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This work provides evidence that when trying to predict the functional properties of relatively 
small data sets of drug-like molecules via machine learning, constructing and selecting a 
small set of carefully tailored molecular descriptors may offer equally or even more accurate 
results compared to the usage of large numbers of descriptors - a worrying trend in the 
recent literature. In particular, we introduce two simple and yet effective classes of 
descriptors that can unravel part of the structure-function relation we desperately need to 
understand - in order to achieve the truly rational design of the next generation of drugs. In 
addition, our descriptors pave the way toward predictive frameworks taking into account 
three-dimensional models of either crystalline and amorphous formulations as well - a pivotal 
challenge for the pharmaceutical industry. As such, our findings provide practical guidelines 
for the community working in the field of machine learning for drug design and discovery; in 
fact, we have made available via a public repository our computational framework, so as to 
make our work immediately leverageable by several research groups across the globe – 
thus supporting the collaborative quest toward a concrete impact of machine learning on the 
drug discovery and design pipeline.
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CO2 packing polymorphism under confinement in
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Ilaria Gimondi and Matteo Salvalaglio *

We investigate the effect of cylindrical nano-confinement on the phase behaviour of a rigid model of car-

bon dioxide using both molecular dynamics and well tempered metadynamics. To this aim we study a sim-

plified pore model across a parameter space comprising pore diameter, CO2-pore wall potential and CO2

density. In order to systematically identify ordering events within the pore model we devise a generally ap-

plicable approach based on the analysis of the distribution of intermolecular orientations. Our simulations

suggest that, while confinement in nano-pores inhibits the formation of known crystal structures, it induces

a remarkable variety of ordered packings unrelated to their bulk counterparts, and favours the establish-

ment of short range order in the fluid phase. We summarise our findings by proposing a qualitative phase

diagram for this model.

1 Introduction
Confinement is known to play a role in the phase behaviour of
molecular solids, most notably affecting polymorph selection.1,2

For instance, a paradigmatic example of the dramatic effects of
confinement on the spatial arrangement of molecules is pro-
vided by water, which, as proven both experimentally and com-
putationally, displays a counter-intuitively complex phase dia-
gram under confinement.3–10 Understanding polymorphism in
confined volumes is relevant both to describe natural pro-
cesses11,12 as well as for driving rational materials and process
development.13,14 Despite its importance a systematic under-
standing of confinement effects is still lacking.

Following up a recent work, in which we have investigated
the thermodynamics and mechanism of phase transition be-
tween CO2 forms I and III in bulk, we set out to study the effect

of confinement on CO2 condensed phases. We tackle this prob-
lem by carrying out a systematic analysis of CO2 phase behav-
iour confined in weakly interacting cylindrical nano pores.

Cylindrical confinement is known to markedly affect phase
behaviour. Even in systems of spherical particles, both rigid and
soft, cylindrical nano-confinement has been found to induce
characteristic packing structures, as well as abrupt transitions
from order to disorder as a function of the void fraction.15–20

Our work has a two-fold aim: on the one hand under-
standing phase behaviour of confined CO2 is relevant due to
its prominent role within the carbon cycle, and the surging
needs for mitigating its emissions in atmosphere by
implementing capture and storage technologies based on ad-
sorption in porous solids.21–24 On the other hand due to its
modest structural complexity accompanied with a rich phase
diagram, CO2 represents a convenient model system to per-
form extensive sampling of polymorphic transitions at finite
temperature25 and gain insight on general aspects of molecu-
lar phase transitions under confinement.

Both experiments and theory highlight remarkable effects
of confinements on CO2 phase behaviour. For instance, the
density of confined CO2 can significantly exceed the fluid

Mol. Syst. Des. Eng., 2018, 3, 243–252 | 243This journal is © The Royal Society of Chemistry 2018
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Design, System, Application

Understanding the effect of confinement on polymorph selection is key to direct the assembly of the next generation of self assembled molecular
materials. In particular predicting the effect of confinement in inhibiting or enhancing the nucleation of ordered phases is pivotal to develop efficient
crystallization processes. In this paper, using a combination of molecular dynamics and well tempered metadynamics, we analyse the effect of cylindrical
nano confinement on the phase behaviour of CO2. Our analysis is relevant to gain insight into the behaviour of CO2 porous matrices with potential impact
on carbon capture processes. Furthermore it allows to identify general principles of confinement-induced polymorph selection. For instance we find that
confinement inhibit the nucleation of bulk crystal forms, while promoting the formation of distinct ordered packings. This work paves the way for a sys-
tematic exploration of confinement as a tool for directing the assembly of molecular materials.
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Less may be more: an informed reflection on
molecular descriptors for drug design and discovery†

Trent Barnard a, Harry Hagan a, Steven Tseng ‡a and Gabriele C. Sosso ⇤a.

Abstract - The phenomenal advances of machine learning in the context of drug design and

discovery have led to the development of a plethora of molecular descriptors. In fact, many of

these "standard" descriptors are now readily available via open source, easy-to-use computational

tools. As a result, it is not uncommon to take advantage of large numbers - up to thousands in

some cases - of these descriptors to predict the functional properties of drug-like molecules.

This "strength in numbers" approach does usually provide excellent flexibility - and thus, good

numerical accuracy - to the machine learning framework of choice; however, it suffers from a lack

of transparency, in that it becomes very challenging to pinpoint the - usually, few - descriptors that

are playing a key role in determining the functional properties of a given molecule. In this work, we

show that just a handful of well-tailored molecular descriptors may often be capable to predict the

functional properties of drug-like molecules with an accuracy comparable to that obtained by using

hundreds of standard descriptors. In particular, we apply feature selection and genetic algorithms

to in-house descriptors we have developed building on junction trees and symmetry functions,

respectively. We find that information from as few as 10-20 molecular fragments is often enough to

predict with decent accuracy even complex biomedical activities. In addition, we demonstrate that

the usage of small sets of optimised symmetry functions may pave the way towards the prediction

of the physical properties of drugs in their solid phases - a pivotal challenge for the pharmaceutical

industry. Thus, this work brings strong arguments in support of the usage of small numbers of

selected descriptors to discover the structure-function relation of drug-like molecules - as opposed

to blindly leveraging the flexibility of the thousands of molecular descriptors currently available.

1 Introduction
In the last two decades, the pharmaceutical industry has invested
enormously in machine learning (ML) as a tool to transform the
current paradigm of drug design and discovery1,2. Despite the
fact that deep learning is considered by many to sit at the very
top of the hype cycle3, recent collaborative efforts between some
of the major pharmaceutical companies4 indicate that there is
a strong driving force to improve on the existing ML algorithms
and thus deliver the next generation of drugs. One of the most
important consequences of this ambition is the ever-increasing
amount of experimental data that is being accumulated on the
many functional properties and/or biomedical activities of drug-
like molecules5. In fact, the volume, as well as the quality of
the experimental data available to us are and will still be the key

a Department of Chemistry and Centre for Scientific Computing, University of War-
wick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
‡ Present address: Department of Engineering Technology, University of Twente, De
Horst 2, 7522 LW Enschede, The Netherlands
⇤ email: g.sosso@warwick.ac.uk

ingredients of any ML framework we may think of developing.

