
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/146842                                                                         
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/146842
mailto:wrap@warwick.ac.uk


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  
Abstract—An analytical model for estimating the stress 

-induced birefringence in true Panda-type polarization 
-maintaining fibers with imperfect geometry has been developed 
in this letter. The developed model is simpler and more accurate 
compared to conventional sophisticated and asymptotic formulas 
in reported works. Our model provides a clear and simple solution 
to demonstrate the periodic dependence of the birefringence on 
the misalignment angle between the two stress-applying parts, 
and the monotonic dependence on the geometric parameters of 
stress-applying parts. Our work also reveals the important role of 
the misalignment angle between the two stress-applying parts in 
practical Panda-type fibers. 
 

Index Terms—Panda-type fibers, Polarization-maintaining 
optical fibers, Stress-induced birefringence. 
 

I. INTRODUCTION 
HE intrinsic stress-induced birefringence (SIB) in 
polarization-maintaining optical fibers (PMFs) is one of 

the most crucial characteristics in several applications, e.g. 
fiber optic  sensing [1], loop mirror [2],  current transformers 
[3], acoustic-optic modulators  [4] and gyroscopes [5]. The SIB 
in PMFs originates from the stress difference between two 
principal axes, produced by embedded stress-applying parts 
(SAPs) via the difference between the coefficient of thermal 
expansion (CTE) in SAPs and that in the fiber cladding [6]. It 
was reported that the SIB can be estimated using the 
thermo-elastic displacement potential (TEDP) [7], [8], the 
infinite small element [9] and the finite element method (FEM) 
[10]-[12] based on TEDP. The TEDP method has wide 
applications [13] and has recently been used in analyzing 
single-hole PMFs [14]. However, results of pioneering works 
in [7] and [8] based on TEDP do not match each other, even for 
the most commonly applied standard Panda-type PMFs, which 
have the simplest shape of circular SAPs. This is because the 
birefringence and stresses were calculated in the rectangular 
and the polar coordinate systems, separately. The disagreement 
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originates from the transformation between coordinate systems. 
There are two normal stress components in the polar system: 

 in the radial direction and  in the circumferential 

direction. Both contribute to the two principal stresses  and 
 in the rectangular coordinate system [15], leading to the 

generation of the SIB. Analyses in [7] utilized the first 
component only and underestimated the birefringence. 
Derivations in [8] employed both components, but confused the 
polar angle in the polar coordinate system with the angle 
between the two coordinate systems, even for ideal Panda-type 
PMFs. Nevertheless, the overestimation model in [8] was 
extensively applied in the calculation of SIB, e.g. FEM [16] and 
analytical method [13]. In this letter, the model of the SIB in 
generally asymmetric PMFs is reinvestigated based on the 
TEDP approach, while all stress components (two produced by 
each SAP) in the polar system are considered and a proper 
coordinate transformation are applied. A simpler and more 
accurate analytical model is obtained for estimating the SIB in 
PMFs, compared to sophisticated and asymptotic formulas 
reported in [7] and [8] for PMFs with symmetry about slow axis. 
The discrepancy between the model in [7] and that in [8] have 
also been solved. Meanwhile, the developed model can 
evaluate SIBs in both symmetric and asymmetric PMFs. It can 
also be used to explain the dependency of SIB on the 
parameters of SAPs, especially the misalignment angle 
between two SAPs in Panda-type PMFs. Our model provides a 
convenient and accurate solution for estimating the 
birefringence in the design and analysis of PMFs. 

II. THEORETICAL MODEL 
Early works investigated the SIB in Panda-type PMFs, 

symmetrical about -axis, as shown in Fig. 1(a). The SIB was 
described with a polar angle  by Eq. (32) in [8] and a 
subtended angle  by Eq. (19) in [7]. To provide a generic 
analysis, a Panda-type PMF with an asymmetric transverse 
cross section is considered in Fig. 1(b). The core and the 
cladding are concentric circles centered at  with radii of  
and , respectively. Two SAPs with different radii,  and  
( ), are asymmetrically located at two sides of the core 
with different distances  and  against the center ( ). 
The common center  of the core and the cladding is not on a 
line with centers of SAPs. There is a misalignment angle  in 
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the fiber sandwiched by two dotted lines (  and ), which 
link the center of the fiber to centers of SAPs, respectively. The 
plane strain problem for the SIB in PMFs can be solved using a 
polar coordinate system and the result can then be transformed 
back to the rectangular coordinate system [7]-[14]. For an 
imperfect fiber considered here, each SAP has its associated 
polar and rectangular coordinate systems. They are  and 

 for SAP-1, as well as  and  for SAP-2. The 
common pole of two polar coordinate systems and the common 
origin of two rectangular coordinate systems are located at the 
same point, , which is the common center of the fiber core 
and the cladding. For a given polar radius  in the polar 
system about the core, there are two polar angles  and  as 
well as two polar radii  and  in the polar systems of 
SAP-1 and SAP-2, respectively. The polar angles provide the 
misalignment angle  in the PMF by . For SAP-1, 

