

warwick.ac.uk/lib-publications

Manuscript version: Working paper (or pre-print)
The version presented here is a Working Paper (or ‘pre-print’) that may be later published
elsewhere.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/145930

How to cite:
Please refer to the repository item page, detailed above, for the most recent bibliographic
citation information. If a published version is known of, the repository item page linked to
above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/145930
mailto:wrap@warwick.ac.uk

Adaptive Partial Scanning Transmission Electron
Microscopy with Reinforcement Learning
Jeffrey M. Ede1,a

1University of Warwick, Department of Physics, Coventry, CV4 7AL, UK
aj.m.ede@warwick.ac.uk

ABSTRACT

Compressed sensing can decrease scanning transmission electron microscopy electron dose and scan time with minimal
information loss. Traditionally, sparse scans used in compressed sensing sample a static set of probing locations. In contrast,
we present a prototype for a contiguous sparse scan system that piecewise adapts scan paths to specimens as they are
scanned. Sampling directions for scan segments are chosen by a recurrent neural network based on previously observed
scan segments. The recurrent actor is trained by reinforcement learning to cooperate with a feedforward convolutional
neural network that completes sparse scans. This paper presents our learning policy, experiments, and example partial
scans, and discusses future research directions. Source code, pretrained models, and training data is openly accessible at
https://github.com/Jeffrey-Ede/adaptive-scans.

Keywords: compressed sensing, deep learning, electron microscopy, reinforcement learning.

1 Introduction

Most scan systems sample signals at sequences of discrete probing locations. Examples include atomic force microscopy1, 2,
computerized axial tomography3, 4, electron backscatter diffraction5, scanning electron microscopy6, scanning Raman spec-
troscopy7, scanning transmission electron microscopy8 (STEM) and X-ray diffraction spectroscopy9. In STEM, the high current
density of electron probes produces radiation damage in many materials, limiting the range and types of investigations that
can be performed10, 11. In addition, most STEM signals are oversampled12 to ease visual inspection and decrease sub-Nyquist
artefacts13. As a result, a variety of compressed sensing14 algorithms have been developed to enable decreased STEM probing15.
In this paper, we introduce a new approach to STEM compressed sensing where a scan system learns to adapt partial scans16 to
specimens by deep reinforcement learning17 (RL).

Established compressed sensing strategies include random sampling18–20, uniformly spaced sampling19, 21–23, sampling
based on a model of a sample24, 25, partials scans with fixed paths16, dynamic sampling to minimize entropy26–29 and dynamic
sampling based on supervised learning30. Complete signals can be extrapolated from partial scans by an infilling algorithm,
estimating their fast Fourier transforms31 or inferred by an artificial neural network16, 23 (ANN). In general, the best sampling
strategy varies for different specimens. For example, uniformly spaced sampling is often better than spiral paths for oversampled
STEM images16. However, sampling strategies designed by humans usually have limited ability to leverage an understanding
of physics to optimize sampling. As proposed by our earlier work16, we have therefore developed ANNs to dynamically adapt
scan paths to specimens. Expected performance of dynamic scans can always match or surpass expected performance of static
scans as static scan paths are a special case of dynamic scan paths.

Exploration of STEM specimens is a finite-horizon partially observed Markov decision process32, 33 (POMDP) with sparse
losses. A partial scan can be constructed from path segments sampled at each step of the POMDP and a loss can be based on
the quality of a completion generated from the partial scan. Most scan systems support custom scan paths or can be augmented
with a field programmable gate array34, 35 (FPGA) to support custom scan paths. However, there is a delay before a scan system
can execute or is ready to receive a new command. Latency can be reduced by using both fewer and larger steps, and decreasing
steps may also reduce distortions due to cumulative errors in probing positions34 after commands are issued. Command
execution can also be delayed by ANN inference. However, inference delay can be minimized by using a computationally
lightweight ANN or inferring future commands while previous commands are executing.

Markov decision processes (MDPs) can be optimized by recurrent neural networks (RNNs) based on long short-term
memory36, 37 (LSTM), gated recurrent unit38 (GRU), or other cells39–41. LSTMs and GRUs are popular as they solve the
vanishing gradient problem42 and have consistently high performance40. Small RNNs are computationally inexpensive and
are often applied to MDPs as they can learn to extract and remember state information to inform future decisions. To solve

1

https://github.com/Jeffrey-Ede/adaptive-scans

dynamic graphs, an RNN can be augmented with dynamic external memory to create a differentiable neural computer43 (DNC).
To optimize a MDP, a discounted future loss, Qt , at step t in a MDP with T steps can be calculated from step losses, Lt , with
Bellman’s equation,

Qt =
T

∑
t ′=t

γ
t ′−tLt ′ , (1)

where γ ∈ [0,1) discounts future step losses. Equations for RL are often presented in terms of rewards, e.g. rt =−Lt ; however,
losses are an equivalent representation that avoids complicating our equations with minus signs. Discounted future loss
backpropagation through time44 (BPTT) enables RNNs to be trained by gradient descent45. However, losses for partial scan
completions are not differentiable with respect to (w.r.t.) RNN actions, (a1, ...,aT), controlling which path segments are
sampled.

