a selling horizon, which is also

known as booking horizon.

Product provision consumes certain resources, and some products may require more

than one type of resource. Resources may have both a physical and a temporal dimension.

Most commonly, the service is provided after the selling horizon. For example, in passen-

ger air transport, a single day of service is considered (temporal resource dimension). A

resource refers to each compartment (physical resource dimension) on each point-to-point

flight of the considered departure day, with capacity equal to the number of seats in the

compartment. A product is a ticket for the desired itinerary in a particular compartment

and is associated with a specific fare, a booking class, as well as a subset of resources (i.e.,

flights) from which one capacity unit (i.e., one seat) is used. The selling horizon typically

spans a few months before the departure day.
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Facing such a situation, the firm actively manages demand on an operational level by

using RM techniques to maximize the overall expected profit. The term revenue manage-

ment stems from the fact that, in passenger air transport, both variable and fixed costs are

barely under operational control. Since in passenger air transport the itineraries offered

are often combinations of several point-to-point flights, the term ‘network’ was added in

the past to distinguish this case from considering a single connection only. Today, this

term is used to describe the supply side for settings with several resources or for settings

that consider multiple service periods, like in the hotel or car rental industry.

On the demand side, we differentiate between two classes of demand models. In the

first class, we assume that each customer segment considers a set of products alternatives

for purchase. The purchase decision is the outcome of a choice process among all the

offered products that they consider for purchase. Over the past 15 years, the term ‘choice-

based RM’ has been established to represent this context. Choice-based RM may offer

better representation of demand but comes with greater challenges in estimating models

of customer choice as well as in optimizing decision policies.

In the second setting, customers consider the purchase of a specific product only and, if

this is not available, will not buy at all. Here, the term ‘independent demand’ is common,

because the demand for a product is independent of the availability of others. The indepen-

dent demand assumption is reasonable for quasi-monopolistic applications with strongly

differentiated products and customers. Initially, the airline industry applied corresponding

models and to some extent still does. Thus, much research on generalizations and industrial

applications refers to this setting.

In the context of choice-based RM, Strauss et al. (2018) refer to ‘availability control’

as deciding on which set of products to offer. In contrast, they connect the terms ‘ca-

pacity control’ and ‘inventory control’ with the independent demand case. We follow this

distinction although there is some ambiguity around how literature is using these terms.

2.2. Availability control

Availability control consists of varying the set of offered products over time and takes

multi-product substitution into account. The optimal control policy for the resulting

choice-based network RM problem is, in theory, obtained by solving a DP. Let J =

{1, ..., J} and H = {1, ...,H} be the sets of products and resources, respectively. Products’

resource consumptions are defined in matrix A = (ahj)h∈H,j∈J , with ahj denoting the

number of capacity units product j consumes from resource h. The j-th column vector aj
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describes the overall resource consumption of product j. Each product j ∈ J is sold at a

fixed revenue (or contribution margin) rj . Products are sold over a finite selling horizon,

discretized into T = {1, ..., T} time periods such that the probability for more than one

customer arrival per period is negligible. Periods are numbered forward in time, and the

service provision is planned in t = T + 1. The customers’ arrival probability is assumed to

be fixed at λ. At the beginning of period t, a state equals the company’s available inventory

given by the vector ct = (cht)h∈H, where cht denotes the remaining capacity of resource h.

Thus, the state space is denoted by C =
{
ct ∈ ZH

+ : cht ∈ {0, 1, ..., ch1}
}

. In every time

period t of the selling horizon, the company has to decide on the subset St ⊆ J of products

to offer for sale. We assume that technically any set from the power set of all products

can be offered. This defines the action or decision space, with the literature on DPs using

both terms. Note that the action space may be constrained to immediately exclude infea-

sible offer sets given the current state ct (see Strauss et al. 2018). Furthermore, for some

applications additional restrictions may arise such as constraints on the cardinality of the

offer set.

As stated in the previous section §2.1, we assume that customers have heterogenous

preferences concerning the products. Since the company does not fully know these prefer-

ences, it will use some choice model to estimate the probability Pj(St) for selling product

j depending on the offer set St (given a customer arrival). Thus, the probability that

product j is sold is λPj(St). The probability for not selling any product covers the case

that there is a customer arrival, but the customers decides to leave without purchase

(i.e., λP0(St)), as well as the case that there is no arrival (i.e., 1 − λ), and it holds that

λP0(St) + 1−λ = 1−
∑

j∈St
λPj(St). For an overview on different choice models, we again

refer to Strauss et al. (2018).

With the notation at hand, we can formulate the DP. Let the value function Vt(ct)

denote the optimal expected revenue-to-go in period t with capacity ct and let ∆jVt+1(ct) =

Vt+1(ct)− Vt+1(ct − aj) be the opportunity cost associated with selling product j. Then,

Vt(ct) satisfies the Bellman equation

Vt(ct) = max
St⊆J

{∑
j∈St

λPj(St)
(
rj + Vt+1(ct − aj)

)
+
(
1−

∑
j∈St

λPj(St)
)
Vt+1(ct)

}
= max

St⊆J

{∑
j∈St

λPj(St)
(
rj −∆jVt+1(ct)

)}
+ Vt+1(ct) ∀ct, ∀t, (2.1)

with boundary conditions VT+1(cT+1) = −∞ if cT+1 � 0 and VT+1(cT+1) = 0 else.

Equation (2.1) is the standard formulation of choice-based RM.
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2.3. Capacity control

Capacity control describes the practice of accepting or denying booking requests for

individual products under the assumption of independent demand. Again, a DP defines

the optimal control policy. However, we assume that there is one customer segment for each

product. A customer from a segment associated with product j arrives with probability

λj in a given time period and will always purchase product j, if it is available; otherwise

the customer leaves without purchase.

Let us express the offer set by a vector ut = (ujt)j∈J of binary decision variables ujt.

The Bellman equation (2.1) then simplifies to

Vt(ct) = max
ut∈{0,1}J

{∑
j∈J

λjujt
(
rj + Vt+1(ct − aj)

)
+
(
1−

∑
j∈J

λjujt
)
Vt+1(ct)

}
= max

ut∈{0,1}J

{∑
j∈J

λj
(
rjujt + Vt+1(ct − ajujt)

)
+
(
1−

∑
j∈J

λj
)
Vt+1(ct)

}
=
∑
j∈J

λj max
ujt∈{0,1}

{
rjujt + Vt+1(ct − ajujt)

}
+
(
1−

∑
j∈J

λj
)
Vt+1(ct)

=
∑
j∈J

λj max
{
rj + Vt+1(ct − aj), Vt+1(ct)

}
+
(
1−

∑
j∈J

λj
)
Vt+1(ct)

=
∑
j∈J

λj max
{
rj −∆jVt+1(ct), 0

}
+ Vt+1(ct) ∀ct, ∀t. (2.2)

Line 1 of (2.2) comes from replacing the probability λPj(St) in (2.1) with λjuj and

line 2 from some simple algebraic manipulations. In line 3, we change the order of the

expectation and maximization, which is possible due to the independence of λj and ut.

Thus, the combinatorial availability decision decomposes by product. The formulations

of the Bellman recursion in the final two lines are those most commonly found in RM

literature. Compared to choice-based availability control, the action space of capacity

control comprises only two decisions for each product: either it is on sale (namely when

the product’s fixed revenue exceeds opportunity cost) or otherwise it is not offered. These

two decisions are often interpreted as accepting and rejecting booking requests, respectively.

Although the independent demand assumption is somewhat outdated today, service

providers in traditional industries such as passenger air transport or car rental often still

rely on independent demand systems due to legacy issues. In this context, the so-called fare

transformation allows to include customer choice behavior to some extent by modifying the

input parameters, namely revenues and arrival probabilities (see Fiig et al. 2010). However,

as we discuss in Strauss et al. (2018), the fare transformation is only exact subject to some

strong assumptions.
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2.4. Problem solution

In general, the multidimensional state space prohibits an exact solution of the dynamic

programs (2.1) and (2.2). Therefore, a lot of effort has been spent on developing approxi-

mations of the value function as discussed in Strauss et al. (2018).

