
Supplementary Information: Adaptive Partial
Scanning Transmission Electron Microscopy with
Reinforcement Learning
Jeffrey M. Ede1,a

1University of Warwick, Department of Physics, Coventry, CV4 7AL, UK
aj.m.ede@warwick.ac.uk

Figure S1. Actor, critic and generator architecture. a) An actor outputs action vectors whereas a critic predicts losses. Dashed lines are for
extra components in a DNC. b) A convolutional generator completes partial scans.

S1 Detailed Architecture
Detailed actor, critic and generator architecture is shown in fig. S1. Actors and critics have almost identical architecture, except
actor fully connected layers output action vectors whereas critic fully connected layers output predicted losses. In most of our
experiments, actors and critics are deep LSTMs1. However, we also augment deep LSTMs with dynamic external memory to
create DNCs2 in some of our experiments. Configuration details of actor and critic components shown in fig. S1a follow.

Controller (Deep LSTM): A two-layer deep LSTM with 256 hidden units in each layer. To reduce signal attenuation, we
add skip connections from inputs to the second LSTM layer and from the first LSTM layer to outputs. Weights are initialized
from truncated normal distributions and biases are zero initialized. In addition, we add a bias of 1 to the forget gate to reduce
forgetting at the start of training3. Initial LSTM cell and hidden states are initialized with trainable variables4.

Access (External Memory): Our DNC implementation is adapted from Google Deepmind’s2, 5. We use 4 read heads and 1

S1



write head to control access to dynamic external memory, which has 16 slots with a word size of 64.
Fully Connected: A dense layer linearly connects inputs to outputs. Weights are initialized from a truncated normal distribution
and there are no biases.
Conv d, wxw, Stride, x: Convolutional layer with a square kernel of width, w, that outputs d feature channels. If the stride is
specified, convolutions are only applied to every xth spatial element of their input, rather than to every element. Striding is not
applied depthwise.
Trans Conv d, wxw, Stride, x: Transpositional convolutional layer with a square kernel of width, w, that outputs d feature
channels. If the stride is specified, convolutions are only applied to every xth spatial element of their input, rather than to every
element. Striding is not applied depthwise.
+ : Circled plus signs indicate residual connections where incoming tensors are added together. Residuals help reduce signal
attenuation and allow a network to learn perturbative transformations more easily.
The actor and critic cooperate with a convolutional generator, shown in fig. S1b, to complete partial scans. Our generator is
constructed from convolutional layers6 and skip-3 residual blocks7. Each convolutional layer is followed by ReLU8 activation
then batch normalization9, and residual connections are added between activation and batch normalization. The convolutional
weights are Xavier10 initialized and biases are zero initialized.

S2 Additional Regularization

We apply L2 regularization11 to decay generator parameters by a factor, β = 0.99999, at each training iteration. This decay rate
is heuristic and the L2 regularization is primarily a precaution against overfitting. Further, adding L2 regularization did not
have a noticeable effect on performance. We also investigated gradient clipping12–15 to a range of static and dynamic thresholds
for actor and critic training. However, we found that gradient clipping decreases convergence if clipping thresholds are too
small and otherwise does not have a noticeable effect.

S3 Additional Experiments
This section present additional learning curves for architecture and learning policy experiments in fig. S2. For example, learning
curves in fig. S2a show that generator training with an exponentially decayed cyclic learning rate16 results in faster convergence
and lower final errors than just using an exponentially decayed learning rate. We were concerned that a cyclic learning rate
might cause generator loss oscillations if the learning rate oscillated too high. Indeed, our investigation of loss normalization
was, in part, to prevent potential generator loss oscillations from destabilizing critic training. However, our learning policy
results in generator losses that steadily decay throughout training.

To train actors by BPTT, we differentiate losses predicted by critics w.r.t. actor parameters by the chain rule,

∆θ =
1

NT

N

∑
i

T

∑
t

∂Q(hi
t ,a

i
t)

∂θ
=

1
NT

N

∑
i

T

∑
t

∂Q(hi
t ,a

i
t)

∂ µ(hi
t)

∂ µ(hi
t)

∂θ
. (S1)

An alternative approach is to replace ∂Q(hi
t ,a

i
t)/∂ µ(hi

t) with a derivative w.r.t. replayed actions, ∂Q(hi
t ,a

i
t)/∂ai

t . This is
equivalent to adding noise, stop_gradient(ai

t −µ(hi
t)), to an actor action, µ(hi

t), where stop_gradient(x) is a function that stops
gradient backpropagation to x. However, learning curves in fig. S2b show that differentiation w.r.t. live actor actions results in
faster convergence to lower losses. Results for ∂Q(hi

t ,a
i
t)/∂ai

t are similar if OU exploration noise is doubled.
Most STEM signals are imaged at several times their Nyquist rates17. To investigate adaptive STEM performance on signals

imaged close to their Nyquist rates, we downsampled STEM images to 96×96. Learning curves in fig. S2c show that losses are
lower for oversampled STEM crops. Following, we investigated if MSEs vary for training with different loss metrics by adding
a Sobel loss, λSLS, to generator losses. Our Sobel loss is

