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 2 

Are there risks to wild European bumble bees from using commercial 1 

stocks of domesticated Bombus terrestris for crop pollination?  2 

 3 

Mass produced colonies of the Eurasian bumble bee, Bombus terrestris L., have 4 

been used in Europe for over 30 years for the pollination of horticultural crops.  5 

In recent years, the practice has been identified as a risk factor for wild bumble 6 

bees in Europe and some researchers have claimed that it is causing 7 

environmental harm.  The specific risks include competitive displacement of wild 8 

bumble bees, gene introgression, and the spread of disease.  We have reviewed 9 

the scientific evidence on risk factors associated with managed colonies of B. 10 

terrestris in Europe, and we highlight the strengths, weaknesses and gaps in the 11 

current knowledge base. In contrast to other reports, we conclude that there is 12 

currently not enough reliable, consistent evidence to support claims that the 13 

current use of managed B. terrestris in Europe is harmful to wild populations of 14 

B. terrestris and other bumble bees, and therefore the issue remains unresolved. 15 

In the case of disease risks in particular, there is conflicting evidence published 16 

by some researchers on the prevalence of pathogens in managed colonies versus 17 

audited data published by one of the main bumble bee producers. The current 18 

lack of consistent evidence makes it difficult for government regulators to make 19 

informed risk assessments, and we argue that more work is needed to 20 

demonstrate both the reproducibility of published findings and to understand the 21 

mechanisms of action of risk effects. Recommendations are made for future work 22 

to better understand if the proposed risks are occurring in practice and to put in 23 

place preventative measures and mitigations if required.  24 
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Introduction 1 

Bumble bees (Bombus spp., Hymenoptera, Apidae) pollinate a wide range of flowering 2 

plants and are often considered to be keystone species, but there are widespread 3 

concerns about their conservation (Goulson, 2010; Goulson, Lye & Darvill, 2008; 4 

Plowright & Laverty, 1984). Approximately 250 different Bombus species are 5 

recognized, of which roughly 10% have been reported to be at risk of extinction, while 6 

others, although not under extinction risk, have been exhibiting long term reductions in 7 

abundance and range extent (Goulson et al., 2008; Kosior et al., 2007; Potts et al., 2010; 8 

Williams & Osborne, 2009) (see Supplemental Material S1 for details).  Changes in 9 

land use, agricultural intensification and habitat loss are recognized as important drivers 10 

for these reductions (Carvell et al., 2006; Fitzpatrick et al., 2007; Goulson, Hanley, 11 

Darvill, Ellis & Knight, 2005; Grixti, Wong, Cameron & Favret, 2009; Kremen, 12 

Williams & Thorp, 2002; Williams, 2005; Williams & Osborne, 2009).  In addition, the 13 

use of mass-produced, managed bumble bee colonies for crop pollination has been 14 

highlighted as an additional risk factor for wild bumble bees, and this issue has received 15 

increasing attention in recent years (Cameron, Lim, Lozier, Duennes & Thorp, 2016; 16 

Cameron et al., 2011; Colla & Packer, 2008; Goka, 2010; Goka, Okabe, Niwa & 17 

Yoneda, 2000; Kondo et al., 2009; Morales, Arbetman, Cameron & Aizen, 2013; 18 

Tsuchida, Kondo, Inoue & Goka, 2010; Williams & Osborne, 2009).  This practice has 19 

grown widely since the late 1980s and is used for the pollination of fresh produce such 20 

as tomato and strawberry, mainly in glasshouses and polytunnels (Department for 21 

Environment, Food and Rural Affairs [DEFRA], 2014a).  In this system, bumble bee 22 

hives produced by a specialist supplier are placed temporarily in the crop, with each 23 

hive lasting typically for 6 – 8 weeks after delivery.  New hives are added through the 24 

season as the pollination demand increases and / or to replace older hives that have gone 25 
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past the peak of worker production.  The use of domesticated bumble bees in this way is 1 

now an important part of the horticultural industry. However, it is not without 2 

controversy, and it has been criticized by some researchers, who have proposed that it is 3 

either a causal factor in wild bumble bee declines or presents a high-risk potential that is 4 

not being managed correctly. Specific concerns have been raised about competitive 5 

effects of managed bumble bees on wild bees, hybridization between domesticated and 6 

wild bees, and elevating infectious disease levels in wild bee populations (Cameron et 7 

al., 2016; Cameron et al., 2011; Goulson et al., 2008; Graystock, Blane, McFrederick, 8 

Goulson & Hughes, 2015; Graystock et al., 2013; Kraus et al., 2011).   In North 9 

America, an association has been drawn between commercial bumble bee operations 10 

and a fall in the relative abundance of four wild bumble bee species of up to 96% 11 

(Cameron et al., 2011). In turn, the industry has defended its position, and has criticized 12 

some of the scientific evidence as not representing the true picture (Biobest Group, 13 

2013).   14 

In this paper we review the scientific literature on the ecological risks from 15 

using managed, domesticated colonies of the Eurasian bumble bee Bombus terrestris L. 16 

(known commonly as the large earth bumble bee or the buff-tailed bumble bee) within 17 

its native range in Europe (see Supplemental Material S2 for a short description of the 18 

natural distribution and life cycle of B. terrestris). This was the first bumble bee to be 19 

mass-produced and it is also the most widely used. We explore the specific risks that 20 

have been put forward and we highlight the strengths, weaknesses and gaps in the 21 

current knowledge base. Evidence from studies conducted outside Europe and with 22 

other Bombus species is included where relevant.  We are concerned primarily about 23 

countries within the European Economic Area although the review is relevant to all 24 

areas within the native range of B. terrestris.  The review is intended to be accessible to 25 
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a wide range of people including researchers, government representatives, horticultural 1 

growers and bee producers. We have included Supplemental Material which has 2 

contextual information on the biology of bumble bees, the ecological effects of non-3 

native Bombus species outside Europe, and descriptions of the pathogens and parasites 4 

that can affect bumble bee health.  5 

 6 

Use of domesticated bumble bees for crop pollination 7 

The mass rearing of bumble bee colonies has only been possible in the last 30 years 8 

(Velthius & Van Doorn, 2006).  The process is technically complex and a considerable 9 

number of challenges had to be overcome before it became economically viable, 10 

including storage of hibernating queens, initiation of new colonies, queen mating, the 11 

provision of good quality pollen as a food source, and prevention and management of 12 

disease (Ruijter, 1996; Velthius & Van Doorn, 2006).  Greenhouse growers first used 13 

domesticated bumble bees for pollination on a commercial basis in Belgium in 1987, 14 

followed by growers in the Netherlands (1988), France and the UK (1989) (Velthius & 15 

Van Doorn, 2006).  Commercially-reared bumble bees are now sold across Europe, in 16 

Asia and North America, predominantly for use on protected crops such as tomato, 17 

strawberry and raspberry (e.g. DEFRA, 2014a; Strange, 2015).  18 

The stocking density of hives depends upon the type of crop and the time of 19 

year: for a tomato crop, for example, the published recommendation is for 5 – 7.5 20 

colonies per ha (Peet & Welles, 2005).  Five bumble bee species have been 21 

commercially developed for mass production (Velthius & Van Doorn, 2006): (i) within 22 

the subgenus Bombus (Williams et al., 2012a), Bombus terrestris (native to Eurasia, 23 

used commercially in Europe, N Africa, Asia and Australasia), Bombus lucorum (native 24 

to Eurasia, used in Asia), Bombus ignitus (used within its native range in east Asia), 25 
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Bombus occidentalis (used in its native range in western North America); and (ii) within 1 

the subgenus Pyrobombus, Bombus impatiens (native to eastern North America but used 2 

across North America.  Bombus terrestris is the most widely used species and is popular 3 

with growers because of the large boost provided to crop yield and quality (Lye, 4 

Jennings, Osborne & Goulson, 2011; Roldán Serrano & Guerra-Sanz, 2006).  It is 5 

currently the only mass-produced bumble bee species deployed for crop pollination in 6 

Europe (Velthius & Van Doorn, 2006).  Velthius and Van Doorn (2006) estimated that 7 

around one million B. terrestris colonies were sold for crop pollination in 2004 8 

(Velthius & Van Doorn, 2006). In England, 21,799 hives were licensed for commercial 9 

pollination in 2013 (DEFRA, 2014a). It is reported that commercial colonies of B. 10 

terrestris have been used in at least 57 countries, of which 16 are outside of its native 11 

range including in East Asia, Mexico and Chile (Ings, 2007; T. C Ings, Ings, Chittka &, 12 

Rasmont, 2010; Velthius & Van Doorn, 2006). Imports of B. terrestris are now 13 

prohibited in the USA, Canada, Australia, China, South Africa, Argentina and Brazil 14 

because of evidence about its damaging effects as an invasive species (Velthius & Van 15 

Doorn, 2006; CABI. 2018) (see Supplemental Material S3).  16 

 17 

Is commercial use of B. terrestris in Europe a risk to wild bumble bees?  18 

Potential ecological risks to wild bee in Europe from managed B. terrestris 19 

The main environmental concerns about commercial use of B. terrestris in Europe are 20 

to do with the effects of introducing large numbers of managed colonies into an area, 21 

with the managed bees subsequently interacting directly or indirectly with wild bees and 22 

causing them harm. The specific risks proposed include competitive displacement of 23 

wild bumble bees (Ings, Schikora & Chittka 2005; Ings, Ward & Chittka, 2006), 24 

introgression of genes from managed bumble bees to wild populations (Ings, Raine & 25 
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Chittka, 2005; Kraus et al., 2011) and the spread of infectious disease (Graystock, 1 

Goulson & Hughes, 2014; Graystock et al., 2013; Manley, Boots & Wilfert, 2015; 2 

Meeus, Brown, De Graaf & Smagghe, 2011; Murray, Coffey, Kehoe & Horgan; 2013; 3 

Otterstatter & Thomson, 2008; Whitehorn, Tinsley, Brown & Goulson, 2013).  The size 4 

of the ecological risk is considered also to be affected by whether the managed B. 5 

terrestris subspecies is native or non-native within its area of use: the release of a non-6 

native bumble bee subspecies has been described as presenting a greater risk of 7 

competitive exclusion, hybridization and gene introgression compared to releasing a 8 

native subspecies for example (Moritz, Härtel & Neumann, 2005; Schneider, DeGrandi-9 

Hoffman &  Smith, 2004;  both cited in Ings et al., 2010). Some authors have proposed 10 

that these risks have already been realized. For example, Ings et al. (2006) concluded 11 

that establishment of feral colonies of non-native B. terrestris is very likely to have 12 

occurred in the UK, with a high risk of competitive displacement of native wild bumble 13 

bees. Meanwhile Kraus et al. (2011) reported that gene introgression from managed to 14 

wild bumble bees had occurred mainland Europe, while Murray et al. (2013) reported 15 

that pathogens had spilled over from managed B. terrestris to wild bumble bees in 16 

Ireland. These and other studies have been used to inform ecological risk assessments 17 

by government regulators. The main trend has been to prevent or severely curtail the use 18 

of non-native B. terrestris subspecies.  The Sardinian endemic B. t. sassaricus was used 19 

for tomato crop pollination in southern mainland Europe between 1989 and 1996 but 20 

was subsequently discontinued by the industry in favor of B. t. dalmatinus (Velthius & 21 

Van Doorn, 2006; Ings et al., 2010).  In the Canary Islands, the endemic B. t. 22 

canariensis is used for commercial pollination and the import of other subspecies is 23 

prohibited. In Great Britain, use of non-native B. t. terrestris and B. t. dalmatinus was 24 

permitted up until 2015, but the licensing regime was subsequently changed so that the 25 
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indigenous subspecies B. t. audax became the default for commercial operations, while 1 

the use of B. t. terrestris  / dalmatinus was restricted to circumstances in which crop 2 

pollination was threatened by lack of supply of B. t. audax hives (Natural England, 3 

2013, 2014). Use of B. t. terrestris / dalmatinus hives is still permitted in the Republic 4 

of Ireland subject to safeguards (use of queen excluders and strict disposal protocols), 5 

however Bord Bia, the Irish state agency that promotes horticulture, does not favor the 6 

use of non-native bumble bees and hence bee suppliers have decided on a voluntary 7 

basis only to supply B. t audax hives (D. Foster, Koppert UK Ltd. personal 8 

communication, September 25, 2018). No restrictions have been placed yet in Europe 9 

on domesticated, native bumble bee subspecies. However, the situation is being 10 

monitored by government authorities in the light of concerns about disease risks 11 

