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Abstract
This paper shows that the sufficient statistic approach to the welfare properties of 
income (and other) taxes does not easily extend to tax systems with notches, because 
with notches, changes in bunching induced by changes in tax rates have a first-order 
effect on tax revenues. In an income tax setting, we show that the marginal excess 
burden (MEB) of a change in the top rate of tax is given by the Feldstein (Rev Econ 
Stat 81(4):674–680, 1999) formula for the MEB of a proportional tax, plus a correc-
tion term. This formula applies even if there is tax evasion. These correction terms 
cannot be calculated just from knowledge of the elasticity of taxable income, and 
quantitatively, they can be large. An application to VAT is discussed; with a calibra-
tion to UK data, the MEB of the VAT is roughly three times what it would be if VAT 
was simply a proportional tax.

Keywords Tax kink · Tax notch · Excess burden · Sufficient statistic

JEL Classification H20 · H21 · H31

1 Introduction

In a recent survey, Chetty (2009a) argues that an important new development in pub-
lic economics is the so-called sufficient statistic approach, which “derives formulas 
for the welfare consequences of policies that are functions of high-level elasticities 
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rather than deep primitives” (Chetty 2009a, p. 451). In turn, this means that to assess 
the welfare properties of these policies, only these elasticities, rather than fully struc-
tural models, need to be estimated.1

The sufficient statistic approach originated in a seminal paper by Feldstein (1999), 
who showed that the marginal excess burden (MEB) of a proportional income tax 
only depends on the behavioral responses to the tax via a sufficient statistic, the elas-
ticity of taxable income (ETI). The ETI summarizes the response of a given house-
hold to changes in the tax rate, although these changes can be at several margins 
(hours, effort, etc.) Feldstein’s paper has given rise to a large literature devoted to 
obtaining empirical estimates of the ETI (Gruber and Saez 2002; Saez et al. 2012; 
Kleven and Schultz 2014; Weber 2014).

Subsequently, Saez (2001) and Saez et al. (2012) showed that the Feldstein for-
mula for the MEB could be extended to the top rate of tax in a progressive piece-
wise-linear income tax system, and they also established formulae for the revenue 
and welfare-maximizing rate of tax. These formulae also have the sufficient statistic 
feature; specifically, they depend only on the ETI, a statistic of the income distribu-
tion, which is constant if the top tail of the income distribution is Pareto,2 and pos-
sibly a welfare weight.

In this paper, we ask the question as to whether these sufficient statistic proper-
ties of key formulae also extend to tax systems with notches. Generally, a tax notch 
occurs when there is a discontinuous change in the tax liability as the tax base varies 
(Slemrod 2013; Kleven 2016).

In practice, we do see notches in several major kinds of taxes, and these are being 
increasingly studied in the empirical literature. For example, in Pakistan, there are 
notches of up to 5% in the personal income tax (Kleven and Waseem 2013), and in 
Ireland, an emergency income levy after the financial crisis had a notch of up to 4% 
(Hargaden 2015).3 There are small notches in the federal income tax in the USA, 
and larger notches induced by income-dependent entitlement to tax credits (Slemrod 
2013). In Germany, there is a large notch in income tax generated by the Mini-Job 
program (Tazhitdinova 2018).4

Notches also exist in other major taxes. For example, notches are, or were until 
recently, present in housing transactions taxes in the UK and the USA (Best and 
Kleven 2013; Kopczuk and Munroe 2015). They also arise in the corporate income 
tax in Costa Rica (Bachas and Soto 2015). Slemrod (2013) notes that there are many 
examples of commodity tax notches, where a marginal change in some characteristic 

1 Chetty (2009a) also argues that this sufficient statistic approach is also valuable in several other con-
texts, such as evaluating the welfare gain from social insurance programs, and the welfare effects of 
changes in taxes with optimization frictions.
2 The formula is that the marginal excess burden equals tea

1−t−te
 , where t is the rate of tax, e is the personal 

elasticity of taxable income with respect to the net-of-tax rate 1 − t , and a is the Pareto parameter.
3 From Table 1 of Hargaden (2015), in 2010, earnings of above 26,000 Euro incurred a charge of 1040 
Euro.
4 This is aimed at increasing the labor supply of low-income individuals: earnings below the mini-job 
threshold, are exempt from income tax and the employee portion of social security taxes, while earnings 
above the threshold are not.
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can change the product classification so as to produce a discrete change in the tax 
liability.5 Finally, as argued by Liu and Lockwood (2015), a VAT threshold can be 
thought of as a tax notch; a firm’s VAT liability changes discontinuously when its 
sales go over the registration threshold. Indeed, given the importance and near-ubiq-
uity of VAT, this is probably the most important example of a tax notch.

We first study notches in the income tax setting of Saez (2010) and others, where 
households differ in ability or taste so that the disutility of generating taxable income 
varies across households. For simplicity, we assume a two-bracket tax, i.e., a tax 
with a lower rate below a threshold, and a higher rate above. In this setting, our first 
contribution is to derive an exact formula for the marginal excess burden (MEB) of 
the higher rate of tax. This formula is similar to Feldstein (1999)’s formula for the 
MEB of a proportional income tax, but includes a correction factor that captures the 
effect of the bunching response to an increase in the top rate tax on tax revenue.

The bunching response measures the change in the number of households bunch-
ing at the threshold to avoid paying the top rate of tax and is a property of the distri-
bution of households. In what follows, to make it clear that this is a property of the 
distribution, we will henceforth call it the aggregate bunching response. It is thus 
distinct from the change in taxable income of a particular household induced by a 
change in the tax rate. The latter is measured by the elasticity of taxable income, and 
in what follows, we will call the second kind of response the individual response, as 
it pertains to a particular individual or household.6

Our main point is that with a notch, unlike the case of a kink, the aggregate 
bunching response affects tax revenue because with a notch, the tax schedule is dis-
continuous at the threshold. Specifically, an increase in the top rate of tax increases 
bunching just below the notch, which—due to the notch—lowers tax revenue, and 
thus raises the MEB. Moreover, this correction factor to the Feldstein formula, 
denoted C, cannot be expressed as a simple function of the usual sufficient statistics, 
i.e., the ETI and the Pareto parameter of the upper tail of the income distribution. It 
does depend on these variables, but it also depends on the lower rate of tax, the posi-
tion of the notch, and a counterfactual, i.e., the earnings that the individual at the top 
of the interval (the top buncher) would choose if faced with the higher rate of tax. 
So, the sufficient statistic approach seems to break down with tax notches.