Perhaps unsurprisingly, such a tremendous industrial interest
has also substantially boosted the academic progress in the field6:
in turn, this resulted in a sizeable contribution to the already
fast-developing area of ML algorithms, many of which are now
readily available via open source packages such as the Python-
based Scikit-learn7. Similarly, a plethora of molecular descriptors
have been devised and implemented within the past few years8.
These mathematical objects are essential to process the informa-
tion about the molecular structures of interest into a form di-
gestible by ML algorithms, and packages such as RDKit9 allow
for access to an impressive number of them very easily indeed.
Crucially, given a certain molecular dataset, the choice of the de-
scriptors has almost always a much greater impact on the pre-
dictive power of a ML framework if compared to the influence of
picking a certain ML algorithm - albeit advanced frameworks such
as the SchNet approach of Schütt et al.10 or parallel multistream
training11 have to potential to improve the state of the art even
further.

While all the progress detailed above provides a great opportu-

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–12 | 1
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nity to involve more and more scientists into the field, and thus
to boost the chance we have to make a concrete impact onto drug
design and discovery, we believe that this ease-of-use in terms of
descriptors may present a risk as well.

In fact, it is tempting, given the availability of so many different
molecular descriptors, to leverage as many of them as possible:
for instance, the DRAGON software12 can calculate more than
4800 descriptors13. As such, this approach is not only incredibly
simple these days, but it may also enhance the flexibility of the
ML algorithm of choice, in that the more descriptors we add into
the mix, the higher the chances to include those features that are
actually of relevance to improve the predictive capabilities of the
framework14. However, this strategy suffers from at least two
major issues: (1.) redundancy/correlation: the more descriptors
we choose to use, the higher the chance they will feed similar
if not identical information to the ML algorithm15, with the risk
of introducing artificial noise that can be detrimental to both the
accuracy and the reliability of the predictive framework; (2.) lack
of transparency16,17: it becomes quite challenging to pinpoint the
structural features that have the largest impact on the functional
properties of interest. While from a purely practical perspective
one may not care about this pitfall, understanding the structure-
function relation is key to achieve the truly rational design of the
novel generation of drugs18.

Both redundancy and lack of transparency can be mitigated
by using feature selection19 and/or by optimising the parameters
that often enter the formulation of advanced molecular descrip-
tors. As many options to perform feature selection are presently
easily accessible, we see no immediate reason not to leverage
them anytime we choose to employ a whole array of different
descriptors. An additional issue with the many molecular de-
scriptors currently available is that the overwhelming majority
of ML frameworks aim to predict the properties of actual drug
formulations - typically, but not exclusively, in the form of crys-
talline solids - utilising as starting point the structure of a sin-
gle molecule in vacuum20–23. As a result, most of the molecular
descriptors we have available at the moment cannot be used to
tackle the complexity of actual three-dimensional molecular mod-
els of e.g. crystalline or amorphous drugs. We believe that taking
into account these models, generated by means of e.g. molecular
dynamics simulations, and developing descriptors specifically tai-
lored to extract insight about important features such as inter-
molecular interactions is a step the community needs to take in
order to improve the accuracy and reliability of ML for drug de-
sign. Descriptors borrowed from materials science, and particu-
larly from ML for the development of inter-atomic potentials such
as the Smooth Overlap of Atomic Positions (SOAP)24 or the Atom-
centred Symmetry Functions25 descriptors may be of great help
in this context.

In this work, we show that, in some cases, utilising just a hand-
ful (10-20) of carefully designed molecular descriptors may yield
results comparable - or even better - than those obtained by using
a large number (⇠ 100) of what we are going to label as "stan-
dard" (STD) descriptors hereafter, i.e. those descriptors immedi-
ately available via packages such as RDKit. We find that this is
especially true when dealing with small datasets containing 100-

500 molecular structures, where the number of STD descriptors
that we may want to use can get dangerously close to the num-
ber of data points we intend to feed into our ML framework - an
obviously over-determined problem.

We wanted in particular to probe the predictive power of two
different classes of descriptors: molecular cliques (cliques here-
after) and histograms of weighted atom-centred symmetry func-
tions (H-wACSFs hereafter), which we have built starting from
the work of Jin et al.26 and Gastegger et al.27, respectively.
Cliques exclusively probe the "chemistry" of the molecular species
of interest, in that they offer insight into the molecular fragments
present, with no information about the structure of the molecule
as a whole. Conversely, H-wACSFs probe the molecular structure
from multiple angles, and can be straightforwardly employed to
deal with three-dimensional molecular models of drug formula-
tions. The nature of cliques and H-wACSFs makes them per-
fectly suitable to exploit feature selection and optimisation, re-
spectively. We find that a surprisingly small set of tailored de-
scriptors, as obtained upon either feature selection (cliques) and
optimisation (H-wACSFS), can provide results comparable, if not
of better quality, than those we have obtained by employing large
numbers of STD descriptors. While an analysis of the most rel-
evant cliques obtained upon feature selection allows us to draw
interesting conclusions about the influence of specific functional
groups on biomedical activities of pharmaceutical interest such
as human hepatocytes intrinsic clearance28, the H-wACSFS offer
a very convenient opportunity to bridge the ML gap from a sin-
gle molecule in vacuum to 3D models of e.g. amorphous drugs.
While an ongoing effort within our research group is probing the
benefits of bringing together "chemistry and structure" by combin-
ing these two classes of descriptors, we have made available via a
public GitHub repository29 the entirety of our ML framework, in
an effort to promote transparency and cross-fertilisation between
different groups.

The paper is organised as follows: in the Methods section
we provide the details of the computational framework we have
used, with particular emphasis on cliques and H-wACSFS descrip-
tors. In the Results section we offer a comparative analysis of the
results obtained via cliques and H-wACSFS against STD and dis-
cuss the impact of feature selection and optimisation. We con-
clude with an opinionated perspective on the future of molecular
descriptors, in particular with respect to the prediction of the
functional properties of solid-state drug formulations.

2 Methods

In this section, we describe the main features of the computa-
tional framework we have employed. We start by providing es-
sential information about the molecular datasets we have used.
We then discuss the details of the descriptors we have used, with
special emphasis on cliques and H-wACSFS. The methods we
have employed for feature selection (cliques) and optimisation
(H-wACSFS) will also be discussed, together with a brief descrip-
tion of the specific ML algorithms we have chosen.

