
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/144567 

 

 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/144567
mailto:wrap@warwick.ac.uk


People Re-identification using
Deep Appearance, Feature and

Attribute Learning

by

Gregory Watson

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy in Urban Science

Department of Computer Science

January 2020



Contents

List of Tables iv

List of Figures vi

Acknowledgments xiv

Declarations xv

Abstract xvi

Acronyms xvii

Chapter 1 Introduction 1

1.1 Methods and Contributions . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Partial Least Squares Appearance Modelling . . . . . . . . . 4

1.1.2 Deep Foreground Appearance Modelling . . . . . . . . . . . . 4

1.1.3 Combining Deep Features and Attribute Detection for Re-ID 5

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Literature Review 6

2.1 Spatial & Foreground Modelling for Re-ID . . . . . . . . . . . . . . . 6

2.2 Hand-Crafted Features . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 A Background on Convolutional Neural Networks . . . . . . . 10

2.3.2 Layers used commonly in Convolutional Neural Networks . . 14

2.3.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.5 Training Strategies . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.8 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



2.4 Attribute Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Other Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Distance Metric Learning . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Generative Adversarial Networks . . . . . . . . . . . . . . . . 37

2.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 VIPeR (2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.2 QMUL GRID (2009) . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.3 CUHK (2012-2014) . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.4 PRID2011 (2011) . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.5 3DPeS (2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.6 i-LIDS (2009) and iLIDS-VID (2014) . . . . . . . . . . . . . . 44

2.7.7 Market-1501 (2015) . . . . . . . . . . . . . . . . . . . . . . . 45

2.7.8 DukeMTMC-reID (2017) and DukeMTMC4reID (2017) . . . 45

2.7.9 PETA (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.10 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 3 Partial Least Squares Appearance Modelling 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Partial Least Squares Foreground Appearance Modelling . . . . . . . 50

3.3 Partial Least Squares Orientation Modelling . . . . . . . . . . . . . . 56

3.4 Feature Extraction and Weighting . . . . . . . . . . . . . . . . . . . 59

3.4.1 LOMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Salient Colour Names Based Colour Descriptor (SCNCD) . . 64

3.4.3 Weighted LOMO . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Distance Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.1 Evaluation on the VIPeR data set . . . . . . . . . . . . . . . 70

3.6.2 Evaluation on the QMUL GRID data set . . . . . . . . . . . 77

3.6.3 Evaluation on the CUHK03 data set . . . . . . . . . . . . . . 83

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 4 Deep Foreground Appearance Modelling 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Deep Neural-Network Appearance Modelling . . . . . . . . . . . . . 88

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Evaluation on the VIPeR data set . . . . . . . . . . . . . . . 91

4.3.2 Evaluation on the QMUL GRID data set . . . . . . . . . . . 101

ii



4.3.3 Evaluation on the CUHK03 data set . . . . . . . . . . . . . . 110

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 5 Combining Deep Features and Attribute Detection for

Re-ID 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Deep Attribute Prediction . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Deep Attribute Prediction Network . . . . . . . . . . . . . . . 117

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 Training the Skeleton Prediction Model . . . . . . . . . . . . 120

5.3.2 Training the Attribute Prediction Model . . . . . . . . . . . . 120

5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.4 Experimentation with di↵erent numbers of parts-based images 126

5.3.5 Class Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Chapter 6 Conclusions 135

6.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Appendix A Data Annotation 142

iii



List of Tables

3.1 The dimensionality of each of the feature type used in our experi-

mentation. Due to the higher resolution available for most images

within the CUHK03 [111] data set, we resize to 160 ⇥ 60 pixels for

LOMO and Weighted LOMO feature extraction, rather than 128⇥ 48

pixels, resulting in a higher dimensional feature descriptor. . . . . . 70

3.2 The VIPeR [59] data set was split into two sets, with 316 identities

allocated for training and 316 for testing. Every probe image in the

test set is compared to every gallery image in the test set. PLSAM(v2)

consists of the Weighted LOMO and limb-by-limb level SCNCD feature

descriptors with XQDA, whereas PLSAM(v1) consists just of the

Weighted LOMO feature descriptors with XQDA. . . . . . . . . . . . 76

3.3 The QMUL GRID [117, 124, 125] data set was split into two sets,

with 125 identities allocated for training and 900 for testing. The 900

testing identities consisted of 125 image pairs and 775 single images.

Every probe image in the test set is compared to every gallery image

in the test set. PLSAM(v2) consists of the Weighted LOMO and

limb-by-limb level SCNCD feature descriptors with XQDA, whereas

PLSAM(v1) consists just of the Weighted LOMO feature descriptors

with XQDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 The CUHK03 [111] data set was split into two sets, with 1160 identities

allocated for training and 100 for testing. Every probe image in the

test set is compared to every gallery image in the test set. PLSAM(v2)

consists of the Weighted LOMO and limb-by-limb level SCNCD feature

descriptors with XQDA, whereas PLSAM(v1) consists just of the

Weighted LOMO feature descriptors with XQDA. . . . . . . . . . . . 84

iv



4.1 Results on the VIPeR [59] data set. The best results are highlighted in

bold. (v1) refers to the Weighted LOMO features and XQDA, whereas

(v2) refers to the Weighted LOMO features with the limb-by-limb

level SCNCD features and XQDA. . . . . . . . . . . . . . . . . . . . 100

4.2 Results on the QMUL GRID [117, 124, 125] data set. The best results

are highlighted in bold. (v1) refers to the Weighted LOMO features

and XQDA, whereas (v2) refers to the Weighted LOMO features with

the limb-by-limb level SCNCD features and XQDA. . . . . . . . . . 109

4.3 Results on the CUHK03 [111] data set. The best results are shown in

bold. (v1) refers to the Weighted LOMO features and XQDA, whereas

(v2) refers to the Weighted LOMO features with the limb-by-limb

level SCNCD features and XQDA. . . . . . . . . . . . . . . . . . . . 111

5.1 Attribute detection accuracy on the VIPeR [59] data set. The ten

best and worst attributes detection accuracies are shown. . . . . . . 120

5.2 Results on the VIPeR [59] data set. The best results are highlighted

in bold. Results marked with * do not incorporate attribute features. 123

5.3 Results on the PRID2011 [70] data set. The best results are highlighted

in bold. Results marked with * do not incorporate attribute features. 124

5.4 Results on the i-LIDS [57, 225, 226] data set. The best results are high-

lighted in bold. Results marked with * do not incorporate attribute

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Results on the Market-1501 [219] data set. The best results are high-

lighted in bold. Results marked with * do not incorporate attribute

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6 Results on the VIPeR [59] data set utilising di↵erent combinations of

the original and parts-based images. Models are trained with BCE

loss. The best results are highlighted in bold. . . . . . . . . . . . . . 127

5.7 Results on the VIPeR [59] data set utilising WBCE loss and BCE

loss. The best results are highlighted in bold. . . . . . . . . . . . . . 130

5.8 Results on the PRID2011 [70] data set utilising WBCE loss and BCE

loss. The best results are highlighted in bold. . . . . . . . . . . . . . 130

5.9 Results on the i-LIDS [57, 225, 226] data set utilising WBCE loss and

BCE loss. The best results are highlighted in bold. . . . . . . . . . . 131

5.10 Results on the Market-1501 [219] data set utilising WBCE loss and

BCE loss. The best results are highlighted in bold. . . . . . . . . . . 131

5.11 The cosine distance between the attribute distribution of the training

data set and each evaluation data set. . . . . . . . . . . . . . . . . . 132

v



List of Figures

1.1 An example of the three stages of Re-ID. In stage 1, the person is

localised from within the image frame. In stage 2, feature descriptors

are extracted from each image. In stage 3, each input probe image

is matched with the gallery image the smallest distance away in the

feature space. Images with the same colour outline are of the same

identity. Examples are taken from the PRW [223] data set. . . . . . 2

1.2 Example images from Re-ID data sets [6–8, 57, 59, 70, 117, 125, 225,

226]. Each column represents a single identity. All images have been

scaled to a standard resolution. . . . . . . . . . . . . . . . . . . . . . 2

2.1 An example of the convolution operation applied on a 6 ⇥ 6 matrix

with a 3 ⇥ 3 filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 An example of the 3 ⇥ 3 filter in Figure 2.1 applied to an image. It can

be observed that the filter highlights vertical edges within the image.

In CNNs, the weights of the filter are learned by backpropagation. . 16

2.3 An example of max-pooling used to downsample a feature map. Within

each pooling region, represented by a distinct colour, the maximum

value is taken to form the corresponding value in the output feature

map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 An example of average-pooling used to downsample a feature map.

Within each pooling region, represented by a distinct colour, the

average value of all values is taken to form the corresponding value in

the output feature map. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 A simple network containing only fully-connected layers. The network

takes in input Xn of length 5, and predicts Ŷn of length 1. . . . . . . 18
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Abstract

Person Re-Identification (Re-ID) is the act of matching one or more query
images of an individual with images of the same individual in a gallery set. We
propose various methods to improve Re-ID performance via foreground modelling,
skeleton prediction and attribute detection.

Foreground modelling is an important preprocessing step in Re-ID, allowing
more representative features to be extracted. We propose two foreground modelling
methods which learn a mapping between a set of training images and skeleton
keypoints. The first utilises Partial Least Squares (PLS) regression to learn a
mapping between Histogram of Oriented Gradients (HOG) features extracted from
person images, and skeleton keypoints. The second instead learns the mapping
using a deep convolutional neural network (CNN). Using a CNN has been shown to
generalise better, particularly for unusual pedestrian poses.

We then utilise the predicted skeleton to generate a binary mask, separating
the foreground from the background. This is useful for weighting image features
extracted from foreground areas higher than those extracted from background areas.
We apply this weighting during the feature extraction stage to increase matching
rates.

The predicted skeleton can be used to divide a pedestrian image into multiple
parts, such as head and torso. We propose using the divided images as input to an
attribute prediction network. We then use this network to generate robust feature
descriptors, and demonstrate competitive Re-ID matching rates.

We evaluate on a number of di↵erent Re-ID data sets, each possessing signi-
ficant variations in visual characteristics. We validate our proposals by measuring
the rank-n score, which is equivalent to the percentage of identities correctly pre-
dicted within n attempts. We evaluate our skeleton prediction network using root
mean square error (RMSE), and our attribute prediction network using accuracy.
Experiments demonstrate that our proposed methods can supplement traditional
Re-ID approaches to increase rank-n matching rates.
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Chapter 1

Introduction

Person Re-Identification (Re-ID) is the process of automatically identifying and

matching di↵erent images of people taken from separate, non-overlapping cameras at

di↵erent times. It has a multitude of important applications in security, surveillance

and biometrics, as well as in tracking and people-monitoring.

Re-ID can be broken down into three stages. The first step is to localise the

person within the image of the environment, typically by using either a pedestrian

detector [111, 219, 220, 224] or via hand-labelling [59, 111, 117, 125, 219]. The

second part concerns extracting a robust feature descriptor of the person. A lack of

high-resolution imagery in Re-ID data sets have rendered more traditional biometric

approaches such as facial recognition unsuitable, leaving low level features either

pre-specified by the user, such as colour [43, 58, 115, 117, 130, 148, 208, 216] or

texture [43, 58, 115, 117], or those learnt via a deep convolutional neural network

(CNN) [2, 27, 28, 51, 90, 108, 111, 112, 200, 203, 206, 229, 230]. The third and final

part relates to matching [115, 156, 185, 206, 212], where the distance between the

extracted feature descriptors is computed. Whilst some techniques calculate the

Euclidean distance between these feature descriptors, this distance metric is often

learnt through supervised learning. Given two feature descriptors extracted from

di↵erent images of the same person, it is expected that the distance between the

two is smaller than the distance between two features descriptors extracted from

di↵erent people. An illustrative example of the three stages of Re-ID can be seen in

Figure 1.1.

However, Re-ID is often challenging due to the variations in pose, illumination

and image resolution caused by the use of distinct, non-overlapping cameras [24,

53, 188]. The extracted feature descriptors are often not invariant to the significant

inter-class and intra-class variations often present in Re-ID images. Figure 1.2 shows

examples of images from various common Re-ID data sets, and demonstrates the
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Figure 1.1: An example of the three stages of Re-ID. In stage 1, the person is localised
from within the image frame. In stage 2, feature descriptors are extracted from each
image. In stage 3, each input probe image is matched with the gallery image the
smallest distance away in the feature space. Images with the same colour outline are
of the same identity. Examples are taken from the PRW [223] data set.

types of variation found in these images.

One of the ways in which the negative e↵ects of variations in visual charac-

teristics can be minimised is to pose normalise the images. A significant variation

between images is the pose of the person, with some people having been photographed

from the front, whilst others have been photographed from the side. Furthermore,

across images, limbs such as arms and legs can be located in a wide variety of

positions relative to the torso. The variance in the position of a persons body is

directly linked to the variation in the position of the background, largely redundant

information which is not representative of the person.

One of the ways in which pose and background variation can be minimised

is to use a foreground appearance model, built using a model-based approach such

as Partial Least Squares (PLS) [127, 155] regression. Utilising this technique, a

regression can be learnt between image appearance features, as well as landmarks

representing foreground regions of a Re-ID image.

Inspired by the processes of the human brain, an alternative approach is

to use methods to learn the optimal mapping between image appearance and

foreground landmarks. A specific branch of machine learning, known as deep

learning [55, 95, 160], achieves this by using an artificial neural network, which

consist of a series of hierarchical layers, including input, output, and “hidden” layers
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Figure 1.2: Example images from Re-ID data sets [6–8, 57, 59, 70, 117, 125, 225, 226].
Each column represents a single identity. All images have been scaled to a standard
resolution.

performing operations such as convolution and pooling. Each layer is connected to the

next with a series of weights. During training, the network predicts the corresponding

output for each input image, and compares its prediction to the ground-truth labels.

The network then adjusts its layer weights based on its prediction performance

relative to the ground-truth labelling, with the overall goal being to reduce the loss.

However, significantly more training data is required to train a deep neural

network compared to more traditional, less complex methods such as PLS. Yet,

Re-ID data sets are small in size, with very few images per identity. Furthermore,

Re-ID data sets with foreground labelling are uncommon, with most data sets simply

consisting of an image and identity labelling. Therefore, training a deep neural

network only on Re-ID data sets is often not the best way to achieve a high-performing

network. It is commonplace for networks to instead by trained on a problem from a

di↵erent domain, such as object recognition, with transfer learning [147] then used to

apply the learnt knowledge to the problem of Re-ID. For example, the ResNet-50 [66]

network trained on the ImageNet [38] data set is often used as a basis for networks

involved in the field of Re-ID.

In this thesis, we focus on the task of minimising the e↵ects of pose and

background variations through the use of person appearance modelling, which is a

form of foreground modelling. By learning the foreground, we are able to predict

the skeleton of an individual when presented with their image. This information

can then be used to address specifically the issue of pose variation by providing

context to our feature extraction process. We begin with skeleton prediction through
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utilising a PLS-based [127, 155] model. We then employ end-to-end learning to train

a CNN to perform the skeleton prediction task. Finally, we combine our skeleton

prediction models with attribute information to improve feature engineering, creating

features which are more invariant to variations in visual characteristics. We use

these techniques to supplement and improve existing Re-ID techniques to increase

matching rates, and validate our work on standard Re-ID data sets.

1.1 Methods and Contributions

We make three contributes within this thesis. Two contributions relate to improving

feature extraction by assimilating foreground information learnt via a skeleton

prediction model, whilst the third relates to improving Re-ID matching rates by

incorporating feature descriptors learnt through an attribute prediction method.

1.1.1 Partial Least Squares Appearance Modelling

We propose a novel skeleton prediction method using PLS regression, which learns

a mapping between image appearance information and skeleton keypoints. By

predicting skeleton information for a given image, we can exploit this information

during the feature extraction stage to prioritise feature descriptors extracted from

foreground regions. We alter Local Maximal Occurrence (LOMO) [115] features

to create Weighted LOMO, which weights LOMO feature descriptors extracted

from foreground areas higher than those extracted from background areas. We

concatenate with Salient Colour Names Based Colour Descriptor (SCNCD) [208]

feature descriptors extracted on a limb-by-limb level, and follow by utilising the

Cross-view Quadratic Discriminant Analysis (XQDA) [115] Distance Metric Learning

technique to calculate the distance between feature descriptors.

1.1.2 Deep Foreground Appearance Modelling

Following on from the previous work using PLS to learn a mapping between image

appearance information and skeleton keypoints, we propose the replacement of

the PLS method with a deep CNN. Whilst the PLS approach struggles to handle

person images taken from di↵erent angles, and thus requires multiple models to be

trained, the Deep CNN approach is able to predict the skeleton of person images

with di↵erent poses with a greater degree of accuracy, whilst only requiring a single

skeleton prediction model to be trained. Furthermore, we find that our deep CNN-

based method is able to better handle the individuals with more unusual poses, such

as those with arms raised. We validate the predicted skeletons in a Re-ID framework,

and show improvement in matching rates.
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1.1.3 Combining Deep Features and Attribute Detection for Re-ID

We present a CNN-based architecture which takes as input a person image, as

well as three parts-based images generated via our Deep Network Appearance

Model, and predicts a set of fifty attributes. We then use the penultimate layer in

the network as a feature descriptor for matching. Notably, none of the data sets

which we use to evaluate our method contribute training images to the attribute

network, demonstrating our method’s ability to generalise between di↵erent data

sets. Furthermore, given that some attributes will be more prevalent than others

within the training set, we propose a novel Weighted Binary Cross Entropy function

that weights the cost of a positive error relative to a negative error, based on the

ratio of positive to negative instances of each attribute. We evaluate the combined

approach on a set of standard data sets.

1.2 Thesis Outline

In Chapter 2, we perform a review of the literature related to Re-ID. We review

approaches which utilise spatial & foreground modelling, hand-crafted features, as

well as attribute learning. We also detail metrics used to evaluate Re-ID methods,

as well as the data sets on which they are evaluated. In Chapter 3, we describe our

method which utilises PLS regression to learn a mapping between image appearance

information and skeleton keypoints, allowing feature descriptors to be extracted

primarily from foreground regions prior to matching. In Chapter 4, we replace our

PLS-based skeleton prediction model with a deep CNN-based approach, and compare

both the PLS and CNN-based methods. In Chapter 5, we propose utilising skeleton

information as context to an attribute prediction network, which is then used as a

feature extraction network for matching. Finally, in Chapter 6, we summarise our

proposed methods and describe potential future research directions.
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Chapter 2

Literature Review

In this chapter, we discuss and review previous Re-ID techniques, paying particular

attention to spatial modelling, feature extraction, deep learning, attribute detection,

distance metric learning, and the use of generative adversarial networks.

2.1 Spatial & Foreground Modelling for Re-ID

High accuracy Re-ID results depend on the ability to produce robust feature

descriptors which possess low intra-class variation and high inter-class variation, and

so, the feature extraction stage is of vital importance. However, extracting feature

descriptors from images without attention given to significant background di↵erences

can lead to the extracted feature descriptors being a↵ected by extraneous and un-

representative background information. Much study [29, 43, 108, 135, 136, 172, 199,

215, 222] has therefore been carried out to investigate methods for separating the

foreground from the background, allowing feature descriptors to be extracted either

in full or primarily from foreground areas rather than background areas.

Stel Component Analysis [86] (SCA) has been utilised to separate the fore-

ground of person images from the background. SCA attempts to capture the structure

of an image by separating the image into a series of parts, or stels, that possess a

similar feature distribution, such as colour or texture. However, if a single part of

an image possesses a wide feature distribution, or if two parts of an image possess

a similar feature distribution, separation into distinct parts may fail. Farenzena

et al. [43] incorporate SCA and divide each person image into three distinct parts

according to the person’s limbs, calculating the vertical central axis for each part,

and weighting each pixel dependent on the distance to the vertical central axis via a

Gaussian kernel. This generally works well given that the pixels closer to a person’s

vertical central axis are much more likely to belong to their body, however this may

fail if a person has their legs spread widely apart.
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Spatial and foreground modelling can also help counter the problems of

pose variation. Extracting feature descriptors without paying due attention to pose

variations between images can lead to lack of spatial correspondence between the

extracted feature descriptors. In Local Maximal Occurrence (LOMO) [115], the

authors extract a histogram-based feature descriptor from 10 ⇥ 10 pixel patches,

with an overlap of 5 pixels in each dimension. For each row of feature descriptors

extracted, they take the maximum value in each histogram bin to form the final

feature descriptor for that row. Whilst not explicitly removing or deprioritising

the background information like alternative methods, the authors argue that their

method achieves some invariance to viewpoint and pose changes by maximising the

local occurrence of each histogram bin.

Other methods have attempted to predict the foreground of a person image

via limb or skeleton prediction. For example, Cheng et al. [29] use an o↵-the-

shelf Pictorial Structures (PS) [4] method to predict the location of six person

limbs (head, chest, left and right thigh, and left and right leg). The authors

then proposed an extension to PS which takes advantage of multiple images of an

individual to improve the limb-fitting, result in Custom Pictorial Structures (CPS).

Su et al. [172] use a human pose estimation algorithm to estimate the skeleton, and

then from this they estimate the position of human body parts. These body part

regions are then transformed to create a modified parts image with the body parts

placed in standardised location between images. In order to roughly maintain the

original aspect ratio of each body part, the modified parts images contain significant

unavoidable blank space around each part.

Skeleton information is also often used in collaboration with depth information.

Munaro et al. [135] use RGB-D images combined with skeleton information obtained

from a Microsoft Kinect camera. Using this skeleton information, the authors

transform the RGB-D images to a standard pose, building a standardised 3D

pointclouds for each person. The standardised 3D pointclouds are then compared as

part of the matching process. The authors also propose the use of multiple RGB-D

images of the same person to build a single standardised 3D pointcloud, countering

the potential e↵ects of illumination variation and occlusion. Wu et al. [199] extended

this idea but instead propose a method which uses RGB person images combined with

skeleton information to predict the depth of the person image, allowing a pointcloud

to be used for matching. The combination of RGB appearance features with learned

depth features is demonstrated to increase matching rates. Munaro et al. [136] use

two skeleton tracking algorithms, the Kinect Skeletal Tracker (KST) [166], and the

Nite Skeletal Tracker (NST) [139, 140], which detect 20 and 15 points on the persons

body respectively. The NST also takes advantage of multiple frames to improve the
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tracking performance. Texture, colour and three-dimensional space features typically

used in the field of robotics are then extracted from around the predicted skeleton

points, and concatenated to build the final feature descriptor, leading to increased

matching rates. Zheng et al. [222] predict a set of fourteen body joints, such as head

and neck, using a Convolutional Pose Machine (CPM) [193]. These fourteen body

joints are then used to localise ten body parts, which are projected to rectangles

using a�ne transformations. The authors then combine these projected rectangles

to form a PoseBox, which consists entirely of body parts with no blank space. Zhao

et al. [215] instead learn a set of part-maps across a training set of images, with each

part map relating to an individual body part across all images. Features are then

extracted from the areas represented by the part maps. This method allows for body

parts to be shaped in ways other than rectangles, and can detect the same body

part between images even when these body parts are in di↵erent physical locations.

Other methods crop groups of pedestrian limbs to their bounding boxes,

rather than to remove the background entirely. Li et al. [108] propose a Latent Part

Localization model, removing significant amounts of background when the image is

not well cropped to the person. A Spatial Transformer Network (STN) [83] is used

to learn an appropriate crop as part of the training stage, which is then used to crop

the person image into three parts, roughly corresponding to the head, torso and legs

respectively. Each of these parts-based images are then passed through separate

CNNs, learning optimal features for each part and concatenating to produce the

final feature descriptor.

2.2 Hand-Crafted Features

Re-ID results are highly dependent on the extraction of robust feature descriptors

which possess low intra-class variation and high inter-class variation. Thus, various

di↵erent feature types have been proposed for the task of Re-ID. These proposed

feature types must be invariant to the common issues faced in the problem of Re-ID,

including but not limited to pose and illumination variation.

Hand-crafted features are defined as feature descriptors where the type of

information extracted has been manually specified, and consists of an explicitly

measurable quality of an image, such as colour or texture. This is in contrast to deep

features (Section 2.3), where the most optimal type of information is learned by a

neural network. Given that the type of feature extracted is pre-defined, unlike deep

features, hand-crafted feature extraction does not require a training set for learning

an appropriate feature type.

The most commonly used hand-crafted feature type is colour [43, 58, 115,
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117, 130, 148, 208, 216]. Colour provides a simple and easily measurable means of

extracting feature descriptors, and is generally invariant to non-significant variations

in pose, illumination and background. Also, texture information [43, 58, 115, 117]

is also commonly extracted from Re-ID images, being particularly discriminative

for individuals who are wearing patterned clothing. For example, in [58], colour

histograms in the RGB, YCbCr and HSV colour spaces, as well as texture histograms

using Gabor [45] and Schmid [159] texture filters are utilised for building feature

descriptors. Furthermore, Farenzena et al. [43] propose the use of Weighted Colour

Histograms, where pixels closer to the vertical central axis of a person’s body

count more towards the final colour histogram, the expectation being that the final

histogram will be more representative of the person rather than the background

region. The authors additionally extract Maximally Stable Color Regions (MSCR)

features [46], which divides an image into a set of blob regions, with each blob region

containing pixels of a similar colour. Each blob region is then described by its area,

centroid, second moment matrix and average colour. The authors also propose their

own feature descriptor, named Recurrent High-Structured Patches (RHSP). This

feature type highlights image patches within the person image that reoccur. Patches

are selected based on the amount of structural information present within them, and

as such, a patch with a low amount of structural information, such as a patch which

contains only solid colour, is discarded. The authors achieve this by calculating

the sum of the entropy of each of the RGB channels for each patch, and prune

out patches with a value lower than a certain threshold. The Local Normalized

Cross-Correlation (LNCC) is then calculated for each patch, and patches with high

LNCC values are clustered together. For each cluster, the patch closest to the

cluster’s centroid is considered a recurrent patch. Matsukawa et al. [130] propose the

Gaussian of Gaussian (GOG) descriptor, which captures both mean and covariance

information of pixels within image patches. The authors achieve this by modelling

each set of patches as a series of multiple Gaussian distributions, where each Gaussian

distribution represents an individual patch. This overall set of Gaussians is then

used as a feature descriptor. To capture the information present within each patch,

the authors extract the patches location, textural gradient information, as well as

the RGB colour channels.

