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Abstract  
Transcriptional reprogramming plays a significant role in the defense of plants 

against pathogen infection. In this work, we established that NF-Y transcription 

factors (TF) act as important regulators of plant immunity. The eukaryotic NF-Y TF 

is a highly conserved heterotrimeric complex composed of three subunits, NF-YA, 

NF-YB and NF-YC, which directly bind CCAAT elements in target gene promoters 

to regulate their expression. In Arabidopsis, a multi-gene family encodes each 

subunit of the complex, having 10 NF-YA, 10 NF-YB and 10 NF-YC which can 

hypothetically combine into 1000 unique combinations. This research 

investigated the combinatorial mechanism of action of NF-Y complexes during the 

plant defense response against the necrotrophic pathogen Botrytis cinerea. A 

comprehensive investigation into the formation of these hetero-trimers revealed 

the ability of NF-YB2 and NF-YC2 to dimerize in planta. Other potential leaf 

complexes were also discovered confirming the combinatorial capability of NF-Y 

members. In agreement with the assembly mechanism observed in mammals, 

subcellular localization performed on Arabidopsis transgenic lines stably 

expressing NF-Y GFP tagged proteins, detected NF-YA2 exclusively in the nucleus 

and NF-YB2 and NF-YC2 in both nucleus and cytoplasm. Detailed functional 

analysis of knockout and overexpressor mutants identified NF-YA2 as a key 

regulator in the plant defense against B. cinerea as well as an overlapping 

functionality between NF-YB2 and NF-YB3 subunits. Additionally, evolutionary 

analysis in combination with a comparative expression analysis between 

Arabidopisis, tomato and lettuce NF-Ys during B. cinerea infection, suggested a 

possible conserved function of some members of NF-YA and NF-YB orthologues 

genes during the plant defense response.  
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RLK Receptor-like kinase 

RNA Ribonucleic acid 

RNAi Ribonucleic acid interference 

ROS Reactive oxygen species 

RPBG1 Responsiveness To Botrytis Polygalacturonases 1 

RT Reverse transcription 

RT-PCR Reverse transcription PCR 
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SA 

 
Salicylic acid 

SD Short day 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SID2 SALICYLIC ACID INDUCTION DEFICIENT 2 

SOBIR1 Suppressor Of Bir 1 

SOC Super optimal broth with catabolite repression 

SOC1 SUPPRESSOR OF OVEREXPRESSION OF CO 1 

SUS2 SUCROSE SYNTHASE 2 

Tuba Alpha-Tubulin 

UBQ5 Ubiquitin 

uORF1p Open Reading Frame 1 peptide 

UPR Unfolded protein response 

UTR Untranslated region 

WAK1 Wall Associated Kinase 1 

WT Wild-type 

Y1H Yeast one-hybrid 

Y2H Yeast two-hybrid 

Y3H Yeast three-hybrid  

YFP Yellow fluorescent protein 

XTH21 XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 21 
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Chapter 1 

1. Introduction 

1.1  Global food security  
By 2050, agriculture will need to feed more than nine billion people, requiring roughly 

double the amount of crops grown today. However, the demographic increment is 

not the only reason why more food is necessary. The spread of the middle class across 

the world is influencing a higher demand for meat and other protein-rich foods, 

increasing the pressure to grow more animal feed crops (FAO 2009). Meeting 

these rising demands will require a considerable increment in global food 

production, stretching the Earth’s resources such as arable land and water. 

Nowadays, most of all continents are facing land degradation and water scarcity, 

due to farming practices and climate change. This causes loss of arable land and 

water resource depletion, which negatively affects crop production (Lobell and 

Gourdji 2012), having a deleterious impact on agriculture and food supply. In 

addition, climatic changes influence all life stages of the plant pathogen and 

modify host susceptibility, contributing to the spread of many plant diseases 

(Atkinson and Urwin 2012, Bebber et al. 2014). Overall, this means that plants, 

which are sessile organisms, will be gradually exposed to a variety of hostile 

environmental conditions. It is estimated that most of global food production 

losses are caused by different environmental stresses, such as drought, high 

salinity and pathogen attack (Food and Agriculture Organization of the United 

Nations. 2013). Worldwide average of 25% of crop losses are determined by pests 

and pathogens, such as bacteria, fungi, oomycetes, viruses, nematodes, and 

insects, to which crops are exposed (Global Food Security 2015). Counteracting 

crop losses associated with plant disease, while promoting environmental 

sustainability, is one of the fundamental challenges for plant scientists in order to 

ensure global food security. 

Nowadays to control plant disease both at pre- and post-harvest, the use of 

chemicals compounds is the most common method. A large variety 
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of chemicals are available on the market, depending on the pathogen that they 

affect, such as fungicides, bactericides, viricides. However, the fact that food 

production heavily relies on chemical control of pathogens is worrying for human 

health, since many pesticides have been related with health and environmental 

issues (Goulson 2014, Hayes et al. 2006, Mnif et al. 2011, Sanborn et al. 2007, 

Zheng et al. 2016). Many studies have reported several health effects associated 

with accidental or intentional exposure to chemical compounds which include 

dermatological, neurological, carcinogenic, reproductive and endocrine effects 

(Nicolopoulou-Stamati et al. 2016). Furthermore, such pesticides are responsible 

to contaminate soil and consequently water through runoff from treated plants, 

damaging beneficial soil microorganisms. Moreover these chemicals can also 

affect non-target vegetation and non-target organisms affecting the wildlife 

(Aktar et al. 2009). 

This evidence emphasizes the necessity of a more sustainable approach, such as 

the production of genetically disease resistant crops to reduce the dependence 

of agriculture on pesticides. A biotechnological approach would meet this 

challenge by providing genetically engineered plants. Hence a better understand 

of the transcriptional regulatory mechanisms by which plants respond to biotic 

stress would allow for the genes involved in host defense to be introduced or 

removed into crop genomes, using methods such as genetic modification or 

genome editing. 

 

1.1.1 Botrytis cinerea: a risk to the future of food security 

Botrytis cinerea is a necrotrophic fungal pathogen able to infect over 230 plant 

species worldwide causing severe damage, both pre- and post-harvest (Dean et 

al. 2012). The cost of the losses caused by this fungal disease, also called gray 

mold, is difficult to estimate because of the broad stages of the production and 

retail chain where infection can occur. However, it is estimated to be one of the 

major globally economically important fungal pathogens (Dean et al. 2012). 

Worldwide the conventional way to control B. cinerea consists of multiple 
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fungicide applications during the seasonal crop cycle. However the intensive use 

of fungicide has caused a significant increase of fungicide resistance in fungal 

pathogens with B. cinerea amongst them (Bardas et al. 2010, De Miccolis Angelini 

et al. 2014, Korolev et al. 2011, Latorre and Torres 2012). Hence, understanding 

how plants naturally defend themselves against this pathogen would enable to 

identify key genes involved in the host defense, allowing to exploit the plant 

genetic resistance to control the disease using a biotechnology approach.  

Moreover B. cinerea represents a good model to study the interaction between 

plant and necrotrophic pathogen, since it is easy to propagate in a laboratory 

environment and has a simple life cycle compared to other fungal pathogens 

(Schumacher 2012).  

  

1.2  Plant defense response against pathogens 
Plants have evolved a sophisticated multilayer defense system to protect 

themselves against a variety of pathogens. The successful colonization of plant by 

phytopathogens is quite rare with most of the plant species showing resistance 

to whole microbial species (Gurr and Rushton 2005, Hein et al. 2009, Ingle et al. 

2006). When an entire plant species is resistant to a complete microbial species, 

it is called non-host resistance (NHR), while when members of a susceptible host 

plant species evolve the capability to resist against a specific pathogen attack, this 

is called cultivar resistance. NHR is the most prevalent form of plant disease 

resistance, relying on structural and chemical barriers, such as plant cell wall, 

waxy cuticles and the production of antimicrobial compounds. Another common 

plant disease resistance system are inducible defenses (Ingle et al. 2006), which 

depend on the plant’s ability to recognize molecules associated with pathogen 

infection by pattern recognition receptors (PRRs). These host receptor-like 

kinases detect conserved molecules called MAMPs (microbe-associated 

molecular patterns) or PAMPs (pathogen-associated molecular patterns) 

characteristic of many microbes (Boller and Felix 2009). These receptors can also 

recognize molecules known as DAMPs (damage associated molecular patterns), 
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which are released upon damage of  plant architecture. In plants the identification 

of these molecules initiates the activation of a basal defense called PAMP 

Triggered Immunity (PTI) in an attempt by the plant to prevent colonization by 

the pathogen. This system is able to counteract the infection through multiple 

defense responses such as Reactive Oxygen Species (ROS) production, 

intracellular Ca2+, Mitogen-activated protein kinase (MAPK) and Calcium-dependent 

protein kinase (CDPK) signaling cascades, callose accumulation, closing of stomata 

and activation of defense genes (Asai et al. 2002, Nicaise et al. 2013).  

Pathogens have evolved secreted effector molecules that act to suppress PTI for 

a successful colonization of the plant. In some cases, effectors are detectly by 

resistance (R) genes in the host plant which are able to identify the microbial 

effectors or their action on other plant proteins, in a gene-for-gene manner, 

initiating an effector-triggered immunity (ETI) (Jones and Dangl 2006). This 

defense mechanism generally involves a hypersensitive response (HR), which 

aims to stop the spread of the pathogen.  

The ‘zig-zag’ model proposed by Jones and Dangl (2006) illustrates the interaction 

between pathogen and effectors during the course of the infection (Figure 1.1), 

describing the multitude of defense mechanism that the plant is able to produce. 

Plant pathogens such as the hemi-biotrophic pathogen Pseudomonas syringae, 

the oomycete pathogen, Phytophthora infestans and the biotrophic pathogen 

Hyaloperonospora arabidopsidis (Hpa) have evolved an advanced secretion 

systems which bring the effector proteins into the plant cell to suppress the 

defense response (Alfano 2009, Bardoel et al. 2011, Cunnac et al. 2009, Pel et al. 

2014, Pieterse et al. 2012). However, there is no evidence that the plant trigger 

an ETI defense mechanism in response to B. cinerea infection. Indeed, no 

effectors have been shown to be recognized in a gene for gene manner. However, 

Govrin & Levine (2002) have proposed that the cell death induced by this 

necrotrophic pathogen is a sort of hypersensitive response (HR) (Govrin and 

Levine 2002), which secrete proteins and other molecules to aid the infection and 

manipulate the host. 
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It was reported that Botrytis cinerea releases small RNAs (sRNAs) to silence 

specific mRNAs with a role in the plant defense response (McLoughlin et al. 2018, 

Weiberg et al. 2013). Specifically, it has been shown that B. cinerea B05.10 is able 

to secrete sRNAs into Arabidopsis and Solanum lycopersicum tissue, which bind 

to Argonaute (AGO) proteins and guide the RNA-induced silencing complex (RICS) 

to suppress key B. cinerea defense genes present in the host plant (Weiberg et al. 

2013). Indeed, Weiberg et al. (2013) reported that ago1 knockout mutants do not 

show a decrease in expression levels of these defense genes, such as mitogen 

activated protein kinase (MPK2 and MPK1), oxidative stress related gene 

peroxiredoxin (PRXIIF) and cell wall associated kinase (WAK). In contrast, plants 

constitutively overexpressing B. cinerea sRNA showed an enhanced susceptibility 

to the necrotrophic pathogen compared to wild type plants. 

 

 

 
 
Figure 1.1 - The Zig-Zag model describes the plat immune-system (Jones and Dangl 2006). Phase 
1 - Plants detect MAMPs or PAMPs (red diamonds) through PRRs to activate PAMP-triggered 
immunity (PTI). Phase 2 - Pathogens effectors interfere with PTI allowing pathogen’s colonization 
and triggering effector-triggered susceptibility (ETS). Phase 3 - The effector recognition by NB-LRR 
protein initiate the effector-triggered immunity (ETI), increasing disease resistance and causing a 
hypersensitive cell death response (HR). Phase 4 - The natural selection drives the development 
of different effector genes able to suppress ETI and the consequent evolution of new resistance 
genes to trigger ETI. Figure from Jones and Dangl (2006). 
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1.2.1 Plant defense against B. cinerea 

Plants use constitutive and inducible responses to defend themselves from B. 

cinerea colonization. Constitutive responses involve the production of physical 

barriers (cell walls and waxy cuticles) to prevent hyphal penetration, which, when 

bypassed by the pathogen, triggers the inducible responses. Induced responses 

depend on pathogen detection by the host plant. When the plant is attacked by 

B. cinerea, plant cells secrete chitinases that release chitin fragments from fungal 

cell walls which are recognized via the receptor kinase Chitin Elicitor Receptor 

Kinase 1 (CERK1) and Lysin Motif Domain 2 (LYM2), acting as MAMPs (Miya et al. 

2007, Wan et al. 2008, Zhang L. et al. 2014). This recognition triggers the plant 

innate immunity against the pathogen helping to limit the infection (Figure 1.2). 

The degradation of the cell wall during the infection due to the action of B. cinerea 

endopolygalaturonase (BcPGs) and host endopolygalaturonase inhibiting 

proteins (PGIPs), releases oligogalaturonides (OGs) which are recognized as 

DAMPs by the Wall Associated Kinase 1 (WAK1) (Brutus et al. 2010). In addition, 

BcPGs, recognized by the receptor like protein Responsiveness To Botrytis 

Polygalacturonases 1 (RPBG1) (Zhang L. et al. 2014), function as MAMPs 

themselves.  After the detection of these MAMPs and DAMPs by PRRs, the signal 

is transduced to downstream components by other receptor-like kinases (RLKs). 

For example, SOBIR1 (Suppressor Of Bir 1) a membrane bound receptor-like 

kinase interacts with Botrytis Induced Kinase 1 (BIK1) localized in the cytoplasm; 

they both have a key role in the host defense response against B. cinerea 

infection, since plants with a mutation in SOBIR1 or BIK1 are more susceptible 

(Zhang W. et al. 2013). Subsequently, the chitin receptor (CERK1) interacts with 

BIK1, this interaction allows BIK1 to leave the receptor and move towards 

cytoplasmic proteins involved in the activation of protein kinase (MAPK) signaling 

cascade systems (Lu et al. 2010). At the beginning of the cascade MAPKKK is 

activated by phosphorylation of a downstream MAPK kinase (MAPKK) which then 

activates and phosphorylates MAPKs. This MAPK signaling cascades is essential in 

plant immunity against several pathogens, playing an important role in PTI. How 
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the signaling cascades is triggered varies according to the pathogen, for example 

by bacterial flagellin or fungal chitin. However MPK3, MPK4, MPK6 are conserved 

and play an important role in plant defense response (Rasmussen et al. 2012). 

MPK3 and MPK6 are essential for camalexin synthesis, an antifungal compound 

produced by the plant during B. cinerea infection (Ferrari et al. 2007). Hence, 

mpk3 and mpk6 single mutants show an increased susceptibility against B. cinerea 

(Galletti et al. 2011, Ren et al. 2008). Moreover, MPK4 is very important in the 

plant defense response, as it is involved in salicylic acid (SA) and jasmonic acid 

(JA) cross talk, which are key hormones during the infection. Hence, mpk4/mpk6 

double mutant show a decreased resistance to B. cinerea (Schweighofer et al. 

2007). The phosphorylation of MAPKs determines a transcriptional response to 

the pathogen attack; hence a differential expression of significant number of 

genes is visible after the infection (Windram et al. 2012). Specifically, it has been 

reported that Arabidopsis undergoes drastic changes to its transcriptome and 

approximately 30% of its genome is differentially expressed 48 hours post 

infection with B. cinerea (Tao et al. 2003, Windram et al. 2012).  

However, still very little is known about MAPK pathways and transcriptional 

regulation. Probably, the MAPK at the bottom of the cascade is capable to 

activate a specific set of transcription factors (TFs) and so trigger the 

transcriptional response. For example, WRKY DNA-Binding Protein 33 (WRKY33) 

TF is necessary for defense against B. cinerea. It has been shown that MPK4 

interact with MAP kinase 4 Substrate 1 (MKS1) and with WRKY33 (Qiu et al. 2008). 

After the infection, MKS1 and WRKY33 are released from the trimer and activate 

camalexin biosynthetic genes and WRKY33 itself in a feedback loop mechanism 

(Qiu et al. 2008), positively regulating the plant defense response. According to 

this, overexpression of MKS1 enhanced plant susceptibility against B. cinerea, 

indicating it acts as a negative regulator of the defense response against the 

necrotrophic pathogen (Fiil and Petersen 2011).  
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Figure 1.2 – Pathogen perception and initial signaling events during B. cinerea infection 
(Windram et al. 2015). Receptor like kinases (RLKs) and receptor like proteins (RLPs) detect 
MAMPs and DAMPs. This interaction initiate the signal transduction to kinase cascades. MAPKs 
are very important for DAMP-induced resistance and specifically MPK4 for the activation of 
WRKY33 TF, which activates the expression of camalexin biosynthetic genes. Then cross talk 
between phytohormones such as ET, SA and JA is essential in the plant defense response. In this 
figure, after the infection with B. cinerea the production of ET stabilizes the TF EIN3. The 
production of JA activates the degradation of the repressive JAZ proteins by the proteasome, 
leading the transcriptional cascade of JA and ET relate defense genes downstream of EIN3. The 
accumulation of ORA59 protein is repressed by SA. → indicates positive regulation and ┤indicates 
negative regulation. Figure from Windram et al. (2015). 
 

1.2.2 Hormone crosstalk fine-tunes Arabidopsis defense 

response during B. cinerea infection 

After infection by a bacteria or fungus, the plant coordinates a transcriptional 

reprogramming leading to differential expression of a large number of genes 

involved in many cellular process.  

This reprogramming trigger the production of secondary metabolites such as 

camalexin which have an antimicrobial effect, and generate several signaling 

molecule, called phytohormones, to communicate the infection. These molecules 

have a key role in the defense response. Specifically, it is known that salicylic acid 

(SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) play a role in the 

plant defense response against the necrotrophic pathogen B. cinerea (Audenaert 



 27 

et al. 2002, Thomma et al. 1998, Thomma et al. 1999). During the infection, 

hormonal pathways share a high level of cross talk, which depends on many 

factors such as pathogen lifestyle, environmental stresses and host plant. For 

instance, JA seems to confer resistance to necrotrophic pathogens, while SA is 

more important against (hemi)biotrophic pathogens (Glazebrook 2005). Active 

JA-isoleucine is detected by a receptor complex formed by CORONATINE-

INSENSITIVE 1 (COI1) and jasmonate ZIM-domain (JAZ) proteins (Sheard et al. 

2010). Hence, it was reported that Arabidopsis COI1 knockout mutants have 

increased susceptibility to necrotrophic fungi such as Botrytis cinerea (Lorenzo et 

al. 2003, Thomma et al. 1998), while the resistance to the hemibiotrioph P. 

syringae increased. This is in line with high level of SA found in these mutants, 

supporting the hypothesis of an antagonistic relationship between JA and SA 

(Kloek et al. 2001). Additionally, it was discovered that Arabidopsis mutants 

lacking in SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), or expressing the 

bacterial gene nahG which leads to SA degradation, show an increased 

susceptibility to hemibiotrophic pathogens such as P. syringae. The perception of 

phytohormones leads to the activation of downstream TFs, which play an 

important role in phytohormone signaling mediation.  

For example, the binding between JAZ protein and Ethylene-insensitive 3 (EIN3) 

and Ethylene-Insensitive3-Like 1 (EIL1) TFs (Figure 1.2), which are central 

activators of the ET response, is hypothesized to contribute to the cross-talk 

between the JA and ET pathways (Zhu et al. 2011). TFs such as Ethylene-

Responsive Transcription Factor 1 (ERF1) is EIN3 target, inducing the expression 

of key defense genes such as PLANT DEFENSIN 1.2 (PDF1.2) (Pre et al. 2008) and 

octadecanoid-responsive AP2/ERF 59 (ORA59), JA/ET dependent genes, which 

inhibit the infection disease. 
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1.2.3 Changes in Arabidopsis transcriptome in response to 

Botrytis cinerea 

TFs are proteins that regulate gene transcription by binding to DNA at certain 

target sequence to either activate or repress the gene expression in response to 

a particular environmental perturbation. Many genes are controlled by group of 

different transcription factors, which combine in a specific combination, in a 

mechanism called combinatorial regulation, to turn the gene on or off.  

Perhaps the most famous TF families with a known role in the defense response 

are WRKYs and Ethylene response factors (ERFs). WRKYs act as positive or 

negative regulators of plant immunity (Rushton et al., 2010) and it has been 

reported that WRKY3, 4, 8, 18, 33, 40, 60, and 70 effect the plant susceptibility 

against B. cinerea (AbuQamar et al. 2006, Birkenbihl et al. 2012, Chen et al. 2010, 

Lai et al. 2008, Xu X. et al. 2006). It was also discovered that some ERFs, such as 

ERF1, ERF5, ERF6, RAP2.2, and ORA59 influence B. cinerea immunity (Berrocal-

Lobo et al. 2002, Maruyama et al. 2013, Moffat et al. 2012, Pre et al. 2008, Son G. 

H. et al. 2012, Zhao Y. et al. 2012). Also, it was reported that NACs (Bu et al. 2008, 

Wang et al. 2009), TGAs (Windram et al. 2012, Zander et al. 2010) and MYBs 

(Mengiste et al. 2003, Ramirez et al. 2011) TFs are involved in the plant defense 

response. Additionally, in the last few years, a TFs family, called NUCLEAR FACTOR 

Y (NF-Y), is emerging as important regulator of the plant defense response 

(Breeze 2014, Windram et al. 2012).  

 

1.3  NF-Y transcription factors 
NUCLEAR FACTOR-Y (NF-Y), also called CCAAT-Binding Factor (CBF) and Histone-

Associated Protein (HAP), are heterotrimeric transcription factors (TF) formed by 

binding of single NF-YA, NF-YB, and NF-YC subunits (Dolfini et al. 2009, Testa et 

al. 2005). These TFs are found in all sequenced eukaryotes, where they regulate 

gene transcription binding with high specificity to CCAAT cis-regulatory elements 

(Dolfini et al. 2012, FitzGerald et al. 2004), which are present in approximately 
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25%of eukaryotic promoters (Li W. X. et al. 2008). Furthermore, chromatin 

immunoprecipitation data, performed on mammals, reveal additional 

widespread NF-Y binding in non-promoter sites, suggesting the importance of 

binding context. It has been reported that NF-Y are able to regulate the 

expression of a target gene constitutively in a specific tissue and developmental 

stage (Maity and de Crombrugghe 1998). Single NF-Y subunits cannot regulate the 

transcription independently, but they have to function as a hetero complex 

(Mantovani 1999). The NF-Y hetero-trimer can then act as a transcriptional 

activator or a repressor, and the interaction with other TFs or regulatory proteins 

can modulate its activity.  

Although all three subunits are required to bind the DNA in the CCAAT box 

(Nardini et al. 2013), NF-YA is the subunit that creates sequence-specific contact 

with CCAAT boxes (Laloum et al, 2013).  

In mammals, each subunit (NF-YA, NF-YB and NF-YC) is encoded by single gene 

which have numerous splicing forms and undergo several post-transcriptional 

modifications. In this organisms the function and the molecular mechanism of the 

NF-Y complex have been well characterized in the regulation of a diverse set of 

genes (Dolfini et al. 2009, Testa et al. 2005) such as cell cycle progression, 

endoplasmic reticulum stress and DNA damage (Benatti et al. 2016, Benatti et al. 

2011, Dolfini et al. 2016, Oldfield et al. 2014). 

Unlike mammals, plants have a multi-gene family encoding each subunit of the 

trimer as shown in Table 1.1 (Zanetti et al. 2017). For example, the model plant 

Arabidopsis has 10 NF-YAs, 10 NF-YBs and 10 NF-YCs (Petroni et al. 2012, Siefers 

et al. 2009), which are distributed across all five chromosomes (Table 1.2) and can 

hypothetically combine in 1000 unique possible trimer combinations. This 

combinatorial variety enables the specific control of a large number of genes 

containing CCAAT-box by the 30 representatives of NF-Y subunits in Arabidopsis. 

Additionally, the same gene can be transcriptionally controlled by the modulation 

of different combinations of the heterotrimeric NF-Y complexes binding to the 

corresponding promoter element (Hackenberg et al. 2012). 
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The difference in NF-Y genes number between animal and plants is the main 

reason why the molecular characterization of these TFs in plants has only started 

in the past decade, in contrast with animal and yeast NF-Ys which have already 

been well characterized (Nardini et al. 2013, Romier et al. 2003). 

NF-Ys have emerged as important regulators of various developmental processes 

and stress tolerance in plants. Hence, Arabidopsis NF-YA genes have been shown 

to regulate gametogenesis, embryogenesis, seed morphology, seed germination 

and flowering (Quach et al. 2015). Specific members of NF-YB, particularly the 

LEC1 group, have been reported to be involved in embryogenesis, seed and 

nodule development, flowering time, cell proliferation and endosperm 

development. Meanwhile, NF-YC have been found to regulate flowering time, 

root growth, photosynthesis and photomorphogenesis (Siefers et al. 2009). 

 

 

Table 1.1 – Number of genes encoding NF-Y subunits in different plant species. 

 
 
 

Species NF-YA NF-YB NF-YC Reference 

Arabidopsis thaliana  10 10 10 (Petroni et al. 2012) 

Nicotiana tabacum  15 9 8 (Jin J. et al. 2014) 

Solanum lycopersicum  10 27 17 (Li S. et al. 2016) 

Populus trychocarpa  57 38 27 (Jin J. et al. 2014) 

Setaria italica  10 15 14 (Feng et al. 2015) 

Oryza sativa 10 11 7 (Thirumurugan et al. 2008)  

Triticum aestivum  10 11 14 (Stephenson et al. 2007)  

Brachipodium distachyon  7 17 12 (Cao et al. 2011) 

Zea mays 36 28 25 (Jin J. et al. 2014) 

Medicago truncatula  8 14 8 (Laloum et al. 2013) 

Lotus japonicus 6 11 9 (Jin J. et al. 2014) 

Glycine max 21 32 15 (Quach et al. 2015) 

Phaseolus vulgaris  9 14 7 (Ripodas et al. 2014) 



 31 

Table 1.2 – List of NF-Y genes identified in Arabidopsis with their corresponding 
chromosome positions 
 

NF-Y gene Source accession 
number 

Chromosome 
number 

Chromosome 
location (bp) 

NF-YA1 AT5G12840 5 4050691-4053669 

NF-YA2 AT3G05690 3 1676504-1679061 

NF-YA3 AT1G72830 1 27405145-27408221 

NF-YA4 AT2G34720 2 14649706-14651709 

NF-YA5 AT1G54160 1 20217336-20219452 

NF-YA6 AT3G14020 3 4641930-4644571 

NF-YA7 AT1G30500 1 10804450-10806428 

NF-YA8 AT1G17590 1 6050164-6052628 

NF-YA9 AT3G20910 3 7326355-7328581 

NF-YA10 AT5G06510 5 1984823-1987064 

NF-YB1 AT2G38880 2 16238401-16240883 

NF-YB2 AT5G47640 5 19309227-19310272 

NF-YB3 AT4G14540 4 8344349-8345324 

NF-YB4 AT1G09030 1 2908611-2909032 

NF-YB5 AT2G47810 2 19582658-19583618 

NF-YB6 AT5G47670 5 19314778-19316169 

NF-YB7 AT2G13570 2 5655391-5656518 

NF-YB8 AT2G37060 2 15575996-15577916 

NF-YB9 AT1G21970 1 7727577-7729649 

NF-YB10 AT3G53340 3 19774318-19776289 

NF-YC1 AT3G48590 3 1800593-18010018 

NF-YC2 AT1G56170 1 21024482-21025902 

NF-YC3 AT1G54830 1 20451083-20452671 

NF-YC4 AT5G63470 5 25415600-25417199 

NF-YC5 AT5G50490 5 20560434-20561228 

NF-YC6 AT5G50480 5 20557574-20558487 
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NF-YC7 AT5G50470 5 20555120-20555758 

NF-YC8 AT5G27910 5 9940669-9941447 

NF-YC9 AT1G08970 1 2882491-2884342 

NF-YC12 AT5G38140 5 15220208-15222524 

 
Many TF families have undergone significant duplication mechanism in plant 

lineages during the evolution process and this could lead to functional 

overlapping. For example, MYB transcription factors in mammals are represented 

by a very small family composed of only three proteins involved in cell 

proliferation, while in Arabidopsis more than 100 MYB TFs have been found and 

implicated in a full range of developmental responses (Kranz et al. 1998). Another 

example are MADS-box TFs where the number of genes differs significantly 

among taxa, hence animals and fungi have between one to five MADS-box genes 

(Immink et al. 2010), while angiosperm plants have more than 100 (Gramzow and 

Theissen 2010, Wray 2003). In eukaryotic genomes, such plants, the 

oligomerization tendency between TFs offers a wide range of combinatorial 

relationships for transcriptional regulation (Wray 2003), because of the large 

number of TFs. With this complexity identifying specific active TF complexes is 

quite challenging and for this reason many studies have been mainly carried out 

around functional characterization of single TFs using reverse genetic approaches, 

such as knockout and overexpression mutants (Kondou et al. 2010), instead of 

focusing on complex assembly and function during endogenous and exogenous 

stimuli. In the case of NF-Y TFs, many studies have elucidated the biological 

functions of individual NF-Y subunits in plants (Gusmaroli et al. 2001, Mantovani 

1999, Petroni et al. 2012) but only two papers have identified specific and active 

NF-Y hetero-trimers using yeast three hybrid system (Y3H) (Liu and Howell 2010, 

Sato et al. 2014). The difficulty in identifying unique NF-Y complexes is increased 

by the ability of NF-YB and NF-YC subunits to hetero-dimerize and interact with 

other groups of TFs, eschewing NF-YA subunits and forming non-canonical NF-Y 

complexes which are able to bind the DNA at different elements other than 
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CCAAT target sequence in the promoter (Liu and Howell 2010, Masiero et al. 

2002, Wenkel et al. 2006).  

 
1.3.1 NF-Y complexes regulates the expression of target genes 

in two ways. 

Previous studies reported that there are two main regulatory mechanism by 

which NF-Y complexes modulates the expression of target genes. In the first 

mechanism, which is highly conserved in yeast, animals and plants, the hetero-

dimer formed by NF-YB and NF-YC assembles in the cytoplasm and then 

translocates into the nucleus where it interacts with an NF-YA subunit and forms 

the hetero-trimer (Hackenberg et al. 2012, Laloum et al. 2013). All three subunits 

have been shown in vitro to be essential for binding to the CCAAT box in the 

promoter regions of the target genes, through NF-YA, which is the subunit that 

makes sequence-specific contact with the CCAAT element (Dolfini et al. 2012, 

Frontini et al. 2004, Mantovani 1999, Petroni et al. 2012, Sato et al. 2014). For 

example, it was reported that in Arabidopsis a complex formed of NF-YA4, NF-YC2 

and NF-YB3 binds to the CCAAT box of BINDING PROTEIN 3 (BiP3) promoter region 

and regulates the expression of ER stress-induced genes (Liu and Howell, 2010). 

In the second mechanism, the NF-YB and NF-YC hetero-dimer interact with other 

specific TFs to form a complex, regulating the expression of various target genes 

binding to specific cis-element in their promoters (Kumimoto et al. 2010, Wenkel 

et al. 2006, Yamamoto et al. 2009). In this mechanism, it was hypothesized that 

NF-YA subunits can inhibit the expression of target genes by competing for 

binding to the NF-YB/NF-YC heterodimer, preventing the formation of the NF-

YB/NF-YC/non-NF-Y TF complex. For example, a complex formed by NF-YB9, NF-

YC2 and bZIP67 binds to the promoter of ABA-response elements (ABREs) to 

regulate the expression of SUCROSE SYNTHASE 2 (SUS2) and CRUCIFERIN C (CRC) 

and promotes seed development (Yamamoto et al. 2009). In this case NF-YA 

subunits compete with bZIP67 and suppress the expression of CRC forming a 

complex constituted by NF-YA, NF-YB9 and NF-YC2. This suggest a combinatorial 
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capability of each member of the NF-Y TFs family which can play different roles in 

plant according to endogenous and exogenous stimuli (Adrian et al., 2010). 

 
1.3.2 Protein structure of NF-Y subunits  

Each NF-Y member has a highly-conserved domain to allow the interaction 

between subunits and to enable the DNA binding. Crucially it has been reported 

that the NF-YA subunit, which is localized in the nucleus, has the capability to bind 

the CCAAT box in the promoter region of the target gene (Calvenzani et al. 2012, 

Laloum et al. 2013, Nardini et al. 2013, Petroni et al. 2012). Additionally, protein 

structure analysis has showed that the core domain of NF-YA subunits contains 

two α-helices A1 and A2 (Figure 1.3). A1 α helix at the N-terminal is composed of 

20 amino acids and recognizes NF-YB and NF-YC subunits, while the A2 α helix at 

the C-terminal constitutes of 21 amino acids and it is responsible for sequence-

specificity recognition of the CCAAT element (Laloum et al. 2013, Petroni et al. 

2012). Both NF-YB and NF-YC subunits contain the conserved Histone Fold 

Domain (HFD), which is closely related in structure and sequence similarity to H2B 

and H2A histones, respectively (Dolfini et al. 2012, Laloum et al. 2013, Petroni et 

al. 2012) and is responsible for protein-DNA and protein-protein interactions 

(Frontini et al. 2004, Kahle et al. 2005, Laloum et al. 2013).  

The HFD domain contains at least three α-helices (α1, α2, and α3). In NF-YB the 

α1 helices contain the putative DNA-binding domain (Laloum et al. 2013), α2 and 

α3 are responsible for the hetero-dimerization between the two subunits 

(Frontini et al. 2004, Zemzoumi et al. 1999) while αC in mammals is responsible 

for the interaction with other protein (Laloum et al. 2013, Romier et al. 2003).  
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Figure 1.3 - Representation of NF-Y protein structure. The figure illustrates NF-YA1, NF-YB1 and 
NF-YC1 as examples. NF-YA conserved domain is formed by two α-helices: A1 and A2. A1 helix at 
the N-terminal is involved in the interaction with NF-YB and NF-YC subunits. A2 helix is at C-
terminal functions in specific recognition of the CCAAT box element. NF-YB and NF-YC contain the 
Histone Fold Domain (HFD) involved in the DNA-binding and in the protein-protein interaction. 
Figure from Zhao et al. (2016). 
 

1.3.3 NF-Y complex assembly 

The assembly of NF-YB/NF-YC heterodimer in the cytoplasm is crucial for the 

translocation to the nucleus of the NF-YB subunit, since only NF-YA and NF-YC 

subunits have shown to have a nuclear localization signal (NLS) in subcellular 

localization experiment performed on transiently transformed Arabidopsis leaves 

(Hackenberg et al. 2012, Howell et al. 2010). In mammals, NF-YB and NF-YC 

subunits dimerize on a head-to-tail manner, through their HFDs (Figure 1.3), 

which involve the α1 helix of the NF-YB protein, a conserved tryptophan at the 

end of the α2 helix of NF-YC and a hydrophobic core formed by the α2 helices 

(Romier et al. 2003). This dimerization produce the surface for NF-YA association 

and provide a sequence-specific DNA-binding in the CCAAT box (Nardini et al. 

2013). 

In plants because each NF-Y is encoded by multigene families, most of what is 

known about the mechanism of NF-Y complex assembly comes from yeast two-

hybrid (Y2H) and yeast-three-hybrid (Y3H) systems, used to investigate how 

Arabidopsis NF-Y subunits interact and assembly in hetero-trimers (Calvenzani et 
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al. 2012, Hackenberg et al. 2012, Sato et al. 2014). Generally, in these studies it 

was shown that the dimerization cannot occur between NF-YA and NF-YB 

members or between NF-Y subunits belonging to the same subfamily (Calvenzani 

et al. 2012, Hackenberg et al. 2012). However, in vitro analysis only allows us to 

investigate theoretical interaction between NF-Y members, not considering 

where and when the protein is expressed in planta. Hence, only few NF-Y 

complexes have been verified in vivo, perhaps due to their dynamic nature, which 

makes them hard to be detected.  

Additionally, it has been reported that NF-Y subunit can interact with other 

proteins forming non-canonical complexes. For instance, NF-YC1, NF-YC3, NF-

YC4, NF-YC9 and NF-YB2 and NF-YB3 are required for the regulation of CONSTANS 

(CO) during flowering time (Kumimoto et al. 2010, Wenkel et al. 2006). Hou et al. 

(2014) found that NF-Y complexes composed by NF-YA2, NF-YB2 and NF-YC9, 

interact with CO in the photoperiod pathway and with REPRESSOR OF ga1-3 

(RGA) and RGA-LIKE2 (RGL2) in the gibberellin (GA) pathway to regulate the 

transcription of SOC1, a crucial gene in flowering time (Hou et al. 2014). Another 

example of non-canonical complexes is composed by NF-YC9, also called LEAFY 

COTYLEDON1 (LEC1), which interact with PHYTOCHROME-INTERACTING 

FACTOR4 (PIF4), an important gene involved in plant development post-

germination, to control hypocotyl elongation-related genes (Huang et al. 2015b). 

 
1.3.4 NF-Ys phylogenies and alignments 

As described previously, many studies have focused on individual NF-Y genes 

function, however the existence of a functional and active NF-Y complex in planta 

remains elusive. Siefers et al. (2009) presented phylogenic trees (Figure 1.4) and 

alignment (Figure 1.5, 1.6, 1.7) for each Arabidopsis NF-Y subfamily (NF-YA, NF-

YB and NF-YC) suggesting 36 total Arabidopsis NF-Y genes (10 NF-YA, 13 NF-YB, 

and 13 NF-YC homologues). Conversely, it has been shown that some of the 

classified Arabidopsis NF-Y genes, such as NF-YB11, NF-YB12, NF-YB13, and NF-

YC10, NF-YC11, NF-YC12, NF-YC13, are clearly outliers in the phylogenetic 
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analyses of NF-Y proteins, since they do not contain the functional NF-Y domain 

region. Subsequently, Petroni et al. (2012) proposed a new classification and 

nomenclature of Arabidopsis NF-Ys where these outlier were reclassified as 

negative cofactors 2α/β (NC2) (Mermelstein et al. 1996) and as DNA POLYMERASE 

II SUBUNIT B3/B4 (DPB3/4) (Ohya et al. 2000). Hence, a new classification with 

only 30 Arabidopsis NF-Ys in total (10 NF-YA, 10 NF-YB, and 10 NF-YC homologues) 

was proposed. In line with this, Figure 1.6 and 1.7 show that NF-YB11, NF-YB12, 

NF-YB13, and NF-YC10, NF-YC11, NF-YC12, NF-YC13 are phylogenetically distant, 

since they do not display conservation of required amino acids, suggesting an 

altered protein functionality (Siefers et al. 2009). 