2 | 1–12+PVSOBM�/BNF�<ZFBS>�<WPM�>
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2.1 Molecular datasets
We have taken into account three different molecular datasets:

• Lipophilicity�[Lipo]:�this�dataset�is�publicly�available�via�the�
moleculenet.ai�project30.�It�contains�⇠�4000�molecular�
structures�as�SMILES�strings31�and�their�corresponding�
lipophilicity32,�measured�experimentally�as�octanol/water�
distribution�coefficients�(logD�at�pH�7.4).�In�the�context�of�
pharmaceuticals,�the�lipophilicity�of�a�certain�drug�pro-vides�
a�measure�of�its�affinity�for�a�lipid�environment�-�thus�
including�the�cellular�membrane.�It�is�a�majorly�important�
biophysical�target,�as�it�has�affects�the�pharmacokinetic�and�
the�absorption�of�many�drugs�formulations.

• Hepatocytes�[Hepa]:�this�dataset�has�been�provided�to�us�by�
AstraZeneca�-�it�is�not�included�in�the�MSDE_Sosso_alpha�
GitHub�repository29.�It�contains�⇠�400�molecular�structures�
as�SMILES�strings�and�their�corresponding�human�hepato-
cytes�intrinsic�clearance�(clint)28,�measured�experimentally�
as�log(Volume/Time).�Clint�values�quantify�the�ability�of�the�
human�liver�(particularly�of�the�hepatocytes�cells�that�consti-
tute�more�than�half�of�it)�to�remove�a�given�drug:�as�the�liver�
plays�a�very�important�role�in�dictating�drug�metabolism�in�
our�bodies,�clint�values�are�considered�as�crucial�biological�
targets�for�drug�design.�We�note�that�this�is�a�very�"chal-
lenging"�dataset,�in�that�it�combines�a�small�number�of�data�
points�with�an�exceptionally�complex�biomedical�activity.

• Amorphous�[Amo]:�this�is�a�dataset�we�have�recently�put�
together�from�literature�data�(Refs.�19,33�and�34)�about�the�
functional�properties�of�amorphous�drugs.�It�contains�the�
structures�of�⇠�150�molecules�as�SMILES�strings�and�the�
glass�transition�temperature�Tg�of�their�corresponding�amor-
phous�phases.�Tg�is�a�key�property�in�the�context�of�amor-
phous�formulations21,35,36�in�that�(i.)�it�affects�the�propen-
sity�of�the�system�to�form�a�disordered�solid�as�opposed�to�a�
crystal�in�the�first�place�and;�(ii.)�it�correlates�to�a�good�
extent�with�the�physical�stability�of�the�amorphous�phase,�
which�needs�to�not�re-crystallize�over�the�typical�timescales�
involved�with�the�shelf-life�of�a�marketed�pharmaceutical..�In�
here,�we�move�our�first�steps�toward�the�prediction�of�such�
an�important�feature�by�focusing�on�single�molecular�species�
only�-�though�it�would�be�desirable�to�consider�the�actual�
three-dimensional�models�of�the�amorphous�phases.�Much�as�
the�Hepa�dataset,�the�Amo�dataset�is�quite�a�chal-lenging�
one,�combining�a�very�small�number�of�data�point�with�a�
solid-�state�property.�

2.2 Descriptors
Standard Descriptors

We have selected ⇠ 100 descriptors immediately available
via the RDKit package. The full list can be found in the
MSDE_Sosso_alpha GitHub repository29, and includes 2D as well
as 3D descriptors. In order to leverage the latter, we needed to
generate 3D conformers of the molecular species of interest: to
this end, we have deliberately used a basic procedure (harness-
ing the ETKDG conformation generation methodology37 followed

by an optimization via the UFF forcefield38) for all the three
dataset described in the previous section. While some of these
STD descriptors are quite simple/transparent (e.g. the number of
n-membered rings within the molecular structure), some others
(such as the WHIM descriptors39 contains a number of parame-
ters that can be in principle optimised to improve accuracy. To
mimic a minimal-effort approach, we have not optimised any of
said parameters, limiting ourselves to the default values provided
by RDKit.
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Fig. 1 Constructing the molecular cliques descriptor. In line with the

work of Jin et al. 26, a given molecular structure (we started from SMILES

strings) is decomposed in molecular fragments known in graph theory as

“cliques“. All the Nclq unique cliques across the entire molecular dataset

are then indexed and collected into a single cliques vocabulary. Each

molecule in the dataset can thus be represented by means of one hot

encoding as a Nclq-long vector with each i� th element equal to the num-

ber of occurrences the i� th clique appears in the molecule. Following

an analogy with natural language processing, we are treating molecular

fragments as words that we can combine together into sentences, i.e.

molecules. Note the transparency of this descriptor, which requires as a

starting point the molecular graph only and it does not include any infor-

mation about the connectivity of the molecular fragments.
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Molecular cliques

These descriptors are inspired by the work of Jin et al.26, where
the authors have decomposed a given molecular structure into
sub-graphs ("cliques" in graph theory), thus providing a coarse-
grained representation such as the one illustrated in Fig. 1 for the
case of caffeine. Instead of connecting these components into a
tree (as it was done Ref. 26), we have created a vocabulary of the
unique cliques across the entire dataset of interest. Thus, different
sets are typically characterised by cliques vocabularies of different
length. Then, we index each of the cliques in the vocabulary via
an integer i = 0,1, ...,Nclq � 1, where Nclq is the total number of
unique cliques in the vocabulary. Through one-hot encoding (see
Fig. 1), each molecule in the dataset is converted into a vector
of length Nclq: the value of the i� th element of said vector is
equal to the number of occurrences of the i� th clique within that
particular molecule.

In the context of natural language processing, we are thus
treating the clique vocabulary as a "bag of words" to form sen-
tences - i.e. molecules, in a similar fashion to the "bag of bonds"
descriptor explored in e.g. Ref. 40. As the meaning of a given
sentence may usually be determined to a good extent from its
word content alone (i.e. without considering syntax), we are
assuming that the presence of the cliques alone, without any
information about the order by which they appear in a given
molecular structure, would be enough to allow us to establish a
structure-function relation between SMILES strings and the func-
tional property of interest. It is thus reasonable to treat the cliques
as a descriptor that is looking exclusively at the "chemistry" of the
molecules, in that it highlights the presence or absence of spe-
cific molecular fragments and/or functional groups as opposed
to the overall structure, albeit information about the size of the
molecule is indirectly contained into the cliques vector. As we
shall see in the Results section, this incredibly simple descriptor
possesses a surprising predictive power, and it lends itself to fea-
ture selection in a very straightforward manner.

