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Abstract

Ancestral reconstruction can be understood as an interpolation between mea-
sured characteristics of existing populations to those of their common ancestors.
Doing so provides an insight into the characteristics of organisms that lived mil-
lions of years ago. Such reconstructions are inherently uncertain, making this an
ideal application area for Bayesian statistics. As such, Gaussian processes serve as
a basis for many probabilistic models for trait evolution, which assume that mea-
sured characteristics, or some transformation of those characteristics, are jointly
Gaussian distributed. While these models do provide a theoretical basis for un-
certainty quantification in ancestral reconstruction, practical approaches to their
implementation have proven challenging. In this thesis, novel Bayesian methods for
ancestral reconstruction are developed and applied to bat echolocation calls. This
work proposes the first fully Bayesian approach to inference within the Phylogenetic
Gaussian Process Regression framework for Function-Valued Traits, producing an
ancestral reconstruction for which any uncertainty in this model may be quantified.
The framework is then generalised to collections of discrete and continuous traits,
and an e�cient approximate Bayesian inference scheme proposed, representing the
first application of Variational inference techniques to the problem of ancestral re-
construction. This e�cient approach is then applied to the reconstruction of bat
echolocation calls, providing new insights into the developmental pathways of this
remarkable characteristic. It is the complexity of bat echolocation that motivates
the proposed approach to evolutionary inference, however, the resulting statistical
methods are broadly applicable within the field of Evolutionary Biology.
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Chapter 1

Introduction

What is it like to be a bat? This question, posed by Nagel [1974] to illustrate the

limitations of objectivity in the study of consciousness, is indicative of our longstand-

ing fascination with these “fundamentally alien” creatures. Bats are ubiquitous in

myths and folklore, from the Mayan “death bat” Camazotz [Miller and Taube, 1997]

and Chinese “five good fortunes” [Sung, 2002], to more modern characterisations

such as Dracula [Stoker, 1897] and Batman [Miller et al., 2002]. The first scientific

studies of these creatures date back to the 1790s when Spallanzani established that

blinded bats successfully avoided obstacles while deafened ones did not [Galambos,

1942]. It was Gri�n and Galambos [1941] who demonstrated that bats interact with

their environment by echolocation, and since then many researchers have sought to

deepen our understanding of these astonishing creatures [Simmons and Stein, 1980;

Simmons, 1994; Schnitzler et al., 2004; Maltby et al., 2010; Meagher et al., 2018a,b].

Advances in the sequencing and modelling of molecular data [Suchard et al.,

2018] have allowed a consensus on bat’s evolutionary history to emerge, with the

structure and timing of ancestral relationships between many species being well-

resolved [Teeling et al., 2000, 2005; Eick et al., 2005; Tsagkogeorga et al., 2013;

Amador et al., 2018]. Despite this progress, describing the development of echoloca-

tion throughout this history remains a challenge. One approach has been to argue

for particular developmental paths based on bats physiology [Simmons and Stein,

1980; Schnitzler et al., 2004]. Alternatively, quantitative analyses have considered

various call representations and summary statistics [Eick et al., 2005; Collen, 2012;

Meagher et al., 2018b]. Despite these e↵orts, bat echolocation represents a com-

plex characteristic which does not easily conform to existing mathematical models

for trait evolution. Thus, this thesis’ contribution is the development of statistical

models for the evolution of such complex phenotypes.
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Since Darwin [1859] described the process of natural selection in his seminal

text, “On the Origin of Species”, characterising those origins has been central to the

development of evolutionary biology. As the field has progressed, describing crea-

tures from the ancient past and elucidating their influence on those living today has

been framed as a statistical problem [Felsenstein, 1985; Martins and Hansen, 1997;

Suchard et al., 2018]. For instance, it is useful to think of ancestral reconstruction

as the interpolation between characteristics of extant taxa1 given their evolution-

ary history [Joy et al., 2016]. Irrespective of the characteristic in question, be it a

phenotype, genetic sequence, or even an entire genome, insights obtained through

such analysis are only as good as the statistical model for evolution that underpins

them [Joy et al., 2016]. Thus, generations of researchers have devoted themselves to

the development of such models, with many theoretical and practical issues having

been resolved [Cavalli-Sforza and Edwards, 1967; Felsenstein, 1973; Grafen, 1989;

Hansen, 1997; Pagel, 1999b; Blomberg et al., 2003; Housworth et al., 2004; Ives

and Garland Jr, 2009; Hadjipantelis et al., 2013; Cybis et al., 2015; Goolsby, 2015;

Tolko↵ et al., 2017; Mariñas-Collado et al., 2019]. The Phylogenetic Gaussian Pro-

cess Regression (PGPR) framework provides a foundation for this contribution to

statistical models for trait evolution [Jones and Moriarty, 2013]. This framework

explicitly links evolutionary inference to Gaussian processes, an important research

area in Statistics and Machine Learning [Rasmussen and Williams, 2006; Stein,

2012]. Extending PGPR beyond the Function-Valued Traits (FVTs) considered

by Jones and Moriarty [2013] and developing state-of-the-art methods for Bayesian

inference allows the development of novel approaches to ancestral reconstruction.

For any statistical method, the adage, “garbage in, garbage out”, will hold.

Thus, the representation of echolocation calls to be reconstructed requires careful

consideration. These acoustic signals, precisely structured in both time and fre-

quency, are subject to myriad constraints, due not only to the anatomy of bats call

production systems [Fenton et al., 2016], but also the principles of radar and sonar

[Denny, 2007]. A characterisation which not only captures the signal transmitted

by these echolocation calls but also allows their comparative analysis, has proven

challenging [Collen, 2012; DiCecco et al., 2013; Fu and Kloepper, 2018; Meagher

et al., 2018b]. Despite this, echolocation calls remain nothing more than another

acoustic signal. Thus, informed by decades of research in Bioacoustics [Hopp et al.,

1
In taxonomy and systematics, the branches of biology that deal with the classification and

nomenclature of organisms, the term taxon, and its plural taxa, refers to a taxonomic group of

any rank [Campbell et al., 1997]. The methods developed in this thesis are primarily concerned

with characteristics at the level of species; however, it is more convenient to use this general term

throughout.
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2012], signal processing [Oppenheim and Schafer, 2014], and time-frequency analy-

sis [Cohen, 1995; Hlawatsch and Auger, 2008], such a representation is not beyond

reach.

The ancestral reconstruction of bat echolocation calls is the objective of this

thesis and work towards this goal begins with a review of the relevant literature, pre-

sented in Chapter 2. It begins by providing some background on the scientific study

of bats, covering not only the structure and diversity of echolocation calls across the

order [Fenton et al., 2016] but also the consensus which has now emerged regarding

their evolutionary history [Amador et al., 2018]. As is the case for taxa in general,

a phylogenetic tree represents this history, referred to as the phylogeny [Felsenstein,

2004]. It is knowledge of this object, and the implied dependence between taxa, that

allows the development of statistical methods for phylogenetic comparative analy-

sis and ancestral reconstruction [Felsenstein, 1985]. Thus, a review of Phylogenetic

Comparative Methods (PCMs), charting their development from the method of in-

dependent contrasts for scalar-valued continuous characteristics [Felsenstein, 1985],

to the PGPR framework for FVTs [Jones and Moriarty, 2013; Hadjipantelis et al.,

2013], provides more of the context within which this work can be placed. This

discussion leads to a presentation of the statistical principles and techniques under-

pinning the contributions made in this thesis. A general introduction to Gaussian

processes is provided, demonstrating the flexibility of Gaussian process regression

and highlighting the Matérn class of covariance functions [Rasmussen and Williams,

2006; Stein, 2012]. This allows Jones and Moriarty’s [2013] PGPR framework, which

models FVT evolution over a phylogeny in terms of a separable phylogeny-trait co-

variance function, to be presented in some detail. Factor Analysis, [Lopes, 2014]

Functional Data Analysis [Ramsay, 2004; Srivastava and Klassen, 2016], and the

Time-Frequency Analysis of acoustic signals [Cohen, 1995; Hlawatsch and Auger,

2008] are all relevant to the statistical methods developed here, and so each topic

is briefly discussed. The chapter concludes with a presentation of Markov Chain

Monte Carlo (MCMC) methods for Bayesian inference [Robert and Casella, 2013;

Gelman et al., 2013]. In particular, an Adaptive Metropolis algorithm [Haario et al.,

2001; Roberts and Rosenthal, 2009], sampling schemes for Gaussian process models

[Murray et al., 2010; Murray and Adams, 2010; Yu and Meng, 2011; Filippone et al.,

2013], and model comparison via Bridge Sampling [Meng and Wong, 1996; Gronau

et al., 2017a], are all discussed in some detail.

Chapter 3, representing the first research contribution in this thesis, presents

an MCMC sampling scheme for Bayesian inference within the PGPR framework.

Ancestral reconstruction of a FVT by PGPR is based on separable phylogeny-trait

3



covariance functions for FVTs [Jones and Moriarty, 2013]. Hadjipantelis et al. [2013]

and Meagher et al. [2018a,b], attempted to do this by first obtaining a low rank ap-

proximation to the trait covariance function under the assumption of independent

trait observations. Once fixed, this allowed the phylogenetic covariance to be esti-

mated. Here, introducing the Phylogenetic Latent Variable Model (PLVM), a model

closely related to Factor Analysis [Bartholomew et al., 2011; Lopes, 2014], underpins

the implementation of a Bayesian approach to learning which relaxes the assumption

of separability and allows joint inference of phylogeny-trait covariance function. The

development of this MCMC inference scheme, based around state-of-the-art meth-

ods for Gaussian process models [Murray et al., 2010; Murray and Adams, 2010; Yu

and Meng, 2011; Filippone et al., 2013], presents many challenges. Chief amongst

these is the management of the algorithm’s computational expense. To this end, ef-

ficient algorithms for computing both the likelihood and conditional distribution of

Brownian Motion over a phylogeny are extended to general Gauss-Markov processes

[Pybus et al., 2012; Cybis et al., 2015], representing an important contribution in the

development of PGPR for evolutionary inference. This generalisation, along with

a novel definition of the phylogenetic covariance function, allows intra-taxon varia-

tion to be incorporated in the PLVM, an e↵ect which is typically ignored by PCMs

[Hadjipantelis et al., 2013; Cybis et al., 2015; Tolko↵ et al., 2017]. The application

of this inference scheme to a synthetic dataset simulated from the model allows an

assessment of its performance. It o↵ers excellent reconstruction and uncertainty

quantification for ancestral FVTs while o↵ering significant conceptual advantages

over and above alternative PCMs. Despite this, its computational expense makes it

wholly unsuitable for the analysis of a large dataset of bat echolocation calls. Thus,

those insights gleaned from this study instead provide the basis for a more practical

approach to evolutionary inference.

In Chapter 4, focus shifts from the development of a fully Bayesian model for

the evolution of a FVT, to one which can fit flexibly and e�ciently to any collection

of traits, addressing a significant shortcoming of the PGPR framework. Typically,

it is large collections of both discrete and continuous traits that are of interest in

phylogenetic comparative analyses [Collen, 2012; Cybis et al., 2015; Tolko↵ et al.,

2017; Adams and Collyer, 2017]. FVTs are infinite dimensional objects [Kirkpatrick

and Heckman, 1989], and as such, the implementation of models for their evolution

is a multivariate method, however, current perspectives on the PGPR consider a

single FVT only [Jones and Moriarty, 2013; Hadjipantelis et al., 2013; Goolsby,

2015; Meagher et al., 2018a,b]. This narrow focus represents a severe limitation

of PGPR. Based on the threshold model for discrete trait evolution [Wright, 1934;

4



Felsenstein, 2011], PGPR is extended to incorporate ordinal and categorical discrete

traits alongside both scalar- and function-valued continuous traits within a single

model. To this end, observed manifest traits are augmented by real-valued auxiliary

variables, allowing the definition of a probit likelihood, as described by Albert and

Chib [1993]. Relaxing some assumptions from the formulation in Chapter 3, these

auxiliary variables are then modelled as a PLVM, which results in the definition of

a multi-modal posterior distribution over the parameters and hyper-parameters of

the model. This multi-modal posterior, coupled with the computational expense of

MCMC inference for the PLVM, precludes the implementation of a sampling scheme

for this generalised PLVM. The development of a Co-ordinate Ascent Variational

Inference algorithm for approximate Bayesian inference [Blei et al., 2017] addresses

each of these issues. Although Variational Inference can underestimate uncertainty

in the posterior distribution over parameters in the model, it fits to data far more

e�ciently than a simulation-based approach, making the method especially popular

in Machine Learning [Jordan et al., 1999; Bishop, 2006]. The application of this

model and inference scheme to another simulated dataset demonstrates its e�cacy.

In this instance, much of the accurate ancestral reconstruction and uncertainty

quantification seen in Chapter 3, along with the inclusion of intra-taxon variation,

is preserved. Furthermore, the model fits to the dataset in a fraction of the time

required by the MCMC scheme proposed in the previous chapter. Thus, the method

is eminently applicable for the ancestral reconstruction of bat echolocation calls, as

indeed it is for the phylogenetic comparative analysis of any collection of traits.

Given this general model for trait evolution, Chapter 5 considers its appli-

cation to the multi-harmonic signals that are bat echolocation calls [Fenton et al.,

2016]. Such signals consist of multiple components with a precise structure in both

time and frequency, where each component lies at an integer multiple of the fun-

damental frequency, which is itself a smooth function of time [Gerhard, 2003]. The

analysis of multi-component signals is a challenging problem, with Time-Frequency

Analysis representing an active area of research [Hlawatsch and Auger, 2008; Huang

et al., 2009; DiCecco et al., 2013; Fu and Kloepper, 2018]. While the Spectro-

gram underpins some recent advances in the comparative analysis of acoustic sig-

nals [Stathopoulos et al., 2018; Pigoli et al., 2018], this time-frequency representa-

tion is not suitable for ancestral reconstruction of the bat echolocation call, as will

be discussed in section 2.3.5. Thus, an alternative representation is required. To

this end, a harmonic model for bat echolocation calls is developed, along with a

maximum-a-posteriori inference scheme [Quinn and Thomson, 1991; Gerhard, 2003;

Shi et al., 2019]. Fitting this model to a publicly available set of bat echolocation call
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recordings (see Stathopoulos et al. [2018]) and post-processing the output defines a

feature representation for each call. Given the phylogeny describing the structure

and timing of familial relationships for recorded bat species [Collen, 2012], fitting a

generalised PLVM to this call representation allows ancestral reconstruction of the

bat echolocation call.