The alignment in Figure 1.5 shows that NF-YA proteins present a conserved NF-

YB/NF-YC interaction domain, and a DNA-binding domain across various lineages 

(Siefers et al. 2009). Additionally, functionally required amino acids, which were 

determined from the literature, (Maity and de Crombrugghe 1992) are highly 

conserved across different eukaryotes, suggesting that the function of this 

subunit is conserved.   
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Figure 1.4 – NF-Y phylogenies. Phylogenetic trees for each subfamily were created by neighbor 
joining. Figure from Siefers et al. (2009) 
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Figure 1.5 - Arabidopsis NF-YA subfamily alignment. Sequences correspond to the conserved 
regions in NF-YA proteins across different taxa (Hs, Homo sapiens; Rn, Rattus norvegicus; Sc, 
Saccharomyces cerevisiae). The black boxes represent the nuclear localization signals that are 
required for binding to importin β. In NF-YA Cons. (consensus) line, uppercase letters symbolize 
identity >80% of NF-YA sequences, lowercase letters > 50% identity, and x represent < 50% 
identity. Required amino acid (AA) residues are from the literature (Xing et al., 1993). Figure from 
Siefers et al. (2009). 
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Sie  
 
 
Figure 1.6 - Arabidopsis NF-YB subfamily alignment. Sequences correspond to the conserved 
regions in NF-YB proteins across different taxa (Hs, Homo sapiens; Rn, Rattus norvegicus; Sc, 
Saccharomyces cerevisiae). In NF-YB Cons. (consensus) line, uppercase letters symbolize identity 
>80% of NF-YB sequences, lowercase letters > 50% identity, and x represent < 50% identity. 
Required amino acid (AA) residues are from the literature (Xing et al., 1993). Figure from Siefers 
et al. (2009) 
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Figure 1.7 - Arabidopsis NF-YC subfamily alignment. Sequences correspond to the conserved 
regions in NF-YC proteins across different taxa (Hs, Homo sapiens; Rn, Rattus norvegicus; Sc, 
Saccharomyces cerevisiae). In NF-YC Cons. (consensus) line, uppercase letters symbolize identity 
>80% of NF-YC sequences, lowercase letters > 50% identity, and x represent < 50% identity. 
Required amino acid (AA) residues are from the literature (Xing et al., 1993). Figure from Siefers 
et al. (2009). 
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1.3.5 NF-Y TFs and regulatory mechanism  

Specific NF-Y subunits are known to be regulated by a number of different 

mechanisms. In mammals, it has been reported that protein levels of NF-YA 

change during the cell cycle, while the amount of NF-YB and NF-YC proteins is 

quite constant, suggesting that NF-YA subunit regulate the heterotrimeric 

complex (Bolognese et al. 1999). Recently, a review has been published 

suggesting a model to explain transcriptional and post-transcriptional regulation 

of NF-YA gene in plant (Zanetti et al. 2017). This model represented in Figure 1.8 

indicates that at the transcriptional level NF-YA subunits are regulated by 

alternative splicing (AS NF-YA mRNA) (Filichkin et al. 2010) which retains the first 

intron in the 5’sequence, leading the translation of the upstream Open Reading 

Frame 1 peptide (uORF1p). Subsequently, uORF1p binds to and destabilize both 

AS NF-YA and NF-YA mRNAs. The fully spliced NF-YA mRNAs is then recruited to 

the translational machinery which leads to the translation of the main ORF 

(mORF) and the synthesis of NF-YA subunit, which translocate into the nucleus to 

form the heterodimer with NF-YB and NF-YC subunits. NF-YA mRNAs are also post 

transcriptionally regulated being the target of miR169/Argonatute 1 protein 

(AGO1) complex, which levels are modulated according to different 

developmental and stress conditions (Lee H. et al. 2010, Xu M. Y. et al. 2014b, 

Zhou et al. 2008). Seven of the ten NF-YA subunits (NF-YA1, NF-YA2, NF-YA3, NF-

YA5, NF-YA8, NF-YA9, NF-YA10) were predicted in silico to be regulated by 

miR169, which target the NF-YA 3’UTR (Jones-Rhoades and Bartel 2004). A natural 

antisense NAS mRNA determines the production of small interference RNA (nat-

siRNAs), which inhibit the transcription of miR169 enhancing NF-YA mRNA levels 

by yet undetermined mechanisms. For example, different members of miR169 

family are repressed when N and Pi are limited (Leyva-Gonzalez et al. 2012, Pant 

et al. 2009) and under abiotic stresses such as drought (Gao et al. 2015), 

enhancing the expression levels of several NF-YA subunits, while cold and salinity 

increase the expression of miR169 and reduce NF-YA expression level through the 

synthesis of nat-siRNAs.  Consequently, overexpression of miR169 gene leads 
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reduced levels of NF-YA transcripts (Leyva-Gonzalez et al. 2012). Moreover, it was 

hypothesized that, as in mammals, when NF-YA subunit is translocated into the 

nucleus undergoes post-translational modification such as phosphorylation, 

ubiquitylation and acetylation, that affect DNA binding or protein stability (Chae 

et al. 2004, Manni et al. 2008, Yun et al. 2003). However, there is no experimental 

evidence to prove that plant NF-YAs are subjected to post-translational 

modifications. Additionally, it was hypothesized that as in animals NF-YA subunits 

in plant undergo another level of regulation represented by long non-coding RNAs 

(IncRNAs) which could sequester NF-YA in the nucleus and prevent DNA binding. 

Hence, there is strong evidence supporting post-transcriptional regulation of the 

plant NF-YA subunits, in agreement with studies carried out on mammalian NF-

YA subunit.  
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Figure 1.8 – Overview of multiple levels of transcriptional and post-transcriptional 
regulation of NF-Ys proposed by Zanetti et al. (2017) 
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1.3.6 NF-Y and plant pathogens 

Not much evidence has been achieved regarding the role of NF-Y in response to 

pathogen attack. However, a few reports highlighted the involvement of these 

TFs during the plant defense response. For example, it was reported recently that 

in Arabidopsis miR169 is involved in defense against a bacterial infection caused 

by Ralstonia solanacearum, one of the most devastating plant pathogens, which 

can infect a wide range of host plants (Hanemian et al. 2016). Mutations in clavata 

1 (clv1) and clavata 2 (clv2) receptor kinase, which are LRR-receptor-like proteins, 

confers enhanced resistance not only to a broad range of R. solanacearum strains 

but also to the oomycete Hyaloperonospora arabidopsidis. The phenotype 

observed in both clv1 and clv2 is due to the drastic reduction of miR169 

accumulation and the consequent up-regulation of several NF-YAs. In line with 

this, it was also shown that overexpression of miR169 eliminates the resistance 

phenotype of clv1 and clv2 (Hanemian et al. 2016). Additionally, another study 

reported that in gravepine miR169 is negatively regulated by virus infection (Singh 

et al. 2012). Recently, Rey et al. (2016) identified a new role of Medicago 

truncatula NF-YA1 in compatibility to Aphanomyces euteiches, a root pathogenic 

oomycete  (Rey et al. 2016). Indeed, Mtnf-ya1 knock-out mutants were more 

resistant to the pathogen, showing a visible increment of their root apparatus 

compared to their wild type background. Interestingly, susceptible lines can be 

turned into resistant lines by overexpression of miR169 or by RNAi approaches, 

reducing MtNF-YA1 transcript level. Comparative transcriptome analysis between 

wild type plants inoculated with A. euteiches and Mtnf-ya1 KO mutants revealed 

exactly the same number of differentially expressed genes. This suggests that 

MtNF-YA1 act as a repressor of responses triggered in wild type plants by A. 

euteiches infection. On the other hand, previous studies showed that MtNF-YA1 

is a key regulator involved of the symbiotic Rhizobium–legume interaction 

(Combier et al. 2006, El Yahyaoui et al. 2004). Taken together, these data strongly 

suggest that MtNF-YA1 gene might facilitate the symbiotic rhizobia infection by 

the suppression of defense responses. 
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1.3.7 The biological functions of NF-Y subunits 

1.3.7.1 Embryogenesis  

Plant embryogenesis is the developmental stage that occurs after the 

fertilization of an ovule to produce a fully developed plant embryo (Braybrook 

and Harada 2008). NF-Y TFs play a central role in embryogenesis. For example, it 

has been reported that NF-YB9, also known as LEAFY COTYLEDON1 (LEC1) (Lee H. 

et al. 2003) and the closely related NF-YB6, also known as LEC1-LIKE (L1L) (Kwong 

et al. 2003), play multiple roles in embryogenesis being exclusively expressed 

during seed development in Arabidopsis (Gusmaroli et al. 2001, Junker et al. 2012, 

Yamamoto et al. 2009). NF-YB9 is necessary to maintain the destiny of the 

embryonic cells and inhibit premature seed germination, while NF-YB6 affect 

embryogenesis inducing embryogenesis genes and cellular differentiation (Huang 

et al. 2015a, Lee H. et al. 2003). In fact, loss-of-function mutants of NF-YB9 and 

NF-YB6 give defective embryo development phenotypes and have delayed 

germination compared to wild type, suggesting that they negatively influence 

seed dormancy (Kwong et al. 2003, Warpeha et al. 2007). Phenotype of 

Arabidopsis knock out and over expression mutants in combination with tissue 

specific expression patterns reported that many NF-Y genes are involved in 

embryogenesis. For example, Siriwardana et al. (2014) showed that NF-YA1, NF-

YA2, NF-YA3, NF-YA4, NF-YA6, NF-YA7, NF-YA8, and NF-YA9 are expressed in the 

embryo and can affect embryo development, being consistent with the 

phenotype of Arabidopsis lines overexpressing NF-YA1, NF-YA9, NF-YA5 and NF-

YA6 which showed defects in pollen, embryo and seed development. However, 

no phenotypes were observed in the corresponding single or double knock-out 

mutants (Mu et al. 2013). Moreover NF-Y play redundant role in embryogenesis 

and seed development. For instance, nf-ya3/nf-ya8 double mutants are embryo 

lethal, while nf-ya3 and nf-ya8 single mutants do not have a different phenotype 

than wild type (Fornari et al. 2013), suggesting an overlapping functionality 

between NF-YA3 and NF-YA8. It has been reported that also NF-YC subunits are 

involved in seed germination through ABA responses. However different NF-YC 
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subunits show different sensitivity to ABA, for example Arabidopsis nf-yc4 knock 

out mutants are hypersensitive to ABA during seed germination (Warpeha et al. 

2007), while nf-yc3/nf-yc9 double mutants have shown to be hyposensitive 

(Kumimoto et al. 2013). These findings revealed that many NF-Y subunits are 

involved in embryo and seed development, however most studies focus on single 

subunit, hence how these subunits act in complex to regulate these processes is 

still not well known.  

 

1.3.7.2 Regulation of photoperiod-dependent flowering  

Many studies have highlight the key role of NF-Y TFs in flowering response. For 

example, it was reported that NF-YB2 and NF-YB3 subunits are highly related 

proteins involved in floral transition through the regulation of FLOWERING 

LOCUS-T (FT) gene (Kumimoto et al. 2008). Additionally, NF-YC3, NF-YC4 and NF-

YC9 subunits were found to be crucial for photoperiod-dependent flowering in 

Arabidopsis (Kumimoto et al. 2008), in fact CONSTANS (CO) needs these three 

subunits to initiate the transcriptional activation of FT. Moreover, Y2H analysis 

revealed that NF-YC3, NF-YC4 and NF-YC9 subunits can physically interact with 

NF-YB2 and NF-YB3 subunits, forming at least six different complexes which can 

interact with CO and then regulate the transcription of FT (Kumimoto et al. 2010). 

CO is an important flowering regulator and belongs to a family of proteins termed 

CO-LIKE (COL), which carry a CCT (CO, CO-like, TIMING OF CAB EXPRESSION 1) 

domain (Robson et al. 2001, Strayer et al. 2000). The CCT domain have high 

sequence similarity with DNA binding domain of NF-YA subunit (Romier et al. 

2003, Wenkel et al. 2006). Hence Siefers et al. (2009) hypothesized a model, 

called replacement model, where NF-YA is a competitor of CO for NF-YB/NF-YC 

binding. Consequently, this competition regulates FT through the formation of 

two independent complexes: the activator complex CO/NF-YB/NF-YC, which 

positively regulate the expression of FT and the repressor complex NF-YA/NF-

YB/NF-YC, which negatively regulate the expression of FT (Siefers et al. 2009, 

Wenkel et al. 2006). However, this sequence similarity between NF-YA and CO 
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does not involve the CCAAT box (Nardini et al. 2013), thus CO is not able to bind 

the DNA in the CCAAT box but it can bind the DNA at the CONSTANT RESPONSE 

ELEMENTs (CORE) (Tiwari et al. 2010). Interestingly, even if CO was shown to be 

unable to directly bind the CCAAT box on the FT promoter, it was observed that a 

mutation in this element prevent flowering induction (Cao et al. 2014), suggesting 

an important involvement of CCAAT element in flowering. Based on this, Cao et 

al. (2014) proposed a new model called recruitment model (Figure 1.9A) for the 

activation of FT. This model includes the interaction between CO and FT promoter 

at the CORE elements and a separate interaction between the NF-Y trimer and 

the CCAAT box. Subsequently, CO and the NF-Y trimeric complex interact through 

the formation of a chromatin loop which brings together the two complexes, 

suggesting that the NF-Y hetero-trimer functions as distal transcriptional activator 

of FT. More recently Siriwardana et al. (2016) also suggested a model (Figure 1.9B) 

where NF-YA subunits are positive regulators of flowering, differing from previous 

studies. Additionally, a complex composed by NF-YA2/NF-YB2/NF-YC3 was shown 

to promote flowering binding the CCAAT box in vitro (Siriwardana et al. 2016). 

These evidences raise the chance that two different protein complexes: CO/NF-

YB/NF-YC and NF-YA/NF-YB/NF-YC interact with each other to activate FT, binding 

both proximal CORE and distal CCAAT elements, respectively. 

It is important to consider that NF-Y TFs regulate flowering by not only interacting 

with CO but, according with recent studies, they can also interact with 

FLOWERING LOCUS T (FLC) or SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), 

suggesting other mechanisms (Hou et al. 2014, Xu M. Y. et al. 2014b). Specifically, 

Hou et al (2014) proposed a mechanism in response to a “stress induced flowering 

pathway” where NF-Y regulate the expression of FLC under abiotic stress 

conditions. According to this hypothesis NF-YA2 directly binds and activates FLC 

under physiological conditions, on the contrary under abiotic stress conditions 

NF-YA2 transcripts are degraded by miR169, reducing FLC activity and activating 

genes normally suppress by FLC, including FT. However, this is in contrast with 

Michaels et al. (2001) where it was reported that flc knock out mutants did not 
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reveal alteration in flowering time. Hence, further investigations are needed to 

better understand this pathway. The alternative mechanism of NF-Y TFs in 

promoting flowering proposed by Hou et al (2014) suggests that the hetero-

trimer interacts with CO in the photoperiod pathway and with DELLAs in the 

gibberellin pathway, to control the transcription of SOC1, a key gene in flowering. 

Specifically, it was reported that NF-YA2 mediates the interaction with a novel 

regulatory element called NF-Y BINDING ELEMENT (NFYBE) in the SOC1 promoter 

to regulate its transcription. When the flowering signal is absent (no GA) (Figure 

1.9C) the transcription of SOC1 is inhibited by the trimethylation of H3K27me3 

and DELLAs interact with the NF-Y complex preventing the NF-Y binding to the 

NFYBE at the SOC1 locus. When GA are present (Figure 1.9D), GA degrade DELLAs 

allowing NF-Y to bind to the NFYBE. NF-Y TFs demethylate the SOC1 promoter 

through recruiting the H3K27 demethylase RELATIVE OF EARLY FLOWERING 6 

(REF6) promoting SOC1 expression. Cao et al. (2014) also suggest that in long day 

(LD) conditions, CO proteins interact with NF-Y complexes even if DELLA proteins 

are present. The complex composed of NF-Y hetero-trimer and CO binds to the 

NFYBE in the SOC1 promoter, facilitating the demethylation of H3K27me3 and 

promoting the expression of SOC1 (Figure1.9E). 
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1.3.7.3 NF-Ys in abiotic stresses 

NF-Y TFs are involved in stress responses in Arabidopsis and other plants (Han et 

al. 2013, Laloum et al. 2013, Petroni et al. 2012, Xu L. et al. 2014a). For example, 

it was reported that Arabidopsis plants overexpressing NF-YA2, NF-YA3, NF-YA5, 

NF-YA7, NF-YA10 or NF-YB1 showed to have increased drought tolerance (Leyva-

Gonzalez et al. 2012, Li W. X. et al. 2008, Nelson et al. 2007). Additionally, 

transcriptional profile of Arabidopsis constitutively overexpressing NF-YA2, NF-

YA5 and NF-YB1 revealed that each of these genes altered different groups of 

genes, suggesting that they are involved in independent regulatory pathways 

during drought stress (Leyva-Gonzalez et al. 2012, Li W. X. et al. 2008, Nelson et 

al. 2007). In plants ABA inhibits seed germination to prevent excessive energy 

consumption under hostile conditions (Lopez-Molina et al. 2001). Abiotic stresses 

such as drought and high salinity trigger the biosynthesis of ABA, hence plants 

that are hypersensitive to ABA are more tolerant to these stresses. In Arabidopsis, 

salt stress conditions induced NF-YA1, NF-YA2, NF-YA7, NF-YA10 and when these 

genes are overexpressed the plant was hypersensitive to exogenous levels of ABA 

(Leyva-Gonzalez et al. 2012, Li Y. J. et al. 2013). Moreover, Leyva-Gonzalez et al. 

(2012) reported that under nutrient deficiency conditions, such as low N and Pi, 

the expression of miR169 is suppressed inducing NF-YA2, NF-YA7 and NF-YA10. 

Moreover, many studies have highlight the pivotal role of NF-Y TFs during 

temperature stress (Sato et al. 2014, Shi et al. 2014). For instance, plants 

overexpressing NF-YA2 or NF-YC1 were shown to be more tolerant to cold. 

Additionally, NF-YC1 subunit regulates the transcription of a key enzyme involved 

in cell wall development called XYLOGLUCAN ENDOTRANSGLUCOSYLASE/ 

HYDROLASE 21 (XTH21), which, when overexpressed or knocked-out, generates 

resistant or tolerant plants to freezing, respectively.  

Additionally, under stress conditions the plant cell ENDOPLASMATIC RETICULUM 

(ER) triggers an unfolded protein response (UPR), which mitigates the ER stress 

caused by the ER protein folding machinery as the demands for protein folding 

exceed the capacity of the system (Liu and Howell 2010). It was shown that the 
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hetero-trimer formed by NF-YA4, NF-YB3 and NF-YC2 interact in vitro with bZIP28 

to activate UNFOLDED PROTEIN RESPONSE (UPR) associated genes, which are 

involved in response to environmental stress condition such as pathogen attack 

or developmental stimuli (Vitale and Ceriotti 2004). It was observed that UPR 

genes have ER stress response element (ERSEs) in their promoter (Yoshida et al. 

2000) and in mammals, it was demonstrated that a complex constituted by NF-Y 

trimer and the bZIP dimer bind to the ERSE element (Yoshida et al. 2000, 2001).  

 
1.3.8 NF-Y as a key regulator in multiple stress responses 

1.3.8.1 The PRESTA project 

This research is based on dataset generated by a previous project called PRESTA 

(Plant Responses to Environmental STress in Arabidopsis). PRESTA was a large 

project that brought together plant biologists, theoreticians and 

bioinformaticians from different universities in the UK. It investigated the 

transcriptional networks underlying stress responses in Arabidopsis using a 

systems biology approach. The study was conducted across seven different 

stresses: Botrytis cinerea infection (Windram et al. 2012), long day senescence 

(Breeze E. et al. 2011), Pseudomonas syringae infection (Lewis et al. 2015), 

drought (Bechtold et al. 2013), high light and short day senescence. This systems 

approach was focused on the generation of large microarray datasets that follow 

gene expression changes over time in response to multiple stresses, generating a 

dynamic dataset. Indeed, the PRESTA datasets compared the treated to 

untreated tissue at different time points across the duration of the stress, 

clarifying the chronology of transcriptional events involved in eliciting the stress 

response. This methodology permitted to generate high-resolution time-series 

expression data profiles for the majority of genes in Arabidopsis, which enabled 

the generation of transcriptional network models. In doing this, this system 

allowed prediction of regulatory relationships between differentially expressed 

TFs and identification of key regulators of Arabidopsis stress responses from the 

networks.  
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1.3.8.2 NF-Y subunits are differentially expressed during multiple 

stresses 

The PRESTA dataset revealed that NF-Y genes are differentially expressed under 

multiple stresses as shown in Figure 1.10 (Breeze, 2014). All NF-YA genes were 

shown to be differentially expressed in at least one treatment, with NF-YA1, NF-

YA2, NF-YA4, NF-YA7 and NF-YA10 showing significant changes under four or five 

stresses. It is also visible that NF-YB and NF-YC subunits showed a differential 

expression across different treatments, however, in comparison with NF-YA 

subunits, it is less substantial, since it does not involve all different treatments or 

subunits. Figure 1.10 represents the general trend of the expression of NF-Y 

subunits across each stress, according to the direction of the arrow. This figure 

considers the NF-Y classification performed by Siefers et al. (2009) with 36 NF-Y 

subunits in total, instead of the new classification done by Petroni et al. (2012) 

with 30 NF-Y subunits. Hence, NF-YB11, NF-YB13, NF-YC10, NF-YC11 and NF-YC13 

are not going to be considered. Among 36 NF-Ys, it was observed that 20 are 

differentially expressed during B. cinerea infection with 10 genes up-regulated 

and 10 genes down-regulated (Windram et al., 2012). This supports the 

involvement of the NF-Ys, particularly the NF-YA subunits, in a fundamental 

regulatory role in the plant defense response. 
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Figure 1.10 - Differential expression of the NF-Y genes in the PRESTA datasets. Differentially 
expressed genes, compared with stress treated and control samples, for each stress were 
identified. Red box indicates NF-Y genes constitutively expressed over the time series, green box 
indicates differentially expressed genes, grey box (with crosses) indicates not expressed genes. 
The color of the arrow indicates the direction of gene expression: yellow= up-regulated; blue= 
down-regulated. The senescence datasets have no control case. Figure from Breeze (2014). 
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1.3.8.3 Y2H 

The ability of each of the NF-Y subunits to interact with each other was 

investigated in vitro using the Y2H assay by Emily Breeze (2014). However, this 

method does not allow more than two proteins to be co-expressed and hence if 

the formation of the NF-YB/NF-YC hetero-dimer is a prerequisite for the binding 

of the NF-YA subunit, binary protein interaction with NF-YA subunits will not be 

detected. The NF-Y Y2H results obtained are in line with other two publications: 

Calvenzani et al. (2012) and Hackenberg et al. (2012). All these datasets are similar 

in terms of the high proportion of NF-YB/NF-YC interactions identified, and the 

limited detection of any NF-YA/NF-YB interactions. Hence, generally, NF-YB and 

NF-YC subunits were seen to hetero-dimerize promiscuously. Hetero-

dimerization was also observed between NF-YA and NF-YC subunits, while the 

dimerization between NF-YA/NF-YB subunits was not identified. This analysis 

gave important information on the possible dimer combinations between NF-Y 

subunits, and so in this study was used to predict putative hetero-trimer 

complexes. 

 

1.4 Context of this work  
As explained in the introductory section above, NF-Y TFs have been shown to be 

involved in multiple developmental and stress responses. Knowing the multigene 

family for each subunit, it was hypothesized that different hetero-trimer 

combinations have evolved specialized regulatory functions. Additionally, it was 

reported that NF-YB and NF-YC can form non-canonical trimeric complexes 

interacting with other TFs and enhancing the combinatorial complexity of NF-Y 

family in plant. Hence, these complexes might bind different DNA element rather 

than the CCAAT motif (Hou et al. 2014, Liu and Howell 2010, Mendes et al. 2013, 

Wenkel et al. 2006). This expanded combinatorial complexity makes the NF-Y 

family an attractive target for future research, however to identify a specific and 

functional hetero-trimer is exceedingly challenging.  



 56 

The aim of this PhD work was to identify one or more functional NF-Y trimers with 

a role in the plant defense response. In order to do this effectively, a more focused 

approach was taken in which detailed functional analysis was performed on a 

small subset of NF-Y genes. The subset of NF-Ys selected for further study were 

chosen on the basis of the microarray dataset results during B. cinerea and P. 

syringae infection (Figure 1.11) obtained by the PRESTA consortium in 

combination with previous Y2H analysis. The NF-Y genes selected for further 

study were NF-YA2, NF-YB2 and NF-YC2, for the reasons outlined below: 

 

NF-YA2 

NF-YA2 is an obvious choice for further study, in fact it was shown to be a major 

hub in both drought and senescence and because of its putative regulation of 

several other NF-Y genes (Breeze, 2014). Furthermore, it is differentially 

expressed in multiple stresses (Figure 1.10) and it has TDNA insertion lines 

exhibiting reduced expression of the target transcript, thus aiding functional 

analysis. Moreover, previous study showed that NF-YA2 knock-out and 

overexpressor mutants have altered endogenous levels of JA, a key 

phytohormone during the plant defense response against B. cinerea infection 

(Breeze et al. in preparation). This result together with the misregulation of JA 

biosynthetic genes observed in the nf-ya2 KO mutant (Breeze, 2014), strongly 

suggests the involvement of NF-YA2 in the JA biosynthesis pathway. In agreement 

with this, nf-ya2 mutant exhibit an altered susceptibility to the necrotrophic 

pathogen B. cinerea. Based on these evidences it was hypothesized that NF-YA2 

is a good candidate gene involved in plant immunity against necrotrophic 

pathogens. 

 

NF-YC2 

PPI data identified NF-YC2, as obvious targets for further study since this subunit 

was the only one capable of interacting with NF-YA2 subunit in Y2H analysis. 
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Furthermore NF-YC2 was selected due to its differential expression in most of the 

PRESTA time series datasets. 

 

NF-YB2 

Preliminary Mass Spectrometry analysis performed on Arabidopsis lines 

overexpressing NF-YC2 identified NF-YB2 as an interacting protein. Providing a 

useful starting point for testing potential trimer combinations in vivo. 

Furthermore, Arabidopsis TDNA insertion lines are available for functional 

experiments. 

 

In summary, a putative trimer formed by NF-YA2, NF-YB2 and NF-YC2 was 

hypothesized. All three subunits showed to be down regulated during B. cinerea 

and P. syringae infection compared with mock controls (Figure 1.11) and this 

considerable differential expression suggests that they may be playing an 

important role in the plant defense response. 
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Figure 1.11 - Expression of NF-YA2, NF-YB2 and NF-YC2 during Botrytis cinerea infection, 
Pseudomonas syringae infection and mock treatment, as determined by the high-resolution 
time-course microarray (Windram et al. 2012). Each graph shows the mean log2 normalized 
expression over time for both the treated (red and purple) and untreated (green) samples. In the 
Pseudomonas plot, green is mock data, purple is hrpA infection and red is Pst DC3000 infection. 
Error bars are presented in the form of deviation from the mean, based on 1 standard error 
calculated from the standard deviation.  
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1.5 Aims and objectives 
The overall aim of this research is to improve our knowledge on functional NF-Y 

complexes in physiological conditions and specifically during the plant defense 

response. 

In particular, the research objectives are to: 

• Determine the existence of the putative hetero-trimer (NF-YA2/NF-

YB2/NF-YC2) in planta 

• Identify functional NF-Y complexes during biotic stress and under 

unstressed conditions 

• Localize NF-YA2, NF-YB2 and NF-YC2 in the plant cell 

• Use transcriptome data to predict functional orthologues of the NF-Y 

subunits in other crops, such as lettuce and tomato, during B. cinerea 

infection. 
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Chapter 2 

2. Materials and Methods  

2.1 Materials 
2.1.1 Molecular Biology Reagents 

Oligonucleotides were supplied by Sigma- Aldrich or Integrated DNA Technologies 

(IDT; Scotland, UK). Polymerase chain reaction (PCR) was conducted using 

BioMixTM Red (Bioline, UK) and ACCUZYME™ DNA Polymerase (Bioline, UK); 

QIAprep Spin Miniprep kit, QIAquick PCR Purification Kit, QIAquick Gel Extraction 

Kit (Qiagen, UK). BP Clonase II and LR Clonase II enzymes were supplied by 

Invitrogen, UK.  

2.1.2 Electrophoresis Reagents 

Gels were composed of 1.2% (w/v) ultrapure agarose (Invitrogen), 1x TAE buffer 

(40 mM Tris base, 20 mM acetic acid, 1 mM EDTA, pH 8.0) and stained with 

Ethidium Bromide (Sigma Aldrich) or GelRed (Biotium Inc., U.S.A.). 1 Kb Plus DNA 

Ladder (Life TechnologiesTM) was used as a DNA size marker in all gels unless 

otherwise stated.  

2.1.3 Nucleic Acid Measurements 

DNA and RNA concentrations were measured using a NanoDrop ND-1000 

(Thermo Scientific, UK). 

2.1.4 Cell Density Measurements 

Cell density measurements (OD600) were taken using a Biochrom WPA CO8000 

cell density meter (Biochrom Ltd., UK). 

2.1.5 Vectors Used 

• pDonrZeo; Gateway entry vector. Containing a Zeocin resistance gene for 

bacterial selection (InvitrogenTM). 

• pGWB604; Gateway binary destination vector containing a GFP tag N-

terminally fused to the protein encoded by the gene of interest, under the 

control of the native promoter. It also contains a spectinomycin selectable 
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marker for bacteria and BASTA resistance gene for transgenic plant 

selection (Nakamura et al. 2010). 

• pGWB605; Gateway binary destination vector containing a GFP tag N-

terminally fused to the protein encoded by the gene of interest, under the 

control of a 35S promoter from Cauliflower mosaic virus. It also contains 

spectinomycin resistance gene for bacterial selection and BASTA 

resistance for transgenic plant selection (Nakamura et al. 2010). 

• pGWB606; Gateway binary destination vector containing a GFP tag C-

terminally fused to the protein encoded by the gene of interest, under the 

control of a 35S promoter. It also contains spectinomycin resistance gene 

for bacterial selection and BASTA resistance for transgenic plant selection 

(Nakamura et al. 2010). 

• pGWB610; Gateway binary destination vector containing a FLAG tag N-

terminally fused to the protein encoded by the gene of interest, under the 

control of the native promoter. It also contains spectinomycin resistance 

gene for bacterial selection and BASTA resistance for transgenic plant 

selection (Nakamura et al. 2010). 

• pGWB611; Gateway binary destination vector containing a FLAG tag N-

terminally fused to the protein encoded by the gene of interest, under the 

control of a 35S promoter. It also contains spectinomycin resistance gene 

for bacterial selection and BASTA resistance for transgenic plant selection 

(Nakamura et al. 2010). 

• pGWB612; Gateway binary destination vector containing a FLAG tag C-

terminally fused to the protein encoded by the gene of interest, under the 

control of a 35S promoter. It also contains Spectinomycin resistance gene 

for bacterial selection and BASTA resistance for transgenic plant selection 

(Nakamura et al. 2010). 

• pGWB613; Gateway binary destination vector containing a 3xHA tag N-

terminally fused to the protein encoded by the gene of interest, under the 

control of the native promoter. It also contains spectinomycin resistance 
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gene for bacterial selection and BASTA resistance for transgenic plant 

selection (Nakamura et al. 2010).  

• BIFP1; Gateway destination vector in which the N terminus of Clontech E-

YFP is C-terminally fused to the protein encoded in the Gateway cassette. 

Supplied by Francois Parcy (University Grenoble, France). It also contains 

spectinomycin resistance gene for bacterial selection. 

• BIFP2; Gateway destination vector in which the N terminus of Clontech E-

YFP is N-terminally fused to the protein encoded in the Gateway cassette. 

Supplied by Francois Parcy (University Grenoble, France). It also contains 

spectinomycin resistance gene for bacterial selection. 

• BIFP3; Gateway destination vector in which the C terminus of Clontech E-

YFP is N-terminally fused to the protein encoded in the Gateway cassette. 

Supplied by Francois Parcy (University Grenoble, France). It also contains 

spectinomycin resistance gene for bacterial selection. 

• BIFP4; Gateway destination vector in which the C terminus of Clontech E-

YFP is C-terminally fused to the protein encoded in the Gateway cassette. 

Supplied by Francois Parcy (University Grenoble, France). It also contains 

spectinomycin resistance gene for bacterial selection. 

 

2.1.6 Plant Material 

• Col-0; Arabidopsis thaliana accession Columbia. 

• Solanum lycopersicum L. cultivars of Micro-Tom. Seeds were provided by 

JustSeed UK. 

• Solanum lycopersicum L. cultivars Ailsa craig. Seeds were provided by 

JustSeed UK . 

• p35S:HA:GFP; Arabidopsis Col-4 expressing GFP with an N-terminally 

fused HA tag (using Gateway vector Earleygate201), selected on BASTA 

until homozygous (transformation performed by Sarah Harvey, University 

of Warwick). 
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• p35S:FLAG:GFP; Arabidopsis Col-0 expressing GFP with an N-terminally 

fused FLAG tag, selected on BASTA until homozygous (seed were kindly 

provided by Sophie Piquerez, University of Warwick). 

• nf-ya2; Arabidopsis accession Col-0 with T-DNA insertions in the NF-YA2 

gene (SALK_146170). Provided by NASC and screened for zygosity. 

• nf-yb2; Arabidopsis accession Col-0 with T-DNA insertions in the NF-YB2 

gene (SALK_025666). Provided by Ben F. Holt III (Kumimoto et al. 2013) 

and screened for zygosity. 

• nf-yb3; Arabidopsis accession Col-0 with T-DNA insertions in the NF-YB3 

gene (SALK_150879). Provided by Ben F. Holt III (Kumimoto et al. 2013) 

and screened for zygosity. 

• nf-yb2/b3; Arabidopsis accession Col-0 with T-DNA insertions in the NF-

YB2 and NF-YB3 genes. Provided by Ben F. Holt III (Kumimoto et al. 2013) 

and screened for zygosity. 

• nf-yc2; Arabidopsis accession Col-0 with T-DNA insertions in the NF-YC2 

gene (SALK_026351). Provided by NASC and screened for zygosity. 

• bos1; Arabidopsis accession Col-0 with T-DNA insertions in the MYB108 

gene. Provided by Prof. Tesfaye Mengiste (Purdue Agricolture). 

• HaRxL14; HaRxL14 cloned into pB2GW7, transformed into Col-0 and 

selected on BASTA until the fourth generation (transformation performed 

by Matthew Watson, University of Warwick). 

• Col-0::35S:NF-YC2-GFP; NF-YC2 cloned into pGWB605 transformed into 

Col-0 and selected on BASTA until the fourth generation. Col-0::35S:NF-

YC2-GFP_1 and Col-0:: 35S:NF-YC2-GFP_3 differentiate between lines 

derived from independent transformations (transformation performed by 

Emily Breeze, University of Warwick). 

• nf-ya2::35S:FLAG-NF-YA2; Arabidopsis knockout mutant nf-ya2 

expressing NF-YA2 with an C-terminally fused FLAG tag (using pGWB612 

Gateway vector ), selected on BASTA until homozygous. nf-ya2::35S:FLAG-
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NF-YA2_1 and nf-ya2::35S:FLAG-NF-YA2_2 designate independent 

transformants (this study). 

• Col-0::35S:FLAG-NF-YA2; Arabidopsis Col-0 expressing NF-YA2 with a C-

terminally fused FLAG tag (using pGWB612 Gateway vector ), selected on 

BASTA until homozygosity.  Col-0::35S:FLAG-NF-YA2_1 and Col-

0::35S:FLAG-NF-YA2_2 designate independent transformants (this study). 

• Col-0::35S:GFP-NF-YA2; Arabidopsis Col-0 expressing NF-YA2 with a C-

terminally fused GFP tag (using pGWB606 Gateway vector), selected on 

BASTA until homozygous.  Col-0::35S:GFP-NF-YA2_1 and Col-0::35S:GFP-

NF-YA2_2 designate independent transformants (this study). 

• Col-0::pNF-YA2:NF-YA2-GFP; Arabidopsis Col-0 expressing NF-YA2 with an 

N-terminally fused GFP tag (using pGWB604 Gateway vector ), selected on 

BASTA until homozygous. Col-0::pNF-YA2:NF-YA2-GFP_1 and Col-0::pNF-

YA2:NF-YA2-GFP_2 designate independent transformants (this study). 

• nf-ya2::pNF-YA2:NF-YA2-GFP; Arabidopsis knock out mutant nf-ya2 

expressing NF-YA2 with an N-terminally fused GFP tag (using pGWB604 

Gateway vector), selected on BASTA until homozygous. Col-0::pNF-

YA2:NF-YA2-GFP_1 and Col-0::pNF-YA2:NF-YA2-GFP_2 designate 

independent transformants (this study). 

• nf-yb2::35S:FLAG-NF-YB2; Arabidopsis knock out mutant nf-yb2 

expressing NF-YB2 with a C-terminally fused FLAG tag (using pGWB612 

Gateway vector ), selected on BASTA until homozygous. nf-yb2::35S:FLAG-

NF-YB2_1 and nf-yb2::35S:FLAG-NF-YB2_2 designate independent 

transformants (this study). 

• nf-yb2::35S:GFP-NF-YB2; Arabidopsis knockout mutant nf-yb2 expressing 

NF-YB2 with a C-terminally fused GFP tag (using pGWB606 Gateway 

vector), selected on BASTA until homozygous. nf-yb2::35S:GFP-NF-YB2_1 

and nf-yb2::35S:GFP-NF-YB2_2 designate independent transformants 

(this study). 
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• Col-0::35S:GFP-NF-YC2_1; Arabidopsis Col-0 expressing NF-YC2 with a C-

terminally fused GFP tag (using pGWB605 Gateway vector), selected on 

BASTA until homozygous. Col-0::35S:GFP-NF-YC2_1 and Col-0::35S:GFP-

NF-YC2_2 designate independent transformants (this study). 

 

2.1.7 Microbial Strains 

• DH5α; Chemically competent Escherichia coli (E. coli) used for 

transformation. 