Many MDPs have losses that are not differentiable w.r.t. agent actions. Examples include agents directing their vision46, 47,
managing resources48, and playing score-based computer games49, 50. Actors are usually trained with non-differentiable losses
by introducing a differentiable surrogate51 or critic52 to predict losses that can be backpropagated to actor parameters. However,
non-differentiable losses can also be backpropagated to agent parameters if actions are sampled from a differentiable probability
distribution46, 53 as training losses given by products of losses and sampling probabilities are differentiable. There are also a
variety of alternatives to gradient descent, such as simulated annealing54 and evolutionary algorithms55, that do not require
differentiable loss functions. Such alternatives can outperform gradient descent56; however, they usually achieve similar or
lower performance than gradient descent for deep ANN training.

2 Training
In this section, we outline our training environment, ANN architecture and learning policy. Our ANNs were developed in
Python with TensorFlow57. Detailed architecture and learning policy is in supplementary information. In addition, source code
and pretrained models are available via GitHub58, and training data is openly accessible12, 59.

2.1 Environment
To create partial scans from STEM images, an actor, µ , infers L2 normalized action vectors, µ(ht), based on a history,
ht = (oi

1,a1, ...,ot−1,at−1), of previous actions, a, and observations, o. To encourage exploration, µ(ht) is rotated to at by
Ornstein-Uhlenbeck60 (OU) exploration noise61, εt ,

at =

[
cosεt −sinεt
sinεt cosεt

]
µ(ht) (2)

εt = θ(εavg− εt−1)+σW (3)

where we chose θ = 0.1 to decay noise to εavg = 0, a scale factor, σ = 0.2, to scale a standard normal variate, W , and start
noise ε0 = 0. OU noise is linearly decayed to zero throughout training. Correlated OU exploration noise is recommended
for continuous control tasks optimized by deep deterministic policy gradients49 (DDPG) and recurrent deterministic policy
gradients50 (RDPG). Nevertheless, follow-up experiments with TD362 and D4PG63 have found that uncorrelated Gaussian
noise can produce similar results.

An action, at , is the direction to move to observe a path segment, ot , relative to the position at the end of the previous
segment. Partial scans are constructed from complete histories of actions and observations, hT . A simplified partial scan is
shown in fig. 1. In our experiments, partial scans, s, are constructed from T = 20 straight path segments selected from 96×96
STEM images. Each segment has 20 probing positions separated by d = 21/2 px and positions can be outside an image. The
pixels in the image nearest each probing position are sampled, so a separation of d ≥ 21/2 prevents probing positions in a
segment from sampling the same pixel. A separation of d < 21/2 would allow a pixel to sampled more than once by moving
diagonally, potentially incentivising orthogonal scan motion to sample more pixels.

Following our earlier work16, 23, 64, we select subsets of pixels from STEM images to create partial scans to train ANNs
for compressed sensing. Selecting a subset of pixels is easier than preparing a large, carefully partitioned and representative
dataset65, 66 containing experimental partial scan and full image pairs, and selected pixels have realistic noise characteristics as
they are from experimental images. However, selecting a subset of pixels does not account for probing location errors varying
with scan shape34. We use a Warwick Electron Microscopy Dataset (WEMD) containing 19769 32-bit 96×96 images cropped
and downsampled from full images12, 59. Cropped images were blurred by a symmetric 5×5 Gaussian kernel with a 2.5 px
standard deviation to decrease any training loss variation due to varying noise characteristics. Finally, images, I, were linearly
transformed to normalized images, IN , with minimum and maximum values of −1 and 1. To test performance, the 19769
images were split, without shuffling, into a training set containing 15815 images and a test set containing 3954 images.

2/12

Figure 1. Example 8×8 partial scan with T = 5 straight path segments. Each segment in this example has 3 probing positions separated by
d = 21/2 px and their starts are labelled by step numbers, t. Partial scans are selected from STEM images by sampling pixels nearest probing
positions, even if the probing position is nominally outside an imaging region.

2.2 Architecture
For training, our adaptive scan system consists of an actor, µ , target actor, µ ′, critic, Q, target critic, Q′, and generator, G. To
minimize latency, our actors and critics are computationally inexpensive deep LSTMs67 with a depth of 2 and 256 hidden units.
Our generator is a convolutional neural network68, 69 (CNN). A recurrent actor selects actions, at and observes path segments,
ot , that are added to an experience replay70, R, containing 105 sequences of actions and observations, hT = (o1,a1, ...,oT ,aT).
Partial scans, s, are constructed from histories sampled from the replay to train a generator to complete partial scans, Ii

G = G(si).
The actor and generator cooperate to minimize generator losses, LG, and are the only networks needed for inference.

Generator losses are not differentiable w.r.t. actor actions used to construct partial scans i.e. ∂LG/∂at = 0. Following
RDPG50, we therefore introduce recurrent critics to predict losses from actor actions and observations that can be backpropagated
to actors for training by BPTT. Actor and critic RNNs have the same architecture, except actors have two outputs to parameterize
actions whereas critics have one output to predict losses. Target networks49, 71 use exponential moving averages of live actor
and critic network parameters and are introduced to stabilize learning. For training by RDPG, live and target ANNs separately
replay experiences. However, we propagate live RNN states to target RNNs at each step as a precaution against any cumulative
divergence of target network behaviour from live network behaviour across multiple steps.