Particularly prominent are the well-known deterministic linear program (DLP), its

choice-based pendant (CDLP; see Liu and van Ryzin 2008 and Miranda Bront et al. 2009),

and the randomized linear program (RLP). The idea of those static approximations is to

disregard the dynamics and to replace the stochastic demand by its expected value (for

the DLP and the CDLP) or by samples drawn from anticipated demand distributions

(for the RLP). In a second step, dual information of the capacity constraints from those

approximations is usually used to replace the opportunity costs by additive bid prices

πh, which are estimates of the marginal value of one capacity unit of a resource. In the

independent demand setting, such a heuristic control policy is termed bid price control

(BPC). An alternative is certainty equivalent control (CEC), going back to Bertsimas and

Popescu (2003), where the objective values of the DLP or the RLP are used in a one-step

look-ahead policy to approximate the values Vt+1(ct) and Vt+1(ct − aj) in equations (2.1)

and (2.2). A second group of approximations goes back to the pioneering work of Adelman

(2007) and makes use of the linear programming formulation of (2.1) and (2.2). The idea of

those so-called approximate linear programs (ALPs) is to assume linear approximations, for

example Vt(ct) ≈
∑
h∈H

πhtcht, where the parameters (in our case, time-dependent bid prices

πht) can be directly used to replace opportunity cost after they are estimated. To this end,

the approximations are plugged into the DP’s linear programming formulation, whose dual

is subsequently solved by column generation. A third prominent type of approximation,

called dynamic programming decomposition (DPD; for example, Liu and van Ryzin (2008))

assume that the value function is approximated by Vt(ct) ≈ vth(cht) +
∑
k 6=h

πkckt, where the

functions vth(·) can be obtained by solving a single-resource problem.

Compared to the network problem, the single-resource problem’s state space is one-

dimensional and can therefore easily be solved to optimality. Moreover, it can be shown

that the value function is concave in capacity and time, i.e., the marginal value of capacity

increases as capacity decreases and decreases as time passes. These structural properties

do not hold for the network problem in general, but are nevertheless inherent to several

approximations. For example, it can be shown that optimal time-dependent bid prices πht

of the ALP approach decrease over time.
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3. Generalizations

In this section, we give an overview of the generalizations of the standard setting that

have received most attention in academia over the past 15 years. For each of the considered

generalizations, we first give a brief introduction and practical motivation. Then, we show

how the standard model formulation as given by the DPs has to be extended, and discuss

the resulting challenges as well as the corresponding scientific contributions.

The first two presented generalizations are opaque products (§3.1) and flexible prod-

ucts (§3.2) and result from product innovations. Thereafter, we review the literature on

upgrades (§3.3) and on the probably most important generalization, namely overbooking

(§3.4). The generalizations mentioned so far share the commonality that the fulfillment

is not clear at the time of purchase. From a modeling perspective, the service provision

and, consequently, the DPs become more complicated from subsection to subsection, in

particular with respect to action space, state space, and boundary condition.

In §3.5 we consider personalization which requires knowing (or learning) customer seg-

ments and preferences on a very detailed level. We close with a review of risk-averse RM

as an example of an alternative objective (§3.6). Another example of such an alternative

objective results from the integration with customer relationship management. However,

literature is rare in the latter field and the corresponding models hardly fit the classical RM

framework. We refer the interested reader to von Martens and Hilbert (2011) as starting

point.

3.1. Opaque products

3.1.1. Introduction

When selling an opaque product, the selling company hides specific properties of the

product until the sale has been completed. Most common is some kind of travel roulette,

where for instance the destination of an itinerary or the specific hotel in which a customer

will stay is concealed. Opaque products are often sold by intermediaries like Hotwire and

Priceline.com, but also by tour operators or airlines. From a marketing perspective, opaque

products are basically an instrument of price discrimination in order to attract additional

low value demand, but without excess cannibalization (see Granados et al. (2018) for

a recent empirical investigation of those effects). As Jerath et al. (2010) show, opaque

products are thus often a superior marketing instrument compared to last-minute selling.

Post and Spann (2012) report on the success of variable opaque products in practice at
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the case of the airline Germanwings, where customers are allowed to vary the amount of

opacity. The authors report that revenues due to opaque products are (almost) exclusively

noncannibalistic and contributed 4.7% to the total revenue in 2010.

3.1.2. Mathematical model

With the incorporation of opaque products, the modeling of resource consumption in

equation (2.1) needs to be generalized in the sense that there is no longer a single fixed

relation between product and required capacity of resources. Instead, one has to define

alternatives (or modes)Mj that a product j can be assigned to, where alternative m refers

to a certain resource consumption am. Since we decide in which mode m ∈Mj an opaque

product is delivered immediately after the purchase and, hence, we know the resources

am used by mode m, we can still represent the state space by the remaining capacity ct.

However, opaque products slightly complicate the action space as the opportunity cost

∆mVt+1(ct) = Vt+1(ct)−Vt+1(ct−am) depends on the assigned alternative. With the new

state definition, this can be seen by the Bellman equation

Vt(ct) = max
St⊆J

{∑
j∈St

λPj(St)
(
rj − min

m∈Mj

∆mVt+1(ct)
)}

+ Vt+1(ct) ∀ct ∀t, (3.1)

subject to the standard boundary conditions from Section §2.2. In case we want to sell

regular products next to opaque ones, we can still use formulation (3.1), by simply defining

only a single mode for each regular product j, i.e., |Mj | = 1.

Having the same state space as in the standard setting has turned out to make a

straightforward adoption of standard solution approaches possible. As we will see, also

several properties regarding monotonicity and approximations carry over.

3.1.3. Scientific contributions

Chen et al. (2010) and Anderson and Xie (2012) consider a single opaque product that

can be assigned to a set of completely substitutable resources, namely parallel flights (e.g.,

during the same day at different departure times) and hotel rooms with hidden location in

a city, respectively. The authors show that the well-known monotonicity properties of the

DP from the the standard single-resource RM problem carry over. For the network setting,

Gönsch and Steinhardt (2013) integrate opaque products into the DPD approach and show

that the common properties regarding the relation to the objective value of the DP as well

as of the DLP carry over. They then use the approach within a comprehensive simulation

study, investigating the revenue impact of introducing opaque products. They show that
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potential benefits strongly depend on the specific demand parameters such as demand

induction and cannibalization, as well as on the degree of opacity. Also using (3.1) as

starting point, Sayah (2015) first presents the ALP as well as the corresponding reduction.

He shows that – in contrast to the standard RM setting without opaque products – the

reduction is not equivalent to the ALP in general as a result of the modified action space.

3.2. Flexible products

3.2.1. Introduction

Gallego and Phillips (2004) and Gallego et al. (2004) introduce a flexible product as a set

of substitutable alternatives such that the seller can assign the purchaser to an alternative at

a time near service provision. An example is the product “Just AIDA” offered by the cruise

company AIDA, where the itinerary, the departure time and the cabin type are hidden at

the time of sale and revealed later. From a marketing perspective, flexible products are

thus a similar instrument for demand induction as opaque products. However, from a

RM perspective, they are even better to improve capacity utilization, as the assignment

decision can be delayed until a time when there is much less uncertainty regarding future

demand. For example, considering instances from the scientific literature, Koch et al.

(2017) have shown that delaying the assignment may increase revenues by up to 2% if

the demand forecast is accurate and up to 8% under forecast errors. Gönsch (2019) has

provided a recent literature review on flexible products, also including opaque products and

not restricted to RM. Thus, we only portray the key concepts and contributions regarding

availability control in the following.

3.2.2. Mathematical model

Since for a flexible product the final assignment of a mode remains flexible at the time

of sale, it is no longer sufficient for the seller to keep track of the remaining capacity to

describe the state space. Instead, we have to keep track of the reservations, using a vector

yt = (yjt)j∈J as state variable. Selling a product j increases the reservations vector to

yt + 1j , with 1j denoting the jth standard vector in RJ . With the new state definition,

the optimal expected revenue satisfies the Bellman equation

Vt(yt) = max
St⊆J

{
λ
∑
j∈St

Pj(St)
(
rj + Vt+1(yt + 1j)

)
+
(
1−

∑
j∈St

λPj(St)
)
Vt+1(yt)

}
= max

St⊆J

{∑
j∈St

λPj(St)
(
rj −∆jVt+1(yt)

)}
+ Vt+1(yt) ∀yt,∀t. (3.2)
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However, in comparison to the previous sections, not only the state definition alters. At

some point in time before service provision, the reservations have to be assigned to the

alternatives, i.e., the company has to ensure that the capacity is sufficient to satisfy all

reservations. In case that this assignment is at the time of service provision T + 1, this is

captured by the feasibility problem∑
m∈Mj

xjm = yj,T+1 ∀j ∈ J (3.3)

∑
j∈J

∑
m∈Mj

ahmxjm ≤ ch1 ∀h ∈ H (3.4)

xjm ∈ N0 ∀j ∈ J ,∀m ∈Mj , (3.5)

where xjm denotes the number of reservations for product j assigned to alternative m. If

a feasible solution exists for to (3.3) - (3.5), then we will set the boundary conditions to

VT+1(yT+1) = 0, and otherwise to VT+1(yT+1) = −∞.