Interest points-based features have also been utilised in Re-ID. In [88], an Im-

plicit Shape Model (ISM) [107] is built which uses Scale-Invariant Feature Transform

(SIFT) [123] features for tracking. SIFT features are passed to a clustering algorithm,

which identifies re-occurring features within the images. The cluster centres then

act as prototypes for a codebook. SIFT features extracted from input images are

are matched with these prototypes. In [216], 32-bin colour histograms from the
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LAB colour space, as well as SIFT features, are extracted from a set of 10 ⇥ 10

pixel patches with an overlap of four pixels. In addition, the colour histograms are

extracted with three levels of downsampling with scaling factors of 0.5, 0.75 and 1.

Their final feature vector, named dColorSIFT, consists of the concatenated colour

histograms and SIFT features. Hamdoun et al. [63] instead extract Speeded-Up

Robust Features (SURF) [9], an interest point which uses an integral image to

increase the e�ciency of interest point computation compared to SIFT.

Liao et al. [115] counteract the issue of illumination variation by utilising the

Retinex transform [84, 85, 98], which typically results in much more vivid images with

clearer detail, particularly in areas of shadow. This can result in a more standardised

set of images even between multiple cameras with significant illumination variation.

The authors then extract both HSV colour histograms and Scale Invariant Local

Ternary Pattern (SILTP) [114] texture histograms. These features are calculated

for each 10 ⇥ 10 pixel patch, with an overlap of 5 pixels in each dimension. To

address the issue of pose variation, the authors analyse each row of patches, and take

the highest value in each histogram bin to form the final histogram descriptor for

that row. The histogram descriptors for each row are then concatenated to create a

feature descriptor for the entire image. Afterwards, the image is then downscaled by

a factor of two and four, and the process is repeated. The feature descriptors for

both the original and downscaled images are then concatenated to form the final

feature descriptor.

2.3 Deep Learning

More recent work has typically shifted from hand-crafted features to utilising deep

neural networks [2, 27, 28, 51, 108, 111, 112, 200, 203, 206, 229, 230]. Hand-crafted

features can sometimes be suboptimal for a given problem, especially when significant

intra-class variations are present. For example, colour can appear significantly

di↵erent on a day with bright sunlight compared with at night. Whilst hand-crafted

features consist of a manually specified, measurable characteristic of an image, the

parameters of deep networks are instead learnt to be optimal for a given problem.

2.3.1 A Background on Convolutional Neural Networks

McCulloch and Pitts [131] introduced the first model of an artificial neuron, pro-

posing that neural events and the relations between neurons can be represented

by propositional logic. Their work, whilst primitive compared to artificial neural

networks of today, is often considered to be the building blocks of modern neural

networks. However, given a set of input variables, the network proposed by McCul-
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loch and Pitts [131] considers each input to have equal importance. Consider the

task of predicting whether or not a store will sell a hundred ice creams on a given

day, with the input consisting of the weather, the day of the week and the proximity

to the sea. It may be the case that a store close to the sea may be visited by a large

number of holidaymakers, and hence may sell a large number of ice creams regardless

of weather or day of the week. However, a store further inland may sell significantly

more ice creams on warmer days than otherwise. Hence, each input variable should

be weighted, with the weights being dependent on the data. Rosenblatt [153, 154]

built upon the work of McCulloch and Pitts [131] by proposing the Perceptron.

The Perceptron introduces the concept of variable weights to the network, allowing

di↵erent input variables to be weighted according to their importance. In addition,

unlike the work introduced by McCulloch and Pitts [131], the Perceptron is able to

learn the most appropriate weights. However, both methods are only able to classify

linear data.

A convolutional neural network (CNN) [105] is a multi-layer feed-forward

neural network typically used for computer vision classification tasks, based on the

visual cortex of mammals. They have become widely used in recent years for learning

optimal deep features for Re-ID [27, 28, 108, 203, 206, 229]. The experiments of

Hubel and Wiesel [78, 79, 80], which inserted a microelectrode into the primary visual

cortex of an anesthetized cat, are widely considered to have laid the groundwork

for CNNs. By projecting various di↵erent sizes and shapes of light onto a screen,

the authors found that some neurons in the cats brain only responded to the light

at certain orientations presented within the neurons’ receptive field, whilst other

neurons responded only to alternate orientations. Furthermore, these types of cells

demonstrated limited spatial invariance, and could be divided into excitatory and

inhibitory regions. Hubel and Wiesel named these types of cells simple cells. They

also identified a further type of cells present complex cells, which contain a larger

receptive field and display a higher level of spatial invariance, and could not be

divided into excitatory and inhibitory regions.

Fukushima [49] expanded upon the work of Hubel and Wiesel by introducing

the Neocognitron, a multi-layer artificial neural network focused on the task of

handwritten character recognition, as well as similar pattern recognition tasks. Their

work introduced both convolutional and pooling layers for use in neural networks.

LeCun et al. [106] proposed the use of backpropagation as a gradient-based learning

technique for use with CNNs, also using their network for handwritten character

recognition, to great success.

Whilst CNNs were therefore noted for their high performance in computer

vision tasks in 1990s, they were not widely used because of the lack of computational
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power. In the early 2010s, computational power had increased significantly, and

the first modern convolutional neural network was released by Krizhevsky et al.

[95], named AlexNet. Recent artificial neural networks typically consist of a large

number of layers (Section 2.3.2), such as convolutional layers, pooling layers and

fully-connected layers. The large number of layers make these networks deep, and

hence this approach is referred to as deep learning [55].

Formally, a neural network utilising supervised learning takes an input X,

and target Y , and learns a function F , where F is a function mapping X to Y :

Ŷ = F (X). This is in contrast to unsupervised learning, which takes an input X,

but does not possess targets Y , and instead determines patterns within the input

data, constructing a series of classes based on this information [17, 103, 150].

The layers of the network implement their own functions Xl = Fl(Xl�1),

where Xl is the output of layer l for l 2 (0, 1, ..., L� 1) for a network with L layers.

Data sets are divided into training, validation, and testing sets. The data within

the training set are used to train, and hence optimise the values of the weights, of a

network. Whilst the data from the validation set is not used to optimise the values of

the weights, it is used to ensure the generalisation ability of the network and prevent

overfitting during the training stage, by evaluating the performance of the network

on a set of data di↵erent from that used to train the network. Given a neural network

and a set of ground-truth input-output pairs (Xn, Yn) for n 2 (0, 1, ...p� 1), where

p is the number of ground-truth input-output pairs in the training set, the goal of

the network is to learn a mapping between X and Y which minimises the value of a

loss function  , a function which evaluates the performance of the network during

training. Given a list of input variables X, corresponding ground-truth labels Y , we

can compute the error of the network, ✏, by:

✏ =  (Y, Ŷ ) (2.1)

where Ŷ represents the output as predicted by the network. The choice of

loss function,  , is highly dependent on the type of data being predicted by the

network. For example, if the network is tasked with predicting a continuous value,

such as the price of a house based on a number of di↵erent input factors, mean

squared error (MSE) could be used. Given a ground-truth vector Y and predicted

vector Ŷ , both of length N , MSE is defined as:

✏MSE(Y, Ŷ ) =
1

N

N�1X

i=0

(Yi � Ŷi)
2 (2.2)

MSE is useful for computing the error between two vectors, and is therefore

suited to pose and skeleton prediction [10, 97]. However, consider a network which
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predicts the class of an input from a set of possible classes. In this case, the final

layer of will consist of a fully-connected layer with a softmax activation function. As

shown in Figure 2.6 each unit in the layer represents a specific class/identity, with

the probabilities allocated to each class adding up to one. The softmax activation

function, �softmax, can be defined as:

�softmax(x)d =
exd

PC
c=1 e

xc
(2.3)

where d 2 (1, 2, ..., C), and C is the number of classes. As the task is

a classification problem, it has C categorical outputs, rather than outputs over a

continuous range. For this purpose, a loss function such as Categorical Cross-Entropy

(CCE) is more appropriate. Within Re-ID, this loss function is often used for ID

classification (Section 2.3.5), which involves predicting an identity from a typically

large number of identities [108, 112, 203, 206]. The CCE between two arrays Y and

Ŷ is defined as:

✏CCE(Y, Ŷ ) = � 1

N

1

C

NX

i=1

CX

j=1

Yijlog(Ŷij) (2.4)

where C is the number of classes, Y is an array of length N consisting of

one-shot ground-truth vectors with C possible classes, and Ŷ is an array of length N

consisting of softmax probability distributions output by the network representing

the probability that the input vector belongs to each of the C classes. Similarly, Yij

represents the ith vector within the array and the jth class within the vector. Ŷij

represents the ith vector within the array and the jth class within the probability

distribution vector.

Re-ID methods incorporating verification loss [2, 111, 200] (Section 2.3.5)

may instead utilise Binary Cross-Entropy (BCE), a variant of CCE which computes

the cross-entropy when only two classes are present. This verification task involves a

binary decision consisting of whether or not multiple input images represent the same

identity. Given a ground-truth vector Y and predicted vector Ŷ , both consisting of

N samples, the Binary Cross-Entropy (BCE) between the vectors is defined as:

✏BCE(Y, Ŷ ) = � 1

N

N�1X

i=0

Yilog(Ŷi) + (1� Yi)log(1� Ŷi). (2.5)

In general, given a loss function,  , which outputs an error ✏, the task of a

neural network is to minimise the error ✏ over the validation set. Before training,

network weights are initialised randomly. Training is usually carried out on mini-

batches of size k, where the error rate of a given batch, ✏b is calculated by averaging
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the sum of the error from each individual sample:

✏b =
1

k

k�1X

i=0

✏i (2.6)

The information gained by evaluating the performance of the network with

the loss function  is used to increase the performance of the network by computing

the gradient of the error with respect to the weights of the network. This gradient

provides information on the influence of each weight on the error ✏. This process

is known as backpropagation. Given a weight wij connecting neurons i and j, the

gradient of the error ✏b with respect to the weight wij can be calculated by:

@✏b
@wij

=
@✏b
@zj

@zj
@xj

@xj
@wij

(2.7)

where zj is the output of neuron j, and xj is the weighted input of neuron

j [157]. Optimisers, such as RMSProp [177], are then used to perform learning and

updating of weights, where a given weight wij connecting neurons i and j at time t

is updated by:

µ(t) = �µ(t� 1) + (1� �)


@✏b

@wij(t)

�2

wij(t) = wij(t)�
⌘p
µ(t)

@✏b
@wij(t)

(2.8)

where µt computes a moving average of the squared gradients at time t, � is

a parameter for weighting the contribution of the moving average at the previous

time step versus the gradient of the error with respect to the weight at time t, and ⌘

is the initial learning rate [96]. As such, the weights are updated in a way which

minimises the error ✏. Hence, the network should output more accurate predictions

aligned better with ground-truth values.

Following completion of the training stage, the model is presented with

unseen data which forms the testing set. This gives an estimate of the models

ability to generalise, as the testing set is not used to train the model. Evaluation

is typically carried out by utilising an evaluation function such as precision and

recall (Section 2.3.7), which measures the performance of a model compared to

ground-truth data.
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2.3.2 Layers used commonly in Convolutional Neural Networks

Convolutional Layers

Artificial neural networks consist of a series of hierarchical layers connected by weights

and biases. Images are passed layer-by-layer to generate feature maps. A common

layer present within CNNs is a convolutional layer, where a kernel is convolved

with the input to produce a feature map. Given a two-dimensional image I and a

two-dimensional, the output of the 2D convolution operation, S, can be defined as:

S(i, j) = (I ⇤K)(i, j) =
X

m

X

n

I(m,n)K(i�m, j � n), (2.9)

where m and n represent summation over the image dimensions [55]. A simple

example can be seen in Figure 2.1. As convolution is commutative, it can also be

written as:

S(i, j) = (K ⇤ I)(i, j) =
X

m

X

n

I(i�m, j � n)K(m,n), (2.10)

Figure 2.1: An example of the convolution operation applied on a 6 ⇥ 6 matrix with
a 3 ⇥ 3 filter.

Thus, the goal of training a deep CNN is to learn a set of kernels which are

capable of detecting the presence of certain visual characteristics within an image.

Kernels at the input of the network will learn to detect the presence of certain

lower-level features such as lines and edges, whereas kernels at the output of a

network will learn to detect the presence of more higher-level, field-specific visual

characteristics of an image. The output of a convolutional layer can be written as:

1 = �(w ⇤ 0 + �) (2.11)
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where 0 is the input feature map, 1 is the output feature map, w is the

weights, b is the bias, ⇤ is the convolution operation, and � is an activation function

such as the sigmoid, softmax [16] or ReLU. An example of the 3 ⇥ 3 filter from

Figure 2.1 applied to an image can be seen in Figure 2.2.

Figure 2.2: An example of the 3 ⇥ 3 filter in Figure 2.1 applied to an image. It can
be observed that the filter highlights vertical edges within the image. In CNNs, the
weights of the filter are learned by backpropagation.

Pooling Layers

Pooling layers are used to downsample feature maps by a given factor, and is useful

for many reasons. Firstly, pooling reduces the spatial dimensionality of the feature

maps, making the features much easier and more computationally e�cient to process.

In addition, pooling reduces the complexity of the network, which also reduces the

number of trainable parameters and hence reduces the time and memory needed for

the network to converge. Pooling operations also bring a degree of spatial invariance

to a CNN, allowing the network to recognise certain visual characteristics of an

image regardless of the physical location of these characteristics. Within the field of

Re-ID, spatial invariance is highly important in a CNN given the pose variation of

people within Re-ID images. The two main pooling operations implemented within

CNNs are max-pooling (Figure 2.3) and average-pooling (Figure 2.4).
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Figure 2.3: An example of max-pooling used to downsample a feature map. Within
each pooling region, represented by a distinct colour, the maximum value is taken to
form the corresponding value in the output feature map.

Figure 2.4: An example of average-pooling used to downsample a feature map.
Within each pooling region, represented by a distinct colour, the average value of all
values is taken to form the corresponding value in the output feature map.

Fully-Connected Layers

Once the dimensionality of the input has su�ciently decreased in size, the output

is often passed to one or more fully-connected layers. The layers are named fully-

connected as the units in each layer are connected to every unit in the previous

layer. Figure 2.5 demonstrates the layout of a simple network containing only

fully-connected layers.
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Figure 2.5: A simple network containing only fully-connected layers. The network
takes in input Xn of length 5, and predicts Ŷn of length 1.

These layers formalise meaningful information from any earlier layers. For

example, for the task of classification, a fully-connected layer is used in combination

with a softmax activation function (Equation 2.3). The number of units within

the final fully-connected layer is equal to the number of classes present within the

training set. Given a set of z classes (c0, c1, ..., cz�1), the softmax activation function

computes a series of probabilities (p0, p1, ..., pz�1), where each value represents the

probability that the input image is a member of the corresponding class. However,

unlike the sigmoid activation function, the sum of all probabilities equals one. Within

the context of Re-ID, classes are typically identities, with each unit in the final

fully-connected layer representing one identity [108, 112, 203, 206]. As such, the

identity corresponding to the unit with the maximum assigned probability in the

final fully-connected layer is taken as the predicted identity. Alternative activation

functions can be used in co-operation with fully-connected layers, such as sigmoid

and ReLU.

Often, layers of a CNN which are in between the input and output layers are

referred to as hidden layers, and are typically a combination of convolutional and

pooling layers. Within Re-ID, Fully-Connected Layers are often found at the end of

a network, being used to map the feature maps to a series of units, with each unit

representing a specific person identity. Figure 2.6 shows a typical example of a CNN

network trained to predict the identity of a person.
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Figure 2.6: A typical use-case for a CNN within the field of Re-ID. A pedestrian
image from the VIPeR [59] data set is passed as input to a CNN, and is passed
through a series of hidden layers to create a series of feature maps. Once the final
feature map has been computed, it is passed to a fully-connected layer, where each
unit within the fully-connected layer represents an identity. In this example, the
network has predicted with 74% confidence that the identity of the person present
in the input image is ID2.

Similarities are present between fully-connected layers and convolutional

layers. Assuming a convolutional layer with a kernel size of greater than 1 ⇥ 1 pixel,

each unit within a convolutional layer will receive input from a number of local units

within the previous layer. This is similar to fully-connected layers, however, fully-

connected layers instead receive input from all units within the previous layer. Hence,

the receptive field of a fully-connected layer is typically much larger than the receptive

field of a convolutional layer. A downside to this is that fully-connected layers discard

information relating to the spatial structure of the input data, treating input pixels

which are a large distance from each other equal to those which are a much closer

distance to each other. However, the reduced receptive field of convolutional layers

leads to better identification of local features within an input, making these layers

better suited to computer vision classification tasks.

Additionally, whilst fully-connected layers can be used to learn features to

classify image data, the large of number of weights within each layer cause them

to be impractical when dealing with high-dimensional image data. For example,

when using a fully-connected layer with 32 units, and an image with dimensions 224

⇥ 224 ⇥ 3, the resulting fully-connected layer would contain 224 ⇥ 224 ⇥ 3 ⇥ 32

= 4, 816, 896 trainable weights. Comparatively, consider a convolutional layer which

takes as input a 224 ⇥ 224 ⇥ 3 image, and convolves with 32 kernels of size 5 ⇥
5 ⇥ 3 pixels each, with a stride of 3, where the stride is defined as the number of

pixels which the kernel moves across the input image per convolutional operation.

The convolutional layer would be of size 74 ⇥ 74 ⇥ 32 units. Therefore, without any

form of parameter sharing, each of the 74 ⇥ 74 ⇥ 32 units would consist of 5 ⇥ 5 ⇥
3 weights, resulting in 74 ⇥ 74 ⇥ 32 ⇥ 5 ⇥ 5 ⇥ 3 = 13,142,400 weights. However, as
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convolutional layers would apply the same kernel to all of the units within the same

74 ⇥ 74 layer via parameter sharing, this reduces the number of trainable weights

down to 32 ⇥ 5 ⇥ 5 ⇥ 3 = 2,400 trainable weights. Hence, the use of convolutional

layers significantly decreases the number of trainable weights within the network,

increasing network e�ciency and preventing overfitting [33].

2.3.3 Activation Functions

Activation functions are an abstract representation of the action potential of a

cell [72], and map the output of a layer into a desired range, such as between 0 and

1. This introduces non-linearities into a CNN, increasing a networks capability to

learn more complex mappings. One of the most widely-used activation functions is

the sigmoid activation function, �sigmoid, which can be defined as:

x̂ = �sigmoid(x) =
1

1 + e�x
(2.12)

where x is the input feature map and x̂ is the output feature map. The use of

a sigmoid activation function maps the output to within the range of 0 and 1, making

the sigmoid activation function highly useful for expressing probability. However,

activation functions such as sigmoid can su↵er significantly from the vanishing

gradient problem [15], where for a layer input x, the partial derivative of the cost

function with respect to the current weights tends to zero when |x| is large. The

outcome of this is that the gradients of the network during training can become

so small, that the weights are prevented from changing significantly. Furthermore,

sigmoid activation functions are often used for multi-label classification, as they allow

the network to calculate the probability that a particular label is true for a given

input. As Re-ID involves predicting the identity of an input person, and each person

can have only a single identity, sigmoid activation is not utilised within identity

prediction. However, sigmoid activation functions can be used within the problem

of Re-ID for other purposes, such as attribute prediction [21, 116, 171], where the

probability of an input image belonging to each class (attribute) is computed.

Other activation functions, such as ReLU, su↵er less from the vanishing

gradient problem by enforcing a gradient of 0 or 1 dependent on the input [137].

ReLU can be written as:

x̂ = max(0, x). (2.13)

Therefore, any input values less than zero are replaced with zero. The

advantages of ReLU are that it is more computationally e�cient to compute, whilst

also minimising the negative impacts of the vanishing gradient and exploding gradient
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problems [143]. Furthermore, networks utilising ReLU activation functions have

been found to train significantly faster than methods using alternative activation

functions [95]. However, ReLU su↵ers from the dying ReLU problem [32], where

weights are updated in such a way that the neuron never activates. Hence, the

gradient flowing through the neuron will remain at zero. Attempts have been made

to resolve this by methods such as the Leaky ReLU [207], where instead of setting

the output of a ReLU to be a zero if x < 0, it is instead set to a very small value.

2.3.4 Training

Hyperparameters

A neural network consists of a multitude of parameters such as weights and biases

which are optimised during training to produce the most accurate prediction results

when given an unseen test sample. However, neural networks also contain a set of

parameters, known as hyperparameters, which are predefined during the design of

the network architecture rather than learnt during training.

There are a wide variety of di↵erent types of hyperparameters within a neural

network. Some relate to the size and architecture of a network, such as the number

of hidden layers, as well as the number of units within each layer. In addition, other

hyperparameters define how a network trains, such as the learning rate or batch

size. Clearly some hyper-parameters are dependent on others, such as the number

of units within a particular hidden layer being dependent on the number of hidden

layers [30].

However, for a given neural network, there is no single set of hyperparameters

which works for all data sets. van Rijn and Hutter [182] pose two questions when

choosing hyperparameters:

• Which hyperparameters yield the greatest empirical performance?

• What are the most optimal values for these hyperparameters, to achieve the

greatest performance?

The authors found that whilst the same hyperparameters were generally im-

portant across data sets, di↵erent hyperparameters were important for di↵erent model

architectures. As such, hyperparameters are generally estimated by repeated training

on a given data set with a variety of di↵erent values, observing the performance of

each network following each trial.
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Overfitting and Underfitting

If the performance on a testing set is significantly worse than the equivalent perform-

ance on a training set, the network is said to have overfitted [99]. This is related to

the problem of generalisation, where a model trained on one subset of data may not

perform well on another.

Overfitting is generally avoided by incorporating regularization into the

training stage. One of the most common regularization techniques is to apply `1 or

`2 regularization [48], which penalises complex models by adding an additional term

to the loss function. Utilising `1 regularization, given a loss function  , the updated

loss function  ̂ is computed by:

 ̂ =  + �(
I�1X

i=0

|wi|) (2.14)

where � is a regularization term which controls the importance of the regular-

ization, I is the number of weights within the network, and w = {w0, w1, ..., wI�1}
are the weights. Similarly, utilising `2 regularization adds to the loss function the

sum of the squared elements of the weight matrix, by:

 ̂ =  + �(
I�1X

i=0

w2
i ) (2.15)

Thus, overly complex models which have a greater tendency to overfit the

training data are penalised further than simpler models. Another solution to the

problem of overfitting is to apply Dropout [69]. Dropout prevents overfitting by

randomly excluding individual units within a layer at a prespecified rate [169]. By

randomly ignoring a percentage of the units within a layer, dropout introduces noise

into the training process. As the decision for which units to drop is random and

carried out on an epoch-by-epoch basis, the units which are dropped di↵er every

epoch, and therefore make it harder to overfit given the variability of data passed

through the network. Furthermore, overfitting can be caused by training the network

for too long on the training data [50]. To prevent this, early stopping is used to ensure

that the network stops training once the networks performance stops increasing.

Therefore, the weights which give the best prediction performance are preserved.

A similar problem is underfitting. Underfitting occurs when the network is

unable to learn a su�cient mapping between the input and output variables, and

is therefore unable to achieve good accuracy. In this case, the model is said to

have underfitted. Underfitting can be have many causes. Firstly, it is possible that

hyperparameters are set to inappropriate values, such as the number of units within
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(a) (b)

(c)

Figure 2.7: Examples of (a) overfitting, (b) underfitting and (c) achieving a good fit
on a data set.

a fully-connected layer being too small in relation to the complexity of the problem,

and therefore the network may be unable to learn an appropriate mapping [141].

Additionally, underfitting may be caused simply by the lack of training data necessary

for the network to learn a high-performing mapping between the input and output

data. As such, solutions to the problem of underfitting can be to experiment with

hyperparameters, as discussed in Section 2.3.4, and to ensure the quantity of training

data is su�cient for training the network. Figure 2.7 shows examples of overfitting,

underfitting and achieving a good fit on a data set.

2.3.5 Training Strategies

There are multiple di↵erent methods to train a deep CNN. The ID Classification

Loss approach can be defined as learning features optimal to the task of predicting

the identity of a particular person. As a classification problem, this means that each

identity is its own class, leading to a typically high number of classes needing to

be learned. This is in contrast to Verification Loss, where the network seeks not to

predict the identity of a given person image, but instead to verify whether or not two

person images represent the same identity. Furthermore, Triplet Loss is a learning

process where a triplet consisting of an anchor, positive match and negative match
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are passed as input to a network. The aim of this kind of network is to minimise the

distance between the anchor and positive match, whilst simultaneously maximising

the distance between the anchor and the negative match.

Verification Loss

Initial uses of deep learning in Re-ID generally incorporated Verification Loss, which

is demonstrated in Figure 2.8. The first use of deep learning techniques for Re-ID was

proposed by Li et al. [111], where the authors define their own network architecture

named Filter Pairing Neural Network (FPNN). The authors propose the inclusion of

a Patch Matching layer, which compares two sets of features learnt from two di↵erent

input images, and from this calculates a set of displacement matrices. This layer is

followed by a Maxout-Grouping layer, where only the displacement matrices with

the highest activations are passed to the following layers. The subsequent layers are

further convolutional and max-pooling layers, followed by a fully-connected layer

which results in the final feature descriptor for each of the input images. The final

layer uses a softmax function to determine whether the two input images represent

the same identity or otherwise. This was extended by Ahmed et al. [2], where the

authors propose learning cross-input neighborhood di↵erence features, which consists

of comparing features from a particular region in one input image with the features

obtained from neighbouring locations in the second input image. The justification

for this is to add robustness to positional variation present between the two input

images. The output of this layer produces an approximate relationship between the

features extracted from the two input images. The authors additionally propose an

additional novel layer which summarises these neighbourhood di↵erence features into

a smaller feature descriptor, which is then passed through a further Convolutional

and Max-Pooling layer. Finally, two fully-connected layers and a softmax function

are used to determine whether or not the two input images belong to the same

identity.
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Figure 2.8: An example of a network trained using Verification Loss. The network is
trained to predict whether or not a given pair of images represent the same identity
or otherwise. The example images are taken from the VIPeR [59] data set.

