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Context-Aware Convolutional Neural Network for
Grading of Colorectal Cancer Histology Images
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Ayesha Azam, Yee-Wah Tsang, David Snead, Nasir M. Rajpoot, Senior Member, IEEE

Abstract—Digital histology images are amenable to the ap-
plication of convolutional neural networks (CNNs) for analysis
due to the sheer size of pixel data present in them. CNNs are
generally used for representation learning from small image
patches (e.g. 224 × 224) extracted from digital histology im-
ages due to computational and memory constraints. However,
this approach does not incorporate high-resolution contextual
information in histology images. We propose a novel way to
incorporate a larger context by a context-aware neural network
based on images with a dimension of 1792 × 1792 pixels. The
proposed framework first encodes the local representation of a
histology image into high dimensional features then aggregates
the features by considering their spatial organization to make
a final prediction. We evaluated the proposed method on two
colorectal cancer datasets for the task of cancer grading. Our
method outperformed the traditional patch-based approaches,
problem-specific methods, and existing context-based methods.
We also presented a comprehensive analysis of different variants
of the proposed method.

Index Terms—Computational pathology, Deep learning,
Context-Aware convolutional networks, Cancer grading.

I. INTRODUCTION

H istology slides are used by pathologists to analyze the
micro-anatomy of cells and tissues through a micro-

scope. However, recent technological developments in digi-
tal imaging solutions [1] have digitized the histology slides
(histology images) to enable the pathologists to do the same
analysis over the computer screen. These histology images are
significantly larger than natural images. Each image contains
tens of thousands of cells and each cell nucleus usually takes
around 50×50 square pixels at the highest magnification level
(e.g. 40×). The digitization process results in an explosion
of data which leads to new avenues of research for machine
learning and deep learning communities.

Convolutional neural networks (CNNs) have been widely
used to achieve the state-of-the-art results for different histol-
ogy image analysis tasks such as nuclei detection and classifi-
cation [2], [3], [4], metastasis detection [5], [6], [7], tumor
segmentation [8] and cancer grading [9], [10], [11]. Each
task requires a different amount of contextual information, for
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instance, cell classification needs only high-resolution cell ap-
pearance along with little neighboring tissue whereas tumour
detection and segmentation rely on a larger context covering
multiple cells simultaneously. Due to tumour heterogeneity,
cancer grading requires high-resolution cell information as
well as the contextual spatial organization of cells in the
tumour microenvironment (TME). Most existing CNN based
methods applied to histology images follow a patch based
approach to train different models which tend to ignore con-
textual information due to memory constraints. Although these
models are often trained on a large number of image patches
extracted from histology images, often spatial relationships
between neighbouring patches are ignored. Due to the lack of
large contextual information, the inference is independent of
underlying tissue architecture and it is performed based on the
limited context captured by individual patches. This approach
works well for problems where contextual information is
relatively less important for prediction. However, contextual
information becomes vital in problems where diagnostic deci-
sions are made on the basis of underlying tissue architecture
such as cancer grading.

In this paper, we consider colorectal cancer (CRC) grading
to demonstrate the significance of context-aware CNNs in
cancer histology image analysis. CRC is the fourth most
common cause of cancer-related deaths worldwide [12]. The
grade of CRC is determined by pathologists by collective
analysis of individual cancer cells’ abnormality and their
spatial organization as a distorted glandular structure in the
histology image. Several studies on the prognostic significance
of CRC adopted a two-tiered grading system to reduce the
inter-observer variability [13], [14], merging the well and
moderately differentiated glands into a low-grade tumor and
classifying tissue with poorly and undifferentiated glands as
a high-grade tumor. In this work, we consider diagnostic re-
gions captured from CRC histology images containing enough
context to reliably predict the cancer grade (see Figure 1). We
refer to them as visual fields in this paper as selected by an
expert pathologist. A CNN based method for CRC grading
requires an image with large contextual information to capture
cell organization for accurate grading.

We propose a novel framework for context-aware learning
of histology images. The proposed framework first learns
the Local Representation by a CNN (LR-CNN) and then
aggregate the contextual information through a representation
aggregation CNN (RA-CNN), as shown in Figure 2. The
proposed framework takes a large size image (1792 × 1792)
as an input unlike the usual input image size (224 × 224)
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Fig. 1. Three visual field regions of colorectal tissue which highlight the importance of larger context for correct grading. Each box shows the 224 × 224
pixel context captured by a standard patch classifier at 20× magnification.

of standard patch classifiers. The input image is then divided
into small patches (224 × 224) in sliding window fashion
with no-overlap. The LR-CNN takes the patches as input and
converts them into high-dimensional feature vectors where the
length of feature vectors depends on the choice of LR-CNN
network. These feature vectors are arranged in the form of
a feature-cube using the same spatial arrangement in which
the corresponding patches were extracted. This feature-cube
is then fed into the RA-CNN to make predictions based on
both high-resolution feature representation and spatial context.
The proposed context-aware framework is flexible enough
to incorporate any state-of-the-art image classifier as LR-
CNN for local representation learning with the RA-CNN. We
present detailed results and show that our proposed framework
achieves superior performance over traditional patch-based
approaches and existing context-aware methods. Moreover, the
proposed framework also outperforms the methods designed
specifically for CRC grading using handcrafted features based
on gland architecture. Our main contributions in this paper are
as follows:
• We propose a novel framework for context-aware learning

from large high-resolution input images.
• The proposed framework is highly flexible since it can

leverage any state-of-the-art network design for local
representation learning.