(DEFRA, 2014b).  In Norway, only locally-produced colonies of B. t. terrestris are 12 

permitted for commercial pollination (Velthius & Van Doorn, 2006).  The trade in 13 

bumble bee colonies in the European Union and the European Economic Area is 14 

governed under animal health regulations (Council Directive 92/65/EEC) in which 15 

colonies sold between member countries must be accompanied by an approved health 16 

certificate and with a stipulation that they show no signs of disease (European 17 

Commission, 1992).  The current regulations have been criticized as being inadequate, 18 

with recommendations to improve their effectiveness including the adoption of more 19 

stringent pathogen testing procedures (Graystock et al., 2015). 20 

 In the following sections, we examine the three main ecological risks from 21 

domesticated bumble bees that have been put forward, as they relate to use of B. 22 

terrestris within its native in Europe: (1) domesticated bumble bees outcompete wild 23 

bees for natural floral resources; (2) genes from domesticated bumble bees spread into 24 
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wild bumble bee populations; (3) pests and pathogen levels are increased in wild 1 

bumble bee populations as a result of the presence of managed bumble bees.    2 

 3 

Do domesticated bumble bees ‘escape’ from greenhouses into the wild? 4 

Some managed bumble bees are used to pollinate crops grown in open field crops or in 5 

semi-open polytunnels, where they face no physical restrictions on them coming into 6 

contact with wild bees and, in these situations, they are known to forage outside of the 7 

target crop (Foulis & Gouslon, 2014; Trillo et al., 2019). A lot of managed bumble bees 8 

are used in enclosed greenhouses on protected edible crops such as tomato, but even 9 

here they may have access to the outside through unscreened vents and doors. In British 10 

Columbia, Canada, an analysis of the species identity of pollen collected from B. 11 

impatiens and B. occidentalis colonies housed within greenhouse tomato crops 12 

suggested that bees were foraging outside for a large amount of the time in late spring 13 

and summer (the proportion of non-tomato pollen collected on sampled foraging bees 14 

was as high as 73% in one case) although there were significant variations across time 15 

and at different greenhouse sites (Whittington, Winston, Tucker & Parachnowitsch,  16 

2004). Similarly, in Ontario, Canada, workers of B. impatiens were observed leaving 17 

and entering greenhouses where managed colonies of this species were used in tomato 18 

and pepper production (Otterstatter & Thomson, 2008). The relative abundance of B. 19 

impatiens workers compared to other Bombus species observed on wildflowers declined 20 

with increasing distance from the study greenhouses, with > 90% of B. impatiens being 21 

collected within 200 m (Otterstatter & Thomson, 2008).  The extent to which managed 22 

bumble bees leave European enclosed greenhouses has not been studied in detail, but if 23 

the examples from Canada are typical then outside foraging is likely to occur if 24 

preventative measures (screened vents and double doors) are not in place. In principle, 25 
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movements of managed bees into the wider environment may be temporary (managed 1 

worker bees foraging outside and then returning to their home colony) or permanent, if 2 

managed gynes escape and set up new colonies outside.  In Japan and South America, 3 

B. terrestris colonies imported from Europe are known to have escaped from 4 

greenhouses into the wild, established and spread (Matsumura, Yokoyama & Washitani, 5 

2004; Morales et al., 2013). When use of non-native B. terrestris was still routinely 6 

permitted in the UK, growers were required to follow a set of practices to prevent gynes 7 

escaping, including use of queen locks in hives and destruction of colonies after use; 8 

however, an inspection of 20 growers by the UK government’s advisory body found 9 

that queen locks were being left open, and 60% of growers were not killing non-native 10 

colonies after use (Natural England, 2014).  Both of the northern European subspecies 11 

B. t. audax and B. t. terrestris have lifecycles in which, at the end of season, colony 12 

workers and drones die and new, mated queens hibernate over the winter to emerge and 13 

form colonies the following spring (Woodard et al., 2015).  In contrast, B. t. dalmatinus  14 

- which occurs in warmer, Mediterranean regions – forms colonies that are active 15 

throughout the winter in its native range.  Following laboratory-based assessment of 16 

cold tolerance using standardized protocols, Owen, Bale and Hayward (2016) 17 

considered that B. t. dalmatinus would not be able to survive as active colonies under 18 

currently typical northern European winters, including the UK. The only large scale, 19 

long term monitoring study on establishment of managed non-native B. terrestris 20 

subspecies in Europe concerns the Sardinian endemic B. t. sassaricus which was used in 21 

southern mainland Europe for greenhouse pollination from 1989 – 1996 (Ings et al., 22 

2010). Bombus t. sassaricus is morphologically distinct from mainland subspecies and 23 

can be readily identified in the field. Surveys carried out in southern France from 1988 24 

– 2004 (i.e. before, during and after the period of commercial use) found B. t. sassaricus 25 
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males and queens foraging outside of greenhouses (in 1991, 1993 and 1994), while 1 

several workers were observed foraging on native plants at a single location 30 km from 2 

the nearest commercial greenhouse in 1998, two years after import of B. t. sassaricus 3 

had stopped (Ings et al., 2010). However, no B. t. sassaricus, or hybrids with mainland 4 

subspecies, were observed in surveys done in 2004, suggesting that it had not been able 5 

to persist in detectable numbers, or had become indistinguishable from native 6 

subspecies following frequent hybridization (Ings et al., 2010).   7 

 8 

Competition between domesticated bumble bees and wild bees 9 

Managed B. terrestris bees that forage away from their target crop are likely to compete 10 

with wild bees for floral resources. A priori, the intensity and outcome of this 11 

competition will depend on a wide range of factors including whether the managed 12 

bumble bee is a native or non-native subspecies, the numbers of managed bumble bees 13 

entering the environment, whether or not they establish new colonies, the foraging-14 

related attributes of the wild bee community in comparison to the managed bees, the 15 

availability and diversity of forage, the physical and ecological conditions of the 16 

landscape, and the action of natural enemies (Fontaine, Collin, & Dajoz, 2008; 17 

Herbertsson, Lindström, Rundlöf, Bommarco & Smith,  2016; Ranta & Lundberg, 18 

1980; Stelzer, Raine, Schmitt & Chittka, 2010; Stout, Allen & Goulson, 1998). The area 19 

over which competition occurs will depend on the bees normal foraging range. The 20 

mean and maximum foraging distances for wild B. terrestris in forage-rich 21 

environments are reported to be c. 270 m and 600 – 800 m respectively (Darvill, Knight 22 

& Goulson, 2004; Osborne et al., 1999; Wolf & Moritz, 2008) with c. 40% of workers 23 

foraging within 100m of the colony (Wolf & Moritz, 2008), and it is reasonable to 24 

assume that managed bees will have a similar foraging range outside.   25 
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 The different subspecies of B. terrestris show variation in traits which might 1 

influence competitiveness, including foraging behavior, learning, flower detection and 2 

color preference (Chittka, Ings & Raine, 2004; Ings et al., 2006; Skorupski, Döring & 3 

Chittka, 2007; Spaethe, Tautz & Chittka, 2001). In a reciprocal transplant experiment 4 

done in Sardinia and Germany, nectar foraging performance of three B. terrestris 5 

subspecies was found to differ consistently, with B. t. canariensis being superior to B. t. 6 

sassaricus, which in turn was superior to B. t. terrestris, with these differences being 7 

explained largely by the better foraging subspecies having a larger body mass (Ings et 8 

al., 2005). When body size was accounted for, native bumble bee colonies were inferior 9 

for nectar collection to at least one of the two non-native subspecies (Ings et al., 2005).   10 

A study of managed B. terrestris to aid pollination of raspberry crops grown in open 11 

ended polytunnels in Scotland found no evidence that the managed bees had negative 12 

effects on the species composition, abundance or diversity of other social bee species 13 

visiting raspberry flowers within the tunnels, although the authors recommended that 14 

more work was needed to satisfactorily rule out the possibility of competition between 15 

managed bumble bees and wild bee species (Lye et al., 2011).  In a field experiment 16 

done in southern England, paired, matched colonies of B. t audax (reared from nest 17 

searching queens caught in the wild) and B. t. dalmatinus (obtained from a commercial 18 

supplier) were found to have different nectar foraging performances, with the 19 

commercial bees performing significantly better than native bees in four out of five 20 

study locations, attributed to the larger body mass of B. t. dalmatinus (Ings et al., 2006).  21 

The commercial colonies produced a mean of 24.7 gynes compared to 0.3 for native 22 

colonies (Ings et al., 2006).  It is not known whether the superior foraging performance 23 

of B. t. dalmatinus would be maintained if individuals were able to establish their own 24 

colonies in the wild, nor whether this would result in competitive exclusion of native 25 
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colonies.  However, given the widespread use of managed colonies of B. t. dalmatinus 1 

in the UK at that time, Ings et al. (2006) concluded that it was highly likely that feral 2 

colonies had become established in the UK and presented a significant risk of 3 

competitive displacement of native B. terrestris and other bumble bees species (but see 4 

Owen et al., 2016, above).  At this time, there has been no peer-review research 5 

published on whether non-native subspecies colonies of B. terrestris have established in 6 

the UK and hence this represents a gap in knowledge.  It is technically difficult to 7 

investigate, given that wild nests are cryptic, but it should be possible to investigate 8 

using molecular ecology approaches (see Conclusions section later in this paper for 9 

recommendations).  10 

 11 

Risks of hybridization and gene introgression 12 

If non-native, managed bumble bees were to escape in the wild, then there could be 13 

genetic disturbance caused by mating with bees from wild populations. Hybridization 14 

between different subspecies that are normally geographically separate has potential to 15 

alter allele frequencies within and between populations and influence evolution 16 

(Balloux & Lugon-Moulin, 2002). Introgression of genes from managed bumble bees to 17 

wild populations could happen through three possible mechanism: (1) worker drift; (2) 18 

gynes and drones of managed bumble bees that leave greenhouses could mate with wild 19 

conspecifics; (3) greenhouse-mated queens could establish new colonies in the wild 20 

with subsequent mating of their offspring and wild bees.  Goulson (2010) speculated 21 

that extensive introgression may have occurred already in the British Isles between 22 

managed B. t. terrestris / dalmatinus and B. t. audax, resulting in a single population.  23 

However, only a small number of studies have been done to date, and it is not yet 24 
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possible to say definitively whether hybridization has occurred between managed and 1 

wild bumble bees.  2 

 Drifting is the process by which worker bees enter a new colony and are 3 

accepted by its occupants. It could contribute to gene introgression from managed 4 

bumble bees if workers enter wild nests and lay male eggs. Drifting occurs in a number 5 

of social bee species and has been explained in terms of errors in orientation and 6 

navigation (Free, 1958; Pfeiffer & Crailsheim, 1998). There is evidence that it is also 7 

associated with opportunistic worker reproduction and hence could be a mechanism for 8 

introducing genes from commercial bumble bees into wild populations. A study of drift 9 

behavior in colonies of B. occidentalis and B. impatiens used for greenhouse tomato 10 

pollination in Canada found that successfully drifting workers of B. occidentalis had 11 

more developed eggs than the resident bees in the host colony in the greenhouse 12 

(Birmingham, Hoover, Winston & Ydenberg 2004). The amount of drifting in 13 

greenhouses is affected by: (i) the size of the recipient colony, with workers drifting 14 

more to older colonies containing a larger number of resident workers (Birmingham et 15 

al., 2004); (ii) by the orientation and proximity of colonies.  Stacked greenhouse bumble 16 

bee colonies have been reported to contain approximately 7 – 20% drifting workers 17 

(Birmingham & Winston, 2004; Lefebvre & Pierre, 2007), but the amount of drifting 18 

declines with increasing distance between colonies, and most greenhouse bees were 19 

found to drift no further than 30 m from their home colony (Birmingham & Winston, 20 

2004). Worker drift appears to be less common between wild bumble bee colonies, 21 

presumably because they are naturally separated further apart than in greenhouses. An 22 

analysis of nearly 1500 individuals from 14 excavated wild B. terrestris colonies in 23 