Several challenges come with the introduction of flexible products. First, since the

number of products will usually exceed the number of resources in practical settings, the

state space of (3.2) will be considerably larger than the one of (2.1). Second, it is difficult

to decide whether a flexible product can be feasibly offered as well as to maintain the

flexibility throughout the booking horizon, as both would require solving problem (3.3) -

(3.5) for each product in each period. Third, the adoption of standard solution approaches

such as BPC, DPD, or ALP is complicated as products do not uniquely correspond to a

set of resources and, thus, the use of resource-based approximations is hampered.

3.2.3. Scientific contributions

For the capacity control problem, Petrick et al. (2012) show in a couple of computa-

tional experiments that flexible products are particularly useful if demand is not forecasted

accurately. For this purpose, they consider a variant of (2.2) where resource allocation does

not necessarily take place after the booking horizon, but at an arbitrarily chosen point in

time between sale and service provision, and they computationally investigate the impact

of different intervals of postponing the final resource allocation on revenue. Also for the

capacity control problem, Petrick et al. (2010) and subsequently Gönsch et al. (2014) fo-

cus on the second challenge, using the DLP of (2.2) and extending a classical BPC. In

particular, Petrick et al. (2010) propose different heuristic approaches to ensure feasibil-

ity in real-time without having to resolve the entire feasibility problem for each incoming

request. Gönsch et al. (2014) postulate an inherent value of flexibility that they formally
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define using (2.2), and argue that it is neglected by the DLP. Based on this observation,

they then propose a simulation-based adoption of the DLP outcome over time, showing

good revenue performance in computational experiments. Koch et al. (2017) consider the

availability control problem and focus on the third challenge, in particular on DPD. They

propose a generic approach based on Fourier-Motzkin-elimination to technically transform

the problem into a standard network RM problem such that, under mild conditions, DPD

becomes applicable. While this is done at the cost of creating additional artificial resources

that pool the capacity of two or more regular resources for the joint use of several products,

the authors show that for many network structures relevant to RM practice, the number

of artificial resources is not exponential in the parameters and, thus, the resulting model

is manageable. Sierag (2017) extends the setting by considering group bookings as well

as dynamic pricing instead of availability control, and suggests two simple heuristics that

operationalize the solution of an extension of the DLP.

3.3. Upgrading

3.3.1. Introduction

Upgrading allows the seller to satisfy demand for a lower-quality product with a higher-

quality product from a set of hierarchically ordered substitutes. Usually, an upgrade is

given at no extra charge. Thus, conventional upgrades are different from the practice of

upselling (or paid upgrades), where a customer is urged to voluntarily buy the higher-

quality product at a discounted price. Upgrades are particularly important for car rental

companies. As the differences in costs are usually small, car rental companies tend to

acquire considerably fewer economy cars but more midsize cars than required. Geraghty

and Johnson (1997) estimate that around half of the fleet consists of midsize cars, which

has also been confirmed by Gönsch and Steinhardt (2015) in an industry project with a

major German car rental company. To overcome the resulting mismatch of demand and

capacity, the companies make extensive use of upgrades along the car type hierarchy. Two

basic forms of upgrading can be distinguished (see Gallego and Stefanescu 2009): Full

cascading (multistep models) allow the seller to fulfill the demand for a product with any

higher-quality product, while limited cascading (single-step models) allow an upgrade only

to the next higher-quality product.
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3.3.2. Mathematical model

If upgrades are granted at the time of sale, upgrades can be modeled as opaque products,

where the alternative setsMj capture the upgrade hierarchy. If upgrades occur at the time

of service provision, an upgrade is in fact a special case of a flexible product. Therefore, we

do not repeat the Bellman equations here, but refer the reader to §3.1 and §3.2, respectively.

Gallego and Stefanescu (2009) introduce the corresponding dynamic programs and analyze

the DLP in detail for both, limited and full cascading upgrades. Consideration of fairness

becomes important under full cascading since this strategy may lead to grant a customer an

upgrade even though another customer has paid less. Gallego and Stefanescu (2009) show

that any flexible upgrade model satisfying certain properties has a fair optimal solution,

where a fair solution is defined to satisfy the condition that all customers who purchase a

product have priority in upgrades relative to all other customers who purchased an inferior

product.

3.3.3. Scientific contributions

Steinhardt and Gönsch (2012) and subsequently Gönsch and Steinhardt (2015) ana-

lyze the dynamic programs with full cascading upgrades in the context of car rental and

passenger air transport, respectively. Steinhardt and Gönsch (2012) prove that if only a

single rental day (i.e. a single leg) is considered, opportunity cost is monotonous with

regard to the upgrade hierarchy. This property greatly simplifies the control policy as not

all available upgrade options need to be considered, and the authors reuse this property

within a decomposition approach that they propose for the multi-day (network) case. As

a second important property, the authors show that in the single day setting, granting

upgrades at the time of sale is equivalent to delaying the assignment. However, this result

does not carry over to the multiday case, which can be shown by straightforward coun-

terexamples. However, as Gönsch and Steinhardt (2015) show, the result does indeed carry

over to the airline network context, where leg-wise upgrading is allowed. More precisely,

as opposed to car rental where an upgrade has to be offered throughout the entire rental

duration (product-wise upgrading), airline customers can be offered upgrades only on part

of their itinerary (leg-wise upgrading). Also, Gönsch and Steinhardt (2015) propose two

different DPD approaches, one based on a model reformulation that borrows ideas from

production planning (see Leachman and Carmon 1992), and discuss how their individual

advantages and drawbacks depend on the problem parameters, giving advice for practi-

cal application. The monotonicity property from Steinhardt and Gönsch (2012) is later
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on also exploited by Gönsch et al. (2013) who develop an extension of the well-known

EMSR-a heuristic for the independent demand single-leg setting. Guerriero and Olivito

(2014) consider limited cascading upgrades in the car rental industry and suggest a DLP

together with a BPC. McCaffrey and Walczak (2016) investigate a single-leg upgrading

problem with two compartments under the marginal revenue transformation that reduces

a problem with dependent demand into an equivalent independent demand problem under

certain assumptions. For this transformed problem, they show that the value function of

the two-dimensional dynamic program is sub-modular and exploit this result to derive an

exact and tractable solution algorithm.

3.4. Overbooking

3.4.1. Introduction

Overbooking describes the practice of selling more products than physically available

capacity in order to hedge against the cases that customers cancel before service provision

(cancellations) or do not show up at the time of service provision (no-shows). Overbook-

ing is particularly important in passenger air transport. For example, based on data from

Continental Airlines, Gorin et al. (2006) estimate that 4% of customers do not show up

at departure and that 15% to 18% of the total revenue improvements gained by RM stem

from overbooking. However, in case that more customers show up than physical capacity

is available, the seller has to bump customers at pre-specified or negotiated penalties and

additionally may incur goodwill losses. Overbooking is one of the oldest RM instruments.

Early overbooking models were static, ignoring the dynamics of cancelations and arrivals

over time, with the objective of determining an overbooking limit that describes the maxi-

mum number of reservations the company is willing to accept. As time progresses through

the booking horizon, the overbooking limit may change due to re-optimization.

3.4.2. Mathematical model

Modern dynamic approaches integrate availability and overbooking decisions in the DP.

