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Abstract

This thesis explores the robustness of large discrete Bayesian networks (BNs)

when applied in decision support systems which have a pre-specified subset of tar-

get variables. We develop new methodology, underpinned by the total variation

distance, to determine whether simplifications which are currently employed in the

practical implementation of such systems are theoretically valid. This versatile

framework enables us to study the effects of misspecification within a Bayesian net-

work (BN), and also extend the methodology to quantify temporal effects within

Dynamic BNs. Unlike current robustness analyses, our new technology can be ap-

plied throughout the construction of the BN model; enabling us to create tailored,

bespoke models. For illustrative purposes we shall be applying our work to the field

of Food Security and a demonstrative ecological network.
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Chapter 1

Introduction

My first exploration into the world of Bayesian networks (BN) was a mini-project

with my supervisor Professor Jim Q. Smith, creating a dynamic representation of

the U.K. fruit market. This small network was an introduction to the larger Food

Security application which has become the ongoing application to my work. During

this project I became aware of the non-trivial task of structuring and populating

such graphical models and questioned the validity of the outputs should errors be

unwittingly incorporated into the system. Despite the fact that there are many

people who now encourage the use of Bayesian networks in a variety of fields, and

numerous facilitators who elicit the probabilities for such models, there is actually

a considerable disconnect between the focus of current theoretical work and the ac-

tual practical challenges when applying such systems in practice. Although there

has been substantial development for robustness of parametric models, theory of so-

phisticated statistical robustness analyses on graphical models is surprisingly sparse.

This small project sparked the research contained within this thesis which attempts

to capture the robustness within Bayesian networks, and hopefully provides tailored

protocols for the creation of a robust graphical model.

One of the key elements when undertaking practical BN modelling is that

there is nearly always a vector of sub-variables that is of particular interest within

the system. All other variables in the system inform our learning about these target

variables. Many authors encourage the construction of a BN to take into account

this inherent directionality by ordering the influential variables before the target

variables, which are the outputs of the system. Note that these target variables are

either components of the utility function which is specified by the model user, or in

large systems these target variables may be the outputs of one sub-network which
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are later used as inputs for the next component. By pre-specifying the target vari-

ables we are able to focus attention to a subset of the model, rather than attempting

to quantify the robustness of the entire system.

Although other distance metrics have recently been incorporated into BN

sensitivity analyses, we have chosen to harness the useful properties of the well-

studied total variation distance. Previous work, which shall be discussed herein,

has already devised bounds for the variation distance when associated with decision

analyses; the types of applications we have in mind here. Using inherent properties

of the total variation distance we can diminish errors within a system, and we have

formalised a direct link between the total variation distance and conditional inde-

pendence of variables; the underlying reasoning behind BNs.

Although many of the principles translate smoothly into the continuous do-

main, in this thesis we concentrate entirely on discrete BNs. Early in my research

we discovered that there are many close relationships between finite Markov chains

(MCs) and the BN formulation; the simplest case being the dynamic structures

studied in Section 6 in this work. Whilst engaged in this technology transfer, we

realised that the relationship was much more general than first realised, leading us

to link time non-homogeneous Markov chains to BNs. This allows for different tran-

sition matrices between each time-slice, making the work truly general. Exploring

and formalising this connection between disparate fields has enabled us to benefit

from the wealth of results concerning Markov chains and variation distance, as used

in convergence results of standard texts. In particular, we discovered that the type

of decay relating the effect contributing nodes have on target variables, states with

higher time indices, is also experienced within BNs: in the sense that perturbing

variables which are distant from the target variable seemed to have little impact

on a target margin. This phenomenon is widely known as a folk theorem within

applied BN modelling. However, to our knowledge there has been no formal proof

of this until now. This became apparent when collaborating with Dr. Tina Nane

at TU Delft on BN structure selection, where amongst others, we noticed that even

fairly large modifications of somewhat remote variables in the system seem to have

very little impact on the target variable, making model selection difficult.

The success and versatility of BNs, has resulted in them being increasingly

applied to larger systems, which has by necessity led to the creation of automatic

technologies to develop robust models. All the techniques we have presented here
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are designed to address robustness in very large BNs. However, when writing this

thesis I realised that actually annotating a very large BN with the elicitation in-

formation and the meaning of the variables made explanations rather tedious and

unwieldly. Instead, I have demonstrated our results on small or moderate BNs which

still illustrate the efficacy of our methodology.

We begin this thesis with a summary of BN methodology, including our

interests of decision support systems and expert elicitation for populating incomplete

models (Section 2). My work has been heavily influenced by my experiences and

immersion in applying BNs to several different applications, the most influential

of these being the Food Security system which, due to its complexity, has provided

much of the incentive for this thesis material. All relevant applications and examples

are detailed in Section 3. Section 4 introduces our arguments for the use of total

variation distance in robustness studies, together with useful bounds and properties

specifically for cases in which we have target variables. We also present original

measures for using the total variation distance to compare conditional probabilities

or transition matrices. Having explored the foundations we focus our attention on

the robustness within a Bayesian network. Section 5 uses the new measures we have

defined to calculate the maximum effects of perturbations on our target variables.

We then study common structural and probabilistic simplifications, commonly seen

in applied BN modelling, to deduce whether they are theoretically comprehensive

in terms of robustness within the model. Our final theoretical Section, Section 6,

details the formal process of writing a dynamic BN as a Markov chain to harness

developments from literature studying temporal effects of misspecifications. There

have been many interesting steps to this research and we feel that we have built a

strong foundation from which many results could be further developed. Extended

research ideas and topics that we sadly did not have time to explore, are documented

in Section 7.
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Chapter 2

Bayesian Networks

2.1 Introduction to Bayesian Networks

A discrete Bayesian Network (BN) G, sometimes referred to as a directed acyclic

graph (DAG), is a probabilistic graphical model allowing us to model uncertainty in

a system. Commonly used in decision support systems [Constantinou et al., 2015;

Leonelli and Smith, 2013], the versatility and adaptability of BNs makes them a

popular choice of probabilistic graphical models in a broad range of applications

such as medicine [Friedman et al., 2000; Nagarajan et al., 2013], ecology [Johnson

and Mengersen, 2012; Milns et al., 2010] and wider fields [Cano et al., 2004; Johnson

et al., 2012; Mascaro et al., 2014].

A BN on a random vector X , (X1, X2, . . . , Xm) represents a family of

models that respect a set of conditional independence hypotheses. Each node in the

graphical structure represents a random variable and each directed arc Xi → Xj

encodes a direct (often interpreted as a causal) dependence between two variables

in a set direction, as depicted in Figure 2.1. We use ancestral tree terminology to

categorise relationships within the graphical structure: Pa(i) ⊆ {X1, X2, . . . , Xi−1}
are the parents of Xi meaning the previously listed variables on which Xi depends,

i.e. Xi ∈ Pa(j) iff Xi → Xj . Therefore, for every directed arc Xi → Xj , Xi

is labelled as the parent of Xj . Conversely Xj is said to be a child of Xi. This

relationship is roughly translated to ‘the parent causes the child’. Extending this

notion, we can discuss ancestors and descendants of a node when we are looking

backwards or forwards in a chain of influence. For example, a node Xi is an ancestor

of Xj if there is a directed path from Xi to Xj . The ancestral graph A(X), is the

graph containing the vertex X and all ancestors of the vertex X. The final term
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with respect to nodes that we shall refer to frequently is a founder node, which

indicates that the node in question has no parent. Note that the absence between

two nodes is structurally significant as it highlights the conditional independence

between two variables. Being a DAG, a BN is defined so that it cannot contain any

directed cycles: there is no path returning to a node when following the directed

arrows. Later in this work we rely on the notation XA which is the sub-vector of

the nodes of X with indices in set A.

Figure 2.1: A demonstrative BN representation.

In any BN there are three main types of connections found: causal chain,

common cause or common effect as represented in Figure 2.2.

(a) Causal Chain (b) Common Cause (c) Common Effect

Figure 2.2: Different structures in a BN, as represented in Korb and Nicholson
[2010].

It is important to note that both causal chains and common causes (Figure

2.2(a) and Figure 2.2(b)) encapsulate the same conditional independence statement,

X3 q X1|X2, whereas the common effect shown in Figure 2.2(c) (also known as a

collider or v-structure) does not. The common effect actually implies that given

information about the child, the parents may be conditionally dependent.

Two BNs are said to be equivalent if all the conditional statements underly-

ing one can also be read from the other (and vice versa). This definition indicates
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that two directed graphs can be different, however the same set of conditional inde-

pendence statements can be deduced from both structures (a property termed the

semi-graphoid axioms, see Geiger and Pearl [1993]; Pearl [1988]). Conversely, a set

of conditional independence statements does not define a unique BN representation.

BNs encoding the same conditional independencies are said to be in the same equiv-

alence class. Occasionally, it might be easier to elicit some graphs than others, for

example those that follow a causal ordering. Andersson et al. [1997] prove that if

two DAGs have the same underlying skeleton and v-structures then they are in the

same equivalence class and therefore equivalent BNs.

The Markov Blanket is a set containing the node of interest along with its

parents, children and the other parents of its children. The Markov blanket de-

fines all the variables needed in the graphical structure to predict the node Xi or

its children. Any further information not contained in the Markov Blanket is surplus.

In some algorithms we find that we need to moralise a BN: retain the same

graphical structure as the BN G, but iteratively take each node Xi of the graph and

add an undirected arc between each pair of parents that are not already directly con-

nected. The term moralisation furthers the family tree analogy, as we are effectively

marrying the parents of each child. The skeleton of a graph is the exact replication

of the BN G, but replacing all directed arcs with undirected arcs and a mixed BN

has a combination of directed and undirected arcs. Applying these definitions to

the BN depicted in Figure 2.1 we can now determine the skeleton structure and the

moralised graph (shown in Figure 2.3).

Figure 2.3: The moral graph (left) and the skeleton (right) of the BN shown in
Figure 2.1.
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Determining conditional independence of single nodes using v-structures is

relatively simple; however deducing whether two sets of variables are independent

can be trickier and to do this we use the d -separation theorem Lauritzen [1996]; Pearl

[1988]. Although the d -separation theorem outlines the criteria for determining

whether two sets are independent given a third conditioning set, it is difficult to

compute. To check for d -separation we can follow the algorithm below:

1. Find the ancestral graph.

2. Moralise the ancestral graph.

3. Replace all directed arcs with undirected arcs.

4. Delete all given nodes and their edges.

5. If there is no path between the two sets of variables then they are independent.

It can be proved that all the conditional independence hypotheses encoded

in a BN can be derived from a much smaller set of statements that link in turn to

a set of nested factorisations:

Xi qXR(i)|XPa(i), (2.1)

where R(i) , {X1, X2, . . . , Xi−1} \Pa(i).

Recall that to calculate the full joint density/mass function we can use the

chain rule:

p(x1, x2, . . . , xm) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xm|x1, x2, . . . , xm−1)

=
∏
i

p(xi|x1, x2, . . . , xi−1).

However, from Equation 2.1 note that each random variable is independent

of all others conditional on its parents. This allows us to simplify the full joint

density/mass function to

p(x1, x2, . . . , xm) =
∏
i

p(xi|Pa(i)), (2.2)

which for the specific BN in Figure 2.1 gives

p(x1, x2, . . . , x7) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x2, x3)p(x6|x2, x3)p(x7|x4, x5, x6).
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An important subclass of BNs whose properties we discuss later, are those

which are called decomposable. A decomposable BN G is a BN in which every parent

set of each node Xi in the graph forms a complete subgraph of G. An alternative

way of specifying this is, if the moralised graph of G is equivalent to G then the

graph is already decomposable. It is simple to show that any BN can (albeit ineffi-

ciently) be re-expressed as a decomposable BN constructed through a process called

triangulation [Fenton and Neil, 2012; Korb and Nicholson, 2010; Lauritzen, 1996],

which maintains acyclicity whilst relaxing some conditional independencies. This

property, widely used for propagation algorithms, can also be used for robustness

analyses. When a BN is decomposable it can be shown [see for example Lauritzen,

1996; Smith, 2010] that the joint density distribution factors in the following man-

ner: the cliques {XC1 ,XC2 ,XC3 , . . . ,XCm} of a decomposable BN are its maximal

connected subsets and can be ordered so that the indices respect the running inter-

section property starting with clique C1. We call XS(i) where Si = Ci ∩ ∪i−1k=1Ck

the separator of XCi from ∪i−1k=1Ck. An indexing is said to satisfy the running in-

tersection property if for all i = 1, 2, . . . ,m there exists some index j < i such that

Si = Ci ∩ ∪i−1k=1Ck ⊆ Cj . This implies that the result of intersecting a clique with

all previous cliques is contained within one or more earlier cliques Lauritzen [1996];

Smith [2010]. Note the choice of Cj may not be unique.

We can select one of these orderings to depict a non-unique junction tree

J (G). A junction tree is an undirected tree whose vertices are the cliques and

where two cliques Ci and Cj are linked by an undirected edge if and only if within

the chosen indexing j = j(i). Note that by definition each of these edges can be

labelled by a corresponding separator of G. To simplify the development we will

assume that the entries of the joint mass function are all strictly positive. This

is advised from a practical point of view, by a number of authors, e.g. Korb and

Nicholson [2010], when dealing with no known functional relations. Lauritzen and

Spiegelhalter [1988] prove that strictly we do not need this positivity condition, but

we are required to define division by zero. It is then proven [e.g. see Cowell et al.,

2007; Smith, 2010] that the joint mass function of any such decomposable BN G
respects the following formula:

p(x) =
p(xC1) · p(xC2) · p(xC3) . . . p(xCm)

p(xS2) · p(xS3) . . . p(xSm)
.

One straightforward, but important consequence of this decomposition used

herein, is that given any BN G and an associated junction tree J (G), then for any two
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cliques XC1 ,XCk
, there is a unique sequence of cliques (XC1 ,XC2 ,XC3 , . . . ,XCk

)

and separators (XS2 ,XS3 , . . . ,XSk
) between XC1 and XCk

within J (G). This

sequence forms a simple path in J (G), i.e. it corresponds to the unique path between

two nodes, in which no edge is repeated. If we write Ck , ∪kj=1Cj , and since Si ⊆ Ci
we know that xSi is a subvector of xCi giving

p(xCk
) =

p(xC1).p(xC2).p(xC3) . . . p(xCk
)

p(xS2).p(xS3) . . . p(xSk
)

(2.3)

= p(xC1).p(xC2 |xS2).p(xC3 |xS3) . . . p(xCk
|xSk

).

Lemma 2.1.1. It follows from Equation 2.3 and the conditional independence in G
that if T1,k , ∪k−1i=3 Si then

p(xC1∪Ck
) =

∑
xT1,k

p(xC1).p(xS3 |xS2).p(xS4 |xS3) . . . p(xSk
|xSk−1

)p(xCk
|xSk

).

This is an interesting property because it links the graphical model to a

non-homogeneous Markov Chain via a junction tree which has all internal cliques

marginalised out. A Markov chain (MC) is simply a stochastic sequence of events

underpinned by a collection of conditional independence statements. Each MC is

initiated with a joint probability distribution for all variables within the system and

updated temporally using transition matrices which can be categorised as homoge-

neous (each transition matrix between time-slices is identical) or non-homogeneous

(transition matrices differ), see [Smith, 2010] for further details. Therefore we have

constructed a non-homogeneous Markov Chain from the donating clique C1 to the

receiving clique Ck. This is valid because of the assumed conditional independences

since each tree has a unique path between the perturbed node and the node of in-

terest. Although this result is derived directly from the elementary properties of

trees it is important, yet an often overlooked result that will be exploited later in

the thesis.

2.1.1 Dynamic Bayesian Networks

A Bayesian network in its rawest form looks at a specific situation at a specific mo-

ment in time. The versatility of a BN is in its ability to fold in complex information

thereby tailoring the model to create a bespoke model using the simple underlying

framework discussed previously. There are many adaptations of a BN, however we

will be focussing on some of the more common approaches: temporal relationships,

replication within the graphical structure and decision support systems.
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In the penultimate chapter of this thesis we study the robustness in BNs con-

taining temporal conditions. This enables users to model the evolution of complex

processes into the future and allows decision makers to deduce long-term effects of

verdicts. A Dynamic Bayesian Network (DBN) generalises a simple BN to enable

modelling over time by introducing explicit temporal relationships. Variables are

now denoted by Xt,j with t = 1, 2, . . . , n indicating the time slice and j = 1, 2, . . . ,m

being the individual variable indicator . We shall refer to a time-slice as a snapshot

of the system at a discrete time-step which notationally translates into all nodes

having the same t subscript. The most popular form of DBNs assume that the un-

derlying conditional independence statements are identical within each time-slice,

therefore allowing the topological structure of the DAG to remain unaltered through

time.

In the general form of the BN introduced previously, each directed arc repre-

sented inferential relationships between variables in the same time-slice. These arcs

are termed intra-slice arcs and satisfy the relationship Xt,i → Xt,i′ . Inter-slice arcs,

also known as temporal arcs, characterise dynamic effects in the system and can be

between different nodes Xt,i → Xt′,i′ across time-slices or the same node Xt,i → Xt′,i

across time-slices. For distinction, all figures within this thesis represent dynamic

arcs in red and non-dynamic arcs as black. For example we can extend Figure 2.1

to be a DBN, as shown below in Figure 2.4:

Figure 2.4: Figure 2.1 extended to a DBN by adding temporal arcs (drawn in red).

Although memory in a DBN can be infinite, it is common to assume that the

Markov Property holds; each time-slice t is dependent only upon the previous time
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step t− 1 and no other previous time points. DBNs which follow this condition are

known as two time-slice DBNs (2TSDBN) to indicate that the systems only needs to

retain its memory over the past two time-slices. As for the general BN, each node of

the network must be assigned an accompanying conditional probability distribution

to quantify the conditional probabilities between variables which in the discrete

case will take the form of a conditional probability table (CPT), see Section 2.1.3

for more detail. However, note that each CPT for a DBN must include all intra-

slice and inter-slice relationships. By construction, each DBN can be unwrapped

and re-expressed as a simple BN by replicating nodes within a single time frame

where necessary, this process is depicted below in Figure 2.5:

Figure 2.5: Unwrapping the DBN from Figure 2.4 to a BN.

Whenever a BN is used in a Decision Support System (DSS) it is crucial

that we understand which node(s), or combinations of nodes, are considered to be

the outputs as we are most interested in the accurate predictions of these variables.

Therefore, it is essential that we perform robustness analyses with these attributes

in mind, to determine the effect that any structural inaccuracies or probability

misspecifications have on the results.

2.1.2 Integrated Decision Support Systems

BNs are now a widely used probabilistic modelling tool, particularly in the field

of decision support. In Decision Support Systems (DSSs) a decision-maker identi-

fies a problem for which they need coherent statistical recommendations. Due to

the nature of decision support there are normally a few pre-specified variables of

interest, often called the target variables, which together form the attributes of a

utility function. This utility function enables the user of the system to score and

rank the model recommendations with respect to their specific requirements. By

pre-specifying target variables there is a dramatic decrease in size and focus within

the model, enabling us to create a bespoke approach for the variables of main con-
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cern. However, decision-makers (or experts asked for probability judgements) may

question the robustness of the outputs in relation to the inputs of the model, to

quantify the impact on decisions if erroneous information is used.