Scotland, in which microsatellites were used to evaluate parentage of adults, eggs and 24 

brood, found six drifter workers and four drone offspring of drifters from a total of four 25 
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colonies (O’Connor, Park & Goulson, 2013).  It was concluded that drifting was not 1 

common in this case (O’Connor et al., 2013). In a field experiment in eastern England – 2 

done using marked workers in colonies founded by wild-caught queens and placed at set 3 

distances (2, 20 or 60 m) from each other - 2.7% of workers were accepted drifters, the 4 

majority of which (2.0%) came from nests sited 2 m apart (Zanette, Miller, Faria, 5 

Lopez-Vaamonde & Bourke, 2014).  In a separate experiment in the same study, 6 

microsatellite genotyping of eight field-collected nests in southern England indicated 7 

that 3% of workers were not full sisters of their nest mates and were considered likely to 8 

be drifters (Zanette et al., 2014).  To date, no studies have been published on 9 

investigations of drifting of managed bumble bees into wild nests and this represents a 10 

knowledge gap, therefore. 11 

 A small number of studies have been published on interbreeding between the 12 

different B. terrestris subspecies (Coppée, Terzo, Valterova & Rasmont, 2008;  De 13 

Jonghe, 1986; Ings, Raine et al., 2005; Lecocq et al., 2013). Under laboratory 14 

conditions, members of the different subspecies of B. terrestris will interbreed but 15 

prefer to mate with their own subspecies (De Jonghe, 1986).  Gynes of B. t. dalmatinus 16 

paired in the laboratory with males of their own subspecies or with B. t. audax showed 17 

preferential mating for their consubspecific in 71% of cases, which was considered 18 

insufficient to prevent the hybridization of escaped B. t. dalmatinus in Great Britain 19 

with endemic B. t. audax (Ings, Raine et al., 2005). However, the situation in the field 20 

might be more complex as mating behavior in bumble bees is strongly influenced by 21 

chemical cues from drones, which undertake territorial patrol flights to deposit scent 22 

marks (specifically, cephalic labial gland secretions, CLGS) that attract females. 23 

Laboratory experiments have shown that the drones of the different B. terrestris 24 

subspecies have specific CLGS profiles (Coppée et al., 2008; Lecocq et al., 2013). In 25 
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laboratory bioassays, B. t. dalmatinus gynes were preferentially attracted to the CGLS 1 

from males of their own subspecies when given a choice between B. t. dalmatinus 2 

versus B.t. canariensis  or B. t. xanthopus, but did not differentiate between B. t. 3 

dalmatinus and B. t. sassaricus (Lecocq  et al., 2015).  How these findings translate to 4 

field effects is not yet known.  5 

 Molecular ecology studies of B. terrestris have considerable potential to inform 6 

ecological risk assessments of managed bumble bees and should include baseline 7 

studies of the phylogeography of wild populations in Europe together with assessments 8 

of the impact of managed bees in regions where releases have occurred.  Microsatellite 9 

loci analysis shows that the mainland European B. terrestris subspecies (B. t. terrestris, 10 

B. t. dalmatinus, B. t. lusitanicus) have a relatively uniform genetic structure 11 

characterized by natural gene flow between populations (Estoup, Solignac, Cornuet, 12 

Goudet & Scholl, 1996). In contrast, there are genetically distinct subspecies in Sardinia 13 

(B. t. sassaricus), Corsica (B. t. xanthopus) and the Canary Islands (B. t. canariensis) 14 

(Estoup et al., 1996), and it is reasonable to infer that these island endemics are at 15 

greater risk from the effects of introgression with commercial B. t. terrestris / B. t. 16 

dalmatinus compared to the mainland. The genetic structure of the British Isles 17 

subspecies B. t. audax is more complex. Mitochondrial COI sequence analysis from B. 18 

terrestris populations in Europe divided the species into two haplotypes, with the 19 

British and Irish populations forming a separate lineage from populations sampled from 20 

the contiguous mainland, with the latter also including commercially-reared B.  21 

terrestris from mainland Europe (Moreira, Horgan, Murray & Kakouli-Duarte, 2015). A 22 

microsatellite analysis done in the same study separated populations from both Ireland 23 

and the Isle of Man from those in Great Britain and mainland Europe, with populations 24 

from Great Britain showing significant levels of admixture with those in mainland 25 
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Europe (Moreira et al., 2015). It is not yet clear whether the use of managed B. t. 1 

terrestris / B. t. dalmatinus has contributed to this, although the evidence did not point 2 

to recent migration events (Moreira et al., 2015). Natural migration between wild B. 3 

terrestris populations in England and mainland Europe is possible, as bumble bees are 4 

capable of dispersing across the English Channel, evidenced by the natural colonization 5 

into southern England in 2001 by the tree bumble bee, Bombus hypnorum, from 6 

mainland Europe (Crowther, Hein & Bourke, 2014). Mitochondrial gene analysis 7 

identified B. terrestris individuals in the west of Ireland (where use of managed bumble 8 

bees is rare) with the COI haplotype normally associated with populations from the 9 

contiguous European mainland (Moreira et al., 2015). This could be evidence of a 10 

genetic disturbance associated with commercial use of continental B. terrestris, but 11 

further evidence is required to establish whether the COI haplotype from Britain and 12 

Ireland can also occur naturally in mainland European populations (Moreira et al., 13 

2015).   14 

 Kraus et al. (2011) used microsatellite markers to look for evidence of gene flow 15 

between managed B. terrestris sampled from within three greenhouses in Poland and B. 16 

terrestris individuals sampled in the surrounding outside area, both within the 17 

immediate vicinity of the greenhouses and in separate areas at least 30 km away.  18 

Population genetic analysis was done to assign individual worker bees to putative 19 

mother colonies of both managed and wild bees. The amount of introgression was 20 

inferred by determining the number of individual workers sampled outside which could 21 

be assigned to managed bee populations. The authors concluded that they “found strong 22 

genetic introgression from the sampled greenhouse populations into the adjacent 23 

populations” (Kraus et al., 2011). A potential flaw in the approach is that individual 24 

bees caught outside and assigned to greenhouse colonies could have been escapes rather 25 
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than the offspring of a mating between a commercial x wild bee, while the subspecies 1 

identities of the commercial and wild bee populations – which would have a strong 2 

influence on hybridization – were not determined. Only four microsatellite markers 3 

were available at the time, which failed to distinguish between some of the 4 

geographically distant (>30km) populations, suggesting some lack of power.  5 

 6 

Managed stocks of bumble bees and increased disease threats to wild populations   7 

Livestock can act as a source of infectious disease for wild, co-occurring animal 8 

populations, with endangered species reported to be at particular risk (Daszak, 9 

Cunningham & Hyatt, 2000; Tomley & Shirley, 2009). Bumble bees are susceptible to a 10 

range of macro- and microbial parasites that can be detrimental to both individual bees 11 

and their colonies (Allen, Seeman, Schmid-Hempel & Buttermore 2007; Brown, R. 12 

Schmid-Hempel & Schmid-Hempel, 2003;  Lipa & Triggiani, 1988; Macfarlane, Lipa 13 

& Liu, 1995; Manley et al., 2015; Otti & Schmid-Hempel, 2007; Plischuk, Meeus, 14 

Smagghe &  Lange, 2011; Poinar & Van der Laan, 1972; Rutrecht & Brown, 2008; 15 

Schmid-Hempel & Loosli, 1998) (see Supplemental Material S4 for details on the 16 

biology of the main pathogens of bumble bees). Concerns that stocks of managed 17 

bumble bees might pose a disease risk to wild populations date back to the 1990’s, 18 

when colonies of B. terrestris and Bombus ignitus produced in Europe, and exported to 19 

Japan for use in commercial greenhouse crop production, were found to be infected 20 

with European strains of the tracheal mite Locustacarus buchneri (Goka et al., 2000; 21 

Goka, Okabe & Yoneda, 2006; Goka, Okabe, Yoneda & Niwa, 2001).  An explicit 22 

association between managed bumble bees, infectious disease and population declines 23 

of wild bumble bees in North America was first raised by Thorp and Shepherd (2005) as 24 

part of a profile of the conservation status of North  American Bombus species. Writing 25 
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about rapid declines in B. occidentalis, B. affinis and B. franklini, they stated that 1 

“circumstantial evidence indicates that the principal cause for these population declines 2 

is the introduction of exotic disease organisms and pathogens via trafficking in 3 

commercial bumble bee queens and colonies for greenhouse pollination of tomatoes” 4 

(Thorp & Shepherd, 2005) although no data were presented in support.  The topic was 5 

picked up by the US National Research Council in their report on the Status of 6 

Pollinators in North America (National Research Council, 2006), in which it was stated 7 

(again without hard evidence) that “A major cause of decline in native bumble bees 8 

appears to be recently introduced non-native protozoan parasites, including Nosema 9 

bombi and Crithidia bombi, probably from commercial bumble bees imported from 10 

Europe for greenhouse pollination. The bees frequently harbor pathogens and their 11 

escape from greenhouses can lead to infections in native species” (National Research 12 

Council, 2006).  This view has been repeated elsewhere (Goulson, Nicholls, Botías & 13 

Rotheray, 2015). Following on from the statements from the USA, experimental studies 14 

were done in North America and Europe to investigate whether managed bumble bees 15 

act as reservoirs of infectious disease which then spread to wild populations. These 16 

studies are discussed below.   While the focus of attention in the USA was initially 17 

about introductions of non-native pathogens from native managed bumble bees, in 18 

principal there could also be damaging effects from indigenous pathogen strains, and 19 

this has been the focus of studies in Europe (see below for details). Graystock, Blane, 20 

McFrederick, Goulson & Hughes (2015) proposed three mechanisms by which the 21 

presence of managed bumble bees could cause increased harm from infectious diseases 22 

in wild sympatric populations: (1) competition and other ecological stresses from 23 

managed bumble bees cause wild bumble bees to be more susceptible to infection; (2) 24 

stocks of managed bumble bees form a reservoir of pathogens, which then spill over 25 
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into wild bee populations; (3) managed bumble bees acquire pathogens from wild 1 

bumble bees, with the pathogen population then multiplying within managed colonies 2 

and ‘spilling back’ to the wild in such a way that pathogen prevalence is increased in 3 

the wild population.  The three commonest bumble bee pathogens - the trypanosome 4 

Crithidia bombi, the microsporidian Nosema bombi and the apicomplexan Apicystis 5 

bombi – affect all Bombus species and have a number of common features: (1) they are 6 

obligate parasites, and hence have evolved mechanisms for maintaining themselves 7 

within host populations; (2) they are transmitted fecal-orally between bees within the 8 

colony, and have potential to spread by direct contact (transmission between managed 9 

stocks and wild bees could occur through drifting, for example) or indirectly via flowers 10 

that have been fed upon previously by infected bees (see Supplemental Material S4 for 11 

details).  The majority of studies on disease threats associated with managed bumble 12 

bees focus on these pathogens.  13 

 The premise underlying most of the published research is that pathogens 14 

associated with managed bees represent a significant threat to wild bumble bees 15 

(Cameron et al., 2016, 2011; Graystock et al., 2014, 2013; Meeus et al., 2011; 16 

Otterstatter & Thomson, 2008;  Whitehorn et al., 2013).  For example, Otterstatter & 17 

Thomson (2008), writing about their research on disease risks from managed bumble 18 

bees in North America, state that “it is probable that destructive pathogens have been 19 

spilling over into wild bee populations since the collapse of commercial B. occidentalis 20 

in the late 1990s, and this has contributed to the ongoing collapse of wild Bombus sensu 21 

stricto”. Similarly, in the UK, Graystock et al. (2013) concluded that “commercially 22 

produced bumble bee colonies carry multiple, infectious parasites that pose a significant 23 

risk to other native and managed pollinators”.  However, when reviewing the available 24 

literature as a whole, a more complex picture is evident in which the effects of the 25 
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commonest bumble bee pathogens is dependent upon sex, caste, environmental factors, 1 

and prevalence.  Empirical studies on the effects of C. bombi, N. bombi and A. bombi, 2 

done under controlled laboratory conditions, show that:  (1) C. bombi can damage 3 

individuals and colonies if they are subject to some other form of physiological or 4 

environmental stress, but otherwise it has low virulence; (2) N. bombi infection causes 5 

reduced survival of workers but this may not translate to reduced colony size, and while 6 

queen fecundity is not affected, the reproductive potential of sexual offspring (gynes 7 

and drones) is greatly reduced; (3) A. bombi has a lower natural prevalence than either 8 