Based on this analysis, the Most Recent Common Ancestor of bats included

in this sample, which lived approximately 52.5 million years ago [Collen, 2012],

employed a multi-harmonic call with at least two frequency components. The call

consisted of a broadband sweep from approximately 40 to 30 kHz, lasting 3 to 8

ms, with the fundamental frequency most probably dominating other frequency

components. A hypothetical echolocation call for the most recent common ancestor

of extant bats is illustrated below.

The Ancestral Bat Call

Figure 1.1

The final chapter (Chapter 6) presents a brief outline of the thesis’ research

findings and limitations. In particular, while conditioning trait evolution on an

evolutionary history does allow ancestral reconstruction, the reality is that this

history is unknown. This link with the broader field of phylogenetics, along with

some other limitations, present many opportunities for future research.

In summary, Bayesian solutions to the problem of ancestral reconstruction

are developed and applied to bat echolocation. Thus, while a description of bats

consciousness may remain beyond our grasp, by reconstructing the echolocation calls

of ancient bats, this thesis goes some way towards answering an equally fundamental

question: how did these fantastic creatures come to be?
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Chapter 2

Literature Review

2.1 Some Background on Bats

Over 1200 species and 21 families of extant bat (order Chiroptera) are currently

recognised, making bats the second most speciose order of mammals, after rodents

[Simmons, 2005; Amador et al., 2018]. The only mammals capable of powered flight,

bats are usually crepuscular or nocturnal creatures. They are found on every con-

tinent, except Antarctica [Nowak and Walker, 1994], and are considered a keystone

species in many habitats, given their roles in pollination, seed dispersal, and pest

control [Jones et al., 2009].

Traditionally, bats have been split into two sub-orders. The Old World fruit

bats (Pteropodidae) make up the sub-order Megachiroptera, while all other bats

are considered to be Microchiroptera [Dobson, 1875]. This division is based not

only on size, as the name alludes to, but also the ability to echolocate. While

all Microchiropera can do so, all but a few species of Megachiroptera lack this

distinguishing ability [Fenton et al., 2016].

Echolocation, the “process of locating obstacles by means of echoes” [Gri�n,

1944] is usually, though not exclusively, associated with bats. The phenomenon has

been observed in toothed whales [Surlykke et al., 2014], and, remarkably, oilbirds

and cave swiftlets [Brinkløv et al., 2013], demonstrating that it is not exclusive

to mammals. That bats echolocate while in flight was confirmed by Gri�n and

Galambos in 1941, with most species using signals produced in the larynx and

emitted through the mouth or nose [Pedersen, 1998]. Again, pteropodids are an

exception. Those members of the Rousettus genus that are capable of echolocation

do so using tongue-clicks, which are broadband signals with a duration of only 50-100

µs [Holland et al., 2004].
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Laryngeal echolocation calls are tonal signals, composed of some combina-

tion of constant frequency (CF) and frequency modulating (FM) components. The

dominant component of an echolocation call, that is the one carrying most energy,

ranges from 9 kHz in Euderma maculatum [Fullard and Dawson, 1997], to 212 kHz

for Cloeotis percivali [Fenton and Bell, 1981], while the calls duration is typically

between 3 and 50 ms [Surlykke et al., 2014]. Similarly to voiced human speech,

the lowest frequency component is defined as the fundamental frequency [Deller Jr

and Hansen, 2004]. All subsequent components occur at integer multiples of this

frequency, although the dominant component may be distinct from the fundamen-

tal [Fenton et al., 2016]. This structure implies that laryngeal echolocation calls

are multi-harmonic signals, where the fundamental frequency is the first harmonic

[Hopp et al., 2012].

Bats can adjust aspects of their echolocation call in response to environ-

mental conditions. For some species, calls occur through three distinct phases as

they hunt and capture prey. These are the search and approach phases, followed

by the terminal buzz [Moss et al., 2011]. Through each of these phases, bats will

increase the rate, shorten the duration, and even lower the frequency of their calls

[Gri�n et al., 1960]. Despite this, the distribution of time-frequency components

within each species remains broadly similar across both calls and individuals [Jones

and Holderied, 2007; Jones et al., 2009]. Diversity in the call structure is mani-

fest as between-species variation, although closely related species do have similar

calls [Collen, 2012]. This diversity has driven the development of algorithms for

echolocation call classification, which may be applied for biodiversity monitoring

[Redgwell et al., 2009; Stathopoulos et al., 2018; Mac Aodha et al., 2018]. In fact,

Collen [2012] described 11 categories of tonal echolocation call, based on their time-

frequency structure. When species are assigned to a guild, that is a functional

group foraging under similar ecological conditions, members of each guild tend to

possess structurally similar calls, irrespective of how closely related those species

are [Denzinger and Schnitzler, 2013]. Thus, echolocation calls represent an example

of convergent evolution and adaptive radiation [Jones and Holderied, 2007]

The time-frequency structures observed in echolocation calls reflect the theo-

retical basis for radar and sonar [Denny, 2007]. The most straightforward approach

is to emit short, broadband signals and wait for echoes. In engineering terms, such

a signal has a low-duty cycle and allows classification of a target given the arrival

time of, and frequencies reflected in, the echo. A more sophisticated method is to

use a long, narrow-band signal, with Doppler shifts in the echoes due to the rela-

tive motion of emitter and target allowing detection. This approach, employing a
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Grouping Organisms over Phylogenies

(a) Monophyly (b) Paraphyly (c) Polyphyly

Figure 2.1: Definitions for monophyletic, paraphyletic, and polyphyletic groups. in
each sub-plot the heavy black outline illustrates the taxa belonging to each defini-
tion. A monophyletic group, or monophyly, includes taxa that are all descendants
of a unique common ancestor. Paraphyletic groups (paraphyly) are those where one
or more monophyletic sub-groups have been kept apart from all other descendants
of a unique common ancestor. Finally, the polyphyletic group (polyphyly) refers to
taxa that do not share an immediate common ancestor [Felsenstein, 2004].

signal with a high-duty cycle, can provide a more extensive detection range. The

implementations of each strategy found in bat echolocation calls [Jones and Teel-

ing, 2006; Fenton et al., 2012; Collen, 2012] has been presented by Dawkins [1996]

as an example of “Good Design” by nature. A selection of bat echolocation call

spectrograms, illustrating various call structures, is presented in Figure 2.2.

Historically, the evolutionary history of bats has been a contentious issue.

Debate on the topic arose when neurological data suggested that Megachiroptera

were more closely related to primates and colugos (arboreal gliding mammals found

in Southeast Asia) than to Microchiroptera [Pettigrew, 1986], implying that Chi-

roptera was, in fact, a polyphyletic group (see Figure 2.1c). This hypothesis has

since been rejected as being unsupported by either morphological [Simmons, 1994] or

molecular data [Ammerman and Hillis, 1992]. Another point of debate has been the

position of Megachiroptera within the bat phylogeny. Phylogenetic trees based on

the classification system of Miller [1907] split bats into the Megachiroptera and Mi-

crochiroptera sub-orders, based on laryngeal echolocation [Smith, 1976; Van Valen,

1979], however, modern techniques based on molecular data have consistently con-

cluded that Megachiroptera are in fact nested within Microchiroptera [Teeling et al.,

2000, 2005; Eick et al., 2005; Tsagkogeorga et al., 2013; Amador et al., 2018]. This

has resulted in the consensus view that Chiroptera is a monophyletic group (Figure

2.1a) with the Most Recent Common Ancestor (MRCA) dated to 52-66 million years
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The Diversity of Bat Echolocation Calls

(a) Myotis yumanensis (b) Pteronotus parnellii

(c) Pteronotus davyi (d) Antrozous pallidus

Figure 2.2: Selected bat echolocation call spectrograms, obtained via a short-time
Fourier transform of call recordings, illustrating the diversity in call structures. The
Myotis yumanensis (a) call is an example of a short duration broadband sweep,
with a single frequency component. This is an example of a call having a low duty
cycle. Pteronotus parnellii (b) has a high duty cycle, multi-harmonic call in which
the second component dominates, consisting of a long constant frequency section
followed by a short broadband sweep. Pteronotus davyi (c) and Antrozous pallidus
(d) calls can then be described as narrowband and broadband frequency modulating
multi-harmonic signals respectively.
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ago, and the Microchiroptera sub-order being paraphyletic (Figure 2.1b) [Jones and

Teeling, 2006; Amador et al., 2018].

Given this current understanding of bats evolutionary history, the most par-

simonious explanation for the emergence of echolocation is that it evolved on a

single occasion, at the root of the phylogeny. Pteropodids then lost the ability,

only for echolocating species of the Rosettus genus to regain it [Jones and Teeling,

2006]. Patterns of fetal cochlear (the spiral cavity of the inner ear) development in

pteropodids support this hypothesis [Wang et al., 2017]. As does an Icaronycteris

index fossil, a species basal to all bats, displaying morphological characteristics sim-

ilar to extant Microchiroptera [Jones and Teeling, 2006], although Eick et al. [2005]

argued that the morphology of Rhinolophoidea family supports multiple origins.

Furthermore, there remains debate on whether flight or echolocation evolved first,

or indeed if both occurred in tandem, with no clear evidence to support any of these

three hypotheses over the others [Simmons et al., 2008; Veselka et al., 2010].

To date, any attempts at the ancestral reconstruction of bat echolocation

have been based either on supposition or high-level characteristics only. Simmons

and Stein [1980] simply assumed that the ancestral bat used short, narrow-band,

multi-harmonic signals with a low-duty cycle, based on the structure of bats lar-

ynx. On the other hand, Schnitzler et al. [2004] argued that broadband signals were

ancestral. Collen [2012] performed a quantitative analysis of echolocation call char-

acteristics for 410 species of extant bat which supported the conclusion of Schnitzler

et al.; however, this analysis failed to account for the correlation structure within,

and physical constraints on, the echolocation call, and reconstructions required sig-

nificant post-processing before resembling those of extant species.

While the debate on bat’s evolutionary history now seems to have been re-

solved, ancestral reconstruction of their echolocation call conditional on this history

remains a challenging problem. Convergent evolution and adaptive radiation mean

that distantly related taxa have developed similar call structures, which are subject

to physical and design constraints, making the identification of intermediate devel-

opmental stages di�cult. Furthermore, the complexity of the correlation structure

within calls makes standard models for mapping traits to a phylogeny wholly un-

suitable for the task. Tackling this problem requires careful consideration of both

the features chosen to characterise calls and the model for traits evolving over the

phylogeny.
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2.2 The Phylogenetic Comparative Method

Phylogenetics is the study of evolutionary relationships between genetically related

taxa, with the phylogenetic tree describing the evolution of each taxon in terms

of branches radiating from a series of common ancestors [Felsenstein, 2004]. This

tree is referred to as a phylogeny, which is derived from the Greek words phylon,

meaning tribe or race, and genetikós, meaning origin or source [Ride et al., 1999;

Liddell and Scott, 1897]. Early e↵orts at the algorithmic inference of phylogenies

were based on parsimony criteria [Fitch, 1971], i.e. Occam’s razor, which is to

say that the phylogeny minimising character changes between observed taxa would

be deemed most likely. Cavalli-Sforza and Edwards [1967] and Felsenstein [1973]

were the first to develop formal statistical methods for phylogenetics, modelling the

evolution of continuous characteristics as Brownian Motion (BM), which allowed

maximum likelihood estimation of the phylogeny. This field has seen considerable

progress in the intervening years. Modern methods take a Bayesian approach to

inferring phylogenies from molecular sequences and analysis can be performed using

open-source software [Drummond et al., 2002, 2012; Suchard et al., 2018; Bouckaert

et al., 2019].

An important application of phylogenetics is the phylogenetic comparative

analysis and ancestral reconstruction of phenotypes [Paradis, 2014; Joy et al., 2016].

A phenotype, referred to as a trait throughout this thesis, is some observable, mea-

surable characteristic of an organism and is the result of interaction between that

organism’s genotype and environment [Campbell et al., 1997]. Therefore, as noted by

Felsenstein [1985], traits sampled from genetically related taxa are not independent,

due to their shared ancestry. This dependence, allowing ancestral reconstruction

[Joy et al., 2016], must be accounted for when attempting to correlate traits with

another variable. Any method for doing so is referred to as a Phylogenetic Compar-

ative Method (PCM). Thus, PCMs are distinct from phylogenetics, though they are

heavily dependant on the field, in that a PCM examines the distribution of traits

among taxa once the phylogeny has been inferred [Paradis, 2014].

Typically, a PCM relies on some model for trait evolution. A popular choice

is to model the trait as a Gauss-Markov process over the phylogeny [Rasmussen and

Williams, 2006; Jones and Moriarty, 2013], that is, either as BM or an Ornstein-

Uhlenbeck (OU) process [Felsenstein, 1973; Lande, 1976]. Alternatively, a heavy-

tailed stable distribution could be employed [Elliot and Mooers, 2014]. Modelling

trait evolution as BM is straightforward to justify and interpret for a continuous

scalar-valued trait. Let Yt 2 R be the scalar-valued trait for the tth generation,
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where R denotes the set of real numbers. It is first assumed Yt is independent of

all earlier generations conditional on Yt�1 only. This is to say that the first-order

Markov property holds [Billingsley, 2008], such that

p (Yt = yt|Yt�1 = yt�1, Yt�2 = yt�2, . . . , Y0 = y0) = p (Yt = yt|Yt�1 = yt�1) .

Given that traits depend on the genotype, which is passed directly from one gen-

eration to the next, this would seem reasonable. Secondly, traits are assumed to

change for each generation according to an independent and identically distributed

process, with mean zero and finite variance, such that

�yt ⌘ yt � yt�1,

= ✏t,

with E [✏t] = 0 and E
⇥
✏2t
⇤
= �2. In this case, the Central Limit Theorem states that

p
tYt

d
�! N

�
y0,�2

�
[Casella and Berger, 2002], and so the dynamics of scalar-valued

continuous traits over many generations can be modelled as BM. One problem with

this model for trait evolution is that it fails to account for the fitness of an organism

within its environment. It is possible that natural selection results in the trait

tending towards some optimal value. To this end, Lande [1976] and Hansen [1997]

proposed an OU model which incorporates this e↵ect into the traits evolutionary

dynamics. This is referred to as “stabilising selection” [Hansen, 1997]. For this

model

�yt = ↵(µ� yt) + ✏t,

with changes in the trait value from one generation to the next tending towards

an optimum µ 2 R according to the strength of selection ↵ 2 R+, where the no-

tation R+
⌘ (0,1) will be employed throughout this thesis. The model can also

be extended to accommodate a dynamic trait optimum by modelling µ itself as a

function, either of evolutionary time or some other set of covariates.