LS = MSE(S(G(s)),S(IN)) , (S2)

where S(x) computes a channelwise concatenation of horizontal and vertical Sobel derivatives18 of x, and we chose λS = 0.1
to weight the contribution of LS to the total generator loss, LG +λSLS. Learning curves in fig. S2c show that Sobel losses do
not decrease training MSEs for STEM crops. However, Sobel losses decrease MSEs for downsampled STEM images. This
motivates the exploration of alternative loss functions19 to further improve performance. For example, our earlier work shows
that generator training as part of a generative adversarial network20–23 (GAN) can improve STEM image realism24. Similarly,
we expect that generated image realism could be improved by training generators with perceptual losses25.

After we found that adding a Sobel loss can decrease MSEs, we also experimented with other loss functions, such as the
maximum MSE of 5×5 regions. Learning curves in fig. S2d show that MSEs result in faster convergence than maximum region

S2/S10



Figure S2. Learning curves for a) exponentially decayed and exponentially decayed cyclic learning rate schedules, b) actor training with
differentiation w.r.t. live or replayed actions, c) images downsampled or cropped from full images to 96×96 with and without additional
Sobel losses, d) mean squared error and maximum regional mean squared error loss functions, e) supervision throughout training, supervision
only at the start, and no supervision, and f) projection from 128 to 64 hidden units or no projection. All learning curves are 2500 iteration
boxcar averaged, and results in different plots are not directly comparable due to varying experiment settings. Means and standard deviations
of test set errors, “Test: Mean, Std Dev”, are at the ends of graph labels.

S3/S10



Figure S3. Learning rate optimization. a) Learning rates are increased from 10−6.5 to 100.5 for ADAM and SGD optimization. At the start,
convergence is fast for both optimizers. Learning with SGD becomes unstable at learning rates around 2.2×10−5, and numerically unstable
near 5.8×10−4, whereas ADAM becomes unstable around 2.5×10−2. b) Training with ADAM optimization for learning rates listed in the
legend. Learning is visibly unstable at learning rates of 2.5×10−2.5 and 2.5×10−2, and the lowest inset validation loss is for a learning rate of
2.5×10−3.5. Learning curves in (b) are 1000 iteration boxcar averaged. Means and standard deviations of test set errors, “Test: Mean, Std
Dev”, are at the ends of graph labels.

losses; however, both loss functions result in similar final MSEs. We expect that MSEs calculated with every output pixel result
in faster convergence than maximum region errors as more pixels inform gradient calculations. In any case, we expect that a
better approach to minimize maximum errors is to use a higher order loss function, such as mean quartic errors. If training with
a higher-order loss function is unstable, it might be stabilized by adaptive learning rate clipping26.

Target losses can be directly computed with Bellman’s equation, rather than with target networks. We refer to such directly
computed target losses as “supervised” losses,

Qsuper
t =

T

∑
t ′=t

γ
t ′−tLt ′ , (S3)

where where γ ∈ [0,1) discounts future step losses, Lt . Learning curves for full supervision, supervision linearly decayed to
zero in the first 105 iterations, and no supervision are shown in fig. S2e. Overall, final errors are similar for training with and
without supervision. However, we find that learning is usually more stable without supervised losses. As a result, we do not
recommend using supervised losses.

To accelerate convergence and decrease computation, an LSTM with nh hidden units can be augmented by a linear projection
layer with np < 3nh/4 units27. Learning curves in fig. S2f are for nh = 128 and compare training with a projection to np = 64
units and no projection. Adding a projecting layer increases the initial rate of convergence; however, it also increases final
losses. Further, we found that training becomes increasingly prone to instability as np is decreased. As a result, we do not use
projection layers in our actor or critic networks.

Generator learning rate optimization is shown in fig. S3. To find the best initial learning rate for ADAM optimization, we
increased the learning rate until training became unstable, as shown in fig. S3a. We performed the learning rate sweep over 104

iterations to avoid results being complicated by losses rapidly decreasing in the first couple of thousand. The best learning rate
was then selected by training for 105 iterations with learning rates within a factor of 10 from a learning rate 10× lower than
where training became unstable, as shown in fig. S3b. We performed initial learning rate sweeps in fig. S3a for both ADAM
and stochastic gradient descent28 (SGD) optimization. We chose ADAM as it is less sensitive to hyperparameter choices than
SGD and because ADAM is recommended in the RDPG paper29.

