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Abstract

Multi-core systems become more and more popular as they can satisfy the

increasing computation capacity requirements of complex applications. Task

scheduling strategy plays a key role in this vision and ensures that the task

processing is both Quality-of-Service (QoS, in this thesis, refers to deadline)

satisfied and energy-efficient. In this thesis, we develop task scheduling strate-

gies for multi-core computing systems. We start by looking at two objectives of a

multi-core computing system. The first objective aims at ensuring all tasks can

satisfy their time constraints (i.e. deadline), while the second strives to minimize

the overall energy consumption of the platform. We develop three power-aware

scheduling strategies in virtualized systems managed by Xen. Comparing with

the original scheduling strategy in Xen, these scheduling algorithms are able

to reduce energy consumption without reducing the performance for the jobs.

Then, we find that modelling the makespan of a task (before execution) ac-

curately is very important for making scheduling decisions. Our studies show

that the discrepancy between the assumption of (commonly used) sequential

execution and the reality of time sharing execution may lead to inaccurate cal-

culation of the task makespan. Thus, we investigate the impact of the time

sharing execution on the task makespan, and propose the method to model and

determine the makespan with the time-sharing execution. Thereafter, we ex-

tend our work to a more complex scenario: scheduling DAG applications for

time sharing systems. Based on our time-sharing makespan model, we further

develop the scheduling strategies for DAG jobs in time-sharing execution, which

achieves more effective at task execution. Finally, as the resource interference

also makes a big difference to the performance of co-running tasks in multi-core

computers (which may further influence the scheduling decision making), we in-

vestigate the influential factors that impact on the performance when the tasks
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are co-running on a multicore computer and propose the machine learning-based

prediction frameworks to predict the performance of the co-running tasks. The

experimental results show that the techniques proposed in this thesis is effective.



Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Dr. Ligang

He, whose guidance, encouragement and support have been invaluable to me

during my time at the Department of Computer Science at the University of

Warwick. I benefited greatly from his insightful advices and comments in finding

and solving research problems. I look forward to maintaining our collaboration

in the future.

I would like to thank my husband Junyu whose patience, encouragement

and unwavering love has been the magical special ingredient in my life for the

past two years. I thank my parents for their continuous and unreserved support

in my pursuit of an academic career.

I thank Dr. Roger Packwood for his support in solving technical issues and

his positive attitude which influenced me greatly. I thank the staffs in our de-

partment (Ruth Cooper, Sharon Howard, Jackie Pinks, Jane Clarke, Mike Crib-

don, Maria Ferreiro, Lynn McLean, Gillian Reeves-Brown and Paul Williamson)

for their kind help and warm supports.

Last but not the least, I want to thank my fellow lab-mates, particularly

Bo Gao, Chao Chen, Huanzhou Zhu, Zhuoer Gu, David Purser, James Van

Hinsbergh, Peng Jiang, Chen Gu, Bo Wang, Qingzhi Ma, Yijun Quan, Haoyi

Wang, Hao Wu, Zhiyan Chen and Yujue Zhou for their stimulating discussions

in current trends in technology and for creating all the happy memories that we

share.

iv



Declarations

This thesis is submitted to the University of Warwick in support of the authors

application for the degree of Doctor of Philosophy. It has been composed by the

author and has not been submitted in any previous application for any degree.

The work presented was carried out by the author except where acknowledged.

Parts of this thesis have been previously published (or accepted) by the author

in the following:

1 S. Ren, L. He, H. Zhu, Z. Gu, W. Song and J. Shang. Developing power-

aware scheduling mechanisms for computing systems virtualized by Xen.

Concurrency and Computation: Practice and Experience, 29(3): e3888.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3888.

2 S. Ren, L. He, J. Li, C. Chen, Z. Gu, and Z. Chen. Scheduling dag

applications for time sharing systems. 18th International Conference on

Algorithms and Architectures for Parallel Processing.

3 S. Ren, L. He, J. Li, Z. Chen, P. Jiang, and L. Chang-Tsun. Contention-

aware prediction for performance impact of task co-running in multicore

computers. Wireless Networks Journal.

4 P. Jiang, L. He, S. Ren, and Z. Chen. vchecker: a application-level

demand-based co-scheduler for improving the performance of parallel jobs

in xen. 9th EAI International Conference on Big Data Technologies and

Applications.

5 J. Li, L. He, and S. Ren. Data fine-pruning: A simple way to accelerate

neural network training. 15th IFIP International Conference on Network

and Parallel Computing.

6 P. Jiang, L. He, S. Ren, Z. Chen, and R. Mao. vplacer: a co-scheduler

v



for optimizing the performance of parallel jobs in xen. 18th International

Conference on Algorithms and Architectures for Parallel Processing.



Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• China Scholarship Council (CSC)

vii



Abbreviations

AWS Amazon Web Service

BFM Best Frequency Match

BFMM Best Frequency Match for Multi-core

BFMS Best Frequency Match for Single-core

BT Block Tri-diagonal solver

BVT Borrowed Virtual Time

BoT Bag-of-Tasks

CG Conjugate Gradient

CMPs Chip Multi-core Processors

CP Critical Path

CPU Central Processing Unit

DAG Directed Acyclic Graph

ddl Deadline

DER Desired Execution Requirement

DNA Deoxyribonucleic Acid

DVFS Dynamic Voltage Frequency Scaling

EDF Earliest Deadline First

EP Embarrassingly Parallel

GA Genetic Algorithm

IaaS Infrastructure as a Service

IBM International Business Machines

IDC International Data Corporation

viii



IoP Internet of People

IPAC Infrared Processing and Analysis Center

LLC Last Level Cache

LLS Least Performance Loss

LSVMs Latency-sensitive Virtual Machines

LTF Largest Task First

LU Lower-Upper Gauss-Seidel solver

NASA National Aeronautics and Space Administration

NLS No performance Loss Scheduling

NP Non-deterministic Polynomial-time

NPB NASA Advanced Supercomputing Parallel Benchmarks

OS Operating System

PE Performance Event

PM Physical Machine

P-states Power-states

PSO Particle Swarm Optimization

QoS Quality-of-Service

RL RunningList

RNA Ribonucleic Acid

RT-Xen Real Time Xen

SEDF Simple Earliest Deadline First

SPEC Standard Performance Evaluation Corporation

SVM Support Vector Machine

TAA Task Allocation Algorithm

TCP Critical Path Execution Time



TLB Translation Lookaside Buffer

TmpRT Temporary Remaining Time

TS Time-sharing

VCPU Virtual Central Processing Unit

VM Virtual Machine

VMM Virtual Machine Monitor

WCET Worst-case Execution Time



Contents

Abstract 2

Acknowledgements 4

Declarations 5

Sponsorship and Grants 7

Abbreviations 8

List of Figures 17

List of Tables 18

1 Introduction 1

1.1 Virtual Machine Scheduling in Cloud Computing Platforms . . . 1

1.2 Scheduling DAG Applications for Time Sharing Systems . . . . . 3

1.3 Performance Impact of Task Co-running in Multicore Computers 4

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 8

2.1 Scheduling Strategies for Computing Systems Virtualized by Xen 8

2.1.1 Performance Model and Power Consumption Model . . . 10

2.1.2 Energy-aware Scheduling Strategy . . . . . . . . . . . . . 10

2.1.3 Performance-aware Scheduling Strategy . . . . . . . . . . 12

2.2 Scheduling Strategies for Tasks in Native Environment . . . . . . 13

2.2.1 Scheduling Strategies for Bag of Tasks (BoT) in Multi-

core Computers . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Scheduling Strategies for DAG Applications in Multi-core

Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 14

xi



2.3 Performance Prediction of Task Co-running in Multi-core Com-

puters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Resource Contention Problem of Co-running Tasks . . . . 17

2.3.2 Performance Prediction Approaches . . . . . . . . . . . . 18

3 Power-aware Scheduling Mechanisms for Virtualized Environ-

ments 21

3.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Performance and Energy Model for the DVFS-enabled Xen . . . 24

3.2.1 Performance Model . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Power Consumption Model . . . . . . . . . . . . . . . . . 25

3.3 Scheduling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 The Scheduling Strategy with Least Performance Loss . . 26

3.3.2 The Scheduling Strategy with No Performance Loss . . . 28

3.4 BFM Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 BFM for Single-core Processors . . . . . . . . . . . . . . . 31

3.4.2 BFM for Multi-core Processors . . . . . . . . . . . . . . . 35

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Experiments on Single-core Processors . . . . . . . . . . . 39

3.5.3 Experiments on Multi-core Processors . . . . . . . . . . . 42

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Scheduling DAG Applications for Time Sharing Systems 46

4.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Workload and Resource Model . . . . . . . . . . . . . . . . . . . 48

4.3 Makespan Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 The Makespan with the Sequential Execution Model . . . 50

4.3.2 The Makespan model for Bag of Tasks under the Time-

sharing Execution . . . . . . . . . . . . . . . . . . . . . . 52



4.3.3 The Makespan Model for DAG Applications under the

Time-sharing Execution . . . . . . . . . . . . . . . . . . . 53

4.3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 DAG Scheduling Adjustment . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Calculating Latest Finish Time . . . . . . . . . . . . . . . 59

4.4.2 Calculating the Migration Impact . . . . . . . . . . . . . 60

4.4.3 Task Migration Algorithm . . . . . . . . . . . . . . . . . . 62

4.5 Multi-task Migration Algorithm . . . . . . . . . . . . . . . . . . . 66

4.6 Task Allocation Algorithm . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Resource Bounds . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7.1 Performance with different number of tasks . . . . . . . . 73

4.7.2 Performance with the different number of PMs . . . . . . 75

4.7.3 Results for Randomly Generated DAGs . . . . . . . . . . 75

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Contention-aware Prediction for Performance Impact of Task

Co-running in Multi-core Computers 80

5.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Performance Impact of Multi-core . . . . . . . . . . . . . 81

5.1.2 Performance Impact of Scaling Frequency . . . . . . . . . 83

5.1.3 Performance Impact of Time-sharing Execution . . . . . . 83

5.2 The Performance Prediction Framework for Co-running Tasks . . 85

5.2.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 The Performance Prediction Framework for Repetitive

Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 The Performance Prediction Framework for New Tasks . 89

5.3 Other Machine Learning Approaches . . . . . . . . . . . . . . . . 96

5.3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . 97



5.3.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . 98

5.3.4 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 Experiment Results for Co-running Tasks . . . . . . . . . 99

5.4.2 Experiments with Various CPU Frequencies . . . . . . . . 104

5.4.3 Experiment Results for Time-sharing Tasks . . . . . . . . 109

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusions and Future Work 113

6.1 Power-aware Scheduling Mechanisms for Virtualized Environments113

6.2 Scheduling DAG Applications for Time Sharing Systems . . . . . 114

6.3 Contention-aware Prediction for Performance Impact of Task Co-

running in Multi-core Computers . . . . . . . . . . . . . . . . . . 115

6.4 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 118



List of Figures

2.1 An example of SEDF scheduling process . . . . . . . . . . . . . . 9

3.1 Frequency sampling of Domain 0 for 60 times; each sampling

interval is 300 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Energy waste and performance loss under DVFS in Xen . . . . . 24

3.3 ”Least Performance Loss” Scheduling Strategy (above); Illustra-

tion of changing the execution position of a randomly selected

task (below) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 ”No Performance Loss” Scheduling Strategy . . . . . . . . . . . . 30

3.5 An example of the BFM scheduling strategy . . . . . . . . . . . . 33

3.6 The execution times of different benchmark tasks running with

different frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 The power consumption of benchmarks running with different

frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Execution times of tasks on a single core under SEDF and BFM 41

3.9 Power consumption of tasks on a single core under SEDF and BFM 42

3.10 Task consolidation on Quad-Core using SEDF scheduler . . . . . 43

3.11 Task consolidation on Quad-Core using BFM scheduler . . . . . 43

3.12 Execution times of tasks on a multi-core processor under SEDF

and BFMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.13 Power consumption of tasks on a multi-core processor under SEDF

and BFMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 A Motivating Example DAG . . . . . . . . . . . . . . . . . . . . 47

4.2 Sequential Execution Makespan (left) vs. Time-sharing Makespan

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Sequential executing process . . . . . . . . . . . . . . . . . . . . . 51

xv



4.4 Time-sharing executing process . . . . . . . . . . . . . . . . . . . 51

4.5 An example of four independent tasks executing on a single core 53

4.6 Case study: DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Case study: Scheduling scheme using Time-sharing Makespan

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Case study: Scheduling scheme using Traditional Makespan model 58

4.9 Migration effects on four kinds of tasks . . . . . . . . . . . . . . . 61

4.10 Original Mapping for topology level 1 . . . . . . . . . . . . . . . 69

4.11 Re-allocation for topology level 1 . . . . . . . . . . . . . . . . . . 69

4.12 CyberShake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.13 Epigenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.14 Inspiral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.15 Sipht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.16 Montage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.17 Structures of the real-world workflows [21] . . . . . . . . . . . . . 73

4.18 Results for the real-world workflows runtime in different node

numbers under M − TS, M − S and M − TAA . . . . . . . . . . 76

4.19 Makespan-TAA with different number of PMs . . . . . . . . . . 77

4.20 Makespan results for Randomly generated DAGs . . . . . . . . . 78

5.1 Motivation Experiments . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Comparison of performance events of SPEC 459 between solo

execution and co-running . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Execution time for SPEC 403, 462 and 470 when executing under

different frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Diagrams of two kinds of execution manners . . . . . . . . . . . . 85

5.5 Non-time-sharing vs Time-sharing makespan (Under the same

frequency, 3301 MHz) . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 The trend of performance events as the co-running tasks progress 92

5.7 Residual analysis for co-running task prediction (online) . . . . . 100



5.8 Residual analysis for co-running task prediction (static) . . . . . 100

5.9 Top 15 important features for predicting the execution time of

co-running tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.10 Execution time for SPEC benchmarks when executing under dif-

ferent frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Residual analysis for execution time prediction with various fre-

quencies (online) . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.12 Residual analysis for execution time prediction with various fre-

quencies (static) . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.13 Top 15 important features for predicting the execution time under

various frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.14 Residual analysis for execution time prediction time-sharing ex-

ecuting tasks (static) . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.15 Top 20 important features for predicting the execution time of

time-sharing tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 110



List of Tables

4.1 Characteristics of the Real-World DAGs . . . . . . . . . . . . . . 72

4.2 Results of the Real-World DAGs Makespan . . . . . . . . . . . . 77

5.1 Experiment results for predicting the co-running time for repeti-

tive tasks and new tasks, respectively . . . . . . . . . . . . . . . . 101

5.2 Predicting the execution time under various frequencies for repet-

itive tasks and new tasks, respectively . . . . . . . . . . . . . . . 108

5.3 Predicting the time-sharing makespan for repetitive tasks . . . . 109

xviii



CHAPTER 1
Introduction

1.1 Virtual Machine Scheduling in Cloud Com-

puting Platforms

Cloud computing emerges as one of the most important technologies for inter-

connecting people and building the so-called “Internet of People (IoP). Nowa-

days, energy consumption in such a system is a critical metric to measure its sus-

tainability and eco-friendliness. Indeed, data centers used by the Cloud service

providers have become one of the fastest growing sources of power consump-

tion in industry. According to IDC (International Data Corporation), power

consumption of data centers worldwide accounts for about 8% of the global

electricity, which does not include the additional electricity consumed by the

cooling systems equipped in the data center. In such a Cloud-based IoP, the

virtualization technique, which allows multiple operating system instances (i.e.,

Virtual Machines) to run simultaneously in a physical machine, provides the

key supporting environments for running the IoP jobs such as performing data

analysis and mining personal information.

Xen [68] is a popular virtualization hypervisor used in the academic com-

munity. It has also been widely deployed in a number of industry-level Clouds,

such as AWS (Amazon Web Service), Rackspace, Verizon, etc. SEDF (Simple

Earliest Deadline First) is a scheduler in Xen. In SEDF, the CPU requirement

for each VM is specified by a tuple (s,p,x ), in which s and p designate that

the VM has to run at least s in a period of p. This CPU requirement can be

translated to the deadlines by which a VM has to start running (otherwise, the

CPU requirement will not be met). In each scheduling round, SEDF puts the

1



1. Introduction

VM with the earliest deadline into execution [15].

Dynamic Voltage Frequency Scaling (DVFS) is a power management tech-

nique. DVFS can change the running frequency of CPU dynamically as required

and therefore reduce power consumption when the tasks do not need to be run

with the maximum CPU frequency. Xen currently has four power governors.

1) The Ondemand governor selects the CPU frequency which best fits the VM

(guest domain). 2) The Userspace governor selects the frequency specified by

user. 3) The Performance governor selects the highest frequency. 4) The Pow-

ersave governor selects the lowest frequency. There are twelve frequency states

in the Xen power management, in which the state P0 represents the highest fre-

quency while the state P12 represents the lowest frequency. Here, we consider

the most complex scenario and assume that the guest domains are run under

the Ondemand governor, namely, the CPU frequency is dynamically adjusted

towards the best execution frequency of a guest domain.

In Xen, the CPU frequency can only be changed by one state in every interval

of 10ms. The interval of 10ms is called the frequency scaling slice. For example,

it takes Xen 40ms to change the CPU frequency from P1 to P4. Our studies show

that this limitation in Xen in frequency changing may cause the energy waste

and performance loss (The problem is illustrated by an example the motivation

section of Chapter 3), which this work aims to reduce. In this work, we conduct

the theoretical ananlysis and construct the performance model and the energy

consumption model by taking into account the feature of Xen in frequency

changing. Based on the analysis and the models, we derive the condition under

which the best performance can be achieved, i.e., there is no performance loss

caused by the limitation of Xen in frequency changing. Further, we propose

a frequency-aware scheduling policy, called BFM (Best Frequency Match), by

adapting the SEDF scheduling policy in Xen. Compared with SEDF, BFM is

able to reduce the power consumption of running VMs without violating their

CPU requirements.

2



1. Introduction

1.2 Scheduling DAG Applications for Time Shar-

ing Systems

DAG is often used to model the precedence constraints of a group of related

tasks. Many DAG (Directed Acyclic Graph) scheduling algorithms have been

proposed in literature. The makespan of a DAG is an important metric to

measure the performance of a DAG scheduling solution. When computing the

makespan of a DAG, it is typically assumed that the tasks scheduled on the same

computing node run in sequence, i.e., being executed one by one in the comput-

ing node (which we call the sequential execution in this thesis) [48][50][93]. This

assumption is reasonable in the cluster platform, where there is only a central

queue in the head node and a new task is sent to a computing node only when

the node has completed the execution of the existing task. However, in some

situations, such as distributed systems and virtualized environments, there may

not be a central queue in the system. In a distributed system, there is no a

centralized management mechanism. The tasks in a DAG are often sent to the

computing machine as designated in the scheduling solution. After the comput-

ing machine receives these tasks, the tasks are run in the time sharing manner

by the operating system. In virtualized environments, a VM is often created

to run a task. When multiple tasks are scheduled to the same machine, there

will be multiple VMs co-running in the physical machine. These VMs will not

be executed in sequence, but concurrently (i.e., time sharing) by the schedulers

(such as Credit or SEDF) deployed in the Virtual Machine Monitor.

Our studies, the details of which are presented in Chapter 4, show that the

discrepancy between the assumption of sequential execution and the reality of

time sharing execution may lead to inaccurate calculation for the finish times

of individual tasks and further for the execution performance, such as in terms

of makespan, of the whole DAG.

In this work, we first investigate the key difference between the time-sharing

execution and the sequential execution, and reveal the impact of the time sharing

3



1. Introduction

execution on the DAG makespan. Based on the analysis, we adapt the conven-

tional method of computing the DAG makespan in the sequential execution and

present our counterpart makespan model and method in the time-sharing exe-

cution. Usually, the makespan in the time sharing execution is worse (longer)

than that assumed in the sequential execution. Therefore, we propose the new

DAG scheduling strategies (a task migration algorithm and a task allocation

algorithm) for time-sharing systems.

1.3 Performance Impact of Task Co-running in

Multicore Computers

In the task scheduling, it is often assumed that the scheduler knows the execu-

tion time of the tasks. However, it is a non-trivial task to product the accurate

performance prediction for tasks, although a number of techniques are indeed

developed to predict the task performance [57]. These three situations make it

even more challenging to predict the task performance: 1) task co-running: the

tasks are running simultaneously (co-running) on multiple CPU cores in a multi-

core processor; 2) scaled CPU frequency: the CPU frequency may be scaled to

run tasks; 3) time-sharing execution: the tasks are running in a time-sharing

manner on the same core, due to the following reasons.

There are resource contention and interference among the co-running tasks,

since they need to share (contend) the resources in the computer such as internal

buses, cache, memory, hard disk, etc. The resource contention may lead to

the longer completion times of the tasks. The resource contention relation is

complicated because both the intensity level of contention and the type of the

contention (i.e., which type of the resource is contended by the tasks most

intensively) do not only relate to the hardware specification of the system (such

as cache size and memory bandwidth), but also vary from the characteristics

of the co-running tasks (such as memory access frequency, I/O requirement

and cache usage). Different co-running combinations of tasks may lead to very
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different contention levels of intensity. The complexity nature of the contention

among co-running tasks makes it difficult to develop the static formulas for

accurate performance prediction.