A particularly important concept for phylogenetic comparative analysis is

the notion of phylogenetic signal, that is, the tendency of traits from related taxa to

resemble each other [Münkemüller et al., 2012]. One approach to quantifying this is

to employ a Phylogenetic Mixed Model (PMM). The PMM, as defined by Housworth

et al. [2004], assumes that trait evolution can be modelled as BM with variance

�2h 2 R+, referred to as the heritable variation. It then includes an additional

parameter, �2e 2 R+, which is referred to as the environmental, or non-phylogenetic,

variation. This environmental variation is the variance of an independent Gaussian
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noise process associated with the observed trait at each taxon, that is, variation

independent of the phylogeny. Thus,

 ⌘
�2h

�2h + �2e
, (2.1)

defines the heritability of the process, which is the proportion of trait variation at-

tributable to the stochastic process over the phylogeny. If this is close to 1, it implies

strong heritability, and therefore a strong phylogenetic signal for the trait in ques-

tion. Pagel’s � [1999a] and Blomberg’s K [2003] o↵er two alternative approaches to

assessing phylogenetic signal, each of which compares the actual variation amongst

traits to that expected under a BM model for trait evolution.

Often, the objective of a phylogenetic comparative analysis is to establish

the relationship between a trait and some set of covariates while controlling for

dependence between taxa due to the phylogeny. Indeed, it was in this context that

[Felsenstein, 1985] proposed his method of independent contrasts for real-valued

traits. This approach was later generalised to phylogenetic regression by Grafen

[1989], which has underpinned the development of Phylogenetic Generalised Least

Squares (PGLS) [Hansen, 1997; Symonds and Blomberg, 2014]. In its simplest form,

PGLS relates observations of a real valued trait for N taxa with a set ofD covariates,

given the phylogeny and model for trait evolution, according to

y = X� + ✏,

where y 2 RN are observed traits, X is the N ⇥ D matrix of covariates, � 2 RD

is the vector of regression coe�cients, and ✏ ⇠ N (0,K) is the N -dimensional error

vector modelling the traits random variation over the phylogeny as either BM or an

OU process [Martins and Hansen, 1997]. This PCM can also be extended beyond

real valued traits via a link function [Nelder and Wedderburn, 1972], with Ives and

Garland Jr [2009] employing the logit link function to model a binary trait within

this framework.

More recently, however, e↵orts have been focussed on developing PCMs which

model the joint distribution of multivariate traits over a phylogeny [Adams and

Collyer, 2017]. Doing so allows a covariance structure over multiple traits to be

defined within a single model for trait evolution, rather than attempting to fit and

interpret many instances of PGLS. Revell [2009] extended Principal Components

Analysis (PCA) [Tipping and Bishop, 1999] to real-valued multivariate traits, as-

suming that the phylogeny and model for trait evolution is known. Furthermore,
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multivariate PCMs have been generalised to collections of continuous and discrete

traits by Felsenstein [2011] using the threshold model proposed by Wright [1934].

This model, which is analogous to probit regression [Albert and Chib, 1993], as-

sumes that discrete traits are associated with some unobserved auxiliary variables,

which Felsenstein [2011] refers to as liabilities. Discrete traits change state as aux-

iliary variables cross particular thresholds, where auxiliary variables are modelled

as a Gauss-Markov process over the phylogeny. This allows both ordinal and cat-

egorical traits to be modelled alongside those that are real-valued. Markov Chain

Monte Carlo (MCMC) algorithms for Bayesian inference on the threshold model

have been developed by Cybis et al. [2015] and Tolko↵ et al. [2017]. Each of these

implementations allows integration over a distribution of phylogenies, which can be

inferred from molecular sequences associated with the taxa of interest [Bouckaert

et al., 2019]. Thus, uncertainty on the phylogeny can be accounted for within a

PCM. Of these models, Phylogenetic Factor Analysis (PFA) is of particular interest

[Tolko↵ et al., 2017]. In this case, a latent variable model is assumed for auxiliary

variables, similar to Factor Analysis [Bartholomew et al., 2011; Lopes, 2014], such

that

X = ZW> + ✏,

where X 2 RN⇥D is the matrix of auxiliary variables, Z 2 RN⇥Q are factors,

such that each column is assumed to be an independent BM over the phylogeny,

W 2 RD⇥Q is the loading, and ✏ 2 RN⇥D is independent Gaussian observation

noise. A similar approach to modelling trait evolution will be employed by the

models developed in this thesis.

Each of the PCMs outlined thus far is concerned with (collections of) scalar-

valued continuous and discrete traits, however, some traits are best described as

continuous functions of time (or some other reference variable). Such a trait is an

infinite-dimensional object, in that it could be recorded an arbitrary set of points

over an interval, and is referred to as a function-valued trait (FVT) [Kirkpatrick and

Heckman, 1989; Kirkpatrick et al., 1990; Meyer and Kirkpatrick, 2005; Gomulkiewicz

et al., 2018]. FVTs pose a particular set of challenges for evolutionary inference.

They are functional data objects and as such, are subject to Functional Data Analy-

sis (FDA) techniques such as smoothing and registration [Ramsay, 2004; Srivastava

and Klassen, 2016], discussed in more detail in sub-section 2.3.4. Furthermore,

FVTs are generally assumed to vary slowly and continuously with respect to time

[Meyer and Kirkpatrick, 2005]. As such, there exists a covariance structure within

the trait which is not explicitly modelled by methods such as phylogenetic PCA of

PFA [Revell, 2009; Tolko↵ et al., 2017]. To address these issues Jones and Moriarty
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[2013] proposed the phylogenetic Gaussian process regression (PGPR) framework,

linking Gaussian processes to the evolution of FVTs [Rasmussen and Williams,

2006]. The development of this framework, which will be discussed in greater de-

tail in sub-section 2.3.2, is ongoing. It has been linked to PGLS [Goolsby, 2015],

and approximations to PGPR applied to synthetic data [Hadjipantelis et al., 2013]

and bat echolocation calls [Meagher et al., 2018a,b]. The framework has also been

applied to the evolution of multi-dimensional facial curves [Mariñas-Collado et al.,

2019].

As a final note, typical methods for phylogenetic comparative analysis imply

some distribution over trait values for ancestral taxa [Martins and Hansen, 1997;

Jones and Moriarty, 2013; Tolko↵ et al., 2017]. Thus, ancestral reconstruction and

the PCM can be thought of as two sides of the same coin with each o↵ering its own

perspective on the evolutionary relationships between taxa [Joy et al., 2016].

2.3 Statistical Models for Data

2.3.1 Gaussian Processes

Gaussian processes, ubiquitous in the disciplines of Statistics and Machine Learning

[Rasmussen and Williams, 2006; Stein, 2012], o↵er an approach to non-parametric

regression that is both flexible and analytically tractable. A brief discussion on

Gaussian process regression and the importance of covariance functions, referred to

as kernels, is presented in the following. For a full treatment of Gaussian processes,

the interested reader can refer to Rasmussen and Williams [2006].

In order to understand the appeal of a Gaussian process (GP), consider y ⌘

(y1, . . . , yN )>, the instance of a multivariate Gaussian distributed random variable,

such that

p (y) ⌘ N (y|m,K) ⌘ |2⇡K|
�

1
2 exp

✓
�
1

2
(y �m)>K�1 (y �m)

◆
, (2.2)

defines the Gaussian probability density function (pdf) for mean m and covariance

K. Two particularly useful properties of the Gaussian distribution are that it is

closed under both marginalisation and conditioning. That is to say, when

p (y) = N

 "
yA

yB

#
|

"
mA

mB

#
,

"
KAA KAB

KBA KBB

#!
, (2.3)
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it can be shown that

p (yA) =

Z

R
p (yA,yB) dyB = N (yA|mA,KAA) , (2.4)

and

p (yA | yB) = N
�
yA|mA +KABK

�1
BB (yB �mA) ,KAA �KABK

�1
BBKBA

�
. (2.5)

Thus, for any set of Gaussian distributed random variables, there exist analytically

tractable definitions of the marginal and conditional distributions for each element.

GPs extend these notions to infinite dimensions.

A Gaussian process is a collection of random variables, any finite number of

which have a joint Gaussian distribution [Rasmussen andWilliams, 2006]. Letting X

denote the space over which a GP is observed (typically X ⌘ Rd), the GP f (x) 2 R,
defined as

f (x) ⇠ GP
�
m (x) , k

�
x,x0

��
, (2.6)

is fully specified by its mean function m (x) and covariance function k (x,x0), where

m (x) = E [f (x)]

k
�
x,x0

�
= E

⇥
(f (x)�m (x))

�
f
�
x0
�
�m

�
x0
��⇤

.

Without any loss of generality, it can be assumed that m (x) = 0, and so the process

is described by its second-order statistics only.

The convenience of a GP prior can be illustrated given observation yn indexed

by xn for n = 1, . . . , N , which is modelled as an instantiation of a GP such that

yn = f (xn) + ✏n

for ✏n ⇠ N
�
0,��1

�
. Letting f⇤ ⌘ f (x⇤) for the unobserved index x⇤ 2 X , it can be

shown that "
y

f⇤

#
⇠ N

 
0,

"
Kf f + ��1IN kf⇤

k>

f⇤ k (x⇤,x⇤)

#!

where E [f (x)] = 0, (Kf f )nm = k (xn,xm) such that Kf f is the Gram matrix of

k (·, ·) for {x1, . . .xN} [Rasmussen and Williams, 2006], and (kf⇤)n = k (xn,x⇤).

This is a joint Gaussian distribution, the pdf of which is given in (2.3), and so

the distribution of f⇤ conditional on y is given by (2.5). Thus, Gaussian process

regression allows the definition of a posterior distribution for all x⇤ 2 X .

When modelling data as a GP, careful consideration must be given to the co-
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Gaussian Process Regression

(a) Gaussian process prior samples (b) Gaussian process posterior samples

Figure 2.3: Prior and posterior distributions for a Gaussian process with an expo-
nentiated quadratic covariance function defined for x 2 R. Grey shaded regions
represent two standard deviations of about the mean, which is illustrated as a black
line. Samples are then represented by coloured lines. The posterior distribution is
obtained by performing Gaussian process regression given three noisy observations
of the underlying Gaussian process, represented by crosses.

variance function chosen. While simple linear trends and e↵ects from covariates can

be included in the mean function, the covariance function encodes any assumptions

on the underlying stochastic process. For k (·, ·) to be a valid covariance function,

its Gram matrix, denoted K, must be positive semi-definite, which is to say that

z>Kz � 0 for all z 2 RN . When this is the case k (·, ·) is a Mercer kernel, where

the term kernel refers to any function mapping two inputs to the real numbers

[Scholkopf and Smola, 2001].

There are a number of properties to be considered when choosing a kernel

to model any given phenomenon. Assuming that X ⌘ Rd, it is often desirable for

k (·, ·) to be weakly stationary, which is to say that it is a function of ⌧ ⌘ x � x0

such that k (⌧ ) ⌘ k (x,x0) [Rasmussen and Williams, 2006]. A more restrictive

assumption is to assume that the kernel is weakly isotropic, in which case it is a

function of r ⌘ |⌧ |, where |·| denotes Euclidean distance [Rasmussen and Williams,

2006]. It is also important to consider mean square continuity and di↵erentiability,

which describe the smoothness of a stochastic process. The stochastic process f (·)
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is mean square continuous at x 2 Rd if

lim
x0!x

E
⇥
f
�
x0
�
� f (x)

⇤2
! 0,

while it is mean square di↵erentiable if the limit

lim
h!0

E
"✓

f (x+ hei)� f (x)

h

◆2
#
=
@f (x)

@xi
,

exists, where ei is the unit vector along the ith dimension [Banerjee and Gelfand,

2003; Stein, 2012].

The Matérn class of isotropic covariance functions is given by

k⌫
�
r | �2, `

�
⌘ �2

21�⌫

� (⌫)

 p
2⌫r

`

!⌫

K⌫

 p
2⌫r

`

!
, (2.7)

where the variance �2 2 R+, smoothing parameter ⌫ 2 R+, and characteristic

length-scale ` 2 R+. K⌫ (·) is then a modified Bessel function [Stein, 2012]. Im-

portant properties of the Matérn class are defined with respect to the smoothing

parameter ⌫. Firstly, the process f (x) is k-times mean square di↵erentiable if and

only if k > ⌫. Furthermore, when ⌫ = p+ 1
2 for a non-negative integer p, a simplified

expression of (2.7) is obtained and, when d = 1, the resulting model is a form of

autoregressive process of order p + 1 [Rasmussen and Williams, 2006]. The cases

⌫ 2
�
1
2 ,

3
2 ,

5
2

 
and ⌫ ! 1 are of particular interest in Machine Learning. In fact,

the limiting case, when ⌫ ! 1, is the popular exponentiated quadratic covariance

function

kEQ
�
r | �2, `

�
⌘ �2 exp

✓
�

r2

2`2

◆
, (2.8)

for which �2 defines the process amplitude and ` the rate at which correlation decays

with increasing r, as is the case for all kernels of the Matérn class.

There exist many other kernels suitable for use as covariance functions in

Gaussian processes including the polynomial, periodic, and neural network kernels

[Rasmussen and Williams, 2006], however, it is important to note that a single kernel

does not have to be chosen. Mercer kernels are closed under both multiplication and

addition allowing multiple kernels can be combined in a single analysis [Rasmussen

and Williams, 2006]. Further detail on Gaussian process regression, covariance func-

tions, and GPs in general can be found in both [Rasmussen and Williams, 2006] and

[Stein, 2012].
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Comparison of Matérn kernels

(a) Process covariance function (b) Process samples

Figure 2.4: Sub-plot (a) presents a comparison of isotropic Matérn kernels for dif-
ferent values of smoothing parameter ⌫ where �2 = 1 and ` = 1 . It can be seen that
as ⌫ increases the kernel decays more slowly close to 0, implying smoother function
realisations. Samples from each process, instantiated with the same seed, illustrate
this clearly in (b).

2.3.2 The Phylogenetic Gaussian Process Framework

Consider a FVT, defined over the phylogeny-trait space T ⇥ X , where T denotes a

phylogeny, for which branch lengths are proportional to evolutionary time between

taxa, and X the space over which the FVT is observed. Modelling this as a GP

implies that

f(x, t) ⇠ GP
�
0, k

�
(t,x) , (t,x)0

��
, (2.9)

for (t,x) 2 T ⇥X , where the Mercer kernel k (·, ·) will be referred to as the phylogeny-

trait covariance function.1 Thus, a model for the evolution of a FVT is fully specified

by k (·, ·).