2.3 Learning Policy
To train actors to cooperate with a generator to complete partial scans, we developed cooperative recurrent deterministic policy
gradients (CRDPG, algorithm 1). This is an extension of RDPG to an actor that cooperates with another ANN to minimize its
loss. We train our networks by ADAM72 optimized gradient descent for M = 106 iterations with a batch size, N = 32. We
use constant learning rates ηµ = 0.0005 and ηQ = 0.0010 for the actor and critic, respectively. For the generator, we use an
initial learning rate ηG = 0.0030 with an exponential decay factor of 0.755m/M at iteration m. The exponential decay envelope
is multiplied by a sawtooth cyclic learning rate73 with a period of 2M/9 that oscillates between 0.2 and 1.0. Training takes two
days with an Intel i7-6700 CPU and an Nvidia GTX 1080 Ti GPU.

We augment training data by a factor of eight by applying a random combination of flips and 90◦ rotations, mapping s→ s′

and IN → I′N , similar to our earlier work16, 23, 64, 74. Our generator is trained to minimize mean squared errors (MSEs),

LG = MSE(G(s′), IN) , (12)

between scan completions, G(s′), and normalized target images, IN . Generator losses decrease during training as the generator
learns, and may vary due to loss spikes64, learning rate oscillations73 or other training phenomena. Normalizing losses can
improve RL75, so we divide generator losses used for critic training by their running mean,

Lavg← βLLavg +
1−βL

N

N

∑
i

LG , (13)

3/12

Algorithm 1. Cooperative recurrent deterministic policy gradients (CRDPG).

Initialize actor, µ , critic, Q, and generator, G, networks with parameters ω , θ and φ , respectively.
Initialize target networks, µ ′ and Q′, with parameters ω ′← ω , θ ′← θ , respectively.
Initialize replay buffer, R.
Initialize average generator loss, Lavg.
for iteration m = 1,M do

Initialize empty history, h0.
for step t = 1,T do

Make observation, ot .
ht ← ht−1,at ,ot (append action and corresponding observation to history).
Select action, at , by computing µ(ht) and applying exploration noise, εt .

end for
Store the sequence (o1,a1, ...,oT ,aT) in R.
Sample a minibatch of N histories, hi

T = (oi
1,a

i
1, ...,o

i
T ,a

i
T), from R.

Construct partial scans, si, from hi
T .

Use generator to complete partial scans, Ii
G = G(si).

Compute step losses, (Li
1, ...,L

i
T), from generator losses, Li

G, and over edge losses, E i
t ,

Li
t = E i

t +δtT
clip(Li

G)

Lavg
, (4)

where the Kronecker delta, δtT , is 1 if t = T and 0 otherwise, and clip(Li
G) is the smaller of Li

G and three standard
deviations above its running mean.
Compute target values, (yi

1, ...,y
i
T), with target networks,

yi
t = Li

t + γQ′(H i
Q,o

i
t+1,a

i
t+1,µ

′(H i
µ ,o

i
t+1,a

i
t+1)) , (5)

where H i
Q and H i

µ are states of live networks after computing Q(hi
t ,a

i
t) and µ(hi

t), respectively.
Compute critic update (using BPTT),

∆ω =
1

NT

N

∑
i

T

∑
t
(yi

t −Q(hi
t ,a

i
t))

∂Q(hi
t ,a

i
t)

∂ω
. (6)

Compute actor update (using BPTT),

∆θ =
1

NT

N

∑
i

T

∑
t

∂Q(hi
t ,a

i
t)

∂ µ(hi
t)

∂ µ(hi
t)

∂θ
. (7)

Compute generator update,

∆φ =
1
N

N

∑
i

∂Li
G

∂φ
. (8)

Update the actor, critic and generator by gradient descent.
Update the target networks and average generator loss,

ω
′← βω ω

′+(1−βω)ω , (9)
θ
′← βθ θ

′+(1−βθ)θ , (10)

Lavg← βLLavg +
1−βL

N

N

∑
i
(Li

G) . (11)

end for

4/12

where we chose βL = 0.997 and Lavg is updated at each training iteration.
Heuristically, an optimal policy does not go over image edges as there is no information there in our training environment.

To accelerate convergence, we therefore added a small loss penalty, Et = 0.1, at step t if an action results in a probing position
being over an image edge. The total loss at each step is

Lt = Et +δtT
clip(LG)

Lavg
, (14)

where clip(LG) clips losses used for RL to three standard deviations above their running mean. This adaptive loss clipping is
inspired by adaptive learning rate clipping64 (ALRC) and reduces learning destabilization by high loss spikes. However, we
expect that clipping normalized losses to a fixed threshold71 would achieve similar results. The Kronecker delta, δtT , in eqn. 14
is 1 if t = T and 0 otherwise, so it only adds the generator loss at the final step, T .

To estimate discounted future losses, Qrl
t , for RL, we use a target actor and critic,

Qrl
t = Lt + γQ′(ht+1,µ

′(ht+1)) , (15)

where we chose γ = 0.97. Target networks stabilize learning and decrease policy oscillations76–78. The critic is trained to
minimize mean squared differences, LQ, between predicted and target losses, and the actor is trained to minimize losses, Lµ ,
predicted by the critic,

LQ =
1

2T

T

∑
t=1

(yt −Q(ht ,at))
2 , (16)

Lµ =
1
T

T

∑
t=1

Q(ht ,at) . (17)

Our target actor and critic have trainable parameters ω ′ and θ ′, respectively, that track live parameters, ω and θ , by soft
updates49,

ω
′
m = βω ω

′
m−1 +(1−βω)ωm , (18)

θ
′
m = βθ θ

′
m−1 +(1−βθ)θm , (19)

where we chose βω = βθ = 0.9997. We also investigated hard updates71, where target networks are periodically copied from
live networks; however, we found that soft updates result in faster convergence and more stable training.