Like in the case of flexible products, the state space and the boundary conditions have to

be modified. Again, the seller has to keep track of and control the reservations such that

we consider a vector yt = (yjt)j∈J of reservations. No-shows and cancelations represent

additional sources of uncertainty: cancelations can be modeled as an additional stochastic

process, with state-dependent cancelation rates γj(yt) and refunds fj . No-shows are usually

integrated by specifying product-specific probabilities qj that a reservation shows up, so
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that the number of show ups for product j follows a binomial distribution (with yj,T+1

being the number of trials). Therefore, also the total penalty cost C(yT+1) is a random

variable which is realized after the booking horizon. Using the choice-based framework,

the optimal expected net revenue Vt(yt) satisfies the Bellman equation

Vt(yt) = max
St⊆J

{∑
j∈St

λPj(St)
(
rj + Vt+1(yt + 1j)

)
+
∑
j∈J

γj(yt)
(
− fj + Vt+1(yt − 1j)

)
+
(
1−

∑
j∈St

λPj(St)−
∑
j∈J

γj(yt)
)
Vt+1(yt)

}
∀yt ∀t ∈ T , (3.6)

with boundary condition VT+1(yT+1) = −E[C(yT+1)].

If the parameters θj denote the penalty costs of bumping a reservation, the mini-

mal penalty cost will be easy to compute in the single-resource case. Given realizations

Zj(yj,T+1) of show ups for product j, we consider the products in the order of non-

decreasing penalty cost and simply bump reservations following this order until their total

number equals the capacity. However, in the network case, minimizing the total cost

requires solving an optimization problem, where the decision variables xj describe the

corresponding number of bumped reservations:

Minimize
∑
j∈J

θj · xj (3.7)

s.t.
∑
j∈J

ahj ·
(
Zj(yj,T+1)− xj

)
≤ ch1 ∀h ∈ H (3.8)

xj ≤ Zj(yj,T+1) ∀j ∈ J (3.9)

xj ∈ N0 ∀j ∈ J . (3.10)

In comparison to the generalizations discussed so far, overbooking adds an additional level

of complexity, in particular, because a stochastic optimization problem has to be solved to

be able to determine the value function in the boundary.

3.4.3. Scientific contributions

Aydin et al. (2013) and subsequently Sierag et al. (2015) and Wang and Walczak (2016)

analyze the single-resource setting under various assumptions on cancellation rates. An im-

portant result is that, if cancellation rates, no-show rates, and penalty costs are the same

for all reservations, (3.6) boils down to a one-dimensional problem and can therefore be

solved optimally. The intuition behind this result is that – after the purchase – all reser-

vations can be perceived as equal by the firm and can therefore be aggregated. However,
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this result does not hold in the general case, where the reservations must be distinguished

also after the sale in order to determine which reservations to bump.

A series of papers has been devoted to the network setting under the capacity control

framework with no-shows but without cancellations (Kunnumkal and Topaloglu 2008, Erde-

lyi and Topaloglu 2009, Kunnumkal and Topaloglu 2011, Erdelyi and Topaloglu 2010, and

Kunnumkal et al. 2012), from which we highlight two. Erdelyi and Topaloglu (2010) focus

on DPD. As in the traditional approach, the authors decompose the network by resources

and end up with single-resource value functions. Interestingly, in contrast to the standard

network RM problem, these single-resource value functions are still intractable because

reservations have to be tracked in order to differentiate between them for bumping. The

authors overcome this issue by approximating the penalty costs so that they only depend

on the total number of reservations. As a result, the multidimensional state space collapses

to a scalar. Kunnumkal et al. (2012) generalize the RLP from the standard network RM

problem. To this end, the authors do not only generate random demand samples, but –

for each demand sample – a set of random show up samples. Dai et al. (2019) study net-

work RM with both no-shows and cancellations under both independent and choice-based

demand models using a fluid model (meaning continuous time and continuous states).

Note that besides the research that can directly be related to the Bellman equation,

static overbooking models are still being researched due to their high relevance in practice.

Aydin et al. (2013) analyze the problem of determining the optimal overbooking limit in

the single-resource setting; see Klophaus and Pölt (2007) and Wang and Walczak (2016) for

similar static models but only with no-shows, i.e., without cancellations. Topaloglu et al.

(2012) consider a novel static model, called open loop policy, where each product is sold

with a fixed probability. Only considering no-shows, the authors show that the optimal

sales probabilities can be derived in closed form. For a network of resources, Karaesmen

and van Ryzin (2004) and Gosavi et al. (2007) suggest a simulation-based optimization

approach to approximate optimal overbooking limits. The setting of Karaesmen and van

Ryzin (2004) is somewhat different from the standard network RM problem as the resources

are substitutes and a two-stage model is considered.

3.5. Personalization

3.5.1. Introduction

Tailoring an offering to a customer based on observed or derived information on this

individual is called personalization. Personalization is currently one of the most discussed
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topics of RM in industry. This is mainly due to the recent and ongoing changes in air-

lines’ distribution technology, offering completely new possibilities with regard to making

much more flexible and customized offers (see e.g. Westermann 2013). First attempts

have been undertaken to propose models that dynamically decide on availability based on

customer specific characteristics, e.g. the trip purpose (see Wittman and Belobaba 2017a)

or making personalized fare offers (see Wittman and Belobaba 2017b). Customer data

could, e.g., be obtained during the booking process and potentially linked with data on the

specific customer obtained through the airline’s loyalty programs and also contain the spe-

cific historical booking etc. Therefore, a tight integration with analytics and data mining

techniques is required.

3.5.2. Mathematical model

One approach consists of identifying one of several predefined segments an incoming

requests originates from, and then offering a segment-specific preassembled offer set (which

may also include the prebundling of seat and ancillaries, see Madireddy et al. 2017). With

regard to the choice-based framework introduced in §2.2, this logic would mean that we

assume a number of segments K = {1, ...,K}, with each customer originating exactly from

one segment k ∈ K. Each segment comes along with its individual choice behavior which is

expressed by the probabilities P
(k)
j (St). The customers’ arrival probability decomposes into

segments, i.e., λ =
∑
k∈K

λ(k). Moreover, we do not assume segments to be latent, but that

each incoming customer’s segment can precisely be observed before booking. Therefore,

the maximization can be performed segment-wise, i.e., maximization and expectation over

segments are interchanged (similar to the independent demand setting), which results in

the Bellman equation

Vt(ct) =
∑
k∈K

λ(k) max
St⊆J

{∑
j∈St

P
(k)
j (St)

(
rj + Vt+1(ct − aj)

)
+
(
1−

∑
j∈St

P
(k)
j (St)

)
Vt+1(ct)

}
, (3.11)

with the standard boundary conditions. Note that segments containing only a single in-

dividual would correspond to full personalization (discussed as segment-of-one, 1-to-1 per-

sonalization in practice). Despite the strong interest in personalization in practice, the

amount of rigorous scientific contributions is still quite limited. In the age of Big Data, the

major challenge at the moment is learning the segments as well as their behavior, before

personalized offers could be made.
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3.5.3. Scientific contributions

There are some contributions regarding dynamic assortment planning, which is some-

how related to the availability control problem of RM we consider here. In dynamic as-

sortment planning, a seller offers an assortment to each customer on arrival (over a finite

selling horizon), with the objective of maximizing expected total revenue. The individual

assortment problems are linked, typically either due to inventory constraints, and/or due to

learning aspects of demand such that we face the typical exploration/exploitation trade-off

over time. However, limited capacity as the key characteristic of availability control is often

not considered in assortment optimization, while limitations mostly concern the amount

of products that can be offered or displayed at the same time, i.e., the cardinality of the

offer set.

There are some recent exceptions that study (personalized) dynamic assortment plan-

ning problems with limited inventory and heterogeneous customers, and that partly explic-

itly mention the link to RM. Bernstein et al. (2015) assume that the customer population

consists of a finite number of segments, each choosing according to the multinomial logit

model with known preference values. They study the effect of inventory constraints, and

find that it can be optimal to restrict certain segments’ choice set so as to reserve products

with low inventory for future customers with higher preference for these products. Ciocan

and Farias (2012) discuss a generalized class of dynamic allocation problems including the

network RM and the online advertisement display problems as special cases. Their ap-

proach is based on re-optimization and forecast updates and does not require the demand

rate process to be specified. The distribution of customer types (segments) is assumed to

remain constant over time, although the size of the market may change. In contrast, the

closely related work Golrezaei et al. (2014) allows the distribution of customer types to

vary. The proposed algorithms do not require any forecasting and uses an index for every

product consisting of its revenue multiplied with a virtual discount factor that depends

on the product’s remaining inventory. Gallego et al. (2015) consider personalized resource

allocation where multiple customer types choose products from the offered assortments fol-

lowing a general choice model. In contrast to Golrezaei et al. (2014), rewards may depend

on also the customer type, as opposed to the sold products only.