S4 Test Set Errors
Test set errors are computed for 3954 test set images. Most test set errors are similar to or slightly higher than training set errors.
However, training with fixed paths, which is shown in fig. 3a of the main article, results in high divergence of test and training
set errors. We attribute this divergence to the generator overfitting to complete large regions that are not covered by fixed scan

S4/S10



paths. In comparison, our learning policy was optimized for training with a variety of adaptive scan paths where overfitting is
minimal. After all 106 training iterations, means and standard deviations (mean, std dev) of test set errors for fixed paths 2, 3
and 4 are (0.170, 0.182), (0.135, 0.133), and (0.171, 0.184). Instead, we report lower test set errors of (0.106, 0.090), (0.073,
0.045), and (0.106. 0.090), respectively, at 5×105 training iterations, which correspond to early stopping30, 31. All other test
set errors were computed after final training iterations.

S5 Distortion Correction

A limitation of partial STEM is that images are usually distorted by probing position errors, which vary with scan path shape32.
Distortions in raster scans can be corrected by comparing series of images33, 34. However, distortion correction of adaptive
scans is complicated by more complicated scan path shapes and microscope-specific actor command execution characteristics.
We expect that command execution characteristics are almost static. Thus, it follows that there is a bijective mapping between
probing locations in distorted adaptive partial scans and raster scans. Subsequently, we propose that distortions could be
corrected by a cyclic generative adversarial network35 (GAN). To be clear, this section outlines a possible starting point for
future research that can be refined or improved upon. The method’s main limitation is that the cyclic GAN would need to be
trained or fine-tuned for individual scan systems.

Let Ipartial and Iraster be unpaired partial scans and raster scans, respectively. A binary mask, M, can be constructed to be
1 at nominal probing positions in Ipartial and 0 elsewhere. We introduce generators Gp→r(Ipartial) and Gr→p(Iraster,M) to map
from partial scans to raster scans and from raster scans to partial scans, respectively. A mask must be input to the partial scan
generator for it to output a partial scan with a realistic distortion field as distortions depend on scan path shape32. Finally, we
introduce discriminators Dpartial and Draster are trained to distinguish between real and generated partial scans and raster scans,
respectively, and predict losses that can be used to train generators to create realistic images. In short, partial scans could be
mapped to raster scans by minimizing

LGAN
p→r = Draster(Gp→r(Ipartial)) , (S4)

LGAN
r→p = Dpartial(MGr→p(Iraster,M)) , (S5)

Lcycle
r→p = MSE(MGr→p(Gp→r(Ipartial),M), Ipartial) , (S6)

Lcycle
p→r = MSE(Gp→r(MGr→p(Iraster,M)), Iraster) , (S7)

Lp→r = LGAN
p→r +bLcycle

r→p , (S8)

Lr→p = LGAN
r→p +bLcycle

p→r , (S9)

where Lp→r and Lp→r are total losses to optimize Gp→r and Gp→r, respectively. A scalar, b, balances adversarial and
cycle-consistency losses.

S6 Additional Examples
Additional sheets of test set adaptive scans are shown in fig. S4 and fig. S5. In addition, a sheet of test set spiral scans is shown
in fig. S6. Target outputs were low-pass filtered by a 5×5 symmetric Gaussian kernel with a 2.5 px standard deviation to
suppress high-frequency noise.

S5/S10



Figure S4. Test set 1/23.04 px coverage adaptive partial scans, target outputs, and generated partial scan completions for 96×96 crops from
STEM images.

S6/S10



Figure S5. Test set 1/23.04 px coverage adaptive partial scans, target outputs, and generated partial scan completions for 96×96 crops from
STEM images.

S7/S10



Figure S6. Test set 1/23.04 px coverage spiral partial scans, target outputs, and generated partial scan completions for 96×96 crops from
STEM images.

S8/S10



References
1. Zaremba, W., Sutskever, I. & Vinyals, O. Recurrent Neural Network Regularization. arXiv preprint arXiv:1409.2329

(2014).

2. Graves, A. et al. Hybrid Computing Using a Neural Network with Dynamic External Memory. Nature 538, 471–476
(2016).

3. Jozefowicz, R., Zaremba, W. & Sutskever, I. An Empirical Exploration of Recurrent Network Architectures. In International
Conference on Machine Learning, 2342–2350 (2015).

4. Pitis, S. Non-Zero Initial States for Recurrent Neural Networks. Online: https://r2rt.com/non-zero-initial-states-for-
recurrent-neural-networks.html (2016).

5. DeepMind. Differentiable Neural Computer. Online: https://github.com/deepmind/dnc (2018).

6. Dumoulin, V. & Visin, F. A Guide to Convolution Arithmetic for Deep Learning. arXiv preprint arXiv:1603.07285 (2016).

7. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).

