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Abstract 

The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, 

and their application to transport systems is heralded as game-changing.  Numerous developing CAV (Connected and 

Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative 

autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the 

dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data 

available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, 

commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal 

information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises 

the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which 

will minimise and mitigate privacy concerns without hampering the efficacy of the functions. 

1 Introduction 

The Internet of Things (IoT) is promising revolutionary 

changes in the way people live, work, transport, and interact 

with technology by bringing together multiple sensors, 

actuators, communications technologies, data and processing. 

One of the significant areas of IoT development is in the area 

of intelligent transportation systems (ITS) [1]. ITSs consist of 

a network of roadside units (RSU), vehicular on-board 

electronic control units (ECU), distributed computing and 

storage systems [2]. Wireless networks communications such 

as V2V (Vehicle-to-Vehicle), and V2I (Vehicle-to-

Infrastructure) are enabled through technologies such as 

IEEE 802.11p DSRC/WAVE (Dedicated Short Range 

Communication/Wireless Access in Vehicular Environments) 

and cellular advances such as C-V2X [3]. 

 

Modern vehicles are evolving to be safer, more energy 

efficient, more comfortable and accessible by being equipped 

with a wide range of sensors and ECUs. Developments in 

wireless communication, sensing the internal and external 

surroundings, and capability of decision taking for driving are 

advancing the state of the art in connected and autonomous 

vehicles (CAVs). To help categorise the level of autonomy in 

CAVs, the Society of Automotive Engineers (SAE) has 

created a set of standardised levels for autonomy from level 0 

to 5, wherein at level 5 the vehicle is expected to take all 

driving decisions without any user monitoring required [4]. 

Further to the autonomy advances, the development of 

reliable low latency wireless communications (i.e. the 

envisioned 5G), and cloud-based infrastructure are able to 

coordinate and increase the knowledge-base of CAVs. Cloud-

assisted CAVs bring advantages such as broader connectivity 

for real-time traffic optimisation realised through the cloud 

and mobile edge computing [5]. 

 

As well as promising numerous benefits, CAVs also the 

potential for negative consequences such as privacy invasions 

and tracking [6]. While we mention privacy invasions, it is 

important to recognise that there is not a unified definition of 

privacy.  Indeed, there have been propositions that there is a 

paradox [7], and that privacy varies according to different 

people, communities, and cultures [8].  From a business 

perspective, privacy compromises might negatively influence 

the reputation of manufacturers and businesses. Therefore, 

privacy protection is an essential aspect of consumer trust, 

and hence the adoption of new technology [9], [10]. 

Approaches to protect privacy can be termed Privacy-

enhancing technologies (PETs) and they can promise 

significant advances in data sharing to drive all kinds of 

applications forward with confidence.  

 

Privacy challenges in CAV systems are can be analysed 

considering identity anonymisation and authentication in 

vehicular ad-hoc networks (VANETs) by using schemes such 

as pseudonym-based privacy and group signatures. Recently, 

Qu et al. addressed and classified privacy challenges and 

requirements for vehicular networks [11]. However, privacy 

challenges that might arise out of the CAV functions (e.g. 

location-based services, etc.) have not been included. If there 

is a known link between two points of data, anything learned 

by one of the points might enable to make an inference about 

the other data point. Asuquo et al. analysed the privacy 

requirements, challenges and approaches Location-Based 

Services (LBS) in vehicular networks [12]. Ni et al. analysed 

the privacy requirements of fog-computing based vehicular 

systems and their functions [13]. To the best of our 

knowledge, this work is the first review, which delivers a 
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comprehensive analysis of the privacy challenges of both 

vehicular networks and CAV functions. It proposes a novel 

taxonomy and discussed the identified state-of-the-art in 

Differential Privacy (a particular type of PET that is 

attracting significant attention) regarding its applicability to 

the privacy challenges in CAV functions we have identified. 

This work also identifies the existing knowledge gap in the 

research base and proposes emerging research directions. 