Wu et al. [200] expands on the work by Ahmed et al. [2], also incorporating

a cross-input neighbourhood di↵erences layer to learn the relationship of patches

between distinct Re-ID images. The authors argue that a deeper model than that

used within [2] is necessary for higher matching rates due to the significant spatial

misalignment present within Re-ID data sets, and state that the deeper network

would be much better suited to handle this misalignment. The authors add a series

of convolutional layers with 3⇥ 3 pixel convolutional filters, which capture non-linear

relationships between patches.

ID Classification Loss

More recent work has focused on ID Classification Loss, which is demonstrated in

Figure 2.9. ID Classification Loss considers each identity as its own class, and hence

requires a larger number of samples per identity compared to when using Verification

Loss [221]. Xiao et al. [206] discusses the problem of generalisation, where a model

trained on one data set cannot be e↵ective when evaluated on another. They resolve

this by proposing a three stage training method. First, images from a variety of

di↵erent data sets are combined into one larger data set and trained with standard

dropout. Secondly, the dropout is replaced with the author’s proposed Domain

Guided Dropout (DGD), which assigns each neuron within a CNN a dropout rate for

each data set, according to its e↵ectiveness for that data set. Finally, the CNN is fine-

tuned on each data set separately. Li et al. [108] propose Multi-Scale Context-Aware
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Network (MSCAN), which consists of a series of multi-scale convolutions in each

layer. Each person image is divided into three parts, and the whole image as well as

each part is passed through the MSCAN. Finally, the whole image and body part

learnt representations are integrated through concatenation, and cross entropy loss is

used to predict the identity of the person. Li et al. [112] proposes Jointly Learning

Multi-Loss (JLML), where the network aims to jointly learn both local and global

features simultaneously by finding correlations between the two. A two-branch CNN

is proposed, with one branch focusing on global features whilst the other focuses

on local features. The authors enforce a separate loss function per branch to learn

independent discriminative features whilst enforcing the same ID label constraint.

For testing, the feature descriptors from each branch are concatenated to create the

final feature descriptor to represent the entire image.

Figure 2.9: An example of a network trained using ID Classification Loss. The
network is trained to predict the identity of a given image. The example image is
taken from the VIPeR [59] data set.

Wu et al. [203] propose combining both traditional hand-crafted features with

deep features. The authors based their hand-crafted features on the ELF feature [58],

as improved by [226, 227], which consist of RGB, HSV and YCbCr colour histograms

as well as 8 Gabor filters and 13 Schmid filters being extracted from 6 horizontal

stripes. However, they modify ELF to instead extract 16-dimensional RGB, HSV,

LAB, XYZ, YCbCr and NTSC colour histograms, as well as 16-dimensional Gabor,

Schmid and LBP texture histograms from 16 horizontal stripes. All histograms are

`1 normalised, and then concatenated. Regarding the deep features, the authors

propose five convolutional layers, which are each followed by a pooling layer and a

Local Response Normalization (LRN) [95], except for the third layer. The output of

the fifth pooling layer is utilised as the deep feature descriptor. The deep feature

and hand-crafted feature are then fused using a further fully-connected layer, with a

softmax function used to predict the identity of the person.

26



Combination of Verification Loss and ID Classification Loss

Often, network architectures can incorporate both verification and ID classification

loss within a single network. These networks simultaneously learn features suitable

for both multi-class recognition of a given persons identity, whilst also being able to

determine whether a given pair of images belong to the same identity or otherwise.

Geng et al. [51] proposes a network architecture which utilises both verification

and ID classification loss. However, the authors argue that given two feature maps

extracted from a Re-ID image pair, using di↵erent dropout maps on each feature

map would not be optimal for computing the verification loss, as some di↵erences

between the two feature maps could be explained simply due to the randomness of

the dropout masks rather than the visual appearance of the people present within

the Re-ID images. Therefore, the authors propose a Loss Specific Dropout Unit,

which ensures the same dropout map is applied to both feature maps extracted from

a given image pair. Following the Loss Specific Dropout Unit, the resulting feature

map pair are passed to a verification loss layer, and each feature map of the pair

is individually passed to an ID classification loss layer. Zheng et al. [229] propose

a network where given a pair of images, each image is passed through a separate

branch of a Ca↵eNet [95], VGG-16 [167] or ResNet-50 [66] network, where both

branches share weights with the other. Each branch possesses an ID classification

loss layer, which uses a softmax function to predict the identity of the input image.

The final feature maps of each branch are then taken and compared using the authors

proposed Square Layer, which takes two feature maps and subtracts one feature map

from the other, and performs a square operation element-wisely. Finally, the output

feature map is used as input to the verification loss layer, which uses a softmax loss

function to predict whether or not the two input images represent the same identity.

Zhong et al. [230] proposes an architecture which also utilises both verification loss

and ID classification loss. Firstly, each image of an image pair are passed through

a feature extraction network named Feature Aggregation Network (FAN), which is

based on a ResNet-50 [66] network architecture. FAN extracts features maps from

di↵erent layers in the network and provides an element-wise sum to produce the

fused feature map. Afterwards, for the verification branch, the feature maps are

passed to a Recurrent Comparative Network (RCN), which compares the appearance

of images that form an image pair by using a combination of attention and recurrent

networks. The attention component weights discriminatively significant regions of the

feature map, whilst the recurrent networks aggregate the discriminatively significant

regions within the image pair. The output of the RCN is then used as input to

the verification loss layer, computing whether or not the two input images are of

the same person. For the ID classification branch, the feature maps extracted from
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the FAN are pooled using a global average pooling operation, and then passed to

a fully-connected layer with softmax loss to predict the probability that the image

belongs to each class.

Triplet Loss

Training a network using triplet loss is highly useful within the field of Re-ID, where

the task is to ensure the smallest possible distance between feature descriptors

extracted from those of the same identity. Methods which utilise triplet loss take

as input three images - a probe image, and image with the same identity as the

probe image, and an image with a di↵erent identity to the probe image. The task

is then to minimise the distance between the images with the same identity, whilst

maximising the distance between the images with di↵erent identities. Figure 2.10

illustrates this process.
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Figure 2.10: An example of a deep neural network utilising triplet loss. Three images
are passed to the network, an input image, a positive match image with the same
identity as the input image, and a negative match with a di↵erent identity to the
input and positive match images. The network pulls the output of the input and
positive match to be closer, by minimising the distance between the two within the
output feature space. Furthermore, the network pushes the input and positive match
away from the negative match, by maximising the distance between the di↵erent
identities within the output feature space.

Multiple methods have employed this technique. Khamis et al. [90] jointly

learn a projection to a appearance-attribute subspace. The authors argue that the

presence of the attribute information helps their method achieve some invariance

to illumination variation. Their method jointly optimises a ranking loss for Re-ID

matching, as well as attribute classification. Cheng et al. [28] proposed a method

where both global image features as well as local body part image features are

concatenated and passed to a triplet loss function. Furthermore, Cheng et al. [28]

argue that the typical triplet loss training strategy, where the distance between the

anchor and positive input must be smaller than the distance between the anchor

and negative input by a pre-defined margin, is not optimal for Re-ID, due to the

possibility that all input of a given identity will form a large cluster with a large

average intra-class distance between instances. Consequently, the authors propose a
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further constraint ensuring that the distance between the anchor and positive input

must be below a certain threshold, and demonstrate that using this improved triplet

loss function can improve matching rates by up to 4%. Chen et al. [27] propose a

network architecture which jointly optimises both a binary classification loss, as well

as ranking loss. They utilise triplet loss for the ranking part of their network, whilst

utilising binary softmax for the classification component. The authors argue that the

combination of both ranking utilising triplet loss as well as classification using softmax

in a joint network takes advantage of the complementary of both methods. In [118],

the authors propose the end-to-end Comparative Attention Network (CAN), which

learns which parts of images are more discriminative by building an attention-based

model, where the model is optimised using triplet loss. Zhao et al. [214] proposes

constructing a feature descriptor using a concatenation of feature maps from multiple

di↵erent layers from within a network. This combines shallow layer information with

deeper layer information, permitting di↵erent types of visual characteristics to be

captured by each component which makes up the final feature descriptor. These

multilevel features are then used as part of a triplet loss training strategy.

2.3.6 Transfer Learning

Training a neural network from scratch can take significant time, as well as compu-

tational resources. Furthermore, a considerable amount of training data is required

to build a high-performing neural network. To decrease the resources necessary for

training a network from scratch, it is common for these networks to be not initialised

with random weights, but with weights pre-trained on an similar problem. This is

analogous to how a human can use knowledge from one task to learn another [179].

An example of pre-trained weights which are often transferred to other, related

domains, such as Re-ID, are weights trained on the ImageNet data set for object

recognition [38]. The ImageNet data set contains over one million images with

bounding boxes, representing over 1000 di↵erent classes. Furthermore, several of the

classes found within ImageNet are visually similar, such as six di↵erent varieties of

spider. This forces the network to learn discriminative, robust features to di↵erentiate

between visually similar classes [81]. Notably, due to ImageNet’s large number of

classes, it contains knowledge which is appropriate for a vast number of domains. For

example, the ImageNet data set contains classes such as sweatshirt, jean and umbrella.

This demonstrates similarity between the task for which ImageNet has been trained,

and the attribute prediction task as described in Chapter 5. By initialising the

weights of an attribute prediction network with ImageNet’s pre-trained weights, this

gives a head-start on training, increasing performance whilst decreasing the time

required to train the network. Furthermore, it also potentially reduces the chance of
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the network overfitting.

Following the initialisation of a network with pre-trained weights from another

domain, the next step is to alter the architecture of the network to fit the target

domain. This typically requires the replacement of the final, fully-connected layer

to contain a number of units equal to the number of classes within the target

domain [165]. However, given the di↵erence in domain, the pre-trained weights for

this final layer cannot be utilised for the target domain. Therefore, the network

is then further trained on one or more data sets from the target domain, in a

process known as fine-tuning or refinement [81]. Fine-tuning a network maintains

the knowledge obtained during initial training on the source domain data set, whilst

optimising the weights for the target domain, and training any additional layers such

as the fully-connected layer representing the target domain’s class labels. It has been

demonstrated that utilising transfer learning to transfer knowledge from one domain

to another increases prediction results [51, 149, 205].

2.3.7 Evaluation

The performance of a deep method can be evaluated in multiple ways. The per-

formance is evaluated during training in order to alter the weights of the network

through backpropagation. However, following completion of the training stage, it

is important to evaluate the data on unseen data to ensure that the network can

generalise.

It is common for a network to be evaluated using a di↵erent method to that

which was used to optimize the network during the training stage. For example, the

BCE function typically used to train Re-ID networks optimizes a networks ability

to predict the identity of a given individual, whereas the rank-n evaluation method

used to evaluate unseen Re-ID images focuses on the networks ability to predict the

identity of a given individual within n guesses.

During post-training evaluation, each instance of unseen data is passed

through the trained network, and a predicted value is obtained. One of the most

common evaluation metrics used to measure the performance of a neural network is

accuracy. Given the number of True Positives (TPs), False Positives (FPs), True

Negatives (TNs) and False Negatives (FNs), the accuracy is calculated as:

accuracy =
TP + TN

TP + TN + FP + FN
(2.16)

However, given an unbalanced data set, evaluating according to the accuracy

metric can be unhelpful. Consider a network which predicts whether or not a group

of individuals will be diagnosed with a serious disease over the next year. On the
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assumption that the overwhelming majority of people will not be diagnosed with

a serious disease over the next year, the network can achieve a very high accuracy

simply by classifying each instance as negative.

One of the ways to overcome the bias is to choose a more suitable evaluation

metric given the problem. For example, precision is defined as:

precision =
TP

TP + FP
. (2.17)

Precision calculates the percentage of all true positives against all values

predicted as positive by the network, i.e. the percentage of those identified positive

by the network that were truly positive. Another evaluation metric, recall, is defined

as:

recall =
TP

TP + FN
(2.18)

Recall calculates the percentage of true positives against all values which are

positive in reality, i.e. the percentage of truly positive values correctly classified. By

using precision and recall, even given an unbalanced data set, the network would

be unable to simply predict the most common class to achieve a high evaluation

score. Therefore, it is crucial when building a neural network to choose an evaluation

metric which conveys the networks ability to output informative predictions, rather

than those which score the best results for an arbitrary evaluation metric.

Within the field of Re-ID, the rank-n evaluation metric (Section 2.6) is

typically utilised to evaluate the performance of each method. This metric measures

the percentage of probe images which are matched with their corresponding gallery

images within n guesses. However, evaluation of a skeleton or pose prediction model

requires an evaluation method able to measure the di↵erences between a set of

continuous variables. For these problems, the Mean Squared Error [10, 97] and

Root Mean Squared Error [5, 74, 183] are utilised, demonstrating the scale at which

predicted skeletons and poses vary from the ground-truth.

2.3.8 Cross-Validation

If the data sets used are small in size, the training and testing sets can contain heavy

bias if the distribution of class labels or visual characteristics are not well spread

between the training and testing sets. Then, if a method such as hold-out validation

is used to evaluate the performance of a model, where a data set is divided into

a training set and testing set and evaluation carried out only once, the evaluated

performance of a network may not accurately reflect its true ability to generalise.

In order to minimise the negative e↵ects of bias, cross-validation is used to
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conduct testing more representative of the performance of the network. There are

two main ways to undertake cross-validation. The first is known as k-fold cross

validation [94], where a data set, D, is randomly partitioned into k mutually distinct

subsets (D0, D1, ..., Dk � 1) of approximately equal size. One of the subsets is then

used as the test set, with the remaining k � 1 subsets being used for training. The

process is repeated k times, with a di↵erent subset being used as the testing set each

time. The final testing score is then computed by averaging the score of each of the

k test sets.

The second is known as repeated hold-out validation [91], and involves dividing

the data set into training and testing sets based on a pre-defined percentage split, in

the same way as hold-out validation. However, similarly to k-fold cross validation,

experimentation using repeated hold-out validation is carried out multiple times,

with the final testing score calculated by averaging the score from each individual

testing split.

2.4 Attribute Learning

Whilst traditional Re-ID methods have related to describing person images with

low-level features such as colour and texture, these feature types can be heavily be

influenced by variations in illumination or other visual characteristics. However,

characteristics such as age, gender and general colour of shirt, are significantly more

invariant to these changes. Thus, several pieces of the literature have researched how

best to incorporate such characteristics, typically referred to as attributes, into the

Re-ID pipeline.
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Figure 2.11: Example attributes and corresponding positive and negative examples.
Images are taken from the VIPeR [59] data set with attribute labellings taken from
the PETA [39] data set.

Layne et al. [101] define a mid-level attribute as being a physical character-

istic that is unambiguous in interpretation. Fifteen attributes are chosen, namely

shorts, skirt, sandals, backpack, jeans, logo, v-neck, open-outwear, stripes, sunglasses,

headphones, long-hair, short-hair, gender and carryingobject. As some of these

attributes will only be present on certain parts of a person’s body, the authors

extract a 464-dimensional feature descriptor from six equal-sized stripes, resulting in

a 2784-dimensional feature descriptor consisting of colour and texture information.

The authors then train a Support Vector Machine (SVM) [161] to detect the presence

of the fifteen attributes. Given that some attributes will be more reliable than others,

due to their prevalence within the imbalanced data as well as how useful they are for

discriminating between di↵erent individuals, the authors learn a weighted `2-norm

distance metric which will weight attributes according to their usefulness. The
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authors found that the highest Re-ID matching results could be obtained when the

attribute features were combined with low-level SDALF [43] features for matching.

Khamis et al. [90] also combine attribute features with traditional hand-

crafted features. The authors learn a distance metric which learns a discriminative

projection in a joint appearance-attribute subspace. The authors optimise the

ranking loss and attribute classification loss and by this, achieve some invariance

to illumination and pose, and demonstrating improved matching rates over using

just appearance or attribute information. Su et al. [170] utilise the correlation of

attributes, such as female and long hair, to allow attributes of the same person

between multiple cameras to be embedded into a low rank space. Using a low rank

space allows for noisy attributes to be pruned, as well as missing attributes, such as

those which are incorrectly labelled by a human annotator, to be rectified. However,

such a task is computationally expensive, and therefore the authors incorporate a

Multi-Task Learning (MTL) [18] algorithm. By considering Re-ID between multiple

cameras as related tasks, the authors are able to use MTL to exploit features and

attributes shared across multiple cameras to increase e�ciency and learn from

multiple cameras simultaneously.

Shi et al. [164] discuss the problem of there not being su�cient training

data to train a Re-ID framework using attributes which can produce state-of-the-art

results. To counter this issue, the authors propose using two fashion data sets,

named Clothing-Attribute [25] and Colourful-Fashion [122]. However, given the large

di↵erence in visual characteristics between data sets, training a model using these

data sets would typically be useless for use on Re-ID data sets. The authors propose

taking a generative model approach based on the Indian Bu↵et Process (IBP) [60],

and exploit attribute features at patch-level rather than image-level. The use of

patch-based features is used in combination with Bayesian Adaptation to ensure

that the learnt model can output a strong patch-level feature capable of being used

within a wide range of di↵erent domains, including Re-ID.

More recently, CNNs are being used for attribute detection. In [171], the

authors propose a three-stage attribute prediction network. In the first stage, the

authors training a Deep CNN to predict 105 attributes using the PETA [39] data set.

The second stage involves fine-tuning the model on the MOTChallenge [104] data set,

this time training using person ID labels and utilising triplet loss. The final stage

uses a combination of all previous training data sets for the final stage of fine-tuning,

with the output of this stage being named by the authors as deep attributes. The

authors extend this work in [174] by dividing the attributes in to a set of 15 types,

such as Age, Gender, CarryObject and HairStyle. Encoding attribute information in

this way ensures contradictory information such as short hair and long hair cannot
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co-exist, by enforcing only one positive attribute per type. The final attribute feature

is therefore shortened from length 105 to a set of K attributes belonging to C types,

A = {A1, A2, ..., AC}, where Ac = {ac1, ac2, ..., acKc} and a 2 {0, 1} represents the

presence of otherwise of a specific attribute.

Ye et al. [209] propose a body parts-based approach which combines colour,

texture and attribute features. First, LOMO [115] features are extracted and

used both to contribute to the person image’s feature descriptor, and to train a

LIBSVM [20] classifier for each attribute. Furthermore, a Sample-Specific SVM

(SSSVM) [213] is used to weight each body part according to its contribution

to Re-ID Matching. Following calculations of the weights, the weighted distance

between corresponding parts of di↵erent images are fused, forming the final distance

between two images. Zhao et al. [218] utilises video sequences to improve Re-

ID matching rates. Feature descriptors are extracted first from individual video

frames, and are then divided into groups of sub-feature descriptors corresponding

to specific attributes. These sub-feature descriptors are weighted according to the

corresponding confidence of attribute prediction. Following weighting, the feature

descriptors extracted from each frame are aggregated across the temporal dimension

to produce the final sequence feature descriptor.

2.5 Other Related Works

2.5.1 Distance Metric Learning

Whilst early Re-ID techniques typically used Euclidean or cosine distance as a metric

to calculate a distance between two feature descriptors, more recent techniques have

utilised Distance Metric Learning to learn a distance function more appropriate for the

task of Re-ID. Zheng et al. [226] propose a Probabilistic Relative Distance Comparison

(PRDC) model, where the model uses an objective function aims to maximise the

probability that two feature descriptors extracted from the same individual are

closer together in the feature space than two feature descriptors extracted from

di↵erent individuals. Also, several works have been proposed [36, 194, 195] based on a

Mahalanobis [19] distance metric, and have been applied to the Re-ID problem [110].

The aim of using a Mahalanobis distance metric is to learn a linear transformation

such that relevant dimensions in the feature space are emphasized. The Mahalanobis

distance between two feature descriptors, DM (xi, xj) = (xi � xj)TM(xi � xj), where

xi and xj are two feature descriptors of image i and j respectively, and M is the

positive, semi-definite matrix to be learnt. The goal of M is to ensure that DM (xi, xj)

is small should xi and xj belong to the same identity, and large otherwise. However,

prior works using a Mahalanobis distance metric often struggle from over-fitting
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due to lack of regularization, and can su↵er from scalability issues. Koestinger

et al. [93] proposed KISSME, a means to learn a metric based on equivalence

constraints, increasing e�ciency and reducing over-fitting. KISSME determines

whether or not a pair of feature descriptors are equivalent by means of a likelihood

ratio test. The distance between two feature descriptors is thus calculated as

⌧2M (fi, fj) = (fi � fj)T (⌃
�1
I � ⌃�1

E )(fi � fj), where ⌃I is the intra-personal scatter

matrix, and ⌃E is the extra-personal scatter matrix. In [115], the authors propose

Cross-view Quadratic Discriminant Analysis (XQDA), which extends KISSME.

Unlike KISSME, XQDA incorporates both dimensionality reduction and metric

learning simultaneously, ensuring the learned subspace is optimal for the task of

learning an appropriate distance metric.

2.5.2 Generative Adversarial Networks

Generative Adversarial Networks (GAN) were first proposed by Goodfellow et al.

[54], where their network learnt how best to create counterfeit images. The GAN

does this by creating a counterfeit image and continuously responding to feedback on

the quality of its output and using this feedback to improve moving forwards. GANs

consist of two main components: a generator and a discriminator. The generator is

responsible for creating the counterfeit images, whilst the discriminator compares

the output of the generator with ground truth images, providing feedback to the

generator on how to alter its counterfeit images to make them more similar to their

ground truth counterparts. The generator takes this feedback on board, and the

process repeats.

GANs were used by Zheng et al. [228] to generate additional Re-ID images to

increase the number of training samples. As the generated images belong to none of

the training classes, the authors propose using Label Smoothing Regularization for

Outliers (LSRO), and extension of Label Smoothing Regularization [176], to assign a

uniform label distribution to the generated images. As well as increasing the number

of training samples and introduce more variations in colour, pose and illuminations,

the use of additional generated images discourages the network from over-fitting.

To counter the e↵ects of the significant domain gap between di↵erent Re-ID

data sets, various methods [192, 231] propose using a GAN to transfer the visual

characteristics common within one data set to images within another data set. The

authors argue that networks which are trained on one data set cannot e↵ectively be

used for evaluating on a di↵erent data set due to the stark di↵erences between data

sets. As such, the authors train a GAN to make an image from data set A appear as

if it was taken as part of data set B. This can theoretically allow a network to more

e↵ectively use the training set of data set A to train a network which will be used
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for evaluating on data set B, leading to a significantly larger training set.

Qian et al. [149] focus on the problem of pose variation, using a GAN to

synthesise images with a normalised pose. The authors define eight canonical poses

and synthesise eight new images for each real image. This process increases the

size of the training set 8-fold, and allows the network to extract features more

representative of the individual, una↵ected by pose variation. The authors then

train two ResNet-50 [66] networks, the first with the original images, and the second

with the eight synthesised images. During the testing stage, the authors generate

nine feature descriptors by passing the original image through the first ResNet-50

network, and the eight synthesised images through the second ResNet-50 network,

and apply an element-wise maximum operation to all nine feature descriptors to

generate the final feature descriptor.

Liu et al. [119] takes a similar approach by increasing the size of the training set

by extracting pose information from one data set and synthesising new images using

this pose information with a separate data set. To increase the overall appearance

of the synthetic images, the authors propose using not only the usual discriminator

and generator aspects of a GAN, but also introducing a Guider. The Guider ensures

that the synthetic images produced are adapted to the Re-ID problem, that being,

that they are su�ciently discriminative between identities by enforcing intra-class

samples to be closer to one-another whilst inter-class samples are further. The larger

training set is then used to train a ResNet-50 [66] and DenseNet-169 [76] network.

2.6 Metrics

The most common means of evaluating Re-ID methods is the rank-n metric, which

is used to show the probability that a match between a query image and an image

of the same identity within a gallery set is obtained within n guesses or fewer. For

example, the rank-5 rate shows the amount of query individuals correctly matched

with their gallery counterparts within five guesses or fewer. Evaluation is carried out

using either a single-shot or multi-shot scenario, where the former involves computing

a descriptor using only a single image of each person, whereas the latter involves

utilising multiple images of each person.

Rank-n results can be presented graphically with a Cumulative Matching

Characteristic (CMC) Curve, which plots the number of guesses on the horizontal

axis against the corresponding percentage of matches achieved within that number

of guesses or fewer on the vertical axis. Calculating the area under the curve (AUC)

is also a commonly used metric, with higher values indicating fewer guesses required

to find the matching image within the gallery set.
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Furthermore, Mean Average Precision (mAP) is often used as a metric to

measure the accuracy of a Re-ID method. Given a set of Q query images, denoted

by I1, I2, ..., IQ, the mAP is calculated by:

mAP =

PQ
q=1AP (Iq)

Q
. (2.19)

where AP denotes the Average Precision. Given a query image Iq and a

ranked list of gallery images of length G, denoted J1, J2, ..., JG, where J1 is the image

considered most similar to Iq by the Re-ID system, the AP for the query image Iq

can be calculated by:

AP =
1

PG
k=1 rk

GX

k=1

rk

 Pk
l=1 rl
k

!
(2.20)

where rk is 1 if image Jk within the ranked gallery set has the same identity

as the query image Iq, and is 0 otherwise [180]. Whilst rank-n only evaluates a

Re-ID method by finding the index of the closest match for each query image in the

ranked gallery set, mAP calculates the AP for each query image by observing the

index of all images with the same identity as the query image within the ranked

gallery set, and concludes by calculating the mean. Hence, when the gallery set

contains multiple images with the same identity as the probe image, using the mAP

for evaluation will consider the ranked position of all gallery images with the same

identity as the probe, rather than just the gallery image with the highest ranked

position, as shown in Figure 2.12. For this reason, mAP is becoming more suitable

when evaluating larger data sets with multiple images per identity.
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Figure 2.12: A comparison between rank-n and mAP/AP. It can be observed that
whilst the rank-1 rate is consistently 100% throughout all examples, utilising mAP
and AP better evaluates the performance when multiple images of the same identity
as the input probe image are present within the gallery set. Images with the same
identity as the input probe image are highlighted in green, whereas images with a
di↵erent identity are highlighted in red. All images are from the Market-1501 [219]
data set.