However, all is not lost. We show how the counterfactual earnings of the top 
buncher can be computed theoretically, using the indifference condition that the top 
buncher is indifferent between bunching and being above the notch. Alternatively, in 
any empirical study of bunching, it can be computed empirically, using the estimate 
of excess mass at the notch (the parameter B in Kleven and Waseem 2013). Thus, 

5 For example, in the USA, the Gas Guzzler Tax, under which high-performance cars are subject upon 
initial sale to a per-vehicle tax that is higher, the lower is the fuel economy of the car.
6 The individual response could include responses in hours or intensity of work effort, usually known 
as intensive-margin responses, and the decision whether to work or not, usually known as the extensive-
margin response. Thus, our distinction between the aggregate bunching and individual response is quite 
different to the intensive versus extensive distinction.
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this paper is the first to show how bunching estimates at notches can be used to 
make welfare calculations.

Of course, if the correction factor turns out to be small, the Feldstein formula still 
provides a good approximation to the MEB. Our third contribution is to investigate 
whether this is the case. Calibrations show that the percentage error from using the 
Feldstein formula for the MEB can be very large. At baseline values, the marginal 
excess burden is underestimated by a factor of six. So, the conclusion is that at least 
in the income tax setting, the sufficient statistic approach is not practical.

We then turn to apply our approach to the VAT, which is the most empirically 
important example of a tax notch. We present a simple model of small traders who 
differ in productivity, and are subject to VAT at rate t above a threshold level of sales. 
We show that this model is formally equivalent to our income tax model, in the sense 
that registered firms above the threshold face an effective rate of VAT tR on value-
added, and non-registered firms below the threshold face a lower but positive effec-
tive rate tN.7

We then show that the MEB of an increase in the statutory rate of VAT is given 
by the Feldstein formula for a proportional tax plus a correction factor as in the 
income tax case. However, the details of the correction factor are more complex, 
because an increase in the statutory rate t increases both the effective rates tR, tN . A 
calibration of the model shows that the proportional tax formula for the MEB of the 
VAT underestimates the true MEB by a factor of up to three.

Finally, it should be noted that in this paper, we take all parameters of the tax 
system, including the notch, as given, and only vary the top rate of tax. A broader 
question, to be addressed in future work, is whether a notch can ever be part of an 
optimal tax system.8

The remainder of the paper is arranged as follows. After the literature review in 
Sects. 2 and 3, we set up the model. Section 4 has the main analytical results for the 
income tax, Sect. 4.3 has an extension to tax evasion, and Sect. 5 the simulations. 
Section 6 deals with the extension to the VAT, and Sect. 7 concludes.

2  Related literature

This paper speaks to a number of related literatures. First, it is already known that 
due to externalities of one kind or another, the sufficient statistic approach has its 
limitations. Saez et al. (2012) give the examples of deductibility from income tax of 
charitable giving and mortgage interest payments for residential housing. In these 

8 In the standard Mirrlees framework, where the tax is fully nonlinear, this is not the case; the optimal 
tax schedule is always continuous in income. However, where skills are continuously distributed, and 
the government is restricted to a finite number of tax rates, the answer to this question is less obvious. 
In fact, Blinder and Rosen (1985) note in the context of subsidies for charitable giving, with heteroge-
neous tastes, sometimes a notch can improve on a linear subsidy in the sense of having a lower total 
efficiency cost, defined as the sum of excess burden and the cost of raising the revenue. However, they do 
not undertake a full social-welfare-maximizing exercise.

7 It may seem counter-intuitive that non-registered firms face a positive rate of effective VAT; this is 
because non-registered firms cannot claim back VAT on inputs, so-called “embedded” VAT.
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cases, an increase in the marginal rate of tax will boost charity income and home 
ownership, respectively, which may be valuable objectives in themselves. Saez et al. 
(2012) call these classical externalities.9

Fiscal externalities, where the actions of the household generate additional rev-
enue for the government and thus benefit other households, can also cause the suffi-
cient statistic approach to fail, or at least require adjustment, but in these cases a sim-
ple change to the formula is sometimes possible. The analysis of income tax evasion 
of Chetty (2009b) is a case in point.10 As Gillitzer and Slemrod (2016) show, in this 
case the standard formula for the marginal efficiency cost of funds can be adjusted in 
the same way it must be adjusted for any fiscal externality, i.e., whenever a change 
in tax rates induces taxpayers to shift income to another tax. Our results are rather 
different to these cases of both classical and fiscal externalities. In our setting, there 
is no fiscal or other externality—rather, the sufficient statistic approach fails because 
the aggregate bunching response has a first-order effect on tax revenue. Indeed, in 
Sect. 4.3, we show our main qualitative results continue to apply in the presence of 
evasion, which makes the point that our argument is distinct from an externality one.

A second related literature is on VAT. Here, there are two distinct sets of related 
papers. First, there is a growing literature on the effect of VAT thresholds on firm 
behavior. Theoretical contributions include Keen and Mintz (2004), Kanbur and 
Keen (2014), and Liu and Lockwood (2015), and empirical studies include Liu and 
Lockwood (2015) and Harju et al. (2016). The theoretical work of Kanbur, Keen, 
and Mintz focuses on the optimal threshold of the VAT, holding the rate of tax 
fixed, and is thus complementary to this paper, which characterizes the MEB of an 
increase in the rate, holding the threshold fixed. In fact, we effectively ask the ques-
tion of whether it is legitimate to ignore the threshold altogether when calculating 
the MEB of the VAT.

Therefore, our paper relates to a literature on the marginal excess burden of indi-
rect taxes, including VAT (e.g., Ballard et al. 1985; Rutherford and Paltsev 1999). 
In these papers, when the marginal excess burden of VAT is calculated, it is always 
assumed that the VAT is a proportional tax, i.e., the VAT threshold is ignored. This 
paper shows that this simplifying assumption yields seriously biased estimates.

A third related literature is that on the MEB and welfare-maximizing taxes with 
kinks in the tax schedule. Here, we make a small contribution as a by-product of our 
main focus, which is on notches. In the case of kinks, it is generally understood that 
the marginal excess burden of the top rate of income tax, and the welfare-maximiz-
ing top rate depends via simple formulae, only on the elasticity of the ETI, and the 
Pareto statistic of the income distribution. However, there seems to be some con-
fusion about the conditions required for this result. Saez et al. (2012) suggest that 

9 See Doerrenberg et  al. (2015) for a more formal statement of this argument, and estimates of how 
deductions respond to tax rate changes for the case of Germany.
10 Chetty shows that when the household can evade the personal income tax at a cost, if that cost is a 
pure transfer payment, i.e., a fine times a probability of detection, there is effectively a positive fiscal 
externality of evasion—it generates additional revenue for the government and thus benefit for all house-
holds. In this case, as we might expect, we see that the elasticity of taxable income over-estimates the 
excess burden of the tax.
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what is required is that assumption that “behavioral responses take place only along 
the intensive margin,” or more precisely that the aggregate bunching response of 
an increase in the top rate of tax is of second order relative to the extensive-margin 
response.11 This assumption is very strong, as even with a kink, there is always a 
bunching response. Our Proposition 1 shows that this assumption is not necessary, 
because no matter what the size of the bunching response, the response has no effect 
on tax revenue, to first order, as the tax schedule is continuous. All that is required is 
that the distribution of taxpayer types is continuous, a standard assumption.