 

2 Methodology 

In this work, we provide a brief background for existing 

notions of privacy and characteristics of CAVs. We then 

present the privacy challenges and privacy-preserving 

techniques, which have been identified through a semi-

systematic review and qualitative analysis.  We consider 

research published between 1998, the year Latanya 

Sweeney’s seminal work on  k-anonymity [14] was 

published, and 2018. Finally, we discussed the potential 

applicability of the state-of-the-art privacy-preserving 

approaches for the privacy challenges and in CAV systems. 

2.1 Paper Review Protocol 

The following table summarises the paper review protocol 

employed in this study, aimed at reducing the potential risk 

of selection bias.  

 

Table 1 Paper review protocol 

Criteria Description 

Timeframe Between 1998 and 2018  

Language English 

Aims  To identify privacy challenges 

in ITS and CAV functions. 

 To establish the state-of-the-

art PETs and evaluate their 

potential on the application 

domain. 

Topic “Privacy Preserving Techniques”, 

“Vehicular Communication”, 

“Intelligent Transportation 

Systems”, “Connected and 

Autonomous Vehicles” 

Type Academic Journals, Peer Reviewed 

Conference Proceedings 

Search Technique Boolean and word combinations 

Keywords Privacy preserving, Intelligent 

Transportation Systems, Connected 

and Autonomous Vehicles, 

Differential Privacy. 

Databases IEEE Xplore, Science Direct, ACM 

Digital Library, Google Scholar. 

Include The highly cited papers and the 

recent 3 years` papers are 

prioritised. 

 

3 Notions of Privacy 

The concept of privacy is not new, but it is elusive. In the 

early stages, privacy was firmly aligned with secrecy, as the 

Code of Hammurabi has brought the protection of the house 

of every Ancient Babylonian against others` intrusion. In the 

1800s, privacy was defined as the “right to be let alone” [15]. 

The definition has been expanded and developed as human`s 

needs changed over time. It has been defined as an “umbrella 

term” which refers to the group of wide and distinct elements 

[16], containing “bodily, communications, territorial, and 

informational” elements under the umbrella. Bodily privacy 

is the physical protection of individuals and is profoundly 

linked to safety. Privacy of communications represents the 

confidentially of the information transmitted via any 

communication channel. Territorial privacy is controlling the 

intrusion into personal territories such as the home, 

workplace, vehicle and public spaces. Informational privacy 

indicates personal data aggregated by organisations and 

companies [17]. Today, the International Covenant on Civil 

and Political Rights currently preserves it as one of the legal 

and human rights in many nations since 1966. 

 

Privacy concerns change with the rapid advancement of 

technology such as the increased opportunity for data 

collection, storage and computation. Dwork noted that 

privacy could be disclosed when a link is established between 

different data points of the same data owners [18]. The ideal 

privacy for the information systems is defined as “nothing 

about an individual should be learned by an adversary from 

the database that cannot be learned without access to the 

database” [19]. Although it is not entirely achievable, it 

stands as a utopic goal of privacy mechanisms.  

 

The recent EU General Data Protection Regulation (GDPR) 

has asserted that privacy should be taken into account from 

the early stage of system development rather than 

implementing privacy protection mechanisms later. The term 

“Privacy by Design”, has been coined to describe this 

principle [20]. One recent survey state that the understanding 

of privacy is changing for different people, communities and 

cultures, which that this should considered when developing 

privacy mechanisms [21]. 

 

Privacy, as a notion, has been evolving differently from the 

normative and technical points of view. Westin defined 

privacy as “the claim of individuals, groups, or institutions to 

determine for themselves when, how, and to what extent 

information about them is communicated to others.” [22]. 

Our privacy consideration is based on this definition. CAV 

users need to share the data about themselves to be able to 

make maximum use of advanced cooperative autonomous 

driving functions. In general, increasing the privacy of data 

comes, in general, as a cost in terms of sacrificing some of 

the advantages accruing from the functions.  However, it is 

an open research direction as to what the optimal balance of 

privacy versus function efficacy should be.  

 

4 Characteristics of CAVs 

VANETs have highly dynamic network structures, 

comprising wireless communication technologies between 

RSUs installed along roads, and the On-Board Units (OBUs) 

installed in vehicles [2]. The communication can be 
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established either V2V and V2I [23]. VANETs have evolved 

to into ITSs through the increased connectivity and reliable 

infrastructure services, which can be also supported by cloud 

services [24]. ITSs have dynamic, heterogeneous, distributed 

and open nature, leading to have distinctive features and 

specific requirements. The ITS features and security 

requirements are represented on the following Table 2 and 

Table 3 (adapted from [25]). 