2.7 Data Sets

Images taken of even the same individual under di↵erent circumstances can vary

significantly. Factors such as the type of camera used, the time of day and the

weather at the time of an image being taken can contribute to significant visual

di↵erences present within an image. As such, a robust Re-ID system must be able

to handle significant visual di↵erences present within Re-ID images. A large number

of data sets have been proposed which attempt to emulate real-world conditions

and present a set of images with varying levels of illumination, pose, background,

occlusion and blur. However, many data sets still su↵er from being captured from a

single location, and as such, variations in environment are limited. For this reason,
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many Re-ID methods are trained using a combination of multiple data sets. Similarly,

in order to prove their ability to generalise, many Re-ID methods are evaluated using

multiple individual data sets.

Re-ID data sets consist of at least two images for each identity, generally

cropped to the bounding box of the person. In order for a successful re-identification

to occur, at least one image of the individual must belong to the probe set, and

another to the gallery set. In addition, to increase the experimental di�culty, it

is common for additional identities which are not present in the probe set to be

included within the gallery set.

Furthermore, the use of standard data sets not only provides a means of

evaluating individual Re-ID methods, but also for comparison between di↵erent

methods. With the rise of deep learning techniques requiring a greater number of

training samples per identity, there has been a recent influx of new, larger Re-ID

data sets used alongside older, smaller data sets. The following section will describe

the most commonly used Re-ID data sets in greater detail.

2.7.1 VIPeR (2007)

The VIPeR data set was proposed by Gray et al. [59]. It was gathered over several

months, and as such, has a large variation in illumination caused by fluctuation in

weather conditions. It contains 632 identities, with two images of each identity taken

from separate cameras. There are significant variations in pose present, and some

cases of significant blur. Occlusion is mostly absent. All images are captured in an

academic setting, are cropped to the bounding box of the person, and are scaled to

128⇥ 48 pixels. Examples of images from this data set can be seen in Figure 2.13.

Figure 2.13: Example images from the VIPeR [59] data set. Each column represents
a single identity. All images have been scaled to a standard resolution.

41



2.7.2 QMUL GRID (2009)

The QMUL GRID [117, 124, 125] data set contains 250 identities, with two images

per identity, taken from separate cameras. In addition, there are 500 additional

distinct identities with only a single image per identity, which is often used to expand

the gallery set. All images are taken from an underground stations, and are cropped

to the person. Images within this data set contain significant variations in pose,

illumination and background, and contain significant amounts of blur and occlusion.

Furthermore, there is some small variation in image resolution. Examples of images

from this data set can be seen in Figure 2.14.

Figure 2.14: Example images from the QMUL GRID [117, 124, 125] data set. Each
column represents a single identity. All images have been scaled to a standard
resolution.

2.7.3 CUHK (2012-2014)

CUHK refers to three data sets named CUHK01 [110], CUHK02 [109] and

CUHK03 [111]. The CUHK01 data set, otherwise known as the Campus data

set, contains 971 identities with 2 images per identity. CUHK02 contains 1816

identities across five cameras, with each identity having two images per camera view.

CUHK03 contains 1467 identities photographed from five pairs of camera views, with

each identity therefore having up to ten images. The images within all three data

sets are manually cropped to the bounding box of the person, however CUHK03

also o↵ers a version of the data set automatically cropped by a person detector.

Images within these data sets have significant variation in pose, illumination and

background, as well as large amounts of occlusion and blur. Examples of images

from this data set can be seen in Figure 2.15.
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Figure 2.15: Example images from the CUHK01 [110] data set. Each column
represents a single identity. All images have been scaled to a standard resolution.

2.7.4 PRID2011 (2011)

PRID2011 was proposed by Hirzer et al. [70], and contains both single-shot and

multi-shot variations. The data set consists of two camera views, with the first

containing 385 identities, and the second containing 749 identities. The first 200

identities are common to both camera views. Images from this data set have large

variations in pose and illumination, yet do not possess significant blur or occlusion.

All images are cropped to the individual, and are scaled to a resolution of 128⇥ 64

pixels. Examples of images from this data set can be seen in Figure 2.16.

Figure 2.16: Example images from the PRID2011 [70] data set. Each column
represents a single identity. All images have been scaled to a standard resolution.

2.7.5 3DPeS (2011)

3DPeS [6–8] contains 193 identities taken from multiple cameras. It is a multi-shot

data set, containing an unfixed number of images per identity. The data set contains

a significant amount of pose, illumination and background variation. Images are
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mostly cropped to the bounding box of the person, but image resolution is not

consistent between images. Unlike most other Re-ID data sets, 3DPeS also o↵ers

binary masks to separate the foreground from the background. Examples of images

from this data set can be seen in Figure 2.17.

Figure 2.17: Example images from the 3DPeS [6–8] data set. Each column represents
a single identity. All images have been scaled to a standard resolution.

2.7.6 i-LIDS (2009) and iLIDS-VID (2014)

i-LIDS [57, 225, 226] consists of 476 images of 119 pedestrians filmed within an

airport hall. iLIDS-VID [187] is created from the original source used for the i-LIDS

data set, and consists of 300 identities with two image sequences per identity across

two cameras. The images in both data sets contain significant variants in pose and

background, as well as high amounts of occlusion. Illumination variation is a very

big issue within this data set. Whilst the images are cropped to the person, the

cropping often removes the outer edges of a person limbs. Examples of images from

this data set can be seen in Figure 2.18.

Figure 2.18: Example images from the i-LIDS [57, 225, 226] data set. Each column
represents a single identity. All images have been scaled to a standard resolution.
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2.7.7 Market-1501 (2015)

Market-1501 [219] contains 32,668 images of 1,501 identities. It is captured from six

cameras of varying quality, and possesses significant issues with pose and illumination

variation. Also, the data set contains a lot of instances of occlusion, particularly

by bicycles and bags. Many images are high quality, whereas many images also

su↵er from high levels of blur. A Deformable Part Model (DPM) [44] is used to crop

pedestrian images to the bounding box of the person. Images are scaled to 128⇥ 64

pixels, and su↵er from significant variations in pose, illumination and background.

Also, oftentimes, the cropping process can remove parts of the persons body from

the image. Examples of images from this data set can be seen in Figure 2.19.

Figure 2.19: Example images from the Market-1501 [219] data set. Each column
represents a single identity. All images have been scaled to a standard resolution.

2.7.8 DukeMTMC-reID (2017) and DukeMTMC4reID (2017)

The DukeMTMC [152] data set is a video data set created using eight distinct

cameras at the Duke University campus. DukeMTMC-reID [152, 228] was created

using a subset of the images captured from DukeMTMC, cropping the images to the

pedestrian’s bounding box. The data set consists of 36,411 bounding boxes, captured

from 1,404 identities which appear in multiple cameras and 408 identities who appear

in only one camera. Images from this data set possess similar visual characteristics

to Market-1501, with images being cropped to 128⇥ 64 pixels, and possessing strong

variations in pose, illumination and background. Examples of images from this data

set can be seen in Figure 2.20.

A variation on DukeMTMC, named DukeMTMC4reID, was proposed in [56].

The authors use an o↵-the-shelf person detector [11] to locate the individual people,

and produce 22,515 bounding boxes of 1,413 identities which appear in more than

one camera, with 2,195 bounding boxes of 439 identities which appear in only one
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camera. Also, there are 21,551 False Positive (FP) bounding boxes. As the source

of the data set is communal with DukeMTMC-reID, DukeMTMC4reID shares the

same visual characteristics with DukeMTMC-reID. However, the image resolution of

the bounding boxes extracted from the person detector in DukeMTMC4reID varies

from 72⇥ 34 to 415⇥ 188 pixels.

Figure 2.20: Example images from the DukeMTMC-reID [152, 228] data set. Each
column represents a single identity. All images have been scaled to a standard
resolution.

2.7.9 PETA (2014)

The PETA [39] data set consists of a combination of common Re-ID data sets,

however, each identity is annotated with 61 binary and 4 multi-class attributes,

such as the colour of a person’s clothing, or the length of their hair. As well as the

aforementioned VIPeR, 3DPeS, CUHK, QMUL GRID, i-LIDS and PRID2011 data

sets, it includes the following data sets:

• CAVIAR4REID [29] (2011) - CAVIAR4REID contains images of 72 people,

with 50 appearing in multiple camera views, and the remaining 22 appearing in

just one camera view. It su↵ers heavily from pose, illumination and background

variation, and also with strong cases of blur. Images also vary significantly in

resolution.

• MIT [142] (2000) - MIT consists of 888 identities with one image per identity.

Image resolution is consistent. People present within this data set are generally

either photographed from the front or the back with little variation in pose.

Images are clear and well-illuminated, and occlusion is rare.

• SARC3D [8] (2011) - SARC3D consists of 50 identities with four images per

identity. One image is taken from the front, back, left and right view of each

identity. The visual characteristics of the images present within this data set
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vary strongly between images, with pose and illumination varying the most

significantly. In addition, image resolution is not consistent.

• TownCentre [12–14] (2009) - TownCentre consists of 6,967 images of 222 iden-

tities, taken from short video sequences. Image resolution varies significantly,

as does the illumination and clarity of the images.

Examples of images from this data set can be seen in Figure 2.21.

Figure 2.21: Example images from the PETA [39] data set. All images have been
scaled to a standard resolution. Individual images are originally part of [6–8, 12–
14, 29, 57, 59, 70, 109–111, 117, 125, 142, 225, 226].

2.7.10 Limitations

Whilst images within individual data sets can contain significant variation in visual

characteristics, some aspects such as environmental variation can be absent. For

example, QMUL GRID contains images taken exclusively from within an underground

transport station, whilst images from the CUHK data sets are taken exclusively from

a university campus. Similarly, some data sets are not su�ciently large enough to be

able to cover a significant amount of environmental variation. For these reasons, many

methods [2, 62, 144, 206] combine multiple Re-ID data sets for training, ensuring

significant environmental variation is present within their training set. Similarly,

Re-ID methods are evaluated on multiple data sets to prove their generalisation

capabilities.

Furthermore, Re-ID data sets mostly contain a small number of samples per

person, and therefore temporal analysis of longer video sequences are not possible.

Older Re-ID data sets can contain as little as one image per person per camera,

whilst newer data sets often contain a significantly higher number of images per

person per camera. As such, research into incorporating temporal data into the

Re-ID process is now becoming more wide-spread.
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2.8 Summary

In this chapter, we have reviewed various methods for modelling the foreground of

a person image, motivated by the need to reduce the significant visual variations

present within Re-ID data sets. Furthermore, for the task of building a robust feature

descriptor to represent a person image, several feature extraction methods have been

reviewed, including both hand-crafted and deep feature extraction methods. Other

relevant works reviewed were distance metric learning and generative adversarial

networks. Also, metrics for measuring the performance of Re-ID methods were

introduced, as well as the standard data sets on which Re-ID methods are evaluated.

The limitations of these data sets were also discussed. In the next chapter, our first

major contribution is introduced, which is a method of foreground modelling using

Partial Least Squares regression.
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Chapter 3

Partial Least Squares

Appearance Modelling

3.1 Introduction

Variations in visual characteristics of an image can significantly hinder the success of

a Re-ID method. Therefore, a successful Re-ID method will contain some form of

normalisation between images to counteract such variations. Pose and background

variations can be reduced by a foreground model, learning which parts of a person

image correspond to the person themselves rather than potentially redundant back-

ground information. Furthermore, modelling the foreground of a person image at a

limb-by-limb level allows limbs of one person to be matched with the corresponding

limbs of another.

However, Re-ID training data sets typically consists of person images with no

corresponding foreground mask. Therefore, we label a set of twenty-nine keypoints

on each training image to represent the skeleton and limb-widths of each person, and

use this data to learn a mapping between image appearance features and skeleton

keypoints, allowing a skeleton to be predicted by our model when presented with an

unseen image.

In this chapter, we propose a Partial Least Squares Appearance Model [189]

fitting approach which is combined with robust feature extraction and distance

metric learning stages to match individuals. In Section 3.2, we describe building our

skeleton prediction model using Partial Least Squares (PLS) Regression [127, 155] in

order to learn which areas represent the person’s body. We then extract features and

weight them to favour those extracted from foreground areas, explained in Section 3.4.

Section 3.5 describes how we learn a metric for calculating the distance between

feature descriptors. We validate our results against other methods in Section 3.6.
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Finally, we summarise our findings in Section 3.7.

3.2 Partial Least Squares Foreground Appearance Mod-

elling

To predict the skeleton of a person within a person image, we use Partial Least

Squares (PLS) to learn a regression between the appearance of a person image and a

set of labelled keypoints representing a person’s skeleton.

As a skeleton consists of multiple keypoints, this is a multi-target problem.

Given a response matrix Y and a predictor matrix X, Multiple Linear Regression

(MLR) aims to learn a linear relationship between these variables such that:

yik = �0k +
NX

j=1

�jkxij + ✏ik,

Y = X� + ✏

(3.1)

where � is a matrix consisting of regression coe�cients, i 2 {1, ..., I} where I is the

number of samples, k 2 {1, ...K} where K is the number of response variables, and ✏

is an error term [67].

Regression methods such as MLR utilise an objective function such as Or-

dinary Least Squares (OLS), which minimises the sum of squares of the di↵erence

between the ground-truth and values predicted by the regression model:

min
IX

i=1

KX

k=1

(yik � �0k �
NX

j=1

�jkxij)
2. (3.2)

However, this causes outliers to have a disproportionately large influence on

the parameters of the OLS model, as the di↵erence between an outlier’s ground-

truth and predicted value are likely to be larger. Furthermore, OLS models have

been shown to produce poor results when dealing with high-dimensional data and

collinearity [61, 210]. Ridge Regression [178] utilises an extension of OLS which

penalises large values of �, by adding a weighted `2 norm of � to the objective

function. This is a form of regularization, and is often used to prevent overfitting by

minimising the complexity of the model [158]. Unlike OLS, Ridge Regression can

handle data with high levels of collinearity [41], but operates natively on the full

input data without any dimensionality reduction. Principal Component Regression

(PCR) [87] is an extension of MLR, and utilises Principal Component Analysis

(PCA) [197] to reduce the dimensionality of the input data. However, methods

such as PCR involve eigen-decomposition of the predictor matrix retaining the
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principal components with the highest variance without paying consideration to the

corresponding process with the response matrix, and vice-versa. Hence, the extracted

principal components may not be optimal for predicting the response matrix. In

addition, these methods su↵er from poor results if presented with predictor matrices

with collinearity [196].

PLS, however, is particularly useful for modelling predictor data with strongly

collinearity, as well as in situations where the predictor matrix is high-dimensional [198].

Within the context of skeleton fitting for Re-ID, the predictor matrix consists of

high-dimensional features extracted from image data, and is also highly collinear,

given the relationship between neighbouring image regions. In addition, unlike

PCA, PLS performs decomposition on both the predictor and response matrices

simultaneously, considering how each of the predictor variables influences each of

the target variables during the dimensionality reduction stage. Hence, PLS is more

likely to extract principal components important for regression. For these reasons,

we choose PLS to build our regression model, as we believe that it is the most suited

to the skeleton prediction task. However, there are other methods, such as Canonical

Correlation Analysis (CCA) [73], which also perform dimensionality reduction whilst

considering the relationship between both the predictor and response matrices [175],

and hence may also be suitable for application to this problem [89]. An alternative

approach would be to utilise a neural network for the skeleton prediction task, such as

a multilayer perceptron (MLP). In particular, Convolutional neural networks (CNNs)

have been used extensively in recent years for computer vision tasks, showcasing

promising results [2, 27, 28, 51, 108, 111, 112, 200, 203, 206, 229, 230]. Therefore,

we will evaluate skeleton prediction using neural networks in Chapter 4.

As with Multiple Linear Regression (equation 3.1), PLS also builds a linear

model Y = X� + ✏. However, PLS also solves:

X = TP T + E

Y = UQT + F
(3.3)

where T and U are the X and Y score matrices respectively, P and Q are the

X and Y loading matrices respectively, and E and F are independent error terms.

PLS can be solved by the SIMPLS [37] method, which begins by calculating X0 and

Y0 by centering both X and Y , i.e. subtracting from them their mean values:

X0 = X �mean(X)

Y0 = Y �mean(Y )
(3.4)
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Next, the cross-correlation of the centred input matrices, Z0, is computed by:

Z0 = X⇤
0Y0 (3.5)

where X⇤
0 represents the complex conjugate transpose of matrix X0. Given

an input number of components ncomp, we iterate through a = (0, ..., ncomp� 1),

computing equation 3.6 to equation 3.9 for each iteration.

Firstly, we calculate and normalise the weight vector of the X matrix, ra, and

the scores of the X matrix, ta, as follows:

ra = Zaea

ta = X0ra

ta = ta �mean(ta)

ta =
tap
t⇤ata

ra =
rap
t⇤ata

(3.6)

where ea is the most dominant eigenvector of Z⇤
aZa, equivalent to the right

singular vector of Za, with corresponding dominant singular vector equaling the

maximum attainable covariance. The score matrix consists of PLS components which

represent linear combinations of variables within X0, whilst the values with the

weight matrix are used to calculate the scores, ensuring that the covariance of the

two score matrices is maximised. We further calculate loadings of the X matrix, p,

the loadings of the Y matrix, q, and the scores of the Y matrix, u, as follows:

pa = X⇤
0ta

qa = Y ⇤
0 ta

ua =

8
><

>:

Y0qa � T (T ⇤(Y0qa)), if a > 0

Y0qa, otherwise

(3.7)

The loadings of the X matrix and the loadings of the Y matrix are calculated

such that tap⇤
a and taq⇤a are the PLS approximations to X0 and Y0 respectively.

Additionally, a variable v is defined and normalised to allow for the afore-

mentioned cross-correlation of the original input matrices, Z, to be further deflated,

by:
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va =

8
><

>:

pa � V (V ⇤pa), if a > 0

pa, otherwise

va =
vap
v⇤
ava

(3.8)

The deflation of matrix Z allows for the successive most dominant eigenvectors

to be computed through eigenanalysis. The cross-correlation matrix Z is therefore

deflated as follows:

Za+1 = Za � va(v
⇤
aZa) (3.9)

Following the process from equation 3.6 to equation 3.9 being repeated for

values of a from 0 to ncomp-1, the PLS coe�cients � are computed as follows:

� = RQ⇤

k = mean(Y )�mean(X)�

� = (k;�)

(3.10)

where k is a row vector concatenated to � as the first row, to allow calculation

of the intercept terms, �0,⇤. The SIMPLS algorithm [37] works to maximise the

covariance between the scores of the Y matrix, ua, and the scores of the X matrix,

ta, such that:

argmax cov(u0
a, ta)

ra,qa
= argmax cov(q⇤a(Y

⇤
0 X0)ra)

ra,qa
(3.11)

subject to r⇤ara = 1, q⇤aqa = 1, and t⇤bta = 0 for a > b. The SIMPLS method

is summarised in Algorithm 1.

When presented with a variable containing the appearance features of an

unseen person, Xi, the learnt PLS regression model can predict the person’s skeleton,

Ŷi, by evaluating:

Ŷi = (1, Xi)� (3.12)

where a value of 1 is concatenated to Xi in order to compute the intercept

terms, �0,⇤.

In our experiments, the appearance information X is represented by His-
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Input :A response matrix X, a predictor matrix Y, and a number of
components ncomp.

Output :PLS regression coe�cients �.
Initialise :R, T, P, Q, U and V.
X0 = X �mean(X)
Y0 = Y �mean(Y )
Za = X⇤

0Y0
Calculate the cross-correlation of the input matrices.

for a = 0; a < ncomp; a = a+ 1 do
ea = most dominant eigenvector of Za

ra = Zaea
Calculate X matrix weights.

ta = X0ra
Calculate X matrix scores.

ta = ta �mean(ta)

ta =
tap
t⇤ata

ra =
rap
t⇤ata

Normalise X matrix weights and scores.

pa = X⇤
0ta

Calculate X matrix loadings.

qa = Y ⇤
0 ta

Calculate Y matrix loadings.

ua =

8
<

:
Y0qa � T (T ⇤(Y0qa)), if a > 0

Y0qa, otherwise

Calculate Y scores, ensuring orthogonality.

va =

8
<

:
pa � V (V ⇤pa), if a > 0

pa, otherwise

va =
vap
v⇤
ava

Za+1 = Za � va(v⇤
aZa)

Deflate the cross-correlation of the input matrix.

R(:,a) = ra
T(:,a) = ta
P(:,a) = pa

Q(:,a) = qa
U(:,a) = ua

V(:,a) = va
Store ra, ta,pa, qa,ua,va into R, T, P, Q, U and V respectively.

end
� = RQ⇤

k = mean(Y )�mean(X)�
� = (k;�)
Compute the regression coefficients.

Algorithm 1: The SIMPLS [37] method.

54



togram of Oriented Gradients (HOG) features extracted on a regular grid across

our training set, whilst Y is the output skeleton vector. We continue by learning

the regression between the appearance information and the corresponding labelled

skeleton keypoints. Once the skeleton has been predicted, it is used to create an

image mask. If this image mask is applied to the original image, the foreground can

be separated from the background. Figure 3.1 shows examples of the skeleton fitting

using our PLS skeleton prediction model.

Figure 3.1: Examples of our PLS skeleton fitting on images from the VIPeR [59] data
set. Each set of five images contains: the original image, the input HOG appearance
features, the ground-truth skeleton keypoints, our predicted skeleton using the PLS
regression model and the foreground image mask.
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3.3 Partial Least Squares Orientation Modelling

There are a significant number of di↵erent poses represented within Re-ID data

sets. Therefore, any appearance model must capture as many of these poses as

possible. One of the greatest causes of pose variation within Re-ID data sets is

the di↵erence in person orientation relative to the camera. Therefore, in order to

increase the accuracy of our skeleton fitting results, we divide each data set into n

distinct orientation groups based on ground-truth orientation labelling. Figure 3.2

shows examples of the di↵erent orientation groups within the VIPeR data set, which

we divided into two groups: the first consists of those facing perpendicular (90°) to
the camera, whilst the second consists of those facing all other directions relative to

the camera.

Non-Perpendicular

Perpendicular

Figure 3.2: Examples of orientation groups from the VIPeR [59] data set. For this
data set, we split the images into two orientation groups: those facing perpendicular
(90°) to the camera, and those facing all other directions relative to the camera.
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The use of distinct orientation groups allow us to create a separate PLS

appearance model for each group. As such, each PLS appearance model can be

trained on and specialise in predicting the skeleton of one particular orientation

group, increasing overall skeleton prediction results. Figure 3.3 shows examples of

skeletons predicted using various PLS appearance models.
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Non-Perpendicular

Perpendicular

Figure 3.3: Examples of training the PLS appearance model on di↵erent subsets of
the VIPeR [59] data set. The third column shows training only on images containing
people with non-perpendicular orientations relative to the camera. The fourth
column represents training on images containing only images containing people
with perpendicular orientations relative to the camera. The fifth and final column
shows training on images containing people with all poses relative to the camera. It
can be seen that the lowest RMSE is obtained by training on images with similar
orientations to the input image.
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As can be seen in Figure 3.3, applying the PLS appearance model representing

a di↵erent orientation to the one present within the input image can lead to poor

fitting results, and by extension, poor foreground modelling. This may therefore

lead to “foreground” feature descriptors being extracted from non-foreground areas,

lowering rank-n matching rates. Thus, we aim to predict the skeleton of an image

with a model trained on images with a similar orientation, and hence achieve the

most accurate skeleton fitting.

However, given an unseen test image, the use of multiple PLS appearance

models mandates the need to classify an image into one of n orientation groups.

We therefore utilise mixture of experts [82] and create an additional model for the

purpose of predicting the orientation group of an input image. For this task, we

choose to again use a PLS-based model according to equation 3.1, where X is equal

to the HOG appearance features as extracted in Section 3.2, and Y 2 {0, ..., n� 1},
where n is the number of distinct orientation groups. We choose to again utilise PLS

in order to evaluate its performance as a means of regressing between appearance

features and an appropriate orientation group, however, an alternative would be to

use a classification model such as SVM [31] or Näıve Bayes [128, 134]. Following the

classification of an input image into an orientation group, the PLS skeleton prediction

model corresponding to that orientation group is used to predict the skeleton of the

input image.

3.4 Feature Extraction and Weighting

In this section, we will explain how we combine foreground modelling and feature

extraction to improve matching rates. We first extract the Local Maximal Oc-

currence (LOMO) [115] feature descriptors as our baseline, and then concatenate

with our proposed features to form the Weighted LOMO (Section 3.4.3) feature

descriptor. Additionally, we extract Salient Colour Names Based Colour Descriptor

(SCNCD) [208] feature descriptors on a limb-by-limb basis, and concatenate to form

a foreground feature descriptor (Section 3.4.2). We concatenate the Weighted LOMO

feature descriptors with the limb-by-limb level SCNCD feature descriptors to form

our final feature descriptor for each image.

3.4.1 LOMO

Originally proposed by Liao et al. [115], the LOMO feature descriptor is a hand-

crafted feature, consisting of both colour and textural information.
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The Retinex Transform

In order to minimise the e↵ects of illumination variation, the images are first passed

through a Retinex transform [84, 85, 98, 133, 145] as a preprocessing step. Retinex

processes an image and recreates it in a manner which is consistent with human

observation of the scene, restoring the image in a way which often leads to enhanced

details in darker and shadowed areas.