C. bombi or N. bombi, but when present in queens it can cause a substantial reduction in 9 

life span (see Supplemental Material S4). Care needs to be taken when extrapolating the 10 

results of these laboratory studies to the field, where the impact of infections on 11 

individual bees and the colony are likely to be affected not only by the inherent 12 

virulence of the pathogen and the infection intensity, but also by a wide range of other 13 

factors including  host genotype (Baer & Schmid-Hempel, 2003), genetic diversity 14 

within the colony (Baer & Schmid-Hempel, 1999), bee genotype x pathogen prevalence 15 

interactions  (Manlik, R. Schmid-Hempel & Schmid-Hempel, 2017), host fitness 16 

components such as body size, age and foraging activity (Allen et al., 2007, and 17 

references therein), group size and structure (Schmid-Hempel, 2017), and gut-active, 18 

anti-parasitic effects of the bee microbiome (Mockler, Kwong, Moran & Koch, 2018), 19 

pollen (Locascio, Pasquale, Amponsah, Irwin & Adler, 2019) and phytochemicals 20 

acquired during foraging (Palmer-Young, Sadd, Stevenson, Irwin & Adler, 2016).  For 21 

these reasons, the effects of infection on individual bees, colonies, populations and 22 

pollination service provision are likely to vary from situation to situation and are 23 

difficult to forecast using information from laboratory studies. An additional factor is a 24 

lack of systematic, baseline monitoring of natural pathogen prevalence over long time 25 
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periods, across large geographical scales and in diverse landscapes, which makes it 1 

difficult to interpret individual studies of pathogen effects of managed bumble bees.  2 

The published studies on pathogen occurrence - which includes samples from wild 3 

bumble bees and experimental colonies - indicates that prevalence varies naturally in 4 

space and time for different pathogens: 11 – 80% for C. bombi; 1 – 71% for N. bombi; 5 

and 1 – 8% for A. bombi (summarized by Allen et al., 2007; see also Evison et al., 2012; 6 

Koch & Strange, 2012; Manlik et al., 2017; Vavilova et al., 2015).  7 

 Studying the pathogen risks from managed bumble bees is technically and 8 

logistically difficult, and so far, only a small number of studies have been conducted in 9 

Europe (they are discussed in detail below). Hence, for this review we have widened the 10 

evidence base to include studies on disease risks from managed, native bumble bees 11 

done in North America. This is a comparable situation to Europe (i.e. use of managed, 12 

native bumble bees). An ecologically different situation occurs where commercially 13 

produced, domesticated bumble bees are used outside of their native range. The use of 14 

bumble bees in this way has caused the introduction of non-native species or strains of 15 

parasites in Japan (L. buchneri) (Goka et al., 2000, 2006, 2001) and could have been 16 

responsible for pathogen introduction into South America (A. bombi) (Arbetman, 17 

Meeus, Morales, Aizen & Smagghe, 2013) and these are considered in Supplemental 18 

Material S3.  19 

 20 

Disease threats from managed bumble bees: evidence from North America that is 21 

relevant to Europe 22 

Commercial production of B. occidentalis and B. impatiens for pollination of 23 

greenhouse crops commenced in the USA and Canada in the early 1990s (Velthius & 24 

Van Doorn, 2006). This was done initially (from 1992 – 1994) using queens captured 25 
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from the wild and exported to Europe for mass rearing of colonies; the colonies were 1 

then shipped to North America. This was followed a few years later by commercial 2 

colony rearing in facilities set up in eastern Canada and California (Velthius & Van 3 

Doorn, 2006; Cameron et al., 2016).  Mass rearing of B. occidentalis was stopped in 4 

1997.  Velthius and Van Doorn (2006) reported that this was because of problems with 5 

infestations with N. bombi that first occurred in 1996, although no such problems 6 

occurred with B. impatiens.  7 

 The published evidence from North America on whether managed bumble bees 8 

are reservoirs of infectious disease is conflicting.  The bumble bee producers maintain 9 

colonies at high densities within their rearing units, and hence any pathogen that 10 

establishes a foothold in the unit could spread rapidly with detrimental effects on 11 

production. Therefore, the companies have in place quality assurance (QA) systems 12 

intended to prevent pathogens from entering, being transmitted within their operations, 13 

and infected colonies being sold to customers. This involves evaluating colonies for the 14 

presence of parasites and disease. A detailed analysis has been published of the 15 

pathogen testing program at Koppert’s B. impatiens production facility in the USA, co-16 

authored by university scientists and Koppert staff (Huang, Skyrm, Ruiter & Solter,  17 

2015). The QA system reported at the facility involves evaluating colonies at multiple 18 

stages of the production cycle. All colonies are assessed for development, overt disease 19 

and visible ectoparasites, and all colonies entering the queen production process are also 20 

screened for N. bombi, C. bombi, A. bombi and L. buchneri.  This involves sampling a 21 

minimum of 10% of the workers per colony.   Any colonies that test positive are 22 

destroyed, and if pathogens are detected, further tests are done on other colonies in the 23 

area.  This assessment system was done originally using microscopic examination of gut 24 

contents for pathogens, but this was supplemented in 2013 by the introduction of a 25 
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multiplex real-time PCR diagnostic of gut tissue (which included positive, negative and 1 

no-template controls) which was considered to have significant benefits in terms of 2 

efficiency and ease of use. Tests of the detection limits of the system were made, 3 

indicating that multiplex PCR was able to detect pathogens down to the limit of 4 

detection available with microscopic examination of gut contents. The QA system also 5 

involves an audit by a government inspector and an annual inspection by university 6 

scientists. Publication of the results of the pathogen screening program (queen rearing 7 

colonies) from 2008 – 2014 reported that 64 / 24,226 colonies tested positive for 8 

pathogens and parasites (colony prevalence = 0.26%, total number of bees tested = 127, 9 

528) (Huang et al., 2015). However, these results are in contrast to a number of reports, 10 

dating from the early 2000’s to 2015, that both N. bombi and C. bombi were present in 11 

managed bumble bee colonies of B. occidentalis and B. impatiens at high prevalence 12 

levels in North America. Whittington and Winston (2003) used microscopic 13 

examination of frass and abdomen contents to quantify N. bombi levels in B. 14 

occidentalis individuals from 49 newly-opened commercially reared colonies supplied 15 

to a commercial tomato greenhouse grower in British Columbia. Spores of N. bombi 16 

were recorded in bees from 51% of the colonies upon arrival, while after ten weeks all 17 

colonies contained infected bees. Infection intensity increased over this time to an 18 

average of 6 x 106 spores per bee, although these infections had no effect on adult 19 

population size, amount of brood or numbers of reproductives (Whittington & Winston, 20 

2003). In Ontario, Gegear, Otterstatter and Thomson (2005) reported that approximately 21 

30% of managed B. impatiens colonies obtained from a supply company contained 22 

individuals infected with C. bombi, while Otterstatter and Thomson (2007) identified 23 

infections of C. bombi in queens from newly opened managed colonies of B. impatiens 24 

(the proportion of colonies containing infected queens was not stated in the paper). 25 
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Otterstatter and Thomson (2008) evaluated the prevalence and intensity of pathogen 1 

infections in bumble bee species sampled at increasing densities from two commercial 2 

greenhouses in Ontario that deployed managed B. impatiens colonies for tomato and 3 

pepper crop pollination, and which was compared to a control site 50km from the 4 

nearest greenhouse.  It was reported that both the prevalence and intensity of C. bombi 5 

infections among all sampled Bombus species decreased with increasing distance from 6 

the greenhouses, and this effect was still significant when B. impatiens was excluded 7 

from the analysis. From this it was concluded that the managed B. impatiens were 8 

acting as a focus for infections in wild bumble bees. Between 33 – 47% of sampled bees 9 

harbored C. bombi infections within 30 m of the greenhouses, while the zone of C. 10 

bombi infection extended for 2 – 6km from the greenhouses (Otterstatter & Thomson, 11 

2008). Finally, in Mexico, a PCR screen of RNA collected from individual B. impatiens 12 

obtained from newly opened managed colonies from 120 different greenhouses found 13 

that 45% of locations tested positive for at least one pathogen, with A. bombi being the 14 

most common (32 /120 locations) (Sachman-Ruiz, Narváez-Padilla, & Reynaud, 2015). 15 

 Significant declines in range and relative abundance have occurred for four wild 16 

bumble bee species in North America: B. occidentalis (in the west) and B. affinis, B. 17 

pensylvanicus and B. terricola (in the east), with the fall in relative abundance occurring 18 

since the 1980s / 1990s and coinciding with the expansion of the managed bumble bee 19 

industry (Cameron et al., 2011, and summarized by Brown 2011). A fifth species, B. 20 

franklini, is potentially extinct (surveys in southern Oregon and northern California 21 

have failed to detect it since 2006) (Hatfield et al., 2015).  It was hypothesized that the 22 

declines were caused by pathogen spillover from managed bees, specifically that a 23 

virulent strain of N. bombi transferred from B. terrestris to B. impatiens and B. 24 

occidentalis when these three species were being reared in the same production 25 
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facilities in Europe, and then spilled over to the wild with bees exported to N. America 1 

and subsequently spread through wild bumble bee populations (Evans, Thorp, Jepsen & 2 

Black,  2008; Thorp & Shepherd, 2005; also see reviews by Goulson et al., 2008; 3 

Williams & Osborne, 2009).  However, despite investigations (Cameron et al., 2011, 4 

2016; Szabo, Colla, Wagner, Gall & Kerr, 2012), no causal evidence in support of the 5 

hypothesis has been found: 6 

 Szabo et al.(2012) used logistic regression analysis of a large data set compiled 7 

for North American bumble bees, which compared occurrence records from 8 

1980 – 1999 with those from 2000 – 2010 (i.e. before and after rapid declines in 9 

bumble bees were reported to have begun), and applied predictor variables for 10 

commercial greenhouse density (which was taken as a proxy for managed 11 

bumble bee use), pesticide use survey data, and change in human population 12 

density (as a proxy for habitat loss).  Significant but weak relationships were 13 

observed between reductions in B. terricola and B. pensylvanicus and 14 

greenhouse density (P = 0.005, R2 0.17; and P = 0.003, R2 0.08) but not for B. 15 

affinis. This was interpreted as providing a direct link between pathogen 16 

spillover and bumble bee decline; however, we consider this a false conclusion, 17 

as the premise that greenhouse / hive density equates to levels of infectious 18 

disease in managed bees is not reliable. An alternative explanation proposed by 19 

the authors of effects of competition with escaped managed bees was considered 20 

to be less likely. No significant negative relationships were observed between 21 

bumble bee losses and pesticide use or human population density (Szabo et al. , 22 

2012).  23 

 An analysis of genetic variation of N. bombi from bumble bee specimens from 24 

the USA and Europe showed no support for the hypothesis that a non-native N. 25 
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bombi strain was introduced from commercial rearing operations in Europe 1 