Histograms of (weighted) atom-centred symmetry functions

Atom-centred symmetry functions are popular three-dimensional
descriptors in the context of ML-based interatomic potentials for
molecular simulations (see e.g. Refs. 42–44). While different
flavours exist, they usually comprise sets of both radial and angu-
lar symmetry functions (SFs). In a nutshell, one sits on each atom
i (see Fig. 2) and computes the value of (typically Gaussian) func-
tions which depend on either ri j = |r̄ j � r̄i| distances (radial SFs)
or qi jk angles (angular SFs) between pairs or triplets of atoms -
up to a certain cutoff radius Rc. The interested reader can find a
thorough introduction to SFs in Ref. 25. Here, we have used as
radial SFs:

G
rad

i
=

N

Â
j 6=i

e
�h(ri j�µ)2

fi j (1)

and as angular SFs:

Molecule

weighted 
ACSFs

histogram-
wACSFs

R[Å]

wA
CS

Fs

wACSFs values

Fig. 2 Constructing the H-wACSFs descriptor. A three-dimensional

conformer (ideally, an ensemble of them) has to be generated for each

molecule. Then, in line with the work of Behler 41, radial and angular

symmetry functions are computed by sitting on each atom within the

molecule and calculating the value of (usually Gaussian) functions that

depends on either ri j = |r̄ j � r̄i| distances (radial SFs) or qi jk angles (an-

gular SFs) between pairs or triplets of atoms - up to a certain cutoff radius

Rc. In principle, different sets of symmetry functions are needed for each

combination of elements in a given molecule. Gastegger et al. have re-

cently 27 introduced a weighting scheme that substantially reduces the

number of functions needed to encode the structure of multi component

systems such as drug-like molecules. As molecules with different num-

ber of atoms and or elements are characterised by different number of

symmetry functions, we regularise these features by building histograms

of weighted atomic symmetry functions. Each molecule can then be rep-

resented by a vector with as many elements as the bins chosen to build

said histogram: low and higher number of bins thus provide more or less

coarse-grained representations of the molecular structure. Note that this

descriptor can straightforwardly applied to three-dimensional models of

crystalline or amorphous drugs - a major challenge laying ahead.

G
ang

i
=

N

Â
j 6=i

N

Â
k 6=i, j

�
1+l cosqi jk

�

⇥ e
�h(ri j�µ)2

⇥ e
�h(rik�µ)2

⇥ e
�h(r jk�µ)2

⇥ fi j ⇥ fik ⇥ f jk

(2)

where µ and h represent the mean and width of the Gaussian
respectively. The function fi j is given by:
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fi j =

8
<

:

1
2

h
cos
⇣

pri j

Rc

⌘
+1
i

if ri j  Rc

0, otherwise
(3)

Two sets of angular symmetry functions were calculated, one
set with l = 1, the other with l = �1. Values for µ and h are
determined by the number of SFs N used and the cutoff radius.
For N SFs, the value of µ for function n is given by:

µ = 0.5+(n�1)—r (4)

where
—r =

Rc �1
N �1

(5)

and h is given by:

h =
1

2(—r)2 . (6)

Crucially, the original formulation of SFs41 required a distinct
set of SFs for each combination of the different elements in a
given molecule. While this is a perfectly sensible option in most
materials science applications, where the number of elements in-
volved is usually well below five (in fact, it is incredibly challeng-
ing to build ML-based interatomic potential for multi-component
systems42,45,46), in the context of drug design and discovery a
molecular dataset may very well contain more than ten elements,
which leads to a huge number of SFs. Gastegger et al. have re-
cently devised27 a clever workaround to this issue by introducing
so-called weighted SFs such as:

W
rad

i
= ÂN

j 6=i
Zie

�h(ri j�µ)2
fi j (7)

W
ang

i
= ÂN

j 6=i
ÂN

k 6=i, j Z jZk

�
1+l cosqi jk

�

⇥e
�h(ri j�µ)2

⇥ e
�h(rik�µ)2

⇥ e
�h(r jk�µ)2

(8)

⇥ fi j ⇥ fik ⇥ f jk

where element-dependent weighting functions depending on Zi

(the atomic weight of atom i) are used to eliminate the need for
separate sets of SFs for each combination of different elements,
thus massively reducing the number of SFs needed as a whole.

Even weighted SFs, however, suffer from an issue of consis-
tency, in that molecules with different elements and/or number
of atoms are characterised by different numbers of SFs. As a re-
sult, the SFs vectors we would like to use as inputs for our ML
algorithms are not of the same length. This problem may be cir-
cumvented in several ways. As a start, if one seeks to predict
a functional property that can be written as the sum of atomic
contributions, the original approach of Behler and Parrinello41

can be straightforwardly used. However, while one can think of
some thermodynamic quantities such as energy or enthalpy as ad-
ditive, functional properties or biomedical activities can often not
be treated as such.

Here, we have decided to build histograms of weighted-SFs
(H-wACSFs): by binning the values of all the weighted SFs for

each molecule, we obtained a representation which is indepen-
dent from the number of atoms in a given molecule. While the
number of bins is one of the parameters we seek to optimise (see
the following section), broadly speaking low and high numbers
of bins provide more or less coarse-grained representations of the
molecular structure. This interesting feature can be easily lever-
aged in the context of three-dimensional models of crystalline
or amorphous drugs - where we believe that materials science-
inspired descriptors such as H-wACSFs could deliver important
contributions.

As the starting point for our H-wACSFs sets we have chosen the
following�parameter�values:�Nrad� =�Nang�=�8,�R

C

Rad�,�Rc

Ang�=�20�and�
NH�bins�=�10,�where�NRad�,�NAng,�Rc

Rad�,�Rc

Ang�and�NH�bins� stand�for�
the�number�of�radial�SFs,� the�number�of�angular�SFs,� the�cutoff�
radius� for� the� radial� SFs,� the� cutoff� radius� for� the� angular� SFs�
and� the� number� of� bins�we� have� used� to� build� the� histograms,�
respectively.

2.3� Machine�learning�algorithms

In�terms�of�the�specific�ML�algorithm,�we�have�been�experiment-
ing�with�multiple� options,� including�neural�networks,� Gaussian�
processes�and�random�forests.� We�have�found�that�the�choice�of�
the�ML�algorithm�has�very�little�impact�on�our�results.�The�num-
bers�reported�in�the�Results�section�have�been�obtained�by�using�
feed-forward�neural�networks,� built�using� the�Keras�API47� with�
Tensorflow48�as�a �b ackend.�The�descriptors�and�the�target�prop-
erties� for� each� dataset� (Lipo,� Hepa� and� Amo,� see� above)� have�
been� pre-processed� by� scaling� them� between� zero� and� one� and�
by�removing�the�mean�and�scaling�to�unit�variance,�respectively.�
In� terms�of� the�neural�networks�optimisation,� a� simple�parame-
ter�space�grid�search�optimisation�has�been�employed,�taking�into�
consideration�different�neural�networks�architectures�(in�terms�of�
number�of� layers�and�nodes),�different�activation� functions,�and�
different�solvers�for�the�optimisation�of�the�weights.� Further�de-
tails�are�included�in�the�MSDE_Sosso_alpha�GitHub�repository29.