Integrated Decision Support Systems (IDSSs) reflect the notion that it is

highly unusual for one person or group to hold all the relevant information for a

large complex system [Smith et al., 2015]. Additionally, if the parameters of the pos-

terior distribution are all independent, then the system is distributive and can be

separated according to relevant expert panels. This enables the distributed systems

to be treated as separate objects in analogy with the objects in an object-oriented

Bayesian network (OOBN). OOBNs succinctly compact any repetition within a BN

by introducing the notion of classes: a collection of nodes and objects. This enables

the modeller to significantly reduce the time spent populating the model by copying

sub-networks and specific CPTs around the BN. The IDSS presents a shared over-

arching framework to coherently piece together the separate sub-networks.

The reason these issues are of interest in this thesis, is to emphasise and

illustrate that the elicitation of a BN or DBN is often just part of a much big-

ger process. In an IDSS there are many integrated distinct components within the

model, so that an output of one sub-network may be an input for another network.

Therefore, we need to consider not just outputs of the entire system, but inter-

nal inputs and outputs which affect contributing systems. This directionality and

contraction of interest to a select few variables is not studied in other robustness

approaches. This entire process must be done in a defensible manner to give (via

the BN) the reasons for the judgements. Furthermore, it demonstrates how robust

are the distributions of these particular inputs (as needed by the composite system)

to domain mispecifications.

2.1.3 Applying a BN in practice

It is now acknowledged as best practice [Cowell et al., 1999; Laskey and Mahoney,

2000; Smith, 2010] that BNs are set up in two distinct stages. Firstly the structure

of the BN, as expressed by its Directed Acyclic Graph (DAG), is either directly

elicited from domain experts or when sufficient supporting data exists, learned from

the data using a model search algorithm with default priors on the hyperparam-

eters, see Boneh [2010] and Korb and Nicholson [2010]. The graph can then be

interrogated through natural language to examine whether the consequences of its

embedded conditional independences make sense within the domain. Once this

12



graphical framework has been found to have no obvious faults i.e. be requisite [see

Phillips, 1984], the graph would be extended into a full probabilistic model. In the

case of a discrete BN, this second stage involves eliciting or estimating the entries

of its conditional probability tables (CPTs), using priors on probabilities informed

by expert judgements. These CPTs give the numerical prespecification of all the

conditional probabilities needed to generate the full joint probability mass function

over the whole space and hence a fully specified probability model.

Note that in this thesis, our CPTs will have rows denoting parent level combi-

nations and columns denoting the levels of the child. Using fundamental properties

of conditional probabilities we can state that rows must sum to one. In some older

texts, the conditional probability table is written as the transpose of our CPT. As

an example, suppose we have three variables X1, X2, X3 all of which are binary, with

a structure as shown in Figure 2.6 then the CPT of X3 would be written as in Table

2.1:

Figure 2.6: 3-node binary BN.

P (X3|X1, X2)

X1 X2 0 1

1 1 p1 p1

1 0 p2 p2

0 1 p3 p3

0 0 p4 p4

Table 2.1: The CPT of X3.

When engaging in this two stage process it is essential for the analyst to

be aware of precisely which inputs of the process might be critical to the inferences

made through the BN, see Albrecht et al. [2014]. This then enables most attention

in an elicitation (or statistical estimation of the graph) to be focused on ensuring

these critical features are specified as accurately as possible. This is especially im-

portant when elicitation or estimation is resource limited, as is usually the case in

practice. The client (or decision-maker of the model) can then optimise their al-

location of resources and so spend most time eliciting those elements of the model

whose misspecification might most influence the required outputs of the model.

Occasionally the modeller has access to a complete training data set from
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which the most promising explanatory BN can be selected, whose associated p(x)

respecting Equation 2.2 appears to best fit the data. There are many ways to do

this including using software packages such as ‘bnlearn’ in R [see Scutari and Denis,

2014]. However, when applying such a model selection method in practice, even for

low dimensional BNs, it is common to find many models that score similarly well.

Even if we know this model to be true, as in a simulation exercise or even mod-

erately sized problems, it has been demonstrated that the best model is only close

to the generating process unless the training data set is absolutely enormous, see

Cussens [2011]. Naturally there are also the usual statistical errors associated with

the representivity of the actual data set we use, even if sampling is performed at

random. Yet again, it is rare for a single data generating model to be unequivocally

identified. Considering the robustness in the fitted model is therefore a fundamental

element of any ensuing statistical analysis.

The second method of creating a BN is by performing a direct elicitation

from an expert. Here, having listed the variables in an order (which might be)

compatible with the order in which those measurements may occur, the expert is

asked for each Xi, i = 1, 2, . . . ,m of the previously listed variables which might be

relevant to forecasting the current variable. Building on this qualitative framework,

hopefully faithful to the expert’s actual judgements, we then proceed to embellish

the graph by supplementing the structure with the specification of the correspond-

ing CPTs
{
p(xi|xPa(i)) : i = 1, 2, 3, . . . ,m

}
. These probabilities will be subject to

elicitation error, although following a structured elicitation protocol (as discussed

further in Section 2.2.1) aims to mitigate this specification error [EFSA, 2014; Korb

and Nicholson, 2010; Smith, 2010]. An understanding of the robustness to pertur-

bations of both the hypothesised graphical framework and also the entries in the

CPTs of any inferential assumptions taken here will clearly be critical to a good

statistical analysis.

It is important to understand that formulating and compiling a BN is an

iterative process with many assumptions and some subjective decisions. This pro-

cess has been highly discussed in the knowledge engineering literature Korb and

Nicholson [2010]; Laskey [1995]. Our main focus in this work is decision support

systems and the robustness within these models.
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2.1.4 DBN Software

There are numerous statistical software packages that allow for the construction

of BNs and DBNs, for example Netica, R, Analytica, Hugin, Uninet and GeNIe to

name a few. A comprehensive comparative table is presented in Korb and Nicholson

[2010], outlining benefits and drawbacks to many of these options and also including

beginner’s tutorials.

Throughout this work we have chosen to use mainly Netica in our Food Secu-

rity application to enable systematic comparisons across networks already created.

Netica is a free user-friendly, well-documented software which requires no coding

experience so is the most widely used software by domain statisticians. Software

such as this is ideal when creating BNs for third parties or decision makers who

wish to continue adapting and updating the model with little statistical experience.

However, the ‘bnlearn’ package in R has also been utilised for examples.

2.2 General Practice

2.2.1 Subjective Probability and Elicitation Protocols

In the digital age of the 21st Century we are increasingly awed by the idea of ‘big

data’ and its ability to be harnessed in a multitude of scenarios to solve any prob-

lem. Unfortunately, in decision support systems it is rare to have all the necessary

information to fully specify the model of interest at the outset. This deficiency can

arise from a number of origins: for example, collecting the information is too ex-

pensive (either financially or laboriously); there has been little interest in the data

until recently (no availability); data sources may be flawed; or more commonly,

the data may not be observable at this moment in time due to the uniqueness of

the scenario in question. As decision support systems are created with an inherent

time-constraint, the policy or decision maker has a pre-specified deadline by which

to announce their verdict. This time restriction can limit the options available to

the modeller in terms of sourcing the required data for the completion of the model.

In circumstances such as this, we can turn to the field of subjective probability in

which people are asked for their own personal judgements or beliefs about the like-

lihood of an event occurring.

Subjectivity is a key underlying element of expert judgement, a topic which

has been studied for many years [see for example De Finetti, 1974; French, 1985;
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O’Hagan et al., 2006]. Subjective probabilities are the beliefs of a specific individual

quantifying their uncertainty of an event, at the time of statement. This definition

enables two individuals to maintain different probabilities for the same scenario,

and also allows an individual to revise their beliefs if they learn new information

pertinent to the question at a different time.

There are two main types of elicitation related to building a BN: structural

elicitation and probabilistic elicitation. Structural elicitation is concerned with find-

ing a suitable graphical structure to formally represent the variables and relation-

ships within the complex process; Probabilistic elicitation is populating the structure

you have previously elicited by asking relevant domain experts for uncertainty quan-

tities to fill the conditional probability tables. In either elicitation procedure there is

ample psychology literature [Kahneman et al., 1982; Kahneman and Tversky, 1973;

Nickerson, 1998] which forewarns facilitators of behavioural biases which may ad-

versely affect or nullify the results obtained. There is abundant advice to facilitators

and experts to help combat these biases and how they may proceed with caution

[see Burgman, 2016; Dias et al., 2018; French et al., 2009; O’Hagan et al., 2006].

It is important to remember that each BN will be different and require a flexible,

iterative approach to create a robust and meaningful model. A detailed glossary of

such biases can be found in EFSA [2014]; Fenton and Neil [2012]; O’Hagan et al.

[2006]; however, we outline a few common problems below:

• Anchoring and Adjustment: Anchoring refers to an expert inadvertently

becoming attached to a quantity stated in a previous question, or in the word-

ing of the current question. Adjustment is the name given when this anchor

is taken and modified slightly, rather than the expert initiating their own

impartial reasoning.

• Availability: Participants are prone to using recent memories and experi-

ences to guide their probability statements and therefore present an event as

being more probable if they have a stronger recollection of it happening. Note

that the strength of a memory can be affected by time since origination or the

emotional attachment connected to the content.

• Group Effects: If consulting a panel of experts simultaneously, the group

dynamic can affect responses. For example, younger/inexperienced experts

may concede to older/experienced attendees, or the most charismatic/loudest

person may override quieter panellists.
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• Range-Frequency Compromise: In questions where categories are implied

or stated, the probabilities quoted by experts can be influenced by an increas-

ing number of categories.

There are many decisions involved in eliciting expert judgements which will be re-

producible and coherent. In the preparatory stages, the modeller chooses which

quantities to elicit; the experts from whom we wish to elicit the information; the

size and make-up of the group of experts from whom we wish to elicit the infor-

mation; whether to conduct the elicitation face-to-face or remotely using question-

naires; which questions to ask during the elicitation; and of course, how to aggregate

the findings. The European Food Safety Authority (EFSA) has published a report

EFSA [2014] that summarises the currently perceived best practice for eliciting ex-

pert judgements and incorporating them into probabilistic models. Happily, this

application area coincides with our running example of Food Security.

Although fundamentally similar, there are a range of proposed elicitation

processes which advocate anything between three to seven step procedures [see for

example Clemen and Reilly, 2001; Phillips, 1999; Walls and Quigley, 2001]. Garth-

waite et al. [2005] constructed a four step process to extract personal beliefs from

people, which we discuss here due to its similarities to the IDEA protocol;

• Preparation - deduce the number of people required; determine the relevant

domain experts; train the experts; choose the most appropriate protocol; or-

ganise calibration questions, etc.

• Perform the elicitation to obtain specific summaries of the expert’s belief dis-

tribution.

• Fit a suitable probability distribution to the obtained summaries.

• Validate the model by iterating the process to determine whether the outcome

is satisfactory or whether adjustments need to be made.

They also note that generally, poor results are produced when people are asked to

provide a variance. Instead of requesting a mean and variance, it is more common

to request a mean and a credible interval. Although there are multiple variations of

this procedure [see O’Hagan et al., 2006], the foundation steps are very similar. In

order to obtain probabilities which are reproducible and reliable, it is recommended

that facilitators follow an established elicitation protocol such as (but not limited

to) the Sheffield Protocol [Gosling, 2018; O’Hagan et al., 2006], the Delphi Process
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[Dalkey and Helmer, 1963; EFSA, 2014], Cooke’s Method [Cooke, 1991] or the IDEA

protocol [Hanea et al., 2017; Hemming et al., 2018] all of which have been compared

and discussed in numerous texts already highlighted. We shall briefly cover those

which are most pertinent to our Food Security application below.

Cooke’s Classical Method

Cooke’s Classical method does not usually allow any interaction between experts:

each individual attends an interview and gives a personal probability density func-

tion to the facilitator. The distributions of all experts are then combined using a

mathematical aggregation formula to obtain one combined probability density func-

tion for each variable of interest. The one-on-one dynamic mitigates any group bias

which may otherwise occur; however, note that the choice of mathematical aggre-

gation formula and expert weight analysis is subjective.

In Cooke’s Classical method the facilitator uses seed questions (otherwise

known as calibration questions) to determine the performance of each expert. The

facilitator knows the answer to a seed question, however the expert does not: usually

accepted but unpublished journal articles are recommended for material. This allows

the expert to use their domain knowledge to provide their subjective opinion. It is

therefore imperative that the seed question be as similar to the variables of interest

as possible for comparative purposes; there is also an implicit assumption that future

performance is based on past performance.

IDEA Protocol

The IDEA protocol follows a standard elicitation procedure: pre-processing, elici-

tation and post-analysis as synthesised in Figure 2.7 below [as presented in Hanea

et al., 2017].
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Figure 2.7: Outline of the steps associated with the IDEA protocol as shown in
Hanea et al. [2017].

The IDEA acronym denotes the four internal stages which involve the ex-

perts: Investigate, Discuss, Estimate and Aggregate. Initially experts are asked for

individual assessments to the questions of interest following a strict ‘upper bound’,

‘lower bound’, ‘best estimate’, ordering in an effort to combat anchoring and ad-

justment bias. After personal beliefs have been collected, experts participate in a

facilitated discussion (D step) to share information, relevant literature or experi-

ence. Once completed, experts are invited to revise their estimates in private if they

feel that the discussion has altered their beliefs. This step is once again undertaken

privately so that experts feel no pressure to edit their initial estimates if they do not

feel that the discussion has given them any new information. The final step of the

protocol is for the facilitator to mathematically aggregate the experts’ judgements

into one final assessment.

As a relatively new elicitation protocol, the IDEA method aims to mitigate

perceived flaws in older comparable procedures and uses updated psychology lit-

erature to create a more adaptive and rigorous protocol. This is reflected in the

similarities to older methods: the discussion rounds are iterative (as in the Delphi

method) and they encourage personal beliefs which are aggregated mathematically

as in Cooke’s Classical method; however, they introduce the ability to provide fi-

nal revised individual assessments. As in other methods, experts contributions are

weighted using their calibration question responses.

Plotting the mean and intervals provided by experts we can deduce the fol-

lowing characteristics [Aspinall, 2006; Aspinall and Cooke, 2013; Burgman, 2016]:
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• Information: This is an assessment of the confidence of an expert in their

beliefs: a tighter interval bound is more informative than a wide bound.

• Accuracy: An expert’s estimate is accurate when the probability of the true

event lies within the stated bounds.

• Bias: When an expert consistently overstates or understates judges the prob-

ability of an event occurring.

Ideally we would like each expert to be statistically accurate and highly in-

formative when quantifying their uncertainty. Realistically this is a rare occurrence.

Experts are knowledgeable about their subject field, however an elicitation is more

interested in the experts’ ability to accurately assess and quantify uncertainty. De-

ducing the performance of experts in an elicitation is strongly advised and is a crucial

step for mathematical aggregation; taking a set of personal beliefs and combining

them in a statistically sound manner in order to form one uncertainty assessment.

When deciding how to perform the mathematical aggregation, each expert can be

weighted according to their performance. The facilitator is able to use global weights,

a performance weight calculated across all calibration questions, or an item weight

in which the weight is calculated for one specific seed question. Alternatively, there

is an option to weight experts equally rather than by performance.

2.2.2 My Elicitation Experiences

During the course of my postgraduate studies, I have been fortunate to act as

a recorder for four elicitation workshops; two of which have been related to the

large Food Security project detailed in Section 3.1. Each separate occasion has

enabled me to observe the interaction between facilitator and experts, critique the

different elicitation protocols, scrutinise any robustness issues which naturally occur

throughout such processes, along with any methods undertaken by facilitators to

mitigate these problems. Being involved in such projects from infancy to fruition

has awarded me a unique insight into the creation of a Bayesian network and has

heavily influenced the work produced in this thesis. Using the information I have

inferred from such practices, I have been able to tailor my robustness analyses for

suitability and practicality. Below I briefly summarise each elicitation workshop

attended, and review any significant robustness matters.
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ADMLC Workshop

In November 2015, I was invited to record an elicitation jointly co-ordinated be-

tween Professor Simon French and the U.K. Atmospheric Dispersion Modelling Liai-

son Committee (ADMLC). The primary aim of the workshop was “communicating

geographical uncertainty during a radiological emergency” and participants were

members of U.K. organisations who potentially could be invited to sit on a COBR

(Cabinet Office Briefing Room) committee in the event that the U.K. suffered a

nuclear crisis. The thirteen experts present were from a range of disciplines and

Chatham House Rules were followed: meaning that all information garnered in the

meeting could be shared externally only if anonymised first.

This workshop was my initial involvement in any practical elicitation event

and my role as recorder was to faithfully represent the discussions and dialogues in

the room. It is important to emphasise that this work was not related to BNs and did

not involve any probability elicitation. However, the hosts were trying to understand

what visual/scientific aids a decision support system may require to communicate

results faithfully, as well as the uses of a DSS after creation. The opportunity to

gain an overview into DSSs was extremely thought provoking and I acquired some

useful information such as: the diverse range of opinions expressed; the fact that

most discussion was about the structure of the process and what the attributes vari-

ables were; the difficulties in getting participants to agree on one recommendation:

some issues were critical whilst others were deemed unimportant either by a single

individual or consensus: there are a broad range of people associated in creating a

DSS.

Opening discussions welcomed experts and introduced all participants, dis-

cerning relevant expertise and domain knowledge. A detailed description of the

problem was given and the goals of the exercise were re-emphasised before any

elicitations commenced. Firstly, experts were invited to give their individual reflec-

tions; specifically their initial reaction to the problem, any information required to

make a more informed recommendation and their own advice to COBR under the

given hypothetical scenario. A mock SAGE (Scientific Advisory Group for Emer-

gencies) meeting was then simulated to coherently review the situation, drawing

attention to important scientific findings and outlining the group advice to be for-

warded to COBR. The co-ordinators were not concerned with the actual advice

stated in this meeting, but rather with the scientific information provided to COBR

(or lack thereof) and the format in which this information was reported. Finally,
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experts were again asked for individual assessments on communication formats dis-

cussed and personal recommendations for improvement. Discussions were facilitated

by Professor Simon French and Professor Jim Smith and were conducted either as

round-table discussions or post-it note discussions (in which each participant writes

single line topic suggestions on paper and the facilitator clusters similar responses

to use as a starting point for further debate).

Pollinator Abundance Workshop

Unlike the ADMLC workshop, the following two elicitation experiences in which

I was involved were heavily immersed in BN creation for components of the Food

Security system (introduced in greater depth in Section 3.1). As in the ADMLC

meeting, I recorded the Pollinator workshop (and subsequent CPI workshop) and

am a co-author on the subsequent apicultural paper detailing the process and re-

sults, Barons et al. [2018a].

In April 2016 the Pollinator Abundance elicitation was hosted by Dr. Mar-

tine Barons (University of Warwick) and facilitated by Dr. Anca Hanea (Univeristy

of Melbourne), one of the co-creators of the IDEA protocol. The aim of the workshop

was to elicit three conditional probability tables concerning pollinator abundance of

three key species dependent on weather, pest and environmental accessibility. The

six focus variables formed a small subset of a sub-network within the Food Security

IDSS Barons et al. [2018b] and were chosen due to the lack of observational data in

the apicultural domain and their importance regarding other variables such as U.K.

crop production.