• We explore different context-aware learning and training
strategies to examine the framework’s ability to learn the
contextual information.

• We report the results of comprehensive experiments (with
100+ network models) and comparisons to demonstrate
the superiority of the proposed context-aware learning
framework over traditional patch-based methods and ex-
isting context-aware learning methods.

II. RELATED WORK

Related work is divided into two subsections: methods
related to context-aware learning and some problem specific
methods on cancer grading.

A. Context-Aware Learning

In the literature, various approaches have been presented to
incorporate the contextual information for the classification of
histology images. Some researchers [15], [16], [17] used image
down-sampling, a common practice followed in natural image
classification, to capture the context from a larger histology
image. However, this approach is not suitable for problems
where cell information is as important as the context. Adaptive
patch sampling [18] and discriminative patch selection [19]
from histology images is another way to integrate the sparse
context. These methods are not capable of capturing small
regions of interest at high resolution e.g. tumor cells and their
local contextual arrangement. Some methods [20], [21], [22],
[6] leverage the multi-resolution nature of histology images
and use multi-resolution based classifiers to capture context.
These multi-resolution approaches only consider a small part
of an image at high resolution and the remaining part at low
resolutions to make a prediction. Therefore, these approaches
lack the contextual information of cellular architecture at high
resolution in a histology image.

Recently, some works [23], [24], [25], [26] have used
larger high-resolution patches to improve the segmentation
of histology images. Zanjani et al. [25] and Li et al. [26]
used a CNN based feature extractor followed by a Conditional
Random Field (CRF) for context learning. The latter is end-
to-end trainable with a patch size of 672× 672, considerably
smaller than the patch size used in the proposed method.
Agarawalla et al.[23] and Kong et al. [24] used a 2D Long
Short-Term Memory (LSTM) instead of CRF to improve tu-
mor segmentation. Some works [27], [28] used larger patches
at high resolution for the task of context-based classification.
Koohbanani et al.[27] proposed a context-aware network for
breast cancer classification. They used standard SVM to learn
the context from the CNN based features of the patches
extracted from a high-resolution image. Due to the nature
of the final classifier, this work is only capable of capturing
a limited context. Bejnordi et al. [28] proposed a similar
approach for breast tissue classification. They trained their
network in two steps. In the first step, they used a small patch
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Fig. 2. Flow diagram of the proposed context-aware framework for CRC grading. The top row shows local representation learning. The bottom row illustrates
the network architecture for representation aggregation learning which consists of multiple context blocks and other standard layers. Dashed lines represent
the blocks of a specific network design whereas solid lines represent the common blocks (see Table I for notations).

size and in the second step, they fixed the weights of half of
the network to feed a larger patch for training the remaining
half of the network. Their network also suffers from a limited
context problem as they managed to train a network with the
largest patch size of 1, 024 × 1, 024 pixels with small batch
size (10 patches). Sirinukunwattana et al. [29] presented a
systematic comparison of different context-aware methods to
highlight the importance of context-aware learning.

As opposed to the aforementioned methods, our proposed
method is different in a network design such that it is flexible
enough to accommodate any state-of-the-art CNN architec-
ture for representation learning and a custom CNN based
architecture for representation aggregation. The representation
learning and aggregation are stacked together for context-
aware learning with larger image size, 1792 × 1792 and a
typical batch size of 64 images.

B. Problem Specific Method

A number of automated methods for objective grading
of breast, prostate, and colorectal cancer [30], [31], [32],
[11] have been proposed in the literature. For instance, in
[31], [30], [32], a linear classifier is trained with handcrafted
features based on the glandular morphology for prostate cancer
grading. Awan et al. [11] presented a method for two-tier CRC
grading based on the extent of deviation of the gland from its
normal shape (circular/elliptical). They proposed a novel Best
Alignment Metric (BAM) for this purpose. As a pre-processing

step, CNN based gland segmentation was performed, followed
by the calculation of BAM for each gland. For every image,
average BAM was considered as a feature along with two more
features inspired by BAM values. Finally, an SVM classifier
was trained using this feature set for CRC grading.

Our proposed method differs from these existing methods
in two ways. First, it does not depend on the intermediate step
of gland segmentation making it independent of segmentation
inaccuracies. Second, the proposed method is entirely based
on a deep neural network which makes this framework in-
dependent of cancer type. Therefore, the proposed framework
could be used for other context-based histology image analysis
problems.