On one hand, executing with lower frequency can reduce the power consump-

tion. On the other hand, the execution time of the task will increase. Many

researches have been conducted based on the trade-off between the task exe-

cution time and the energy consumption. We conducted experiments to show

that the relationship between CPU frequency and execution time is non-linear.

Based on our investigation, we found that the performance impact of running

with different CPU frequencies depends on the characteristics of the task, as

well as the architecture of the hardware.

A time sharing scheduler aims to provide all processes with relatively equal

interval of time to access the CPU. It allows more efficient use of the computer

hardware; where a program is waiting for some events such as a user input or

I/O operation to complete, the central processor can still be used to run another

program [95]. Time-sharing execution often achieves higher CPU utilization

than sequential execution. However, due to the resource contention and other

resource requirements during processing, different combinations of time-sharing

executions may lead to different performance (This problem is illustrated by an

example in motivation section of Chapter 5).

We investigate the performance impact of tasks in the scenarios mentioned

above and present the method to identify the influential factors for the given

co-running tasks. Further, we propose a machine learning-based approach to

predicting the performance of the tasks. Two prediction frameworks are devel-

oped for two types of task that are often seen in production systems: repetitive

tasks (i.e., the tasks that arrive at the system repetitively) and new tasks (i.e.,

the task that are submitted to the system the first time), the difference between

which is that we have the historical running information of the repetitive tasks

while we do not have the prior knowledge about new tasks.

Given the limited information of the new tasks, a two-stage online prediction
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framework is developed to predict the performance of the tasks by sampling the

performance events on the fly for a short period and then feeding the sampled

results to the prediction framework. We conducted the extensive experiments

with the SPEC2006 benchmark suite to compare the effectiveness of different

machine learning methods and present our observations and analyse. The results

show that our prediction model can achieve the high accuracy for both repetitive

tasks and new tasks in the three scenarios summarized above: tasks co-running,

varied CPU frequency and time-sharing execution.

1.4 Thesis Organization

The reminder of this thesis is organized as follows. This chapter provides a

brief overview of the work conducted in this thesis. In the next chapter, we

present the literature review of our research topics. Thereafter, each of the three

chapters (Chapter 3-5) of this thesis presents the task scheduling strategies from

a different scenario.

In Chapter 3, we formally construct the models for execution time and power

consumption. We identify the best performance scheduling situation where there

is no performance loss. Given the execution order of the tasks, we can determine

the start frequency that can guarantee that every task is able to run with the

best performance frequency. Thereafter, we propose a power consumption-aware

scheduling policy and design the task scheduling policies on a single core and

also on multiple cores. Our scheduling policies are able to reduce power waste,

which is supported by our intensive experiments.

In Chapter 4, firstly, we present a motivating case study to demonstrate the

difference of the time sharing execution from the sequential execution and its

impact on the makespan. Secondly, we present the workload and system model

and the notations used in our scenario. Then we present the makespan models

with both sequential and time-sharing executions, followed by the task adjusting

algorithm and the DAG allocation algorithm for the time-sharing execution.
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Experimental results are presented in the last section of this chapter.

In Chapter 5, we investigate the influential factors of performance impact in

the three scenarios (i.e. task co-running, scaled CPU frequency and time-sharing

execution); a performance prediction framework is developed for repetitive tasks

and new tasks. Then we introduce the machine learning approaches applied in

our framework. The next section shows the experimental results of our work.

The experiments are conducted on benchmarks SPEC 2006 and NPB. Finally,

we conclude this chapter.

Lastly, Chapter 6 presents the conclusions and talks about the future work.
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CHAPTER 2
Literature Review

This chapter presents the literature reviews. Section 2.1 and Section 2.2 discuss

the scheduling strategies for the virtualized environments and native environ-

ments, respectively. Then we reveal the problem of performance degradation

when scheduling co-running tasks and present the related research work in Sec-

tion 2.3.

2.1 Scheduling Strategies for Computing Sys-

tems Virtualized by Xen

Xen is a hypervisor developed by the University of Cambridge. It is widely used

by many popular cloud service providers such as Amazon and IBM SoftLayer.

The Xen Hypervisor supports several different virtual CPU schedulers: Bor-

rowed Virtual Time (BVT) Scheduler, Simple Earliest Deadline First (SEDF)

Scheduler, Credit Scheduler, Credit2 Scheduler, etc. SEDF uses a real-time

scheduling algorithm called ”Earliest Deadline First (EDF)” to guarantee the

CPU requirements of the VM. EDF is an optimal scheduling algorithm in the

following sense: if a set of independent tasks (each task has its corresponding

arrival time, execution time and deadline) can be scheduled in a way that there

is no deadline miss, the EDF can schedule this set of tasks.

When scheduling periodic processes without violating their deadlines, EDF

has a utilization bound of 100%, which can be represented by the following

expression:

U =

n∑
i=1

Ci

Ti
≤ 1 (2.1)
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A: (10,100,0)
B: (50,100,0)
C: (30,100,0)

ddl_A= 90
ddl_B= 50
ddl_C= 70

ddl_A= 90
ddl_B= 80
ddl_C= 70

ddl_A= 90
ddl_B= 80
ddl_C= 170

ddl_A= 90
ddl_B= 160
ddl_C= 170

B C B A0 ms 30 ms 60 ms 90 ms

Figure 2.1: An example of SEDF scheduling process

where U is the CPU utility, {Ci} are the worst case execution times of the

n tasks and the Ti is their relative deadlines. That is, EDF can guarantee that

all deadline constraints are satisfied and the total CPU utilization is not more

than 100%.

In the SEDF scheduler, the CPU requirement for each VM is specified by

a tuple (s,p,x ), in which s and p that the VM has to run at least s units in a

period of p units. This CPU requirement can be translated to the deadlines by

which a VM has to start running (otherwise, the CPU requirement will not be

met). In each scheduling round, SEDF puts the VM with the earliest deadline

into execution [15]. Please note that the deadline in our first work (presented in

Chapter 3) refers to a relative deadline, which represents the CPU requirement

of the tasks.

Figure 2.1 illustrates an example of the SEDF scheduling process. We assume

that task A, B, and C are scheduled by SEDF. The scheduling slice is 30 ms. The

CPU requirements of the tasks are A(10,100,0), B(50,100,0) and C(30,100,0),

respectively. Namely, task A, B and C need to run for at least 10, 50 and 30

ms in every 100 ms, respectively. At time point 0ms, the relative deadline of

the tasks (denoted by ddl x) are shown in the figure. At each scheduling point,

SEDF will select the task with the earliest relative deadline to execute (task B

in the figure). After running for 30ms, the relative deadline of task B changes to

80ms while others stay the same. At time point 30ms, SEDF will select task C
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to execute since task C has the earliest relative deadline. The same scheduling

policies are applied at other scheduling points.

Credit scheduler is a proportional fair share scheduler for virtual CPUs.

Each virtual machine is assigned a weight and a cap. The cap refers to the

amount (expressed as percentage) of CPU that a VM can use while the credit

is represented by the weight. The default time slice of the Credit scheduler is

30 ms. Once every 30 ms, the credits of all runnable VMs are recalculated,

the executing VM will be appended to the end of the runnable queue and the

scheduler will pick the first runnable VM to execute. Only the VMs with non-

zero credits are runnable. Further, to improve the performance of I/O intensive

tasks, Credit scheduler assigns them a priority boost. The VMs that are waken

up are likely to be scheduled immediately.

There have been many previous efforts to optimize the performance and

the power consumption of Xen-based systems. This section discusses several

performance models and power consumption models, the energy-aware schedul-

ing strategies, and some methods for optimizing the resource consolidation on

multi-core processors.

2.1.1 Performance Model and Power Consumption Model

Reference [46] constructs an energy-aware stochastic task scheduling architec-

ture in heterogeneous computing environments, which incorporates HCS, BoT

applications, stochastic tasks, an energy model, and time and energy budget

constraints into consideration. Reference [92] [62] [6] and [104] also present

power consumption models in different virtualized environment.

2.1.2 Energy-aware Scheduling Strategy

RT-Xen [100], which is the first real-time hypervisor scheduling framework for

Xen. It bridges the gap between real-time scheduling and Xen. Basing on Xen’s

widespread adoption, RT-Xen constructs an attractive platform for integrating

an extensive range of real-time and embedded systems.
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Reference [43] attempts to meet the execution requirements of all the tasks

and to minimize the overall energy consumption of the processor. It consid-

ers the issue of scheduling a set of aperiodic tasks on DVFS-enabled multi-core

processors. Giving an ideal case to define the tasks’ Desired Execution Re-

quirement(DER), the algorithm will points out an evenly allocation method

to achieve saving processor energy, where it is especially suitable for real-time

systems.

Reference [51] presents a task scheduling strategy that solves the task allo-

cation problems on DVFS-enabled CPU cores, the tasks execution order and

the CPU processing frequency for each task. It formulates the task scheduling

model, the energy consumption model, a CPU processing frequency model and a

cost function. The formulas deduces the scheduling policy for both batch mode

and online mode of the tasks. The algorithm guarantees the minimal total cost

for every time interval.

In[41], a power consumption model is purposed for estimate the energy con-

sumption of the tasks in cloud systems. It divides the power consumption into

leakage power and dynamic power and formulates the processor energy consump-

tion according to each in-processor event. The work presents an energy-credit

scheduler that schedules the tasks according to their energy budgets instead of

time credits. Also their scheduling algorithm lacks the careful consideration of

the tasks’ executing time requirements.

Reference [91] provides the performance model, the compute cluster model

and virtual machine model on DVFS-enabled cluster tasks. In addition, it

presents a power-aware cluster scheduling algorithm to minimize the power con-

sumption.

Reference [70] extends an existing formulation of the power-aware job place-

ment problem as to account for DVFS-enabled cluster nodes. Reference [70]

discusses two optimization problems: (i) optimizing performance by given a

constraint on energy consumption; (ii) optimizing the energy consumption by

given a constraint of job performance. In addition, it calculates the bound for
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several instantiations of the DVFS model, thereby quantifying the added benefit

of increased DVFS capabilities.

2.1.3 Performance-aware Scheduling Strategy

Reference [105] presents an optimization technique: periodically coalescing and

handling I/O events, which guarantees I/O performance as well as reduces the

preemption rate and scheduling latency. It also uses a Round-Robin manner

to handle I/O events periodically which improves I/O performance of compu-

tational tasks, though it leads to increasing number of migrations.

In [114], a layered graph is built to illustrate the co-scheduling problem.

As a result, the problem of finding the optimal co-scheduling strategy is then

modelled as looking up a shortest valid path in the built graph. Further, their

work presents the approaches of seeking the shortest path for both serial jobs

and parallel jobs. Besides, several optimization measures are also designed to

speed up the solving process.

Reference [2] emphasizes the virtual time discontinuity problem for lock and

interrupt handling in guest operating systems. It presents the downside of sub-

millisecond time slicing, and the architectural implication for future support of

VM consolidation and also proposes a context preservation technique based on

time sampling.

To mitigate I/O processing latency while retaining the benefit of CPU shar-

ing, reference [101] provides a new class of VMs named latency-sensitive VMs

(LSVMs). It provides a better performance for I/O-bound applications while

using the same resource share as other CPU-sharing VMs. LSVMs are pow-

ered by vSlicer, which is a hypervisor-level methodology scheduling each LSVM

more frequently but with a shorter micro time slice, without breaking the CPU

fairness among all sharing VMs.

Reference [27] presents a Flat Lightweight File System (iFlatLFS) to manage

small files basing on a simple metadata scheme and a flat storage architecture. It

can greatly simplify the original data access procedure. The proposed metadata
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holds as little as a fraction of the metadata size used on traditional file systems.

In [40], a task-aware virtual machine scheduling strategy is presented based

on inference methods applying the gray-box knowledge. It introduces partial

boosting that is a priority boosting mechanism with task-level granularity. By

applying such technique, any I/O-bound tasks can be selectively scheduled to

handle their incoming events straightway. As a result, the work using lightweight

mechanisms with full CPU fairness among VMs enhances I/O-bound tasks per-

formance within heterogeneous workloads.

vGreen [22] is a multi-tiered software system proposed for energy-efficient

computing in virtualized environments. It presents a number of novel hierarchi-

cal metrics measuring power and performance characteristics of both physical

and virtual machines. In addition, several policies are introduced for energy

efficient virtual machine scheduling across the whole deployment.

Reference [35] addresses the challenges of dynamically scheduling parallel

jobs with QoS demands (soft-deadlines) in multi-clusters and grids system.

Three metrics (over-deadline, makespan and idle-time) are consolidated with

appropriate weights to evaluate scheduling performance. Moreover, two levels

of performance optimization methods are developed for the multicluster envi-

ronment.

2.2 Scheduling Strategies for Tasks in Native

Environment

In this section, we discuss the task scheduling strategies in native environments

(as opposed to virtualized environments). The tasks can be broadly divided into

two classes: Bag of Tasks, which refers to a set of independent tasks, and DAG,

which represents a set of tasks with precedence constraints. In this subsection,

we discuss scheduling strategies in native environments for these two classes of

tasks.
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2.2.1 Scheduling Strategies for Bag of Tasks (BoT) in Multi-

core Computers

Several works have been conducted to schedule BoT applications to multi-core

processors [60] [72] [79] [113] [80] and [16]. Reference [81] builds an energy-aware

cloud computing platform including its architecture, job and power consump-

tion model. Then, the authors develop a prediction approach to forecast the

short-term workload that combines the linear regression and wavelet neural

network techniques. Reference [71] develops a comprehensive multi-objective

optimization model that takes four conflicting objectives, namely minimizing

task transfer time, task execution cost, power consumption, and task queue

length, into consideration. Reference [84] investigates BoT scheduling from an

energy efficiency perspective.

Survey [4] presents the power management strategies that minimize the

makespan under a power budget. Reference [107] addresses the energy con-

sumption problem by developing DVFS-based scheduling strategies for parallel

real-time tasks. Reference [52] develops task scheduling strategies that find a

balance point between two conflicting objectives (performance and energy con-

sumption). Reference [85] studies BoT load balance from an energy efficiency

perspective. In addition, two execution modes (batch mode and online mode)

are considered in the work. Reference [116] designs a dynamic voltage scaling-

based scheduling strategy called adaptive energy-efficient scheduling (AEES),

for BoT on heterogeneous clusters.

2.2.2 Scheduling Strategies for DAG Applications in Multi-

core Computers

It is typical to run a DAG application on clusters in order to exploit the inherent

parallelism in the DAG topology. Several popular scheduling frameworks have

been developed on clusters: YARN [87], Borg [89], Sparrow [65], Apollo [7],

Mercury [39], etc. The centralized scheduling frameworks such as YARN and
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Borg only have the global queues. In order to improve the scheduling perfor-

mance, it now becomes increasingly popular to employ the distributed schedul-

ing in large-scale data centres, where multiple schedulers make the scheduling

decisions for different types of jobs simultaneously and independently. Such

distributed scheduling frameworks include Mercury [73], Apollo and our previ-

ous work presented. In distributed scheduling frameworks, a PM may receive

the tasks dispatched by different schedulers and these tasks are typically run

in a time sharing manner in the node. The experiments presented in [110] also

indicate that the vast majority of the PMs in such clusters run multiple tasks

concurrently.

Scheduling a DAG and minimizing its makespan are proven to be a NP-

complete problem when there are more than two PMs [28]. Thus many heuristic

and meta-heuristic scheduling approaches are developed to minimize the DAG

makespan [13][47][31][9][37].

Although scientists began to study the scheduling long time ago, it is still a

hot topic nowadays to investigate the scheduling strategies for new platforms and

scenarios emerging over time, such as virtualized systems [99], multi-sites work-

flow scheduling [55], soft real-time scheduling in data centres [44], energy-aware

scheduling [66], and the scheduling with multiple objectives on IaaS Clouds [66].

Reference [106] proposes a scheduling algorithm, which combined the cluster-

based method and the interval insertion strategies to solve the problem that

most of the researches ignore the allocation of the non-critical predecessors.

Reference [76] addresses the problem of scheduling periodic parallel tasks with

implicit deadlines on multi-core processors. Reference [86] proposes an aging-

aware task scheduling framework for NoC-based multi-core systems. It devel-

ops a particle swarm optimization (PSO)-based heuristic to solve the scheduling

problem with an optimization objective of total task completion time, and fi-

nally obtain a scheduling result with higher efficiency compared with traditional

scheduling algorithms without considering of NBTI aging effect.

Reference [23] presents a hierarchical two-level approach that solves a multi-
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objective optimization (i.e. energy consumption minimization and makespan

minimization) problem. Reference [63] solves the multi-objective problem by

developing a two-level schema: in the higher-level, the authors apply a heuristic

approach to map jobs between clusters; in the lower-level, specific scheduling

strategies are used for task scheduling locally within each cluster. Reference

[103] optimizes the makespan of DAG applications by setting up a priority

queue and duplicating specific tasks. In reference [49], a Minimum Energy

Under Probability Constraints (MEUPC) algorithm is designed to achieve task-

to-core mapping and a Trading Energy For Time (TEFT) strategy is developed

to achieve task parallelism. The main goal of reference [49] is to minimize the

energy consumption while satisfy the task deadline constraint.

However, in these algorithms, the tasks scheduled to the same node are

assumed to run in sequence. None of the above work assumes the time-sharing

execution when making the scheduling decisions. Our studies show that when

the tasks allocated to the same node are run in the time-sharing manner, the

finish times of individual tasks may be different from those in the sequential

execution and consequently affect the makespan. Therefore, if the existing DAG

scheduling algorithms are applied directly in the distributed scheduling, the

actual performance of the DAG execution, no matter in terms of makespan or

other objectives such as energy consumption, may not be as optimal as these

scheduling methods assume.

2.3 Performance Prediction of Task Co-running

in Multi-core Computers

The third work of this thesis is to perform contention-aware prediction for per-

formance impact of task co-running in multi-core computers. In this section, we

first investigate the influential factors that impact on the performance when the

tasks are co-running on multi-core computers. The related work is discussed

in subsection 2.3.1. Then, we present some existing performance prediction
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approaches in subsection 2.3.2.

2.3.1 Resource Contention Problem of Co-running Tasks

Several works have explored the performance degradation problem of co-running

tasks. Survey [117] focuses on the approaches that address the shared resource

contention problem of task scheduling on Chip Multi-core Processors (CMPs).

Performance and energy model are built to analyze and predict the performance

impact [53] [82] [83] [102] [58] [12] [115] and [67]. Reference [11] studies the im-

pact of L2 cache sharing on the concurrent threads; Reference [115] proposes an

interference model, which considers the time-variant inter-dependency among

different levels of resource interference to predict the application QoS. Refer-

ence [112] decomposes parallel runtime into compute, synchronization and steal

time, and uses the runtime breakdown to measure program progress and identify

the execution inefficiency under interference (in virtual machine environment).

Reference [3] reveals that the cross-application interference problem is related

to the amount of simultaneous access to several shared resources. Based on

this discovery, it proposes a multivariate and quantitative model, which has an

ability of predicting cross-application interference level by considering a set of

features, for example, the amount of concurrent accesses to SLLC, DRAM and

virtual network, and the similarity between the amount of those accesses in

virtual environments. Reference [45] predicts the execution time of an applica-

tion workload for a hypothetical change of configuration on the number of CPU

cores of the hosting VM. Reference [26] gained the insight into the principle

of enriching the capability of the existing approaches to predicting the perfor-

mance of multi-core systems. Reference [25] develops an efficient ELM based

on the Spark framework (SELM), which includes three parallel subalgorithms,

is proposed for big data classification.

However, most of above studies only consider part of features that may

affect the co-running performance. Our experimental results reveal that there

are at least 15 performance events that can affect the co-running performance.
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We collect all these performance events during executing and use the feature

selection methods to reduce dimensionality.

Reference [111] observed that the performance degradation of an application

can be represented as a piecewise predictor function of the aggregate pressures on

shared resources from all cores. Based on this observation, the author proposes

to adopt the regression analysis to build a predictor function for an application.

The two features that the author considered are cache and bandwidth. How-

ever, to predict the execution time and the impact of time-sharing execution on

task performance, more performance events have to be considered to build the

prediction model.

2.3.2 Performance Prediction Approaches

Predicting the performance (such as execution time) of co-running tasks accu-

rately is necessary for task scheduling. When scheduling tasks with time con-

straints (i.e. deadlines), the worst-case execution time (WCET) is often used to

indicate the upper bound of the execution time. Several works have analyzed

and estimated the WCET of the tasks [34] [5] [64] [59] [29] [97]. Survey [97]

suggests that the WCETs problem is hard if the supporting architecture has the

components such as caches, pipelines, branch prediction, and other speculative

components. The paper discusses and compares different approaches to solve

the problem mentioned above.