3  The model and preliminary results

3.1  Setup

We follow Saez (2010) in our setup. There are individual taxpayers indexed by a 
skill or taste parameter n ∈ [n, n] , assumed continuously distributed in the popula-
tion with distribution H(n) and density h(n). A type n individual has preferences 
over consumption c and taxable income z of the form

where �(z;n) is the disutility of earning income z. So, as utility is linear in c, we are 
assuming away income effects. We also assume:

A1. 𝜓z > 0,𝜓zz > 0, 𝜓n,𝜓nz < 0.
A1 says that the cost of generating taxable income is strictly increasing and 

strictly concave in z. It also allows us to interpret a higher n as a higher skill level 
(i.e., higher wage), or a lower taste for leisure. In particular, the higher n, the lower 
the total and marginal disutility of generating a given amount of taxable income. 
Assumption A1 is satisfied, for example, by the iso-elastic specification of Saez 
(2010):

The budget constraint is c = z − T(z) , where T(⋅) is the tax function. So, a house-
hold’s utility over z is u(z;n) = z − T(z) − �(z;n).

Finally, for future reference, define the optimal taxable income at tax rate t for a 
type n taxpayer to be;

(1)u(c, z;n) = c − �(z;n)

(2)�(z;n) =
n

1 +
1

e

(
z

n

)1+
1

e

z(1 − t, n) ≡ argmax
z≥0 {(1 − t)z − �(z;n)}

11 Specifically, they say the following. “The change dt could induce a small fraction dN of the N taxpay-
ers to leave (or join if dt < 0 ) the top bracket. As long as behavioral responses take place only along the 
intensive margin, each individual response is proportional to dt so that the total revenue effect of such 
responses is second order ( dN ⋅ dt ) and hence can be ignored in our derivation.”
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Generally, Assumption A1 does not imply that z(1 − t, n) > 0 , so we allow for cor-
ner solutions with zero earnings, i.e., where the household does not work. How-
ever, in the iso-elastic case (2), there will always be an interior solution, as the mar-
ginal cost of z goes to zero with z. Note from A1 that if there is an interior solution 
z(1 − t, n) > 0 , then z1−t, zn > 0 , where subscripts denote derivatives. So, z1−t is the 
response of taxable income to the net-of-tax rate. Following the terminology intro-
duced in the introduction, we call this the individual response to the tax.

3.2  Kinks and notches

For simplicity, we focus on a two-bracket tax, although our arguments apply 
straightforwardly to the case of the highest tax in a piecewise-linear tax system with 
any number of brackets. We will assume that the tax system is progressive; that is, 
the tax rate on incomes in the higher income bracket is strictly greater than the tax 
on incomes in the lower income bracket.

So, with a two-bracket tax, for a kink, the tax function is

for z0 > 0, tH > tL ≥ 0. That is, all income below the kink point z0 is taxed at the 
lower rate tL , and all income in excess of the kink is taxed at the higher rate. For a 
notch, the tax function is

with tH > tL ≥ 0 . That is, when taxable income is below z0 , a tax at rate tL is paid on 
all income, but when z is above z0 , a tax at rate tH is paid on all income.

Note here that we are studying what Kleven and Waseem (2013) call a propor-
tional tax notch. The more general case is where there is also a pure notch, where 
a lump-sum tax or subsidy is also paid when earnings exceed z0 . We choose to 
focus on the proportional notch partly for simplicity, and partly because most of the 
empirical cases of notches discussed in the introduction are of this type.

3.3  Bunching

With either a kink or a notch, all types in an interval n ∈ [nL, nH] will bunch at taxa-
ble income z0 . In both cases, the lowest type who bunches is the one who is just will-
ing to earn taxable income z0 at the lower tax rate. So, nL is defined by the condition

With a kink, the highest type who bunches, nH , is defined by the condition that the 
optimal choice of taxable income at tax tH is just z0 , i.e.,

(3)TK(z) =

{
tLz, z ≤ z0

tLz0 + tH(z − z0), z > z0

(4)TN(z) =

{
tLz, z ≤ z0
tHz, z > z0

(5)z(1 − tL, nL) = z0
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With a notch, nH is defined by the condition that the nH type must be indifferent 
between staying at the notch and paying tax tL , and choosing z optimally, and pay-
ing tH on all income. To write this indifference condition, we first define the indirect 
utility function

Then, the condition defining nH can be written:

The left-hand side of (7) is utility when taxable income is constrained to be at the 
notch value z0 . Note that this indifference condition implies z(1 − tH , nH) > z0 , 
because if z(1 − tH , nH) < z0 , the nH-type could choose z optimally and stay below 
the notch.

3.4  The aggregate bunching response

Here, we study the effect of a change in tH on the mass of individuals who bunch, 
i.e., on the size of the interval [nL, nH] . Note first from (5) that nL is unaffected by 
tH for both a kink and a notch. Next, in the kink case, we can calculate from (6) 
that

So, we have an aggregate bunching response to an increase in tH , i.e., an increase in 
the tax rate above the kink makes going above the kink less attractive, and so more 
people bunch below the kink.

In the notch case, note that vt = −z , where vt is the derivative of v with respect 
to t. Then, using this fact and the implicit function rule, we can calculate from (7) 
that

Also, as 𝜓nz(z;n) < 0 and z(1 − tH , nH) > z0 , we see that the denominator of (9) is 
positive, and consequently from (9):

So, again we see that there is an aggregate bunching response to a change in tH ; an 
increase in the tax rate above the notch makes going above the notch less attractive, 
and so more people bunch at the notch.

(6)z(1 − tH;nH) = z0

v(1 − t;n) ≡ max
z≥0 {(1 − t)z − �(z;n)}

(7)(1 − tL)z0 − �(z0;nH) = v(1 − tH;nH)

(8)
𝜕nH

𝜕tH
=

z1−tH

zn
> 0

(9)
�nH

�tH
=

z(1 − tH , nH)

�n(z0;nH) − �n(z(1 − tH , nH);nH)

(10)
𝜕nH

𝜕tH
> 0
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4  Main results

4.1  The effect of the aggregate bunching response on tax revenue

Here, we establish a key result that the effects of the aggregate bunching response on 
tax revenue with a kink and a notch are qualitatively different, being zero and negative 
respectively. With a kink, revenue can be written

Note from the second and third  terms in (11) that all households with n ≥ nL pay 
tax at the lower rate on the first z0 of earnings, and tax at the higher rate tH on the 
remainder.