8. Nair, V. & Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), 807–814 (2010).

9. Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.
arXiv preprint arXiv:1502.03167 (2015).

10. Glorot, X. & Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, 249–256 (2010).

11. Kukačka, J., Golkov, V. & Cremers, D. Regularization for Deep Learning: A Taxonomy. arXiv preprint arXiv:1710.10686
(2017).

12. Zhang, J., He, T., Sra, S. & Jadbabaie, A. Why Gradient Clipping Accelerates Training: A Theoretical Justification for
Adaptivity. arXiv preprint arXiv:1905.11881 (2019).

13. Gorbunov, E., Danilova, M. & Gasnikov, A. Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping. arXiv preprint arXiv:2005.10785 (2020).

14. Chen, X., Wu, Z. S. & Hong, M. Understanding Gradient Clipping in Private SGD: A Geometric Perspective. arXiv
preprint arXiv:2006.15429 (2020).

15. Menon, A. K., Rawat, A. S., Reddi, S. J. & Kumar, S. Can Gradient Clipping Mitigate Label Noise? In International
Conference on Learning Representations (2019).

16. Smith, L. N. Cyclical Learning Rates for Training Neural Networks. In 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), 464–472 (IEEE, 2017).

17. Ede, J. M. Warwick Electron Microscopy Datasets. Mach. Learn. Sci. Technol. 1, 045003 (2020).

18. Vairalkar, M. K. & Nimbhorkar, S. Edge Detection of Images Using Sobel Operator. Int. J. Emerg. Technol. Adv. Eng. 2,
291–293 (2012).

19. Zhao, H., Gallo, O., Frosio, I. & Kautz, J. Loss Functions for Neural Networks for Image Processing. arXiv preprint
arXiv:1511.08861 (2015).

20. Gui, J., Sun, Z., Wen, Y., Tao, D. & Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and
Applications. arXiv preprint arXiv:2001.06937 (2020).

21. Saxena, D. & Cao, J. Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions. arXiv
preprint arXiv:2005.00065 (2020).

22. Pan, Z. et al. Recent Progress on Generative Adversarial Networks (GANs): A Survey. IEEE Access 7, 36322–36333
(2019).

23. Wang, Z., She, Q. & Ward, T. E. Generative Adversarial Networks: A Survey and Taxonomy. arXiv preprint
arXiv:1906.01529 (2019).

24. Ede, J. M. & Beanland, R. Partial Scanning Transmission Electron Microscopy with Deep Learning. arXiv preprint
arXiv:1910.10467 (2020).

25. Grund Pihlgren, G., Sandin, F. & Liwicki, M. Improving Image Autoencoder Embeddings with Perceptual Loss. In
International Joint Conference on Neural Networks (2020).

S9/S10

https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html
https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html
https://github.com/deepmind/dnc


26. Ede, J. M. & Beanland, R. Adaptive Learning Rate Clipping Stabilizes Learning. Mach. Learn. Sci. Technol. 1, 015011
(2020).

27. Jia, Y., Wu, Z., Xu, Y., Ke, D. & Su, K. Long Short-Term Memory Projection Recurrent Neural Network Architectures for
Piano’s Continuous Note Recognition. J. Robotics 2017 (2017).

28. Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv preprint arXiv:1609.04747 (2016).

29. Heess, N., Hunt, J. J., Lillicrap, T. P. & Silver, D. Memory-Based Control with Recurrent Neural Networks. arXiv preprint
arXiv:1512.04455 (2015).

30. Li, M., Soltanolkotabi, M. & Oymak, S. Gradient Descent with Early Stopping is Provably Robust to Label Noise for
Overparameterized Neural Networks. In International Conference on Artificial Intelligence and Statistics, 4313–4324
(2020).

31. Flynn, T., Yu, K. M., Malik, A., D’Imperio, N. & Yoo, S. Bounding the Expected Run-Time of Nonconvex Optimization
with Early Stopping. arXiv preprint arXiv:2002.08856 (2020).

32. Sang, X. et al. Dynamic Scan Control in STEM: Spiral Scans. Adv. Struct. Chem. Imaging 2, 6 (2017).

33. Zhang, C., Berkels, B., Wirth, B. & Voyles, P. M. Joint Denoising and Distortion Correction for Atomic Column Detection
in Scanning Transmission Electron Microscopy Images. Microsc. Microanal. 23, 164–165 (2017).

34. Jin, P. & Li, X. Correction of Image Drift and Distortion in a Scanning Electron Microscopy. J. Microsc. 260, 268–280
(2015).

35. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial
Networks. In Proceedings of the IEEE International Conference on Computer Vision, 2223–2232 (2017).

S10/S10


	Detailed Architecture
	Additional Regularization
	Additional Experiments
	Test Set Errors
	Distortion Correction
	Additional Examples
	References