 

Vehicles are evolving to become CAVs through being 

equipped with a wide range of sensors (e.g. Internal and 

External Cameras, Lidar, Radar, Ultrasound Sensors, GPS, 

etc.) and hundreds of ECUs [26]. CAVs generate a massive 

amount of rich-dimensionality data, which is utilised by a 

variety of functions and shared with other applications. This 

results in a need for ensuring privacy protection for CAV 

users, regarding data, identity and location privacy.  It should 

be noted that these functions may not only contain personal 

sensitive data but also commercial and research sensitive 

data.   

 

Table 2 ITS Features [25] 

Features Description 

Powerful capacity It includes powerful units in 

terms of energy resource, 

localisation, computation, 

storage and data rate capabilities. 

High mobility 

 

It includes many mobile units 

with different speed and 

direction. 

Dynamic network 

topology 

The units can join and/or leave 

the network very quickly 

depending on their location and 

speed. 

Time sensitivity The latency is one of the most 

important limitations (e.g. 100ms 

delay for safety-related 

messages). 

Sufficient energy The unit has sufficient resource 

in terms of energy, storage and 

computation for implementation 

of complex algorithms. 

Good physical 

protection 

Each unit needs protection 

against physical attacks. 

Unbounded network 

size 

It is not bounded with a special 

area. 

Wireless 

communications 

The units have wireless comm. 

among each other. 

Heterogeneous V2X 

communication 

Vehicles use a wide range of 

communications technologies 

Heterogeneous 

environments 

Vehicles can operate in different 

environments. 

Security and privacy It needs security and privacy 

mechanisms considering the time 

constraint and the low 

computation complexity. 

 

 

 

 

Table 3 ITS Security Requirements [25] 

Requirements Description 

Authentication It is being able to verify data 

sources and destinations 

Data integrity It is being able to verify and 

validate the received data is not 

maliciously altered. 

Privacy and 

anonymity 

The users and vehicles should 

not be able to identify or tracked 

by the exchanged messages. 

Availability The units should be available for 

real-time applications. 

Traceability and 

revocation 

The authorities should be able to 

detect malicious entities and 

verify their identities. 

Authorisation ITS should be able to control 

access for the messages or 

enabled functions. 

Non-repudiation ITS units should be able to 

associate with their messages and 

actions. 

Robustness ITS should provide robust safety 

against cyber-attacks.  

Confidentiality The transmitted data should be 

protected from malicious or 

unauthorised entities.  

 

5 Privacy Challenges 

As mentioned, CAVs create challenges in cybersecurity nd 

privacy, and there exist a number of research proposals for 

reducing the likelihood of cyber-attacks against CAVs. From 

the cyber security point of view, the importance of privacy 

protection is to reduce the potential information loss and 

reputation loss due to cyber-attacks. Users` privacy should 

also be protected from potential disclosures by service 

providers, governmental agencies and third-party entities. 

This section presents the privacy challenges of CAV systems. 

The privacy challenges both arising from participating in ITS 

and CAV functions are analysed through three subclasses: 

Data Privacy, Identity Privacy and Location Privacy. 

 

In the following, we will discuss the privacy challenges 

present due to the inter-vehicular communication involved in 

ITS. The vehicles can be identified and tracked by messages 

propagated through the ITS. Usually messages are required to 

contain Vehicle ID or an appropriate pseudonym for 

authentication. Furthermore, it is standard that vehicles 

regularly broadcast safety awareness messages including 

location and direction. These messages can be eavesdropped 

to reveal vehicle identities or track vehicles. The privacy 

challenges in ITS are usually regarding identity and location 

but it is also required to ensure access of public authorities to 

identify and location information for accountability purposes 

[27].  