Preliminary domain knowledge and relevant literature insights were obtained

through a pre-workshop meeting with a key expert. This interchange led to proposed

redefining of select variables, changing ambiguous definitions and setting appropri-

ate quantitative thresholds: also of benefit was receiving crucial recommendations

for potential calibration questions. These calibration questions were taken from un-

published (but accepted) papers in apicultural journals. Twelve experts attended

the three day workshop, so that all three sections of the IDEA protocol could be

fully explored: individual assessments of probabilities, discussion of context and

reasoning, final individual assessments if changes were necessary. For each question,

participants were required to give their lowest plausible, highest plausible and best

guess estimates, with this specific ordering aimed at combating anchoring bias. Cal-

ibration questions were emailed to experts after the workshop and a group skype
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meeting was facilitated to discuss answers, thus ensuring that the three step proto-

col was enacted albeit remotely. Note that for the duration of the workshop we had

no information regarding weights for individual experts. Therefore discussions be-

gan with an overview of anonymised individual responses alongside the unweighted

group response. For a full discussion of proceedings along with probabilities and

final weighted outcomes see our paper Barons et al. [2018a].

The opportunity to liaise with experts prior to the commencement of a work-

shop allowed the team (facilitators, problem-owner and recorders) to quickly focus

on the important variables and features of the model. By asking simple questions in

terms of best and worst case scenarios it was possible to deduce whether relation-

ships between variables were strong enough to warrant inclusion, and also guided

the model creator to select the optimal number of states per variable. This kind

of qualitative discussion is a rough robustness analysis for those who are experi-

enced in creating BNs and is very pertinent to the work discussed in this thesis

which formalises and guides such procedures. Inexperienced BN users may question

which variables are most important to accurately elicit, how many states to include

for each variable and how many ancestors to include in the inferential or temporal

chain it is necessary to include in a model. As a preliminary exercise, it is highly

recommended that users discuss the model with an expert prior to elicitations. Our

work in later chapters aims to provide formal justification to many of these ques-

tions, in scenarios when there are pre-specified target variables.

It is common in most elicitation exercises for experts to query their own

expertise and they can often fixate on the accuracy of their stated probabilities.

To reassure participants that subjective opinions are meaningful and relevant, each

workshop opens with a detailed introduction covering the aims of the project; the

procedure; basic statistical properties; psychological biases which may occur; the

calibration process; assigning weights to individual experts and how results will be

used in future work. To allay fears, results provided in this thesis could be used

in discussion with experts about the robustness in BNs to structural errors and

misspecifications. By presenting the process of bounding the effect errors have on

the variables of interest, we illustrate that the model user can determine the impact

on the utility function if certain stated probabilities were perturbed.
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CPI Workshop

In June 2018 Dr. Martine Barons hosted a workshop with facilitator Willy Aspinall

to ascertain the conditional probabilities between household food security status

dependent on household disposable income and the cost of food. Questions were

aimed at discovering the potential impact on food prices under specified Brexit deal

scenarios or oil price fluctuations. Each food group was selected from the CPI (Con-

sumer Price Index) basket of goods as used by most U.K. statistical agencies.

The workshop followed Cooke’s Classical method in the following stages: seed

questions; presenting the problem; questions of interest; plenary discussion. Note

that the workshop opening differed significantly from the IDEA protocol workshop

by considering the seed questions first; by gaining seed responses this then enabled

the facilitator to weight all experts prior to the questions of interest being asked.

Experts were then given a short presentation on the methodology, highlighting the

difference between global weights and individual weights, and the importance of

giving accurate or precise subjective probabilities. Next, were the questions of in-

terest in which experts were asked to complete their individual assessments with no

discussion or sharing of information; however, if clarity was needed for a definition

or specific context then this was provided to all. The final stage of the workshop was

communicating each anonymised individual assessments, an equal weight response

and a performance weighted response with the use of graphs. This visual representa-

tion of the responses sparked facilitated discussion, with experts sharing knowledge,

expertise and experience. However, unlike in the IDEA protocol, experts were not

permitted to change or revise their earlier estimates in light of this discussion. At

the conclusion of the workshop I felt an opportunity had been missed in not allowing

experts to consider any reviews to their initial responses following these perceptive

dialogues.

It is interesting to note that occasionally in these workshops we obtain a

two-case scenario in which the experts form two opposing schools of thought. This

is normally evident from the graphical representation of assessments. However, by

combining the experts we conglomerate the probabilities into one assessment which

can be within one of the schools of thought or somewhere in between both, dependent

on the expert weights. In scenarios such as this we can utilise our robustness checks

to determine the impact on the variables of interest of using the combined probability

or either of the disjoint schools, and feedback this uncertainty to the experts and

model owner. This will enable the user of the model to make informed decisions,
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founded upon reliable and robust models.

2.3 Discussion

Although we can find a requisite structure for a BN, even the topology of a BN is

not typically known with any certainty. Individuals are uncertain which variables in

the system are crucial and which have little effect on the target variables. Different

parties will have a variety of different opinions and forming a structure to satisfy all

panels involved in the creation of a system can be a daunting task. Usually a broad

BN template is introduced, around which ideas can be shared.

When it comes to specifying the necessary probabilities in CPTs, as well as

the actual uncertainty inherent in the expert’s quoted value, results are often ag-

gregated in a variety of ways to provide a single value. The aggregated probability

really cannot be treated as known. At best the calculated aggregated values are

surrogates for a set of values which are deemed close, in some sense, to the true

quantity. Sensitivity analyses, or robustness studies are therefore a crucial compo-

nent of creating a justifiable and usable BN model. In Bayesian robustness studies,

variation distances should appear to be a clear choice since; models are comparable,

or a close match, if their outputs and recommended decisions are similar. In this

thesis I systematically develop a method which is able to perform this in a flexible

manner throughout the creation process.
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Chapter 3

Applications and Examples

3.1 Food Security IDSS

Since the 2008 and 2011 global food price spikes, there has been a recent surge in the

desire for models that provide decision support for crisis management in the food

sector. The issue of food security and food scarcity affects all nations, and govern-

ment agencies require transparent and scientifically sound decision support systems

to aid policy creation. During the last decade the issue of food security has steadily

become a pressing concern for many governments across the globe. Although many

wealthy nations such as the U.K. are currently classed as having a high level of food

security, the vital challenge of ensuring that the world’s population has adequate

food resources is not restricted to third world countries.

In 2008, the world suffered a crisis of an unprecedented increase of food

prices which saw the Food and Agriculture Organization (FAO) of the United Na-

tions record a cereal food price index of 232.1 compared to a value of 85.8 in 2000 [see

FAO, 2014]. Another unanticipated spike occurred in 2011, creating further crises

in several countries. Since these emergencies, many wealthy nations have begun to

undertake an exploration into the complex study of food scarcity in an attempt to

tackle the problem, which is linked to the ever expanding world population. Al-

though definitions are similar worldwide, the U.K.’s Department for Environment,

Food and Rural Affairs (DEFRA) uses that provided by the United Nations FAO:

“food security is when all people, at all times, have physical and economical access

to sufficient, safe and nutritious food to meet their dietary needs and food prefer-

ences for an active and healthy life” [House of Commons - Environment, Food and

Rural Affairs Committee, 2014]. Within this statement are demands that future
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generations are similarly provided for; implying that food should be produced in an

environmentally sustainable manner and, if possible, in a way which is also resistant

to catastrophes.

There have been numerous attributes linked to the 2008 and 2011 food price

spikes which include, but are not limited to: weather factors affecting crop yields,

rising oil costs impacting cost of production and transportation of goods, policy

measures hindering the flow of food across nation’s borders and as well as any

combination of the above [Meacham, 2014]. Due to the dynamic nature of these

influences, the system is highly volatile implying that the food industry is susceptible

to another food price spike at any time in the immediate future. Governments wish

to determine both if and when another price spike could occur, with the intention

of planning for such a scenario. Decision support systems aim to assist decision

makers by modelling the underlying structure and mechanisms in the system of

interest and recommending appropriate utility functions and strategies to secure

robust and validated advice. The food security model focussed on within this thesis

is an ongoing project developed alongside U.K. local councils to determine which

policies should be funded to obtain the optimum solution for helping those in, or

close to, food poverty in their county. Due to the complex variety of environmental,

economic and social influences, as well as the dynamic nature of food production

and pricing, this model becomes quite complex. However, it fulfils the criteria to be

represented as a Bayesian network [see Barons et al., 2018b].

3.1.1 CPI Food Group BNs

My initial exposure to the field of Food Security in BNs was through a mini-project

modelling the availability of fruit within the U.K. market, see Figure 3.1. The

Consumer Price Index (CPI) is a device introduced by the U.K. Office for National

Statistics to measure the fluctuations in typical expenditure of an average household.

A ‘shopping basket’ of goods and services is categorised into multiple components

and aids in monitoring price inflation. Individual BNs representing categories from

the CPI basket had previously been devised, and my contribution of a fruit BN was

intended to be systematically combined with the other models to create an IDSS

allowing temporal effects in the CPI prices to be quantified. Amalgamating this

information with data on household income would hopefully enable decision makers

to determine all those who could be classed as being close to the threshold of food

poverty.
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Previous Masters students at the University of Warwick have created BNs

for: the U.K. sugar supply [Barons et al., 2014]; the U.K. fish supply [Jones, 2015];

the U.K. meat industry [Murins, 2015]; a feasibility study into the applicability of

BNs to the apple industry [Fenlon]. Work has also been undertaken [Collins, 2016]

to compare these distinct models and establish whether there is a generic template

underlying all the food industries, which would help to construct other food group

BNs, such as dairy products, vegetables, non-alcoholic beverages and so forth, at a

much faster rate.

Pollinator_Abundance

High
Moderate
Low
Very Low

25.0
25.0
25.0
25.0

Global_Fruit_Production

High
Moderate
Low
Very Low

25.0
25.0
25.0
25.0

Climate_Change

Better
No Change
Worse

33.3
33.3
33.3

UK_Fruit_Prices

Very High
High
Moderate
Low

25.0
25.0
25.0
25.0

UK_Adverse_Weather

yes
no

50.0
50.0

Research_GM_Crops

High
Moderate
Low

33.3
33.3
33.3

Laws_and_Regulations

yes
no

50.0
50.0

Oil_and_Energy_Prices

Very High
High
Low
Moderate

25.0
25.0
25.0
25.0

UK_Fruit_Production

High
Moderate
Low
Very Low

25.0
25.0
25.0
25.0

UK_Fruit_Supply

High
Moderate
Low
Very Low

25.0
25.0
25.0
25.0

Global_Fruit_Prices

Very High
High
Moderate
Low

25.0
25.0
25.0
25.0

Pesticides

High
Moderate
Low

33.3
33.3
33.3

Diet_or_Allergies

Moderate
Low
Very Low

33.3
33.3
33.3

Education

yes
no

50.0
50.0

UK_Fruit_Demand

Very High
High
Moderate
Low

25.0
25.0
25.0
25.0

Crop_Disease

yes
no

50.0
50.0

Figure 3.1: A DBN representing the U.K. Fruit Market as created for my OxWaSP
mini-project - structure only.

3.1.2 Overarching Food Security IDSS

The overarching IDSS for the Food Security BN model has been discussed in great

depth in Barons et al. [2018b] and encompasses the entire process underlying food

prices and availability within the U.K. Figure 3.2 maps all relationships between

features, with red arcs denoting dynamic effects. However, it is important to note

that each node in this IDSS represents a sub-network, giving us a hierarchical DBN.
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Figure 3.2: Food Security IDSS, red arcs indicating dynamic relationships, from
Barons et al. [2018b].

Smith et al. [2015] observe that in large complex systems, such as Food Secu-

rity applications, there is no single person who holds all the information required to

form the model. To remedy this problem they introduced the concept of Integrated

Decision Support Systems (as discussed in Section 2.1.2). These enable the user to

segment the model into conditionally independent components and then distribute

each section to the relevant panel of domain experts, for populating the whole sys-

tem. Once completed, a coherent method is given for reformulating the method into

one framework, to deduce scores for different situations.

Smith et al. [2015] also present an application of the same methodology to

the problem of food poverty in Warwickshire County Council, including a discussion

on the scoring rule drawn from the council to help deduce which policies to poten-

tially enforce in the locality for maximum effect. Suppose Y1 denote measures of

educational attainment, Y2 measures of health, Y3 denote measures of social unrest

and Y4 denote cost. Let y = (y1; y2; y3; y4) and define the utility function as

U(y) =
∑
i∈[3]

ki(1− exp(−ciyi)) + k4(a+ by4),
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where the parameters (a; b; c1; c2; c3) were obtained from the relevant experts. There

are now four attributes of interest which we label the target variables in any sub-

sequent analyses of this model. This concentration of attention on a small subset

of the variables enables users to tailor their robustness and sensitivity analyses to

determine what effect errors in the system have on only the aforementioned target

variables, rather than all variables. This is not always the case. In some fields,

such as paternity cases, every variable (representing an individual person) in the

BN could be a target node. Therefore robustness needs to be studied for the whole

system and we tend to find that the more variables included in the model, the less

robust the system. In the types of scenarios we are dealing with in this thesis, the

focus of robustness will be robustness as it applies to a specific set of target vari-

ables. Note that in Figure 3.2 the nodes of interest are grouped within Level 1;

parents are then labelled Level 2; and so forth helping to highlight those attributes

which have direct relationships to these target variables.

3.1.3 Pollinator DBN

The overarching IDSS discussed above is a DBN model with four specific nodes of

interest. Each component of this model can be broken down into more detailed

subnetworks. For example, in Level 2, the variable ‘U.K. Food Costs’ depends on

the availability of food, production costs and so on. Specifically, interest may focus

on access to nutritious and healthy necessities such as fruit and vegetables which

rely heavily on crop yield. Recent news bulletins have highlighted the impact that a

dwindling bee population has on the abundance of crops, hence pollinator abundance

is a critical feature which must be included when ascertaining the relationships

effecting crop production. A sub-subnetwork of the overarching IDSS is that of

the pollinator abundance DBN shown in Figure 3.3. In the OOBN jargon, these

subnetworks and sub-subnetworks can be thought of as objects within the large

overarching IDSS.

30



Figure 3.3: Fragment of the pollinator abundance BN sub-subnetwork, from
Barons et al. [2018b].

A six-node subset of this network has been presented to experts, resulting in

the elicitation of three conditional probability tables as documented in Barons et al.

[2018a] and summarised in Table 3.1. These nodes were chosen due to the lack of

quantitative information available in the apicultural domain and the relationships

elicited are shown in Figure 3.4. For further details of the elicitation process see

Section 2.2.2 of this thesis.

Figure 3.4: The six-node subset of the Pollinator BN elicited from experts. Results
and picture from Barons et al. [2018a]

The subjective probabilities were mathematically aggregated using calibra-

tion responses as shown below, as presented in Barons et al. [2018a]:
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Environment Weather
Varroa Probability abundance is good

Control Honey Bees Other Bees Hover Flies

Supportive Average Good 0.77(0.57, 0.89) 0.73(0.48, 0.87) 0.71(0.48, 0.87)

Supportive Average Poor 0.27(0.16, 0.45) 0.73(0.49, 0.87) 0.71(0.48, 0.87)

Supportive Unusual Good 0.52(0.29, 0.76) 0.47(0.29, 0.73) 0.51(0.32, 0.71)

Supportive Unusual Poor 0.24(0.13, 0.44) 0.47(0.29, 0.73) 0.51(0.32, 0.71)

Unsupportive Average Good 0.38(0.21, 0.59) 0.21(0.11, 0.42) 0.25(0.12, 0.43)

Unsupportive Average Poor 0.14(0.07, 0.29) 0.21(0.11, 0.42) 0.25(0.12, 0.43)

Unsupportive Unusual Good 0.33(0.15, 0.51) 0.18(0.07, 0.41) 0.17(0.06, 0.37)

Unsupportive Unusual Poor 0.11(0.05, 0.23) 0.18(0.07, 0.41) 0.17(0.06, 0.37)

Table 3.1: Best estimate (lowest, highest estimates) elicitation results as presented
in Barons et al. [2018a].

3.2 Native Fish Abundance BN

To illustrate our robustness methods a well-known ecological BN, the Native Fish

example, is analysed as introduced in Nicholson et al. [2010] and discussed further

in Nicholson and Flores [2011]. It is important to note that this BN has been de-

signed specifically for demonstration purposes, notably introducing non-statisticians

to BNs, and is therefore a simplified version of a much more complicated process

containing other domain information robustly expressed through a BN. However,

due to the transparency of variable meanings, relationships and the manageable size

of the BN it is large enough to illustrate our proposed methodology without becom-

ing too complex. Within the initial report there are a number of variations of this

model presented, only Version 2 is considered here due to the discrete nodes and

the manageable size: a 10-node discrete network accompanied by full CPT tables,

where each variable is either binary or three-state.

This BN is used to model the impact on a specific species of native fish

abundance within a specific river, taking into consideration factors such as pesticide

usage on surrounding fields, quantity of rainfall and so forth. The variables are

briefly described in Table 3.2. For a more detailed discussion on assumptions, choice

of node levels and CPT specification see the original technical report Nicholson et al.

[2010].
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Variable Description States

ENSO El Niño Southern Oscillation

changes to South Pacific sea

conditions

{El Niño, Neutral, La

Niña}

Pesticide Use Quantity of pesticide currently used

in the river location

{High, Low}

Drought Conditions Historical indicator of drought sta-

tus in area over past years

{Yes, No}

Annual Rainfall Year-to-date quantity of rainfall {Below Average, Aver-

age, Above Average}
Crop Yield Amount of crops produced locally {High, Low}
Irrigation River water redirected to crop fields {Yes, No}
Tree Condition Health of trees on bank of river {Good, Damaged,

Dead}
Pesticide in River The concentration of pesticide in

the river water

{High, Low}

River Flow Quality and speed of river flow {Good, Poor}
Native Fish Abundance Quantity of native fish residing in

river

{High, Medium, Low}

Table 3.2: Node Names, Descriptions and Levels for the Version 2 Native Fish
example as presented originally in Nicholson et al. [2010].

The structure of the BN can be seen below in Figure 3.5 and our node of

interest is ‘Native Fish Abundance’; therefore interest focuses on structural and

probabilistic variations altering the value of this variable.

Drought ConditionsPesticide Use

Native Fish Abundance

Annual Rainfall

ENSO

Irrigation

River FlowPesticide in river

Crop Yield Tree Condition

Figure 3.5: Native Fish Version 2 BN structure, from Nicholson et al. [2010].
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CPTs for each variable are taken directly from Nicholson et al. [2010] and

are included below for completeness:

Pesticide Use

High Low

0.9 0.1

Drought

Yes No

0.25 0.75

ENSO

El Niño Neutral La Niña

0.2 0.6 0.2

ENSO
P(Rainfall|ENSO)

Below avg. Average Above avg.