As�many�as�300�epochs�have�been�accumulated� for�each�com-
binations�of� these�parameters.� The� “optimal“�number�of� epochs�
was�determined�according�to�an�early�stopping�criterion�based�on�
the�mean�square�error�relative�to�the�test�set.�80%�and�20%�of�the�
datasets�have�been� randomly� selected� as� training� and� test�data,�
respectively,� according� to� a� k-fold� cross� validation49� procedure�
with� k=5� which� allowed� us� to� reliably� assess� the� average� per-
formance�of�each�neural�network�architecture.� The�“best“�model�
was� then� selected� and� used� to� compute� the� results� reported� in�
Section�3.�We�note�that�we�have�intentionally�avoided�to�remove�
zero�and�near-zero�variance�features�from�our�sets�of�descriptors:�
this�is�a�practice�commonly�encountered�in�the�recent�literature50�

which� is� based� on� the� assumption� that� said� features� are� simply�
non-informative� -� if� anything,� they� present� a� risk� for� numerical�
errors�within�the�machine�learning�algorithm�of�choice.�However,�
we� found� that� this� is� not� always� the� case:� as� discussed� in� the�
Supplementary� Information� (SI),� the� removal� of� e.g.� zero� and�
near-zero� features� can� even� result� in�a� loss�of�accuracy� in� some�
cases.� In�fact,�a�similar�argument�holds�for�the�removal�of�highly�
correlated�features,�as�discussed� in�detail� in�the�SI.�We�also�note
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that while it is certainly possible to leverage more advanced tech-
niques (e.g. some form of ensemble learning51) to improve the
accuracy of these algorithms, we have focused in here to provide
a rather unbiased picture of the performance of the different de-
scriptors under consideration. As a result, the numerical quality
of our results is on average not very impressive, albeit we envis-
age that both the Hepa and Amo datasets will probably provide
a tough challenge in terms of accuracy for more advanced ML
frameworks as well.

2.4 Feature selection and optimisation

Molecular cliques

Cliques descriptors are by construction quite suitable to be inves-
tigated by means of feature selection. In particular, we seek to de-
termine whether there exists a hopefully small number of cliques
that can capture a good fraction of the structure-function relation
we are looking to understand. To this end, we have originally
resorted to automatic relevance determination (ARD) kernels, a
fairly common tool in the context of Gaussian processes. ARD
kernels can be used to assign to each dimension d of the input
space (with overall dimension D) its own one-dimensional ker-
nel. For instance, one can create an additive kernel function by
multiplying all the one-dimensional kernels together as follows:

kD(x,x0) = s2
D

D

’
d=1

kd(xd ,x
0
d
), (9)

where x is a cliques vector with xd representing the d � th in-
put dimension, kd is a one-dimensional base kernel and s2

D
is the

variance designated for all D� th order interactions 52.
If, for sake of simplicity, one chooses the ubiquitous radial basis

function (RBF) kernel, one obtains:

kD(x,x0) = s2
D

D

’
d=1

exp

 
�
(xd � x

0
d
)2

2l
2
d

!

= s2
Dexp

 
�

D

Â
d=1

(xd � x
0
d
)2

2l
2
d

!
,

(10)

where ld is the length-scale corresponding to the d � th input
dimension52.

The expression in Eq. 10 is known as the squared exponential
kernel with automatic relevance determination (SE-ARD) or sim-
ply the ARD kernel. As each dimension of the input - i.e. each
clique - is characterised by its own length-scale ld , upon e.g. re-
gression, the magnitude of ld for the i� th kernel provides a mea-
sure of the importance of the clique in predicting the target prop-
erty of interest. Specifically, small and large values of ld indicate
high and low relevance of the corresponding clique, respectively.
We have used the GPy53 package to implement this approach.

Though it has been shown that SE-ARD kernels can success-
fully remove irrelevant input dimensions54, we have found that
their usage led to rather inconsistent outcomes, with the value of
the length-scale characteristic of a given clique fluctuating sub-
stantially depending on a particular training-test split (see the
MSDE_Sosso_alpha GitHub repository29). To an extent, this is

expected, particularly in the case of the Hepa and Amo datasets,
where the small number of data points implies that different
cliques may play different roles in specific training-test splits.
Nevertheless, it would be obviously desirable to extract solid
trends across different splits. We have found that achieving con-
sistency is possible, but it does require extensive testing in terms
of setting the initial values as well as the low/high boundaries
for the different length-scales, and substantial statistics has to be
accumulated with respect to different training-test splits.

Instead, we have explored the possibility of using the intrinsic
ability of random forests (RFs) to provide a measure of impor-
tance for each clique via a measure called the Mean Decrease in
Impurity (MDI)55. An RF uses an impurity function i(t) as a cri-
terion for how to best split the dataset at each node t such that
similar target values will be in the same set56. In general, the im-
purity function for RF regression is the variance56; however, for
illustrative purposes, we consider the simplest regression prob-
lem, one of binary classification, which utilises the Gini impurity
function:

i(t) = 1� p
2
1 � p

2
0, (11)

where pk =
nk

n
is the fraction of the nk samples of class k = {0,1}

out of n samples at node t, to measure how well a potential split
at each node t within the binary trees T will separate the data57.
A decrease in i(t) or Di resulting from a split that sends a sample
point to two sub-nodes, tl and tr, by a threshold tq on feature q
is defined as:

Di(t) = i(t)� pli(tl)� pri(tr), (12)

whereby the RF classifier considers a random subset of the fea-
tures q available at the node and all possible thresholds tq to
determine the pair {q ,tq } giving the maximal Di, i.e. Diq (t,T )57.
This procedure is performed for all nodes t in all trees T , to obtain
the Gini importance for each q :

IG(q) = Â
T

Â
t

Diq (t,T ), (13)

when averaged by the total number of trees in the forest gives
the MDI for feature q , i.e. how relevant was its overall value57,58.
This framework may be generalized to more complex regression
problems through using the total variance at each node t in place
of the Gini importance (see Refs. 56,59). Accordingly, the MDI is
a direct by-product of training an RF model.

This strategy is easily implemented through the use of stan-
dard random forests algorithms. We have used the RandomFore-
stRegressor model from the Scikit-learn7 package. Contrary to
the Gaussian processes approach described above, we have found
that the MDI values corresponding to the different cliques are very
consistent throughout different training-test splits - as discussed
further in the Results section. Once the MDI for each clique has
been reliably assessed, we sort all the cliques in our vocabulary
according to their importance; at this point, one has to choose a
threshold above which a certain clique is considered to be "im-
portant enough". While in principle this is a parameter that can
be optimised by means of a simple grid search, we have found for
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all�the�datasets�under�consideration�that�rather�natural�thresholds�
can�be�easily� found� -�see� the�MSDE_Sosso_alpha�GitHub�reposi-
tory29� for� further�details.� The� selected� subset�of�cliques� is� then�
used� to�re-train�a�neural�network� following� the�same�basic�opti-
misation�procedure�detailed�above.