Furthermore, estimating the execution time of co-running tasks in multi-

core situations is chanllenging as we need to take the resource contention into

consideration [33] [14] [56] [74]. Reference [88] builts Ernest, a performance

prediction framework for large scale analytics achieves a low prediction error

while having a training overhead of less than 5% for long-running jobs. Survey

[98] investigates the prediction approaches that can estimate the performance

of distributed tasks. Two scenarios are taken into consider in this survey: 1) a

single task executing on a single node; 2) a batch of tasks co-running on a set

of nodes (i.e. high performance computing system). Reference [30] presents a
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practical prediction model for estimating performance degradation due to shared

cache. Reference [18] proposes an approach that can automatically characterize

workflow requirements such as I/O, runtime, memory usage, and CPU utiliza-

tion. The input data of this approach is the size of the input files. Reference

[77] makes a trade-off between prediction accuracy and measurement cost. It

adapts two widely used sampling strategies for performance prediction and de-

velops a new heuristic based on feature frequencies. Reference [10] proposes an

analytic modeling approach based on the use of Markovian Agents and Mean

Field Analysis that can accurately represent different concurrent Big Data ap-

plications. Reference [32] aims at a formal definition of timing compositionality.

It highlights challenges and suggests unsolved problems that arise in the context

of compositional analyses. Reference [42] divide the resource interference of co-

running VMs into two metrics, sensitivity and pressure. Sensitivity denotes how

an application’s performance is affected by its co-run applications, and pressure

measures how it impacts the performance of its co-run applications. Further, a

regression model is built to predict the two metrics with high accuracy.

Reference [45] proposes NICBLE to predict the execution time of an appli-

cation for a hypothetical change of configuration on the number of CPU cores

of the VM.

Reference [69] characterizes the task executions of workflow on the cloud by

using a set of parameters that reflect workflow input data, VM type on which

the task is executed, and hardware-dependent runtime information; then a novel

fully automatic two-stage approach is developed to predict task execution times

for varying input data across different cloud providers evaluated for various

real-world workflows applications.

Reference [75] proposes the ProcessorMemory (ProcMem) model, which dy-

namically predicts the distinct task execution times depending on the imple-

mented processor frequencies.

Reference [109] presents a framework for creating a lightweight thermal pre-

diction system suitable for run-time management decisions. The author uses
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feature selection algorithms to improve the performance of previously designed

machine learning methods. In addition, alternative methods are developed using

neural network and linear regression-based methods to perform a comprehen-

sive comparative study of prediction methods. Other papers such as [78] also

make contributions in either performance modeling or energy prediction using

performance events.
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CHAPTER 3
Power-aware Scheduling Mechanisms for Virtualized

Environments

The virtualization technique provides the key supporting environments for a

cloud system. Nowadays, energy consumption in such a system is a critical

metric to measure the sustainability and eco-friendliness of the system. This

chapter develops three power-aware scheduling strategies in virtualized systems

managed by Xen, which is a popular virtualization technique. These three

strategies are the Least performance Loss Scheduling strategy, the No perfor-

mance Loss Scheduling strategy, and the Best Frequency Match scheduling strat-

egy. These power-aware strategies are developed by identifying the limitation of

Xen in scaling the CPU frequency and aim to reduce the energy waste without

sacrificing the jobs running performance in the computing systems virtualized

by Xen. Least performance Loss Scheduling works by re-arranging the execution

order of the virtual machines (VMs). No performance Loss Scheduling works

by setting a proper initial CPU frequency for running the VMs. Best Frequency

Match reduces energy waste and performance loss by allowing the VMs to jump

the queue so that the VM that is put into execution best matches the current

CPU frequency. Scheduling on both single core and multi-core processors is

considered in this chapter. The evaluation experiments have been conducted,

and the results show that compared with the original scheduling strategy in

Xen, the developed power-aware scheduling algorithm is able to reduce energy

consumption without reducing the performance of the jobs running in Xen.
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Figure 3.1: Frequency sampling of Domain 0 for 60 times; each sampling
interval is 300 ms

3.1 A Motivating Example

As introduced in Chapter 1, under the OnDemand governor, DVFS is used to

adjust the CPU frequency on demand. We ran an experiment on a quad-core

machine to record the frequency of the CPU core, which Domain0 runs on.

We pinned two vcpus of Domain0 to core 3 and recorded the frequency of the

core once every 300 milliseconds (ms) for 60 times. The results are shown in

Fig. 3.1. It can be seen that Domain0 does not always run with the highest

frequency of 2301 MHz. Indeed, under the Ondemand governor, different tasks

may run with different execution frequencies. For example, Fio, which is a I/O

benchmarking tool, ran at the lowest scaling frequency (1200 MHz), while the

computation-intensive benchmark BT (a benchmark application in the NAS

Parallel benchmark) ran at the highest frequency, 2301 MHz.

The following illustrates the problem of energy waste and performance loss

caused by the limitation of Xen in changing the CPU frequency. Fig. 3.2

shows the changes of Power-states (P-states) when four VMs (VM1-VM4) are

running on a single core. The x axis is the elapsed time, while the y axis is

the Power-state of the core at the corresponding time point.. The time slice of

a VM (namely the time duration for which a VM runs continuously before the

Xen hypervisor jumps in and schedule another VM into execution.) is 30 ms

by default. The running order of the VMs in the experiment is also labelled
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in the figure. The power governor checks and changes, if necessary, the CPU

frequency every 10 ms by at most one level [54]. Assume that the P-states

demanded by VM1, VM2, VM3 and VM4 are P1, P9, P3 and P7, respectively.

In this example, the initial P-state is set to be P3. When the current frequency

deviates from (higher or lower than) the best frequency of a running VM, the

power governor adjusts the frequency towards the best frequency. However, it

can only adjust the frequency by one level every 10 ms due to the feature of

Xen in frequency changing. With this restriction, the actual CPU frequencies

over time are those highlighted by the bold black line. When a VM runs on a

frequency higher or lower than its best execution frequency, Energy waste or

performance loss occurs. The difference between the best frequency and the

actual frequency represents the amount of energy waste or performance loss.

In this figure, the red area and the shadowed grey area represent the amount

of energy waste and performance loss, respectively. For example, at time 0,

the VM (VM4) only requires P5 (the best P-state), while the current actual

frequency is P3 (initial P-state). Since the current P-state is higher than the

best P-states of the VM, the frequency is adjusted down by one level every 10

ms until it reaches the best frequency or the VM is scheduled out after its time

slice of 30 ms is used up. In the case of VM4, the VM is scheduled out before

the actual frequency reaches the best frequency. VM3 is scheduled in after

VM4. Since the best frequency of VM3 is P3, which is higher than the current

running frequency, the frequency is adjusted up. Since the frequency can only

be adjusted by one level every 10 ms, VM3 still runs at a frequency lower than

its best frequency in the first 10 ms of VM3’s time slice, which leads to the

performance loss (indicated by the shadowed grey area) and will consequently

increase the execution time of the application that is running in the VM. In the

remaining time slice, VM3 runs perfectly at its best frequency.

The above example suggests that the feature of Xen in adjusting the CPU

frequency may cause both energy waste and performance loss. The objective of

this work aims to improve the situation. We adapt the default SEDF scheduling
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Figure 3.2: Energy waste and performance loss under DVFS in Xen

policy so as to minimize the energy waste and performance loss under DVFS.

3.2 Performance and Energy Model for the DVFS-

enabled Xen

3.2.1 Performance Model

Assume a set of independent tasks T = {T1, T2, ..., Tn}. Task Ti runs in VMi.

fi denotes the best frequency of VMi. ti denotes the execution time of task Ti

when VMi runs at the frequency of fi (Ti is executed in VMi). Ps denotes the

scheduling time slice, which is 30 ms by default, while Pf denotes the frequency

scaling slice, which is 10 ms. Let c(f ′i) denote the equivalent execution rate of

Ti when VMi runs at the frequency f ′i . c(f ′i) can be calculated by Equation

3.1, where Ft(f
′
i) is the function of execution time over CPU frequency.

c(f ′i) =
ti

Ft(f ′i)
(3.1)

f ′i(j) denotes the frequency which task Ti runs at in the jth time interval.

c(f ′i(j)) denotes the execution rate of Ti in the jth time interval. Inequality 3.2

can be used to determine the number of intervals that VMi uses to complete the

execution of task Ti, which is the minimal value of m that satisfies Inequality
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3.2.

m∑
j=0

c(f ′i(j))Pf ≥ ti (3.2)

Then the total execution time of task Ti when it is not always running at

its best frequency fi (denoted by t′i) can be modelled as Equation 3.3, where m

is the minimal value that satisfies Inequality 3.2.

t′i =

m∑
j=0

Pf (3.3)

3.2.2 Power Consumption Model

When task Ti runs at the frequency of f ′i , Equation 3.4 is the classic equation to

calculate the power consumption rate of CPU for running Ti [61] (denoted by ri),

where C is the capacitance being switched per clock cycle, V is the voltage, A is

the activity factor indicating the average number of switching events undergone

by the transistors in the chip and f ′i is the frequency.

ri(f
′
i) = A× C × V 2 × f ′i (3.4)

Inequality 3.2 is used to determine the number of intervals that VMi uses

to complete the execution of task Ti. The total power consumption of task Ti,

denoted by ei, can be modelled by Equation 3.5, where f ′i(j) is the frequency

which task Ti runs at in the jth time interval, same as in Equation 3.2.

ei =

m∑
j=0

ri(f
′
i(j))Pf (3.5)
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Figure 3.3: ”Least Performance Loss” Scheduling Strategy (above); Illustration
of changing the execution position of a randomly selected task (below)

3.3 Scheduling Strategies

3.3.1 The Scheduling Strategy with Least Performance

Loss

The power management in Xen can only adjust the power state by at most

one level every 10 ms. The frequency gap between the current CPU frequency

f and the task Ti’s best (desired) executing frequency fi will lead to either

performance loss or energy waste. When the current CPU frequency f is lower

(or higher) than Ti’s best executing frequency, fi, and the power management

cannot increase (or reduce) f to fi immediately, performance loss (or energy

waste) occurs.

Given the current CPU frequency and a set of tasks, Theorem 1 gives the

“Least Performance Loss” Scheduling strategy (LLS), namely the execution or-

der of the tasks that leads to the least performance loss.
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Theorem 1. Given a set of tasks, T = { T1,T2,...,Tn}, the best CPU frequency

of Ti is fi and the set of tasks are run in a time-sharing manner. Assume f1

≤ f2 ≤ ... ≤ fn. If the current CPU frequency is f , then given the current

CPU frequency, the LLS strategy (i.e., the execution order that leads to the least

performance loss for the set of tasks) is to run the tasks in the following order,

where Tr’s frequency fr is the highest frequency that is less than the current

frequency f .

Tr,Tr+1,...,Tn−1,Tn,Tn−1,...,Tr+1,Tr,Tr−1,...,T2,T1, T2,..., Tn, Tn−1,..., T1

...

Namely, the execution order is to start from Tr, go up to Tn in the increas-

ing order of frequency and then come down to T1 in the decreasing order of

frequency, and that the upward and downward execution pattern in terms of

frequency repeat until all tasks have been completed.

Proof. The performance loss is related to the frequency gap of the tasks during

the execution. Performance loss increases with the increase in the frequency

gap. We prove this theorem by proving that any change in the execution order

from the LLS strategy will lead to the increase of the frequency gap, thus the

performance loss.

We randomly change the execution position (specified by the LLS strategy)

of a randomly selected task. Assume task Tj is moved to the position after

task Ti. Without the loss of generality, we assume j > i + 1, (i.e., we move Tj

forwards as shown in Fig. 3.3.

Before the change, the frequency gap among the relevant tasks (i.e. task Ti,

Ti+1, Tj−1, Tj , Tj+1) is:

E = (fi+1 - fi) + (fj - fj−1) + (fj+1 - fj)

= fi+1 - fi - fj−1 + fj+1.

After the change, the frequency gap among the involved tasks is:

E′ = (fj - fi) + (fj+1 - fj−1).

Note that the gap of fj−fi+1 is not counted in the expression above since it

does not cause performance loss (but energy waste) even if Xen cannot adjust
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the frequency timely from fj to fi+1.

The difference between E′ and E is:

E′ - E = (fj - fi) + (fj+1 - fj−1) - (fi+1 - fi - fj−1 + fj+1)

= fj - fi+1.

Since fj ≥ fi+1, we get E′ ≥ E.

In the similar way, we can prove the theorem also holds when i > j (i.e.,

moving the task backwards). Therefore, given the current CPU frequency, the

LLS strategy generates the least performance loss for a set of tasks.

3.3.2 The Scheduling Strategy with No Performance Loss

The previous section derives LLS, the scheduling strategy with the least per-

formance loss, given the current CPU frequency. LLS requires re-arranging

the execution order of the VMs. In this section, we will derive the scheduling

strategy under which there is no performance loss for a set of tasks. We call

this strategy the No performance Loss Scheduling (NLS) Strategy. NLS aims

to ensure all tasks run with the frequencies no less than their best frequencies.

NLS does not reorder the VMs’ execution. The VMs can be executed in the

order of their positions in the run-queue. Rather, NLS calculates the initial

CPU frequency that the CPU needs to be set with in order for all VMs to run

without performance loss.

According to the Xen power management policy, the execution frequency

can be modified once every 10 ms, which we call the frequency scaling slice.

The default time slice, which we call the scheduling slice, for running a VM in

Xen is 30 ms. After 30 ms, the Xen hypervisor jumps in and schedule another

VM to run. Therefore, the frequency can be changed three times at most in

each scheduling slice. As shown in Fig. 3.4, fk(j),fk(j + 1),fk(j + 2) indicates

the three execution frequencies of task Tk in the three frequency scaling slices

(indexed as j, j + 1 and j + 2 in the example of Fig. 3.4) in Tk’s scheduling

slice. To ensure that task Tk can execute with at least its best frequency, the
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frequency of the frequency scaling slice before fk(j) (i.e., the (j−1)-th frequency

scaling slice) should be at least fk(j)−∆f , where ∆f is the frequency that can

be changed at most each frequency scaling slice (which is 100 MHz, i.e., one

P-state, in Xen). (j − 1)-th frequency scaling slices falls in the scheduling slice

of task Tk−1, which means that the execution frequency that Tk−1 has to run

with, denoted by fk−1(j−1), has to be (fk(j)−∆f) even if Tk−1 does not need

such a high running frequency. The best frequency of task Tk−1, i.e., fk−1 is

shown by the yellow bar, which is lower than fk−1(j−1). Similarly, fk−1(j−2)

has to be fk−1(j−1)−∆f or fk−1 (Tk−1’s best frequency), whichever is higher.

In general, assuming that Tk has the highest best frequency in the set of

tasks (i.e., fk is highest) and that j, j + 1 and j + 2 are the three frequency

scaling slices in Tk’s first scheduling slice during the running of the set of tasks,

Equation 3.6 can be used recursively, starting from i = j, to calculate the

running frequency in each frequency scaling slice before j-th frequency scaling

slice (it is obvious that fk(j), fk(j + 1) and fk(j + 2) should all be fk), so that

all VMs can run without performance loss, i.e., with the frequencies no less than

their corresponding best frequencies.

The algorithm for performing the recursive calculation is outlined in Algo-

rithm 1. The output of Algorithm 1 is the value of f1(1), i.e., the starting

frequency that the CPU has to be set with in order for the set of tasks to run

without performance loss.

Note that although NLS guarantees no performance loss, it may cause energy

waste. The shadowed areas above the coloured bars in Fig. 3.4 represent the

energy waste.

fk′(i− 1) = max(fk(i)−∆f, fk′) (3.6)
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Figure 3.4: ”No Performance Loss” Scheduling Strategy

where,

k′ =


k if (i− 1)-th frequency scaling slice is in Tk’s scheduling slice

k − 1 if (i− 1)-th frequency scaling slice is in Tk−1’s scheduling slice

(3.7)

Algorithm 1 No performance loss scheduling strategy

Input: Tasks T1,T2,...,Tn in the run-queue, whose best running frequencies are
f1,f2,...,fn; TK is the task with the highest best frequency fK ; j is the
index of the first frequency scaling slice in TK ’s scheduling slice

Output: f1(1)
1 k = K, fk(j) = fK ; for (i = j; i ≥ 2; i−−) do
2 if (j − 1)th frequency scaling slice is in Tk’s scheduling slice then
3 k′ = k;

4 else
5 k′ = k − 1;

6 fk′(i− 1) = max(fk(i)−∆f, fk′);

3.4 BFM Scheduler

In section 3.3, we presented two scheduling strategies: The Least Performance

Loss Scheduling Strategy (LLS) and No Performance Loss Scheduling Strategy

(NLS).

NLS will achieve the shortest execution time since every VM will execute

with a frequency equal to or higher than its best frequency. Those VMs which
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run with a frequency higher than its best frequency (in order to guarantee

that other VMs can run with their best frequencies) will cause energy waste.

Therefore, NLS is designed with maximizing the performance as the only goal.

In NLS, we propose the method to determine the minimal initial frequency that

the CPU has to be set with in order to guarantee that no VM will experience

performance loss.

Different from NLS, LLS does not reeve up CPU frequency to guarantee there

is no performance loss, but makes the best effort to reduce the performance loss

by manipulating the VMs’ execution order. LLS does not artificially set the

initial CPU frequency for running a set of VMs, but goes along with the current

CPU frequency.

In order to guarantee that every VM’s deadline is met, however, the SEDF

scheduler in Xen requires the VMs to be run in the order of deadline (earliest

deadline first). In this execution environment, meeting the deadlines is the

top priority and VMs’ execution order may not be able to be adjusted in the

way designated by LLS. Thus, in this section we present a power-aware SEDF

scheduling strategy, called the Best Frequency Match strategy (BFM). BFM

aims to make the best effort to reduce performance loss subject to respecting

the principle of SEDF, i.e., meeting all VMs’ deadlines.

Next, we first present BFM for single-core processors and then extend it to

multi-core processors.

3.4.1 BFM for Single-core Processors

BFM aims to minimize the performance loss while satisfying the VMs’ CPU

requirement specified in SEDF.

Assume that a set of VMs Ti (1 ≤ i ≤ n) are in the run queue of a single

core with their CPU requirement expressed as (pi, si, xi) and that task Ti’s

best execution frequencies is fi. The deadline of each VM is recalculated when

the current scheduling slice is finished. BFM checks the deadline and the best

frequency of each VM (VCPU) in the run-queue of the CPU core. If the first

31



3. Power-aware Scheduling Mechanisms for Virtualized Environments

VM in the run-queue (i.e., the one with the earliest deadline) has the smallest

gap between its the best frequency and the current executing frequency, the

VM will be scheduled. However, if there are other VMs in the queue which have

smaller frequency gaps than the first VM, scheduling the first VM (with the

earliest deadline) will cause either performance loss (if the current frequency

is less than the best frequency) or energy waste (if the current frequency is

higher than the best frequency) compared with scheduling a VM with smaller

frequency gaps. Under this circumstance, BFM checks if there is any better

scheduling choice in the following way.

Firstly, BFM identifies the VM, for instance Tj , whose best frequency has

the smallest gap with the current CPU frequency. Before allowing task Tj to

jump the queue, BFM needs to make sure that all the VMs queueing before

Tj satisfy Inequality 3.8, where tc is the current time while Li is the position

of task Ti in the run-queue. Inequality 3.8 can be understood in the following

way. The scheduling slice of a VM is Ps. Task Ti, whose position in the original

queue is Li, needs to wait (Li − 1)× Ps for Ti being put into execution. After

the queue jump, the waiting time of Ti becomes Li × Ps. The waiting time

plus the VM’s running duration, which is Ps, must be no greater than VMi’s

deadline di, which results in Inequality 3.8.

∀Li < Lj di − [tc + (Li + 1) ∗ Ps] ≥ 0 (3.8)

If Inequality 3.8 can be satisfied for all the VMs before Tj , BFM allows task

Tj to jump the queue. If not, BFM continues to find the VM which has the

second smallest gap between its best frequency and the current frequency, and

applies Inequality 3.8 to determine whether the queue-jumping is allowed. The

process repeats until BFM finds a VM that is eligible to jump the queue or all

VMs have been considered (in this case, no VMs can jump the queue and BFM

schedules and run the first VM in the queue, same as the SEDF scheduler).

