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Abstract

The phenomenal advances in cloud computing technology have raised con-

cerns about data privacy. Aided by the modern cryptographic techniques such as

homomorphic encryption, it has become possible to carry out computations in the

encrypted domain and process data without compromising information privacy. In

this thesis, we study various classes of privacy-preserving information hiding schemes

and their real-world applications for cyber security, cloud computing, Internet of

things, etc.

Data breach is recognised as one of the most dreadful cyber security threats

in which private data is copied, transmitted, viewed, stolen or used by unauthorised

parties. Although encryption can obfuscate private information against unauthorised

viewing, it may not stop data from illegitimate exportation. Privacy-preserving

Information hiding can serve as a potential solution to this issue in such a manner

that a permission code is embedded into the encrypted data and can be detected

when transmissions occur.

Digital watermarking is a technique that has been used for a wide range

of intriguing applications such as data authentication and ownership identification.

However, some of the algorithms are proprietary intellectual properties and thus the

availability to the general public is rather limited. A possible solution is to outsource

the task of watermarking to an authorised cloud service provider, that has legitimate

right to execute the algorithms as well as high computational capacity. Privacy-

preserving Information hiding is well suited to this scenario since it is operated in

the encrypted domain and hence prevents private data from being collected by the

xi



cloud.

Internet of things is a promising technology to healthcare industry. A common

framework consists of wearable equipments for monitoring the health status of an

individual, a local gateway device for aggregating the data, and a cloud server for

storing and analysing the data. However, there are risks that an adversary may

attempt to eavesdrop the wireless communication, attack the gateway device or

even access to the cloud server. Hence, it is desirable to produce and encrypt the

data simultaneously and incorporate secret sharing schemes to realise access control.

Privacy-preserving secret sharing is a novel research for fulfilling this function.

In summary, this thesis presents novel schemes and algorithms, including:

• two privacy-preserving reversible information hiding schemes based upon sym-

metric cryptography using arithmetic of quadratic residues and lexicographic

permutations, respectively.

• two privacy-preserving reversible information hiding schemes based upon asym-

metric cryptography using multiplicative and additive privacy homomorphisms,

respectively.

• four predictive models for assisting the removal of distortions inflicted by

information hiding based respectively upon projection theorem, image gradient,

total variation denoising, and Bayesian inference.

• three privacy-preserving secret sharing algorithms with di↵erent levels of

generality.



Chapter 1

Introduction

The past decades have witnessed the worldwide popularisation of social networks

and the phenomenal prevalence of public cloud services. Online social networking

platforms, such as Facebook, Instagram, and Twitter, have expanded exponentially

with a considerable number of posts and a massive influx of personal information. The

seemingly unlimited storage space and computational capacity o↵ered by the cloud

service providers, such as Amazon, Apple, Dropbox, Google, and Microsoft, have

also opened up opportunities for numerous practical applications and appealed to

individuals and businesses to entrust an increasing amount of data to the environments

out of the control of the data owner. The legality and morality of the use of such

personal data by third parties came into question. In many current privacy policies,

the sharing of personal information with law enforcement agencies without a warrant

is, however, permitted.

Although the public are becoming increasingly reliant upon the Internet,

there are serious concerns regarding privacy of sensitive personal information. For

instance, a person’s social media footprint could a↵ect employment opportunities

since employers may screen prospective candidates through social networks and

search engines. Moreover, a person’s real-time location data might further entail

risks of home burglary since it reveals whether the person is at home or on leave.

There are risks of intentional or unintentional data leakage to untrustworthy third

parties for improper and dishonourable purposes. These issues have raised public

awareness about privacy and the sharing of personal data.
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Personal information can be exploited in both positive and negative ways

depending on the purposes and how they are perceived. On the one hand, sensitive

personal information would enable the desirable personalised services and functional-

ities, for instance, health advice, news feed, product recommendations, and public

transit options. The systems will not be able to function without such personal

information. On the other hand, although private personal data can be harvested

and exploited to understand, engage and influence individuals’ opinions, preferences,

and decisions, the use of such data in political campaigns is under debate. For

example, it was reported that in the 2012 US presidential election, the Obama

campaign employed data analytics and micro-targeting tactics to track individual

voters and identify potential supporters [1]. It has also been alleged that micro-

targeted political advertising was used to influence voters in the 2016 UK Brexit

referendum [2]. The UK Parliament’s Department for Digital, Culture, Media and

Sport (DCMS) condemned that Facebook, Cambridge Analytica, and Aggregate IQ

had been involved in the dissemination of disinformation and fake news during the

referendum [3]. The point has been made that citizens can only make truly informed

decisions about who to vote for if they are certain that those decisions have not

been unduly influenced. Hence, when personal data is exploited to target political

messages and advertisements, the use should be both transparent and lawful.

In view of the discussed issues, we conclude that there is an urgent need for

finding a solution to bridge the gap between privacy and functionality.

1.1 Privacy-Preserving Signal Processing

Privacy-preserving signal processing is an emergent discipline, born as a possible

solution addressing privacy concerns in cloud computing [4–10]. The aim is to allow

the processing of data and in the meanwhile preserve information privacy even when

it is exposed in untrusted environments. The realisation of this aim is often achieved

through cooperation with cryptographic schemes, particularly the homomorphic

encryption schemes which allow computations to be performed in the encrypted

domain. Accordingly, this research area is also referred to as signal processing in the

2



encrypted domain in most cases.

Although privacy-preserving signal processing is built upon deep theoret-

ical grounds of cryptography, the research outcomes from the applied aspects are

also abundant [11–19]. Apart from the multimedia contents in cloud computing

systems, it may also be applied to protect other privacy-sensitive information such

as biometric data in access control systems [20–22], criminal databases in forensic

investigation systems [23–25], medical records in healthcare systems [26], order his-

tory in recommendation systems [27], video footages in surveillance security systems

[28] etc. If such techniques for processing encrypted data exist, we can then entrust

encrypted data to some service providers in order to fulfil the given tasks e�ciently

without o↵ending certain privacy policies. For instance, the International Criminal

Police Organisation, also known as Interpol, has built extensive criminal databases

containing millions of records related to criminals and crimes. This police network

links law enforcement in all member countries and enables authorised parties to

track crime trends around the world in real time. To analyse and employ such data,

external assistance from academic communities may also be beneficial. However,

these research institutions, unlike law enforcement, may not have a su�ciently strong

security system to protect sensitive data from leakage during storage and communic-

ations. Furthermore, the content of data might be found rather overwhelming due

to the lack of professional training. In view of these issues, privacy-preserving signal

processing could be a potential solution. For example, the Interpol may request

a researcher institution to perform cluster analysis in such a way that criminal

evidences of similar attributes are linked together [29]. The Interpol encrypts and

entrusts the data to the research institution to be clustered in the encrypted domain

and then the clustered results are returned to the Interpol. The whole process of

clustering is carried out in the encrypted domain. Therefore, the clustered results

are also encrypted and can only be decrypted by the Interpol. In this way, the task

is fulfilled without compromising data privacy.

Amongst various topics of privacy-preserving signal processing, this thesis

focuses on the techniques and applications of privacy-preserving information hiding.

Compared with conventional techniques subsumed under the term ‘information hid-
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ing’, for example, steganography and watermarking, privacy-preserving information

hiding has a rather short history. Nevertheless, the rapid growth in the number

of academic research outcomes suggests that it is a very promising research area.

Multimedia content protection is with no doubt one of the most important topics lies

at the heart of the forensics and security communities. The adoption of conventional

information hiding techniques for multimedia content protection would, however, face

a number of practical issues. In a cloud-based information hiding scenario, sensitive

multimedia contents as well as other private metadata are submitted to a cloud

service provider by which the message embedding process is carried out. In general,

the aim is to protect the given multimedia content via the embedded messages that

describe the ownership, authentication code, and other useful information. The

cloud is usually assumed to be honest and trustworthy and yet this assumption

can only be applied to an ideal world. In reality, the cloud may collect and store

personal information, illegally distribute the multimedia content, or even su↵er from

disastrous security breaches. In 2014, a collection of private photographs of more

than hundreds of individuals and celebrities stored in iCloud were compromised

and leaked by a malicious hacking attack [30]. This devastating invasion of privacy

evoked increasing concerns surrounding security issues of cloud computing services.

The solutions for constructing a secure cloud-based information hiding system are

based upon the possibility of processing encrypted data [31].

1.2 Issues of Privacy-Preserving Information Hiding

Privacy-preserving information hiding is regarded as one of the most promising

and intriguing subdisciplines of privacy-preserving signal processing. It deals with

the problem of hiding information into encrypted carrier data and can be applied

to fulfil many real-life requests such as data exfiltration prevention, data origin

authentication, and electronic data management. It can also be of a substitution

strategy when an information hiding algorithm is registered as a proprietary property

and thus the access to the algorithm can only be made through authorised third

parties. An overview of privacy-preserving information hiding via cloud computing

4
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Figure 1.1: Privacy-preserving information hiding via cloud computing.

is illustrated in Fig. 1.1.

Information hiding is a general term encompassing a wide range of research

problems including steganography and watermarking. In general, information hiding

is defined as the practice of imperceptibly altering a carrier signal to embed a

message. The challenge of information hiding in the encrypted domain is a rather

di�cult one for the reason that when protected by encryption, the carrier signals

become semantically unintelligible and cannot be analysed. And the randomness

due to the encryption makes it di�cult to exploit data redundancy, prohibiting

conventional methods of information hiding from being deployed. In addition to this,

if a cryptosystem is perfectly secure, it is theoretically not possible to foresee how

the change in the encrypted domain would result in the change to carrier signals.

The true consequences can only be known after decryption; in other words, whether

the distortions caused by information hiding is perceptible or not becomes hardly

manageable and di�cult to predict before decryption. The main issues concerning

privacy-preserving information hiding can be summarised as follows:

• Cryptographic algorithms: The choice of cryptographic algorithms forms the

basis of a privacy-preserving information hiding scheme. On the one hand,

modern public-key cryptosystems, particularly those possess homomorphic

properties, are powerful in terms of the ability to perform mathematical

operations in the encrypted domain. Homomorphic encryption opens up the

possibility to transform a ciphertext into another ciphertext which decrypts to

5



the same plaintext. This class of cryptosystems is generally secure due to the

inherent advantage of circumventing the risks of key exchange. On the other

hand, traditional symmetric-key ciphers are comparatively easier to implement

since they are usually of low computational complexity and do not have the

drawbacks commonly seen in homomorphic cryptosystems such as ciphertext

expansion.

• Data structures: The data structure in which carrier signals are organised,

managed, and stored needs to be taken into account. It is often that crypto-

graphic algorithms cannot be directly applied to multimedia data since many

of those algorithms were originally proposed to deal with large integers while

multimedia data were not considered or standardised. That is, multimedia

data is not structured in a way to facilitate e�cient encryption when crypto-

graphic algorithms were initially developed. There are a variety of ways and

options to format multimedia data structures for the purposes of encryption

and operations that follow. Some structures may, for instance, partition carrier

signals into successive blocks based upon the spatial or temporal positions,

and some may divide signals according to semantic significance. Some arrange-

ments may involve the padding of additional bits for security purposes or for

accommodating privacy-preserving information hiding schemes.

• Information hiding schemes: The designs of privacy-preserving information

hiding schemes are application-oriented and can be characterised by various

features and qualities. Some of the schemes allow the extraction of messages

in the encrypted domain and yet the messages will be filtered out along with

decryption. This type of schemes may be employed to manage the encrypted

files stored online or to monitor the transfer and exportation of encrypted

documents. Some of the schemes preserve the embedded information so that

the protection furnished by information hiding lasts even after decryption. This

type of schemes can be used for the task of information hiding that can be

outsourced to authorised third parties, in the sense that the returned result is

equivalent to that produced from a conventional information hiding algorithm.

6



It is also possible to design schemes with a mixture of properties.

• Content-adaptive predictors: The decoding process of some privacy-preserving

information hiding schemes involves the use of content-adaptive predictors,

especially in the schemes that requires the original carrier signals. The precision

of content-adaptive predictors could have a crucial e↵ect on the ability and

quality of recovery. The designs of predictors are often based upon sophisticated

theories and advanced techniques of statistics and signal processing.

1.3 Objectives of This Thesis

The research of privacy-preserving information hiding encompasses a wide range

of technical principles and has found many real-world applications, but, be that

as it may, the current trend of research focuses predominantly on a specific class

of information hiding, namely reversible information hiding. As aforementioned,

a widely accepted definition of information hiding is the practice of imperceptibly

altering a carrier signal to embed a piece of message. In some highly sensitive

applications such as military reconnaissance or medical diagnosis, however, even

an imperceptible alteration of data may be strictly prohibitive. This problem has

become non-negligible especially when it comes to modern artificial intelligence aided

autonomous systems that may have not been trained to be robust against such noise

inflicted by information hiding. As such, reversible information hiding is regarded as

one of the most favourable solutions. This class of techniques permits the restoration

of original carrier signals if desired.

A privacy-preserving reversible information hiding scheme can be categorised

by the cryptosystem on which it is based. The possible cryptographic systems to be

applied include symmetric-key cryptosystems, asymmetric-key cryptosystems, and

other possibly insecure cryptosystems without strict security proofs. By holding the

provable security in high regard, we exclude the adoption of risky cryptosystems from

consideration. There are merits and demerits of symmetric and asymmetric ciphers.

A comprehensive evaluation of props and cons of various cryptosystems is beyond

the scope of this thesis. Thus, we briefly conclude that symmetric-key algorithms are
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generally of higher computationally e�ciency, whereas asymmetric-key algorithms

eliminate nearly all risks of secret key exchange. Both class of ciphers are used

widely today and hence it is of significance to develop privacy-preserving reversible

information hiding schemes for various types of encrypted data with remarkable

improvements over the prior art.

Another closely related topic is secret sharing, which is an importance cryp-

tographic technology for access control. A classic secret sharing scheme describes

a method for distributing a secret to a group of participants with an access rule

that the secret can be reconstructed only when a su�cient number of participants

present their shares of secret. The sharing process is carried out by a dealer, who is

assumed to be trustworthy. In Internet of things enabled healthcare applications, the

secret can be conceived as health data recorded by wearable devices, and the dealer

is a centre hub that collects and aggregates the data. The dealer shares the health

data amongst a group of authorised medical practitioners and the data can only be

retrieved when a su�cient number of practitioners consent to do so. The threshold

may be defined and agreed by the patient. However, the dealer’s privilege to access

patient’s private information might come into question. Even if it is permitted by

patient himself or herself, the risk of data leakage due to malicious cybersecurity

attacks still remains. A potential solution is to encrypt the health data at the very

beginning when it is recorded by the wearable devices and sent to the centre hub.

In order to enable the dealer to distribute data in the encrypted domain, there is a

need for developing privacy-preserving secret sharing techniques.

Recognising the issues argued previously and the need to tackle them, the

objectives of this thesis are summarised as follows:

• To develop privacy-preserving reversible information hiding techniques for

data encrypted respectively by e�cient symmetric-key ciphers and secure

asymmetric-key cryptosystems (refer to Chapter 3 and 4).

• To demonstrate how di↵erent homomorphic properties can be utilised to

construct information hiding schemes for encrypted data (refer to Chapter 4).

• To devise di↵erent types of predictive models in order to achieve better per-
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formance in carrier signal recovery (refer to Chapter 3 and 4).

• To make improvements over the state-of-the-art with regard to capacity, fidelity,

and reversibility (refer to Chapter 3 and 4).

• To introduce the novel research of privacy-preserving secret sharing and its

applications (refer to Chapter 5).

1.4 Outline of This Thesis

The rest of this thesis is organised as follows.

• Chapter 2 discusses the fundamental knowledge of related disciplines and

gives a literature review. It begins with an introduction of steganography,

watermarking, reversible information hiding, and cryptography. Then, some

of the most representative works in the research area of privacy-preserving

reversible information hiding are categorised and reviewed.

• Chapter 3 presents privacy-preserving reversible information hiding schemes

based upon symmetric-key ciphers. It begins with an information hiding

scheme that utilises the arithmetic of quadratic residues to embed additional

message and a content-adaptive predictive model derived from the projection

theorem to remove distortions caused by message embedding. It then discusses

another information hiding scheme using lexicographic permutations and a

content-adaptive predictor based upon image edge gradient. At the end of each

scheme construction, an experimental analysis is provided and a comparison

with the state-of-the-art is made.

• Chapter 4 investigates privacy-preserving reversible information hiding schemes

compatible to asymmetric-key cryptosystems. It presents information hiding

schemes based upon multiplicative and additive homomorphisms respectively.

In order to satisfy di↵erent operational requirements, it introduces an online

predictors based upon total variation denosing model and an o✏ine predictor

based upon Bayesian inference. At the end of it, simulation results are analysed

and discussed.
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• Chapter 5 introduces a novel research of privacy-preserving secret sharing

and showed how to apply this technology to the Internet of things based

healthcare systems. It starts with a discussion of simplest solutions and points

out their deficiencies in practical aspect. Three schemes with an ascending

generality have been proposed to address the issues with näıve solutions. The

proposed schemes permit secrets to be encrypted and shared amongst a group of

authorised users, while the reconstruction of secrets is intended to be as e�cient

as possible. Moreover, it has been shown that the proposed privacy-preserving

secret sharing schemes can achieve the same security level and access structure

as Shamir’s secret sharing scheme, which is an ideal scheme and yet is only

applied to unencrypted messages.

• Chapter 6 concludes the thesis and suggests some potential directions for future

research.
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Chapter 2

Background

Privacy-preserving information hiding is a multidisciplinary study combining cryp-

tography, steganography, watermarking, signal processing, statistical analysis, etc.

A good grasp of these disciplines is essential for a clear understanding of the ad-

vancement of privacy-preserving information hiding technologies. With the present

chapter, we begin our exploration of the fundamental knowledge of information hid-

ing. We provide a brief history of two main branches of information hiding, namely

steganography and watermarking, as well as a discussion of their characteristics and

applications. Then we introduce reversible information hiding, on which a large

part of this thesis focuses. In some applications, the ability to remove alterations

inflicted by information hiding would be desirable and hence the notion of reversible

information hiding was introduced to tackle restoration of the original carrier sig-

nals. After that, we provide a brief introduction of modern cryptography including

symmetric-key cryptography, asymmetric-key cryptography, and homomorphic en-

cryption. Di↵erent cryptosystems have very distinct characteristics and thus shall

be handled and used di↵erently in privacy-preserving information hiding systems.

This chapter is ended by a literature review of some of the most representative

privacy-preserving reversible information hiding schemes.
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2.1 Information Hiding

Information hiding is a general term comprehending the disciplines of steganography

and watermarking [32–35]. Some definitions of steganography and watermarking

were given in the textbook Digital Watermarking and Steganography by Ingemar J.

Cox et al. as [36]:

Steganography is defined as the practice of undetectably altering a work

to embed a secret message.

Watermarking is defined as the practice of imperceptibly altering a work

to embed a message about that work.

Although steganography and watermarking are closely related fields that to

some extent share a great deal of similar techniques, the divergence of essential

principles has led to quite di↵erent requirements and thus the technical approaches.

2.1.1 Steganography

The word steganography comes from the Greek words steganos, which means ‘covered

or concealed’, and graphein, which means ‘writing’ [37]. The first recorded use of

the term was in Trithemius’s book Steganographia written in 1499 [38]. Yet, one

of the first documented evidences and oft-cited examples of steganography can be

traced back to the Histories of Herodotus written in 440 BCE [39]. It recorded

a steganographic method which is to shave the head of a messenger and tattoo a

message on the messenger’s head. After the hair grew, the message would be covered

and become undetectable until the head was shaved again. Another common form

of steganography is through the use of invisible inks, which can be revealed only

under certain circumstances such as being heated, or being mixed with appropriate

chemical substances, or being viewed under ultraviolet light. With the development

of photographic reduction techniques, messages were substantially reduced into tiny

photographs, which can be read only with a specially designed magnifying viewer.

During World War I and World War II, these tiny photographs, called microdots,

were stuck on top of printed periods or commas in innocuous cover material such as

postcards and magazines, which were then delivered through insecure postal channels
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[40]. Public awareness of modern digital steganography increased drastically after

the 9/11 terrorist attacks. It was suggested that steganographic softwares might

have been applied to coordinate the intrigues.

In 1984, Simmons formulated steganography as the Prisoner’s Problem [41].

Two accomplices in a crime have been arrested and kept confined to separate cells.

Their only means of communication is to convey messages through the warden, who

will only permit to pass the messages if the information is innocuous. In order to

coordinate their escape plan as well as to deceive the warden, they will have to think

of a way to establish a subliminal channel. This problem could be seen as an analogy

for many other real-world applications of steganography [42–50].

2.1.2 Watermarking

Although the art of papermaking can date back to about 105 BCE in China, it was

not until the end of 13th century that watermarks appeared in Italy. The purpose

of watermarks at the time of their invention might be untraceable. They may have

been served as trademarks of paper maker, or simply as decoration. The first specific

watermark in an attempt to thwart counterfeiting of paper currency appeared in 1661

when the first European banknotes were issued in Sweden. A traditional watermark

is a design stamped on wet pulp during the papermaking process and only reveals

itself when the paper is held up to light. It is almost invisible to the naked eye under

normal viewing conditions and is di�cult to be reproduced.

The term ‘digital watermark’ was coined in early 90s when the feasibility of

encoding watermarks into digital images was investigated [51]. Digital watermarking

techniques can be used for a wide variety of applications, including but not limited to

access control, broadcast monitoring, copyright protection, data annotation, forgery

detection, message authentication, ownership identification and traitor tracing [52–

54]. The development of digital watermarking can be further categorised into a

number of subfields such as robust watermarking and fragile watermarking.

As its name would suggest, a robust watermark is designed to survive incid-

ental or deliberate removal and is widely used for copyright protection and many

other real-life applications [55–64]. Attacks against robust watermarks often involve
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desynchronisation operations to paralyse watermark detection process. For digital

images, desynchronisation can be realised by geometrical transformations including

cropping, flipping, padding, rescaling, rotating, shifting, and transposing [65].

By contrast, a fragile watermark would fail to be detected if the cover

content is altered in any way and its fragility can be a favourable characteristic

for authentication purposes [66–73]. After answering whether a content has been

modified, the localisation and restoration of tampered areas may be taken into further

consideration. The knowledge of which part of the content has been altered and which

part is authentic could be beneficial to, say, the understanding of motivations behind

tampering, while the possibility of recovering the altered parts can, for example,

save the cost of retransmissions or be even more valuable when retransmissions are

not possible. To enable the function of localisation, the watermark components

should be embedded in such a way that failing to verify one component should not

a↵ect the verification of others [74–79]. To further recover the altered areas, one

may resort to the self-embedding approach in which the watermark payload contains

a reconstruction reference such as a compression code of the cover content itself

[80–93].

The properties of watermarking schemes and their relative importance is

dependent upon the application in hand. Amongst various watermarking systems,

most common properties are capacity and fidelity. The capacity refers to the amount

of data payload can be encoded into digital media. It may be measured by the

number of bits per pixel for images, per second for the audios, per frame for videos,

or per sentence for texts. The fidelity refers to the perceptual similarity between the

original content and its watermarked counterpart. It can be evaluated by objective

quality assessment metrics such as mean square error (MSE) or signal-to-noise ratio

(SNR) [94–96]. It is also possible to produce the rate by subjective methods, for

example, by involving human observers or applying perceptual models of human

visual system (HVS) and human auditory system (HAS) to automatically predict

human judgement [97].
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2.2 Reversible Information Hiding

In digital forensic science, one of the most critical issues would be the authentication

of digital evidence against illegitimate manipulations [98]. Digital signature schemes

serve as one of the most e↵ective solutions towards message authentication [99].

Typically, a digital signature is the encryption of a hash value, or a digest of a file,

in a sense that:

• It cannot be forged as long as the private key (for encryption) remains secure.

• It is verifiable as long as the public key (for decryption) is available.

In 1993, Friedman proposed a trustworthy digital camera that contains

a microprocessor for generating digital signatures when photos are taken [100].

The private key only known to the camera manufacturer is programmed into the

microprocessor, whereas the public key is stored as image files’ metadata and also

engraved on the camera body. To verify the image file in question, the verification

software decrypts the stored signature with the public key to obtain the hash

value, and compares it with the hash value produced from the image in question.

The verification is passed if both values match; otherwise, the image fails to be

authenticated and is judged as tampered.

This construction, however, requires additional storage space for signatures

and furthermore has risks of data loss and mismanagement during storage, trans-

mission, or format transformation. Although watermarking can be considered as

a potential solution addressing the problem of mislaying digital signatures as well

as other auxiliary information, the modifications by the act of watermarking it-

self may violate the initial objective of integrity protection. In some cases, these

non-malicious modifications and imperceptible distortions could be admissible and

tolerable. In some sensitive scenarios, however, such alterations would be strictly

forbidden, especially in the cases such as military reconnaissance or medical diagnosis.

It might be argued that the noise introduced is too faint to be a possible cause of

misinterpretation of medical images in a malpractice suit. Yet, this argument may

not be persuasive in a courtroom.
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panda colour noise gibbon

Figure 2.1: A demonstration of adversarial perturbations. By adding an imperceptible
colour noise to an image ‘panda’ from ImageNet, GoogLeNet mistakenly categorised
it as a ‘gibbon’ with 99.3% confidence.

Another critical concern is accompanied by the recent development of artificial

intelligence aided automated systems, such as autonomous vehicle systems and

autonomous diagnostic systems. It is evident that many current deep neural networks

would not able to sustain some adversarial perturbations in a sense that some

imperceptible noise would chance to or intend to mislead the model in a wrong or

even chosen direction, as a demonstration shown in Fig. 2.1 provided by Goodfellow

et al. [101]. It is also of a practical possibility that a few distorted samples of data

collected and used in the training process would poison and eventually compromise

the whole model. Hence, we conclude that the ability to preserve perfect copies

of original images is not only an academic pursuit but also of great significance in

real-life applications.

In order to fulfil the requirement of preserving the original carrier signals,

the notion of reversible information hiding was introduced and has continued to

advance over the last two decades [102]. Reversible information hiding is a special

class of information hiding techniques that permits the restoration of original carrier

signals once the embedded messages are extracted. To the best of our knowledge,

the very first reversible information hiding algorithm was invented by Barton and

issued as a US patent in 1997 [103]. The invention relates to an information hiding

method and apparatus for verifying whether the digital data has been modified

from its intended form and allowed restoration of data to its original state if desired.