III. THE PROPOSED METHOD

The proposed framework for context-aware grading consists
of two stacked CNNs as shown in Fig 2. The first network,
LR-CNN, converts the high-resolution information of an image
into high dimensional feature-cube through patch based feature
extraction. The second network, RA-CNN aggregates the
learned representation in order to learn the spatial context from
the feature-cube to make a prediction. We leverage the power
of traditional patch classifiers to learn local representation
from individual patches. However, we explore different net-
work architectures for context block in RA-CNN for context-
aware learning. Moreover, different training strategies are
explored to find the optimal configurations of the context-
aware grading framework. The following section explains each



4

TABLE I
ENUMERATION OF SYMBOLS USED IN THE PAPER

Symbol Description Symbol Description
D Image dataset Xk kth image
K Number of images Y k Label of kth image
C Number of Classes Sk Mask of kth image
X Set of all images Y Labels of X
S Masks of X d Patch dataset
M Patches in an image column i 1, . . . ,M
N Patches in an image row j 1, . . . , N

xkij ijth patch of Xk ykij Label of xkij patch
F(·) Feature extractor fkij Features of xkij
Lf Fully connected layer Lg

p Global pooling layer
La×a
c a× a convolution layer Ls Softmax layer
→ Transition between layers • Preceding layer’s output
⊗ Hadamard product ⊕ Feature Concatenation
B(·) Context-block C(·) Context-Net

F Feature of X F′ Weighted Feature of X
Y′ Predicted labels of X Y ′k Predicted label of Xk

S′ Predicted Masks of X S′k Predicted Mask of Xk

Wk kth image weight θ Learnable Parameters
Lcls Classification cost function Lwgt Weighted cost function
Lseg Segmentation cost function Ljoint Joint cost function

building block of the proposed framework in details. The no-
tations used to describe each building blocks are summarized
in Table I.

A. Network Input

The input to our framework is an image (Xk) from a dataset,
D = {Xk, Y k, Sk; k = 1, . . .K}, of large high resolution
images which consists of K images with corresponding labels
Y k ∈ {1, . . . , C} for classification into C classes and coarse
patch level segmentation masks Sk ∈ {1, . . . , C} for multi-
task learning. Each image is divided into M ×N patches of
same size where xkij and ykij represent the ijth patch of kth

image and its corresponding label, respectively. We used a
patch dataset, d = {(xkij , ykij), | xkij ∈ Xk, ykij ∈ Y k}, which
consists of patches and their corresponding labels for pre-
training of LR-CNN.

B. Local Representation Learning

The first part of the proposed framework encodes an input
image Xk into a feature-cube F k. All the input images are
processed through the LR-CNN in a patch based manner. The
proposed framework is flexible enough to use any state-of-
the-art image classifier for local representation learning (LR-
CNN) such as ResNet50 [33], MobileNet [34], Inception [35],
or Xception [36]. This flexibility also enables it to use pre-
trained weights in case of a limited dataset. Moreover, it is
possible to train the LR-CNN independently before plugging it
into the proposed framework, enabling it to learn meaningful
representation [37] which leads to early convergence of the
context-aware learning part of the framework.

C. Feature Pooling

The spatial dimensions of the output feature fkij of a patch
xkij may vary depending on the input patch dimensions and the
network architecture for feature extraction. A global feature
pooling layer is employed to get a similar dimensional feature

vector for all variations of the proposed framework. Both
average and max global pooling strategies are explored. After
global pooling, features of all patches are rearranged in the
same spatial order (M ×N ) as extracted patches to construct
the feature-cube F k for context-aware learning. The depth of
the feature-cube depends on the choice of LR-CNN. For the
sake of generality, we will represent the output of our LR-
CNN as follows,

F = F(X, θF )→ Lgp(•) (1)

where F represents the fully convolutional part of the LR-
CNN and acts as a feature extractor whereas X is the batch
of images and F is the local feature representation of X after
pooling Lgp, which could be a global average or max pooling
layer. The operator (→) provides the output of the preceding
layer to the following layer and the operator (•) represents the
output of the preceding layer.

D. Feature Attention
As the input to the proposed framework has a relatively

large spatial dimension, there may be some part of the image
that may not have any significance for the prediction of the
image label. We introduce an attention block which gives less
weight to insignificant features and vice-versa. This attention
block takes feature-cube as input and learns the weights for
the feature-cube. Hadamard product (element-wise product) is
taken between the weights and input feature-cube to increase
the impact of more important areas of an image in label
prediction and vice-versa. The weighted feature-cube F′ is
defined as:

F′ = L1×1
c (F, θc)→ Ls(•)⊗ F, (2)

where L1×1
c and θc represent the 1× 1 convolution layer and

its parameters, respectively. Ls denotes the softmax layer and
the operator ⊗ is used to represent Hadamard product.