The pseudo code of BFM on a single core is presented in Algorithm 2.
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Figure 3.5: An example of the BFM scheduling strategy

An example is used in Fig. 3.5 to illustrate the working of BFM. 4 VMs

are considered in this example: T1(20, 100), T2(5, 100), T3(10, 100), T4(30, 100),

where the first number of the pair is the time that a VM has to run in a period,

which is indicated by the second number. For example, T1 has to run at least

20 ms in every period of 100 ms. In the beginning of each time slice, all VMs

are sorted by their deadlines in the run queue. di presents the deadline of Ti

and fi is its best frequency of Ti. At the time point of 30 ms, T3 has the

earliest deadline, while T2 has the smallest frequency gap with the current CPU

frequency P12. Under this circumstance, BFM will check if scheduling T3 first

(i.e., allowing T2 to jump the queue) will cause the VMs before T2 (i.e., T3 in

this example) to miss the deadlines. In this case, it will not and therefore T2

jumps the queue successfully. At 60 ms, T1 has the the smallest frequency gap

with the current frequency. However, it is rejected for T1 to jump the queue,

since otherwise T3, the VM before T1 in the queue, would miss its deadline.
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Algorithm 2 BFMS scheduling Algorithm

Input: A set of VMs, Ti (1 ≤ i ≤ n), with their CPU requirements (pi, si, xi);
the best frequency of Ti, fi; scheduling slice Ps; frequency scaling slice
Pf ; current time tc; Ti’s deadline di; Ti’s location in the queue, Li;

7 for The end of each scheduling slice do
8 Calculate the deadlines of all tasks;

Sort the tasks in the ascending order of deadline in queue Q ;
Obtain the VM with the earliest deadline, denoted by Te;
for All tasks in the run queue do

9 Calculate the frequency gap gi between the best frequency of task Ti and
the current frequency f

10 Sort the tasks’ frequency gaps in the ascending order;
Get the first frequency gap, gk, in the frequency-gap sorting queue and
denote the corresponding task by Tk;
if Tk is Te, i.e., ge is the minimal gap then

11 Schedule Te to run

12 else
13 while gk is no more than ge do
14 if Each task Ti before Tk in queue Q satisfies di−[tc+(Li+1)∗Ps] ≥ 0

then
15 Schedule Tk to run next;

16 Get the next frequency gap, gk, in the frequency-gap sorting queue
and denote the corresponding task by Tk;

17 Schedule Te to run next;

34



3. Power-aware Scheduling Mechanisms for Virtualized Environments

3.4.2 BFM for Multi-core Processors

In this section, we extend the BFM strategy for a single core to multi-core

processors. In this section, we denote BFM for single core by BFMS and BFM

for multi-core by BFMM. Compared with BFMS, the main additional work of

BFMM is to allocate a set of VMs among multiple cores in the processor. This

section first presents Theorem 2, which is used as the principle for allocating

the VMs, and then presents a actual allocation method. After the set of VMs

are allocated, the VMs are scheduled and run using BFMS in each individual

core.

Theorem 2. Assume there are n VMs and m cores in the processor (assume

n can be divided by m). The following allocation method results in the least

performance loss.

The n VMs are sorted in the ascending order of their best frequencies. The

sequence of the VMs are denoted by T1, T1, ..., Ti, ..., Tn (VM Ti’s best frequency

is fi). The sequence of VMs are allocated evenly into m cores. Namely, assum-

ing j denotes the index of core 1 ≤ j ≤ m, VMs T(j−1) nm to T(j) nm are allocated

to core j. In this way, tasks with the nearest best frequency will be allocated on

the same core, which will lead to the least performance loss.

Proof. We prove the theorem by proving that exchanging any two VMs between

different cores in the allocation method will lead to the increase in performance

loss.

Assume we exchange task Ti on core CI with task Tj on core CJ (assume

I < J , i.e. the VMs’ best frequency on CI are lower than those on CJ). If the

total frequency gap after the exchange is higher than that before the exchange,

the performance loss after the exchange must be no less than that before the

exchange.

Before the exchange, the total frequency gap E between the relevant VMs

is:

E = (fi − fi−1 + fi+1 − fi) + (fj − fj−1 + fj+1 − fj) (3.9)
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After exchanging, the total frequency gap E′ between the involved tasks can be

calculated as:

E′ = fj − fi−1 + fj+1 − fi (3.10)

Note that the gap of fj − fi+1 and fj−1 − fi are not counted in the expression

above since it does not cause performance loss (but energy waste) even if Xen

cannot adjust the frequency timely from fj to fi+1 and fj−1 to fi. Thus,

E′ − E = fj + fj−1 − fi − fi+1 (3.11)

Since fj and fj−1 are greater than fi+1 and fi, we get E′ ≥ E.

Note the above expressions for calculating E and E’ capture the general cases.

There are special cases where fi and fj are the highest or lowest frequencies in

their cores. These special cases can also be proved in a similar way.

Theorem 2 essentially states the allocation principle that the VMs with close

best frequencies should be allocated to the same core. In SEDF, however, a

VM, Ti, has the CPU requirement, specified by the first two parameters of the

triple (si, pi, xi). Ti’s CPU requirement can be computed as si
pi

. When BFMM

allocates the VMs, it needs to make sure that all VMs allocated to the same core

can meet their CPU requirements. According to the schedulability analysis in

the literature [108], if the sum of si
pi

for a group of VMs allocated in a core is less

than 100%, the CPU requirements of this group of VMs can be met by SEDF.

Based on the consideration of the CPU requirement, we adjust the allocation

method in Theorem 2 and present the allocation method used in BFMM. The

fundamental idea of the adjusted allocation method is as follows.

When allocating a set of VMs to a set of cores, C = {C1,C2,...,Cm}, BFMM

first sorts the VMs in the ascending order of their best frequencies. The sorted

VM set is T = {T1,T2,...,Tn} (i.e. T1 has the lowest best frequency while Tn

has the highest best frequency). VM Ti’s best frequency and CPU requirement

are fi and si
pi

. BFMM allocates the VMs from T1 to Tn one by one to m cores.
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It tries to allocate the VMs with the closest best frequencies to the same core

as long as the CPU requirement of the VMs on the same core can be satisfied,

i.e., the sum of si
pi

on the core is less than 100%. When BFMM allocates Ti and

finds that Ti’s CPU requirement cannot be met in the core, it moves to the next

VM and check if the next VM can be allocated the core. The process continues

until all VMs are examined for the current core. BFMM then moves to the next

core and tries to allocate VMs to the core. This process repeats until all VMs

are allocated. The allocation method for BFMM is outlined in Algorithm 3.

Algorithm 3 The VM allocation method in BFMM

Input: A set of VMs {Ti}(1 ≤ i ≤ n); the frequency of Ti, fi; the CPU
requirement of Ti,

si
pi

); a set of cores Cj , (1 ≤ j ≤ m);

18 for All VMs do
19 Sort the VMs in the ascending order of frequency and obtain the sorted list

of {T1, T2, ..., Tn}, i.e., f1 ≤ f2 ≤ ... ≤ fn;

20 The current core Cc is initialized to be C1, i.e., c = 1; for T1 → Tn do
21 if VM Ti has not been allocated then
22 Calculate the total CPU requirement of VMs allocated to Cc, denoted

by
∑

c; if si
pi

+
∑

c ≤ 100% then

23 allocate Ti to core Cc;

24 else
25 for j = i+ 1; j ≤ n; j + +; do
26 if VM Tj satisfies

sj
pj

+
∑

c ≤ 100% then

27 Allocate Tj to core Cc;

28 c+ +;

Note that when there are no deadlines, the BFM strategy essentially becomes

LLS. Another point is that BFM works by re-arranging the execution order of

the jobs in the run queue (i.e., allowing queue-jumping), which is designated

by SEDF, only when the deadline allows. So in terms of meeting real-time

requirements, BFM is as good as SEDF. The only case where BFM is unable to

guarantee a tasks deadline is when SEDF is unable to meet its deadline. In this

case, BFM will simply disallow the queue-jumping and the scheduling behaviour

of BFM will be the same as SEDF.
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3.5 Evaluation

3.5.1 Experimental Setup

We conducted the experiments on the server with Intel(R) Core(TM) i7-3615QM

CPU@2.30GHz processor, 32GB RAM and 122GB hard drives. The processor

has 4 physical cores and supports 12 performance states from the minimum

frequency of 1200 MHz to the maximum frequency of 2301 MHz. Xen-4.4.1

hypervisor with the kernel version of 3.13.0-32-generic was used to create the

virtualized system. SEDF is selected as the vCPU scheduler and the Ondemand

governor as the DVFS runtime power management. Each VM in the experiments

was run with 2 VCPUs and 256M memory.

The best CPU frequency for running a task in a VM is determined in the

following way. We first set the Xen governor to userspace and then set the

CPU frequency using the commands: xenpm set-scaling-minfreq and xenpm

set-scaling-maxfreq. We run the task with different frequencies and record the

execution time and energy consumption. Fig. 3.6 shows the execution times of

different benchmark tasks running on different frequencies.

As we can see in Fig. 3.6, as the execution frequency increases, the decreasing

trend of the execution times of all the benchmarks diminishes. The total energy

consumption of completing a task can be calculated by the execution frequency

times the corresponding execution time (i.e., the value on the x axis times the

corresponding value on the y axis). Fig. 3.7 shows the power consumption

of the benchmark tasks running on different frequencies. In this chapter, the

best CPU frequency of a task is defined as the frequency which leads to the

lowest energy consumption of the task. According to Fig. 3.7(a) to Fig. 3.7(d),

we can know that the best frequencies of the four benchmarks, EP, LU, CG

and BT, are 2300 MHz, 1400 MHz, 1200 MHz and 1700 MHz, respectively. A

task’s execution time when it is run with the best frequency is called the best

frequency execution time.
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Figure 3.6: The execution times of different benchmark tasks running with
different frequencies

3.5.2 Experiments on Single-core Processors

In this section, we compare the BFM scheduler with the SEDF scheduler in

Xen in terms of the performance of managing the VMs in a single core. Four

benchmark applications, EP, LU, CG and BT, are used, which are denoted T1,

T2, T3 and T4, respectively. The best frequencies of T1 to T4 are 2300 MHz, 1400

MHz, 1200 MHz, 1700 MHz. Their best frequency execution times are 9850 ms,

7899 ms, 16768 ms, 9938 ms. We run these tasks, each in a separate VM, on

a single core under the SEDF and the BFM schedulers. Fig. 3.8 compares the

execution times of the tasks under these two schedulers. The best frequency

execution time is also depicted in the figure for comparison.

Our experimental records for Fig. 3.8 show that the execution times of

T1, T3 and T4 are reduced by 10 ms, 140 ms and 10 ms, respectively, under

BFM, compared to SEDF. This can be explained as follows. Under SEDF, the

tasks, especially those frequency-sensitive tasks (i.e. the executing frequency

has a big influence on its execution time, for instance T3), may run with the

frequency which is lower than its best frequency, and therefore the execution

time may decrease. For the tasks with high best frequencies (i.e. T1 and T4),

the execution times under SEDF increase, comparing to their best frequency

execution times. This is because they may be scheduled behind some tasks with

low best frequencies and Xen cannot adjust the frequency up timely during the
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Figure 3.7: The power consumption of benchmarks running with different
frequencies

40



3. Power-aware Scheduling Mechanisms for Virtualized Environments

Task 1 Task 2 Task 3 Task 4

0.7

0.9

1.1

1.3

1.5

1.7

·104

Task

E
x
e
c
u
ti
o
n

T
im

e
/
m
s

best freq

BFM

SEDF

Figure 3.8: Execution times of tasks on a single core under SEDF and BFM

scheduling process. On the countrary, BFM may allow other tasks to jump

the queue if they have smaller gap between the best frequency and the current

frequency (subject to the deadline requirement) and therefore give Xen more

time to build up the frequency to run the high frequency tasks.

Fig. 3.9 compares the power consumption of the tasks running under SEDF

and BFM. The power consumption of the tasks running with their best fre-

quencies, i.e., the frequencies that result in the minimal power consumption by

tasks, are also drawn in the figure for comparison. It can be seen that the power

consumption under BFM is much less than that under SEDF for the tasks T2

and T3. This is because under SEDF, the tasks, especially those with low best

frequencies, may run with the frequency higher than what they need (the best

frequency), which causes energy waste. High best frequency tasks, for example,

T1 (EP), consume 2.2655 × 107, 2.2728 × 107, 2.2720 × 107, respectively, with

the best frequency, under SEDF and under BFM. SEDF scheduler leads to a

power waste of 73000 (i.e. 2.2728 × 107 - 2.2655 × 107) while BFM leads to

a power waste of only 65000. These results suggest that BFM can reduce en-

ergy consumption while improving performance by allowing the suitable VMs

to jump the queue to fill in the gap between the current frequency and the best

frequency of the VM at the head of the queue under SEDF.
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Figure 3.9: Power consumption of tasks on a single core under SEDF and BFM

3.5.3 Experiments on Multi-core Processors

We use SEDF and BFMM to schedule and run 20 tasks on a DVFS-enabled

Quad-Core processor. Each task Ti has the best execution frequency and the

CPU requirement, represented by a tuple (fi,
si
pi

). We set the tasks’ execution

times so that every task’s execution time is 20000 ms when they are run with

their best frequencies.

Fig. 3.10 and Fig. 3.11 show the allocation of 20 tasks on the quad-core

processor under SEDF and BFMM. The results show that BFMM allocates the

VMs with closer frequencies to the same core, compared with SEDF. Fig. 3.12

and Fig. 3.13 show the performance and power consumption of these 20 tasks,

respectively. As can be seen from Fig. 3.12, the VMs with high best frequencies

(e.g., T13 and T14) have much longer execution times under SEDF than under

BFMM. The reason is similar as the reason for the performance gap shown in

Fig. 3.8. Namely, under SEDF these tasks with high best frequencies may be

scheduled to run behind the tasks with low best frequencies and therefore Xen

cannot adjust the frequency up timely. AS we can see from Fig. 3.13, BFMM

reduces power consumption of all tasks. The reason for this is also similar as

the reason for the difference of the power consumption in Fig. 3.9.
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Figure 3.10: Task consolidation on Quad-Core using SEDF scheduler
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Figure 3.11: Task consolidation on Quad-Core using BFM scheduler
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Figure 3.13: Power consumption of tasks on a multi-core processor under
SEDF and BFMM

3.6 Summary

This work reveals that the traditional scheduling strategies in virtualized sys-

tems managed by Xen may lead to performance loss and energy waste, due to

the limitation of Xen in adjusting CPU frequency, i.e., Xen can only check and

change the CPU frequency at most once every 10ms. This chapter presents four

scheduling strategies to remedy this situation, which are the Least performance

Loss Scheduling (LLS) strategy, the No performance Loss Scheduling (NLS)

strategy, the Best Frequency Match strategy for a single core (BFMS) and the

Best Frequency Match strategy for multiple cores (BFMM). These strategies

make use of the scheduling behaviour in the Xen hypervisor and aim to reduce

energy consumption while mitigating performance loss. The effectiveness of

these strategies is theoretically proved and also evaluated by the experiments.

The philosophy used in BFM to reduce performance loss and energy consump-

tion may also be applied to other schedulers in Xen, such as the Credit scheduler.

To make scheduling decisions, particularly for the tasks with time con-

straints, it is often assumed that the execution time of a task is known in

advance. In some studies, the execution time of a task is estimated by the-

number-of-instructions/processing-capacity. However, when a task is co-running

with other tasks on a multi-core processor, it becomes much more complex to

estimate its execution time. Given a schedule (i.e. execution order of the tasks

and the allocation of the tasks to CPU cores), most existing work assumes that
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the tasks scheduled on the same computing node run in sequence. In reality,

however, the tasks are often run in the time sharing manner, which leads to

inaccurate estimation of the execution time of the tasks. The next chapter

proposes the method to estimate the execution time of a co-running task and

consequently to model the makespan of the tasks that are running in the time-

sharing manner. The next chapter starts with a simple scenario where Bag

of Tasks (BoT) are scheduled, and then extends to a more complex scenario:

DAG tasks are scheduled and run in the time-sharing manner. Based on the

constructed makespan models, the scheduling strategies are further developed

for the DAG tasks under the time-sharing execution.
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CHAPTER 4
Scheduling DAG Applications for Time Sharing Systems

Accurately modeling the makespan of a task is really important for task schedul-

ing strategies. In order to satisfy each task’s time constraint (i.e. deadline),

the worst-case execution time of a task is taken into consideration when making

scheduling decisions. When computing the makespan of a task that is co-running

with other tasks on multi-core processors, it is typically assumed that the tasks

scheduled on the same computing node run in sequence. In reality, however,

the tasks may be run in the time sharing manner. Our studies show that the

discrepancy between the assumption of sequential execution and the reality of

time sharing execution may lead to inaccurate calculation of the task makespan.

In this chapter, we first investigate the impact of the time sharing execution

on the task makespan, and propose the method to model and determine the

makespan with the time-sharing execution. Then we extend our work to a more

complex and practical scenario: scheduling DAG applications for time sharing

systems. Based on our time-sharing makespan model, we further develop the

scheduling strategies for DAG jobs running in time-sharing. Extensive experi-

ments have been conducted to verify the effectiveness of the proposed methods.

The experimental results show that by taking time sharing into account, our

DAG scheduling strategy can reduce the makespan significantly, comparing with

its counterpart in sequential execution.

4.1 A Motivating Example

In this section, we present a case study to illustrate the difference of the time-

sharing execution from the sequential execution and its impact on the DAG

makespan. This case study considers a DAG job consisting of 7 tasks, whose
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Figure 4.1: A Motivating Example DAG

topology is shown in Figure 4.1. The execution times of 7 tasks, t0 to t6, are

150, 200, 150, 50, 100, 100, 100, respectively. There is no communication between

tasks. Assume a scheduling decision of such a DAG on a set of two identical

PMs (PM1 and PM2) is as follows. Tasks t0, t1, t5, t6 are scheduled to run in

PM1 while t2, t3, t4 are in PM2. If the tasks allocated to the same PM are run in

sequence. Such a schedule leads to the minimal makespan. The corresponding

critical path of the DAG is t0 → t1 → t5 → t6.

The left figure in Figure 4.2 shows the sequential execution of the tasks in

the two PMs. As shown in the figure, t3 can only start the execution after task

t0 (which is its predecessor of t3) and t2 (which is scheduled to run before t3) in

PM2 have finished. Other tasks have the similar execution precedence. With

the sequential execution model, it is expected that t5 starts the execution at the

time point 350ms, and the makespan of the DAG is 550ms.

As discussed in the first section, when several tasks are allocated to the

same PM , they will be run in the time-sharing manner by the OS. The right

figure in Figure 4.2 shows the times-sharing execution of the tasks. As shown

in the figure, t2, t3 and t4 in PM2 start execution concurrently after their

predecessor t0 finishes. t2’s finish time is then 450ms, which is later than its

finish time under the sequential execution model (300ms). This difference leads

to the delay of t5’s start. In the time-sharing execution, t5 starts the execution

at 450ms with the delay of 100ms compared with the sequential execution.

Consequently the actual DAG makespan with the time-sharing execution model

is 650ms, which is longer than the one expected with the sequential execution
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Figure 4.2: Sequential Execution Makespan (left) vs. Time-sharing Makespan
(right)

(550ms). Furthermore, the critical path in the time-sharing execution changes

to t0 → t2 → t5 → t6.

In most DAG scheduling algorithm in the literature, the scheduling decision

is made based on the tasks’ finish times, which are typically calculated by as-

suming the sequential execution. Although it is fine with the task scheduling in

clusters, in which there is a centralized task queue in the head node and a task

is sent to a computing node when the existing tasks running in the node have

been completed. As discussed in the introduction, however, the tasks are run

concurrently in distributed systems or virtualized systems. This may cause the

discrepancy between the tasks’ actual finish times and the finish times assumed

by the task scheduler, as illustrated in this case study.

4.2 Workload and Resource Model

This section introduces the main notations used for the workloads and resources

in this paper. A DAG-based application T is modelled as a directed acyclic

graph (DAG) G(V,E), where each task ti ∈ T is represented as a node vi ∈ V .

An edge eij from vi to vj , which is also denoted by (ti, tj), represents that

there is the precedence constraint between tasks ti and tj . The weight of an

edge represents the communication time TTij for sending the data from ti to
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tj . Further, task ti is called the predecessor of tj , while tj is the successor of ti.

For task ti ∈ T , its set of predecessors and successors, denoted by pred(ti)

and succ(ti) respectively, are defined below:

pred(ti) = {tj |tj ∈ T ∧ (tj , ti) ∈ E} (4.1)

succ(ti) = {tj |tj ∈ T ∧ (ti, tj) ∈ E} (4.2)

Tasks without the predecessor or the successor are called the entry task or

exit task, respectively.

In a DAG, the distance of a path is the sum of the execution times of all

tasks and the weights of the edges (communication times) on the path. The

critical path of a DAG is denoted as L. The makespan of a DAG is the distance

of the critical path from the entry task to the exit task.

A cluster consists of a set of physical machines (PM), denoted by M , where

M = {p1, p2, . . . , ps}. ci denotes the processing capacity of pi.

A task ti is modelled by a tuple ti = {sti, fti, si, rei}, where sti is the time

when ti is ready to start(a task is ready to start only when all of its predecessors

are completed and the relevant data sent by predecessors have been received by

ti); fti is the time when ti is completed, which includes both the task’s execution

time and its data communication time; si is the size of the work (e.g., the number

of instructions or the number of CPU cycles) that is to be performed in ti; rei

is the current remaining work of ti, which is calculated by the total work minus

the finished work so far.

A Schedule is defined by S = (G,M,Mapping), where G is the DAG graph,

M is the cluster, and Mapping is the mapping of the tasks in G to M . Figure

4.2 shows a exemplar schedule for scheduling a graph in figure 4.1 to a cluster

of two PMs. In this example, M = {p1, p2}, Mapping = {1 : [t0, t1, t5, t6], 2 :

[t2, t3, t4]}.

After task ti finishes the execution, it needs to send the results to its suc-
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cessors. We assume that the communication time can be neglected if the pre-

decessor and the successor are mapped on the same PM . ki is the number of

successors of ti. The total communication time of task ti, denoted by TTi, can

be calculated by equation 4.3:

TTi =

ki∑
1

(TTij ∗ lij) (4.3)

lij =


0 if ti and tj are on the same PM

1 otherwise

(4.4)

Given the above workload and resource model, our objective is to investigate

the impact of the time-sharing execution on the DAG makespan, and further

propose the scheduling algorithms to mitigate the impact.