• Agrobacterium tumefaciens strain GV3101, used for stable 

transformation of Arabidopsis thaliana and transient transformation of 

Nicotiana benthamiana. 

• Botrytis cinerea strain pepper (Denby et al. 2004) 

• Hyaloperonospora arabidopsidis, spores of isolate Noks1 (Coates and 

Beynon 2010) 

• Pseudomonas syringae pv. tomato DC3000 wild type. (Prof. Murray 

Grant group, University of Warwick). 

 

2.1.8 Media and Buffers 

• Luria broth (LB) growth media for Escherichia coli: 25 g of LB Broth, Miller 

(Fisher Scientific UK) per litre of MilliQ water, in 1.5% agar (w/v) (VWR; 

UK). Contains: 10 g/L Tryptone, 10 g/L NaCl and 5 g/L Yeast Extract. 

• Super Optimal broth with Catabolite repression (SOC) media for 

Escherichia coli transformation: Liquid medium from InvitrogenTM 

(catalogue number 15544-034). Contains: 2% (w/v) Tryptone, 0.5% (w/v) 

Yeast Extract, 10 mM Sodium Chloride, 2.5 mM Potassium Chloride, 10 

mM Magnesium Chloride, 10 mM Magnesium Sulphate and 20 mM 

Glucose. 

• YEB growth media for Agrobacterium tumefaciens: 5 g/L Beef Extract, 1 

g/L Yeast extract, 5 g/L Peptone, 5 g/L Sucrose, 2 mM MgSO4. 
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• Murashige Skoog (MS) media:  2.2 g Murashige Skoog nutrients (Duchefa 

Biochemie, Haarlem, The Netherlands) per litre of MilliQ water, 1 % (w/v) 

sucrose and adjusted to pH 5.9 with KOH, 0.7 % (w/v) Plant agar (Duchefa 

Biochemie). 

 

2.2 Methods 

2.2.1 Plant growth 

Arabidopsis seeds were sown into P24 seed trays containing pre-watered soil 

(Levington F2 compost) and stratified at 4°C for 72 h in the dark. Trays were then 

covered with a transparent lid to maintain humidity and placed in a growth 

chamber to germinate. The lid was removed after 10 days post-sowing and 

seedlings thinned to one plant per pot. Plants were grown under standardized 

conditions of 12 or 16 hours of light, 20oC, 70% relative humidity, 350ppm CO2 

and 100 µmol2s-1 light, unless otherwise stated.  

2.2.2 Plant transformation 

A. thaliana plants of the Col-0 ecotype or knockout mutant for a gene of interest 

were grown. Floral dipping was performed by as described in Clough and Bent 

(1998) (Clough and Bent 1998). T0 seed was selected on soil soaked in 5 g/ml 

BASTA. Up to 10 resistant seedlings were transplanted and T2 seed generated. T2 

seed were treated with BASTA again and lines with a 3:1 ratio of BASTA 

resistant:sensitive plants were selected. T3 seed was generated from resistant 

plants in these selected lines. Batches of T3 seed were then sown onto BASTA-

socked soil and lines which showed 100% germination were deemed 

homozygous.  

2.2.3 PCR 

PCR master mix was made as described in Table 2.1. PCR was performed using the 

GeneAmp PCR System 9700 (Applied Biosystems), using the thermal cycling 
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conditions described in Table 2.2. All DNA samples were run on electrophoresis 

gels at 100 V for approximately 45 min. 

Table 2.1 - PCR components.  

Component Volume 

BioMix Red Master Mix 10 µl 

Forward primer (10  µM) 1.5 µl 

Reverse primer (10 µM) 1.5 µl 

MilliQ H2O Up to a total of 20 µl 

 

Table 2.2 - PCR Thermal Cycling Conditions.  

 

2.2.4 Genotyping 

All T-DNA insertion lines were genotyped prior to use. Genomic DNA was 

extracted from 0.5 cm leaf discs using the REDExtract-N-Amp™ Plant PCR kit 

(Sigma-Aldrich) following the manufacturer’s instructions. PCR was performed 

using the conditions described in Table 2.2 with the forward primer (LP) and 

reverse primers (RP) located in the T-DNA flanking sequences together with the 

appropriate left T-DNA border primer (LB) (Table 2.3). Primers were designed 

using T-DNA Primer Design tool (http://signal.salk.edu/tdnaprimers.2.html). By 

using the three primers (LBb1.3+LP+RP) for SALK lines, in wild type lines (WT) only 

LP-RP product is visible, in homozygous lines (HM) BP-RP product will be 410+N 

bp, while in heterozygous lines (HZ), both bands will be visible (Figure 2.1).  

Step Temperature Time  Cycles 

Initial denaturation  95 °C 3 minutes 1 

Denaturation 95 °C 30 seconds  

30-35 Annealing  55°C 30 seconds 

Elongation 72°C 1-2 minutes (~ 1kb/min) 

Final elongation  72°C 10 minutes 1 

Cooling 15°C Indefinitely  
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Figure 2.1 – A general representation of the position of the T-DNA and primers used for 
genotyping SALK lines loss-of-function mutants. On the right: representation of expected band 
sizes in wild type, homozygous and heterozygous lines.  
Figure from http://signal.salk.edu/tdnaprimers.2.html. 
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2.2.5 Gateway Cloning  

All cloning was performed utilizing Gateway® recombination cloning technology 

(Life TechnologiesTM). pDONRZeo vector (Invitrogen) was used to generate all 

entry vectors. NF-YA2, NF-YB2 and NF-YC2 ORF sequences were amplified from 

Arabidopsis Col-0 cDNA. Only the NF-YA2 under the native promoter was 

amplified from Arabidopsis Col-0 genomic DNA. 

Where necessary, the stop codon was removed using a QuikChange II Site-

Directed Mutagenesis Kit (Agilent) and the primers shown in Table 2.6. To 

recombine the PCR product into the entry vector, attB-PCR product was 

synthesized using two-step PCR (Table 2.4 and 2.5).  

 

 Table 2.4 – Cloning: first step PCR primers 

Primer Sequence Cycles 

Forward 5’- AAAAAAGCAGGCTTC-template specific sequence (20-30bp) - 3’ 15 

Reverse 5’- CAAGAAAGCTGGGTC-template specific sequence (20-30bp) - 3’ 

 

Table 2.5 – Cloning: second step PCR primers 

Primer Sequence Cycles 

Forward 5’- GGGGACAAGTTTGTACAAAAAAGCAGGCT - 3’ 25 

Reverse 5’- GGGGACCACTTTGTACAAGAAAGCTGGGT - 3’ 

 

Table 2.6 - Primers to remove STOP codon 

Gene Primer Sequence 

NF-YA2 Forward 5’ GCTGCAATTTCAAAACCGACCCAGCTTTCTTGTAC 3’ 

NF-YA2 Reverse 5’ GTACAAGAAAGCTGGGTCGGTTTTGAAATTGCAGC 3’ 

NF-YB2 Forward 5’ CGGTAGGACAAGGACTGACCCAGCTTTCTTGTAC 3’ 

NF-YB2 Reverse 5’ GTACAAGAAAGCTGGGTCAGTCCTTGTCCTACCG 3’  

 

PCR was performed using ACCUZYME™ DNA Polymerase (Bioline, UK) as 

described in Table 2.1 using the thermal cycling conditions described in Table 2.2. 

attB-PCR product and the pDONRZeo vector were mixed at equal amounts 
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(150ng) in sterile water to a final volume of 4 µl before the addition of 1 μl BP 

Clonase II to recombine the PCR product into the entry vector. Reactions were 

incubated at 25°C overnight.  

2μl of BP reaction was used to transform 10 μl of DH5α competent Escherichia 

coli cells and incubate on ice for 30 minutes.  The cells were heat shocked at 42°C 

for 30 seconds and incubate on ice for 2 minutes. 250 μl of SOC media was added 

and cells were incubated at 37°C for 1 hour. 150 μl of inoculum was then plated 

on LB media containing Zeocin (25ng/ml, Invitrogen) and incubated at 37°C 

overnight. Bacterial colonies were inoculated in 100 μl of sterile water. Colony 

PCR was performed on 1 μl of the inoculated water (primers are listed on table 

2.7). Plasmids were purified and quantified. Fragments were sequenced using the 

M13 forward and reverse primers (Table 2.7). Positive transformants with a 

correctly sized colony PCR amplicon were inoculated into 5 mL LB broth 

containing Zeocin™ (50 μg/ml) and incubated at 37°C overnight with shaking at 

220 rpm. Bacterial cells were harvested by centrifugation at 10,000 × g for 10 min 

and plasmid DNA (pDNA) purified using QIAprep Spin Miniprep Kit (Qiagen) 

according to the manufacturer’s instructions with final elution into 30 μL sterile 

water. 

LR reactions were conducted using 150 ng purified pDONRZeo vector, 150 ng 

Destination vector (listed in section 2.1.5) and 1 μL LR Clonase® II, sterile water 

was added to a final volume of 5 μL. Reactions were incubated at 25°C overnight. 

The LR reaction was transformed into E. coli strain DH5α cells and plated onto 

selective LB agar plates. Colony PCR was performed and plasmids were purified 

and quantified.  
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Table 2.7 - Primers used for colony PCR and sequencing  

 

 

 

 

2.2.6 A. tumefaciens mediated transient expression in N. 

benthamiana 

2.2.6.1 Generation of Agrobacterium tumefaciens competent cells 

A.tumefaciens strain GV3101 was inoculated into 10 ml of YEB medium containing 

Rifampicin (100 μg/mL) and Gentamicin (30 μg/mL) and grown at 28oC with 

shaking at 220 rpm overnight. The next day the overnight culture was transferred 

into 200 ml of YEB medium with the appropriate antibiotics and incubated at 28oC 

with 220 rpm shaking to an OD600 of 0.5 (approximately 4 hours). The culture was 

harvested by centrifugation at 2500g at 4°C for 20 minutes and re-suspended in 

ice cold TE buffer (10mMTris/HCl, 1mM EDTA pH 8.0). Cells were then centrifuged 

at 2500g at 4°C for 20 minutes and re-suspended into ice cold YEB medium. A. 

tumefaciens competent cells were aliquoted into 500 µl volumes, flash frozen in 

liquid nitrogen and stored at -80°C. 

 

2.2.6.2 Agrobacterium tumefaciens transformation 

500 µl aliquot of A. tumefaciens competent cells were thawed on ice. 

Approximately 1-2 µg of plasmid DNA was added to 100 µl of cells and mixed, 

Gene Primer  Sequence 

NF-YA2 Forward CAGAGCAGGGTAATGCTTCC 

NF-YA2 Reverse TGGTTCCGCTATTTTCCAAG 

NF-YB2 Forward GGTCGGAGAGCATCAGAGAG 

NF-YB2 Reverse TGGTTCTGCTGGTGAAGAAA 

NF-YC2 Forward CATGACCTGTTTGGGATCATC 

NF-YC2 Reverse TTGGTCACGCCTAAACCTTC 

Gene Primer Sequence 

M13 Forward 5’ GTAAAACGACGGCCAG 3’ 

M13 Reverse 5’ CAGGAAACAGCTATGAC 3’ 
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before incubation on ice for 5 minutes. The DNA-bacteria mixture was flash-

frozen in liquid nitrogen for 5 minutes and then heat-shocked at 37°C for 5 

minutes. Cells were left on ice for 2 minutes followed by the addition of 900 µl of 

YEB medium and incubated for 2 hours at 28°C with shaking.  100 µl of the 

transformed A. tumefaciens cells were plated onto YEB agar plates with Rif100 and 

Gent30 and the appropriate destination vector selective antibiotic, then incubated 

at 28°C for 2 days.  

 

2.2.6.3 Transient expression in Nicotiana benthamiana 

Agrobacterium tumefaciens strain GV3101 containing the plasmid of interest and 

the p19 silencing suppressor (Voinnet et al. 2003) were grown overnight in 10 ml 

YEB medium with the appropriate antibiotics at 28°C and 220 rpm shaking. The 

next day, the cultures were harvested by centrifugation at 3000g for 10 minutes 

and re-suspended in 10 ml infiltration buffer (10 mM MES, 10 mM MgCl2 pH 5.7). 

The OD600 was then measured and adjusted, while mixing any constructs to be co-

expressed. Typically, a final OD600 of 0.4 was used for CO-IP or BIFC. A. 

tumefaciens expressing p19 was added to each mixture at a final OD600 of 0.4. 100 

µM Acetosyringone was added to each cell suspension and incubated for 2-4 

hours in the dark. Each cell suspension was transiently expressed in 3 weeks old 

Nicotiana benthamiana leaves by infiltration as described in Voinnet et al. 2003.  

 

2.2.7 Bimolecular Fluorescence Complementation (BIFC) screen 

Using this system, the interaction between NF-Y TFs were tested on 3-week-old 

Nicotiana benthamiana leaves. Two YFP fragments, either C and N terminal of E-

YFP were co-infiltrated so that both the C and N terminus of E-YFP were present 

in the leaf (BIFP1 or 2 with BIFP3 or 4). Upon interaction between the two 

proteins, the fragments restore fluorescence, which can be detected using 

confocal microscopy 3 days after infiltration. 
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2.2.7.1 Localization of fluorescently tagged proteins by confocal 

microscopy 

After three days of transient expression of protein constructs in N. bethamiana, 

5 mm leaf discs were imaged using Zeiss Laser Scanning Microscope (LSM) 710 

(Carl Zeiss Ltd; Cambridge, UK). Images were then processed using Fiji software 

(Schneider et al., 2012). 

 

2.2.8 Biochemical techniques  

2.2.8.1 Protein immunoprecipitation 

Extraction and quantification of protein transiently expressed in Nicotiana 

benthamiana 

In the case of protein transiently expressed in Nicotiana benthamiana, the whole 

infiltrated region was used per sample. Experiments were performed using either 

fresh or frozen material. Tissue was grounded using mortar and pestle and 

protein extraction was done using GTEN buffer (Table 2.8). GFP-Trap®_A 

(Chromotek) beads were used following the manufacturer’s instructions to 

immunoprecipitate YFP re-assemble protein. Samples were quantified using 

Bradford reagent and comparison to a standard curve of Bovine Serum Albumin 

(BSA), then stored at -20oC. 

Table 2.8 - GTEN protein extraction buffer component  

 Component Final concentration 

Glycerol 10% [v/v] 

Tris-HCl  25 mM 

EDTA 1 mM 

NaCl 150 mM 

Nonidet P40 0.15% [v/v] 

PVPP 2% [w/v] 

DTT 10 mM 

PMSF 1 mM 

Protease inhibitors (Sigma P9599) 1X 
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Protein extraction and co-immunoprecipitation of Arabidopsis epitope tagged 

lines 

A protocol published by Piquerez et al (2014) was used for the 

immunoprecipitation of plant-expressed proteins.  Fully expanded Arabidopsis 

leaves were ground in liquid and proteins were extracted in Buffer C (2% w/v 

PVPP, 1% IGEPAL® CA-630) at a ratio 4:1 v/w. Starting plant material varied from 

1-2 g for the identification of expressed protein to 30-40 g for the 

immunoprecipitation of large protein complexes and then mass spectrometry. 

Protein extracts were filtered through Miracloth (Millipore) and mixed with 15-

30μL of appropriate affinity resin: GFP-Trap®_A (Chromotek) beads or ANTI-FLAG 

M2 Affinity Gel (Sigma). Immunoprecipitation was performed at 4oC for 2 hours 

on a rotating wheel. Beads were then washed with Buffer D. All protein extraction 

buffers components are listed on Table 2.9. 
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Table 2.9 -  Protein extraction buffers component (Piquerez et al. 2014) 

 

 

2.2.8.2 On-beads trypsin digestion 

Trypsin digestion was performed to prepare immunoprecipitated proteins for 

mass spectrometry analysis. For the reduction of cysteine double bonds 45 μL of 

immunoprecipitated material was incubated for 15 minutes at 60°C in 10 mM 

DTT. Subsequentely 20 mM iodoacetamide (IAA) was added and incubated for 30 

min in the dark for the alkylation of the cysteine bridges. Protein digestion was 

obtained with 0.5 mg/mL Trypsin (Promega) and overnight incubation at 37°C. 

Finally, 0.1% (v/v) of formic acid was added to obtain a low pH. A clear solution of 

trypsin digest was achieved after filtration through a 0.22 μm Costar® Spin-X® 

centrifuge tube filter (Sigma- CLS8169) before transferring to a glass vial for mass 

BUFFER Component Final concentration 

BUFFER C Glycerol 5% [v/v] 

 Tris-HCl pH 7.5 150 mM 

 EDTA 5 mM 

 NaCl 150 mM 

 EGTA 2 mM 

 PVPP 2% [w/v] 

 DTT 10 mM 

 PMSF 0.5 mM 

 Protease inhibitors (Sigma 

P9599) 

1% [v/v] 

BUFFER D Buffer C without PVPP  

 Tris-HCl pH 6.8 60 mM 

5x SDS-PAGE loading buffer SDS 2% [w/v] 

 Glycerol 0.15% [v/v] 

 Bromophenol blue 0.10% [w/v] 

 DTT 50 mM 
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spectrometry analysis. Samples were kept at -20°C until analysed by Mass 

Spectrometry (MS). 

 

2.2.8.3 Identification of proteins by mass spectrometry 

Co-immunoprecipitated protein from GFP or FLAG beads, were digested with 

trypsin and prepared for MS. An aliquot containing 6 µL of extracted peptides 

from each sample was analyzed by means of nano LC-ESI-MS/MS using the 

Ultimate 3000/Orbitrap Fusion instrumentation (Thermo Scientific) using a 120 

minutes LC separation on a 25 cm column.  The data were used to interrogate the 

Arabidopsis thaliana database (supplied by The Sainsbury Laboratory, Norwich) 

and the common Repository of Adventitious Proteins 

(http://www.thegpm.org/cRAP/index.html) using un-interpreted MS/MS ions 

searches within the Mascot software. Scaffold software was used to analyze and 

visualize the results from Mascot searchs. Peptide identifications were accepted 

if they could be established at >95.0%. 

 

2.2.8.4 Western Blotting 

4X SDS loading buffer (Table 2.10) was added to the total protein extracts and 

then loaded with Color Prestained Protein Standard, Broad Range Protein Ladder 

(BioLabs). Samples were separated by polyacrylamide gel electrophoresis (PAGE) 

on 12% sodium dodecyl sulfate (SDS)-PAGE (Bio-Rad) gels. The run was performed 

at 100 V for 1.5 h in running buffer (Table 2.10) before electroblotting using 

transfer buffer (Table 2.10) onto polyvinylidene difluoride (PVDF) membrane 

(Hybond-P; GE Healthcare, Little Chalfont, England), at 30 V overnight at 4°C. 

Membranes were rinsed in TBS and blocked for 1.5 h shacking in 5%  [w/v] milk in 

TBS-Tween (0.1% [v/v]) and then probed with anti-GFP-HRP or anti-FLAG-HRP 

conjugated antibody (Miltenyl Biotec, Gladbach, Germany) for 3 h at room 

temperature. Blots were washed for 10 minutes with TBS-Tween (0.1% [v/v]) 

buffer for a total of 3 washes. Also 2 washes were carried out with just TBS. 
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Labelled-GFP or FLAG was detected using chemiluminescence with ECL Prime 

Western Blotting Detection Reagent (GE Healthcare) according to the 

manufacturer’s protocol and imaged on the ImageQuant LAS 4000 (GE 

Healthcare) or X-ray processor.  

Table 2.10 - Western blot buffers 

 

 

 

 

 

 

 

 

 

 

 

2.2.9 Botrytis cinerea screens 

2.2.9.1 Botrytis cinerea sub-culture 

Pepper Botrytis cinerea isolate spores were germinated and sub-cultured every 

10-14 days on sterile tinned apricot halves in a deep petri dishes at 25oC in the 

dark.   

2.2.9.2 Botrytis cinerea infection of detached leaves 

Botrytis cinerea spores were collected after 2 weeks in 3 ml sterile distillated 

water and filtered through glass wool to remove mycelium in the solution. 

Subsequently spores were counted using a haemocytometer and adjusted to 105 

spores/ml in 50%  [v/v] grape juice for infection of detached leaves. Plants were 

used at age 4 or 5 weeks, three leaves per plant were detached and place on 0.8% 

Buffer  Final concentration 

4X SDS loading buffer  50 mM Tris-HCl pH 6.8 

4 ml 100% [v/v] glycerol 

12.5 mM EDTA 

1% [v/v] mercaptoethanol 

0.02 % [w/v] bromophenol Blue 

2%  [w/v] SDS 

Running buffer   2.4 g Tris 

11.3 g Glycine 

Transfer buffer 2.4 g Tris 

11.3 g Glycine 

20 % [v/v] Methanol 
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(w/v) bacterial agar in three propagator trays (30 biological replicates per line).  A 

10 µl drop of the spore suspension was inoculated onto the center of each leaf. A 

control leaf from each line was mock inoculated with 50%  [v/v] grape juice. Trays 

were covered with lids and stored at 22oC, 90% humidity and 16 h of light. 

Photographs of the leaves were taken at 24, 48, 64 and 72 hours post-infection 

(hpi). ImageJ (Schneider et al. 2012) software was used to record lesion area on 

all of the leaves, using the scale measure.  

 

2.2.10  Hyaloperonospora arabidopsidis screens 

2.2.10.1 Hyaloperonospora arabidopsidis subculture 

Hyaloperonospora arabidopsidis isolates were stored by freezing infected 

seedlings at -80oC and revived by suspension in sterile distilled water, sprayed 

onto 10 day old Col-0 plants and grown in a sealed propagator at 18oC, with 10 

hours light at 60% humidity. After 7 days of growth, infected seedlings were 

harvested, suspended in sterile distilled water and vortexed. Spores were isolated 

from plant material by filtration through miracloth, counted using a 

haemocytometer and light microscope and adjusted to 30,000 spores/ml. Spores 

were then sprayed onto Arabidopsis Col-0 and grown in a sealed propagator at 

18oC, with 10 hours light at 60 % humidity.  

 

2.2.10.2 Hyaloperonospora arabidopsidis Infection and quantification 

P40 seed trays were used to grow plants at a density of around 30 seedlings per 

module. Modules around the edge of the tray were sown with Col-0 while plant 

lines to be screened were randomised within the inside modules. Plants were 

grown under short day conditions; 10 hours light, 20oC, 60% humidity. Spores 

were harvested as described in the subculture section and sprayed onto 14 day 

old Arabidopsis seedlings. Propagators were sealed and placed at 18oC, with 10 

hours light at 60% humidity. At 4 days post infection dissecting microscope was 

used to count the number of sporangiophores per seedling. 
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2.2.11  Pseudomonas syringae screens 

The screening was performed by Prof. Murray Grant group (University of 

Warwick). 

 

2.2.11.1 Pseudomonas syringae phenotyping.  

Arabidopsis mutants were infiltrated with P. syringae DC3000 suspensions diluted 

with sterile MgCl2 to a final OD600 of 0.05. Four leaves on each of four plants were 

inoculated per time point. The plants were then incubated in a growth chamber 

under 120 μmol m-2 s- light for 10 hours, at 21oC and 60% humidity. Images of 

plants were taken at 2, 3, 4 and 5 days post infection (dpi) and a scale of 0-5 was 

used to score the leaves. 

 

2.2.11.2 Pseudomonas syringae Bacterial growth. 

Three leaves per plant were infiltrated with P. syringae DC3000 using an OD600 of 

0.002. P. syringae suspensions were diluted with sterile MgCl2, generated by a 

serial dilution from OD600 0.2. Plants were incubated in a growth room under 120 

μmol m-2 s- light for 10 hours, at 21oC. Samples were harvested at 4 dpi, leaf disks 

were excised with a cork borer size 4 and placed in a 2 ml microfuge tubes 

containing 1000 µl of sterile MgCl2 and homogenized in a tissue lyzer for 2 x 30 

sec at 25 Hz. Serial 1:10 dilutions in MgCl2 were made and 10 µl spots were plated 

onto KB agar containing appropriate antibiotics. Plates were sealed and grown at 

28oC for 48 hours at which point colonies were counted.  

 

2.2.12  Gene expression methods 

2.2.12.1 RNA extraction 

Three glass beads were added to a pre-labelled 2 ml Eppendorf tube prior to 

sampling. Material was ground using a mixer mill for 30 seconds at 25 Hz. RNeasy 

Plant Mini Kit (Qiagen) and the manufacturer’s protocol was used for RNA 

extraction and on-column DNase digestion (RNase-Free DNase set, Qiagen), 
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followed by an RNA cleanup, again carried out according to the instructions 

(QIAgen RNeasy Mini Kit, Part 2). 1.5 µl of each sample was quantified with a 

Nanodrop ND-1000 spectrophotometer (Thermo scientific) and stored at -80oC. 

 

2.2.12.2 cDNA synthesis 

cDNA synthesis was performed using SuperScript II Reverse Transcriptase 

(Invitrogen). 1 µl of 50 mM oligo(dT) and 1 µl of 10mM dNTPs were added to each 

RNA sample, before incubation at 65oC for 5 minutes to anneal the oligos to the 

RNA. 4 µl of First Strand Buffer, 2 µl dithiothreitol (0.1M), 1 µl RNase OUT 

(Invitrogen) and 1 µl SuperScript II Reverse Transcriptase (Invitrogen) was added 

to each sample and then incubated at 42oC for 50 minutes, followed by 70oC for 

15 minutes to inactivate the enzyme. cDNA samples were stored at -20oC.  
 

2.2.12.3 qPCR 

Specific primers for target genes were designed for qPCR analysis to amplify 50-

150 bp of the coding sequence (Table 2.11). cDNA samples were diluted 1:10 

before the analysis (initial concentration of 50 ng/l). 5 ng of cDNA was mixed with 

5 µl of SsoAdvanced SYBR Green Supermix (Bio-Rad) and specific primers for the 

target gene (200 nM), to a total volume of 10 µl. Three technical and three 

biological replicates were performed for each reaction. Specifically, the analysis 

was performed on pooled multiple plants from a single tray, which represent a 

single biological replicate. Three trays for each reaction were used. qPCR reaction 

cycles were performed on a QuantStudio Real-Time PCR (ThermoFisher) in 96-

well plates. A 2-step PCR reaction was used, with a pre-cycle 95oC for 3 minutes, 

followed by 45 cycles of 95oC for 10 seconds, 55oC for 30 seconds. Fluorescence 

of each well was recorded after each cycle. A post-reaction melt-curve was 

performed by heating the sample to 95oC for 10 seconds, then performing a 

temperature gradient increase of 65oC to 95oC at 5 second increments. 

Fluorescence was measured after each temperature increase. A single melt-curve 

peak was confirmed visually. 
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Table 2.11 – Primers used for qPCR  

 
 
 

2.2.12.4 RNAseq: library preparation and sequencing 

Previous to library preparation, mRNA quality was evaluated using a Nanodrop 

ND-1000 spectrophotometer (Thermo scientic) and an Agilent 2100 Bioanalyzer 

using the Agilent RNA 6000 Pico Kit. mRNA with 260/280 and 260/230 ratios of 

<1.8 and a clean bioanalyzer trace were sent for sequencing. 

The library preparation for RNAseq was performed by the Genomics Facility at 

the University of York and sequencing was carried out at the Genomics centre at 

the University of Oxford. Libraries were made using the NEBNext Ultra II 

Directional RNA Library Prep Kit for Illumina after Poly (A) purification using the 

NEBNext Poly(A) mRNA Magnetic Isolation Module. Samples were pooled at an 

equimolar ratio.    
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Chapter 3  

3. Role of NF-Y subunits in the plant defense 

response. 

3.1 Introduction  
In this chapter, a reverse genetic approach was used to investigate the function 

of specific NF-Y subunits. This method, extensively used in functional analysis, 

recognizes a gene of interest and then examines mutants in this gene to infer 

function (i.e. genotype to phenotype) (Page and Grossniklaus 2002). In these 

mutants, the target gene can be knocked out (KO) or over expressed (OE). In 

Arabidopsis, KO mutants are largely used to investigate a specific gene function 

and this approach consists of the insertion of a T-DNA fragment into the gene of 

interest which may disrupt  gene expression. However, despite the fact that some 

Arabidopsis knockout mutants have shown an altered phenotype compared to 

wild type (Eshed et al. 2001, Simillion et al. 2002), in some cases KO mutants do 

not demonstrate any phenotypical alterations (Bouche and Bouchez 2001). 

Several reasons can explain the scarcity of phenotypes, in particular our inability 

to detect small alterations in plants, and gene functional redundancy, which is 

particularly important in transcription factors (TFs), as these are often members 

of large gene families with closely related genes (Riechmann et al. 2000). Also, it 

is important to consider that often organisms with the same genotype do not 

display similar phenotypes when grown in comparable conditions in different 

laboratories (Massonnet et al. 2010). 

Another way to study the function of a TF in plants is to overexpress it using the 

35S Cauliflower mosaic virus (CaMV) promoter, which increases the gene 

expression levels (Odell et al. 1985). However, this approach needs to be carefully 

considered, because the phenotype could be a consequence of the mis- 

expression of the TF in the plant. The change of the TF expression levels could 
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alter the actual function of the TF protein may be causing non-canonical protein-

protein interactions (PPIs) (Moriya 2015). Moreover, in TF families that form 

functional complexes such as NF-Ys, overexpression of one subunit could 

destabilize the balance between subunits and disrupt the assembly of the 

complex (Viola and Gonzalez 2016). However, overexpression is a very useful tool 

to clarify the role of a TF in plant in combination with other supporting data such 

as gene expression analysis and phenotype of KO mutants, representing a 

complementary approach (Zhang J. Z. 2003). Indeed, despite these limitations, 

the reverse genetics is a powerful and widely used method to investigate gene 

function. The identification of altered phenotypes in the mutant in comparison to 

wild type, can provide valuable understanding into the role of that gene in planta. 

 

3.2 Chapter aims 
Based on the hypothesized putative trimer (NF-YA2/NF-YB2/NF-YC2), the aims of 

this chapter are to use a reverse genetic approach in which mutants with 

enhanced expression or lacking expression of NF-YA2, NF-YB2 and NF-YC2 will be 

subjected to different biotic stress screens (Botrytis cinerea, Hyaloperonospora 

arabidopsidis and Pseudomonas syringae) in order to elucidate the role of NF-Y 

subunits of interest during the plant defense response. 
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3.3 Results 

3.3.1 NF-Ys knockout and overexpressor mutant resources. 

To elucidate the biological function of NF-YA2, NF-YB2 and NF-YC2 through a 

reverse genetics approach, two types of mutants were obtained or generated for 

each gene.  

Firstly, the NF-YA2, NF-YB2 and NF-YC2 open reading frame (ORF) was placed 

downstream of the 35S CaMV promoter, to drive constitutive overexpression of 

these genes using Gateway destination vectors (Nakamura et al. 2010). These OE 

vectors once cloned into E. coli have been sequenced to check the presence of 

the insert, transferred into Agrobacterium and then transformed into KO plants 

(for complementation) or wild type plants, using the floral dipping method 

(Clough and Bent 1998). All these vectors contain a Basta (a glufosinate herbicide) 

resistance gene for transgenic plant selection. Two independent homozygous 

lines for each construct have been selected and used for this study. Table 3.1 

illustrates the list of Arabidopsis lines generated. A green fluorescent protein 

(GFP) or flagellin (FLAG) tag was also present in the vector for subsequent protein 

analysis.  

Secondly, available loss-of-function mutants were obtained from NASC or 

supplied by Prof. Ben F. Holt, III (University of Oklahoma, Oklahoma). Mutants of 

NF-YA2 and NF-YC2 genes containing a T-DNA insertion in the coding region were 

identified from the SALK T-DNA insertion collection (respectively SALK_146170  

and SALK_026351) and genotyped to check the homozygosity. Also, the 

expression level of NF-YA2 and NF-YC2 was checked in nf-ya2 and nf-yc2 KO 

mutants in leaf material from pooled multiple plants using quantitative reverse-

transcription PCR (qRT-PCR) and normalized to the housekeeping genes alpha-

Tubulin (Tuba) and Ubiquitin (UBQ5) (Figure 3.3). nf-yb2 (SALK_025666), nf-

yb3 (SALK_150879) and the double mutant nf-yb2/nf-yb3 provided by Prof. Ben 

F. Holt were previously described (Cao et al. 2011, Kumimoto et al. 2013), and the 

genotype was verified by PCR. Three plants for each of KO lines were genotyped 

and 100% of them showed to be homozygous (Figure 3.4).  
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Figure 3.1 shows a schematic representation of all gene constructs generated in 

this study. Additionally, Figure 3.2 shows NF-YA2, NF-YB2, NF-YB3 and NF-YC2 

gene structure and T-DNA locations. 

In this chapter nf-yb3 and the double mutant nf-yb2/nf-yb3 were also analyzed to 

test the overlapping functionality between NF-YB2 and NF-YB3 hypothesized by 

Kumimoto et al. (2013).  

 

Table 3.1 - List of Arabidopsis lines generated in this study. Table shows construct, tag and 
background plant for each line. Two independent homozygous lines for each construct have been 
selected. 
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Figure 3.1 – Schematic representation of all gene constructs generated. Red arrows indicate 
position of primer pair used for q-PCR, while blu arrows indicate primers used for genotyping.  
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Figure 3.2 – NF-YA2, NF-YB2, NF-YB3 and NF-YC2 gene structure and T-DNA locations. Schematic 
of the annotated (TAIR10) gene model for NF-YA2, NF-YB2, NF-YB3 and NF-YC2 showing the 
relative size and positions of the 5’ UTR, exons, introns and 3’ UTR, together with the reported 
locations of the T-DNA insertions for the NF-YA2, NF-YB2, NF-B3 and NF-YC2 loss-of-function 
mutants. Green and red arrows indicate positions of primer pairs used for q-PCR. Ruler indicates 
the chromosome location of each gene. 
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Figure 3.3 – q-PCR expression analysis confirmed that Arabidopsis NF-YA2 (SALK_146170) and 
NF-YC2 (SALK_026351) are knockout mutants. Relative expression of NF-YA2 and NF-YC2 genes 
in nf-ya2 and nf-yc2 KO mutants compared to the wild type Col-0 was determined by quantitative 
RT-PCR. Gene transcript levels were calculated using the comparative 2-∆∆C(T) method (Livak and 
Schmittgen 2001) and normalized to the expression of the two housekeeping genes alpha-Tubulin 
and (Tuba) and Ubiquitin (UBQ5). Data are presented as the relative expression from 3 technical 
and 3 biological replicates. The analysis was performed on pooled multiple plants leaf material. 

 

 
Figure 3.4 – Representative PCR gel for genotyping of nf-yb2 KO line. Three plants for each of KO 
line were genotyped. All of them showed to be homozygous. Only Col-0 showed a band in the 
RP+LP primers combination (indicated by arrow). The single band in LP+LB primers combination 
confirm the homozygosis of KO plants (LP=left primer; RP=right primer; LB=Left border primer 
Salk: Lbb1.3). 
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3.3.2 Morphology appearance of NF-YA2, NF-YB2 and NF-YC2 OE 

and KO lines 

Plants were grown to check for large-scale morphological differences between 

lines. Arabidopsis thaliana NF-Y KO and OE lines were grown in long day 

conditions (16 h day length) for five weeks as reported in Windram et al. (2012). 

Col-0 was used as control. nf-ya2, nf-yb2, nf-yc2 and the double mutant nf-yb2/nf-

yb3 lines were indistinguishable morphologically from the wild type Col-0 plants, 

while nf-yb3 showed a slightly bigger size (Figure 3.5). The phenotype of nf-yb2 

seen here is consistent with a previous report where it was observed that nf-yb2 

KO mutants are not significantly different from wild type (Ballif et al. 2011). 

 
Figure 3.5 – Representative images showing morphology of the nf-ya2, nf-yb2, nf-yb3, nfyb2/nf-
yb3 and nf-yc2, compared to the wild type Col-0, rosettes at 5 weeks after sowing. Plants were 
grown in soil under long day (LD) conditions (16 hours of light) at 20oC, 70% relative humidity and 
100 µmol2.s-1 light 
 
 

The phenotype of Arabidopsis plants overexpressing NF-YA2, NF-YB2 and NF-YC2 

was also investigated. Col-0 or the relative KO mutant was used as background 

plant. The morphology of NF-YA2 OE lines (Col-0::35S:FLAG-NF-YA2_1, Col-

0::35S:FLAG-NF-YA2_2, Col-0::35S:GFP-NF-YA2_1, Col-0::35S:GFP-NF-YA2_2) in 

Col-0 background, were analyzed and all of them showed to be phenotypically 

similar to Col-0 (Figure 3.6). On the other hand nf-ya2::35S:FLAG-NF-YA2_1, nf-

ya2::35S:FLAG-NF-A2_2, with nf-ya2 as genetic background plant, appeared to be 

smaller, with zig-zagged leaves in both lines. Unexpectedly, the NF-YA2 OE lines 

generated in this study did not show severe dwarfism as found in Siriwardana et 

al. (2014). For this reason, the expression of NF-YA2 in the OE lines was checked 

using quantitative reverse-transcription PCR (qRT-PCR) and normalized to the 
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housekeeping genes alpha-Tubulin and (Tuba) and Ubiquitin (UBQ5) (Figure 3.7). 

Higher NF-YA2 expression, relatively to the background plant, was found in both 

lines, confirming the over expression of NF-YA2 gene. Specifically, the NF-YA2 OE 

transgenic plants in the nf-ya2 background (nf-ya2::35S:FLAG-NF-YA2) showed a 

very high expression level compared to Col-0, while the NF-YA2 OE mutant in the 

Col-0 background (Col-0::35S:FLAG-NF-YA2) showed a moderate increase in 

expression compared to the wild type plant.  