Jones and Moriarty [2013] define the PGPR framework in terms of a separable

phylogeny-trait covariance function, such that

k
�
(t,x) , (t,x)0

�
= kT

�
t, t0

�
kX

�
x,x0

�
,

1
Jones and Moriarty [2013] refer to this as the phylogenetic covariance function. The terminology

has been changed in order to distinguish between covariance structures over T and X
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A Bifurcating Phylogeny

tj

ti

tij

t0

t⇤

tj

ti

tij

t0 = 0

Figure 2.5: An example of a bifurcating phylogeny. Here, ti, tj , tij , t⇤, and t0 each
denote a position on T . t0 is the taxon at the root of the phylogeny, while tij is
the MRCA for the taxa at ti and tj , and t⇤ is an ancestor of tij . Furthermore, each
position t 2 T is associated with a depth, denoted t, which distance of t from the
root of T . A more rigorous definition of a phylogeny will be provided in section
3.2.1.

where kT (·, ·) is the phylogenetic covariance function and kX (·, ·) the trait covari-

ance function, each of which are Mercer kernels. Consider first the phylogenetic

covariance function, specification of which relies on two standard assumptions in

the context of evolution [Felsenstein, 1973].

Assumption 1. Conditional on their most recent common ancestor on the phy-

logeny T , traits at t and t0 are statistically independent.2

Assumption 2. The statistical relationship between the trait at t 2 T and its

descendants is independent of the topology of T .

In order to understand the implications of these assumptions, consider a

2
Jones and Moriarty [2013] assume traits at t and t0 are statistically independent given common

ancestors, rather than the stronger assumption made here, suggesting that the process may also be

dependant on ancestors of the MRCA. Despite this, the phylogenetic covariance functions for which

the PGPR framework is developed imply that, given the MRCA, traits at t and t0 are independent

not only of each other but also any ancestors of the MRCA. Thus, this assumption has been made

explicit here.
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univariate GP over T such that

z (t) ⇠ GP
�
0, kT

�
t, t0

��
.

Assumption 1 simply states that the Markov property holds for this process over T

such that

p (z (ti) , z (tj) |z (tij) , z (t⇤)) = p (z (tj) |z (tij)) p (z (ti) |z (tij)) ,

where, throughout this sub-section, t⇤ is an ancestor tij on T and the taxon at tij

is the MRCA of taxa at ti and tj , as presented in Figure 2.5.

Assumption 2, on the other hand, describes the Gaussian process modelling

trait evolution along the individual paths through T from its root to each tip. This is

referred to as themarginal process [Jones and Moriarty, 2013] and it is assumed to be

identically distributed along each path. Furthermore, in order to satisfy Assumption

1, the marginal process must have the Markov property.

These assumptions allow the phylogenetic covariance function to be defined

as follows. Let the distance of position t 2 T from the root of T be the depth of t,

denoted t. The covariance function of the marginal process can then be defined as

k̃ (t, t0) for positions t and t0 lying on a single path through T . Then, for arbitrary

positions, ti, tj , and their MRCA tij it can be seen that

kT (ti, tj) = E [z(ti)z(tj)] (2.10)

= E [E [z(ti)z(tj)|z(tij)]] , (2.11)

= E [E [z(ti)|z(tij)]E [z(tj)|z(tij)]] , (2.12)

= E
h
k̃(ti, tij)k̃(tij , tij)

�1z(tij)k̃(tj , tij)k̃(tij , tij)
�1z(tij)

i
, (2.13)

= k̃(ti, tij)k̃(tij , tij)
�1k̃(tij , tj). (2.14)

where (2.10) is the definition of covariance for a process with zero mean, (2.11)

holds by the law of iterated expectations [Casella and Berger, 2002], (2.12) is given

by Assumption 1, (2.13) is a result of the conditional mean of Gaussian random

variables, and (2.14) is simply the expected value.

The covariance function for the marginal process must be defined in order

to complete the specification of a phylogenetic covariance function. Two classes of

continuous-time Gauss-Markov processes are considered, Brownian Motion (BM)

and the Ornstein-Uhlenbeck (OU) process. The covariance function for a BM
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marginal process can be expressed as

k̃bm(t, t0) = �2hmin(t, t0),

for variance �2h 2 R+. This implies that

kbmT (ti, tj) = �2htij ,

which defines a kernel for the BM model of trait evolution [Felsenstein, 1973, 1985;

Cybis et al., 2015; Tolko↵ et al., 2017].

Alternatively, an OU process, the class of stationary Gauss-Markov processes

[Doob, 1942], can be assumed such that

k̃ou
�
t, t0

�
= �2h exp

✓
�
|t� t0|

`

◆

for variance �2h 2 R+ and characteristic length-scale ` 2 R+. It is worth noting that

this covariance function belongs to the Matérn class for which it is equivalent to

(2.7) when ⌫ = 1/2 [Rasmussen and Williams, 2006]. This allows the definition of a

phylogenetic covariance function

kouT (ti, tj) = �2 exp

✓
�
|ti � tij |+ |tj � tij |

`

◆
,

= �2 exp

✓
�
dT (ti, tj)

`

◆
,

where dT (ti, tj) is the patristic distance between ti and tj on T [Rédei, 2008; Jones

and Moriarty, 2013], that is, the sum of di↵erences in depth between each position

and their MRCA. Thus, a phylogenetic covariance function for the OU model of

trait evolution can also be defined [Hansen, 1997].

As a final note on the phylogenetic covariance function, introducing an in-

dependent Gaussian noise process for traits at observed taxa does not violate any

model assumptions. Thus, it is straightforward to incorporate the PMM presented

by Housworth et al. [2004] into these phylogenetic covariance functions.

In order to extend this univariate phylogenetic GP to a FVT, note that by

Mercer’s theorem [Rasmussen and Williams, 2006]

kX
�
x,x0

�
=

1X

i=1

⇠Xi uXi (x)u
X

i (x
0),
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for eigenvalues ⇠Xi and eigenfunctions uXi (x). Then, when

f (x, t) =
1X

i=1

q
⇠Xi uXi (x) zi (t)

for zi(t) ⇠ GP(0, kT (t, t0)), it can be shown that the FVT is being modelled as a

phylogeny-trait separable GP such that

f (x, t) ⇠ GP
�
0, kT

�
t, t0

�
kX

�
x,x0

��
, (2.15)

as desired. Thus, the PGPR framework has been fully specified, providing a coherent

approach to evolutionary inference for FVTs.

As a final remark on the PGPR framework, it is important to note that sep-

arability of the phylogeny-trait covariance function is a very restrictive assumption.

Not only does it imply that the trait covariance function is constant with respect to

the phylogeny, but it does not accommodate more standard modelling assumptions.

For example, kT (t, t0) kX (x,x0)+�2� (x = x0), where � (·) is the indicator function,

is not separable, which implies that a separable phylogeny-trait covariance function

cannot include independent observation noise on traits. Furthermore, some variation

in the trait covariance function over the phylogeny may be desirable. Such a model

could be applied to bat echolocation calls to allow di↵erent families of bat their own

family-level trait covariance functions, o↵ering a far more flexible model for their

evolution. Despite the appeal of such phylogeny-trait covariance functions however,

some structure must be imposed. Ancestral reconstruction and evolutionary infer-

ence become impossible when there is no defined relationship between extant taxa

and their common ancestors, separable phylogeny-trait covariance functions provide

a useful tool for defining these relationships. Thus, relaxing the separability as-

sumption, while preserving key elements of the structure and intuition it provides,

allows for the development of novel methods for evolutionary inference presented

later in this thesis.

2.3.3 Latent Variable Models and Factor Analysis

Solutions to a range of statistical problems, including probit regression for dis-

crete variables [Albert and Chib, 1993] and hidden Markov models for sequential

data [Rabiner, 1989], can be cast as latent variable models. Such a model relates

observed manifest variables yn ⌘ (y1n, . . . , yDn)
> to unobserved latent variables

zn = (z1n, . . . , zQn)
>, for n = 1, . . . , N . A particularly important class of latent

variable model, for which manifest variables are assumed to be independent and
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identically distributed, is Factor Analysis (FA) [Bartholomew et al., 2011], where

yn = µ+Wzn + ✏n, (2.16)

with mean µ 2 RD, loading W 2 RD⇥Q, factors zn ⇠ N (0, IQ),3 and observation

noise ✏n ⇠ N (0, ), for the diagonal covariance matrix  .

The motivation for FA is that, when Q << D, factors provide a parsimonious

description of the variation between manifest variables, while the loading defines

variation within those manifest variables [Lopes and West, 2004]. Such a model can

provide a useful interpretation for observed data. Indeed, Spearman [1904] originally

formulated FA to produce an objective measure of intelligence from multiple test

scores. Integrating over latent variables provides another important perspective on

FA. The marginal distribution for manifest variables is

yn ⇠ N (µ,⌦) , (2.17)

where ⌦ = WW> +  . This demonstrates that FA is in fact modelling the co-

variance matrix of manifest variables, however ⌦ depends on D (Q+ 1) parameters,

rather than D (D + 1) /2 as it does in the unconstrained case. Thus, when Q << D,

FA provides a low rank approximation to the covariance matrix of manifest variables

[Lopes, 2014].

FA provides a flexible model for data, however, as defined in (2.16) the load-

ing is non-identifiable. The marginal distribution in (2.17) is invariant to reflection

and rotation of W. Reflection invariance is a result of (�W) (�W)> = WW>,

while, for the orthogonal matrix Q such that QQ> = Q>Q = IQ, rotation invari-

ance is shown by noting that (WQ) (WQ)> = WW>. Correcting for reflection in-

variance is straightforward, simply fixing diagonal elements of W to be strictly posi-

tive typically does so [Geweke and Zhou, 1996; Lopes and West, 2004]. Alternatively,

in the context of posterior inference using MCMC samples, post-hoc relabelling al-

gorithms based on that developed by Stephens [2000] have also been proposed [Ero-

sheva and Curtis, 2017; Tolko↵ et al., 2017]. For the correction of rotation invariance,

one approach is to specify W such that Var (zn|yn) =
�
W> �1W + IQ

��1
is diag-

onal [Seber, 2009]. More popular in Bayesian FA however [Lopes and West, 2004;

Lopes, 2014], is to fix upper-triangular entries of W to 0, as introduced by Geweke

and Zhou [1996]. That this constraint fixes rotation invariance is a result of the QR

3
This assumption is not in any way restrictive of FA, if the model were parametrised by zn ⇠

N (0,V) with an arbitrary covariance matrix V = LL>
, an equivalent model could be parametrised

by W0
= WL and z0n ⇠ N (0, IQ) [Lopes, 2014].
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decomposition [Golub and Van Loan, 2013], which states that any square matrix A

may be decomposed as

A = QR,

where Q is an orthogonal matrix and R is upper triangular. Furthermore, Q is

unique when the diagonal elements ofR are strictly positive. The QR decomposition

extends to the D ⇥Q matrix for which upper triangular entries are 0, and as such,

W is no longer invariant to rotation.

FA is widely applied, and serves as a basis for many useful extensions. Prob-

abilistic principal components analysis is formulated by assuming that  ⌘ �2ID

[Tipping and Bishop, 1999], which in turn motivates Gaussian Process Latent Vari-

able Models [Lawrence, 2005; Titsias and Lawrence, 2010] and structured principal

components analysis [Skinner, 2019], while Tolko↵ et al. [2017] extended FA to phy-

logenetic comparative analysis.

2.3.4 Functional Data Analysis

Functional Data Analysis (FDA) is the branch of statistics concerned with the study

of data generated by continuous processes [Ramsay, 2004; Srivastava and Klassen,

2016]. Such data occur across many scientific disciplines and pose challenges that

are not considered by standard multivariate methods. In particular, functional data

typically requires smoothing and registration as part of its analysis, techniques for

which are outlined in the following.

In general, the analysis of functional data starts with a set of discrete obser-

vations and associated time points (yd, td) 2 R⇥ [0, 1] for d = 1, . . . , D, from which

the underlying function f (·) must be estimated. This estimation of the underlying

function is referred to as smoothing [Ramsay, 2004].

It is assumed that f (t) 2 R for all t 2 [0, 1], and
R 1
0 f2 (t) dt < 1, which is

to say that f (·) belongs to the set of real valued, square integrable functions on the

unit interval, denoted L2 ([0, 1] ,R), or more simply L2. In addition, equipping L2

with the inner product

hf, gi2 =

Z 1

0
f (t) g (t) dt, for f (·) , g (·) 2 L2.

defines a Hilbert space with norm ||f ||2 =
qR 1

0 f2 (t) dt [Srivastava and Klassen,

2016]. Observations can then be modelled as

yd = f (td) + ✏d, (2.18)
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for E [✏d] = 0 and E
⇥
✏2d
⇤
< 1, which is to say that observations of the underlying

function are subject to a noise process with zero mean and finite variance.

Without placing any further constraints on the underlying process, a poten-

tial solution to this problem would be to simply model f (·) as a piecewise linear

interpolation between data points. This would define f (·) over the entire interval

provided there exists td = 0 and td0 = 1, however such an approach generalises very

poorly in the presence of noise and does not allow continuous derivatives of f (·) to

be estimated, objects which are often of great interest in functional data analyses

[Ramsay, 2004]. A popular alternative is to instead assume f (·) to be the smooth,

twice-di↵erentiable function which minimises the penalised residual sum of squares

Lrss(f,�) ⌘
DX

d=1

(yd � f (td))
2 + �hf 00, f 00

i2, (2.19)

where � is the smoothing parameter penalising the function’s second derivative

[Friedman et al., 2001; Ramsay, 2004; Srivastava and Klassen, 2016]. The appeal of

this approach is that it allows an estimate for f (·) that can model observed data

well without overfitting. Special cases of (2.19) occur when � = 0, where f (·) can be

any function interpolating the data, and �!1, where f (·) must be the Ordinary

Least Squares line of best fit.

A natural approach to this problem is to assume that f (·) is a spline function,

the nomenclature for which is derived from the devices used by draughtsmen to draw

smooth shapes. Introduced by Schoenberg [1946a,b], the spline function of order p

f (t) =
MX

m=1

↵mBm,p(t), (2.20)

is a piecewise-polynomial curve of degree p � 1 with p � 2 continuous derivatives,

defined with respect to knots ⌧m, for ⌧m 2 [0, 1] and ⌧m  ⌧m+1, basis functions

Bm,p (·) spanning [0, 1], and coe�cients ↵m, for m = 1, . . . ,M . Setting p = 4

ensures that f (·) is twice di↵erentiable, yielding a cubic spline [Friedman et al.,

2001]. The basis function Bm,4 (·) is defined recursively by De Boor’s algorithm

[1972] and so, given y = (y1, . . . , yD)
>, the D ⇥M basis matrix B where Bdm =

Bm,4 (td), coe�cients ↵ = (↵1, . . . ,↵M )>, and M ⇥ M penalty matrix D where

Dmm0 =
R 1
0 Bm,4 (s)Bm0,4 (s) ds, (2.20) can be rewritten as

L(↵,�) = (y �B↵)> (y �B↵) + �↵>D↵,
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which is minimised with respect to ↵ at

↵̂ =
⇣
B>B+ �D

⌘�1
B>y.