The output of a Single-Scale Retinex, Ri(x, y), is given by:

Ri(x, y) = logIi(x, y)� log[F (x, y) ⇤ Ii(x, y)] (3.13)

where Ii(x, y) is the image distribution in the ith spectral band, (x, y) are

the pixel coordinates, ⇤ is the convolution operation, and F (x, y) is a low-pass filter

denoted as the surround function:

F (x, y) = Ke
�(x2+y2)

�2 (3.14)

where � is the Gaussian surround space constant, and K is chosen such that:

ZZ
F (x, y) dx dy = 1 (3.15)

However, Single-Scale Retinex transformations are unable to simultaneously

achieve strong dynamic range compression and colour rendition, causing images to

often appear with detail hidden in darker and shadowed areas, or to have poor colour

reproduction. Low values of � achieve better dynamic range compression, whilst

high values achieve better colour rendition. A solution to this problem is to apply

a Multi-Scale Retinex, which is a weighted sum of Single-Scale Retinex outputs,

utilising various di↵erent values of �, such that:

RMSRi =
JX

j=1

wjRji (3.16)

where J is the number of scales, and wj is the weight associated with the

corresponding scale. Rji is the ith component of the jth scale. For the Multi-Scale

Retinex algorithm, the surround function is instead defined as:

Fn(x, y) = Ke
�(x2+y2)

�2
n (3.17)

However, the above preprocessing has the negative e↵ect of significantly

“greying-out” the image. Given Re-IDs reliance on colour information, such severe

desaturation of images would be largely detrimental to the Re-ID process. Therefore,

60



the Multi-Scale Retinex process also contains a colour restoration method:

RMSRCRi = Ci(x, y)RMSRi (3.18)

where

I
0
i(x, y) =

Ii(x, y)PS
i=1 Ii(x, y)

Ci(x, y) = f [I
0
i(x, y)]

(3.19)

i represents a specific colour band, S is the number of spectral channels, and

Ci(x, y) is the ith band of the Colour Restoration Function (CRF), which is defined

as:

Ci(x, y) = � log[↵I
0
i(x, y)] (3.20)

where � is a gain constant, whilst ↵ controls the strength of the nonlinearity.

However, the output of this equation is in the logarithmic domain, hence gain and

o↵set variables are required. Thus, the final equation for computing the Multi-Scale

Retinex with Colour Restoration is:

RMSRCRi = G[Ci(x, y)RMSRi + b] (3.21)

where G and b are the gain and o↵set variables respectively. Figure 3.4 shows

examples of Re-ID images before and after the Retinex preprocessing step has been

applied. All images shown in Figure 3.4 demonstrate greater detail, specifically in

darker areas such as torso areas. In (a), greater detail is visible in the person’s face

and torso. In (b), it can be seen that further detail is extracted from the persons

hair, whilst in (c) the red detail is emphasised in the persons shorts. The white

patch and coat is emphasised in (d), whilst the texture on the persons shirt is made

more pronounced in (e). In (f), greater detail can be seen in the persons bag strap

and torso.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Example image pairs from the VIPeR [59] data set, containing both the
original images as well as the images after the Retinex preprocesing step has been
applied.

LOMO features apply the Multi-Scale Retinex transform, with two scales of

a centre/surround Retinex where � = 5 and � = 20.

Feature Extraction & Managing Viewpoint Variation

LOMO employs both colour and textural information to construct a feature descriptor

from the preprocessed images. Images represented using the RGB model mix both

colour and luminosity information, and therefore are not optimal for use in feature

extraction. For this reason, images are converted to the HSV colour model prior

to feature extraction. The SILTP [114] feature type is used for extracting textural

information. SILTP is an improved version of Local Binary Patterns [138], extracting

textural information from images whilst maintaining invariance to changes in intensity,

as well as to image noise. Given an image location (xc, yc), the SILTP feature is

calculated as:
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SILTP ⌧
N,R(xc, yc) =

N�1M

k=0

s⌧ (Ic, Ik), (3.22)

where Ic is the gray intensity value of the centre pixel, Ik are the gray

intensities of its N neighbourhood pixels located equally spaced on a circle of radius

R,
L

is the concatenation operation of binary strings, ⌧ is a scale factor, and s⌧ is

the function:

s⌧ (Ic, Ik) =

8
>>>><

>>>>:

01, if Ik > (1 + ⌧)Ic

10, if Ik < (1 + ⌧)Ic

00, otherwise

(3.23)

To maintain spatial information within the feature descriptor, a sliding window

approach is used, with images divided into 10 ⇥ 10 pixel windows with a 5 pixel

overlap in the height and width dimension. From within each window, an 8⇥ 8⇥ 8

joint HSV histogram is extracted, as well as two scales of SILTP [114] histograms,

SILTP0.3
4,3 and SILTP0.3

4,5.

However, given the significant pose and viewpoint variation present within Re-

ID images, corresponding windows between images may not represent the same parts

of people’s bodies. Thus, to minimise the e↵ects of pose and viewpoint variations,

LOMO takes all windows with the same horizontal location, and for each histogram

bin, takes the maximum value across all windows to form the feature descriptor for

that horizontal location.

To take into account multi-scale information, the images are downscaled by a

factor of two and four, and the feature extraction process is repeated. Furthermore,

a log transform is applied, and both HSV and SILTP features are normalised to a

unit length. Figure 3.5 demonstrates the LOMO feature extraction process.
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Figure 3.5: The LOMO [115] feature extraction method. The diagram is based on a
similar diagram contained in [115].

3.4.2 Salient Colour Names Based Colour Descriptor (SCNCD)

Originally proposed by Yang et al. [208], the Salient Colour Names Based Colour

Descriptor (SCNCD) defines sixteen colour co-ordinates in the RGB colour space.

The colours are carefully chosen to contain a spread from across the RGB spectrum,

including fuchsia, blue, aqua, lime, yellow, red, purple, navy, teal, green, olive,

maroon, black, gray, silver and white. This is an extension of the Colour Names [181]

method, which contained only eleven colours, including black, blue, brown, grey,

green, orange, pink, purple, red, white, and yellow.

The first step is to quantise the RGB colour space into 32⇥ 32⇥ 32 indexes,

d, with each index possessing 512 similar colours, w. Thus, d can be defined as

d = {w1,w2, ...,w512}, which are the set of colours for which the index is the

same. The set of colour names are defined as co-ordinates in the RGB colour space,

Z = {z1, z2, ..., z16}, and a mapping/ posterior probability from an index d and a

colour distribution d is generated. Similar to Bag of Words [64, 168], this process is

a form of vector quantisation, and allows for multiple similar colours to be assigned

to similar colour name distributions.

The probability of assigning d to a colour name z is:

p(z|d) = ⌃512
n=1p(z|wn)p(wn|d) (3.24)

where p(z|wn) is a distribution of probabilities calculated as normally distrib-

uted variates of the closest K colour names from a given colour wn, where:
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p(z|wn) =

8
><

>:

exp(�||z�wn||2/ 1

K�1
⌃zl 6=z||zl�wn||2)

PK
p=1

exp(�||zp�wn||2/ 1

K�1
⌃zs 6=zp

||zs�wn||2)
, if z 2 KNN(wn)

0, otherwise

(3.25)

The p(w|d) term in equation 3.24 weighs the contribution of wn to d, ensuring

that values of wn closer to the mean of wn, µ, contribute greater to d.

p(wn|d) =
exp(�↵||wn � µ||2)

⌃512
l=1exp(�↵||wl � µ||2)

(3.26)

The terms present in equation 3.24 capture the similarity between colour

names and colour indexes d. As similar colours result in similar colour name

distributions, the e↵ects of illumination variation can be minimised. We extract

SCNCD features from all limbs of a given person separately, and concatenate to

create a foreground descriptor. Figure 3.6 shows an example of SCNCD features

being extracted from each limb separately. Similar to [208], we extract SCNCD

features from the RGB, normalized RGB, l1l2l3 [52] and HSV colour spaces. For

each colour space, we then apply a log transform to the extracted features, and

normalise to a unit length, before fusing to form our final limb-by-limb level SCNCD

feature.
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Figure 3.6: SCNCD [208] feature extraction at a limb-by-limb level. The histograms
below each individual limb image represent the extracted feature descriptor, with
each bar representing an individual colour name.

3.4.3 Weighted LOMO

Although the original LOMO features attempt to minimise the negative e↵ects

of pose and viewpoint variation, they cannot di↵erentiate between di↵erent parts

of a person’s body, such as on a limb-by-limb level, nor between foreground and

background areas. We therefore aim to minimise the e↵ects of pose and background

variation by weighting LOMO features by incorporating the skeleton model described

in Section 3.2.

As the predicted skeleton is likely to be di↵erent to a corresponding ground-

truth skeleton, the probability of some foreground being considered background and
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vice-versa is high. Therefore, we decide not to completely mask-out information

considered background, due to the risk of inadvertently removing foreground inform-

ation. Instead, we use the computed image mask to weight the LOMO features by

the percentage of predicted foreground in each feature patch, by:

fw(B) =
| F \B |
| B | f(B) (3.27)

where B is the set of pixels in the image patch and F is the set of pixels

labelled foreground within the same image patch. Once all patches have been

weighted, the maximum value for each histogram bin across each horizontal location

is taken towards the final feature descriptor. As LOMO is a patch-based feature

type, it was possible to weight each patch according to the percentage of foreground

within the patch, allowing for the negative e↵ects of poor skeleton prediction to be

mitigated. This is in contrast to SCNCD, which is not patch-based, and requires

a bounded image region from which to extract feature descriptors. To generate

the LOMO features, we use the code given by [115], and alter it as described in

Equation 3.27 to prioritise features from the foreground areas. We concatenate the

original LOMO features with our new, weighted features to create Weighted LOMO.

Figure 3.7 illustrates the weighting process. The concatenation of the Weighted

LOMO and limb-by-limb level SCNCD feature descriptors form the final feature

descriptor for each image.
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Figure 3.7: Our proposed method for weighting the LOMO feature descriptor.
Patch features are extracted from each 10⇥ 10 pixel region, and then weighted by
multiplying by the percentage of foreground pixels. Then, we take all patches in
the same horizontal location and use the maximum value of each bin to contribute
towards the final feature descriptor for that horizontal location.

3.5 Distance Metric Learning

Due to the significant intra-class variation visible within typical Re-ID imagery,

traditional distance measures such as Euclidean are often inappropriate to use in a

Re-ID context. As such, many Re-ID methods instead learn a custom distance metric

optimal for the Re-ID task. Such distance metrics aim to bring feature descriptors

of the same class closer to each other within the feature space.

KISSME [93] calculates the distance between two feature descriptors as:

⌧2M (fi, fj) = (fi � fj)
TM(fi � fj) (3.28)

where M = (⌃�1
I � ⌃�1

E ) and ⌃I and ⌃E are the intra-personal and extra-

personal scatter matrices respectively. Often, dimensionality reduction using tech-

niques such as Principal Component Analysis (PCA) [197] is performed on the input
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vectors prior to estimating ⌃I and ⌃E . However, these approaches do not consider

the distance metric learning stage during the dimensionality reduction stage, and

therefore are not optimal.

To increase optimality, we use Cross-view Quadratic Discriminant Analysis

(XQDA) [115], a distance metric learning technique which extends KISSME, to

perform our distance metric learning. Let D be the original dimensionality of the

input data, and R being the reduced dimensionality. XQDA learns a subspace

W = (w1,w2, ...,wr) 2 RD⇥R, whilst simultaneously learning a distance function:

dW (fi, fj) = (fi � fj)
TW (⌃

0�1
I � ⌃

0�1
E )W T (fi � fj) (3.29)

where ⌃
0
I = W T⌃IW and ⌃

0
E = W T⌃EW . Directly optimising dW is

di�cult due to the presence of two inverse matrices. Furthermore, due to the

distribution of intra-personal and extra-personal distances having zero mean, W

cannot be determined using a traditional LDA approach. Instead, it is possible to

maximise the variances �E and �I , to better distinguish between the two classes. The

projection direction, w, can be optimised such that �E(w)/�I(w) is maximised. Since

�I(w) = wT⌃Iw and �E(w) = wT⌃Ew, the objective function is the Generalised

Rayleigh Quotient:

J(w) =
wT⌃Ew

wT⌃Iw
. (3.30)

We can solve for w by a generalised eigenvalue decomposition by maximising:

max
w

wT⌃Ew, s.t. wT⌃Iw = 1. (3.31)

The largest eigenvalue of ⌃�1
I ⌃E is equivalent to the maximum value of J(w),

with the corresponding eigenvector being the solution. The columns of W correspond

to the R eigenvectors of ⌃�1
I ⌃E taken in decreasing order of eigenvalue. Thus, with

the above algorithm, XQDA learns a discriminant subspace, as well as a distance

function within the learnt subspace.

3.6 Results and Discussion

In this section, we describe both our experimental settings and the Re-ID matching

results obtained whilst using our proposed method. We utilise our hand-labelled

skeleton keypoints (Appendix A), which consist of twenty-nine keypoints representing

fourteen limbs, with each limb consisting of two end-points, as well as a third keypoint

to represent the edge of the limb. The bottom keypoint of each limb also acts as the

top keypoint of the following limb. When constructing our PLS regression models,
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PLSAM(v1)

(Weighted

LOMO

only)

PLSAM(v2)

(Weighted LOMO

+ Limb-by-Limb

Level SCNCD)

LOMO

only

Limb-by-Limb

Level SCNCD

only

VIPeR [59],

QMUL

GRID [117, 124, 125]

53,920 54,816 26,960 896

CUHK03 [111] 71,444 72,340 35,722 896

Table 3.1: The dimensionality of each of the feature type used in our experimentation.
Due to the higher resolution available for most images within the CUHK03 [111] data
set, we resize to 160⇥ 60 pixels for LOMO and Weighted LOMO feature extraction,
rather than 128⇥ 48 pixels, resulting in a higher dimensional feature descriptor.

we choose the top fifteen components for the skeleton prediction models, and the

top fifty components for the orientation prediction models.

We experiment on the following three data sets: VIPeR [59], QMUL GRID [117,

124, 125], and CUHK03 [111]. We extract Histogram of Oriented Gradients (HOG) [35,

47] features from Re-ID images prior to applying the Retinex (Section 3.4.1) prepro-

cessing step, using a cell size of six pixels, and a block size of two pixels.

For the XQDA distance metric, we utilise the default hyperparameters as

determined by [115]. The first hyperparameter, �, ensures that ⌃I is not a singular

matrix by adding � to all elements of ⌃I , as otherwise this would result in ⌃�1
I being

impossible to compute, and is set to 0.001 in our experiments. The second hyper-

parameter, qdaDims, is set to -1, which results in the subspace W = (w1,w2, ...,wr)

consisting of the r eigenvectors of ⌃�1
I ⌃E with corresponding eigenvalues greater

than 1.

We define two feature descriptors to be used in our evaluation: PLSAM(v1)

consists solely of the Weighted LOMO feature descriptors, whereas PLSAM(v2) con-

sists of both the Weighted LOMO and limb-by-limb level SCNCD feature descriptors.

We present the dimensionality of these feature descriptors alongside the dimensional-

ity of the LOMO and limb-by-limb level SCNCD feature descriptors in Table 3.1.

3.6.1 Evaluation on the VIPeR data set

In this section, we present results of our method on the VIPeR [59] data set. We

convert all images to the HSV colour space, and extract HOG features from the V

channel to act as input for our PLS-based models. All images within the VIPeR

data set are originally provided with a resolution of 128 ⇥ 48 pixels, and are not

resized for our experiments. We train two separate skeleton prediction models, one
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of which handles people facing perpendicular to the camera, and the other which

handles those with alternative orientations. Furthermore, we train an orientation

model to predict the orientation of a person, which therefore allows our method to

choose which skeleton prediction model is most appropriate to use. We achieve this

by utilising the orientation information provided by the VIPeR data set, which lists

the angle each person is facing relative to the camera. By dividing the VIPeR data

set into two equal sized sets, with 316 training identities and 316 testing identities,

our orientation model achieves an accuracy of 91.9%.

Figure 3.8 shows examples of the best and worst skeleton fitting results on the

VIPeR data set. We can see from this figure that the skeleton prediction model works

well for more standard and common poses, but struggles when it comes to unusual

poses such as a person raising their arms above their head. Figure 3.9 shows the

distribution of RMSE on skeletons predicted using the PLS-based skeleton prediction

model. Figure 3.10 shows a sample of images where our PLS-based method achieves

good skeleton fitting results, whilst Figure 3.11 shows a sample of images where our

PLS-based method achieves poor skeleton fitting results.

Figure 3.8: Examples of ground-truth and predicted skeletons from the VIPeR [59]
data set. The average RMSE over the entire test set is 5.2 pixels.

71



Figure 3.9: The distribution of RMSE on skeletons predicted by the PLS-based
skeleton prediction model on the VIPeR [59] data set.
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Good Fitting Results (VIPeR)

Ground-Truth PLS Ground-Truth PLS

(a)
RMSE =

3.2 pixels
(d)

RMSE =

2.2 pixels

(b)
RMSE =

3.5 pixels
(e)

RMSE =

3.5 pixels

(c)
RMSE =

3.3 pixels
(f)

RMSE =

3.6 pixels

Figure 3.10: Examples of ground-truth skeletons, and skeletons predicted using our
PLS model on the VIPeR [59] data set which achieves a good skeleton fitting result.
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Poor Fitting Results (VIPeR)

Ground-Truth PLS Ground-Truth PLS

(a)
RMSE =

8.8 pixels
(d)

RMSE =

7.2 pixels

(b)
RMSE =

10.7 pixels
(e)

RMSE =

9.5 pixels

(c)
RMSE =

9.1 pixels
(f)

RMSE =

11.5 pixels

Figure 3.11: Examples of ground-truth skeletons, and skeletons predicted using our
PLS model on the VIPeR [59] data set which achieves a poor skeleton fitting result.
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Following the experimental procedure used in other literature [43, 115], we

divide the VIPeR data set randomly into two equally sized sets, with 316 identities

present within each set. We conduct our experiments ten times using repeated hold-

out validation, and average to produce the final result. We compare our proposed

method with other state-of-the-art methods in Table 3.2, with the CMC curve shown

in Figure 3.12. We can see that by using the Weighted LOMO feature descriptor

(PLSAM(v1)), we achieve an improvement in all measured rank-n scores. When

we concatenate the Weighted LOMO feature descriptors with the SCNCD feature

descriptors at a limb-by-limb level (PLSAM(v2)), we see an even greater increase in

rank-n score. We propose that this increase could be down to the vibrant clothing

colours present within the VIPeR data set. The improvement in rank-n score shows

how our method produces a much more robust feature descriptor for use in matching.
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Figure 3.12: CMC on the VIPeR [59] data set. All of our CMC curves are single-shot
results. Results are reproduced from [115], [217], [212], [111] and [113].

VIPeR

r=1 r=5 r=10 r=20

PLSAM(v2) 46.3 75.0 85.6 93.9

PLSAM(v1) 42.8 71.9 82.0 91.9

Null Space [212] 42.3 71.5 82.9 92.1

MLAPG [113] 40.7 69.9 82.3 92.4

DeepList [184] 40.5 69.2 81.0 91.2

LOMO+XQDA [115] 40.3 68.3 80.9 91.1

SCNCD [208] 37.8 68.5 81.2 90.4

Table 3.2: The VIPeR [59] data set was split into two sets, with 316 identities
allocated for training and 316 for testing. Every probe image in the test set is
compared to every gallery image in the test set. PLSAM(v2) consists of the Weighted
LOMO and limb-by-limb level SCNCD feature descriptors with XQDA, whereas
PLSAM(v1) consists just of the Weighted LOMO feature descriptors with XQDA.
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3.6.2 Evaluation on the QMUL GRID data set

In this section, we will evaluate our method using the QMUL GRID [117, 124, 125]

data set. Whilst images from the VIPeR data set were all originally provided with

a standard resolution of 128 ⇥ 48 pixels, images from the QMUL GRID data set

were originally provided in a variety of di↵erent resolutions. Therefore, we begin

by resizing all images to a standard resolution of 128⇥ 48 pixels. Similarly to the

VIPeR data set, we extract HOG features from the V channel of HSV colour space

to act as input for our skeleton prediction model. Whilst during experiments on the

VIPeR data set, it was necessary to train two skeleton prediction models given the

high variation of person poses present in the VIPeR data set, for the QMUL GRID

data set we were able to achieve su�ciently high skeleton prediction performance

using only a single skeleton prediction model. We believe this is because most people

photographed as part of the QMUL GRID data set are facing either towards or away

from the camera, and therefore most personal orientations are homogeneous.

Figure 3.13 shows examples of the best and worst skeleton fitting results on

the QMUL GRID data set. We can see that similarly to the experimentation on the

VIPeR data set, the fitting fails on those with raised arms, but performs well on those

with more standard poses. We believe this can be attributed to a lack of training

examples of people with raised arms. Figure 3.14 shows the distribution of RMSE

on skeletons predicted using the PLS-based skeleton prediction model. Figure 3.15

shows a sample of images where our PLS-based method achieves good skeleton

fitting results, whilst Figure 3.16 shows a sample of images where our PLS-based

method achieves poor skeleton fitting results. We can see from Figure 3.16 that

the PLS-based method struggles to accurately fit skeletons when the person has an

unusual pose, such as in images (c), (e) and (f).

We use the same experimental protocols as used in various other literat-

ure [115, 126]. Therefore, as the QMUL GRID data set consists of 250 image pairs

and 775 single images, we split the pairs into 125 training pairs and 125 testing

pairs, and place the 775 single images into the testing gallery set. We run our

experiments ten times using repeated hold-out validation, and average to produce

the overall result. We present a comparison of our proposed method’s results in

Table 3.3. We can see from Table 3.3 that our proposed methods greatly outperform

other state-of-the-art methods. Interestingly, the improvement over the standard

LOMO+XQDA method is significantly larger than that seen with experimentation on

the VIPeR data set. We believe that the QMUL GRID data set benefits significantly

from foreground modelling due to the high level occlusion, overlapping people, and

background variation present within the data set, due to its cameras being located

in a busy underground transport station. The use of foreground modelling under
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these circumstances can act to mask out significant amounts of noise, computing

more robust feature descriptors representative of the person. Furthermore, the large

matching rate increase on both the QMUL GRID data set and the VIPeR data set

demonstrates the generalisation ability of our proposed method. The CMC curve

comparing our results to other state-of-the-art methods can be seen in Figure 3.17.

Figure 3.13: Examples of ground-truth and predicted skeleton from the QMUL
GRID [117, 124, 125] data set. The average RMSE over the entire test set is 5.3
pixels.
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Figure 3.14: The distribution of RMSE on skeletons predicted by the PLS-based
skeleton prediction model on the QMUL GRID [117, 124, 125] data set.
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Good Fitting Results (QMUL GRID)

Ground-Truth PLS Ground-Truth PLS

(a)
RMSE =

3.6 pixels
(d)

RMSE =

2.5 pixels

(b)
RMSE =

3.5 pixels
(e)

RMSE =

2.7 pixels

(c)
RMSE =

3.9 pixels
(f)

RMSE =

5.1 pixels

Figure 3.15: Examples of ground-truth skeletons, and skeletons predicted using our
PLS model on the QMUL GRID [117, 124, 125] data set which achieves a good
skeleton fitting result.
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Poor Fitting Results (QMUL GRID)

Ground-Truth PLS Ground-Truth PLS

(a)
RMSE =

8.5 pixels
(d)

RMSE =

7.7 pixels

(b)
RMSE =

6.0 pixels
(e)

RMSE =

8.1 pixels

(c)
RMSE =

6.4 pixels
(f)

RMSE =

7.1 pixels

Figure 3.16: Examples of ground-truth skeletons, and skeletons predicted using our
PLS model on the QMUL GRID [117, 124, 125] data set which achieves a poor
skeleton fitting result.
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Figure 3.17: CMC on the QMUL GRID [117, 124, 125] data set. All of our CMC
curves are single-shot results. Results are reproduced from [115], [217], [212], [111]
and [113].

QMUL GRID

r=1 r=5 r=10 r=20

PLSAM(v2) 26.7 47.9 59.0 68.2

PLSAM(v1) 23.9 41.8 51.0 61.4

MLAPG [113] 16.6 33.1 41.2 53.0

LOMO+XQDA [115] 17.3 36.3 44.8 55.4

Table 3.3: The QMUL GRID [117, 124, 125] data set was split into two sets, with
125 identities allocated for training and 900 for testing. The 900 testing identities
consisted of 125 image pairs and 775 single images. Every probe image in the test
set is compared to every gallery image in the test set. PLSAM(v2) consists of the
Weighted LOMO and limb-by-limb level SCNCD feature descriptors with XQDA,
whereas PLSAM(v1) consists just of the Weighted LOMO feature descriptors with
XQDA.
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3.6.3 Evaluation on the CUHK03 data set

In this section, we evaluate how our method performs on the CUHK03 [111] data

set. Similarly to the QMUL GRID data set, images within the CUHK03 data set

come in a variety of di↵erent resolutions, and thus we resize to 128⇥ 48 pixels for

the skeleton prediction stage. However, to take advantage of the higher resolution

available for most images within this data set, we also resize to 160⇥ 60 pixels for

the feature extraction (LOMO and Weighted LOMO) and orientation modelling

stages. We divide the data set into two distinct sets, with each distinct set containing

people with roughly similar orientations. Whilst quantitative analysis could not be

completed due to a lack of ground-truth skeleton data, we believe that skeletons

predicted using HOG features extracted from the Y channel of the YIQ colour model

appeared to be more accurate than those predicted from the V channel of the HSV

colour model, and hence we chose to extract HOG features from the former. We

use our aforementioned two CUHK03 orientation sets to learn a CUHK03-specific

orientation model, training on 1160 identities and testing on 100 identities in line

with standard experimental protocol [111, 115], and achieve an orientation accuracy

of 95.8%. Again due to a lack of ground-truth skeleton keypoints for CUHK03,

we instead use the skeleton prediction models as trained on VIPeR for the task of

skeleton prediction, as the two data sets are quite visually similar with regards to

colour vibrancy and camera viewpoints. Following orientation prediction, we predict

the skeleton of each image using either the frontal or sideways VIPeR skeleton

prediction models. We again follow standard experimentation protocol such as

in [111, 115] by splitting the data set into 1160 training identities and 100 testing

identities. We run our experiment twenty times using repeated hold-out validation,

and average to produce the final result. Table 3.4 presents our results compared to

competing state-of-the-art methods, where we can see that PLSAM(v1) increases

the rank-1 score by 5.7%, whereas PLSAM(v2) increases the rank-1 score by 6.3%.