Lines where nf-ya2 KO plants were complemented with the pNF-YA2:NF-YA2-GFP 

construct showed the same morphology as the background plant (Figure 3.6). In 

these lines the expression level of NF-YA2 was checked and it appeared to be very 

low compared to Col-0 plants (Figure 3.8). This result confirmed that full 

complementation of nf-ya2 KO plants with pNF-YA2:NF-YA2-GFP construct did 

not occur. 
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Figure 3.6 - Morphological appearance of 5 weeks old NF-YA2 lines generated, compared to the 
background plants. Plants were grown in soil under LD conditions (16 hours of light) at 20oC, 70% 
relative humidity and 100 µmol2.s-1 light. Independent lines were analyzed. The first row shows 
the morphology of NF-YA2 OE lines: Col-0::35S:FLAG-NF-YA2_1, Col-0::35S:FLAG-NF-YA2_2, Col-
0::35S:GFP-NF-YA2_1, Col-0::35S:GFP-NF-YA2_2 with Col-0 as background plant. The second row 
indicates all NF-YA2 lines generated with nf-ya2 as background plant: the NF-YA2 OE lines (nf-
ya2::35S:FLAG-NF-YA2_1, nf-ya2::35S:FLAG-NF-A2_2), with smaller and zig-zagged leaves, and the 
complementary lines (nf-ya2::pNF-YA2:NF-YA2-GFP_1, nf-ya2::pNF-YA2:NF-YA2-GFP_2) with a 
similar phenotype as nf-ya2.  
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Figure 3.7 – q-PCR expression analysis of Arabidopsis nf-ya2::35S:FLAG-NF-YA2 and Col-
0::35S:FLAG-NF-YA2 lines showed overexpression of NF-YA2 gene. Relative expression of NF-YA2 
in NF-YA2 OE mutants compared to the wild type Col-0 and nf-ya2 KO mutant was determined by 
quantitative RT-PCR. Gene transcript levels were calculated using the comparative 2-∆∆C(T) 
method (Livak and Schmittgen 2001) and normalized to the expression of the two housekeeping 
genes alpha-Tubulin and (Tuba) and Ubiquitin (UBQ5). Data are presented as relative expression 
from 3 technical and 3 biological replicates. The analysis was performed on pooled multiple plants 
leaf material. 
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Figure 3.8 – q-PCR expression analysis of Arabidopsis nf-ya2::pNF-YA2:NF-YA2-GFP lines did not 
show the same expression level of NF-YA2 gene compared to Col-0. Relative expression of NF-
YA2 in nf-ya2::pNF-YA2:NF-YA2-GFP mutants compared to the wild type Col-0 and nf-ya2 KO 
mutant was determined by quantitative RT-PCR. Gene transcript levels were calculated using the 
comparative 2-∆∆C(T) method (Livak and Schmittgen 2001) and normalized to the expression of 
the two housekeeping genes alpha-Tubulin and (Tuba) and Ubiquitin (UBQ5). Data are presented 
as relative expression from 3 technical and 3 biological replicates. The analysis was performed on 
pooled multiple plants leaf material. 

 
 
The phenotypes of Arabidopsis NF-YB2 OE lines (nf-yb2::35S:GFP-NF-YB2_1, nf-

yb2::35S:GFP-NF-B2_2 and nf-yb2::35S:FLAG-NF-YB2_1, nf-yb2::35S:FLAG-NF-

B2_2) with nf-yb2 as background plant, were also examined. Compared to nf-yb2 

plants, which are not significantly different from wild type (Swain et al. 2017), 

these lines showed slightly bigger leaves (Figure 3.9). This phenotype is in 

agreement with previous study showing that overexpression of NF-YB2 enhanced 

cell elongation in the root elongation zone (Ballif et al. 2011), suggesting that NF-

YB2 could be involved in cell elongation and cell division process in different plant 

tissues. 
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Figure 3.9 - Morphological appearance of 5 weeks old NF-YB2 OE lines generated, compared to 
nf-yb2 background plant. Plants were grown in soil under LD conditions (16 hours of light) at 20oC, 
70% relative humidity and 100 µmol2.s-1 light. Independent lines were analyzed. Morphology of 
NF-YB2 OE lines was checked on nf-yb2::35S:GFP-NF-YB2_1, nf-yb2::35S:GFP-NF-B2_2 lines and 
nf-yb2::35S:FLAG-NF-YB2_1, nf-yb2::35S:FLAG-NF-B2_2 lines, all with nf-yb2 as background plant. 
 
Also, NF-YC2 OE lines revealed the same morphology as Col-0 plants (Figure 3.10). 

This data is consistent with what was observed in Hackenberg et al. (2012) where 

NF-YC2 overexpressors did not show phenotypical differences compared to wild 

type plants during plant development. 

 
Figure 3.10 - Morphological appearance of 5 weeks old NF-YC2 OE lines generated, compared to 
Col-0. Plants were grown in soil under LD conditions (16 hours of light) at 20oC, 70% relative 
humidity and 100 µmol2.s-1 light. Independent lines were analyzed. Morphology of NF-YC2 OE lines 
was checked on Col-0::35S:NF-YC2-GFP_1, Col-0::35S:NF-YC2-GFP_3 lines and Col-0::35S:GFP-NF-
YC2_1, Col-0::35S:GFP-NF-YC2_2 lines, all with Col-0 as background plant. 
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In order to determine whether NF-YA2, NF-YB2 and NF-YC2 are important TF in 

the plant defense response, these OE and KO mutants were tested to observe 

whether pathogen susceptibility is compromised compared to wild type. 

 

3.3.3 Botrytis cinerea susceptibility of Arabidopsis NF-Y KO and 

OE lines.  

Botrytis cinerea is a necrotrophic pathogen which penetrates plant epidermis and 

kills plant tissue to grow.  

B. cinerea infection on Arabidopsis detached leaves (Windram et al. 2012) was 

performed on five weeks old Arabidopsis KO and OE mutants grown in LD 

condition as described in Windram et al. (2012). Leaves were drop inoculated with 

a suspension of B. cinerea spores and the developing lesion area was measured 

at 48, 64 and 72 hours post-inoculation. Col-0 wild type and botrytis susceptible 1 

(bos1), a T-DNA insert of MYB108 showing a hypersensitive Botrytis and 

wounding response (Cui et al. 2013, Mengiste et al. 2003), were used as controls. 

The B. cinerea assay showed that the nf-ya2 KO mutant was significantly more 

susceptible to B. cinerea than Col-0 at all three time points post-inoculation 

(Figure 3.11). This result can also be observed visually, in fact nf-ya2 showed 

significantly larger infection area than Col-0 (Figure 3.11b). Conversely, both NF-

YA2 OE lines with nf-ya2 as the genetic background (nf-ya2::35S:FLAG-NF-YA2_1 

and nf-ya2::35S:FLAG-NF-YA2_2), showed a more resistant phenotype compared 

to Col-0 and the nf-ya2 mutant, however only nf-ya2::35S:FLAG-NF-YA2_2 line 

was significantly more resistant. This suggests that the insertion of the 35S:NF-

YA2 construct into Arabidopsis nf-ya2 KO mutant, increased the expression level 

of NF-YA2 gene, giving a similar phenotype to Col-0. Because Col-0::35S:FLAG-NF-

YA2_1 and Col-0::35S:FLAG-NF-YA2_2, which have Col-0 as background plant, 

showed the same phenotype as the nf-ya2 KO mutant, gene expression level of 

NF-YA2 in both lines was checked. This analysis showed a lower expression in Col-

0::35S:FLAG-NF-YA2 lines than nf-ya2::35S:FLAG-NF-YA2 lines (Figure 3.7) and 
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this could affect plant susceptibility against B. cinerea and explaining the different 

phenotype between the two OE lines.  

The increased susceptibility of nf-ya2 KO mutant to Botrytis infection give a first 

hint about the tight regulation of this gene during the defense response. This 

result, together with the altered expression of JA biosynthetic in nf-ya2 KO line, 

caused by its inability to synthesize JA under inductive conditions in the absence 

of functional NF-YA2 (Breeze Emily 2014), suggest an important role of NF-YA2 in 

the plant defense response.  
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a) 
 

 
b) 
 
Figure 3.11 - Susceptibility of NF-YA2 KO and NF-YA2-FLAG OE mutants to Botrytis cinerea 
infection. Detached leaves from five weeks old Arabidopsis plants nf-ya2, nf-ya2::35S:FLAG-NF-
YA2_1, nf-ya2::35S:FLAG-NF-YA2_2, Col-0::35S:FLAG-NF-YA2_1, Col-0::35S:FLAG-NF-YA2_2, Col-0 
and bos1 were drop inoculated with B. cinerea spores and lesion areas measures at 48, 64 and 72 
hours post-inoculation (hpi). a) Mean lesion area, the values presented are the mean of 30 
biological replicates (10 plants each line were analyzed) ± SE. Significantly different lesion sizes to 
Col-0 (indicated by *) at each timepoint were determined using a two-tailed Student’s T- test 
assuming equal variance (p<0.05). Experiment was performed twice. b) Representative leaf 
images at 72 hours post infection are shown. Col-0 and bos1 were used as controls. 
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Col-0::35S:GFP-NF-YA2_1 and Col-0::35S:GFP-NF-YA2_2 lines were also tested 

against B. cinerea infection, these lines showed the same susceptibility as Col-0 

plants (Figure 3.12). Subsequently, quantitative PCR on leaf material from pooled 

multiple plants of Col-0::35S:GFP-NF-YA2 lines revealed that the expression level 

of NF-YA2 gene is not significantly different to Col-0 (Figure 3.13) in physiological 

condition, explaining the reason of the same phenotype between Col-0 and NF-

YA2 OE mutants (Figure 3.12) . 

 
a) 

 
b) 
 
Figure 3.12 - Susceptibility of NF-YA2-GFP OE mutants to Botrytis cinerea infection. Detached 
leaves from five weeks old Arabidopsis plants Col-0::35S:GFP-NF-YA2_1, Col-0::35S:GFP-NF-
YA2_2, Col-0 and bos1 were drop inoculated with B. cinerea spores and lesion areas measures at 
48, 64 and 72 hours post-inoculation (hpi). a) Mean lesion area, the values presented are the mean 
of 30 biological replicates (10 plants each line were analyzed) ± SE. Experiment was performed 
twice. b) Representative leaf images at 72 hours post infection are shown. Col-0 and bos1 were 
used as controls. 
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Figure 3.13 – q-PCR expression analysis of Arabidopsis Col-0::35S:GFP-NF-YA2 OE lines revealed 
that the expression level of NF-YA2 gene is not significantly different to Col-0. Relative 
expression of NF-YA2 in NF-YA2 OE mutants compared to the wild type Col-0 and nf-ya2 KO 
mutant was determined by quantitative RT-PCR. Gene transcript levels were calculated using the 
comparative 2-∆∆C(T) method (Livak and Schmittgen 2001) and normalized to the expression of 
the two housekeeping genes alpha-Tubulin and (Tuba) and Ubiquitin (UBQ5). Data are presented 
as relative expression from 3 technical and 3 biological replicates. The analysis was performed on 
pooled multiple plants leaf material. 
 
Moreover, the susceptibility of nf-ya2::pNF-YA2:NF-YA2-GFP_1 and nf-ya2::pNF-

YA2:NF-YA2-GFP_2 lines was tested against B. cinerea, revealing a similar 

phenotype to nf-ya2 KO mutant (Figure 3.14). This result was confirmed by qPCR 

which showed that the level of NF-YA2 on leaf material from pooled multiple 

plants of nf-ya2::pNF-YA2:NF-YA2-GFP was very low (Figure 3.8). This suggests 

that the complementation of nf-ya2 KO mutant with pNF-YA2::NF-YA2-GFP insert, 

did not restore the NF-YA2 expression level (Figure 3.8).      
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a) 

 

 
b) 
Figure 3.14 - Susceptibility of nf-ya2::pNF-YA2:NF-YA2-GFP lines to Botrytis cinerea infection. 
Detached leaves from five weeks old Arabidopsis plants nf-ya2::pNF-YA2:NF-YA2-GFP_1, nf-
ya2::pNF-YA2:NF-YA2-GFP_2, Col-0 and bos1 were drop inoculated with B. cinerea spores and 
lesion areas measures at 48, 64 and 72 hours post-inoculation (hpi). a) Mean lesion area, the 
values presented are the mean of 30 biological replicates (10 plants each line were analyzed) ± 
SE. Significantly different lesion sizes to Col-0 (indicated by *) at each timepoint were determined 
using a two-tailed Student’s T-test assuming equal variance (p<0.05). Experiment was performed 
twice. b) Representative leaf images at 72 hours post infection are shown. Col-0 and bos1 were 
used as controls. 
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The B. cinerea assay was also performed on nf-yb2 KO mutant, this line showed 

the same level of susceptibility as Col-0 during the infection at all time points 

(Figure 3.15). Meanwhile, the nf-yb3 KO mutant showed slightly enhanced (but 

not significantly so) resistance to Botrytis at all three time points post inoculation. 

Interestingly the nf-yb2/nf-yb3 double mutant was significantly more resistant to 

B. cinerea infection than Col-0 and nf-yb2. This result indicates an overlapping 

functionality between NF-YB2 and NF-YB3 since to get altered resistance both NF-

YB2 and NF-YB3 genes need to be knocked out. In support of this result, it has 

been previously reported that NF-YB2 have an high protein sequence homology 

with NF-YB3 (Siefers et al. 2009). 

Additionally, all NF-YB2 OE lines, which have nf-yb2 as the genetic background, 

were more resistant than Col-0 and nf-yb2 during B. cinerea infection at all time 

points. This result is visible in Figure 3.16, indeed the lesion size is considerably 

smaller than Col-0 and nf-yb2, and only nf-yb2::35S:FLAG-NF-YB2_1 showed no 

significant difference. The expression of NF-YB2 in nf-yb2::35S:FLAG-NF-YB2 and 

nf-yb2::35S:GFP-NF-YB2 lines was checked using western blot analysis (Figure 

3.17). 
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a) 
 

 
b) 
Figure 3.15 - Susceptibility of nf-yb2, nf-yb3 and nf-yb2/nf-yb3 KO mutants to Botrytis cinerea 
infection. Detached leaves from five weeks old Arabidopsis plants nf-yb2, nf-yb3 and nf-yb2/nf-
yb3, Col-0 and bos1 were drop inoculated with B. cinerea spores and lesion areas measures at 48, 
64 and 72 hours post-inoculation (hpi). a) Mean lesion area, the values presented are the mean 
of 30 biological replicates (10 plants each line were analyzed) ± SE. Significantly different lesion 
sizes (indicated by *) at each timepoint were determined using a two-tailed Student’s T-test 
assuming equal variance (p<0.05). Experiment was performed twice. b) Representative leaf 
images at 72 hours post infection are shown. Col-0 and bos1 were used as controls. 
 



 104 

 
a) 

 
b) 
Figure 3.16 - Susceptibility of NF-YB2 OE  mutants to Botrytis cinerea infection. Detached leaves 
from five weeks old Arabidopsis plants nf-yb2::35S:GFP-NF-YB2_1, nf-yb2::35S:GFP-NF-YB2_2, nf-
yb2::35S:FLAG-NF-YB2_1, nf-yb2::35S:FLAG-NF-YB2_2, nf-yb2, Col-0 and bos1 were drop 
inoculated with B. cinerea spores and lesion areas measures at 48, 64 and 72 hours post-
inoculation (hpi). a) Mean lesion area, the values presented are the mean of 30 biological 
replicates (10 plants each line were analyzed) ± SE. Significantly different lesion sizes (*) at each 
timepoint were determined using a two-tailed Student’s T-test assuming equal variance (p<0.05). 
Experiment was performed twice. b) Representative leaf images at 72 hours post infection are 
shown. Col-0 and bos1 were used as controls. 
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Figure 3.17 - Western blot analysis to check NF-YB2 OE lines. a) Total protein from nf-
yb2::35S:GFP-NF-YB2_1 and nf-yb2::35S:GFP-NF-YB2_2 lines was extracted. Proteins were 
separated by SDS-PAGE and GFP-HRP antibody was used for immunoblotting. p35S:HA:GFP was 
used as positive control. GFP band (27 kDa) is visible in all samples. p35S:HA:GFP lines show a 
smaller band representing a cleaved product. The red square indicates the band corresponding to 
GFP-NF-YB2 protein (47 kDa). b) Total protein from nf-yb2::35S:FLAG-NF-YB2_1 and nf-
yb2::35S:FLAG-NF-YB2_2 lines was extracted. Proteins were separated by SDS-PAGE and FLAG-
HRP antibody was used for immunoblotting. Col-0 and p35S:HA:GFP were used as negative 
controls. The red square indicates the band corresponding to FLAG-NF-YB2 protein (20 kDa). Other 
bands in the gel are unspecific bands. Blots are representative of three experiments. 
 
Based on the putative trimer (NF-YA2/NF-YB2/NF-YC2), NF-YC2 KO and OE 

mutants were also tested during B. cinerea infection, to check altered 

susceptibility. The OE lines, Col-0::35S:NF-YC2-GFP_1 and Col-0::35S:NF-YC2-

GFP_3, were slightly more resistant than Col-0 to Botrytis at all three time points 

post inoculation (Figure 3.18). However, only Col-0::35S:NF-YC2-GFP_3 showed 

to be significantly different. On the other hand, nf-yc2 KO mutant revealed to be 

considerably more susceptible than Col-0. The protein expression of these OE 

lines was checked by Emily Breeze (Breeze Emily 2014) and in following analysis 

performed in this study (Chapter 5). This similar phenotype between Col-

0::35S:NF-YC2-GFP_1 and Col-0 suggests that the expression level of NF-YC2 did 

not increased considerably in this line to show a significantly altered 
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susceptibility. However, the enhanced susceptibility of nf-yc2 could suggest an 

important role of NF-YC2 during the infection. 

 

 
 

a) 

 
b) 
Figure 3.18 - Susceptibility of NF-YC2 OE and KO mutants to Botrytis cinerea infection. Detached 
leaves from five weeks old Arabidopsis plants Col-0::35S:NF-YC2-GFP_1, Col-0::35S:NF-YC2-
GFP_3, nf-yc2, Col-0 and bos1 were drop inoculated with B. cinerea spores and lesion areas 
measures at 48, 64 and 72 hours post-inoculation (hpi). a) Mean lesion area, the values presented 
are the mean of 30 biological replicates (10 plants each line were analyzed) ± SE. Significantly 
different lesion sizes (indicated by *) at each timepoint were determined using a two-tailed 
Student’s T-test assuming equal variance (p<0.05). Experiment was performed twice. b) 
Representative leaf images at 72 hours post infection are shown. Col-0 and bos1 were used as 
controls. 
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3.3.4 Hyaloperonospora arabidopsidis (Hpa) susceptibility of 

Arabidopsis NF-Y KO and OE lines. 

According to their lifestyles plant pathogens are often divided into biotrophs, 

which derive energy from living cells and necrotrophs, which derive energy from 

killed cells. Because biotrophic pathogens do not kill host plants while 

necrotrophic pathogens kill plant tissue rapidly, the defense response mechanism 

against these pathogens is very different. Indeed, in biotrophic pathogens it is 

largely due to programmed cell death in the plant, associated with the activation 

of defense responses regulated by the salicylic acid-dependent pathway. 

Meanwhile since necrotrophic pathogens benefit from death of host cells, they 

are not limited by this defense mechanism, but by responses activated by 

jasmonate acid and ethylene signaling pathways (Glazebrook 2005).  

To elucidate the role of NF-Y subunits in the plant defense response against a 

biotrophic pathogen, susceptibility to Hyaloperonospora arabidopsidis (Hpa) was 

also tested in Arabidopsis plants constitutively overexpressing NF-Y genes or with 

NF-Y subunits knocked out. This oomycete is a model pathogen (Coates and 

Beynon 2010) which requires host tissue to be living in order to obtain nutrients. 

Specifically, Hpa spores of isolate Noks1 were sprayed on two weeks old 

Arabidopsis seedlings. Col-0 was used as control, in order to see whether basal 

defense responses were compromised and 35S::HaRxL14 was used as a positive 

control for enhanced susceptibility. The line 35S::HaRxL14 is A. thaliana ecotype 

Col-0 transformed with 35S::HaRxL14, which has consistently shown enhanced 

susceptibility and is therefore used as a positive control (Fabro et al. 2011). 

Sporangiophores were counted 4 days post infection using a dissecting 

microscope.  

The Hpa assay on Arabidopsis NF-Y KO lines showed that nf-ya2, nf-yb2, nf-yb3 

and nf-yc2 KO mutants were not significantly more reistant to Hpa than Col-0 

(Figure 3.19). However, the nf-yb2/nf-yb3 double mutant was significantly more 

susceptible to Hpa than wild type plants. This result is comparable with what was 
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observed during B. cinerea assay, and it reinforces the hypothesis of overlapping 

function between NF-YB2 and NF-YB3, since these subunits are very similar, 

sharing 94% amino acid identity in their conserved domains (Siefers et al. 2009). 

The high susceptibility of the positive control 35S::HaRxL14 compared to the wild 

type (Col-0) confirmed the reliability of this experiment.  

 

 
 
Figure 3.19 – NF-Y KO mutants do not show altered susceptibility to Hpa. Hyaloperonospora 
Arabidopsidis spores of isolate Noks1 were sprayed on two weeks old Arabidopsis NF-Y KO 
seedlings (nf-ya2, nf-yb2, nf-yb3, nf-yc2 and nf-yb2/nf-yb3). Col-0 and 35S::HaRxL14 were used as 
control. Sporangiophores were counted 4 days post infection using a dissecting microscope. The 
values presented are the mean of sporangiophore per seedlings (45 biological replicates) 
normalized to Col-0. Error bars show standard error and significant differences to Col-0 using a T-
test are indicated with * (p<0.05). The experiment was performed twice. 
 
 
The Hpa assay on Arabidopsis nf-ya2::35S:FLAG-NF-YA2_1 (nf-ya2 background 

plant) and Col-0::35S:FLAG-NF-YA2_1 (Col-0 background plant) lines where NF-

YA2 is constitutively over expressed, did not show any significant difference in 

susceptibility to Hpa compared to wild type plants (Figure 3.20). This result, 

together with no difference observed in nf-ya2, could indicate that NF-YA2 gene 

is not involved in the defense response against biotrophic pathogens such as Hpa. 
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Figure 3.20 – NF-YA2 KO and OE mutants do not show altered susceptibility to Hpa. 
Hyaloperonospora Arabidopsidis spores of isolate Noks1 were sprayed on two weeks old 
Arabidopsis nf-ya2::35S:FLAG-NF-YA2_1 and Col-0::35S:FLAG-NF-YA2_1. nf-ya2, Col-0 and 
35S::HaRxL14 were used as control. Sporangiophores were counted 4 days post infection using a 
dissecting microscope. The values presented are the mean of sporangiophore per seedlings (45 
biological replicates) normalized to Col-0. Error bars show standard error and significant 
differences to Col-0 using a T-test are indicate with * (p<0.05). The experiment was performed 
twice. 
 
 
Arabidopsis nf-yb2::35S:GFP-NF-YB2_1 and nf-yb2::35S:FLAG-NF-YB2_1 (nf-yb2 

background plant) lines overexpressing NF-YB2 gene, showed an enhanced 

resistance to Hpa infection compared to wild type plants, however only the nf-

yb2::35S:GFP-NF-YB2_1 line was significantly different than Col-0 (Figure 3.21). 

This result, even if no difference was observed in nf-yb2, probably due to 

overlapping functionality between NF-YB subunits, could indicate that NF-YB2 is 

involved in the defense response against the biotrophic pathogen Hpa. 
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Figure 3.21 – NF-YB2 KO mutant does not show altered susceptibility to Hpa, while nf-
yb2::35S:GFP-NF-YB2_1 mutant apperead to be more resistant. Hyaloperonospora Arabidopsidis 
spores of isolate Noks1 were sprayed on two weeks old Arabidopsis nf-yb2::35S:GFP-NF-YB2_1 
and nf-yb2::35S:FLAG-NF-YB2_1. nf-yb2, Col-0 and 35S::HaRxL14 were used as control.  
Sporangiophores were counted 4 days post infection using a dissecting microscope. The values 
presented are the mean of sporangiophore per seedlings (45 biological replicates) normalized to 
Col-0. Error bars show standard error and significant differences to Col-0 using a T-test are indicate 
with * (p<0.05). The experiment was performed twice. 
 
 
Also, no significant difference was observed on Arabidopsis Col-0::35S:NF-YC2-

GFP_1 and Col-0::35S:NF-YC2-GFP_3 (Col-0 background plant) lines during the 

Hpa infection assay (Figure 3.22) compared to Col-0 plants. Hence, the number of 

sporangiophores per seedling was similar between Col-0 and the NF-YC2 OE lines. 

This result in combination with no difference detected in nf-yc2, suggests that NF-

YC2 subunit is not involved in the defense response against this biotrophic 

pathogen.  

However, having looked at these results, it is important to consider that there are 

10 NF-Ys for each subfamily, which can have redundant functionality in plant, 

hence the phenotype observed could be caused by new protein interactions 

which occur when one subunit is missing or overexpressed.  
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Figure 3.22 – NF-YC2 OE mutants do not show altered susceptibility to Hpa. Hyaloperonospora 
Arabidopsidis spores of isolate Noks1 were sprayed on two weeks old Arabidopsis Col-0::35S:NF-
YC2-GFP_1 and Col-0::35S:NF-YC2-GFP_3. Col-0 and 35S::HaRxL14 were used as control.  
Sporangiophores were counted 4 days post infection using a dissecting microscope. The values 
presented are the mean of sporangiophore per seedlings (45 biological replicates) normalized to 
Col-0. Error bars show standard error and significant differences to Col-0 using a T-test are indicate 
with * (p<0.05). The experiment was performed twice. 
 
 

3.3.5 Pseudomonas syringae susceptibility of Arabidopsis NF-Y 

KO and OE lines 

A subset of NF-Y KO and OE mutants were screened by Dr’s Rana Hussain and 

Susan Breen (Prof. Murray Grant group, University of Warwick) against the 

hemibiotrophic pathogen Pseudomonas syringae. Differentially from necrotrophs 

and biothrophs pathogens, hemibiotrophs have an initial period of biothrophy 

followed by necrotrophy. Specifically, P. syringae lives both on the surface and in 

the apoplast of the plant and to thrive in its host it overcomes the plant immune 

response (Block and Alfano 2011).  

The aim here was to check the susceptibility of NF-Y KO and OE lines against P. 

syringae to determine whether these TFs were important in the plant defense 

response against this hemibiotrophic pathogen. Hence for the phenotyping, 

Arabidopsis mutants were infiltrated with P. syringae DC3000 suspensions and 
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then incubated in a growth chamber for 10 hours, at 21oC and 60% humidity. 

Images of plants were taken at 2, 3, 4 and 5 days post infection (dpi) and a scale 

of 0-5 was used to score the infection of the leaves (Figure 3.23a).  The phenotype 

analysis, based on leaf visual, showed no difference in the disease severity 

between all lines, except nf-ya2::35S:FLAG-NF-YA2 lines that exhibited  

significantly enhanced tolerance against P. syringae after 4 and 5 days post 

infection (Figure 3.23b and Figure 3.23c).  

Additionally, for the bacterial growth, three leaves per plant were infiltrated with 

P. syringae DC3000 and plants were incubated in a growth room for 10 hours, at 

21oC. Samples were harvested at 4 dpi, homogenized in a tissue lyzer and serial 

dilutions were carried out. The colony counting showed no significant difference 

of bacterial growth between the KO and OE NF-Y mutants analyzed compared to 

Col-0. Hence, similar CFU were observed in all lines (Figure 3.24).  
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a) 

b) 

 
c) 

 
Figure 3.23 – Disease severity caused by P. syringae growth on Arabidopsis NF-Y KO and OE 
mutants. a) Scoring marker based on leaf phenotype after P. syringae infection. b-c) Col-0 was 
used as control.  The disease phenotype was evaluated, based on leaf visual scoring after 4 and 5 
days post infection. Error bars show standard error and significant differences to Col-0 using a T-
test are indicated with * (p<0.05). 
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Figure 3.24 - Growth curve of P. syringae growth on Arabidopsis NF-Y KO and OE mutants. Col-
0 was used as control.  Colony counts taken sampled from 4 pooled leaves are shown using a 
logarithmic scale, error bars show standard error. No significant difference was observed between 
the treatments using a T-test (n=6). 

 
 
On the base of these results it is possible to hypothesize that NF-Y subunits 

analyzed are not involved in the defense response against the hemibiotrophic 

pathogen P. syringae. However, this hypothesis is quite simplistic, hence it does 

not consider the possibility of an overlapping functionality between NF-Y subunits 

of the same family.   
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3.4 Discussion  

3.4.1 Plant morphology of KO and OE NF-Y mutants did not show 

different phenotypes compared to wild type plants. 

In this study, most of the Arabidopsis NF-Y KO and OE mutants analyzed 

presented a very similar morphology to wild type plants. Specifically, the 

phenotype of nf-ya2, nf-yb2, nf-yc2 mutants and the double mutant nf-yb2/nf-

yb3 was comparable to Col-0 and only nf-yb3 showed a bigger size. Meanwhile, 

between Arabidopsis plants expressing NF-YA2, NF-YB2 and NF-YC2 under the 35S 

promoter only nf-ya2::35S:FLAG-NF-YA2 lines, with nf-ya2 as genetic background 

plant, were found to display an altered morphology, having a zig-zagged leafed 

phenotype and a smaller size (Figure 3.6).  

However, the morphology of NF-YA2 OE lines generated in this study is not 

consistent with what was observed by Siriwardana et al. (2014), which 

demonstrates that overexpression of NF-YA in Arabidopsis caused severe growth 

retardation and developmental defects. A dwarf phenotype and a dark green 

color was also observed in Arabidopsis 35S:NF-YA2 seedlings and adult plants by 

Leyva-Gonzalez et al. (2012) compared to wild type, showing a significantly 

reduction of biomass (Leyva-Gonzalez et al. 2012). In contrast with these studies 

but in support of the results obtained in this chapter Zhang et al. (2017) found 

that NF-YA2 OE plants can generate more leaves than wild type plants with 24% 

increment of biomass. It was reported that leaf size is regulated by NF-YA2 and 

NF-YA10 in Arabidopsis, which are involved in leaf development through the 

auxin-signaling pathway, promoting leaf growth and cell expansion. Hence, NF-

YA2 and NF-YA10 overexpression plants showed larger rosettes. Based on 

altered endogenous IAA content in NF-YA2 and NF-YA10 OE plants, it was 

discovered a differential accumulation of auxin signaling and it was found that the 

expression of YUCCA family genes was clearly different between transgenic plants 

and wild type plants. Specifically, YUC2, a key speed-limiting gene in auxin 

homeostasis, acts as a direct target of NF-YA2 and NF-YA10, hence overexpression 
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of NF-YA2 and NF-YA10 decreased contents of endogenous IAA through 

repressing the expression of yuc2 (Zhang M. et al. 2017). Hence, the lower IAA 

contents in NF-YA2 OE mutants could result in an altered leaf initiation and 

growth in Arabidopsis. This could represent the main reason of the phenotype 

observed in this research, which appeared to be in contradiction with previous 

studies (Siriwardana et al. 2014, Leyva-Gonzalez et al. 2012). NF-YA2 OE lines 

generated were also validated using qPCR, which confirmed an enhanced 

expression of NF-YA2 gene in all lines. However, it is important to consider that 

there are many factors which could cause different morphology from wild type 

Col-0. For example, it is possible that sites of insertion of NF-YA2 construct into 

the genome may cause this phenotype, although this is unlikely since it is 

observed in all independently transformed lines. Additionally, environmental 

conditions can vary even between laboratories using the same equipment 

(Massonnet et al. 2010). Therefore, the similar phenotype between 

overexpressor mutants, knockout mutants and wild type plants, is likely due to 

gene functional redundancies with other members of the gene family, or, more 

simplistically, it could suggest a lack of involvement of these subunits in such 

traits. However, for pathogen assays this unchanged morphology between Col-0 

and mutant lines is a good characteristic, since this allows susceptibility assay 

results which are not compromised by plant size differences.  

Also, nf-ya2: pNF-YA2:NF-YA2-GFP lines were tested, showing a very low 

expression level of NF-YA2 gene. This expression pattern was similar to the 

background plant nf-ya2 mutant, and consequently no differences in plant 

morphology were observed between nf-ya2 KO mutants and nf-ya2:pNF-YA2:NF-

YA2-GFP lines. This suggests that nf-ya2 KO plants were not fully complemented 

with pNF-YA2:NF-YA2-GFP construct. According to the model hypothesized by 

Zanetti et al. (2017) showed in Figure 1.8, because NF-YA2 should be regulate at 

the transcriptional level by alternative splicing, providing fully spliced NF-YA 

mRNAs, would be a relatively simple method to increase the expression level of 

NF-YA2 in nf-ya2:pNF-YA2:NF-YA2-GFP lines. Indeed, the fully spliced NF-YA 



 117 

mRNAs is the only one recruited by the translational machinery which synthetize 

NF-YA2 subunit, and then it is translocated into the nucleus to form a specific 

hetero trimer with NF-YB and NF-YC subunits. Additionally, knocking out miR169, 

a micro-RNA which inhibit the expression of NF-YA subunits, could be another 

strategy to enhance the level of NF-YA in these lines.  

 

 

3.4.2 NF-Y functional redundancy in development and 

immunity. 

When an expected phenotype is not observed in the absence of a specific gene 

there is the possibility that the biochemical function is redundantly encoded by 

two or more genes. Many studies have reported the redundant roles between 

NF-Y belonging the same subfamily during plant development. For example Mu 

et al. (2013) showed that strong phenotype was visible such as hypersensitivity to 

abscisic acid (ABA) during seed germination, retarded seedling growth and late 

flowering at different degrees. Moreover, Fornari et al (2013) reported that the 

closely related NF-YA3 and NF-YA8 are functionally redundant genes required in 

early embryogenesis. In fact, nf-ya3 and nf-ya8 single mutants do not display any 

obvious phenotypic alteration, whereas nf-ya3/ nf-ya8 double mutants are 

embryo lethal. Additionally, Cao et al. (2011) and Kumimoto et al. (2008) revealed 

that NF-YB2 and NF-YB3 have an overlapping functionality during photoperiod-

dependent flowering. A following study performed by Kumimoto et al. (2010) 

provided also evidence that NF–YC3, NF–YC4 and NF–YC9 are additively 

necessary for the proper photoperiod‐dependent induction of flowering 

in Arabidopsis.  

Hence, while some literature is available on the possible genetic redundancy 

between NF-Y members during plant development, much less evidence has been 

obtained regarding their functional redundancy in plant immunity. However, 

there is a substantial difference between plant development and plant immunity 

response. In the first one the level of a specific TF is not altered, since in 
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physiological condition the plant use the amount of TF available in the cell. In the 

second one, after a pathogen attack, the plant stress response is controlled by a 

complex regulatory system, involving a transcriptional gene reprogramming 

which alter the level of TFs in the plant cell. For this reason, identify a real 

overlapping functionality between TFs belonging the same family during the plant 

defense response is quite challenging. 

In the specific case of NF-Y TFs, it is possible to hypothesize that when the plant 

is attacked by the pathogen the level of a specific TF change to subsequently 

regulate the expression of a target defense gene. Hence, the functional 

redundancy hypothesized in this study between NF-YB2 and NF-YB3, based on the 

lack of expected phenotype during B. cinerea infection in nf-yb2 and nf-yb3 single 

mutant, but observed in nf-yb2/nf-yb3 double mutant, is debatable. However, 

previous microarray analysis performed by Windram et al. (2012) revealed that 

the amount of both NF-Y members in wild type plants before and after the 

infection is altered, suggesting a role in the plant defense response. 

 

3.4.3 Pathogen infection assays revealed potentially important 

NF-Y subunits in the defense response. 

To establish whether NF-YA2, NF-YB2 and NF-YC2 TFs play a role in the defense 

response, the first step was to investigate whether Arabidopsis KO and OE 

mutants of these NF-Y subunits have an altered susceptibility against the 

necrotrophic pathogen Botrytis cinerea, the biotrophic pathogen 

Hyaloperonospora arabidopsidis and the hemibiotrophic pathogen Pseudomonas 

syringae. 

In this study, it was observed that significantly different phenotypes in NF-Y KO 

and OE mutants were observed in response to B. cinerea infection, while, 

generally, the susceptibility against Hpa and P. syringae was found to not to be 

compromised. Specifically, in this chapter it has been shown that nf-ya2 KO 

mutants showed a significantly enhanced susceptibility to B. cinerea, confirming 

previous observation in Emily Breeze’s thesis (2014). Interestingly, both NF-YA2 
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OE lines with nf-ya2 as the genetic background showed a more resistant 

phenotype compared to Col-0 and the nf-ya2 mutant, while NF-YA2 OE lines with 

Col-0 as background plant showed the same phenotype as the nf-ya2 KO mutant. 

This result highlights the possibility that the overexpression of a single NF-Y 

subunit could alter the stoichiometry ratio compromising the formation of 

canonical NF-Y complexes. Hence, unknown interaction between NF-Y can 

interfere with plant susceptibility, giving unexpected phenotypes. The high 

susceptibility of nf-ya2 observed here is consistent with the inability of nf-ya2 

mutant to synthesize JA during senescence, showing reduced endogenous JA 

levels, and changes in expression of several JA biosynthetic genes (Breeze et al. in 

preparation).  

Moreover, a previous study reported that in NF-YA2 OE lines the concentration of 

IAA was decreased by 20% compared to wild type plants (Zhang M. et al. 2017) 

and according to Llorente et al. (2008) this repression of auxin signaling could 

compromise the resistance of Arabidopsis plants to the necrotrophic fungal 

pathogen B. cinerea (Llorente et al. 2008). In the context of this knowledge, this 

experiment suggests that NF-YA2 could be a key regulator in the defense 

response. This result is coherent with Leyva-Gonzalez et al. (2012) report which 

proposed a model where NF-YA subunit control a general stress response. Hence, 

it was found that NF-YA2 OE plants showed a delayed senescence and increased 

tolerance to different abiotic stresses, and it was also revealed that transcript 

levels of NF-YAs are induced by different stress conditions (Leyva-Gonzalez et al. 

2012). Furthermore, during Hpa and P. syringae infection NF-YA2 OE and KO 

mutants did not show any altered susceptibility compared to Col-0, this result 

suggests the possibility that NF-YA2 TF play an exclusive role during the plant 

defense response against B. cinerea infection or in general against necrotrophic 

pathogens. However, to confirm this, further analysis using different necrotrophs 

are necessary.  

Moreover, it has been shown here that the Arabidopsis nf-yb2 mutant did not 

have altered susceptibility against B. cinerea, Hpa and P. syringae compared to 
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wild type plants. However, because the nf-yb2/nf-yb3 double mutant was shown 

to have a significantly enhanced resistant phenotype compared to Col-0 during 

the infection by the necrotrophic pathogen B. cinerea and the biotrophic 

pathogen Hpa, it was hypothesized that there is an overlapping functionality 

between NF-YB3 and NF-YB2. Hence only when both subunits are absent it is 

possible to observe an altered phenotype during the infection with these 

pathogens compared to Col-0. In support to this theory, microarray data-set 

(Windram et al. 2012) showed that NF-YB2 and NF-YB3 have also the same gene 

expression pattern during B. cinerea and P. syringae infection, hence both genes 

are down-regulated. This hypothesis is consistent with previous report showing 

that NF-YB2 and NF-YB3 are redundant players in photoperiod-dependent 

flowering (Cao et al. 2011). Additionally, Siefers et al. (2009) found that NF-YB2 

and NF-YB3 are very similar proteins with very high amino acid identity in their 

conserved domains.  