4.3 Makespan Model

4.3.1 The Makespan with the Sequential Execution Model

In sequential execution makespan model, tasks are regarded as executing in a

one-by-one manner in a PM instance. At least they didn’t take the time-sharing

executing into consider when calculate finish time of the tasks. Thus, within a

PM instance run queue, a ready task (i.e. that has received all results from its

predecessors) can not start to execute before its previous task finishes.

Given a Schedule S, the start time sti for task ti can be determined by

equation 4.6:

sti = max{lpfti, prevfti} (4.5)

where lpfti denotes the latest finish time of all ti’s predecessors, prevfti denotes

the finish time of the task scheduled to run right before ti.

The finish time fti for task ti executed on PMr can be derived by equation
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Figure 4.3: Sequential executing process
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Figure 4.4: Time-sharing executing process

4.6:

fti = sti +
si
PCr

+ TTi (4.6)

where si denotes the size of ti, PCr denotes the processing capacity of PMr,

TTi denotes the total transferring time calculated by Equation 4.3.

Given the sequential execution, the makespan of a DAG can be calculated

by applying Equation 4.5 and 4.6 iteratively from the entry task to the exit task

in the DAG. However, actually, it is inaccurate. In fact, instead of executing one

by one, tasks are executed in a time-sharing manner (i.e. round robin) within

a PM instance. Round robin scheduler is widely used in current operating

systems. Giving each job a time slot, make the jobs take turns to be executed.

This is the scheduling principle of the most operating systems. Hence, the start

time of the tasks will be different from sequential execution manner because

tasks don’t need to wait for the previous task finished. The finish time of the

tasks will also be different because they may execute along with other tasks in

a round robin manner. For example as shown in Figure 4.3 and Figure 4.4, we

assume task ti needs to execute 100 ms to complete. When it needs to take

turns to run with other two tasks (the execution time of these tasks are 40

ms and 80 ms, respectively) in a round robin manner, it will need 220 ms to

complete. Note that the scheduling time slot in this sample is 20 ms. In this

220 ms duration, task ti will take 100 ms to execute and 120 ms to wait for the

time slots (shown in Figure 4.4).
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4.3.2 The Makespan model for Bag of Tasks under the

Time-sharing Execution

Before presenting our makespan model for DAG applications, we first introduce

a simple scenario: the makespan model for Bag of Tasks (BoT) under the time-

sharing execution on a single core. Bag of Tasks is a set of independent tasks,

denoted by T = {t1, t2, ..., tn}. Suppose T runs on a Physical machine, PMr, in

a time-sharing manner. The execution time of each task ti ∈ T is determined by

both the processing capacity PCr of the PM and the number of tasks that are

running concurrently with ti (time-sharing execution). When calculating the

finish time of ti, we divide the task execution cycle of a task into a number of

periods (the number of periods is denoted by m). A task is regarded as entering

into a new execution period when the number of tasks running concurrently with

ti changes. For example in Figure 4.5, four tasks t1-t4 executing on the same

PM in a time-sharing manner. The execution cycle can be divided into m = 4

time periods. In the first period, four tasks are sharing the processing capacity.

When t2 finishes, other tasks move into the second period, in which 3 tasks

(t1, t3 and t4) share the PM. The third and the fourth period are determined

in the similar way. timesj and timesj represent the start and end time of the

j-th period, respectively. Sharej denotes the number of tasks that are running

concurrently in the j-th period. Using the task size oi and the time periods in

the execution cycle, the execution time of task ti can be derived by equation

4.7, where (timeej − timesj) ∗PCr ∗ 1
Sharej

represents the useful work that ti has

completed in the j-th period.

oi =

m∑
j=1

(timeje − timejs) ∗ PCr ∗
1

Sharej
(4.7)
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Figure 4.5: An example of four independent tasks executing on a single core

4.3.3 The Makespan Model for DAG Applications under

the Time-sharing Execution

In this subsection, we present our method for computing the DAG makespan

with the time-sharing execution model.

Given a Schedule S, the start time sti of task ti should be derived using

Equation 4.8.

sti = max{lpft} (4.8)

Comparing Equation 4.8 with Equation 4.5 used for the sequential execution,

the difference lies in the fact that task ti does not have to wait for the completion

of the tasks scheduled ahead of it. ti can start once it is ready to run, i.e., all

of its predecessors have finished.

Given a Schedule S, the finish time of task ti is influenced by the processing

capacity PCr and the number of tasks that are running concurrently with ti.

When determining ti’s finish time, we divide the entire execution cycle of a task

into a number of periods. ti is regarded as moving into a new execution period

when the number of tasks concurrently running with ti changes.

For example in Figure 4.4, task t0, t1 and t2 (represented by the color green,

yellow and blue, respectively) are concurrently executing on a PM instance.

We assume the size of t0, t1 and t2 are 100, 40 and 80 respectively while the

processing capacity PC of the PM is 1. According to equation 4.9, when

calculating t0’s execution time, the first period is from 0ms to 120ms. In this
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time period, the number of time-sharing tasks (i.e., Share1) is 3. The useful

work that t0 completes in this time period is (120− 0) ∗ 1/3 = 40. At the time

point 120ms, t1 finishes and the number of time-sharing tasks is reduced to 2

(Share2 = 2), and therefore the execution moves into a new (second) period,

which ends at the time point of 200ms. In the second period, the useful work

t0 completes is (200 − 120) ∗ 1/2 = 40. At the end of the second period, the

remaining work of t0 is 20. Similarly, when t2 finishes, the execution enters into

the final period in which there is only one task running (Share3 = 1). In the

final period, the useful work t0 completes all its remaining work.

Assume the number of periods in the execution cycle of task ti is m. mj

denotes the j-th period and Sharej denotes the number of tasks that are con-

currently running (time-sharing) with ti. timejs and timeje denote the start

and end time of period mj , respectively. si denotes the size of ti (e.g., the

amount of work in terms of CPU cycles). Then equation 4.9 should hold, in

which (timeje− timejs) ∗ PCr
Sharej

represents the amount of work completed (i.e.,

the number of CPU cycles dedicated to run ti) during the period mj .

si =

m∑
j=1

((timeje − timejs) ∗
PCr

Sharej
) (4.9)

Given si and a scheduling solution, we can determine at any time how many

tasks are concurrently running with ti. Consequently, we can determine m as

well as the start and end time of each period (i.e., timeje and timejs). With

m, timeje and timejs, we can determine the execution time of ti, denoted by

timeje and timejs, using equation 4.10.

eti =

m∑
j=1

(timeje − timejs) (4.10)

The finish time of ti can then be calculated by 4.11:

fti = eti + TTi (4.11)
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We apply equations 4.9, 4.10 and 4.11 iteratively for all tasks in a DAG from

the entry task to the exit task. The finish time of the exit task is the makespan

of the DAG.

Algorithm 4 is the pseudo-code of the algorithm to calculate the makespan of

a DAG job when the tasks on the same machine run in the time-sharing manner.

Given a Schedule S = (G,PM,Mapping), the finish time of the tasks and the

total makespan of the DAG application can be determined by this algorithm.

In the algorithm, the algorithm will estimate the remaining time of the

running tasks on all PMs at the start of each time period, and identify the

task with the minimum remaining time, which will be the task that finishes

first among all time-sharing tasks. Also, when this shortest task finishes, its

successors in the DAG, if any, can start running. The completion of this shortest

task and the start of its successors may cause the change in the number of time-

sharing tasks in the machine, and thus a new time period. If it is the case,

the finish time of this shortest task will be the start time of the next time

period. In addition, at the end of each time period, the algorithm will update

the remaining work of the unfinished tasks on all machines.

Algorithm 4 Time-sharing Makespan Algorithm

Input: A Schedule strategy S = (G,PM,Mapping), processing capacity PC,
task size ti

Output: Makespan of the Scheduled DAG application
29 Set RunningListr = [] for each physical machine PMr;

ti = tentry;
Add tentry to it’s corresponding RunningList;
Start = 0 ;
while Not all tasks are finished do

30 From the Start of this time period m:
Update RunningList for all PMs;
Calculate the estimated Remainingtime for all running tasks using:
TmpRemainingtimei = rei ∗ Sharer/PCr ;
duration = min{TmpRemainingtime} − Start;
Start = min{TmpRemainingtime};
Update remaining work re for all running tasks using:
rei = rei − duration ∗ PCr/Sharer;
Check the finish task(s) in this period;
Update these finish task(s) successor tasks’ start time;
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Figure 4.6: Case study: DAG

4.3.4 Case Study

We now present an example to show how our model derive the tasks’ finish time

and the makespan of the DAG under time-sharing execution. In addition, the

process of sequential execution is also illustrated to show the difference.

Figure 5.3(e) shows the DAG of our case study. Tasks {t0, ..., t7} are allo-

cated on resource PM0, PM1 and PM2. The mapping decision is as follows:

PM0 = {t0, t1, t6, t7}, PM1 = {t2, t4} and PM2 = {t3, t5}. The task sizes are:

Size = {t0 : 150, t1 : 300, t2 : 150, t3 : 250, t4 : 150, t5 : 100, t6 : 200, t7 : 100}.

We assume that the the processing capacity PC of all physical machine in-

stances is 1. The critical path of the DAG is t0 → t1 → t6 → t7. The length

of the critical path is 750. The working of the time-sharing makespan model

is explained as follows. the calculation procedure is shown below. Note that

RunningList is abbreviated to RL, TemporaryRemainingtime is abbreviated

to TmpRT in this section.

The entry task t0 starts running at the start of the first period (m = 1),

which is 0ms. The Running List (RL) of three PMs are RL0 = {t0}, RL1 = {},

RL2 = {}. The Temporary (current) Remaining Time (TmpRT ) of task t0 is:

TmpRT0 = s0∗Share0/PC = 150. At time 150, t0 finishes. t0’s successor tasks,

t1, t2, t3, t4 and t5, start. The execution enters into a new period (m = 2) since

the number of sharing tasks changes.

In the second period starting from 150ms, RL0 = {t1}, RL1 = {t2, t4},

RL2 = {t3, t5}; TmpRT1 = s1∗Share0/PC = 300, TmpRT2 = 300, TmpRT3 =
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Running List PM0:{0}   PM1:{ }   PM2:{ }
At time 150, 𝑡0	finishes, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 starts;

Running List PM0:{1}PM1:{2,4}PM2:{3,5}
At time 350, 𝑡5	finishes, 𝑡1, 𝑡2, 𝑡3, 𝑡4	continues;

At time 450, 𝑡1, 𝑡2, 𝑡4 finishes, 𝑡3 continues;

At time 500, 𝑡3 finishes and 𝑡6 starts;

800

At time 700, 𝑡6 finishes and 𝑡7 starts;
Running List PM0:{6}   PM1:{ }   PM2:{ }

Running List PM0:{7}   PM1:{ }   PM2:{ }
At time 800, 𝑡7 finishes. All done;

PM2

𝑡,

𝑡- 𝑡., 𝑡/
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Figure 4.7: Case study: Scheduling scheme using Time-sharing Makespan
model

500, TmpRT4 = 300, TmpRT5 = 200. t5 is the task that has the minimum

temporary remaining time among all tasks. The execution moves into a new

period (m = 3) when t5 finishes because the number of sharing tasks changes

then. At the time point of 350, t5 finishes and t1, t2, t3 and t4 continue to run.

The remaining work of t1 is: TmpRT1 = s1 − duration ∗ PC/Share0 = 100.

Similarly, Re2 = 50, Re3 = 150 and Re4 = 50.

In the third period (m = 3), starting from 350, RL0 = {t1}, RL1 = {t2, t4},

RL2 = {t3}. t1, t2 and t4 will be the first batch to finish at the same time

(i.e., time 450) because they all have the same minimum temporary remaining

time. After the third period ends, only t3 continues. The remaining work of t3

is TmpRT3 = TmpRT3 − duration ∗ PC/Share2 = 50.

In the final period (m = 4), starting from 450, t3 executes in PM2 alone,

and finishes at the time point 500. Then t6 starts. We can calculate the rest of

the execution in the same way.

The sequential execution is illustrated in figure 4.8, in which the tasks allo-

cated to the same PM are run one by one, which is not the reality. For example,

the operating system in PM1 will put task t4 into execution without waiting

for t2 to complete, which leads to the inaccurate assumption of t2’s finish time,
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-- At time 450 ms, 𝑡4	finishes, 𝑡6	starts on PM0;

-- At time 0 ms, 𝑡1	starts executing on PM0;

-- At time 300 ms, 𝑡2 finishes, 𝑡4 starts on PM1;

-- At time 500 ms, 𝑡5 finishes;

-- At time 650 ms, 𝑡6 finishes and 𝑡7 starts;

-- At time 750 ms, 𝑡7 finishes. All done;

PM2

𝑡0

𝑡1
𝑡2

𝑡3

𝑡6

𝑡7

𝑡4
𝑡5

-- At time 150 ms, 𝑡1	finishes, 𝑡1, 𝑡2, and 𝑡3
starts;
𝑡4 is waiting for its previous task 𝑡2 on PM1;

-- At time 400 ms, 𝑡3 finishes, 𝑡5 starts on PM1;

Figure 4.8: Case study: Scheduling scheme using Traditional Makespan model

and may consequently affect its successors’ start time.

4.4 DAG Scheduling Adjustment

Given a DAG G = (V,E) and its schedule S, we can calculate the makespans

under the time-sharing execution (called time-sharing makespan) and under the

sequential execution (called sequential makespan). With the same schedule S,

we find that in theory the time-sharing makespan is always longer than the

sequential makespan. This is because the time-sharing execution causes some

tasks to have later finish times than those under the sequential execution. These

later finish times may in turn delay the start of their successors and eventually

result in a longer makspan. In other words, the actual makespan of a DAG is

always longer than the makespan assumed under the sequential execution.

Since the assumed makespan is always shorter than the actual makespan,

we regard the assumed makespan as a deadline ddl. We try to use the ddl as

the target and reduce the actual makespan by adjusting the schedule S.

In order to determine whether the deadline ddl is met by a particular sched-

ule, we first calculate the latest finish time of the tasks in a DAG, which is

presented in subsection 4.4.1. The adjustment process is performed by migrat-
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ing the tasks which cannot finish by their latest finish time to another suitable

PM (only using the current PMs in the schedule S without adding new PMs).

In order to make adjustment decisions, we need to evaluate the impact of a

particular migration on the existing tasks running on the PM which is the mi-

gration destination (called destination PM). The evaluation of migration impact

is presented in subsection 4.4.2. Finally, the schedule adjustment algorithm is

presented in subsection 4.4.3.

4.4.1 Calculating Latest Finish Time

When mapping tasks to PM instances, firstly, we need to consider the order

of the tasks. In our strategy, the makespan of the given DAG schedule S by

assuming the sequential execution, which we call makespan in sequential execu-

tion, is used as the deadline ddl for our schedule adjustment. We then use the

following equation to derive the latest start time lst of every task in order to

meet the deadline. Using the ddl, we can derive tasks’ latest start time lst by

their decreasing topological level:

lsti =


ddl − si

PCr
if ti = texit

min
ts∈succ(ti)

{lsts − si
PCr
} otherwise

(4.12)

Latest start time lst value indicates the allocation urgency of the DAG.

Earlier lsti earns higher priority. Thus, we can get a OrderList sorted by

increasing lst and allocate the tasks from the highest priority task (i.e. tentry)

to the lowest priority task (i.e. texit).

Similarly, we can use equation 4.13 to derive the latest finish time lft of

every task in the DAG. Every task, ti should finish by its latest finish time lfti.

Otherwise, the DAG will not meet the deadline.

lfti =


ddl if ti = texit

min
tm∈succ(ti)

{lftm − sm
PCr
} otherwise

(4.13)
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lfti is used to determine the tasks whose allocations need to be adjusted.

With equation 4.11, we can calculate the actual finish time fti of every task. If

fti is greater than lfti calculated by equation 4.13. The allocation of Task ti

needs to be adjusted, which is stored in an AdjustList in the increasing order

of the task’s latest start time (lsti). For each task ti in AdjustList, we try to

migrate it to another PM so that fti can be no more than lfti. We deem the

adjustment of the Schedule S to be successful only when all tasks in AdjustList

can find their suitable PMs. The task migration algorithm will be introduced

in detail later.

4.4.2 Calculating the Migration Impact

In this subsection, we first present some simple migration cases (in subsubsection

4.4.2) to show how the executions of the existing tasks in the destination PM

are affected by the migration. Then we present the impact of task migration in

more complicated cases.

Simple migration cases

Assume Task tk starts at time stk and finishes at ftk in a PM. When we migrate

tk to another PM (e.g., PMx), the finish times of the tasks that are allocated

to run on this destination PM PMx may be affected. In the simple migration

cases, we assume that there is only one task (e.g., ti) in PMx. We find that the

alignment relation between ti and tk (i.e., the comparison between the start/end

times of tk and ti) determines how ti will be affected by the migration of tk.

In Figure 4.9, we draw four cases (t1-t4 in PMa-PMd) which have different

alignment relation with tk.

a) In PMa, st1 ≤ stk and ft1 ≤ ftk. In this case, the new finish time of t1

after the migration will be:

ft′1 = stk + (ft1 − stk) ∗ 2 (4.14)
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PM(solo) PMa PMb PMc PMd

stk

ftk

tk t1 t2 t3 t4

Figure 4.9: Migration effects on four kinds of tasks

b) In PMb, st2 ≤ stk and ft2 > ftk. In this case, the new finish time of t2

will become:

ft′2 = ft2 + (ftk − stk) (4.15)

c) In PMc, st3 > stk and ft3 ≤ ftk. In this case, the new finish time of t3

will become:

ft′3 = st3 + (ft3 − st3) ∗ 2 (4.16)

d) In PMd, st4 > stk and ft4 > ftk. In this case, the new finish time of t4

will become:

ft′4 =


st4 + (ft4 − st4) ∗ 2 if ft′4 < ft′k

ft4 + (ftk − st4) if ft′4 > ft′k

(4.17)

More complicated migration cases

In the destination PM, there may exist more than one tasks that are affected

by migration. For example, in the time-sharing environment, the four tasks

t1-t4 in figure 4.9 are allocated to the same PM. In this case, calculating the

migration impact becomes more complex. In addition, the affected tasks may

further affect other co-running tasks and/or delay the start of their successor

tasks. In this subsection, we propose an algorithm to derive the affected finish

times of the affected tasks in this complicated cases.

Given a Schedule S, we can get the start time sti and finish time fti of the

tasks within the DAG; Assume task tk in the schedule is migrated to another

PM, the resulting schedule is denoted by S′. We can also calculate the we can

know the migrated task (say tk) as well as its start time stk.
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The pseudo-code of deriving the finish time ft′i of the tasks affected by the

migration is shown in Algorithm 5. Only when the finish time of a task (fti)

in the destination PM is later than the start time of tk (stk) (Index 31 in the

algorithm), will the task will be affected by the migration of tk. In the algorithm,

Index 31-32 find all tasks that may be affected by the migration, initialize their

new start and finish times, create a dictionary Re cal to store the potentially

affected tasks as well as their existing start times sti, finish times fti, new

start times st′i and new finish times ft′i. The naive method of examining the

impact of the migration is to calculate the finish times of all potentially affected

tasks (i.e., the tasks in Re cal) and check with the new finish times change.

We propose a better method as follows to reduce the calculations needed. The

algorithm calculates the topology level of those potentially affected tasks in the

DAG and creates a dictionary l dict to store their DAG topology levels. The

tasks’ topology levels are used as the information to terminate the while loop

indexed by 34 in the algorithm. The termination condition of the while loop

is that: when the new finish times of all tasks ft′i in a level (e.g., level li) are

the same as their existing finish times fti, the migration effect stops at this

topology level and will not propagate further to lower topology levels. In other

word, the successor tasks of this level will not be affected by the migration.

Index 33 identifies the first task in Re cal (i.e. with minimum start time) and

its topology level lmin. The calculation in the while loop starts from this task.

The code segment in index 6 calculates the start and finish times of the tasks

that may be affected by the migration, until the termination condition discussed

above is met.

4.4.3 Task Migration Algorithm

The condition for a successful task migration is that in the destination PM there

are no tasks (including the task to be migrated and the existing tasks in the

PM) that will miss their latest finish time.