E. Context Blocks
Since the LR-CNN is used to encode the important patch-

based image representation into a feature-cube, the main aim
of the context block (CB) is to learn the spatial context
within the feature cube. The CB learns the relation between
the features of the image patches considering their spatial
location. We propose three different CB architectures, each
with different complexity and capability to capture the con-
text information. First CB, B1(·), is comprised of a 3 × 3
convolution layer followed by ReLU activation and batch
normalization. Second CB, B2(·), uses residual block [33]
architecture with two different filter sizes. It consists of three
convolution layers each followed by a batch normalization
and ReLU activation. The first and last layers are with 1× 1
convolution filter to squeeze and expand the feature depth. The
output feature-maps of the last layer are concatenated with the
input features-maps which makes its final output. The B2(·)
is defined as:

B2(F′, θB2
) = [L1×1

c (F′, θB1
2
)→ L3×3

c (•, θB2
2
)

→ L1×1
c (•, θB3

2
)]⊕ F′,

(3)
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where L1×1
c and L3×3

c denote the convolution layers with 1×1
and 3× 3 filter sizes; θB1

2
, θB2

2
, and θB3

2
are the parameters of

different convolution layers and θB2 represents parameter of
the whole context block for brevity. The operator ⊕ represents
the concatenation of feature-maps.

Unlike the previous two context blocks, our third CB
processes the input feature-maps in parallel with different filter
sizes to capture context from varying receptive fields. Similar
to the blocks in [35], it consists of multiple 1 × 1 and 3 × 3
convolution layers each followed by a batch normalization and
ReLU activation. A 3× 3 average pooling layer L3×3

p is also
used to average the local context information. The CB, B3, is
defined as:

B3(F′, θB3
) = [L1×1

c (F′, θB1
3
)→ L3×3

c (•, θB2
3
)

→ L3×3
c (•, θB3

3
)]⊕ [L1×1

c (F′, θB4
3
)]

⊕ [L1×1
c (F′, θB5

3
)→ L3×3

c (•, θB6
3
)]

⊕ [L3×3
p (F′)→ L1×1

c (•, θB7
3
)],

(4)

where θB1
3

to θB7
3

are the parameters of different convolution
layers and θB3

represents parameter of the whole context block
for the sake of notational simplicity.

F. Representation Aggregation for Context Learning

A cascaded set of three context blocks (C(·)) of the same
type (B1,B2, or B3) is used in RA-CNN. These context blocks
are explained in section III-E. The output of C(·) is followed
by a global average pooling layer, a fully connected layer, and
a softmax layer to make the final prediction in the required
number of classes. The final prediction Y′ from the features
of input images X is computed as:

Y′ = C(F′, θC)→ Lgp(•)→ Lf (•, θf ′)→ Ls(•), (5)

where θC and θf ′ represent the parameters of all context blocks
and the fully connected layer in RA-CNN, respectively. The
proposed framework is trained with categorical cross-entropy
loss based cost function Lcls(·) which is defined as:

Lcls(Y,Y′) = −
1

K

K∑
k=1

C∑
c=1

Y kc log2(Y
′k
c ), (6)

where Y kc and Y
′k
c are the ground truth and predicted proba-

bilities of kth image for cth class.

G. Auxiliary Block

The proposed framework is designed for the classification
of large input images. Therefore, the label of an input image
may depend on a set of different primitive structures (such as
glands) and their spatial organization. We proposed an auxil-
iary block to exploit these primitive structures. This auxiliary
block acts as a patch based segmentation of the primitive
structures in an input image (k) and outputs a coarse patch
based segmentation mask (S

′k). The segmentation masks (S′)
of input images X from their features F′ is defined as:

S′ = C(F′, θC)→ L1×1
c (•, θc′)→ Ls(•), (7)

where L1×1
c is a convolution layer with θc′ parameters. The

addition of auxiliary block enables the proposed framework to
learn in a multi-task setting [38], [39], [40], [41] where both
tasks share the same base network which helps to overcome
the issue of representation bias and overfitting. The loss
function for one task acts as a regularizer for the other tasks.
The weights are optimized based on joint loss(Ljoint) which
consist of Lcls and segmentation-map based loss function
(Lseg). Both Lseg and Ljoint are defined as:

Lseg(S,S′) = −
1

K

K∑
k=1

C∑
c=1

Skc log2(S
′k
c ), (8)

Ljoint(Y,Y′,S,S′) =α× Lcls(Y,Y′)+
(1− α)× Lseg(S,S′),

(9)

where α is a hyper-parameter which defines the contribution
of both loss functions in the final loss. Similar to patch clas-
sifier, the loss function (Ljoint) is minimized with RMSprop
optimizer [42].

H. Training Strategies

We trained the proposed framework in four different ways
for the sake of completeness in experimentation. First, the
proposed framework is trained without attention block and
by minimizing the Lcls(·) loss only. This configuration is
represented by solid line blocks in Fig 2. Second, the same
configuration as first but trained with a sample-based weighted
loss function, Lwgt(·), which give more weight to the image
patches with relatively less region of interest (glandular region)
as compared to the background. The weight of an image and
Lwgt(·) are defined as follow,

W k =

{
1

Rk
roi

, if Rkroi > α
1
α , otherwise

(10)

Lwgt(Y,Y′) = −
1

K

K∑
k=1

C∑
c=1

W kY kc log2(Y
′k
c ), (11)

where Rkroi and W k represent the ratio of the region of
interest and the weight of the kth image. The α is the ratio
threshold, selected empirically as 0.10, sets the upper limit
of an image weight. Third, multi-task learning based training
with the help of an auxiliary block by using joint classification
and segmentation loss, Ljoint. Last, training using the same
joint loss but with attention-based feature-cube to amplify
the contribution of more important features in the feature-
cube. The network configuration of this strategy is represented
by both solid and dotted lines blocks in Fig 2. We termed
these strategies as standard, weighted, auxiliary, and attention,
respectively.