El Niño 0.75 0.15 0.10

Neutral 0.10 0.80 0.10

La Niña 0.10 0.15 0.75

P(FishAbundance|
Pesticide River PesticideInRiver, RiverFlow)

in River Flow High Medium Low

High Good 0.20 0.40 0.40

High Poor 0.01 0.10 0.89

Low Good 0.80 0.15 0.05

Low Poor 0.05 0.15 0.80

P(TreeCondition|
Drought Annual Drought, Rainfall)

Conditions Rainfall Good Damaged Dead

Yes Below avg. 0.20 0.60 0.20

Yes Average 0.25 0.60 0.15

Yes Above avg. 0.30 0.60 0.10

No Below avg. 0.70 0.25 0.05

No Average 0.80 0.18 0.02

No Above avg. 0.90 0.09 0.01

P(PesticideInRiver|
Pesticide Annual PesticideUse, Rainfall)

Use Rainfall High Low

High Below avg. 0.30 0.70

High Average 0.60 0.40

High Above avg. 0.80 0.20

Low Below avg. 0.10 0.90

Low Average 0.20 0.80

Low Above avg. 0.30 0.70
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P(Irrigation|
Annual Drought, Rainfall)

Drought Rainfall Yes No

Yes Below avg. 0.01 0.99

Yes Average 0.10 0.90

Yes Above avg. 0.25 0.75

No Below avg. 0.95 0.05

No Average 0.50 0.50

No Above avg. 0.20 0.80

P(RiverFlow|
Annual Pesticide Drought, Rainfall, Irrigation)

Rainfall Drought Use Irrigation High Low

Below avg. Yes High Yes 0.20 0.80

Below avg. Yes High No 0.02 0.98

Below avg. Yes Low Yes 0.15 0.85

Below avg. Yes Low No 0.01 0.99

Below avg. No High Yes 0.50 0.50

Below avg. No High No 0.20 0.80

Below avg. No Low Yes 0.40 0.60

Below avg. No Low No 0.15 0.85

Average Yes High Yes 0.30 0.70

Average Yes High No 0.10 0.90

Average Yes Low Yes 0.25 0.75

Average Yes Low No 0.05 0.95

Average No High Yes 0.80 0.20

Average No High No 0.50 0.50

Average No Low Yes 0.60 0.40

Average No Low No 0.30 0.70

Above avg. Yes High Yes 0.80 0.20

Above avg. Yes High No 0.50 0.50

Above avg. Yes Low Yes 0.60 0.40

Above avg. Yes Low No 0.30 0.70

Above avg. No High Yes 0.99 0.01

Above avg. No High No 0.95 0.05

Above avg. No Low Yes 0.95 0.05

Above avg. No Low No 0.70 .30
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P(RiverFlow|
Annual Drought, Rainfall, Irrigation)

Drought Rainfall Irrigation Good Poor

Yes Below avg. Yes 0.01 0.99

Yes Below avg. No 0.05 0.95

Yes Average Yes 0.05 0.95

Yes Average No 0.15 0.85

Yes Above avg. Yes 0.70 0.30

Yes Above avg. No 0.80 0.20

No Below avg. Yes 0.30 0.70

No Below avg. No 0.40 0.60

No Average Yes 0.50 0.50

No Average No 0.60 0.40

No Above avg. Yes 0.90 0.10

No Above avg. No 0.99 0.01

Although designed for demonstration purposes only, note that the proba-

bilities in these CPTs are typical of those we usually see in an elicitation scenario;

many of the entries are close to neither 0 nor 1. Some rows of the CPTs seem similar

(for example row 2 and row 3 in the River Flow CPT are identical) and it is likely

therefore, that the user might query whether it would be appropriate to simplify

the process in some manner, such as deleting an arc or amalgamating levels. Recall

that in an elicitation procedure with multiple experts contributing beliefs, the prob-

abilities in the CPT are an aggregated value representing the approximate beliefs of

the group. We therefore have uncertainty relating to the discrepancy between each

individuals’ stated quantity and the aggregated quantity. Additionally, we have the

actual uncertainty of the experts.

36



Chapter 4

Total Variation Distance

Robustness studies aim to distinguish between models which can change drastically

when underlying conditions or information is altered. In this thesis we are interested

only in the effect on a pre-specified subset of variables, termed the target variables,

rather than the whole joint density/mass function. To compare the outputs of a

model pre and post perturbation, distance measures can be calculated to quantify

the difference between the joint distributions of the target variables.

There are a multitude of different statistical distances which measure the

discrepancy between two probability distributions. Consideration of the application

often leads to a choice between fewer recommended alternatives. Recall that a

distance metric by definition must fulfil four criteria:

• it must always be non-negative (i.e. d(p, q) ≥ 0),

• the triangle inequality holds (i.e. d(p, q) ≤ d(p, r) + d(r, q)),

• the distance can only be zero if the two densities are equivalent (i.e. d(p, q) =

0⇒ p = q)

• and it must be symmetric (i.e. d(p, q) = d(q, p)).

A general guide for choosing between competing measures has been written by Gibbs

and Su [2002]. Recommendations for selecting a distance measure would begin by

critiquing models previously created in relevant fields, for example recent research

regarding discrete BNs have employed the Kullback-Leibler distance [see Gómez-

Villegas et al., 2013; Leonelli et al., 2017] or the Chan-Darwiche distance [see Chan

and Darwiche, 2005, 2004] which we discuss below. Alternatively, we can opt for the

metric which provides the most logical interpretation for the intended application,
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for example in an expert elicitation setting we must ensure that non-statisticians

can readily understand the definition and their uses. Finally, much has been writ-

ten about the links between different statistical distances using bounds, therefore

allowing us to use alternative metrics (which may be easier to compute) in order to

tighten a bound on our chosen metric.

Although prior work has been done in the BN field using a number of alter-

native distance measures, we argue that for our needs, the total variation distance

has some simple, yet elegant properties which make it a more appropriate choice. In

this section we briefly introduce and review the total variation distance, highlighting

those properties of most importance to our later work.

4.1 Definition

Assume X , (X1, X2, . . . , Xm) is a vector of finite discrete random variables taking

values x = (x1, x2, . . . , xm) ∈ X1 × X2 × · · · × Xm. Let XA (taking values xA ∈
Xi1×Xi2×· · ·×Xir(A)

, XA) denote the subvector ofX comprising those components

with indices i ∈ A, where A =
{
i1, i2, . . . , ir(A)

}
denotes a subset of {1, 2, . . . ,m}.

Let pA, qA denote a hypothesised and an alternative joint mass function on XA.

Let PA(E),QA(E) denote the probability with respect to the mass functions pA, qA

respectively of the set E = Ei1×Ei2×· · ·×Eir(A)
where Eij ⊆ Xij , j = 1, 2, . . . r(A).

Note that most of the theory of BNs concerns inference and propagation on such

events: see e.g. Smith [2010].

Definition 4.1.1. For the discrete case, the (total) variation distance, dV (pA, qA),

is defined by

dV (pA, qA) ,
1

2

∑
xA∈XA

|pA − qA|

The total variation distance is widely used by probabilists as it is relatively

straightforward to prove results due to the definition formula and consequently there

is a plethora of information about its properties. An important aspect of variation

distance when applied in decision support systems, is that for a fixed bounded utility

function U , disparities in its expectations under various decisions are bounded by

linear functions of the total variation distance, see Smith [2010] for more detail and

proofs. Therefore we can deduce that if there is a small variation distance between

two probability distributions then there will be a corresponding small discrepancy

between the expected utilities.
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4.2 General Properties

4.2.1 Links to other distance metrics

A metric related to the total variation distance is the Hellinger distance:

Definition 4.2.1. The Hellinger distance, dH(pA, qA) is defined as

dH(pa, qA) ,
√

1−
∑
x∈XA

√
pAqA.

For all mass functions p and q it is shown [for example see Reiss, 1989] that

d2H(p, q) ≤ dV (p, q) ≤
√

2dH(p, q).

These inequalities demonstrate that when p and q are close in variation distance

then they are close in Hellinger distance and vice versa. This allows us to call these

two distances topologically equivalent. These inequality bounds linking total varia-

tion and Hellinger are important because it is not always possible to write explicit

closed expressions for the total variation distance, whereas for Hellinger distances

we can.

Another popular distance measure is the Kullback-Leibler measure:

Definition 4.2.2. The Kullback-Leibler divergence, dKL(p, q) is discretely defined

as

dKL(p, q) ,
∑
i

p(i)
p(i)

q(i)
.

Note that although often called a distance, the Kullback-Leibler (KL) mea-

sure does not satisfy the symmetry condition. KL is commonly seen in practice

because, similar to the Hellinger distance, it has a closed form property. Leonelli

et al. [2017] review sensitivity analyses in discrete BNs under single or multiple

simultaneous parameter changes, noting that KL is a popular choice when distri-

butions are assumed to be Gaussian. They also argue that the KL divergence can

often become difficult to compute because it belongs to the φ-divergence family.

They advocate an alternative measure which is the final measure we discuss in this

thesis: the Chan-Darwiche measure:

Definition 4.2.3. The Chan-Darwiche distance, dCD(p, q) is discretely defined as

dCD(p, q) , log max
i

q(i)

p(i)
− log min

i

q(i)

p(i)
,
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with 0
0 defined as 1.

Although the Kullback-Leibler and Chan-Darwiche distance have both been

applied in sensitivity analyses of BNs, their suitability can be contended. Firstly,

both of these measures are defined in terms of log probabilities or ratios of prob-

abilities. This implies that the modeller will suffer heavy penalties if they cannot

accurately specify very small probabilities. For example suppose we have the fol-

lowing three probability distributions:

π1 = (0.2, 0.8− 10−8, 10−8),

π2 = (0.2, 0.8− 10−2, 10−2),

π3 = (0.5, 0.5− 10−2, 10−2).

Then we can calculate

dV (π1, π2) = 0.00999999, dCD(π1, π2) = 13.82809,

dV (π2, π3) = 0.3, dCD(π2, π3) = 1.393918.

The variation distance therefore agrees with our intuitive deduction that π2 is more

similar to π1 than π3, whereas the Chan-Darwiche measure has inflated the small

distance between almost identical distributions. This illustrates that the Chan-

Darwiche is not a suitable distance measure when dealing with small probabilities

in conditional probability tables. When using BNs within decision support systems

the modeller must ensure that the BN is transparent and understandable to the user

or the decision-maker will not inherit the model. Unlike the Kullback-Leibler and

the Chan-Darwiche measures, which are defined using log probabilities or ratios of

probabilities, the total variation distance is a more natural measure of discrepancy

which is simple to explain and demonstrate to non-statisticians. Being able to an-

ticipate whether two probability distributions are similar or disparate can speed up

elicitation and CPT population: as discussed later in this thesis, see Section 5.

One extremely important property of variation distances is that if pA and qA

are close, then this not only ensures that expected utilities associated with different

decisions are close, but that whenever they are far apart some expected utilities

functions will be far apart too, Smith and Daneshkhah [2010]. This joint property

is not shared by competing divergences such as Chan-Darwiche or Kullback-Leibler.

This critical, but often overlooked property implies that by choosing to approximate

a specified Bayesian network with another different BN (in a way that minimises

variation distance) will be one of the best approximations if we wish to ensure that
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expected utility evaluations are as close as possible. We use this idea many times

throughout this work.

4.2.2 Convexity of Total Variation

A useful and well-known property of total variation is its convexity under mixing,

however to prove this result we require some simple bounds first. To our knowledge

the properties of total variation distance presented in this section have not yet been

explored, and therefore all lemmas and proofs are our own work.

Let p,q0,q1 be three vectors of mass functions and define

qα , (1− α)q0 + αq1,

for 0 ≤ α ≤ 1.

Lemma 4.2.1.

dV (p,qα) ≤ (1− α)dV (p,q0) + αdV (p,q1).

Proof. Note that for 0 ≤ α ≤ 1,

p = (1− α)p + αp

so that

2dV (p,qα) =
n∑
j=1

|pj − (1− α)q0j − αq1j |

=
n∑
j=1

|(1− α)pj + αpj − (1− α)q0j − αq1j |

=

n∑
j=1

|(1− α)(pj − q0j) + α(pj − q1j)| .

Next note that if (pj − q0j), (pj − q1j) are the same sign then

|(1− α)(pj − q0j) + α(pj − q1j)| = (1− α) |pj − q0j |+ α |pj − q1j | ,
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whilst if (pj − q0j), (pj − q1j) are of different sign then

|(1− α)(pj − q0j) + α(pj − q1j)| ≤ max {(1− α) |pj − q0j | , α |pj − q1j |}

≤ (1− α) |pj − q0j |+ α |pj − q1j | .

It follows that

2dV (p,qα) ≤
n∑
j=1

(1− α) |pj − q0j |+ α |pj − q1j |

= (1− α)

n∑
j=1

|pj − q0j |+ α

n∑
j=1

|pj − q1j |

= 2 {(1− α)dV (p,q0) + αdV (p,q1)} ,

proving the result.

Hence, the variation distance between a mass function p and the mixture of

two others, is less than the mixture of the mass function p and the two extremal

distributions q0,q1. This suggests that distances between two mass functions of re-

ceiving variable functions, is no greater than the distance between the two donating

mass functions, if propagated under the same CPT.

We can now extend this result so that it applies to any finite mixtures: let

π = (π1, π2, . . . , πn) with
∑n

i=1 πi = 1, qi = (qi1, qi2, . . . , qin) and define

qπ ,
n∑
i=1

πiqi.

Lemma 4.2.2.

dV (p,qπ) ≤
n∑
i=1

πidV (p,qi).

Proof. We shall proceed using induction. For the case n = 2 we have qπ = π1q1 +

π2q2 with π1 + π2 = 1 indicating that qπ = (1 − π2)q1 + π2q2. By applying the

previous lemma we know that

dV (p,qπ) ≤ (1− π2)dV (p, q1) + π2dV (p, q2)

= π1dV (p, q1) + π2dV (p, q2)

=

2∑
i=1

πidV (p, qi).
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So this statement certainly holds true for n = 2. Assume that it is true for n = k.

Then note that for the case n = k + 1:

qπ =

k+1∑
i=1

πiqi = π1q1 + π2q2 + . . .+ πkqk + πk+1qk+1

= (π1 + π2 + . . .+ πk)q0 + πk+1qk+1

= (1− πk+1)q0 + πk+1qk+1

= (1− α)q0 + αqk+1,

where α , πk+1 and for i = 1, 2, . . . k, π′i , πi(1− πk+1)
−1, giving

q0 ,
k∑
i=1

π′iqi =
1

1− πk+1

k∑
i=1

πiqi.

By Lemma 4.2.1

dV (p,qπ) ≤ (1− α)dV (p,q0) + αdV (p,qk+1),

where by the inductive hypothesis

dV (p,q0) ≤
k∑
i=1

π′idV (p,qi).

Substituting the inductive hypothesis into our equation gives

dV (p,qπ) ≤
k∑
i=1

(1− α)π′idV (p,qi) + αdV (p,qk+1)

=
k+1∑
i=1

πidV (p,qi)

as required.

Finally, we can look at the convexity of total variation in the following

sense. Let π = (π1, π2, . . . , πn), π′ = (π′1, π
′
2, . . . , π

′
n′), qi = (qi1, qi2, . . . , qin),

pi = (pi1, pi2, . . . , pin′) and define

qπ ,
n∑
i=1

πiqi, pπ′ ,
n′∑
i=1

π′ipi,

then we have the following property
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Lemma 4.2.3 (Convexity of total variation distance).

dV (pπ′ , qπ) ≤
n∑
i=1

n′∑
i′=1

πiπ
′
i′dV (pi′ , qi).

Proof. Here we simply use the symmetry of variation distance. From Lemma 4.2.2

we have that

dV (pπ′ ,qπ) ≤
n∑
i=1

πidV (pπ′ ,qi), (4.1)

but for i = 1, 2, . . . , n

dV (pπ′ ,qi) = dV (qi,pπ′) ≤
n′∑
i′=1

π′idV (qi,pi′) =
n′∑
i′=1

π′idV (pi′ ,qi). (4.2)

Substituting Inequality 4.2 into Inequality 4.2 gives us our result.

In particular we can now say that if we know extremal distributions are small,

then convex linear combinations of these are all small: for example in the process

of marginalisation. This enables us to prove a number of useful results concerning

the contraction of error under learning in a BN: see below.

4.3 Introducing the Diameter

As variation distance is a probability measure it can only be applied to probability

distributions; however, we are interested in comparing two matrices, for example al-

ternative CPTs. In this section we define several new objects which will be pivotal

in later development of these ideas.

Let P and Q, with rows pi, qi respectively (for i = 1, 2, . . . , n), be two n×n′

CPT matrices of a random vector Y taking n′ levels, given another random vector

X taking n levels. For a BN, Y will typically be a random variable whilst X will be

the vector of its parents; nevertheless when studying junction trees it is also helpful

to consider cases when Y is a vector.

There is a natural variation distance we can now define between P and Q:

Definition 4.3.1. Let the variation distance d+V (P,Q) , (d−V (P,Q)), between con-
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ditional probability tables P and Q be defined by

d+V (P,Q) , max
1≤i≤n

dV (pi, qi), d−V (P,Q) , min
1≤i≤n

dV (pi, qi).

Example 4.3.1. As an example let us look at the CPT for the node ‘Tree Condition’

in the Native Fish example introduced in Section 3.2. In the original work (Nicholson

et al. [2010]), the CPT is given as:

Drought Conditions Annual Rainfall
P (TreeCondition|Drought,Rainfall)

Good Damaged Dead

yes below average 0.2 0.6 0.2

yes average 0.25 0.6 0.15

yes above average 0.3 0.6 0.1

no below average 0.7 0.25 0.05

no average 0.8 0.18 0.02

no above average 0.9 0.09 0.01

We now simplify this CPT to matrix form, denoted by P . Let us assume

that this CPT was elicited from experts who disagree on a couple of probabilities

resulting in an alternate CPT, Q:

P =



0.20 0.60 0.20

0.25 0.60 0.15

0.30 0.60 0.10

0.70 0.25 0.05

0.80 0.18 0.02

0.90 0.09 0.01


, Q =



0.20 0.60 0.20

0.30 0.50 0.20

0.30 0.60 0.10

0.65 0.25 0.10

0.80 0.18 0.02

0.90 0.10 0.00


.

We can now compute d+V (P,Q) = max{0, 0.1, 0, 0.05, 0, 0.01} = 0.1 and immediately

deduce that d−V (P,Q) = 0 because some rows of P are equivalent to rows of Q.

Note that if ρ(P ) and ρ(Q) are the vectors of marginal mass functions of Y

and π is a margin on X then for all possible margins π

dV (ρ(P ),ρ(Q)) ≤ d+V (P,Q) ,

where

dV (ρ(P ),ρ(Q)) = d+V (P,Q)
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whenever π puts all its mass on atoms indexed by i+ where

i+ , arg max
1≤i≤n

dV (pi, qi).

Similarly if ρ(P ),ρ(Q) are the vectors of marginal mass functions of Y and π is a

margin on X then for all possible margins π

dV (ρ(P ),ρ(Q)) ≥ d−V (P,Q) ,

where

dV (ρ(P ),ρ(Q)) = d−V (P,Q)

whenever π puts all its mass on an atom or atoms indexed by i− where

i− , arg min
1≤i≤n

dV (pi, qi).

Thus we have that for all possible margins π

d−V (P,Q) ≤ dV (ρ(P ),ρ(Q)) ≤ d+V (P,Q) .

This therefore gives rather coarse, but quick bounds requiring only comparisons of

the pairs of individual rows of the perturbed CPT.

Previously, we pointed out that when eliciting a BN we first elicit hypothe-

ses of conditional independence and only then enhance this with a full probability

specification through the numerical values in its CPTs. So we next consider robust-

ness measures associated with small deviations from conditional independence. The

definition we present below is, to our knowledge, a new construction using variation

distance on CPTs to determine the measure of dependence between variables.

Definition 4.3.2. The diameter, d+(P ), the I-local diameter dI+(P ) and the dis-
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tinctiveness d−(P ) of a stochastic matrix P , {pij} are respectively defined as

d+(P ) =
1

2
max

1≤i,i′≤n


n′∑
j=1

∣∣pij − pi′j∣∣
 ,

dI+(P ) =
1

2
max
i,i′∈I


n′∑
j=1

∣∣pij − pi′j∣∣
 ,

d−(P ) =
1

2
min

1≤i 6=i′≤n


n′∑
j=1

∣∣pij − pi′j∣∣
 .

Example 4.3.2. We can now calculate the internal diameter of the CPT for the

node ‘Tree Condition’ which is conditional upon the values of ‘Drought’ and ‘Rain-

fall’ as given in Example 4.3.1. We can directly calculate d+(P ) = 0.7 which is the

distance between row 1 and row 6.