3 Experiments
In this section, we present examples of adaptive partial scans and select learning curves for architecture and learning policy
experiments. Examples of 1/23.04 px coverage partial scans, target outputs and generator completions are shown in fig. 2 for
96×96 crops from test set STEM images. They show both adaptive and spiral scans after flips and rotations to augment data for
the generator. The first actions select a path segment from the middle of image in the direction of a corner. Actors then use the
first and following observations to inform where to sample the remaining T −1 = 19 path segments. Actors adapt scan paths to
specimens. For example, if an image contains regular atoms, an actor might cover a large area to see if there is a region where
that changes. Alternatively, if an image contains a uniform region, actors, may explore near image edges and far away from the
uniform region to find region boundaries.

The main limitation of our experiments is that generators trained to complete a variety of partial scan paths generated by an
actor achieves lower performance than a generate trained to complete partial scans with a fixed path. For example, fig. 3a shows
that generators trained to cooperate with LSTM or GRU actors are outperformed by generators trained with fixed spiral or
other scan paths shown in fig. 3b. Spiral paths outperform fixed scan paths; however, we emphasize that paths generated by
actors are designed for individual training data, rather than all training data. Freezing actor training to prevents changes in actor
policy does not result in clear improvements in generator performance. Consequently, we think that improvements to generator
architecture or learning policy should be a starting point for further investigation. To find the best practical actor policy, we
think that a generator trained for a variety of scan paths should achieve comparable performance to generators trained for single
scan paths.

We investigated a variety of popular RNN architectures to minimize inference time. Learning curves in fig. 3a show that
performance is similar for LSTMs and GRUs. GRUs require less computation. However, LSTM and GRU inference time is
comparable and GRU training seems to be more prone to loss spikes, so LSTMs may be preferable. We also created a DNC

5/12

Figure 2. Test set 1/23.04 px coverage partial scans, target outputs and generated partial scan completions for 96×96 crops from STEM
images. The top four rows show adaptive scans, and the bottom row shows spiral scans. Input partial scans are noisy, whereas target outputs
are blurred.

by augmenting a deep LSTM with dynamic external memory. However, fig. 3c shows that LSTM and DNC performance is
similar, and inference time and computational requirements are much higher for our DNC. We tried to reduce computation and
accelerate convergence by applying projection layers to LSTM hidden states79. However, we found that performance decreased
with decreasing projection layer size.

Experienced replay buffers for RL often have heuristic sizes, such as 106 examples. However, RL can be sensitive to replay
buffer size70. Indeed, learning curves in fig. 3d show that increasing buffer size improves learning stability and decreases test
set errors. Increasing buffer size usually improves learning stability and decreases forgetting by exposing actors and critics
to a higher variety of past policies. However, we expect that convergence would be slowed if the buffer became too large as
increasing buffer size increases expected time before experiences with new policies are replayed. We also found that increasing
buffer sized decreased the size of small loss oscillations76–78, which have a period near 2000 iterations. However, the size of
loss oscillations does not appear to affect performance.

We found that initial convergence is usually delayed if a large portion of initial actions go outside the imaging region. This
would often delay convergence by about 104 iterations before OU noise led to the discovery of better exploration strategies
away from image edges. Although 104 iterations is only 1% of our 106 iteration learning policy, it often impaired development

6/12

Figure 3. Learning curves for a-b) adaptive scan paths chosen by an LSTM or GRU, and fixed spiral and other fixed paths, c) adaptive paths
chosen by an LSTM or DNC, d) a range of replay buffer sizes, e) a range of penalties for trying to sample at probing positions over image
edges, and f) with and without normalizing or clipping generator losses used for critic training. All learning curves are 2500 iteration boxcar
averaged and results in different plots are not directly comparable due to varying experiment settings. Means and standard deviations of test
set errors, “Test: Mean, Std Dev”, are at the ends of labels in graph legends.

7/12

by delaying debugging or evaluation of changes to architecture and learning policy. Augmenting RL losses with subgoal-based
heuristic rewards can accelerate convergence by making problems more tractable80. Thus, we added loss penalties if actors
tried to go over image edges, which accelerated initial convergence. Learning curves in fig. 3e show that over edge penalties
at each step smaller than Et = 0.2 have a similar effect on performance. Further, performance is lower for higher over edge
penalties, Et ≥ 0.2. We also found that training is more stable if over edge penalties are added at individual steps, rather than
propagated to past steps as part of a discounted future loss.

Our actor, critic and generator are trained together. It follows that generator losses, which our critic learns to predict,
decrease throughout training as generator performance improves. However, normalizing loss sizes usually improves RL75, so
we divide by their running means in eqn. 14. Learning curves in fig. 3f show that loss normalization improves learning stability
and decreases final errors. Clipping training losses can improve RL71, so we clipped generator losses used for critic training
to 3 standard deviations above their running means. We found that clipping increases test set errors, possibly because most
training errors are in a similar regime. Thus, we expect that clipping may be more helpful for training with sparser scans as
higher uncertainty may increase likelihood of unusually high generator losses.