So, in the kink case, the aggregate bunching effect on tax revenue, i.e., the effect of a 
change in tH on R via a change in nH is from (6) and (11):

So, overall, with a kink, the effect of the aggregate bunching response on tax rev-
enue is zero. This is simply due to the fact that a kinked tax schedule is continuous 
in z.

With a notch, revenue is

Comparing this to (11), we see a key difference. Because the higher rate applies to all 
income for those earning above z0 , the threshold z0 no longer enters into the tax base for 
tH , and so the size of the term on z0 in the tax base for the lower rate of tax falls from 
1 − H(nL) to H(nH) − H(nL) , reflecting the fact that now only individuals below nH pay 
any tax at the lower rate.

Note from (13) that;

This is strictly negative as tH > tL , z(1 − tH;nH) > z0 . So, in contrast to the kink case, 
the aggregate bunching effect on tax revenue R from an increase in tH is negative, as 
𝜕nH

𝜕tH
> 0 from (10). This is because a small increase in nH has two effects on revenue 

that are both negative. First, there is a discontinuity in the tax base; the earnings of 
these who now locate at the notch fall discontinuously from z(1 − tH;nH) to z0 . 

(11)

R = tL ∫
nL

n

z(1 − tL;n)h(n)dn + tL(1 − H(nL))z0

+ tH ∫
n

nH

(z(1 − tH;n) − z0)h(n)dn

(12)
�R

�nH
= −tH(z(1 − tH;nH) − z0)h(nH) = 0

(13)

R = tL ∫
nL

n

z(1 − tL;n)h(n)dn + tL(H(nH) − H(nL))z0

+ tH ∫
n

nH

z(1 − tH;n)h(n)dn

(14)
𝜕R

𝜕nH
= (tLz0 − tHz(1 − tH;nH))h(nH) < 0
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Second, there is a discontinuity in the tax rate applying to that base; all these earnings 
are taxed at a lower rate, tL rather than tH.

So, we conclude:

Proposition 1 The effect of the bunching response on tax revenue is zero for a kink, 
but strictly negative for a notch.

This result is the key one that drives the rest of the paper. Proposition 1 also helps to 
clarify some confusion in the literature. As already noted, Saez et al. (2012) argue that 
for sufficient statistic formulae to apply in the kink case, what is required is that 
assumption that “behavioral responses take place only along the intensive margin,” or 
more precisely that the aggregate bunching response of an increase in the top rate of tax 
is of second order relative to the individual response. Proposition 1 shows that this 
assumption is not required, because no matter how large is �nH

�tH
 , �R
�nH

= 0 in the kink case.

4.2  The marginal excess burden

Here, we derive a formula for the marginal excess burden (MEB) of tH when there 
is a notch and show that it can be written as the MEB of a proportional tax plus a 
correction factor. To define the MEB, note that due to quasi-linearity, the natural 
measure of welfare is the integral of indirect utilities, say W, plus revenue R, which 
is assumed to be redistributed as a lump-sum back to households when calculating 
the MEB. So,

The minus sign ensures that the marginal excess burden is measured as a positive 
number.

Generally, whether there is a kink or a notch, a simple envelope argument tells us 
that a change dtH only has a direct effect on W; all indirect effects, via individual or 
aggregate bunching responses are zero, as households are optimizing. In turn, due to 
the assumption of a quasi-linear utility function, this direct effect is simply the total 
increase in tax paid at the higher rate, i.e., dtH times the base of the higher rate of 
tax. That is, mathematically:

where BH is the base of the higher rate of tax. Plugging (16) back into the MEB for-
mula (15), dividing through by BH , and rearranging, we get

So, we see that we can always write the MEB in terms of an observable, F, the share 
of revenue raised by the top rate of tax, and E, the aggregate elasticity of revenue 

(15)MEB = −
d(W + R)∕dtH

dR∕dtH

(16)
dW

dtH
= −∫

n

nH

z(1 − tH;n)h(n)dn = −BH

(17)MEB =
1 − E∕F

E∕F
, E =

tH

R

dR

dtH
, F =

tHBH

R
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with respect to the top rate of tax. The problem with this characterization of the 
MEB is twofold.

First, it is not easy to credibly estimate E, as one must typically rely on cross-
country data, and in that case, exogenous variation in the tax t is hard to find. For 
example, if the UK raised its top rate of tax tH from 40 to 50%—as actually hap-
pened in 2010—and revenue R rose by 5%, we cannot infer that the elasticity is 0.5 
as other things are not equal. Moreover, the only plausible control group would be 
other similar countries, which are small in number, have their own changes in taxes, 
and so on.

Second, and more fundamentally, E will depend on both individual household 
responses to the top rate of tax tH , and the distribution of income, and we wish to 
know how both these factors determine E. For the case of a kink, such a formula 
has been provided by Saez (2001) and is given in (23) below. It is the main objec-
tive of this paper to develop a similar formula for the case of a notch and explore its 
implications.

The first step in this exercise is to calculate the overall effect of an increase in tH 
on tax revenue R via the different channels. From (13), we have:

As before, BH is the base in which the higher rate of tax is levied.
So, (18) is composed of three terms, the mechanical effect BH , and two behavioral 

effects on tax revenue, the individual and aggregate bunching effects. The individual 
effect on tax revenue is standard; it describes how the tax base changes because of 
changes in earnings, conditional on the taxpayer staying in the same tax bracket.

So, plugging (16), (18) back into the MEB formula (15), dividing through by BH , 
multiplying by 1 − tH , and noting that holding nH constant, �BH

�(1−tH )
= −

�BH

�tH
 , we can 

establish the following result.

Proposition 2 With a tax notch, the marginal excess burden of the top rate of 
income tax is

where

Here, ē is the elasticity of the tax base BH with respect to the net-of-tax rate 
1 − tH , holding nH constant, and so is just the average ETI. Also, C is a correction 
factor, which captures the effect of a changing nH , the aggregate bunching response, 
on the MEB, via its effect on revenue.

(18)dR

dtH
= BH +

tH
�BH

�tH

||
||nH const

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

+
�R

�nH

�nH

�tH
⏟⏞⏟⏞⏟

individual aggregate bunching

(19)MEB =
tHē + C

1 − tH(1 + ē) − C
, C = −

1 − tH

BH

𝜕R

𝜕nH

𝜕nH

𝜕tH

(20)ē =
1 − tH

BH

𝜕BH

𝜕(1 − tH)

|||
|nH const

=
1 − tH

BH
∫

n

nH

𝜕z(1 − tH;n)

𝜕(1 − tH)
h(n)dn
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Note that  (19) is the formula for the marginal excess burden of a proportional 
income tax, as shown by Feldstein (1999), plus a correction factor C. This is intui-
tive; all households above nH are paying tax at rate tH on all their income, so for 
these households, tH is indeed a proportional tax. So, as already remarked, the cor-
rection factor C just captures the effect of a changing nH , the aggregate bunching 
response, on the MEB, via its effect on revenue.