The CMC curve can be seen in Figure 3.18.
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Figure 3.18: CMC on the CUHK03 [111] data set. All of our CMC curves are
single-shot results. Results are reproduced from [115], [217], [212], [111] and [113].

CUHK03

r=1 r=5 r=10 r=20

PLSAM(v2) 65.2 89.8 95.0 97.9

PLSAM(v1) 64.6 89.2 94.9 98.1

Null Space [212] 58.9 85.6 92.5 96.3

MLAPG [113] 58.0 87.1 94.7 98.0

DeepList [184] 55.9 86.3 93.7 98.0

LOMO+XQDA [115] 54.9 85.3 92.6 97.1

FPNN [111] 20.7 50.9 67.0 83.0

Table 3.4: The CUHK03 [111] data set was split into two sets, with 1160 identities
allocated for training and 100 for testing. Every probe image in the test set is
compared to every gallery image in the test set. PLSAM(v2) consists of the Weighted
LOMO and limb-by-limb level SCNCD feature descriptors with XQDA, whereas
PLSAM(v1) consists just of the Weighted LOMO feature descriptors with XQDA.
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3.7 Summary

In this chapter, we have proposed a PLS-based method to predict the skeleton of

an individual present within a Re-ID image. We train the PLS regression model

by using HOG features extracted from a training set of Re-ID images, and learning

a regression between the HOG features and a set of labelled skeleton keypoints.

Upon predicting the skeleton of an unseen Re-ID image, we can use this information

to produce a foreground mask, which provides distinction between the foreground

and background regions of the Re-ID images. We then use this mask during the

feature extraction stage to weight feature descriptors such that features are primarily

extracted from foreground regions. Following feature extraction, we learn a distance

metric which is optimal for the task of Re-ID, and prove that our method outperforms

other state-of-the-art techniques.

We find that the use of a PLS regression model for foreground modelling can

significantly increase the matching rate. The advantages of such a method include:

1. Computational E�ciency: Some methods, such as those which utilise a Deep

Convolutional Neural Network (Deep CNN), require significant computational

resources to learn a mapping between a set of input and output variables.

With Deep CNNs, this is due to how network architectures can be large in

size, and require training thousands of images multiple times over to train.

Comparatively, learning a shallow regression model takes fewer computational

resources.

2. Training Requirements: When compared to other methods, such as Deep

CNNs, a shallow regression model can be trained with fewer training images.

This is important given the scarcity of skeleton keypoints for Re-ID (or similar

domain) imagery.

3. Fitting accuracy of appearance modelling: We have demonstrated that we are

able to achieve a high fitting accuracy when using a PLS regression model.

We believe that this is due to the simultaneous dimensionality reduction and

distance metric learning states employed by the PLS regression technique.

Other methods, such as Canonical Correlation Analysis (CCA) or a multilayer

perceptron, may also be able to predict accurate skeletons, and could form the basis

for future work.

Furthermore, our proposed Weighted LOMO descriptor also possesses the

following advantages:

1. Easy integration with the foreground mask: Once the PLS regression model has

predicted the skeleton keypoints of an unseen input image, these skeleton key-
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points can be used to produce a foreground mask, providing visual distinction

between the foreground and background regions. As the original LOMO feature

descriptors are extracted in patches, we can easily weight feature descriptors

on a patch-by-patch level by incorporating the information present within the

foreground mask.

2. Invariance to small errors in skeleton prediction: It is di�cult to compute a

perfectly accurate skeleton fit on all occasions. This is especially prevalent

in Re-ID imagery, where pose and illumination variation, low resolution, and

occlusion can make predicting the skeleton of an individual even more di�cult.

In our proposed method, instead of only extracting features from foreground

regions, we weight each patch according to the percentage of each patch

considered foreground. Due to this, foreground regions erroneously classified

as background may not be excluded from the feature extraction process.

Recently [2, 83, 108, 111, 112, 193], methods utilising Deep CNNs have shown

great promise in both regression tasks and for use in the field of Re-ID. However,

aforementioned issues specifically relating to computational requirements and the

magnitude of training data required to train such a network still remain. In the

following chapter, we will show how we overcome these issues to create a Deep CNN

for use as a skeleton prediction model.
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Chapter 4

Deep Foreground Appearance

Modelling

4.1 Introduction

In the previous chapter, we introduced a PLS-based approach to learning a regression

between image appearance information and skeleton keypoints. Skeletons predicted

through the PLS-based model could then be used within the proposed Re-ID method

to permit feature weighting in areas considered by the model to be foreground.

We demonstrated an increase in Re-ID matching rates following the inclusion of

foreground modelling within the pipeline. However, it was necessary to train multiple

PLS models due to the poor generalisation ability of these models when presented

with images of people taken from di↵erent orientations, such as frontal images

compared to sideways images.

In this chapter, we propose to instead replace the PLS component of our

framework with a deep convolutional neural network (CNN)-based approach [190].

This approach enables our model to learn intricate poses through network training

using a large variety of di↵erent poses. By using a deep CNN rather than a PLS-based

model, we are able to create a skeleton prediction model able to predict person

skeletons to a high degree of accuracy regardless of the orientation of the person.

In Section 4.2 we describe our deep neural-network appearance model (DNAM),

including detail of the network architecture. Section 4.3 compares our results against

other competing methods, whilst we summarise our findings in Section 4.4.
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4.2 Deep Neural-Network Appearance Modelling

In this section, we will discuss how we design a deep CNN to learn a mapping

between input images and skeleton keypoints.

We define a CNN architecture which takes as input a Re-ID image, and

outputs the corresponding skeleton keypoint locations. Our CNN is based on the

ResNet-50 [66] architecture, which has demonstrated high performance in computer

vision tasks in recent years [68, 116, 228, 231]. The use of a ResNet-50 architecture

allows us to take advantage of transfer learning [147] by using weights pre-trained on

the ImageNet [38] data set. By utilising transfer learning, we are able to decrease the

time taken for the network to converge, and thus speed up the training process. As

the use of the pre-trained ImageNet weights mandates a specific CNN architecture,

we resize all input images to 224⇥ 224 pixels to meet the required size of the input

layer. Given the di↵erence in application between the network on which the ImageNet

weights were trained, and our network, we remove the final fully-connected layers and

replace with our own fully-connected layers of size 1024 and 58 respectively, where 58

is the dimensionality of our skeleton vector (29 x-coordinates and 29 y-coordinates).

Hence, each unit in the final fully-connected layer of our network represents an x or

y co-ordinate in the skeleton vector. We use the hand-labelled skeleton keypoints

initially described in Appendix A. To summarise, the skeletons consist of fourteen

limbs each represented by two end-points, as well as a third keypoint representing

the edge of the limb. The distance between the bottom end-point and the keypoint

representing the edge of the limb allow us to calculate the width of the limb. In

addition, the bottom keypoint of each limb is also the top keypoint of the following

limb. Figure 4.1 demonstrates our network’s architecture.
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Figure 4.1: The network architecture for our proposed deep foreground modelling
network. We first rescale images to a resolution of 224⇥ 224 pixels, and pass the
images through the convolutional layers of a ResNet-50 network [66]. We take the
POOL5 average pooling layer as the output of the ResNet-50 model, flatten the
output, and pass the output through two further fully-connected layers. The output
of our proposed network contains 58 units, representing the (x, y) coordinates of the
skeleton key-points (joints and edge markers). We use the RMSProp [177] optimizer,
with a mean squared error loss.

For each given Re-ID data set or set of data sets, we first designate a subset

of these identities as a training set. However, typical Re-ID data sets are small in

size and lack significant numbers of examples per class (identity), and therefore,

given deep networks require a significant number of training examples, training a

deep CNN can be di�cult. To expand the size of our training and validation sets, we

apply data augmentation to all images. To achieve this, we create additional images

and corresponding skeletons by applying small rotations and translations, as well

as reflections in the y-axis. Examples of images, skeletons and their corresponding

augmentations can be seen in Figure 4.2.
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Figure 4.2: Examples of images, skeletons, and their corresponding augmentations.
The first image in each row is the original image. The remaining images in each row
are augmentations of the first image.
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Unlike the PLS-based model described in Section 3, we only train a single

skeleton prediction model, rather than training multiple models to handle multiple

person orientations. However, similarly to Section 3.4, we extract feature descriptors

from the Re-ID images using the Weighted LOMO and limb-by-limb level SCNCD

feature types, which creates a feature descriptor consisting of colour and textural

information weighted towards the foreground regions of a Re-ID image.

4.3 Results and Discussion

We experiment on the following three data sets: VIPeR [59], QMUL GRID [117,

124, 125], and CUHK03 [111]. For all three data sets, we begin by training the

fully-connected layers of our ResNet-50-based [66] CNN architecture. This is because

the non-fully-connected layers are initialised with the ImageNet [38] weights. Fine-

tuning both the randomly-assigned weights of the fully-connected layers and the

pre-trained on ImageNet weights of the remaining model would negatively impact

the pre-trained weights. Following training on the fully-connected layers, we train all

layers from ResNet-50’s third stage onwards. We use the RMSProp [177] optimizer

with a learning rate of 0.001.

4.3.1 Evaluation on the VIPeR data set

We divide the VIPeR [59] data set into two distinct sets. The first set consists of 316

identities for training/validation, whilst the second also consists of 316 identities and

is used for testing. 80% of the training/validation identities are designated as training

identities, with the remaining as validation identities. In addition to the VIPeR data

set, we further supplement the training and validation sets with all images from the

QMUL GRID [117, 124, 125] data set, due to the large amount of data required

when using deep learning approaches when compared to more traditional approaches.

The QMUL GRID [117, 124, 125] data set is firstly split into two distinct sets; The

first set contains the images which form an image pair, that being, there is greater

than a single image of these identities present within the unaugmented data set.

The second set contains the images which do not form an image pair, and hence

only one image of this identity is present within the unaugmented data set. We

proceed by taking 80% of identities from each set to complement the training set,

with the remaining 20% forming part of the validation set. Splitting the QMUL

GRID data set this way ensures that we use a consistent number of training and

validation images between folds. We train for 15 epochs, with a batch size of 32.

Although the use of the ImageNet [38] mandates images of size 224⇥ 224 during the

skeleton prediction stage, we resize all images to 128⇥ 48 for feature extraction, also
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scaling the predicted skeletons accordingly. Examples of skeleton prediction on the

VIPeR data set using our deep method can be seen in Figure 4.3. Figure 4.4 shows

the distribution of RMSE on skeletons predicted using the deep skeleton prediction

model on the VIPeR data set. Figure 4.5 shows a sample of images where the method

achieves good skeleton fitting results, and compares the fitting to the PLS-based

approach from Chapter 3. In Figure 4.5, we can see that the approach better fits

the person in (a)’s left hand, even though it is a similar colour to the background.

A similar situation can be seen in person (b), where a better fitting is obtained

on the legs, which are a similar colour to the shadowed region in the background.

In (c), the person is in a common pose, with their back to the camera, and both

approaches achieve a similar RMSE. Figure 4.6 shows a sample of images where the

method achieves poor skeleton fitting results, and also compares the fitting to the

PLS-based approach from Chapter 3. We can see in person (a) that both the deep

CNN-based approach and the PLS-based approach struggle to fit the skeleton, and

we believe this is due to the unusual coloured clothing that person (a) is wearing

on their upper body. In person (b), both approaches fail to fit person’s left arm

appropriately, which is raised. Person (c) contains significant illumination and blur

issues, and both approaches fail to identify this person as standing perpendicular to

the camera, instead fitting a frontways skeleton. In Figure 4.7 and Figure 4.8, we

compare the fittings achieved by the method with our PLS-based method on the

images which had fittings considered poor within Figure 3.11. We can see that in all

but one case, the CNN-based approach achieves a lower RMSE. In (b), we can see

that the fitting of the legs is considerably better, whilst in (c), (e) and (f), it better

captures the orientation of the person relative to the camera.
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Ground-Truth DNAM PLS

Random Image
RMSE =

6.5 pixels

RMSE =

7.6 pixels

Image with

minimum RMSE
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RMSE =
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Image with

maximum RMSE

RMSE =

17.9 pixels

RMSE =

12.3 pixels

Figure 4.3: Examples of ground-truth, skeletons predicted using our deep model, and
skeletons predicted using our PLS model on the VIPeR [59] data set. The average
RMSE when using the deep model was 4.5 pixels, whilst the average when using the
PLS model was 5.2 pixels.
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Figure 4.4: The distribution of RMSE on skeletons predicted by the deep skeleton
prediction model on the VIPeR [59] data set. The average RMSE was 4.5 pixels,
whilst the average using the PLS model was 5.2 pixels.

For the XQDA distance metric learning stage, we combine the training and

validation sets to form a larger training set. This is because the XQDA distance

metric learning stage does not require a validation set at this stage, as we use the

same hyperparameters as used in Chapter 3. We repeat our experiment ten times

using repeated hold-out validation, and average to produce the final result. We can

see from Table 4.1 that our deep neural-network appearance modeling (DNAM)

model performs better than all other methods, including the PLSAM method [189]

as proposed in Chapter 3, at rank-10 and rank-20. However, the PLSAM method

outperforms our DNAM method at rank-1 and rank-5. When compared to using

only LOMO features, we can see an increase of 5.0% in the rank-1 rate when using

our DNAM(v2) method, but we also see a 1.0% decrease when compared to our
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Good Fitting Results (VIPeR)

Ground-Truth DNAM PLS
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Figure 4.5: Examples of ground-truth, skeletons predicted using our deep model, and
skeletons predicted using our PLS model on the VIPeR [59] data set which achieve a
good skeleton fitting result.
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Poor Fitting Results (VIPeR)
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Figure 4.6: Examples of ground-truth, skeletons predicted using our deep model, and
skeletons predicted using our PLS model on the VIPeR [59] data set which achieve a
poor skeleton fitting result.
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DNAM versus PLS poor

fitting results (VIPeR)
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Figure 4.7: A comparison of skeleton fitting results using our deep method against
the fittings labelled as poor in Figure 3.11.
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DNAM versus PLS poor

fitting results (VIPeR)

Ground-Truth DNAM PLS
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Figure 4.8: Further comparisons of skeleton fitting results using our deep method
against the fittings labelled as poor in Figure 3.11.
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PLSAM(v2) method. We believe the cause of this may be the similarity between the

skeletons predicted by the PLS and deep models, even when considering that the

deep method had a lower average root mean squared error. The CMC curve can be

seen in Figure 4.9.
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VIPeR

r=1 r=5 r=10 r=20

DNAM(v2) 45.3 74.8 86.4 94.2

DNAM(v1) 42.3 71.4 81.9 91.8

PLSAM(v2) [189] 46.3 75.0 85.6 93.9

PLSAM(v1) [189] 42.8 71.9 82.0 91.9

DeepDi↵ [77] 43.2 68.0 77.6 86.1

Null Space [212] 42.3 71.5 82.9 92.1

MLAPG [113] 40.7 69.9 82.3 92.4

DeepList [184] 40.5 69.2 81.0 91.2

LOMO+XQDA [115] 40.3 68.3 80.9 91.1

SCNCD [208] 37.8 68.5 81.2 90.4

PKFM [23] 36.8 70.4 83.7 91.7

CSBT [26] 36.6 66.2 - 88.3

DCML [132] 33.6 62.9 76.5 87.6

Table 4.1: Results on the VIPeR [59] data set. The best results are highlighted in
bold. (v1) refers to the Weighted LOMO features and XQDA, whereas (v2) refers
to the Weighted LOMO features with the limb-by-limb level SCNCD features and
XQDA.
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Figure 4.9: CMC on the VIPeR [59] data set. All of our CMC curves are single-shot
results. Results are reproduced from [77, 111, 113, 115, 189, 212, 217].

4.3.2 Evaluation on the QMUL GRID data set

We split the QMUL GRID [117, 124, 125] data set into two sets. The first set contains

125 identities taken from the identities which form an image pair, and are used for

training/validation. The second set contains the remaining 125 identities which form

an image pair, and are used for testing. Regarding the 775 identities/images which

do not form an image pair, we use these to increase the size of the testing gallery

set. We enlarge the training/validation set by also including the entirety of the

VIPeR [59] data set, with 80% of the VIPeR data set being used for training, with

the remaining 20% being used for validation. Similarly to our experimentation on

the VIPeR data set (Section 4.3.1), we combine the training and validation sets for

the XQDA distance metric learning stage. We train for 10 epochs, and set the batch

size as 16. We resize the images to 128⇥ 48 pixels for the feature extraction stage,

and rescale the skeletons appropriately. We run our experiments ten times using

repeated hold-out validation, and average to produce the final result. Examples of

skeleton prediction on the QMUL GRID data set using our deep method can be seen

in Figure 4.10. Figure 4.11 shows the distribution of RMSE on skeletons predicted

using the deep skeleton prediction model on the QMUL GRID data set. Figure 4.12
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shows a sample of images where our deep CNN-based method achieves good skeleton

fitting results, and compares the fitting to the PLS-based approach from Chapter 3.

The QMUL GRID data set is easier to perform skeleton fitting when compared to the

VIPeR data set, as most images are taken from the front or behind of each person,

hence reducing the need for the skeleton fitting model to handle di↵erent person

orientations. In (a), we can see that the PLS-based model mistakenly considers a

bag to be a person’s legs, whereas this mistake is not made by the deep CNN-based

model. In (c), the deep CNN-based model fits the raised left arm of the person to a

higher accuracy than the PLS-based model. Figure 4.13 shows a sample of images

where our deep CNN-based method achieves poor skeleton fitting results, and also

compares the fitting to the PLS-based approach from Chapter 3. In person (a), both

the deep CNN-based approach and the PLS-based approach struggle to fit the raised

left arm of the person, most likely due to a lack of training data for this pose. (b)

and (c) both contain occlusion, and hence both the PLS-based and deep CNN-based

approaches struggle to appropriately fit the legs. In Figure 4.14 and Figure 4.15, we

compare the fittings achieved by our deep CNN-based method with our PLS-based

method on the images which had fittings considered poor within Figure 3.16. We

can see that in all but one case, the deep CNN-based approach achieves a lower

RMSE. In (a), the deep CNN-based approach better fits the person’s raised arms.

In (b), the deep CNN-based approach better fits the person’s legs, which are a very

similar colour to part of the background. Both images (c) and (d) contain occlusion,

and hence both approaches struggle to fit the legs. In (e), the deep CNN-based

approach better fits the orientation of the individual, even though this orientation is

rare within the training set.
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Ground-Truth DNAM PLS
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minimum RMSE
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Image with

maximum RMSE
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Figure 4.10: Examples of ground-truth, skeletons predicted using our deep model,
and skeletons predicted using our PLS model on the QMUL GRID [117, 124, 125]
data set. The average RMSE when using the deep model was 5.5 pixels, whilst the
average when using the PLS model was 5.3 pixels.
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Figure 4.11: The distribution of RMSE on skeletons predicted by the deep skeleton
prediction model on the QMUL GRID [117, 124, 125] data set. The average RMSE
was 5.5 pixels, whilst the average using the PLS model was 5.3 pixels.

From Table 4.2, we can see that our proposed deep neural-network appearance

model gives the highest rank-n results across all presented values of n. Compared to

using simply the original LOMO features, we achieve an increase of 11.1% in the

rank-1 rate. When comparing the PLSAM(v2) result to our proposed DNAM(v2),

we see an increase in 1.7% increase in the rank-1 rate. Figure 4.10 shows that the

average root mean squared error for both the deep neural-network method and the

PLS-based method are similar, with only 0.2 pixels between them. The CMC curve

for the experiments on the QMUL GRID data set can be seen in Figure 4.16.
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Good Fitting Results (QMUL GRID)

Ground-Truth DNAM PLS
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Figure 4.12: Examples of ground-truth, skeletons predicted using our deep model,
and skeletons predicted using our PLS model on the QMUL GRID [117, 124, 125]
data set which achieve a good skeleton fitting result using our deep model.
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Poor Fitting Results (QMUL GRID)
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Figure 4.13: Examples of ground-truth, skeletons predicted using our deep model,
and skeletons predicted using our PLS model on the QMUL GRID [117, 124, 125]
data set which achieve a poor skeleton fitting result using our deep model.
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DNAM versus PLS poor fitting

results (QMUL GRID)
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Figure 4.14: A comparison of skeleton fitting results using our deep method against
the fittings labelled as poor in Figure 3.16.
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DNAM versus PLS poor fitting

results (QMUL GRID)

Ground-Truth DNAM PLS
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Figure 4.15: Further comparisons of skeleton fitting results using our deep method
against the fittings labelled as poor in Figure 3.16.
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QMUL GRID

r=1 r=5 r=10 r=20

DNAM(v2) 28.4 49.2 60.0 68.8

DNAM(v1) 24.3 41.6 52.4 61.8

PLSAM(v2) [189] 26.7 47.9 59.0 68.2

PLSAM(v1) [189] 23.9 41.8 51.0 61.4

MLAPG [113] 16.6 33.1 41.2 53.0

LOMO+XQDA [115] 17.3 36.3 44.8 55.4

PKFM [23] 16.3 35.8 46.0 57.6

Table 4.2: Results on the QMUL GRID [117, 124, 125] data set. The best results
are highlighted in bold. (v1) refers to the Weighted LOMO features and XQDA,
whereas (v2) refers to the Weighted LOMO features with the limb-by-limb level
SCNCD features and XQDA.
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Figure 4.16: CMC on the QMUL GRID [117, 124, 125] data set. All of our CMC
curves are single-shot results. Results are reproduced from [77, 111, 113, 115, 189,
212, 217].
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4.3.3 Evaluation on the CUHK03 data set

We use the manually cropped version of the CUHK03 [111] data set, and split the

data into 1160 training identities and 100 testing identities. As we do not have any

ground-truth, hand-labelled skeletons for the CUHK03 data set, we instead train our

deep model using the entirety of the VIPeR and QMUL GRID data sets. We divide

the VIPeR and QMUL GRID data sets into training, validation and testing sets as

described in the previous two sections. We train our model for 15 epochs, with a

batch size of 32. Similarly to the feature extraction in the previous (Section 3.6.3), we

scale the images within the CUHK03 data set to 160⇥60 for extracting the Weighted

LOMO feature descriptors. We run our experiments twenty times using repeated

hold-out validation, and average to produce the final results. From Table 4.3, we can

see that the PLS-based method outperforms the deep method. We believe that this

can be explained by the PLS-based method generalising better when an unseen image

from an unseen data set is passed to the model. Furthermore, person orientations

present within the VIPeR and QMUL GRID data set are fairly constant, with people

largely photographed from the front or back. This is in contrast to the CUHK03

data set, where roughly half of the images consist of those photographed from the

front or back, whilst the other half consist of those photographed from the side. The

use of a single model in the deep neural-network based method versus the use of

two models used in the PLS-based method leads to a frontal skeleton being fit more

often than in the PLS-based method. The CMC curve representing experiments on

the CUHK03 data set can be seen in Figure 4.17.
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CUHK03

r=1 r=5 r=10 r=20

DNAM(v2) 62.2 88.0 94.2 97.5

DNAM(v1) 61.9 88.2 94.2 97.5

PLSAM(v2) [189] 65.2 89.8 95.0 97.9

PLSAM(v1) [189] 64.6 89.2 94.9 98.1

DeepDi↵ [77] 62.4 87.9 93.6 96.7

Null Space [212] 58.9 85.6 92.5 96.3

MLAPG [113] 58.0 87.1 94.7 98.0

DeepList [184] 55.9 86.3 93.7 98.0

CSBT [26] 55.5 84.3 - 98.0

LOMO+XQDA [115] 54.9 85.3 92.6 97.1

FPNN [111] 20.7 50.9 67.0 83.0

Table 4.3: Results on the CUHK03 [111] data set. The best results are shown in
bold. (v1) refers to the Weighted LOMO features and XQDA, whereas (v2) refers
to the Weighted LOMO features with the limb-by-limb level SCNCD features and
XQDA.
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Figure 4.17: CMC on the CUHK03 [111] data set. All of our CMC curves are
single-shot results. Results are reproduced from [77, 111, 113, 115, 189, 212, 217].

4.4 Summary

In this chapter, we have proposed a deep CNN-based approach called Deep Neural-

Network Appearance Model (DNAM), which was used to predict the skeleton of a

person in a Re-ID image. We first divide our data set into training, validation and

testing sets, and then apply data augmentation to increase the size of the training

and validation sets. These images, as well as their corresponding hand-labelled

skeleton keypoints, are then fed into the network which learns a regression between

the two. We then follow with the Weighted LOMO and limb-by-limb level SCNCD

feature extraction processes, XQDA distance metric learning, and evaluation.

We compare our results with those achieved through the PLS-based approach

proposed in Chapter 3, evaluating both through the Re-ID matching framework.

We have demonstrated that by using a deep approach, accurate skeletons can be

predicted with a single deep CNN model. We have demonstrated that when using

our deep foreground modelling approach in combination with feature weighting, we

can achieve superior matching performance. Experiments on the VIPeR, QMUL

GRID and CUHK03 data sets have shown that the deep neural-network approach

achieves an increase in the rank-1 rate of 5%, 11.1% and 7.3% in each respective
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data set when compared to standard approached using the original LOMO features.

When including both the PLS-based approach as proposed in Chapter 3 and our

deep neural-network approach, we are able to achieve an increase of 6%, 11.1% and

10.3%.