(Cameron et al., 2016).   Microscope analysis of bumble bees sampled from B. 2 

occidentalis and B. pensylvanicus showed a significantly higher prevalence of N. 3 

bombi (37% prevalence for B. occidentalis, and 15% prevalence for B. 4 

pensylvanicus) compared to species that were not in decline (Cameron et al., 5 

2011). In addition, molecular analysis of museum specimens collected from 6 

1979 to 2011 in a total of five declining North American bumble bee species (B. 7 

affinis, B. franklini, B. occidentalis, B. terricola, B. pensylvanicus) showed an 8 

increase in prevalence of N. bombi from the 1980s to after 1992 (prevalence of 9 

N. bombi in B. occidentalis increased from 5 to 14% in this period, for example) 10 

whereas control specimens of B. terrestris showed a constant prevalence over 11 

time (Cameron et al., 2016). It was concluded that the increased N. bombi 12 

prevalence in wild population, which coincided with a report of pathogen 13 

outbreaks in commercial stocks, was indicative of pathogen spillover from 14 

managed bees (Cameron et al., 2016, 2011).  However, it is possible that these 15 

figures simply represent natural variation in the prevalence of N. bombi rather 16 

than an effect of managed bees. Populations of B. occidentalis sampled in 17 

Alaska, taken from collection sites geographically distant from agricultural areas 18 

using managed bumble bees, had an N. bombi prevalence of 45% (Koch & 19 

Strange, 2012), suggesting that populations can harbor naturally high levels of 20 

the pathogen.  21 

 22 

Evidence on disease threats from managed bumble bees in Europe 23 

To date, there is no causal evidence that measurable population declines of wild bumble 24 

bees have occurred in Europe as a result of disease outbreaks associated with managed 25 
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bumble bees. However, researchers have reported that a high proportion of managed 1 

bumble bee colonies harbored infective microbial parasites (Graystock et al., 2013) and 2 

it has been argued that managed bumble bees are responsible for an increased 3 

prevalence of pathogens in local wild bumble bees (Murray et al., 2013; Graystock et 4 

al., 2014).  Within the UK, these concerns are reflected in the policy action of the 5 

National Pollinator Strategy to monitor for spillover risks from managed B. terrestris 6 

and to act on evidence (DEFRA, 2014). The bumble bee producers have disputed the 7 

evidence on pathogen prevalence in commercially reared bees in Europe (BioBest 8 

Group, 2013).  Because this evidence has proved controversial, it is worth reviewing in 9 

detail. 10 

 Graystock et al. (2013) conducted a laboratory study in the UK in which a PCR 11 

screen was used to determine presence / absence of bee pathogens in worker bees in B. 12 

t. terrestris / dalmatinus and B. t. audax colonies supplied by three commercial 13 

producers in mainland Europe. Apicystis bombi, C. bombi and N. bombi were detected 14 

in 35 / 48 colonies (73% colony prevalence), either alone or in combination. PCR 15 

analysis (which included appropriate controls) of the pollen supplied with the colonies 16 

detected the presence of at least one of these pathogens in 21 / 25 colonies (84% 17 

prevalence). Samples of pollen or bee frass from ‘pathogen positive’ colonies were then 18 

pooled to provide a mix of N. bombi, N. ceranae, C. bombi, A. bombi and deformed 19 

wing virus (frass) plus Nosema apis and the bee pathogenic fungus Ascosphaera sp. 20 

(pollen). These were fed within a sucrose solution to adult B.t. audax in a laboratory 21 

bioassay. Concentrations of Nosema and Apicystis spores were enumerated using 22 

hemocytometer counts.  Survival of adult bumble bees was reduced for the frass (= 45% 23 

survival at 15 days) and pollen treatments (35% survival at 15 days) compared to the 24 

control (65% survival), while pathogens could also be detected in dead bees. The same 25 
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laboratory bioassay was also used to establish infections in adult and larval honey bees 1 

(Apis mellifera) resulting in reduced survival.  The authors concluded that managed 2 

bumble bees and their pollen feedstuff contained infectious pathogens. They described 3 

the implications of their findings for wild bee populations as “genuinely alarming” and 4 

made a series of policy recommendations including the adoption of methods to remove 5 

pathogens from pollen feedstuff and putting into place more effective screening 6 

procedures at the production site and at the point of delivery. However, the results of 7 

this study have been questioned by the commercial producers of bumble bees in Europe. 8 

In a written response to the paper, Biobest (Biobest Group, 2013) stated that the results 9 

contradicted independent tests for pathogen presence done on their bees over many 10 

years. They also stated that their production systems are designed to deliver disease-free 11 

bees to customers, including the use of sterilized pollen (which is therefore unlikely to 12 

be a source of pathogen contamination) and both in-house and independent pathogen 13 

screening, and have been visited by the UK government regulatory bodies (Biobest 14 

Group, 2013).  15 

Pereira, Meeus & Smagghe (2019) performed a PCR-based pathogen screen on 16 

17 samples of non-irradiated honey bee pollen obtained from companies in Romania 17 

and Spain who supply pollen to commercial bumble bee producers, with the intention of 18 

investigating whether this pollen represented an infection risk to bumble bee rearing.  19 

Sequences for eleven  different insect pathogens were identified from pollen from both 20 

countries: the fungal pathogen Ascosphaera apis (the causative agent of chalk brood, 21 

prevalence on pollen samples = 47%); A. bombi (prevalence = 53%);  Microsporidium 22 

sp. Oise (12%);  Crithidia spp. (71%); Nosema ceranae (24%); Nosema thomsoni 23 

(18%); deformed wing virus (12%); Israeli acute paralysis virus (6%); chronic bee 24 

paralysis virus (6%); and sacbrood virus (59%). In addition, Paenibacillus larvae (the 25 
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causative agent of American foul brood in honey bees) was found in a sample of pollen 1 

from Romania. Batches of pathogen-positive pollen (containing A. apis, A. bombi, 2 

Crithidia spp., Microsporidium sp. Oise, N. ceranae, N. thomsoni, and P. larvae) were 3 

then fed to B. terrestris micro colonies, and after 15 and 20 days, molecular diagnostics 4 

were done on gut and fat body tissue from adults and larvae. Of these, A. apis – infected 5 

larvae were observed in 3 / 4 treated colonies. No infections were observed in bees fed 6 

pollen treated with gamma radiation as a control. The authors concluded that 7 

unsterilized pollen represented an infection risk to bumble bee rearing facilities, and 8 

stated that effective diagnostic and control systems were needed by bumble bee 9 

producers as “risk of spillover to wild bee species is possible” (Pereira et al., 2019). 10 

However, if sterilization is used (see above) then infection is unlikely.  11 

 The small number of field experiments done so far on pathogen spillover in 12 

Europe show a complex picture.   Whitehorn et al. (2013) evaluated the prevalence and 13 

abundance (= infection intensity) of Crithidia spp., N. bombi and A. bombi in fecal 14 

samples from bumble bees (B. terrestris, B. pratorum, B. pascuorum, B. lapidarius) 15 

sampled over four months from fruit farms where managed B. terrestris colonies were 16 

either present or absent. Both A. bombi and N. bombi occurred infrequently (overall 17 

prevalence of 0.7% and 2.0% respectively) while the overall prevalence of Crithidia 18 

spp. was 39%.  Crithidia spp. exhibited a complex pattern of change that differed 19 

among bumble bee species. For B. terrestris, prevalence was lower overall on farms 20 

where managed bees were deployed, and while prevalence remained relatively level 21 

across the season in B. terrestris sampled on farms where managed bees were not used, 22 

there was an increase in prevalence at the end of the season on farms where managed 23 

bees were present. This was interpreted as possibly being a result of the reproduction 24 

and spread of the pathogen among managed hives associated with their high population 25 
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density, however a similar pattern of increase in Crithidia spp. prevalence in the latter 1 

half of the season was observed in B. pratorum irrespective of whether farms used 2 

managed or not (Whitehorn et al., 2013). The authors concluded that there was no 3 

evidence from their study of spillover from managed bee colonies to other, wild bumble 4 

bee species, although Graystock et al. (2015) - in a review of disease threats from 5 

managed bees - reported that the Crithidia spp. results could suggest pathogen 6 

spillback.  7 

 Murray et al. (2013) investigated pathogen prevalence in B. terrestris at six sites 8 

in Ireland where managed bumble bees were used in strawberry crops grown in 9 

glasshouses, polytunnels and open fields for a minimum of ten years previously. 10 

Bumble bees were sampled at four distances from the center of each site (250m, 500m, 11 

1km, 2km) and identified to species level using a PCR-RFLP diagnostic test. 12 

Individuals identified as B. terrestris were then examined by dissection for the presence 13 

of A. bombi, Crithidia, N. bombi and L. buchneri.  Each site was paired with a control 14 

area 10km away that consisted of a comparable habitat but lacked a strawberry farm, 15 

and bees were collected within a 500 m radius of this control site. Samples were also 16 

taken of five worker bees from each of 68 managed colonies upon delivery at each 17 

farm. As part of the same study, pollen samples were taken from foraging workers 18 

returning to managed colonies, and the plant species identity of foraged plants was 19 

determined by microscopic analysis of individual pollen grains. The pollen analysis 20 

showed that managed bumble bees were foraging on plants other than strawberry crops, 21 

with the amount of foraging dependent upon the strawberry cropping system and the 22 

ease of access to other pollen sources. Meanwhile, examination for pathogens in newly 23 

opened managed bee colonies showed that Crithidia was present in 35% of colonies, N. 24 

bombi in 62%, and A. bombi in 1.5% of colonies. Crithidia and N. bombi occurred 25 
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together in 25% of colonies, while no pathogens were observed in 26% of colonies. The 1 

prevalence of Crithidia in field caught B.  terrestris workers declined significantly with 2 

increasing distance from greenhouses that contained managed colonies (Crithidia 3 

prevalence was approximately 15% at 250m and approximately 5% at 10km) but no 4 

pattern was observed for male B. terrestris.  In contrast, N. bombi prevalence declined 5 

significantly in field caught B. terrestris males with increasing distance from the 6 

greenhouse (from approximately 35% at 250m to 10% at 10 km) but no significant 7 

pattern was observed for workers (where N. bombi prevalence remained at about 18% 8 

irrespective of distance from the greenhouse). The authors concluded that their results 9 

were indicative of the spread of infectious disease from managed B. terrestris to wild 10 

conspecifics up to a range of 10km from greenhouses.  A legitimate criticism, raised by 11 

the authors themselves, is that the methods deployed were not able to distinguish 12 

between wild and managed B. terrestris, and hence did not provide definitive proof of 13 

pathogen spillover to the wild, but instead may have reflected sampling bias in favor of 14 

pathogen-infected managed bees that were more likely to be found near greenhouses 15 

than further away. To address this point, the authors stated that they did not detect 16 

higher abundance of B. terrestris closer to greenhouses (unpublished data in Murray et 17 

al., 2013). However, it is our view that without the ability to distinguish between wild 18 

and managed bees, the issue of potential sampling bias cannot be resolved in this case, 19 

while the different patterns observed for different pathogens makes it difficult to draw a 20 

generalized conclusion. 21 

 Graystock et al. (2014) published the results of a field survey on pathogen 22 

prevalence in field-caught bumble bees in relation to their proximity to managed bee 23 

colonies. Bumble bees were sampled at increasing distances (0.5, 3 and 5 km) from five 24 

commercial greenhouses in England, three of which used managed bumble bees (200 – 25 
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300 hives per site) and two where managed bumble bees were not used. Samples 1 

consisted of a range of Bombus species, the abundance and diversity of which varied 2 

between sites (B. terrestris, B. hortorum, B. hypnorum, B. lapidarius, B. lucorum, B. 3 

pascuorum and B. pratorum were all observed), with most samples consisting of B. 4 

terrestris (40%) or B. lapidarius (25%). PCR-based diagnostics were then used to 5 

screen for the presence / absence of a range of pathogens in a total of 764 individual 6 

bees, although there was no testing of bumble bees collected directly from managed 7 

colonies, while the methods used in the study were not able to distinguish between wild 8 

and managed B. terrestris, nor were pathogen prevalence patterns in relation to Bombus 9 

species investigated. Overall, bumble bees sampled from sites deploying managed hives 10 

had significantly more parasite species than those in which managed bees were absent.  11 

The prevalence of A. bombi declined with increasing distances from greenhouses in 12 

which managed bumble bees were deployed (from c. 48 % at 0.5km to c. 8% at 5 km), 13 

and no such pattern was found for greenhouses where managed bumble bees were 14 

absent. Crithidia bombi was more prevalent at sites containing managed bees compared 15 

to control sites, but there was no effect of proximity to the greenhouse. The authors 16 

urged that some caution in interpretation given that then study involved a small number 17 

of sites, but concluded that use of managed bumble bees appeared to increase pathogen 18 

prevalence in local bumble bees. As part of the same paper, an additional study was 19 

done in which pathogen prevalence was quantified in five commercial B. t. audax 20 

colonies positioned on the side of a field containing an apiary of 50 honey bee hives, 21 

and compared to five B. t. audax colonies sited 1 km away. In this case, average parasite 22 

richness was significantly higher in colonies close to the honey bee apiary, while the 23 

average prevalence of C. bombi was significantly higher in the bumble bee colonies 24 

close to the apiary (58% versus 30%) (Graystock et al., 2014). 25 
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 1 