As a next step, we would like to be able to investigate in more detail to what 
extent the correction factor C is quantitatively important. To do this, we make two 
standard assumptions. The first is that the disutility of income is iso-elastic, i.e., as 
in (2). In that case, all individuals have the same ETI, namely e, and so ē = e , a con-
stant independent of nH . The second is that the distribution of n is Pareto above nH . 
We can then prove:12

Proposition 3 Assume iso-elastic utility (2), and that the distribution of n is Pareto, 
with shape and scale parameters a, n . Then, the MEB with a notch is

where

Moreover, in (22), z̃H = nH(1 − tH)
e and nH is defined by (7).

This result enables us to compare precisely how the MEB compares to the MEB 
in a kinked tax system. As shown for example, by Saez (2001), under our assump-
tions, the latter is

Clearly, MEBK depends only on simple sufficient statistics; other than the tax rate 
tH , it depends only on e, the individual elasticity of taxable income, and a, the shape 
parameter of the income distribution.

By contrast, from (22), it is clear that C is a more complex object. It depends not 
only on sufficient statistics e, a, and the top rate of tax, tH , but also on other param-
eters of the tax system tL, z0 , and on z̃H , which is the unconstrained earnings of the 
type nH , given that they face the higher rate of tax.

So, there are two ways of solving for C. One is simply to compute C using for-
mulae (22), (7), choosing calibrated values for e, a, z0 , and that is what we do in 
this paper. Alternatively, as shown by Kleven and Waseem (2013), in any empirical 

(21)MEB =
tHe + C

1 − tH(1 + e) − C
,

(22)
C =

(tH − tLz0∕z̃H)(a − 1)(1 + e)

1 −
(

z0

z̃H

)(1+e)∕e
> 0.

(23)MEBK =
tHea

1 − tH(1 + ea)

12 This and subsequent Propositions are proved in the Appendix.
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study of a notch, the earnings nH(1 − tL)
e can be estimated. Specifically, nH(1 − tL)

e 
is simply z∗ + Δz∗ in the notation of their paper, where z∗ is the earnings notch and as 
explained there, Δz∗∕z∗ can be estimated from excess bunching at the notch. Given 
this, z̃H can be recovered simply by multiplying z∗ + Δz∗ by (1 − tH)

e∕(1 − tL)
e , 

using the empirical estimate of e.

4.3  Tax evasion

Before turning to simulations with a calibrated version of our model, we consider 
how our results extend to the case where the taxpayer can evade, or shelter, some 
of her income at a resource cost. In this section, we briefly sketch the argument; the 
details are given in the Online Appendix.

We generalize our framework using Chetty (2009b). We now interpret z as 
reported income, and we denote by s income that is sheltered from the government. 
A type n individual now has preferences

Note two changes from (1). First, there is a cost of sheltering income from the tax 
authorities, captured by g; we assume that g′, g′′ > 0 . As Chetty (2009b) says, this 
could reflect the loss in profits from transacting in cash instead of electronic pay-
ments or the cost of choosing a distorted consumption bundle to avoid taxes. Sec-
ond, the disutility of income depends on the sum of reported and sheltered income, 
i.e., z + s.

The budget constraint is

whereas in Chetty (2009b), a(s) is the expected cost to the household of audit, which 
is assumed to be increasing and weakly convex in s. This captures any fines paid if 
s is detected by the tax authorities, times the probability of detection.13 Note that 
the tax paid depends only on reported income. The household maximizes (24) with 
respect to z, s subject to (25), giving rise to choice of reported income z(1 − t).

Then, the behavior of the household faced with a kink or a notch is qualitatively 
the same as before. That is, under either type of tax schedule, households in the 
bunching interval [nL, nH] keep z just at the threshold. In the case of a kink, nL , nH 
are characterized by (5), (6) as before. In the case of a notch, (7) is modified to allow 
for the endogenous choice of sheltered income s. Given this, it is still the case that 
the effect on revenue R of a change in nH is zero in the kink case and negative in the 
notch case, as this simply follows from the (dis-)continuity of R in the kink (notch) 
case. So, Proposition 1 continues to hold.

(24)u(c, s;n) = c − g(s) − �(z + s;n)

(25)c = z + s − T(z) − a(s),

13 We simplify slightly by making a independent of t. In practice, audit fines are often proportional to 
taxes owed, and this generalization is simple to make.
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Moreover, as shown in the Online Appendix, in the special case where there is no 
audit cost of evasion, i.e., a ≡ 0 , Proposition 2 continues to hold. In the more realis-
tic case where there is an audit cost, the MEB is equal to the MEB of a proportional 
tax plus two correction factors, one for the notch C as before, and one offsetting 
negative term capturing the fact that the audit cost is a transfer and thus lowers the 
MEB of the tax. As the first is positive and the second is negative, they have offset-
ting effects on the MEB.

5  Simulations

We have seen that the MEB of an increase in tH is given by the corresponding for-
mula for a proportional tax tH plus a correction factor, C. Moreover, the MEB for-
mula for a proportional tax is very simple, depending only on the intensive-margin 
elasticity e, and thus can easily be calculated.

So, a key question is whether we can get a good approximation to MEB by setting 
C = 0 , i.e., treating tH as a proportional tax. In this section, we investigate whether 
the MEB, calculated assuming that tH is a proportional tax, is a good approximation 
to the true MEB.

To do this, we need to calibrate the model. In particular, we require values for 
e, a, tH , tL , and z0 . Our baseline parameter values are chosen as follows. Follow-
ing Piketty and Saez (2013), we set a = 1.5 , and following Saez et al. (2012) and 
Kleven and Schultz (2014), we set e = 0.25 . Regarding the tax rates, we first set 
tL = 0.2 , which is broadly in line with the average income and payroll tax paid by 
US households.14 It is also the basic rate of income tax in the UK. For the notch, 
we use the fact that notches in personal income tax, where they exist, are small. 
For example, Kleven and Waseem (2013) show that in the Pakistani income tax, the 
notch ranges between 2 and 5 percentage points. So, we will take our baseline notch 
tH − tL = Δt = 0.03.