Intriguingly, NF-YB2 OE lines also showed a more resistant phenotype compared 

to Col-0 and nf-yb2 during B. cinerea and Hpa infection. This result suggests that 

also NF-YB2 is involved in the defense response. Hence, the overexpression of NF-

YB2 allowed to overcome gene redundant function between NF-YB subunits, 

showing an enhanced resistance during the infection. For this reason, an altered 

phenotype is visible only in NF-YB2 OE mutant and not in the nf-yb2 KO mutant, 

where it is probably masked by gene overlapping functionality.  

B. cinerea, Hpa and P. syringae assays were also performed on NF-YC2 OE and KO 

mutants. This experiment showed no strong difference in pathogen susceptibility 

of NF-YC2 OE lines. However, nf-yc2 KO mutant showed a significantly enhanced 

susceptibility against B. cinerea infection and a slightly enhanced Hpa growth, but 

not significant. This result could be explained by the involvement of NF-YC2 

subunit in the plant defense, but further analysis need to be carried out. 

According to these results and based on Leyva Gonzalez et al. (2012) model, it is 

possible to hypothesized that in wild type plants growing under non-stress 

conditions the expression of NF-YA2 is low due miR169-mediated post-
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transcriptional down-regulation. Upon exposure to a necrotrophic pathogen, 

such as B. cinerea, NF-YA2 level increase due to the transcriptional activation of 

NF-YA2 expression and to the repression of miR169. NF-YA2 then activate defense 

genes involved in the plant immunity forming a complex with NF-YB2 and NF-YC2 

subunits. 

 

3.4.4 Conclusion  

In conclusion, these results highlight the possibility of an important role of NF-

YA2 and NF-YB2 and NF-YC2 in the plant defense response against the 

necrotrophic pathogen B. cinerea. However, the biotrophic pathogen Hpa and the 

hemibitrophic P. syringae assay did not show any significantly different 

phenotype of NF-Y mutants compared to wild type, despite previously reported 

microarray data (Windram et al. 2012) showing that NF-YA2, NF-YB2 and NF-YC2 

were downregulated during P. syringae infection. However, it is important to 

consider that after pathogen recognition plants initiate an intricate and highly 

regulated network of defense mechanisms which caused extensive changes to 

the host transcriptome (Jones and Dangl 2006). Interestingly each mechanism is 

specific to different pathogens. Hence the plant defense response against 

necrotrophic, biotrophic, and hemibitrophic pathogens involve a distinctive 

pathway. For this reason, the lack of interesting phenotypes obtained in this study 

appears to be likely. Also, the compensatory abilities among TF families, which 

have been frequently reported in the literature (Jin H. and Martin 1999), 

represents the challenge of this research. Indeed, often the phenotype observed 

is due to functional redundancies with other members of the gene family. 

However, it is also possible that overexpression of individual NF-Y subunits 

generates a negative effect changing the accessibility of a subunit in the plant, 

affecting the stoichiometry and preventing the formation of native NF-Y 

complexes. Additional data, such as identification of in vivo physical interactions 

using mass spectrometry analysis or transient experiment such as BiFC and BiCAP, 

will be necessary to draw strong conclusions. For this purpose, in this study many 
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precious resources such as NF-Y-overexpressing Arabidopsis GFP or FLAG tagged 

lines have been generated.   
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Chapter 4 

4. Identify protein-protein interactions between 

NF-YA2, NF-YB2 and NF-YC2 subunits transiently 

expressed in N. benthamiana.  

4.1 Introduction 
Nowadays several techniques are available to investigate protein-protein 

interactions in vitro and in vivo, which used in combination with a reverse genetic 

approach, will facilitate elucidating the role of NF-Y complexes.  

Yeast two-hybrid (Y2H) (Fields and Song 1989, Walhout and Vidal 2001), 

represents probably the most widely used method to study protein–protein 

interactions (Bruckner et al. 2009), and has considerably simplified protein-

protein complex identification. This assay allows the detection of interacting 

proteins in yeast, relying on the expression of a reporter gene (such as lacZ or 

HIS3), which is activated when the two proteins of interest interact together, 

allowing the yeast colonies to grow on a selective medium or driving a color 

change. However, as stated in Bruckner et al. 2009 there are many limits of Y2H 

technology. Firstly, proteins that are toxic to yeast cell cannot be studied using 

this technology. Secondly, this method is often associated with the presence of 

many false positive, because of proteins that are able to interact in yeast are not 

always able to interact in plants due to post translational modification or different 

cell compartment localization. Thirdly, false negative interactions are common, 

because this assay is able to detect pairs combination which occur only in the 

nucleus of the yeast cell, making interactions that happen in different cell 

compartments, difficult to be detected (Zhang Y. et al. 2010). Considering these 

limits, it is crucial to complement the Y2H analysis using other approaches in vivo 

such as Bimolecular fluorescence complementation (BiFC) assay, co-

immunoprecipitation (Co-IP) and mass spectrometry (MS). 
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BiFC can be used to validate protein interactions pairwise in planta (Bracha-Drori 

et al. 2004, Kerppola 2008). This assay is based on reassembly of two fragments 

of the YFP fluorescent protein, also called Venus protein, that are fused in-frame 

to two different test proteins (Figure 4.1). These constructs are agro-infiltrated 

into Nicotiana benthamiana leaves, allowing the transient expression of the 

fusion proteins. When the two proteins interact, the two complementary 

fragments of YFP are brought together and the fluorescence can be detected 

simply by confocal microscope (Tian et al. 2011, Walter et al. 2004). The main 

advantage of the BiFC assay is that it is carried out in plants and highlights where 

in the cell the interaction occurs (Citovsky et al. 2008). However, this assay has a 

few disadvantages that need to be considered. First the interacting properties of 

protein fused with split YFP could be different from the native protein. Second if 

the two proteins are located in the same cell compartment, then high levels of 

expression may lead to fluorescence from close proximity of the two fragments 

rather than real protein-protein interaction. Third, auto-fluorescence of 

photosynthetic pigments of the plant cell often interfere with the YFP signal of 

the BiFC assay (Ohad et al. 2007).  

 

 

 

 

 

 

 

 

 

Figure 4.1 – The BiFC rationale. Schematic representation of two generic X and Y proteins fused 
respectively to non-fluorescent N-terminal (VN) and C-terminal (VC) fragments of the Venus (YFP) 
protein. If X and Y proteins interact, YFP reconstitutes and fluoresces. 
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In this chapter, the BiFC assay was associated with a novel method, called 

bimolecular complementation affinity purification (BiCAP) (Croucher et al. 2016), 

to characterize protein complexes in agro-infiltrated N. benthamiana leaves. This 

new technique, previously used in animal cells, exploits a neo-epitope produced 

by complementation of YFP protein fragments to isolate the two interacting 

proteins. In fact, when the two proteins are brought together using BiFC method, 

YFP refolds and fluoresces. Specifically, anti-GFP agarose beads (Kubala et al. 

2010) recognizes a three-dimensional epitope on the β barrel of the GFP protein, 

which is composed by the two YFP fragments. This suggests that anti-GFP agarose 

beads are able to detect a neoepitope that is present only in the refolded YFP but 

do not exist on the individual YFP fragments. Hence, it was hypothesized that GFP 

beads would only bind to recombined YFP but not to individual YFP fragments. 

This assay provides a powerful method to isolate protein complexes while 

excluding individual components and competing binding partners. A further 

advantage of this system is the ability to visualize protein interactions in situ, 

providing confirmation of cellular context. Moreover, BICAP method in 

combination with mass spectrometry analysis would allow to detect interactor 

proteins which are specific to the dimer complex and not just to a single protein 

as in the standard methodology. This ability represents an important advantage 

to functionally characterize specific complexes in different cellular context. 

Finally, co-immunoprecipitation (Co-IP) is one of the most common techniques 

for identifying protein-protein interactions (Masters 2004). Co-IP is a method in 

which a protein complex can be isolated from a cell lysate using an immobilized 

antibody against a tag, such as GFP, HA or FLAG, fused to one component of the 

protein complex. Presence of the target protein is determined by western blot, 

while interacting proteins can be identified using an appropriate antibody or by 

MS analysis. The tagged target protein can be transiently expressed in plants, for 

example, by agro-infiltrating the construct of interest, or stably expressed in 

transgenic plants. 
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4.2 Chapter aims 
In this chapter BiFC, BiCAP and Co-IP assays on transiently transformed N. 

benthamiana leaves were used to test the existence of the putative hetero trimer 

(NF-YA2, NF-YB2 and NF-YC2) in planta. Additionally, GFP tagged constructs 

containing NF-YA2, NF-YB2 and NF-YC2 under the 35S promoter were transiently 

expressed in N. benthamiana leaves to investigate their subcellular localization. 

This will shed light on the assembly mechanism between the three types of 

subunits and highlight if the mechanism is conserved between plants and animals. 
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4.3 Results 

4.3.1 NF-Ys localization in N. benthamiana 
To clarify proteins function it is important to identify their subcellular localization 

to test if the assembly of the trimer occurs as in mammals. NF-YA2, NF-YB2 and 

NF-YC2 were visualized in the plant cell using GFP fusion construct agro-infiltrated 

in N. benthamiana leaves. Confocal imaging analysis showed that NF-YA2 is 

localized exclusively in the nucleus of the transformed leaf cells. In contrast NF-

YB2 and NF-YC2 are localized in the nucleus and in the cytoplasm (Figure 4.2). 

These results perfectly fit with previous studies which have proposed a specific 

regulatory mechanism of NF-Y in plant (Hackenberg et al. 2012, Laloum et al. 

2013, Zhao et al. 2016). Specifically, NF-YB/NF-YC dimer assembles in the 

cytoplasm and then translocate into the nucleus where it can form an active 

trimer with NF-YA. The NF-YA/B/C complex then binds to CCAAT box in the 

promoter region to regulate the expression of the target gene (Zhao et al. 2016). 

This transcriptional regulation system is highly conserved in yeast, animals and 

plants and can be applied to the putative trimer NF-YA2/B2/C2 object of this study 

(Dolfini et al. 2012, Liu and Howell 2010, Petroni et al. 2012).  
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Figure 4.2 – Confocal fluorescence microscopy analysis of subcellular localization of NF-YA2, NF-
YB2 and NF-YC2 fused with GFP in N. benthamiana. Panels display the merge image GFP + bright-
field. Each p35S:GFP-NF-YA2, p35S:GFP-NF-YB2 and p35S:GFP-NF-YC2 construct was transferred 
into A. tumefaciens strain GV3101 and then infiltrated into N. benthamiana leaves. A) N. 
benthamiana leaves infiltrated with 35S:FLAG construct do not show any signal (Negative control) 
B) NF-YA2 is detected only in the cell nucleus. C-D) NF-YB2 and NF-YC2 are identified in nucleus 
and cytoplasm. Representative images from three independent experiments are shown. Scale 
bars, 50 µm. 
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4.3.2 BiFC assay to test the interaction between NF-YA2, NF-

YB2 and NF-YC2 in plant.  

Previous studies already tested all pair interaction between NF-Y TFs using Y2H 

analysis (Calvenzani et al. 2012, Hackenberg et al. 2012). These analyses showed 

that NF-YA2 can dimerize with NF-YC2 and NF-YC2 can dimerize with NF-YB2. The 

dimerization between NF-YB2 and NF-YC2 was also confirmed in vivo by Mass 

Spectrometry analysis performed on Arabidopsis NF-YC2 epitope tagged lines by 

Emily Breeze (thesis 2014).  Following these results, BiFC method appears to be a 

good tool to validate the interaction between NF-YA2, NF-YB2 and NF-YC2 in 

planta.  

 
4.3.2.1 Generation of BiFC constructs 

The first step in testing pairwise interactions of NF-Y subunits is to generate clones 

for expression of NF-YA2, NF-YB2 and NF-YC2 fused to split YFP (E-YFP) protein. 

Since proteins can be tagged at either the N- or C- terminal, all pairwise 

combinations need to be tested because BiFC is a proximity based method and 

variation in resulting fusion protein structures can have repercussions on protein 

assembly (Kodama and Hu 2012). Hence, each NF-Y of interest (NF-YA2, NF-YB2 

and NF-YC2) was cloned into four BiFC vectors, that rely on GATEWAY-cloning 

technology, to be able to test all possible combinations using different tag 

orientation (Figure 4.3).  

 
 

 
 
 
Figure 4.3 – Gateway compatible pBiFP destination vectors expressing N and C fragments of YFP 
fused to the interacting proteins. NF-YA2, NF-YB2 and NF-YC2 were cloned into all four vectors. 
Arrows show all possible pairwise combinations of the N and C fragments of YFP. (VN=N-terminal 
of the Venus protein; VC=C-terminal of the Venus protein). 
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GATEWAY compatible pBiFP (BiFC in Planta) vectors were used, kindly provided 

by Franois Parcy (University Grenoble, France). These vectors are based on the 

fluorescent protein Venus (YFP) (Nagai et al. 2002), under the CaMV35S-promoter 

which should lead to strong protein expression.  Moreover, a set of NF-YA2, NF-

YB2 and NF-YC2 FLAG-tagged and GFP-tagged constructs, again under the control 

of the CaMV35S promoter, were generated using Gateway binary vectors 

(Nakamura et al. 2010). All constructs were cloned from cDNA and sequenced. 

The FLAG tag is a short peptide consisting of 8 amino acids (DYKDDDDK), while 

the GFP tag and YFP, its genetic mutant, are proteins composed of 238 amino 

acids (26.9 kDa). Table 4.1 shows the size of each NF-YA2, NF-YB2 and NF-YC2 

subunit in their native condition and with GFP, E-YFP and FLAG tag. These tags are 

recognized by several commercial antibodies and can be incorporated on either 

the N- or C-terminal of the protein. The small size of the FLAG tag minimizes its 

effect on protein function preserving protein folding, while GFP is a large tag 

which is extremely stable but can affect the solubility of the protein and interfere 

with protein folding and functionality.  
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Table 4.1 – Size of NF-Y proteins of interest with and without GFP, split YFP (E-YFP) 
and FLAG epitope tags 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

 

4.3.2.2 Testing NF-Y subunit pairwise interaction  

GATEWAY-BiFC binary vectors expressing NF-YA2, NF-YB2 and NF-YC2 cDNA were 

agro-infiltrated in different combinations into 4 weeks old Nicotiana 

benthamiana leaves. Equal concentrations of Agrobacterium containing each 

construct were mixed and infiltrated together (Leuzinger et al. 2013). All pairwise 

combinations between NF-YA2, NF-YB2 and NF-YC2 at N-terminal or C-terminal 

of the YFP were tested (Table 4.2). A strong BiFC signal was observed using 

confocal microscopy after three days post infection only in the p35S:YFPN-NF-YB2 

and p35S:NF-YC2-YFPC combination. The fluorescence was detected in the 

cytoplasm and in the nucleus (Figure 4.4C and 4.4D). This localization reflects 

what has been observed in mammals (Romier et al. 2003) where NF-YB and NF-

YC subunits dimerize in the cytoplasm and then translocate into the nucleus. This 

result is also compatible with previous Mass Spectrometry analysis on 

Arabidopsis Col-0::p35S:NF-YC2-GFP epitope tagged lines which showed that NF-

YB2 and NF-YC2 interact in vivo (Breeze Emily 2014). Many controls were used to 

Protein Protein 
length  Gene identifier 

Size of 
native 
protein 

Tag 

Size of 
epitope 
tagged 
protein 

NF-YA2 295 aa AT3G05690 32.2 kDa FLAG 32.2 kDa 

NF-YA2 295 aa AT3G05690 32.2 kDa GFP 59.1 kDa 

NF-YB2 190 aa AT5G47640 20 kDa FLAG 20 kDa 

NF-YB2 190 aa AT5G47640 20 kDa GFP 46.9 kDa 

NF-YC2 199 aa AT1G56170 23.1 kDa FLAG 23.1 kDa 

NF-YC2 199 aa AT1G56170 23.1 kDa GFP 50 kDa 

NF-YA2 295 aa AT3G05690 32.2 kDa E-YFP 45.7 kDa 

NF-YB2 190 aa AT5G47640 20 kDa E-YFP 33.5 kDa 

NF-YC2 199 aa AT1G56170 23.1 kDa E-YFP 36.6 kDa 
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validate the BiFC analysis, specifically p35S:NF-YB2 construct with no tag was 

agro-infiltrated as a negative control and no signal was detected (Figure 4.4A), 

while p35S:GFP was used as a positive control, showing a strong fluorescence 

signal in the nucleus and cytoplasm as expected (Figure 4.4B). Additionally, no 

fluorescence was observed when single constructs of p35S:YFPN-NF-YB2 (Figure 

4.4F) and p35S:NF-YC2-YFPC (Figure 4.4E) were agro-infiltrated into the leaf, 

confirming that split YFP cannot fluoresce on its own. Hence the fluorescence 

detected when p35S:YFPN-NF-YB2 and p35S:NF-YC2-YFPC were co-infiltrated 

represents the re-assembly of the YFP molecule due to the interaction between 

the NF-YB2 and NF-YC2 proteins. 
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Figure 4.4 - Confocal microscopy imaging of Nicotiana benthamiana leaves with transient 
expression of YFP using BiFC assay to test pairwise interactions between NF-YA2, NF-YB2, and 
NF-YC2 subunits. Pictures were taken of N. benthamiana epidermal cells 3 days post infiltration 
with A. tumefaciens (strain GV3101) containing the indicated NF-Y constructs. Panels display: YFP 
fluorescence, the magnified view of the marked areas and the merged image (Chlorophyll, bright-
field, YFP). A) No tagged construct (p35S:NF-YB2), resulting in no detectable signal, was used as a 
negative control. B) p35S:GFP construct was used as positive control. C-D) The assay revealed that 
NF-YB2 and NF-YC2 are able to hetero dimerize in planta. The fluorescence was detected in the 
nucleus and cytoplasm in the combination of p35S:NF-YC2-YFPC and p35S:YFPN-NF-YB2. E-F) 
Infiltration of single constructs of p35S:NF-YC2-YFPC and p35S:YFPN-NF-YB2 did not show any 
fluorescence. Experiments were performed three times. White scale bar represents 50 µm. 
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NF-YA2 did not interact with any other subunit in the pairwise tests showed in 

Table 4.2. Different reasons can explain this result: i) the YFP tag interferes with 

NF-YA2 function, ii) NF-YA2 does not interact with NF-YB2 or NF-YC2, iii) the 

binding of NF-YA2 is dependent on the presence of a NF-YB2/C2 dimer. In 

mammals, NF-YB and NF-YC subunits dimerize in the cytoplasm and are then 

imported into the nucleus (Kahle et al. 2005). The dimerization of NF-YB and NF-

YC subunits creates a binding surface for the association of NF-YA (Romier et al. 

2003). If the same process occurs in plants, then no pairwise interaction would be 

seen with NF-YA2, as the binding site for the NF-YA2 subunit would only be 

formed by the NF-YB2/C2 dimer, and hence NF-YA2 would need the other two 

subunits present to form the trimer.  With this hypothesis in mind, all three NF-Y 

subunits with YFP in all different orientations and combinations were co-

infiltrated. For example, NF-YA2 at the N-terminal or C-terminal of YFP, was 

infiltrated together with constructs of NF-YB2 and NF-YC2 (Figure 4.5), one 

untagged and one containing the other half of the YFP tag. No fluorescence was 

observed in any of these combinations between the three NF-Y subunits. This may 

be because NF-YA2, NF-YB2 and NF-YC2 do not form a trimer in N. benthamiana. 

However, it is also possible that steric hindrance from the tags may prevent 

proper complex formation. For example, split YFP could make the NF-YA2 binding 

site inaccessible, or split YFP may change the functionality of NF-YA2, so the 

tagged protein behaves differently from the native protein preventing the 

formation of the hetero-trimer.  
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Figure 4.5 - Confocal microscopy imaging of Nicotiana benthamiana leaves. Examples of two 
combinations tested with co-infiltration of all three subunits, NF-YA2, NF-YB2 and NF-YC2, using 
BiFC assay. Pictures were taken of Nicotiana benthamiana epidermal cells 3 days post infiltration 
with A. tumefaciens (strain GV3101) containing the indicated NF-Y subunits. Panels display YFP 
fluorescence and merged images (Chlorophyll, bright-field). A) No tagged construct (p35S:NF-
YB2), resulting in no detectable signal, was used as a negative control. B) p35S:GFP construct was 
used as positive control. C-D) No detectable signals were observed in either combination. 
Experiments were performed three times. White scale bar represents 50 µm. 
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4.3.3 Identification of Nicotiana benthamiana NF-Y 

orthologues genes 

Because there is the possibility that the Arabidopsis NF-YA2, NF-YB2 and NF-YC2 

subunits interact with the N. Benthamiana orthologues genes a bioinformatic 

identification (Table 4.3) and sequence alignment of N. benthamiana orthologues 

NF-YA2, NF-YB2 and NF-YC2 subunits was performed (Figure 4.6 and 4.7). NF-YA2, 

NF-YB2 and NF-YC2 in Nicotiana benthamiana were downloaded from the Plant 

Transcription Factor Database (PlantTFDB). 

 

 

Table 4.3 – Genes in N. benthamiana orthologues to NF-Y subunits in Arabidopsis. 
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Figure 4.6 – Alignments between N. benthamiana NF-YA2, NF-YB2 and NF-YC2 orthologues gene 
and A. thaliana. The figure represents the alignment score according to the color: red indicate a 
very good alignment. 
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Figure 4.7– Amino acids alignments between N. benthamiana NF-YA2, NF-YB2 and NF-YC2 
orthologues gene and A. thaliana. Numbers on the left indicate the amino acid position on the 
protein. 
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4.3.4 BiCAP method to isolate two interacting proteins. 

After BiFC experiment, to prove that the two proteins NF-YB2 and NF-YC2 were 

actually interacting and not just close together, another method called BiCAP was 

used, which allowed the specific isolation of the two interacting subunits. Hence, 

total protein was extracted from N. benthamiana leaves co-infiltrated with 

p35S:YFPN:NF-YB2 and p35S:NF-YC2:YFPC and the two proteins fused with YFP 

were immunoprecipitated using GFP-trap beads which recognizes a neoepitope 

present on the reassembled YFP but not in split YFP. The western blot showed a 

YFP band only in N. benthamiana leaves co-infiltrated with p35S:YFPN-NF-YB2 and 

p35S:NF-YC2-YFPC but not in leaves infiltrated with either p35S:YFPN-NF-YB2 or 

p35S:NF-YC2-YFPC alone (Figure 4.8). This analysis is a validation of what was 

observed in the confocal microscopy (Figure 4.4) where the fluorescence was 

detected only in the sample containing NF-YB2 and NF-YC2 together and not 

when each construct containing split YFP was infiltrated alone. The band size 

observed (36.6 kDa) in the sample containing both NF-YB2 and NF-YC2 constructs 

identifies just the NF-YC2 (23.1 kDa) subunit fused with split YFP (13.5 kDa), 

making a protein of 36.6 kDa, because the GFP-HRP antibody recognizes only the 

C-terminal region of YFP (BiFP-4). Additionally, a second band at 27 kDa is 

observed in the same sample which is probably a cleaved product. The positive 

control, p35S:GFP-NF-YB2, showed in the western blot three bands: a band of 47 

kDa which represent the NF-YB2-GFP tagged protein (20 kDa + 27 kDa), a band 

representing free GFP (27 kDa) and a band at 32 kDa which could be a cleaved 

product. 
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WB: α - GFP 

 
 
Figure 4.8 – BiCAP immunoprecipitation assay allowed the isolation of NF-YB2 and NF-YC2 
hetero-dimer. Leaves were co-infiltrated with p35S:YFPN-NF-YB2 + p35S:NF-YC2-YFPC and 
infiltrated with p35S:YFPN-NF-YB2 or p35S:NF-YC2-YFPC alone. Proteins were immunoprecipitated 
using anti-GFP trap beads. The immunoprecipitated proteins were separated by SDS-PAGE and 
GFP-HRP antibody against C-terminal region of YFP (BiFP-4) was used for immunoblotting. 
p35S:GFP-NF-YB2 single construct was used as a positive control, showing the GFP tagged protein 
(47 kDa), a band representing free GFP (27 kDa) and a band representing a cleaved product (32 
kDa). The infiltration of single construct p35S:YFPN-NF-YB2 and p35S:NF-YC2-YFPC did not show 
any signal. Co-infiltration of p35S:YFPN-NF-YB2 + p35S:NF-YC2-YFPC showed a band of 36.6 kDa, 
which represents NF-YC2 tagged with split YFP, and a second band at 27 kDa representing a 
cleavage version of the protein. Blot is representative of three experiments. 
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4.3.4.1 Testing proteins interaction between NF-YA2, NF-YB2 and NF-

YC2 subunits in N. benthamiana using BiCAP assay. 

Having seen that the BiCAP technique can pull down NF-YB2/C2 dimer, it was 

hypothesized that this method could be used in combination with NF-YA2 

construct containing a smaller tag, such as FLAG tag. This method would 

circumvent the steric hindrance caused by the YFP tag, which may prevent the 

NF-YA2 interaction with the other two subunits. Hence, a p35S:FLAG-NF-YA2 

construct was co-infiltrated into N. benthamiana leaves together with the other 

two constructs p35S:NF-YC2-YFPC and p35S:YFPN-NF-YB2 and to try to detect 

FLAG-NF-YA2 protein bound to the dimer (Figure 4.4D), two experiments were 

performed. In the first experiment p35S:NF-YC2-YFPC and p35S:YFPN-NF-YB2 were 

immunoprecipitated by GFP-trap beads and a western blot was performed using 

FLAG-HRP antibody to determine whether the NF-YA2 subunit was precipitated 

in a complex with NF-YB2 and NF-YC2. However, no FLAG signal was detected in 

the western blot analysis (data not shown).  

Because in mammals, the NF-YB and NF-YC dimer forms in the cytoplasm and then 

moves into the nucleus where it can bind NF-YA subunit, it was hypothesized that 

there would be a larger amount of NF-YB2/C2 dimer in the cell than NF-

YA2/B2/C2 trimer. Hence in the second experiment the NF-YA2 construct was 

targeted. Anti-FLAG beads were used to immunoprecipitate FLAG-NF-YA2 protein 

and a western blot performed using GFP-HRP antibody to determine if NF-YB2 

and NF-YC2 subunits were also pulled down. It was hypothesized that if the three 

subunits interact in planta then the two YFP tagged subunits (p35S:NF-YC2-YFPC 

+ p35S:YFPN-NF-YB2) would be co-immunoprecipitated with FLAG-NF-YA2, and 

the C terminal construct of YFP detected using the GFP-HRP antibody. However, 

this experiment did not demonstrate co-immunoprecipitation of the three 

subunits (Figure 4.9). The positive control p35S:GFP-NF-YB2 showed the presence 

of NF-YB2-GFP tagged protein of the expected size (46.9 kDa) and a second  band 

representing free GFP (27 kDa),  proving the functionality of GFP antibody. 

Untagged p35S:NF-YB2 was used as a negative control and no GFP signal was 
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detected. In the other samples, anti-GFP-HRP did not detect GFP signal, 

suggesting that FLAG beads were not able to pull down the NF-YB2/NF-YC2-YFP 

dimer. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WB: α - GFP 
  

 
 
Figure 4.9 – Immunoprecipitation with FLAG beads and immunoblotting using GFP-HRP 
antibody. p35S:NF-YB2 (untagged) single construct was used as a negative control. p35S:GFP-NF-
YB2 was used as a positive control, showing a band of the expected size of the NF-YB2-GFP tagged 
protein (46.9 kDa) and a second  band representing free GFP (~27kDa). The infiltration of single 
construct p35S:YFPN-NF-YB2 and p35S:NF-YC2-YFPC did not show any signal demonstrating these 
constructs are not immunoprecipitated by the FLAG beads. Co-infiltration of p35S:YFPN-NF-YB2 + 
p35S:NF-YC2-YFPC and p35S:YFPN-NF-YB2 + p35S:NF-YC2-YFPC + p35S:FLAG-NF-YA2 did not show 
any bands. The blot is representative of three independent experiments. The Coomassie Brilliant 
Blue (CBB) stained on the bottom shows the large subunits of Rubisco as an indication of total 
protein loading. 
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To prove that the FLAG beads and FLAG antibody were functional, p35S:FLAG-NF-

YB2 and the sample containing p35S:NF-YC2-YFPC + p35S:YFPN-NF-YB2 + p35S:NF-

YA2-FLAG were immunoprecipitated using FLAG beads. Western blot analysis 

with anti FLAG-HRP antibody was subsequently performed to detect the FLAG 

tagged fusion proteins (Figure 4.10). p35S:FLAG-NF-YB2 was used as a positive 

control, and resulted in a band indicating the presence of the FLAG tagged protein 

of the expected size (~20kDa). Untagged p35S:NF-YB2 was used as a negative 

control, and no bands were detected. In addition, infiltration of the single 

p35S:NF-YC2-YFPC and p35S:YFPN-NF-YB2 constructs, or these two constructs 

together, did not result in bands as expected. Meanwhile in the sample co-

infiltrated with p35S:NF-YC2-YFPC,  p35S:YFPN-NF-YB2 and p35S:NF-YA2-FLAG, a 

band of ~32 kDa, identified the tagged NF-YA2 subunit. Hence the FLAG beads 

successfully immunoprecipitated NF-YA2, suggesting in the previous experiment 

that NF-YA2 was successfully immunoprecipitated but did not co-

immunoprecipitate NF-YB2 and NF-YC2 subunits. 
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 WB: α - FLAG 
 

 
Figure 4.10 – Immunoprecipitation with FLAG beads and Immunoblotting using FLAG-HRP 
antibody. p35S:NF-YB2 (untagged) single construct and p35S:GFP-NF-YB2 were used as negative 
controls and no bands were detected. p35S:FLAG-NF-YB2 was used as a positive control, which 
showed the presence of the FLAG tagged protein of the expected size (~20 kDa). The infiltration 
of single construct p35S:YFPN-NF-YB2 and p35S:NF-YC2-YFPC and the co-infiltration of 
p35S:YFPN:NF-YB2 + p35S:NF-YC2:YFPC did not show any signal as expected. The sample co-
infiltrated with p35S:YFPN:NF-YB2, p35S:NF-YC2:YFPC and p35S:FLAG:NF-YA2, showed a band of 
~32 kDa, identifing the NF-YA2 subunit. The Coomassie Brilliant Blue (CBB) stained on the bottom 
shows the large subunits of Rubisco as an indication of total protein loading. 
 
To confirm that GFP beads and anti GFP-HRP antibody were working properly, 

western blot analysis on the same samples as the FLAG blot (Figure 4.10) using 

the anti-GFP antibody after immunoprecipitation with GFP beads was performed 

(Figure 4.11). YFP was only detected in N. benthamiana leaves co-infiltrated with 

p35S:NF-YC2-YFPC + p35S:YFPN-NF-YB2 and p35S:NF-YC2-YFPC + p35S:YFPN-NF-

YB2 + p35S:FLAG-NF-YA2, showing a protein band of the expected size (36.6 kDa), 

representing the NF-YC2 (23.1 kDa) subunit fused with split YFP (13.5 kDa) 

(because the antiGFP-HRP antibody recognizes the C-terminal region of YFP). No 

GFP signal was detected in leaves infiltrated with either p35S:NF-YC2-YFPC or 

p35S:YFPN-NF-YB2 alone as expected because the split YFP fragments should not 

be immunoprecipitated by the GFP beads. Infiltration of p35S:NF-YB2 (untagged) 
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single construct was used as a negative control and no bands were detected. GFP-

tagged NF-YB2 and NF-YC2 were used as positive controls; both samples showed 

the expected size of the GFP tagged protein (47 kDa and 50 kDa respectively), a 

band representing free GFP (27 kDa) and a band around 32 kDa which perhaps is 

a cleavage version of the tagged protein.  

In summary both experiments were unable to detect in planta interactions 

between NF-YA2 and the dimer NF-YB2/C2. This is consistent with the results of 

the BiFC assay, strengthening the evidence that NF-YA2 is not able to form a 

complex with NF-YB2 and NF-YC2 in N. benthamiana. However, there are other 

reasons why a true interaction may not be identified. All this work has to be done 

using tagged proteins and the position of the tag on NF-YB2 and NF-YC2 proteins 

influence whether they can form a dimer. Although one orientation allows dimer 

assembly, the tags may block NF-YA2 binding site or influence the conformation 

to prevent binding.  
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 WB: α - GFP 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11– Immunoprecipitation with GFP-trap beads and immunoblotting using GFP-HRP 
antibody. p35S:NF-YB2 (untagged) single construct was used as negative control, no bands were 
detected. GFP-tagged NF-YB2 and NF-YC2 were used as positive control, both samples showed 
the expected size of the GFP tagged protein (47 kDa and 50 kDa respectively). A band representing 
free GFP (27 kDa) and a second band ~32 kDa, were also showed in both samples. The infiltration 
of single construct p35S:YFPN-NF-YB2 and p35S:NF-YC2-YFPC did not show any signal. Co-
infiltration of p35S:YFPN-NF-YB2 + p35S:NF-YC2-YFPC and p35S:YFPN-NF-YB2 + p35S:NF-YC2-YFPC + 
p35S:FLAG-NF-YA2, showed a band of 36.6 kDa (23.1 kDa + 13.5 kDa). Blot is representative of 
three experiment. 
 
 

4.3.5 Standard co-immunoprecipitation (Co-IP) of transiently 

expressed NF-YA2 epitope tagged protein in N. 

benthamiana to identify the complex.  

Because using BiCAP method to prove the trimer did not detect the NF-YA2 

subunit a standard co-immunoprecipitation (Co-IP) method using N. 

benthamiana leaves was performed to further validate the existence of NF-

YA2/B2/C2 trimer in planta. This time NF-YA2, which is localized exclusively in the 

nucleus, was GFP tagged and NF-YB2 or NF-YC2 subunit were FLAG tagged. This 

would help to identify the trimer of interest if the NF-YB2/C2 dimer is able to bind 
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different NF-YAs or TFs than NF-YA2. So p35S:GFP-NF-YA2 was co-infiltrated in N. 

benthamiana using the following combinations:  

1) p35S:GFP-NF-YA2 + p35S:NF-YC2-FLAG + p35S:NF-YB2  

2) p35S:GFP-NF-YA2 + p35S:FLAG-NF-YB2 + p35S:NF-YC2  

It was hypothesized that immunoprecipitation of GFP tagged NF-YA2 protein 

using GFP- trap beads should enable any associated NF-YB2 or NF-YC2 FLAG 

tagged subunits to be isolated. This would demonstrate that NF-YA2 is able to 

form a complex with NF-YB2 and NF-YC2 in planta. Western blots were performed 

on the same samples using anti-GFP and anti-FLAG antibodies. Protein samples 

from leaves infiltrated with p35S:GFP-NF-YA2 were used as a positive control. 

However, the anti-GFP antibody only detected a band around 27 kDa which is 

likely to be free GFP and a second band (~ 32 kDa) which could be a cleaved 

product (Figure 4.12). The full-length NF-YA2-GFP tagged protein (59 kDa) was not 

detected. We know from the confocal microscopy that p35S:GFP-NF-YA2 is 

expressed upon infiltration and crucially it is only found in the nucleus. Hence it 

is likely that the GFP-NF-YA2 protein is being cleaved during protein extraction. It 

is also possible that the GFP within a fusion protein is not accessible to the 

antibody, whereas the cleaved GFP is accessible, so the immunoprecipitation 

enriches for free GFP and does not pull down the intact fusion protein. The other 

two immunoprecipitated samples, containing p35S:GFP-NF-YA2 + p35S:NF-YC2-

FLAG + p35S:NF-YB2 and p35S:GFP-NF-YA2 + p35S:FLAG-NF-YB2 + p35S:NF-YC2 

also showed a single band corresponding to free GFP. Subsequently, a western 

blot using anti-FLAG-HRP antibody did not detect any FLAG tagged NF-Y proteins 

after immunoprecipitation of GFP-NF-YA2 using GFP-trap beads. Only a single 

band around 100 kDa (Figure 4.12B) was detected in the crude protein extraction 

from tissue infiltrated with p35S:GFP-NF-YA2 + p35S:NF-YC2-FLAG + p35S:NF-YB2. 

This could be an unspecific band and was not detected in repeat experiments.  

However, as we cannot be certain full length NF-YA2 was immunoprecipitated 

(Figure 4.12A) it is impossible to interpret these results in terms of NF-Y subunit 

interaction.                        
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IP: GFP trap beads 

WB: α - GFP 

 
 

Figure 4.12- Co-immunoprecipitation (Co-IP) of transiently expressed NF-YA2-GFP tagged 
protein in N. benthamiana. GFP-tagged NF-YA2 was infiltrated using A. tumefaciens (strain 
GV3101) in N. benthamiana leaves and immunoprecipitated using GFP-trap beads. Crude plant 
extract (Crude), unbound fraction (Unbound) and the immunoprecipitated proteins (IP) were 
separated by SDS-PAGE.  A) GFP-HRP antibody was used for the immunoblots. p35S:GFP-NF-YA2 
showed the presence of a protein band at 32 kDa. Arrows show free GFP band (~27 kDa) in all 
three immunoprecipitated (IP) samples. The Coomassie Brilliant Blue (CBB) stained on the bottom 
shows the large subunits of Rubisco as an indication of total protein loading. B) FLAG-HRP antibody 
was used for the immunoblots and did not detect any NF-Ys  FLAG tagged in the IP samples. An 
unspecific band in the crude sample containing p35S:GFP-NF-YA2 + p35S:NF-YC2-FLAG + p35S:NF-
YB2 of around 100 kDa is visible, representing a cleaved product. The Coomassie Brilliant Blue 
(CBB) stained on the bottom shows the large subunits of Rubisco as an indication of total protein 
loading. Blot is representative of three experiments. 
 

 

Confocal microscopy imaging of N. benthamiana leaves with transient expression 

of p35S:GFP-NF-YA2 and the other two combinations was performed to test if the 

expression of the three subunits together would change NF-YA2 localization and 

signal intensity. This analysis does not show any differences in NF-YA2 (Figure 

4.13). This means that the presence of all three subunits do not change the 

expression of p35S:GFP-NF-YA2, showing a clear GFP nuclear localization in all 

three samples. Also, it appears that GFP is not localized in other cell 
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compartments besides the nucleus, so no free GFP is detectable and this could 

suggest that the cleavage of the protein probably occurs during the extracting 

process. 