Thus, the fitted spline is given by

f̂ (t) =
MX

m=1

Bm,4 (t) ↵̂m,

allowing f̂ (t) approximate f (t) for all t 2 [0, 1], where � can either be set a priori

or inferred by cross-validation [Friedman et al., 2001].

This provides one approach to the smoothing of functional data, though many

more have been developed. Kernel methods [Friedman et al., 2001], including GPs

[Rasmussen and Williams, 2006], o↵er a non-parametric approach to smoothing,

while wavelets o↵er an alternative basis to the splines outlined above [Percival and

Walden, 2006]. Each of these methods defines some f̂ (t) for t 2 [0, 1], allowing

consideration of the second analysis technique most associated with FDA, that is,

function registration.

Function registration, also referred to a curve registration [Ramsay and Li,

1998], curve synchronisation [Tang and Müller, 2008], or dynamic time warping

[Myers and Rabiner, 1981; Berndt and Cli↵ord, 1994], is required when important

features of some set of functions are not aligned along their time axis. This occurs

when the chronological time for a particular function does not map directly to the

real time scale on which it was recorded, a phenomenon which obfuscates statistical

inference on a sample of functions and is referred to as phase variation [Srivastava

and Klassen, 2016]. The problem can be understood by considering the height of an

individual and how it changes from birth to adulthood, a seminal example in FDA

[Ramsay et al., 1995]. Individuals tend to go through two separate growth spurts,

one early in life and another at the onset of puberty; however, these spurts start

and end at slightly di↵erent ages for each individual. If functional registration is

not performed prior to the comparative analysis of growth curves, these spurts may

not be reflected in any inferred mean and covariance functions for individual growth

curves.

A formal description of this problem requires the definition of a warping

function. For the remainder of this sub-section, allow function f (·) be denoted as

f , providing a less cluttered notation. As such, following the approach of Srivastava

and Klassen [2016], let � (t) 2 [0, 1] for t 2 [0, 1] be the monotone increasing warping

function such that � (0) = 0, � (1) = 1, � is invertible, and both � and ��1 are
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Registration of Functional Data

(a) Warped Functions (b) Warping Functions (c) Registered Functions

Figure 2.6: An illustration of the variation observed in functional data. Warped
functions in (a) are subject to phase (x-axis) and amplitude (y-axis) variation.
Warping functions (b) allow curves to be registered (c) such that a comparative
analysis can be performed.

smooth. Then, consider a pair of twice-di↵erentiable functions fn 2 L2 for n =

1, . . . , N such that

fn (t) = ang (�n (t)) (2.21)

where an is a random variable driving amplitude variation across functions and �n

are warping functions causing phase variation of the signal g. Functional registration

is the definition of �⇤n such that functions are being compared on a common time

scale. A toy example describing the problem is presented in Figure 2.6.

Several approaches have been developed for functional registration. Early

e↵orts were applied for speech recognition [Sakoe and Chiba, 1978] and facial bio-

metrics [Bookstein et al., 1986]. Landmark registration, also known as Procrustes

Analysis, has proven a popular approach [Kendall, 1984; Kneip and Gasser, 1992;

Dryden and Mardia, 2016]; however, it is impractical for large datasets as landmarks

must be identified manually. An automatic approach, similar in spirit to landmark

registration is the self-modelling warping functions [Gervini and Gasser, 2004], where

observations are mapped to a mean curve, while the application of pairwise curve

synchronisation is relatively straightforward for larger datasets [Tang and Müller,

2008]. More recently, registration techniques based on analysis of the Square Root

Velocity Function (SRVF), a transformation of observed functions, have been de-

veloped [Srivastava et al., 2011; Cheng et al., 2016; Srivastava and Klassen, 2016;

Tucker, 2019]. These methods possess some particularly appealing properties.

In order to motivate registration of the SRVF, consider first the estimation

of a warping function �⇤ which registers f2 to f1 by minimisation of the L2 norm.
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In this case

�⇤ = argmin
�

{||f1 � f2 � �||2} ,

where (f � �) (t) ⌘ f (� (t)). This approach is intuitively appealing, it registers

functions such that the di↵erence in amplitudes is minimised, however, it does have

some undesirable characteristics. As discussed by Srivastava and Klassen [2016],

the L2 norm lacks isometry under warping, which is to say that ||f1 � f2||2 6=

|f1 ���f2 ��||2 for some random warping function �. Thus, an identical warping of

f1 and f2 does not necessarily preserve their registration, i.e. the warping function

registering f2 to f1 may di↵er from that registering f2 � � to f1 � �. Furthermore,

registration by the L2 norm may result in a pinching e↵ect and inverse inconsistency.

The pinching e↵ect occurs when the L2 norm can be minimised by squeezing a large

part of f2 onto a short interval, while inverse inconsistency occurs when registering

f1 to f2 does not produce the inverse warping function of registering f2 to f1.

These problems are addressed by introducing the SRVF, defined as

qf (t) ⌘ sign
�
f 0 (t)

�p
|f 0 (t) |,

for which ||qf1 � qf2 ||2 = |qf1�� � qf2�� ||2. Given the SRVF, registering f2 to f1 with

the warping function defined by

�⇤ (·) = argmin
�(·)

{||qf1 � qf2�� ||2} , (2.22)

= argmin
�(·)

n
||qf1 � (qf2 � �) (·)

p
�0 (·)||2

o
, (2.23)

provides a theoretically appealing approach to functional registration in that the

loss function being minimised is now isometric under random warping functions

[Srivastava et al., 2011; Srivastava and Klassen, 2016]. This approach can be further

extended to allow the registration of f1, . . . , fN to a common time scale, for which

open-source software is available [Tucker, 2019].

2.3.5 Acoustic Signal Processing

Techniques for modelling acoustic signals, be they biotic sounds [Hopp et al., 2012],

human speech [Deller Jr and Hansen, 2004], or musical notes [Davy and Godsill,

2003], are built on a foundation of sine waves. Consider the real valued acoustic

signal z (·) with duration T 2 R+, which is to say that z (t) 2 R for t 2 [0, T ]. In its

simplest form

z (t) = a cos (2⇡ft+ ') , (2.24)
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follows a simple harmonic motion, such that it is characterised by amplitude a 2 R+,

frequency f 2 R+, and phase shift ' 2 [0, 2⇡], where these parameter constraints

have been enforced only for ease of interpretation [Radi and Rasmussen, 2012]. This

deterministic process can be seen to undergo f oscillations around 0, per unit time,

with the extrema of each oscillation being at ±a. Thus, it is a periodic signal with

constant amplitude a and period 1
f .

Taking an intuitive approach to extending (2.24), consider

z (t) = A (t) cos (� (t)) , (2.25)

where A (t) 2 R+ for defines the amplitude envelope, and

� (t) = 2⇡

Z t

0
f (⌧) d⌧ + ', (2.26)

describes the instantaneous phase, where f (t) 2 R+ is the slowly-varying instanta-

neous frequency. Thus, the instantaneous frequency of a signal can be thought of as

the derivative of its instantaneous phase [Boashash, 1992; Cohen, 1995; Hlawatsch

and Auger, 2008; Huang et al., 2009].

It is immediately obvious that the model defined by (2.25) and (2.26) is prob-

lematic. Although z (t) is completely specified given {A (t) ,� (t)}, there are infinite

{A (t) ,� (t)} pairs that will yield z (t). While Gabor’s [1946] method does allow the

estimation of unique amplitude envelope and instantaneous frequency pairs via the

Hilbert transform of a signal, the results are not necessarily subject to physical in-

terpretation [Cohen, 1995; Loughlin and Tacer, 1996], and extending the concept to

multi-component signals requires much of the information regarding components of

the signal be provided by the user [Olhede and Walden, 2005; DiCecco et al., 2013].

Furthermore, instantaneous frequency is a somewhat paradoxical concept [Cohen,

1995], given that frequency must be defined with respect to some interval of time.

Nonetheless, instantaneous frequency is a phenomenon that is experienced on a daily

basis in both colour gradients and smooth changes in the pitch of sounds [Huang

et al., 2009], and the intuition described by (2.25) and (2.26) underpin practical

approaches to acoustic signal processing.

A much less contentious approach to modelling acoustic signals is to assume

nothing more than that the signal is locally periodic. This allows the definition

of the Short-Time Fourier transform (STFT) [Allen and Rabiner, 1977; Portno↵,

1980], a representation of the signal in time and frequency. Given a square integrable

window function w (t) 2 R+ such that
R
w2 (d) dt < 1 [Kokoszka and Reimherr,
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2017] , concentrated at 0, where it is at a maximum, and an acoustic signal z (t) 2 R
for t 2 [0, T ], then

STFTw
z (t, f) ⌘

Z
1

�1

z (⌧)w (⌧ � t) exp (�j2⇡f⌧) d⌧, (2.27)

where j ⌘
p
�1. This in turn allows the spectrogram, a ubiquitous tool in signal

processing [Cohen, 1995; Hopp et al., 2012; Hlawatsch and Auger, 2008; Damoulas

et al., 2010; Stathopoulos et al., 2018; Mac Aodha et al., 2018; Pigoli et al., 2018],

be defined as

Sw
z (t, f) ⌘ | STFTw

z (t, f) |2, (2.28)

which can be thought of as an energy density of z (·) at time t and frequency f

[Hlawatsch and Auger, 2008]. Thus, the time-frequency distribution of z (·) can be

examined by considering Sw
z (t, f) for (t, f) 2 [0, T ]⇥ [0, F ], where F is the Nyquist

frequency [Oppenheim and Schafer, 2014].

The choice of w (·) in the STFTw
z (·, ·) is of enormous importance, as Heisen-

berg’s uncertainty principle imposes a limit on the time-frequency resolution that

can be obtained [Hlawatsch and Auger, 2008]. Thus, the time interval defined by

w (·) imposes a compromise between preserving resolution in time and resolution

in frequency. This implies that the particular requirements for a given application

of the STFTw
z (·, ·) must be carefully considered when choosing w (·) [Stathopoulos

et al., 2018; Pigoli et al., 2018].

The spectrogram, or more typically its logarithm, which is also referred to

as the spectrogram, is an essential visual tool for signal processing (see Figure 2.2),

and recent advances in echolocation call classification have been driven by its anal-

ysis [Stathopoulos et al., 2018; Mac Aodha et al., 2018]. Furthermore, techniques

for modelling spectrograms as functional data objects have been developed in the

context of computational linguistics [Pigoli et al., 2018].

Despite this progress, there remain di�culties in the comparative analysis of

spectrograms. Firstly, note that the spectrogram is defined for a grid of points over

[0, T ]⇥ [0, F ]. For most acoustic signals, there is a limited set of frequencies with a

high energy density at any particular point in time. This implies that the spectro-

gram includes information that could be considered redundant. Of more concern in

comparative analysis, however, are the vastly di↵erent implications of characterising

a signal by its spectrogram as opposed to its instantaneous frequency, in particular

when an interpolation between two signals is considered. As illustrated for a toy

example in Figure 2.7, a linear interpolation between spectrograms implies a signal

that is impossible for the larynx to produce [Deller Jr and Hansen, 2004], given that
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it consists of two intersecting frequency components. If applied to bat echolocation

calls for ancestral reconstruction, such an interpolation may infer calls that are im-

possibilities, given the physiology of a bats larynx [Fenton et al., 2016]. Interestingly,

this does not appear to be the case for instantaneous frequency, with interpolation

between two signals consisting of a single frequency component resulting in a signal

which itself has a single frequency component.

2.4 Bayesian Inference

Suppose there exists a collection of probabilistic models M1, . . . ,MK , each provid-

ing an explanation for some phenomenon. Initial beliefs on the plausibility of Mk

are encoded in a prior probability distribution, denoted p (Mk), and each model

is parametrised by the Dk dimensional vector ✓k. When initial beliefs on ✓k are

given by the prior distribution p (✓k|Mk), Bayes’ theorem describes how these be-

liefs should be updated when the data y is observed [MacKay, 1992; Gelman et al.,

2013]. Typically, this updating of prior beliefs occurs on two levels. The first is

model fitting, also referred to as parameter inference, for which Bayes’ theorem

states that

p (✓k|y,Mk) =
p (y|✓k,Mk) p (✓k|Mk)R
p (y|✓k,Mk) p (✓k|Mk) d✓k

,

where p (✓k|y,Mk) is the posterior distribution over the parameters for Mk given y,

p (y|✓k,Mk) is the likelihood of ✓k, and p (y|Mk) =
R
p (y|✓k,Mk) p (✓k|Mk) d✓k is

the evidence for Mk. The second level of inference, referred to as model comparison,

involves finding the posterior probability of each model where

p (Mk|y) / p (y|Mk) p (Mk) .

This general approach to inference for probabilistic models was described by MacKay

[1992] as the evidence framework.

In general, closed-form solutions for the posterior distribution over param-

eters and the model evidence do not exist. This has motivated the development

of simulation-based approaches to inference. Markov Chain Monte Carlo (MCMC)

methods implement this strategy by sampling a Markov chain, for which the station-

ary distribution is equivalent to the desired target distribution [Robert and Casella,

2013]. While algorithms such as Reversible Jump MCMC do allow joint parame-

ter inference and model comparison to be performed [Green, 1995], the standard

approach to inference within the evidence framework samples from the posterior,

that is p (✓k|y,Mk), before estimating the evidence p (y|Mk) from this sample. A
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Interpolation between Signal Characterisations

A

B

A+B
2

Instantaneous Frequency Spectrogram

Figure 2.7: Characterising signals with the instantaneous frequency result in a sig-
nal with a single frequency component, while the spectrogram implies two. If the
interpolation is meant to imply an intermediate state between existing signals, then
the spectrogram interpolant would appear unlikely, if not physically impossible, in
the context of bat echolocation calls.
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plethora of MCMC methods have been developed for these tasks, with algorithms

such as Metropolis-Hastings [Metropolis et al., 1953; Hastings, 1970], Slice Sam-

pling [Neal, 2003], and Hamiltonian Monte Carlo [Betancourt and Girolami, 2015;

Betancourt, 2017; Carpenter et al., 2017] providing a flexible set of techniques for

parameter inference, while the Harmonic Mean estimator [Newton and Raftery,

1994], Candidate’s estimator [Chib, 1995], Bridge Sampling [Meng and Wong, 1996;

Gronau et al., 2017b], path sampling [Gelman and Meng, 1998], and the method of

power posteriors [Friel and Pettitt, 2008] all allow estimation of the model evidence.

The following presents a brief review of those MCMC schemes for Bayesian

inference implemented in this thesis.