In this section, we present a task migration algorithm to adjust the given
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Algorithm 5 Single-task Migration Effect Calculation

Input: A Schedule strategy S = (G,PM,Mapping), the schedule strategy S′

after migration, processing capacity PC, task size si
Output: Finish time ft′i of the affected tasks

31 for each fti > stk do
32 add task ti to the Re cal dictionary;

st′i, ft
′
i = 0;

Re cal[ti] = [sti, fti, st
′
i, ft

′
i];

Calculate ti’s topology level li in G;
l dict[li].append(ti);

33 Start = minRe cal{sti} marked as task tmin;
ti = tmin;
while Not all ft′i = fti in level li of S′ do

34 From the Start of this time period m:
Update RunningList for all PMs;
Calculate the estimated Remainingtime for all running tasks using:
TmpRemainingtimei = rei ∗ Sharer/PCr ;
duration = min{TmpRemainingtime} − Start;
Start = min{TmpRemainingtime};
Update remaining work re for all running tasks using:
rei = rei − duration ∗ PCr/Sharer;
Check the finish task(s) in this period;
Update these finish task(s) successor tasks’ start time st′i;
li = l dict.keys()[l dict.values().index(ti)];

35 for all unaffected tasks in Re cal do
36 ft′i = fti;
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schedule and reduce the actual makespan towards the set deadline. First, the

algorithm recognizes the tasks that need to be migrated in a PM (i.e., those

tasks that miss their latest finish time according to the set deadline), and define

the AdjustList to store the tasks in the increasing order of their latest start

times (i.e. urgency). Then the algorithm tries to migrate these tasks one at a

time. For a task (e.g., tk) to be migrated, the algorithm tries to find a suitable

PM in which tk is able to catch its latest finish time lftk and all existing tasks in

the PM do not violate their latest finish time (determined by using Algorithm

5) due to this migration. Only when all tasks in AdjustList can find their

suitable PMs, we regard Schedule S as being adjustable. The output of this

algorithm is whether S is adjustable (0 or 1), the new S′ if it is adjustable and

its corresponding real makespan under the time sharing execution.

The pseudo-code is shown in Algorithm 6. Index 37-39 is the preprocessing

phase. In this phase, the algorithm calculates all tasks’ slack time, topology

level and identify all the tasks that need to be migrated (marked as tk). Index

44-51 tries to find a suitable PM for the current task to be migrated. The

algorithm introduces a metric, min SlackPMr

lk
, which refers to the minimum

slack time of the tasks that are in the same topology level as tk within PMr.

S SlackPMr

lk
is calculated using Equation 4.18.

min SlackPMr

lk
= min
{tk∈Affec list}

(lftk − ftk) (4.18)

When looking for a suitable PM for tk, we calculate S SlackPMr

lk
for every

PM except the source machine (the machine which tk currently resides in).

Bigger value of min SlackPMr

lk
indicates a PM with higher tolerance to accept

the migration of tk. The algorithm defines a PM List that sorts the PMs in

the decreasing order of min SlackPMr

lk
(Index 44). The algorithm checks from

the first PM in PM List whether tk can be migrated to this PM (labelled

as PMtry). The checking is performed in the following way. The algorithm

calculates the new finish times of the affected tasks by using Algorithm 5. If
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Algorithm 6 Task Migration Algorithm

Input: DAG G and Schedule S = (G,PM,Mapping), processing capacity PC,
task size s

Output: Whether S is adjustable (0 or 1), Adjusted S’ and its corresponding
real makespan

37 for All tasks in DAG G do
38 Calculate ti’s real finish time fti using time-sharing makespan model;

Calculate ti’s latest finish time lfti using eq. 4.13 ;
slacki = lfti − fti;
Calculate ti’s topology level li in G;
l dict[li].append(ti);
if slacki < 0 then

39 Add ti to AdjustList;

40 Sort AdjustList by increasing lst derived from eq. 4.12;
for tasks (marked as tk) in ordered AdjustList do

41 Mark tk’s current allocated PM as PMcur ;
for All PMs (marked as PMr) except PMcur do

42 Add PMr to PM List;

min SlackPMr

lk
= 0;

for task ta ∈ PMr and la = lk do

43 min SlackPMr

lk
= min{slacka};

44 Sort PM List by decreasing min SlackPM
l ;

PMtry = PM List[0];
while PM List is not empty do

45 Assume tk changes its allocation to PMtry;
Make Affec list of the Affected tasks and calculate their ft′ calling
Algorithm 5;
for each task (marked as taff ) in Affec list do

46 slack′aff = ft′aff − lftaff ;

if slack′aff < 0 then

47 PMtry is not a suitable PM to migrate;
Remove PMtry from PM List;
Break

48 if No more lft missing happens then
49 Migrate tk to PMtry;

Update all corresponding information;
Break;

50 if There is no PM changeable for tk then
51 Schedule S is non-adjustable;

Exit;

52 if Schedule S is adjustable then
53 Update the adjusted Schedule S′;

Calculate the corresponding real makespan;
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the new finish time of any affected task is bigger than the latest finish time

of the task (i.e., the new slack time of the affected task is less than 0), then

the PM is not a suitable PM and the algorithm moves on to check next PM.

Otherwise, tk is migrated to this PM (Index 48-49). If the algorithm cannot

find a suitable PM for tk, this schedule S is regarded as non-adjustable (Index

50-51). In other words, the algorithm cannot reduce the time-sharing makespan

to the sequential makespan by only adjusting the schedule.

4.5 Multi-task Migration Algorithm

In last section, the algorithm migrates one task at a time. We find that such a

migration strategy is inefficient and can cause unnecessary calculations. In this

section, we present an improved strategy for the scheduling adjustment. In the

improved strategy, multiple tasks are considered together for migration, which

we call multi-task migration. More specifically, the algorithm tries to migrate

at a time all tasks in the same topology level that miss their latest finish times.

The pseudo-code is presented in Algorithm 7.

We now give an example to show how the algorithm works. For a DAG

and its corresponding Schedule S, the set of tasks to be adjusted (denoted by

Adjust dict), and the set of tasks that do not need to be adjusted (denoted by

non Adjust dict) are as follows.

Adjust dict = {1 : [t3, t5, t7], 2 : [t14, t16], ...}

non Adjust dict = {0 : [t0], 1 : [t2, t4, t6, t8, t9], ...}

Firstly, the algorithm temporarily remove these three tasks from S, as shown

in figure 4.11, and then calculates the temporary finish time tmp ft of the rest

non-adjusted tasks as well as the temporary total slack time tmp S SlackPMr

li

of all non-adjusted tasks in each PM. Then the algorithm tries to re-allocate the

three tasks back to the PMs. The three tasks are ordered by the decreasing exe-

cution time. The tasks are re-allocated in the order of the largest execution time

first. A task is re-allocated to the PM that has the largest tmp S SlackPMr

li
.
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Algorithm 7 Multi-Task Migration Strategy

Input: DAG G and Schedule S = (G,PM,Mapping), processing capacity PC,
task size s

Output: Whether S is adjustable (0 or 1), Adjusted S’ and its corresponding
real makespan

54 for All tasks in DAG G do
55 Preprocessing calling relative functions in Algorithm 6;

if slacki < 0 then
56 Add ti to AdjustList;

Adjust dict[li].append(ti);

57 if slacki ≥ 0 then
58 Add ti to non AdjustList;

non Adjust dict[li].append(ti);

59 for li in Adjust dict ordered by increasing level do
60 Set Number to be the task number in li;

while Not all tasks in li satisfy slack ≥ 0 and Number > 0 do
61 Assume that tasks in Adjust dict[li] are removed from S;

for all tasks in non Adjust dict[li] do
62 Calculate the tmp ft and tmp slack;

63 Derive tmp S SlackPMr

li
for each PM ;

Sort PM List by decreasing tmp S SlackPM
l ;

Re-map tasks in Adjust dict[li] using LTF to ordered PM List;
for all tasks in level li do

64 Check task’s new slack time;
if ∃texist ∈ li, slack′exist < 0 then

65 Add these tasks to Adjust dict[li];

66 Number = Number − 1;

67 if Number == 0 then
68 Schedule S is non-adjustable;

exit;

69 if Schedule S is adjustable then
70 Update the adjusted Schedule S′;

Calculate the corresponding real makespan;
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For example, in this case, the order of the execution time is t5 > t3 > t7. The

algorithm first allocates t5 to the PM with the maximum temporary total slack

time (i.e. PMb), then deducts t5’ execution time from PMb’s temporary slack

time and re-orders the PMs. Next, t3 is re-allocated in the same way. After

we finish re-allocating all tasks in level 1, we re-calculate all tasks’ finish times

in this level and check if any task misses its latest finish time. The algorithm

only moves on to adjust the tasks in the next topology level after there is no

missing of latest finish time in the current level. If there exists the tasks in the

current level which miss their latest finish time, the algorithm adds these tasks

to Adjust dict and continue to adjust the current level until there is no task

that misses its latest finish time. Then, the algorithm calculates and updates

the new finish time of the whole DAG. The algorithm sets a number (Index 38

in Algorithm 7) as the maximum number of times the algorithm re-allocate the

batch of tasks in the current level and checks whether there is missing of latest

finish time. The number is set to be the number of tasks in current level.

The differences between single-task migration strategy and multi-task mi-

gration strategy are: 1) Single-task migration strategy takes out one task at a

time and migrates it, while multi-task migration strategy takes out all tasks in a

topology level at a time and migrates the batch of tasks at a time; 2) Single-task

migration strategy does not allow any affected task to miss its latest finish time

during the migration of a task, while in multi-task migration, the algorithm

only checks whether there is missing of latest finish time after all tasks in the

batch have been allocated. The multi-task migration algorithm does not allow

any missing of latest finish time in the current level, but allows the successor

tasks (i.e., the tasks in the lower topology levels) to miss their latest finish time.

If there are successor tasks that miss the latest finish time, they are added to

Adjust dict and will be considered for migration later.
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Figure 4.10: Original Mapping for topology level 1
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Figure 4.11: Re-allocation for topology level 1

4.6 Task Allocation Algorithm

Not all task schedules can be adjusted to meet the deadline. If the task migration

algorithm fail to reach a successful adjustment. We develop a Task Allocation

Algorithm (TAA) to find a task schedule from scratch for the time-sharing

execution. TAA assumes the same number of PMs as that in the schedule S

generated for sequential execution.

In TAA, we still use the makespan in sequential execution as the deadline

(target) for finding the schedule solution in time-sharing. TAA generates an

Orderlist in the similar way as we construct the Ajustlist in Task Migration

Strategy. For each task in Orderlist, TAA tries to allocate it to a best PM

based on a metric we propose, which is called Total deadline Miss Time (tmt).

tmt is defined as the total of all deadline misses in a PM. The pseudo-code of

TAA is shown in Algorithm 8. In Index 71, sequential execution makespan of

schedule S is calculated and set to be the deadline. Index 72 calculates the

latest start time lst, latest finish time lft of all tasks and makes a OrderList,

in which the tasks are sorted by the increasing topological level. Within the

same topological level, tasks are sorted by increasing latest start time lst. Then

we allocate the tasks from the front to the end of the OrderList. When we need

to make a allocative decision for task ti, we first temporary allocate the task to
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all PMs and find a best PM for it. Assuming that allocate task ti to PMs, we

calculate all allocated tasks’ temporary finish time by our time-sharing model

based on this temporary allocation. Using these temporary finish times and

tasks’ lft, we can derive the total latest finish time missing tmt of each PM

and choose the PM that has minimum tmt to allocate ti. If there are more than

one PM have no lft missing (i.e. tmt = 0), we will choose the PM that has

maximum total slack time tst to allocate ti. After making an allocative decision

for task ti, Index 83 updates the schedule S′, as well as the corresponding tasks’

finish times and their child tasks’ start times.

Algorithm 8 Task Allocation Algorithm

Input: DAG G and Schedule S = (G,PM,Mapping)
Output: A newly Schedule S′ and its Makespan

71 Calculate S’s sequential execution makespan and set to ddl;
Calculate the G’s topological level level;
for All tasks in DAG G do

72 Calculate ti’s lsti and lfti;

73 for level from 0 to the highest topological level do
74 Sort the tasks on the same level by increasing lst and add to the OrderList;

75 for From front to back of the OrderList do
76 for all PMs do
77 Calculate ft of all allocated tasks;

Calculate the total ddl missing time tmts;
if total ddl missing time tmts = 0 then

78 Calculate the total ddl slack time tsts;

79 if there are >1 proposed S′ has total tmts = 0 then
80 Allocate ti to the PM with max(tsts);

81 else
82 Allocate ti to the PM with min(tmts);

83 Update S′, all related tasks’ ft and child tasks’ st;

4.6.1 Resource Bounds

In this subsection, based on the features of DAG deadline constrained applica-

tion, we determine the upper bound for the minimum number of PM instances
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that need to guarantee the DAG deadline.

Lemma 1. Given a deadline constrained DAG application G = (V,E), the

critical path of the DAG be CP , critical path execution time be TCP , deadline

be ddl (ddl > TCP ), and the number of PM instances needed to guarantee the

applications deadline be M. M is equal to the fattest level task number. Then

we have: there exists at least one Schedule S that can meet the application’s

deadline.

Proof. The number of PM instances is equal to the fattest level task numbers.

Thus, it is possible to allocate all tasks in the same level to different PMs.

When we guarantee that all same level tasks can be executed on different PMs,

the makespan of the DAG will be equal to the critical path execution time TCP .

And TCP < ddl. So it is obvious that there exists at least one Schedule to meet

the application’s deadline.

4.7 Evaluation

To facilitate the evaluation of the workflow algorithms, Pegasus has developed

a set of synthetic workflow generators. These generators use the information

gathered from actual executions of scientific workflows to generate realistic,

synthetic workflows resembling those used by real world scientific applications.

These workflows come from [38] are widely used in this research field. In this

section, we use these real-world workflows for evaluation. In the experiments,

we compare the Makespan in Sequential execution (denoted by makespan-S,

which is the makespan by assuming the sequential execution), the Makespan in

Time-sharing execution (denoted by makespan-TS, which is the makespan of

the DAG when the tasks are run in time-sharing in reality) and the makespan

obtained by TAA (denoted by makespan-TAA). Makespan-S and Makespan-TS

are computed using the makespan models presented in Section 4.3.

In this section, we use both Real-World Workflow and randomly generated

DAG for evaluation. The Real-World Workflow characteristics including task
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Table 4.1: Characteristics of the Real-World DAGs

Task Num. Edge Num. Sequence Runtime(s)

Montage 25 25 45 227.75
Montage 50 50 106 508.64
Montage 100 100 233 1079.34
Montage 1,000 1,000 2485 11378.69
Epigenomics 24 24 27 17720.15
Epigenomics 46 46 54 41401.78
Epigenomics 100 100 122 403400.2
Epigenomics 997 997 1234 3854768.81
CyberShake 30 30 52 828.65
CyberShake 50 50 92 1322.98
CyberShake 100 100 192 2236.61
CyberShake 1,000 1,000 1976 23319.19
Sipht 30 30 33 5546.45
Sipht 60 60 66 11668.91
Sipht 100 100 109 17379.73
Sipht 1,000 1,000 1096 173678.19
Inspiral 30 30 35 6617.07
Inspiral 50 50 60 11761.95
Inspiral 100 100 119 21023.96
Inspiral 1,000 1,000 1233 227702.63

number, edge number and sequence runtime are given in Table 4.1. Sequence

runtime indicates the sum of all tasks’ runtime in the DAG. The structures of

different applications are given in Figure 4.17.

Figure 4.12: CyberShake Figure 4.13: Epigenomics
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Figure 4.14: Inspiral Figure 4.15: Sipht

Figure 4.16: Montage

Figure 4.17: Structures of the real-world workflows [21]

4.7.1 Performance with different number of tasks

Figure 4.18 shows the performance of the real-world workflows with different

number of tasks in terms of makespan-S, makespan-TS and makespan-TAS.

Montage

Montage has been created by the NASA/IPAC Infrared Science Archive that can

be used to generate custom mosaics of the sky using input images in the Flexible

Image Transport System (FITS) format. Figure 4.18(a) - 4.18(d) shows the gaps

among makespan-S, makespan-TS and makespan-TAS. The results indicates

that there indeed exits the gap among these makespans. Our TAS algorithm

can reduce the realistic makespan by taking the time-sharing execution into
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account.

Epigenomics

This workflow is being used by the Epigenome Center in the processing of pro-

duction DNA methylation and histone modification data. It has the largely

pipelined tasks and a large degree of parallelism. For example, Epigenomics 997

has 7 entry tasks and a parallel degree of 250. Due to its DAG structure, there

is not a big difference between makespan-S and makespan-TS. However, com-

paring with makespan-S, TAS improves the makespan by 8.88%, 7.9%, 10.7%

and 14.3% with 24, 46, 100 and 997 tasks, respectively.

CyberShake

The Cybershake workflow is used by the Southern California Earthquake Center

(SCEC) to characterize the earthquake hazards in a region using the Probabilis-

tic Seismic Hazard Analysis (PSHA) technique. Figures 4.18(i) - 4.18(l) show a

big difference between makespan-S and makespan-TS: 33.1%, 20.4%, 7.4% and

2.52% with 30, 50, 100 and 1,000 tasks, respectively. Given the limited number

of PMs in the experiments (less than the parallel degree of the workflow), the

DAG with the flat structure often cause a big difference between makespan-S

and makespan-TS since the time-sharing execution results in the big delay in

some tasks’ finish time comparing with the sequential execution. TAS shows

a outstanding optimization ability, improving the makespan by 43.56% and

41.82% with 100 nodes and 1,000 tasks, respectively.

Sipht

The Sipht workflow is used to automate the search for sRNA encoding-genes for

all of the bacterial replicons in the National Center for Biotechnology Informa-

tion (NCBI) database. It is a highly parallel, flat structured DAG application.

Figures 4.18(n) - 4.18(p) show the gaps of 345.58s, 696.81s and 63s between

makespan-S and makespan-TS with 60, 100 and 1,000 tasks, respectively. How-
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ever there is no noticeable difference between two makespans when the number

of tasks is less than 30 no matter how many PMs are used.

Inspiral

The LIGO Inspiral Analysis Workflow is used to analyze the data obtained

from the coalescing of compact binary systems such as binary neutron stars and

black holes. The parallel degree of the DAGs are 7, 12, 23 and 229 with 30, 50,

100 and 1,000 tasks, respectively. There is a gap of 1.87%, 1.61%, 25.2% and

25.7% between makespan-S and makespan-TS with 30, 50, 100 and 1,000 tasks

respectively. TAS shows a makespan improvement of 17.6%, 1.18%, 0.01% and

14.7% with 30, 50, 100 and 1,000 tasks, respectively.

4.7.2 Performance with the different number of PMs

Table 4.2 and Figure 4.19 show the makespan of the real-world workflows with

50 and 100 tasks, respectively, when using different number of PMs. As can be

seen from Table 4.2, different number of PMs lead to the different gaps between

makespan-S and makespan-TS. The decrease of the makespan is not linear with

the increase of the number of PM . When the number of PM reaches the

degree of the parallelism of the DAG, the gap disappears. In our experiment,

the parallel degrees are 15, 10, 23, 50 and 12 for Montage 50, Epigenomics 46,

CyberShake 50, Sipht 60 and Inspiral 50 respectively in Table 4.2; the parallel

degrees are 60, 24, 46, 89 and 23 for Montage 100, Epigenomics 100, CyberShake

100, Sipht 100 and Inspiral 100 respectively. For flat and highly parallel DAG

such as ”Sipht 100”, varying the number of PMs (i.e. 12 - 28) makes almost no

difference to the makespan when the number of PM is far less than the parallel

degree (i.e. 89 in this case).

4.7.3 Results for Randomly Generated DAGs

We randomly generate 10 DAGs, each of them is comprised of 30 tasks. These

DAGs are allocated to 6 PMs and 8 PMs, respectively. Figure 4.20 shows
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Figure 4.18: Results for the real-world workflows runtime in different node
numbers under M − TS, M − S and M − TAA
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Table 4.2: Results of the Real-World DAGs Makespan

Task PN M-TS M-S M-TAA Task PN M-TS M-S M-TAA

Mon 50 5 138.01 132.23 132.07 Cyb 50 6 585.74 522.03 323.77
Mon 50 8 87.46 87.46 87.28 Cyb 50 10 422.88 416.69 290.62
Mon 50 10 77.12 77.0 76.83 Cyb 50 12 410.19 380.13 262.74
Mon 50 15 66.89 66.43 66.27 Cyb 50 15 313.83 342.87 262.74
Epi 46 4 16584 16585 13393 Si 60 10 7058 6712 4643
Epi 46 5 12455 12455 11469 Si 60 12 4649 4640 4642
Epi 46 7 12226 12234 10672 Si 60 15 7056 6710 4640
Epi 46 10 7744 7744 7728 Si 60 18 4648 4640 4640
Ins 50 5 3354 3319 2905 Ins 50 8 2054 2021 1939
Ins 50 7 2386 2372 2186
Ins 50 12 1410.8 1410.8 1410.8
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Figure 4.19: Makespan-TAA with different number of PMs
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Figure 4.20: Makespan results for Randomly generated DAGs

the makespan results of the DAGs: The square mark indicates the sequen-

tial execution makespan, the dash above the square mark indicates the time-

sharing makespan while the dash below the square mark indicates the TAA

makespan. The TAA makespan of DAG1 and DAG5 of 4.20(a), as well as

DAG2, DAG3, DAG4 and DAG5 of 4.20(b) are the same as their correspond-

ing deadline (i.e. sequential execution makespan). There exits a gap between

time-sharing makespan and sequential execution makespan in all cases. In addi-

tion, the experiment result indicates that TAA can efficiently reduce the DAGs’

time-sharing makespan.