Relevant literature suggested that reversible information hiding schemes are favour-

able for many authentication applications, and thus we would argue that reversible
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Greyscale image Bit planes

Figure 2.2: An example of eight bit planes of a greyscale image. The significance of
bit planes decreases from top left to bottom right.

information hiding is more associated with watermarking, instead of steganography,

from the application aspect. Accordingly, we may also refer to reversible information

hiding as reversible watermarking and message payloads as watermarks. In the rest

of this section, we review some of the most representative techniques of reversible

information hiding.

2.2.1 Lossless Compression

To some extent the problem of reversible information hiding can be conceived as

lossless data compression with a fidelity constraint [104–109]. In other words, if

we are able to compress some perceptually insignificant components of the carrier

signal, then we are able to accommodate additional information while preserving the

similarity between the original and modified signals. This idea is intuitive and to

some extent feasible, but it would encounter an inherent problem of a rather limited

embedding capacity due to the nature of signals. It can be observed that those

imperceptible parts of signals in most cases would look like random noise signals,

which is nearly incompressible. Let us take digital images of 256 pixel intensities as

example. It can be seen in Fig. 2.2 that the randomness of each bit plane increases

as the visual significance decreases. It indicates that if one wants to embed more

amount of information, some significant components of a signal might inevitably be

modified, which inflicts visible distortions.

The problem of reversible information hiding can be considered as a matter

17



of striking a good fidelity-capacity trade-o↵. The overall objective is to reach a more

e�cient balance in a sense that higher capacity is achieved under a fixed fidelity

constraint or vice versa. A theoretical aspect of this problem was investigated by

Kalker and Willems, who formulated it as a rate-distortion problem.

Theorem. Let X and Y denote the memoryless random variables of carrier signal

and its marked transition respectively, H denote the entropy function, and D denote

a preferred distance function. The upper bound of embedding rate ⇢ under a distortion

constraint � is given by

⇢(�) = max{H(Y )}�H(X), (2.1)

where the maximum is over all transition probabilities P (y|x) satisfying the distortion

constraint
X

x,y

P (x)P (y|x)D(x, y)  �. (2.2)

Based upon the theoretical formulation, Kalker and Willems presented a

recursive reversible embedding approach aiming at approaching the theoretical upper

bound [110]. The idea is straightforward: First, we segment the carrier bitstream

into n disjoint subsequences x = x1||x2|| . . . ||xn. Second, we encode the first piece of

payload into x1 through an arbitrary irreversible embedding technique and obtain the

result y1. Third, we compute the auxiliary information needed to reconstruct x1 when

y1 is available. Theoretically, the amount of information required is equal to H(x1|y1).

Then, we embed the auxiliary information for reconstructing x1 as well as the next

piece of payload into x2 via the chosen irreversible embedding technique, resulting

in y2. We repeat this process recursively until the one but the last subsequence

xn, for which we simply deploy the lossless compression strategy. However, this

pioneering study only considered independent and identically distributed (i.i.d.)

random variables of carrier signal and therefore, e�cient approaches to cope with non

i.i.d. sequences and to narrow the gap between theoretical and practical performance

have played a pivotal role in this line of research [111–117].
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2.2.2 Di↵erence Expansion

Di↵erence expansion is a branch of techniques based upon reversible integer transform.

This idea was first introduced by Tian [118], who proposed to transform a pair of

adjacent pixels of the carrier image into a pair of moving average or trend and moving

di↵erence or fluctuation via integer Haar wavelet transfrom, and embeds one bit

into the expanded di↵erence term. Let x and y be a pair of adjacent pixels of an

8-bit greyscale image such that 0  x, y  255. Their average µ and di↵erence � are

defined as

µ =

�
x+ y

2

⌫
,

� = x� y,

(2.3)

where b.c denotes the floor function. The inverse transform from µ and � to x and y

is computed by

x = µ+

�
� + 1

2

⌫
,

y = µ�
�
�

2

⌫
.

(2.4)

Let b denote one bit of information to be embedded such that b 2 {0, 1}. The

message embedding procedures are operated as follows:

1. Transform x and y into µ and �.

2. Expand � by a scale of 2 and embed b by

�0 = 2⇥ � + b. (2.5)

3. Transform µ and �0 inversely into x0 and y0.

Given that most of the energy is preserved in the trend signal which has been kept

changed during the embedding process, only tiny fluctuations in visual quality would

occur. The message extraction and image recovery procedures are demonstrated as

follows:
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1. Transform x0 and y0 into µ and �0.

2. Extract b by

b = �0 mod 2. (2.6)

3. Recover � from �0 by

� =

�
�0

2

⌫
. (2.7)

4. Transform µ and � inversely into the original x and y.

Albeit its simplicity, the above scheme leaves the problems of overflow and underflow

unsolved. In other words, the modified pixels x0 and y0 went out of bounds of the

colour depth (256 possible grey levels). To rectify this flaw, the encoder needs to

record the location of changeable pixel pairs on a location map. There are many

possible ways to communicate this map to the decoder. For instance, we can employ

the LSB replacement method to replace least significant bits (LSBs) of some pre-

agreed pixels between the encoder and decoder with the compressed bitstream of

the location map, and then make the original bits as a part of the message payloads.

Example. We illustrate the di↵erence expansion approach with an example provided

in Tian’s article. Assume that we have two pixels x = 206 and y = 201, and we

would like to embed a bit b = 1. First, we compute the average µ and di↵erence � by

µ =

�
206 + 201

2

⌫
= 203,

� = 206� 201 = 5.

Then, we expand the di↵erence � by a scale of 2 and add the bit b to it, resulting

�0 = 2⇥ 5 + 1 = 11.

Finally, we transform µ and �0 inversely into new pixel values x0 and y0 by

x0 = 203 +

�
11 + 1

2

⌫
= 209,

y0 = 203�
�
11

2

⌫
= 198.
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To extract the bit b, we compute

b = 11 mod 2 = 1.

We then obtain the original average µ and di↵erence � by

µ =

�
209 + 198

2

⌫
= 203,

� =

�
11

2

⌫
= 5.

Finally, we use µ and � to restore x and y as

x = 203 +

�
5 + 1

2

⌫
= 206,

y = 203�
�
5

2

⌫
= 201.

Followed by this paradigm, there have been rapid developments in reversible

integer transform. Improvements over Tian’s original method include a generalised

integer transform by Alattar [119], a reversible contrast mapping by Coltuc and

Chassery [120], and other e�cient integer transforms [121–123]. To further reduce

the size of location map, a sorting technique was proposed by Kamstra and Heijmans

[124].

2.2.3 Histogram Shifting

One of the most significant breakthrough in reversible information hiding techniques

is the histogram shifting approach proposed by Ni et al. [125]. This idea had laid

the groundwork for a variety of improved constructions. An overview of histogram

shifting technique is shown in Fig. 2.3. In general, an embedding algorithm consists

of three steps:

1. Generate the histogram of the host signal.

2. Split the histogram into an inner region and an outer region.

3. Embed message by modifying the inner bins.
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Figure 2.3: An illustration of the histogram-shifting reversible watermarking tech-
nique. Given a designated bin (coloured in light grey), the adjacent bins are emptied
out by shifting the bins at both sides (coloured in dark grey) outwards. To represent
the payload information, the sample values of the designated bin are mapped to the
adjacent values.

In order to make room for data embedding, or equivalently to disambiguate the outer

bins and the modified inner bins, the outer bins are to be shifted outwards. In more

detail, the adjacent bins of a designated bin, usually the peak bin, are emptied out

by shifting outwards. Then, each sample value of the designated bin is mapped to its

adjacent values to represent the payload information. The process can be reversed

by simply shifting the bins inwards and mapping the values back. If the bins at two

ends of the histogram are not empty in the first place, a small amount of additional

information will be needed to record the overflow.

Among various extensions, one of the most renowned method is prediction-

error expansion by Thodi and Rodriguez [126]. This method takes account of

correlations inherent in the neighbourhood of a pixel, rather than merely the cor-

relation between two adjacent pixels. This technique has greatly influenced the

subsequent development of reversible information hiding schemes. Improvements

over this method mainly focus on exploiting more advanced prediction techniques

to generate a more sharply distributed prediction-error histogram. Sachnev et al.

utilised rhombus prediction, double-layered embedding mechanism, and sorting

strategy to improve the performance [127]. Luo et al. devised an interpolation-based

predictive model which calculates the estimated pixel value as the weighted sum of

its four adjacent neighbours [128]. Qin et al. employed an inpainting technique to

assist the prediction [129]. Fallahpour adopted gradient adjusted predictor (GAP) to

improve the estimation accuracy [130]. Coltuc investigated and analysed a variety of
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predictors and their performances within scope of reversible information hiding [131].

Ou et al. proposed a idea of using a two-dimensional prediction-error histogram

[132].

Furthermore, adaptive embedding and pixel-selection strategies were de-

veloped to classify pixels according their local complexity, and by exploiting only

pixels in the smooth regions, a sharply-distributed prediction-error histogram can be

generated to carry a larger payload [133–137].

Another type of improved methods aims to find optimal histogram bins for

data embedding. Fallahpour and Sedaaghi devised a block-based mechanism that

embeds data by modifying the peaks of histograms generated from distinct blocks of

the carrier image [138]. Xuan et al. suggested to modify the histogram generated

from high frequency coe�cients of the integer wavelet transform (IWT) of the host

image [139]. Li et al. proposed a general framework that concludes a number of

histogram shifting based schemes as its special cases [140]. Wang et al. modelled

the multiple-layered histogram shifting as a rate-distortion problem and employed

the genetic algorithm (GA) to search for the nearly optimal bins [141]. E�cient

methods using multiple histograms were also investigated [142–145].

2.3 Modern Cryptography

Cryptography is the study of secure communications in the presence of malicious

adversaries [146]. In a narrower sense, it is referred to the study of a pair of encryption

and decryption algorithms such that the sender enciphers a message, or a plaintext,

into a disguised message called ciphertext in order to prevent the secret information

from being revealed to an eavesdropper, and only the intended recipient is able to

decipher and read the message. In the literature of cryptography, for convenience

and to aid comprehension, the name Alice is often used to refer to the sender, Bob

to the intended recipient, and Eve to the adversary, especially the eavesdropper. We

will use these names of fictional characters extensively in discussions about a variety

of systems and protocols.

The modern study of cryptography can be generally divided into symmetric-
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key cryptography and asymmetric-key cryptography [147]. As their names suggest, the

symmetric-key cryptography is referred to the cryptosystems that use the same key

for both enciphering and deciphering, whereas the asymmetric-key cryptography, also

known as public-key cryptography, indicates the cryptosystems that utilise di↵erent

keys for encryption and decryption of the messages. In response to privacy concerns

in cloud computing environments and other privacy-aware applications, there has

been a surge of research in the development of homomorphic cryptosystems which

permit computations on ciphertexts. We begin this section with basic cryptographic

principles and attacks. Then, we discuss some representative cryptosystems of di↵er-

ent categories. This section ends with a non-technical introduction of homomorphic

cryptosystems.

2.3.1 Kerckho↵s’s Principles

In 1883, A. Kerckho↵s stated six principles for the design of military ciphers, which

have been regarded the basic tenet of cryptography [148]:

i The system must be practically, if not mathematically, indecipherable.

ii It must not require secrecy and must be able to fall into the hands of the enemy

without inconvenience.

iii Its key must be communicable and retainable without the aid of written notes,

and must be changeable or modifiable at the discretion of the correspondents.

iv It must be applicable to telegraphic correspondence.

v It must be portable, and its usage and function must not require the concourse

of several people.

vi Finally, it is necessary, given the circumstances that control the application,

that the system is easy to use, requiring no mental strain, or the knowledge of

a long series of rules to be observed.

Although some of the rules are no longer applicable due to the emergence of

modern computers, the second rule is still of great significance today. This rule was
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echoed and rephrased by C. Shannon as ‘the enemy knows the system’, which is also

widely recognised as Shannon’s maxim [149]. In other words, if the messages were

eavesdropped and copied while en route, the messages should be indecipherable even

though the enemy has full knowledge of the algorithms and apparatus used.

2.3.2 Basic Cryptographic Attacks

A cryptographic attack is a method for discovering the weaknesses in algorithms,

protocols, or implementations of cryptosystems with the eventual goal to determine

the key and thus the secret message in its entirety. This process is also known as

cryptanalysis. Attacks can be classified based upon what information is available to

the attacker. The most common and basic types of cryptanalytic attacks are listed

and discussed in order of severity as follows [150].

• Ciphertext-only attack (COA): The attacker is assumed to have only access

to a set of ciphertexts and attempts to deduce some information about the

key or the plaintext. A cryptosystem that is vulnerable to this type of attack

would be considered as completely insecure. In the history of cryptography,

one of the simplest and most widely known encryption techniques is Caesar’s

cipher, which simply shifts the plaintext alphabet left or right by some number

of positions. This classical cipher can be easily broken in a ciphertext-only

scenario by frequency analysis, that matches up the frequency distribution of

the enciphered letters with the statistics of the plaintext language.

• Known-plaintext attack (KPA): The attacker has access to a set of plaintexts

and their enciphered counterparts, which can be used to deduce the secret keys

or codebooks. One of most well-known practice of this method is the breaking

of the German Enigma machine by Alan Turing and other cryptanalysts during

World War II. To decipher the Enigma messages, British cryptanalysts enticed

the Germans to include particular words, called ’cribs’, in their enciphered

messages. This process of planting cribs was called ‘gardening’. Chunks of

known plaintext enabled the exhaustive search space to be narrowed down

to an amount that eventually can be solved with the help of systematically
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constructed electro-mechanical devices, such as the Bombe.

• Chosen-plaintext attack (CPA): This model presumes that the attacker is

able to acquire the corresponding ciphertexts of arbitrarily chosen plaintexts.

The target is to reveal the plaintext that was encrypted to give some other

ciphertext, or the challenge ciphertext. It is usually conceptualised by allowing

the attacker to interact with an encryption oracle, or less pedantically a black

box. Yet, this attack is a realistic threat in many scenarios. During the Pacific

War, US Navy cryptanalysts has intercepted a message from Japan containing

the ciphertext fragment ‘AF’ and they believed that it might correspond to

the plaintext ‘Midway Island’. In order to prove this hypothesis, they devised

a ruse by instructing the US forces at Midway to broadcast an uncoded radio

message stating that Midway’s freshwater supplies were low. Within 24 hours,

the US cryptanalysts intercepted a message from Japan reporting ‘AF was

short on water’, which confirmed their hypothesis.

• Chosen-ciphertext attack (CCA): This model presumes that the attacker is

given the capability to obtain the decryption of any chosen ciphertext. The aim

is to determine the secret key in whole or in part. In other words, the attacker

is allowed unlimited access to a decryption oracle. By its very nature, this

attack is di�cult to mount and yet the vulnerability to such attack is not only

a theoretical possibility. In real life, often, the attacker can issue ciphertext

queries to a server and fool it into decrypting those chosen ciphertexts. The

attacker is also possible to learn partial information about the plaintext from

observing server’s responses such as ‘invalid checksum’, ‘invalid timestamp’, or

‘invalid password’.

We conclude by noting that di↵erent application scenarios may require res-

istance to di↵erent types of attacks. It is not always the case that a cryptographic

scheme secure against the most powerful type of attacks would be favourable. When

taking the algorithm e�ciency and computational complexity into account, the

cryptographic scheme secure against weaker attacks may be preferred provided that

it su�ces for the applications at hand.
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2.3.3 Symmetric-Key Cryptography

Symmetric-key cryptosystems refer to cryptographic algorithms that use the same

keys for both encryption of plaintext and decryption of ciphertext. As one of the

most notable milestones in the history of cryptography, an unbreakable cipher was

invented by Vernam with a patent granted in 1919 [151], which is also referred to

as the one-time pad today. Yet, it was not until 1949 that the perfect secrecy of

Vernam’s cipher was proved by C. Shannon in his seminal work Communication

Theory of Secrecy Systems [149]. It was shown that the one-time pad is unbreakable

and anything unbreakable is naturally a one-time pad. Despite its theoretical perfect

secrecy, it is by no means a practical system given that it is unbreakable if and only

if

• The key is truly random.

• It is only used once and never reused in whole or in part.

• It is kept completely secret.

• Its length is the same as, or longer than, the length of the message.

As might be expected, it is hard to generate truly random keys and, moreover,

even the definition of true randomness could be considered as a vague philosophical

question. In addition to this, the cost of storing and exchanging such large volumes

of keys would be very expensive. To overcome these issues, stream ciphers were

innovated as an approximation of the unbreakable one-time pad, which generate keys

via a pseudorandom number generator (PRNG). One of the most prominent and

widespread stream ciphers is Rivest Cipher 4 (RC4), designed by R. Rivest in 1987

[152]. It has been used and supported in many commercial software packages.

Data Encryption Standard (DES) was a publicly available cipher developed

by H. Feistel and the research team of IBM, and became a public standard in 1977

with the involvement of the National Security Agency (NSA) [153]. However, it has

been criticised for a relatively short key length (56 bits). As computational speed

continued to grow rapidly, this weakness had become more serious and finally been

rendered insecure by brute-force attacks. In 2001, Advanced Encryption Standard
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(AES) was published as a successor of DES [154]. It is sometimes referred to as

Rijndael owing to its original designers Rijmen and Daemen. The main strength of

AES rests upon the various options of key sizes (128, 192, or 256 bits), which make

it exponentially stronger than DES. There is, as of this writing, no practical attack

against AES that could reduce the amount of time to crack it to less than billions of

years, or the age of the universe, even on the world’s fastest supercomputer.

2.3.4 Asymmetric-Key Cryptography

A common issue with all of the symmetric-key cryptosystems is that the sender and

the recipient must agree on a key prior to the communications. In order to pre-share

the key, a secure channel resistant to eavesdropping must be established and yet

the cost of implementation and maintenance could be very expensive. This major

problem has led to a full-blown revolution in cryptography, starting from a seminal

paper New Directions in Cryptography by W. Di�e and M. Hellman in 1976 [155],

credited as one of the most influential papers in the history of cryptography. A brief

description of Di�e–Hellman key exchange protocol is provided as follows.

• A sender Alice and a receiver Bob publicly agree to use a modulus p = 23 and

base g = 5 (which is a primitive root modulo 23). In other words, these two

digits can be known by an enemy without threatening security.

• Alice selects a secret number a = 4 and then sends Bob

A ⌘ ga mod p ⌘ 54 mod 23 ⌘ 4. (2.8)

Note that a should be remained secret to anyone but Alice herself.

• Bob chooses a secret number b = 3 and then sends Alice

B ⌘ gb mod p ⌘ 53 mod 23 ⌘ 10. (2.9)

Note that b should only be known to Bob himself.
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• Alice computes the shared key

k ⌘ Ba mod p ⌘ 104 mod 23 ⌘ 18. (2.10)

• Bob obtains the shared key

k ⌘ Ab mod p ⌘ 43 mod 23 ⌘ 18. (2.11)

• As a result, Alice and Bob now share a key k = 18, which can be used to

encrypt messages in their following communications.

The security of Di�e–Hellman key exchange is based upon discrete logarithm

problem, recognised as one of the most computationally intractable problem in

number theory. In other words, to break the scheme is equivalent to solve a very

hard mathematical problem and the concept of which lies at the heart of subsequent

development of asymmetric-key cryptosystems. In fact, the problem of good cipher

design is essentially one of finding di�cult problems, subject to certain conditions.

As suggested by Shannon [149]:

There are two approaches to this problem; (1) We can study the possible

methods of solution available to the cryptanalyst and attempt to describe

them in su�ciently general terms to cover any methods he might use. We

then construct our system to resist this ‘general’ method of solution. (2)

We may construct our cipher in such a way that breaking it is equivalent

to (or requires at some point in the process) the solution of some problem

known to be laborious. Thus, if we could show that solving a certain

system requires at least as much work as solving a system of simultaneous

equations in a large number of unknowns, of a complex type, then we

would have a lower bound of sorts for the work characteristic.

In 1978, one of the first, and also the most dominant to date, public-key

cryptosystems was invented at MIT by R. Rivest, A. Shamir, and L. Adleman [99].

Unlike Di�e–Hellman protocol, RSA solution does not require any information to
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be sent or exchanged prior to the intended ciphertext. The need for exchanging

information beforehand opens a security loophole that if without any authentication

mechanism the communications might be manipulated and controlled by an attacker

between two parties and thus vulnerable to a so-called man-in-the-middle attack.

Another valuable feature of RSA algorithm is that it can be used to generate digital

signatures for verifying the authenticity of messages. Furthermore, RSA is one of

the earliest schemes built upon integer factorisation problem, which together with

discrete logarithm problem form the two most important cornerstones of asymmetric-

key cryptography. Since then, a large number of data encryption, digital signature,

key exchange, and other public-key cryptographic algorithms have been developed,

such as the elliptic curve cryptography [156].

2.3.5 Homomorphic Encryption

The notion of privacy homomorphisms was introduced by Rivest et al. in 1978

[157], which gave birth to the research on homomorphic cryptosystems and their

applications. Privacy homomorphisms can be viewed as particular algebraic mappings

between the paintext and ciphertext spaces that allow the result of operations

upon the ciphertexts, when deciphered, to match the result of operations upon the

plaintexts. As yet another precious legacy of RSA cryptosystem, its multiplicative

homomorphic property allows multiplication to be operated in the encrypted domain.

Suppose that we take two encrypted digits and multiply one with another. The

product, when decrypted, is equivalent to the product of two plain digits. If a

cryptosystem produces the sum of plain digits through arbitrary operations on

encrypted digits, then we say that this cryptosystem has an additive homomorphic

property. Note that the given operation in the ciphertext domain is not necessarily

the same as the resultant operation in the plaintext domain.

Schemes that only possess one of the properties, or do not operate completely

on ciphertexts, are said to be partially homomorphic, including the Rabin cryptosys-

tem [158], Goldwasser–Micali cryptosystem [159], ElGamal cryptosystem [160], Ben-

aloh cryptosystem [161], Okamoto–Uchiyama cryptosystem [162], Naccache–Stern

cryptosystem [163], Paillier cryptosystem [164], and Damg̊ard–Jurik cryptosystem
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[165]. By contrast, those that support arbitrary computations on ciphertexts are

referred to as fully homomorphic cryptosystems [166–176]. Although fully homo-

morphic schemes are apparently far more powerful, they have been criticised by

the tremendous consumption of computational resource and thus the utilisation in

practice has been questioned. By contrast, partially homomorphic schemes are more

compact and arguably adequate for a number of real-world applications. In this

following paragraphs, we discuss two typical partially homomorphic cryptosystems,

with which this thesis primarily concerns. In particular, we examine the multiplic-

ative homomorphic property o↵ered by the RSA cryptosystem and the additive

homomorphic property given by the Paillier cryptosystem.

RSA Cryptosystem

A well-understood example of multiplicative homomorphism would be the RSA

cryptosystem whose security strength is known to be equivalent to the di�culty of

solving integer factorisation [99]. Suppose that p and q are two large primes and the

modulus is computed as N = p · q. Let e and d be the public and private keys of the

RSA cryptosystem, respectively, such that e and d satisfy the condition that

e · d ⌘ 1 (mod �(N)), (2.12)

where � is Euler’s phi function, i.e. �(N) = (p� 1)(q � 1). The RSA cryptosystem

defines an encryption function

c ⌘ me (mod N), (2.13)

and a decryption function

m ⌘ cd (mod N), (2.14)

where m denotes the message and c denotes the cipher. Consider the goal of

generating the encrypted result which, when decrypted, matches the product of two

messages m1 and m2 through the operations upon the ciphers c1 and c2. This goal
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can be achieved by multiplying two ciphers as

c1 · c2 ⌘ (m1
e) · (m2

e) (mod N)

⌘ (m1 ·m2)
e (mod N).

(2.15)

In other words,

D(E(m1) · E(m2)) = m1 ·m2, (2.16)

where E(·) and D(·) denote the encryption and decryption functions, respectively.

Paillier Cryptosystem

The RSA cryptosystem is limited, however, by solely permitting the multiplication

of messages. As a consequence, designing homomorphic encryption algorithms that

permit various mathematical operations upon ciphers has been one of the active

research areas. Among a variety of historical antecedents, the Paillier cryptosystem

is one of the most widely used additive homomorphisms [164]. The system consists

of three phases: key generation, encryption, and decryption. In the key generation

phase, we choose two large primes p and q. Then, we compute N = pq and

� = lcm(p� 1, q � 1), where ‘lcm’ stands for least common multiple. Next, we select

a random integer g 2 Z/N2Z⇤ and calculate

µ ⌘ (L(g� (mod N2)))�1 (mod N), (2.17)

where

L(x) =
x� 1

N
. (2.18)

The public key is (n, g) and the private key is (�, µ). In the encryption phase,

let m be a message to be encrypted and r be a randomly selected integer, where

m, r 2 Z/NZ. The ciphertext is then computed as

c ⌘ gm · rN (mod N2). (2.19)
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In the decryption phase, the plaintext message is deciphered by

m ⌘ L(c� (mod N2)) · µ (mod N). (2.20)

Let m1 and m2 be two messages and c1 and c2 be two ciphers. To produce the cipher

of sum of m1 and m2, we calculate the product of c1 and c2 and obtain

c1 · c2 ⌘ (gm1 · r1N ) · (gm2 · r2N ) (mod N2)

⌘ g(m1+m2) · (r1 · r2)N (mod N2).
(2.21)

To yield the cipher of product of m1 and m2, we compute the exponentiation of c1

by m2 such that

cm2
1 ⌘ (gm1 · r1N )m2 (mod N2)

⌘ g(m1·m2) · (rm2
1 )N (mod N2).

(2.22)

As an alternative expression, we write

D(E(m1) · E(m2)) = m1 +m2, (2.23)

and

D(E(m1)
m2) = m1 ·m2. (2.24)

It can be observed that the size of encrypted data is expanded as the message space

is M = Z/NZ and the ciphertext space is C = Z/N2Z⇤.