Conclusions 2 

The deployment of managed B. terrestris for crop pollination provides significant 3 

benefits for growers in terms of improved yield and quality of production, and it has 4 

become an integral part of the European horticultural industry.  However, there are also 5 

plausible risks with potential for negative effects on wild bumble bees if appropriate 6 

safeguards are not in place.  Having reviewed the scientific literature, we do not believe 7 

that there is sufficient evidence at present to support the statements by some authors that 8 

the current use of managed B. terrestris in Europe is harmful to wild bumble bees 9 

(Goulson et al., 2015; Graystock et al., 2015, 2014, 2013; Kraus et al., 2011; Murray et 10 

al., 2013). Given the uncertainty arising from what is a complex issue and a small 11 

evidence base, it is understandable that regulatory authorities are taking a precautionary 12 

approach to managed bumble bees. Effective regulation of managed B. terrestris 13 

requires reliable evidence on potential and actual risks, as well as good baseline 14 

information on bumble bee ecology, genetics, and diseases. We make the following 15 

recommendations to help fill the current knowledge and policy gaps:  16 

(1) Establishment of non-native B. terrestris subspecies and risks from gene 17 

introgression: Gene introgression from non-native subspecies of B. terrestris is a 18 

particular concern because of the potential for long term or irreversible effects. 19 

Currently, there are government regulations that prevent the routine use of non-20 

native, mainland European B. t. terrestris and B. t. dalmatinus in areas where island 21 

endemic subspecies reside (e.g. Canary Islands and GB), while the bee producers 22 

themselves have introduced a voluntary restriction on use of these non-native 23 

subspecies in the Republic of Ireland.  This is a sensible precaution, given that cross 24 

breeding has been demonstrated under laboratory conditions, although there is no 25 
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strong evidence yet that hybrids of managed bumble bees x island endemics have 1 

established in the field. The regulatory position is complex for Great Britain, where 2 

B. t. audax is an endemic but where there is also evidence of natural gene flow with 3 

B. terrestris on the European mainland. In principle the situation is more 4 

straightforward in central mainland Europe, where the three recognized 5 

morphological subspecies (B. t. terrestris, B. t. dalmatinus, B. t. lusitanicus) show 6 

no significant differentiation in molecular markers and in all likelihood represent a 7 

monophyletic group.  However, it would be worth conducting more baseline studies 8 

on the phylogenetic relationships of the B. terrestris subspecies to get a better 9 

understanding on patterns of evolution and geneflow to inform risk assessment for 10 

managed bumble bees.  This could be used, for example, to inform the decision in 11 

Norway to use only locally produced colonies. Investigations are also warranted to 12 

better understand whether use of non-natives has impacted on local B. terrestris 13 

population structure.  One suitable study area would be the Isle of Wight in southern 14 

England, which is geographically isolated and has a large glasshouse industry where 15 

B. t. terrestris / dalmatinus was used continuously for 30 years until 2015. 16 

Questions to be investigated would include whether or not colonies of non-native 17 

subspecies have become established (this would also provide useful policy 18 

information on risks of competitive exclusion of native bumble bees) and whether 19 

gene introgression into native populations has occurred.  20 

(2) Disease threats from managed bumble bees to wild populations: There is a marked 21 

contrast between studies of pathogen prevalence levels in commercial bumble bee 22 

colonies conducted by university researchers in North America and Europe, which 23 

report colony prevalence levels in the range of 30 – 73%, compared to Koppert’s 24 

independently audited QA data on their bumble bee production facility in North 25 
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America, which reported a colony prevalence level of 0.26%, with any pathogen-1 

positive colonies being destroyed before dispatch (Huang et al., 2015).  The 2 

commercial production of B. t. audax for sale to the UK market (which is done in 3 

facilities in mainland Europe) has been criticized by Graystock et al. (2015, 2013) 4 

for being essentially unregulated, with no legal requirement for pathogen screening, 5 

and for producing colonies with very high pathogen prevalence levels at the point of 6 

delivery, although this has been strongly refuted by the industry (Biobest Group, 7 

2013).  Data on pathogen screening has not been published by the industry for their 8 

production facilities in Europe, but if we assume that quality assurance protocols in 9 

the USA have been based on the systems that were already deployed by their parent 10 

company in Europe, then we would predict similar, low prevalence levels. The 11 

reasons for such a large disparity in these figures are not immediately apparent to us. 12 

This is clearly an important issue, because reports of high disease prevalence in 13 

managed bumble bees are quoted in government risk assessments (e.g. Natural 14 

England 2013, 2014). The case proposed by some researchers in the UK and Ireland 15 

for pathogen spillover from managed bumble bees rests largely on these colonies 16 

having a high pathogen prevalence (Graystock et al., 2014, 2013; Murray et al., 17 

2013).  This leads us to two recommendations: firstly, that a standardized method 18 

for quantifying pathogen prevalence, based on blind testing, is agreed upon by bee 19 

producers, independent researchers and government bodies, and secondly that QA 20 

data from bee producers in Europe is independently audited and published, as has 21 

been done in the USA (Huang et al., 2015). There is also a need for better baseline 22 

data on variation in natural pathogen prevalence in wild bumble bee populations, as 23 

well as research to determine whether pathogens are acquired by colonies from the 24 
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field or glasshouse environment and increase to above-background levels during the 1 

season.  2 

(3) Best practice by end users: At our current state of knowledge, the reduced risk 3 

scenario for managed B. terrestris is to use native bees from producers with trusted 4 

QA systems that prevent diseased colonies being dispatched to growers. Within this 5 

scenario, it would still be worth including management practices designed to 6 

minimize effects on wild bumble bees, such as ensuring that managed colonies are 7 

killed prior to disposal.  8 

(4) Dealing with uncertainty: Evaluating the environmental risks from managed bumble 9 

bees is a difficult area. There are inherent challenges in extrapolating the findings of 10 

controlled laboratory experiments to the complex environment of the field, while 11 

field experiments themselves often have limited cause-and-effect explanatory 12 

power. Few of the papers published so far acknowledge these limitations fully, and 13 

we are concerned that some articles have made statements about managed bumble 14 

bees causing harm to wild bees that are not warranted on the basis of evidence, but 15 

which nevertheless have been reported widely in the general media.  Moreover, it 16 

must be remembered that there are multiple interacting factors potentially associated 17 

with declines in bumble bee abundance, including habitat loss and degradation, 18 

pollution and climate change (Potts et al., 2010): disentangling these other drivers 19 

from the proposed effects of managed bumble bees on wild bumble bees at the 20 

landscape level is going to be extremely difficult. We currently have very limited 21 

knowledge on whether habitat degradation, for example, could affect the outcome of 22 

competition between managed and wild bumble bees or interact with pathogen 23 

infection. This all points to a need for more research to inform policy makers, but 24 

given the complexities and the scale of the challenges involved in conducting 25 
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individual experiments, there is also a need to draw on other, complementary 1 

methods such as use of structured expert panels (Barons et al., 2018). Government 2 

bodies at both national and European levels have a responsibility to deliver policies 3 

and regulations that allow managed bumble bees to be used in an environmentally 4 

sustainable way, but bumble bee producers, growers and environmental groups are 5 

also actively involved and should form part of a joint, consensus building program.   6 

 7 

 8 

References 9 

Allen, G. R., Seeman, O. D., Schmid-Hempel, P. & Buttermore, R. E. (2007). Low 10 

parasite loads accompany the invading population of the bumblebee, Bombus 11 

terrestris in Tasmania. Insectes Sociaux, 54, 56-63. 12 

Arbetman, M. P., Meeus, I., Morales, C. L., Aizen, M. A. & Smagghe, G. (2013). Alien 13 

parasite hitchhikes to Patagonia on invasive bumblebee. Biological Invasions, 14 

15, 489-494. 15 

Baer, B. & Schmid-Hempel, P. (1999). Experimental variation in polyandry affects 16 

parasite loads and fitness in a bumble-bee. Nature, 397, 151 – 154. 17 

Baer, B. & Schmid-Hempel, P. (2003). Bumblebee workers from different sire groups 18 

vary in susceptibility to parasite infection. Ecology Letters, 6, 106-110. 19 

Balloux, F. & Lugon-Moulin, N. (2002). The estimation of population differentiation 20 

with microsatellite markers. Molecular Ecology, 11, 155-165. 21 

Barons, M. J., Hanea, A. M., Wright, S. K., Baldock, K. C. R., Wilfert, L., Chandler, D.  22 

… Carreck, N. L.  (2018). Assessment of the response of pollinator abundance 23 

to environmental pressures using structured expert elicitation. Journal of 24 

Apicultural Research, 57, 593-604.  25 



 39 

Biobest Group NV. (2013). Commercially produced bumblebees pose no threat to wild 1 

bumblebees or bees. Retrieved from 2 

http://www.biobestgroup.com/en/news/commercially-produced-bumblebees-3 

pose-no-threat-to-wild-bumblebees-or-bees 4 

Birmingham, A. L. & Winston, M. L. (2004). Orientation and drifting behavior of 5 

bumblebees (Hymenoptera: Apidae) in commercial tomato greenhouses. 6 

Canadian Journal of Zoology, 82, 52-59. 7 

Birmingham, A. L., Hoover, S. E., Winston, M. L. & Ydenberg, R. C. (2004). Drifting 8 

bumble bee (Hymenoptera : Apidae) workers in commercial greenhouses may 9 

be social parasites. Canadian Journal of Zoology, 82, 1843-1853. 10 

Brown, M. J. F. (2011). The trouble with bumblebees. Nature, 469, 169 – 170. 11 

Brown, M. J. F., Schmid-Hempel, R. & Schmid-Hempel, P. (2003). Strong context-12 

dependent virulence in a host-parasite system: Reconciling genetic evidence 13 

with theory. Journal of Animal Ecology, 72, 994-1002. 14 

CABI (2018). CABI Invasive Species Compendium, Bombus terrestris (bumble bee). 15 

Retrieved from https://www.cabi.org/isc/datasheet/91578 16 

Cameron, S. A., Lim, H. C., Lozier, J. D., Duennes, M. A. & Thorp, R. (2016). Test of 17 

the invasive pathogen hypothesis of bumble bee decline in North America. 18 

Proceedings of the National Academy of Sciences of the United States of 19 

America, 113, 4386-4391. 20 

Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F. & 21 

Griswold, T. L. (2011). Patterns of widespread decline in North American 22 

bumble bees. Proceedings of the National Academy of Sciences of the United 23 

States of America, 108, 662-667. 24 



 40 

Carvell, C., Roy, D. B., Smart, S. M., Pywell, R. F., Preston, C. D. & Goulson, D. 1 

(2006). Declines in forage availability for bumblebees at a national scale. 2 

Biological Conservation, 132, 481-489. 3 

Chittka, L., Ings, T. C. & Raine, N. E. (2004). Chance and adaptation in the evolution of 4 

island bumblebee behavior. Population Ecology, 46, 243-251. 5 

Colla, S. R. & Packer, L. (2008). Evidence for decline in eastern North American 6 

bumblebees (Hymenoptera : Apidae), with special focus on Bombus affinis 7 

Cresson. Biodiversity and Conservation, 17, 1379-1391. 8 

Coppée, A., Terzo, M., Valterova, I. & Rasmont, P. (2008). Intraspecific variation of 9 

the cephalic labial gland secretions in Bombus terrestris (L.) (Hymenoptera: 10 

Apidae). Chemistry and Biodiversity, 5, 2654-2661. 11 

Crowther LP, Hein P-L & Bourke, A.F.G. (2014). Habitat and forage associations of a 12 

naturally colonising insect pollinator, the tree bumblebee Bombus hypnorum. 13 

PLoS ONE, 9(9): e107568.  14 

Darvill, B., Knight, M. E. & Goulson, D. (2004).  Use of genetic markers to quantify 15 

bumblebee foraging range and nest density. Oikos, 107, 471-478. 16 

Daszak, P., Cunningham, A.A. & Hyatt, A.D. (2000). Emerging infectious diseases of 17 

wildlife – threats to biodiversity and human health. Science, 287, 443-449. 18 

Department for Environment, Food and Rural Affairs (DEFRA) (2014a). Supporting 19 

document to the National Pollinator Strategy: for bees and other pollinators in 20 