 

ITSs involve different type of vehicles and different level of 

autonomies. The privacy challenges in ITS influences all of 

the vehicles, however, there are additional privacy challenges 

regarding the functions of CAVs, such as traffic planning, 
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optimisation, safety and cooperative autonomous applications 

(e.g. platooning). CAVs rely on data from various sources 

(e.g., on-board sensors, other vehicles, infrastructure, etc.) 

while much of this data is privacy-sensitive including 

personal (e.g. geo-locations, number plates, identity 

information, biometrics, etc.), commercial (e.g. trucks’ loads, 

origin, destination information, etc.) and research (e.g. 

telemetry, test data, etc.). The share of this data might cause a 

privacy leakage of individuals or groups. 

 

People might encounter many privacy challenges during the 

use of CAVs. However, some of these challenges are not 

specific to CAVs, but rather they are about being in a public 

place or in a taxi such as the privacy challenges due to 

vehicular external/internal cameras. In the following, we will 

discuss the perceived privacy challenges presents specifically 

due to the use of CAV functions. The open question here is 

that: what is the required dimensionality and accuracy of the 

data to provide sufficient efficacy of the functions, without 

significantly compromising privacy. 

5.1 Route Planning 

CAVs are able to offload the navigation routes to the cloud-

based infrastructure in order to optimise the routes using real-

time road information. This presents a location privacy 

challenge since the user needs to reveal information about the 

start and the end locations of travel and it is highly likely that 

one of these is the user`s home or workplace. 

5.2 Participating in a Vehicle Platoon 

The examples of cooperative movement exist in nature such 

as a group of migratory birds fly together in a sequential 

manner, and a group of dolphins swim together. The 

cooperative movement is beneficial for them regarding 

energy consumption, comfort and safety. Similar benefits 

exist for cooperative vehicles as well, such as using actual 

road infrastructure more efficiently, lowering energy demand 

by reducing aerodynamic drag for following vehicles, and 

improving comfort and safety [28]. A group of vehicles 

moving in a sequence with a minimal inter-vehicle distance is 

named a vehicle platoon.  

 

In order to participate in a platoon, vehicles need to share 

several types of data (e.g. velocity, acceleration, destination, 

vehicle type and current location), depending on the 

optimisation objective of the platoon that the platoon 

management algorithms aims to maximise or minimise. From 

the literature review, it has been observed that most of the 

platoon management algorithms require receiving 

participating vehicles` destinations. The location is probably 

the most privacy-sensitive data. However, vehicle weight, 

required for the computation of maximal velocity and inter-

vehicle distance, might be considered privacy-sensitive since 

it might reveal knowledge about the number of people in a 

car or the amount of load in a truck. Additionally, the 

correlation between origin-destination and truck weight has 

the potential to reveal commercially sensitive knowledge. 

Therefore, these applications present data privacy and 

location privacy challenges.  However, the privacy challenges 

arising from participating in a platoon have not been widely 

discussed in the literature though designing platooning 

algorithms is receiving a great deal of attention. Amoozadeh 

et al. [29] discussed the privacy-preserving factor regarding 

the selection of platoon coordination strategy and decided to 

use the centralised approach since it would be fast, scalable 

and enhance privacy in some degree since the leader 

coordinates all communication, and only the platoon leader 

knows all configuration. The platoon configuration is only 

shared with the new leader when the old leader leaves. 

Clearly this approach is privacy-aware, though does not fully 

address all of the challenges. 

5.3 HD/3D Map Updates 

Many CAV functions are supported by a HD/3D Map, that 

provides information about the road and environmental 

conditions before they are detection by a vehicles on-board 

sensors. For instance, if an accident has happened on the 

road, the HD/3D Map can inform the vehicular navigation 

system to use alternative routes [30]. The integrity of the 

updates is vital. The updates will shape the map, and they 

should be credible and verifiable. However, the updates can 

also reveal the location and temporal data of the issuer CAV 

as well. This presents identity privacy and location privacy 

challenges.  

5.4 Vehicular Telemetry and Biometric Data 

Collection 

CAVs are equipped with sophisticated sensors to collect 

continuous data about the surrounding environment and the 

user. Analysing this sensory data can be used in fault 

detection [31], driving monitoring [32], and driver 

monitoring [33]. The biometric data of users can reveal 

information about personal health conditions [34]; likewise, 

telemetric data of trucks can reveal commercially sensitive 

information.  