2.4 Literature Review

The rapid advancement of cloud computing technology has intrigued researchers

to explore the possibility of outsourcing the task of reversible watermarking to

cloud service providers without compromising the privacy of carrier signals. We

have witnessed a dramatic growth in the research of privacy-preserving reversible

watermarking over the past few years and a majority of works focused on a particular

types of carrier signals, namely digital images. Since reversible watermarking is
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usually viewed as a subclass of fragile watermarking, the robustness against attacks

such as geometric transformation targeting conventional robust watermarking will

not be covered. The focus of privacy-preserving reversible watermarking is primarily

the methodology of embedding information into encrypted images or other media.

In the rest of this section, we review some of the most representative works in this

research area.

2.4.1 Prior Art Based on Symmetric Cryptography

One of the very first reversible information hiding scheme for encrypted images can be

traced back to the work by Puech et al. who proposed to use block ciphers to encrypt

images and embed one bit of information into a block of 4⇥ 4 pixels by substituting

a significant bit of a selected carrier pixel with the intended bit of payloads [177].

Since encoding was realised through bit replacement, the watermark can be decoded

directly in the ciphertext domain. Removing the distortion caused by watermark

encoding is equivalent to unraveling whether the bit of the selected pixel is originally

a zero or an one. This issue was resolved by analysing the local standard deviation

of the decrypted image block in the two possible cases. As follow-up studies, this

idea was refined by an adaptive local entropy analysis [178] and a most significant

bit (MSB) predictor [179]. This series of works, however, has an inherent weakness

in the fidelity of marked images due to alterations of significant bits of pixels.

One of the most oft-cited works is Zhang’s method, which exploits the three

least significant bits (LSB) of a block of encrypted pixels to encode one bit of

information and recovers the original pixels by a fluctuation function that captures

spatial correlations in natural images [180]. This design paradigm e↵ectively resolved

the issue of low fidelity owing to the fact that only some imperceptible signals are

distorted. It method was improved by many follow-up studies including:

• A side-match mechanism that involves recovered blocks in the smoothness estima-

tion process [181].

• An evaluation function for estimating pixel distributions of a given block through
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analysing the absolute mean di↵erence of a given pixel and its adjacent pixels

[182].

• A support vector machine (SVM) which handles the problem of image recovery as

a binary classification problem [183].

• An elaborate selection of changeable pixels, instead of altering a whole block of

pixels, in order to enhance the visual quality of marked images and a content-based

adaptive judging function in light of the fact that pixel fluctuations are minimal

along the isophote direction [184].

• A double-round embedding approach based upon cyclic-shifting and data-swapping

for encoding more information [185].

• A sub-block division strategy that enables multiple bits, instead of a single bit, to

be embedded per block and thus augments the embedding rate [186].

This class of schemes encodes messages mostly through bit flipping and therefore

the message decoding process was accompanied by the image recovery process in

the plaintext domain. In view of this, these schemes are often referred to as joint

schemes. Message detection in the plaintext domain might, however, limit some

potential applications such as encrypted data management that utilises the embedded

annotations to supervise and administrate the storage and transfer of encrypted files,

and even to protect files against cybersecurity breaches.

In contrast to the class of joint schemes, the notion of separable schemes

emphasises the separability of message extraction process and signal recovery process.

In response to this required property, Zhang proposed to compress encrypted images

and append additional messages to the vacated space [187]. The possibility of com-

pressing encrypted data was investigated by Johnson et al. ahead of the invention of

privacy-preserving reversible information hiding techniques [188], and has undergone

profound development over years [189–193]. At first glance, it appears that only a

minimal amount of information could be compressed due to the fact that encrypted

signals are in general of high randomness and thus high entropy. Nevertheless, the

problem of compressing encrypted data can be modelled and solved by distributed
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source coding. Improvements over this pioneering compression-based scheme include:

• A use of low-density parity-check (LDPC) code for approaching an optimal com-

pression rate [194].

• A three-round embedding strategy for increasing the embedding rate and a pro-

gressive recovery mechanism that exploits previously recovered pixels in the future

round of recovery [195].

• An extension to deal with encrypted JPEG bitstreams [196].

In order to comprehend the concept of distributed source coding in a more

concrete sense, let us depict it with the following analogy. Suppose there are two

geographically close towns in which a resident of one town, Alice, wishes to compress

and communicate the local weather record to a resident of the other town, Bob,

using as few bits of information as possible. Since two towns are geographically close

to each other, their daily weathers are assumed to be strongly correlated with merely

a small probability that they are not of the same weather. We suppose that the

weather is either good or bad, which can be represented by 0 and 1, and each day

the weather is independent to the past weather. Hence, Alice’s weather record can

be viewed as an analogy to the encrypted binary image under our assumption of

independence of everyday’s weather. In other words, the weather record is as random

as an encrypted image. Moreover, Bob’s weather record can be considered as an

analogy to the cryptographic key since it is strongly correlated to Alice’s weather

record. It may seem a little counter-intuitive and yet it is comprehensible when we

take signal redundancy into account and think in a way that the plain binary image

is smooth enough so that most of its elements are the same. Thus, when a stream

cipher is applied to encrypt the image, the resultant encrypted image would be very

similar to the cryptographic key.

Let us exemplify the idea as follows. Suppose that the weathers between

Alice’s town and Bob’s town are correlated in such a way that the di↵erence is no

more than one day in every successive three days. In other words, for successive

three days, the possible 3-bit di↵erence sequences are: (0, 0, 0), (1, 0, 0), (0, 1, 0),

and (0, 0, 1). Suppose Alice weather record is (1, 1, 0) and Bob’s weather record is
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(1, 1, 1). Let us construct a codebook in which each pair of farthest 3-bit vectors

are jointly represented by a 2-bit codeword, as illustrated in Table 2.1. According

to the codebook, Alice encode, or compress, her record into a codeword (0, 1) and

send it to Bob. At the receiving end, Bob knows that Alice’s record must be either

(0, 0, 1) or (1, 1, 0) by referring to the codebook. Given the prior assumption that

the di↵erences between Alice’s and Bob’s records are no more than one bit, Bob can

confidently determine that Alice’s record is (1, 1, 0). It should be kept in mind that

this toy example only serves as a conceptual model. In reality, natural signals would

be much more complex and therefore we need to apply more powerful codes and

make some adjustments to this conceptual construction.

Table 2.1: Codebook

codeword vectorpair

(0, 0) {(0, 0, 0), (1, 1, 1)}
(0, 1) {(0, 0, 1), (1, 1, 0)}
(1, 0) {(0, 1, 0), (1, 0, 1)}
(1, 1) {(1, 0, 0), (0, 1, 1)}

In literature, the above schemes are often referred to as the class of vacating

room after encryption (VRAE) in contrast to that of reserving room before encryption

(RRBE), which is characterised by some compulsory preprocessing steps contributing

to a comparatively enormous payload capacity. Ma et al. utilised self-embedding

approach to embed some insignificant bits of a part of the image into another part

of the image in a reversible manner so that the reserved space can be used to carry

additional information even after encryption [197]. The improvements in this line of

research mainly focused on more e�cient representations of images, including:

• A sparse coding technique that encodes images into sparse representations via a

pre-trained K-means singular value decomposition (K-SVD) based dictionary so

that the original images can be reconstructed in presence of the sparse codes and

residuals [198].

• An extended run length code that e�ciently compresses the most significant bit
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(MSB) plane [199].

However, this class of schemes would have rather restricted range of applications

taking into account the fact that an individual may have too limited computational

resource to execute preprocessing algorithms in the first place. In other words, it

may constitute a violation of the chief purpose of accessing cloud computing services,

in spite of the fact that it could be of good value in some other circumstances and

applications.

2.4.2 Prior Art Based on Asymmetric Cryptography

Schemes based upon public-key cryptography involve relatively high computational

complexity and often induce non-negligible ciphertext expansion problem. It is

especially the case when attempting to operate the encryption process pixel by pixel

[200–203], due to the fact that public-key cryptography usually involves modular

arithmetic with large numbers and thus it would not be e�cient to project a small

pixel space onto a large ciphertext space. To some extent, schemes adopting ill-

constructed encryption procedures would be of limited practical value considering

that the expanded file size would be far greater than the payload size in most cases,

excluding the standard and inevitable expansion inheres in the given cryptosystem.

Furthermore, this class of schemes usually cannot produce a marked plaintext since

the payloads are often embedded into the expanded space o↵ered by encryption,

which evaporates along with decryption. In other words, an intended watermark

will be filtered out after decipherment and thus from that point onwards the carrier

data will no longer be under the protection of the watermark. Despite the fact that

schemes of this type can be suitable for some other potential applications, they would

not be applicable when the aim is simply to outsource the task of watermarking to a

cloud service provider with expectation of receiving a marked content.

The reserving room before encryption (RRBE) paradigm has also been

adopted by schemes compatible with asymmetric-key cryptosystems and has been

realised by

• A pre-computation of reversible integer transform and a pre-recording of over-
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flow/underflow locations enabling the di↵erent expansion techniques to be operated

in the encrypted domain [204].

• A pre-shrinking of image histogram to reconcile the statistical distribution of

carrier signals with the subsequent histogram-shifting encoding in the encrypted

domain [205].

• A self-embedding technique to reserve space and an encoding technique based

upon mirroring ciphertext group strategy to prevent over-saturation of pixels in

the plaintext domain [206].

2.5 Summary

In this chapter, we have introduced three fundamental disciplines – information

hiding, reversible information hiding, modern cryptography – that form the building

blocks of privacy-preserving information hiding systems. Their histories, applications,

properties, and other aspects have been concisely reviewed. Although these disciplines

have been mostly discussed at an elementary and nontechnical level, a brief grasp

of some notions and terminologies would pave the way for our exploration of more

detailed and technical principles. We have also reviewed the previous art of privacy-

preserving information hiding and classified it by the cryptosystem on which it is

based. In the following chapters, we will present our proposed schemes based upon a

variety of theoretically secure cryptosystems.
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Chapter 3

Information Hiding Based on

Symmetric Cryptography

With the global growth in the usage of social media and cloud storage, many

companies and organisations are faced with concomitant challenges and security risks.

The firms getting compromised will not only su↵er from a great financial damage,

but also a loss in public credibility. Some of the most dreadful cybersecurity threats

would be data breaches, referred to as security incidents in which confidential data is

copied, transmitted, viewed, stolen or used by unauthorised parties. ISO/IEC 27040

defines a data breach as:

Compromise of security that leads to the accidental or unlawful destruc-

tion, loss, alteration, unauthorised disclosure of, or access to protected

data transmitted, stored, or otherwise processed.

Encryption is a potential solution to obfuscate sensitive data against unau-

thorised viewing and yet it may not stop data from being transferred or exported.

Depending upon the importance of the files, it is possible that computationally-

intensive cryptanalytic attacks are employed for the decipherments of files after

malicious exfiltration. Data saved to the personal cloud accounts of some public

celebrities, for example, might be the target of interest. It may also be the case

that industrial or political espionages are committed to leak classified documents

to adversarial parties. In order to defend against hacking or spying activities, there

40



is an urgent need for imposing a more secure access control to the encrypted files

stored online.

Privacy-preserving information hiding techniques would serve as a potential

solution to this issue. It opens up the possibility of annotating cipher data with

permission codes in such a way that a message prescribing whether the exportation

can take place is embedded into the cipher data and can be detected when transmis-

sions occur. In addition to a permission code, an authentication code can also be

embedded for the purpose of tamper proofing. In other words, it o↵ers a two-factor

authentication to deter malicious removal of permission codes that attempts to

deceive an automated export system to release the files. The system may require the

operations of embedding and detection to be carried out in the encrypted domain in

order to preserve data privacy throughout storage, retrieval, and transfer.

In this chapter, we present two schemes based upon symmetric cryptography.

The proposed schemes permit message extraction in the encrypted domain and

therefore are suitable for the applications such as data exfiltration prevention. The

first scheme embeds the message by encoding the carrier data as one of the square

roots of a quadratic residue, whereas the second scheme embeds the message by

encoding the carrier data as one of the possible lexicographic permutations. We

would like to note that the schemes are not capable of strictly recovering the images

without any loss. We define the reversibility as the degree to which the carrier

image can be recovered and measure it by the probability of perfect recovery and

the average PSNR of recovered images. Some common properties shared by the two

schemes are summarised as follows:

• A synchronous stream cipher is used to encrypted a carrier image. By mak-

ing computational e�ciency a high priority, symmetric-key algorithms are

favourable compared to asymmetric-key algorithms.

• Message embedding is based upon a one-to-many mapping. One embedding

algorithm utilises square roots of a quadratic residue and the other one utilises

lexicographic permutations.

• Message extraction can be carried out in the encrypted domain. This opens up
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the possibility to deter unauthorised data transmissions without compromising

data privacy to a network administrator.

• Content-adaptive predictors are used to assist the recovery of the carrier image.

One predictive model is derived from the projection theorem and the other one

is based upon edge gradients.

The remainder of this chapter is organised as follows. Section 3.1 elaborates

the proposed method using quadratic residues as well as a predictive model based

upon the projection theorem. Section 3.2 presents the proposed method using

lexicographic permutations as well as a predictive model based upon image edge

gradients. Section 3.4 concludes this chapter and outlines the directions for future

research.

3.1 A Scheme Using Quadratic Residues

Privacy-preserving information hiding is a multidisciplinary study that has opened

up a great deal of intriguing real-life applications such as data exfiltration prevention,

data origin authentication, and electronic data management. Information hiding is a

practice of embedding intended messages into carrier signals through imperceptible

alterations. In view of some content-sensitive scenarios, however, the ability to

preserve perfect copies of signals is of crucial importance, for instance, considering

the inadequate robustness of recent artificial intelligence aided automated systems

against noise perturbations [101]. Reversibility of information hiding systems is a

valuable property that permits a recovery of original carrier signals if desired.

In this section, we present a novel privacy-preserving reversible information

hiding scheme inspired by the mathematical concept of quadratic residues [207]. This

is one of the first schemes associating reversible information hiding in the encrypted

domain with this particular concept in number theory. A quadratic residue has four

(not necessarily distinct) square roots and this one-to-many relationship between a

quadratic residue and its square roots can be utilised to encode payloads in a dynamic

fashion. Furthermore, a predictive model based upon the projection theorem is

devised to assist the recovery of carrier signals to a perfect state. The design of
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cryptographic and watermarking algorithms follows Shannon’s maxim: ‘the enemy

knows the system’ [149]. In other words, all the detailed construction of algorithms

ought to be publicly known and only the keys for decrypting the carrier signal

and decoding the watermark remain secret. Experimental results showed significant

improvements over the state-of-the-art schemes with respect to three principle factors:

capacity, fidelity, and reversibility.

3.1.1 Quadratic Residues

We give a brief introduction to quadratic residues and how to find their square roots

[208]. An integer a is called a quadratic residue modulo n if and only if there exists

an integer x such that

x2 ⌘ a (mod n). (3.1)

Otherwise, a is called a quadratic nonresidue modulo n. According to Euler’s

criterion, if an integer a is relatively prime to an odd prime p, then a is a quadratic

residue modulo p if and only if

a
p�1
2 ⌘ 1 (mod p). (3.2)

and a quadratic nonresidue modulo p if and only if

a
p�1
2 ⌘ �1 (mod p). (3.3)

This can be expressed concisely by the Legendre symbol:

a

p
⌘ a

p�1
2 (mod p). (3.4)

The Jacobi symbol generalises the Legendre symbol by considering an odd positive

integer modulus n which is not necessary an odd prime. Suppose that n has the

prime factorisation n = p1 ⇥ p2 ⇥ · · ·⇥ pk. Then the Jacobi symbol is defined as

a

n
=

a

p1
⇥ a

p2
⇥ · · ·⇥ a

pk
. (3.5)
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If a is a quadratic residue modulo n, then (a|n) = 1. However, the converse

does not hold. In other words, a is not necessary a quadratic residue modulo n even

if (a|n) = 1. Consider the case that an odd positive integer n is factorised into two

odd prime p and q. The Jacobi symbol of 1 is possibly the product of two Legendre

symbols of �1. That means both x2 ⌘ a (mod p) and x2 ⌘ a (mod q) have no

solutions and thus x2 ⌘ a (mod n) has no solutions even though the value of Jacobi

symbol is 1. To solve this ambiguity, we need to check whether the value of each

Legendre symbol is 1.

We have discussed how to determine whether a quadratic congruence equation

is solvable and now we want to find its solutions. It is widely known that factoring a

large composite integer is of significant di�culty. The hardness of integer factorisation

has formed a cornerstone of a variety of modern cryptosystems such as the Rabin

cryptosystem. It is known that Eq. (3.1) is very di�cult to solve when n is the

product of two large primes p and q. However, if p and q are known, then the Chinese

remainder theorem (CRT) can be applied to solve for x. First of all, let us consider

an example of the CRT. Let p and q be two relatively prime moduli and ↵ and � be

two known integers, the CRT states that there exists an integer x such that

x ⌘ ↵ (mod p),

x ⌘ � (mod q).
(3.6)

and such x is a unique solution modulo n = pq. Now, we want to solve Eq. (3.1) by

solving

x ⌘ xp (mod p),

x ⌘ xq (mod q).
(3.7)

where

x2p ⌘ a (mod p),

x2q ⌘ a (mod q).
(3.8)
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We can use trial and error to solve for xp and xq and express the solutions by

xp ⌘ ±
p
a (mod p),

xq ⌘ ±
p
a (mod q),

(3.9)

For odd primes p, q ⌘ 3 (mod 4), there exists an e�cient formula for solving Eq.

(3.8). That is,

xp ⌘ ±a
p+1
4 (mod p),

xq ⌘ ±a
q+1
4 (mod q).

(3.10)

The CRT has a unique solution for Eq. (3.7) formulated by

x ⌘ (xp · q · bq + xq · p · bp) (mod n). (3.11)

where bq is a unique modular multiplicative inverse of q with respect to the modulus

p, and bp is a unique modular multiplicative inverse of p with respect to the modulus

q. That is to say,

q · bq ⌘ 1 (mod p),

p · bp ⌘ 1 (mod q).
(3.12)

Let us rewrite Eq. (3.12) by

q · bq + p · yp = 1,

p · bp + q · yq = 1.
(3.13)

where yp and yq are unknown and irrelevant to our problem. Since gcd(p, q) = 1, Eq.

(3.13) has the form

↵x+ �y = gcd(↵,�). (3.14)

where ↵ and � are arbitrary integers and x and y are solvable with the extended

Euclidean algorithm. Thus, both bq and bp in Eq. (3.12) can be solved accordingly.

By substituting the solutions for xp and xq in Eq. (3.10) into Eq. (3.11), the four
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square roots for Eq. (3.1) are obtained by

x1 ⌘ (+a
p+1
4 · q · bq + a

q+1
4 · p · bp) (mod n),

x2 ⌘ (+a
p+1
4 · q · bq � a

q+1
4 · p · bp) (mod n),

x3 ⌘ (�a
p+1
4 · q · bq + a

q+1
4 · p · bp) (mod n),

x4 ⌘ (�a
p+1
4 · q · bq � a

q+1
4 · p · bp) (mod n).

(3.15)

3.1.2 Fundamental Mechanisms

In this subsection, we present the fundamental mechanisms that form the building

blocks of our proposed privacy-preserving reversible watermarking scheme. We begin

by introducing the watermark encoding and decoding mechanisms based upon the

Rabin cryptosystem and demonstrate them with a simple example. Then, we discuss

the content-adaptive prediction mechanism for assisting image recovery.

Encoding and Decoding Mechanisms

Let us start with the encoding and decoding mechanisms based upon Rabin cryptosys-

tem [158]. The goal is to embed information into an encrypted carrier image. We use

stream cipher to encrypt an image and exploit properties of the Rabin cryptosystem

to encode the watermark into the encrypted image. We refer to the information

to be embedded per round of operation as a watermark symbol denoted by w and

a random variable of the enciphered carrier image as a cipher symbol denoted by

c. Note that a cipher symbol is not a pixel. Instead, it is an integer convert from

certain bits of a group of selected pixels. We shall see the construction of cipher

symbols later.

Let p and q be two distinct prime numbers and n = pq be a modulus. The

encryption and decryption functions of Rabin cryptosystem are defined as

Encryption : a ⌘ c2 (mod n), (3.16)

and

Decryption : {⇢0, ⇢1, ⇢2, ⇢3} ⌘
p
a (mod n), (3.17)
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where c is an input plaintext, a is an output ciphertext, and ⇢i, 0  i  3 is a possible

deciphered result. It can be observed that the decipherment of Rabin cryptosystem

is unusual is a sense that it produces four possible answers, though it is not necessary

that they are all distinct numbers. In number theory, a is called a quadratic residue

modulo n and ⇢i is one of its square roots. Note that any square root can be encrypted

into the same quadratic residue. In addition to this, the chosen prime numbers p

and q are required for e�ciently calculating the square roots.

The watermark encoding process is carried out as follows. To begin with, we

apply Rabin cryptosystem to encrypt c into a and subsequently decrypt a into a

set of four possible numbers, {⇢0, ⇢1, ⇢2, ⇢3}, in which the numbers are assumed to

have been sorted in ascending order, that is, ⇢0  ⇢1  ⇢2  ⇢3. Then, we embed

w by replacing c with ⇢w resulting c0 = ⇢w. Consider that at a certain time an

authorised party wants to extract w for some intended purposes. With the presence

of watermarking key, c0 is processed with an encryption and immediately followed

by a decryption that yields {⇢0, ⇢1, ⇢2, ⇢3}. Finally, the watermark w is determined

by matching c0 with ⇢w. It is worth pointing out that the number of bits that can

be carried may vary in each round of the watermarking operation. There are three

di↵erent cases to be taken into consideration:

1. If there are four distinct values in the set of square roots, two bits of information

can be embedded.

2. If there are two distinct values in the set of square roots, one bits of information

can be embedded.

3. If there are only one distinct value in the set of square roots, no information can

be embedded at all.

In summary, the number of bits able to be carried is equal to log2 ⌘, where ⌘ denotes

the number of distinct square roots of a given quadratic residue. Due to the fact

that the encryption and decryption functions of Rabin cryptosystem are used in

conjunction throughout our scheme, we refer to this conjoint operation as Rabin

transform for simplicity of notation.
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Example. An example of how to encode and decode the watermark is demonstrated

as follows. Consider a 7-bit carrier cipher symbol

c = (0100100)2 = 36.

By applying Rabin transform, the resultant square roots in ascending order are

{⇢0 = 8, ⇢1 = 36, ⇢2 = 41, ⇢3 = 69}.

Given that c yields 4 distinct square roots, we can embed 2 bits of information into c.

Suppose that the intended watermark symbol is

w = (10)2 = 2.

To encode the information, we substitute c with ⇢2, resulting

c0 = 41.

To decode the information, we compute the Rabin transform of c0 and sort the yielded

square roots in ascending order. Finally, by matching c0 to ⇢2, we determine w = 2.

Prediction Mechanism

A marked cipher symbol can be recovered into four candidate symbols, although they

are not necessarily all distinct numbers. These candidate symbols would then result

in four sets of possible values of the original pixels, which will be discussed later. The

issue to be addressed at the moment is to distinguish which set of pixels amongst

some given sets is more likely to be the original set. It can be realised through

developing a predictive model that is capable of estimating pixels at certain locations

by pixels at other locations. By perceiving an image as a Markov random field, a

predictive model can generate a denoised image in a sense that some contaminated

pixels are purified by their neighbouring correlated pixels.

Let us divide pixels of an image into a group of changeable pixels and a group
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Figure 3.1: Sets of changeable and unchangeable pixels.

of unchangeable pixels in such a fashion that each changeable pixel is encircled by

four unchangeable pixels located at its north, south, east and west, as illustrated

in Fig. 3.1. The changeable pixels are those used for carrying the payloads and

the unchangeable pixels are those used for assisting image recovery. We adopt an

e�cient but also e↵ective predictive model:

eu =
X

i

 i · ui

=  N · uN +  S · uS +  E · uE +  W · uW ,

(3.18)

where eu is an estimated pixel, ui is an uncontaminated pixel, and  i is a weight of

the predictive model. The remaining issue is to compute proper weights that lead to

an accurate prediction.
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Let ~u denote a column vector of n changeable pixels such that

~u =

2

66666664

u1

u2
...

un

3

77777775

, (3.19)

and ~ui denote a column vector of n unchangeable pixels at corresponding locations,

for example,

~uN =

2

66666664

uN ,1

uN ,2

...

uN ,n

3

77777775

. (3.20)

An optimal predictive model would be that minimises the L2 norm:

�����~u�
X

i

 i · ~ui

�����
2

. (3.21)

According to Hilbert projection theorem, minimising this norm is equivalent to

finding a set of weights such that ~v = ~u�
P
 i~ui is orthogonal to ~uN , ~uS , ~uE , and

~uW , respectively. In other words, for a given vector ~uN , we have

~u|N · ~v = 0, (3.22)

and

~u|N · ~u = ~u|N ·
X

 i~ui. (3.23)

Let us express the above equation as

2

66666664

uN ,1

uN ,2

...

uN ,n

3

77777775

| 2

66666664

u1

u2
...

un

3

77777775

=

2

66666664

uN ,1

uN ,2

...

uN ,n

3

77777775

|

An⇥4

2

66666664

 N

 S

 E

 W

3

77777775

, (3.24)

50



where

A =

2

66666664

uN ,1 uS,1 uE,1 uW,1

uN ,2 uS,2 uE,2 uW,2

...
...

...
...

uN ,n uS,n uE,n uW,n

3

77777775

. (3.25)

By deriving the orthogonality for other three vectors ~uS , ~uE , and ~uW in a similar

manner, we have

A|~u = A|A~ , (3.26)

where

~ =

2

66666664

 N

 S

 E

 W

3

77777775

. (3.27)

Finally, the weights are given by

~ = (A|A)�1A|~u. (3.28)

3.1.3 Scheme Constructions

In this subsection, we present detailed procedures based upon the mechanisms

discussed previously. The aims and tasks of three parties involved (i.e. data owner,

cloud server, and end user) are discussed respectively.

Data Owner

Let m = {m1,m2, . . . ,mN} denote an one-dimensional row vector converted from a

carrier image such that each element of m is a pixel. The data owner carries out the

encryption procedures as follow:

Step 1. Learn the weight variables  = { N , S , E , W} for the predictive model

from the given image. The weights are recorded by using 64 bits and may

be further compressed into fewer bits.
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Step 2. Encrypt each pixel mi by a stream cipher such that each bit of the pixel

is combined with a pseudo-random bit of the keystream via exclusive-or

operation. In other words, an enciphered bit is generated by

E(mk
i ) = mk

i � rki , (3.29)

where mk
i denotes the kth bit of the pixel mi and rki denotes a pseudo-

random bit defined likewise. In a similar fashion, the cryptographic key

is denoted by r = {r1, r2, . . . , rN} and the enciphered image is denoted by

E(m) = {E(m1), E(m2), . . . , E(mN )}.