IV. DATASETS & PERFORMANCE MEASURES

In this section, we explain the dataset details used for
training and evaluation of the proposed framework and metrics
for performance evaluation.
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A. Datasets

The proposed framework is evaluated on two colorectal
datasets1 in order to demonstrate its capabilities. The first
colorectal cancer (CRC) dataset was used by Awan et al.
[11] for exactly the same task of colorectal grading. It is
comprised of visual fields extracted from 38 Hematoxylin and
Eosin (H&E) stained Whole Slide Images (WSIs) of colorectal
cancer cases based on a two-tier grading system [13], [14].
The dataset consists of 139 visual fields with an average
size of 4548 × 7520 pixels obtained at 20× magnification.
These visual fields are classified into three different classes
(normal, low grade, and high grade) based on the organization
of glands in the visual fields by the expert pathologist. We
extend this dataset with more visual fields extracted from
another 68 H&E stained WSIs using the same criteria. Our
extended colorectal cancer (Extended CRC) dataset consists of
300 visual fields with an average size of 5000×7300 pixels. A
detailed distribution of the visual fields of different grades is
presented in Table II for both datasets. We follow 3-fold cross
validation for a fair comparison of the proposed method with
the method presented in [11]. All visual fields extracted from
one case only lies in one fold and we use one fold for training,
one for validation (hyper-parameter tuning) and one for the
testing to do strong cross-validation on extended CRC dataset.
Patches of two different sizes 224×224 and 1792×1792 pixels
are extracted for the training of traditional patch classifiers and
our proposed framework, respectively. A background class is
introduced to handle the patches with no or little glandular
regions. For each class in each fold, we extracted 30 000
patches for patch classification and 6000 overlapping patches
for context-aware classification using random rotation and
flipping based augmentation for both datasets.

TABLE II
DISTRIBUTION OF VISUAL FIELDS OF DIFFERENT CLASSES FOR BOTH

DATASET.

Dataset Normal Low Grade High Grade Total
CRC [11] 71 33 35 139

Extended CRC 120 120 60 300

B. Performance Measures

We have used two metrics, the accuracy and Rank-sum
measure, for performance evaluation. The average accuracy
refers to the percentage of visual fields classified correctly
whereas weighted accuracy is the sum of accuracy of each
class weighted by the number of samples in that class. Rank-
sum based evaluation metric is used to summarize the accuracy
of different models trained using a specific setting in order
to compare models trained with different context-blocks and
LR-CNNs. Different colors are used to represent different
rank for better illustrative visualization as shown in Table
IV and V. The orange color indicates the best performing
method whereas green and blue colours indicate that the results
are within 97.5% and 95% of the best performing method,

1Both CRC and Extended CRC datasets are publicly available at this page:
https://warwick.ac.uk/fac/sci/dcs/research/tia/data/

respectively. The rank for these colors are: orange = 1, green =
2, blue = 3, and no colour = 4. The lowest rank-sum represents
the best performance.

V. EXPERIMENTAL RESULTS

The results of the different variants of the proposed frame-
work are presented to show the superior performance of all
the variants over simple patch based methods. These variations
include the use of four different state-of-the-art classifiers for
local representation learning in LR-CNN; spatial dimension-
ality reduction through average and max-pooling; the usage of
three different context-blocks in RA-CNN; and four different
training strategies. By employing different combinations of
above-mentioned variations, we trained around 100 models
in total for each fold on the CRC dataset. The details of
experimental evaluation are given in following subsections.

A. Experimental Setup

The CRC visual fields are divided into patches of size
1792 × 1792, and the label of each patch is predicted using
the proposed framework with a stride of 224× 224. To avoid
redundant processing of the same region, the visual fields
are processed with LR-CNN to get representation features of
each local region. Afterwards, RA-CNN is applied in a sliding
window manner to aggregate local representation for context-
aware predictions. Through this approach, we process a visual
field with a 64 times bigger context as compared to standard
patch classifier with only 10% additional processing time. The
overall label of a visual field is derived from counting the
most predicted class (majority voting), excluding background
class in the visual field. Note that, all the reported results are
calculated on visual fields.

B. LR-CNN based Classifiers

Four different LR-CNNs are trained using ResNet50 [33],
Inception [35], MobileNet [34], and Xception [36] with patch
size of 224×224 to get the baseline patch based classification
results. The ResNet-50 [33] and Inception network are the
winner of Image-Net [43] challenge in 2015 and 2016, respec-
tively. MobileNet is a lightweight network with just 3 million
parameters whereas Xception network uses separable convolu-
tions which results in a significant reduction in computational
complexity. The performance of these classifiers for CRC
grading is reported in Table III. Although the performance
of all classifiers is comparable, MobileNet shows superior
performance with the highest mean accuracy. On the other
hand, Xception classifier shows consistent performance across
three folds with the lowest standard deviation (SD).