Using all the CPTs as given in Nicholson and Flores [2011] we can calculate

the diameter of each node, as summarised in Table 4.1. We note that these values of

the diameter are typical of the values we have obtained in other elicitation exercises.

Node Diameter Node Diameter

Annual Rainfall 0.65 Crop Yield 0.98

River Flow 0.98 Irrigation 0.94

Pesticide in River 0.7 Tree Condition 0.7

Native Fish Abundance 0.84

Table 4.1: Diameters of each CPT in the Native Fish BN.

For the elicitation workshop detailed in Barons et al. [2018a], three CPTs

from Figure 3.3 were elicited from experts to determine pollinator abundance un-

der specific conditions regarding pest control, environment suitability and weather

anomalies (see Table 3.1). The diameter of each of these CPTs can easily be calcu-

lated to obtain the values in Table 4.2:
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Honey Bee Abundance 0.66

Other Bee Abundance 0.55

Other Pollinator Abundance 0.54

Table 4.2: Diameters of each CPT in Pollinator sub-network BN.

The diameter of a conditional probability table P , can be thought of as a

measure of the dependence of Y on X. When Y qX, all rows of P will be equal

and so d+(P ) = 0. It is easy to check that whenever some non-trivial function τ(Y )

of Y can be written as a deterministic function of X then d+(P ) = 1, its maximum

value. Hence, if there is only a weak relationship between Y and X, in the sense

that changing the different levels of X impacts only slightly on the conditional mass

function of Y , then d+(P ) l 0.

The I-local diameter has the same property; this time it is conditional on

X taking values only in the set of levels I, useful when comparing the efficacy of

deleting a parent in a BN or when combining a collection of rows of the CPT/levels

of X into a single entry: see following Section.

The distinctiveness, d−(P ), is a measure of how little different levels of X

can impact on Y . Thus if d−(P ) = 0 then two rows of P must be identical. So there

is a non invertible function τ(X) of X which forecasts Y as well as X, i.e. for which

Y qX|τ(X). On the other hand when d−(P ) = 1 every pair of possible levels i, i′

of X for some non-trivial function τii′(Y ) of Y , can be written as a deterministic

function of these two values and so critically distinguishes two different features of

the response vector.

Definition 4.3.3. Let the superbound, d∗V (P,Q), between stochastic matrices P

and Q be defined by

d∗V (P,Q) , max
1≤i,i′≤n

dV (pi, qi′) ≤ 1.

Here we compare variation distances between each row of P and possibly

different rows of Q before selecting the largest difference. Note by definition and

the triangle inequality that

d+V (P,Q) ≤ d∗V (P,Q) ≤ max
{
d+V (P,Q) + max

{
d+(P ), d+(Q)

}
, 1
}
. (4.3)
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Example 4.3.3. Let us compare the two alternative CPTs, P and Q, for the ‘Tree

Condition’ node as introduced in Example 4.3.1. The value of d∗V (P,Q) can be

calculated directly from the total variation distance between every possible pairwise

combination of rows in P and Q. For this example d∗V (P,Q) = 0.7 corresponding to

dV (p1, q6) and dV (p6, q1).

Let PA|B, QA|B represent respectively, the conditional probability mass func-

tions of XA| XB under the hypothesis and alternative given XB, where without

loss we can assume that A and B are disjoint. Notice that these can be seen as

CPTs whose rows correspond to the different values of the vector xB. Then under

our definitions of transition matrices above whenever XAq XB

d−V (PA|B, QA|B) = d+V (PA|B, QA|B) = d∗V (PA|B, QA|B) = dV (pA, qA).

This arises as XA qXB implies that all rows in the CPT matrix are equal

to each other and so equal to the corresponding margin on XA. Thus we see

that standard analyses that elicit irrelevances or independences, translate here to

equations on variation distance. We will see later in Section 5 that this enables us

to study the implications of models where the embedded conditional independences

are only approximately true.

Definition 4.3.4. The stochastic variation matrix D+(P ) = {D+(i, j)}1≤i,j≤n is

the n × n symmetric matrix whose entries are the variation distances between the

different rows of the matrix P .

Note that by definition the leading diagonal of D+(P ) is 0 because dV (p, p) =

0. Additionally, D+(P ) will have a maximum entry of d+(P ).

4.3.1 Diameter Bounds

We now present some basic results about diameters of transition matrices between

two vectors of random variables under various marginalisations and conditioning of

the subvectors. These bounds are particularly helpful when moving from a BN to a

junction tree.

Let X = (X1,X2) and Y = (Y 1,Y 2). Let PY |X be the transition matrix

associated with the conditional distribution of Y |X and let PY |X1
be the same

conditional distribution Y |X1, but now with X2 marginalised out. Denote their

respective diameters by d+(PY |X), (d+(PY |X1
)).

49



Lemma 4.3.1.

d+(PY |X1
) ≤ d+(PY |X)

Proof. This is immediate since each of the rows of PY |X1
is a weighted average (the

weights on row labelled x1 corresponding to the masses on X2|X1 = x1).

Note that this bound is tight in the sense that it is attained for a particular

distribution on X2|X1 = x1. Suppose d+(PY |X) is attained when we compare the

row (x1,x2) with (x′1,x
′
2) and

P (X2 = x2|X1 = x1) = 1 and P
(
X2 = x′2|X1 = x′1

)
= 1

then it is easy to check that d+(PY |X1
) ≤ d+(PY |X).

Lemma 4.3.2. Using the obvious notation, for any two joint probability mass func-

tions pX,Y (x,y), p′X,Y (x,y) over X,Y

dV (pX,Y (x,y), p′X,Y (x,y)) ≤ inf

{
dV (pX(x), p′X(x)) + sup

x
dV (pY |X(y|x), p′Y |X(y|x)), 1

}
.

Proof. Note

2dV (pX,Y (x,y), p′X,Y (x,y)) ,
∑
x,y

∣∣pX,Y (x,y)− p′X,Y (x,y)
∣∣

,
∑
x,y

∣∣∣pY |X(y|x)pX(x)− p′Y |X(y|x)p′X(x)
∣∣∣

Let r(y|x) , p′Y |X(y|x)− pY |X(y|x). Then

2dV (pX,Y (x,y), p′X,Y (x,y))

=
∑
x,y

∣∣pY |X(y|x)
(
pX(x)− p′X(x)

)
+ r(y|x)p′X(x)

∣∣
≤

∑
x

{∣∣pX(x)− p′X(x)
∣∣(∑

y

pY |X(y|x)

)}
+
∑
x,y

p′X(x) |r(y|x)|

=
∑
x

∣∣pX(x)− p′X(x)
∣∣+
∑
x

{
p′X(x)

∑
y

|r(y|x)|

}
≤

∑
x

∣∣pX(x)− p′X(x)
∣∣+
∑
y

sup |r(y|x)|

, 2dV (pX(x), p′X(x)) + 2 sup
x
dV (pY |X(y|x), p′Y |X(y|x)).

The result follows, since total variation (dV (·, ·)) is by definition bounded by 1.
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This simple result leads to another useful result.

Lemma 4.3.3. d+(PY |X) ≤ inf
{
d+(PY 1|X) + d+(PY 2|X,Y 1

), 1
}

Proof. From the Lemma above we have for all values of x, x′

dV (pY |X(y1,y2|x), pY |X(y1,y2|x′))

≤ dV (pY 1|X=x(y1|x), pY 1|X=x(y1|x′))

+ sup
(y1,x),(y′1,x′)

dV (pY 2|Y 1,X(y2|y1,x), pY 2|Y 1,X(y2|y1,x′)).

However, by definition

d+(PY 1|X) = sup
x,x′

{
dV (pY 1|X=x(y1|x), pY 1|X=x(y1|x′)

}
d+(PY 2|X,Y 1

) = sup
(y1,x),(y′1,x′)

{
dV (pY 2|Y 1,X(y2|y1,x), pY 2|Y 1,X(y2|y1,x′)

}
.

Hence, the result follows.

4.4 Discussion

In this section we have argued that the total variation distance is a much more

suitable metric for the study of robustness in BNs than the alternatives currently in

employment. Although difficult to write explicitly, the properties of total variation

(such as its convexity) combined with a pre-specified set of target variables enable

BN modellers to confine attention to a subset of the model.

We have introduced new definitions to quantify conditional independence re-

lationships between variables in a BN, underpinned by the total variation distance.

These simple, yet powerful measurements are later employed to quantify inferential

errors in ancestral chains and structural misspecifications of a given model, see Sec-

tion 5.
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Chapter 5

Robustness in BNs

Both for purposes of elicitation and inference, an important component of modelling

with BNs is to develop a meaningful understanding of how sensitive the critical fea-

tures of a particular BN might be to the misspecification of its inputs. Specifically,

we are interested in the sensitivity of the chosen target variables to errors in the

topology of the BN or row probability perturbations within given CPTs. When time

resources are limited, then such issues impact directly on the permissible level of

complexity of the BN model as well as the quantity and quality of the elicitations

undertaken to ascertain various components. Currently most sensitivity analyses

are performed once the whole BN has been compiled and are based on Kullback-

Leibler information measures or Chan-Darwiche distances. Instead, we argue that

robustness methods based on the familiar measure of total variation distance, pro-

vide simple and more useful bounds on robustness in BNs. These bounds also have

the added bonus of being both formally justifiable and transparent, which is essen-

tial in order for a BN model to be inherited by the decision maker.

When engaging in the two stage process of structurally engineering and prob-

abilistically evaluating the model, the analyst needs to be fully aware of precisely

which inputs might be critical to the inferences made through the BN, see Albrecht

et al. [2014]. One critical element of an elicitation or statistical estimation of the

graph is to ensure these critical features are specified as accurately as possible. This

is particularly important when elicitation or estimation is resource limited, as is usu-

ally the case in practice. The client can then optimise their allocation of resources

to concentrate on eliciting those elements of the model whose misspecification might

most influence the required outputs.
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To this end the practitioner, prompted by the functionality of various soft-

ware, is progressively being encouraged to develop awareness of the robustness in

a chosen model (to its inputs) by performing a one-at-a-time numerical sensitivity

analysis of the preliminary BN. Here, various different forms of numerical contam-

inations of the model are investigated, where effects are usually measured in terms

of mutual information or Kullback-Leibler divergence, see Albrecht et al. [2014];

Friedman et al. [1997]; Nicholson and Jitnah [1998]; Zaragoza et al. [2011]. This

type of study is obviously extremely useful, but on the other hand it has draw-

backs. Firstly, it relies on the chosen enacted perturbations covering the whole

space to discover all those features within the system whose impact on the final

analysis is most dramatic. This becomes more challenging as models become even

moderately large. Furthermore, even if such a search is performed systematically,

the impacts, as measured by mutual information, are not directly relevant to the

impact on ensuing decisions, see below for further clarification. Secondly, such an

analysis must perforce be performed after the model has been fully specified. This

means that the whole probability model is needed before the sensitivity analysis can

be performed. One recent attempt to provide such assessments after the structural

elicitation phase, but before the probabilistic population is through the use of dis-

tance weighted sensitivity measures [see Albrecht et al., 2014]. However, these do

not fit well with mutual information measures and have a level of arbitrariness in

the choice of weight function needed to use this model.

Over recent years more formal and systematic robustness analyses have ap-

peared. Robustness in probability models has been studied by statisticians for many

decades, and specific methodology for Bayesian networks has also been recently de-

veloped: Coupé and van der Gaag [2002], Gómez-Villegas et al. [2013], Laskey [1995],

O’Neill [2009], Renooij [2010]. These fall into two main streams: local robustness

studies and global studies. In the former, a chosen probability model is perturbed

using a finite parametrised modification. The latter, termed global analyses, do

not rely on perturbations lying within a given parametric family [O’Neill, 2009;

Smith and Daneshkhah, 2010]. Here instead, an appropriate divergence measure is

applied to first specify an appropriate neighbourhood system around each model.

Bounds are then calculated for the maximum deviation in the inference that could

be achieved by a model in this neighbourhood. If this deviation is small then the

model is deemed to be robust [Gustafson and Wasserman, 1995; Smith and Rigat,

2012]. Both types of robustness analysis have been applied to BNs, for example see

Smith and Daneshkhah [2010]. In this work we focus solely on global robustness
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studies and apply these mostly to discrete marginal tables.

Thus far, global robustness studies in BNs have in the main, centred around

the analysis of how robust a model might be to perturbations with respect to

Kullback-Leibler (KL) or Chan-Darwiche divergences. Both of these divergence

measures benefit from some helpful technical properties which allow various mea-

sures of dependence to be written as explicit formulae. For details of some of these

see Chan and Darwiche [2005], Gómez-Villegas et al. [2013], Leonelli et al. [2017].

These measures are specified in terms of the closeness of log probabilities in the KL

case or equivalently ratios of probabilities in the Chan-Darwiche instance, therefore

both have the disadvantage that they depend very heavily on the modeller being

able to specify small probabilities accurately. It is well documented that it is pre-

cisely these small probabilities that typically exhibit the largest elicitation error [see

O’Hagan et al., 2006; Smith, 2010]. Furthermore, when BNs are learned from data,

any associated small probabilities are difficult to reliably estimate from data, be-

cause almost by definition we will see very few of these events in any training set

we use to estimate a model.

In many circumstances (especially in decision analysis) the misspecification

of the probabilities of improbable events has only a small impact on the required

outputs of a decision analysis: see results below for confirmation (Section 5.1). For

the purposes of the two stage process described above, the Kullback-Leibler and

Chan-Darwiche divergence measures are hardly ideal as they can be highly sensitive

to small misspecification.

We demonstrate that an alternative robustness measure based on a more

conventional divergence measure (widely used in probability theory and stochas-

tic analysis), which is the total variation distance, has some serious practical and

theoretical advantages over its main alternatives. Although it is often difficult to

derive explicit formulae for the impacts of deviation in variation, it is nevertheless

straightforward to effectively bound such deviations in variation distance. Deviation

in variation corresponds much more closely to the types of error we would envisage

experiencing within either an elicitation exercise or through misestimation. Perhaps

the most important aspect is that variation distance is a fundamental property, so

that for a fixed bounded utility function U , disparities in its expectations under

various decisions (induced by an approximation) are simply bounded by linear func-

tions of the total variation in the probability distributions of the attributes of U ,
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Smith [2010]. Note that in a BN, these attributes will typically constitute a small

subset of the totality of its variables, so small variation distances (between prob-

ability mass functions) on these small subsets translate directly into small effects

in the pertinent expected utilities. Conversely, large deviations translate into large

effects that may have a greater impact on some specification of a utility. These are

properties not shared in totality by the two alternative measures discussed above.

The study of the robustness in BNs using variation distances (where we focus on the

impact of misspecification on the small subset of attribute variables) can therefore

be extremely useful.

The bounds we present in this chapter often depend upon a univariate mea-

sure of strength which we introduced in Section 4.3; the diameter. Recall that

this is a function of the variation distance which measures the dependence along

the edge of a BN and is reasonably quick to calculate. Combining this measure

of independence with the junction tree representation of our given BN enables us

to determine the sequential effect of misspecification of one margin (or conditional

probability) on another within a simple path. We demonstrate this impact can be

bounded explicitly in terms of a simple function of the extreme entries of the CPTs

within the BN. These results have the useful spin-off that CPTs do not necessarily

need to be fully elicited before the robustness analysis can take place. In Section

5.2 we show how these explicit measures of robustness can be applied both to deter-

mine the effect of approximating simplifications on the topology of the BN and to

decide the number of levels into which to categorise each variable. We demonstrate

how (using total variation), sensitivity analyses can be performed in a harmonious

composite way that directly bounds the impact on decision making of various types

of expedient approximations. Finally, in Section 5.5 we provide some guidelines to

best employ our results in practice and discuss some enhancements of our strategy.

We demonstrate that such methods can be used within the process of building a

BN, allowing the creator to adapt priorities as the model is being formulated.

5.1 Variation and Mixtures of CPTs

With our new definitions of diameter we can now use total variation distance to

prove the following result that enables us to track a perturbation in a marginal

probability through a given BN:

Theorem 5.1.1. Let π1 and π2 be two possible margins of vectors X and Y of

random variables and suppose that P (Y |X) is the (shared) CPT of the concatenated
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levels of the conditional Y |X and that ρ1 and ρ2 are the margins of Y . Then

dV (ρ1,ρ2) ≤ d+(P (Y |X))dV (π1,π2).

Proof. For i = 1, 2, . . . , n let π1 ∧ π2 , mini(π1(i), π2(i)) and let us define

π1∧2 =
π1 ∧ π2∑
(π1 ∧ π2)

=
π1 ∧ π2
β

.

So by definition 1− β = dV (π1, π2).

Let

π′1 = dV (π1, (π1 ∧ π2)),

π′2 = dV (π2, (π1 ∧ π2)).

However, we would like π′1 and π′2 to be densities, so let:

π∗1 =
π′1∑
π′1

=
π′1

1− β
,

π∗2 =
π′2∑
π′2

=
π′2

1− β
.

We know that π1 = (π1 ∧ π2) + π′1 and a similar statement holds for π2, however we

can now rewrite π1 and π2 as a sum of two densities:

π1 = βπ1∧2 + (1− β)π∗1,

π2 = βπ1∧2 + (1− β)π∗2.

Note that

dV (ρ1, ρ2) = dV (π1P, π2P )

= dV

(
[βπ1∧2 + (1− β)π∗1]P, [βπ1∧2 + (1− β)π∗2]P

)
≤ (1− β)dV (π∗1P, π

∗
2P ).

Now consider π∗1P, π
∗
2P as different mixture mass functions on Y given that X takes

each of its n values, i.e. the different rows pi of P . Let π∗1 = (π∗11, π
∗
12, . . . , π

∗
1n),

π∗2 = (π∗21, π
∗
22, . . . , π

∗
2n) and the rows of P be pi = (pi1, pi2, . . . , pin). Note that by
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simple matrix multiplication on the entries we can now write

π∗1P = ((π∗11p11 + π∗12p21 + . . .+ π1npn1) , (π
∗
11p12 + π∗12p22 + . . .+ π1npn2) , . . . ,

(π∗11p1n + π∗12p2n + . . .+ π1npnn))

= π∗11 (p11, p12, . . . , p1n) + π∗12 (p21, p22, . . . , p2n) + . . .+ πin (pn1, pn2, . . . , pnn)

= π∗11p1 + π∗12p2 + . . .+ π∗1npn

=

n∑
i=1

π∗1ipi.

Similarly,

π∗2P =
n∑
i=1

π∗2ipi

therefore we can employ Lemma 4.2.3:

dV (ρ1, ρ2) ≤ (1− β)dV (π∗1P, π
∗
2P )

≤ (1− β)
n∑
i=1

n∑
i′=1

π∗1iπ
∗
2i′dV (pi′ ,pi)

= (1− β)π1D
+(P )πT2 .

Therefore, by definition of the diameter d+(P )

dV (ρ1, ρ2) ≤ (1− β)

n∑
i=1

n∑
i′=1

π∗1iπ
∗
2i′d

+(P )

= (1− β)d+(P )

= d+(P )dV (π1, π2).