Step 3. Encrypt the weights via an arbitrary cipher, resulting E( ), and if the

watermark is provided by the data owner instead of the cloud server,

compress and encrypt also the watermark E(w). Depending on di↵erent

applications, the watermark could be the data owner’s intended message

such as authentication codes or cloud server’s auxiliary information such as

data annotation.

Step 4. Send the set of encrypted files {E(m), E( ), E(w)} to the cloud server for

the subsequent task of watermarking.

Cloud Server

Let p and q be two distinct prime numbers chosen by the cloud server and n = pq is

the modulus. The cloud server chooses two distinct prime numbers for activating

the Rabin transform mechanism, and carries out the message encoding procedures

as follows:

Step 1. Sample ` changeable encrypted pixels randomly and group them together,

yielding �N/` groups of pixels in total, where � denotes the proportion,

or the ratio, of changeable pixels. In other words, the total number of

groups is equal to the number of changeable pixels divided by the number

of pixels sampled each round and thus is represented by �N/`. The random
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sampling is initiated by a random seed, which serves as the watermarking

key. In other words, the embedded information can only be extracted with

the presence of this key; otherwise, an unauthorised party can only employ

brute force attack to find out the sampling patterns.

Step 2. Extract the tth bit from each pixel in a group to form a cipher symbol in

a sense that a symbol is a decimal integer converted from ` bits. There

are �N/` cipher symbols in total, and yet by considering the modular

arithmetic involved in Rabin transform, the number of changeable symbols

should be represented more precisely by

N 0 = �N/`� ✏, (3.30)

where ✏ denotes the number of symbols whose value exceeds the modulus

n = pq. Let us denote the changeable cipher symbol used in the current

round of watermarking operation by c.

Step 3. Convert E( ) and E(w) into N 0 watermark symbols in a sense that each

watermark symbol w is composed of four, two, or zero bit(s) of information

adjusted dynamically according to the capacity of corresponding carrier

symbol c. The encoding mechanism is realised by Rabin transform as

described previously and produces a marked cipher symbol c0. A collection

of all marked cipher symbols is converted in an inverse manner to construct

the marked and encrypted image denoted by E(m0).

Step 4. Send the marked and encrypted image to the intended end user, who could

be the data owner if the initial purpose is to outsource the task to the cloud

server, or could be the cloud server if the aim is to utilise the annotations

to manage encrypted files stored in the cloud and to prevent unauthorised

file exportation. It is also possible that the end user is another authorised

party with permission to access the image file as well as the watermark

information.

It is worth noting that 2` must not be greater than the modulus n since we
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use ` bits to form a cipher symbol and feed it into the functions involving modular

arithmetic. In practice, we determine ` first and then choose proper prime numbers

p and q to yield proper modulus n. In addition to this, the parameter ` governs the

balance between the capacity and reversibility. On the one hand, if a cipher symbol

is composed of more pixels, the total number of cipher symbols for carrying message

payloads decreases and thus a lower capacity. On the other hand, involving more

pixels in the construction of a symbol would reduce the probability of sampling a

series of unpredictable pixels. Also note that the parameter t governs the fidelity and

is also in charge of the reversibility. Depending on the application in hand, we may

choose a smaller value for t if the visual quality of watermarked image is of more

concern; otherwise, a larger value for t may be chosen to enhance the probability of

recovering the watermarked image to a perfect copy.

End User

There are three di↵erent levels of accessibility to be taken into consideration depending

on the types of keys available to the end user. Let us demonstrate how the end user

can react in three di↵erent scenarios:

1) The end user has granted the key r for decipherment and thus is able to obtain a

meaningful marked image denoted by m0.

2) The end user has acquired the watermarking key, namely the locations of pixels

in each round of sampling. Hence, by applying the decoding mechanism, the

embedded messages E( ) and E(w) can be extracted. We assume that the end

user is authorised to decrypt and decompress them into meaningful information.

3) The end user has gained access to both cryptographic and watermarking keys.

The aim is not only to obtain the marked image and embedded information, but

also to recover the original image. The task of image recovery can be realised with

the aid of the previously discussed prediction mechanism. We start by inputing

the weights  and marked image m0 into the predictive model, which outputs a

denoised image em. We take a copy of the marked and encrypted image E(m0)

and find out �N/` groups of changeable pixels via the known sampling patterns.
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For a group of ` cipher pixels, we convert their tth bits into a cipher symbol c0

and apply Rabin transform to generate four corresponding square roots, which

are not necessarily all distinct. We replace ` bits of each square root with the

tth bits of the very group of ` pixels respectively, resulting four modified groups

of pixels. Then, we decipher them into four groups of plain pixels. Finally, we

compare these four candidate groups of pixels with the group of corresponding

pixels of the denoised image. The group of pixels that gives the smallest L1 norm

is determined as that of recovered pixels. The recovery procedures are performed

iteratively until all the groups of pixels have been properly processed.

It is worth noting that the reversibility is content-dependent and is also

a↵ected by the configurations of parameters ` and t. As aforementioned, these

parameters play a pivot role in balancing a three-way trade-o↵ between capacity,

fidelity, and reversibility. We will examine their impacts in more detail through the

following experiments.

3.1.4 Experiments

In this subsection, we examine the scheme’s performance with respect to capacity,

fidelity, and reversibility. We measure the capacity by the number of bits carried

and fidelity by peak signal-to-noise ratio (PSNR). Algorithms are evaluated on

standard grayscale test images of size 512 ⇥ 512 widely used across literature, as

shown in Fig. 3.2. Images generated from di↵erent steps are illustrated in Fig 3.3.

This demonstration begins with an original carrier image, whose semantics are later

obfuscated by a stream cipher. After that, 4096 bits of information are embedded

into it resulting in a marked and encrypted image, which is then decrypted into

a meaningful marked image with fidelity of about 33.64 (dB). In the end of this

demonstration, the original image is restored. The parameter configurations are

` = 8 and t = 6, indicating that each carrier symbol is formed by the 6th bits of 8

changeable pixels. The scheme’s performance is evaluated and compared with the

prior art including the schemes by Zhang [180], and Liao and Shu [182], and Dragoi

et al. [209].
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Figure 3.2: Standard 8-bit test images of size 512⇥ 512.

original image encryption watermarking decryption recovery

Figure 3.3: Images generated from di↵erent steps of process.

Maximum Payload Capacity

The test results of the watermarking capacity with di↵erent configurations of para-

meters (p, q, and `) are presented in Table 3.1. It is shown that the proposed scheme

achieves a larger capacity than [180] and [182] in most cases, and outperforms [209]

when the length of symbols (in bits) increases to ` � 8. In general, the capacity would

decrease as the number of changeable symbols diminishes, namely as ` increases.

Nonetheless, an interesting observation can be made on the case in which ` = 7. It

can be observed that despite a steady decrease of payload bits from ` = 6 to ` = 9,

there is a sudden downturn when ` = 7 (i.e. 22099 bits). The underlying reason

is mainly the infeasible selection of p and q. According to our scheme design, the

choice of p and q must satisfy pq  2`� 1 and a symbol is changeable only if its value

in [0, 2` � 1] is smaller than the modulus n = pq. A large gap between n and 2` � 1

would lead to a great number of unchangeable symbols and hence it is desirable to

choose a pair of p and q such that pq is as close to 2`� 1 as possible. However, in the

case when l = 7, we are not able to find a pair of proper prime numbers that keeps

the gap small enough and thus an abrupt drop in terms of the capacity is observed.
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Table 3.1: Maximum payload capacity

Payload (bits)

Proposed (` = 6, p = 3, q = 19) 31219

Proposed (` = 7, p = 3, q = 31) 22099

Proposed (` = 8, p = 11, q = 23) 29998

Proposed (` = 9, p = 11, q = 43) 25331

Dragoi et al. (` = 6) 32512

Dragoi et al. (` = 7) 27867

Dragoi et al. (` = 8) 24384

Dragoi et al. (` = 9) 21675

Zhang 16384

Liao and Shu 16384
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Figure 3.4: Capacity-fidelity curve (Airplane).
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Figure 3.5: Capacity-fidelity curve (Lena).
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Figure 3.6: Capacity-fidelity curve (Peppers).
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Figure 3.7: Capacity-fidelity curve (Zelda).

Capacity-Fidelity Curve

We evaluate the fidelity of marked images under the given capacity. The quality of

recovered images will be measured later. The test results of the capacity-fidelity

(rate-distortion) curves are shown in Fig. 3.4 to Fig. 3.7. Let the pixels specified by

coordinates i and j be denoted by ui,j and its marked version by u0i,j . The fidelity of

a marked image is measured by

PSNR = 10⇥ log10
2552

MSE
, (3.31)
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where the mean squared error (MSE) is calculated by

MSE =

P512
i=1

P512
j=1(ui,j � u0i,j)

2

512⇥ 512
. (3.32)

It can be seen that a superior rate-distortion performance over the prior art is

achieved when the 4th bit plane is set as the watermarking channel, namely when

t = 4. It can also be observed that a striking decline in performance occurs when

t = 6, causing the proposed scheme and [209] to be inferior to [180] and [182]. The

changes in the 6th bit plane cause severe distortions in visual quality of marked

images. Nevertheless, choosing a more significant bit plane as the watermarking

channel would enhance the reversibility, namely the probability to recover a perfect

copy. Overall, our scheme achieves high fidelity due to the fact that the watermarking

process does not necessarily alter all the bits of changeable symbols, and attains

high capacity by embedding two bits into each changeable symbol for the most part.

Hence, under the same fidelity constraint, the proposed scheme reaches a higher

embedding rate, and vice versa.

Reversibility

The reversibility refers to the ability to recover the altered pixels. As aforementioned,

we assumed that the number of changeable pixels is �N , where N is the total number

of pixels of a carrier image and � is the ratio of selected changeable pixels. A more

precise value for the number of changeable pixels is calculated by

⇠
H � 2

2

⇡
⇥
⇠
W � 2

2

⇡
+

�
H � 2

2

⌫
⇥
�
W � 2

2

⌫
, (3.33)

where H and W denotes the height and width of an image. Hence, there are in total

130050 changeable pixels for an image of size 512⇥ 512.

The reversibility strongly depends on the accuracy of a given predictive model.

Table 3.11 presents the weight parameters of the applied predictive model as well as

its average prediction error, as calculated by

Error =

P130050
i=1 |ui � ũi|

130050
, (3.34)
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Table 3.2: Average prediction error

 N  S  E  W Error

Airplance 0.2474 0.2191 0.2786 0.2564 2.84

Lena 0.4046 0.4075 0.0935 0.0954 3.07

Pappers 0.2574 0.2860 0.2461 0.2125 4.03

Zelda 0.4770 0.4760 0.0240 0.0237 2.20

Table 3.3: Recovery rates for each bit plane

1st 2nd 3rd 4th 5th 6th 7th 8th

Airplance 60.86% 60.57% 75.94% 88.73% 95.42% 98.95% 99.97% 100.00%

Lena 56.78% 56.67% 69.21% 85.72% 95.81% 99.34% 99.98% 100.00%

Pappers 55.14% 55.26% 64.52% 79.26% 93.25% 98.68% 99.87% 100.00%

Zelda 57.50% 57.56% 71.26% 89.92% 99.24% 99.99% 100.00% 100.00%

where ui denotes the original value of a changeable pixel and ũi denotes its estimated

value. Overall, the predictive model is content-adaptive with low prediction error

on average. Table 3.3 shows the rates of correct recovery of altered bits by purely

considering the pairwise distances. The aim is to test and analyse to what extent

the predictive model is capable of assisting the recovery of flipped bits.

Let ui be an original pixel, ūi be its altered counterpart with the tth bit being

flipped, and ũi be its estimated value generated from the predictive model. We

model the problem as to resolve which of the values, ui or ūi, is more likely to be

the original value. To decide which one is the original pixel value, we calculate their

respective distances to ũi and determine the original pixel value as the closer one.

In the real context, ui and ūi are two possible candidates to be disambiguated and

we do not know which one is the original one. Nonetheless, in order to evaluate the

rate of successful recovery, we assume the fact that ui is the original one is known

and hence the rate of successful recovery is computed by

Rate =

P130050
i=1 ⌧i
130050

, (3.35)
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where

⌧i =

8
>><

>>:

1, if |ui � ũi|  |ūi � ũi|,

0, otherwise.

(3.36)

As anticipated, it is much easier to recover the bits from a significant bit plane than

an insignificant bit plane. Note that this recovery rate does not represent the real

recovery rate because in the proposed recovery process we calculate the accumulated

distances for a group of pixels that together form a symbol, instead of considering

individually one pixel after another.

Tables 3.4 to 3.7 show the average reversibility from 500 trails of experiments

with di↵erent payload settings (4096, 8192, and 16384 bits). In each trail, we generate

a random payload and assign a new watermarking key for randomly selecting `

changeable pixels to form a symbol. The reversibility is measured by the probability

of perfect recovery denoted by Pr and the average PSNR of recovered images. In

spite of the fact that the watermark extraction process and carrier recovery process

are independent in the proposed scheme, it is not the case for the prior art. In the

prior art, failing to recover the carrier image causes a mistaken watermark decoding.

Thus, we also include the number of incorrect bits being extracted as one of the

measurements, as denoted by Bits. It can be observed that the selected tth bit plane

plays a pivotal role in the reversibility. It is scarcely possible to restore a perfect

copy when embedding payloads into an insignificant bit plane (t = 4) and it is more

likely to achieve a perfect recovery when a more significant bit plane is used to carry

the payloads (t = 6). Apart from this, the number of pixels forming a symbol also

has substantial impact on carrier signal recovery. By comparing the cases of ` = 6

and ` = 9, it can be seen that the reversibility is significantly higher when more

pixels are grouped together to form a symbol. For [180] and [182], a perfect recovery

is barely possible. For [209], a superior reversibility can be achieved under small

payload setting (4096 to 8192 bits). Nevertheless, the proposed scheme is in general

of higher reversibility when large payloads are applied (16384 bits). Furthermore,

the proposed scheme is able to extract the watermark bits without any errors.
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Table 3.4: Reversibility (Airplane).

Airplane (4096 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 58.10 0.00

Proposed (` = 9, t = 4) 0.00 59.90 0.00

Proposed (` = 6, t = 6) 0.06 64.79 0.00

Proposed (` = 9, t = 6) 0.67 68.51 0.00

Dragoi et al. (` = 6, t = 4) 0.00 59.47 50.67

Dragoi et al. (` = 9, t = 4) 0.00 64.05 12.16

Dragoi et al. (` = 6, t = 6) 0.92 64.43 1.00

Dragoi et al. (` = 9, t = 6) 1.00 1 0.00

Zhang 0.00 51.07 170.86

Liao and Shu 0.00 60.18 16.46

Airplane (8192 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 55.11 0.00

Proposed (` = 9, t = 4) 0.00 56.86 0.00

Proposed (` = 6, t = 6) 0.00 62.37 0.00

Proposed (` = 9, t = 6) 0.40 68.31 0.00

Dragoi et al. (` = 6, t = 4) 0.00 56.36 102.86

Dragoi et al. (` = 9, t = 4) 0.00 60.20 28.74

Dragoi et al. (` = 6, t = 6) 0.90 64.14 1.10

Dragoi et al. (` = 9, t = 6) 0.88 62.40 1.09

Zhang 0.00 47.15 1174.80

Liao and Shu 0.00 56.82 130.75

Airplane (16384 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 52.06 0.00

Proposed (` = 9, t = 4) 0.00 53.75 0.00

Proposed (` = 6, t = 6) 0.00 58.82 0.00

Proposed (` = 9, t = 6) 0.18 66.60 0.00

Dragoi et al. (` = 6, t = 4) 0.00 52.15 270.65

Dragoi et al. (` = 9, t = 4) 0.00 54.84 97.39

Dragoi et al. (` = 6, t = 6) 0.00 55.97 7.48

Dragoi et al. (` = 9, t = 6) 0.35 60.87 1.69

Zhang 0.00 43.17 3061.40

Liao and Shu 0.00 53.89 258.96

Table 3.5: Reversibility (Lena).

Lena (4096 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 57.47 0.00

Proposed (` = 9, t = 4) 0.00 58.75 0.00

Proposed (` = 6, t = 6) 0.64 67.91 0.00

Proposed (` = 9, t = 6) 0.92 69.26 0.00

Dragoi et al. (` = 6, t = 4) 0.00 58.34 65.37

Dragoi et al. (` = 9, t = 4) 0.00 62.35 17.67

Dragoi et al. (` = 6, t = 6) 0.98 64.43 1.00

Dragoi et al. (` = 9, t = 6) 1.00 1 0.00

Zhang 0.00 54.13 55.30

Liao and Shu 00.0 60.21 12.00

Lena (8192 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 54.47 0.00

Proposed (` = 9, t = 4) 0.00 55.83 0.00

Proposed (` = 6, t = 6) 0.05 65.85 0.00

Proposed (` = 9, t = 6) 0.69 68.85 0.00

Dragoi et al. (` = 6, t = 4) 0.00 55.28 132.05

Dragoi et al. (` = 9, t = 4) 0.00 58.74 39.98

Dragoi et al. (` = 6, t = 6) 0.97 64.43 1.00

Dragoi et al. (` = 9, t = 6) 0.89 62.67 1.00

Zhang 0.00 46.58 1232.30

Liao and Shu 0.99 55.47 161.53

Lena (16384 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 51.46 0.00

Proposed (` = 9, t = 4) 0.00 58.81 0.00

Proposed (` = 6, t = 6) 0.00 62.54 0.00

Proposed (` = 9, t = 6) 0.51 68.65 0.00

Dragoi et al. (` = 6, t = 4) 0.00 51.54 311.81

Dragoi et al. (` = 9, t = 4) 0.00 54.44 106.84

Dragoi et al. (` = 6, t = 6) 0.00 56.28 7.06

Dragoi et al. (` = 9, t = 6) 0.23 60.69 1.80

Zhang 0.00 43.50 2502.00

Liao and Shu 0.00 52.56 315.26
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Table 3.6: Reversibility (Peppers).

Peppers (4096 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 54.40 0.00

Proposed (` = 9, t = 4) 0.00 58.75 0.00

Proposed (` = 6, t = 6) 0.00 62.81 0.00

Proposed (` = 9, t = 6) 0.41 67.65 0.00

Dragoi et al. (` = 6, t = 4) 0.00 56.69 95.50

Dragoi et al. (` = 9, t = 4) 0.00 59.82 31.31

Dragoi et al. (` = 6, t = 6) 0.93 64.23 1.07

Dragoi et al. (` = 9, t = 6) 1.00 1 0.00

Zhang 0.00 52.02 93.40

Liao and Shu 0.00 56.01 35.90

Peppers (8192 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 51.34 0.00

Proposed (` = 9, t = 4) 0.00 51.77 0.00

Proposed (` = 6, t = 6) 0.00 59.25 0.00

Proposed (` = 9, t = 6) 0.26 65.62 0.00

Dragoi et al. (` = 6, t = 4) 0.00 53.61 193.58

Dragoi et al. (` = 9, t = 4) 0.00 56.04 74.16

Dragoi et al. (` = 6, t = 6) 0.87 64.19 1.08

Dragoi et al. (` = 9, t = 6) 0.75 62.25 1.14

Zhang 0.00 45.21 1645.5

Liao and Shu 0.00 52.82 282.05

Peppers (16384 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 48.35 0.00

Proposed (` = 9, t = 4) 0.00 48.77 0.00

Proposed (` = 6, t = 6) 0.00 56.07 0.00

Proposed (` = 9, t = 6) 0.04 64.07 0.00

Dragoi et al. (` = 6, t = 4) 0.00 49.35 515.57

Dragoi et al. (` = 9, t = 4) 0.00 50.94 238.70

Dragoi et al. (` = 6, t = 6) 0.00 52.39 16.51

Dragoi et al. (` = 9, t = 6) 0.04 57.72 3.52

Zhang 0.00 41.96 3443.70

Liao and Shu 0.00 50.01 537.5

Table 3.7: Reversibility (Zelda).

Zelda (4096 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 63.10 0.00

Proposed (` = 9, t = 4) 0.00 66.17 0.00

Proposed (` = 6, t = 6) 0.96 69.20 0.00

Proposed (` = 9, t = 6) 1.00 1 0.00

Dragoi et al. (` = 6, t = 4) 0.00 61.35 32.91

Dragoi et al. (` = 9, t = 4) 0.00 66.92 6.61

Dragoi et al. (` = 6, t = 6) 1.00 1 0.00

Dragoi et al. (` = 9, t = 6) 1.00 1 0.00

Zhang 0.00 60.80 12.46

Liao and Shu 0.00 67.89 3.00

Zelda (8192 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 60.10 0.00

Proposed (` = 9, t = 4) 0.00 63.18 0.00

Proposed (` = 6, t = 6) 0.93 70.06 0.00

Proposed (` = 9, t = 6) 1.00 1 0

Dragoi et al. (` = 6, t = 4) 0.00 58.35 65.41

Dragoi et al. (` = 9, t = 4) 0.00 63.13 14.82

Dragoi et al. (` = 6, t = 6) 1.00 1 0.00

Dragoi et al. (` = 9, t = 6) 0.92 62.48 1.06

Zhang 0.00 46.80 1122.00

Liao and Shu 0.00 56.74 122.62

Zelda (16384 bits)

Pr PSNR Bits

Proposed (` = 6, t = 4) 0.00 57.10 0.00

Proposed (` = 9, t = 4) 0.00 60.01 0.00

Proposed (` = 6, t = 6) 0.92 70.71 0.00

Proposed (` = 9, t = 6) 0.99 70.20 0.00

Dragoi et al. (` = 6, t = 4) 0.00 54.68 151.57

Dragoi et al. (` = 9, t = 4) 0.00 59.05 37.31

Dragoi et al. (` = 6, t = 6) 0.01 57.05 5.97

Dragoi et al. (` = 9, t = 6) 0.40 61.32 1.50

Zhang 0.00 44.03 2142.30

Liao and Shu 0.00 53.90 233.25

63



3.2 A Scheme Using Lexicographic Permutations

Privacy-preserving reversible watermarking, as a subfield of secure signal processing,

has received a growing research attention in the recent years due to privacy concerns

in cloud computing. In general, the cloud is assumed to be an honest-but-curious or

semi-honest party that is interested in learning the information from the protocol

(e.g. the plaintext), but does not deviate from the protocol specification. This

research problem is challenging since an imperceptible alteration in the ciphertext

domain may cause a nontrivial distortion in the plaintext domain. If a cryptosystem

is perfectly secure, it is theoretically not possible to foresee how a change in the

ciphertext domain would result in a change in the plaintext domain.

There are a variety of possible applications of privacy-preserving reversible

watermarking. Consider a network administrator whose responsibility is to monitor

data transmissions. It is of crucial importance to prevent classified documents from

leakage beyond this point, and yet the privilege to read the documents may not be

granted to the administrator. To address this issue, we may encrypt the document

and embed a watermark in the ciphertext that indicates the confidentiality and

prohibits unauthorised transmission when detected. In the meantime, we also design

an algorithm that is able to determine the existence of such a watermark, and if

detected, refuses to transmit the ciphertext unless the privilege is demonstrated.

In this section, we present a novel reversible watermarking scheme for data

exfiltration prevention. This scheme enables the cloud to embed labels that indicate

the degree of confidentiality into the encrypted documents in such a way that the

network administrator can monitor the document exfiltration through detecting the

labels in the encrypted domain without compromising data privacy. An e�cient

watermarking algorithm is devised primarily based upon the concept of lexicographic

permutations. In addition to this, a content-adaptive signal estimation mechanism

is constructed for assisting host media recovery. Experimental results show that

the proposed scheme outperforms the state-of-the-art with regards to watermarking

capacity, fidelity, and recoverability.
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3.2.1 Lexicographic Permutations

To begin with, we introduce a privacy-preserving reversible watermarking scheme

based upon lexicographic permutations and then present an updated scheme with

detailed discussions. An overview of the proposed scheme is illustrated in Fig. 3.8.

The encoding process utilises lexicographic permutations to embed watermarks

into encrypted signals, whereas the decoding process extracts the watermarks and

recovers the signals in aid of a content-adaptive signal estimation mechanism. In

more detail, the transmitter encrypts a host array of symbols s with a key k and

then uploads the encrypted array of symbols e to the cloud. A watermark w is

encoded into e producing a marked array ✏w which is then downloaded to the

receiver. At the receiving end, w is extracted and a permutation group containing

the original encrypted array, denoted by {✏i}ti=0, is generated. After decryption, a

group containing the original array, denoted by {�i}ti=0, is yielded. Eventually, the

original array is restored with the assistance of additional information, denoted by s̃,

obtained by a signal estimation mechanism. We would like to emphasise that the

restoration is not perfectly lossless and the aim is to achieve the restoration quality

as high as possible.

encrypter encoder

k w

Transmitter Cloud

s e ✏w

a

b decoder decrypter recoverer

w k s̃

Receiver

✏w {✏i}ti=1 {�i}ti=1 s

a

b

a

b

Figure 3.8: An overview of the proposed scheme based on lexicographic permutations.

Consider the host signal as an 8-bit greyscale image. In order to satisfy the

fidelity requirement, significant bit-planes should not be modified during watermark

embedding process. We assume that the four most significant bit-planes are un-
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modifiable, though the scheme permits variations in implementations depending

on di↵erent fidelity requirements. Let us refer to the remaining four insignificant

bit-planes as a nybble-volume, where the basic unit is a nybble, namely, a four-bit

aggregation. While this nybble-volume is generally modifiable, only a portion of

the nybbles are selected for carrying the payload and the rest part is kept intact for

the purpose of reversing watermarking distortions. The selection follows a rule that

each selected nybble is encircled by eight unselected immediate neighbours. The

unselected nybbles will remain intact and be exploited for estimating the selected

nybbles during the reverse process. A nybble can be represented by an integer

between 0 and 15. Let a sequence of r modifiable nybbles be converted into an

integer, referred to as a host symbol, between 0 and N � 1, where N = 24r.