2.4.1 MCMC Methods for Parameter Inference

The Metropolis-Hastings algorithm (Algorithm 1), introduced by Metropolis et al.

[1953] and subsequently generalised by Hastings [1970], provides a general MCMC

method for parameter inference [Chib and Greenberg, 1995; Robert and Casella,

2013]. Let ⇡ (✓) be the target distribution, which is known up to a normalising

constant, and define a proposal distribution q (✓a|✓b) which is also known up to a

normalising constant. Then, given an initial value ✓(0), the Metropolis-Hastings

algorithm samples the Markov chain ✓(1), . . . , ✓(T ), for which the stationary distri-

bution is equivalent to ⇡ (✓), by accepting the proposal ✓⇤ ⇠ q
�
✓⇤|✓(t)

�
for ✓(t+1)

with probability

↵
⇣
✓⇤|✓(t)

⌘
=

⇡(✓⇤)/q(✓⇤|✓(t))

⇡(✓(t))/q(✓(t)|✓⇤)
,

and setting ✓(t+1) to ✓(t) otherwise, as described by Algorithm 1.

The Metropolis-Hastings algorithm provides a conceptually straightforward

and flexible approach to inferring intractable posterior distributions, however, its

implementation is not without di�culties. In particular, the choice of proposal is

crucial to ensuring that the target distribution is sampled e�ciently. In order to

address this problem, Adaptive MCMC methods such as Adaptive Metropolis (AM)

algorithms have been developed [Haario et al., 2001; Roberts and Rosenthal, 2009].

Such methods are based on the Metropolis algorithm [Metropolis et al., 1953], a

special case of the Metropolis-Hastings algorithm which occurs when the proposal

distribution is symmetric. This results in a simplified expression for the acceptance

probability, where

↵
⇣
✓⇤|✓(t)

⌘
=

⇡(✓⇤)

⇡(✓(t))
.

AM then relies on a relaxation of the detailed balance condition necessary for sam-
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Algorithm 1: The Metropolis-Hastings Algorithm

Data: y, ✓(0), T
Result: ✓(1), . . . , ✓(T )

1 for t = 0, . . . , T do
2 Sample ✓⇤ from q(✓⇤|✓(t));
3 Set

✓(t+1)
 

8
<

:
✓⇤, with probabilitymin

n
↵
⇣
✓⇤|✓(t)

⌘
, 1
o

✓(t), otherwise

where

↵
⇣
✓⇤|✓(t)

⌘
 

⇡(✓⇤)/q(✓⇤|✓(t))

⇡(✓(t))/q(✓(t)|✓⇤)
.

4 end

pling ergodic Markov chains with the correct stationary distribution. Under detailed

balance

⇡ (✓a)K (✓a, ✓b) = ⇡ (✓b)K (✓b, ✓a) ,

where K (✓a, ✓b) = p(✓(t+1) = ✓b|✓(t) = ✓a) is the transition kernel for the Markov

chain. Relaxing this condition such that it holds only in the limit as t!1 provides

the flexibility which underpins AM sampling schemes. The approach taken here,

adapted from that proposed by Haario et al. [2001] and suitable for any ✓ 2 RD,

assumes a proposal distribution of the form

q
⇣
✓⇤|✓(t)

⌘
=

8
<

:
N

⇣
✓⇤|✓(t),

⇣
0.12

D

⌘
ID
⌘
, for s  2D,

N

⇣
✓⇤|✓(t),�

⇣
0.12

D

⌘
ID + (1� �)

⇣
2.382

D

⌘
⌃̂(s)
✓

⌘
otherwise,

for some small � 2 (0, 1) (� = 0.05 for all implementations in this thesis). In this

case ⌃̂(t)
✓ is the sample variance of the Markov chain, computed after discarding

initial warm up samples ✓(0), . . . , ✓(bS⇤tc) for some S 2 (0, 1). This is motivated

by the fact that N
⇣
✓⇤|✓(t),

⇣
2.382

D

⌘
⌃✓

⌘
has been shown to be the optimal proposal

distribution for the Metropolis-Hastings algorithm in some settings, where Var (✓) =

⌃✓ [Roberts et al., 2001]. A description of this sampling scheme, which provides

a flexible approach to parameter inference by automatically choosing a proposal

distribution, is presented in Algorithm 2.

36



Algorithm 2: Adaptive Metropolis

Data: y, ✓(0), T
Result: ✓(1), . . . , ✓(T )

1 for t = 0, . . . , T do
2 if t  2D then

3 Sample ✓⇤ ⇠ N

⇣
✓(t),

⇣
0.12

D

⌘
ID
⌘
;

4 else
5 Compute ✓̄(t)  1

t�bS⇤tc

Pt
i=bS⇤tc+1 ✓

(i);

6 Compute ⌃̂(t)
✓  

1
t�bS⇤tc�1

Pt
i=bS⇤tc+1

�
✓(i) � ✓̄(t)

�2
;

7 Sample ✓⇤ ⇠ N

⇣
✓(t),�

⇣
0.12

D

⌘
ID + (1� �)

⇣
2.382

D

⌘
⌃̂(s)
✓

⌘
;

8 end
9 Set

✓(t+1)
 

8
<

:
✓⇤, with probabilitymin

n
↵
⇣
✓⇤|✓(t)

⌘
, 1
o

✓(t), otherwise

where

↵
⇣
✓⇤|✓(t)

⌘
 

⇡(✓⇤)

⇡(✓(t))
.

10 end

2.4.2 MCMC Methods for Gaussian Processes

While the Metropolis-Hastings algorithm and AM provide general methods for pa-

rameter inference, domain specific MCMC algorithms have also been developed.

Of particular interest is the Elliptical Slice Sampler (ESS) for GPs [Murray et al.,

2010]. Modelling the observations y = (y1, . . . , yN )> associated with index variables

x = (x1, . . . , xN )> as a GP typically implies that

yn = f (xn) + ✏n,

where

f(x) ⇠ GP
�
0, k

�
x, x0|✓f

��
,

for covariance function k (x, x0|✓f ) governed by hyper-parameters ✓f , and ✏n ⇠

N
�
0,�2

�
.

This model implies that p
�
y|f ,�2

�
= N

�
y|f ,�2IN

�
and p (f |✓f ) = N (f |0,K)

for f = (f (x1) , . . . , f (xN )), where K is the Gram matrix of k (·, ·|✓f ) such that

(K)ij = k (xi, xj |✓f ) [Rasmussen and Williams, 2006]. The ESS allows f (1), . . . , f (T ),
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Algorithm 3: The Elliptical Slice Sampler

Data: y, f (0), T
Result: f (1), . . . , f (T )

1 for t = 0, . . . , T do
2 Sample ellipse ⌫ ⇠ N (0,K);
3 Sample u ⇠ U [0, 1];

4 Set slice threshold �  u ⇡
�
f (t)

�
;

5 Sample ellipse angle � ⇠ U [0, 2⇡];
6 Define sampling bracket [�min,�max] [�� 2⇡,�];

7 Compute proposal f⇤  f (t) cos�+ ⌫ sin�;
8 if ⇡ (f⇤) > � then
9 f (t+1)

 f⇤

10 else
11 if � < 0 then
12 �min  �;
13 else
14 �max  �;
15 end
16 Sample ellipse angle � ⇠ U [�min,�max];
17 Return to 7;

18 end

19 end

a Markov chain for which p
�
f |y, ✓f ,�2

�
is the stationary distribution, to be drawn

by setting the target distribution to ⇡ (f) = p
�
y|f ,�2

�
p (f |✓f ) and implementing a

slice sampling algorithm over an ellipse defined by ⌫ ⇠ N (0,K) [Neal, 2003]. This

allows for “rejection-free” sampling, in that f (t) is updated with a new value at each

iteration. The ESS proposed by Murray et al. [2010] is described fully in Algorithm

3.

Typically, ✓f in this model known only up to a prior distribution p (✓f ) and

as such must be inferred given y. A strongly recommended approach to this problem

is to implement the Ancilliarity-Su�ciency Interweaving Strategy (ASIS) developed

by Yu and Meng [2011] and referred to as “whitening” by Murray and Adams

[2010] [Filippone et al., 2013; Monterrubio-Gómez et al., 2018]. This approach is

based on the insight that, for f ⇠ N (0,K) where LL> = K, there exists ⇣ for

which p (⇣) = N (⇣|0, IN ), such that f = L⇣ [Petersen and Pedersen, 2012]. This

allows the Su�cient Augmentation of the model [Yu and Meng, 2011] (referred to

as “unwhitened” by Murray and Adams [2010]), such that the joint distribution can

be expressed as

p (y, f , ✓f ) = p (y|f) p (f |✓f ) p (✓f ) ,
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and an Ancilliary Augmentation [Yu and Meng, 2011] (“whitened” [Murray and

Adams, 2010]), such that

p (y, ⇣, ✓f ) = p (y|⇣, ✓f ) p (⇣) p (✓f ) .

This allows an ASIS sampling scheme where at each iteration p
�
f |y, ✓f ,�2

�
is first

sampled by a ESS step, followed by an AM step for p (✓f |f). This in turn allows the

definition of ⇣ ⌘ L�1f and so an AM step can be implemented for p
�
✓f |y, ⇣,�2

�

[Filippone et al., 2013].

The benefit of this approach is that the convergence rate for Ancilliary Aug-

mented samples di↵er from those of Su�ciently Augmented samples. Moreover, it

has been observed that, if one leads to the fast convergence of sampled chains, then

the other is usually slow, depending on the observed data [Yu and Meng, 2011].

Thus, implementing an ASIS takes advantage of these di↵ering convergence rates

and can result in dramatic improvements to sampling e�ciency in the context of

GPs [Filippone et al., 2013].

2.4.3 Estimating Model Evidence

Consider once more the probabilistic models M1, . . . ,MK describing the observed

data y. Given those methods for approximating p (✓k|y,Mk) described above, the

second level of the evidence framework involves inference of the model evidence, that

is p (y|Mk). While a number of approaches to this problem have been developed,

it is Bridge Sampling that is considered here [Meng and Wong, 1996; Gronau et al.,

2017a], for which Gronau et al. [2017b] have developed the bridgesampling package

in R.

In order to motivate Bridge Sampling, consider the identity

1 =

R
p (y|✓k,Mk) p (✓k|Mk)h (✓k) g (✓k) d✓kR
p (y|✓k,Mk) p (✓k|Mk)h (✓k) g (✓k) d✓k

,

where h (·) is the bridge function and g (·) is referred to as the proposal distribution.

Multiplying both sides of this identity by the model evidence yields

p(y|Mk) =
Eg(✓k) [p (y|✓k,Mk) p (✓k|Mk)h (✓k)]

Ep(✓k|y,Mk) [h (✓k) g (✓k)]
.

Thus, given samples from p (✓k|y,Mk), denoted ✓⇤k,i for i = 1, . . . , T1, and samples

from g (✓k), ✓̃k,j for j = 1, . . . , T2, the model evidence for Mk for k = 1, . . . ,K can

be estimated.
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The optimal bridge function [Meng and Wong, 1996], with respect to the

relative mean square error of the estimator, is

h (✓k) = Ck ·
1

s1p (y|✓k,Mk) p (✓|Mk) + s2p (y|Mk) g (✓k)

where s1 = T1
T1+T2

, s2 = T2
T1+T2

, and Ck is a normalising constant. Given that

this bridge function depends on p (y|Mk), an iterative approach can be taken to

estimating the marginal likelihood, where the estimator

\p(y|Mk)
(t+1)

=

1
T2

PT2
j=1

p(y|✓̃j ,Mk)p(✓̃j |Mk)

s1p(y|✓̃j ,Mk)p(✓̃j |Mk)+s2 \p(y|Mk)
(t)

g(✓̃j)

1
T1

PT1
i=1

g(✓⇤i )

s1p(y|✓⇤i ,Mk)p(✓⇤i |Mk)+s2 \p(y|Mk)
(t)

g(✓⇤i )

(2.29)

is robust with respect to the tail behaviour of the proposal distribution. When

tails of the proposal distribution are heavier than those of the posterior, samples

from the proposal tail contribute 0 to the numerator sum in (2.29). Given that this

ratio is bounded, and such samples occur only occasionally, their occurrence will not

dominate the estimated evidence. Similarly, when tails of the proposal are lighter

than those of the posterior distribution, samples from the posterior tail contribute 0

to the denominator sum. Again, this bounded ratio will not dominate the estimator.

Thus, provided the proposal and posterior distribution share some region of overlap,

(2.29) provides a robust estimate of the evidence for each model considered.
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Chapter 3

A Phylogenetic Latent Variable

Model for Function-valued

Traits

3.1 Introduction

A bats echolocation call is a process that is continuous in time, and as such, it can be

thought of as a Function-Valued Trait (FVT). Thus, in order to develop a method

for the ancestral reconstruction of bat echolocation calls, the problem of evolution-

ary inference for FVTs must first be considered in general terms. The Phylogenetic

Gaussian Process Regression (PGPR) framework proposed by Jones and Moriarty

[2013] allows the definition of a prior distribution for a FVT over a phylogeny,

such that a probabilistic model for trait evolution is defined by the phylogeny-trait

covariance function of a phylogenetic Gaussian process. Although they have not nec-

essarily been referred to as such, special cases of the PGPR framework have been

employed for both phylogenetics and phylogenetic comparative analysis for decades

[Felsenstein, 1973; Lande, 1976; Felsenstein, 1985; Grafen, 1989; Hansen, 1997; Had-

jipantelis et al., 2013]. Despite this being the case, a Bayesian approach to inference

of the full phylogeny-trait covariance function and its hyper-parameters had yet to

be developed. Such a method allows ancestral trait reconstruction, conditional on

a phylogeny describing the evolutionary relationships between taxa, while also ac-

commodating uncertainty in the model for trait evolution. This is the contribution

made in this chapter.

Consider first the phylogeny-trait covariance function within the PGPR frame-

work, discussed in sub-section 2.3.2, and its role in ancestral trait reconstruction. In
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general, the form of this object is unknown. Thus, it must either be assumed a priori

or inferred from observed data. Fixing the phylogeny-trait covariance function such

that each trait is modelled as a independent Brownian Motion (BM) over the phy-

logeny [Felsenstein, 1973, 1985] is unlikely to yield accurate trait reconstruction and

uncertainty quantification for ancestral taxa, particularly when there exists a rich

covariance structure within multivariate traits. This is especially true for FVTs. In

an attempt to model this structure, Hadjipantelis et al. [2013] proposed a method

for the ancestral reconstruction of FVTs within the PGPR framework. An Indepen-

dent Principal Components Analysis (IPCA) [Yao et al., 2012] of FVT observations

provide a set of basis functions which define the trait covariance structure. Given

these independent components, modelling latent variables as independent phyloge-

netic Gaussian processes allows ancestral trait reconstruction. Despite the appeal

of this method, which describes the evolution of FVTs as a linear combination of

basis functions and latent variables, it is not without drawbacks. The IPCA im-

plies that observed FVT are independent, violating the assumption of dependence

between taxa due to the phylogeny that is central to phylogenetic comparative

analysis [Felsenstein, 1985; Revell, 2009]. Furthermore, there is no quantification of

uncertainty for the basis functions defining the independent components, nor does

the model include observation noise on trait measurements. Finally, selecting the

number of basis functions to include is guided by heuristics rather than any princi-

pled method for model selection. Thus, a more sophisticated approach to inference

is required.