To choose n, z0 we assume that only the top 20% of the population pay a higher 
rate of income tax, roughly the proportion in the UK. Define n0 to be the skill level 
corresponding to taxable income just at the notch, i.e., n0(1 − tL)

e = z0 . This requires 
that 80% of the population have skills below n0 , i.e., H

(
n0
)
= 1 −

(
n

n0

)�

= 0.8 , or 
n

n0
= (0.2)1∕1.5 = 0.342 . Given that only the ratio n

n0
 is determined, we set n = 1 , so 

n0 = 2.924 . But then z0 = 2.924(0.8)0.25 = 2.168.
Finally, from (22), we need a value for nH . Under the assumption (2), the indiffer-

ence condition (7) reduces to

(26)e(nH)
−1∕e

(
z0
)1+ 1

e + nH(1 − tH)
1+e − (1 − tL)z0(1 + e) = 0

14 “Overview Of The Federal Tax System As In Effect For 2015,” Joint Committee on Taxation, Con-
gress of the United States.
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Equation  (26) has two roots, and we take the larger root to ensure that 
nH(1 − tL)

e > z0 . Finally, parameter values are chosen so that the denominator in 

Fig. 1  MEB as e varies
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(21) is positive, which is equivalent to dR∕dtH > 0 , i.e., that the tax rate is on the left 
side of the Laffer curve. This requires simply that the notch is greater than 0.0015.15

Figures  1 and  2 show both the true MEB, as given by (21), and the approxi-
mation, treating tH as a proportional tax, i.e., setting C = 0 in (21). The former is 
denoted by MEB in the figures, and the latter by MEBA.

The error in using MEBA at the baseline values can be read off from Fig. 1, set-
ting e = 0.25 . It can be seen that true MEB is about 0.6, whereas the approximation 
is about 0.1. So, the error in using the proportional formula is about a factor of six. 
Figure 1 also shows that MEB is increasing in e, at a faster rate than MEBA, so when 
e = 0.4 for example, the error in using MEBA is almost an order of magnitude.

Figure  2 shows that MEB is also increasing in a, the Pareto parameter which 
measures (inversely) the size of the tail of the income distribution. As MEBA is inde-
pendent of a, this means that the error in using MEBA is increasing in a.

6  An application to VAT

As remarked in the introduction, perhaps the most important example of a tax notch 
is the value-added tax. In this section, we present a simple model of the value-added 
tax, which is mathematically equivalent to the model developed above. We then 
calibrate the model using UK data from Liu and Lockwood (2015), to estimate the 
MEB from the VAT, taking into account bunching at the threshold.

6.1  The setup

Here, we briefly outline the setup of the model. A detailed exposition is in  the 
Appendix. We consider a single industry with a fixed, large number of small traders 
producing a homogeneous good. Each small trader combines his own labor input 
with an intermediate input to produce output via a fixed-coefficients technology. An 
implication of this technology is that value-added is proportional to output. As in 
the income tax model, individual traders are indexed by a skill parameter and have a 
disutility of supplying labor of the same iso-elastic form as in (2).

Traders sell to final consumers, who have perfectly elastic demand for the good. 
This is analogous to the assumption made in the taxable income literature that the 
wage is fixed, i.e., labor demand is perfectly elastic at a fixed wage. The traders face 
a VAT system. If the trader is registered, he must charge VAT on sales at rate t, but 
can claim back VAT paid on the input. The trader must register for VAT if the value 
of sales exceeds the threshold but can register voluntarily even if this is not the case.

15 For the denominator in (21) to be positive, we require 1 − tH(1 + e) > C , which is satisfied for 
tH − tL > 0.0015.
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6.2  Trader payoffs, effective VAT rates, and bunching

Let n measure the skill of the trader. It is shown in the Appendix that the payoff 
of trader n can be written as a function of value-added z and the VAT system as 
follows;

Here, T(z) is the amount of VAT paid by the trader. Moreover, T(z) can be written in 
terms of effective VAT rates:

Here, tN , tR are the effective VAT rates faced by non-registered and registered trad-
ers, respectively, on the value-added they generate. These depend on the statutory 
rate of VAT, t, the VAT threshold z0 , expressed as a level of value-added, above 
which the firm will register, and � which measures the intensity of the intermediate 
input in production.16

The idea is the following. First, if any intermediate input is used, i.e., 𝛾 > 0 , the 
trader is effectively taxed at rate tN even if his turnover is below the threshold and he 
does not register, because his input is subject to VAT. This effective rate is increas-
ing in � and t. Second, if the trader’s value-added is above the threshold, he pays a 
rate tR , which is also increasing in � and t. Finally, to rule out voluntary registration, 
we will assume that registration incurs a higher effective tax rate, i.e., tR > tN which 
requires 1 > (1 + t)𝛾.

Then, (27), (28) describe a utility function and a tax schedule as function of 
value-added z that are mathematically equivalent to the income tax model although, 
obviously, the economic interpretation of z is different. From this equivalence, we 
can infer the following. Faced with the tax schedule (28), all traders in the interval 
n ∈ [nL, nR] will bunch at the VAT threshold z0 . Moreover, nL = z0∕(1 − tN)

e , and nR 
solves (7) with tH , tL replaced by tR, tN.

6.3  The marginal excess burden of the VAT

Here, we use the mathematical equivalence of the VAT and income tax models to 
move swiftly to a formula for the MEB of the VAT. First, let z(1 − t;n) = (1 − t)en 
be the value-added chosen by an unconstrained firm facing tax t. Then, it is shown in 
A.2 that the revenue from the VAT is as in (13), with tH , tL replaced by tR, tN . Then, 
the revenue from the VAT can be written compactly as

(27)u(z;n) = z − T(z) −
n

1 +
1

e

(
z

n

)1+
1

e

(28)T(z) =

{
tNz, z ≤ z0
tRz, z > z0

, tR =
t

(1 + t)(1 − 𝛾)
, tN =

𝛾t

1 − 𝛾
.

16 It is shown in the Appendix that z
0
= (1 − �)y

0
 , where y

0
 is the threshold expressed in the usual way 

as a value of sales.
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In (29), the bases on which tN , tR are levied are the value-added of non-registered 
and registered traders, respectively, i.e.,

Now note that a change in the statutory rate t of VAT will change both effective 
tax rates tN , tR unless � = 0 , i.e., no intermediate inputs are used. This is of course, 
analogous to a reform that changes both tH and tL in the income tax model. So, for 
the VAT, the formula for the MEB becomes somewhat more complex. To present 
the formula for the MEB in this case, we need a few more definitions. First, from 
(30), the intensive-margin elasticities of BR,BN with respect to the net-of-tax rate are

where

The term � captures a new effect of bunching; with bunching, a mass H(nR) − H(nN) 
of the non-registered firms that are bunching are unresponsive to a change in the rate 
of VAT, which lowers the aggregate intensive-margin elasticity of the tax base BN 
with respect to tN.17

Moreover, recall that an increase in t causes both tN and tR to increase, so

measures the importance of a change in tR on tax revenue relative to a change in tN . 
Armed with these new definitions, we can state our result, which is proved in the 
Appendix.