Histograms�of�(weighted)�atom-centred�symmetry�functions

The� initial� SF� parameters� described� in� section� 2.3�were� chosen�
somewhat�arbitrarily.� The�number�of�SFs�used,�the�Rc,�and�even�
the� number� of� histogram� bins,� can� have� a� huge� impact� on� the�
resulting�prediction�values.� In�order�to�optimise�these�values�we�
decided�to�implement�a�genetic�algorithm�(GA).

GAs�are�a�metaheuristic�based�around� the�principles�of�natu-
ral� selection�and�evolution60.� An� initial�population� is� randomly�
generated�where�each� individual� in� the�population� represents�a�
solution�to�the�problem.� At�each�generation�of�the�algorithm�the�
“fittest“�individuals�“breed“�with�a �subset�of�the�remaining�pop-
ulation,�the�offspring�from�this�process�then�goes�on�to�form�the�
population� for� the� next� generation.� There� is� also� a� chance� for�
each�individual�to�mutate,�theoretically�preventing�the�optimisa-
tion�from�converging�on�a�local�maxima.

In� the� case� of� our� SFs,� an� initial� population� of� 12�was� used�
where� each� individual� was� comprised� of� 5� genes� representing
N

Rad�,�NAng,�Rc
Rad�,�Rc

Ang� and�B.� The�fitness�of�each�individual�was�
calculated�by�generating�the�SFs�with�the�appropriate�parameters�
and�training�a�NN�using�these,�the�negative�MSE�was�used�as�the�
fitness�s core.�Each�o f�t he�t hree�fi ttest�individuals�were�then�se-
lected� to�breed�with�one�of� the� remaining�nine� individuals�with�
whom�they�would�produce�four�offspring.�Each�of�the�offspring’s�
genes�had�a�50%�chance�of�being�from�each�parent�and�there�was�
a�50%�chance� that�one�of� the�genes� (randomly� selected)�would�
mutate�to�a�random�value.�This�process�was�repeated�for�20�gen-
erations�and�the�individual�with�the�best�fitness�in�the�entire�his-
tory�was�selected�as�the�parameters�to�the�optimised�SFs�-�see�the�
MSDE_Sosso_alpha�GitHub�repository29� for� further�details.� The�
results� from� this�process�are�given� in�Table�3.� Note� that� is�per-
fectly�possible�to�apply�feature�selection�strategies�to�descriptors�
such�as�H-wACSFs�as�well:�possible�options�include�CUR�decom-
position�and�farthest�point�sampling,�as�recently�demonstrated�by�
Imbalzano�et�al.61.

3� Results
The� overall� performance� of� the� three� classes� of� descriptors� dis-
cussed� in� the� previous� section� is� summarised� in� Table� 1:� STD,�
Cliques� and� H-wACSFs� refers� to� the� ⇠� 100� "standard"� RDKit�
descriptors,� the� vocabularies� of� molecular� cliques� and� the� his-
tograms� of� weighted� atom-centred� symmetry� functions,� respec-
tively.�We�report�the�mean�squared�error�(MSE)�and�the�Pear-son�
correlation�coefficient�(PCC)62� for�both� the� training�and� the� test�
sets;� averages� and� uncertainties� (included� as� ±� s

2� )� have� been�
obtained�according� to� the� cross-validation�procedure�detailed� in�
Section�2.3.�Detailed�predictions�for�selected�molecular�structures�
can�be�found�in�the�SI.

Concerning�the�Lipo�dataset,�STD�outperform�both�cliques�and�
H-wACSFs.� The� latter�are� clearly�not�very� suitable� to�deal�with

this particular dataset. As discussed in further detail below, this
was expected, given the nature of the target property to be pre-
dicted. On the other hand, by using the full set of cliques (i.e.
without feature selection) one can achieve results of similar qual-
ity to those obtained via the STD - quite impressive, consider-
ing how basic the cliques descriptors are. Upon feature selec-
tion, specifically utilising only 15 cliques (out of 246), the per-
formance of the cliques degrades further; however, being able to
retain some predictive capabilities using 15 molecular fragments
is indicative of the potential of this descriptor.

In fact, the cliques consistently outperform the STD in the case
of both the Hepa and the Amo dataset: we remind the reader that
while the Lipo dataset is relatively large (⇠ 4000 molecules), the
Hepa and particularly the Amo dataset are quite small (⇠ 400
and ⇠ 150 molecules, respectively). Interestingly, in the case of
the Hepa dataset, using just the most relevant (according to the
MDI-based feature selection procedure discussed in Sec. 2) 18
cliques (out of the 132 contained in the full set) results in even
better outcomes compared to what we have obtained for the full
set of cliques, as illustrated in Fig. 3. This is an impressive re-
sult: just 18 molecular components appear to capture some of
the structure-function relation at the heart of a complex biomed-
ical activity such as human hepatocytes intrinsic clearance. As
detailed in Table 2, these 18 cliques are characterised by an
MDI about one order of magnitude larger compared to that of
the least important cliques. We also note that the RF-based fea-
ture selection procedure we have used is capable to assign MDIs
characterised by very small uncertainties, thus making the selec-
tion process quite reliable indeed. Amongst these 18 cliques we
find molecular components such as CC, C=O, C1CCCCC1 (cyclo-
hexane) and C1=CC=CC=C1 (benzene) which are ubiquitous in
small drug-like molecules: in fact, they possess quite high MDI
scores for the Lipo and Amo datasets as well. On the contrary, we
also find cliques whose role in the context of human hepatocytes
intrinsic clearance is perhaps not immediately obvious: CF, CS
and C1=CSCN1/C1=NCCS1 (2,3/4,5-dihydrothiazole).

The situation is slightly different in the case of the Amo dataset:
while using the full set of cliques results in a substantial improve-
ment with respect to the STD outcomes, using 13 out of 87 cliques
(according to the results of feature selection) worsens the nu-
merical accuracy of our prediction. Nonetheless, this small set
of cliques provides predictive capabilities of the same quality of
STD - i.e. using 13 molecular components gives similar results
to those obtained by using ⇠ 100 different descriptors. Appropri-
ately, our findings suggest that molecular cliques may represent,
despite their simplicity, an interesting way forward to identify
structural patterns of interest in the context of drug design and
discovery.