This property is particularly useful since it demonstrates that if P (Y |X)

has been specified accurately but that the margin π1 is uncertain then our marginal

beliefs about Y are no more uncertain than those about X, because by definition

d+(P (Y |X)) ≤ 1. More importantly we have a bound on how much our uncertainty,

measured in terms of total variation distance, reduces with respect to d+(P (Y |X))

– how far Y is from independence of X. For example, if Y contained the set of

attributes of a utility function whilst X were a vector of variables simply informing

Y , then the theorem above gives us a bound of the effect a misspecification of the
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margin of X might have on the margin of interest Y . One fairly simple consequence

of this theorem is that ifXqY then d+(P (Y |X)) = 0; therefore, misspecification of

the mass function of X will have no effect on the Y margin. We use this result more

subtly in later bounds by transferring our BN into a junction tree representation in

order to deduce sequential effects in long paths by using products of specific CPT

diameters.

Example 5.1.1. Let us once again look at the CPT of ‘Tree Condition’, P , which

had a binary parent ‘Drought’ and a three-state parent ‘Rainfall’. The joint dis-

tribution can be calculated from CPTs as π1 = (0.05, 0.175, 0.025, 0.15, 0.525, 0.075);

however, suppose we were wondering whether π2 = (0.05, 0.275, 0.03, 0.15, 0.4, 0.095)

was a more appropriate margin. We have previously determined that d+(P ) = 0.7

and can calculate dV (π1,π2) = 0.125 allowing us to directly apply Theorem 5.1.1:

dV (ρ1,ρ2) ≤ d+(P (Y |X))dV (π1,π2) = 0.7× 0.125

= 0.0875

We can of course calculate this margin exactly as dV (ρ1,ρ2) = 0.0555. However,

if we knew only the extreme entries of P then we could still calculate our bound

which is of the right order of magnitude: a property we have found to be typical of

the types of CPTs we commonly elicit.

5.1.1 Global Bound Approximations

Now that we have looked at the simple case of perturbing a margin only, we move

on to the study cases when not only a margin π1 of X is perturbed to π2, but also

the conditional mass functions of Y |X are simultaneously perturbed. Below we for-

mulate variation bounds on the consequent perturbation on the margins ρ1,ρ2 of Y .

From the proof of Theorem 5.1.1 we noted that we can write:

π1 = (1− β)π∗1 + βπ1∧2,

π2 = (1− β)π∗2 + βπ1∧2,

where (1 − β) = dV (π1,π2) and where without loss we can assume the mixing

process is shared by the two mass functions, so points are drawn either from π1∧2

or alternatively something drawn from either π∗1 or π∗2. Using the same argument
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as for when P1 = P2

dV (ρ1,ρ2) = dV (π1P1,π2P2)

= dV (((1− β)π∗1 + βπ1∧2)P1, ((1− β)π∗2 + βπ1∧2)P2)

≤ βdV (π1∧2P1,π1∧2P2) + (1− β)dV (π∗1P1,π
∗
2P2)

≤ βd+V (P1, P2) + (1− β)d∗V (P1, P2) .

We can then show

dV (ρ1,ρ2) ≤ d+V (P1, P2) + dV (π1,π2) d
∗
V (P1, P2) . (5.1)

Note in particular that

dV (ρ1,ρ2) ≤ λdV (π1,π2) ,

where

λ ,
d+V (P1, P2)

dV (π1,π2)
+ d∗V (P1, P2) ,

and if

λ < 1⇔ dV (π1,π2) >
d+V (P1, P2)

1− d∗V (P1, P2)
.

Using Equation 4.3 we have that

dV (ρ1,ρ2) ≤ {1 + dV (π1,π2)} d+V (P1, P2)+dV (π1,π2) max {d(P1), d(P2)} . (5.2)

5.2 Approximations of the CPTs in a known BN

Suppose all clients are content that the conditional independences in a given BN are

valid. Without changing the random variables in the system, we are now interested

in finding ways of approximating the graphical model and refining initial probability

estimates within this given BN.

The simplest BN to consider is the decomposable BN, i.e. a BN in which all

parents of a given child node are married. When a graph is decomposable then we

can always find a (non-unique) junction tree which is usually used to guide prob-

ability propagation. Here we shall be using the junction tree to inform robustness

judgements instead.
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5.2.1 Diminishing tree propagated approximation error

The following result explains that when using standard propagation algorithms to

update a clique margin C1, the effect on subsequent clique margins becomes pro-

gressively weaker as the updated cliques become increasingly more remote from C1.

Furthermore the extent of this deviation can be measured, in the sense that it can

be bounded above. This enables us to bound the potential error of the focus vari-

able distributions, which may be induced by misspecifications within the structure

or even CPT inaccuracies. This is particularly useful when we elicit a large BN and

want to know how far away from target nodes we need to elicit the corresponding

CPTs accurately.

Theorem 5.2.1. Let (C1, C2, C3, . . . , Ck) be the minimal sequence of cliques with

associated separators (S2, S3, . . . , Sk). Let each undirected edge of the marginalised

junction tree be denoted by δi for i = 1, 2, . . . , k; the diameter of the conditional prob-

ability table between the two sequential nodes. For example δ1 = d+(P (S2|C1)), δ2 =

d+(P (S3|S2)), . . . , δk = d+(P (Ck|Sk)). Then

dV (pCk
(xCk

), qCk
(xCk

)) ≤ dV (pC1(xC1), qC1(xC1))
k∏
i=1

δi.

Proof. By Lemma 2.1.1 we can rewrite our junction tree to marginalise over internal

cliques leaving us with the graphical structure:

C1 S2 S3 ... Sk Ck

By successive application of Theorem 5.1.1:

dV (pCk
(xCk

), qCk
(xCk

)) ≤ d+(P (Ck|Sk))dV (pSk
(xSk

), qSk
(xSk

))

≤ d+(P (Ck|Sk))d+(P (Sk|Sk−1))dV (pSk−1
(xSk−1

), qSk−1
(xSk−1

))

≤ d+(P (Ck|Sk))d+(P (Sk|Sk−1)) . . .

. . . d+(P (S3|S2))d+(P (S2|C1))dV (pC1(xC1), qC1(xC1))

=

(
k∏
i=1

δi

)
dV (pC1(xC1), qC1(xC1)).

Next we define the impact of one clique upon another in order to ascertain

the diminishing effect of errors downstream in the causal chain.
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Definition 5.2.1. Define the impact I(Ck|C1) of C1 on Ck to be
k∏
i=1

δi.

The impact of one clique on another is a simple measure of the maximum

possible influence the misspecifation of one set of clique probabilities could have on

another as measured by a bound on the variation distance. Note that in general

we can label the edges of a junction tree (which are also labelled by a separator

between adjacent cliques) Ci and Cj by two diameters δi→j and δj→i one measuring

the impact of i on j and the other the impact of j on i. Note that these two impacts

are not necessarily equal, and are often very different. However, in the contexts we

consider here (where our primary interest concerns the robustness in the margins

of an identified subset of attributes) we usually need to focus on propagation in a

single direction. Furthermore, if construction of the BN is consistent with a conjec-

tured causal directionality in mind, then this directionality often tends to have the

attributes at the end of the causal chain. Ergo, the diameters we need can often be

calculated directly from the diameter of the elicited CPTs of the BN.

Example 5.2.1. The separators of the Native Fish example are too simple to ef-

fectively demonstrate the impact quantity defined above. As a substitute suppose

we have the following BN:

X1 X2

X3

X4 X5

X6

X7

X8

X9X10

Figure 5.1: BN example to determine Impact of cliques.

Let us label the cliques of Figure 5.1 to satisfy the running intersection

property:

C1 = {X1, X2}, C2 = {X2, X3, X4}, C3 = {X4, X5},
C4 = {X5, X6, X7}, C5 = {X6, X7, X8}, C6 = {X3, X10}, C7 = {X7, X9}
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Giving us separators:

S2 = {X2}, S3 = {X4}, S4 = {X5}, S5 = {X6, X7}
S6 = C2 ∩ C6 = {X3}, S7 = C5 ∩ C7 = {X7}

Suppose we wish to determine the effect on X9 if we perturb X1. First draw

the ancestral graph of nodes X1 and X9, shown below in Figure 5.2:

X1 X2

X3

X4 X5

X7

X9

Figure 5.2: Ancestral graph of Figure 5.1 for nodes X1 and X9, each dashed box
represents a clique.

Giving us the following equation for the impact (which is simply the product

of diameters of each separator conditional on the previous previous separators):

I(X9|C1) = p(X2|X1)p(X4|X2)p(X5|X4)p(X7|X5)p(X9|X7)

≤ d+(X2)d
+(X4)d

+(X5)d
+(X7)d

+(X9)

Extending this further, we can determine the impact on cliques X6 and X7

simultaneously, if we perturb both X1 and X2. Following the same steps of creating

cliques and separators for the ancestral graph of these nodes, the impact is given as:

I(X6, X7|X1, X2) = p(X2|X1)p(X4|X2)p(X5|X4)p(X6, X7|X5).

This can be written in terms of the original BN CPTs using Lemma 4.3.3, as some

separators contain more than one node:

I(X6, X7|X1, X2) ≤ d+(X2)d
+(X4)d

+(X5)

[
inf{d+(X6|X5) + d+(X7|, X6, X5), 1}

]
≤ d+(X2)d

+(X4)d
+(X5)

[
inf{d+(X6|X5) + d+(X7|, X5), 1}

]
There are various practical corollaries to the simple theorem above:
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Corollary 5.2.1.1. If G is decomposable and Ci lies on the minimal sequence be-

tween C1 and Ck and if all attributes are in Ck then the probabilities of Ci have a

higher influence on Ck than those of C1.

Note that we can always embed a BN in a decomposable BN by triangulisa-

tion e.g. see Cowell et al. [1999] and Smith [2010]. Therefore these bounds can be

applied to any BN so long as it has been pre-processed to ensure that it is decom-

posable. We recommend following the construction below to ensure that your BN

is in a suitable format to apply Theorem 5.2.1:

• Begin with a BN G, the diameters of whose CPTs have been provisionally

elicited.

• Identify a donating variable or complete vector Xi of G and the vector of focus

Xk.

• Find the ancestral set of Xi,Xk in G.

• Construct the ancestral graph, A, which has variables (X1, X2, . . . , Xn) where

the order of these vertices are chosen compatible with G.

• Create a triangularised version, A∗, of A and find its junction tree J . Denote

the clique containing Xi as C1 and the clique containing Xk, Ck.

• Find the single path J∗ starting from clique C1 to Ck labelling the cliques in

order C1, C2, . . . , Ck.

• Remove all variables that are not in one of these cliques.

Note that these influences provide a very useful tool for prioritisation of the

elicitation in a BN. For example if we can obtain estimates of influence across a

junction tree (either from direct elicitation of diameter or alternatively after having

performed a preliminary coarse elicitation of the corresponding CPTs) then we can

use these influences to identify which of those CPTs to refine. For example suppose

all attributes consistently lie in a single clique. We can then follow the simple

guidelines:

• We first refine the elicitation of the CPTs whose attributes and parents lie in

this clique,

• We then elicit the CPTs associated with parents/separators with the most

influence,
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• Using the method above, we decide on the basis of influence whether to refine

the CPTs associated with other parents or parents of parents.

5.3 Approximations associated with a general BN

In a junction tree each vector has just a single parent within a given compatible

ordering. Of course in the case of a BN this is no longer necessarily true. We would

still like to find the bound on the impact measure of one variable on another and so

annotate each of its directed edges with a value between zero and one which reflects

this. The result below gives us a way of coding this impact in a useful way.

Suppose Y , taking values y ∈ Y, is potentially dependent on k vectors

X = (X1,X2, . . .Xk) taking values x = (x1,x2, . . . ,xk) ∈ X = X1×X2×· · ·×Xk.
For j = 1, 2, . . . , k let xĵ ∈ Xĵ , X{1,2,...,k}\{j} be a vector of values of other variables

X ĵ . Let the CPT of Y given X be P so that its diameter is given by

d+(P ) =
1

2
max
x,x′∈X

∑
y∈Y

∣∣pxy − px′y∣∣
 .

Definition 5.3.1. Let the diameter d+j (P ) of Y to Xj be defined by

d+j (P ) =
1

2
max
xĵ∈Xĵ

max
xj ,x′j∈Xj

∑
y∈Y

∣∣pxy − px′y∣∣
 .

Hence the diameter d+j (P ) is the maximum extra effect varying the value

of xj can have on the distribution of Y for any fixed value xĵ ∈ Xĵ of the other

variables. Notice in particular that

Y qXj |X ĵ ⇔ d+j (P ) = 0.

Thus in a formal sense d+j (P ) is a measure of the extent by which this con-

ditional independence is violated as well as quantifying the added value of knowing

Xj once we know the value of X ĵ . We now have the simple but pleasing additive

relationship between d+(P ) and d+j (P ), j = 1, 2, . . . , k.
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Theorem 5.3.1. With the notation above

d+(P ) ≤
k∑
j=1

d+j (P ).

Proof. Here we simply use the triangle inequality to bound d+(P ), changing the

entries of the conditioning variables Xj one at a time. So if x = (x1,x2, . . . ,xk),

x′ = (x′1,x
′
2, . . . ,x

′
k), x(0) = x,x(1) = (x∗1,x2, . . . ,xk), x(2) = (x′1,x

∗
2,x3 . . . ,xk),

. . ., x(k) = (x′1,x
′
2, . . . ,x

∗
k), then

max
x,x′∈X


n′∑
j=1

∣∣pxy − px′y∣∣
 ≤

k∑
i=1

max
x(i),x(i−1)∈X


n′∑
j=1

∣∣px(i)y − px(i−1)y∣∣


=

k∑
i=1

max
xĵ∈Xĵ

max
xj ,x∗j∈Xj


n′∑
j=1

∣∣∣pxy − px∗y∣∣∣
 .

since by definition of x and x′, the adjacent CPTs appearing in the sum above,

differ only in the ith entry.

5.4 Robustness to approximation by simplification

Often a BN is chosen to be sparser than it would be were we to have more informa-

tion or time. This happens for a variety of reasons. For example, when eliciting a

BN we often ask for the list of the most important variables on which a specific vari-

able X might depend; by definition this phrase implies that variables not included

in the list could be expected to have only a small influence on X. This restriction

is imposed because it is difficult for a client to think clearly about the interrelation-

ships between more than a handful of variables. Increasing the number of different

joint levels on the conditioning variables increases the entries in the CPT that need

to be elicited.

If data is used to inform the model choice then a severe penalty is often im-

posed (or is implicit) to ensure the selection of models with smaller size parameter

spaces - which in this context usually implies sparser associated graphs. Finally, for

reasons of suitability of implementation, it is quite common for a search of candidate

BNs to include only those graphs whose nodes have no more than a fixed number

of parents: the limit often set to be two or three, e.g. see Cussens [2011].
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It is therefore very important to properly understand the implications of

these potential over-simplifications on the robustness in the BN model. We present

some corollaries on the use of these results.

5.4.1 Edge Deletion

When constructing BN systems we seek the model which best describes the under-

lying physical process; realistically however we are often limited by restrictions on

resources and time which lead us to instead develop a model. The size of a BN

can grow exponentially by adding more variables, relationships or even states, but

eliciting these probabilities becomes problematic. Experts tend to struggle with

conceptually visualising complex relationships between more than a couple of vari-

ables. Therefore, a frequent simplification of a model can be to delete unnecessary

edges that represent very weak influences, without impacting on the robustness in

the system.

The methodology we have introduced in earlier sections can be directly ap-

plied to this problem in order to quantify the cost of removing a certain variable

from the parent set of another variable.

Example 5.4.1. Return once again to the CPT of ‘Tree Condition’ given its binary

parent ‘Drought’ and three-state parent ‘Annual Rainfall’, as in Example 4.3.1.

Denote the rows of P by pi for i = 1, 2, . . . , 6. If we are interested in the effects

of deleting the arc Drought −→ Tree Condition, then we can use Definition 5.3.1

directly:

max
{yes,no}

max
{Below,Avg.,Above}

{dV (pi,pi′)} = 0.6

Alternatively, deleting arc Annual Rainfall −→ Tree Condition gives us

max
{Below,Avg.,Above}

max
{yes,no}

{dV (pi,pi′)} = 0.2

Figure 5.3 presents the full BN with each edge annotated with the quantitative effect

on the child if we delete the parent.
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Figure 5.3: Visual representation of edge deletion effect in the Native Fish BN.

The higher the value of d+j (P ) the larger the effect of deleting the arc

Xj −→ Y since it indicates that the corresponding rows of other parent responses

are dissimilar. Of course this model is already well designed and so we find that most

edges need to be there. However, the possible exception is the edge from Drought

Conditions to River Flow. In practical models devised early in an analysis, as in

large BNs, we often find that many edges can be omitted without strong effects on

the outputs of the system.

This definition scales up easily to handle parent sets of discrete BNs with

numerous nodes and large numbers of states due to the variation distance being a

simple and transparent piece of arithmetic.

5.4.2 Level Amalgamation

One practical issue experience by BN modellers, is choosing the number of levels to

assign to each random variable within the system; even when using given data the

selection of appropriate bins is not straightforward. Obviously there is a compro-

mise here. The finer the division of levels, the more nuanced the BN can be. On the

other hand, the fewer the number of levels, the easier it will be to faithfully elicit or
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efficiently estimate the probabilities within a BN. One advantage of using the vari-

ation approach for robustness is that such considerations can be taken under the

same technical umbrella as other necessary approximations. We simply evaluate the

potential that such simplifications might have on the distribution of the attributes of

the problem, just as in considering whether or not to keep a weak edge in the system.

When deciding to amalgamate levels within a specified random variable, we

ensure that the interpretation of the states can still be understood and quantified

by experts. When those variables are ordinal and have a monotonic relationship

with its neighbours, we recommend that consideration is given only to amalgamat-

ing consecutive node levels. For example, the node of Annual Rainfall in Example

4.3.1 had levels Below Average, Average, Above Average and if we were to combine

Below Average with Above Average we would not have a cohesive state, which the

experts may find very difficult to quantify.

The second step in level amalgamation is combining the chosen states. We

recommend taking a vector average of the chosen CPT rows, selecting one of the

rows or take a weighted average of rows. The simplest case would be to take the

row average because the convexity of variation distance tells us that this will enable

us to avoid increasing the diameter of the original CPT and has the added benefit

of not requiring additional information (which would otherwise be required for a

weighted row average).

Occasionally the modeller or expert will have an intuitive feel for which

states should be combined, possibly from past experience or relevant data. However,

sometimes this may not be obvious. In the latter case we can calculate the variation

distance between the considered states and combine the closest states first, then find

the next closest state and add to the amalgamation iteratively until the combination

appears to imply significant variation distance from the original.

Example 5.4.2. For example, let us once again consider the ‘Tree Condition’ CPT

from 4.3.1. To reduce the three-state node Annual Rainfall to a binary node we

could either combine Below Average with Average (case i) or Above Average with

Average (case ii). To decide we compare the variation distance between rows pi:

Case i: max{dV (p1,p2), dV (p4,p5)} = 0.1,

Case ii: max{dV (p2,p3), dV (p5,p6)} = 0.1.
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In this instance we can arbitrarily choose between the two, so opting for case (i) to

form the amalgamated state ‘Average or Below’ using a simple average of relevant

rows to obtain P ′:

P =



0.20 0.60 0.20

0.25 0.60 0.15

0.30 0.60 0.10

0.70 0.25 0.05

0.80 0.18 0.02

0.90 0.09 0.01


, P ′ =


0.225 0.60 0.175

0.30 0.60 0.10

0.725 0.215 0.06

0.90 0.09 0.01

 .

Calculating that d+V (P, P ′) = 0.075, results such as Theorem 5.1.1 show that the

effect of using this amalgamated CPT compared to the original is small.