 

Vehicular telemetric data is highly valuable for many parties. 

From the perspective of users, it can help developing more 

safe, secure and comfortable vehicles and services. From the 

traffic authorities and governments` perspective, it can allow 

optimising the use of infrastructure. From the OEMs` 

perspective, it can be analysed to develop new products and 

services. According to McKinsey`s Monetizing Car Data 

report, the overall revenue of vehicle-generated data market 

might reach 450 - 750 billion USD by 2030 [35]. Although 

the data can be anonymised before using it, the de-

anonymisation can be accomplished by cross-referencing 

[36]. Therefore, de-anonymised data might cause to identify, 

track and reveal some other private information of some 

users. The privacy challenges here can be associated with 

identity, location and data privacy. 

 

6  Privacy-Preserving Approaches 

Developing privacy-preserving approaches has gained 

significant attention in a variety of application domains. This 

section examines recent privacy-preserving approaches, 

which can be applied to CAV systems, and classifies them 
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into three categories: 1) Privacy Based on Anonymity, 2) 

Privacy Based on Perturbation, and 3) Privacy Based on 

Cryptography. 

6.1 Privacy Based on Anonymity 

In the generic structure, the data can be classified into 

attributes such as explicit-identifier, quasi-identifier, sensitive 

attributes, and non-sensitive attributes.  The explicit-identifier 

set is information directly concerning identification, such as 

names, IDs or number plates. The quasi-identifier set is 

information that might potentially disclose the data owner. 

Sensitive attributes are private information related to the data 

owner, and non-sensitive attributes are all of the rest 

information including public information [37]. The vehicles 

are usually linked to their users or the owner companies (e.g. 

commercial goods carriage). Therefore, the users or the 

companies can be considered as the data owner of the 

vehicular data. It was originally thought that privacy 

preservation could be achieved by anonymising the data. 

However it has been proved, the exclusively anonymising the 

attributes is not a robust method of preserving privacy. The 

combination of non-sensitive attributes might disclose private 

information of the data owner [36]. Traditionally 

anonymisation is performed by a centralised and trusted 

system that does not attempt to identify the individuals or 

disclose sensitive information. However, it cannot be 

guaranteed which is generally defined as honest-but-curious 

cloud server in the literature. 

 

One of the most well-known techniques is k-anonymity. It 

states that if a data entry in 𝑘 data entries cannot be identified 

from the rest of the 𝑘 − 1 data entries, the dataset has k-

anonymity [14]. In this method, an adversary can distinguish 

an individual with the maximum probability of 1/𝑘. The 

limitations of k-anonymity have been addressed, and the l-

diversity method was developed as an extension [38] 

followed by t-closeness [39]. 

6.2 Privacy Based on Perturbation 

Differential Privacy (DP) techniques are used to protect 

privacy by perturbing original data with a random noise while 

ensuring that the amount of distortion has little effect on the 

output. The primary purpose of DP is eliminating the change 

in the query outputs by the addition or removal of a single 

entry to the dataset. In the worst case, an adversary might 

have the background knowledge about all the data items 

except a single item that belongs to an individual. The query 

answers might help to disclose the data item. However, DP 

introduces uncertainty to the query answers. In this case, DP 

provides a privacy guarantee that the individual`s sensitive 

information will be not disclosed. In other words, it resolves 

the risk privacy disclosure by participating in a dataset for 

individuals [18]. According to Chen et al., DP is the state-of-

the-art privacy notion, which provides provable privacy 

guarantee independent from an adversary’s background 

knowledge and computational power [40]. 