As opposed to cliques, which captures the main elements of the
chemistry of the system, H-wACSFs provide information about
the whole molecular structure. Thus, it is reasonable to expect
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MSE

STD Cliques Cliques [FS]
Lipo 0.198 ± 0.098 (0.682 ± 0.023) 0.412 ± 0.016 (0.950 ± 0.019) 0.690 ± 0.005 (1.032 ± 0.040) [15]
Hepa 0.253 ± 0.063 (0.413 ± 0.059) 0.176 ± 0.007 (0.317 ± 0.029) 0.125 ± 0.005 (0.304 ± 0.028) [18 ]
Amo 0.460 ± 0.127 (0.806 ± 0.171) 0.130 ± 0.009 (0.950 ± 0.360) 0.497 ± 0.029 (0.994 ± 0.167) [13]

H-wACSFs H-wACSFs [GAs]
Lipo 0.889 ± 0.020 (0.939 ± 0.022) 0.746 ± 0.019 (0.920 ± 0.031)
Hepa 0.590 ± 0.055 (1.238 ± 0.171) 0.314 ± 0.010 (0.350 ± 0.037)
Amo 0.362 ± 0.041 (1.348 ± 0.465) 0.124 ± 0.019 (0.838 ± 0.084)

PCC

STD Cliques Cliques [FS]
Lipo 0.933 ± 0.003 (0.737 ± 0.019) 0.859 ± 0.003 (0.623 ± 0.010) 0.727 ± 0.003 (0.554 ± 0.020) [15]
Hepa 0.687 ± 0.043 (0.295 ± 0.031) 0.731 ± 0.012 (0.359 ± 0.054) 0.826 ± 0.007 (0.450 ± 0.041) [18]
Amo 0.873 ± 0.008 (0.637 ± 0.058) 0.935 ± 0.007 (0.400 ± 0.218) 0.733 ± 0.015 (0.349 ± 0.111) [13]

H-wACSFs H-wACSFs [GAs]
Lipo 0.336 ± 0.011 (0.273 ± 0.020) 0.503 ± 0.020 (0.0327 ± 0.013)
Hepa 0.641 ± 0.035 (0.148 ± 0.033) 0.417 ± 0.037 (0.136 ± 0.077)
Amo 0.802 ± 0.028 (0.261 ± 0.101) 0.936 ± 0.009 (0.497 ± 0.134)

Table 1 Comparing the performance of three classes of descriptors: ⇠ 100 "standard" RDKit descriptors (STD), molecular cliques (Cliques) and

histograms of weighted atom-centred symmetry functions (H-wACSFs). For each dataset: Lipophilicty (Lipo), Hepatocytes (Hepa) and Amorphous

(Amo) we report the mean square error (MSE) and the Pearson correlation coefficient (PCC) for both the training and, in brackets, the test sets. All the

numbers have been averaged according to the cross validation procedure discussed in Section 2.3. Uncertainties are included as ± s
2 . Cliques [FS]

and H-wACSFs [GAs] refer to the results obtained for cliques upon feature selection (the numbers in square brackets specify the number of selected

cliques) and H-wACSFs upon optimisation, respectively. See text for further details about both datasets and descriptors.
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Fig. 3 Scatter plots of the predicted vs experimental values (scaled according to the pre-processing strategy detailed in Section 2.3) of human

hepatocytes intrinsic clearance for the Hepatocytes dataset, using ⇠ 100 "standard" RDKit descriptors (STD), the full vocabulary of molecular cliques

(Cliques), and just 18 out of 132 cliques (Cliques [18]) according to the outcomes of the feature selection procedure discussed in Section 2.4. The

results obtained for five different training-test splits are plotted on the same graph, which thus contains 406x5 = 2030 points. Note the improvement of

the predictions upon the cliques feature selection.

them to perform their best when deployed to predict target prop-
erties largely determined by structure as opposed to chemistry. In-
deed, we find that H-wACSFs score best when applied on the Amo
dataset, where the property we seek to predict is the Tg of amor-
phous drugs. Using the non-optimised values of the H-wACSFs
parameters N

Rad , N
Ang, R

Rad
c , R

Ang

c and B (see Table 3), we obtain
a marginal improvement in the MSE when compared to the STD
results (see Table 1), but also a significantly worse value for the
PCC, as evident from Fig. 4. However, upon the optimisation of
the above mentioned parameters via the genetic algorithms dis-

cussed in Section 2.4, we obtain a significant improvement of our
predictions across all metrics, as illustrated in Fig. 4. It is interest-
ing to note that the optimised parameters obtained for the three
different datasets (see Table 3) vary significantly, with no robust
trends emerging - the potential benefits of introducing constraints
within our genetic algorithms would be addressed in future work.

For the Hepa and Amo datasets, where the H-wACSFs have out-
performed STD, the genetic algorithms seem to have emphasised
the connectivity of the molecular network as opposed to geome-
try of the specific conformers, in that N

Rad ⇠ 2N
Ang. As discussed
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Fig. 4 Scatter plots of the predicted vs experimental values (scaled according to the pre-processing strategy detailed in Section 2.3) of the glass

transition temperature Tg for the Amorphous dataset, using ⇠ 100 "standard" RDKit descriptors (STD), H-wACSFs (SF), and H-wACSFs optimised

according to the genetic algorithms-based procedure describe in Section 2.4 (SF [GAs]). The results obtained for five different training-test splits are

plotted on the same graph, which thus contain 132x5 = 660 points. Note the improvement of the predictions upon the H-wACSFs optimisation.

Feature selection - Cliques
Hepatocytes dataset

Smiles MDI (mean) MDI (s)
CC 0.082263 0.002642
CO 0.069692 0.002545
CN 0.069352 0.001979
C 0.054925 0.002775

C1=CC=CC=C1 0.052196 0.002532
C=O 0.032964 0.001487
CF 0.031491 0.002122

C1=CN=CCC1 0.030531 0.005510
C1=COC=CC1 0.028628 0.003882

C1COCCN1 0.027860 0.002575
C1CCNCC1 0.025989 0.002891

CCl 0.025489 0.001000
C1=CSC=C1 0.024680 0.003132
C1CCCCC1 0.021090 0.002438

CS 0.017693 0.001977
C1CNCCN1 0.017380 0.002165
C1=CSCN1 0.017038 0.002653
C1=NCCS1 0.013932 0.001524
C1CNSC1 0.015341 0.003452

C#N 0.013333 0.001248
[. . . ]

C1=CCOCC1 0.005135 0.000685
C1CNC1 0.005111 0.001257

C1CNCN1 0.004771 0.000744
C1=CCNC=C1 0.004578 0.000439
C1=CCCCC1 0.004489 0.000649

Table 2 Feature selection for the cliques descriptor in the case of the

Hepatocytes dataset. The full cliques vocabulary contains in this case

132 cliques. For the 18 most important cliques (bold font) as well as for

the 5 least important cliques we report the corresponding MDI (mean and

standard deviation s ), computed as discussed in Section 2.4. Note that

the most and least important cliques are characterised by values of the

MDI that differ roughly by an order of magnitude.