 

 
Figure 4.13 - Confocal microscopy imaging of Nicotiana benthamiana leaves with transient 
expression of p35S:GFP-NF-YA2. Pictures were taken of Nicotiana benthamiana epidermal cells 
2 days post infiltration with A. tumefaciens (strain GV3101) containing p35S:GFP-NF-YA2 subunit. 
Panels display the merge image GFP + bright-field. Pictures represent respectively p35S:GFP-NF-
YA2; p35S:GFP-NF-YA2 + p35S:FLAG-NF-YB2 + p35S:NF-YC2 and p35S:GFP-NF-YA2 + p35S:NF-YC2-
FLAG + p35S:NF-YB2. In all three pictures NF-YA2 is localized in the nucleus and with the same 
signal intensity. Experiments were performed in biological replicates. White scale bar represents 
50 µm. 
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4.4 Discussion 

4.4.1 Assembly of an NF-Y trimer  

BiFC assay on N. benthamiana cells performed in this chapter showed that NF-

YB2 and NF-YC2 are able to hetero-dimerize. These results are confirmation of the 

Y2H analysis (Calvenzani et al. 2012) where it was tested the ability of each 

member of plant NF-YB and NF-YC subunits to dimerize. Specifically, it was found 

that NF-YB2 and NF-YC2 have a good affinity and that in general NF-YB and NF-YC 

subunits are able to hetero-dimerize in yeast. However, it is important to consider 

the possibility that the Arabidopsis NF-YA2, NF-YB2 and NF-YC2 subunits could 

interact with the Benthamiana orthologues genes, according to their high degree 

of sequence similarity. These promiscuous interactions between NF-Y TFs from 

the two species, Arabidopsis and Benthamiana, could cause artefacts due to the 

sequestration of NF-Y subunits, essential for their dimerization in BiFC 

experiments. Hence, the fact that a strong signal was observed only in the 

p35S:YFPN-NF-YB2 and p35S:NF-YC2-YFPC combination and did not occur 

between other subunits in different orientations, could be explained by these 

promiscuous interactions. 

In this chapter, BiFC analysis allowed to localize the dimerization between NF-YB2 

and NF-YC2, which occurs in the nucleus and in the cytoplasm. The same 

localization of the NF-YB/NF-YC dimer was observed in mammals where the 

association of the NF-Y trimer follows a strict stepwise pattern (Sinha et al. 1995). 

Initially, NF-YB/NF-YC dimer is formed in the cytoplasm and then it is translocated 

into the nucleus as hetero-dimer to recruit the NF-YA subunit and generate the 

functional NF-Y hetero-trimer (Kahle et al. 2005; Frontini et al. 2004). This NF-Y 

assembly mechanism seems to be conserved in plants.  

The subcellular localization of NF-YA2, NF-YB2 and NF-YC2 on agro-infiltrated N. 

benthamiana leaves revealed that NF-YA2 is exclusively localized in the nucleus 

being consistent with a previous study where NF-YA2 was localized in the nucleus 

of Arabidopsis leaf cells transiently transformed via particle bombardment 

(Hackenberg et al. 2012). Meanwhile NF-YC2 and NF-YB2 were detected in both 
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nucleus and cytoplasm of N. benthamiana leaf cells. These results would confirm 

the hypothesis that NF-Ys in plants may behave as NF-Ys in mammals. Hence NF-

YA2 is only present in the nucleus where it should join the hetero-dimer and NF-

YB2 and NF-YC2 were detected in the cytoplasm as single subunits or as part of 

the hetero-dimer, and in the nucleus as hetero-dimer since they translocate 

together (Frontini et al. 2004). However previous studies showed that in 

Arabidopsis NF-YC2 was detected only in the nucleus after transformation of 

leaves using particle bombardment (Hackenberg et al. 2012) and in transgenic 

plant expressing constitutively tagged forms of NF-YC2 (Liu and Howell 2010). 

Meanwhile Arabidopsis NF-YB subunits were localized only in the cytoplasm, 

specifically NF-YB10 was detected in the cytoplasm of epidermal cells 

(Hackenberg et al. 2012) and NF-YB3 was localized in the cytoplasm of root cells 

(Liu and Howell 2010). This could be explained by the fact that NF-YB subunits in 

Arabidopsis cannot enter in the nucleus unless it dimerizes with NF-YC, in fact co-

expression of a NF-YC subunit allows NF-YB to be translocated into the nucleus 

(Hackenberg et al. 2012).  

Interestingly, NF-YB2 and NF-YC2 did not show pair interaction with NF-YA2 

subunit in the BiFC assay performed in this study, suggesting that NF-YA2 may 

need the interphase NF-YB2/NF-YC2 to form the hetero-trimer. The same result 

was revealed in Y2H analysis presented by Hackenberg et al. (2012) where single 

NF-YB and NF-YC subunits almost never interacted with NF-YA subunits.  Different 

approaches, such as BiCAP and standard CoIP, were used in this chapter to 

determine whether NF-YA2 forms an active trimer with NF-YB2 and NF-YC2. 

However, all of them did not demonstrate this interaction. It is important to 

consider that the potential interference of the tag is still an issue. Indeed, even if 

the GFP construct seems the most reliable, GFP tagged NF-YA2 protein appears 

to be unstable and cleave during extraction.  Moreover, there is the possibility 

that the hypothesized heterotrimer is formed under a particular condition, such 

as pathogen attack or specific developmental plant response. In this case detect 

the pair interaction between NFYA2, NFYB2 and NFYC2 subunits in physiological 
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condition can be challenging. Hence, it would be necessary to try BiFC assay under 

different conditions.  

 

4.4.2 Conclusion 

In this chapter, an alternative and novel method such as BiCAP assay was used to 

identify NF-Y hetero-trimers. This assay brings together the advantage of the BiFC 

method to identify and localize protein-protein pairwise interactions, and the 

specificity of the co-immunoprecipitation assay. Strong evidence for dimerization 

of NF-YB2 and NF-YC2 were found in this study, however the BiFC and BiCAP 

assays in this chapter did not provide any evidence for the NF-YA2/B2/C2 hetro-

trimer. Hence there is the possibility that NF-YA2, NF-YB2 and NF-YC2 are not able 

to interact in N. benthamiana. Following investigation will be done on Arabidopsis 

epitope tagged NF-YA2, NF-YB2 and NF-YC2, to investigate the existence of 

putative trimer in planta. 
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Chapter 5 

5. Elucidating NF-Ys protein complexes using 

Arabidopsis transgenic lines. 

5.1 Introduction 
Considering the limitations of the BiFC method, which only enables testing of 

protein-protein interactions (PPIs) in a pairwise manner and can compromise the 

interacting properties of protein due to the steric hindrance of the tag, it is crucial 

to complement the BiFC results obtained in the previous chapter with alternative 

methods.  

Nowadays there are two major methodologies to express proteins in plants. The 

first is the development of a stable transgenic line constitutively expressing the 

protein of interest, which becomes heritable in subsequent generations. The 

second is through transient expression of the target protein by agro-infiltration in 

host plant such as Nicotiana benthamiana. This method, without any doubt, is 

faster than generate stable transgenic plant lines, however these proteins are 

expressed in a different plant system and this can lead to artifacts.  

Additionally, as mentioned previously, only few reports were able to identified 

active and functional NF-Y complexes (Hou et al. 2014, Liu and Howell 2010, Sato 

et al. 2014), combining BiFC assay with yeast-3-hybrid (Y3H) system. These 

methodologies suffer from some limitations considering that the interaction is 

tested in a heterologous environment (Cottier et al. 2011). For this reason, the 

use of Arabidopsis transgenic line stably expressing the protein of interest, would 

help to circumvent the potential problems associated with these methods, 

allowing to investigate protein-protein interaction in planta. In this context, a 

good assay to enable the identification of larger protein complexes in vivo, is the 

immunoprecipitation of the tagged target proteins followed by identification of 

other interacting proteins co-immunoprecipitated (Co-IP) using Mass 
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Spectrometry (MS) analysis. In order to be able to specifically purify a protein 

complex from a total protein extract, the target protein is fused to an affinity 

tag, such as FLAG or GFP tag, and captured and immobilized to an affinity resin 

such as anti-GFP or anti-FLAG agarose beads. This method allows non-interacting 

proteins to be washed off the resin, while the whole protein complex can stay 

immobilized. Proteins involved in the interaction after trypsin digestion are 

analyzed by MS, which recognizes each component using a mass spectra database 

(Gingras et al. 2007, Ransone 1995). There are many obvious advantages of this 

method. First of all, this technique does not require prior knowledge of the 

interacting proteins and for this reason it is ideally suited to gain new insights into 

a complex of interest. Second, it can be conducted under native physiological 

conditions, allowing to identify in vivo binding, since the bait protein can be 

purified from any tissue where it is being expressed. Third, the approach allows 

to pull down the whole protein complex, rather than single components at a 

time, and can be used in combination with cross-link methods which fix the 

binding between protein complex components (Vasilescu et al. 2004). Despite 

these numerous advantages, Co-IP assay presents some disadvantages. In fact, 

abundant proteins such as tubulin, actin and ribosomal proteins can be co-

immunoprecipitated, together with heat shock proteins, generating a 

background signal; for this reason it is important to perform appropriate 

negative controls (Ransone 1995).  

Co-IP experiments can be carried out using a specific antibody raised against the 

bait protein, allowing the isolation of the endogenous protein in its native 

context. Hence, it would not be necessary to create transgenic epitope tagged 

lines. However, even if this approach has been used in plants (Konig et al. 2014, 

Pertl-Obermeyer et al. 2014, Qi and Katagiri 2009), it is not very popular in the 

field. This is mostly due to the lack of availability of plant protein antibodies, 

together with the fact that the production of specific antibodies can be expensive 

and inefficient. Moreover, it is important to consider that TFs are generally part 

of large protein families and so getting a specific antibody for each subfamily 
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member can be difficult due to their high sequence similarity, while generic 

antibodies are usually very specific and suitable for generic purification protocols 

(Bontinck et al. 2018). Therefore, the use of tags such as FLAG and GFP is currently 

the standard practice in MS experiments. Overall, GFP and FLAG tags are the most 

popular for Co-IP experiments in plants due to high-quality anti-GFP and anti-

FLAG antibodies currently available. Additionally, the GFP tag can also be used to 

perform protein localization analysis, while the FLAG tag is a very small tag 

minimizing its effect on protein folding and functionality.  

 

5.2 Chapter aims 
Based on these considerations, the general aim of this chapter was to analyze 

Arabidopsis NF-YA2, NF-YB2 and NF-YC2 epitope tagged lines (with FLAG or GFP 

tag at the N- or C-terminal of the target protein) using Co-IP and MS. 

Immunoprecipitation of the epitope-tagged protein stably expressed in planta, 

should enable identification of any bound proteins using MS. This could elucidate 

a NF-YA2/NF-YB2/NF-YC2 trimer in planta as well as identify other functional NF-

Y complexes under physiological conditions. The epitope GFP tagged lines will also 

allow localization of NF-YA2, NF-YB2 and NF-YC2 in the plant cell. 
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5.3 Results 

5.3.1 Subcellular localization of GFP-tagged NF-YA2, NF-YB2 and 

NF-YC2 stably expressed in Arabidopsis leaves. 

Previous analysis (Chapter 4) performed on N. benthamiana leaves agro-

infiltrated with p35S:GFP-NF-YA2, p35S:GFP-NF-YB2 and p35S:GFP-NF-YC2 

constructs, revealed a nuclear localization of NF-YA2 subunit and a nuclear and a 

cytoplasmic localization of NF-YB2 and NF-YC2 subunits in the transiently 

transformed cells. The following step was then to confirm the subcellular 

localization observed in N. benthamiana using epidermal leaf cells of Arabidopsis 

lines stably expressing NF-Y GFP tagged proteins, described in Table 3.1.  Hence, 

nf-yb2::35S:GFP-NF-YB2 and Col-0::35S:NF-YC2-GFP lines were visualized under 

the confocal microscope and the result, shows in Figure 5.1, indicated that NF-

YB2 and NF-YC2 subunits were localized in both cytoplasm and nucleus. However, 

Col-0::p35S:GFP-NF-YA2 lines did not show fluorescence in any cell compartments 

(data no shown), suggesting that the p35S:GFP-NF-YA2 insert is not expressed in 

these mutants, in agreement with qPCR analysis which revealed that the 

expression level of NF-YA2 gene in these lines is not significantly different to Col-

0 (Figure 3.13). Subsequently, nf-ya2::pNF-YA2:NF-YA2-GFP line was analyzed, 

giving a predominant signal in the nucleus. These localization, in line with the 

previous analysis performed on N. benthamiana (Chapter 4), is also consistent 

with previous studies, which showed that NF-YB and NF-YC in plants dimerize in 

the cytoplasm and then translocate to the nucleus (Laloum et al. 2013) where 

they can join the NF-YA to form the active hetero-trimer. According to this 

transcriptional regulation system reported in several papers (Hackenberg et al. 

2012, Laloum et al. 2013, Zhao H. et al. 2016), the NF-Y complex composed by the 

tree subunit then binds to CCAAT box in the promoter region to regulate the 

expression of the target gene (Zhao H. et al. 2016).  
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Figure 5.1 –  Subcellular localization of NF-YA2, NF-YB2 and NF-YC2 GFP tagged subunits stably 
expressed in Arabidopsis lines. Panels display the merge image GFP + bright-field. Leaf of 4 weeks 
old Arabidopsis expressing NF-YA2, NF-YB2 and NF-YC2 GFP tagged were visualized under confocal 
microscope. A) Col-0 Arabidopsis leaves, no fluorescence is detected (Negative control) B) The 
florescence signal in Arabidopsis nf-ya2::pNF-YA2:NF-YA2-GFP line is predominantly detected in 
the nucleus. C) In Arabidopsis nf-yb2::p35S:GFP-NF-YB2 lines the fluorescence is detected in the 
nucleus and cytoplasm. D) In Arabidopsis Col-0::p35S:NF-YC2-GFP lines the GFP signal is visible in 
nucleus and cytoplasm. Representative images from three independent experiments are shown. 
Scale bars, 50 µm. 
 

5.3.2 Co-immunoprecipitation of NF-YA2, NF-YB2 and NF-YC2 

subunit.   

Arabidopsis lines with NF-YA2, NF-YB2 and NF-YC2 GFP or FLAG tagged in 

different orientation (N-terminal or C-terminal) were generated to circumvent 

protein functionality issues may cause by the steric hindrance of the tag. This 

because due to the large size of the GFP tag, even if it is more accessible to the 

antibody and easy to immunodetect, it can interfere with protein folding and 

protein functionality. Hence, Arabidopsis epitope NF-Y FLAG tagged lines were 

also generated. Another factor to consider in Co-IP experiment is the tag position 

which can affect protein solubility. Therefore, Arabidopsis lines with the tag 
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placed at both N-terminal or C-terminal of the protein were used.  It was reported 

that tags at N-terminal fusions have an enhanced protein expression and protein 

solubility, while at C-terminal of the protein are less likely to interfere with any 

signal peptides (Dyson et al. 2004). The lines generated in this study (Table 3.1) 

have the fusion proteins (NF-YA2, NF-YB2 and NF-YC2) under the 35S promoter, 

in addition Arabidopsis lines with NF-YA2 under the native promoter were 

generated. 

 

5.3.2.1 Co-Immunoprecipitation of NF-YC2 

Four homozygous overexpressor NF-YC2-GFP tagged lines, two N terminal tagged 

and two C terminal tagged lines (Col-0::p35S:NF-YC2-GFP_1, Col-0::p35S:NF-YC2-

GFP_3, Col-0::p35S:GFP-NF-YC2_1, Col-0::p35S:GFP-NF-YC2_2) were grown 

under controlled conditions, together with p35S:HA:GFP line as a positive control. 

Col-0::p35S:NF-YC2-GFP_1 and Col-0::p35S:NF-YC2-GFP_3 lines were generated 

by Emily Breeze (2014), while Col-0::p35S:GFP-NF-YC2_1 and Col-0::p35S:GFP-NF-

YC2_2 were generated in this study (see chapter 3). Two fully expanded leaves 

were harvested and total protein was extracted for each line. Equal amount of 

protein was loaded onto an SDS-PAGE agarose gel to separate the denatured 

proteins. Successively western blot analysis using anti-GFP was carried out to 

detect the expression of the NF-YC2-GFP tagged proteins in each line (Figure 5.2). 

A protein band of 22 kDa was detected in all of the overexpressor NF-YC2 lines 

analyzed, which may represent a cleaved product of the GFP. The NF-YC2-GFP 

labelled protein (50 kDa) was not detectable in the four lines, while the positive 

controls (p35S:HA:GFP line) showed two bands: a GFP band of the expected size 

27 kDa and another band potentially indicating a cleaved version of the GFP (22 

kDa). This result indicates a low NF-YC2 protein level, so immunoprecipitation 

using anti-GFP agarose beads was carried out to detect NF-YC2-GFP tagged 

protein. 
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WB: α – GFP 

 

 
 
Figure 5.2 - Expression of NF-YC2-GFP in Arabidopsis epitope tagged lines. Total protein was 
extracted from p35S:GFP:HA line (positive control) and Col-0::p35S:NF-YC2-GFP_1, Col-
0::p35S:NF-YC2-GFP_3, Col-0::p35S:GFP-NF-YC2_1, Col-0::p35S:GFP-NF-YC2_2 lines. Proteins 
were separated by SDS-PAGE and western blot was performed using anti-GFP. A band indicating 
HA tagged GFP (27 kDa) is visible in all positive control samples together with a second band (22 
kDa) which could be a cleaved GFP product. All four NF-YC2 tagged lines present the band at 22 
kDa. The Coomassie Brilliant Blue (CBB) stain on the bottom shows the large subunits of Rubisco 
as an indication of total protein loading.  
 
To proceed with the biochemical characterization of NF-YC2, upper rosette leaves 

were harvested after 5 weeks, when the leaves were fully expanded. 

Approximately 20 g of leaf tissue was used to immunoprecipitate GFP-tagged 

proteins from the four overexpressors NF-YC2-GFP lines using anti-GFP trap 

beads. An aliquot of the crude total protein extracts (input), unbound protein and 

immunoprecipitated (IP) fractions were separated by SDS-PAGE and western blot 

was performed using an anti-GFP antibody. The two C-terminal fusion proteins of 

NF-YC2 (Col-0::p35S:NF-YC2-GFP_1, Col-0::p35S:NF-YC2-GFP_3) and the 

p35S:HA:GFP control lines showed considerable enrichment of the tagged protein 

following immunoprecipitation (Figure 5.3). In the IP fraction (blot on the right) a 

band of NF-YC2-GFP at the expected size 50 kDa (27 kDa GFP +23.1 kDa NF-YC2) 

was visible in both lines, Col-0::p35S:NF-YC2-GFP_1 line showed also a second 

band at 27 kDa representing free GFP. However, both NF-YC2-GFP lines did not 
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show bands in the crude and the unbound fraction, while the positive control 

(p35S:HA:GFP) showed the expected GFP band at 27 kDa in all three fractions, 

with a more significant signal in the IP.   

 

IP: GFP trap beads 

WB: α – GFP 

 

 

 
Figure 5.3 – The two C-terminal fusion proteins of NF-YC2 showed a considerable enrichment 
following immunoprecipitation. GFP-tagged NF-YC2 was immunoprecipitated from leaf material 
using anti-GFP beads. Crude plant extract, unbound fraction (blot on the left) and the 
immunoprecipitated proteins (blot on the right) were separated by SDS-PAGE and anti-GFP 
antibody was used for the immunoblots. Both Col-0::p35S:NF-YC2-GFP_1, Col-0::p35S:NF-YC2-
GFP_3 show a band at 50.0 kDa representing NF-YC2-GFP protein in the IP fraction (blot on the 
right), a second band at 27 kDa is also visible in Col-0::p35S:NF-YC2-GFP_1. In the Crude and 
Unbound fraction of both lines no band are visible. GFP (27 kDa) band is showed in the positive 
control (p35S:HA:GFP) in all three fractions. 
 
The two N-terminal fusion proteins of NF-YC2 (Col-0::p35S:GFP-NF-YC2_1 and 

Col-0::p35S:GFP-NF-YC2_2) and the p35S:HA:GFP control lines also showed an 

enrichment in the immunoprecipitation using GFP-trap beads. The western blot 

in Figure 5.4 shows the immunoprecipitation of NF-YC2-GFP fusion protein in Col-

0::p35S:GFP-NF-YC2_1 and Col-0::p35S:GFP-NF-YC2_2  lines. A single band at 50 
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kDa representing NF-YC2-GFP protein in the IP fraction is shown in the Col-

0::p35S:GFP-NF-YC2_1 line. A strong GFP signal was also detected in the IP 

fraction of Col-0::p35S:GFP-NF-YC2_2 line, showing a band at 50 kDa representing 

NF-YC2-GFP protein and a second one representing GFP (27 kDa). The positive 

control (p35S:HA:GFP) presented the expected GFP band at 27 kDa. 

 

IP: GFP trap beads 

WB: α – GFP 

 

 

 
Figure 5.4 – Col-0::p35S:GFP-NF-YC2_1 and Col-0::p35S:GFP-NF-YC2_2 lines showed a 
considerable enrichment following immunoprecipitation. GFP-tagged NF-YC2 was 
immunoprecipitated from leaf material using anti-GFP beads. Crude plant extract, unbound 
fraction and the immunoprecipitated proteins (IP) were separated by SDS-PAGE and anti-GFP 
antibody was used for the immunoblots. Col-0::p35S:GFP-NF-YC2_1 in the IP fraction showed a 
single band at 50.0 kDa representing NF-YC2-GFP protein. Col-0::p35S:GFP-NF-YC2_2 in the IP 
fraction showed a very strong GFP signal: a band at 50.0 kDa representing NF-YC2-GFP protein is 
visible together with a band at 27 kDa representing GFP. GFP (27 kDa) band is showed in the IP 
fraction of the positive control (p35S:HA:GFP). The Crude and Unbound fraction of Col-
0::p35S:GFP-NF-YC2_1 and p35S:HA:GFP show a band at 22 kDa, probably representing a cleaved 
version of the GFP. 
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After observing a clear band at the expected size (50 kDa) indicating NF-YC2-GFP 

protein in all four lines analyzed, samples were prepared for mass spectrometry 

analysis. 

 

5.3.2.2 MS Identification of NF-YC2 interacting proteins 

Co-immunoprecipitated protein from GFP-trap beads, was digested with trypsin 

and run on the MS for identification of NF-YC2 interacting proteins. The analysis 

showed a good sequence coverage for the bait corresponding to 43% (Figure 5.5). 

A post-translational modification such as Methionine (M) oxidation, highlighted 

in green, was also observed, which is commonly found in samples processed for 

MS and does not indicate a functionally relevant modification (Perdivara et al. 

2010). 

 

 
Figure 5.5 – Coverage of NF-YC2 protein sequence. Stably-expressed NF-YC2 is purified and 
detected successfully by mass spectrometry using beads digestion protocol. NF-YC2 sequence 
coverage is highlighted in yellow for peptides that were identified at least once. 43% sequence 
coverage was identified. Post-translational modifications such as Methionine (M) oxidation, 
highlighted in green arises during the sample processing.   
 
 
Two experiments were carried out (Exp1 and Exp2). N-terminal and C-terminal 

fusion proteins of NF-YC2-GFP lines were respectively used in Exp1 and Exp2 

(Table 5.1). NF-YC2 was immunoprecipitated from two independent lines in each 

experiment with 8 unique peptides detected in both Col-0::p35S:GFP-NF-YC2 

lines, 10 peptides in Col-0::p35S:NF-YC2-GFP_1 and 8 peptides in Col-0::p35S:NF-

YC2-GFP_3. MS detected that NF-YB2 was pulled down in both experiments along 

with NF-YC2. Specifically in Exp1, 5 peptides in Col-0::p35S:GFP-NF-YC2_1 line and 

6 peptides in Col-0::p35S:GFP-NF-YC2_2 line of NF-YB2 were identified, while 

Exp2 recognized 8 unique peptides in Col-0::p35S:NF-YC2-GFP_1 line and 7 

unique peptides in Col-0::p35S:NF-YC2-GFP_3 line of NF-YB2. Control samples 

(p35S:HA:GFP) did not show any of these interactions. This suggests that NF-YB2 
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and NF-YC2 could interact with a stoichiometric ratio 1:1. The MS identified also 

a good interaction between NF-YC2 and NF-YB1 subunits, since 4, 6, 4 and 5 

unique peptides of NF-YB1 were found in Col-0::p35S:GFP-NF-YC2_1, Col-

0::p35S:GFP-NF-YC2_2, Col-0::p35S:NF-YC2-GFP_1 and Col-0::p35S:NF-YC2-

GFP_3 lines, respectively. Additionally, NF-YB10 was detected in all lines, with 2 

unique peptides per line, except Col-0::p35S:GFP-NF-YC2_2  which showed 7 

unique NF-YB10 peptides, suggesting another possible heterodimer combination 

with NF-YC2. However, no NF-YA2, or any NF-YA peptides, were detected in this 

analysis. The same result was obtained in initial experiments by Emily Breeze 

(2014).  

In an attempt to identify an interacting A subunit, since the NF-YA2 may join the 

trimer in the nucleus (Kahle et al. 2005, Siefers et al. 2009) a nuclease enrichment 

protocol was performed on these lines to isolate nuclear proteins to try and 

enrich for NF-YA subunits. Additionally, formaldehyde (Sutherland et al. 2008) 

was used as a cross-linker to create covalent bonds between bound proteins, 

however, even with these modifications, MS did not detect any interaction of NF-

YA subunits with NF-YC2 (data not shown).  
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Table 5.1 - Major interactors of NF-YC2. The results from two experiment (Exp1 and 
Exp2) involving NF-YC2 immunoprecipitation and MS. In Exp1 NF-YC2 was 
immunoprecipitated from two independent lines of Col-0::p35S:GFP-NF-YC2_1 and Col-
0::p35S:GFP-NF-YC2_2. In Exp2 NF-YC2 was immunoprecipitated from two independent 
lines of Col-0::p35S:NF-YC2-GFP_1 and Col-0::p35S:NF-YC2-GFP_3. The number of 
exclusive unique peptide hits is shown along with a color code. Control (p35S:HA:GFP) 
showed no NF-Y interactions. 
 

Table 5.2 shows other proteins identified by the MS, which represent putative NF-

YC2 interactors, since they were co-immunoprecipitated together. However, 

these interacting proteins are not consistent across the two experiments, 

suggesting that they could not be real interactors of NF-YC2.  
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Table 5.2 - Other putative interactors of NF-YC2. The results from two experiment (Exp1 and 
Exp2) involving NF-YC2 immunoprecipitation and MS. In Exp1 NF-YC2 was immunoprecipitated 
from two independent lines of Col-0::p35S:GFP-NF-YC2_1 and Col-0::p35S:GFP-NF-YC2_2. In Exp2 
NF-YC2 was immunoprecipitated from two independent lines of Col-0::p35S:NF-YC2-GFP_1 and 
Col-0::p35S:NF-YC2-GFP_3. The number of exclusive unique peptide hits is shown along with a 
color code. Control (p35S:HA:GFP) showed no NF-Y interactions. 
 
 

5.3.2.3 Co-Immunoprecipitation of NF-YB2 

After obtaining evidence that NF-YC2 interacts with NF-YB2 in planta, Arabidopsis 

plants stably over expressing NF-YB2 fused to GFP and FLAG tags were generated, 

to confirm this interaction. Four lines containing 35S:GFP-NF-YB2 (nf-
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yb2::p35S:GFP-NF-YB2_1, nf-yb2::p35S:GFP-NF-YB2_2) and 35S:FLAG-NF-YB2 (nf-

yb2::p35S:FLAG-NF-YB2_1, nf-yb2::p35S:FLAG-NF-YB2_2) in nf-yb2 knock-out 

mutant background, were checked for expression of NF-YB2 protein by 

performing immunoprecipitation followed by immunoblotting. Arabidopsis lines 

containing two different tags (FLAG and GFP) were used to prevent protein 

functionality issues that may be caused by the steric hindrance of the tag. The 

four homozygous overexpressor NF-YB2 tagged lines were grown under 

controlled conditions and immunoprecipitation of NF-YB2 GFP or FLAG tagged 

was performed using anti-GFP or anti-FLAG beads. Crude plant extracts, unbound 

and IP fractions were separated by SDS-PAGE and western blot was carried out 

using the relative antibody (anti-GFP or anti-FLAG). For GFP tagged lines, 

p35S:HA:GFP line was used as positive control, while for FLAG tagged lines a 

p35S:GFP:FLAG line was used. All four lines showed a significant enrichment of 

NF-YB2 protein following immunoprecipitation. Specifically, both nf-

yb2::p35S:GFP-NF-YB2_1 and nf-yb2::p35S:GFP-NF-YB2_2 lines showed a band at 

the expected size 47 kDa (27 kDa GFP +20 kDa NF-YB2) representing NF-YB2-GFP 

in the IP fraction together with a band at 27 kDa representing free GFP and a band 

at 40 kDa possibly representing a cleaved product (Figure 5.6). The positive 

control (p35S:HA:GFP) showed the expected GFP band at 27 kDa in the IP fraction. 

The western blot in Figure 5.7 illustrates the immunoprecipitation of NF-YB2-

FLAG in both nf-yb2::p35S:FLAG-NF-YB2_1 and nf-yb2::p35S:FLAG-NF-YB2_2 

lines, showing a band of 20 kDa in all three fractions, being more consistent in the 

IP fraction. Other bands are present in the crude and unbound fractions, likely 

representing non-specific bands, since in this western blot Bovin Serum Albumin 

(BSA) was used for blocking the membrane and is known to have higher 

nonspecific signal compared to 5% TBS-T milk. In the positive control 

(p35S:GFP:FLAG) a band at 27 kDa is visible in the IP fraction representing the 

GFP-FLAG tag protein. 
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IP: GFP trap beads 

WB: α – GFP 

 

 
 
Figure 5.6 – nf-yb2::p35S:GFP-NF-YC2_1 and nf-yb2::p35S:GFP-NF-YC2_2 lines  showed a 
considerable enrichment of NF-YB2 protein following immunoprecipitation. GFP-tagged NF-YB2 
was immunoprecipitated from leaf material using anti-GFP beads. Crude plant extract, unbound 
fraction and the immunoprecipitated proteins (IP) were separated by SDS-PAGE and anti-GFP 
antibody was used for the immunoblots. Both lines in the IP fraction showed a band at 47 kDa 
representing NF-YB2-GFP protein. In the same fraction the band at 27 kDa is GFP and the band at 
40 kDa is a cleaved product. The positive control showed the GFP band (27 kDa) in the IP fraction. 
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IP: FLAG trap beads 

WB: α - FLAG 

 
 

Figure 5.7 – nf-yb2::p35S:FLAG-NF-YC2_1 and nf-yb2::p35S:FLAG-NF-YC2_2 lines  showed a 
considerable enrichment following immunoprecipitation. FLAG-tagged NF-YB2 was 
immunoprecipitated from leaf material using anti-FLAG beads. Crude plant extract, unbound 
fraction and the immunoprecipitated proteins (IP) were separated by SDS-PAGE and anti-FLAG 
antibody was used for the immunoblots. Both lines in all three fractions (Crude, Unbound, IP) 
showed a single band at 20 kDa representing NF-YB2-FLAG protein, with a stronger band in the IP 
sample. Other bands showed are unspecific bands since in this blot Bovin Serum Albumin (BSA) 
was used for blocking the membrane, this buffer facilitate nonspecific signal. The positive control 
(blot on the right) showed the GFP-FLAG tag protein (27 kDa) band in the IP fraction. 
 

 
 

After seeing a strong expression pattern of NF-YB2 in the IP fraction of all lines 

analyzed, which showed the correct size of the tagged protein, MS analysis was 

performed on these samples to investigate specific NF-Y complexes functioning 

in planta.  
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5.3.2.4 MS Identification of NF-YB2 interacting proteins 

The MS analysis showed 84% sequence coverage for the bait NF-YB2 (Figure 5.8). 

Interestingly, multiple post-translational modifications were identified along the 

protein sequence including the phosphorylation of Serine (S) and Threonine (T) 

and the deamidation of Asparagine (N) and Glutamine (Q) while Methionine 

oxidation is commonly found in samples processed for MS. The presence of these 

modifications could suggest an additional level of NF-YB2 regulation through 

post-translational modification.  

 

 
Figure 5.8 – Coverage of NF-YB2 protein sequence. Stably-expressed NF-YB2 is purified and 
detected successfully by mass spectrometry using beads digestion protocol. NF-YB2 sequence 
coverage is highlighted in yellow for peptides that were identified at least once. 84% sequence 
coverage was identified. Post-translational modifications, highlighted in green, such as Serine (S) 
and Threonine (T) phosphorylation and Asparagine (N) and Glutamine (Q) deamidation was 
observed. Methionine (M) oxidation arises during the sample processing.   
 
Two experiments were carried out (Exp1 and Exp2). NF-YB2-GFP and NF-YB2-

FLAG tagged lines were respectively used in Exp1 and Exp2 (Table 5.3) and NF-

YB2 was immunoprecipitated from two independent lines in each experiment. 

Exp1 was performed twice with Exp1(Rep) as its replicate. Exp1 identified 12 

unique peptides of NF-YB2 in nf-yb2::p35S:GFP-NF-YB2_1 and nf-yb2::p35S:GFP-

NF-YB2_2 lines, while Exp1(Rep) recognized 10 unique peptides in both nf-

yb2::p35S:GFP-NF-YB2 lines. This result is consistent with Exp2, which recognized 

5 and 10 unique peptides of NF-YB2 in nf-yb2::p35S:FLAG-NF-YB2_1 and nf-

yb2::p35S:FLAG-NF-YB2_2 lines respectively. The MS detected that NF-YC2 was 

pulled down in all three experiments along with NF-YB2, in agreement with the 

result obtained in the immunoprecipitation of NF-YC2 GFP tagged protein. Hence, 

6 and 5 unique peptides of NF-YC2 were identified in Exp1 and Exp1(Rep) in both 

lines (nf-yb2::p35S:GFP-NF-YB2_1 and nf-yb2::p35S:GFP-NF-YB2_2), while 3 

peptides were identified in nf-yb2::p35S:FLAG-NF-YB2_1 line and 5 peptides in nf-

yb2::p35S:FLAG-NF-YB2_2 line. Furthermore, NF-YC9 was detected in all lines in 
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both experiments, with 9 and 10 unique peptides in nf-yb2::p35S:GFP-NF-YB2_1 

and nf-yb2::p35S:GFP-NF-YB2_2 lines respectively, 7 peptides of NF-YC9 in both 

lines of Exp1(Rep) and 5 unique peptides of NF-YC9 in nf-yb2::p35S:FLAG-NF-

YB2_1 and nf-yb2::p35S:FLAG-NF-YB2_2 lines. In addition, the MS analysis 

showed another possible interaction of NF-YB2 with NF-YC4, which was 

recognized in Exp1 and Exp2. 8 and 7 NF-YC4 unique peptides were identified in 

nf-yb2::p35S:GFP-NF-YB2_1 and nf-yb2::p35S:GFP-NF-YB2_2 lines respectively, 

while 5 NF-YC4 unique peptides were found in nf-yb2::p35S:FLAG-NF-YB2_1 line 

and 7 in nf-yb2::p35S:FLAG-NF-YB2_2 line. However, no NF-YC4 peptides were 

identified in Exp1(Rep). An interaction between NF-YB2 and NF-YC1 was 

identified only in Exp1(Rep) having 6 unique peptides per line. Controls samples 

(p35S:HA:GFP and p35S:FLAG:GFP) did not show any of these interactions. 

Unfortunately, again (as with the NF-YC2 pull downs) no NF-YA subunits were 

detected in any of these NF-YB2 pull down experiments.  
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Table 5.3 - Major interactors of NF-YB2. The results from two experiments (Exp1 and Exp2) 
involving NF-YB2 immunoprecipitation and MS. In Exp1 NF-YB2 was immunoprecipitated from the 
independent lines nf-yb2::p35S:GFP-NF-YB2_1 and nf-yb2::p35S:GFP-NF-YB2_2. In Exp2 NF-YB2 
was immunoprecipitated from the independent lines nf-yb2::p35S:FLAG-NF-YB2_1 and nf-
yb2::p35S:FLAG-NF-YB2_2. The number of exclusive unique peptide hits is shown along with a 
color code. Controls (p35S:HA:GFP and p35S:FLAG:GFP) showed no NF-Y interacting peptides. 
 

 

Table 5.4 displays other putative NF-YB2 interacting proteins identified by the MS, 

since they were co-immunoprecipitated together. However, these interactors 

appeared not to be consistent across all three experiments, raising doubt 

regarding their ability to form a complex with NF-YB2 protein. Hence, further 

investigation need to be done to elucidate and confirm an involvement of these 

proteins in this interaction.   
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Table 5.4 – Other putative interactors of NF-YB2. The results from two experiments (Exp1 
and Exp2) involving NF-YB2 immunoprecipitation and MS. In Exp1 NF-YB2 was 
immunoprecipitated from the independent lines nf-yb2::p35S:GFP-NF-YB2_1 and nf-
yb2::p35S:GFP-NF-YB2_2. In Exp2 NF-YB2 was immunoprecipitated from the independent lines nf-
yb2::p35S:FLAG-NF-YB2_1 and nf-yb2::p35S:FLAG-NF-YB2_2. The number of exclusive unique 
peptide hits is shown along with a color code. Controls (p35S:HA:GFP and p35S:FLAG:GFP) showed 
no NF-Y interacting peptides. 
 
 

5.3.2.5 Co-Immunoprecipitation of NF-YA2 

Because the MS did not detect NF-YA2 when either NF-YC2 and NF-YB2 were 

immunoprecipitated, the immunoprecipitation of NF-YA2 tagged protein was 

attempted followed by MS of Co-IP. To carry out this analysis Arabidopsis lines 

stably expressing NF-YA2 GFP and FLAG tagged under the NF-YA2 native promoter 

or 35S promoter were generated (Table 3.1). Specifically, nf-ya2::p35S:FLAG-NF-

YA2, Col-0::p35S:FLAG-NF-YA2 and Col-0::p35S:GFP-NF-YA2 lines were checked 

for expression of NF-YA2 protein using immunoprecipitation and western blot 

analysis. Two homozygous independent lines for each of these constructs were 
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grown under controlled conditions and the immunoprecipitation of NF-YA2 

tagged protein was carried out using anti-GFP or anti-FLAG beads, according to 

the tag. For each line crude, unbound and IP fractions were separated by SDS-

PAGE gel and blotted using anti-GFP or anti-FLAG antibody.  