Let us divide the host symbols into non-overlapping arrays of length n and

each array can be processed independently. Let s = (s1, s2, . . . , sn) be an array of

modifiable host symbols and k = (k1, k2, . . . , kn) be an array of randomly generated

key symbols. The transmitter encrypts the former with the latter by

e ⌘ s+ k (mod N). (3.37)

Note that the array arithmetic operations are carried out element by element. Then,

the transmitter uploads the enciphered array e = (e1, e2, . . . , en) along with the

watermark w to the cloud, in which the watermark encoding is realised through

lexicographic permutations. Before proceeding further, let us define the number

of permutations of a given set. If the set of size n consists of n distinct elements,

the number of permutations is simply the factorial of n, denoted by n!. If the set

consists of repeated elements, then the multiplicity of each element shall be taken

into account. Let M be a multiset of size n consisting of l distinct elements and the

multiplicities of the elements be m1, m2, . . . , ml. The number of permutations of

M is then given by

t =
n!

m1!m2! . . .ml!
. (3.38)

Let G✏ = {✏0,✏1, . . . ,✏t�1} be a group consisting of all the possible permutations

of e sorted with lexicographic order, where ✏u = e and 0  u  t � 1. A possible
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watermarking strategy is to encode a payload of log2 t bits into one of the possible

permutations. For instance, if an encrypted array e and a message 0  w  t � 1

are encoded into ✏w, during the decoding process we can e�ciently determine w as

the lexicographic order of ✏w. Note that the watermark extraction process is carried

out in the encrypted domain. As a result, the network administrator can inspect

the decoded watermark to decide whether the host file has been given approval to

be transmit beyond this point without actually inspecting the file itself. In other

words, this scheme prevents data exfiltration without compromising data privacy.

Apart from knowing the watermark information, we can also be certain about that e

is one of the possible permutations of ✏w, though we are not able to recognise which

it is in the absence of further information. At the receiving end, one may want to

remove the distortions caused by watermarking. Since it is theoretically not possible

to make inferences from the encrypted data, we decipher each possible one by

�i ⌘ ✏i � k (mod N), (3.39)

and obtain G� = {�0,�1, . . . ,�t�1}. As a result, we can employ signal processing

techniques to analyse each �i and draw an inference on the original one in which some

distinguishable structures may inhere. However, failed inferences may occur with

high probability when we happen to process a sequence of intrinsically similar host

symbols and a sequence of intrinsically similar key symbols. For example, consider

s = (s1, s2) and k = (k1, k2) such that s1 ⇡ s2 and k1 ⇡ k2. We encrypt s into e and

then encode e into either ✏0 or ✏1 depending on whether w = 0 or w = 1. Assume

that e is of the 0-th permutation order, namely, ✏0 = e, and accordingly

✏0 = (e1, e2) = (s1 + k1, s2 + k2),

✏1 = (e2, e1) = (s2 + k2, s1 + k1).
(3.40)

In order to recover the original permutation, we decrypt respectively ✏0 and ✏1 into
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�0 and �1, as given by

�0 = ✏0 � k = (s1, s2),

�1 = ✏1 � k = (s2 + k2 � k1, s1 + k1 � k2).
(3.41)

If s1 ⇡ s2 and k1 ⇡ k2, then �0 ⇡ �1. We can observe that in this case �0 is

indistinguishable from �1.

3.2.2 Invertible Transform

In the previous scheme, we permute e lexicographically and obtain a lexicon, or a

codebook, for watermark encoding. To overcome the ambiguity in some extreme

cases, we update the previous scheme by introducing an invertible transform to e

prior to the creation of the lexicon. Let �(N) be Euler’s totient function which

describes the number of positive integers up to N that relatively prime to N . A

positive integer that is coprime to N is termed a totative of N . Suppose that e is the

u-th permutation. We multiply e with the u-th totative, denoted by pu, and obtain

e0 ⌘ e · pu (mod N). (3.42)

An important property of the above computation is that an inverse transform exists,

which is given by

e ⌘ e0 · qu (mod N), (3.43)

where qu is a unique modular multiplicative inverse of pu with respect to the modulus

N , that is,

pu · qu ⌘ 1 (mod N). (3.44)

A unique modular multiplicative inverse qu exists if and only if pu is coprime to N ,

that is, gcd(pu, N) = 1, where gcd stands for greatest common divisor. The number

of permutations of e0 is also t since the transform from e to e0 is a bijective mapping.

We sort the permutations of e0 lexicographically and form an ordered lexicon

G✏ = {✏0,✏1, . . . ,✏t�1} and encode a watermark w of log2 t bits into one of the

permutations yielding the marked result ✏w. In the decoding phase, w can be
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e�ciently recognised by the order of ✏w. Let {p0, p1 . . . , pt�1} be the first t totatives

in [0, N ], and {q1, . . . , qt} be their respective modular multiplicative inverses. To

restore the original array, we choose any ✏i from the lexicon and multiply it with

each multiplicative inverse yielding G↵ = {↵0,↵1, . . . ,↵t�1}, where

↵0 ⌘ ✏i · q0 (mod N),

↵1 ⌘ ✏i · q1 (mod N),

· · ·

↵t�1 ⌘ ✏i · qt�1 (mod N).

(3.45)

Then, we sort the elements in each array with the lexicographic order in accordance

to the array index and yield an updated group of arrays G� = {�0, �1, . . . , �t�1}.

For instance, the elements in ↵i is sorted with the i-th lexicographic order yielding

�i. Note that the choice of ✏i does not a↵ect the resultant G�; in other words,

any ✏i yields the same group of results. The u-th array in G↵ is the original

encrypted array with scrambled elements, whereas the u-th array in G� is exactly

the original encrypted array, namely �u = e. Since it is not possible to distinguish

the original array in the encrypted domain, we decipher each array in G� and obtain

G� = {�0,�1, . . . ,�t�1}. With the aid of signal analysis techniques, we can retrieve

the original one, namely �u, with relatively low error rate. Let us see how this

updated scheme is able to resolve the aforementioned ambiguity. Again, consider

two host symbols and two key symbols such that s1 ⇡ s2 and k1 ⇡ k2. Assume that

e is of the 0-th permutation order and accordingly e0 = e · p0. Then, we encode e0

into either ✏0 or ✏1 depending on the watermark bit. In the recovering phase, two

possible candidates are generated by

�0 = �0 � k = sort(↵0, 0)� k = sort(✏i · q0, 0)� k,

�1 = �1 � k = sort(↵1, 1)� k = sort(✏i · q1, 1)� k,
(3.46)

where sort(x, i) denote a sorting function that sorts the elements of an array x

according to the i-th lexicographic permutation, and ✏i can be either ✏0 or ✏1. We
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further derive that

sort(✏i · q0, 0)� k = ((s1 + k1)p0q0 � k1, (s2 + k2) · p0q0 � k2) = (s1, s2), (3.47)

and �1 equals to either

sort(✏i · q1, 1)� k = ((s1 + k1)p0q1 � k1, (s2 + k2) · p0q1 � k2), (3.48)

or

sort(✏i · q1, 1)� k = ((s2 + k2)p0q1 � k1, (s1 + k1) · p0q1 � k2). (3.49)

In either case, two candidates are not likely to be similar since the term puqv, where

u 6= v, thoroughly randomise the incorrect candidate; in other words, the original

array should be very distinguishable from a sequence of random numbers with high

probability.
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Figure 3.9: Pixels at the block positions are modifiable in terms of their low nybbles,
whereas those at the white positions are unmodifiable.
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3.2.3 Predictive Model

To complete the proposed scheme, we devise a signal estimation mechanism for

assisting host signal recovery. As aforementioned, for an 8-bit greyscale image we

embed payloads into selected low nybbles while each of which is encircled by eight

unselected immediate neighbours, as illustrated in Fig. 3.9. The aim is to estimate

the low nybble of a pixel p0 with the aid of the high nybble of p0 and the neighbouring

pixels p1, p2, . . . , p8. Image regions can be roughly divided into smooth, edge-carrying,

and highly textured patches. Due to the fact that the statistical distribution of pixel

values varies a lot in di↵erent regions, we have to identify the class the observed p0

belongs to. Let

M(X) =
1

�

�X

i=1

|xi � µ(X)| (3.50)

represent the mean absolute deviation (MAD), where µ(X) represents the arithmetic

mean and � represents the number of elements in a given set X. The score for

smooth patches is given by

�smth = M(p1, p2, . . . , p8), (3.51)

and the scores for di↵erent degrees of edges are given by

�0� =
M(p1, p2, p3) +M(p4, p5) +M(p6, p7, p8)

3
,

�45� =
M(p2, p4) +M(p3, p6) +M(p5, p7)

3
,

�90� =
M(p1, p4, p6) +M(p2, p7) +M(p3, p5, p8)

3
,

�135� =
M(p2, p5) +M(p1, p8) +M(p4, p7)

3
.

(3.52)

Let the minimum value of {�smth, �0� , �45� , �90� , �135�} be denoted by �min. If �min is

no greater than a threshold ✓ (empirically ✓ = 15), then we calculate an anticipated
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value for p0 by

p̃0 =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

µ(p1, p2, . . . , p8) if �min = �smth,

µ(p4, p5) if �min = �0� ,

µ(p3, p6) if �min = �45� ,

µ(p2, p7) if �min = �90� ,

µ(p1, p8) if �min = �135� .

(3.53)

Otherwise, an anticipated value for p0 is determined by the closest value in the

neighbouring area, that is,

p̃0 = argmin
pi

| pi � p0 |, (3.54)

where i 2 {1, 2, . . . , 8}. Finally, we estimate p0’s low nybble in such a way that the

resultant pixel value approaches the anticipated value p̃0, as formulated by

p̃⇤0 = argmin
p0,j

| p0,j � p̃0 |, (3.55)

where j 2 {0, 1, . . . , 15} and p0,j denotes a value generated by setting p0’s low nybble

to one of the possible patterns.

3.2.4 Experiments

A series of experiments were carried out for validating and evaluating the proposed

scheme. Images of size 512 ⇥ 512 with 256 greylevels are used as the host media,

as shown in Fig. 3.10. The scheme utilises a synchronous stream cipher to encrypt

images and is therefore semantically secure, as presented in Fig. 3.11. Let the

number of host symbols in each array be fixed to n = 4. Each symbol is formed by r

modifiable nybbles, where r is set from 2 to 5, and correspondingly the symbol values

lie in [0, 31], [0, 63], [0, 127], [0, 255], and [0, 511], respectively. The experimental

results are shown in Table 3.8. Since the total number of modifiable nybbles is

invariable, the total number of host symbols decreases when each symbol is formed

by more nybbles, which explains the inverse proportionality between watermarking
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capacity and r. We can also observe that the error rate of image recovery reduces

and the fidelity of recovered images improves as r increases. When a symbol is made

of more nybbles, it is more likely that it consists largely of well-estimated nybbles,

which is of crucial importance to the recovery process. Let pi,j denote the pixel at

the i-th row and the j-th column, and p̂i,j denote its noisy counterpart. We evaluate

the image quality by peak signal-to-noise ratio (PSNR) defined as

PSNR = 10⇥ log10
2552

MSE
, (3.56)

where mean square error (MSE) is calculated by

MSE =
1

512⇥ 512

512X

i=1

512X

j=1

(pi,j � p̂i,j)
2. (3.57)

Fig. 3.12 shows the marked images generated by embedding the payload into all the

modifiable nybbles. It is shown that the PSNRs of various test images are all no

less than 40.7 dB. Fig. 3.13 shows the recovered images generated by adjusting the

embedding rate to 0.057 bits per pixel (bpp). The results show that the PSNRs are

all greater than 51.9 dB.

We compare the proposed scheme with the state-of-the-art schemes [182, 187,

209] in terms of watermarking capacity, fidelity, and recoverability. As can be seen

from Fig. 3.14, the proposed scheme outperforms the previous methods with regard

to the fidelity of marked images under the same embedding rate. As reported in Fig.

3.15, the proposed scheme also achieves the best results with respect to the fidelity

of recovered images given the same amount of payload. Overall, it is evident that

the proposed scheme achieves a substantial improvement in algorithm performance.
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(a) Airplane (b) Lena (c) O�ce

(d) Sail (e) Wine (f) Zelda

Figure 3.10: Test images.

(a) Airplane (b) Lena (c) O�ce

(d) Sail (e) Wine (f) Zelda

Figure 3.11: Encrypted images.
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(a) Airplane (b) Lena (c) O�ce

(d) Sail (e) Wine (f) Zelda

Figure 3.12: Marked images: (a) Airplane, PSNR= 40.88 dB. (b) Lena, PSNR=
40.74 dB. (c) O�ce, PSNR= 40.72 dB. (d) Sail, PSNR= 40.71 dB. (e) Wine, PSNR=
40.91 dB. (f) Zelda, PSNR= 40.90 dB.

(a) Airplane (b) Lena (c) O�ce

(d) Sail (e) Wine (f) Zelda

Figure 3.13: Recovered images: (a) Airplane, PSNR= 52.87 dB. (b) Lena, PSNR=
51.96 dB. (c) O�ce, PSNR= 54.01 dB. (d) Sail, PSNR= 53.17 dB. (e) Wine, PSNR=
53.75 dB. (f) Zelda, PSNR= 52.39 dB.
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(d) Sail
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(e) Wine
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Figure 3.14: Comparison with the state-of-the-art in terms of fidelity. The horizontal
axis displays the watermarking capacity, whereas the vertical axis shows the PSNR
of marked images.
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(b) Lena
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(d) Sail
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(e) Wine
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Figure 3.15: Comparison with the state-of-the-art with regard to recoverability. The
horizontal axis depicts the watermarking capacity, whereas the vertical axis presents
the PSNR of recovered images.
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Table 3.8: Scheme performance at di↵erent number of nybbles per symbol (r = 2, 3,
4, and 5). WR is watermarking rate (in bpp), ER is error rate (in bpp), and PSNR
is peak signal-to-noise ratio (in dB).

r = 2 r = 3

WR ER PSNR WR ER PSNR

Airplane 0.143 0.094 46.86 0.095 0.049 49.43

Lena 0.143 0.120 45.95 0.095 0.066 48.21

O�ce 0.143 0.041 50.65 0.095 0.023 50.02

Sail 0.143 0.096 46.97 0.095 0.047 49.84

Wine 0.143 0.051 49.84 0.095 0.027 52.39

Zelda 0.143 0.088 47.77 0.095 0.042 50.72

r = 4 r = 5

WR ER PSNR WR ER PSNR

Airplane 0.072 0.034 50.81 0.057 0.021 52.87

Lena 0.072 0.040 50.36 0.057 0.026 51.96

O�ce 0.072 0.020 53.59 0.057 0.017 54.01

Sail 0.072 0.027 52.16 0.057 0.020 53.17

Wine 0.072 0.020 53.48 0.057 0.019 53.75

Zelda 0.072 0.022 53.08 0.057 0.020 53.39

Table 3.9: Comparisons of two proposed schemes with respect to PSNR of marked
images and recovered images under the same capacity.

Capacity: 4096 bits

Airplane Lena Mandrill

QUADRA LEXICO QUADRA LEXICO QUADRA LEXICO

(l = 9, t = 6) (n = 3, r = 3) (l = 6, t = 6) (n = 6, r = 3) (l = 9, t = 6) (n = 6, r = 1)

marked images 33.69 44.43 34.73 47.13 33.70 51.47

recovered images 1 66.27 1 65.35 59.20 51.89

Capacity: 8192 bits

Airplane Lena Mandrill

QUADRA LEXICO QUADRA LEXICO QUADRA LEXICO

(l = 6, t = 6) (n = 4, r = 3) (l = 7, t = 6) (n = 6, r = 1) (l = 8, t = 6) (n = 6, r = 1)

marked images 31.79 42.70 31.30 48.31 30.35 48.49

recovered images 67.44 64.28 1 59.63 54.28 49.08

Capacity: 16384 bits

Airplane Lena Mandrill

QUADRA LEXICO QUADRA LEXICO QUADRA LEXICO

(l = 9, t = 6) (n = 5, r = 2) (l = 9, t = 6) (n = 6, r = 1) (l = 8, t = 6) (n = 6, r = 1)

marked images 27.73 42.12 27.66 45.41 27.33 45.51

recovered images 67.44 56.75 1 55.01 52.48 46.19
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3.3 Comparisons of Two Proposed Schemes

In this section, we compare the performance of two proposed schemes in terms of

the following two aspects:

• visual quality of marked images and recovered images under the same capacity;

• execution time.

The quadratic residue-based method (QUADRA) is parameterised by l and t, rep-

resenting that a host symbol is formed by the t-th bits of l pixels. The visual

quality of marked images decreases when a higher bit-plane is used to form the host

symbols (i.e. greater t) and on the other hand the visual quality of recovered images

increases. The lexicographic permutation-based method (LEXICO) is parameterised

by r denoting the number of low nibbles to form a host symbol and n denoting the

number of host symbols to form a permutation group. The embedding capacity grows

with the number of possible permutations, which is associated with the number of

host symbols in a permutation group.

In Table 3.9, it can be observed that under the same capacity constraints

(4096, 8192, and 16384 bits respectively), LEXICO achieved higher PSNR of marked

images, while QUADRA yielded higher PSNR of recovered images. In addition

to this, QUADRA realised perfect recovery in some cases in contrast to LEXICO.

For each method, we evaluated the encoding time (watermark embedding) and

decoding time (watermark extraction and image recovery) given 4096 payload bits.

As shown in Table 3.10, the execution time of QUADRA did not have noticeable

fluctuations under di↵erent settings of parameters, which contrasted sharply with

that of LEXICO. The decoding time of LEXICO grew with n. It can also be seen

from Table 3.11 that LEXICO took much more time for watermark extraction and

image recovery when embedding more bits of information.
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Table 3.10: Evaluation of execution time (in second)

parameters encoding time decoding time

QUADRA

l = 6, t = 4 0.73 2.22

l = 6, t = 5 0.69 2.20

l = 6, t = 6 0.69 2.19

l = 7, t = 4 0.77 2.47

l = 7, t = 5 0.77 2.39

l = 7, t = 6 0.78 2.41

l = 8, t = 4 0.68 2.59

l = 8, t = 5 0.67 2.55

l = 8, t = 6 0.69 2.50

l = 9, t = 4 0.73 2.65

l = 9, t = 5 0.73 2.64

l = 9, t = 6 0.73 2.68

LEXICO

n = 2, r = 1 1.35 2.28

n = 2, r = 2 1.13 2.45

n = 2, r = 3 1.17 2.79

n = 3, r = 1 0.67 1.75

n = 3, r = 2 0.56 1.73

n = 3, r = 3 0.54 1.96

n = 4, r = 1 0.46 2.42

n = 4, r = 2 0.38 2.68

n = 4, r = 3 0.37 2.88

n = 5, r = 1 0.40 7.27

n = 5, r = 2 0.33 9.59

n = 5, r = 3 0.33 10.01

Table 3.11: Growth of execution time (in second)

parameters encoding time decoding time

capacity 4096 16384 4096 16384

n = 2, r = 1 1.35 4.72 2.28 8.84

n = 2, r = 2 1.13 4.60 2.45 9.86

n = 2, r = 3 1.17 3.10 2.79 7.50

n = 3, r = 1 0.67 2.51 1.75 6.75

n = 3, r = 2 0.56 2.20 1.73 7.15

n = 3, r = 3 0.54 2.29 1.96 7.86

n = 4, r = 1 0.46 1.77 2.42 9.78

n = 4, r = 2 0.38 1.55 2.68 10.84

n = 4, r = 3 0.37 1.52 2.88 11.87

n = 5, r = 1 0.40 1.55 7.27 30.76

n = 5, r = 2 0.33 1.34 9.59 39.04

n = 5, r = 3 0.33 1.32 10.01 40.73

n = 6, r = 1 0.40 2.41 7.27 226.76

n = 6, r = 2 0.33 2.28 9.59 307.42

n = 6, r = 3 0.33 2.28 10.01 317.41
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3.4 Summary

In this chapter, two novel reversible information hiding schemes are introduced for

embedding watermarks into encrypted images in cloud computing environments.

These techniques can be used for data breach protection and also other potential

real-world applications. We adopt a secure and e�cient symmetric-key cipher for

image encryption.

The first scheme utilises the arithmetic of quadratic residues for watermark

embedding. In addition to this, a content-adaptive predictive model based upon the

projection theorem is devised to fulfil the requirement of recovering the original copy.

Experimental results show that in most cases the proposed scheme outperforms the

prior art in terms of capacity, fidelity and reversibility.

The second scheme embeds payloads into encrypted images via lexicographic

permutations. We derive further an updated version of the scheme in order to

minimise the error rate in host recovery. In addition to this, a content-adaptive signal

estimation mechanism based upon image edge gradients is devised for assisting the

carrier signal recovery process. Experimental results show a remarkable breakthrough

over the state-of-the-art in capacity, fidelity, and recoverability.

It is expected that the research in this field will continue to move forwards.

From our perspective, privacy-preserving reversible information hiding will find

more real-world applications in the near future because it has evolved the classical

information hiding to address security and privacy issues in many new technologies.

Its reversibility is also a desirable feature for many artificial intelligence aided

automated systems in which the available perfect copies are of great significance to

the system performance. Minimisation of error rate in carrier signal recovery entails

further investigation.
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Chapter 4

Information Hiding Based on

Asymmetric Cryptography

Sitting in the intersection of watermarking and cryptography, privacy-aware revers-

ible watermarking permits a party to entrust the task of embedding to a cloud service

provider without compromising information privacy. The early development of

schemes were primarily based upon traditional symmetric-key cryptosystems, which

involve an extra implementation cost of key exchange. Although recent research

attentions have been drawn to schemes compatible with asymmetric-key cryptosys-

tems, there are notable limitations in the practical aspects. In particular, the host

signal must either be enciphered in a redundant way or be pre-processed prior to

encryption, which would largely limit the storage e�ciency and scheme universality.

To relax the restrictions, we propose a novel research paradigm and devise di↵erent

schemes compatible with di↵erent asymmetric-key homomorphic cryptosystems. In

the proposed schemes, the encoding function works in a way similar to noise addition,

whereas the decoding function can be perceived as a corresponding denoising process.

Both online and o✏ine content-adaptive predictors are developed to assist watermark

decoding for various operational requirements. A three-way trade-o↵ between the

capacity, fidelity and reversibility is analysed mathematically and empirically.
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4.1 Privacy-Preserving Reversible Information Hiding

The past decades have witnessed the phenomenal prevalence of public cloud services.

The seemingly unlimited storage and computational capacity of the cloud have

opened up opportunities for businesses and individuals to entrust their data to cloud

service providers. Meanwhile, the rapid development of cloud computing technology

has also raised privacy and security concerns. A powerful solution against cyber

security threats is to obfuscate the classified documents through encryption [149].

On the other hand, although encryption algorithms are widely used to protect the

confidential information, some desirable functionalities might be unrealisable for the

encrypted data. In response to this issue, there was a surge of research interest in

secure signal processing in the encrypted domain [7, 8, 18]. As an emerging topic

in this research field, privacy-aware watermarking has attracted a lot of attention

in recent years. For the reason that many watermarking algorithms are proprietary

properties, there are restrictions for commercial purposes and the availability to the

general public is rather limited. An e�cient solution is to request an authorised

cloud service provider to encode the watermark into the given digital media, not only

due to the high computational capacity of the cloud, but also the availability of the

intellectual property right or license to carry out the algorithms. On the other hand,

since the cloud server is regarded as a semi-honest entity that may collect some

information from the digital contents, data privacy should be taken into account.

Therefore, privacy-aware watermarking is intended to the problem of entrusting the

task of watermarking to a cloud server without compromising data privacy. This

research trend is also known as watermarking in the encrypted domain.

In general, there are three parties involved in a watermarking protocol: a

sender who encodes the watermark into the host media, a recipient who decodes

the watermark from the marked media, and an adversary who has a malicious

intent against the protocol. The malicious party is often modelled as a noisy

channel between the encoder and the decoder. The watermarking strategy can be

either fragile or robust against the channel noise depending on the applications.

Conventionally, robust watermarking is applicable to copyright protection [55, 58, 60,
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64], whereas fragile watermarking is advantageous to data authentication [68, 73, 75,

77]. Nevertheless, fragile watermarking, as a temper detection technique, contradict

itself by inevitably inflicting distortions upon the content of media. Although the

distortions are generally imperceptible, the e↵ect could be arguable in particular

circumstances featuring a strict integrity requirement, especially when the host media

is used for military reconnaissance or medical diagnosis. Considering these potential

applications, the notion of reversible watermarking was introduced in order to permit

the reproduction of the original content once the authenticity of media is verified

[104, 118, 119, 125, 126, 210–212].

Consider a watermarking protocol as illustrated in Fig. 4.1, where the sender

Alice wants to communicate a digital content to the receiver Bob over an insecure

channel. In order to resist malicious tampering, Alice has to embed a signature,

which is sensitive against manipulations, into the content prior to dispatching it to

Bob. Supposing that Alice, as a general individual, has no permission or resources

to employ the watermarking algorithm, the task of watermarking has therefore to

be entrusted to a licensed cloud server, e.g. Charlie. As a general presumption,

Charlie is an honest-but-curious party who would not deviate from the protocol

specifications, though on the other hand has the interest in learning the privacy

information of the content. Hence, due to privacy concerns, Alice encrypts the

content prior to commissioning it to Charlie for watermarking. In summary, to

utilise the complementary advantages of watermarking and cryptography, it is of

great significance to develop a secure reversible watermarking system that enables

the watermarking function to be operated by a licensed third party in the encrypted

domain in order to preserve privacy.

The challenge of reversible watermarking in the encrypted domain is a rather

di�cult one. Considering that the message is concealed by encryption, we are not

able to observe, analyse, and exploit data redundancy. The early development of

schemes was primarily compatible with symmetric-key cryptosystems [177, 181, 187,

188, 190, 192, 194, 195, 213–215]. These schemes are confronted with a practical

issue that a secret key must be pre-shared between the sender and the recipient. In

order to communicate the secret key, a secure channel resistant to eavesdropping or
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a secure key exchange protocol must be established. Any of these solutions comes

with extra costs.

In contrast to symmetric-key algorithms, asymmetric-key algorithms, also

known as public-key cryptosystems, relax the restriction by using a publicly distrib-

uted key for encryption and a secret key known only to the recipient for decryption.