So far, all works assume that customer segments are known a priori and remain static

over time. Very recently, dynamic assortment planning research has started to investi-

gate these problems from a learning perspective, that means how to dynamically optimize
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personalized assortments when the choice parameters are unknown. Again, note that the

setting is often not completely in line with availability control. We emphasize that, in RM,

demand learning has not only been used in the context of personalization (see, e.g. Besbes

and Zeevi 2012), but we limit ourselves to discussing learning in this context since this

is an area that appears to have recently captured significant interest. Chen et al. (2015)

present an approach that is easily extendable to fairly general choice models, including

semi-parametric and non-parametric ones. Bernstein et al. (2018) present an approach

for the multinomial logit model; they draw on Bayesian data analysis literature to esti-

mate preferences through dynamic clustering and machine learning. Customer segments

are dynamically updated over time as more information becomes available. Likewise for

learning (personalized) MNL model parameters, Kallus and Udell (2016) develop an explo-

ration/exploitation algorithm that requires to offer assortments to be chosen uniformly at

random for multiple rounds. Cheung and Simchi-Levi (2017) criticize that this requirement

can be problematic in practice when there are constraints on offering personalized assort-

ments such as the need for the assortment to match a certain search keyword. Accordingly,

they propose a policy that can be implemented under such personalization constraints.

More work has been done in this area but, due to space limitations, we refer the interested

reader to the given key references.

3.6. Risk-aversion

3.6.1. Introduction

The major argument for the assumption of a risk-neutral decision maker with the

expected revenue as objective criterion is the large number of repetitions of similar sales

processes. Thus, the law of large numbers ensures convergence of the long-term average

revenue to the expected value. However, human decision makers in daily practice tend

to overrule risk-neutral decisions manually with less risky decisions. Additionally, the

assumption of risk-neutrality is questioned in applications with infrequent sales processes,

or where the outcome is critical for economic survival. Often cited examples include a

seller of real estates or concert tickets. There are two different concepts to incorporate

risk-aversion: expected utility theory and risk-measures. Gönsch (2017) has provided a

recent literature review on risk-aversion in RM and, thus, we only portray the key concepts

and contributions regarding availability control in the following.
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3.6.2. Mathematical model

The expected utility theory goes back to von Neumann and Morgenstern (1944). The

underlying idea is that decision makers value the same revenue differently due to individual

preferences, which are captured by an utility function U(·). A decision maker is risk-averse

if the utility function is concave. General utility functions are not time-separable, which

implies that an evaluation of the total revenue is only possible after the selling horizon. To

comply Bellman’s principle of optimality, one has to store a portion of the history of the

selling process in the state space, namely the cumulated revenue, and convert the achieved

total revenue into utility in the boundary. However, storing knowledge of history is unusual

in dynamic programming. Moreover, it leads to an explosion of the state space as there may

be a state for every combination of capacity and potential cumulated revenue, such that

only toy examples can be solved. Additionally, the well-known monotonicity properties

with regard to opportunity cost in the single resource problem are lost. An important

exception is the case of an exponential utility function, e.g. U(R) = −e−γR, with risk

sensitivity γ. Say that the random variable R =
∑
t
Rt is the total achieved revenue, with

contribution Rt of period t. Then, an exponential utility function is time-separable in

the sense that it allows the multiplicative decomposition U(R) =
∏
t
e−γRt . This time-

separability allows tracing back the dynamic program to a classical state space. Stated

under the independent demand framework, the optimal expected utility from period t in

state ct satisfies the Bellman equation

Vt(ct) =
∑
j∈J

λj max
{
e−γrjVt+1(ct − aj), Vt+1(ct)

}
+
(
1−

∑
j∈J

λj
)
Vt+1(ct). (3.12)

3.6.3. Scientific contributions

Barz (2007), Barz and Waldmann (2007), and Feng and Xiao (2008) were the first to

include an exponential utility function into the dynamic program of availability control.

Considering the single resource problem, the authors were able to show that the mononicity

properties from the risk-neutral case carry over.

Not only in finance, risk measures are receiving more and more attention. Koenig and

Meissner (2015a) and Koenig and Meissner (2015b) consider the optimization of the risk

measures “target percentile risk” and “value-at-risk”, respectively. In the language of RM,

the target percentile risk expresses the probability that a certain target value of revenue

is not exceeded, while the value-at-risk evaluates the revenue that will not be exceeded

at a given probability level. Similar to general utility functions, optimization requires
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to store the cumulated revenue over time. The value-at-risk is often criticized because

the distribution below the probability level is ignored. This drawback is resolved by the

conditional value-at-risk, which is defined as the corresponding expected revenue. Pflug

and Pichler (2016) show how to dynamically decompose the conditional value-at-risk in

general multistage stochastic programs, albeit with convex action spaces. Gönsch et al.

(2014) use this decomposition as starting point for a heuristic approach for the availability

control problem with its discrete action space.

Note that most literature focuses on a certain objective criterion and theoretically

analyses toy settings. However, there is also some literature without clear objective, but

where risk-neutral approaches are slightly modified by calibrateable parameters such that

expected utility or an arbitrary risk measure can be optimized on demand, either man-

ually (Huang and Chang 2011 and Koenig and Meissner 2015b) or by simulation-based

optimization (Koch et al. 2016).

4. Traditional industry applications

In this section, we portray important traditional industry applications beyond passenger

air transport, specifically air cargo (§4.1), hotel (§4.2), and car rental (§4.3). We analyze

their specific challenges, discuss their relationship to the generalizations discussed in §3,

review the scientific contributions of the last 15 years, and point out avenues for future

research. For the sake of brevity, we do not give a DP formulation, but discuss how the

control problem relates to the generalizations discussed in §3.

Further industries that fall in this class and share strong similarities with the ones

presented are railway, cruise lines, restaurants, casinos, theme parks, liner shipping, or

tour operators. For some of these industries, specific reviews exist (e.g., Armstrong and

Meissner (2010) for railway, Sturm and Fischer (2016) for cruise lines). For the other

industries, there is only rare methodological work (e.g., Zurheide and Fischer 2015 for

liner shipping) as well as only few case studies and conceptual work (e.g., Kimes 2005 for

restaurants, Metters et al. 2008 for casinos, Heo and Lee 2009 for theme parks).

4.1. Air cargo

Airlines carry cargo along with passengers to best utilize the available capacity and

to gain additional income. These revenue streams are becoming increasingly important:

according to a study by Boeing, e-commerce sales are expected to continue drive growth

of air cargo by over 4% per year for the next 20 years Crabtree et al. (2018).
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Selling air cargo capacity adds some fundamental complexities to the standard network

RM setting. To begin with, a large portion of air cargo capacity is sold based on long-term

contracts, which are planned upfront. Only the remaining capacity is sold on the so-called

spot market. The spot market handles the short-term demand approximately the last 30

days prior to service provision. Past research in RM has focused on controlling the sale

on the spot market. Second, both loadable weight and volume of an aircraft represent a

physical resource, such that two capacity (and demand) dimensions have to be considered.

Third, volume and weight capacity available for service provision are stochastic. They

may, among others, depend on the used or reserved capacity for long-term contracts, on

the number of passengers having priority over cargo, or on weather conditions. Fourth, the

exact weight and volume requirements of cargo bookings are not known prior to service

provision and therefore represent an additional source of uncertainty. In air cargo, a prod-

uct refers to a shipping class and is associated with a distribution of weight and volume

capacity consumption and a contribution margin rj . Let the random variables Wj and Vj

denote the weight and volume of a class-j booking. As (expected) immediate contribution

in the dynamic program, one uses E[rj ·max{Wj , Vj/γ}], where γ is a constant represent-

ing the weight to volume ratio of a standard shipment, and max{Wj , Vj/γ} is called the

chargeable weight. As final additional complexity, a cargo product is often not defined by

a specific itinerary, but only loosely linked to an origin-destination pair as long as it arrives

in time. Thus, the firm has an additional routing flexibility, and the final routing decision

can be delayed until after the selling horizon.

The routing flexibility means that this application is linked to the flexible product

concept as discussed in §3.2. Furthermore, the overbooking concept (§3.4) is important

here since show-up rates vary widely over time as shown by Popescu et al. (2006). Bringing

the literature on overbooking and flexible products together, reservations are assigned to

routes at the time of service provision. The optimal penalty costs are therefore uncertain

and depend on the reservations, the realizations of weight and volume capacities, and

realizations of volume and weight requirements of the reservations.