4 Discussion
The main limitation of our adaptive scan system is that generator errors are much higher when a generator is trained for a
variety of scan paths than when it is trained for a single scan path. However, we expect that generator performance for a variety
of scans could be improved to match performance for single scans by developing a larger neural network and a better learning
policy. To train actors to cooperate with generators, we developed CRDPG. This is an extension of RDPG50, and RDPG is
based on DDPG49. Alternatives to DDPG, such as TD362 and D4PG63, arguably achieve higher performance, so we expect
that they could form the basis of a future training algorithm. Further, we expect that architecture and learning policy could be
improved by AdaNet81, Ludwig82, or other automatic machine learning83–87 (AutoML) algorithms as AutoML can match or
surpass the performance of human developers88, 89. Finally, test set losses for a variety of scans appear to be decreasing at the
end of training, so we expect that performance could be improved by increasing training iterations.

After generator performance is improved, we expect the main limitation of our adaptive scan system to be distortions caused
by probing position errors. Errors usually depend on scan path shape34 and accumulate for each path segment. Non-linear scan
distortions can be corrected by comparing pairs of orthogonal raster scans90, 91, and we expect this method can be extended to
partial scans. However, orthogonal scanning would complicate measurement by limiting scan paths to two half scans to avoid
doubling electron dose on beam-sensitive materials. Instead, we propose that a cyclic generator92 could be trained to correct
scan distortions and provide a detailed method as supplementary information. Another limitation is that our generators do not
learn to correct STEM noise93. However, we expect that generators can learn to remove noise, for example, from single noisy
examples94 or by supervised learning74.

To simplify our preliminary investigation, our scan system samples straight path segments and cannot go outside a specified
imaging region. However, actors could learn to output actions with additional degrees of freedom to describe curves, multiple
successive path segments, or sequences of non-contiguous probing positions. Similarly, additional restrictions could be
applied to actions. For example, actions could be restricted to avoid actions that cause high probing position errors. Training
environments could also be modified to allow actors to sample pixels over image edges by loading images larger than partial
scan regions. In practice, actors can sample outside a scan region and being able to access extra information outside an imaging
region could improve performance. However, using larger images may slow development by increasing data loading and
processing times.

Not all scan systems support non-raster scan paths. However, many scan controllers can be augmented with an FPGA to
enable custom scan paths34, 35. Recent versions of Gatan Digital Micrograph support Python95, so our ANNs can be readily
integrated into existing scan systems. Alternatively, an actor could be synthesized on the scan controlling FPGA96, 97 to
minimize inference time. There could be hundreds of path segments in a partial scan, so computationally lightweight and
parallelizable actors are essential to minimize scan time. We have therefore developed actors based computationally inexpensive
RNNs, which can remember state information to inform future decisions. Another approach is to update a partial scan at each
step to be input to feedforward neural network (FNN), such as a CNN, to decide actions. However, we expect that FNNs are
less practical than RNNs as FNNs may require additional computation to reprocess all past states at each step.

5 Conclusions
Our initial investigation demonstrates that actor RNNs can be trained by RL to direct dynamic adaption of contiguous scans to
specimens for compressed sensing. We introduce CRDPG to train an RNN to cooperate with a CNN to complete STEM images
from partial scans, and present learning policy, experiments, and example applications. After further development, we expect
that adaptive scans will become an effective means to decrease electron beam damage and scan times by 10-100× with minimal

8/12

information loss. Static sampling strategies are a subset of possible dynamic sampling strategies, so the performance of static
sampling can always be matched by or outperformed by dynamic sampling. Further, we expect that adaptive scan systems can
be developed for most areas of science and technology, including for the reduction of medical radiation. To encourage further
investigation, our source code, pretrained models, and training data is openly accessible.

6 Supplementary Information
Supplementary information is openly accessible at https://doi.org/10.5281/zenodo.4304462. Therein, we present
detailed ANN architecture, additional experiments, additional examples, and a method to correct partial scan distortions.

Data Availability
The data that support the findings of this study are openly available.

Acknowledgements
Thanks go to Jasmine Clayton, Abdul Mohammed, and Jeremy Sloan for internal review. The author acknowledges funding
from EPSRC grant EP/N035437/1 and EPSRC Studentship 1917382.

Competing Interests
The author declares no competing interests.

References
1. Krull, A., Hirsch, P., Rother, C., Schiffrin, A. & Krull, C. Artificial-Intelligence-Driven Scanning Probe Microscopy.

Commun. Phys. 3, 1–8 (2020).

2. Rugar, D. & Hansma, P. Atomic Force Microscopy. Phys. Today 43, 23–30 (1990).

3. New, P. F., Scott, W. R., Schnur, J. A., Davis, K. R. & Taveras, J. M. Computerized Axial Tomography with the EMI
Scanner. Radiology 110, 109–123 (1974).

4. Heymsfield, S. B. et al. Accurate Measurement of Liver, Kidney, and Spleen Volume and Mass by Computerized Axial
Tomography. Annals Intern. Medicine 90, 185–187 (1979).

5. Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron Backscatter Diffraction in Materials Science, vol. 2
(Springer, 2009).

6. Vernon-Parry, K. D. Scanning Electron Microscopy: An Introduction. III-Vs Rev. 13, 40–44 (2000).

7. Keren, S. et al. Noninvasive Molecular Imaging of Small Living Subjects Using Raman Spectroscopy. Proc. Natl. Acad.
Sci. 105, 5844–5849 (2008).