Over the last few years, the watermarking research has extended to manage ciphers

generated by public-key algorithms. The first class of strategy encrypts the data

in such a manner that the input to the encryption function has a value range that

is far smaller than it should be. Consider that each individual pixel is an input to

be enciphered. The value range of pixels is between 0 and 255 for 8-bit greyscale

images, while the message space of a given cryptosystem is, for example, between

0 and N , where N is the product of two large primes. Therefore, the input space

defined by the watermarking shceme is much smaller than the actual message space

defined by the cryptosystem. In implementation, a number of zeros are concatenated

to the end of the input message to assure the length of input conform with message

space. As a consequence, zero paddings can be viewed as additional redundancy for

accommodating the payload in the encrypted domain [200–202]. It is nevertheless

deficient for the following reasons. First, redundant bits are appended and thus

the system is not space-e�cient. Second, it is considered problematic since the

amount of padded redundancy is at least equivalent to that of the payload in most

cases. One may even simply append the payload information after the host signal

in the plaintext domain, rather than performing complex computation to trade the

pre-appended redundancy for the payload in the ciphertext doamin. Third, it is

insecure since the watermark can be easily filtered out by decryption. To overcome

these deficiencies, we suggest to encrypt a bit-stream of su�cient length each time,

instead of a single sample with zero-padding.

The second class of strategy, though following the space-saving principle,

requires a specific type of pre-processing to be applied prior to encryption. It utilises

either truncation [205] or self-embedding [206] to shrink the range of sample values

and then encrypts a su�cient number of samples each time. As a result, although

the input space seems to be equal to the message space defined by the cryptosystem,
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the actual input space is much smaller. For instance, initially the sample values

range from 0 to 255 and yet subsequent to data pre-processing the possible values are

reduced to a subrange. The reserved space can then be exploited to accommodate

the payload in the encrypted domain. This class of strategy, also known as reserving

room before encryption, was first developed for watermarking schemes to work in

conjunction with symmetric-key cryptosystems [197, 198, 216]. The practicality of

this strategy is however limited because a specific type of pre-processing must be

applied to the data. To remove this restriction, we suggest to encrypt data without

any specific pre-processing.

In this chapter, we address the problem of entrusting the task of watermarking

to a cloud service provider without compromising information privacy. Considering

the security threats of symmetric-key cryptosystems, we study reversible watermark-

ing schemes compatible with public-key cryptosystems. The recent development of

schemes requires the host data either to be enciphered in a redundant fashion or to

be pre-processed prior to encryption. In response to this, we propose a novel research

paradigm to overcome the aforementioned shortcomings. Two schemes are proposed

to cope with ciphers generated by two types of homomorphic cryptosystems, respect-

ively. The first scheme is constructed based upon multiplicative homomorphism and

provides high content fidelity as well as high flexibility in watermarking capacity.

The second scheme is devised based upon additive homomorphism and achieves an

optimal reversibility. In addition to this, both online and o✏ine content-adaptive

predictors are introduced to assist watermark decoding. The former type of predictor

is based upon variational method and utilises an iterative algorithm to approximate

the signal, while the second type of predictor is based upon statistical inference

and pre-trains a probability table for signal estimation. An accurate predictor can

greatly improve the rates of correct watermark extraction and host signal recovery.

Experimental results shows that the proposed predictors achieve the state-of-the-art

performance. In summary, several positive contributions and improvements are made,

which are briefly outlined as follows:

• Modern public-key cryptosystems are adopted to avoid the security risks and

implementation costs of key exchange.

86



encrypter

encoder

decrypter

key

watermark

key

Alice Charlie Alice

host signal encrypted signal

marked and

encrypted signal marked signal

a

b

channel

(noise)

Alice Bob

marked signal

(noisy)

marked signal

a

b

decoder

(noisy)

watermark

Bob

(noisy)

marked signal

(noisy)

host signal

a

b

Figure 4.1: The proposed privacy-preserving reversible information hiding protocol.
A transmitter Alice wants to protect a signal through embedding a watermark,
which can be fulfilled by a cloud service provider Charlie. A marked signal is then
transmitted over an insecure channel to a recipient Bob who is able to verify the
authenticity of the received signal through analysing the extracted watermark and
reproduced signal.

• Reversible watermarking schemes compatible with di↵erent types of partially

homomorphic cryptosystems are studied.

• Storage e�ciency is considered by encrypting a su�ciently long sequence of

bits, instead of a single sample with redundant zero padding, each time.

• Specific type of data pre-processing prior to encryption is not required, which

enhances the practicality and universality.

• Both online and o✏ine content-adaptive predictors are developed with flexibility

for various operational requirements.

The remainder of this chapter is organised as follows. Section 4.2 discusses how

to apply public-key cryptosystems to encrypt digital images. Section 4.3.1 introduces

the proposed watermarking scheme for multiplicative homomorphic cryptosystem.

Section 4.3.2 further derives a scheme for additive homomorphic cryptosystem.

Section 4.4 studies content-adaptive predictors based upon variational method and

statistical inference. Section 4.5 evaluates the scheme performance and makes

comparisons with state-of-the-art algorithms. Section 4.6 concludes our work and

outlines the directions for future research.
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4.2 Image Encryption

As aforementioned, when encrypting a digital image, it is not advisable to consider

each pixel as an individual message. Generally, the value range of pixels is far smaller

than the message space, as the latter is associated with large prime numbers. If a pixel

is treated as a independent message to be encrypted, then a long sequence of zero

bits will be padded after the bits of the pixel. Encrypting every pixel independently

provokes serious ciphertext expansion. Apart from this, if the watermark is embedded

into the padded bits created for accommodating the encryption algorithm, it will

normally be filtered out by decryption. In some applications, this feature would not

be desirable. There are several possible approaches to encrypt digital images without

expanding the image files, for example, converting the image into a bit stream and

encrypting a segment of su�cient length each time. In order to preserve the visual

significance, we propose to encipher each bit-plane separately. Let I denote an 8-bit

digital image such that

I = (b1||b2|| . . . ||b8), (4.1)

where ‘||’ is the concatenation operator and b1, b2, . . . , and b8 are eight di↵erent

bit-planes. For each bit-plane

bi = (bi,1||bi,2|| . . . ), (4.2)

we sample a su�ciently long bit-stream each time to form a message, which is then

encrypted into a cipher. Supposing that the message space of a given cryptosystem

is Z/NZ, a message is therefore a decimal number of log2N bits, or of blog2Nc bits

more precisely, considering that the former is not necessarily an integer.

The watermarking process is performed sequentially upon the selected mes-

sages until all the payload is embedded, while the unselected ones remain intact. Due

to the fidelity constraint, we only change the messages converted from insignificant

bit-planes. Intuitively, it seems that the optimal choice should be to select messages

of the least significant bit-plane. However, by considering the decoding process, it is

necessary that the selected messages are formed by some well-predictable bits. We
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shall see the reason behind this later. To pave the way for the following presentation,

let us assume that the messages for watermarking have been determined. The map

to record the locations of selected messages serves as the watermarking key. In the

following section, we will discuss separately how to embed watermarks into encrypted

data generated by di↵erent types of cryptosystems.

4.3 Schemes Using Privacy Homomorphisms

In this section, we present a privacy-preserving reversible watermarking scheme for

RSA-like cryptosystem and a scheme for Paillier-like cryptosystem.

4.3.1 RSA-Based Scheme

Let us recapitulate the problem statement. Let Alice denote a sender, Bob a recipient,

and Charlie a cloud server. Suppose that Alice wants to deliver to Bob a digital

file in which a watermark is embedded for authentication purposes. Due to various

constraints (e.g. proprietary issues), Alice has to entrust the task of watermarking

to Charlie by providing the encrypted file and the watermark. The encryption key is

publicly known, while the decryption key is only known to Bob. We assume that the

watermark payload is a sequence of compressed and encrypted digits such that only

the intended recipient Bob is able to decode.

Consider the objective of embedding watermarks into ciphers generated by

a multiplicative homomorphic cryptosystem such as RSA. To begin with, the host

data is divided into binary sequences of the length in accordance with the message

space of the given cryptosystem. Then, each sequence is transformed into an integer

called a symbol. After encryption, a su�cient number of enciphered symbols are

selected to carry the watermark payload. We suppose that the selected symbols

are all composed of bits in the l-th bit-plane. To meet the fidelity requirement, the

change of bits in the l-th bit-plane must not cause perceivable degradation on the

visual quality of the image. For conciseness, we describe only how a single host

symbol is processed, as shown in Fig. 4.2.

Let p and q be two large primes and N = p · q. The alphabet of watermark
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Figure 4.2: Watermarking procedures for a selected symbol. Let x be a host symbol
and w be a watermark symbol. Alice encrypts x into E(x). Charlie encodes E(x)
with w into E(y). Bob decrypts E(y) into y and then decodes it into x̂ and ŵ.

symbols is defined as the set of k distinct positive integers up to N that are coprime

to N . Accordingly, we are able to embed log2 k bits of watermark information per

host symbol. The number of positive integers up to N that are relatively prime

to N can be calculated by Euler’s phi function �(N) = (p � 1)(q � 1) and thus

k  �(N). This alphabet, denoted by W = {wi}k�1
i=0 , is pre-shared between Alice

and Bob and serves as a codebook so that di↵erent payloads can be represented

by di↵erent watermark symbols. It is worth noting that revealing this pre-shared

alphabet to an attacker does not compromise the security since the alphabet can

be viewed as merely a pre-defined mapping between binary watermark digits to a

special set of integers. Let a host symbol be x 2 Z/NZ and a watermark symbol be

w 2 W. To begin with, Alice encrypts x into E(x) and uploads it along with E(w)

to Charlie. The watermarking process is then operated by

E(y) ⌘ E(x) · E(w) ⌘ E(w · x) (mod N). (4.3)

After that, the marked and encrypted symbol E(y) is downloaded and sent to Bob

and is then decrypted into

y ⌘ D(E(y)) ⌘ w · x (mod N). (4.4)

Note that we strictly let w0 = 1 in practice in order to minimise the average distortion.

That is, when w = w0, the marked symbol will be kept intact. The distortion only

occurs when w = wi, 8i 6= 0, is embedded. We know that there exists a unique

modular multiplicative inverse of an arbitrary integer a modulo N if and only if
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gcd(a,N) = 1. Since W is a subset of all integers that are coprime to N , we can

construct the set W = {w�1
i }k�1

i=0 that comprises of the corresponding unique inverses.

We generate k possible candidates for x in such a way that each is given by

xi ⌘ y · w�1
i (mod N). (4.5)

The above congruence can be rewritten as

xi ⌘ x · w · w�1
i (mod N). (4.6)

Thus, we see that xi = x if and only if w�1
i = w�1. In other words, if we are able to

distinguish x from k possible candidates {xi}k�1
i=0 , then we can determine w jointly.

Recall that a selected symbol is composed of bits that can be estimated with a certain

degree of accuracy from some other correlated bits. Let us denote an estimated

symbol for x by x̃. Therefore, the original x is determined by

x̂ = argmin
xi

�(xi, x̃), (4.7)

where � is a general distortion metric (e.g. Hamming distance). The reversibility,

namely the ability to recover the host media, primarily depends on two factors. One

is the number of candidates and the other is the estimation accuracy. The reason is

straightforward that given only a few possibilities and a highly credible clue, there is

a high probability that the answer is correctly deduced. The number of candidates

is governed by the capacity parameter k, whereas the estimation accuracy is related

to the fidelity parameter l. Hence, we summarise that

Capacity / k,

Fidelity / l�1,

Reversibility / l · k�1.

(4.8)

Example. Let us demonstrate the scheme with an example as follows. Assume that
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p = 11, q = 19, and N = 209. Let a payload bit be encoded by

w =

8
>><

>>:

w0, if the bit is 0,

w1, if the bit is 1,

where w0 and w1 can be any two numbers coprime to 209. Note that w0 is strictly set

to one in practice and we let w1 = 3 in this example. Suppose that Alice has a host

symbol x = 100 and wants to embed a bit one. As a result, the watermark symbol is

given by w = w1. By encryption, Alice outputs E(x) = E(100). After watermarking,

Charlie produces E(y) ⌘ E(3) · E(100) mod 209. By decryption, Bob obtains y = 91,

which is computed by

91 ⌘ 3 · 100 mod 209.

The modular multiplicative inverses of w0 and w1 are w�1
0 = 1 and w�1

1 = 70,

respectively. Hence, two candidates for x are x0 = 91 and x1 = 100, which are

computed by

91 ⌘ 91 · 1 mod 209,

100 ⌘ 91 · 70 mod 209,

respectively. Suppose that the approximation of x is x̃ = 102. We distinguish the

original value of x from a given set of candidates by choosing the candidate closest to

x̃ in terms of the Hamming distance, and determine the value of w correspondingly.

The distances are calculated by

�0 = �(91, 102) = 5,

�1 = �(100, 102) = 1,

and therefore the decoding results are x̂ = 100 and ŵ = 3.

It can be observed that the wrong candidate is, theoretically, a random integer.

Thus, if N is su�ciently large and the number of candidates to distinguish from is

relatively small, then it is unlikely that randomly drawn integers would be closer to

the approximation of the correct one than the correct one itself.
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Figure 4.3: Watermarking as noise adding. Alice demultiplexes and encrypts the
host signal into encrypted components and then sends each component over either a
noiseless or noisy channel. Bob decrypts and multiplexes the received components
into a noisy signal.

4.3.2 Paillier-Based Scheme

We have seen that the reversibility of the previous scheme is related to the minimum

distance between possible candidates and the correct one. This distance is random

in the case when the multiplicative homomorphism is permitted. To achieve a better

performance, it is desirable to create the distances that are always far enough. We

found that it is possible to construct such a function under an additive homomorphism.

Let us consider embedding watermarks into encrypted data produced by an additive

homomorphic cryptosystem such as the Paillier cryptosystem. For this type of

cryptosystem, there exists an optimal strategy to maximise the Hamming distance

between candidates in a special case that only one bit is embedded per symbol and

there are only two candidates to be distinguished from in the decoding process (i.e.

k = 2). Certainly, there is always a trade-o↵. In this case, it is the non-trivial

data expansion from the message space to the cipher space due to homomorphic

encryption and a little compromise on the fidelity due to distance maximisation.

Before proceeding further, let us introduce another viewpoint of this research

problem, as diagramed in Fig. 4.3. Let Alice be a sender and Bob be a recipient.

There are two communication channels between the two parties: a noiseless channel

and a noisy channel. Let us assume that the noiseless channel is much more expensive

than the noisy one, which complies with our intuition. Suppose that a message can

be decomposed into several pieces of components and each component is transmitted

over one of the channels. Alice wants the communication cost to be as low as possible.

Bob, on the other hand, requires that the core idea of the message must be clear
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and comprehensible regardless of some errors induced by the channel noise. In other

words, the noisy components must not lead to the misunderstanding upon the core

idea of the message. Moreover, Bob hopes that the errors can be corrected from

the context given by the other correct components. Suppose that each message

component is concealed in a safe envelope during the transmission. Nevertheless,

the noisy channel is still capable of adding noise to the components even without

opening the envelope, imagining that raindrops pass through the envelope and wet

the letter.

This research problem is analogous to that of reversible watermarking in

the encrypted domain in the following senses. First, the noisy channel is analogous

to the watermarking function. Second, the reciprocal of the communication cost

corresponds to the watermarking capacity. Third, the requirement of preserving

the core idea of the message is equivalent to the fidelity constraint of watermarking.

Last, the context-based error correction is akin to the decoding process that jointly

detects the payload and recovers the host media. The task of error correction will

be easy if the noisy channel always modifies the components to those of the opposite

meaning in the presence of noise. The reason is that given a certain context, it is

much easier to sense an antonym of a word than a synonym of that word. Hence,

our objective is to construct a noisy channel that always maps components to their

farthest counterparts in the presence of noise, that is to say,

E(y) =

8
>><

>>:

E(x), if no noise occurs,

E(x̄), otherwise,

(4.9)

where x̄ is the farthest counterpart of x. Let x be a non-negative integer composed

of bits from a certain bit-plane and x̄ be the bitwise complement of x. Although the

Paillier cryptosystem does not permit homomorphic bitwise complement operation

upon the encrypted data, we are still able to obtain E(x̄) by

E(x̄) ⌘ E(2t � 1) · E(x)�1 ⌘ E(2t � 1� x) mod N2, (4.10)

where t = blog2Nc is the number of bits used to describe x. We will prove that
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x̄ = 2t � 1� x later. Hence, the encoding process is carried out by

E(y) ⌘

8
>><

>>:

E(x) mod N2, if w = 0,

E(2t � 1) · E(x)�1 mod N2, if w = 1,

(4.11)

and the decoding process is performed by

(x,w) =

8
>><

>>:

(y, 0), if �(y, ỹ) < �(ȳ, ỹ),

(ȳ, 1), otherwise,

(4.12)

where ȳ is the bitwise compliment of y, ỹ is the approximation of y, and � is the

measure of the Hamming distance.

Lemma. Let x be a non-negative integer, x̄ be the bitwise compliment of x, and

t = blog2Nc be the number of bits used to describe x. Then, x̄ = 2t � 1� x.

Proof. Let us prove that

x+ x̄ = 2t � 1

such that

x� x̄ = 11 . . . 1| {z }
t bits

, 8x, x̄ 2 Z/2tZ,

where � denotes the bitwise XOR operation. This is proved by the fact that integer

addition is equivalent to bitwise XOR and 2t � 1 = 20 + 21 + · · ·+ 2t�1 = 11 . . . 1| {z }
t bits

.

4.4 Online and O✏ine Content-Adaptive Predictors

Let us demonstrate how to implement the estimation mechanisms in a practical

sense. Suppose that the host data is a digital image. Recall that we have to estimate

the symbols in order to activate the decoding process. A symbol is defined as an

integer converted from some randomly drawn bits from the l-th bit-plane. Therefore,

the objective is to predict those selected bits. A possible strategy is to predict the

pixel itself. This strategy is advantageous in terms of the implementation cost since

there are a lot of image reconstruction tools available already, such as the total
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variation denoising algorithm [217]. Nonetheless, most content-adaptive predictors

are ‘online’ processing algorithms and thus it is computationally demanding for

the decoder to perform those algorithms. In response to this, we further devise

an ‘o✏ine’ processing mechanism that e�ciently infers the l-th bit of the given

pixel by a pre-learned lookup table. The approach is derived from the Bayesian

inference. We remark that these online and o✏ine algorithms can be viewed as a

classic example of space-time tradeo↵. We begin with the implementation of the

total variation denoising algorithm and then continue with the formulation of the

Bayesian inference.

4.4.1 Total Variation Denoising

Let us consider a marked image as a noisy signal. The result of noise removal can

be perceived as our expectation of the original signal. Recall that when the l-th

bit-plane is taken as the watermarking channel, the l-th bit of each modifiable pixel

is either flipped or kept intact. Therefore, by comparing the marked image with

its denoised counterpart, we are able to infer whether an observed pixel has been

modified or not. For instance, suppose that a pixel u is used to carry a watermark

bit. At the receiving end, we want to know whether u = u0 or u = u1, where u0

and u1 denote the pixel values by setting the l-th bit of u to 0 and 1, respectively.

By applying a denoising technique, we obtain an approximation of u denoted by ũ.

We contend that the value of u is the one that minimises the Euclidean distance

between u and ũ. Let u be a sequence of pixels to carry a watermark bit and ũ be

an approximation of it. In practice, we tend to use an appropriately long sequence

of pixels to carry one single bit of information in order to minimise the error rate,

although, on the other hand, compromising the embedding rate. To decide whether

u = u0 or u = u1, we calculate

�0 = ku0 � ũk1 =
X

i

|u0,i � ũi|,

�1 = ku1 � ũk1 =
X

i

|u1,i � ũi|,
(4.13)

and choose the vector that produces a smaller L1 norm.
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Figure 4.4: A given pixel uO and its correlated neighbouring pixels uN , uS , uW , uE ,
uNW , uNE , uSW and uSE .

Total variation denoising is based on the principle that noisy signals have

high total variation. According to this principle, the denoising problem is modelled

as minimising the total variation of the reconstructed signal subject to it being close

to the original observed signal. Let the intensity function u0(x, y) denote the pixel

intensity of an observed noisy image and u(x, y) the pixel values of the desired clean

image for x, y 2 ⌦. Hence,

u0(x, y) = u(x, y) + n(x, y), (4.14)

where n(x, y) denotes the additive noise with zero mean and standard deviation �.

The objective is to remove n and reconstruct u from u0. The variational model is to

minimise ZZ

⌦
|ru| dx dy, (4.15)

subject to
1

2

ZZ

⌦
(u� u0)2 dx dy = �2. (4.16)

By introducing a Lagrange multiplier �, this problem can be converted into an
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unconstrained optimisation problem, which is to minimise the functional

J [u] =

ZZ

⌦
|ru| dx dy + �

2

ZZ

⌦
(u� u0)2 dx dy. (4.17)

Let us express the above equation in a compact form by

J =

ZZ

⌦
L(⌦, u,ru) d⌦. (4.18)

To minimise J , we find the partial derivatives of L, which are given by

@L
@u

=
@

@u

�

2
(u� u0)2 = �(u� u0), (4.19)

and
@L
@ru

=
@L
@ux

+
@L
@uy

=
ru

|ru| , (4.20)

where

@L
@ux

=
@

@ux
|ru| = @

@ux

q
u2x + u2y

=
@

@ux
 

1
2 =  � 1

2ux =
ux
|ru| ,

(4.21)

and similarly

@L
@uy

=
@

@uy
|ru| = @

@uy

q
u2x + u2y

=
@

@uy
 

1
2 =  � 1

2uy =
uy
|ru| .

(4.22)

Note that we let  = u2x+u2y. By substituting these into the Euler-Lagrange equation

@L
@u

� d

d⌦
(
@L
@ru

) = 0, (4.23)

we obtain

�(u� u0)�r · ru

|ru| = 0. (4.24)
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Therefore, the steepest descent equation for J is given by

@u

@t
= �(u� u0)�r · ru

|ru| , (4.25)

and thus at the time t we update

ut+1 = ut + @ut

= ut + @t(�t(ut � u0)�r · rut

|rut|),
(4.26)

where

r · ru

|ru| =
@

@x

uxq
(ux)2 + u2y

+
@

@y

uyq
u2x + u2y

. (4.27)

At a given pixel uO, let uN , uS , uW and uE denote its four neighbouring

pixels at north, south, west and east directions respectively, as illustrated in Fig. 4.4.

To simplify the notations, we denote the four neighbouring pixels altogether by uP ,

where P 2 ⇤ = {N,S,W,E}. In the following, we present the numerical method for

updating uO via gradient descent. The algorithm is performed iteratively until it

converges to a stable state or the default maximum number of iterations is reached.

For each iteration, the numerical approximation of uO is computed by

ut+1
O = utO + �t · (�t(utO � u0O)�

1

h

rutO
|rutO|

), (4.28)

where �t and h are set to 1 in our implementation. For convenience, we set �t to a

fixed small number instead of updating it dynamically (�t = 0.001). We discretise

rutO
|rutO|

'
X

P2⇤

uP � utOq
(uP � utO)

2 + ⇠2P + ✏
, (4.29)
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where

⇠N =
(uW + uNW )� (uE + uNE)

4
,

⇠S =
(uW + uSW )� (uE + uSE)

4
,

⇠W =
(uN + uNW )� (uS + uSW )

4
,

⇠E =
(uN + uNE)� (uS + uSE)

4
,

(4.30)

and ✏ is a very small number to avoid a zero divisor in practice.

4.4.2 Bayesian Inference

A statistical approach to estimate the l-th bit of a pixel given a certain context is to

collect a large number of samples in the same context and see which case, either that

the bit is 0 or 1, is observed more frequently. This method will, however, encounter

the so-called curse of dimensionality when the context is in a high dimensional space.

That is, the amount of data required to support the sampling grows exponentially

with the dimensionality of context. As aforementioned, a pixel is correlated to

its eight immediate neighbours, which implies that the l-th bit of a given pixel is

correlated to other 7 bits of that pixel and 8 bits of each neighbouring pixel. In total,

there are 71 correlated bits, which represent 271 di↵erent contexts. In this case, we

require an enormous amount of data so that there are su�cient samples for each

context.

In order to reduce the dimensionality of context, we model that the l-th bit of

a given pixel is correlated to its immediate neighbouring bits on the current and the

two adjacent bit-planes, as illustrated in Fig. 4.5. For the least significant bit-plane,

we consider only the bits on the current and the second least significant bit-planes.

For the most significant bit-plane, we consider only the bits on the current and

the second most significant bit-planes. There are 8 correlated bits on the current

bit plane, 9 on each of the two adjacent bit-planes. For a bit on the second to the

seventh bit-plane, it has 26 correlated bits and thus 226 possible contexts. For a

bit on the first or last bit-plane, there are 17 correlated bits and accordingly 217

contexts. The number of contexts is significantly reduced and yet the estimation is
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Figure 4.5: A given bit (coloured in dark grey) and its correlated neighbouring bits
(coloured in light grey).

still remarkably accurate as demonstrated experimentally later. Let us denote the

bit to be estimated by b and the collection of correlated bits, or the context, by ⇥.

According to the Bayes’ theorem, we compute

P (b = 0|⇥) / P (⇥|b = 0)P (b = 0),

P (b = 1|⇥) / P (⇥|b = 1)P (b = 1),
(4.31)

where P (b) is the prior probability of the hypothesis of b, P (⇥|b) is the likelihood

of observing the evidence ⇥ given the hypothesis of b, and P (b|⇥) is the posterior

probability of the hypothesis of b given the observed evidence ⇥. Therefore, the

inference about the value of b is made by

b̃ = argmax
b2{0,1}

P (b|⇥). (4.32)

As a result, we learn the Bayesian probability table from a large number of image

samples and predict the bits by the lookup table, as illustrated in Table 4.1.

4.5 Experiments

In the following experiments, we test the schemes on 8-bit greyscale images of size

512⇥ 512, as shown in Fig. 4.6. We use the RSA and the Paillier cryptosystems as
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Table 4.1: Bayesian probability table, in which each column represents a possible
context and each row represents a possible bit value.