4.8 Summary

In this chapter, we investigated the impact of the time-sharing execution on

the DAG makespan. The makespan model in the time-sharing execution was

proposed. Based on the makespan model, a Task Migration Algorithm and a

Task Allocation algorithm are developed, aiming to reduce the actual makespan

of the DAG schedule when the DAG is executed in time-sharing in reality. We

conduct the extensive experiments with the real-world workflows. The experi-

mental results show that there exists gap between the makespan in sequential

execution, the makespan in time-sharing execution and the makespan obtained

by our DAG scheduling algorithm designed for time-sharing systems.

Only considering the time-sharing execution can not result in the accurate

estimation of the task makespan. Resource interference is another important

factor that influences the performance of co-running tasks in multi-core com-
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puters. Our studies show that a task may have different levels of performance

degradation when co-running with different tasks. The performance degrada-

tion varied from 0% to 80% in our studies. In the next chapter, the scenario

that is more practical and complex is assumed. We investigate the impact of

these influential factors and predict the performance impact of the co-running

tasks on multi-core computers.
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CHAPTER 5
Contention-aware Prediction for Performance Impact of

Task Co-running in Multi-core Computers

Resource interference is another influential factor to the performance of co-

running tasks in multi-core computers. In the task scheduling, it is often as-

sumed that the scheduler knows the execution time of the tasks, based on the

assumption that the techniques are present to predict the performance of tasks.

However, it is a non-trivial task to product the accurate the performance predic-

tion for tasks, although a number of techniques are indeed developed to predict

the task performance [57].

In this chapter, we investigate the influential factors that impact on the

performance when the tasks are co-running on multi-core computers. Further,

we propose a machine learning-based prediction framework to predict the per-

formance of the co-running tasks. In particular, two prediction frameworks are

developed for two types of task in our model: repetitive tasks (i.e., the tasks that

arrive at the system repetitively) and new tasks (i.e., the task that are submit-

ted to the system the first time), the difference between which is that we have

the historical running information of the repetitive tasks while we do not have

the prior knowledge about new tasks. Given the limited information of the new

tasks, an online prediction framework is developed to predict the performance

of co-running new tasks by sampling the performance events on the fly for a

short period and then feeding the sampled results to the prediction framework.

We conducted the extensive experiments with the SPEC2006 benchmark suite

to compare the effectiveness of different machine learning methods considered

in this chapter. The results show that our prediction model can achieve the

good enough accuracies for repetitive tasks and new tasks, respectively.
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5.1 Motivation and Background

In this section, we conduct experiments to reveal the performance impact prob-

lem. The experimental results show that 1) a task may have various performance

degradation when co-running with different tasks; 2) The performance degra-

dation of a task that running with different frequencies is non-linear; 2) A task

will have varying performance impact when time-sharing executing with differ-

ent tasks. However, the performance impact is hard to predict by using specific

formulation. We use SPEC2006 to conduct the benchmarking experiments to

investigate the impact of task co-running on performance.

5.1.1 Performance Impact of Multi-core

Figure 5.1 shows the execution time of three benchmarks in SPEC2006, 401

(401.perlbench is a compression program), 410 (410.bwaves simulates blast waves

in three dimensional transonic transient laminar viscous flow) and 470 (470.lbm

is a computational fluid dynamics program using the lattice boltzmann method)

[36], when they co-run with other SPEC2006 benchmarks on a multi-core proces-

sor. In Figure 5.3(a), the execution time of the solo-run of SPEC 401 (i.e., when

the benchmark runs on a core without other programs co-running on other cores)

is 89.4 seconds. When co-running with other benchmarks, the execution time of

401 vary from 89.50 (co-running with 462) to 114.92 (co-running with 470). Its

performance degradation is noticeable: from 0% to 28%. The same phenomenon

occurs with other benchmarks in SPEC. Through the experiment, we also ob-

served that some benchmarks, such as SPEC 470 are more contention-sensitive

(up to 65%) than others, such as SPEC 444 (up to 5%). In Figure 5.3(d),

experiments are conducted on a quad-core processor to show the performance

impact of SPEC 416 (416.gamess is a wide range of quantum chemical compu-

tations) when it is running with different degrees of contentions. The x-axis

represents the number of co-running tasks. For example, x-axis ’0’ means that

SPEC 416(470) is solo-running with no resource contention; x-axis ’3’ means
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Figure 5.1: Motivation Experiments

that there are four SPEC 416(470) tasks co-running on different cores within

the quad-core processor. The y-axis represents the ratio of Makespanco−run to

Makespansolo. We can see that the resource contention leads to an enormous

increasing of completion time of SPEC 470; While there is not any performance

impact on SPEC 416 during the co-running.

Almost all latest researches cite cache miss and memory bandwidth as the

most important factors that affect the performance of co-running tasks. Based

on these two factors, several performance models are constructed to formu-

late the impact of task co-running on multi-core processors [19][20][112][11].

However, our research show that more factors show noticeable impact on the

co-running performance, such as branch-misses, context-switches, and minor

faults, etc. We collect 30 performance events provided by the Operating System

during the execution of co-running tasks, as shown on the x-axis of Figure 5.2.

Figure 5.2 shows the ratio of the values of these performance events gathered

when SPEC 459 co-runs with 470 to those when SPEC 459 solo-runs. As can

be seen from this figure, the values of the performance events have considerable
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Figure 5.2: Comparison of performance events of SPEC 459 between solo
execution and co-running

changes when the benchmarks co-run.

5.1.2 Performance Impact of Scaling Frequency

Figure 5.3 shows the execution time of SPEC 403, 437, 450, 462, 470 and 481

when executing under various frequencies. The experimental results show that

the relationship between execution frequency and performance degradation is

non-linear. From the frequency of 3300 MHz to 800 MHz, the increase in the

task execution time vary from 200% to 300%. According to the energy con-

sumption function [1][90], reducing the execution frequency can save overall

energy consumption. However, reducing the execution frequency will lead to an

increasing of the execution time. It is a popular topic to analyze the trade-off

between execution time and energy consumption. Much research make efforts

on reducing the energy consumption while satisfying the task’s deadline con-

straint. Predicting the execution time accurately under various frequencies is

critical for the scheduler to determine the appropriate execution frequency of a

task.

5.1.3 Performance Impact of Time-sharing Execution

Little research takes into account the time-sharing execution when making

scheduling decisions and calculating the completion times of tasks. Figure

5.4(a),5.4(b) show the sequential execution and the time-sharing (concurrent)

execution, respectively. Time-sharing techniques can help improve the process-
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Figure 5.3: Execution time for SPEC 403, 462 and 470 when executing under
different frequencies
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Figure 5.4: Diagrams of two kinds of execution manners

ing efficiency. For example, the solo execution time of SPEC 401 and 429 are

89.409 seconds and 91.469 seconds, respectively. Experimental results show that

the makespan of these two tasks under the time-sharing execution is 142.42 sec-

onds, less than the total execution time of 180.6 seconds under the sequential

execution. This means that the time-sharing execution reduces the execution

time by 21.1%.

We conducted the experiments with 410 combinations of different SPEC

benchmark programs running concurrently on the same core. Figure 5.5 presents

some results of our experiments. The figures show that the time-sharing execu-

tion can reduce the execution time by 4%-55%. Some combinations of concur-

rently running benchmarks can reduce the makespan significantly while others

do not show as much benefit. Thus, it is important to predict the makespan of

the time-sharing tasks accurately so that the scheduler can make better decisions

as to which tasks should be allocated to the same core.

5.2 The Performance Prediction Framework for

Co-running Tasks

We develop the performance prediction framework for both repetitive tasks,

which has been run in the system before and therefore we have the historical

performance event data when the task solo-runs, and new tasks, which are

submitted to run on the system the first time.

When the co-running tasks are the repetitive tasks, we use the historical

performance event data of individual tasks (their solo-run performance data) as
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Figure 5.5: Non-time-sharing vs Time-sharing makespan (Under the same
frequency, 3301 MHz)

the input of the prediction framework. When the co-running tasks contain new

tasks, we do not have the prior knowledge about the new tasks and therefore

different procedure is developed in this chapter for new tasks.

The prediction framework comprises the following four steps.

1) It runs a series of benchmarks and collect training data on their perfor-

mance events. The benchmarks are run under all scenarios (i.e. co-running,

frequency scaling or time-sharing). The benchmarking details will be presented

in next subsection.

2) With the training data, it generates individual prediction model for each

scenario using a specific machine learning approach.

3) When a task is to be scheduled, it first recognizes the scenario the task

belongs to (i.e. co-running, frequency scaling or time-sharing) and what type

of task it is (i.e. repetitive task or new task). Then we use the corresponding

prediction model to estimate the execution time of the task.

4) The prediction results of performance impact is fed into the schedulers

for making better scheduling decisions.
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5.2.1 Feature Selection

The section describes the performance events considered by our prediction ap-

proach. The data of all 30 performance events can be collected using Perf (a

profiling tool in Linux) during the execution of the tasks. We introduce a notion

called the the rate of performance event, which equals to the collected value of a

performance event divided by the execution time of the task (i.e., the frequency

at which the performance event occurs during the execution of the task). We

then use the rates of the performance events as the attributes of the training

model.

The performance events we collected are as follows [24]:

– Branch-misses: Branch mispredicted/not predicted; Counts the number of

executed branches which are mispredicted or not predicted;

– Branch-loads: Branches or other changes in the program flow that could have

been predicted by the branch prediction resources of the processor

– Bus-cycles: Bus cycle counter

– Cache-misses: Data read or write operation that causes a refill at (at least)

the lowest level of data or unified cache

– Cache-references: Data read or write operation that causes a cache access at

(at least) the lowest level of data or unified cache

– Cpu-cycles: Cycle counter

– Instructions: Instruction architecturally executed

– Ref-cycles: Total cycles; not affected by CPU frequency scaling

– Context-switches: Count the number of the process that storing the state of

a process (or thread)

– Minor-faults: The code (or data) needed is actually already in memory, but

it isn’t allocated to that process

– L1-dcache-load-misses: Data read or write operation that causes a refill at (at

least) the lowest level of data or unified cache.

– L1-dcache-loads: Data read or write operation that causes a cache access at

(at least) the lowest level of data or unified cache.
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– LLC-store-misses: Level 2 data cache refill

– LLC-stores: Level 2 data cache access

– dTLB-load-misses: Data read or write operation that causes a TLB refill at

(at least) the lowest level of TLB

– iTLB-load-misses: Instruction fetch that causes a TLB refill at (at least) the

lowest level of TLB.

– Node-loads: Measure local memory accesses

5.2.2 The Performance Prediction Framework for Repet-

itive Tasks

The performance impact of a task is defined as the ratio of co-running comple-

tion time to its solo completion time. When task ti and tj co-run, the predicted

performance impact of ti, denoted by PI Ti, is represented as in 5.1, where PEi

and PEj are the set of solo-run performance events of task ti and tj , respectively

(the value of a performance event is the rate of performance event, namely the

counter of the performance event divided by the length of the period in which

the event is collected); Γco−running is a trained model based on a set of param-

eters including normalization (if the input data is normalised), discretization

(whether discretizing the data and with specific number of bins), shuffle (if the

data is going to be sampled), predictor (a selection from four supported machine

learning algorithms such as regression, Naive Bayes, SVM and Random Forest),

predType (two types of prediction that are regression and classification).

PI Ti = Γco−running(PEi, PEj) (5.1)

Similarly, the execution time with various CPU frequency can be derived by

PI Ti = Γfreq(exec freq, PErefer) (5.2)

Where function Γfreq is the trained model (still based on the parameters
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discussed above) concerning the performance impact with various execution

frequencies. The execution frequency exec freq acts as an important input of

the model; PErefer is the reference performance event, i.e., the performance

event rate when the task is run with this referenced CPU frequency.

Finally, supposing task ti and tj are running on the same core in a time-

sharing manner (concurrently), the impact on the performance of task ti can be

derived by

PI Ti = Γts(PEi, PEj) (5.3)

Where Γts analyzes the performance impact of the time-sharing execution

and produces the makespan of task ti and tj .

With the history information of the reference execution time of a task, we

can derive the interference-aware execution time of the task straightforward.

5.2.3 The Performance Prediction Framework for New

Tasks

In order to understand why our prediction model for new tasks works, see a

benchmarking experiment we conducted. Figure 5.6 shows the trend of the

selected performance events of SPEC 401 during its co-running with SPEC

403. In the experiments, we collect the performance event data once every

500ms. The execution time of SEPC 401 (1 iteration) is 30 seconds. Thus

we obtained 60 sampled data (time intervals). As can be seen from this figure,

many performance events show repeated or similar trend as the co-running tasks

progress, which provides a ground for our prediction model for new tasks.

Since we do not have the prior knowledge about the new tasks, we develop

a two-stage prediction framework. In the first stage, we construct a prediction

model for each performance event. Thus we have 30 models in total, corre-

sponding to the 30 performance events. We sample the performance events at a

preset sampling rate for a preset period when the task is solo-executing; Then
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Figure 5.6: The trend of performance events as the co-running tasks progress
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we sample the performance events for the same length of period when the task

is co-running with other tasks. For example, the performance events are sam-

pled once every 200 ms for 2 seconds for a task of 100 seconds. The prediction

model for performance event takes the sampled data of the performance event

as input and predicts the value of the performance event when the solo-running

and the co-running task complete, respectively. In the second stage, we use the

impact ratio of the performance events to predict the performance impact of

the co-running tasks. The impact ratio is defined as the ratio of the value of

the co-running performance event to the value of the solo-running performance

event that is predicted in the first stage.

The two-stage prediction model is formulated as follows. tsp denotes the

time period of sampling and int represents the sampling interval (the inverse of

the sampling rate). Then tsp/int is the number of sampled data we obtain for

a performance event.

The predicted data of the performance event when the solo-running task

(or co-running task) ti completes, denoted by PPEsolo
i (or PPEco

i ), can be

represented by the vector that is derived from Equation 5.4 (or 5.5). Fn
1 repre-

sents the prediction model for performance event n. s PEn
j and c PEn

j denote

the performance event data of the j-th sampling interval for performance event

n under solo-run and co-run, respectively. In our work, there are in total 30

performance events (i.e., m = 30). Thus we train 30 models in the first stage.

PPEsolo
i = [F 1

1 (s PE1
1 , ..., s PE

1
tsp/int

), ..., Fm
1 (s PEm

1 , ..., s PE
m
tsp/int

] (5.4)

PPEco
i = [F 1

1 (c PE1
1 , ..., c PE

1
tsp/int

), ..., Fm
1 (c PEm

1 , ..., c PE
m
tsp/int

] (5.5)

In the second stage, the impact ratio vector of task ti, denoted by IRi, can
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be derived from:

IRi =
PPEco

i − PPEsolo
i

PPEsolo
i

(5.6)

Then the prediction model for the performance impact of task ti can be

represented by

PI Ti = Γ′co−running(IRi) (5.7)

where Γ′co−running represents the trained model for predicting the perfor-

mance impact of new tasks. Note that we do not need the performance event

data for the co-running task tj as the input of this formula because the execu-

tion information of tj has been reflected in the sampled performance event data

since tasks ti and tj are co-running. Furthermore, we can predict the perfor-

mance impact of a specific task in the same way, no matter how many tasks it

is co-running with in a multi-core processor.

In the above model representations, PPEsolo
i and PPEco

i represents the

first stage work while PI Ti represents the second stage work in the two-stage

prediction model. In the first stage, we construct a prediction model for each

performance event. We sample the performance events at a present sampling

rate under the specific frequency. The prediction model for performance event

tasks the sampled data of the performance events as input and predicts the

value of the performance event when the task complete. In the second stage,

we use the outputs of the first stage models to predict the performance impact

of the task.

For the scenario of the tasks running under various CPU frequencies, the

”performance impact” of a task refers to the ratio of the execution time of the

task under a specific CPU frequency to the execution time under the reference

CPU frequency (e.g. the highest CPU frequency). For example, suppose that

we use the highest CPU frequency (3300 MHz) as the reference CPU frequency,

and that task Ti takes 100 seconds to complete under the frequency of 3300
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MHz, but spends 300 seconds to complete under 800 MHz. Then the impact of

running the task under 800 MHz on its performance is 3.

Similar to the scenario of co-running tasks, the two-stage prediction model

is formulated as follows. The predicted data of the performance event when the

tasks running under a specific frequency (or under a reference frequency), say

fspe (or fref ), can be represented by the vector that is derived from Equation 5.8

(or 5.9). Fn
1 represents the prediction model for performance event n. s PEn

j

and r PEn
j denote the performance event data of the j-th sampling interval for

performance event n under specific frequency fspe and reference frequency fref ,

respectively.

PPE
fspe
i = [F 1

1 (s PE1
1 , ..., s PE

1
tsp/int

), ..., Fm
1 (s PEm

1 , ..., s PE
m
tsp/int

] (5.8)

PPE
fref
i = [F 1

1 (r PE1
1 , ..., r PE

1
tsp/int

), ..., Fm
1 (r PEm

1 , ..., r PE
m
tsp/int

] (5.9)

In the second stage, the impact ratio vector of task ti, denoted by IRi, can

be derived from:

IRi =
PPEspe

i − PPEref
i

PPEref
i

(5.10)

Then the prediction model for the performance impact of task ti can be

represented by

PI Ti = Γ′freq(IRi) (5.11)

where Γ′freq represents the trained model for predicting the performance

impact of new tasks. Note that when predicting the performance impact of CPU

frequencies, we do not need to know the exact execution time of a task under the

reference CPU frequency. Performance impact here is an indicator that helps
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us to make a trade-off between execution time and energy consumption and to

determine the appropriate execution frequency for a task.

5.3 Other Machine Learning Approaches

The machine learning approaches used in our prediction frameworks are: lin-

ear regression, naive Bayes, support-vector machine (SVM) and random forest.

These four algorithms are the most basic machine learning supervised algo-

rithms and widely used in industry. We examined these four popular machine

learning approaches, aiming to identify most effective approach for particular

scenarios. These machine learning approaches are explained in this section.

5.3.1 Linear Regression

Linear regression is a linear approach to modelling the relationship between one

or more variables. In our work, given a data set {PI Ti, xi1, xi2, ..., xip}ni=1 of n

statistical units, a linear regression model assumes that the relationship between

the dependent variable PI Ti and the p-vector of regressors x is linear. Here,

PI Ti represents the performance impact (to be predicted) and {x1, x2, ..., xp}

indicates the performance events of the task. This relationship is modelled

through a disturbance term or error variable ε – an unobserved random variable

that adds ”noise” to the linear relationship between the dependent variable and

regressors [94]. Thus the model tasks the form:

PI Ti = β0 + β1xi1 + ...+ βpxip + εi = xTi + εi, i = 1, ..., n, (5.12)

where T denotes the transpose, so that xTi β is the inner product between

vectors xi and β. β is a (p + 1)-dimensional parameter vector and β0 is the

intercept term. The estimation in linear regression focuses on β.
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5.3.2 Naive Bayes

In the abstract term, Naive Bayes is a conditional probability model: given a

problem instance to be classified, represented by a vector x = (x1, ..., xn) of n

features, p(Ck|x1, ..., xn) is assigned to this instance probabilities of k possible

outcomes (or called class Ck). In our work, the n features indicates the perfor-

mance events and the class Ck is a interval of execution time. Using the Bayes’

theorem, the conditional probability can be decomposed as:

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(5.13)

Using the conditional independence assumptions of Naive Bayes [96], the

joint model of the n features can be expressed as:

p(Ck|x1, ..., xn) ∝ p(Ck, x1, ..., xn) = p(Ck)p(x1|Ck)p(x2|Ck)... = p(Ck)

n∏
i=1

p(xi|Ck)

(5.14)

Where ∝ denotes the proportionality.

When we predict the execution time of a task, the Naive Bayes classifier

calculates all k probabilities and assign the execution time to the most probable

class ŷ = Ck:

ŷ = argmax
k∈1,2,...,K

p(Ck)

n∏
i=1

p(xi|Ck) (5.15)

Note that when dealing with the continuous data, we assume that the contin-

uous variables are distributed to a normal distribution (although some data does

not satisfy this condition). The probability density of the normal distribution

is:

p(x = v|Ck) =
1√

2πσ2
k

e
− (v−µk)2

2σ2
k (5.16)

Where µ is the expectation of the distribution. σ is the standard deviation
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and σ2 is the variance.

5.3.3 Support Vector Machine

The support-vector machine maps the non-linearly input vectors to a high-

dimensional feature space. In this feature space, a linear decision surface is

constructed, which ensures high generalization ability [17].

5.3.4 Random Forest

Based on the decision tree, the random forest uses the random choice methods

to deal with the training data and features. A Random Forest grows many

classification trees. Within the forest, each tree is an independent classifier.

During the classification process, each tree gives a suggest result, and the forest

chooses the result with the most votes among all the trees in the forest.

Each tree is grown in the following way [8]:

1) Suppose there are N pieces of data in the training set. For each tree,

N pieces of data are randomly picked using the bootstrap method, from the

original data. This sample will be the training set for growing the tree. 2)

Suppose there are M features, a constant number m << M is specified such

that at each node, m variables are selected randomly from M and the best split

of these m variables is used to split the node. We recommend m =
√
M for

classification and m = M/3 for regression. 3) Each tree is grown as much as

possible. There is no pruning.