8. Tong, Y.-X., Zhang, Q.-H. & Gu, L. Scanning Transmission Electron Microscopy: A Review of High Angle Annular Dark
Field and Annular Bright Field Imaging and Applications in Lithium-Ion Batteries. Chin. Phys. B 27, 066107 (2018).

9. Scarborough, N. M. et al. Dynamic X-Ray Diffraction Sampling for Protein Crystal Positioning. J. Synchrotron Radiat. 24,
188–195 (2017).

10. Hujsak, K., Myers, B. D., Roth, E., Li, Y. & Dravid, V. P. Suppressing Electron Exposure Artifacts: An Electron Scanning
Paradigm with Bayesian Machine Learning. Microsc. Microanal. 22, 778–788 (2016).

11. Egerton, R. F., Li, P. & Malac, M. Radiation Damage in the TEM and SEM. Micron 35, 399–409 (2004).

12. Ede, J. M. Warwick Electron Microscopy Datasets. Mach. Learn. Sci. Technol. 1, 045003 (2020).

13. Amidror, I. Sub-Nyquist Artefacts and Sampling Moiré Effects. Royal Soc. Open Sci. 2, 140550 (2015).

14. Binev, P. et al. Compressed Sensing and Electron Microscopy. In Modeling Nanoscale Imaging in Electron Microscopy,
73–126 (Springer, 2012).

15. Ede, J. M. Review: Deep Learning in Electron Microscopy. arXiv preprint arXiv:2009.08328 (2020).

16. Ede, J. M. & Beanland, R. Partial Scanning Transmission Electron Microscopy with Deep Learning. arXiv preprint
arXiv:1910.10467 (2020).

17. Li, Y. Deep Reinforcement Learning: An Overview. arXiv preprint arXiv:1701.07274 (2017).

9/12

https://doi.org/10.5281/zenodo.4304462

18. Hwang, S., Han, C. W., Venkatakrishnan, S. V., Bouman, C. A. & Ortalan, V. Towards the Low-Dose Characterization
of Beam Sensitive Nanostructures via Implementation of Sparse Image Acquisition in Scanning Transmission Electron
Microscopy. Meas. Sci. Technol. 28, 045402 (2017).

19. Hujsak, K., Myers, B. D., Roth, E., Li, Y. & Dravid, V. P. Suppressing Electron Exposure Artifacts: An Electron Scanning
Paradigm with Bayesian Machine Learning. Microsc. Microanal. 22, 778–788 (2016).

20. Anderson, H. S., Ilic-Helms, J., Rohrer, B., Wheeler, J. & Larson, K. Sparse Imaging for Fast Electron Microscopy. In
Computational Imaging XI, vol. 8657, 86570C (International Society for Optics and Photonics, 2013).

21. Fang, L. et al. Deep Learning-Based Point-Scanning Super-Resolution Imaging. bioRxiv 740548 (2019).

22. de Haan, K., Ballard, Z. S., Rivenson, Y., Wu, Y. & Ozcan, A. Resolution Enhancement in Scanning Electron Microscopy
Using Deep Learning. Sci. Reports 9, 1–7 (2019).

23. Ede, J. M. Deep Learning Supersampled Scanning Transmission Electron Microscopy. arXiv preprint arXiv:1910.10467
(2019).

24. Mueller, K. Selection of Optimal Views for Computed Tomography Reconstruction (2011). US Patent App. 12/842,274.

25. Wang, Z. & Arce, G. R. Variable Density Compressed Image Sampling. IEEE Transactions on Image Process. 19, 264–270
(2009).

26. Ji, S., Xue, Y. & Carin, L. Bayesian Compressive Sensing. IEEE Transactions on Signal Process. 56, 2346–2356 (2008).

27. Seeger, M. W. & Nickisch, H. Compressed Sensing and Bayesian Experimental Design. In Proceedings of the 25th
International Conference on Machine Learning, 912–919 (2008).

28. Braun, G., Pokutta, S. & Xie, Y. Info-Greedy Sequential Adaptive Compressed Sensing. IEEE J. Sel. Top. Signal Process.
9, 601–611 (2015).

29. Carson, W. R., Chen, M., Rodrigues, M. R., Calderbank, R. & Carin, L. Communications-Inspired Projection Design with
Application to Compressive Sensing. SIAM J. on Imaging Sci. 5, 1185–1212 (2012).

30. Godaliyadda, G. D. P. et al. A Framework for Dynamic Image Sampling Based on Supervised Learning. IEEE Transactions
on Comput. Imaging 4, 1–16 (2017).

31. Ermeydan, E. S. & Cankaya, I. Sparse Fast Fourier Transform for Exactly Sparse Signals and Signals with Additive
Gaussian Noise. Signal, Image Video Process. 12, 445–452 (2018).

32. Saldi, N., Yüksel, S. & Linder, T. Asymptotic Optimality of Finite Model Approximations for Partially Observed Markov
Decision Processes With Discounted Cost. IEEE Transactions on Autom. Control. 65, 130–142 (2019).

33. Jaakkola, T., Singh, S. P. & Jordan, M. I. Reinforcement Learning Algorithm for Partially Observable Markov Decision
Problems. In Advances in Neural Information Processing Systems, 345–352 (1995).

34. Sang, X. et al. Dynamic Scan Control in STEM: Spiral Scans. Adv. Struct. Chem. Imaging 2, 6 (2017).

35. Sang, X. et al. Precision Controlled Atomic Resolution Scanning Transmission Electron Microscopy Using Spiral Scan
Pathways. Sci. Reports 7, 43585 (2017).

36. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Comput. 9, 1735–1780 (1997).

37. Olah, C. Understanding LSTM Networks. Online: https://colah.github.io/posts/2015-08-Understanding-LSTMs (2015).

38. Cho, K. et al. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv
preprint arXiv:1406.1078 (2014).

39. Weiss, G., Goldberg, Y. & Yahav, E. On the Practical Computational Power of Finite Precision RNNs for Language
Recognition. arXiv preprint arXiv:1805.04908 (2018).

40. Jozefowicz, R., Zaremba, W. & Sutskever, I. An Empirical Exploration of Recurrent Network Architectures. In International
Conference on Machine Learning, 2342–2350 (2015).

41. Bayer, J., Wierstra, D., Togelius, J. & Schmidhuber, J. Evolving Memory Cell Structures for Sequence Learning. In
International Conference on Artificial Neural Networks, 755–764 (Springer, 2009).

42. Pascanu, R., Mikolov, T. & Bengio, Y. On the Difficulty of Training Recurrent Neural Networks. In International
Conference on Machine Learning, 1310–1318 (2013).

43. Graves, A. et al. Hybrid Computing Using a Neural Network with Dynamic External Memory. Nature 538, 471–476
(2016).

10/12

https://colah.github.io/posts/2015-08-Understanding-LSTMs

44. Werbos, P. J. Backpropagation Through Time: What It Does and How To Do It. Proc. IEEE 78, 1550–1560 (1990).

45. Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv preprint arXiv:1609.04747 (2016).

46. Mnih, V., Heess, N., Graves, A. & Kavukcuoglu, K. Recurrent Models of Visual Attention. In Advances in Neural
Information Processing Systems, 2204–2212 (2014).

47. Ba, J., Mnih, V. & Kavukcuoglu, K. Multiple Object Recognition with Visual Attention. arXiv preprint arXiv:1412.7755
(2014).

48. Vinyals, O. et al. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/alphastar-
mastering-real-time-strategy-game-starcraft-ii/ (2019).

49. Lillicrap, T. P. et al. Continuous Control with Deep Reinforcement Learning. arXiv preprint arXiv:1509.02971 (2015).

50. Heess, N., Hunt, J. J., Lillicrap, T. P. & Silver, D. Memory-Based Control with Recurrent Neural Networks. arXiv preprint
arXiv:1512.04455 (2015).

51. Grabocka, J., Scholz, R. & Schmidt-Thieme, L. Learning Surrogate Losses. arXiv preprint arXiv:1905.10108 (2019).

52. Konda, V. R. & Tsitsiklis, J. N. Actor-Critic Algorithms. In Advances in Neural Information Processing Systems,
1008–1014 (2000).

53. Zhao, T., Hachiya, H., Niu, G. & Sugiyama, M. Analysis and Improvement of Policy Gradient Estimation. In Advances in
Neural Information Processing Systems, 262–270 (2011).

54. Rere, L. R., Fanany, M. I. & Arymurthy, A. M. Simulated Annealing Algorithm for Deep Learning. Procedia Comput. Sci.
72, 137–144 (2015).

55. Young, S. R., Rose, D. C., Karnowski, T. P., Lim, S.-H. & Patton, R. M. Optimizing Deep Learning Hyper-Parameters
Through an Evolutionary Algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance
Computing Environments, 1–5 (2015).

56. Such, F. P. et al. Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training Deep Neural
Networks for Reinforcement Learning. arXiv preprint arXiv:1712.06567 (2017).

57. Abadi, M. et al. TensorFlow: A System for Large-Scale Machine Learning. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 265–283 (2016).

58. Ede, J. M. Adaptive Partial STEM Repository. Online: https://github.com/Jeffrey-Ede/Adaptive-Partial-STEM (2020).

59. Ede, J. M. & Beanland, R. Electron Microscopy Datasets. Online: https://github.com/Jeffrey-Ede/datasets/wiki (2020).

60. Uhlenbeck, G. E. & Ornstein, L. S. On the Theory of the Brownian Motion. Phys. Rev. 36, 823 (1930).

61. Plappert, M. et al. Parameter Space Noise for Exploration. arXiv preprint arXiv:1706.01905 (2017).

62. Fujimoto, S., Van Hoof, H. & Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv
preprint arXiv:1802.09477 (2018).

63. Barth-Maron, G. et al. Distributed Distributional Deterministic Policy Gradients. arXiv preprint arXiv:1804.08617 (2018).

64. Ede, J. M. & Beanland, R. Adaptive Learning Rate Clipping Stabilizes Learning. Mach. Learn. Sci. Technol. 1, 015011
(2020).

65. Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv preprint
arXiv:1811.12808 (2018).

66. Roh, Y., Heo, G. & Whang, S. E. A Survey on Data Collection for Machine Learning: A Big Data-AI Integration
Perspective. IEEE Transactions on Knowl. Data Eng. (2019).

67. Zaremba, W., Sutskever, I. & Vinyals, O. Recurrent Neural Network Regularization. arXiv preprint arXiv:1409.2329
(2014).

68. McCann, M. T., Jin, K. H. & Unser, M. Convolutional Neural Networks for Inverse Problems in Imaging: A Review. IEEE
Signal Process. Mag. 34, 85–95 (2017).

69. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems, 1097–1105 (2012).