- and -axes of the rectangular coordinate system 
correspond to polar angles of  and  respectively. 
Similarly, - and -axes correspond to polar angles of 

 and , respectively, for SAP-2. 

 

 Following the classical stress analysis [15], at the center 
point  of the PMF, the principal stresses from SAP-1 are 

  (1) 

in the rectangular coordinate system of SAP-1, ; and the 
principal stresses produced by SAP-2 are 

 (2) 

in the rectangular coordinate system of SAP-2, . The 
principal stresses from both SAPs in the rectangular coordinate 
system of the fiber, , are 

 . (3) 

Then the SIB can be calculated from the difference between the 
principal stresses under the stress-optic coefficient  
as , i.e., 

 . (4) 

It achieves maximum when 

. The minimum occurs 

when . When there is only one SAP, or it is a single-hole 
PMF [14], the birefringence is . Eq. (4) 
provides the SIB in PMFs with the appropriated stress 
components  and  in Eq. (3), which exactly solves the 
disagreement between [7] and [8]. There are four instead of two 
stress components in the polar system contributing to the two 
principal stresses in the rectangular coordinate system. With 
this clarification, the SIB can be estimated using the stress 
components in corresponding polar coordinates based on the 
work in [8] as follows. 

The total TEDP  of the fiber transverse cross section 
includes the contribution  from the core, the contribution  
from SAP-1, and the contribution  from SAP-2: 

 .  (5) 

Three components in Eq. (9) satisfy the Poisson’s equation 

  (6) 

within their respective regions, where  denotes the constant  
Poisson’s ratio of the fiber glass,  represents the difference 
between the CTE in the considered region and that in the 
surrounding materials,  is the difference between the 
melting temperature of the considered region and the room 
temperature, and the subscript  denotes 0 for the core, 1 for 
SAP-1, and 2 for SAP-2. 

Meanwhile, three terms of the potential satisfy the 
Laplace’s condition: 

          (7) 
outside their respective regions. Then the potential due to the 
area   are 

  (8) 

inside the area, where  is the radius vector in the polar 
coordinate system,  are constants. The potential 
produced by the area  are 

  (9) 

outside the area, where  are constants again. Note there 
are   and . 

On the other hand, the Airy stress function (ASF)  for 
the homogeneous part of the PMF is described as 

 
  (10) 

where coefficients , ,  and  are determined from the 
boundary conditions, and  is a integer n = 1,2,3,4…. Then the 
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(a)                                                     (b) 

Fig. 1.  The geometric structure and the coordinate systems of the Panda-type 
PMF with (a) symmetry and (b) asymmetry. 
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sum of the TEDP  and the ASF  is given by , 
which describes the transversal stress state of the PMF. Stress 
components in the polar coordinate system are given by [7, 8] 

,      (11) 

 , (12) 

 , (13) 

where  is the Young’s modulus of the fiber which is assumed 
to be a constant across the transverse of the PMF. Then stress 
components can be obtained as 

, (14) 

  ,    (15) 

for SAP-1, and 

, (16) 

, (17) 

for SAP-2. It is noted that  from the ASF is crucial for the 
stress calculation according to [8], but is negligible for 
calculating the stress difference since it can be removed via a 
subtraction. In a similar way, it can be demonstrated that the 
difference in CTEs  and the difference in temperatures 

 between those values in the cladding and the core, 
respectively, will not change the birefringence either.  and 

,  the differences between those values in the cladding and 
SAPs will affect the stress difference and thereby the SIB. This 
is the same for both SAPs. 