The western blot in Figure 5.9 shows that NF-YA2 could not be detected in the nf-

ya2::p35S:FLAG-NF-YA2_1 and nf-ya2::p35S:FLAG-NF-YA2_2 lines, hence a band 

of the expected size (32 kDa) was not visible in the IP fraction. All bands observed 

in the crude and unbound fractions are unspecific bands, since BSA was used for 

blocking the membrane, which increase nonspecific protein signal but enhance 

the possibility of detecting low abundance protein such as NF-YA2.  nf-yb2:: 

p35S:FLAG-NF-YB2_1 was used as a positive control in this immunoblot, showing 

in the IP and in the crude fractions a band of the expected size 20 kDa, with a 

stronger signal in the IP fraction. 
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IP: FLAG trap beads 

WB: α – FLAG 
 

 
 
Figure 5.9 – NF-YA2 was not immunoprecipitated in nf-ya2::p35S:FLAG-NF-YA2_1 and nf-
ya2::p35S:FLAG-NF-YA2_2 lines. FLAG-tagged NF-YA2 was immunoprecipitated from leaf 
material using anti-FLAG beads. Crude plant extract, unbound fraction and the 
immunoprecipitated proteins (IP) were separated by SDS-PAGE and anti-FLAG antibody was used 
for the immunoblots. Both lines in the IP fraction did not showed a band of the expected size 32 
kDa representing NF-YA2-FLAG protein. nf-yb2::p35S:FLAG-NF-YB2_1 was used as positive 
control, showing a band in the IP fraction of the expected size 20 kDa.  
 

This result is consistent with the immunoprecipitation of NF-YA2-FLAG from Col-

0::p35S:FLAG-NF-YA2_1 and Col-0::p35S:FLAG-NF-YA2_2 lines (Figure 5.10), 

hence even in this experiment no bands representing NF-YA2 tagged protein were 

observed in the IP fraction. Only the positive control nf-yb2::p35S:FLAG-NF-YB2_1 

showed in the IP fraction a band of the expected size 21 kDa. 
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IP: FLAG trap beads 

WB: α – FLAG 

 

 
Figure 5.10 – NF-YA2 was not immunoprecipitated in Col-0::p35S:FLAG-NF-YA2_1 and Col-
0::p35S:FLAG-NF-YA2_2 lines. FLAG-tagged NF-YA2 was immunoprecipitated from leaf material 
using anti-FLAG beads. Crude plant extract, unbound fraction and the immunoprecipitated 
proteins (IP) were separated by SDS-PAGE and anti-FLAG antibody was used for the immunoblots. 
Both lines in the IP fraction did not showed a band of the expected size 32 kDa representing NF-
YA2-FLAG protein. nf-yb2::p35S:FLAG-NF-YB2_1 was used as positive control, showing a band in 
the IP fraction of the expected size 21 kDa.  
 
 
 
The immunoprecipitation of NF-YA2-GFP from Col-0::p35S:GFP-NF-YA2_1 and 

Col-0::p35S:GFP-NF-YA2_2 lines also did not yield detectable NF-YA2 protein (NF-

YA2+GFP= 59.1 kDa) (Figure 5.11). The positive control p35S:HA:GFP lines showed 

a GFP strong band of the correct size (27 kDa) in the IP fraction, suggesting the 

reliability of the pull down and western blot.  
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IP: GFP trap beads 

WB: α – GFP 

 

 

 
Figure 5.11 – NF-YA2 was not immunoprecipitated in Col-0::p35S:GFP-NF-YA2_1 and Col-
0::p35S:GFP-NF-YA2_2 lines. GFP-tagged NF-YA2 was immunoprecipitated from leaf material 
using anti-GFP beads. Crude plant extract, unbound fraction and the immunoprecipitated proteins 
(IP) were separated by SDS-PAGE and anti-GFP antibody was used for the immunoblots. Both lines 
in the IP fraction did not showed a band of the expected size 59.1 kDa representing NF-YA2-GFP 
protein. p35S:HA:GFP was used as positive control, showing the GFP band in the IP fraction of the 
expected size 27 kDa.  
 
These results indicate that, despite the fact that different Arabidopsis lines stably 

expressing GFP and FLAG tagged NF-YA2 protein were generated and analyzed, it 

was not possible to detect NF-YA2 protein. Indeed, NF-YA2 was not detectable 

even after immunoprecipitation, suggesting that the protein could be expressed 

at very low level.  

Moreover, to prevent the possibility that the overexpression of NF-YA2 can cause 

cellular defect (Vavouri et al. 2009) due to overload of cellular resources, 

stoichiometric imbalance between subunits or promiscuous protein-protein 
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interactions (Moriya 2015), Arabidopsis NF-YA2 epitope tagged lines under the 

NF-YA2 native promoter were also generated (Chapter 3). 

Two homozygous independent nf-ya2::pNF-YA2:NF-YA2-GFP lines were grown 

under controlled conditions and checked for expression of NF-YA2 protein using 

immunoprecipitation and immunoblotting. Immunoprecipitation of NF-YA2 

tagged protein was carried out using anti-GFP beads. For each line, crude, 

unbound and IP fractions were separated by SDS-PAGE gel and blotted using anti-

GFP antibody. The western blot in Figure 5.12 illustrates that the crude, the 

unbound and the IP fractions did not show any band at the expected size 59.1 kDa 

representing NF-YA2-GFP. A band at 20 kDa is present in all crude and unbound 

samples, which is probably an unspecific band being also present in Col-0 with no 

tag. The immunoprecipitation (blot on the right) showed only a GFP band (27 kDa) 

in the positive control (p35S:HA:GFP).  

In agreement with this result qPCR analysis performed on nf-ya2::pNF-YA2:NF-

YA2-GFP revealed a very low expression level of NF-YA2 gene in these lines (Figure 

3.8) almost comparable to the level observed in nf-ya2 KO mutants. Interestingly, 

despite the low level of NF-YA2 revealed in nf-ya2::pNF-YA2:NF-YA2-GFP lines, 

confocal imaging showed a GFP signal localized exclusively in the nucleus (Figure 

5.1) in agreement with previous report (Laloum et al. 2013), differentially from 

the OE NF-YA2-GFP lines.  
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IP: GFP trap beads 

WB: α - GFP 

 
Figure 5.12 – NF-YA2 was not immunoprecipitated in nf-ya2::pNF-YA2:NF-YA2-GFP_1 and nf-
ya2::pNF-YA2:NF-YA2-GFP_2 lines. GFP-tagged NF-YA2 was immunoprecipitated from leaf 
material using anti-GFP beads. Crude plant extract, unbound fraction and the immunoprecipitated 
proteins (IP) were separated by SDS-PAGE and anti-GFP antibody was used for the immunoblots. 
Both lines in the IP fraction did not showed a band of the expected size 59.1 kDa representing NF-
YA2-GFP protein. p35S:HA:GFP was used as a positive control, showing the GFP band in the crude 
fraction of the expected size 27 kDa.  
 
 

Furthermore, because the NF-YA2 level was low in nf-ya2::pNF-YA2:NF-YA2-GFP 

lines and only present in the nucleus, as shown in the confocal analysis, a nuclear 

enrichment protocol was used to enhanced the possibility of detecting NF-YA2 

protein, but still no signal was visible in any protein fractions (data not shown).  
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As tagged NF-YA2 could not be detected in western blots, MS analysis was 

performed on only a few NF-YA2 lines in case this technique was able to detect 

very low abundance of NF-YA2 peptides and interactors.  

 

5.3.2.6 MS Identification of NF-YA2 interacting proteins 

After following the same protocol as with the NF-YB2 and NF-YC2 MS procedure, 

NF-YA2 was immunoprecipitated from Arabidopsis nf-ya2::p35S:FLAG-NF-YA2_1, 

Col-0::p35S:GFP-NF-YA2_1 and nf-ya2::pNF-YA2:NF-YA2-GFP_1 lines. One sample 

from each line was analyzed to investigate if it was possible to detect the NF-YA2 

subunit, exploiting the high MS sensitivity. The MS identified 6 unique peptides 

of NF-YA2 only in the nf-ya2::p35S:FLAG-NF-YA2_1 line (Table 5.5) showing a 

coverage of approximately 27% (Figure 5.13). A few post-translational 

modifications were identified along the protein sequence such as Serine (S) 

phosphorylation and Methionine (M) oxidation, commonly found in samples 

processed for MS.  

 

 
Figure 5.13 – Coverage of NF-YA2 protein sequence. Stably-expressed NF-YA2 is purified and 
detected by mass spectrometry using beads digestion protocol. NF-YA2 sequence coverage is 
highlighted in yellow for peptides that were identified at least once. 27% sequence coverage was 
identified. Post-translational modifications, highlighted in green, such as Serine (S) 
phosphorylation and Methionine (M) oxidation, which arises during the sample processing, were 
observed.   
 
However, the MS did not identify other NF-YA2 interacting proteins belonging NF-

Y family (Table 5.5). Additionally, because in any other NF-YA2 lines analyzed on 

the MS was not possible to detect any NF-YA2 peptides, following investigation 

on the putative NF-YA2 interactors were carried out only on nf-ya2::p35S:FLAG-

NF-YA2_1 line.  
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Table 5.5 – The MS did not identify any NF-Y interactor subunits with NF-YA2. The results 
from different NF-YA2 tagged lines (nf-ya2::p35S:FLAG-NF-YA2_1, Col-0::p35S:GFP-NF-YA2_1 and 
nf-ya2::pNF-YA2:NF-YA2-GFP_1) involving NF-YA2 immunoprecipitation and MS. No NF-Y 
interactors were found. The number of exclusive unique peptide hits is shown along with a color 
code indicating the probability of the peptide. Controls (p35S:HA:GFP and p35S:FLAG:GFP) 
showed 0 NF-Y interactions. 
 
Table 5.6 shows putative interactors of NF-YA2.  Overall, MS analysis revealed 

that most of the interactor proteins presented here have a role in post-

transcriptional regulation of NF-YA2.  Specifically, 10 unique peptides of CC1-like 

and 8 unique peptides of U2 snRNP auxiliary factor, both splicing factors, have 

been identified, which are also the most abundant peptides. Moreover 6 peptides 

of Nucleosome assembly protein (NAP), were recognized, which are involved in 

regulating gene expression (Son O. et al. 2015) together with few RNA-binding 

proteins (RBPs) which are central regulatory factors controlling post-

transcriptional RNA metabolism in plant (Lee K. and Kang 2016). Several classes 

of zinc-finger were also identified which have a role in DNA-binding and protein-

protein interaction domains (Stege et al. 2002, Takatsuji 1998).  Conversely, it was 

not possible to confirm these NF-YA2 interacting proteins, since it was not 

possible to analyze other lines. However, most of the protein identified are clearly 

nuclear protein and this is in line with the fact that NF-YA2 is localized in the 

nucleus. Following investigation to analyze the other NF-YA2 OE lines need to be 

carried out to confirm the consistency of these NF-YA2 interacting proteins
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Table 5.6 - Major interactors of NF-YA2. The most significant interactors are shown from all 
MS analyses performed. The number of exclusive unique peptide hits is shown along with a color 
code indicating the peptide probability.  
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5.4 Discussion 

This chapter attempted to identify NF-YA2 interacting NF-YB and NF-YC subunits 

(and other proteins) as well as specifically test the existence of the trimer NF-

YA2/NF-YB2/NF-YC2 in planta. It is well reported that each NF-Y subunit requires 

the collaboration of other NF-Ys and perhaps the interaction with other TFs in 

order to target specific genes and regulate their transcription. This suggests a 

significant regulatory ability of these TFs family, which can modulate the nature 

of the complex according to endogenous and exogenous stimuli. With this 

complexity, identifying the specific composition of functional NF-Y trimer in vivo 

has proven exceptionally difficult (Swain et al. 2017).  

 

5.4.1 Localization of NF-YA2, NF-YB2 and NF-YC2 in Arabidopsis 

transgenic lines. 

In this chapter, the subcellular localization of NF-YA2, NF-YB2 and NF-YC2 

transiently expressed in N. benthamiana leaves in the previous chapter, was 

confirmed by confocal imaging of Arabidopsis leaves stably expressing NF-YA2, 

NF-YB2 and NF-YC2 GFP tagged protein. NF-YA2 was localized to the nucleus, 

while NF-YB2 and NF-YC2 were localized in both the cytoplasm and nucleus of 

Arabidopsis epidermal cells. This result is in line with previous studies which have 

proposed a specific regulatory mechanism of NF-Y in plant (Hackenberg et al. 

2012, Laloum et al. 2013, Zhao et al. 2016) where NF-YB and NF-YC members 

dimerize in the cytoplasm and then translocate into the nucleus to join the 

specific NF-YA subunit, forming the hetero-trimer and starting the target gene 

transcription.  

 
5.4.2 Identification of NF-Y interacting proteins 

Co-IP and MS results were queried to find evidence for the existence of the NF-Y 

putative trimer (NF-YA2, NF-YB2 and NF-YC2). Previous publications have pointed 

towards the capability of NF-YB2 to dimerize with NF-YC2 in yeast (Calvenzani et 

al. 2012) and this interaction was confirmed in vivo by the BiFC assay in the 
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previous chapter. In this chapter, MS analysis performed on NF-YC2 and NF-YB2 

epitope tagged lines found strong evidence of this interaction in planta. Results 

obtained on different Co-IP experiments carried out on independent 

overexpressor NF-YC2 and NF-YB2 GFP or FLAG tagged lines, were consistent, 

identifying identical NF-Y interactor proteins. Interestingly, Co-IP of NF-YC2 

protein pulled down not only NF-YB2 but also NF-YB1 and NF-YB10, raising the 

possibility that these NF-YB proteins may participate in the formation of the 

functional transcriptional complex with NF-YC2 protein in a combinatorial 

manner, in order to regulate the transcription of specific genes. This is in 

agreement with Calvenzani et al. (2012) where Y2H methodology was used to 

systematically analyze the ability of each member of NF-YB and NF-YC family to 

interact in pair with each other. The result showed that in general most NF-YB 

and NF-YC subunits are able to dimerize, and in particular NF-YC2 subunit can 

strongly interact with NF-YB2, NF-YB1 and NF-YB10. In support to this result, it 

has been reported that NF-YB1 as well as NF-YC2 mediate the response to drought 

stress and endoplasmic reticulum (ER) stress. Together with the transcription 

factor bZIP28, NF-Y binds to the endoplasmic reticulum stress responsive element 

I (ERSE-I) in combination with the CCAAT-box element (Hackenberg et al. 2012). 

Moreover, a bioinformatics search on STRING database (https://string-db.org), 

which shows known and predict protein-protein interactions, confirmed the 

interactions between NF-YC2 and NF-YB10. 

The reciprocal Co-IP experiment performed on NF-YB2 tagged protein, showed a 

similar result to the Co-IP experiment carried out on NF-YC2. Hence, the MS 

identified that NF-YC2 together with NF-YC9, NF-YC4 and NF-YC1 was pulled down 

with NF-YB2 as bait protein. Previous studies reported that NF-YC9 and NF-YC4 

have an overlapping functionality in flowering time, since CONSTANS (CO) 

requires these NF-YC subunits to trigger the transcriptional activation of FT gene 

(Kumimoto et al. 2010). Furthermore, Kumimoto et al. (2010) showed that NF-

YC3, NF-YC4 and NF-YC9 can physically interact with NF-YB2 in the Y2H analysis, 

being  consistent with the results obtained by MS analysis performed in this 
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chapter. Previous study reported that NF-YC4 and NF-YC9 are the closest NF-YC 

homologs in the NF-YC family (Petroni et al., 2012), however the MS identified 

unique peptides for each protein. Siefers et al. (2009) revealed that NF-YC4 

and NF-YC9 are expressed in light- and dark-grown young Arabidopsis seedlings. 

Additionally, a most recent study demonstrated that NF-YC4, and NF-YC9 function 

as positive regulators of photomorphogenesis in Arabidopsis (Myers et al., 2016). 

The MS results obtained in this study suggest that perhaps as a response to 

various environmental conditions, NF–Y combinatorial diversity could provide 

unique platforms for the gene fine‐tuning during plant stress or developmental 

responses. In addition, NF–Y subunit heterogeneity at a given promoter might 

also provide antagonistic gene regulation. For example, there may be both 

positive and negative NF–Y complexes competing for regulation of the same gene 

promoter. The diverse roles of NF-YCs, together with those of the other two NF-

Y subunits NF-YA and NF-YB, imply the widely flexible formation of NF-Y 

complexes spatially and temporally regulated by diverse developmental and 

growth conditions. 

However, it is also important to consider that the lines used in this study are not 

functional complementation lines since they were not produced using the NF-Y 

KO mutant as transgenic host, which should have contained the respectively 

tagged NF-Y protein. In fact most of the analysis were performed on 

overexpressor NF-YA2, NF-YB2 and NF-YC2 mutants, using the 35S promoter 

which enabled a better detection of the protein, since it is known that this 

promoter increase the levels of gene expression (Odell et al. 1985). This means 

that the expression levels of each subunits analyzed is altered from physiological 

level, so the interactions detected by MS analysis lead to artefacts. Indeed, this 

could cause a stoichiometric alteration during the formation of the complex 

determining non-canonical protein aggregations.  

It would have been useful generate Arabidopsis transgenic lines with NF-Y genes 

under the regulation of their native promoter to create a plant system very similar 

to reality.  
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5.4.3 Why is NF-YA2 so difficult to detect? 

Conversely, NF-YA2 or any NF-YA subunit, was not identified by MS in all Co-IP 

experiment performed on NF-YC2 and NF-YB2 epitope tagged lines. Additionally, 

Co-IP carried out on Arabidopsis lines stably expressing NF-YA2 GFP and FLAG tag 

was very problematic; indeed, no signal indicating the presence of tagged NF-YA2 

could be observed in western blot analysis. This result was consistent across all 

the NF-YA2 tagged lines generated in this study. Three main reasons could explain 

these results. The first one is due to technical issues: the NF-YA2 gene in the 

epitope tagged lines generated in this study could not be functional because of 

the steric hindrance of the tag or because the insertion of the construct did not 

occur. Although this is unlikely since to circumvent these problems, independent 

lines with different tags in different orientation were generated. Additionally, the 

presence of the NF-YA2 construct and the gene expression level was checked in 

all lines using PCR and qRT-PCR respectively (Chapter 3).  

The second reason could depend on the fact that NF-YA2 protein is degraded 

during the protein extraction process, even if protease inhibitors were used. 

While the third reason consider that NF-YA2 protein is not always expressed in 

plant or it is expressed at very low level. In fact, Leyva-Gonzalez et al. (2012) 

reported that NF-YA2 gene is the most tightly post-transcriptionally regulated 

member of the NF-YAs. They have proposed a hypothetical molecular model in 

which the expression of NF-YAs in wild type plants growing under non-stress 

conditions is low due to the presence of high level of miR169, a conserved micro-

RNA (miRNA) family involved in plant development and stress induced responses, 

which inhibit the expression of NF-YAs. On the contrary under stress conditions, 

such as Pi deprivation, the level of miR169 is reduced allowing the transcript level 

of NF-YAs to increase. Hence, they used qRT-PCR to evaluate the  transcript level 

of several NF-YA subunits (NF-YA5, NF-YA3, NF-YA2, NF-YA10) in HEN1 KO 

mutants (hen 1-1), which have a constitutive reduction of mature miR169 (Li J. et 

al. 2005), grown in media containing sufficient and low Pi. qRT-PCR showed that 
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NF-YA transcript levels in hen 1-1 mutants were higher than wild type regardless 

of sufficient or deficient Pi conditions, confirming that NF-YA is post 

transcriptional regulated by miR169. Additionally, because NF-YA2 showed to 

have the higher transcript level compared to the other NF-YAs tested, it was 

hypothesized that it is the most tightly post-transcriptionally regulated member 

(Leyva-Gonzalez et al. 2012). Moreover, MS analysis performed on NF-YA2-FLAG 

OE line identified many post-transcriptional regulation proteins supporting the 

hypothesis by which NF-YA2 in plant is tightly post-transcriptionally regulated. 

In addition, Sorin et al. (2014) showed that knocking-out miR169, the level of NF-

YA2 increase considerably in Arabidopsis, this suggest a more sophisticated 

approach to generate lines overexpressing NF-YA2. It would be useful to create 

functional mutants with just a point mutation in the miR169 binding site for NF-

YA2, this would allow to increase the level of NF-YA2, leaving the rest of the 

proteins levels unchanged. It is also important to consider that the use of 

Arabidopsis overexpressor mutants could alter the normal functionality of the 

plant cell. For this reason, nf-ya2::pNF-YA2:NF-YA2-GFP line was created in this 

study, introducing  pNF-YA2:NF-YA2-GFP construct in nf-ya2 KO mutant 

complementing the loss-of-function. However, even if this line was functional, 

allowing to localize the NF-YA2 subunit in the nucleus, qPCR analysis demonstrate 

that the level of NF-YA2 was really low, not comparable with Col-0 (Figure 3.8) 

suggesting that the mutant complementation was only partial. Hence, the NF-YA2 

protein was not detectable in Co-IP experiment. 

 

5.4.4 Conclusion 

In this chapter, strong evidences were found about the existence in planta of NF-

YB2 and NF-YC2 heterodimer, and other NF-YB and NF-YC complexes. However, 

the detection of NF-YA2 was not possible due to technical problems probably 

related with low expression level of this protein in physiological conditions. As 

described here, multiple technical issues still limit the understanding about NF-

Ys. This encourage to look for alternative and novel methods to characterize NF-
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Y families. Further research on the putative trimer (NF-YA2/NF-YB2/NF-YC2) will 

be necessary to overcome experimental issue using innovative approach 

providing a better understanding of its functionality, specificity and mechanism 

of action.  
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Chapter 6  

6. Genome-wide expression analysis of tomato 

and lettuce NF-Y genes during Botrytis cinerea 

infection 

6.1 Introduction 
In the past 20 years, plant scientists have chosen to use Arabidopsis thaliana as 

a model system, thanks to its small size, small genome, amenability to genetic 

manipulations and reasonably short generation time.  This important spin-off 

allowed the developing of essential tools, resources and experimental 

approaches that have significantly inspired plant biological studies (Somerville 

and Koornneef 2002), as well as faster testing of hypotheses. Critically a model 

plant should facilitate biological insight into other plant species and reduce the 

time taken for production of improved crops. Comparative genomics and 

genetics has provided strong evidence that much of the information gained on 

Arabidopsis is relevant to other higher plant species, particularly crop plants 

(Irish and Benfey 2004), hence, the organization of genes within plant genomes 

has remained conserved over millions of years of evolution (Gale and Devos 

1998). For example, Brassica species are certainly the most closely related 

crops to Arabidopsis having a largely conserved genome (O'Neill and Bancroft 

2000, Paterson et al. 2001). Significant similarity has also been observed 

between Arabidopsis and soybean (Grant et al. 2000) and Arabidopsis and 

tomato (Mysore et al. 2001), and chromosomal synteny was used to investigate 

genes function. Also, the whole-genome analyses of Arabidopsis provided a 

better understanding of other agronomically important crops such as rice and 

cereal (Izawa et al. 2003, Rensink and Buell 2004, Ware and Stein 2003).  
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6.1.1 Gene families and homologues  

Based on sequence similarity most genes can be classified into gene families. 

Several factors such as gene duplication and gene deletion can change the size of 

gene families, and this variation is important for the adaptation of different 

species in various environments (Guo 2013).  Many studies have reported that 

whole genome duplications (polyploidy) are the main feature leading plant 

genome evolution (Adams and Wendel 2005, Soltis et al. 2015). Despite some of 

the duplicated genes being lost during the evolution, some are kept in the 

genome as homologues. These homologous genes can have the same function as 

the ancestor (subfunctionalization) or they can develop new functions 

(neofunctionalization) through a mutation in the open reading frame of a gene or 

due to the presence of the protein in  different temporal or spatial environments 

in the cell (Freeling 2008, Lynch and Conery 2000, Moore and Purugganan 2005). 

Homologous genes are defined orthologues when they descend from a single 

gene in the last common ancestor, and paralogues when they diverged via 

duplication before this ancestor (Fitch 1970, Jensen 2001, Sonnhammer and 

Koonin 2002). With the rapid increase of sequenced genomes, orthologue 

identification is becoming an important part of functional genomics research. 

Indeed, orthologues often have the same or similar functions in different species 

(Li L. et al. 2015).  

 

6.1.2 Comparative approach: from model systems to other 

species.  

Surely model plants have provided an excellent basis to identify molecular 

pathways involved in different processes, however, despite the examples above, 

applying this information to other crops can be challenging.  The overall approach 

has been to recognize key genes in model plants and identify their orthologues in 

other species, but this simple strategy brings along many difficulties. Specifically, 

over evolutionary time gene duplication produces functionally redundant copies 

of genes and these copies are more likely to accumulate polymorphisms and 
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evolve new, or varying, functions since they are not under selective pressure 

(Krakauer and Nowak 1999). This phenomenon can make it problematic to 

identify true functional orthologues between different species. Functional 

analysis, to experimentally test the gene of interest, is easy to carry out in 

Arabidopsis, but can be difficult to perform in non-model plants. For this reason, 

analyzing and comparing the expression patterns of potential orthologues 

between Arabidopsis and other species can be a useful tool to predict the 

function of a certain gene in its native context. Several comparative expression 

analyses have been performed, for example, the comparison of microarray 

expression profiles between Arabidopsis and rice (Oryza sativa) from seedlings 

grown under different light qualities has shown that very similar gene expression 

patterns were observed in both species with only a few species-specific 

differences. Also in the same study, global expression profiles between the two 

species has shown a higher correlation of genome expression patterns in constant 

light than in darkness, suggesting that genes involved in the photomorphogenesis 

are more conserved (Jiao et al. 2005, Ma et al. 2005). Similarly, a cross-species 

transcriptomics approach between Arabidopsis and poplar was used to identify 

genes with a key role in leaf development. Specifically, a large collection of 

microarray data and network-clustering analysis based on similar gene expression 

pattern were used to identify transcription factors associated with leaf 

development in Populus. This approach revealed that conserved gene expression 

pattern between the two species suggest their conserved function (Street et al. 

2008). Hence, comparing gene expression profiles between different species 

represents a powerful tool to investigate conserved gene function under different 

conditions.  

 

6.1.3 The problem of Bortytris cinerea in lettuce and tomato. 

As described previously Grey mold is a very common fungal disease caused by the 

ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Tomato (Solanum 

lycopersicum L.) and lettuce (Lactuca sativa) are particularly susceptible to this 
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pathogen which finds the best conditions in greenhouse environments, where it 

can cause severe losses, attacking leaves, flowers and fruits, compromising the 

commercial value of the product and ultimate leading to plant death (Dik et al. 

1999).  

 

6.2 Chapter aims 
In this chapter, the overarching goal was to use transcriptome data to predict 

functional NF-Y orthologues genes that influence the susceptibility to B. cinerea.  

Gene expression profiles of tomato (Solanum lycopersicum) leaves during the 

necrotrophic pathogen infection were generated and compared to existing 

transcriptome data available in Arabidopsis and lettuce (Lactuca sativa cv. 

Saladin). Such comparison will help to better understand the conserved role of 

NF-Y TFs during the plant defense response across different crops species. 
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6.3 Results 

6.3.1 Identification of lettuce and tomato NF-Y genes 

The Lettuce genome sequence was published in 2017 (Reyes-Chin-Wo et al. 

2017). The authors used Pfam domain to determine sequence orthologues of the 

NF-Y subunits identified in Arabidopsis (Table 6.1). Meanwhile NF-Y orthologues 

genes in Solanum lycopersicum were downloaded from the Plant Transcription 

Factor Database (PlantTFDB, http://planttfdb.cbi.pku.edu.cn/) (Table 6.2). 34 NF-

Y genes were identified in lettuce (8 NF-YAs, 19 NF-YBs and 7 NF-YCs) and 59 NF-

Y genes in tomato (10 NF-YAs, 29 NF-YBs and 20 NF-YCs), including NF-YB11, NF-

YB13, NF-YC10, NF-YC11 and NF-YC13. In previous classification these genes were 

considered within the NF-Y gene family (Siefers et al. 2009), however Petroni et 

al. (2012) reclassified them as negative cofactors 2α/β (NC2) (Mermelstein et al. 

1996) and as DNA POLYMERASE II SUBUNIT B3/B4 (DPB3/4) (Ohya et al. 2000), 

since they do not overlap with NF-Y domain regions (Petroni et al. 2012), hence 

in this chapter they will be excluded from further analysis related to NF-Y gene 

families. 

 

6.3.2 Chromosome distribution of NF-Y genes in the tomato 

and lettuce genome.  

All three species analyzed in this chapter are diploid (2n) having two copies of 

pairs of homologous chromosomes. Specifically, Arabidopsis thaliana has a 

haploid chromosome number of 5 (2n=10), tomato (Solanum lycopersicum) of 12 

(2n=24) and Lettuce (Lactuca sativa L.) of 9 (2n=18). In Arabidopsis, tomato and 

lettuce NF-Y orthologues genes are distributed across all chromosomes. It 

appears that the pattern of NF-Y genes across these plant genomes is uneven and 

that the distribution varies among the different species. In tomato chromosome 

1 contain three NF-YA genes, while chromosomes 4 to 7 and chromosome 9 do 

not contain any genes from this sub-group. Meanwhile, chromosome 5 contain 

the largest number of NF-YB genes, with a total of 10 NF-Y genes and 
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chromosome 3 contains the largest number of NF-YC genes, six (Li et al. 2016). In 

lettuce, most of the NF-Y are distributed across chromosome 1, 2, 4, 5, 6, 7. In 

particular chromosome 2, 5, 6 and 7contain the largest number of NF-Y 

orthologues genes, with respectively seven, four, five and four NF-Ys. 
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6.3.3 Analysis of the evolutionary relationships between 

tomato, lettuce and Arabidopsis NF-Y family subunits. 

To assist with functional prediction and to understand the evolutionary 

relationship between Arabidopsis NF-Ys and their orthologues genes in tomato 

and lettuce, a phylogenetic tree for each sub-family (NF-YA, NF-YB, NF-YC) was 

generated using the full-length tomato, lettuce and Arabidopsis NF-Y protein 

sequences.  

The unrooted tree was constructed by the neighbor-joining method, generated 

with MEGA7 software, after the alignment of the NF-Y amino acid sequences of 

Arabidopsis, tomato and lettuce genes (Figure 6.1, 6.3, 6.5). The evolutionary 

relationship between individual Arabidopsis NF-YAs, NF-YBs and NF-YCs shown in 

Siefers et al. (2009) corresponds with the evolutionary relationships found in this 

study, proving the reliability of this analysis. Moreover each tree confirmed the 

putative orthologues found in Table 6.1 and 6.2. Comparative functional analysis 

between Arabidopsis, where the referred NF-Y genes are well characterized 

(Quach et al. 2015), and other crops such as tomato and lettuce, where only a few 

publications on NF-Y orthologous genes have been published, is crucial to predict 

genes function across species (Gabaldon 2008).  In this approach, functional 

predictions are based on identifying different levels of similarity between the 

gene of interest and the characterized genes. The similarity can be estimated 

considering primary DNA sequence, motifs, protein domains, secondary and 

three-dimensional protein structure. In this study, the evolutionary relationship 

analysis was performed by comparing full length proteins of Arabidopsis NF-Y and 

their putative orthologues in tomato and lettuce. However, despite sequence 

similarity, genes can be considered NF-Y orthologues only if they contain the 

canonical NF-Y domains. Hence, to support the hypothesis of functional 

conservation between specific Arabidopsis, tomato and lettuce NF-Y orthologues 

genes, multiple alignment were generated using Clustal omega tool 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) (Figure 6.2, 6.4, 6.6). The protein 

sequence alignment, were performed for each subunit family (NF-YA, NF-YB, NF-
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YC), which showed extensive conserved homologous motifs, essential for subunit 

interactions and DNA binding in yeast and mammals (McNabb et al. 1997, Sinha 

et al. 1996, Xing et al. 1994). 

 

6.3.3.1 NF-YA family 

The phylogenetic tree of NF-YA orthologues genes using full length proteins of 

Arabidopsis, tomato and lettuce, identified two main clades based on common 

ancestor represented by a single branch on the tree (Figure 6.1). It is possible to 

identified one clade containing 7 members (4 Arabidopsis genes, 2 tomato genes 

and 1 lettuce gene) and another one containing 18 members within 2 subgroups, 

one with 6 genes (2 Arabidopsis, 2 tomato and 2 lettuce) and the other with 12 

genes (4 Arabidopsis, 5 tomato and 3 lettuce). A group composed by 2 lettuce 

genes and 1 tomato gene can also be identified in the tree, which may represent 

outliers since they do not belong to a particular group. The NF-YA tree confirmed 

the putative orthologues showed in Table 6.1 and 6.2. In fact these orthologues  

are evolutionary close in the phylogenic tree and they belong the same clade 

(Table 6.3). For example NF-YA1|AT5G12840, Solyc11g065700, Solyc01g008490 

and Lsat1v5gn297800 are in the same clade as NF-YA9|AT3G20910,  

Solyc01g087240, Lsat_1_v5_gn_4_31560 and Lsat_1_v5_gn_6_47121, since they 

all seem to descend from the same ancestor. However three orthologues genes, 

such as Solyc12g009050, Lsat_1_v5_gn_1_117081 and Lsat_1_v5_gn_7_34841, 

which in the tree are clustered in a separate group, were not identified as 

orthologues of NF-YA3, NF-YA7 and NF-YA8 respectively.  

Previous studies have shown that functional groups for each clade can be 

identified. For example, Arabidopsis NF-YA2 is important in nodule development 

and nitrogen nutrition (Zhao M. et al. 2011), hence in other plant species 

orthologous genes having highly similar sequence to NF-YA2, such as GmNF-YA1, 

GmNF-YA3 and GmNF-YA10 in soybean, MtNF-YA1 in M. truncatula  (Combier et 

al. 2006) and LjNF-YA1 in Lotus japonicus  have shown to have the same function. 

Moreover to support the reliability of this phylogenetic analysis, the NF-YA tree 
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generated in this study was compared to the Arabidopsis NF-YA tree generated in 

Siefers et al. (2009), showing the same evolutionary relationships between NF-YA 

subunits. 

 

 
 
 
Figure 6.1 – Phylogenetic analysis of Arabidopsis, tomato (Solanum lycopersicum) and lettuce 
(Lactuca sativa) NF-YA proteins. Phylogenetic tree of NF-YA was constructed by neighbor joining 
using MEGA7 software. The tree was generated using full length proteins. Red and green boxes 
indicate respectively downregulated and upregulated genes during B. cinerea infection (24hpi). 
Yellow and gray lines  indicate different clades.  
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Table 6.3 - Genes in tomato (Solanum lycopersicum) and lettuce (Lactuca sativa) 
orthologous to NF-YA subunit in Arabidopsis. 
 

 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

The alignment of tomato and lettuce NF-YA genes were observed to have the 

characteristic NF-YA conserved domain of 20 amino acids, which represent the 

surface for the binding of NF-YB/NF-YC heterodimer (Hackenberg et al. 2012) and 

a DNA binding domain of 21 amino acids (Figure 6.2) (Quach et al. 2015). Also,  

among Arabidopsis, tomato and lettuce NF-Y proteins, only NF-YA subunits have 

a nuclear localization signal, having all three groups of basic amino acid residues, 

required for nuclear targeting (Kahle et al. 2005). However, regions flanking the 

NF-YA conserved domain have a limited amino acid sequence conservation, 

generally rich in Gln (Q) and Ser/Thr (S/T) residues, which are involved in 

transcriptional activation (Coustry et al. 1996, de Silvio et al. 1999). 
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6.3.3.2 NF-YB family 

The phylogenetic tree of NF-YB orthologues genes in tomato, lettuce and 

Arabidopsis, identified two clades (Figure 6.3): one containing 17 members (2 

Arabidopsis genes,  13 tomato genes,  2 lettuce genes) and another one 

containing 32 members within 3 subgroups, one with 9 genes (2 Arabidopsis, 4 

tomato and 3 lettuce), one with 6 genes (1 Arabidopsis, 2 tomato and 3 lettuce) 

and one with 17 genes (5 Arabidopsis genes, 5 tomato genes, 7 lettuce genes). 

The putative orthologues illustrated in Table 6.1 and 6.2 are confirmed in the NF-

YB phylogenetic tree (Table 6.4). For instance NF-YB5|AT2G47810 and its 

orthologues genes in tomato (Solyc01g067130, Solyc01g099320, 

Solyc06g009010, Solyc09g074760) and lettuce (Lsat_1_v5_gn_6_16641, 

Lsat_1_v5_gn_9_2061, Lsat_1_v5_gn_9_123081) are represented in the same 

clade and this suggest a very high protein sequence similarity between them. 