TABLE III
ACCURACY COMPARISON OF FOUR PATCH CLASSIFIERS.

Network Fold-1 Fold-2 Fold-3 Mean SD
ResNet50 93.48 93.62 89.13 92.08 2.08
MobileNet 93.48 95.74 89.13 92.78 2.74
Inception-v3 95.65 91.49 86.96 91.37 3.55
Xception 93.48 91.49 91.30 92.09 0.98
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C. RA-CNN based Context-Aware Learning

We experimented with three context-blocks, B1, B2, and
B3, to train three different variations of RA-CNN, which
we termed as RA-CNN 1, RA-CNN 2, and RA-CNN 3.
These three RA-CNN classifiers are trained separately with
all four LR-CNNs as explained in section III-F, hence giving
12 different combinations of the context-aware network. The
rank-sum method is used to compare the performance of these
networks with each other and also with the LR-CNNs. The
results in table IV shows that context-aware networks achieve
superior performance as compare to standard patch based
classifiers (LR-CNNs). The RA-CNN 3 achieves the best
Rank-sum (lowest) which shows its robustness across different
representation learning networks. The other two context-aware
networks also show comparable performance by remaining in
the 97.5% of the best performer.

TABLE IV
RANK-SUM BASED COMPARISON OF THREE DIFFERENT CONTEXT-AWARE
NETWORKS WITH STANDARD PATCH CLASSIFIERS. THE ORANGE, GREEN,

AND BLUE REPRESENTS THE RANK 1, 2 AND 3, RESPECTIVELY.

LR-CNN (Avg) Baseline RA-CNN 1 RA-CNN 2 RA-CNN 3
ResNet50 92.08±2.08 94.25±2.70 92.08±2.08 93.51±3.10
MobileNet 92.78±2.74 93.52±3.55 93.52±1.78 94.25±2.70
InceptionV3 91.37±3.55 94.23±3.71 94.96±2.72 95.68±1.78
Xception 92.09±0.98 94.96±2.72 94.96±2.72 95.68±3.55
Rank-sum 10 7 8 5

D. Local Representation Robustness

We also conducted different experiments to analyze the
robustness of local representation learned by different LR-
CNNs. These LR-CNNs are used in combination with different
RA-CNNs for context learning along with different feature
pooling strategies. Each LR-CNN is used to training three
RA-CNNs with both global average and global max pooled
feature-cubes. The table V compares the results using Rank-
sum based measure. It can be observed that the Xception
model turns-out as the most robust feature extractor in LR-
CNNs with the best rank-sum score of 8. The Inception model
shows comparable results to the best performer as its network
design has significant overlap with Xception architecture.

TABLE V
ROBUSTNESS ANALYSIS OF FEATURE EXTRACTORS ACROSS DIFFERENT

METHODS. THE ORANGE, GREEN, AND BLUE REPRESENTS THE RANK 1, 2
AND 3, RESPECTIVELY.

Methods ResNet50 (%) MobileNet(%) InceptionV3(%) Xception(%)
RA-CNN 1 (Avg) 94.25±2.70 93.52±3.55 94.23±3.71 94.96±2.72
RA-CNN 1 (Max) 93.52±1.87 93.51±3.10 94.23±2.07 93.54±3.03
RA-CNN 2 (Avg) 92.08±2.08 93.52±1.78 94.96±2.72 94.96±2.72
RA-CNN 2 (Max) 95.68±3.55 93.52±3.55 92.80±2.72 93.54±3.03
RA-CNN 3 (Avg) 93.51±3.10 94.25±2.70 95.68±1.78 95.68±3.55
RA-CNN 3 (Max) 94.23±2.07 92.82±2.01 94.25±2.70 94.96±2.72
Rank-sum 12 12 10 8

E. Training Strategies

We experimented with four different context related training
strategies (Standard, Weighted, Auxiliary and Attention) to
explored their impact on overall performance. The details

of each training strategy are given in Section III-H. Table
VI shows the comparison of these training strategies for
Xception based LR-CNN. Each entry in the table contains
the average accuracy across three RA-CNNs for particular
feature pooling (shown in rows) and the training strategies (in
columns). Attention-based training shows the superior results
for max-pooled features whereas standard training strategy
achieves comparable performance for average-pooled features.
However, auxiliary loss based training remains robust for both
pooling types and achieves the best overall accuracy. More
importantly, each model shows superior performance than the
baseline LR-CNN classifier as shown in Fig. 3. The graphical
illustration of 24 experiments using the best performing LR-
CNN is shown in Fig. 3. The results obtained with different
combinations of feature pooling type, the context blocks in
RA-CNN and the training strategies used for the experiments
are illustrated in the bar-chart format for better visual com-
parison. The accuracy obtained by Xception based LR-CNN is
considered as the baseline for comparative analysis. Bar-charts
for results with other LR-CNNs are given in supplementary
material.