5.5 Some principled strategies for BN creation

Obviously the evaluation criteria we indicate here can be embedded into a formal

protocol. However, there are many considerations that a user has to consider before

undertaking model construction: transparency of the model, computational issues,

elicitation constraints and so forth, which vary in importance depending on the

context of the model building. So setting a bound on any effects or perturbations

against differing approaches is often best undertaken more informally. Nevertheless,

we acknowledge that the framework we have presented here is sufficiently formal to

admit generalisation and this is work that we plan to undertake next.

To implement our techniques as efficiently as possible we recommend two

differing approaches tailored to the specific circumstances of the modeller. Firstly,

there are occasions when we have obtained provisional information from one expert

who can recommend nodes, levels, interactions and provisional CPTs before under-

taking a more formal elicitation conference with multiple experts. Such was the

case in the pollinator example discussed in Barons et al. [2018a] and Barons et al.

[2018b]. In this particular scenario, we can design the analysis by using the bounds

on the preliminary values stated by the expert as discussed earlier. We recommend

starting by eliciting attributes and nodes of interest prior to working systematically

backwards along the chain of influence to discover parent nodes and conditional in-

dependences. To determine the efficacy of including certain variables in the model,

perform variation measures on preliminary CPT values. Of course, after the full

elicitation has taken place the robustness analyses suggested above can be repeated
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for a final sensitivity analysis.

In situations when we begin modelling with no such preliminary information,

it may be wisest to attempt to elicit the diameter of each CPT directly. This can

then be bounded and decisions undertaken on whether to include certain variables

in the chain or not. To elicit the diameter directly we need to ascertain the largest

differences between rows of a CPT which correspond to requesting the “best case

scenario” probabilities and the “worst case scenario” probabilities before calculat-

ing the variation distance between the two. Recall that if the diameter is zero then

the two variables are said to be conditionally independent. So if we elicit a small

diameter then we can omit any interactions which are not strong enough to have a

marked effect on the outputs of the model. This course of action allows a facilitator

to elicit the least number of probabilities to gain an insight into the importance of

each variable, and if more information is required then a full elicitation on the CPT

can follow. We note that this methodology is consistent with the common practice

of first eliciting extreme row probability vectors of a CPT and then using these

as a benchmark to complete the table of intermediate rows. Although not often

documented, experienced BN modellers tend to elicit best and worse case scenarios

for configurations of parents and then complete the intermediate entries using these

extremes as benchmarks.

Following this procedure, we continuously appraise and compare each pos-

sible simplification against the potential accuracy of an analysis, weighted against

the issues provided by a simpler representation of a model. We can see through

these examples that in many cases the effects of various simplifications are often

very small, and approximations based on these simplifications are justified from a

pragmatic point of view. We also note that some of the best approximations to use

are often not the ones currently undertaken in practice. For example we often find

that using an approximation which deletes an edge can cause significant changes,

whilst allowing dependence on subsets of levels only, performs much better.

5.6 Discussion

We have demonstrated here how the properties of variation distance can be har-

nessed to study the robustness in a discrete BN, if certain target variables are

known a priori to be those of primary interest. Although all our illustrative exam-

ples in this thesis have perforce been of moderate size, our methods become ever
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more useful as the number of nodes in the BN increases. Even when this number is

huge, we can show it is possible to identify a priori which features of the full joint

distribution will have the strongest impact on the target variables of interest, and

therefore employ effective and expedient approximations to make inferences which

are both accurate and feasible for the task at hand. In such models, since the simple

paths between learned variables and attribute variables is typically much longer, it

is possible to formally demonstrate that some remote variables are just not worth

eliciting directly, but should be marginalised out of the system.

The approach we have introduced in this thesis relies on the well-studied

variation distance which naturally embeds conditional independence relationships

between variables. We have therefore devised a seamless way of looking at per-

turbed versions of a BN in a manner which enables us to apply the same devices to

generic effects, be these perturbations associated with edge deletion, the effect on

descendants of learning certain variables, misquoting probabilities within CPTs or

changing the number of levels for nodes. All of these different alterations can be

compared on an equal footing whereas previous work usually depended on model

selection of BNs, using methodology such as Bayes Factors, which focused on a par-

ticular perturbation at a time. We note however that many of the techniques, such

as the use of heatmaps demonstrated in Albrecht et al. [2014], to visually commu-

nicate the bounding effect of one node on a target node can be straightforward to

adapt and reapplied to this domain.

There is of course much work to still be undertaken in this field, beginning

with refining the bounds we have developed here. The robustness studies we have

introduced can also be applied to context-specific BNs where we have a natural

trade-off between the number of probabilities to elicit and the robustness in the

model. Typically if we elicit fewer probabilities for a context-specific model, we can

show weakening of the robustness of the system due to the constraint of forcing

inputs to be the same. Similarly within this work we have had no space to consider

the robustness of the choice of probability distribution on the entries of the CPTs

of a BN. Smith and Daneshkhah [2010] studies BN robustness associated with the

inputs of the distribution in terms of the local DeRobertis distance. In Smith and

Rigat [2012] it is shown that the DeRobertis distance can be bounded by the varia-

tion distance. Therefore a fairly straightforward extension to the variation bounds

we have presented here can be developed by carefully combining our results with

the DeRobertis distance to provide a comprehensive robustness analysis when nec-
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essary. Essentially we can show that with sufficient data and global independence

assumptions the most robust CPTs are the ones whose probabilities are best known.

Finally, recent theoretical advances have suggested that if a Bayesian accepts

that their model is only approximate, the M-open scenario [Bernardo and Smith,

1994], then Bayesian learning using Bayes Rule may not be optimal and that other

updating rules based on divergences other than the KL divergence should be con-

sidered. There are exciting new possibilities of combining this technology with the

robustness methods described here when that divergence is defined as the variation

distance, Jewson et al. [2018].

Our ideas also apply directly to the Dynamic BN where the robustness in

the system can be far more important when the dynamic nature of the problem

makes the model much more complex. Throughout this thesis, for simplicity, we

have considered only robustness as it applies to finite discrete BNs. However the

whole technology we describe here, translates seamlessly into tools for examining

continuous and mixed Bayesian networks. Using the variation distance on these

highly structured and complex Markov Processes using the approach demonstrated

here can help us to determine the robustness in DBNs to dynamic effects. Work

in this more general setting has already begun in the following section, soon to be

submitted for publication. Thus we have demonstrated that this is actually a very

fruitful way of addressing robustness within this family of graphical models.
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Chapter 6

Robustness of Temporal

Dynamics in DBNs

6.1 Robustness in DBNs

The two time slice Bayesian network (2TSDBN) is now a well used tool for the

analysis of multivariate finitely discrete time series, especially when embellished by

additional context specific hypotheses. To begin the process an underlying collection

of Markov hypotheses are first elicited or selected with the help of a directed graph.

These involve not only hypotheses associated with the one step transitions of the

Markov process (inter-slice arcs) but also hypotheses concerning the relationships

between the variables lying on a particular time slice (intra-slice arcs). This process

has been extensively described in texts such as Jensen and Nielsen [2007], Korb

and Nicholson [2010] and Smith [2010] and is supported by software as discussed in

Section 2.1.4.

We need to customise any elicited DBN by using context specific information

that embellishes the framework into a full probabilistic description. For this we re-

quire to know which of the conditional probability tables (CPTs) in the system can

be regarded as the same, before specifying the probabilities within those CPTs to

provide a full probability model of the process. This then provides a family of finite

Markov processes whose transition matrices define the possible developments of the

process from one time slice to the next. The structure of the DBN, its symmetries

and also its conditional probabilities will all need to be either elicited from experts

or alternatively estimated from data. Both of these approaches can be fragile and

are often very time consuming in any practical application; therefore, methods of
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tailoring the process by ranking essential conditional probabilities are critical to this

task enabling the user to develop an awareness of those features within the model

that might have a strong impact on the desired outputs.

As detailed in Section 2.1.1, DBNs are simply a graphical representation of

a collection of conditional independence statements, which is also the underlying

foundation of Markov Chains. In this section we present a novel approach allowing

us to write a DBN in terms of a time inhomogeneous Markov Chain; an initial dis-

tribution and a transition matrix. This drastically reduces attention from multiple

CPTs to a single transition matrix which enables more succinct sensitivity analy-

ses to be performed. We combine some established results for time inhomogeneous

finite Markov Chains with our new variation distance methodology to provide a ro-

bustness study customised to the needs of DBNs. The results enable us to highlight

where more information needs to be incorporated within a model and to prioritise

the elicitation on those features of the model that are most critical to the accuracy

of the outputs.

In this section we review some well established DBN results and recap nota-

tion before discussing the link between DBNs and finite Markov Chains. We present

a formal approach for rewriting a DBN as a finite Markov Chain (MC). In Section

4 we discussed some simple properties of the total variation distance, including the

useful convexity property, before introducing our new definitions to measure condi-

tional independence relationships. Here, we apply our new methodology to bound

the errors in a DBN associated with the impacts of probability misspecifications

over time.

6.2 Finite Markov Chains and DBNs

We shall now present and discuss some fundamental properties of Markov Chain

theory which can be found in most introductory MC texts [see Brémaud, 1999; Cox

and Miller, 1965; Moran, 1968; Seneta, 2006, for introductory texts]. The following

results are well established, however the are included for completeness and will be

used later.

DBNs are fundamentally a collection of independence statements relating

variables over time, that is they are essentially time inhomogeneous Markov Chains

(when the conditional probability tables are not indexed by time). This link between
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DBNs and MCs enables us to introduce a new method to rewrite our probabilistic

graphical model as a Markov Chain: in terms of an initial probability vector and a

transition matrix denoting the evolution of the system between time-slices.

When we have a fully populated DBN this corresponds to a fully numeric

transition matrix for which the eigenvalues can be easily found and so enables us

to calculate the equilibrium distribution with relative ease, using statistical soft-

ware for larger matrices. We can also determine the rate at which a Markov Chain

approaches the stationary distribution using the Perron-Frobenius Theorem which

is described in detail in Brémaud [1999] and for the full proof of the theorem see

Seneta [2006]. We know that when we have a stochastic matrix, such as our tran-

sition matrices, the largest eigenvalue is λ1 = 1. However, it is the second largest

eigenvalue λ2 which is most important for our context since the convergence of our

matrix will be driven by the absolute value of the second largest eigenvalue of our

matrix. As we converge to the equilibrium distribution at a rate equivalent to the

second largest eigenvalue, it is important to quantify and bound this value.

In our context, convergence thus depends on the differences of the size of

the second largest (non-unity) eigenvalue of the stochastic matrix. Although this

theorem is helpful in determining the type of effects that we might see, the actual

magnitude of the second eigenvalue is difficult to appreciate or quantify in practice.

Later we show that there is a surrogate measure, defined through the use of vari-

ation distance that is easier to quantify, which can be calculated and its practical

implications are easier to see.

Unfortunately, it is often the case in DBNs that we have missing data within

our CPTs which would require us to look at the algebraic class of transition matrices.

In these instances, finding the eigenvalues can be extremely complicated for large

matrices. We therefore study robustness directly by using variation distance in order

to understand exactly how the model is responding to misspecifications or errors in

the system.

6.2.1 Rewriting a DBN as a MC

As we have already indicated, due to the similarities underpinning the DBN and

MC structures we can present a new method in which any discrete DBN can be

written as a time inhomogeneous Markov Chain.
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Consider a 2TSDBN in which each time slice has identical graphical and CPT

structure, with nodes denoted by Xt,j : t represents the time slice and j represents

the node indicator. Let the parent set of node Xt,j be written as pa(Xt,j). Note

that the parents of a node may be within the same time-slice or in the previous time

slice if it is a dynamic relationship.

Let each random variable Xt,j take values xj ∈ Xt,j , and let #(Xt,j) be the

total number of levels of the node Xt,j . As an example, suppose that X1,1 is binary,

therefore X1,1 = {0, 1} and #(X1,1) = 2. We can now define Y to be the set of

all possible outcomes of all variables in one single time slice, which is the set of all

sequences such that (Xt,1, Xt,2, . . . , Xt,n) ∈ Xt,1 × Xt,2 × . . . × Xt,n. Let St,j be the

set of all possible outcomes of the parent set of node Xt,j .

For simplicity we shall denote the conditional probabilities as

P (xt,j = l|st,j) = αt,j;l|si

where l ∈ Xt,j is the level of the random variable, and st,j ∈ St,j is a specific sequence

from St,j . We need to specify
∑n

i=1 (|Xt,i| − 1) (|St,i|) unique probabilities for use

within the transition matrix. All other probabilities can be calculated using the

rule that
∑

k P (Ak|B) = 1. Traditionally in Markov Chain theory, the transition

matrix is denoted by P ; however, whenever it relates to the transition matrix of a

Graphical model we shall instead use G (not to be confused with the DAG indicator

G).

Lemma 6.2.1. The transition matrix G of a specific DBN is a
∏
j

|Xt,j |×
∏
j

|Xt,j |

matrix with entries given by

gtj =
n∏
j=1

p(xt,j |pa(xt,j)) =
n∏
j=1

αt,j,l|st,j .

Therefore each entry of G is a product of n probabilities, where n is the number of

nodes in each time slice.

Each time slice in a 2TSDBN is conditionally independent of all previous

time slices, given the immediate prior time slice. Therefore for time slice t + 1, we

only require information from slice t, any additional information from t−1, t−2, . . .

is unnecessary. This automatically implies that the 2TSDBN can be written as a

transition matrix in which entries of G are directly obtained from the factorisation
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of the joint density. Each entry of G is a monomial in terms of the CPTS of the

original DBN.

6.2.2 2TSDBN Simple Example

Suppose we have a simple 2TSDBN with two binary nodes in each time step. There-

fore n = 2 and we have nodes X1,1, X1,2, X2,1, X2,2. Suppose we have the following

structure:

X1,1 X2,1

X1,2 X2,2

t− 1 t

Figure 6.1: A simple structure 2TSDBN with binary nodes.

The joint distribution is simply

p(xt−1,xt) = p(x1,1)p(x1,2|x1,1)p(x2,1|x1,1)p(x2,2|x1,2, x2,1),

where xt−1 = (x1,1, x1,2) and xt = (x2,1, x2,2).

This allows us to write

pa(X1,1) = ∅, S1,1 = ∅,
pa(X1,2) = {X1,1}, S1,2 = {0, 1},
pa(X2,1) = {X1,1}, S2,1 = {0, 1},
pa(X2,2) = {X1,2, X2,1}, S2,2 = {11, 10, 01, 00}.
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For conciseness let us denote our conditional probabilities as

p(x2,1 = 1|x1,1 = 0) = α2,1;1|0,

p(x2,1 = 1|x1,1 = 1) = α2,1;1|1,

p(x2,2 = 1|x1,2 = 0, x2,1 = 0) = α2,2;1|0,0,

p(x2,2 = 1|x1,2 = 0, x2,1 = 1) = α2,2;1|0,1,

p(x2,2 = 1|x1,2 = 1, x2,1 = 0) = α2,2;1|1,0,

p(x2,2 = 1|x1,2 = 1, x2,1 = 1) = α2,2;1|1,1.

Entries of G are given from the equation p(xt,xt−1) = p(x2,1|x1,1)p(x2,2|x1,2, x2,1),
leading to the transition matrix:



x1,1 x1,2

1 1

1 0

0 1

0 0

 −→


x2,1=1,x2,2=1 x2,1=1,x2,2=0 x2,1=0,x2,2=1 x2,1=0,x2,2=0

α2,1;1|1α2,2;1|1,1 α2,1;1|1(1− α2,2;1|1,1) (1− α2,1;1|1)α2,2;1|1,0 (1− α2,1;1|1)(1− α2,2;1|1,0)

α2,1;1|1α2,2;1|0,1 α2,1;1|1(1− α2,2;1|0,1) (1− α2,1;1|1)α2,2;1|0,0 (1− α2,1;1|1)(1− α2,2;1|0,0)

α2,1;1|0α2,2;1|1,1 α2,1;1|0(1− α2,2;1|1,1) (1− α2,1;1|0)α2,2;1|1,0 (1− α2,1;1|0)(1− α2,2;1|1,0)

α2,1;1|0α2,2;1|0,1 α2,1;1|0(1− α2,2;1|0,1) (1− α2,1;1|0)α2,2;1|0,0 (1− α2,1;1|0)(1− α2,2;1|0,0)


︸ ︷︷ ︸

G - the family of transition matrices of this partcular BN

We have calculated the entries in G using the following formula from the

definition of conditional probability:

p(xt|xt−1) = p(x2,1, x2,2|x1,1, x1,2)

=
p(x1,1, x1,2, x2,1, x2,2)

p(x1,1, x1,2)

=
p(x1,1)p(x1,2|x1,1)p(x2,1|x1,1)p(x2,2|x1,2, x2,1)

p(x1,1, x1,2)

=
p(x1,1)p(x1,2|x1,1)p(x2,1|x1,1)p(x2,2|x1,2, x2,1)

p(x1,1)p(x1,2|x1,1)

= p(x2,1|x1,1)p(x2,2|x1,2, x2,1).

Therefore the last entry in the matrix G is equivalent to finding the transition from

(x1,1 = 0, x1,2 = 0) to (x2,1 = 0, x2,2 = 0), which is calculating the value

p(x2,1 = 0, x2,2 = 0|x1,1 = 0, x1,2 = 0) = p(x2,1 = 0|x1,1 = 0)p(x2,2 = 0|x1,2 = 0, x2,1 = 0)

= (1− α2,1;1|0)(1− α2,2;1|0,0).

Example 6.2.1. Suppose we take the 2TSDBN structure shown in Figure 6.1 and
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assume that all nodes are binary. Let

α2,1;1|0 = 0.2, α2,2;1|0,0 = 0.5,

α2,1;1|1 = 0.3, α2,2;1|0,1 = 0.3,

α2,2;1|1,0 = 0.7,

α2,2;1|1,1 = 0.4,

then we obtain the transition matrix:

G1 =


0.12 0.18 0.49 0.21

0.09 0.21 0.35 0.35

0.08 0.12 0.56 0.24

0.06 0.14 0.40 0.40


with eigenvalues equal to (λ1 = 1, λ2 = 0.17881527, λ3 = 0.1, λ4 = 0.01118473) and

equilibrium distribution π∞ = (0.07854406, 0.1436782, 0.4760536, 0.3017241).

For a moderate DBN, the dimensions of the transition matrix rapidly grow as

we add more variables and more levels for each variable. Due to the non-stationary

nature of some variables in the time-slice we can actually reduce the size of the

transition matrix in scenarios where we have a subset of nodes which are unaffected

by time:

Corollary 6.2.1.1. The transition matrix, G, of a specific DBN for which we have

a subset of stationary variables in A can be reduced from the size stated in Lemma

6.2.1 to a
∏
j |Xk,j | ×

∏
j |Xi,j | matrix, where k ∈ A.

This corollary implies that although we require all nodes to initialise the

system, only nodes with dynamic relationships drive the system and therefore it is

these nodes which are most important for robustness.

Example 6.2.2. The six-node subset of the Pollinator BN shown in Figure 3.4, was

originally formulated as a component of a DBN (see Figure 6.2), with temporal arcs

showing the year-on-year relationship of pollinator abundance within each species

due to population dynamics:

79



Figure 6.2: A DBN of the Pollinator subnetwork with temporal arcs shown in red,
as shown in Barons et al. [2018a].

As all variables are binary in this DBN, the transition matrix of the DBN

shown in Figure 6.2 is a 26 × 26 matrix. However, using Corollary 6.2.1.1 above we

can significantly reduce the dimensions because there are three stationary variables

(Pest and disease pressure, Weather and Environment). TO explicitly show the

application of Corollary 6.2.1.1, let us redraw Figure 6.2 as a BN with simplified

node labels:

Figure 6.3: Unwrapping the Pollinator DBN from Figure 6.2 into a BN
representation with simplified node labels.