Phylogenetic analysis can be used to predict the function of members belonging 

to the same clade. For example Arabidopsis NF-YB6, also called LEAFY 

COTYLEDON 1-LIKE (L1L), is an important regulator involved in embryogenesis and 

ABA signaling (Kwong et al. 2003, Warpeha et al. 2007), which accumulated in 

seed and flower. The L1L homologue genes in Solanum lycopersicum 

(Solyc05g005370; Solyc05g005360; Solyc02g032190; Solyc05g005380; 

Solyc05g015550; Solyc10g009440; Solyc05g005390; Solyc04g015060; 

Solyc11g012750) showed to have similar expression pattern in flower, seed and 

developing fruit and also the same function (Hilioti et al. 2014). Moreover, the 

analogy of NF-YB phylogenetic tree generated in this study with the Arabidopsis 

NF-YB tree generated in Siefers et al. (2009), reinforce the consistency of this 

analysis.  
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Figure 6.3 – Phylogenetic analysis of Arabidopsis, tomato (Solanum lycopersicum) and lettuce 
(Lactuca sativa) NF-YB proteins. Phylogenetic tree of NF-YB was constructed by neighbor joining 
using MEGA7 software. The tree was generated using full length proteins. Red and green boxes 
indicate respectively downregulated and upregulated genes during B. cinerea infection (24hpi). 
Yellow and gray lines  indicate different clades.  
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Table 6.4 - Genes in tomato (Solanum lycopersicum) and lettuce (Lactuca sativa) 
orthologous to NF-YB subunit in Arabidopsis. 
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The alignment of Arabidopsis, tomato and lettuce NF-YB orthologous genes have 

shown to have the conserved domains, consisting in 90 amino acids, involved in 

the DNA binding and in the interaction with NF-YA and NF-YC subunits (Sinha et 

al. 1996) (Figure 6.4). Regions flanking this conserved domain protein sequences 

were variable in amino acid length and composition. Figure 6.4 also shows that 

two tomato NF-YB orthologues genes (Solyc02g032180 and Solyc02g032190) 

seem to lack conserved domain for NF-YC interaction, suggesting that these two 

subunits could potentially form non-canonical NF-Y complexes, interacting with 

other TFs and not with an NF-YC subunit.  
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6.3.3.3 NF-YC family 

The phylogenetic tree of NF-YC orthologues genes in Arabidopsis, tomato and 

lettuce, identified two main clades (Figure 6.5): one containing 18 members and 

another one containing 8 members. In the first clade, it is possible to identify 3 

subgroups: one composed by 8 tomato genes; a second one constituted by 4 

Arabidopsis genes and 1 tomato gene and a third one containing 3 Arabidopsis 

genes, 2 tomato genes and 1 lettuce gene. Table 6.5 shows a correlation between 

the putative orthologues genes illustrated in Table 6.1 and 6.2 and the NF-YC 

orthologues genes in the phylogenetic tree (Figure 6.5). For example NF-

YC1|AT3G48590 and its orthologues genes Solyc03g110860, Solyc03g111450, 

Solyc03g111460, Solyc06g072040  and Lsat_1_v5_gn_5_12561 descend from a 

common ancestor since they are in the same clade. Not many papers are available 

about single NF-YC in Arabidopsis, however function prediction for tomato and 

lettuce genes can be based on gene homology to the referred characterized 

Arabidopsis proteins. For example, Arabidopsis NF-YC3, NF-YC4 and NF-YC9 are 

essential for flowering, interacting with CONSTANS (CO) and they are required for 

the activation of FLOWERING LOCUS T (FT) during floral initiation (Kumimoto et 

al. 2010). Solyc01g079870, Solyc03g110860 and Solyc06g072040 the tomato 

homologues gene of NF-YC3, NF-YC4 and NF-YC9, have shown to be involved in 

fruit ripening, being consistent with the NF-YC Arabidopsis function (Li S. et al. 

2016). Also for the NF-YC subunit there is a correspondence between the NF-YC 

phylogenetic tree in Figure 6.5 and the Arabidopsis NF-YC tree (Siefers et al 2009). 
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Figure 6.5 – Phylogenetic analysis of Arabidopsis, tomato (Solanum lycopersicum) and lettuce 
(Lactuca sativa) NF-YC proteins. Phylogenetic tree of NF-YC was constructed by neighbor joining 
using MEGA7 software. The tree was generated using full –length proteins. Red and green boxes 
indicate respectively downregulated and upregulated genes during B. cinerea infection (24hpi). 
Yellow and gray lines  indicate different clades.  
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Table 6.5 - Genes in tomato (Solanum lycopersicum) and lettuce (Lactuca sativa) 
orthologous to NF-YC subunit in Arabidopsis. 
 

 

 
The alignment of Arabidopsis, tomato and lettuce NF-YC subunits revealed an 

highly conserved domain, approximately 80 amino acids, which has been shown 

to be necessary for NF-YA and NF-YB interaction and DNA binding (Romier et al. 

2003) (Figure 6.6). NF-YC were shown to be rich in Gln (Q), a characteristic that 

determines transcriptional activation (Coustry et al. 1996, de Silvio et al. 1999) in 

Arabidopsis (Siefers et al. 2009) and other plant species (Petroni et al. 2012). 

However, the alignment indicates that two putative NF-YC4 tomato orthologues 

Solyc03g111470 and Solyc11g016910 do not overlap in the domain regions 

suggesting a different gene function (Figure 6.5).  Specifically, Solyc03g111470 is 

missing all the canonical NF-YC domain regions, while Solyc11g016910 seems to 

lack conserved domain for NF-YB interaction, suggesting that it might be able to 

form complexes with other TFs instead of NF-YB subunit.  
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Identification of putative orthologues genes is an essential task in comparative 

genomics for transferring the knowledge of NF-Y proteins function from the 

model plant Arabidopsis to tomato and lettuce. Hence, based on the phylogenetic 

trees generated in this study orthologues genes for most of NF-Y TFs have been 

assigned. However, in few cases the identification of orthologues genes can be 

ambiguous and because gene orthology implies similar gene function, looking at 

the expression pattern could provide further information on conserved function 

of NF-Y genes in other species. 

 

 

6.3.4 RNA-Seq expression profile analysis in tomato leaves 

during Botrytis cinerea infection 

To look at NF-Y gene expression in tomato after B. cinerea infection, a similar 

experimental approach to a published data set in Arabidopsis and an unpublished 

lettuce data set  (A. Talbot, unpublished) was used. Total RNA was extracted from 

tomato (Solanum lycopersicum cv. Ailsa craig) detached 5 weeks old leaves, 

inoculated with multiple droplets of B. cinerea spore suspension at even spacing, 

to ensure uniform infection, or mock inoculated with sterile media at similar 

spacing. The whole leaf was harvested at 26 hpi and 48 hpi and four replicates for 

each time point and each treatment were analyzed (Figure 6.7). RNA sequencing 

was carried out to investigate gene expression during infection. These time points 

were chosen because in the Arabidopsis time-series experiment (Windram et al. 

2012) at 26 hpi the number of genes started to be differentially expressed, while 

at 48 hpi nearly one-third of the Arabidopsis genome was shown to be 

differentially expressed. However most of changes in gene expression occur 

before significant lesion development.  
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Figure 6.7 - B. cinerea infection on detached tomato leaves after 26 and 48 hours post infection. 
Lesion development after inoculation of tomato detached leaves inoculated with 10 µL droplets 
of B. cinerea spore suspension (1x10 5 per mL-1). The two images show the same leaf after 26 and 
48 hours post infection. The white circle indicate the lesion. Hpi = hours post infection.  
 
 
 

6.3.4.1 Quality control of RNA-Seq data 

Quality control of tomato RNA-Seq dataset was performed by Adam Talbot. 

Approximately 20 million reads were aligned to the tomato genome (Tomato 

Genome 2012) from both mock and inoculated across all replicates (Table 6.6). 

FastQC was used to confirm reads were of sufficient quality for analysis. This 

program produces a quality scores (Phred score) for each base pair, underscoring 

machine sequencing errors and poor quality reads. A score < 20 indicates low 

quality data, a score between 20 and 30 indicate intermediate quality data and a 

score > 30 indicates high quality data. Also, FastQC detects over-represented 

sequences, indicating the presence of contaminants and adaptors. 

In this study, all samples presented a good per base sequence quality and GC 

content as illustrated in Figure 6.8 where representative plots are shown. 
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Table 6.6 – Total aligned reads and library size for each tomato sample. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample Treatment Total aligned reads 

1 Mock 26 hpi 19134194 
2 Mock 26 hpi 26356778 
3 Mock 26 hpi 21694795 
4 Mock 26 hpi 19866582 
5 Infected 26 hpi 18734931 
6 Infected 26 hpi 26526487 
7 Infected 26 hpi 17343392 
8 Infected 26 hpi 23397460 
9 Mock 48 hpi 20359750 

10 Mock 48 hpi 24850915 
11 Mock 48 hpi 21101854 
12 Mock 48 hpi 18926782 
13 Infected 48 hpi 24810381 
14 Infected 48 hpi 22473058 
15 Infected 48 hpi 23542870 
16 Infected 48 hpi 22622808 
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Reads were aligned to the tomato genome and quantified using the pseudo-

alignment software Kallisto (Bray et al. 2016). Pseudo-count data was 

transformed using a log-CPM transformation in Voom (Law et al. 2014). 

Differentially expressed genes were determined using a general linear model in 

Linear Models for Microarray and RNA-Seq Data (Limma) by Dr. Adam Talbot 

(Ritchie et al. 2015). Samples were checked for the presence of tomato rRNA, 

filtered (Figure 6.9) and normalized. Filtering was carried out using the limma-

voom pipeline: genes with less than 64 reads were excluded from the analysis. 

The mean-variance relationship of log-CPM (log count per million) values 

illustrated in Figure 6.9 shows acceptable filtering of reads, since no drop in 

variance levels is observed at the low end of the expression scale. Multi-

Dimensional Scaling (MDS) plots of log-CPM values was used to visualize 

similarity between samples over two dimensions (Figure 6.10). The plot shows 

distinct variation between treatment and time points. The treatment and time 

variables cluster together, with the time variable segregating by the first 

dimension and the treatment appears to segregate on the second dimension. This 

analysis illustrates that gene expression profile is stable across samples underling 

the same treatment, while there are differences between samples belonging 

different treatment and time point. 
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Figure 6.9 – The plot on the left shows the relation between means (x-axis) and variances (y-
axis) of each gene before limma-voom is applied to the data. Plot on the right represent how 
the trend is removed after voom precision weights are applied to the data. The voom function 
was used to extract residual variances from fitting linear models to log-CPM transformed data 
(plot on the left). Subsequently variances are rescaled to quarter-root variances and plotted 
against the mean expression of each gene. The means are log2-transformed mean-counts with an 
offset of 0.5. PlotSA was used to generate the plot on the right, this function plots log2residual 
standard deviations against mean log-CPM values. The horizontal blue line represents the average 
log2 residual standard deviation. In both plots, each black dot represents a gene and a red curve 
is fitted to these points. 
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Figure 6.10 - MDS plots of log-CPM values over dimensions 1 and 2 with samples labeled by 
sample treatment. Distances on the plot correspond to the leading fold-change, which is the 
average (root-mean-square) log2-fold-change for the 500 genes most divergent between each 
pair of samples by default.  
 
 

6.3.4.2 Transcriptome profiling of S. lycopersicum in response to B. 

cinerea 

To evaluate genes expression changes in tomato during B. cinerea infection, 

transcriptome of S. lycopersicum plants infected with B. cinerea was compared 

with mock inoculated plants with time treated as a covariat. Differential 

expression (p < 0.05 after false discovery adjustment(Benjamini et al. 2001)) was 

evident for 11193 genes in total, 5241 genes were upregulated and 5952 genes 

were downregulated at 26 hpi. Meanwhile at 48 hpi 6330 genes, showed 

differential expression, having 3128 downregulated and 3202 upregulated genes. 

Therefore, 35% of the 31760 genes in tomato genome (version SL3.0) are 

differentially expressed (Tomato Genome 2012) at 26 hpi, while only 20% at 48 

hpi, probably because by that time-point the necrotrophic pathogen has caused 

a severe leaf tissue damage. This result is consistent with what was observed in 

Arabidopsis where one third of the genome is upregulated or downregulated 

during the first 48 hours after B. cinerea infection (Windram et al. 2012) with the 

majority of changes in gene expression occurring by 24 hpi. Arabidopsis and 
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tomato leaves infected by B. cinerea induce a considerable transcriptional 

reprogramming in the host, as demonstrated by transcriptional profiling studies, 

suggesting that key regulators are involved in this process (AbuQamar et al. 2006, 

Ferrari et al. 2003, Rowe et al. 2010). Hence, many transcription factors regulate 

host defenses against various plant pathogens. Specifically, TF families that in 

Windram et al. (2012) were shown to be significantly differentially expressed at 

each time point during B. cinerea infection showed to be differentially expressed 

in the tomato transcriptome at 26 hpi (Figure 6.11). This analysis confirmed that 

WRKY and ARF families, with around 40% of differentially expressed genes, are 

the most regulated TF group involved in B. cinerea plant immunity (AbuQamar et 

al. 2006, Birkenbihl et al. 2012, Lai et al. 2011, Xu X. et al. 2006), since a very large 

number of these orthologues genes in tomato showed expression change during 

the infection. WRKYs are often associate with plant immunity and are known as 

positive or negative regulators in the plant defense responses (Eulgem and 

Somssich 2007). Moreover, some auxin-related genes, such as ARFs have been 

documented as involved in plant immunity (Jiang et al. 2016).  Specifically, 

publicly available Arabidopsis transcriptome data revealed that a significant 

portion (around 65%) of these genes are down-regulated 

during Arabidopsis infection with B. cinerea. These results indicate role of ARF 

genes in regulating biotic stress signaling pathways (Llorente et al. 2008). 

Also, many members of CO-LIKE family in tomato were differentially expressed 

during the pathogen attack, suggesting that this family may be involved in plant 

defense responses. Because in Arabidopsis and other cereals CO-like genes 

control flowering time (Griffiths et al. 2003), it can be assumed that the pathogen 

infection may influence time to flower to affect plant tolerance and to enhance 

plant resistance. Another large TF family represented by MYB, seems to be 

involved in controlling responses to biotic stresses, since these genes show 

changes in gene expression during the infection. This is in agreement with 

previous studies where it was reported that in Arabidopsis MYB TFs are implicated 

in JA-dependent defense responses (Ambawat et al. 2013). In Figure 6.11 it is also 
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visible that a good percentage of C3H (for zinc finger domain) TFs, are 

differentially expressed in tomato during the infection. This is consistent with 

previous reports showing up or down regulation of C3H genes during biotic and 

abiotic stress conditions (Shaik and Ramakrishna 2014). Interestingly also a good 

portion, corresponding to more than 20% of tomato NF-Y TF genes revealed to be 

differentially expressed during B. cinerea infection. This is in agreement with what 

was observed in Arabidopsis, where 8 NF-Y genes were shown to be upregulated 

and 10 downregulated during the fungal pathogen attack (Figure 1.10). 

Therefore, this family of TFs appears to be key determinants of regulatory 

specificity during the plant defense responses, suggesting NF-Y TFs as important 

players in plant immunity. 

 

Figure 6.11 – Percentage of differentially expressed tomato genes for each of the major TF 
families at 26 hpi. Each bar represents a TF family. The blue bar is the percentage of differentially 
expressed genes related to the total number of genes (orange bar). 
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6.3.4.3 Expression pattern of NF-Y genes in tomato and lettuce during 

B. cinerea infection. 

Transcriptomic analysis using RNA-Seq or microarray allows for analysis of the 

gene expression profiles of all genes in a genome. This consent to compare 

different data sets and allows to identify gene expression patterns across species 

associated with a specific stress. Many members of tomato NF-Y family were 

shown to be differentially expressed at 26 hpi (Table 6.7), while at 48 hpi less NF-

Y genes showed expression changes in response to B. cinerea infection, probably 

due to tissue damage caused by the necrotrophic pathogen. For this reason, only 

26 hpi time point was used in the following analysis. Moreover, to compare 

tomato expression data, obtained in this study, to previous Arabidopsis and 

lettuce dataset, only 24 hpi was considered in both species. In tomato 13 NF-Y 

subunits (5 members of NF-YA, 5 members of NF-YB and 3 members of NF-YC) 

showed to be differentially expressed in response to B. cinerea infection (Figure 

6.1, 6.2, 6.3), which correspond to 22% of total NF-Y orthologues genes. Table 6.7 

shows the Log2 (1) FC, the P value and the direction of the expression of each NF-

Y tomato orthologous gene.  

Meanwhile in lettuce the number of differential expressed NF-Y genes is 10, (4 

members of NF-YA, 3 members of NF-YB and 3 members of NF-YC), corresponding 

to 29% of the total NF-Y family members (Figure 6.1, 6.2, 6.3). However, in 

Arabidopsis the portion of NF-Y genes involved in the plant defense response is 

higher, indeed 56% of them are up or downregulated during the infection (Figure 

1.10). This because the number of NF-Y orthologues genes in tomato and lettuce 

is larger than Arabidopsis, so some are probably redundant in the genome, due 

to gene duplication during the evolution process and only few NF-Y orthologue 

genes show conserved function across species. Interestingly, in all three species 

more members of NF-YA subunits are differentially expressed during the infection 

and most of them are shown to be downregulated. This could suggest a conserved 

key role of NF-YA subunits in the plant defense response. The differential 

expression of NF-Ys during B. cinerea infection suggests that this TF family could 
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have an important role in the Arabidopsis, tomato and lettuce defense response. 

For example, Figures 6.1, 6.3, 6.5 show the direction of expression change for 

each NF-Y orthologue genes. Figure 6.1 shows a cluster of NF-YA orthologues 

genes which have the same expression profile. Specifically, Arabidopsis NF-YA1, 

NF-YA2, NF-YA4, NF-YA7, NF-YA8, NF-YA10 and their orthologues in tomato 

Solyc11g065700, Solyc01g006930, Solyc10g079150, Solyc10g081840 and lettuce 

Lsat_1_v5_gn_2_54241, Lsat_1_v5_gn_1_117081 are downregulated during the 

infection. However, Arabidopsis NF-YA9 is upregulated and its orthologues 

(Solyc01g087240 and Lsat_1_v5_gn_4_31560) are downregulated in both crops. 

Also, Figure 6.3 displays a consistency in NF-YB gene expression profile between 

Arabidopsis, tomato and lettuce. Hence, during the infection Arabidopsis NF-YB2, 

NF-YB3 and NF-YB4 are downregulated as their orthologues Solyc07g065500, 

Solyc12g006120, Lsat_1_v5_gn_5_1080, Lsat_1_v5_gn_5_122040, while 

Arabidopsis NF-YB5, NF-YB7, NF-YB8 and NF-YB10 are upregulated as their 

orthologues Solyc04g049910 and Lsat_1_v5_gn_9_67940. However, there are 

some exception since Solyc04g054150 (NF-YB3 homologue) shows to be 

upregulated and Solyc09g007290 (NF-YB10 homologue) is downregulated. Based 

on this RNA-Seq expression profile analysis, putative key defense response genes 

were hypothesized. Specifically, Arabidopsis NF-YA2 and its orthologues in both 

tomato (Solyc01g006930) and lettuce (Lsat_1_v5_gn_2_54241) showed to have 

the same expression pattern during the infection, suggesting a conserved gene 

function across the three species. Also, Arabidopsis NF-YB2 and its homologue 

NF-YB3, very closely related proteins sharing 94% amino acid identity in their 

conserved domains (Siefers et al. 2009), showed a downregulated expression at 

26 hpi as their orthologues genes in tomato (Solyc07g065500, Solyc12g006120) 

and lettuce (Lsat_1_v5_gn_5_1080) being consistent with the hypothesis of a role 

in the defense response. The gene expression of Solyc01g006930 and 

Solyc07g06550 was further evaluated by real time quantitative RT-PCR analysis 

on Micro-Tom, a tomato model cultivar, which showed to be downregulated 
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during the defense response (Figure 6.12), reinforcing the theory of a conserved 

gene function of NF-YA2 and NF-YB2 across different species. 

On the other hand, NF-YC orthologues genes revealed contrasting expression 

profiles. For example, Figure 6.5 shows that Arabidopsis NF-YC4 is upregulated 

during the infection, while Solyc02g091030 is downregulated. Another example 

is represented by Arabidopsis NF-YC2 and its orthologues in tomato 

Solyc01g079870, which are both downregulated in response to the pathogen 

attack, while lettuce orthologues (Lsat_1_v5_gn_5_74780 and 

Lsat_1_v5_gn_2_64201) are upregulated. All these discrepancies can be caused 

by the differentiation of function between orthologue genes or depends on the 

fact that orthologues identified by BLAST analysis are not always true orthologues 

(Street et al. 2008), because they have different function. 
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Table 6.7 – Differentially expressed tomato NF-Y genes during B. cinerea infection. Log2 
(1) FC and the P value are reported for each gene. Arrows indicates the direction of the 
gene expression (red arrows = downregulated genes; green arrows = upregulated genes).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tomato gene Orthologue 

Arabidopsis 

gene 

Log FC P value 

adjusted 

Direction of 

gene expression 

Solyc11g065700 NF-YA1 -0.3317 0.0193196  

Solyc01g006930 NF-YA2 -1.5233 0.0003484  

Solyc10g079150 NF-YA7 -2.2928 0.0102456  

Solyc01g087240 NF-YA9 -1.8719 8.80E-06  

Solyc10g081840 NF-YA10 -2.484 0.0272935  

Solyc07g065500 NF-YB2 -1.9737 5.50E-06  

Solyc12g006120 NF-YB2 -2.3956 0.0010537  

Solyc04g054150 NF-YB3 3.0569 5.00E-06  

Solyc04g049910 NF-YB8 0.2595 0.0493153  

Solyc09g007290 NF-YB10 -0.4146 0.0055892  

Solyc03g110860 NF-YC1 -1.6946 1.80E-06  

Solyc01g079870 NF-YC2/NF-YC9 -1.3013 2.84E-05  

Solyc02g091030 NF-YC3 -0.8307 0.0183638  
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Figure 6.12 – q-PCR expression analysis of tomato Micro-Tom NF-YA2 (Solyc01g006930) and NF-
YB2 (Solyc07g065500) showed to be differentially expressed during B. cinerea infection. 
Detached leves from 4 weeks old Micro-Tom plants were inoculated with B. cinerea spores in 0.5% 
grape juice (Infected) and 0.5% grape juice only (Mock). Tissue was harvested at 26 hpi. Gene 
transcript levels were calculated using the comparative 2-∆∆C(T) method (Livak and Schmittgen 
2001) and normalized to the expression of the two housekeeping genes alpha-Tubulin and (Tuba) 
and Ubiquitin (UBQ5). Mock infected values were arbitrarily set to 1. Data are presented as 
relative expression from 3 technical replicates and 3 biological. The analysis was performed on 
pooled multiple plants leaf material. 
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6.4 Discussion 

6.4.1 Comparison between differentially expressed genes in 

Arabidopsis, tomato and lettuce.  

This chapter presented a gene expression profile during infection of tomato 

leaves by the fungal pathogen B. cinerea. Analysis of this transcriptome has 

shown that nearly one-third of the tomato genome changes in expression during 

the first 26 h after infection. This result is consistent with published analyses of 

the Arabidopsis transcriptome after B. cinerea infection which shows that the 

majority of changes in gene expression have occurred by 24 h after infection, 

when the pathogen has penetrated leaf epidermis but lesions are not yet visible 

(Windram et al. 2012).   

A comparative analysis of gene expression patterns between the model plant 

Arabidopsis and two other crops, tomato and lettuce, have been carried out. This 

analysis has revealed a trend of changes in the transcriptome between 

orthologous genes across the three species. The RNA-Seq analysis in tomato 

identified 11193 differential expressed genes at 26 hpi after inoculation with B. 

cinerea spores, corresponding to 35% of the whole tomato genome, with around 

50% of these genes upregulated and 50% downregulated. A similar result was 

obtained analyzing RNA-Seq data on lettuce leaves inoculated with B. cinerea 

spores at 24 hpi. The expression profiling identified 13923 differentially expressed 

lettuce genes (36.8% of the total), 6432 upregulated and 7492 downregulated, 

between infected and mock inoculated leaves (personal communication, A. 

Talbot; unpublished), given 37828 predicted genes in total (Reyes-Chin-Wo et al. 

2017). In Arabidopsis, the same percentage of upregulated or downregulated 

genes during B. cinerea infection was observed. Hence the time series expression 

profile identified 9838 differentially expressed genes at 24 hpi, which are around 

35% of the total genes during the infection (Windram et al. 2012). Overall, these 

analyses suggest that there is significant conservation in terms of number of 

differentially expressed genes across different plant species apparently 
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phylogenetic distant such as Arabidopsis, tomato and lettuce. This fundamental 

knowledge should provide a good start for following gene functional studies.  

 

6.4.2 Identification of key NF-Y during B. cinerea infection 

In contrast to the well-known function of NF-Y Arabidopsis genes in controlling 

plant growth and development (Ballif et al. 2011, Laloum et al. 2013),  very little 

information is available about their role during defense against pathogen attack 

(Zanetti et al. 2017). To overcome this deficiency a combination of phylogenetic 

and gene expression profile analysis during B. cinerea infection was used to 

predict NF-Y gene function in tomato and lettuce. The phylogenetic analysis 

discovered similarities and conservation of NF-Y genes between Arabidopsis, 

tomato and lettuce and helped to identify candidate NF-Y genes involved in the 

plant defense response. In this study, some evidences have revealed that single 

NF-Y subunits, specifically belonging NF-YA and NF-YB sub-families, have an 

important role during the plant defense response. Indeed, a large number of 

tomato and lettuce NF-YA and NF-YB genes were differentially expressed in 

response to the pathogen attack and they can be possibly involved in the 

defense response (Figure 6.1 and 6.3). Hence, tomato and lettuce NF-YA family 

appears to have half NF-YA orthologues genes (Figure 6.1) and around a quarter 

of NF-YB orthologues genes (Figure 6.3) induced by the fungal infection.  

Specifically, many members of NF-YA subunit were downregulated during the 

infection in all three species. This expression pattern may highlight a still 

unknown conserved role of NF-YA subunits in the plant defense against B. cinerea. 

Also the differential expression of NF-YB orthologues genes across the three 

species, suggest a conserved function of this subunit during the infection. A 

consistent down regulation tendency of NF-YA2 and NF-YB2/NF-YB3 across 

Arabidopsis, tomato and lettuce suggested these NF-Y subunits as the best 

candidate genes involved in the plant defense response. Indeed, the same 

expression pattern was found using qRT-PCR analysis on Micro-Tom, supporting 

such a role during the infection across different tomato cultivar.  
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According to the tree showed in Figure 6.3, Arabidopsis NF-YB2 does not have a 

clear orthologue, while NF-YB3 seems to have several orthologues genes which 

are differentially expressed during pathogen attack. However it is important to 

consider that NF-YB2 and NF-YB3 are very similar proteins with 94% amino acid 

identity in their conserved domains (Siefers et al. 2009), hence NF-YB3 is 

homologue to NF-YB2 with probably the same function. This hypothesis is 

reinforced by Kumimoto et al. (2008) where NF-YB2 and NF-YB3 were shown to 

be redundant players in photoperiod-related floral transitions.  

Looking at the evidence, the cross-species approach used in this study identified 

important NF-Y candidates comparing Arabidopsis genes with their orthologues 

in other species. This method suggested that NF-Y TFs can have a key role in the 

transcriptional regulation of tomato and lettuce defense response highlighting 

the importance of this TF family, which is involve in many plant molecular 

mechanism but it is still underestimate and not well studied. 

 

6.4.3 Conclusion 

In this work, the relationship between NF-Y orthologues genes in Arabidopsis, 

tomato and lettuce was analysed using a phylogenetic approach and also the 

expression patterns of each genes were characterized. Among all these NF-Y 

genes in both crops, based on the expression profile it was hypothesized that two 

members of NF-YA family in tomato and lettuce (Solyc01g006930, 

Lsat_1_v5_gn_2_54241) and three members of NF-YB (Solyc07g065500, 

Solyc12g006120, Lsat_1_v5_gn_5_1080), represent putative key genes during B. 

cinerea infection. These candidate genes probably play an important role in the 

plant defence response and this provides a starting point for further investigation 

of their biological function.  

Because closely related proteins do not always share the same function, it is 

important to clarify if orthologous genes in different species play the same role 

or if they have evolved different function. To understand this, it is crucial to 

perform further gene functional studies. For this reason, the next step of this 
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research would be obtained NF-Y gene knockout crops to investigate the effect of 

gene loss in the mutant. It would be also useful to perform transcriptional analysis 

in other species, to investigate the NF-Y family conservation in different crops 

during the evolutionary process. 
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Chapter 7 

7. General discussion 
One of the most important questions about the NF-Y TF family in plants is to 

determine functional complexes in planta. Individual NF-Y subunits are not 

capable of regulating gene transcription, instead they have to combine in hetero-

trimers composed by NF-YA, NF-YB and NF-YC subunits (Zhao H. et al. 2016) or 

hetero-dimers formed by NF-YB and NF-YC subunits which are able to interact 

with other TFs forming non-canonical NF-Y complexes. These NF-Y hybrid 

complexes eschew NF-YA and bind the DNA at different elements other than 

CCAAT (Liu and Howell 2010, Wenkel et al. 2006), increasing functional 

complexity. As described previously, in Arabidopsis and other plants each NF-Y 

subunit is encoded by large families and for this reason identifying active NF-Y 

complexes is particularly challenging. In fact, this provides multiple combinations 

between NF-YA, NF-YB and NF-YC members, which may assemble in a specific 

manner according to different developmental plant stage or environmental 

conditions.   

Based on the putative hetero-trimer hypothesized in this study (NF-YA2/NF-

YB2/NF-YC2), the possibility that the NF-YB2/NF-YC2 dimer can potentially 

interact not only with a NF-YA subunit but with many other TFs, dramatically 

increases the number of possible combinations and NF-YA competitors. For 

example, several studies through Y2H system have found that NF-YB and NF-YC 

proteins are able to interact with other TFs like MADS18, bZIP28, CO and CO-like 

(Liu and Howell 2010, Masiero et al. 2002, Wenkel et al. 2006, Yamamoto et al. 

2009) as described in previous chapters. In line with this, the MS performed in 

this study revealed that NF-YC2 can interact in planta not only with NF-YB2 but 

also with NF-YB1 and NF-YB10, while NF-YB2 can form hetero-dimer with NF-YC9, 

NF-YC4 and NF-YC1, in agreement with previous studies which identified these 

interactions using Y2H system (Calvenzani et al. 2012). 
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This confirms the capability of each NF-Y members to combine with different 

subunits, expanding the combinatorial complexity and providing a significant 

challenge in detecting complete hetero-trimeric complexes in planta.  

Confocal analysis performed on transiently transformed N. benthamiana and 

stably transformed Arabidopsis leaf cells revealed that NF-YB2 and NF-YC2 are 

localized in the cytoplasm while NF-YA2 is exclusively localized in the nucleus, in 

agreement with the widely-accepted mechanism of NF-Y complex assembly 

proposed by Kahle et al. (2005). Additionally, strong evidence for dimerization of 

NF-YB2 and NF-YC2 in planta were provided using BiFC and MS assays, in line with 

previous Y2H analysis carried out by Calvenzani et al. (2012). These results 

perfectly match with what was revealed by crystallography structure analysis of 

NF-YB and NF-YC in mouse. It was found that their ability to form a complex 

derives from  hydrophobic residues in the α2 helix of the HFD, core of the 

dimerization surface, which establish hydrophobic contact between the two 

subunits (Romier et al. 2003). However, still no NF-YA2 or any NF-YAs were 

detected, so no evidence of the existence of the putative hetero-trimer NF-

YA2/NF-YB2/NF-YC2 or any NF-YA2 interactors were discovered in this research. 

Many hypothesis can lead to this result, for example it was reported in previous 

studies that the expression of NF-YA subunits is inhibited by miR169 in non-stress 

conditions (Li J. et al. 2005, Sorin et al. 2014), so the protein level of NF-YA 

subunits is normally low in plant. Hence, the fact that NF-YA members are tightly 

regulated and localized only in the nucleus could cause difficulties in the 

detection. Moreover, it is important to consider that in this study most of the 

analysis were performed on overexpressor mutants, having NF-YA2, NF-YB2 and 

NF-YC2 under the 35S promoter, and this could lead to artefacts. Hence, the 

overexpression of a protein member of a complex generates a stoichiometry 

imbalance creating atypical protein aggregation (Abruzzi et al. 2002). These 

promiscuous protein-protein interactions could cause pathway alterations due to 

the sequestration of proteins, essential for a specific complex, by the aggregation 
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with non-physiological partner proteins. This perhaps provides another reason for 

the missing NF-YA subunits in the NF-YB2 and NF-YC2 pull down experiments. 

In order to move forward in our understanding of the function of NF-Y genes, it 

would have been useful to detect the NF-YA2 subunit and the protein associated 

with it, to unravel the target genes they control and other regulatory proteins 

they interact with in multimeric complexes. Windram et al. (2012) found that in 

Arabidopsis NF-YA transcripts exhibit significant alterations during the defense 

response against B. cinerea. This result together with the significantly enhanced 

susceptibility of nf-ya2 KO mutants during the infection with the necrotrophic 

fungal pathogen and the reduced level of JA observed in this mutant in a previous 

study (Breeze at al. in preparation), indicate that NF-YA2 subunit may act as key 

regulator in the plant defense response. Additionally, the lack of altered 

phenotype of NF-YA2 KO and OE mutants during Hpa and P. syringae infection 

suggests that NF-YA2 subunit could play an exclusive role during the plant defense 

response against B. cinerea infection. This is in line with the hypothesis that NF-

YA, as in mammals (Manni et al. 2008), represent the regulatory subunits of the 

trimer and so, different NF-YAs specifically bind the CCAAT box of a target gene 

allowing transcriptional fine-tuning under different environmental conditions. 

However, the functional specificity of NF-Y complexes is largely still unknown. 

Chromatine immunoprecipitation followed by PCR (Chip-Seq) would be required 

to identify the set of genes containing CCAAT boxes in their promoter 

representing direct targets of each NF-YA member in vivo under different 

endogenous and exogenous stimuli. This investigation in combination with 

transcriptome analysis should shed some light on the function and specificity of 

different NF-Y complexes. Also, the use of Y3H system would help to elucidate 

putative NF-YA2 trimeric complexes, to narrow down all possible combinations, 

which can be then confirmed in planta. 

In this research, it was also shown that Arabidopsis nf-yb2 mutant did not display 

altered susceptibility against B. cinerea and Hpa compared to wild type plants, 

while nf-yb2/nf-yb3 double mutant showed to be significantly more resistant than 
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Col-0. This suggests an overlapping functionality between NF-YB3 and NF-YB2, 

hence only when both subunits are absent it is possible to observe an altered 

phenotype. These results raised an important question about whether different 

NF-Y genes in plant, belonging to the same subfamily, have evolved new functions 

or have an overlapping functionality with other NF-Y members.  

Furthermore, to expand our knowledge on NF-Y TFs in other crops a cross-species 

approach was used to identify key NF-Y orthologues genes based on the 

information gained in the model plant Arabidopsis. However, in the case of large 

TFs families such as NF-Ys, where functional redundant copies of each genes are 

present, identifing true functional orthologues based on protein sequence can be 

problematic. For this reason we performed a comparative expression analysis 

under a specific stress condition between the model plant and other species, 

represented a useful tool to predict the function of a certain gene. RNA-Seq 

analysis were carried out, and based on gene expression profiles it was found that 

large number of tomato and lettuce NF-YA and NF-YB orthologues genes were 

differentially expressed in response to B. cinerea infection. This is in agreement 

with what was observed in Arabidopsis where NF-YA and NF-YB members 

showed to be the subunits which undergo significant alteration in the 

expression pattern during the necrotrophic pathogen attack, suggesting a 

possible conserved function of these NF-Y subfamilies across different species.  

Moreover, in this study it was determined that five NF-Y orthologues genes in 

tomato and lettuce, including two members of the NF-YA subfamily 

(Solyc01g006930, Lsat_1_v5_gn_2_54241) and three members of the NF-YB 

subfamily (Solyc07g065500, Solyc12g006120, Lsat_1_v5_gn_5_1080) could 

possibly influence plant defense response, based on their conserved expression 

profile across the three species, providing candidates for further gene functional 

studies in other crops than Arabidopsis.  

Having looked carefully at the data obtained, the research presented here gives 

strong evidence concerning the role of NF-Y TFs during the plant defense against 

the necrotrophic pathogen B. cinerea. This is a novel function of NF-Y TFs, since, 
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so far, they were mainly associated with developmental and physiological 

responses, such as flowering time, embryogenesis and abiotic stresses (Swain et 

al. 2017),  with only few study reporting their role in plant immunity (Alam et al. 

2015, Hanemian et al. 2016, Rey et al. 2016). Moreover, according to the result 

showed in this research it can be hypothesized a model where during B. cinerea 

infection miR169, a microRNA family involved in plant development and stress-

induced responses. is repressed. This enhance the expression level of NF-YA2 

subunit, which is normally very low in physiological condition due to post 

transcriptional regulation. Hence, it was reported that the level of miR169/AGO1 

complex, which target NF-YA mRNA, decreased during different stress condition. 

NF-YA2 is then translocated into the nucleus where it binds NF-YB2/NF-YC2 

dimer, forming the NF-Y complex which regulate the expression of key defense 

genes probably involved in the JA pathway, since nf-ya2 KO mutant have present 

altered level of JA. Additionally, other dimer combinations are possible between 

NF-YB and NF-YC subunits, such as NF-YC2/NF-YB10, NF-YC2/NF-YB1, NF-YB2/NF-

YC9, NF-YB2/NF-YC4, NF-YB2/NF-YC4, which are potentially NF-YB2/NF-YC2 

competitors preventing the formation of this dimer. This competition could 

regulate defence gene through the formation of different NF-Y complex, acting as 

positive or negative regulator of plant immunity. The activator complex NF-

YA2/NF-YB2/NF-YC2, which positively regulate the expression of defense genes 

and the repressor complex formed by different NF-YB and NF-YC subunits 

preventing NF-YA2 to join the complex and bind the promoter in the CCAAT 

element. 

 

7.1 Conclusion 
In conclusion, this research improved our understanding of NF-Y assembly 

mechanism in plant. Firstly, it allowed to localize each subunit of the putative 

trimer in the plant cell and identified where the dimerization between NF-YB2 

and NF-YC2 occur. Secondly, it discovered potential leaf complexes, such as NF-

YB2/NF-YC9, NF-YB2/NF-YC4, NF-YB2/NF-YC1, NF-YC2/NF-YB1 and NF-YC2/NF-
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YB10 as well as confirmed the interaction between NF-YB2 and NF-YC2 in planta. 

Thirdly, it found a conserved expression patterns of different NF-Y orthologues 

genes during B. cinerea across different crops, suggesting a conserved function of 

some NF-YA and NF-YB orthologues genes in tomato and lettuce.  

Hence this study proposed a methodology which combines BiFC, MS and 

transcriptomics analysis to systematically identify NF-Y protein complexes in 

planta, which could be a powerful system since so far, the identification of NF-Y 

complexes was mainly carried out using Y3H assay. However, technical challenges 

still limit our understanding of NF-Y hetero-trimeric complexes, one example is 

represented by the functional redundancy of NF-Ys, which is problematic when 

NF-Y KO mutants are used. Also, the tight regulation of NF-YA subunits is an issue 

for the detection of these proteins in plants. Hence, looking for alternative 

methodologies is fundamental to characterize NF-Y complexes. This would 

elucidate our understanding in many areas of plant-environment interactions, 

stress responses and plant development and would allow the production of 

pathogen resistant crops using NF-Y as candidate genes for genetic engineering 

experiment. 

Still many questions need to be answered, for example the transcriptional 

regulation and post-transcriptional modification of NF-Y in plant need to be 

investigate, together with understand differences and similarities between 

animal and plant to better explain why plants have many NF-Y TFs for each 

subfamily. Specifically, it is important to elucidate whether different NF-Y have 

developed new functions or they are redundant genes in the genome. The 

research presented here provides a starting point for further investigation about 

the functional and combinatorial role of NF-Y in physiological condition and 

during the plant defense response, focusing not just on the model plant 

Arabidopsis but also in other economically important crops such as tomato and 

lettuce. 
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