The PGPR framework o↵ers a probabilistic model for trait evolution that

is closely related those underpinning Phylogenetic Comparative Methods (PCMs)

proposed by Cybis et al. [2015] and Tolko↵ et al. [2017], which model collections

of discrete and continuous traits over a phylogeny. These methods take the oppo-

site perspective on inference to Hadjipantelis et al. [2013], e↵ectively assuming the

phylogenetic covariance function to be a known Brownian Motion (BM) kernel and

then inferring the trait covariance structure. Markov Chain Monte Carlo (MCMC)

sampling schemes implement Bayesian inference, which accommodate uncertainty

on the evolutionary history between taxa by sampling from a posterior distribution

of phylogenies inferred from molecular sequences. Although this Bayesian approach

to inference is appealing, such methods are unsuitable for ancestral reconstruction.

Assuming a BM model for trait evolution fixes the covariance structure between

taxa and precludes joint inference of the phylogeny-trait covariance function. For

ancestral reconstruction, the Ornstein-Uhlenbeck (OU) process o↵ers a more ap-

pealing alternative, preserving the Markov property over the phylogeny while allow-
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ing the observed data inform the hyper-parameters governing its behaviour [Jones

and Moriarty, 2013]. Furthermore, the methods of Cybis et al. [2015] and Tolko↵

et al. [2017] do not accommodate intra-taxon variation, preventing the inclusion

of repeated measurements for any taxon. Extending key aspects of their MCMC

inference schemes to the PGPR framework will address each of these shortcomings.

The first di�culty encountered when developing a Bayesian inference scheme

for PGPR is the computational cost of evaluating the model’s likelihood. This like-

lihood is a Gaussian pdf, and in general, its computation scales cubically with

the number of observations [Rasmussen and Williams, 2006; Jones and Moriarty,

2013]. Implementing an MCMC inference scheme relying on such a computation

is impractical for all but the smallest of datasets. This computation of a Gaus-

sian likelihood for traits over a phylogeny constitutes a long-standing problem in

phylogenetics [Felsenstein, 1973]. The BM model for trait evolution is especially

well studied and many algorithms scaling linearly with the number of observed taxa

have been proposed for the computation of this likelihood [Felsenstein, 1973; Pybus

et al., 2012; Freckleton, 2012; Mitov and Stadler, 2017]. The insight underpinning

these algorithms is that, when taxa are conditionally independent given their Most

Recent Common Ancestor (MRCA), the marginal process over each branch of the

phylogeny is a first-order Gauss-Markov process [Jones and Moriarty, 2013]. Thus,

a post-order tree traversal, that is, a traversal of the phylogeny from tips to root,

computes the model likelihood e�ciently. Furthermore, based on the likelihood

computation of Pybus et al. [2012], Cybis et al. [2015] employs a further post-order

tree traversal to compute the conditional distribution of a trait for any extant taxon

given all other extant taxa, under the BM model for trait evolution. The post-

order tree traversal is a traversal from the root of the phylogeny to its tips, and

as such, this computation scales quadratically with the number of observed taxa.

These methods allowed Cybis et al. [2015] and Tolko↵ et al. [2017] to implement

e�cient MCMC inference schemes for their PCMs, however, the algorithms are not

without limitations. Except for Mitov and Stadler [2017], who designed an algo-

rithm that computes the likelihood of a univariate OU Phylogenetic Mixed Model

(PMM) [Housworth et al., 2004], the algorithms identified above only consider the

BM model of trait evolution. Furthermore, none of the algorithms developed to date

allow the inclusion of intra-taxon variation within the model. Such limitations are

problematic in the application of PGPR for ancestral reconstruction. Not only is an

OU process the preferred model for trait evolution, but repeated measurements for

each taxon are typical. A Bayesian inference scheme should include this information

explicitly. Thus, an algorithm for the e�cient computation of the model likelihood
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for a general Gauss-Markov model of trait evolution is required.

The objective of this chapter is to develop a Bayesian approach to the ances-

tral reconstruction of a FVT within the PGPR framework, given the evolutionary

history linking taxa. To this end, the Phylogenetic Latent Variable Model (PLVM)

is introduced, for which an MCMC sampling scheme allows inference on a phylogeny-

trait separable phylogenetic Gaussian process which is subject to independent ob-

servation noise. Not only does this represent the first fully Bayesian approach to

inference within the PGPR framework, but also extends PGPR beyond separable

phylogeny-trait covariance functions with the inclusion of observation noise. This

inference scheme also includes intra-taxon variation within the phylogenetic com-

parative analysis. In order to achieve this, an e�cient algorithm computing the

likelihood for extant taxa of a general Gauss-Markov processes over a phylogeny is

developed, an important contribution in its own right. In addition, a novel algorithm

computing the distribution of a general Gauss-Markov processes at each position on

a phylogeny, conditional on extant taxa, allows computationally e�cient ancestral

trait reconstruction.

This chapter is structured as follows. After describing the phylogeny in terms

of a graphical model and illustrating the inclusion of repeated measurements for ex-

tant taxa, the PLVM is defined. An outline of the e�cient computation of the model

likelihood follows this, although a detailed derivation of the algorithm is presented

only in Appendix A.1. Specifying prior distributions for the parameters and hyper-

parameters in the PLVM allows the derivation of a Bayesian inference scheme. This

posterior inference is based on state-of-the-art MCMC methods for Gaussian process

(GP) models presented in section 2.4 [Murray et al., 2010; Murray and Adams, 2010;

Yu and Meng, 2011; Filippone et al., 2013], while Bridge Sampling is proposed for

model comparison [Meng and Wong, 1996; Gronau et al., 2017a]. The final method

presented in this chapter outlines the e�cient computation of the conditional distri-

butions for traits over the phylogeny, allowing ancestral reconstruction of the FVT.

A detailed derivation of this algorithm is relegated to Appendix A.2. A synthetic

dataset drawn from a PLVM allows the assessment of this approach to ancestral

reconstruction, with experiments demonstrating the methods e�cacy. Discussion

of the method’s strengths and weaknesses, along with its implications for further

research, concludes the chapter.
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A Taxon-level Phylogeny
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Figure 3.1: A taxon-level phylogeny with S = 4 and M = 2. This is an example of a
phylogenetic tree with a polytomy at vs5, that is {v

s
1, v

s
2, v

s
3} are modelled as having

a single common ancestor.

3.2 Methods

3.2.1 The Phylogeny: A Graphical Model for Shared Ancestry

Consider a set of S related extant taxa, for which a rooted phylogenetic tree, denoted

TS , represents their evolutionary history. Formally, the taxon-level phylogeny TS =

{VS ,WS} is a graph with vertices VS and edge weights WS [Højsgaard et al., 2012],

referred to as nodes and branches respectively. Assuming that the S taxa are extant

and represented by terminal nodes of TS , there exist M internal nodes, representing

ancestral taxa, such that VS =
�
vs1, . . . , v

s
S+M

 
and WS =

�
ws
1, . . . , w

s
S+M�1

 
, with

M = S�1 when TS is a bifurcating tree. Letting vsN+M be the root node of TS , that

is the Most Recent Common Ancestor (MRCA) of the extant taxa in question, if

nodes vsi and vsj share an edge and vsj is on the path from vsi to vsS+M then j = pa (i)

and i 2 ch (j), which is to say that vsj is the parent of vsi and vsi a child of vsj . The

branch connecting vsi to vsj is of length ws
i 2 R+, for i = 1, . . . , S + M � 1, where

ws
i is proportional to the evolutionary time between vsi and vsj . Each terminal node

vsi 2 VS for i = 1, . . . , S is of degree 1, with one internal parent node vspa(i). Internal

nodes vsi 2 VS for i = S+1, . . . ,M � 1 are of degree di � 3, with di� 1 child nodes,

and the root node vsS+M is of degree dS+M � 2 with dS+M children. A toy example

of such a phylogeny is presented in Figure 3.1.

Suppose now that there are Ni individuals associated with each extant taxon,

such that N =
PS

i=1Ni. Appending the root of a star phylogeny (a multifurcating

tree with all branches connected at a single internal node) with Ni branches of

length 0 to the terminal node of TS corresponding to the ith extant taxon, yields
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A Phylogeny for Repeated Measurements
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vÑ2
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Figure 3.2: A phylogeny accommodating multiple observations in each extant taxon,
based on the phylogeny in Figure 3.1, where Ñj =

Pj
i=1Ni. Solid edges are propor-

tional to evolutionary time, dashed lines are edges of length 0, large circles represent
unobserved nodes on the phylogeny, and small filled circles correspond to observa-
tions.

an individual-level phylogeny T = {V,W} where V = {v1, . . . , vN+S+M} and W =

{w1, . . . , wN+S+M�1}. This assumes that an evolutionary time of zero separates

individuals within taxa. In this case T has terminal nodes vi 2 V for i = 1, . . . , N ,

one for each individual, taxon-level internal nodes vi 2 V for i = N + 1, . . . , N + S,

and ancestral nodes vi 2 V for i = N +S+1, . . . , N +S+M , such that the MRCA

vN+S+M 2 V is at the root of T . An example of one such phylogeny is presented in

Figure 3.2.

As a final remark, it is useful to consider ti 2 T , where ti denotes the position

of vi on T with respect to V and W. This allows the patristic distance operator be

defined such that dT (ti, tj) is the sum of branch lengths along the shortest path from

vi to vj , as discussed in sub-section 2.3.2 [Rédei, 2008; Jones and Moriarty, 2013].

A detailed discussion of the patristic distance is also presented by Mariñas-Collado

et al. [2019]. Note that the notion of position on a phylogeny can be extended to

include any point along a branch of T , meaning that it can take a continuum of

values, however, only those positions corresponding with V are considered within

this thesis.
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3.2.2 A Phylogenetic Latent Variable Model for Function-valued

Traits

Consider the matrixY 2 RN⇥D, such thatYn· ⌘ (yn1, . . . ynD)
> is theD-dimensional

vector of manifest variables relating to a FVT for n = 1, . . . , N . Let

yni = f (tn,xi) + ✏ni, (3.1)

where f (tn,xi), the underlying function-valued trait, and ✏ni ⇠ N
�
0,��1

i

�
are

associated with position (tn,xi) 2 T ⇥X . It is further assumed that traits are aligned

on X such that di↵erences between f (tn,xi) and f (tn0 ,xi) are due to amplitude

variation only. Then, the Phylogenetic Latent Variable Model (PLVM) is defined

by

f (tn,xi) =
QX

j=1

wj (xi) zj (tn) , (3.2)

for basis functions wj (·) and latent variables

zj (tn) ⇠ GP (0, kT (tn, tn0 |✓T )) , (3.3)

given kT (·, ·|✓T ), the covariance function for a univariate Gauss-Markov process over

T which is dependant on hyper-parameters ✓T . Because the model does not assume

the trait covariance function to be from a class of stationary covariance functions,

it describes a spatially inhomogeneous phylogenetic Gaussian process [Jones and

Moriarty, 2013].

This model can be rewritten in matrix notation, such that

Y = ZW> + ✏, (3.4)

where the N ⇥ Q matrix of latent variables, also referred to as factors, is given

by Znj = zj (tn), the D ⇥ Q matrix of basis functions, referred to as loadings, is

Wij = wj (xi), and for the N ⇥D observation noise matrix, ✏ni = ✏ni. Thus,

p (Y|W,Z,⇤) = MN

⇣
Y|ZW>, IN ,⇤�1

⌘
,

=
exp

⇣
�

1
2 tr

⇣
⇤
�
Y � ZW>

�>
I�1
N

�
Y � ZW>

�⌘⌘

(2⇡)ND/2
��⇤�1

��N/2
|IN |

D/2
, (3.5)

is a Matrix-Normal pdf [Dawid, 1981], where ⇤ is a diagonal matrix such that
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⇤i = �i. The prior distribution over factors is given by

p (Z|✓T ) = MN (Z|0,KT , IQ) , (3.6)

where KT is the Gram matrix of kT (·, ·|✓T ). This allows the marginalised likelihood

for the model, obtained after integrating out factors, to be defined as

L (W, ✓T ,⇤|Y, Q) = N

⇣
vec (Y) |0,

⇣
WW>

⌦KT

⌘
+
�
⇤�1

⌦ IN
�⌘

, (3.7)

where vec (·) is the vec operator [Petersen and Pedersen, 2012]. This makes clear

that the inclusion of observation noise relaxes the assumption of separability of the

phylogeny trait covariance function for observations of a FVT.

3.2.3 E�cient Computation of the Model Likelihood

Naive computation of the Gaussian likelihood in (3.7) requires the inversion of a

DN ⇥DN covariance matrix, an operation that scales with O

⇣
(DN)3

⌘
operations,

a prohibitively expensive cost for anything other than the smallest of datasets. Jones

and Moriarty [2013], Hadjipantelis et al. [2013], and Mariñas-Collado et al. [2019] all

address this problem by assuming noise-free observations of the FVT are available,

which is to say that ⇤i = 0 for all i = 1, . . . D. This approach does reduce the

computational burden to O
�
D3 +N3

�
, however, it remains problematic. Firstly,

assuming noise free observations may result in a rigid model, prone to overfitting,

which fails to identify any phylogenetic signal. A second problem is that, while it

can be argued that the O
�
D3

�
expense is worth paying to model correlation within a

FVT, the O
�
N3

�
computational expense means Bayesian inference for {W, ✓T ,⇤}

remains impractical.

An alternative approach is to introduce factors and FVTs for internal nodes

of the phylogeny such that z⇤i ⌘ (z1 (ti) , . . . , zQ (ti))
> and fi ⌘Wz⇤i for i = N +

1, . . . , N +S+M . This implies a joint distribution over observed and internal traits

p (Y, fN+1, . . . fN+S+M ) =
 

NY

n=1

p
�
Yn·|fpa(n)

�
! 