70. Zhang, S. & Sutton, R. S. A Deeper Look at Experience Replay. arXiv preprint arXiv:1712.01275 (2017).

71. Mnih, V. et al. Human-Level Control Through Deep Reinforcement Learning. Nature 518, 529–533 (2015).

11/12

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://github.com/Jeffrey-Ede/Adaptive-Partial-STEM
https://github.com/Jeffrey-Ede/datasets/wiki

72. Kingma, D. P. & Ba, J. ADAM: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980 (2014).

73. Smith, L. N. Cyclical Learning Rates for Training Neural Networks. In 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), 464–472 (IEEE, 2017).

74. Ede, J. M. & Beanland, R. Improving Electron Micrograph Signal-to-Noise with an Atrous Convolutional Encoder-Decoder.
Ultramicroscopy 202, 18–25 (2019).

75. van Hasselt, H. P., Guez, A., Hessel, M., Mnih, V. & Silver, D. Learning Values Across Many Orders of Magnitude. In
Advances in Neural Information Processing Systems, 4287–4295 (2016).

76. Czarnecki, W. M. et al. Distilling Policy Distillation. arXiv preprint arXiv:1902.02186 (2019).

77. Lipton, Z. C. et al. Combating Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear. arXiv preprint
arXiv:1611.01211 (2016).

78. Wagner, P. A Reinterpretation of the Policy Oscillation Phenomenon in Approximate Policy Iteration. In Advances in
Neural Information Processing Systems, 2573–2581 (2011).

79. Jia, Y., Wu, Z., Xu, Y., Ke, D. & Su, K. Long Short-Term Memory Projection Recurrent Neural Network Architectures for
Piano’s Continuous Note Recognition. J. Robotics 2017 (2017).

80. Ng, A. Y., Harada, D. & Russell, S. Policy Invariance Under Reward Transformations: Theory and Application to Reward
Shaping. In International Conference on Machine Learning, vol. 99, 278–287 (1999).

81. Weill, C. et al. AdaNet: A Scalable and Flexible Framework for Automatically Learning Ensembles. arXiv preprint
arXiv:1905.00080 (2019).

82. Molino, P., Dudin, Y. & Miryala, S. S. Ludwig: A Type-Based Declarative Deep Learning Toolbox. arXiv preprint
arXiv:1909.07930 (2019).

83. He, X., Zhao, K. & Chu, X. AutoML: A Survey of the State-of-the-Art. arXiv preprint arXiv:1908.00709 (2019).

84. Malekhosseini, E., Hajabdollahi, M., Karimi, N. & Samavi, S. Modeling Neural Architecture Search Methods for Deep
Networks. arXiv preprint arXiv:1912.13183 (2019).

85. Jaafra, Y., Laurent, J. L., Deruyver, A. & Naceur, M. S. Reinforcement Learning for Neural Architecture Search: A Review.
Image Vis. Comput. 89, 57–66 (2019).

86. Elsken, T., Metzen, J. H. & Hutter, F. Neural Architecture Search: A Survey. arXiv preprint arXiv:1808.05377 (2018).

87. Waring, J., Lindvall, C. & Umeton, R. Automated Machine Learning: Review of the State-of-the-Art and Opportunities for
Healthcare. Artif. Intell. Medicine 101822 (2020).

88. Hanussek, M., Blohm, M. & Kintz, M. Can AutoML Outperform Humans? An Evaluation on Popular OpenML Datasets
Using AutoML Benchmark. arXiv preprint arXiv:2009.01564 (2020).

89. Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Learning Transferable Architectures for Scalable Image Recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8697–8710 (2018).

90. Ophus, C., Ciston, J. & Nelson, C. T. Correcting Nonlinear Drift Distortion of Scanning Probe and Scanning Transmission
Electron Microscopies from Image Pairs with Orthogonal Scan Directions. Ultramicroscopy 162, 1–9 (2016).

91. Ning, S. et al. Scanning Distortion Correction in STEM Images. Ultramicroscopy 184, 274–283 (2018).

92. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial
Networks. In Proceedings of the IEEE International Conference on Computer Vision, 2223–2232 (2017).

93. Seki, T., Ikuhara, Y. & Shibata, N. Theoretical Framework of Statistical Noise in Scanning Transmission Electron
Microscopy. Ultramicroscopy 193, 118–125 (2018).

94. Laine, S., Karras, T., Lehtinen, J. & Aila, T. High-Quality Self-Supervised Deep Image Denoising. In Advances in Neural
Information Processing Systems, 6968–6978 (2019).

95. Miller, B. & Mick, S. Real-Time Data Processing Using Python in DigitalMicrograph. Microsc. Microanal. 25, 234–235
(2019).

96. Noronha, D. H., Salehpour, B. & Wilton, S. J. LeFlow: Enabling Flexible FPGA High-Level Synthesis of TensorFlow
Deep Neural Networks. In FSP Workshop 2018; Fifth International Workshop on FPGAs for Software Programmers, 1–8
(VDE, 2018).

97. Ruan, A., Shi, A., Qin, L., Xu, S. & Zhao, Y. A Reinforcement Learning Based Markov-Decision Process (MDP)
Implementation for SRAM FPGAs. IEEE Transactions on Circuits Syst. II: Express Briefs (2019).

12/12

	Introduction
	Training
	Environment
	Architecture
	Learning Policy

	Experiments
	Discussion
	Conclusions
	Supplementary Information
	References