Optimisation - H-wACSFs

Non-optimised Lipo Hepa Amo
NRadial 8 3 14 22
NAngular 16 14 8 10

Rc,Radial (Å) 20 2 21 7
RcAngular(Å) 20 21 12 2

NH�bins 10 16 19 12

Table 3 Parameters of the H-wACSFs before and after optimisation via

the genetic algorithms-based procedure described in Section 2.4. N
Rad ,

N
Ang, R

Rad
c

, R
Ang

c and B stand for the number of radial symmetry func-

tions (SFs), the number of angular SFs, the cutoff radius for the radial

SFs, the cutoff radius for the angular SFs and the number of bins we

have used to build the histograms, respectively. Results for the three

datasets: Lipophilicty (Lipo), Hepatocytes (Hepa) and Amorphous (Amo)

are shown. Note the absence of any solid trend for any of the SFs pa-

rameters across the different datasets.

in�Section�2.3,�the�procedure�we�have�used�to�generate�said�con-
formers�is�very�basic,�and�as�such,�we�expect�the�angular�contribu-
tions�to�H-wACSFs�to�feature�more�prominently�for�ensembles�of�
thoroughly�(e.g.� from�first�principles)�optimised�molecular�con-
formers,�and�even�more�so�in�the�case�of�actual�three-dimensional�
models�of�either�crystalline�or�amorphous�drugs.�Further�support�
to�this�hypothesis�comes�from�the�fact�that�H-wACSFs�did�not�per-
form�especially�well� in�the�case�of�the�Hepa�dataset,�where�upon�
optimisation,�we�obtained�results�of�similar,�but�not�better�quality�
when� compared� to� the�STD�descriptors.� In� contrast� to� the�Amo�
dataset,� the�Hepa�dataset�-�and� in�fact,� the�Lipo�dataset�as�well�-
seeks� to�predict�a� target�property�which�may�very�well�be� ruled�
chiefly� by� chemistry� as� opposed� to� structure.� Further� evidence�
supporting�this�claim�is�provided�in�the�SI,�where�we�have�built�a�
classification�model� for� the�Tox21�dataset63� -�a�very�well-known�
dataset�including�as�many�as�twelve�different�toxicity�targets�of�bi-
ological�relevance�for�drug�design.�While�the�distinction�between�
cliques�and�H-wACSFs� is�not�absolute� in�this�respect�(the�cliques�
hold� some� structural� information,� and� the�H-wACSFs� indirectly
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contains information about all cliques), we believe there is scope
to bring the two classes of descriptors together, thus combining
chemistry and structure - within a reasonably small number of
descriptors, as opposed to harnessing the whole array of STD cur-
rently available.

Overall, our results are suggestive of the fact that while for
relatively large datasets there might be value in trying to take ad-
vantage of the many descriptors readily available via open source
computational packages, for small datasets containing hundreds
of molecular structures, one might very well obtain better results
by using just a handful of carefully crafted descriptors. In this
work, we focused on cliques and H-wACSFs, but countless other
options are obviously available. Despite the still limited scope of
our investigation, we feel confident in saying that feature selec-
tion and optimisation should be treated as a necessary step of any
ML algorithm for drug design and discovery, much as data pre-
processing - as opposed to be considered as optional possibilities.
We also note that many datasets of interest to the pharmaceutical
companies are very limited in size: the Hepa dataset considered
in here is just one example, but broadly speaking it is still chal-
lenging, despite the speed with which the field is progressing, to
collect large amounts of experimental measurements of complex
biomedical activities. While it should be very clear at this point
in time that no universal recipe exists that can provide a general-
purpose framework to treat any given dataset, we believe this is
yet another reason to be selective with respect to the choice of
molecular descriptors.

4 Conclusions
The number of readily available molecular descriptors to be em-
ployed in the context of machine learning for drug design and
discovery is growing at a spectacular rate. As such, one may be
tempted to leverage as many of these descriptors as possible to
increase the flexibility and the accuracy of the machine learning
framework of choice. In this work, we have provided evidence
that while this “strength in numbers“ strategy may be reward-
ing when dealing with relatively larger datasets, in the case of
small datasets containing only hundreds of molecular structures
one might - potentially - obtain better numerical accuracy and -
certainly - a deeper insight into the structure-function relation.

In particular, we have explored the predictive potential of two
classes of descriptors derived from the work of Jin et al.26 and
Gastegger27: vocabularies of molecular cliques (cliques) and
histograms of weighted atomic-centred symmetry functions (H-
wACSFs). While the former capture the “chemistry“ of a given
molecular species, the latter offer information about the whole
structure of the molecule. When deployed to predict the func-
tional properties or biomedical activities of two small molecular
datasets, cliques and H-wACSFs descriptors give results of similar
quality to those obtained by using ⇠ 100 “standard“ descriptors
(STD) available via the RDKit package.

Importantly, upon feature selection (cliques) and optimisation
(H-wACSFs) we were able to even outperform in some cases
the STD results: we find that using as few as ⇠ 15 cliques (i.e.
molecular fragments) as descriptors one can retain, in some cases
even improve, the numerical accuracy of the machine learning

framework of choice, all the while gaining valuable insight into
those structural features that play a key role in determining the
target properties of interest. Similarly, the optimisation of the
some of the parameters entering the formulation of H-wACSFs led
to substantial improvement with respect to numerical accuracy,
particularly when trying to predict solid-state functional proper-
ties such as the glass transition temperature.

While most would agree that designing a set of “universal“
molecular descriptors might not ever be possible, we believe that
an effort to limit the number of descriptors is a necessary step
toward making machine learning for drug design and discovery
more transparent. Even when dealing with large datasets, fea-
ture selections and/or optimisation should be seen as a manda-
tory step within the computational pipeline, much as data pre-
processing, as opposed to an optional possibility. This is espe-
cially true given the multitude of easily accessible computational
tools presently at our disposal. The case of the cliques descriptors
offer a prime example, in that its intrinsic simplicity has the po-
tential to provide clear indication about the relevance of specific
molecular fragments.

Overall, we feel that while there is obvious practical value in
striving for numerical accuracy, the ultimate goal of machine
learning in the context of drug design and discovery should be
to unravel the complexity of the structure-function relation that
rules the macroscopic properties of interest to the pharmaceutical
industry. In this respect, a major pitfall of the current paradigm is
that we often try to predict solid-state properties (e.g. the solubil-
ity of a crystalline drug, or the physical stability of an amorphous
drug) by looking at the structure of single molecules in vacuum.

We believe that taking into account actual three-dimensional
models of either crystalline or amorphous drugs may very well be
the next step the community has to take, and as such we need to
devise molecular descriptors that will be able to capture the com-
plexity of e.g. inter-molecular interactions. Materials science-
inspired descriptors such as the H-wACSFs probed in this work
may provide valuable contributions, and we are planning to bring
together “chemistry and structure“ by combining cliques and H-
wACSFs to deliver a more general set of descriptors equally capa-
ble to tackle single molecules as well as molecular solids.
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