For air cargo RM on a single flight leg with deterministic weight and volume capacity,

the work of Amaruchkul et al. (2007) has attracted significant attention. The unique

volume and weight requirements of a cargo booking facilitate customer segmentation such

that the independent demand assumption can be used. However, the problem cannot

be reduced to a tractable (two-dimensional) problem even if only a single-leg flight is
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considered. This is because the exact weight and volume requirements only realize at the

time of service provision and, thus, reservations have to be tracked (similar to §3.4). The

authors propose the DP and decomposition architectures based on the expected weight and

volume requirements, decomposing the problem into two one-dimensional weight as well

a volume problems, respectively. Subsequent work built on these theoretical foundations:

see Han et al. (2010), Huang and Chang (2010), Xiao and Yang (2010), Qin et al. (2012),

Zhuang et al. (2012), Hoffmann (2013a), Hoffmann (2013b), and Moussawi-Haidar (2014).

For the network case, Pak and Dekker (2004) were the first to propose an capacity con-

trol model for cargo RM, assuming a deterministic capacity and that each request is unique

but with a deterministic capacity consumption at the time of sale. The authors suggest

a multi-dimensional knapsack model for approximation purpose and derive a correspond-

ing BPC. Bartodziej et al. (2007) extend the setting by considering the routing flexibility,

and show that the corresponding DLP can be formulated as network flow problem on a

time-space network. More recently, Barz and Gartner (2016) have considered a generalized

setting in order to comprehensively model the spot market availability control problem.

The authors derive solution approaches based on DLP, RLP, ALP, and DPD. With the

latter approach, which turns out to be the most profitable in numerical experiments, the

authors extend the work of Amaruchkul et al. (2007) and decompose the problem by re-

sources (that is, weight and volume as well as flights). However, similar to the setting with

flexible products, the utilized resources of a reservation are unclear at the time of booking.

To overcome this issue and render a decomposition possible, a reservation is immediately

assigned to a route at the time of booking, which parallels the setting with opaque products.

Similar solution approaches as in Barz and Gartner (2016) but without the consideration

of route flexibility and individual penalty costs can be found in Hoffmann (2013a). Also

Levina et al. (2011) cover the main complexities on the spot market. Whereas the previous

literature considers service provision at a single day, Levina et al. (2011) formulate the

spot market problem as infinite horizon dynamic program in order to find a fixed periodic

schedule with respect to the routing decisions.

Interestingly, only few papers cover the integration of upfront contract planning. In

this setting, contracts are signed before the spot market selling horizon starts, and the

airline has to decide on how much capacity to guarantee for contract customers and how

much capacity to retain for the spot market. As starting point for potential research, we

refer to Levin et al. (2012) as key reference.
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4.2. Hotel

The hotel industry was one of the earliest industries adopting RM techniques. Various

authors have reported that RM can improve revenues by 2% to 6% (Vinod and Vinod 2004,

Pekgün et al. 2013, Pimentel et al. 2018, and Saito et al. 2019).

Hotel RM can be formulated as a standard network RM problem. A product corre-

sponds to a multi-day stay at a certain price, and each day of the service period represents

a resource with a capacity equivalent to the number of rooms. There are some structural

differences to the airline RM problem: while an airline’s itineraries seldom have more than

three subsequent legs, stays in a hotel for a week or longer are not uncommon. Thus, hotel

RM problems do not have a clear end of the service period. A popular way to circumvent

the resulting infinite horizon is to specify certain cut-off days and to use standard methods

on a rolling horizon basis. In this context, Zhang and Weatherford (2017) explore DPD

for dynamic pricing of hotel rooms; see also Aslani et al. (2013) for a similar approach.

Overbooking (§3.4) is an important concept in hotel RM to hedge against cancellations;

see Koide and Ishii (2005), Ye et al. (2019) for static and Sierag et al. (2015) for dynamic

models, respectively. In a recent publication, Aydin and Birbil (2018) additionally consider

the case of so-called stay-overs, i.e., customers that request an extension of their reservation

during the service period. Under the assumption that those requests occur with certain

probabilities, the resulting problem is very similar to the network RM problem with over-

booking and no-shows. The authors extend the approach of Birbil et al. (2014) in order to

decompose the multi-day problem with stay-overs by product types (i.e., pairs of check-in

and check-out days).

An interesting research topic is the interaction with online platforms such as Book-

ing.com or Expedia. Recent work includes Anderson and Xie (2012) on opaque selling and

Sierag (2017) on flexible products. More work is desirable on how to deal with competi-

tion in the sharing economy, e.g. on how the availability of rich listing data from AirBnB

could be exploited in RM systems of hotel chains that compete with this platform. In the

marketing community, Zervas et al. (2017) recently investigated the economic impact that

AirBnB has on hotels, but the research question of whether and if so how RM systems

should take the available information into account is still open.

4.3. Car rental

Car rental RM shares some characteristics with hotel RM, such as the fact that the

service period spans several days. Resources refer to a certain car type at a specific day
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of the service period. The capacity of a resource is equivalent to the inventory of the car

type. A product refers to a rental of a car type over a number of days, linked to a certain

price, a pick-up and a return station, and some additional options such as insurances. A

multi-day rental consumes a capacity unit from multiple resources, thus this application

falls under the category of network RM. Car rental RM has some additional character-

istics that make it quite challenging: extensive use of upgrades, one-way rentals, flexible

and uncertain inventory (fleet management across stations, uncertain return stations and

rental durations) and contractual versus walk-in customers. An overview is also given in

Lieberman (2007) and a recent survey by Oliveira et al. (2017). Guillen et al. (2019) report

on the components and success of EUROPCAR’s RM systems, which has improved both

the fleet utilization by around 3% and the revenue-per-day by around 2% in the markets

France, Portugal, and Spain.

Upgrading is discussed as a concept in §3.3 with a focus on car rental. One-way rentals

allow customers starting and returning their rentals at different stations. Guerriero and

Olivito (2014) include one-way rentals by assuming that there is a known pick-up and a

corresponding return station for each product. The authors provide the DLP and use the

corresponding BPC. In practice, the return station is often not certain.

Another characteristic of car rental RM is the flexible capacity. A traditional RM

assumption is that capacity is fixed. However, in car rental, the fleet size remains flexible

to a certain extent even on an operational level, as the firm may transfer the fleet between

stations as well as acquire or register additional cars in the short term. Haensel et al.

(2012) consider car transfers between stations. They formulate their problem as two-

stage stochastic program. In the first stage, both a booking limit control policy and a

transfer policy for the days of the service period are determined, while the second stage

captures the random demand. Car transfers between stations are also considered in online

optimization settings, that is, without RM decisions or even anticipation of future demand

(e.g., Fink and Reiners 2006 and Conejero et al. 2014). Li and Pang (2017) consider a

single station, where additional cars can be procured at pre-defined costs. Different from

standard formulations, the authors model the problem as infinite horizon dynamic program

and propose two heuristic approaches to solve it. Apart from the RM literature, please

note that there is a large body of literature on isolated fleet planning (e.g., Pachon et al.

2006 and George and Xia 2011). Furthermore, capacity is uncertain due to the unforeseen

variation of the return station or rental duration; similar issues arise in hotel RM with
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stay-overs as mentioned in §4.2.

A trade-off needs to be managed between long-term contracts with business customers

at lower rates and walk-in customers paying higher rates. In addition to the usual demand

arriving over the selling horizon, so-called walk-in customers show up in the last minute

and are typically willing to pay a higher price. Without specific industry context, Gans

and Savin (2007) consider the problem with stylized contract and walk-in customer types.

Contract customers pay a fixed rental fee or may be rejected against a penalty, whereas

walk-in customers are dynamically priced. The structure of the optimal control policy is

analyzed for an infinite planning horizon.

Similarly, as in the hotel industry, the sharing economy is also introducing new chal-

lenges for RM research in the car rental domain. For example, at Gatwick Airport in the

UK, a car sharing offering ‘Car & Away’ has been launched in January 2018 that allows

travelers to rent out their car throughout their absence. Airports already are using RM to

manage pricing for parking. The potential to rent out cars that otherwise would be stand-

ing idle on the car park is attractive as a new income stream, and it poses new research

challenges: whilst the RM problem is naturally similar to car rental RM, we have a major

difference in as far as we have a constantly changing ‘fleet size’, which makes planning

considerably harder.