The advantages of our deep neural-network method are:

1. Fitting accuracy: We have demonstrated that we are able to achieve a high

fitting accuracy when using a deep CNN-based skeleton prediction model.

When compared to the PLS-based model as proposed in Chapter 3, we have

shown that we are able to achieve a greater skeleton fitting accuracy on the

VIPeR data set, and comparable skeleton fitting results on the QMUL GRID

data set.

2. Number of skeleton prediction models required: Whilst the PLS-based method

required separate models to be trained to handle significantly di↵erent person

orientations, we were able to train a single deep CNN-based model which was

able to handle people of a variety of di↵erent orientations due to its nonlinearity.

3. Generalisation between data sets for skeleton prediction: When evaluating on

the VIPeR data set, in addition to training on the VIPeR data sets training

set, we enlarged the training set by also including the QMUL GRID data set.

Similarly, when evaluating on the QMUL GRID data set, we enlarged the

training set by incorporating the VIPeR data set. Through this, we were able

to increase the size of the training sets, leading to the model converging to

an accurate skeleton prediction result faster. In addition, due to having no

ground-truth, hand-labelled skeleton keypoints for the CUHK03 data set, we

trained our skeleton prediction model using only images and corresponding

skeleton keypoints from the VIPeR and QMUL GRID data sets. Even so, we

were able to achieve good skeleton prediction results on the CUHK03 data set.

Given CNNs require a significant amount of training data to be accurate, it is

not uncommon to see multiple smaller data sets with significant variation in

visual characteristics, merged to form a much larger training set. Hence, such

generalisation is of great importance.

4. Incorporation of transfer learning: Whilst the PLS-based models proposed

in Chapter 3 were trained from scratch, the CNN-based approach was able

to incorporate a ResNet-50 [66] CNN architecture using pre-trained weights

trained on the ImageNet [38] data set. Therefore, we have shown that skeleton

prediction for Re-ID images can utilise transfer learning to produce accurate

skeleton fitting results.
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However, it is important to note that whilst impressive skeleton fitting results

have been observed when using the deep approach compared to when using the

PLS-based approach, the deep approach did benefit from an expanded training set

when compared to the PLS-based approach. Further experimentation could better

standardise the experimental settings between the two approaches to provide a more

thorough comparison.

Whilst this chapter has utilised deep CNNs for skeleton prediction, the

feature descriptors used for the task of Re-ID are still entirely hand-crafted. However,

recent work [2, 27, 28, 51, 90, 108, 111, 112, 200, 203, 206, 229, 230] has instead

incorporated deep features, which are optimal to the task in which they are used.

Some methods [2, 51, 111, 200, 229, 230] build deep CNNs which learn features

optimal for the task of predicting whether a pair of images are of the same identity

or otherwise, whereas others [51, 108, 112, 203, 206, 229, 230] instead focus on

the task of predicting the identity of a person within a given image. However,

significant variation in these images, such as illumination variation, can hinder the

performance of these methods. An alternative [90, 101, 164, 170, 171, 174] approach

is to train a deep CNN capable of detecting person attributes, such as hair length,

shirt colour, and gender, which is analogous to the approach to this task taken by

a human. These feature types are intrinsically more invariant to changes in visual

characteristics, such as illumination and pose. In the following chapter, we will train

an attribute recognition network, where the penultimate layer within the network is

used in combination with hand-crafted features to act as a feature descriptor during

matching.
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Chapter 5

Combining Deep Features and

Attribute Detection for Re-ID

5.1 Introduction

In Chapter 4, we introduced a deep CNN-based method to predict the skeleton of a

person in a Re-ID image, replacing the PLS-based approach proposed in Chapter 3.

The model generated by the deep CNN method was able to better predict skeletons

of people photographed from a wide variety of orientations, without the need to train

multiple models. Following the skeleton prediction stage, the skeletons were used to

generate a binary feature map, which allowed feature descriptors to be extracted

from primarily foreground regions. These feature descriptors were based on the

LOMO [115] and SCNCD [208] feature extraction methods, hand-crafted features

which extract colour and textural information. As such, significant visual variations

between images, such as illumination variation or di↵erence in blur, could lead to

great di↵erence in the colour and textural information extracted from each image.

Whilst traditional, automated Re-ID methods have routinely used appearance

features to describe Re-ID images, humans instead rely on attribute descriptions, such

as short sleeves, brown hair and wearing a necklace to describe a person. Figure 2.11

shows examples of attributes, as well as positive and negative examples of Re-ID

images for each of those attributes.

Attribute features have an advantage over appearance features by having

greater invariance to illumination and pose variation. For example, a blue shirt

will still be considered a blue shirt by a human even after significant variation in

illumination and pose. Figure 5.1 shows an example of numerous Re-ID images

which contain people wearing blue clothing on their upper bodies according to labels

provided by the PETA [39] data set, even though there is significant visual variation
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between the images.

Figure 5.1: An example of images from the VIPeR [59] data set. All of these images
are labelled as wearing blue clothing on their upper bodies by the PETA [39] data
set. However, significant visual variation can be seen between images, such as pose
and illumination variation.

Attribute detection networks can be trained which take a series of input images,

and predict the presence of a set of attributes within the images. Given the presence of

attributes such as wearing glasses and brown shoes, are highly correlated with image

regions, spatial modeling is often used to aid attribute prediction [100, 101, 121].

This allows an attribute detection network to determine which regions of a Re-ID

image are informative for the prediction of each specific attribute.

In this chapter, we propose the combination of our deep CNN-based skeleton

prediction as detailed in Chapter 4 with an attribute prediction network. Our

proposed attribute detection network takes four images as input: the whole image,

and three parts images divided according to the predicted skeleton. We then pass

these images to a network consisting of four ResNet-50-based [66] deep CNNs,

concatenating the output of each sub-network as a feature descriptor. The output

feature descriptor is then passed to a fully-connected layer with n nodes, with n

being the number of attributes being predicted.

This chapter consists of three contributions: The first is a pose-informed

attribute detection network which learns a mapping between the four input images,

and an attribute vector. The robust deep attribute feature extracted from this

network can then be used to produce high matching rates. The second contribution

is the combination of our deep attribute feature with the LOMO [115] feature
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descriptor, which improve matching rates even further. The third and final is the

use of a Weighted Binary Cross Entropy (WBCE) function which weights the cost

of a positive error relative to a negative error, depending on the ratio of positive

to negative instances of each attribute. Our generated feature descriptors are then

used in combination with the XQDA distance metric learning technique [115] to

perform matching. We evaluate our method on the VIPeR [59], PRID2011 [70],

i-LIDS [57, 225, 226] and Market-1501 [219] data sets, and demonstrate competitive

performance against other state-of-the-art methods.

5.2 Deep Attribute Prediction

In this section, we describe our attribute prediction model, which takes four images

as input, and predicts the presence or absence of a set of attributes. We utilise this

model as a feature extractor, and follow by performing matching.

5.2.1 Deep Attribute Prediction Network

Using the deep CNN-based skeleton predictor proposed in Chapter 4, we divide each

Re-ID image into three parts. The top part represents the head and shoulders, the

middle part consists of the torso and arms, whilst the third and final part consists of

the legs. As the skeleton is estimated, we extend the bounding box by 15% in the x

and y dimensions, to account for skeleton prediction errors. We take the original

image, as well as the three body parts images, and resize each image to a resolution

of 224⇥ 224 pixels, and apply the standard ResNet-50 [66] preprocessing algorithms.

Figure 5.2 shows an example of how we divide a Re-ID image into three parts using

the predicted skeleton.

Each attribute feature is represented as a binary vector indicating the presence

or absence of a set of attributes. We initialize four identical ResNet-50-based [66]

networks with the pre-trained Imagenet [38] weights. Each sub-network takes one

of the four images as input - the whole image, and the three body parts images.

We remove the fully-connected layer of the ResNet-50 models, and replace with

our own fully-connected layer of size 512. As the sigmoid activation function

outputs a probability between 0 and 1 (Section 2.3.3), it is ideal for use in attribute

prediction, and is therefore used by the final fully-connected layer of our network.

To prevent overfitting, we use a dropout of 0.5. The outputs of each sub-network are

concatenated to form a 2048-dimensional feature, which is used as our final deep

attribute feature. The architecture for our model is shown in Figure 5.3. Examples

of attribute detection accuracy on the VIPeR data set can be seen in Table 5.1.
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(a) (b) (c)

Figure 5.2: An example of how we divide each Re-ID image into three parts-based
images: top, middle and bottom, using our deep CNN-based method proposed in
Chapter 4. We create a bounding box around each part, and add padding of 15% in
the x and y dimensions, to account for any errors in skeleton prediction. We use the
original image and the three parts-based images as input to our attribute prediction
model. (a) The original input image; (b) The original image with the skeleton and
parts separation overlayed; (c) The individual body parts images.
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Figure 5.3: The network architecture of the attribute prediction model. The original
image is divided into three body parts - the top, middle and bottom. The original
image, as well as the three body parts images, are passed through an identical
ResNet-50 [66] network architecture. The fully-connected layers of each ResNet-50
model are removed and replaced with our own fully-connected layer of size 512. The
four fully-connected layers are then concatenated to form a layer of size 2048. Finally,
we append a fully-connected layer of size n, with n being the number of attributes
being predicted.

5.3 Results and Discussion

In this section, we will discuss in detail the protocols used when training and testing

our method.
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Attribute Accuracy (%) Attribute Accuracy (%)

lowerBodySuits 99.8 carryingPlasticBags 96.5

footwearStocking 98.4 lowerBodyCasual 96.4

upperBodyPlaid 97.8 lowerBodyShortSkirt 96.2

upperBodyFormal 97.5 upperBodyRed 95.8

lowerBodyFormal 96.9 upperBodyCasual 95.4

Attribute Accuracy (%) Attribute Accuracy (%)

footwearSneaker 66.5 footwearWhite 60.0

personalLess30 64.5 accessoryNothing 57.2

lowerBodyBlack 63.8 footwearShoes 57.1

lowerBodyGrey 63.7 footwearBlack 55.1

carryingNothing 62.7 upperBodyOther 53.4

Table 5.1: Attribute detection accuracy on the VIPeR [59] data set. The ten best
and worst attributes detection accuracies are shown.

5.3.1 Training the Skeleton Prediction Model

In order to demonstrate the generalisation capabilities of our proposed method, we

evaluate on four data sets, whilst training on a separate set of data sets. For the

skeleton prediction model, we use the 3DPeS [6–8] and QMUL GRID [117, 124, 125]

data sets for training. For the 3DPeS data set, we take approximately 80% of all

identities as training, and the remaining 20% as validation. For QMUL GRID, similar

to in Section 4.3.1, we separate the data set into images which form an image pair,

and those which don’t, and take 80% of the identities from each set to contribute

to the training set, whilst the remaining 20% contribute to the validation set. This

ensures that the 80/20 split relates not just to identities, but also to images. We train

the final two fully-connected layers for 15 epochs with a batch size of 32, followed

by training the layers from ResNet-50’s third stage onwards, similarly for 15 epochs

with a batch size of 32. We utilise the RMSProp [177] optimizer, with a learning

rate of 0.001, and use a mean squared error loss.

5.3.2 Training the Attribute Prediction Model

We train the attribute prediction model on a subset of the PETA [39] data set,

containing the 3DPeS [6–8], QMUL GRID [117, 124, 125], CAVIAR4REID [29],

CUHK [109–111], MIT [142], SARC3D [8] and TownCentre [12–14] data sets. We

allocate approximately 80% of the identities from each data set to contribute towards

the training set, with the remaining 20% contributing towards the validation set.
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(a)

(b)

Figure 5.4: Examples of attribute prediction accuracy. All images shown in (a) are
predicted to be wearing red clothing on their upper body, whilst images in (b) are
predicted to be wearing a backpack. Images correctly classified (true-positive) are
highlighted in green, whilst those incorrectly classified (false-positive) are highlighted
in red. The predicted probability of the presence of each attribute is shown below
each image.

The PETA [39] data set provides information for each identity on the presence or

absence of 105 attributes, such as the length of their sleeves and whether or not a

person is wearing jeans or a backpack. We select the fifty most common attributes,

and produce a binary vector denoting the presence or absence of these attributes.

We first train the attribute prediction model from our appended 512-dimensional

fully-connected layer onwards, for five epochs using a batch size of 16. We follow

by training all layers from ResNet-50’s third-stage onwards, for an additional thirty

epochs, maintaining the batch size at 16. We use the Adam [92, 151] optimizer

with a learning rate of 10�5, and a binary cross entropy (BCE) loss. Examples of

true-positive and false-positive classified images for two attributes can be seen in

Figure 5.4.
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5.3.3 Evaluation

In this subsection, we will discuss the experimental settings used to evaluate our

proposed method. We evaluate on the VIPeR [59], PRID2011 [70], i-LIDS [57,

225, 226] and Market-1501 [219] data sets. Whilst traditional Re-ID methods using

attributes generally used the predicted attribute vector as a feature [3, 101, 102], newer

methods utilising CNNs often instead extract the penultimate or antepenultimate

layer to act as a feature descriptor [129, 171, 174], and have observed greater rank-

n scores. In contrast to using the predicted attribute vector, the penultimate

or antepenultimate layers are not limited to the typically small dimensionality

of the attribute feature, and therefore may be more discriminative [174]. Hence,

for each data set, we choose the penultimate, 2048-dimensional layer from our

attribute prediction network to be our deep attribute feature descriptor. We apply

`2-normalization to all feature descriptors prior to matching. We choose to learn a

distance metric between feature descriptors using XQDA [115], rather than using

Euclidean or cosine distance, in order to compute a distance metric optimal to the

Re-ID problem within the attribute context. We use the same hyperparameters for

the XQDA distance metric that were used in Chapter 3 and Chapter 4. Whilst we

do not use any images from the VIPeR, PRID2011, i-LIDS or Market-1501 data sets

to train the skeleton or attribute prediction networks, we do designate a subset of

images from these data sets as training images for the XQDA distance metric when

testing on these data sets.

Evaluation on the VIPeR data set

We randomly select 316 identities from the VIPeR [59] data set for training the XQDA

distance metric, whilst the remaining 316 identities are used for testing. In order to

evaluate the e↵ect and contribution of our deep attribute feature descriptor when

combined with traditional hand-crafted features, we extract LOMO features [115]

from the original images only, and concatenate with our deep attribute features.

We test using a single-shot approach, and carry out our experimentation ten times

using repeated hold-out validation, averaging to produce the final result. Table 5.2

shows a comparison between our proposed method, which we name Deep Features &

Attribute Detection (DFAD).
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VIPeR

r=1 r=5 r=10 r=20

DFAD (+ LOMO + XQDA) 45.7 76.0 85.2 94.2

DFAD (+ XQDA) 16.3 38.4 52.4 66.6

WSMTAL (+ XQDA) [174] 47.1 71.5 80.3 88.2

BPBPR [209] 44.7 - 84.5 92.1

DLDAFN* [201] 44.1 72.6 81.7 91.5

AFSB (+ LOMO + XQDA) [3] 43.9 - 86.6 94.6

CVSP (+ LOMO)* [34] 43.0 73.0 84.2 92.8

FT-CNN (Comb. + Multi) (+ XQDA) [129] 42.5 72.0 83.0 92.0

MTL-LOREA [170] 42.3 72.2 81.6 89.6

LOMO (+ XQDA)* [115] 38.4 69.4 80.5 91.5

JLAC [90] 29.5 60.3 76.0 87.3

SCAKR (Kernel + Attributes) [40] 28.0 57.1 70.8 83.7

SCAKR (Kernel only)* [40] 26.3 54.7 68.4 81.7

ACSM [120] 16.4 34.3 45.2 -

AFSB (+ XQDA) [3] 13.4 - 72.5 93.3

SCAKR (Attributes only) [40] 10.1 24.4 35.3 48.8

Table 5.2: Results on the VIPeR [59] data set. The best results are highlighted in
bold. Results marked with * do not incorporate attribute features.

From Table 5.2, we can see that our attribute model performs strongly against

competing state-of-the-art methods. By combining the deep attribute features with

the LOMO [115] feature descriptor and applying the XQDA [115] distance metric

learning method, we are able to achieve a 7.3% increase when compared to using

LOMO (+ XQDA) alone. When using the deep attribute feature alone, our proposed

method performs only 0.1% lower than the closest attribute-only method, ACSM [120],

in rank-1 score, but exceeds ACSM [120] in the rank-5 and rank-10 scores.

Evaluation on the PRID2011 data set

For PRID2011 [70], we randomly select 100 identities from the 200 identities present

within both cameras to become our testing set. The remaining 100 identities act as

training data for the XQDA distance metric. As stated in Section 2.7.4, PRID2011

contains an additional 549 identities which are only present in one camera, and as

such cannot be used for matching. Therefore, we enlarge the testing gallery set by
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also using the additional 549 identities for this purpose. We test using a single-shot

approach, and carry out our experimentation ten times using repeated hold-out

validation, averaging to produce the final result. Table 5.3 shows the results of our

propose method, as well as competing state-of-the-art methods.

PRID2011

r=1 r=5 r=10 r=20

DFAD (+ LOMO + XQDA) 32.9 55.7 67.7 79.4

DFAD (+ XQDA) 13.2 24.8 32.5 45.6

BPBRP [209] 28.2 - 61.0 70.4

WSMTAL (+ XQDA) [174] 24.4 52.3 62.5 74.2

LOMO (+ XQDA)* [115] 24.2 48.2 59.3 71.3

MTL-LOREA [170] 18.0 37.4 50.1 66.6

RF+MA+AC [173] 6.5 22.0 32.5 47.6

Table 5.3: Results on the PRID2011 [70] data set. The best results are highlighted
in bold. Results marked with * do not incorporate attribute features.

We can see from the information in Table 5.3 that our proposed method also

performs well on the PRID2011 data set. When comparing our proposed method

(including LOMO) versus using the LOMO features alone, we observe an increase

in the rank-1 score of 8.7%. We can also see that our method achieves significant

improvements across all measured rank-n scores.

Evaluation on the i-LIDS data set

For i-LIDS [57, 225, 226], similarly to [40], we divide the data into 69 identities to be

used for training the XQDA distance metric, whilst the other 50 identities are used

for testing. We test using a single-shot approach, and carry out our experimentation

ten times using repeated hold-out validation, averaging to produce the final result.

Table 5.4 shows the rank-n scores achieved by both of our proposed approaches, as

well as competing state-of-the-art methods.
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i-LIDS

r=1 r=5 r=10 r=20

DFAD (+ LOMO + XQDA) 57.3 85.0 92.8 97.4

DFAD (+ XQDA) 45.8 76.4 87.1 94.8

LOMO (+ XQDA)* [115] 48.4 76.4 87.1 95.3

SCAKR (Kernel + Attributes) [40] 44.1 64.9 76.3 89.2

SCAKR (Kernel only)* [40] 42.7 62.0 74.6 86.7

SCAKR (Attributes only) [40] 21.7 41.3 56.8 77.0

Table 5.4: Results on the i-LIDS [57, 225, 226] data set. The best results are
highlighted in bold. Results marked with * do not incorporate attribute features.

Table 5.4 shows that our combined attribute and LOMO approach achieves

a 8.9% increase in the rank-1 score compared to using the LOMO features alone.

However, the proposed attributes-only method also performs significantly better

than competing approaches, achieving a 24.1% increase in the rank-1 score versus

the closes attribute-only method, SCAKR (Attributes only) [40].

Evaluation on the Market-1501 data set

We additionally experiment on the Market-1501 [219] data set. We base our evaluation

on the code provided by [219], and also use the pre-defined training and testing

splits, consisting of 750 and 751 identities respectively. We test using a single-shot

approach. Table 5.5 shows the rank-n scores achieved by our proposed approaches,

as well as competing state-of-the-art methods.
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Market-1501

r=1 r=5 r=10 r=20 mAP

DFAD (+ LOMO + XQDA) 53.5 74.8 83.2 88.4 29.8

DFAD (+ XQDA) 20.9 43.6 54.6 66.1 9.8

APR [116] 87.0 95.1 96.4 - 66.9

ACRN [162] 83.6 92.6 95.3 97.0 62.6

TJ-AIDLDuke [186] 58.2 74.8 81.1 86.5 26.5

WSMTAL [174] 49.5 - - - 29.2

LOMO (+ XQDA)* [115] 43.2 66.5 75.7 83.0 22.1

AAIPR [211] 40.3 49.2 58.6 - 20.7

Table 5.5: Results on the Market-1501 [219] data set. The best results are highlighted
in bold. Results marked with * do not incorporate attribute features.

From Table 5.5, we observe that on the Market-1501 [219] data set, our

proposed DFAD (+ LOMO + XQDA) approach achieves a 10.3% increase versus

using just the original LOMO features in combination with XQDA. However, even

the DFAD (+ LOMO + XQDA) approach is unable to achieve state-of-the-art

results. Unlike other data sets commonly used for Re-ID, the Market-1501 data set

is significantly large, with many images per identity. As we train and evaluate on

distinct data sets, our attribute prediction network does not benefit during training

from the large amount of images present within the Market-1501 data set, which

may result in lower rank-n scores during evaluation.

5.3.4 Experimentation with di↵erent numbers of parts-based im-

ages

We assess the contribution of di↵erent combinations of parts-based images to our

method. For this purpose, we perform matching using variants of our network trained

using a di↵erent combination of the original and parts-based images as input. First,

we train a network using the original image, as well as the three parts-based images,

similar to the experimentation in Section 5.3. Secondly, we train using the three

parts-based images. Finally, we train using only the original image. Results of the

evaluation on the VIPeR [59] data set can be seen in Table 5.6.
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VIPeR

r=1 r=5 r=10 r=20

DFAD (+ LOMO + XQDA)

(Original + Three Parts-based images)
45.7 76.0 85.2 94.2

DFAD (+ LOMO + XQDA)

(Three Parts-based images only)
45.2 74.0 84.8 94.0

DFAD (+ LOMO + XQDA)

(Original images only)
39.8 70.6 83.2 92.4

DFAD (+ XQDA)

(Original + Three Parts-based images)
16.3 38.4 52.4 66.6

DFAD (+ XQDA)

(Three Parts-based images only)
13.7 33.1 44.7 58.7

DFAD (+ XQDA)

(Original images only)
8.8 23.5 35.7 50.1

Table 5.6: Results on the VIPeR [59] data set utilising di↵erent combinations of the
original and parts-based images. Models are trained with BCE loss. The best results
are highlighted in bold.

Table 5.6 shows significant variation in rank-n score when altering the input

received by the network. When using attribute features in combination with LOMO

features (DFAD (+ LOMO + XQDA)), we observe that the highest rank-n scores are

obtained when utilising the original and three parts-based images. However, scores

on the network trained using only the three parts-based images are only slightly

lower, particularly with regards to the rank-1, rank-10 and rank-20 scores. However,

when using only the original image as input, rank-n scores are considerably lower,

demonstrating the significance of the e↵ect of using the parts-based images on the

rank-n score.

Furthermore, when using attribute features only (DFAD (+ XQDA)), i.e.

without the LOMO features, we can see from Table 5.6 that the rank-n results are

higher when using the original and three parts-based images than using either the

original images only or the three parts-based images only. This demonstrates that

both the original and three-parts based images are significant for producing robust

attribute features which can achieve high rank-n scores.

However, whilst rank-n scores are improved by increasing the number of

parts-based images as input to the attribute network, it is unclear whether this

was solely down to the pose-informed design of our network, or the increase in
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the number of trainable parameters caused by the increase in number of network

branches. Further experimentation may be required to determine the exact reason

for the increase in rank-n scores when incorporating additional branches into the

network.

5.3.5 Class Imbalance

Background

Given the prevalence of each attribute can vary significantly from attribute-to-

attribute, several methods have been proposed which attempt to counteract the

negative e↵ects of class imbalance. He and Garcia [65] propose various methods for

handling imbalanced data, such as random undersampling, where only the positive

examples for each class and an equivalent number of negative examples are used

during training. This method was used by [102] to train a model for attribute

prediction within the context of Re-ID. He and Garcia [65] also proposed random

oversampling, which applies data augmentation to inflate the number of examples

from the minority class. However, both random oversampling and undersampling

have disadvantages: whilst random undersampling results in a balanced data set,

it can remove important examples from the training set, discarding potentially

important concepts from being used during the training stage. Similarly, random

oversampling, whilst also providing a balanced data set, sources multiple examples

of the minority class from the same input, and therefore is at an increased risk of

overfitting.

An alternative method to counteract the negative e↵ects of class imbalance is

to increase to number of examples from the minority class through generating new

data. SMOTE [22] creates synthetic data as an alternative to oversampling, instead

generating data which is similar to pre-existing samples from the minority class,

instead of simple augmentations. Sharma et al. [163] propose a method of generating

synthetic images to enlarge the number of positive samples by taking as context

both the visual characteristics of the minority and majority classes. Hence, synthetic

data that is the same Mahalanobis distance from the majority classes as the known

minority classes can be generated. Furthermore, Generative Adversarial Networks

(GANs) have been proposed to better generate artificial imagery. Ponce-López et al.

[146] proposes the use of a GAN to increase the number of training samples within a

given domain. Wu et al. [202] takes this further by proposing the use of a GAN to

generate new images of people whilst incorporating attribute information, and hence

is able to generate positive examples of attributes which may be under-represented

within the training set.
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Cost-Sensitive Learning [42] is an alternative method which can be used,

which allows for di↵erent penalties for di↵erent types of misclassifications. Hence,

weights which are directly related to the ratio of positive to negative samples of

a given class can be applied to weight the cost in such a way to minimise the

negative e↵ects of class imbalance. Elkan [42] apply cost-sensitive learning to a

standard Bayesian and decision tree learning method, and experiment by altering

the balance of positive and negative training examples, observing little e↵ect on the

classifiers performance. Huang et al. [75] use a cost-sensitive learning technique

to build a network which predicts certain human characteristic attributes, such as

“smiling”, “oval face” and “brown hair”, and validates its e↵ectiveness versus baseline

methods. We perform further experimentation on our attributes-based method by

incorporating a cost-sensitive learning technique known as Weighted Binary Cross

Entropy (WBCE) loss, and evaluate its e↵ectiveness on training an attribute-based

network for use in Re-ID.