 

Let 𝐷1 be the dataset as being the collection of 𝑛 entries from 

a universe 𝑆. Let the other dataset, 𝐷2 to be a neighbouring 

dataset of 𝐷1 (i.e. consists of same entries except differing 

only one entry), ‖𝐷1 − 𝐷2‖1 ≤1. The definition of DP is for 

the given neighbouring datasets 𝐷1 and 𝐷2 is that; a 

randomised mechanism 𝑀 provides (ϵ,δ)-DP if the datasets 

𝐷1and 𝐷1 are neighbouring datasets while all 𝑆 ∈
𝑅𝑎𝑛𝑔𝑒(𝑀), 

 

Pr[𝑀(𝐷1) ∈ 𝑆] ≤ 𝑒𝜖 × Pr[𝑀(𝐷2) ∈ 𝑆] + δ 

 

The ratio of the two probability equations is bounded by 

𝑒𝜖. The 𝜖 is the privacy budget (denotation of the privacy 

loss) and the higher the value, implies providing less privacy 

guarantee. The probability of 𝛿 is the limitation of privacy 

violation and negligible in many settings. When the 𝛿 is 

equal to 1, the privacy guarantee is completely removed. 

When 𝛿 = 0, the randomised mechanism ensures 𝜖-DP 

which is the strictest privacy protection from the definition 

and generally called pure DP. On the other hand, When 𝛿 >
0, it is called approximate DP [41].  

 

The sensitivity is the parameter of a dataset for determining 

how much perturbation is required in the randomised 

mechanisms. If 𝑓 is a query in dataset 𝐷1 then the amount of 

perturbation in the output is calibrated with 𝑓(𝐷1). Sensitivity 

is also depends on the type of the query 𝑓. The global 

sensitivity is used for count and sum queries, however, it 

returns high values for the queries like median and average. 

The local sensitivity is used for such queries. 

 

DP has recently emerged as the gold standard of data privacy 

since it is not tied up with the background information of 

adversary and computation power.  It does, however, 

introduce a trade-off between data utility and privacy. CAVs 

are highly mobile, resource constrained and time-bound and 

the functions should run accurately not to jeopardise the 

safety of users. For these reasons, implementing DP in the 

vehicular domain has challenges. We divided the use of DP 

into three classes, namely VANET, OEMs data, and CAV 

functions, and present a classification of current research in 

Table 4. 

  

Table 4 Differential Privacy Studies in Vehicular Domain 

Class Ref. Year Privacy 

Mechanism 

Outcome 

VANET [42] 2018 Machine 

learning 

based 

collaborative 

intrusion 

detection 

system  

 

Used DP 

with dual 

variable 

perturbation. 

Investigated 

the security 

privacy 

trade-off.  

[43] 2018 DP for 

publishing 

mobility data 

for 

transportation 

applications. 

Proposed 

Constraint- 

Based DP 

and 

evaluated its 

performance.  
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[44] 2018 DP for 

publishing 

trajectory data.  

Performance 

evaluation of 

the proposed 

mechanism. 

OEM 

Data 

[45] 2013 DP for ITS 

management to 

protect 

Floating Car 

Data 

Used 

Laplacian 

noise with 

smooth 

sensitivity. 

Discussed 

the use of 

event-level 

DP. 

[46] 2017 DP 

mechanisms 

for vehicles 

Discussed 

different 

mechanisms 

of DP. 

CAV 

Functions 

[30] 2018 Discussed 

privacy and 

integrity 

dependency 

for CAVs.  

Discussed 

HD/3D Map 

Update 

scenario and 

DP among 

techniques. 

[47] 2018 Intelligent 

Route 

Planning 

Proposed 

Scalable 

Privacy 

Mechanism.  

[48] 2018 DP for location 

data in 

Crowdsourcing 

applications. 

Conducted 

experiments 

of the 

proposed 

algorithm. 

6.3 Privacy Based on Cryptography 

It has been discussed in the previous section that the 

information of vehicle identity and location are usually 

exchanged in V2V and V2I communications. Threat agents 

can analyse these messages to identify and track vehicles. In 

the literature, group signature based schemes can be used to 

provide unlinkability of the vehicular messages from the 

same owner for different events. These schemes provide 

conditional privacy that only the group manager can access 

the information of real vehicle identities [49]. Pseudonym 

change based schemes are another research area to provide 

unobservability for vehicles.  

 

The challenges with using techniques based on cryptography 

are that the approaches generally introduce high 

computational and communicational overheads [50]. Thus 

there may arise a trade-off between privacy protection and 

safety, and this is considered be one of the open research 

areas [51]. 