III. NUMERICAL SIMULATIONS 
The analytical expression of the SIB in asymmetric 

Panda-type PMFs can be obtained by substituting Eq. (14)-(17) 
into Eq. (4). The expression will cover all possible impacts 
from material and geometric parameters, especially from the 
misalign angle  as shown in Fig. 2(a). The maximum 
birefringence occurs at a zero misalignment, , 
corresponding to the case of reflection symmetry about the 

-axis [7], [8], The minimum birefringence occurs at , 
corresponding to the case of a single SAP or a single-hole PMF 
[14]. The validity of the model can be proved by the agreement 
between the true SIB in practical PMFs and the calculated SIB, 
as listed in Table I and Fig.2(b). The true SIB is obtained from 
the experimental measurement of the beat length.  

To compare our model with early works for symmetric 
-stress fibers, the SIB in Eq. (4) can be simplified as 

 , (18) 

since there are always a small misalign angle in practice, i.e., 
, then we have , and . Furthermore, 

it can be simplified as 

  (19) 

for an ideal PMF, in which we have , , and 
. Calculations under same parameters according to 

Eq. (32) in [8] and Eq. (19) in [7] are shown in Fig. 2(c) and Fig. 
2(d), respectively. It is found that, the periodic dependence of 
SIB on the polar angle and the (overestimated) magnitude 
reported in [8] was obviously incorrect. On the other hand, it is 
also clearly seen that results from [7] underestimated the SIB. 
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(a)                                                               (b) 

 
                                  (c)                                                             (d) 
Fig. 2.  SIB in Panda-type PMFs from (a) proposed model as a function of the 
misalignment angle between SAPs, (b) proposed model with measurement data at 
a small angle, (c) reported overestimation model in [8], and (d) reported 
underestimation model in [7]. 
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TABLE I 
MEASUREMENT DATA FOR PRACTICAL PANDA-TYPE PMFS 

Misalign angle 
(deg) 

Beat length 
(mm) 

True SIB 
from beat length 

Calculated SIB 
from Eq. (18) 

+6.9 3.118 4.9711×10-4 4.9736×10-4 
-3.5 3.115 4.9759×10-4 4.9803×10-4 
-1.0 3.113 4.9794×10-4 4.9825×10-4 
+5.4 3.116 4.9743×10-4 4.9771×10-4 
-2.4 3.114 4.9775×10-4 4.9816×10-4 
-5.1 3.116 4.9743×10-4 4.9777×10-4 
+1.5 3.114 4.9775×10-4 4.9822×10-4 
+4.1 3.115 4.9759×10-4 4.9795×10-4 
-6.3 3.117 4.9727×10-4 4.9751×10-4 
+3.3 3.114 4.9775×10-4 4.9806×10-4 
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The monotonic dependence of the SIB on the geometric 
parameters of SAPs (their radii  and distances  to the core) 
calculated by Eq. (18) are shown in Fig. 3(a) and Fig. 3(b). The 
results from [8] and [7] are shown in Fig. 3(c)/(d), and Fig. 3 
(e)/(f), respectively. Only the trends of the dependence on 
distance are same, while the values differ by several times. 
Parameters of the PMF used in numerical estimations are the 
same: stress-optic coefficient /Pa at the 
wavelength  nm, the core radius m, the 
cladding radius m, the Poisson’s ratio , 
the Young’s modulus Pa, the difference of CTEs 

/K, /K, and the difference 
of melting temperatures K between those 
values in the cladding and SAPs, respectively. 

 
The result in Eq. (19) indicates that the two-fold symmetry 

(reflection symmetry about both -axis and -axis 
simultaneously) in ideal PMFs leads to the occurrence of the 
theoretical maximum at  and  and 

. This provides a theoretical upper limit of the 
SIB in ideal Panda-type PMFs, which is 

. Considering 
the mechanical reliability of a fiber, reasonable values can be 
chosen as  and for a more practical 
value of the SIB, which is    

. From above analyses, 
our model provides a simpler and more accurate estimation of 
the SIB in the design and evaluation of PMFs.  

IV. CONCLUSIONS 
An analytical model of the stress-induced birefringence in 

Panda-type PMFs has been developed to provide a simpler and 
more accurate estimation for the SIB. It can be found that, the 
SIB in Panda-type PMFs highly depends on the geometric 
parameters of SAPs. It periodically depends on the 
misalignment angle between two SAPs, and also monotonically 
depends on the radii of the core and SAPs as well as the 
distances between the core and SAPs. For ideal PMFs, the 
periodic dependence of the SIB on the misalignment angle will 
disappear while its monotonic dependence on the radii and 
distances will still exist. 
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Fig. 3.  SIB as functions of radius/distances of SAPs from (a)/(b) in proposed 
model, (c)/(d) reported overestimation model in [8], and (e)/(f) reported 
underestimation model in [7]. 
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