Weighted Binary Cross Entropy (WBCE) Loss

We propose the use of a Weighted Binary Cross Entropy (WBCE) loss function to

counteract the negative e↵ects of class imbalance. Let tji represent the ith attribute

of the jth person. For each attribute, i, we calculate the ratio of positive to negative

occurrences of an attribute by:

posi =
1

p

p�1X

j=0

tji , (5.1)

negi = 1� posi = 1� 1

p

p�1X

j=0

tji , (5.2)

where p is the number of attribute vectors in the training set. These ratios

can be used to calculate a weight, wi, for each attribute i, which is used to weight

the cost of a positive error relative to a negative error, where:

wi =
negi
posi

, (5.3)

Based on the implementations by Tensorflow [1] and Tensorpack [204], we

calculate the WBCE, loss, as:

loss = (1� z)r+m(log(1+ exp(�abs(r))) +max(�r, 0)), (5.4)

This outputs a vector containing the component-wise weighted log losses,

where z is the ground-truth attribute vector, r is the predicted attribute vector and

129



m is equal to (1+ (w� 1)z). As z is a binary vector representing the presence of

absence of a set of I attributes:

mi =

8
><

>:

wi, if zi = 1

1, if zi = 0
(5.5)

Letting n be the number of attributes, the final loss value is calculated by

weighting each component-wise loss value by its corresponding positive ratio, and

calculating the mean, by:

ˆloss =
1

I

IX

i=1

(lossi ⇥ posi). (5.6)

Results and Discussion

We evaluate the performance of the WBCE loss versus the previously used BCE loss

by performing evaluation on the VIPeR [59], PRID2011 [70], i-LIDS [57, 225, 226]

and Market-1501 [219] data sets. We compare rank-n scores obtained when using

WBCE loss and BCE loss. Results can be seen in Table 5.7.

VIPeR

r=1 r=5 r=10 r=20

DFAD (+ LOMO + XQDA) (WBCE) 47.2 76.1 86.7 94.7

DFAD (+ LOMO + XQDA) (BCE) 45.7 76.0 85.2 94.2

DFAD (+ XQDA) (WBCE) 17.0 41.1 54.7 69.0

DFAD (+ XQDA) (BCE) 16.3 38.4 52.4 66.6

Table 5.7: Results on the VIPeR [59] data set utilising WBCE loss and BCE loss.
The best results are highlighted in bold.

PRID2011

r=1 r=5 r=10 r=20

DFAD (+ LOMO + XQDA) (WBCE) 32.8 56.4 68.1 78.3

DFAD (+ LOMO + XQDA) (BCE) 32.9 55.7 67.7 79.4

DFAD (+ XQDA) (WBCE) 13.6 28.9 38.8 50.0

DFAD (+ XQDA) (BCE) 13.2 24.8 32.5 45.6

Table 5.8: Results on the PRID2011 [70] data set utilising WBCE loss and BCE loss.
The best results are highlighted in bold.
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i-LIDS

r=1 r=5 r=10 r=20

DFAD (+ LOMO + XQDA) (WBCE) 58.5 83.9 92.5 97.5

DFAD (+ LOMO + XQDA) (BCE) 57.3 85.0 92.8 97.4

DFAD (+ XQDA) (WBCE) 43.9 77.3 86.9 95.0

DFAD (+ XQDA) (BCE) 45.8 76.4 87.1 94.8

Table 5.9: Results on the i-LIDS [57, 225, 226] data set utilising WBCE loss and
BCE loss. The best results are highlighted in bold.

Market-1501

r=1 r=5 r=10 r=20 mAP

DFAD (+ LOMO + XQDA) (WBCE) 53.8 74.7 82.8 88.8 30.0

DFAD (+ LOMO + XQDA) (BCE) 53.5 74.8 83.2 88.4 29.8

DFAD (+ XQDA) (WBCE) 20.4 42.0 53.6 64.8 9.6

DFAD (+ XQDA) (BCE) 20.9 43.6 54.6 66.1 9.8

Table 5.10: Results on the Market-1501 [219] data set utilising WBCE loss and BCE
loss. The best results are highlighted in bold.

From Tables 5.7-5.10, we can see that both WBCE loss and BCE loss are able

to achieve the highest result at di↵erent ranks and on di↵erent data sets. However,

rank-n results achieved by using the two methods are typically similar. The greatest

increase in rank-n score is seen when experimenting on the VIPeR [59] data set,

where all rank-n scores when utilising WBCE loss are higher than their corresponding

rank-n scores achieved when using BCE loss. However, a significant increase in

rank-1 score is also observed on the i-LIDS [57, 225, 226] data set.

Attribute Distribution Analysis

To investigate why these increases are observed, we investigate the distribution

of attributes across the data sets used for training and evaluating our attribute

model. To calculate the distribution of attributes from each data set, we create a

50-dimensional feature descriptor for each data set consisting of the proportion of

positive samples for each attribute, which can be seen in Figure 5.5. We do not

perform this evaluation on the Market-1501 [219] data set as the PETA [39] data set

does not include ground-truth attribute labelling for this data set.
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Figure 5.5: The distribution of attributes on the data sets used to train the attribute
model, versus the three data sets used to evaluate the attribute model.

In order to compare the distribution of the training data set and the data sets

used to evaluate the model, we calculate the cosine distance between the training data

set attribute distribution and each of the evaluation data sets attribute distributions.

We display the cosine distance between the attribute distributions of the training

data set and evaluation data sets in Table 5.11.

VIPeR PRID2011 i-LIDS

0.049 0.076 0.061

Table 5.11: The cosine distance between the attribute distribution of the training
data set and each evaluation data set.

From Table 5.11, we can see the lowest value is achieved on the VIPeR [59]

data set, showing that the attribute distribution from the training data set is most

similar to the attribute distribution of the VIPeR data set. It can therefore be

argued that the similarity in attribute distribution explains the increase in matching

performance, seen on the VIPeR data set in Table 5.7 across all rank-n values. The
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next lowest distance is observed on the i-LIDS [57, 225, 226] data set, where the

rank-1 and rank-20 scores are observed to be higher when using WBCE loss versus

using BCE loss. However, rank-5 and rank-10 values are higher when using BCE loss.

Finally, we observe the largest distance on the PRID2011 [70] data set, which also

su↵ers from lower rank-1 and and rank-20 matching scores, whilst only seeing very

small increases in rank-5 and rank-20 score. This investigation serves as a preliminary

indicator that data sets with more similar attribute distribution to the training data

set are more likely to see an increase when using a weighted loss function. To provide

more concrete proof, further research would need to be carried out on greater than

three data sets, as a solid conclusion cannot be drawn with such a small number of

data points.

5.4 Summary

In this chapter, we have proposed a novel, deep approach to extracting feature

descriptors from a network trained using attribute labels. We divide each Re-ID

image into three parts: top, middle and bottom, using the deep CNN-based network

discussed in Chapter 4. We then pass the original image as well as the three parts

images as input to our deep attribute prediction network. The spatial separation

of Re-ID images into parts images aids with attribute prediction, given the high

correlation between the presence of certain attributes (i.e. hair length, upper body

colour and wearing shorts) and specific regions on a persons body. We extracted the

penultimate fully-connected layer to use as our deep attribute feature descriptor. We

demonstrated that our deep attribute features work not only as a standalone feature

descriptor, but can also be used in cooperation with hand-crafted features, in this

case the LOMO [115] feature descriptor, in order to improve matching rates even

further. Given the imbalance of attributes within the PETA [39] data set, we also

propose utilising a Weighted Binary Cross Entropy (WBCE) function which weights

the cost of a positive error relative to a negative error, depending on the ratio of

positive to negative instances of each attribute, mitigating the negative e↵ects of

class imbalance.

We believe that the advantages of our proposed attribute methods are as

follows:

• An improvement to attribute detection via spatial separation - Some attributes,

such as whether or not someone is wearing a hat, the colour of their shirt,

or whether or not they are carrying a backpack, is highly correlated with a

specific region of their body/ within the Re-ID image. By performing skeleton

prediction and therefore spatial separation prior to attribute prediction, we
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can provide additional spatial context to the network to aid with the attribute

prediction process.

• Improving feature learning with attributes whilst still using hand-crafted

features - Whilst deep features have demonstrated significant performance

increases over recent years when compared to hand-crafted features, deep

attribute features do not perform as strongly as alternative deep approaches

trained using verification or ID classification loss (Section 2.3). However, attrib-

ute features possess the advantage over other approaches of being significantly

more invariant to changes in pose, brightness and illumination. We have

demonstrated that by combining both traditional hand-crafted features with

deep attribute features, we are able to achieve an increase in rank-n matching

rates.

• Improving attribute prediction using a Weighted Binary Cross Entropy (WBCE)

loss function - When training a deep neural network to perform classification,

it is unlikely that all classes will contain an equal or close to equal amount of

representation within the training set. This is particularly prevalent within the

context of attributes, as some attributes are significantly more common than

others. We have performed additional experimentation using a WBCE loss

function to minimize this issue, by weighting the cost of a positive error relative

to a negative error based on the prevalence of the given attribute within the

data set.
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Chapter 6

Conclusions

6.1 Summary and Discussion

In this thesis, we have proposed several methods for improving Re-ID matching rates,

including foreground modelling, feature weighting and attribute detection.

In Chapter 3, we proposed a PLS-based skeleton prediction network. This

model was trained by taking HOG appearance features extracted from images as

input, and learning a regression between the appearance features and a set of 29

x and y skeleton keypoints. These skeleton keypoints mark specific regions on a

person’s body, such as head and torso, as well as relative widths of each limb. Thus,

given an unseen image, the PLS-based skeleton prediction model can predict the

limbs/ foreground regions of an unseen person. This information was used within

the Re-ID pipeline to weight features so that the feature descriptors consisted of

information predominantly extracted from foreground regions, and thus were more

representative of the person rather than the background or the image as a whole.

We found that by using the weighted feature descriptors, we were able to increase

the Re-ID matching rates.

However, we found that our PLS-based skeleton prediction model did not

generalise well when presented with Re-ID images containing people standing at

significantly di↵erent orientations relative to the camera. Therefore, this issue

required the use of a further PLS-based model, trained to predict the orientation of

a given unseen Re-ID image. Then, a separate PLS-based skeleton prediction model

was trained for each orientation. In Chapter 4, we overcame this issue by instead

replacing the PLS-based skeleton prediction models with a deep CNN-based skeleton

prediction network. Unlike the PLS-based models, the deep CNN-based method was

able to predict the skeleton of a person within an unseen Re-ID image to a high

level of accuracy without the need to train multiple skeleton prediction models. For
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the deep CNN-based network, we pass the images and corresponding skeletons for a

given training set to the network, which learns a regression between the two. The

unseen, testing images are passed to the network, which then outputs a predicted

skeleton. This skeleton is used in the same way as in Chapter 3, where features are

extracted which are weighted towards the foreground areas. Finally, we carry out

distance metric learning and matching.

Moreover, we experimented with utilising deep features; features learnt

through supervised learning, rather than manually-specified, hand-crafted features

such as colour and texture. Whilst colour and texture are generally discriminat-

ive features, they su↵er significantly from variation in illumination and pose. In

Chapter 5, we obtained our deep features by training a deep CNN-based network

which detects the presence of a series of attributes, such as red shirt and short hair.

The penultimate layer of our deep attribute detection network is used as a deep

feature, and is also combined with hand-crafted features to improve the matching

rates further. We found that our attributes-only and attributes with hand-crafted

features approaches performed competitively against other similar approaches. In

addition, to counteract the problem of some attributes being much more prevalent

within the training data set, we also proposed a Weighted Binary Cross Entropy

(WBCE) loss function, which weights the cost of a positive error relative to a negative

error during training by the ratio of negative instances to positive instances of a

given attribute in the training set. We found that rank-n results were higher when

the attribute distribution of the evaluation data set was more similar to the attribute

distribution of the training data set.

We evaluated our proposed methods on a selection of standard Re-ID data sets.

We found that our methods increased the rank-n matching rates, which measures the

cumulative amount of probe images correctly matched to the corresponding gallery

image within n guesses. As well as evaluating rank-n matching performance, we

also used RMSE to evaluate the performance of our skeleton prediction models. In

addition, we used accuracy as a metric to measure the performance of our attribute

detection model.

We believe that the strengths of our work are as follows:

1. We have created two skeleton prediction approaches (Chapter 3 and Chapter 4),

which were both able to predict highly accurate skeletons when given a unseen

image. These skeletons were then used to divide a Re-ID image into the

foreground (i.e. the person) and the background regions.

2. We have proposed an extension to the LOMO [115] feature descriptor, Weighted

LOMO (Chapter 3), which easily integrates with our predicted skeletons to
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provide a weighted representation of a Re-ID image. Evaluation using our

extended feature descriptor demonstrated that higher rank-n scores can be

achieved when compared to utilising the vanilla LOMO feature descriptor.

3. We have demonstrated that by utilising a deep CNN, we are able to produce

a skeleton prediction model which generalises well to a variety of di↵erent

poses (Chapter 4). This is in comparison to the PLS-based skeleton prediction

model 3, which required multiple skeleton prediction models to be trained in

order to handle significantly di↵erent poses.

4. We have proven that it is possible to create skeleton prediction and attribute

prediction models which generalise well between data sets. For example, we

were able to utilise our skeleton prediction models (Chapter 3 and Chapter 4)

to predict skeletons and perform Re-ID matching on the CUHK03 [111] data

set, resulting in increased rank-n scores, even though this data set contributed

no training data to the skeleton prediction model. Similarly, we performed

evaluation of our attribute prediction model on data sets which were not used

to train the model, and still achieved significant increases in rank-n scores.

5. We have performed research which acts as a preliminary indicator that rank-n

scores can be improved by the use of a pose-informed multi-branch attribute

prediction network, which can then be improved even further by utilising a

weighted loss function (Chapter 5).

However, we believe that the weaknesses of our work are as follows:

1. Whilst we have demonstrated increased rank-n matching rates on standard

Re-ID data sets, many of these data sets are not very representative of a

real-world scenario. For example, the VIPeR [59] data set contains very few

examples of occlusion, something which would be very prevalent in the real

world. Our work therefore has a limitation in that it may not generalise well

to a real-world scenario.

2. Whilst we have demonstrated that our proposed deep skeleton predictor

(Chapter 4) produces accurate skeletons, which often lead to better rank-

n scores when compared to our PLS-based skeleton predictor (Chapter 3), the

experimental settings for these two methods were not identical. This is because

the deep skeleton predictor had access to a greater amount of training data.

3. Not all of our hypotheses are fully proven within this work. For example, our

work in Chapter 5 serves as a preliminary indicator that evaluation data sets

with a similar attribute distribution to the training data set lead to greater
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rank-n scores. However, this evaluation was carried out on only three data

sets, and hence we cannot draw a solid conclusion from such a small sample.

4. Some of our work could be improved by the inclusion of deep features. For

example, in Chapter 3, Chapter 4 and Chapter 5, we utilise the LOMO [115]

hand-crafted appearance features, whereas deep features may have produced

greater rank-n scores.

5. Whilst we have demonstrated high rank-n scores when evaluating on still

images, we have not evaluated our methods on video sequences. Using video

sequences may provide a greater insight into the performance of our methods,

and be more representative of the problem of Re-ID in a real-world scenario.

6.2 Future Work

We propose the following suggestions for future directions for this research, both to

mitigate the limitations of this research and to achieve greater rank-n scores:

1. Additional training data for the skeleton prediction algorithm - Re-ID data

sets tend to be small in both overall size, as well as the number of images of

each identity. As such, the accuracy of the skeleton prediction models could be

significantly improved with a larger quantity of training samples. Specifically,

this may have the most impact on the models ability to predict the skeletons

of individuals within Re-ID images with more unusual poses, where there may

be little to no similar poses within the existing training set.

2. Incorporating occlusion information into the skeleton prediction pipeline - The

existing skeleton prediction frameworks which we propose assume all limbs are

visible, and not occluded. Consequently, feature descriptors extracted from

any given limb could look very di↵erent if the limb is occluded, and hence

possesses significant di↵erences in visual characteristics. Future work could

research alternative approaches to deal with missing information caused by

occlusion, including predicting the appearance of a limb given the appearance

of another limb.

3. Experimenting with the number of components used in the PLS models - In

the research presented in Chapter 3, we used the top 15 principal components

extracted from each image during the skeleton prediction stage, and the top 50

principal components during the orientation prediction stage. Further research

could involve determining the most accurate number of principal components

to achieve the best skeleton and orientation prediction.
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4. Replacing the PLS regression-based orientation group prediction model with

a classification method - To predict an orientation group as part of the work

presented in Chapter 3, we use a PLS regression-based model, which learns

a mapping between input HOG appearance features X, and an orientation

group label Y 2 {0, ..., n� 1}, where n is the number of distinct orientation

groups. Whilst we observed good accuracy by utilising this method, accuracy

could be increased further by utilising a classification model, such as SVM [31]

or Näıve Bayes [128, 134].

5. Improving the use of foreground modelling during the limb-by-limb level

SCNCD feature descriptor extraction - Currently, limb-by-limb level SCNCD

feature descriptors extracted as part of the work proposed in Chapter 3 and

Chapter 4 are extracted from a defined bounding box without taking into

account potential negative e↵ects caused by poor skeleton prediction. This is

in comparison to the proposed Weighted LOMO approach, which minimises

the negative impact of poor skeleton prediction by instead weighting image

patches according to the percentage of foreground within the patch. Future

work could look into how to similarly weight the limb-by-limb level SCNCD

features in a manner which mitigates the negative impact of poor skeleton

prediction.

6. Experimentation with speeding up training: Incorporating deep learning leads

to a longer training time versus more shallow methods. Further experimentation

could be carried out to work to decrease training time, ensuring the approach

is scalable to larger data sets.

7. Experimentation with using higher resolution feature maps: The later layers

of the ResNet-50 model used by DNAM are low resolution, with the final

convolutional layer outputting feature maps of only 7 ⇥ 7 pixels. More accurate

skeleton prediction results may be achieved if higher resolution feature maps

are utilised, as accurate positions of individual limbs may not be obtainable at

such low resolutions.

8. A more standardised comparison between the PLS-based and deep skeleton

prediction approaches - Whilst the deep skeleton prediction approach discussed

in Chapter 4 demonstrated positive results when compared to the PLS-based

approach, it did also benefit from a larger data set. Further experimentation

could compare the two approaches using an equivalent training set, to provide

a more thorough comparison between the two.

9. Further experimentation with the choice of model used for skeleton prediction
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- In Chapter 3, we utilised PLS regression for skeleton prediction, whereas

in Chapter 4, we instead utilised a CNN. Further experimentation could

investigate alternative methods such as canonical correlation analysis (CCA)

or a multilayer perceptron.

10. Further experimentation on the benefit of multiple network branches in the Deep

Features & Attribute Detection (DFAD) network - We presented a four-branch

attribute prediction network, with each branch taking as input a di↵erent

region of a given Re-ID image. The four image regions were the original image,

and three parts-based images determined by a skeleton prediction model. We

observed higher rank-n scores when using a higher number of inputs images,

however, it is unclear whether this was down to the pose-informed design

of our method, or the increase in the number of trainable parameters when

using a higher number of network branches. Future work could investigate this

uncertainty to determine the whole reason for the increase in rank-n scores.

11. More concrete evaluation of the Weighted Binary Cross Entropy (WBCE) loss

function using more than three data sets - In Chapter 5, it was discussed

that evaluation data sets with a more similar attribute distribution to the

training data set demonstrated a greater increase in rank-n scores when using a

Weighted Binary Cross Entropy (WBCE) loss function. However, this relation

could not be concretely determined using only three data sets. Further work

could attempt to prove or disprove this hypothesis by experimenting on a

greater number of data sets.

12. Greater experimentation on the benefit of using the penultimate layer of the

network, rather than the final layer, as the deep attribute feature descriptor in

the Deep Features & Attribute Detection (DFAD) network - Following similar

literature [129, 171, 174], we choose a high-dimensional fully-connected layer

from near the output of our network, rather than the predicted attribute vector,

to use as a deep attribute feature descriptor. Further experimentation could

determine whether or not this leads to an increase in rank-n score, as well as

investigate which layer of the network produces the highest rank-n scores.

13. Evaluation of the worth of supervised attribute features over supervised ID

features - To build and train an attribute prediction network, the user must

gather a set of labelled attribute data, and follow by designing an appropriate

network architecture. However, attribute features alone have not been able

to produce state-of-the-art results, instead often being combined with other

approaches, including hand-crafted features, to increase the overall rank-n
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scores. For the same amount of work, a user could instead design and build

a network trained on ID-labelled data, which has been shown to produce

high rank-n scores [108, 112, 203, 206]. Whilst our work demonstrates that

pose-informed deep attribute features can be combined with hand-crafted

features to produce high rank-n scores, it does not demonstrate whether or not

pose-informed deep attribute features can work alongside the state-of-the-art

deep features which are currently obtaining the highest rank-n scores. Future

work could investigate the worth of pose-informed deep attribute features in

comparison to deep features obtained through a network trained using ID

Classification loss, including a potential concatenation between the two to

create a more robust deep feature descriptor.

14. Using Generative Adversarial Networks (GANs) [54, 228] - Recent work in

Re-ID [119, 149, 192, 228, 231] are utilising Generative Adversarial Networks

(GANs) within the Re-ID framework. For example, GANs are being used to

generate additional training data [119, 228], or to take a Re-ID image and

generate a new image of the same individual in an alternate pose [119, 149].

Additional training data, especially if the generated data contains images of

those with unusual poses, could significantly benefit the quality of the skeleton

prediction network’s output. Furthermore, using a GAN to standardise the

pose of a set of individuals can minimise the negative e↵ects of pose variation.

Within the context of attribute detection networks, a GAN could be also used

to generate positive samples which contain the presence of attributes which

are otherwise rare within the training set, reducing the negative e↵ects of class

imbalance during training.

15. Applying the novel approaches proposed within this thesis to Re-ID video

sequences - Whilst our proposals have been applied to individual Re-ID images,

we have not utilised video sequences. However, video sequences could be

incorporated using techniques such as Long Short-Term Memory networks

(LSTM) [71] to process a series of data. Using this method, information

extracted from the first frame in a sequence can be propagated all the way to

the final frame in the sequence, allowing a sequence-level feature descriptor

to be obtained through extracting the most discriminative features from the

sequence as a whole.
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Appendix A

Data Annotation

Due to the absence of foreground information for the common Re-ID data sets, we

manually labelled the VIPeR [59], QMUL GRID [117, 125] and 3DPeS [7, 8] data

sets with skeletal information. Each skeleton contains twenty-nine keypoints which

represent fourteen limbs, with each limb consisting of two end-points and a third

point representing the edge of the limb. The bottom keypoint of each limb also acts

as the top keypoint of the following limb. Figure A.1 shows examples of images and

their corresponding hand-labelled skeletons. We created a MATLAB Graphical User

Interface (GUI) to aid the labelling process. An example of the labelling GUI can be

seen in Figure A.2.
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Figure A.1: Example images and their corresponding hand-labelled skeletons from
the VIPeR [59] data set.
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Figure A.2: An example of the skeleton labelling GUI using images from the
VIPeR [59] data set. The first Re-ID image represents the input image on which the
user clicks to mark skeleton keypoints. The second Re-ID image shows the recorded
skeleton keypoints converted to a skeleton and overlayed on the input image in
real-time. The third image is a static reference image showing the order in which
the skeleton keypoint should be collected. Finally, some information on the Re-ID
image is shown on the right of the GUI.
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[198] Svante Wold, Michael Sjöström, and Lennart Eriksson. Pls-regression: a basic

tool of chemometrics. Chemometrics and intelligent laboratory systems, 58(2):

109–130, 2001.

[199] Ancong Wu, Wei-Shi Zheng, and Jian-Huang Lai. Robust depth-based person

re-identification. IEEE Transactions on Image Processing, 26(6):2588–2603,

2017.

[200] Lin Wu, Chunhua Shen, and Anton van den Hengel. Personnet: Person

re-identification with deep convolutional neural networks. arXiv preprint

arXiv:1601.07255, 2016.

163



[201] Lin Wu, Chunhua Shen, and Anton Van Den Hengel. Deep linear discriminant

analysis on fisher networks: A hybrid architecture for person re-identification.

Pattern Recognition, 65:238–250, 2017.

[202] Qiong Wu, Pingyang Dai, Peixian Chen, and Yuyu Huang. Deep adversarial

data augmentation with attribute guided for person re-identification. Signal,

Image and Video Processing, pages 1–8, 2019.

[203] Shangxuan Wu, Ying-Cong Chen, Xiang Li, An-Cong Wu, Jin-Jie You, and Wei-

Shi Zheng. An enhanced deep feature representation for person re-identification.

In 2016 IEEE winter conference on applications of computer vision (WACV),

pages 1–8. IEEE, 2016.

[204] Yuxin Wu et al. Tensorpack. https://github.com/tensorpack/, 2016.

[205] Qiqi Xiao, Kelei Cao, Haonan Chen, Fangyue Peng, and Chi Zhang. Cross

domain knowledge transfer for person re-identification. arXiv preprint

arXiv:1611.06026, 2016.

[206] Tong Xiao, Hongsheng Li, Wanli Ouyang, and Xiaogang Wang. Learning deep

feature representations with domain guided dropout for person re-identification.

In Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pages 1249–1258, 2016.

[207] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of

rectified activations in convolutional network. arXiv preprint arXiv:1505.00853,

2015.

[208] Yang Yang, Jimei Yang, Junjie Yan, Shengcai Liao, Dong Yi, and Stan Z Li.

Salient color names for person re-identification. In European conference on

computer vision, pages 536–551. Springer, 2014.

[209] Xin Ye, Wen-yuan Zhou, and Lu-an Dong. Body part-based person re-

identification integrating semantic attributes. Neural Processing Letters, 49(3):

1111–1124, 2019.
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