 

Secure Multiparty Computation (SMC) and Homomorphic 

Encryption (HE) are also cryptographic techniques for 

privacy preserving. However, they have not been considered 

in the content of this study due to the following reasons: 1) 

Each party learns the result of some computation in SMC; 

there is no privacy guarantee that none of the parties is 

revealing any sensitive information received from the 

computation result. 2) HE enables computation directly on 

encrypted data;, but introduces high computational overhead 

[52]. 

 

7 Lessons Learned and Open Issues 

The understanding of privacy changes for different people, 

communities and cultures, which should be considered when 

developing privacy mechanisms.  

 

Earlier studies usually considered protecting identity privacy 

and location privacy in ITS by using pseudonym-based and 

group signature-based mechanisms. However, techniques 

based on anonymity fails under the cross-referencing and 

extra background knowledge situations [53].  

 

Although there are limited studied of DP in real-world 

applications, DP has recently emerged as the gold standard of 

data privacy for two reasons [54]. First, DP introduces 

uncertainty for privacy protection is independent of 

background knowledge and computation power. Any further 

data analyses of differentially private results do not reveal 

information. This is the ‘post-processing’ feature of DP. 

Second, DP allows several queries to target the same data, 

known as the ‘composability’ feature [55]. One of the recent, 

local DP studies divided the users into two classes as ‘opt-in’ 

and ‘opt-out’. By analysing the general tendency of a very 

small opt-in group (up to 10% of total users) in a centralised 

DP manner, the overall data utility remain higher than 

previous local DP studies [56]. Recent technological 

developments, such as predictive systems, automation 

systems, and artificial intelligence rely on data that is also 

applicable to CAV functions. By the nature of data, the 

perfect privacy protection can be only achieved by publishing 

no data, which is impossible for many CAV functions. The 

features of ITS, seen in Table 2, are the boundary conditions 

of CAV functions.  Thus, the minimum data utility should be 

rigorously maintained in the privacy mechanism so as not to 

jeopardise the reliability of the service. A further challenge in 

privacy preservation is that privacy can be disclosed if a link 

can be established between different data entries of the same 

data owners. A potential solution for this is publishing data 

with an amount of randomisation (i.e. approximation) rather 

than publishing the exact data [18].  

 

There are also knowledge gaps in DP that should be 

addressed. The ‘privacy budget (𝜖)’ should be set carefully to 

keep the required level of data utility. However, there is not a 

sufficient scientific foundation for this as it strongly depends 

on the dataset. Investigating data flows of the functions 

necessary to be able to assign the appropriate parameters, but 

more research is still needed regarding setting the parameters 

and their implications. DP for location data is an emerging 

research area. There are challenges due to distance-based 

sensitivity calculation [57], and sparsity of location dataset 

leads to adding a large magnitude of noise [58]. 
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The identified privacy challenges with respect to CAV 

functions are summarised in Table 5. Designing DP 

mechanisms can mitigate the privacy risks for the challenges. 

 

Table 5 Summary of identified privacy challenges for the 

CAV functions 

CAV Function Privacy Challenges 

Route Planning Revealing the desired route 

to the infrastructure to be 

able to receive the real-time 

optimal route plan   

Participating in a Vehicle 

Platoon 

Reveal sensitive 

information with either the 

infrastructure or other 

vehicles to be able to 

participate in a right 

platoon 

HD/3D Map Updates The temporal HD/3D Map 

updates should be 

trustworthy without 

revealing the publishers` 

privacy. 

Vehicular Telemetry and 

Biometric Data Collection 

Vehicular telemetric and 

biometric data is highly 

valuable for many parties. 

However, it should not 

reveal real-users privacy. 

 

8 Conclusion 

In this work, we have analysed the complete CAV systems 

regarding the privacy challenges arise from participating in 

ITS and CAV functions. We have also identified the 

approaches might be applied to mitigate such privacy 

challenges. However, it is also recognised that using such 

approaches can introduce a reduction in the efficacy of the 

CAV functions. This work can be supportive for academics 

and industry to investigate the privacy challenges in CAV 

systems, and to extend the research to narrow the knowledge 

gap in the area. It will open the door to design robust privacy-

preserving mechanisms without jeopardising the efficacy of 

CAV functions. 
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