TABLE VI
COMPARISON FOR DIFFERENT TRAINING STRATEGIES BASED ON AVERAGE

ACCURACY ACROSS THREE RA-CNNS WITH XCEPTION BASED
FEATURES.

Feature (Pooling) Standard Weighted Auxiliary Attention
Xception (Max) 94.01 94.49 94.73 95.21
Xception (Avg) 95.20 94.72 94.72 94.00
Mean 94.61 94.60 94.72 94.61

F. Result Summary

The gist of detailed experimentation and comparisons is that
larger contextual information helps in better automated grading
of colorectal cancer and the proposed approach demonstrated
the ability to capture larger context. In practice, Xception
based LR-CNN is the most robust feature extractor for context-
aware learning and RA-CNN 3 showed robustness to most
of the feature extraction methods. Attention based training
strategy is suitable for both RA-CNN 1 and RA-CNN 3 with
max pooling features. Last but not least, all proposed variations
of context-aware framework perform better than the baseline
Xception based classifier.

VI. COMPARATIVE RESULTS

The results of the best performing context-aware method are
compared with state-of-the-art approaches on both datasets.
These approaches are categorized into domain oriented meth-
ods, traditional patch based classifiers, and context-aware
methods. The brief description of these approaches and com-
parative analysis is presented in the following subsections.

A. Domain Oriented Methods

Awan et al. [11] presented a two-step problem specific
method for CRC grading as explained in Section II-B. They
experimented with two different feature sets which we refer
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Fig. 3. Results of 24 experiments using best performing local representation features (Xception). Legend represents the different training strategies whereas
different bars represents the results for three context-aware networks with max and average pooling based features. Red line indicates the baseline accuracy
of patch based Xception classifier.

to as BAM-1 and BAM-2 in this paper. BAM-1 comprises
of average BAM and BAM entropy while BAM-2 comprises
of an additional feature known as regularity index. They
evaluated their method using only average accuracy based
measures for both binary and 3-class grading. We reported
the results presented by the author in their paper [11] on
CRC dataset to avoid any retraining bias and compared using
average accuracy based measure for a fair comparison. Their
method achieved good accuracy for binary grading, normal vs
cancer, however, it lakes the robustness required for multi-class
grading of CRC visual fields whereas the proposed method
achieved superior performance on both tasks (see Table VII).

TABLE VII
AVERAGE ACCURACY BASED GRADING COMPARISON OF PROPOSED

CONTEXT-AWARE METHOD WITH STATE-OF-THE-ART METHODS ON CRC
DATASET.

ID Methods Binary (%) Three-class (%)
1 BAM - 1 [11] 95.70±2.10 87.79±2.32
2 BAM - 2 [11] 97.12±1.27 90.66±2.45
3 ResNet50 [33] 98.57±1.01 92.08±2.08
4 MobileNet [34] 97.83±1.77 92.78±2.74
5 InceptionV3 [35] 98.57±1.01 91.37±3.55
6 Xception [36] 98.58±2.01 92.09±0.98
7 CNN-SVM [44] 96.44±3.61 92.12±3.57
8 CNN-LR [44] 98.58±2.01 93.52±0.07
9 CNN-LSTM [29] 96.44±3.61 89.96±3.54
10 Proposed 99.28±1.25 95.70±3.04

B. Patch-based Classifiers

The results for four standard patch classifiers on both
datasets are presented in Table VII and VIII. There is a
slight difference in the ranking of these classifiers on both
datasets. However, Xception classifier remains consistent in
terms of low variance in performance on both datasets. We
further experimented with different patch sizes using Xception
classifier on the Extended CRC dataset. The results show
that the significant change in the patch size without any
modification in the network architecture leads to a decrease
in the performance as can be seen in Table VIII for Xception
network. The performance of all the patch based classifiers is
below the performance of proposed method.

C. Context-aware Methods

The decision fusion based methods [44], [45] can be loosely
considered as context-aware methods if used to predict the
visual field labels through the aggregation of patch predictions.
We compared our method with the two approaches used by
Hou et al.[44] on the Extended CRC dataset. They used
Support Vector Machine (SVM) with RBF kernel (CNN-SVM)
and Logistic regression (CNN-LR) for decision fusion from
the class histogram of patch probabilities. We used the best
performing patch classifiers for each dataset (MobileNet for
CRC, Xception for Extended CRC) to get the patch probabil-
ities. The CNN-LR shows some performance improvements
over the best performing patch classifiers but this performance
is still below the proposed method on both datasets (see Table
VII and VIII). The CNN-SVM method does not perform as
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TABLE VIII
ACCURACY BASED GRADING COMPARISON OF PROPOSED CONTEXT-AWARE METHOD WITH STATE-OF-THE-ART METHODS ON THE EXTENDED CRC

DATASET.