(29)R = tNBN + tRBR

(30)

BN = ∫
nN

n

(1 − tN)
enh(n)dn + z0(H(nR) − H(nN)),

BR = ∫
n

nR

(1 − tR)
enh(n)dn

(31)
1 − tR

BR

�BR

�tR

|
|||nR const

= e,
1 − tN

BN

�BN

�(1 − tN)

|
|||nN const

= e�,

(32)𝜙 =

∫ nN
n

z(1 − tN ;n)h(n)dn

BN

< 1

(33)� =

BR

1−tR

�tR

�t

BR

1−tR

�tR

�t
+

BN

1−tN

�tN

�t

17 A similar point has been noted before by Slemrod et al. (1994) and Apps et al. (2014) who consider 
the design of a two-bracket income tax. Because the tax system they studied was kinked, not notched, the 
formula for the optimal lower rate of tax depends only on the intensive-margin elasticity, but this elastic-
ity is dampened by the fact that taxpayers at the kink do not adjust their behavior in response to the tax.
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Proposition 4 Assume that the distribution of sales is Pareto, with shape and scale 
parameters a, n . Then, the MEB of the VAT is

where

and finally the correction factor is

So, we note now that bunching impacts the calculation of the MEB in two ways. 
First, as before, there is a correction factor C in (34). The correction factor is more 
complex than in the income tax case. The reason for the additional complexity is 
clear from (36); an increase in t now increases both tR, tN and in turn, both of these 
effective taxes affect nR , the top of the bunching interval, and thus revenue. An 
explicit formula for C in terms of parameters can be derived as in (22) above; this is 
done in the Online Appendix.

In addition, there is a second, new effect of bunching in (35). Bunching dampens 
the intensive-margin response to a change in t, because at a fixed nN , nR , firms in this 
interval will not adjust their sales in response to a change in t. This is captured by 
the term � which lowers the intensive-margin response from e to �.

An interesting special case is where the small traders do not use any intermediate 
input, so. i.e., � = 0 . Then from (28), tN = 0 , tR =

t

1+t
 , so (34) simplifies to

It can be checked that in this case, C is given by the explicit formula (22), replacing 
tH , tL by tR, 0 , respectively.

6.4  Simulations

Here, we calibrate the VAT model and plot the true MEB in (34) and an approxima-
tion to the MEB as parameters vary.18 The approximation is the one treating VAT as 
a proportional tax, i.e., setting C = 0 in (37), which gives

(34)MEB =
�� + C

1 − �(1 + �) − C

(35)� = (1 − �)tN + �tR, � =
(1 − �)tN� + �tR

(1 − �)tN + �tR
e

(36)C = −

�R

�nR

(
�nR

�tN

�tN

�t
+

�nR

�tR

�tR

�t

)

BR

1−tR

�tR

�t
+

BN

1−tN

�tN

�t

(37)MEB =

t

1+t
e + C

1 −
t

1+t
(1 + e) − C

MEBA =

t

1+t
e

1 −
t

1+t
(1 + e)

18 The details of the calibration are described in the Online Appendix.
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The parameters are calibrated as follows. In the UK, the statutory rate of VAT is 
20%, so t = 0.2. Liu and Lockwood (2015) calculate that for the universe of firms 
in the UK that file a corporate tax return, � = 0.45 . This gives tN = 0.16 , tR = 0.30.

Next, define n0 to be the productivity level corresponding to turnover just at 
the threshold, i.e., n0(1 − tN)

e = z0 . From Liu and Lockwood (2015), 62.5% of 
firms are below the threshold. So, n

n0
 must satisfy H

(
n0
)
= 1 −

(
n

n0

)1.2

= 0.625 , or 
n

n0
= (0.375)1∕1.2 = 0.442 . Given that only the ratio n

n0
 is determined, we set n = 1 , 

so n0 = 2.26 . But then z0 = 2.53(0.84)0.25 = 2.164.
Finally, we need a value for a. A prior question is whether the “upper tail” 

of the distribution of firm sales y is well described by a Pareto distribution. In 
the case of personal incomes, a Pareto distribution of the upper tail is widely 
accepted, but less is known about firms. In the USA, there is evidence that the 

Fig. 3  MEB of VAT as e varies, � = 0.45

Fig. 4  MEB of VAT as a varies, � = 0.45
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size distribution of firms as measured by sales is Pareto (Luttmer 2007), and Lutt-
mer estimates a value for the USA of a = 1.06 . In the Online Appendix, we pro-
vide evidence that this is also the case for the UK, using firm sales from admin-
istrative data on corporate tax returns. We show that for firms above the VAT 
threshold, the estimate a is about 1.2. So, this is the figure we will use in the 
simulations.

Our results are given in Figs. 3 and 4. Here, we see that the true MEB is about 
three times higher than the approximation. Also, the true MEB is increasing in both 
e and a. This difference is much smaller than in the income tax case, which is due 
partly to the lower value of a in the VAT case. Indeed, we can see in Fig.  4 that 
the accuracy of the approximation MEBA falls rapidly as a rises, because MEB is 
increasing in a whereas MEBA is independent of a.

7  Conclusions

This paper shows that the sufficient statistic approach to the welfare properties of 
income (and other) taxes does not easily extend to tax systems with notches, because 
with notches, changes in aggregate bunching induced by changes in tax rates have 
a first-order effect on tax revenues. In an income tax setting, we showed that the 
MEB of a change in the top rate of tax is given by the Feldstein (1999) formula for 
the MEB of a proportional tax, plus a correction term. This formula also applies 
when the model is extended to allow for tax evasion. These correction terms can be 
computed empirically, using an estimate of excess mass at the notch. Quantitatively, 
these correction terms can be very large.

An application to VAT was also discussed. A simple model of small traders who 
differ in productivity and are subject to VAT at rate t above a threshold level of sales 
was shown to be formally equivalent to the income tax model. We showed that the 
MEB of an increase in the statutory rate of VAT is given by the Feldstein formula 
for a proportional tax plus a correction factor as in the income tax case. With a cali-
bration to UK data, the MEB of the VAT is roughly three times what it would be if 
VAT was simply a proportional tax.
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Appendix

Proofs of Propositions

Proof of  Proposition 3 Under the assumptions made in this Proposition, ē = e . So, 
the MEB formula (21) follows from (19). It remains to derive formula (22) for C. 
From (9), noting that

and z(1 − t;n) = (1 − t)en , we have

Next, from (14) and (16), using the fact that z(1 − t;n) = (1 − t)en , we have

So, plugging (39), (40) into the formula for C in (19), we have:

where we have used ∫ n

nH
nh(n)dn = E[n||n ≥ nH ]

(
1 − H(nH)

)
 in (41).