Random forest overcomes the weakness that the single decision tree is easily

influenced by the noise data. Bootstrap aggregating helps reduce over-fitting.

5.4 Evaluation

The accuracy of our prediction frameworks plugged with the above four machine

learning approaches is evaluated in this section. The testing environment is a

Personal Computer with a 3.30 GHz dual-core Intel i5 CPU and 8 GB memory.
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It has 32k L1d cache, 32k L1i cache, 256k L2 cache and 6144k L3 cache. 28

benchmarks used in the evaluation come from the Standard Performance Eval-

uation Corporation (SPEC) benchmark suite. There are For each application,

the features are collected only once statically. These data are repeatedly used

for training and predicting. Note that the training time of our models vary from

2.1 to 4.6 seconds and the prediction time of one instance is very short and can

be neglected. Note that all the results we present in this section is based on an

average value of several runs.

5.4.1 Experiment Results for Co-running Tasks

We co-run the benchmarks in SPEC on two cores. There are in total
(
28
2

)
=

406 combinations. Each combination generates two instances. Therefore, we

obtained 812 pieces of training data. We choose a 4:1 split for training and

testing. Table 5.1 shows the experiment results for predicting the performance

impact of co-running repetitive tasks and new tasks. We divide our experiments

into four categories: Static regression and static classification are for repetitive

tasks while online regression is for new tasks.

Figure 5.7 and 5.8 are the residual analysis of the trained model. 1) In

the ”Residual vs. Fitted” figure, the y axis is the residual while the x axis is

the fitted values. The residuals ”bounce randomly” around the 0 line. This

suggests that the assumption that the relationship is linear is reasonable. There

are several outliers that need to be removed from the training set, such as 647,

619 and 707, etc. 2) In the ”Normal Q-Q” figure, the results suggest that the

residuals (and hence the error terms) are normally distributed but with the

several outliers. 3) The ”scale-location” plot shows whether the residuals are

spread equally along the ranges of predictors. Here, we can see a horizontal

line with equally (randomly) spread points, which suggests that the two trained

models satisfy homoscedastic. 4) the ”Residuals vs Leverage” plot helps to find

the influential cases if any. The results for the static model are to be expected

except there exit several potential problematic cases in the training set of the
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Figure 5.7: Residual analysis for co-running task prediction (online)
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Figure 5.8: Residual analysis for co-running task prediction (static)
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Predictors
Static Reg Static Classifi

d&n n-d n-n d&n n-d n-n

Regression 87.65% 70.99% 86.42% 87.04% 81.48% 83.59%
Naive Bayes – – – 70.20% 66.89% 68.21%

SVM 98.15% 90.12% 96.91% 86.06% 78.15% 76.16%
Random Forest 99.38% 96.68% 98.77% 92.05% – 94.04%

Predictors
Online Reg Online Classifi

d&n n-d n-n d&n n-d n-n

Regression 63.58% 60.49% 62.96% 85.19% 81.90% 86.42%
Naive Bayes – – – 58.06% 67.74% 58.06%

SVM 44.87% 43.59% 44.87% 82.80% 74.19% 82.80%
Random Forest 93.59% 93.59% 94.23% 87.10% – 83.87%

Table 5.1: Experiment results for predicting the co-running time for repetitive
tasks and new tasks, respectively

online model (with the row numbers of the data in the dataset).

The predicting result for the regression is a number while the predicting

result for classification is a range. For the regression, we set a tolerance of

3%. Namely, if the difference between the predicting result and the actual

measurement is less than 3%, we regard the predicting result as being correct.

We set this tolerance because the measured co-running time is not constant.

The execution time of a specific task fluctuates even when it co-runs with the

same task. For the classification, we set the reasonable ranges for the data.

The difference between the upper bound and lower bound is around 3% of

the average performance impact of the application. If the actual performance

impact resides within the range that we predict, we regard the predicting result

as being correct.

In Table 5.1, we observe that our model can predict the co-running time

accurately for most applications. Furthermore, among the predictors, SVM and

random forest have the best accuracy for both static and online tests. Ran-

dom forest achieves over 90% accuracy in both regression and classification for

repetitive tasks. We also preprocess the data by discretizing and normalizing

the data (denoted by d&n), comparing with the prediction accuracies in the

101



5. Contention-aware Prediction for Performance Impact of Task Co-running in
Multi-core Computers

cases of non-discretizing (denoted by n-d) and non-normalizing (denoted by n-

n). We discretizes the attributes (i.e. performance event) into specific number

of bins. This operator discretizes the selected numerical attributes to nominal

attributes. To achieve this, a width is calculated from (max-min)/bins. max

and mix represent the maximum and the minimum of each attribute, respec-

tively. The range of numerical values is partitioned into segments of equal size

(i.e. width). Then we assigned the attributes to the corresponding segments.

Discretization can help to reduce the categories to a reasonable number that

the classifier is able to handle.

Comparing to the predicting result with non-discretizing and non-normalizing,

the discretization and normalization performs a better accuracy in most cases.

Discretized feature has strong robustness to the abnormal data. It makes the

prediction model more stable and reduces over-fitting. Normalization acceler-

ates the gradient descent and also achieves a higher accuracy, especially for SVM

and linear regression. In the online prediction model (for new tasks), we did

not normalize the data because the input data are ratios.

Furthermore, we sort the features by their importance scores under the ran-

dom forest predictor. The IncNodePurity reflects the total decrease in node

impurities from splitting on the variable, averaged over all trees. We find the

features which are important for the prediction. In the order of their decreas-

ing importance scores, these features are instructions, bus cycles, LLC loads,

L1 dcache loads, dTLB loads, branch instructions, branch.loads and context

switches. These features are essential for the prediction of performance im-

pact because the prediction accuracy drops significantly (79.3% and 71.79% for

static prediction and online prediction, respectively) when we remove any of

these features from the feature set of the input data.

Figure 5.9 shows the 15 most important features when predicting the ex-

ecution time of co-running tasks. Figure 5.9(a) shows the feature importance

for online predicting. In this scenario, we do not have any direct informa-

tion of the co-running tasks and all resource interferences are reflected by the
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Figure 5.9: Top 15 important features for predicting the execution time of
co-running tasks
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sampling data of the profiled task itself. In this case, the most important

feature is ”L1.decache.load.misses”, followed by ”task.clock”, ”cpu.clock” and

”cache.references”, etc. The feature CPU clock represents the total time spent

on the CPU and task clock indicates the time particular spent on the pro-

filed task. Figure 5.9(b) shows the feature importance for static predicting. In

this scenario, we have the history information of the tasks and do not need

to do online sampling. In this case, the most important feature for predicting

is ”solo.execution.time”, followed by ”L1.decache.load.misses”, ”LLC.stores”,

”CPU.clock” and ”co.LLC.stores”. The ”LLC.stores” represents the last level

cache access of the profiled task while the ”co.LLC.stores” represents the last

level cache access of the co-running task. These features are important because

they can reflect the resource contention of the co-running tasks.

5.4.2 Experiments with Various CPU Frequencies

Using the similar way, we train our model to predict the execution time under

various CPU frequencies. The input of our model is the execution frequency of a

task and the performance event data of the task. In our experimental platform,

the CPU frequency ranges from level 0 (highest frequency) to level 14 (lowest

frequency), which are 3301 MHz, 3300 MHz, 2900 MHz, 2800 MHz, 2600 MHz,

2400 MHz, 2200 MHz, 2000 MHz, 1900 MHz, 1700 MHz, 1500 MHz, 1300 MHz,

1200 MHz, 1000 MHz and 800 MHz.

We collected the execution times of SPEC and NPB under all frequencies,

which generates around 500 pieces of data in our training set. There is a big

gap between the task execution time under the highest and the lowest frequency.

Different tasks show different degrees of sensitivity to the scaled CPU frequen-

cies. For example, SPEC 401 takes 89.85 seconds to complete under 3300 HMz

and 303.34 seconds to complete under 800 MHz; The completion time of SPEC

998 is 97.91 seconds under 3300 HMz while it is 268.41 seconds under 800 MHz.

Further, the relationship between frequency and execution time is non-linear.

Figure 5.10 shows some examples of the execution time of SEPC benchmarks
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executing under various frequencies. Benchmarks such as SEPC 401 and 410 are

CPU frequency sensitive. When the CPU frequency is scaled down, the execu-

tion time increases dramatically by 200%. While benchmarks such as SPEC 429

and 450 are less sensitive to the variation of CPU frequencies. The execution

times of these two benchmarks increase by around 92% and 100%, respectively,

when the frequency changes from the highest to the lowest level. SPEC 998 and

999 have a similar relationship between CPU frequency and execution time (as

shown in figure 5.10(g) and 5.10(h)).

Figure 5.11 and 5.12 show the residual results of the trained model. 1) In the

”Residual vs. Fitted” plot, as defined, the residuals appear on the y axis and

the fitted values appear on the x axis. The residuals ”bounce randomly” around

the 0 line. This suggests that the assumption that the relationship is linear is

reasonable. There are several outliers that need to be removed from training

set, such as 394, 408 and 410, etc. 2) The ”Normal Q-Q” plots suggest that

the residuals (and hence the error terms) are normally distributed but with the

several outliers. 3) The ”scale-location” is good because we see a horizontal line

with equally (randomly) spread points. 4) The ”Residuals vs Leverage” plot

of static model looks fine but there exits several potential problematic cases in

the training set of the online model (with the row numbers of the data in the

dataset).

We can observe from table 5.2 that the execution time under various fre-

quencies can be predicted accurately by machine learning approaches. SVM

and random forest produce very high accuracy of 98.81% and 97.62%, respec-

tively. Similar as in the former subsection, discretization and normalization

generate better accuracy in most cases, comparing to non-discretizing and non-

normalizing predicting result.

Figure 5.13 shows the 15 most important features for predicting execution

time under various frequencies. For static prediction, the most important feature

that can achieve the best available split is frequency. In this case, the input

performance events for a specific task are the same (due to the property of
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Figure 5.10: Execution time for SPEC benchmarks when executing under
different frequencies
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Figure 5.11: Residual analysis for execution time prediction with various
frequencies (online)
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Figure 5.12: Residual analysis for execution time prediction with various
frequencies (static)
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Predictors
Static Reg Static Classifi

d&n n-d n-n d&n n-d n-n

Regression 91.67% 76.19% 72.62% 86.90% 73.81% 77.38%
Naive Bayes – – – 48.19% 45.78% 56.63%

SVM 96.43% 95.24% 91.67% 61.45% 50.60% 53.01%
Random Forest 97.62% 96.43% 95.24% 77.11% – 67.47%

Predictors
Online Reg Online Classifi

d&n n-d n-n d&n n-d n-n

Regression 72.62% 73.81% 65.48% 90.48% 85.71% 73.81%
Naive Bayes – – – 69.88% 68.67% 65.06%

SVM 98.81% 97.62% 88.10% 77.11% 61.45% 73.49%
Random Forest 96.43% 97.62% 94.05% 81.93% – 80.72%

Table 5.2: Predicting the execution time under various frequencies for
repetitive tasks and new tasks, respectively
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Figure 5.13: Top 15 important features for predicting the execution time
under various frequencies
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Predictors
Static Reg Static Classifi

d&n n-d n-n d&n n-d n-n

Regression 62.96% 57.41% 62.35% 60.94% 58.02% 56.79%
Naive Bayes – – – 35.19% 40.12% 36.42%

SVM 82.72% 77.93% 76.54% 51.85% 47.53% % 48.77
Random Forest 87.04% 85.78% 86.42% 59.61% – 56.17%

Table 5.3: Predicting the time-sharing makespan for repetitive tasks

static prediction). The only feature that can distinguish different data pieces

of the same task is ’frequency’. For online prediction, several features such as

frequency, dTLB.loads, node.loads and L1.dcache.loads (etc.) play important

roles in the prediction model.

5.4.3 Experiment Results for Time-sharing Tasks

Table 5.3 shows that our model can predict the execution times under the time-

sharing execution accurately for most applications. Furthermore, among the

predictors, SVM and random forest have the better accuracy. Random forest

achieves nearly 90% accuracy in both regression and classification for repetitive

tasks. We also preprocess the data by discretizing and normalizing the data

(denoted by d&n), comparing with the prediction accuracies in the cases of non-

discretizing (denoted by n-d) and non-normalizing (denoted by n-n). Discretized

feature has strong robustness to the abnormal data. It makes the prediction

model more stable and reduces over-fitting.

Figure 5.14 is the residual analysis of the trained model. 1) In the ”Resid-

ual vs. Fitted” figure, the y axis is the residual while the x axis is the fitted

values. The residuals ”bounce randomly” around zero. This suggests that the

assumption that the relationship is linear is reasonable. There are several out-

liers that need to be removed from the training set, such as 654 and 715, etc. 2)

In the ”Normal Q-Q” figure, the results suggest that the residuals (and hence

the error terms) are normally distributed but with the several outliers. 3) The

”scale-location” plot shows whether the residuals are spread equally along the
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Figure 5.14: Residual analysis for execution time prediction time-sharing
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ranges of predictors. Here, we can see a horizontal line with equally (randomly)

spread points, which suggests that the two trained models satisfy homoscedas-

tic. 4) the ”Residuals vs Leverage” plot helps find the influential cases if any.

The results for the static model are to be expected except that there exit several

potential problematic cases (with the row numbers of the data in the dataset).

Figure 5.15 shows the 20 most important features for predicting execution.

The most important feature is the reference execution time of the task. Fol-

lowed by the feature ”task clock” and ”CPU clock”. The feature ”CPU clock”

represents the total time spent on the CPU and ”task clock” indicates the time

spent by the profiled task. The feature ”co.task.clock” refers to the task clock

of the co-running task while the feature ”task.clock” refers to the task clock

of the profiled task itself. The feature ”task clock” is very important because

it can tell how much percentage of CPU the task has got. In addition, the

”context-switches”, ”CPU-cycles” (i.e. CPU frequency), ”bus cycles” and ”ref

cycles” are important as well because they can reflect the degree of the resource

interference of the time-sharing tasks.

5.5 Summary

In this chapter, we reveal the problem of inaccurate estimation of the execution

time (due to the resource contention) in the scheduling models. We find out and

investigate the influential factors that affect the performance of the co-running

tasks. We conduct performance models that consider three scenarios and two

task types. The three scenarios are: 1) the tasks are running simultaneously

(co-running) on multiple CPU cores in a multi-core processor; 2) the CPU

frequency that the task executing with is varied; 3) the tasks are running in a

time-sharing manner within the same core. The two task types are: repetitive

tasks and new tasks. Several machine learning methods are applied to predict

the performance impact of the co-running tasks. Experiments conducted with

SPEC 2006 benchmark suite show that our prediction model of performance

111



5. Contention-aware Prediction for Performance Impact of Task Co-running in
Multi-core Computers

impact achieves good accuracy on both repetitive tasks and new tasks. In

addition, we give detailed analysis of the evaluation results.
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CHAPTER 6
Conclusions and Future Work

The work described in this thesis has been concerned with improvement to

the task scheduling strategies in multi-core computers. Key contributions are

summarized in the first three sections of this chapter. Further work is discussed

in Section 6.4.

6.1 Power-aware Scheduling Mechanisms for Vir-

tualized Environments

Cloud computing emerges as one of the most important technologies for inter-

connecting people and building the so-called Internet of People (IoP). Nowadays,

energy consumption in such a system is a critical metric to measure the sustain-

ability and eco-friendliness of the system. Chapter 3 reveals that the traditional

scheduling strategies in virtualized systems managed by Xen may lead to per-

formance loss and energy waste, due to the limitation of Xen in adjusting CPU

frequency. Four scheduling strategies are presented to remedy this situation,

which are the Least performance Loss Scheduling (LLS) strategy, the No per-

formance Loss Scheduling (NLS) strategy, the Best Frequency Match strategy

for a single core (BFMS) and the Best Frequency Match strategy for multi-

ple cores (BFMM). These power-aware strategies are developed by identifying

the limitation of Xen in scaling the CPU frequency and aim to reduce the en-

ergy waste without sacrificing the jobs running performance in the computing

systems virtualized by Xen. Least performance Loss Scheduling works by re-

arranging the execution order of the virtual machines (VMs). No performance

Loss Scheduling works by setting a proper initial CPU frequency for running
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the VMs. Best Frequency Match reduces energy waste and performance loss by

allowing the VMs to jump the queue so that the VM that is put into execu-

tion best matches the current CPU frequency. Scheduling for both single core

and multi-core processors is considered in this chapter. These strategies make

use of the scheduling behaviour in the Xen hypervisor and aim to reduce en-

ergy consumption while mitigating performance loss. The effectiveness of these

strategies is theoretically proved and also evaluated by the experiments.

6.2 Scheduling DAG Applications for Time Shar-

ing Systems

Accurately modeling the makespan of a task is also important for task scheduling

strategies. In order to satisfy each task’s time constraint (i.e. deadline), the

worst-case execution time of a task is taken into consideration when making

scheduling decisions. In Chapter 4, we reveal the problem in task makespan

modeling and propose the method to model and formulate the makespan with

the time-sharing execution. Based on the makespan model, a Task Migration

Algorithm and a Task Allocation algorithm are developed, aiming to reduce

the actual makespan of the DAG schedule when the DAG is executed in time-

sharing in reality. We conduct the extensive experiments with the real-world

workflows. The experimental results show that there exists the gap between the

makespan in sequential execution, the makespan in time-sharing execution and

the makespan obtained by our DAG scheduling algorithm designed for time-

sharing systems.
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6.3 Contention-aware Prediction for Performance

Impact of Task Co-running in Multi-core Com-

puters

Resource interference is another influential factor to the performance of co-

running tasks in multi-core computers. In the task scheduling, it is often as-

sumed that the scheduler knows the execution time of the tasks, based on the

assumption that the techniques are present to predict the performance of tasks.

Chapter 5 investigates the influential factors that affect the performance of the

co-running tasks. A performance model is built and several machine learning

methods are applied to predict the performance impact of the co-running tasks.

Here, we investigate the performance impact of the co-running tasks in three

scenarios: 1) the tasks are running simultaneously (co-running) on multiple

CPU cores in a multi-core processor; 2) the CPU frequency that the task exe-

cuting with is varied; 3) the tasks are running in a time-sharing manner within

the same core. Experiments conducted with SPEC 2006 benchmark suite show

that our prediction model of performance impact achieves high accuracy on both

repetitive tasks and new tasks.

6.4 Directions for Future Work

Chapter 3 proposed three power-aware scheduling strategies for virtualized sys-

tems managed by Xen. The philosophy used in BFM for reducing performance

loss and energy consumption can also be applied to other popular schedulers

in Xen, such as Credit, Credit 2, RTDS and ARINC 653 schedulers. In future,

we plan to adapt these schedulers to mitigate the performance loss and energy

waste. In addition, we will optimize the boost policy of the Credit scheduler to

improve the performance of I/O-intensive tasks. Furthermore, we plan to im-

prove the throughout, the execution efficiency and the energy consumption of

the DAG and the parallel jobs. Moreover, we will try to tackle the task schedul-
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ing in multi-core computers by taking into account load balance and migration

cost. We also plan to apply the game theory to investigate the trade-off between

task makespan and energy consumption.

Chapter 4 investigated the impact of the time-sharing execution on the DAG

makespan, and proposed the method to model the makespan under the time-

sharing execution. In future, we plan to extend our research in three folds:

1) constructing an energy consumption model for DAG under the time-sharing

execution; 2) developing the DAG scheduling algorithms for the time-sharing

execution and taking both makespan and energy consumption into account; 3)

adapting the proposed method to the scenario of mapping a single DAG appli-

cation to multi-core processors, which will be further extended to map multiple

DAG applications to multi-core processors. In this more complex scenario, a

new makespan model will be constructed. Based on the new makespan model

for multiple DAG applications, a task scheduling algorithm will be proposed to

minimize the overall energy consumption while satisfying the DAGs’ deadline

constraints.

Chapter 5 investigated the influential factors that impact on the perfor-

mance when the tasks are co-running on multi-core computers and developed

the machine learning-based prediction frameworks to predict the performance

of the co-running tasks. In future, our research will be extended to a more

complex scenario: modelling the performance impact when DAG applications

run on multi-core processors. Then, we will apply the deep learning technique

to further improve the prediction accuracy. Furthermore, distributed training

models can be developed to improve the efficiency and reduce the response time

needed for prediction.

In addition to the execution time, the energy consumption also acts as a key

role in scheduling strategies. Another research direction following this work is to

develop a prediction framework that can estimate the temperature induced by

the co-running tasks. Different combination of the execution tasks may lead to

different thermal stress induced on hardware. The architecture of the process-
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ing node is an important attribute of the temperature prediction. Our study

shows that the same workload executed on the processing nodes with differ-

ent architectures may result in different temperature, which will further lead

to different energy consumption. The relationship between temperature and

executing frequency is non-linear. Thus, accurate prediction for the executing

temperature of the co-running tasks under a specific frequency can help reduce

the energy consumption of a single task. It will also help make better decisions

for allocating tasks to the computing nodes in a heterogeneous cluster, reducing

the overall energy consumption of the cluster.
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