England. Retrieved from https://www.gov.uk/government/publications/national-21 

pollinator-strategy-for-bees-and-other-pollinators-in-england  22 

Department for Environment, Food and Rural Affairs (DEFRA) (2014b).  The National 23 

Pollinator Strategy for bees and other pollinators in England. Retrieved from 24 



 41 

https://www.gov.uk/government/publications/national-pollinator-strategy-for-1 

bees-and-other-pollinators-in-england 2 

Estoup, A., Solignac, M., Cornuet, J. M., Goudet, J. & Scholl, A. (1996). Genetic 3 

differentiation of continental and island populations of Bombus terrestris 4 

(Hymenoptera: Apidae) in Europe. Molecular Ecology, 5, 19-31. 5 

European Commission (1992). Council Directive 92/65/EEC of 13 July 1992 laying 6 

down animal health requirements governing trade in and imports into the 7 

Community of animals, semen, ova and embryos not subject to animal health 8 

requirements laid down in specific Community rules referred to in Annex A (I) 9 

to Directive 90/425/EEC. Retrieved from  10 

https://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=celex:31992L0065  11 

Evans, E., Thorp, R., Jepsen, S. & Black, S. H. (2008). Status review of three formerly 12 

common species of bumble bee in the subgenus Bombus. The Xerces Society, 1-13 

63. Retrieved from http://www.xerces.org/wp-14 

content/uploads/2009/03/xerces_2008_bombus_status_review.pdf   15 

Evison, S. E., Roberts, K. E., Laurenson, L., Pietravalle, S., Hui, J., Biesmeijer, J. C. … 16 

Hughes, W. O. (2012). Pervasiveness of parasites in pollinators. PLoS ONE, 17 

7(1):e30641. 18 

Fitzpatrick U., Murray, T. E., Paxton, R. J., Breen, J. , Cotton, D. , Santorum, V.  & 19 

Brown, M J. F. (2007). Rarity and decline in bumblebees – A test of causes and 20 

correlates in the Irish fauna. Biological Conservation, 136, 185-194.  21 

Fontaine, C., Collin, C. L. & Dajoz, I. (2008). Generalist foraging of pollinators: Diet 22 

expansion at high density. Journal of Ecology, 96, 1002-1010.  23 



 42 

Foulis, E.S.J. & Goulson, D. (2014). Commercial bumble bees on soft fruit farms 1 

collect pollen mainly from wildflowers rather than the target crops. Journal of 2 

Apicultural Research, 53, 404 – 407.  3 

Free, J. B. (1958). The drifting of honey-bees. The Journal of Agricultural Science, 51, 4 

294-306.  5 

Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. (2005). Does parasitic infection 6 

impair the ability of bumblebees to learn flower-handling techniques? Animal 7 

Behaviour, 70, 209-215. 8 

Goka, K. (2010). Introduction to the Special Feature for Ecological Risk Assessment of 9 

Introduced Bumblebees: Status of the European bumblebee, Bombus terrestris, 10 

in Japan as a beneficial pollinator and an invasive alien species. Applied 11 

Entomology and Zoology, 45, 1-6. 12 

Goka, K., Okabe, K., Niwa, S. & Yoneda, M. (2000). Parasitic mite infestation in 13 

introduced colonies of European bumblebees, Bombus terrestris. Japanese 14 

Journal of Applied Entomology and Zoology, 44, 47-50. 15 

Goka, K., Okabe, K. & Yoneda, M. (2006). Worldwide migration of parasitic mites as a 16 

result of bumblebee commercialization. Population Ecology, 48, 285-291. 17 

Goka, K., Okabe, K., Yoneda, M. & Niwa, S. (2001). Bumblebee commercialization 18 

will cause worldwide migration of parasitic mites. Molecular Ecology, 10, 2095-19 

2099. 20 

Goulson, D. (2010). Impacts of non-native bumblebees in Western Europe and North 21 

America. Applied Entomology & Zoology, 45, 712.  22 

Goulson, D., Hanley, M. E., Darvill, B., Ellis, J. S. & Knight, M. E. (2005). Causes of 23 

rarity in bumblebees. Biological Conservation, 122, 1-8. 24 



 43 

Goulson, D., Lye, G. C. & Darvill, B. (2008). Decline and conservation of bumble bees. 1 

Annual Review of Entomology, 53, 191-208. 2 

Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. (2015). Bee declines driven by 3 

combined stress from parasites, pesticides, and lack of flowers. Science, 347, 4 

1255957.  5 

Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. H. 6 

(2015). Do managed bees drive parasite spread and emergence in wild bees? 7 

International Journal for Parasitology: Parasites and Wildlife, 5, 64-75. 8 

Graystock, P., Goulson, D. & Hughes, W. O. (2014). The relationship between managed 9 

bees and the prevalence of parasites in bumblebees. PeerJ, 2:e522  Retrieved 10 

from https://doi.org/10.7717/peerj.522 11 

Graystock, P., Yates, K., Evison, S. E., Darvill, B., Goulson, D. & Hughes, W. O. 12 

(2013). The Trojan hives: pollinator pathogens, imported and distributed in 13 

bumblebee colonies. Journal of Applied Ecology, 50, 1207-1215. 14 

Grixti, J. C., Wong, L. T., Cameron, S. A. & Favret, C. (2009). Decline of bumble bees 15 

(Bombus) in the North American Midwest. Biological Conservation, 142, 75-84. 16 

Hatfield, R., Jepsen, S., Thorp, R., Richardson, L., Colla, S. & Foltz Jordan, S. (2015). 17 

Bombus occidentalis. The IUCN Red List of Threatened Species 2015: 18 

e.T44937492A46440201. Retrieved from 19 

http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T44937492A46440201.en.  20 

Herbertsson, L., Lindström, S. A. M., Rundlöf, M., Bommarco, R. & Smith, H. G. 21 

(2016). Competition between managed honeybees and wild bumblebees depends 22 

on landscape context. Basic and Applied Ecology, 17, 609-616.  23 

Huang, W. F., Skyrm, K., Ruiter, R. & Solter, L. (2015). Disease management in 24 

commercial bumble bee mass rearing, using production methods, multiplex PCR 25 



 44 

detection techniques, and regulatory assessment. Journal of Apicultural 1 

Research, 54, 516-524. 2 

Ings, T. C. (2007). Body size affects nectar uptake rates in bumblebees (Hymenoptera: 3 

Apidae: Bombus terrestris). Entomologia Generalis, 30, 186. 4 

Ings, T. C., Ings, N. L., Chittka, L. & Rasmont, P. (2010). A failed invasion? 5 

Commercially introduced pollinators in Southern France. Apidologie, 41, 1-13. 6 

Ings, T. C., Raine, N. E. & Chittka, L. (2005). Mating preference in the commercially 7 

imported bumblebee species Bombus terrestris in Britain (Hymenoptera: 8 

Apidae). Entomologia Generalis, 28, 233-238. 9 

Ings, T. C., Schikora, J. & Chittka, L. (2005). Bumblebees, humble pollinators or 10 

assiduous invaders? A population comparison of foraging performance in 11 

Bombus terrestris. Oecologia, 144, 508-516. 12 

Ings, T. C., Ward, N. L. & Chittka, L. (2006). Can commercially imported bumble bees 13 

out-compete their native conspecifics? Journal of Applied Ecology, 43, 940-948. 14 

Jonghe De, R. (1986). Crossing experiments with Bombus terrestris terrestris 15 

(Linnaeus, 1758) and Bombus terrestris xanthopus (Kriechbaumer, 1870) and 16 

some notes on diapause and nosemose (Nosema) (Hymenoptera: Apoidea). 17 

Phegea, 14, 19-23.  18 

Koch, J. B. & Strange, J. P. (2012). The status of Bombus occidentalis and B. 19 

moderatus in Alaska with special focus on Nosema bombi incidence. Northwest 20 

Science, 86, 212-220. 21 

Kondo, N. I., Yamanaka, D., Kanbe, Y., Kunitake, Y. K., Yoneda, M., Tsuchida, K. & 22 

Goka, K. (2009). Reproductive disturbance of Japanese bumblebees by the 23 

introduced European bumblebee Bombus terrestris. Naturwissenschaften, 96, 24 

467-475. 25 



 45 

Kosior, A., Celary, W., Olejniczak, P., Fijał, J., Król, W., Solarz, W. & Płonka, P. 1 

(2007). The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: 2 

Bombini) of Western and Central Europe. Oryx, 41, 79-88. 3 

Kraus, F. B., Szentgyorgyi, H., Rozej, E., Rhode, M., Moron, D., Woyciechowski, M. 4 

& Moritz, R. F. A. (2011). Greenhouse bumblebees (Bombus terrestris) spread 5 

their genes into the wild. Conservation Genetics, 12, 187-192. 6 

Kremen, C., Williams, N. M. & Thorp, R. W. (2002). Crop pollination from native bees 7 

at risk from agricultural intensification. Proceedings of the National Academy of 8 

Sciences of the United States of America, 99, 16812-16816. 9 

Lecocq, T., Vereecken, N. J., Michez, D., Dellicour, S., Lhomme, P., Valterová, I. … 10 

Rasmont, P. (2013). Patterns of genetic and reproductive traits differentiation in 11 

mainland vs. Corsican populations of bumblebees. PLoS ONE, 8(6): e65642. 12 

Lecocq, T., Coppée, A., Mathy, T., Lhomme, P., Cammaerts-Tricot, M. C., Urbanová, 13 

K. …  Rasmont, P. (2015). Subspecific differentiation in male reproductive traits 14 

and virgin queen preferences, in Bombus terrestris. Apidologie, 46, 595-605. 15 

Lefebvre, D. & Pierre, J. (2007). Demographic consequences of drift in contiguous 16 

hives of Bombus terrestris. Journal of Economic Entomology, 100, 1756-1763. 17 

Lipa, J. J. & Triggiani, O. (1988). Crithidia bombi sp. n., a flagellated parasite of a 18 

bumblebee Bombus terrestris L. (Hymenoptera). Apidae). Acta Protozoologica, 19 

27, 287-290.  20 

Locascio, G. M., Pasquale, R., Amponsah, E.,  Irwin, R. E. & Adler, L. S.  (2019). 21 

Effect of timing and exposure of sunflower pollen on a common gut pathogen of 22 

bumble bees. Ecological Entomology, doi:10.1111/een.12751 23 



 46 

Lye, G. C., Jennings, S. N., Osborne, J. L. & Goulson, D. (2011). Impacts of the use of 1 

nonnative commercial bumble bees for pollinator supplementation in raspberry. 2 

Journal of Economic Entomology, 104, 107-114. 3 

Macfarlane, R. P., Lipa, J. J. & Liu, H. J. (1995). Bumble bee pathogens and internal 4 

enemies. Bee World, 76, 130-148. 5 

Manley, R., Boots, M. & Wilfert, L. (2015). Emerging viral disease risk to pollinating 6 

insects: Ecological, evolutionary and anthropogenic factors. Journal of Applied 7 

Ecology, 52, 331-340. 8 

Manlik, O., Schmid-Hempel, R. & Schmid-Hempel, P. (2017). Parasite infection of 9 

specific host genotypes relates to changes in prevalence in two natural 10 

populations of bumblebees. Infection, Genetics and Evolution, 56, 125 – 132.  11 

Matsumura, C., Yokoyama, J. & Washitani, I. (2004). Invasion status and potential 12 

ecological impacts of an invasive alien bumblebee, Bombus terrestris L. 13 

(Hymenoptera: Apidae) naturalized in Southern Hokkaido, Japan. Global 14 

Environmental Research, 8, 51-66. 15 

Meeus, I., Brown, M. J. F., De Graaf, D. C. & Smagghe, G. (2011). Effects of invasive 16 

parasites on bumble bee declines. Conservation Biology, 25, 662-671. 17 

Mockler, B.K., Kwong, W. K., Moran, N. A. & Koch, H. (2018). Microbiome structure 18 

influences infection by the parasite Crithidia bombi in bumble bees. Applied and 19 