Now, given that n follows a Pareto distribution with shape and scale parameters 
a, n , we also know that

Plugging (41) into (41), we get:

Then, using the definition z̃H = nH(1 − tH)
e to eliminate nH in (42), and rearranging, 

we get (22) as required.   ◻

Proof of Proposition 4 Let BN ,BR be the bases of the effective taxes tN , tR defined in 
(30). Then from (29), (30) and remembering that a change in the statutory rate of 
VAT t changes tN , tR via (28), we have:

(38)�n = −
1

1 + e

(
z

n

)1+1∕e

.

(39)
�nH

�tH
=

(1 − tH)
enH(1 + e)

(1 − tH)
1+e −

(
z0

nH

)1+1∕e

(40)
1

BH

�R

�nH
=

(tLz0 − tH(1 − tH)
enH)h(nH)

(1 − tH)
e ∫ n

nH
nh(n)dn

C =
(1 − tH)(tH(1 − tH)

enH − tLz0)

(1 − tH)
eE[n||n ≥ nH ]

h(nH)(
1 − H(nH)

)
nH(1 + e)

(1 − tH)
1+e −

(
z0

nH

)1+1∕e

(41)E[n||n ≥ nH ] =
anH

a − 1
,

h(n)

1 − H(n)
=

a

n

(42)
C =

(1 − tH)(tH(1 − tH)
e − tLz0∕nH)(a − 1)(1 + e)

(1 − tH)
1+e −

(
z0

nH

)1+1∕e
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where

So, plugging (43), (44) into (15), we have, after rearrangement

where in the last line, we have used (31). So, dividing top and bottom of (46) by 
BR

1−tR

�tR

�t
+

BN

1−tN

�tN

�t
 and using the definition of � from (33), and the definition of C from 

(36), we get

Finally, using the definitions of � = (1 − �)tN + �tR , � =
(1−�)tN�+�tR

(1−�)tN+�tR
e , (47) can be 

rearranged to (35), as required.   ◻

The VAT model

Model setup Consider a single industry with a fixed, large number of small traders 
producing a homogeneous good. Each small trader combines his own labor input l 
with an intermediate input x to produce output y via a fixed-coefficients technology

(43)
dW

dt
= −

(
�tN

�t
BN +

�tR

�t
BR

)

(44)
dR

dt
=
�tN

�t

(

BN + tN
�BN

�tN

|
|
|
|nR const

)

+
�tR

�t

(

BR + tR
�BR

�tR

|
|
|
|nR const

)

− C�

(45)C� = −
�R

�nR

(
�tN

�t

�nR

�tN
+

�tR

�t

�nR

�tR

)

(46)

MEB = −
d(W + R)∕dt

dR∕dt

=

BN

1−tN

�tN

�t
tN

(
1−tN

BN

�BN

�(1−tN )

||
|nR const

)

+
BR

1−tR

�tR

�t
tR

(
1−tR

BR

�BR

�(1−tR)

||
|nR const

)

+ C�

BN

1−tN

�tN

�t

(

1 − tN − tN
1−tN

BN

�BN

�tN

|||nR const

)

+
BR

1−tR

�tR

�t

(

1 − tR − tR
1−tR

BR

�BR

�tR

|||nR const

)

− C�

=

BN

1−tN

�tN

�t
e� +

BR

1−tR

�tR

�t
tRe + C�

BN

1−tN

�tN

�t
(1 − tN(1 + e�)) +

BR

1−tR

�tR

�t
(1 − tR(1 + e)) − C�

(47)MEB =
(1 − �)tNe� + �tRe + C

1 − (1 − �)tN(1 + e�) − �tR(1 + e) − C

(48)y = min

{

l,
x

�

}

,
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where � measures the input requirement per unit of output. In particular, for all trad-
ers, to produce one unit of output requires � units of input.

Individual traders are indexed by a skill or taste parameter m ∈ [m,m] , assumed 
continuously distributed in the population with distribution H(m(1 − �)) and density 
h(m(1 − �)) . A trader of type m has an overall payoff of

where � is profit and �(l;m) is the disutility of labor. So, traders are differentiated by 
disutility of labor.

For simplicity, it is assumed that traders only sell to final consumers, who have 
perfectly elastic demand for the good at price p = 1 . This is analogous to the 
assumption made in the taxable income literature that the wage is fixed, i.e., labor 
demand is perfectly elastic at a fixed wage. Finally, the intermediate input is pro-
duced only from labor supplied by non-trader households via a fixed-coefficients 
technology where one unit of labor is needed to produce one unit of the interme-
diate input. So, the tax-exclusive price of the output is w, the wage, which we also 
assume to be 1. This implies that the tax-exclusive value of sales is just y.

The traders and the producer of the intermediate input face a VAT system. It is 
assumed that the producer is VAT registered. If the trader is registered, he must 
charge VAT on sales y at rate t, but can claim back any VAT paid on inputs. The 
trader must register for VAT if the value of sales y exceeds the threshold y0 , but 
can register voluntarily even if y < y0.

We can now compute trader profit as follows. When not registered, the price of 
the input is 1 + t . So, the profit for the non-registered trader is

where � is the cost of inputs relative to revenue per unit sold. For the registered 
trader, we reason as follows. This trader must charge VAT on his output. None of the 
output VAT can be passed on to the buyer, as he has perfectly elastic demand. So, 
revenue per unit sold is p∕(1 + t) . But, if the trader is registered, he can claim back 
VAT on the input use x, so the price of the input is � . So, overall, the profit for the 
registered trader is

Trader payoffs and effective tax rates Trader utility is profit minus the disutility of 
labor. So, combining (38), (50), (51) and defining n ≡ m(1 − �), l = y, we get:

(49)u(l;m) = � − �(l;m), �(l;m) =
Am

1 +
1

e

(
l

m

)1+
1

e

(50)�N = (1 − �(1 + t))y.

(51)�R =

(
1

1 + t
− �

)
y.
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Now, using z = y(1 − �) in (52), and setting A = 1 − � , we get

Finally, we note from (28) that

Then, combining (53), (54), we get (27), (28) as required.
Tax revenue Now we derive (29) in the text. Let y(n) be the sales of an n-type 

trader. Note that as m has distribution function H(m(1 − �)) , n has distribution func-
tion H(n). Then, revenue from the from the VAT is

The first term is revenue from VAT levied on the value of sales of registered firms, 
because the sale price is 1∕(1 + t) , and the second term is revenue from inputs sold 
by the intermediate input producer to firms that do not register for VAT. Using 
z(n) = y(n)(1 − �) , we can write this as

Finally, replacing z(n) by z(1 − tN ;n), z0 , or z(1 − tR;n) where appropriate, and using 
(54) for the definitions of tN , tR , we get (29) as required.
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