⇥1 ⇥2 · · ·
b = 0 P (b = 0|⇥1) P (b = 0|⇥2) · · ·
b = 1 P (b = 1|⇥1) P (b = 1|⇥2) · · ·

examples of multiplicative and additive homomorphic cryptosystems, respectively.

Two prime numbers for the cryptosystems are p = 7907 and q = 7919 so that

the bit-length of message is blog2 pqc = 25. Accordingly, for each bit-plane of an

image, we convert every segment of 25 bits into a decimal number in order to fit the

encryption function, where the marginal bits are negligible. The number of iterations

for the total variation algorithm is set to 2000 since empirically it produces stable

results. The Bayesian probability table is learned from a thousand image samples

in the BOSSBase [218]. We begin with the analysis of three-way trade-o↵ between

capacity, fidelity, and reversibility. Then, we make comparisons between the proposed

schemes and the state-of-the-art. The capacity is represented by the number of bits

embedded in an image, whereas the fidelity and reversibility are measured by the

peak signal-to-noise ratio (PSNR). Let ui,j and ûi,j denote a pixel and its noisy

counterpart respectively, where i and j specify the pixel coordinates. The fidelity

is quantified by the PSNR between the original and the marked images, and in a

similar manner, the reversibility is evaluated by the PSNR between the original and

the recovered images. For further analysis, we also measure the reversibility in terms

of the number of bit errors in the following discussions.

Capacity-Fidelity Trade-O↵

The trade-o↵ between capacity and fidelity is visualised in Fig. 4.7a, which shows

that the RSA-based scheme achieves higher fidelity than the Paillier-based scheme

under the same capacity (2000 bits). The reason is straightforward: when the noise

occurs, the former only introduces a random distortion while the latter inflicts a

maximal distortion. Note that the fidelity is not content-dependent according to our

scheme design. The impact of the selection of di↵erent bit-planes as the watermarking

channel is shown in Table 4.2. It is intuitive that the fidelity of marked images
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(a) Airplane (b) Barbara (c) Cameraman

(d) Lena (e) Mandrill (f) Peppers

Figure 4.6: Greyscale test images of size 512⇥ 512 with 256 tonal options.

decreases drastically when a more significant bit-plane is engaged to carry watermark

information.

Capacity-Reversibility Trade-O↵

The trade-o↵ between capacity and reversibility is illustrated in Fig. 4.7b. To assess

the capacity-reversibility trade-o↵, we control the capacity by selecting di↵erent

bit-planes for watermarking in such a way that the fidelity remains at 48 dB, and

then observe the change of reversibility. Note that here we express the reversibility

in terms of the number of bit errors in order to amplify the trend. If the reversibility

is quantified by the PSNR, the proportionality may be indeterminate since a higher

decoding error rate does not necessarily mean a lower visual quality. For instance,

several errors occur on an insignificant bit-plane may still result in a higher visual

quality than a single error on a relatively significant bit-plane. It is observed that the

reversibility decreases as the capacity increases. It is due to the fact that we embed

less amount of information into the more significant bit-plane and more amount into

the less significant bit-plane in order to keep the fidelity at a fixed level.
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Fidelity-Reversibility Trade-O↵

The trade-o↵ between capacity and reversibility is illustrated in Fig. 4.7c. In a

similar way, we evaluate the fidelity-reversibility trade-o↵ by setting the capacity

to 2000 bits, controlling the fidelity with the selection of encodable bit-plane, and

observing the change of reversibility. It is evident that the Paillier-based scheme

is advantageous in terms of the reversibility compared to the RSA-based scheme.

This is because that the Paillier-based scheme inflicts a stronger noise to the host

media, which is more distinguishable and removable than a faint noise imposed by

the RSA-based scheme. On top of that, it is shown that the predictor based on

total variation achieves higher reversibility than the predictor based on the Bayesian

inference. Moreover, it can be observed that the reversibility is inversely proportional

to the fidelity.

More comprehensive experimental results are demonstrated in Table 4.3,

where a variety of images are tested with every possible combination of encoding and

decoding mechanisms. It is witnessed that the error-free performance is achievable

in practice. It can be observed that the error rate generally approaches zero when

embedding payloads into a comparatively more significant bit-plane. From the

previous analyses, we conclude that

• Capacity is inversely proportional to fidelity.

• Capacity is inversely proportional to reversibility.

• Fidelity is inversely proportional to reversibility.

• The RSA-based scheme preserves higher fidelity than the Paillier-based scheme.

• The Paillier-based scheme achieves higher reversibility than the RSA-based

scheme.

• The predictor based on total variation is more content-adaptive and results in

higher reversibility than that based on Bayesian inference.

• The predictor based on Bayesian inference consumes less computational power

in decoding than that based on total variation.
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(c) Fidelity-reversibility tradeo↵.

Figure 4.7: A three way trade-o↵ between capacity, fidelity, and reversibility measured
on the image Lena.

In the following, we compare the scheme performance with the state-of-the-art.

We begin by classifying the existing reversible watermarking schemes compatible with

public-key cryptosystems [200–202, 205, 206], as presented in Table 4.4. As far as we

are aware, our work is one of the pioneering research on the schemes compatible with

public-key homomorphic cryptosystems under the condition that neither additional

bit padding nor specific pre-processing is undertaken. Although schemes addressing

this strictly defined problem are hardly found, we remark that this design principle

was followed in the earlier literature of schemes based on traditional symmetric-

key cryptosystems. In order to make paralleled and meaningful comparisons, the

proposed schemes are compared with those under the same, or at least similar,

research constraint [180, 182, 219]. We test the fidelity and reversibility between
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Table 4.2: Fidelity evaluation of RSA-based and Paillier-based schemes by using
di↵erent bit-planes as the watermarking channel. It shows the PSNR (in dB) of the
marked image Lena.

RSA Paillier

l = 1 67.59 64.25

l = 2 61.19 58.41

l = 3 55.46 52.43

l = 4 49.46 46.28

l = 5 43.27 39.86

l = 6 37.58 34.22

l = 7 31.18 28.09

l = 8 25.31 21.96
(a) Capacity: 500 bits

RSA Paillier

l = 1 64.32 61.28

l = 2 58.32 55.10

l = 3 52.17 49.23

l = 4 46.29 43.39

l = 5 40.32 37.20

l = 6 34.11 31.25

l = 7 28.41 25.28

l = 8 22.37 19.12
(b) Capacity: 1000 bits

RSA Paillier

l = 1 62.53 59.70

l = 2 56.55 53.42

l = 3 50.61 47.62

l = 4 44.40 41.47

l = 5 38.48 35.33

l = 6 32.56 29.49

l = 7 26.57 23.53

l = 8 20.29 17.53
(c) Capacity: 1500 bits

RSA Paillier

l = 1 61.29 58.23

l = 2 55.57 52.26

l = 3 49.41 46.26

l = 4 43.32 40.31

l = 5 37.08 34.18

l = 6 31.18 28.32

l = 7 25.09 22.18

l = 8 19.05 16.30
(d) Capacity: 2000 bits

di↵erent schemes by embedding randomly generated 2000 bits into various host

images. It is observed from Table 4.5 that the visual qualities of various host

images are similar for any listed encoding algorithm and thus it is evident that the

fidelity is not content-dependent. Yet, di↵erent schemes and configurations result in

di↵erent fidelity. It is shown that the RSA-based and Paillier-based schemes preserves

comparatively high fidelity when embedding payloads into the third bit-plane. From

Table 4.6, we can further observe that the proposed schemes achieve relatively high

reversibility, especially when using the total variation technique for decoding. When

the sixth bit-plane is used as the embedding channel, the proposed schemes show the

error-free performance on most of the test images. Even when embedding payloads

into the third bit-plane, the reversibility is higher than the average in most cases.

The experimental results show that the proposed schemes achieve a remarkable

106



balance between fidelity and reversibility under the given capacity constraint. On

top of this, the proposed schemes share the advantages of the modern public-key

cryptosystems.
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Table 4.3: Reversibility evaluation of di↵erent combinations of encoding and decoding
components. It shows the PSNR (in dB) and the number of bit errors of the recovered
images in which 2000 random bits are embedded.

RSA+TV

Airplane Barbara Cameraman Lena Mandrill Peppers

PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM

l = 1 65.38 403 63.10 667 71.61 102 63.75 581 62.36 795 62.82 715

l = 2 64.38 135 59.20 417 81.24 3 60.90 285 56.53 760 58.43 500

l = 3 69.10 13 59.18 112 1 0 64.06 39 52.44 489 56.41 205

l = 4 1 0 60.90 20 1 0 1 0 50.22 216 56.41 10

l = 5 1 0 63.60 3 1 0 1 0 54.21 23 1 0

l = 6 1 0 1 0 1 0 1 0 1 0 1 0

l = 7 1 0 1 0 1 0 1 0 1 0 1 0

l = 8 1 0 1 0 1 0 1 0 1 0 1 0

RSA+Bayes

Airplane Barbara Cameraman Lena Mandrill Peppers

PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM

l = 1 62.85 706 61.82 886 67.51 249 62.02 859 61.90 882 61.68 915

l = 2 59.24 404 56.09 830 74.06 16 56.32 796 55.68 917 55.83 882

l = 3 62.04 60 52.93 434 1 0 54.89 282 49.93 876 51.23 645

l = 4 1 0 55.76 61 1 0 61.60 17 45.54 599 54.33 87

l = 5 1 0 61.60 4 1 0 1 0 45.42 160 1 0

l = 6 1 0 1 0 1 0 1 0 49.88 15 1 0

l = 7 1 0 1 0 1 0 1 0 1 0 1 0

l = 8 1 0 1 0 1 0 1 0 1 0 1 0

Paillier + TV

Airplane Barbara Cameraman Lena Mandrill Peppers

PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM

l = 1 64.30 253 60.78 569 74.53 24 61.41 492 59.37 787 60.09 667

l = 2 68.00 27 58.62 234 1 0 60.76 143 54.06 669 56.46 385

l = 3 1 0 63.28 20 1 0 73.28 2 50.87 348 58.16 65

l = 4 1 0 1 0 1 0 1 0 50.68 91 1 0

l = 5 1 0 1 0 1 0 1 0 1 0 1 0

l = 6 1 0 1 0 1 0 1 0 1 0 1 0

l = 7 1 0 1 0 1 0 1 0 1 0 1 0

l = 8 1 0 1 0 1 0 1 0 1 0 1 0

Paillier + Bayes

Airplane Barbara Cameraman Lena Mandrill Peppers

PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM

l = 1 59.60 746 58.42 979 65.64 186 58.51 960 58.42 981 58.31 1004

l = 2 57.11 331 52.69 916 1 0 53.10 833 52.32 999 52.41 977

l = 3 65.15 13 51.45 305 1 0 53.46 192 46.60 932 48.32 626

l = 4 1 0 59.48 12 1 0 1 0 42.61 584 55.36 31

l = 5 1 0 1 0 1 0 1 0 45.33 78 1 0

l = 6 1 0 1 0 1 0 1 0 1 0 1 0

l = 7 1 0 1 0 1 0 1 0 1 0 1 0

l = 8 1 0 1 0 1 0 1 0 1 0 1 0
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Table 4.4: Classification of reversible watermarking schemes compatible with public-
key cryptosystems.

Proposed Wu et al. [200] Wu et al. [201] Li and Li [202] Zhang et al. [205] Xiang and Luo [206]

Bit-padding No Yes Yes Yes No No

Pre-processing No No No No Yes Yes

Table 4.5: Fidelity comparison with the state-of-the-art. It shows the PSNR (in dB)
of the marked images in which 2000 random bits are embedded.

Airplane Barbara Cameraman Lena Mandrill Peppers

RSA (l = 3) 49.27 49.32 49.47 49.43 49.13 49.19

RSA (l = 6) 31.13 31.08 31.31 31.18 31.32 31.19

Paillier (l = 3) 46.18 46.36 46.10 46.25 46.26 46.23

Paillier (l = 6) 28.14 28.37 28.17 28.32 28.26 28.16

Zhang [180] 41.11 41.04 40.98 41.06 41.04 41.0

Wu and Sun (l = 3) [219] 46.30 46.16 46.33 46.29 46.16 46.27

Wu and Sun (l = 6) [219] 28.25 28.39 28.25 28.43 28.38 28.22

Liao and Shu [182] 41.12 41.04 41.05 41.04 41.03 41.04

Table 4.6: Reversibility comparison with the state-of-the-art. It shows the PSNR (in
dB) and the number of bit errors of the recovered images in which 2000 random bits
are embedded.

Airplane Barbara Cameraman Lena Mandrill Peppers

PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM PSNR NUM

RSA + TV (l = 3) 69.10 13 59.18 112 1 0 64.06 39 52.44 489 56.41 205

RSA + TV (l = 6) 1 0 1 0 1 0 1 0 1 0 1 0

RSA + Bayes (l = 3) 62.04 60 52.93 434 1 0 54.89 282 49.93 876 51.23 645

RSA + Bayes (l = 6) 1 0 1 0 1 0 1 0 49.88 15 1 0

Paillier + TV (l = 3) 1 0 63.28 20 1 0 73.28 2 50.87 348 58.16 65

Paillier + TV (l = 6) 1 0 1 0 1 0 1 0 1 0 1 0

Paillier + Bayes (l = 3) 65.15 13 51.45 305 1 0 53.46 192 46.60 932 48.32 626

Paillier + Bayes (l = 6) 1 0 1 0 1 0 1 0 1 0 1 0

Zhang [180] 55.09 71 48.93 169 54.38 85 57.10 28 46.16 309 54.57 47

Wu and Sun (l = 3) [219] 1 0 58.58 59 1 0 69.30 5 50.03 423 57.66 73

Wu and Sun (l = 6) [219] 1 0 1 0 1 0 1 0 1 0 1 0

Liao and Shu [182] 60.73 13 57.57 23 67.56 3 62.46 7 52.54 70 58.13 20
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4.6 Summary

This chapter considers the problem of entrusting the watermarking operation to a

cloud service provider without undermining data privacy. Constructing reversible

watermarking schemes compatible with public-key cryptosystems is of non-trivial

challenge since there is virtually no data redundancy to be exploited in the encrypted

domain. The recent development of various schemes required the host media either

to be enciphered in a redundant fashion or to be pre-processed prior to encryption.

To address these limits, we propose a novel paradigm and derive di↵erent schemes

compatible with di↵erent types of public-key homomorphic cryptosystems. The

host image is encrypted in such a fashion that a su�ciently long sequence of bits,

instead of a pixel, is regarded as input to the encryptor. It significantly reduces

the size of the encrypted data and improves the space e�ciency. In addition

to this, we suggest to encrypt di↵erent bit-planes separately in order to control

the fidelity factor. Any specific data pre-processing is not required in order to

promote the practicality and universality. For the RSA-like cryptosystems that

permit multiplicative homomorphic computation, the proposed scheme is flexible

in terms of embedding capacity. As for the Paillier-like cryptosystems that allow

additive operation as well as partial multiplicative operation, we propose a scheme

which is optimal with respect to the reversibility. Furthermore, we develop content-

adaptive predictors based on variational method and statistical inference for assisting

watermark decoding. Both online and o✏ine prediction algorithms are provided

in order to suit di↵erent operational requirements. We remark that the decoding

errors are inevitable from a theoretical point of view and yet in practice the error

rate approaches zero at a low expense of the fidelity and capacity. Experimental

results show that the proposed schemes achieve remarkable balance between fidelity

and reversibility under the given capacity constraint. From our perspective, it is of

great significance to develop privacy-aware watermarking methodology suitable for a

variety of modern cryptosystems. On top of this, more practical applications, such

as privacy protection in the Internet of Things, deserve further investigations.
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Chapter 5

Privacy-Preserving Secret

Sharing

Internet of Things (IoT) is an emerging technology that utilises cloud connected

devices to collect data for analysis. Healthcare industry is one of the most promising

fields that have adopted IoT solutions since its early stage. The development of

wearable technology, wireless body area network and cloud computing has established

a new way for medical practitioners to acquire health data from patients. It greatly

benefits health monitoring, epidemiological studies, and pharmaceutical research

[220–222].

A common IoT-aware architecture for healthcare applications is illustrated in

Fig. 5.1, which consists of a gateway device, a cloud server and several sensor nodes.

Each sensor node can be viewed as a wearable equipment used for monitoring the

health status of an individual, such as heart rate, blood pressure, brain wave, glucose

level, etc. Under the given framework, the sensor nodes send the medical data to a

local gateway device via wireless communication such as Wi-Fi or Bluetooth, whereas

the gateway device aggregates the data and store it in the cloud server for further

analysis.

However, there are risks of information leakage during data transmission and

storage. For example, an adversary may attempt to eavesdrop the wireless commu-

nication, attack the gateway device or even access to the cloud server. Therefore, it
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Cloud

GatewayHeart Rate Blood Pressure

Glucose LevelBrain Wave

Figure 5.1: An IoT-based healthcare architecture. The health data acquired from
the sensor nodes (e.g. heart rate, blood pressure, brain wave, and glucose level) is
aggregated at the gateway and store in the cloud.

is advisable to encrypt the data at each sensor node immediately after it is produced

and incorporate secret sharing schemes to realise access control. In more details,

each sensor node transmits the encrypted data to the gateway device by which data

is integrated and encoded into shares of information. Due to security concerns, these

shares are stored in separate cloud servers and the data retrieval must conform with

the access policy. To realise this system, we present a novel research upon secret

sharing in the encrypted domain.

In this chapter, we study secret sharing mechanisms towards resolving privacy

and security issues in IoT-based healthcare applications. Nevertheless, the applica-

tions of the proposed schemes are not limited to this particular IoT context. Instead,

the proposed schemes are rather general and can be served as potential solutions for

other similar problems. We show how multiple sources are possible to share their

data amongst a group of participants without revealing their own data to one another

as well as the dealer. Only an authorised subset of participants is able to reconstruct

the data. We analyse the pros and cons of several possible solutions and develop

practical schemes: a simple (2, 2)-threshold scheme, an extended (n, n)-threshold

scheme, and a generalised (t, n)-threshold scheme. The developed schemes follow
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Sharmir’s construction in which a collusion of fewer than t participants has no

better chance of guessing the secret than a non-participant who has no privileged

information at all.

The remainder of this chapter is organised as follows. Section 5.1 gives a brief

introduction of secret sharing. Section 5.2 presents a variety of privacy-preserving

secret sharing schemes from the most limited construction to the most general

construction. The chapter is concluded in Section 5.3 with directions for future

research.

5.1 Secret Sharing

In this section, we discuss the basic notions and terminology of secret sharing and also

briefly introduce its history and applications. The focus of this section is Shamir’s

secret sharing scheme, which forms the cornerstone of our scheme constructions.

Secret sharing is a study in cryptography and plays an essential role in visual

cryptography. It can also be perceived as a special form of information hiding. In

addition to this, It is widely used in applications of secure multi-party computation

such as sealed-bid auction [223–226] and secret ballot [227–232].

Secret sharing was originated independently by Shamir [233] and Blakley

[234] in 1979. In general, a secret sharing scheme describes how a dealer can split

a secret message into pieces of information and distribute them amongst a group

of participants. Each piece of information is referred to as a share (as Sharmir’s

terminology) or a shadow (as Blakley’s terminology). The secret will be revealed

only in the presence of a su�cient number of shares or when an authorised subgroup

of participants work together. It is also rigorously defined that any individual share

or unauthorised combination of shares reveals absolutely no information about the

secret. Consider a näıve example of secret sharing in which a secret message, say,

‘password’ is split into the following shares: ‘pa------’, ‘--ss----’, ‘----wo--’, and ‘------rd’.

It is manifestly insecure in the sense that every share leaks part of the secret.

The most typical scheme of secret sharing is a (t, n)-threshold scheme, which

involves n participants and any group of t or more participants will be able to
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reconstruct the secret. In Shamir’s construction, the secret is set as the constant

term of a polynomial of degree t� 1 and the secret shares are any n di↵erent points

on the polynomial. Hence, any t points will be su�cient to define the polynomial and

thus its constant term, namely the secret digit. In Blakley’s construction, consider

the secret as a point in a three-dimensional space and the shadows as hyperplanes

whose common intersection is the secret point. As a consequence, any three planes

will su�ce to identify the point. As each successive shadow is exposed, however, the

range of possible values of the secret narrows. Shamir’s secret sharing scheme is

algebraic in nature in contrast to Blakley’s geometric solution.

Shamir’s secret sharing scheme forms the cornerstones for the later construc-

tions of the proposed scheme. Hence, let us discuss Shamir’s secret sharing in more

detail. Suppose that a dealer wants to share a secret to n participants in such a

way that only more than t participants pool their shares together will the secret be

reconstructed. Let the secret be denoted by s and we generate t� 1 random numbers

denoted by r1, r2, ..., and rt�1. Then, we form a polynomial

f(x) ⌘ s+ r1x+ r2x
2 + · · ·+ rt�1x

t�1 (mod P ), (5.1)

where P is a randomly chosen prime number. Let us draw any n points from the

polynomial, for example, (1, f(1)), (2, f(2)), ..., and (n, f(n)), and distribute them

to n participants respectively as shares. It is observed that there are t unknown

variables in the polynomial and thus with t di↵erent points one is able to solve

for the variables including the secret (i.e. the constant term). In other words, the

reconstruction process is to simply use Lagrange interpolation to solve a set of t

simultaneous equations.

Since the introduction of secret sharing, numerous extended problems have

appeared. The study towards a general access structure was considered by Ito, Saito,

and Nishizeki [235] and had become a principal study since then [236–239]. To

manage various malicious behaviour by dishonest parties, the notion of verifiable

secret sharing was introduced by Chor et al. [240] and had been studied extensively

thereafter [241–246]. Another closely related branch is visual cryptography originated
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by Naor and Shamir [247] for the secrecy of visual information, including greyscale,

colour, and halftone images [248–250].

5.2 Privacy-Preserving Secret Sharing

In this section, we present the proposed privacy-preserving secret sharing schemes

that address the problem of sharing the secrets generated from multiple sources

amongst a group of n participants through the computations in the encrypted domain.

We analyse the pros and cons of several possible solutions and develop practical

schemes: a simple (2, 2)-threshold scheme, an extended (n, n)-threshold scheme,

and a generalised (t, n)-threshold scheme. The developed schemes follow Sharmir’s

construction in which a collusion of fewer than t participants has no better chance of

guessing the secret than a non-participant who has no privileged information at all.

In the remainder of this chapter, we assume all the homomorphic properties applied

are those of the Paillier cryptosystem unless otherwise specified [164]. Nevertheless,

the applicable homomorphic cryptosystems are included but by no means limited to

this particular cryptosystem.

5.2.1 Näıve Solutions

In the following, let us consider two näıve solutions to our research problem and

analyse their pros and cons. Among a variety of privacy protection mechanisms,

encryption has a high level of reliability and universality. Naturally, the secrets are

encrypted once they have been produced from the sources. The problem is therefore

reduced to the sharing of encrypted data. Consider a key server who has a pair of

public and private keys. The public key is used for encryption, whereas the private

key is employed for decryption. The first solution is to create shares of the private

key by arranging the key as the constant term in Eq. (5.1). The encrypted files,

instead of being encoded as shares, are stored in a database. At the time when the

number of collaborative participants are as many as required, the private key will

be reconstructed and then the files in the database can be deciphered. On the one

hand, this solution is simple and the computational load of the sharing procedure is
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light. On the other hand, however, to access the secret files, one must perform one

reconstruction algorithm for the key plus one decryption algorithm for the files. In

addition to this, this scheme requires di↵erent pairs of public and private keys for

di↵erent sets of secret files (e.g. di↵erent patients’ health records); otherwise, once

the participants reconstruct the private key, they will be able to decipher all the

files stored in the database. Furthermore, storing all the important files in a central

database may be vulnerable to a number of cyber attacks. Thus, it is reasonable to

share the files to authorised participants to reduce the risk of cyber threats.

The second solution is that suppose there are t encrypted secrets denoted

by E(s0), E(s1), ..., and E(st�1). We form a polynomial by arranging t encrypted

secrets as t coe�cients in Eq. (5.1). More generally, we can assume that there are k

encrypted secrets, where k  t, and choose t� k random numbers as the rest of the

coe�cients to complete the polynomial. Either way, we can draw n points as the

shares for individual participants. In the presence of t shares or more, the encrypted

data will be reconstructed. With the decryption key, the data will eventually be

revealed. In practice, this scheme has a non-trivial issue of key distribution amongst

the participants. It may be addressed by one of the following approaches. First,

use a secure channel to transmit the key to individual participants. Second, let the

pair of encryption and decryption keys be generated by a key agreement protocol

(e.g. Di�e–Hellman key exchange protocol [155]) amongst the group of participants,

instead of being generated by the key server. Third, encrypt the key with each

participant’s public key and send it to the corresponding one as an instance of

asymmetrical cryptography (e.g. elliptic curve cryptosystems [156]). Aside from

the issue of key distribution, this scheme still requires extra e↵orts of participants,

namely, one reconstruction step for the encrypted data plus one decryption step for

the original data. It may be troublesome in particular situations. For instance, when

there is a surgical emergency, the time delay for accessing health records becomes

problematic. Hence, we conclude that these näıve solutions, though feasible, are

deficient in several aspects, which motivate us towards finer constructions.
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5.2.2 (2, 2)-threshold scheme

To begin with, we introduce a (2, 2)-threshold multi-secret sharing scheme to split a

batch of two secrets into two shares via a semi-honest (or honest-but-curious) cloud

service provider. Only in the presence of two shares, the batch of two secrets can be

restored. Let us describe how this scheme can solve the problem of privacy-preserving

secret sharing. Let s1 and s2 be two secrets generated from two separate sources,

respectively. To preserve the privacy of secrets, s1 and s2 are encrypted immediately

after being produced. The encrypted secrets E(s2) and E(s2) are uploaded to the

dealer for sharing. Let x1 and x2 be any integers that satisfy

gcd(x1 + x2, N) = 1,

gcd(x1 � x2, N) = 1.
(5.2)

Note that ‘gcd’ stands for greatest common divisor. It is not di�cult to find proper

x1 and x2 because N is the product of two large primes. Since

x1
2 � x2

2 ⌘ (x1 + x2) · (x1 � x2) (mod N), (5.3)

we derive

gcd(x1
2 � x2

2, N) = 1. (5.4)

This also implies

gcd(x1
2 � x2

2, N) = 1. (5.5)

Then, two shares are created as

E(y1) ⌘ E(s1)x1 · E(s2)x2 (mod N2),

E(y2) ⌘ E(s1)x2 · E(s2)x1 (mod N2).
(5.6)

Following the homomorphic properties, we rewrite

E(y1) ⌘ E(s1x1 + s2x2) (mod N2),

E(y2) ⌘ E(s1x2 + s2x1) (mod N2).
(5.7)
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The dealer distributes x1 and x2 to two participants and sends E(y1) and E(y2) to

the key server for decryption. The decrypted results are

y1 ⌘ s1x1 + s2x2 (mod N),

y2 ⌘ s1x2 + s2x1 (mod N).
(5.8)

Then, y1 and y2 are also dispensed to the participants. When the participants pool

their shares (x1, y1) and (x2, y2) together, they compute

x1y1 � x2y2 ⌘ (x1
2 � x2

2)s1 (mod N). (5.9)

Note that

x1y1 ⌘ (x1
2s1 + x1x2s2) (mod N)

x2y2 ⌘ (x2
2s1 + x1x2s2) (mod N).