Environmental Microbiology, 84, e02335-17 20 

Morales, C. L., Arbetman, M. P., Cameron, S. A. & Aizen, M. A. (2013). Rapid 21 

ecological replacement of a native bumble bee by invasive species. Frontiers in 22 

Ecology and the Environment, 11, 529-534. 23 

Moreira, A. S., Horgan, F. G., Murray, T. E. & Kakouli-Duarte, T. (2015), Population 24 

genetic structure of Bombus terrestris in Europe: Isolation and genetic 25 



 47 

differentiation of Irish and British populations. Molecular Ecology, 24, 3257-1 

3268.  2 

Moritz, R. F. A., Härtel, S. & Neumann, P. (2005). Global invasions of the western 3 

honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience, 4 

12, 289-301. 5 

Murray, T. E., Coffey, M. F., Kehoe, E. & Horgan, F. G. (2013). Pathogen prevalence 6 

in commercially reared bumble bees and evidence of spillover in conspecific 7 

populations. Biological Conservation, 159, 269-276. 8 

National Research Council (United States). (2006). Status of Pollinators in North 9 

America (Free Executive Summary). National Academy Press, Washington, DC. 10 

Retrieved from http://www.nap.edu/catalog/11761.html  11 

Natural England (2013). GB Non-native organisms risk assessment scheme: Bombus 12 

terrestris, subspecies not native to the GB. Retrieved from 13 

http://www.nonnativespecies.org//downloadDocument.cfm?id=866  14 

Natural England (2014). Proposal to amend Class Licence WML-CL22: To permit the 15 

release of non native subspecies of the bumblebee (Bombus terrestris) in 16 

commercial glass-houses or poly-tunnels for crop pollination and research. 17 

Retrieved from https://assets.publishing.service.gov.uk/ 18 

government/uploads/system/uploads/attachment_data/file/376743/bea-wml-19 

cl22.pdf  20 

O'Connor, S., Park, K. J. & Goulson, D. (2013). Worker drift and egg dumping by 21 

queens in wild Bombus terrestris colonies. Behavioral Ecology and 22 

Sociobiology, 67, 621-627.  23 



 48 

Osborne, J. L., Clark, S. J., Morris, R. J., Williams, I. H., Riley, J. R., Smith, A. D. … 1 

Edwards, A. S. (1999). A landscape-scale study of bumble bee foraging range 2 

and constancy, using harmonic radar. Journal of Applied Ecology, 36, 519-533. 3 

Otterstatter, M. C. & Thomson, J. D. (2007). Contact networks and transmission of an 4 

intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia, 154, 5 

411-421. 6 

Otterstatter, M. C. & Thomson, J. D. (2008). Does pathogen spillover from 7 

commercially reared bumble bees threaten wild pollinators? PLoS ONE, 3(7): 8 

e2771 9 

Otti, O. & Schmid-Hempel, P. (2007). Nosema bombi: A pollinator parasite with 10 

detrimental fitness effects. Journal of Invertebrate Pathology, 96, 118-124. 11 

Owen, E. L., Bale, J. S. & Hayward, S. A. L. (2016). Establishment risk of the 12 

commercially imported bumblebee Bombus terrestris dalmatinus – can they 13 

survive UK winters? Apidologie, 47, 66-75.  14 

Palmer-Young, E. C., Sadd, B. M., Stevenson, P. C., Irwin, R. E. & Adler, L. S. (2016). 15 

Bumble bee parasite strains vary in resistance to phytochemicals. Nature 16 

Scientific Reports, 6:37087 doi:10.1038/srep37087 17 

Peet, M. M. & Welles, G. (2005). Greenhouse tomato production. In E. Heuvelink 18 

(Ed.), Tomatoes (pp. 257 – 304), Wallingford UK, CAB International.  19 

Pereira, K. d. S., Meeus, I., & Smagghe, G. (2019). Honey bee-collected pollen is a 20 

potential source of Ascosphaera apis infection in managed bumble bees. 21 

Scientific Reports, 9, 4241. doi:10.1038/s41598-019-40804-2 22 

Pfeiffer, K. J., & Crailsheim, K. J. I. S. (1998). Drifting of honeybees. Insectes Sociaux, 23 

45, 151-167.  24 



 49 

Plischuk, S., Meeus, I., Smagghe, G. & Lange, C. E. (2011). Apicystis bombi 1 

(Apicomplexa: Neogregarinorida) parasitizing Apis mellifera and Bombus 2 

terrestris (Hymenoptera: Apidae) in Argentina. Environmental Microbiology 3 

Reports, 3, 565-568. 4 

Plowright, R. C., and Laverty, T. M. (1984). The ecology and sociobiology of bumble 5 

bees. Annual Review of Entomology, 29, 175-199. 6 

Poinar, G. O. & Van der Laan, P. A. (1972). Morphology and life-history of 7 

Sphaerularia bombi. Nematologica, 18, 239- 252. 8 

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W. E. 9 

(2010). Global pollinator declines: trends, impacts and drivers. Trends in 10 

Ecology & Evolution, 25, 345-353. 11 

Ranta, E., & Lundberg, H. (1980). Resource partitioning in bumble- bees: The 12 

significance of differences in proboscis length. Oikos, 35, 298-302. 13 

Roldán Serrano, A. & Guerra-Sanz, J. M. (2006). Quality fruit improvement in sweet 14 

pepper culture by bumblebee pollination. Scientia Horticulturae, 110, 160-166. 15 

Ruijter, A. (1996). Commercial bumblebee rearing and its implications. Acta 16 

Horticulturae, 437, 261-269. 17 

Rutrecht, S. T. & Brown, M. J. F. (2008). The life-history impact and implications of 18 

multiple parasites for bumble bee queens. International Journal for 19 

Parasitology, 38, 799-808. 20 

Sachman-Ruiz, B., Narváez-Padilla, V. & Reynaud, E. (2015). Commercial Bombus 21 

impatiens as reservoirs of emerging infectious diseases in central México. 22 

Biological Invasions, 17, 2043-2053. 23 

Schmid-Hempel, P. (2017). Parasites and their social hosts. Trends in Parasitology, 33, 24 

453 – 462.  25 



 50 

Schmid-Hempel, P. & Loosli, R. (1998). A contribution to the knowledge of Nosema 1 

infections in bumble bees, Bombus spp. Apidologie, 29, 525-535. 2 

Schneider, S. S., DeGrandi-Hoffman, G. & Smith, D. R. (2004). The African honey bee: 3 

factors contributing to a successful biological invasion. Annual Review of 4 

Entomology, 49, 351-376. 5 

Skorupski, P., Döring, T. F. & Chittka, L. (2007). Photoreceptor spectral sensitivity in 6 

island and mainland populations of the bumblebee, Bombus terrestris. Journal 7 

of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral 8 

Physiology, 193, 485-494. 9 

Spaethe, J., Tautz, J. & Chittka, L. (2001). Visual constraints in foraging bumblebees: 10 

Flower size and color affect search time and flight behavior. Proceedings of the 11 

National Academy of Sciences of the United States of America, 98, 3898-3903. 12 

Stelzer, R. J., Raine, N. E., Schmitt, K. D. & Chittka, L. (2010). Effects of aposematic 13 

coloration on predation risk in bumblebees? A comparison between differently 14 

coloured populations, with consideration of the ultraviolet. Journal of Zoology, 15 

282, 75-83. 16 

Stout, J. C., Allen, J. A. & Goulson, D. (1998). The influence of relative plant density 17 

and floral morphological complexity on the behavior of bumblebees. Oecologia, 18 

117,  543-550.  19 

Strange, J. P. (2015). Bombus huntii, Bombus impatiens, and Bombus vosnesenskii 20 

(Hymenoptera: Apidae) pollinate greenhouse-grown tomatoes in western North 21 

America. Journal of Economic Entomology, 108, 873-879. 22 

Szabo, N.D., Colla, S.R., Wagner, D.L., Gall, L.F. & Kerr, J.T. (2012). Do pathogen 23 

spillover, pesticide use, or habitat loss explain recent North American 24 

bumblebee declines? Conservation Letters, 5, 232e239.  25 



 51 

Thorp, R. W. & Shepherd, M. D. (2005). Profile: Subgenus Bombus Latreille, 1802 1 

(Apidae: Apinae: Bombini). In. M. D. Shepherd, D. M.  Vaughan & S. H. Black 2 

(Eds.) (5pp.) Red list of pollinator insects of North America, CD-ROM Version 3 

1 (May 2005). The Xerces Society for Invertebrate Conservation, Portland 4 

Orgeon. Retrieved from http://www.xerces.org/wp-5 

content/uploads/2016/10/Bombus_Bombus.pdf  6 

Tomley, F. M. & Shirley, M. W. (2009). Livestock infectious diseases and zoonoses. 7 

Philosophical Transactions of the Royal Society B, 364, 2637-2642. 8 

Trillo, A., Montero-Castaño, A., González-Varo, J. P. , González-Moreno, P., Ortiz-9 

Sánchez, F. J. & Vilà, M. (2019). Contrasting occurrence patterns of managed 10 

and native bumblebees in natural habitats across a greenhouse landscape 11 

gradient.  Agriculture, Ecosystems & Environment, 272, 230 – 236.  12 

Tsuchida, K., Kondo, N. I., Inoue, M. N. & Goka, K. (2010). Reproductive disturbance 13 

risks to indigenous Japanese bumblebees from introduced Bombus terrestris. 14 

Applied Entomology and Zoology, 45, 49-58. 15 

Vavilova, V., Sormacheva, I., Woyciechowski, M., Eremeeva, N., Fet, V., Strachecka, 16 

A. . . . Blinov, A. J. P. R. (2015). Distribution and diversity of Nosema bombi 17 

(Microsporidia: Nosematidae) in the natural populations of bumblebees 18 

(Bombus spp.) from West Siberia. Parasitology Research, 114, 3373-3383.  19 

Velthuis, H. H. W. & Van Doorn, A. (2006). A century of advances in bumblebee 20 

domestication and the economic and environmental aspects of its 21 

commercialization for pollination. Apidologie, 37, 421-451. 22 

Whitehorn, P. R., Tinsley, M. C., Brown, M. J. F. & Goulson, D. (2013). Investigating 23 

the impact of deploying commercial Bombus terrestris for crop pollination on 24 



 52 

pathogen dynamics in wild bumble bees. Journal of Apicultural Research, 52, 1 

149-157. 2 

Whittington, R. & Winston, M. L. (2003). Are bumble bee colonies in tomato 3 

greenhouses obtaining adequate nutrition? Canadian Entomologist, 135, 883-4 

892. 5 

Whittington, R., Winston, M. L., Tucker, C. & Parachnowitsch, A. L. (2004). Plant-6 

species identity of pollen collected by bumblebees placed in greenhouses for 7 

tomato pollination. Canadian Journal of Plant Science, 84, 599-602. 8 

Williams, P. (2005). Does specialization explain rarity and decline among British 9 

bumblebees? A response to Goulson et al. Biological Conservation, 122, 33–43. 10 

Williams, P. H., Brown, M. J. F., Carolan, J. C., An, J., Goulson, D., Aytekin, A. M., … 11 

Xie, Z. (2012). Unveiling cryptic species of the bumblebee subgenus Bombus s. 12 

str. worldwide with COI barcodes (Hymenoptera: Apidae). Systematics and 13 

Biodiversity, 10, 21-56. 14 

Williams, P. H. & Osborne, J. L. (2009). Bumblebee vulnerability and conservation 15 

world-wide. Apidologie, 40, 367-387. 16 

Wolf, S. & Moritz, R. F. A. (2008). Foraging distance in Bombus terrestris L. 17 

(Hymenoptera: Apidae). Apidologie, 39, 419-427. 18 

Woodard, S. H., Lozier, J. D., Goulson, D., Williams, P. H., Strange, J. P. &  Jha, S. 19 

(2015). Molecular tools and bumble bees: revealing hidden details of ecology 20 

and evolution in a model system. Molecular Ecology, 24, 2916-2936. 21 

Zanette, L. R. S., Miller, S. D. L., Faria, C. M. A., Lopez-Vaamonde, C. & Bourke, A. 22 

F. G. (2014). Bumble bee workers drift to conspecific nests at field scales. 23 

Ecological Entomology, 39, 347-354. 24 

 25 



 53 

 1 