5. Innovative industry applications

Beyond the industries discussed or at least mentioned in §4, many others have adopted

RM concepts over the last decades, where the application of RM is less obvious: broadcast-

ing and internet advertising (see Pandey et al. (2017) for a review), cloud computing (e.g.,

Püschel et al. 2015), apartment and office rental (e.g., Chen et al. 2014), banking, (airport)

parking (e.g., Guadix et al. 2009), or e-commerce. However, taking a closer look, these

applications still share many similarities with the ones presented, both from a modeling

and methodological point of view. In this section, we discuss two applications that combine

RM techniques with scheduling: attended home delivery (§5.1) and manufacturing (§5.2).

For the case of attended home delivery, we will present a DP formulation, because its

use is quite common and researchers study essentially quite similar settings in this research

area. In manufacturing, authors study a quite distinct setting and usually do not use such

a framework explicitly so that we skip the DP.
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5.1. Attended home delivery

Online grocery retailing is growing year-on-year: for example, in the United Kingdom,

it is the quickest-growing sector in UK grocery with annual market growth of around 13%

(as compared to only a 2.5% growth of the wider grocery sector in 2017), as reported

by Carrol (2016). Competitive pressure squeezes the profit margins such that efficient

fulfilment services are essential. Home delivery of groceries usually requires the customer

to be at home and therefore delivery time windows need to be offered that often are

relatively narrow (such as 1 hour) to increase convenience for the customer. This may lead

to expensive fulfilment operations, thus triggering research into ways on how to influence

customers’ delivery slot bookings using slot availability control or slot pricing to arrive at

more efficient routes. The same logic also applies to other e-commerce sectors, such as

sales of large furniture items and the like. See Agatz et al. (2008) for a general review

on e-fulfilment and Agatz et al. (2013) as well as Snoeck et al. (2018) for recent reviews

specifically dedicated to RM in last-mile delivery.

Using RM terminology, a product corresponds to one of the possible delivery time

windows. Accepting an order in a time windows consumes delivery capacity which may

impact a firm’s ability to serve other customers since it has a finite fleet. Therefore,

the fulfillment resources (vehicles) link the products such that we can regard the control

problem of dynamically deciding on time window availability and/or prices as generalized

network RM problem. It is generalized in as far as it is not clear which route a vehicles

will be assigned to at the time of receiving an order, and as such, the concept of ‘remaining

available capacity’ to serve the demand for a product is not straight-forward. The actual

routes are only finalized once no more orders can be received (in the context of next-day

delivery). When considering same-day delivery, demand management and vehicle dispatch

and routing decisions need to be made in conjunction rather than in succession.

We can use dynamic programming to characterize the optimal control policy for dy-

namic time window availability control (or dynamic pricing). Assuming unit-sized orders,

the state It of orders received until time t is described by tuples (i, j) (one for each time

period where a customer placed an order), with i ∈ I denoting a customer’s delivery loca-

tion and j the selected time window. Let λ
(i)
t denote the probability of a customer arrival

from location i at time t, mirroring a segment of one as described in §3.5. As mentioned

above, a customer reveals the order as well as the delivery location at the time of arrival,

based upon which the service provider can decide on the offered time windows. Therefore,
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ri denotes a customer’s contribution margin due to the order. The optimal expected profit

Vt(It) satisfies the Bellman equation

Vt(It) =
∑
i∈I

λ
(i)
t max

St⊆J

{∑
j∈St

Pj(St)
(
ri + Vt+1

(
It ∪ (i, j)

))
+
(
1−

∑
j∈St

λPj(St)
)
Vt+1(It)

}
(5.1)

with boundary conditions VT+1(IT+1) = −∞ if there is no feasible solution to the vehicle

routing problem with time windows (VRPTW) in the service period, and VT+1(IT+1) =

−C(IT+1) else. The term C(IT+1) is a shortcut for the optimal delivery costs of the

VRPTW.

Formulation (5.1) introduces difficult challenges. The boundary condition requires

checking in a fraction of seconds for each customer arrival and time window whether there

is a feasible route plan if the customer is accepted. Moreover, an approximation of the

value function (or, equivalently, the opportunity costs) requires anticipation of the future

number of customers that can be served and their value as well as of the final delivery

costs.

Regarding the feasibility problem, most approaches utilize variants of the well-known

cheapest insertion heuristic, going back to Rosenkrantz et al. (1974) and Solomon (1987).

The idea is to maintain at least one feasible route plan when transition from one state to

the next. Given a feasible route plan, a new customer is inserted into a position that leads

to the lowest increase in delivery costs.

Under the independent demand assumption, Campbell and Savelsbergh (2006) suggest

to use those so-called insertion costs as opportunity cost estimates. Ehmke and Campbell

(2014) additionally consider time-dependent travel times. Yang et al. (2016) use the inser-

tion costs together with a modification that additionally accounts for historical route plans

as opportunity cost estimates. Both Yang and Strauss (2017) and Klein et al. (2018) replace

the VRPTW in the boundary with an approximation, namely the cluster-first-route-second

delivery costs approximation of Daganzo (1987) and a model-based approximation building

on the seed-based heuristic of Fisher and Jaikumar (1981), respectively. The advantage

of using an approximation in the boundary is that (5.1) can be traced back to a simpler

approximate dynamic program that only stores the number of reservations for the time

windows and some subareas (e.g., due to zip codes) of the whole delivery region. Yang

and Strauss (2017) use a simulation-based approximate dynamic programming approach

to heuristically solve the resulting problem, whereas Klein et al. (2019) plug their approxi-
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mate routing model into the CDLP and apply CEC. In contrast to the previous literature,

Ulmer and Thomas (2019) as well as Koch and Klein (2018) derive opportunity cost es-

timates directly from the route plans maintained throughout the booking horizon. Their

basic idea is to measure and valuate the time left in the service period for delivery of future

customers. Asdemir et al. (2009) and Cleophas and Ehmke (2014) work with the limiting

assumption that delivery capacity levels are committed a priori to each time window and

subarea. Therefore, delivery costs are fixed, and the problem reduces to a standard net-

work RM problem with the remaining capacity of each time window and subarea in the

state space.

Attended home delivery is linked to the concept of flexible products that was discussed

in §3.2: Gulpinar et al. (2018) study this link under a scenario where customers can choose

either regular or flexible time windows; the latter consist of several regular (say, 1 hour)

slots. A customer is allocated to one of these regular time windows (and informed of this)

only shortly prior to their designated delivery day. In exchange for granting this flexibility,

they receive a discount. This concept is currently being used by Tesco in the UK.

In future research, the linkage of RM in attended home delivery to other existing

streams should be made more transparent and eventually exploited, e.g., to online customer

selection in supply chain management (e.g., Elmachtoub and Levi 2015, Elmachtoub and

Levi 2016) or to dynamic vehicle routing (e.g., Bent and Van Hentenryck 2004,Ulmer et al.

2018). For example, as a result of such an integrated study, research in same-day delivery

could be pushed and streamlined. Furthermore, there are many research challenges in

shipping alliances: see Allen et al. (2017), for example. In the sharing economy concept,

two or more shipping companies work together to increase efficiency. Managing joint pricing

and revenue splitting rules is rather difficult due to the large variety in shipping requests.

Finally, RM challenges arise in crowdshipping: for instance, how should the payment rates

for crowdsourced drivers be dynamically set so as to influence driver availability in the right

locations and times, and how to integrate this with demand-side pricing and availability

decisions?

5.2. Manufacturing

Although the major part of the RM literature is devoted to the service industry, there

has been a significant interest over the past decade to expand the available-to-promise or

capable-to-promise logic of manufacturing’s advanced planning systems by RM ideas; see

Quante et al. (2009b) for a previous review. In the context of manufacturing, the task of
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RM is to balance demand and production. As demand is usually given by independent

orders, the resulting problems are also known as dynamic order acceptance and scheduling

problems. To date, most research in order acceptance and scheduling is on deterministic

models (see Slotnick 2011). Clearly, the manufacturing sector is vast and literature often

investigates somewhat unique problems such that our discussion is necessarily generic. In

the following, we first review the RM literature in make-to-order (MTO) manufacturing,

before we discuss some extensions in a make-to-stock (MTS) and assemble-to-order (ATO)

context.