ID Methods Patch Size Binary Classification 3-Class Classification
Average (%) Weighted (%) Average (%) Weighted (%)

1 ResNet50 [33] 224x224 95.67±2.05 95.69±1.53 86.33±0.94 80.56±1.04
2 MobileNet [34] 224x224 95.33±2.49 95.42±2.23 84.33±3.30 77.78±4.83
3 InceptionV3 [35] 224x224 93.67±1.89 94.31±1.57 84.67±1.70 81.11±1.97
4 Xception [36] 224x224 96.67±2.05 96.80±1.71 86.33±0.94 81.39±1.71
5 Xception [36] 112x112 92.00±3.27 92.22±2.64 81.33±3.40 74.72±4.53
6 Xception [36] 448x448 97.00±2.83 97.08±2.36 86.67±0.94 80.42±1.25
7 CNN-SVM [44] 224x224 96.00±0.82 96.39±0.86 82.00±1.63 76.67±2.97
8 CNN-LR [44] 224x224 96.33±1.70 96.39±1.37 86.67±1.25 82.50±0.68
9 CNN-LSTM [29] 1792x1792 95.33±2.87 94.17±3.58 82.33±2.62 83.89±2.08

10 Proposed 1792x1792 97.67±0.94 97.64±0.79 86.67±1.70 84.17±2.36

Fig. 4. Visual results on CRC grading dataset are shown for patch classifier, existing context, and the proposed method on an image of size 1792× 1792.
The stride size for context networks is equal to the size of patch (224 × 224) used for patch classifier. Green, blue and red colors of overlaid rectangular
boxes show the normal, low and high-grade predictions respectively, whereas empty box areas represent non-glandular/background regions.

good as the simple majority voting based patch classifier. A
similar performance pattern can be observed in the Hoe et al.
paper [44] for the task of Glioma classification. We believe that
the major difference between these simple decision fusion and
context-aware methods is the ability to adjust the prediction
of a patch using its neighbourhood information. The decision
fusion based methods only use predicted patch probabilities
whereas as context-aware methods have access to the high
dimensional features of neighbouring patches.

We also compared our method with an LSTM based context-
aware method (CNN-LSTM) proposed in a systemic study
on context-aware learning by Sirinukunwattana et al. [29]

using prostate and breast cancer datasets. They used LSTM to
capture the context from CNN features of four downsampled
versions (1×, 2×, 4×, and 8×) of the input patch. The code
is publicly available by the authors of the paper [29] and we
use that code to retrain the method on both datasets for a
fair comparison. Our best performing context-aware method
outperformed the CNN-LSTM method on both datasets (see
Table VII and VIII). This performance improvement could
be attributed to the proposed method’s ability to use high
resolution input patch without any downsampling for context
learning, unlike CNN-LSTM. Moreover, we used a relatively
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more powerful CNN network (e.g Xception) for LR-CNN for
feature extraction whereas Sirinukunwattana et al. opted for
a light-weight network for feature extraction to make their
network end-to-end.

D. The Proposed Method

The different variants of the proposed method have shown
comparable performance but we consider our best performing
context-aware configuration for comparative analysis. The
best performance is achieved by RA-CNN 1 trained with
attention based training strategy on max pooled features. It
shows 3.61% and 2.78% better performance gain over simple
patch classifiers on both CRC (Table VII) and Extended CRC
(Table VIII) datasets, respectively. We also investigated the
performance based on the coarse patch-based segmentation
using RA-CNN 1 trained with auxiliary training strategy on
the Extended CRC dataset. Although, it achieves the weighted
accuracy of 87.50%, it has a high variance of 5.14% across
three folds of the Extended CRC dataset. Therefore, we did
not consider it as our benchmark for comparative analysis in
Table VIII.

E. Visual Comparison

The visual comparison of best performing patch classi-
fier, Sirinukunwattana et al. (CNN-LSTM) and the proposed
method on three different images with normal, low and high
grades are shown in Figure 4. Patch classifier’s prediction
is quite irregular for any given image due to the lake of
contextual information. The predictions of CNN-LSTM are
relatively smooth but it predicts the wrong label for the low-
grade image which might be due to the use of a low-resolution
images for context learning. However, the proposed method
predictions are smooth and consistent with the ground truth
labels.

VII. CONCLUSION

In this paper, we present a novel context-aware deep neural
network for cancer grading, which is able to incorporate 64
times larger context than standard CNN based patch classifiers.
The proposed network is well-suited for the CRC grading
task which relies on recognizing abnormalities in glandular
structures. These clinically significant structures vary in size
and shape that cannot be captured efficiently with standard
patch classifiers due to computational and memory constraints.
The proposed context-aware network is comprised of two
stacked CNNs. The first LR-CNN is used for learning the
local representation of the histology image. The learned local
representation is then aggregated considering its spatial pattern
by RA-CNN. The proposed context-aware model is evaluated
on two datasets for CRC grading. A comprehensive analysis
of different variations of the proposed model is presented and
compared with existing approaches in the same evaluation
setting. The qualitative and quantitative results demonstrate
that our method outperformed the patch based classification
methodologies, the domain-oriented techniques, and existing
context-based methods. This approached is suitable for cancer

analysis which requires large contextual information in the
histology images. This includes Gleason grading in prostate
cancer and tumor growth pattern classification in lung cancer.
Moreover, this approach can further be extended to perform
downstream analysis at the digital whole slide image level for
patient survival analysis.
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