Therefore when calculating the entries of G we can simplify the conditional

formula as follows:

p(xt|xt−1) =p(x1,t)p(x2,t)p(x3,t)p(x4,t|x1,t, x2,t, x3,t, x4,t−1)

p(x5,t|x2,t, x3,t, x5,t−1)p(x6,t|x2,t, x3,t, x6,t−1). (6.1)

Using this information, we know that there will be repetition in the rows of the

matrix, i.e. any row with the same (x4,t−1, x5,t−1, x6,t−1) combination will have

identical row entries because the initial starting values of nodes (x1,t−1, x2,t−1, x3,t−1)

do not effect the G entries, as shown in Equation 6.1. As all nodes are binary,
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suppose they take values (0, 1), then the following two rows in G are equivalent:

p(x1,t−1 = 1, x2,t−1 = 0, x3,t−1 = 0, x4,t−1 = 1, x5,t−1 = 0, x6,t−1 = 1)

=p(x1,t−1 = 1, x2,t−1 = 1, x3,t−1 = 1, x4,t−1 = 1, x5,t−1 = 0, x6,t−1 = 1).

Therefore all eight rows relating to the initial values p(x1,t−1, x2,t−1, x3,t−1, x4,t−1 =

1, x5,t−1 = 0, x6,t−1 = 1) will be equivalent and can be reduced to a single row by

looking solely at combinations between the non-stationary variables. This leaves us

with a 23 × 26 matrix instead of the original 26 × 26.

Corollary 6.2.1.1 is an important result as it indicates that we do not need

to elicit nodes within a time-slice which are not dynamic because the memory of the

system forgets these values over time. It is therefore recommended that elicitation

prioritisation is given to nodes with dynamic relationships.

6.3 Diameter and Stochastic Matrices

The new measures introduced in Section 4.3 underpinned by the total variation

distance can be applied without edit to DBNs. For BNs we compared CPTs, whereas

for DBNs we compare transition matrices between individual time-slices of the DBN.

Therefore, the interpretation of the diameter and other measures differ slightly. For

example, when n = n′ and G∞ = limn→∞G
n is the equilibrium stochastic matrix,

then all rows in the transition matrix are equivalent (to the equilibrium distribution),

thus d+(G∞) = 0 and all entries in the matrix D+(G∞) will also be zero. The

diameter of a transition matrix can be thought of as a measure of how far away a

stochastic matrix is from its equilibrium distribution. The smaller the value of the

diameter (for a transition matrix), the closer we are to equilibrium.

Example 6.3.1. Using G1 from Example 6.2.1 we can calculate

d+(G1) = 0.21 and D+(G1) =


0.00 0.17 0.10 0.19

0.17 0.00 0.21 0.10

0.10 0.21 0.00 0.18

0.19 0.10 0.18 0.00

 .

Earlier in Theorem 5.1.1 we proved that we could bound the distance of

a receiving mass function by the diameter of the transition matrix multiplied by

the distance between the donating mass functions, both of which can be calculated

with relative ease. This result can be generalised further to determine the distance

between receiving mass functions over a period of more than one time step.

81



Corollary 6.3.0.1. When n = n′; dV (ρ1(t), ρ2(t)) ≤ {d+(G)}t dV (π1, π2).

Proof. By Theorem 5.1.1

at time t = 1 : dV (ρ1(1), ρ2(1)) ≤ d+(G)dV (π1, π2),

at time t = 2 : dV (ρ1(2), ρ2(2)) ≤ d+(G)dV (ρ1(1), ρ2(2)),

≤ d+(G)2dV (π1, π2)

...

at time t = s : dV (ρ1(s), ρ2(s)) ≤ d+(G)dV (ρ1(s− 1).ρ2(s− 1))

≤ d+(G)sdV (π1, π2).

Therefore by successive substitution we obtain the result

dV (ρ1(t), ρ2(t)) ≤ {d+(G)}tdV (π1, π2)

as desired.

This result is extremely useful because we can now determine the sequen-

tial effects on time-slices that a slight misspecification of a probability can cause

throughout the DBN.

Corollary 6.3.0.2. When G is a square stochastic matrix d+(Gt) ≤ {d+(G)}t, for

t = 1, 2, . . . , n.

Proof. The entries of the matrix Gt are simply weighted averages of the rows of

Gt−1 indicating that the distance between rows must be shrinking because each row

must sum to 1.

6.4 Time homogeneous forecasts

When n′ = n we are often interested in a t-step ahead margin dV
(
π1G

t
1,π2G

t
2

)
.

There are then two types of bound that can be calculated. The first simply iterates

using the bounds from Equation 5.1 and Equation 5.2. For example if ρ1(t) =
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π1G
t
1,ρ2(t) = π2G

t
2 then from Equation 5.1

dV (ρ1(t),ρ2(t))

≤ d+V (P1, P2) + dV (ρ1(t− 1),ρ2(t− 1))d∗V (P1, P2)

≤ (1 + d∗V (P1, P2))d
+
V (P1, P2) + dV (ρ1(t− 2),ρ2(t− 2)) {d∗V (P1, P2)}2

...

≤

(
t∑

s=1

{d∗V (P1, P2)}s−1
)
d+V (P1, P2) + dV (π1,π2) {d∗V (P1, P2)}t

Thus,

dV (ρ1(t),ρ2(t)) ≤

(
1− {d∗V (G1, G2)}t

1− d∗V (G1, G2)

)
d+V (G1, G2) + dV (π1,π2) {d∗V (G1, G2)}t .

Note that this bound can be straightforwardly evaluated from the given ma-

trices G1, G2 and the two donating margins π1,π2. Also, that this can be rewritten

in the form

dV (ρ1(t),ρ2(t)) ≤
(

d+V (G1, G2)

1− d∗V (G1, G2)

)
+

{
dV (π1,π2)−

d+V (G1, G2)

1− d∗V (G1, G2)

}
{d∗V (G1, G2)}t .

So as a function of the length of the future time step t this is a constant and a

term exponentially decaying with t. Note that for a time inhomogeneous stochastic

matrix of known form similar recurrences can be derived simply by substitution.

6.4.1 Recursions using equilibrium distributions

The second t-step ahead margin is a completely different recursion which can be

derived using the triangle inequality and the vectors of the two equilibrium mass

functions π1∞,π2∞ of the two stochastic matrices G1∞, G2∞. We observe that as

all the rows of G1∞ and all the rows of G2∞ are duplicated

dV (π1G1∞,π2G2∞) = dV (π1∞,π2∞) .

So

dV (ρ1(t),ρ2(t)) = dV
(
π1G

t
1,π2G

t
2

)
≤ dV

(
π1G

t
1,π1G1∞

)
+ dV (π1G1∞,π2G2∞) + dV

(
π2G2∞,π2G

t
2

)
= dV (π1∞,π2∞) + dV

(
π1G

t
1,π1G1∞

)
+ dV

(
π2G2∞,π2G

t
2

)
.
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Now note that by definition of an equilibrium mass function, for i = 1, 2

πiGi∞ = πi∞ = πi∞G
t
i.

Thus

dV (ρ1(t),ρ2(t)) = dV (π1∞,π2∞) + dV
(
π1G

t
1,π1∞G

t
1

)
+ dV

(
π2∞G

t
2,π2G

t
2

)
≤ dV (π1∞,π2∞) + dV (π1,π1∞) d(Gt1) + dV (π2∞,π2) d

+(Gt1),

where from previous results we know that, for i = 1, 2; d(Gti) ≤ {d+(Gi)}t

dV (ρ1(t),ρ2(t)) ≤ dV (π1∞,π2∞)+dV (π1,π1∞)
{
d+(G1)

}t
+dV (π2∞,π2)

{
d+(G2)

}t
.

In particular

dV (ρ1(t),ρ2(t)) ≤ dV (π1∞,π2∞) + 2κt

where κ , max {d+(G1), d
+(G2)}t. So as in the other bound, this bound is a

constant and a term exponentially decaying with t. Note that this bound requires

us to calculate π1∞,π2∞.

6.4.2 Disturbed equilibria

The above t step ahead bounds are useful. Nevertheless, all too often the context

appears highly unpredictable when looking to the long term future. The question

is whether or not it is possible to fold this into a robustness analysis.

There is actually a very simple way of doing this. Suppose that we have

elicited a model with input from a panel of experts and a consensus is to use (π1, G1).

However, there is some disagreement about the fine detail of these judgements so that

various experts in the panel believe that another donated margin π2 and another

transition matrix G2 might be more appropriate but where

dV (π1,π2) < δ, d+V (G1, G2) < η+ and d∗V (G1, G2) < η∗

Then for example

dV (ρ1(t),ρ2(t)) ≤
(

1− ηt∗
1− η∗

)
η+ + δηt∗

This looks as though there is a long term consequence of the misspecification of G1

as measured by
(
1−ηt∗
1−η∗

)
η+.
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Yet suppose all experts accept that there is a probability ε that at some

as yet unknown future time T the whole process will change for all time to a new

time inhomogeneous process governed by a sequence of as yet unknown transition

matrices {Q(s) : s ≥ T}.

If there is consensus that this is likely, then (π1, G1) or (π2, G2) should be

replaced and instead use transitions at time s of the form

G1(s) , (1− ε)G1 + εQ(s),

G2(s) , (1− ε)G2 + εQ(s).

Let us employ (ρ1(t),ρ2(t)) as the forecasters using the current settings (π1, G1) or

(π2, G2) but allowing for the fact that everything could switch.

The point now is to note that whatever the new transitions {Q(s) : s ≥ T}
no-one will want to keep their original transitions (π1, G1) or (π2, G2). All experts

will change their stated judgements.

Thus if T = 0, an event of probability ε, then the forecasts of (ρ1(1),ρ2(1))

using G1(s) and G1(s) will be the same. So with probability ε, dv (ρ1(1),ρ2(1)) = 0

and also for dv (ρ1(s),ρ2(s)) = 0 for all s ≥ 1. Alternatively, with probability (1−ε)
nothing will change and

dV (ρ1(1),ρ2(1)) = dV (ρ1(1),ρ2(1)) .

So we see that

dV (ρ1(1),ρ2(1)) = (1− ε)dV (ρ1(1),ρ2(1))

≤ (1− ε)
{(

1− η∗
1− η∗

)
η+ + δη∗

}
.

Iterating this argument we then obtain a new bound of the form

dV (ρ1(t),ρ2(t)) ≤ (1− ε)t
{(

1− ηt∗
1− η∗

)
η+ + δηt∗

}
.

Note that here we retrieve a robustness measure which implicitly exponen-

tially discounts the weights of the effects on utility scores obtained into the future:

in an exact analogy to the exponential discounting of rewards commonly used in

Markov decision theory.
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6.5 Discussion

DBNs have become an increasingly popular graphical model for decision support

systems, however it is very rare in practice to find data to fully populate all of the

conditional probability tables in the model. Expert elicitations have been vastly

studied and we highly recommend following a structured protocol to find repro-

ducible and reliable results. However, users often find themselves in the situation

where there are limited resources, but a large quantity of probabilities they are re-

quired to elicit. In these circumstances it would be optimal to proceed by focussing

attention on inputs which most affect the outputs of the model. To do this we must

somehow rank the importance of the attributes or else perform a suitable robustness

analysis to measure the effects on the utility functions or decisions that the model

outputs.

It is critical to develop an awareness of the features within an elicitation that

may have a strong impact upon the outputs of the model. Once these variables or

probabilities have been ascertained, the model creator can provide more time and

resources to the elicitation of these values to ensure they are accurate as possible.

In this paper we have provided some new distance metrics and other measures for

determining the dissimilarity between matrices in order to quantify the impact of

erroneous CPT probabilities on the outputs of the model.

We have illustrated that since it is possible to rewrite our DBN as a transi-

tion matrix with accompanying initial probability distribution the fundamental basis

underpinning dynamic Bayesian networks and finite homogeneous Markov Chains.

This succinctly whittles down our graphical model from a visual representation with

a CPT on each node, to one single matrix encoding all CPT probabilities.

The measures and bounds we have provided are based upon the total varia-

tion distance, which for the discrete case is easy to calculate in theory, and is also

quick to assess visually. The bounds we have found allow DBN users to tailor their

model process and incorporate robustness checks into their protocols so that when

feeding back results they can discuss the performance of the DBN and the stability

of the recommended decisions.
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Chapter 7

Conclusions

During the course of this work, we hope to have emphasised the necessity for scru-

tinising the robustness in a BN. To appreciate the strong and weak features of a

model, users should undertake some form of analysis to deduce areas which require

further attention. Commonly, sensitivity analyses have been recommended for BNs:

these perturb a single parameter to determine effects on output variables. Recently,

these algorithms have been extended to cope with multiple simultaneous parame-

ter perturbations. Unfortunately, the efficacy of sensitivity analyses relies on the

ability to cover the entire space of possible perturbations, which for large models

is unrealistic. An additional drawback is that sensitivity analyses can only be per-

formed once the whole model has been specified, and should issues be discovered,

then the full model must be reconstructed (a time consuming and difficult task).

The work presented in this thesis aims to fill this gap by creating structured robust-

ness studies which can be performed during model creation, thereby allowing users

to tailor a bespoke BN model which is robust to anomalies on the first iteration.

Recall that our primary concern is BNs applied within decision support systems,

meaning that we usually have a set of pre-specified target variables of interest. This

contraction of focus from a large model to a subset of the total variables enables us

to harness the convexity of probability measures such as the total variation distance.

Contrary to current work in the field of BN global robustness, we have argued

in this thesis that the total variation is a conventional divergence measure which

should be chosen given some important benefits. Recent studies have pioneered the

use of the Kullback-Leibler divergence or the Chan-Darwiche measure, both of which

rely on logarithmic probabilities or ratios of probabilities. Regrettably, the ability

to accurately specify very small probabilities is difficult to accomplish using either
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expert elicitation or data. Additionally, very small discrepancies between probabil-

ity distributions can be exaggerated. Although occasionally difficult to explicitly

derive formulae for the impacts of total variation, it is possible to combine useful

bounds that limit the maximum derivation in total variation.

We have introduced the diameter, a univariate measure of conditional inde-

pendence strength, which can be elicited directly or if a conditional probability table

is fully specified it can be calculated with ease. To elicit, the diameter is the differ-

ence between the probability of the worst case scenario and the best case scenario

occurring. From data, it is the maximum variation distance between each pairwise

combination of rows within a conditional probability table. With this quantity we

can determine: whether to omit weak relationships between parents and children

nodes; how many levels of a variable to include in the model; whether amalgamating

levels of a variable is a justifiable simplification; and the temporal effects of pertur-

bations over time. This measure is therefore very adaptable as it can be used for

both structural and probabilistic misspecifications during the creation of the BN

process.

Using our new definitions and bounds proven in this work we have proven

some key results. Firstly, we have provided a formal validation for the popular folk

theorem stating that it is unnecessary to include a long ancestral influence chain

for a variable of interest. In fact, errors contract between each variable and its

child, meaning that misspecified probabilities are only relevant if in the immediate

parent set. Secondly, by eliciting a diameter we have a two-fold use from the re-

sults: whether to include an arc in the structure of the BN, and if so, whether the

relationship is strong enough to warrant multiple levels or a binary case. Lastly,

we have shown that if we have a decomposable BN then we can create a junction

tree, allowing us to find a unique simple path between a donating and receiving

variable and thus quantify the impact of perturbing one on the other. In our final

section we have introduced a method of transforming a BN into a finite time non-

homogeneous Markov Chain: an initial probability and a transition matrix. We can

therefore directly apply our results to the dynamic BN setting and have shown that

errors contract over time, and that we can cap how far back to examine in the model.

Within the three years of completing this research, we believe we have proved

the necessary results to undertake a comprehensive robustness analysis of a discrete

BN, in a manner which interfaces well with standard practices of elicitation. There
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are many interesting ideas and applications extending this work which have yet to

be investigated. Below we shall briefly discuss a few of the most promising of these.

Throughout this thesis we have highlighted key works which provide results

for BN model selection or model simplification, however we have been unable to

compare previous methodology to our results due to time restrictions.

Although our examples have been small for simplicity, our methods can be

easily scaled up to deal with vast BN structures. One element of interest of large

distributive systems that we have seen in the Food Security IDSS, are the multi-

ple modules within a system communicating with each other. Target variables are

then defined to be those variables in the system which are outputs of one module,

but contribute to another receiving component. This scenario has yet to be framed

formally; nevertheless, the technology is analogous to the simplified context specific

situation discussed in the penultimate section of this thesis.

In enormous BNs we may want to focus attention on a small component of

the larger network. How can we perform this localised interest in a robust manner?

Using our total variation approach we can query the distributivity of large systems

to learn about a subset of nodes and their dependence relationships. By selecting

pre-specified target variables, we can determine which information and relationships

can be systematically rejected and also emphasise any relationships in the system

which it is paramount to elicit/model accurately. Although this is a big data prob-

lem, our methodology outlined here can be extended to look at stability of smaller

distributive systems.

Further investigation could be implemented to tighten the bounds provided

here and tailor them for context-specific BNs such as object-oriented BNs. In mod-

ern technology associated with large systems, another form of simplification is to

assume that certain substructures within the BN are repeated. A 2TSDBN is a

very simple example of this, where we assume structural and some CPT equiva-

lences across time-slices. If we assume that there are similarities within modules,

then there is a natural trade-off: we can either elicit all CPTs independently which

requires considerable time allocation, or we can assume similarities and therefore

elicit the one repeated CPT with greater accuracy in a similar amount of time. As

with any compromise the choice is not clear, and we question how to decide when

CPTs are sufficiently comparable with one another to be considered the same ob-
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ject. There is very little literature covering this conundrum; however, experienced

BN modellers have their own intuition about such scenarios. We have provided the

means in this thesis to answer questions such as this; nevertheless, we still need

to embed this material into formal protocols outlining appropriate assumptions for

context-specific settings.

The methodology provided herein has been applied to discrete systems al-

though the underlying foundation enables the process to be effortlessly expanded to

continuous or mixed BNs. This thesis does not touch upon the topic of robustness

to parameter estimation, but we note that it is closely linked to variation distance of

the parameter distribution. These parameter probabilities are continuous random

variables and therefore the analysis must first be reproduced for continuous random

variables before it can be adopted in this mixed setting.

Now that I have experience of eliciting probabilities for graphical models us-

ing two methods (the IDEA protocol and Cooke’s method), I am more aware of the

ambiguities in estimations and dissention between experts that can arise. These are

not only about the setting of certain probabilities within a BN, but the controversies

of one BN structural compared to another. There are many other well-known elici-

tation methods not detailed in this work, each of which has its own advantages. In

most methods, as well as eliciting the best estimates we collect information about the

uncertainty of each expert. These confidence bounds, expert weightings and other

outputs of the method are typically forgotten after the probabilities have been set

in the CPTs, but we wonder whether we can somehow use this extra information to

inform the variation distance bounds.

Although BNs are the chosen graphical model for this thesis, they are not

the only choice of Markov graph. There are many other graphical classes to which

our technology could be applied, so long as there is a directed element in the model.

Efforts at the University of Warwick Statistics Department are already focussing at

a technology transfer of my robustness results associated with BNs and applying

these to graphs such as Chain Event Graphs.

Clearly there are many ideas and applications of our methodology that can

be undertaken to make a comprehensive suite of BN robustness analyses for any

given context. In this thesis we have provided a solid foundation and framework,

setting the scene for further research in the future.
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