In MTO manufacturing, production is triggered by an arrival of a customer. A bot-

tleneck resource typically refers to a machine during a certain time interval of the service

period. An order, which may refer to the production of some standardized products or to a

unique production contract, is associated with a contribution margin as well as a machine

usage over a certain period of time. Thereby, most of the literature represents machine

capacity and orders’ capacity consumptions on an aggregate level, that is, as available and

required production time during a sufficiently small time span of the service period. In the

following, we denote those small time spans as planning periods.

Under this aggregated representation of machine capacity, there is some literature which

considers an upfront booking horizon followed by the production in the service period.

Spengler et al. (2007), Hintsches et al. (2010), and Volling et al. (2012) assume that orders

have a clear capacity consumption over the service period, e.g. because only a single

planning period is considered, such that the problem can be reduced to a standard network

RM problem. In a similar setting, Hung and Lee (2010) and subsequently Hung et al. (2014)

assume that the capacity consumption and the profit are random variables.

More commonly, in contrast to the standard network RM problem, a real-time plan-

ning horizon consisting of a largely overlapping booking horizon and service period is

considered. Perry and Hartman (2004) formulate the resulting multi-period problem as

dynamic stochastic knapsack model, ignoring that orders are usually associated with cer-

tain attributes, in particular with due dates. Integrating those attributes implies that the

production sequence has to be planned. Clearly, the capacity consumption depends on

these scheduling decisions. If preemption is not allowed, the state space comprises both

the accepted orders and the remaining machine capacity over the future planning periods.

The latter accounts for those orders for which production has already started. In such

a setting, Barut and Sridharan (2004) as well as Barut and Sridharan (2005) consider a
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single bottleneck machine and develop approaches based on protection levels, while Gallien

et al. (2004), Chevalier et al. (2015), as well as Mlinar and Chevalier (2016) investigate the

problem in infinite horizon. Closer to our network RM framework, Guhlich et al. (2015a)

consider the production on several machines organized in a flow shop over a limited plan-

ning horizon. The authors suggest a BPC based on a RLP.

It may be the case that orders are associated with further attributes such as release

dates, sequence-dependent setup times, or precedence constraints. In this case, it is not suf-

ficient to represent machine capacity on an aggregate level. Instead, the inherent scheduling

problem has to be considered in detail, similar to the attended home delivery setting. Some

literature tackles such problems in an online optimization environment (e.g. Ebben et al.

2005 as well as Mandelbaum and Shabtay 2011). Only few papers integrate the anticipation

of future orders. For this purpose, for each incoming order, a tentative schedule has to be

built, e.g. by priority rules or a cheapest insertion heuristic, and evaluated. Arredondo and

Martinez (2010) use a simulation-based approximate dynamic programming approach to

evaluate the tentative schedules, while Xu et al. (2015) provide a DLP-based approximation

and use CEC.

In contrast to MTO, a MTS manufacturer produces standardized products based on

demand forecasts. Products are storable and, thus, a resource refers to the finished prod-

ucts’ inventory in a planning period. Correspondingly, the manufacturer has to keep track

of the inventory in the state space. Inventory replenishment may be exogenous or endoge-

nous. Quante et al. (2009a) and Yang and Fung (2013) consider the case of exogenous

replenishments. Order sizes are stochastic and can be partially accepted. Because the

authors consider the sale of a single product, the problems boil down to one-dimensional

dynamic programs. Some papers study endogenous replenishments in joint MTO/MTS

environments, characterizing the optimal policy in infinite horizon dynamic programs. De-

fregger and Kuhn (2007) assume that, in each planning period, a request for the single

product under consideration can be accepted or rejected and production to inventory can

be started. Gupta and Wang (2007) as well as Iravani et al. (2012) allow two product

types, namely one product that is produced to stock and one product that is produced to

order.

Finally, an ATO manufacturer assembles intermediate materials to end products. If

intermediate materials are held in stock and replenishment is difficult, they represent an

additional resource that must be included in the state space; see Gao et al. (2012) and
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Guhlich et al. (2015b) for corresponding problems.

As our above discussion reveals, literature at the intersection of RM and manufacturing

is quite heterogeneous. In particular, it remains unclear to what extent the investigated

problems could be connected and whether solution approaches could be transferred. Thus,

future research should be devoted to developing an integrated research framework using

DPs.

6. Conclusion and outlook

This review forms the second part of a literature review on RM, focussing on recent

generalizations of the basic availability control problem in RM. The first part, Strauss et al.

(2018), concentrated on methodological advances with regard to the standard problem of

choice-based availability control.

For the future, we expect different generalizations discussed in this paper to be com-

bined at least partially in some fashion to address current industry developments. Like in

the past, the airline industry may set the scene. With the introduction of IATA’s New Dis-

tribution Capability (NDC), the operative task of RM will gradually move from availability

control for a given set of products to some kind of offer management. Basically, NDC rep-

resents a communication standard based on the Extensible Markup Language (XML) (see

e.g. Westermann 2013). In contrast to the existing global distribution systems, the new

standard allows airlines to respond directly to requests from travel agents as this is also

already possible via corporate web sites. The effect of allowing interactive communication

during the shopping process can already be seen by the increasing incorporation of ancil-

laries and incremental sales into RM. For years, incremental sales have already played an

important role e.g. in the context of the RM for cruise lines (e.g. onboard shopping, land

excursions) or for casino hotels (see Metters et al. 2008 and Sturm and Fischer 2016). In

the last decade, even the traditional major network carriers have started to unbundle their

products in order to offer a more tailored service and to generate incremental sales. Among

many others, the resulting ancillaries could include onboard shopping and drinks/meals,

bag transportation, preferred seats, boarding priority a.s.o. Going beyond, airlines may

dynamically design offers and set prices based on the specific information at the time of

the request. For example, personalization may be used to determine the set of itineraries a

customer is shown. Machine learning ideas can be useful in adding a learning component

to a RM system as we discuss in §3.5 on personalization; we expect more research in this
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vein will emerge in the coming years, much of it driven by the current world-wide appetite

for artificial intelligence approaches. This trend is also reflected by new machine learning-

based commercial solutions offered by leading RM system providers such as PROS (who

launched a new solution to optimize personalized offers using machine learning in 2017).

Airline practitioners and RM researchers may want to (re-)start investigating group

bookings. From a methodological point of view, group bookings could be incorporated into

the presented RM framework by defining one product for each possible group size. However,

open research questions include how to accurately forecast group sizes (machine learning

techniques may help here) and to study the impact of group bookings when relaxing the

common assumption that all bookings are for individuals.

The applications in attended home delivery and in manufacturing share the common-

ality that products correspond to orders for which some scheduling has to be performed

during and/or after the selling horizon in case they are accepted. This is necessary to

determine whether the corresponding services can feasibly be delivered with the available

resources and to calculate the resulting costs for service provision as a basis for maxi-

mizing the expected profit. Thus, they address the interface of demand and operations

management. We believe that this interface will get increased attention in the forthcoming

years due to new business models and the necessity for a better alignment of these two

functional areas. For example, in healthcare, web- and mobile-based systems for patient

self-scheduling like ZocDoc or Mychart are becoming popular. Ridesellers like Uber or

Lyft start offering real ridesharing services like UberPool, UberExpressPool, or Lyft Line,

which require some scheduling to match demand with supply. Equipment rental, which

has been common in the construction and transportation industry for years, is increasingly

used in the B2C context (for example, in the case of bike and car sharing). Finally, in

omni-channel retailing, we see the increasing use of RM for order fulfilment to balance

demand and supply over different channels.

Including a scheduling component into availability control makes the solution of the cor-

responding dynamic program much more difficult. As a consequence, scalable optimization

approaches like (simulation-based) approximate dynamic programming (ADP) are likely

to be seen more frequently for such applications in the future. A number of studies have

already shown a high potential of ADP in traditional RM settings (e.g., Huang and Liang

2011, Koch 2017), where such approaches have been competitive to mathematical program-

ming approaches like ALP or DPD. As simple structures such as bid prices are unlikely to
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work well in integrated RM and scheduling environments, the key issue here will be how

to capture the most important features of the state space, given the mutual dependence

of already accepted and future orders. In general, we expect that the combination of RM

approaches with other domains such as scheduling (but not limited to it) will continue to

provide a fertile ground for future research.
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