(5.10)

Since gcd(x12 � x2
2, n) = 1, we know there exists one and only one modular multi-

plicative inverse such that

(x1
2 � x2

2) · (x12 � x2
2)�1 ⌘ 1 (mod N). (5.11)

The value of (x12 � x2
2)�1 can be solved by the extended Euclidean algorithm.

Eventually, the secret s1 is unveiled by

s1 ⌘ (x1y1 � x2y2) · (x12 � x2
2)�1 (mod N). (5.12)

In the same manner, the secret s2 is decoded as

s2 ⌘ (x2y1 � x1y2) · (x22 � x1
2)�1 (mod N). (5.13)

It is worth noting that even though y1 and y2 have been disclosed to the key server

during the process, s1 and s2 are still kept secret since the key server has no knowledge

about x1 and x2. The secret reconstruction process does not involve the decryption

operation and thus is time-e�cient.
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5.2.3 (n, n)-threshold scheme

Let us extend the previous (2, 2)-threshold scheme to a (n, n)-threshold scheme. For

conciseness, we omit modulus symbols in the following description where there is no

ambiguity. Let n secrets generated from sources be denoted by s1, s2, . . . , and sn.

After encryption, the encrypted results, written as E(s1), E(s2), . . . , and E(sn), are

transmitted to the dealer for sharing. The dealer chooses n random numbers x1, x2,

. . . , and xn such that a matrix

X =

0

BBBBBBB@

x1 x2 x3 · · · xn

x2 x3 x4 · · · x1
...

...
...

. . .
...

xn x1 x2 · · · xn�1

1

CCCCCCCA

(5.14)

has a modular multiplicative inverse X�1 in Z/NZ. Alternatively, X must satisfy

gcd(det(X), N) = 1 and det(X) 6= 0. Note that ‘det’ stands for determinant. Let

the dealer compute

E(y1) = E(s1)x1E(s2)x2 · · · E(sn)xn ,

E(y2) = E(s1)x2E(s2)x3 · · · E(sn)x1 ,

...

E(yn) = E(s1)xnE(s2)x1 · · · E(sn)xn�1 .

(5.15)

According to the homomorphic properties, we derive

E(y1) = E(s1x1 + s2x2 + · · ·+ snxn),

E(y2) = E(s1x2 + s2x3 + · · ·+ snx1),

...

E(yn) = E(s1xn + s2x1 + · · ·+ snxn�1).

(5.16)

The sharing process can be fulfilled by cloud computing to relieve the dealer of

computational burdens without revealing the private information about the secrets.

The dealer dispenses x1, x2, . . . , and xn to n participants respectively and passes
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E(y1), E(y2), . . . , and E(yn) to the key server for decryption. The decrypted results,

written as 0

BBBBBBB@

y1

y2
...

yn

1

CCCCCCCA

= X

0

BBBBBBB@

s1

s2
...

sn

1

CCCCCCCA

, (5.17)

are allocated to individual participants as well. When all the participants pool their

shares together, they retrieve the secrets by

0

BBBBBBB@

s1

s2
...

sn

1

CCCCCCCA

= X�1

0

BBBBBBB@

y1

y2
...

yn

1

CCCCCCCA

. (5.18)

Example. Let us demonstrate that the previous (2, 2)-threshold scheme is actually

a special case of the (n, n)-threshold scheme. In the case where there are two secrets

s1 and s2 to be encoded, the dealer randomly chooses x1 and x2 to form a matrix

0

B@
x1 x2

x2 x1

1

CA .

Then, we compute

E(y1) = E(s1)x1E(s2)x2 = E(s1x1 + s2x2),

E(y2) = E(s1)x1E(s2)x2 = E(s1x2 + s2x1),

which are equivalent to the results in Eq. (5.6) and Eq. (5.7). By decryption, we

obtain 0

B@
y1

y2

1

CA =

0

B@
x1 x2

x2 x1

1

CA

0

B@
s1

s2

1

CA ,
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which are equal to the results in Eq. (5.8). Eventually, we retrieve the secrets by

0

B@
s1

s2

1

CA =

0

B@
x1 x2

x2 x1

1

CA

�10

B@
y1

y2

1

CA ,

which are identical to the results in Eq. (5.12) and Eq. (5.13).

As an extension of the (2, 2)-threshold scheme, this scheme has the same

security strength. It is theoretically secure in the sense that any subset of participants

has absolutely no knowledge about the secrets unless all the shares are in presence.

The secret reconstruction procedure does not involve decryption. Thus, it is time-

e�cient and can be established without the means of key distribution.

5.2.4 (t, n)-threshold scheme

In light of the previous (n,n)-threshold scheme, we further derive a generalised (t,

n)-threshold scheme. Before we proceed further, let us discuss some possible (t,

n)-threshold schemes and analyse their pros and cons. Let {si}ti=1 denote t secrets

generated from separate sources and P be a large prime. With Shamir’s algorithm,

the dealer constructs a polynomial

f(x) ⌘
tX

i=1

six
i�1 (mod P ), (5.19)

and draws n points (x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)) as shares for n parti-

cipants. In our defined scenario, the secrets are encrypted into {E(si)}ti=1 immediately

after being produced. Let k denote the decryption key. The first possible scheme is

to split k into n shares by drawing n points from the following polynomial:

f1(x) ⌘ k +
t�1X

j=1

rjx
j (mod P ), (5.20)

where {rj}t�1
j=1 are t � 1 randomly chosen integers. The encrypted data has to

be stored in a database so that when t or more participants reconstruct the key

collaboratively, they can retrieve and decrypt the data. Nonetheless, the database
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may be vulnerable to numerous cyber attacks. The second possible scheme is to

create shares according to the following polynomial:

f2(x) ⌘
tX

i=1

E(si)xi�1 (mod P ). (5.21)

When t or more participants co-operate, they can reconstruct the encrypted data.

In order to decrypt the data, the scheme must engage a key distribution protocol to

share the key amongst the participants. To compensate for the shortcomings, one

may think of combining the previous two solutions and build a polynomial in the

following form:

f3(x) ⌘ k +
t�1X

j=1

E(sj)xj (mod P ). (5.22)

In this way, the authorised subset of participants is able to reconstruct and decrypt

the data from the shares. With the knowledge of the key, however, the dealer is able

to decipher the data and thus the privacy is threatened. Regrettably, as previous

strategies all have obvious limitations, we need to find another way to do so.

For a moment, let us forget about the problem of sharing ciphertexts and

only consider sharing the plaintexts since extending the idea to the sharing of the

ciphertexts is easy once the following concepts are understood. Let st,1 denote a

vector of t secrets, yn,1 denote a vector of n shares, and Xn,t denote an n⇥ t matrix.

We define an encoding function

yn,1 = Xn,t · st,1 (5.23)

and a decoding function

st,1 = X�1
t,t · yt,1, (5.24)

where yt,1 ⇢ yn,1, and Xt,t ⇢ Xn,t. In the case of (n, n)-threshold secret sharing,

the above encoding and decoding functions are equivalent to Eq. (5.17) and Eq.

(5.18), respectively. In the previous special case, we only require that Xn,n has a

modular multiplicative inverse. In the current generalised case, however, we require

that any t⇥ t sub-matrix of Xn,t has a modular multiplicative inverse. In fact, when
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t = n, the current requirement reduces to the previous one since the one and only

sub-matrix of Xn,t is Xn,t itself. Our question is hence ‘is it possible to construct a

valid matrix Xn,t such that any square matrix Xt,t consisting of t rows of Xn,t has a

multiplicative inverse?’.

A matrix A is invertible if and only if its determinant is non-zero. When

t and n are small numbers, we could use trial and error to construct a valid Xn,t

such that det(Xt,t) 6= 0 for any Xt,t. This approach is, however, not practical since

collisions become di�cult to be handled as the ratio between n and t, implying

the number of possible combinations, grows large. To obtain a valid matrix in a

systematic way, one of the possible solutions is to construct a Vandermonde matrix.

Definition (Vandermonde matrix). An n⇥ t Vandermonde matrix has a form

An,t =

0

BBBBBBB@

↵1
0 ↵1

1 ↵1
2 · · · ↵1

t�1

↵2
0 ↵2

1 ↵2
2 · · · ↵2

t�1

...
...

...
. . .

...

↵n
0 ↵n

1 ↵n
2 · · · ↵n

t�1

1

CCCCCCCA

.

For a t⇥ t square Vandermonde matrix, the determinant is given by

det(At,t) =
Y

1i<jt

(↵j � ↵i).

Example. Let us compute det(A), where

A =

0

BBBB@

1 ↵1 ↵1
2

1 ↵2 ↵2
2

1 ↵3 ↵3
2

1

CCCCA
.

The determinant of A is given by
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det

0

BBBB@

1 ↵1 ↵1
2

1 ↵2 ↵2
2

1 ↵3 ↵3
2

1

CCCCA

= det

0

BBBB@

1 ↵1 ↵1
2

0 ↵2 � ↵1 ↵2
2 � ↵1

2

0 ↵3 � ↵1 ↵3
2 � ↵1

2

1

CCCCA

= det

0

B@
↵2 � ↵1 ↵2

2 � ↵1
2

↵3 � ↵1 ↵3
2 � ↵1

2

1

CA

= (↵2 � ↵1)(↵3 � ↵1) det

0

B@
1 ↵2 � ↵1

1 ↵3 � ↵1

1

CA

= (↵2 � ↵1)(↵3 � ↵1) det

0

B@
1 ↵2 � ↵1

0 ↵3 � ↵2

1

CA

= (↵2 � ↵1)(↵3 � ↵1)(↵3 � ↵2)

Corollary (Invertible Vandermonde matrix). A square Vandermonde matrix is

invertible if and only if all ↵i are distinct. When the condition su�ces, the matrix

has a nonzero determinant.

Given the above preliminaries, we can start with the detailed construction of

sharing ciphertexts. Consider a Vandermonde matrix written as

Xn,t =

0

BBBBBBB@

x1
0 x1

1 x1
2 · · · x1

t�1

x2
0 x2

1 x2
2 · · · x2

t�1

...
...

...
. . .

...

xn
0 xn

1 xn
2 · · · xn

t�1

1

CCCCCCCA

, (5.25)
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where {xi}ni=1 are all distinct. The shares are created as

E(y1) = E(s1)x1
0E(s2)x1

1 · · · E(st)x1
t�1

,

E(y2) = E(s1)x2
0E(s2)x2

1 · · · E(st)x2
t�1

,

...

E(yn) = E(s1)xn
0E(s2)xn

1 · · · E(st)xn
t�1

.

(5.26)

Due to privacy homomorphisms, the above results are equivalent to

E(y1) = E(s1x10 + s2x1
1 + · · ·+ stx1

t�1),

E(y2) = E(s1x20 + s2x2
1 + · · ·+ stx2

t�1),

...

E(yn) = E(s1xn0 + s2xn
1 + · · ·+ stxn

t�1).

(5.27)

After decryption, the results become

y1 = s1x1
0 + s2x1

1 + · · ·+ stx1
t�1,

y2 = s1x2
0 + s2x2

1 + · · ·+ stx2
t�1,

...

yn = s1xn
0 + s2xn

1 + · · ·+ stxn
t�1,

(5.28)

or alternatively, as expressed in Eq. (5.23). Each participant will receive a share

(xi, yi), where i 2 {1, 2, . . . , n}. Suppose that a subset of participants has gathered

a collection of shares, say, (xj , yj), where j 2 {1, 2, . . . , t}. Hence, the participants

form a matrix

Xt,t =

0

BBBBBBB@

x1
0 x1

1 x1
2 · · · x1

t�1

x2
0 x2

1 x2
2 · · · x2

t�1

...
...

...
. . .

...

xt
0 xt

1 xt
2 · · · xt

t�1

1

CCCCCCCA

, (5.29)

and reconstruct the secrets with Eq. (5.24). Note that Xt,t is a square Vandermonde

matrix, thus invertible. The reader may have observed that when Xn,t is a Vander-
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monde matrix, Eq. (5.23) and Eq. (5.24) are the encoding and decoding functions

of Shamir’s scheme per se. Let f(x) denote Shamir’s encoding function, while g(x)

denotes ours. The connection between two functions can be expressed as

g(x) =
tY

i=1

E(si)x
i�1

= E(
tX

i=1

six
i�1) = E(f(x)). (5.30)

Except for the processing domain (either the plaintext or ciphertext domain), a

noticeable di↵erence between two schemes is the decoding process for which Shamir

uses the Lagrange interpolation and we utilise a matrix multiplication. We re-

mark that there are many studies on fast algorithms for matrix inversion [251] and

multiplication [252–254].

5.3 Summary

In this chapter, we address a novel research problem of secret sharing in the encrypted

domain for IoT-based healthcare applications. We study the problem of sharing

encrypted data, acquired from di↵erent sensor nodes, among a set of cloud servers.

In conclusion, the proposed schemes are theoretically secure in the following senses.

First, since the secret data is concealed by a secure encryption algorithm immediately

after its creation, the dealer as well as other sources cannot access the secret data.

Second, the key server only has partial shares and thus is also unable to retrieve the

secret data. Third, conforming with the access policy, a subset of fewer than a certain

number of participants does not su�ce to decode the secrets either. In addition

to this, the data is not required to be stored in a common database so that the

scheme is not vulnerable to cyber threats against the database. Furthermore, since

data retrieval does not involve computationally expensive decryption operations, the

scheme is advantageous in time-sensitive circumstances.

On the other hand, however, the proposed methods may have some limitations

since they are based on one of the most basic and fundamental secret sharing

scheme, namely Shamir’s scheme. That is to say, although the proposed schemes are

theoretically secure, they might not be su�cient strong solutions when putting into

126



a more complex environment (e.g. dishonest parties involved) and considering an

extended access structures. We would like to emphasise that the proposed methods

are intended to serve as prototypes of privacy-preserving secret sharing. In the near

future we intend to extend this work into a more general access structure based on

the assumption that there are dishonest parties involved. Another line of further

investigation is the application of this work in visual cryptography.
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Chapter 6

Conclusion

The objectives of this thesis are to explore novel privacy-preserving information

hiding techniques and their applications. Although conventional information hid-

ing techniques have been shown e↵ective and widely used for multimedia content

protection, there are privacy and security concerns when applying these techniques

in cloud computing environments. In spite of the advantages and benefits of cloud

computing, the society has undergone a number of catastrophic incidents regarding

data breaches and privacy invasions. In order to address privacy threats against

conventional information hiding, we develop various privacy-preserving information

hiding techniques that deals with encrypted multimedia.

In this thesis, a variety of privacy-preserving information hiding techniques

as well as their real-world applications in the contexts of cyber security and cloud

computing have been presented. The experimental results have been used to verify

their e↵ectiveness and to show the improvements over the state-of-the-art with

regards to various performance factors. A novel research of privacy-preserving secret

sharing was also introduced in order to realise a secure access control for IoT-based

healthcare systems.

6.1 Thesis Summary

The objectives of this thesis were to explore information hiding and secret sharing

techniques for various privacy-aware applications. We demonstrated the applicability
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of proposed approaches to all sorts of widely-used symmetric-key and asymmetric-key

cryptosystems, including stream ciphers, RSA cryptosystem, Paillier cryptosystem,

and other cryptosystems sharing the similar homomorphic attributes.

Background

In Chapter 2, a brief introduction of related disciplines and a survey of representative

prior art were provided. The problem of concealing information under carrier

media has a long and successful history. Information hiding can be broadly divided

into two branches of research according to di↵erent purposes and characteristics.

Steganography aims to conceal the very fact that a secret communication takes

place. By contrast, watermarking serves as a protection mechanism against a variety

of illegitimate attacks concerning the carrier media, including but not limited to

copyright infringement, data forgery, illegal distribution, and malicious tampering.

In spite the fact that imperceptible distortions inflicted by the act of in-

formation hiding could be admissible and tolerable in common usage, there are

situations in which such alterations would be strictly restricted, for example, in

military reconnaissance or medical diagnosis. It becomes a more critical concern

by taking account of the artificial intelligence aided automated systems, such as

autonomous vehicle systems and autonomous diagnostic systems, which could be

unfavourably a↵ected by subtle perturbations if not being properly trained.

Modern cryptography serves as the basis of privacy-preserving signal pro-

cessing systems. In general, symmetric-key algorithms are of higher computational

e�ciency, while asymmetric-key algorithms are of higher level of security due to

the revocation of key exchange. The prior art of privacy-preserving information

hiding can be categorised by the class of cryptosystems on which it is based. The

schemes can also be characterised by whether some compulsory preprocessing steps

takes place prior to encryption. A scheme is referred to as reserving room before

encryption (RRBE) if preprocessing is obligatory and vacating room after encryption

(VRAE) if otherwise. Although it is arguable that there are both pros and cons

of each paradigm, we drew attention to the paradigm that requires no specifically

arranged preprocessing by identifying the flexibility and generality as a high priority.
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Information Hiding Based on Symmetric Cryptography

In Chapter 3, two privacy-preserving reversible information hiding schemes based

upon stream ciphers were presented. The proposed schemes can be used to prevent

data exfiltration in such a way that a permission code is embedded into an encrypted

image and can be detected by a network administrator when transmissions occur.

The permission code can be detected and read in the encrypted domain, which

preserves the content privacy throughout storage, retrieval, and transfer.

The first scheme exploits the arithmetic of quadratic residues to encode

messages into an encrypted image and a projection-based predictive model to recover

the original image copy. A quadratic residue has four square roots and this property

can be utilised to encode payloads in a dynamic fashion. If we regard an element of

carrier image as a square root, we can represent the intended message by altering

the element to one of the square roots which share the same quadratic residue.

Recovering the original copy of image is equivalent to distinguishing the original

element from the given set of square roots. This aim can be fulfilled by a specifically

devised predictive model that produces an estimation of the original element. We

devised an e�cient weighted predictive model that computes the weight parameters

based upon Hilbert projection theorem.

The second scheme utilises lexicographic permutations for message embedding

and a gradient-based estimation mechanism for assisting the carrier signal recovery.

We started with a scheme that embeds payloads by changing the ordering of a

sequence of carrier elements to a particular permutation. It was observed that in

some extreme cases where elements are similar to one another, despite permuting

the elements, the perturbed sequence may still be similar to the original sequence.

This would cause ambiguity when attempting to distinguish the original sequence

from the wrong candidates. Hence, we introduced an invertible transform to further

randomise the perturbed elements in order to minimise the ambiguity during the

recovery process. In addition to this, we devised a content-adaptive predictor which

exploits edge gradient to estimate pixel values, and used this predictor to assist the

recovery of original carrier image.

Experimental results showed that the proposed schemes outperformed the
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state-of-the-art in terms of capacity, fidelity and reversibility in most cases observed.

Information Hiding Based on Asymmetric Cryptography

In Chapter 4, two privacy-preserving reversible information hiding schemes based

respectively upon the RSA and Paillier cryptosystems were proposed. The proposed

schemes permit a party to outsource the task of watermarking to a cloud service pro-

vider without compromising information privacy. The framework is nearly identical

to the conventional framework of watermarking with the only di↵erence that the

watermark embedding process is conducted in the encrypted domain. The early devel-

opment of cloud-based schemes were primarily based upon traditional symmetric-key

ciphers and thus the security might be endangered during key exchange.

Although schemes compatible with asymmetric-key cryptosystems have under-

gone considerable development in recent, there were still some practical weaknesses

to be tackled. In particular, the prior art either handles the encryption scheme

in an ine�cient manner that expands the size of data tremendously, or requires

specially designed preprocessing for carrier signals and thus sacrifices the universality

and applicability to act on unprocessed carrier signals. To address these issues, we

proposed a novel research paradigm and presented schemes compatible with di↵erent

partially homomorphic cryptosystems. By taking the practicality and availability

into consideration, it would be preferable to design a scheme based upon partially

homomorphic cryptosystems, instead of fully homomorphic cryptosystems. The

proposed schemes are developed for multiplicative homomorphism such as the RSA

cryptosystem and additive homomorphism such as the Paillier cryptosystem. The

watermark embedding function is viewed as noise adding in the encrypted domain,

whereas the joint watermark extraction and carrier recovery function is perceived as

a special denoising process that distinguishes the original host symbol from a set of

possible candidates. For the RSA-like cryptosystems, the proposed scheme can adjust

the embedding capacity readily and flexibly by managing the number of possible

candidates. However, watermark extraction and image recovery are not optimal

since the scheme produces random distance between each candidate instead of the

farthest distance. In contrast to this, for the Paillier-like cryptosystems, the scheme
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produces the farthest distance between two candidates and therefore is optimal with

respect to the reversibility. Yet, the number of candidate is limited to two and thus

the fixed capacity.

We devised an online predictive model and an o✏ine predictive model to

cope with the denoising problem. The online predictor is based upon total variation

denoising, which is operated on a terminal machine iteratively until the carrier

image is restored to a steady state. The o✏ine predictor is based upon Bayesian

inference, which utilises a pre-constructed probability table to guide the restoration

of contaminated parts of the image. A three-way trade-o↵ between the capacity,

fidelity and reversibility was analysed and the experimental results showed that the

proposed schemes achieved the state-the-art performance.

Privacy-Preserving Secret Sharing

In Chapter 5, three privacy-preserving secret sharing schemes were developed with

di↵erent levels of generality. The schemes permit secrets generated from di↵erent

source to be shared amongst a group of terminal users. The secrets is encrypted

before being transmitted to a central hub for the distribution process that follows.

The retrieval of secrets must conform to the pre-defined access policy. Hence, the

problem can be viewed as secret sharing in the encrypted domain. This technique

can be applied to privacy protection in Internet of things enabled healthcare systems.

Consider a context that an individual’s health records are collected from di↵erent

wearable equipments and sensor nodes. In order to safeguard the privacy of patients

and to impose access control, these records are encrypted and distributed to a group

of medical practitioners and clinical analysts. The data is protected in such a way

that it can only be accessed if a su�cient number of authorised individuals agree to

retrieve it.

We began with näıve solutions which, despite the feasibility, encountered

the issues of key distribution and time-consuming data retrieval process. The data

retrieval process should be computationally e�cient when taking account of surgical

emergency. In response to these problems, we proposed a (2, 2)-threshold scheme

and further derived an (n, n)-threshold scheme. Finally, we developed a generalised
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(t, n)-threshold scheme by using the invertible Vandermonde matrix. The proposed

(t, n)-threshold scheme provides a general access control that enables a group of t

out of n authorised share holders to reconstruct the secrets. We showed that the

proposed scheme can be viewed as an extension of Shamir’s secret sharing scheme

for encrypted data.

6.2 Future Work

Although this thesis has presented technical principles and practical applications of

privacy-preserving information hiding, rigorous security analysis is also of significant

importance and thus should be taken into further consideration. Privacy-preserving in-

formation hiding is a multidisciplinary research encompassing cryptography, stegano-

graphy, watermarking, and other areas of knowledge to which the systems are applied.

In spite of the fact that the proposed schemes are based upon theoretically secure

cryptographic algorithms, it is possible that some novel types of security threats

exist depending on di↵erent applied environments. Malicious attempts to remove or

replace the embedded messages as well as other means to corrupt and compromise the

systems entail more attention. In the meantime, although potential applications in

the context of cyber security, cloud computing, and Internet of things were discussed,

some novel applications would also be favourable. In view of the growing research

trends in autonomous vehicle technology, it might be possible to apply privacy-

preserving information hiding techniques to vehicle telematics. For instance, these

techniques could be integrated into navigation systems to protect and authenticate

vehicular communications. Aside from this, fake news and its dissemination on social

media has drawn increasing attention over time. Fingerprinting is a special class of

digital watermarking that is widely used for tracing the unauthorised distribution

of digital objects. It may also be applied to the study of fake news spread patterns

through embedding fingerprint codes into social media posts.

Previous studies of privacy-preserving reversible information hiding have

led to a wide variety of methods. This thesis has categorised the prior art by

the cryptosystems on which it is based and further divided it into the class of
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reserving room before encryption (RRBE) and the class of vacating room after

encryption (VRAE). However, it would not be surprising if a scheme is composed

of characteristics beyond these definitions. Therefore, a more constructive and

systematic review of the state-of-the-art would be especially beneficial. In addition

to this, a more general model integrating di↵erent types of schemes deserves further

investigation. Improvements over the latest predictive models are expected through

the use of advanced neural networks and machine learning techniques. Regarding the

research of privacy-preserving secret sharing, although the proposed scheme permits

a general access threshold, more complex access structures can be further studied. It

is equally significant to develop theoretical analysis of security and take into account

application-oriented attacks.

In conclusion, privacy-preserving information hiding is a rather new area of

knowledge that requires e↵orts from various research communities. It is hoped that

novel and original ideas presented in this thesis can be of the building blocks for

more future research devoted to this research area.

6.3 Concluding Remarks

In summary, the main contributions of this thesis are:

• two privacy-preserving reversible information hiding schemes based upon sym-

metric cryptography using respectively arithmetic of quadratic residues and

lexicographic permutations.

• two privacy-preserving reversible information hiding schemes based upon asym-

metric cryptography using respectively multiplicative and additive privacy

homomorphisms.

• four predictive models for assisting the recovery of original signals using re-

spectively projection theorem, image gradient, total variation denoising, and

Bayesian inference.

• three privacy-preserving secret sharing algorithms in ascending level of general-

ity.
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• a variety of applications in the contexts of cloud computing, cyber security,

Internet of things, etc.
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