N+S+M�1Y

i=N+1

p
�
fi|fpa(i)

�
!
p (fN+S+M ) , (3.8)

which in turn implies that

L (W, ✓T ,⇤|Y) =

Z
· · ·

Z
p (Y, fN+1, . . . fN+S+M ) dfN+1 . . . dfN+S+M , (3.9)
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Then, defining {Y}
post
h as the set of all observed traits descended from and including

that at position th, a close examination of (3.9) reveals that by iteratively solving

the integral

p
⇣
{Y}

post
h |fpa(h)

⌘
=

Z 0

@
Y

i2ch(h)

p
⇣
{Y}

post
i |fh

⌘
1

A p
�
fh|fpa(h)

�
dfh, (3.10)

the model likelihood can be evaluated in a post-order traversal of T .

Not only does (3.10) generalise the derivations of Felsenstein [1973], Pybus

et al. [2012], Freckleton [2012], and Mitov and Stadler [2017] to a general Gauss-

Markov model for trait evolution, it also includes independent Gaussian noise on

observed traits. Thus, it provides a far more flexible approach to modelling trait

evolution, while scaling linearly with N . Because it starts at leaf nodes and works

back to the root of a tree, the quantity computed is referred to here as the pruned

likelihood. Though the derivation of quantities required for the pruned likelihood is

straightforward for a noise-free BM model for trait evolution [Pybus et al., 2012],

extending this derivation to a general Gauss-Markov case is a notationally involved

task, as such, it is included in Appendix A.1. Given this algorithm however, the

implementation of Bayesian inference schemes for {W, ✓T ,⇤} becomes more prac-

tical.

3.2.4 Prior Specification

In order to perform Bayesian inference on the PLVM for FVTs, a prior distribution

for {W, ✓T ,⇤} along with the form of phylogenetic covariance function kT (·, ·|✓T )

must be defined. Furthermore, the model in (3.2) is in fact a generalisation of Factor

Analysis, and as such, particular consideration must be given to invariance in the

likelihood due to scaling, reflection, and rotation [Lopes, 2014].

Consider first kT (·, ·|✓T ), which is assumed to define a univariate first-order

Gauss-Markov process over T governed by hyper-parameters ✓T . The family of sta-

tionary Gauss-Markov processes, that is, (OU) processes [Uhlenbeck and Ornstein,

1930; Doob, 1942], are typically defined over the interval t 2 R+ by the stochastic

di↵erential equation (SDE)

dz (t) = ↵ (µ� z (t)) dt+ � dW (t) , (3.11)

where µ 2 R is the process mean, ↵ 2 R+ is the central tendency, and � 2 R+

scales the Weiner process W (t) [Billingsley, 2008], with the process being a BM in
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its limit as ↵ ! 0. Thus, assuming that the Gauss-Markov process over T belongs

to this family provides a flexible approach to modelling trait evolution which can

also approximate the BM model for trait evolution [Felsenstein, 1973].

As presented by Rasmussen and Williams [2006], the covariance function for

the process defined in (3.11) is given by

k
�
t, t0

�
=
�2

2↵
exp

�
�↵|t� t0|

�
, (3.12)

which Jones and Moriarty [2013] extended to phylogenies by replacing the Euclidean

distance |t � t0| with the patristic distance dT (t, t0) for t, t0 2 T . The covariance

function for the process over T can then be completed by including a parameter

for non-phylogenetic inter-taxon variation, as per the Phylogenetic Mixed Model

[Housworth et al., 2004], and another for intra-taxon variation. And so, for ti, tj 2 T

with i, j = 1, . . . , N + S +M , consider

ktmp
T

(ti, tj) = �2h exp

✓
�
dT (ti, tj)

`

◆
+

�2e � (dT (ti, tj) = 0) � (i  N + S)+

�2⌧ � (i = j) � (i  N) ,

where �2h 2 R+ is the heritable variance, ` 2 R+ is the phylogenetic length-scale,

�2e 2 R+ is the non-phylogenetic inter-taxon variance, �2⌧ 2 R+ is the intra-taxon

variance, and � (·) is an indicator function. This defines the heritability of a process

over T as

 ⌘
�2h

�2h + �2e
(3.13)

While ktmp
T

(·, ·) defines the Gauss-Markov process over T , scale invariance

in (3.7) must be considered before setting kT (·, ·|✓T ). Scale invariance in Factor

Analysis is typically fixed by assuming the marginal variance of each factor to equal

some constant, usually one [Lopes, 2014]. Enforcing this constraint on ktmp
T

(·, ·)

implies that �2h + �2e + �2⌧ = 1 and �2h,�
2
e ,�

2
⌧ 2 (0, 1). Then, defining ✓T = {, ⌧, `}

with  2 (0, 1), ⌧ 2 (0, 1), and ` 2 R+, such that the heritable variance �2h =

(1� ⌧), environmental variance �2e = (1� ⌧) (1� ), and intra-taxon variance

�2⌧ = ⌧ , the phylogenetic covariance function is

kT (ti, tj |✓T ) = (1� ⌧)

✓
 exp

✓
�
dT (ti, tj)

`

◆
+

(1� ) � (dT (ti, tj) = 0) � (i  N + S)

◆
+
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⌧ � (i = j) � (i  N) . (3.14)

Prior distributions for the model parameters and hyper-parameters can now

be considered. Given that  and ⌧ are each defined over the unit interval, it is

natural to assume a Beta distributed hyper-prior. That is to say,

p () = Beta (|a, b) ,

=
� (a + b)

� (a)� (b)
a�1 (1� )b�1 , (3.15)

for shape parameters a 2 R+ and b 2 R+, while p (⌧) = Beta (⌧ |a⌧ , b⌧ ) is defined

analogously.

The hyper-prior distribution for ` requires somewhat more careful consid-

eration. Firstly, note that the OU process is equivalent to the Matérn process

with smoothing parameter ⌫ = 1/2 [Rasmussen and Williams, 2006]. For such

models, it is impossible to estimate both the variance and length-scale consistently

[Zhang, 2004], a problem typically addressed by fixing the variance to be constant

[Monterrubio-Gómez et al., 2018]. Within the PLVM however, W, , and ⌧ all con-

tribute to the variance of the stochastic process and are to be inferred from data. An

alternative approach would be to fix ` a priori; however, this would result in a less

flexible model for ancestral reconstruction. Thus, a suitably informative hyper-prior

distribution must be chosen for `.

Given that BM is the standard model for trait evolution, the hyper-prior

distribution for ` is chosen such that

�2h exp

✓
�
dT (ti, tj)

`

◆
,

defines a stochastic process over T that is similar to BM with unit variance when T

has been scaled such that max {dT (tn, tN+S+M )}Nn=1 = 1. This implies that ↵! 0

and � = 1 in (3.11). As such, given that (3.12) implies �2h = �2

2↵ and ` = ↵�1, assume

that E
⇥
`|�2h

⇤
= 2�2h and let ` be a Gamma distributed random variable, which is to

say that

p
�
`|�2h

�
= Gamma (`|a`, b`) ,

=
ba``

� (a`)
`a`�1 exp (�b``) , (3.16)

for shape a` > 0 and rate b` > 0. Note that E
⇥
`|�2h

⇤
= a`

b`
and Var

�
`|�2h

�
= a`

b2`
,

while p
�
`|�2h

�
is maximised at a`�1

b`
for a` � 1. The shape and rate parameters
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are then chosen by minimising the squared di↵erence between the hyper-prior mean

and mode, while maximising the variance. That is to say, a` and b` are obtained by

minimising the objective

✓
a`
b`
�

a` � 1

b`

◆2

�
a`
b2`

=
1� a`
b2`

,

when 2�2hb` = a`. And so, the hyper-prior distribution for ` is

p
�
`|�2h

�
= Gamma

✓
`|2,

1

�2h

◆
. (3.17)

With that, distributions over factors and phylogenetic Gaussian process hyper-

parameters in the PLVM have been specified fully, and scale invariance in the PLVM

has been addressed by the parametrisation of (3.14) and an informative hyper-prior

distribution for `.

A prior distribution for loadings W must now be defined. To do so, consider

first the basis functions wj (·) for j = 1, . . . , Q, which are assumed to be twice mean

square di↵erentiable processes over the domain X ⌘ Rd. As such, an isotropic

Matérn GP prior with ⌫ = 5/2 is deemed appropriate [Stein, 2012]. That is to say

wj (x) ⇠ GP
�
0, kX

�
x,x0

|✓X
��

where

kX
�
x,x0

|✓X
�
= �2w

 
1 +

p
5r

`w
+

5r2

3`2w

!
exp

 
�

p
5r

`w

!

for the hyper-parameters ✓X =
�
�2w, `w

 
, the variance and characteristic length-

scale respectively, where r = |x�x0
| denotes the Euclidean distance between x and

x0. As discussed, �2w and `w cannot be estimated consistently [Zhang, 2004], and

so the prior distribution for wj (·) is completed by choosing some �2w a priori and

assuming that p (`w) = Gamma (`w|aw, bw). This implies a prior distribution for

the PLVM loadings

p (W|✓X , Q) = MN (W|0,KX , IQ) , (3.18)

where KX is the Gram matrix of kX (·, ·|✓X ).

Rather than attempting to encode a solution to rotation and reflection invari-

ance within the prior specification for W, note that the prior distribution defined

in (3.18) is itself invariant to rotation of W. Therefore, by the LQ variant of the

52



The Phylogenetic Latent Variable Model
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Figure 3.3: A graphical representation of the Phylogenetic Latent Variable Model
described in sub-sections 3.2.2 and 3.2.4. Each circle represents a random vari-
able, where those that are shaded grey have been observed. Boxes around circles
are plates, denoting the number of existing random variables of that type. The
phylogeny-trait space is included for completeness.

QR decomposition [Golub and Van Loan, 2013], for any W, there exists a matrix

W0 for which the upper triangular elements are zero and MN (W|0,KX , IQ) =

MN (W0
|0,KX , IQ). This implies that correcting for rotation and reflection invari-

ance can be treated as a post-processing step in any inference scheme, while preserv-

ing the identity
�
Ep(W|✓X )

⇥
WW>

⇤�
ii
=
�
Ep(W|✓X )

⇥
WW>

⇤�
jj

for all i = 1, . . . , D

and j = 1, . . . , D.

The prior specification for the model is then completed by assuming that

p (⇤i) = Gamma (⇤i|a⇤, b⇤). A graphical representation for the model is presented

in Figure 3.3.

3.2.5 Posterior Inference and Model Selection

Applying the PLVM to ancestral reconstruction of a FVTs requires inference on

p (W, ✓T ,⇤|Y, Q) / L (W, ✓T ,⇤|Y, Q) p (W) p (✓T ) p (⇤) ,
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that is, the posterior distribution over the loadings, phylogenetic hyper-parameters,

and observation noise, given observed dataY and the number of factors Q. Inference

for Q can then be treated as a model comparison problem.

In Bayesian Factor Analysis, inference on the loadings and observation noise

is typically conditional on the factors and performed using a Gibbs sampler [Lopes

and West, 2004]. This represents an e�cient approach when factors are independent

and Gaussian. Phylogenetic Factor Analysis (PFA) also relies on a Gibbs sampler for

inference, the computational cost of which scales with O
�
N2

�
, given that factors

are modelled as BM over the phylogeny [Tolko↵ et al., 2017]. While this may

suggest a Gibbs sampling approach to inference for the PLVM, in fact, it has been

deemed inappropriate in this case. Closed form conditional distributions do exist

for W, Z, and ⇤, but no such distribution is available for ✓T . Thus, some variant

on the Metropolis-Hastings algorithm would be required for posterior inference.

Furthermore, the computational expense of sampling the factors scales with O
�
N2

�
.

Thus, the approach taken here is to perform inference after integrating over factors.

This block-at-a-time MCMC algorithm scales linearly with N , given the e�cient

computation of the pruned likelihood, and samples from

p (W, ✓T ,⇤, ✓X |Y, Q) / L (W, ✓T ,⇤|Y, Q) p (W|✓X ) p (✓X ) p (✓T ) p (⇤) ,

= L (W, ✓T ,⇤|Y, Q) p (W|`w)

p (`w) p (`|, ⌧) p () p (⌧)
DY

i=1

p (⇤i) , (3.19)

which is the posterior distribution over all model parameters and hyper-parameters

after integrating out factors Z.

The first block considered corresponds to W conditional on {✓T ,⇤, ✓X },

which is sampled by an Elliptical Slice Sampler (ESS) [Murray et al., 2010], similar

to that presented in Algorithm 3. Noting that for LL> = KX there exists ⇣, the

“whitened” representation of W [Petersen and Pedersen, 2012], such that W = L⇣

and MN (W|0,KX , IQ) = MN (⇣|0, ID, IQ), the target distribution for the ESS is

⇡ (⇣) / L (W = L⇣, ✓T ,⇤|Y, Q)MN (⇣|0, ID, IQ) .

Rotation invariance is corrected in this block by simply rotating each update ac-

cording to the LQ decomposition [Golub and Van Loan, 2013], yielding samples for

which all upper-triangular elements are zero. Reflection invariance is also corrected

for in each block, using an approach similar to that proposed by [Stephens, 2000]
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and implemented in Phylogenetic Factor Analysis [Tolko↵ et al., 2017]. Assuming

that the desired posterior density for the jth column of W is N (W·j |mj ,⌃j), after

rotation the jth column of the sample is multiplied by �1 if N (�W·j |mj ,⌃j) >

N (W·j |mj ,⌃j), correcting any reflection invariance. If mj , and ⌃j are not known

a priori, then they can be estimated from posterior samples, either selecting a ref-

erence sample and setting ⌃j = ID, or by an iterative updating scheme. When this

is the case, correcting reflection invariance is left until after the full Markov chain

has been sampled.

The second block draws samples for `w using an Ancillarity-Su�ciency In-

terweaving Strategy (ASIS) [Yu and Meng, 2011], a popular approach to hyper-

parameter inference for GPs [Murray and Adams, 2010; Filippone et al., 2013].

This involves making two sub-updates for `w within each full updating step. Firstly,

rather than defining target densities with respect to `w 2 R+, consider instead

log `w 2 R. This allows an Adaptive Metropolis (AM) sampling scheme to be em-

ployed (see Algorithm 2), which tunes proposal densities automatically while pre-

serving the detailed balance condition in its limit [Haario et al., 2001; Roberts and

Rosenthal, 2009]. Thus equipped, the first sub-update, referred to as the Su�cient

Augmentation by Yu and Meng [2011] (“unwhitened” in Murray and Adams [2010]),

updates the Markov Chain according to the target distribution

⇡ (log `w) /MN (W|0,KX , IQ)Gamma (`w|aw, bw) `w.

while the second, the Ancilliary Augmentation (“whitened”), updates with respect

to

⇡ (log `w) / L (W = L⇣, ✓T ,⇤|Y, Q)Gamma (`w|aw, bw) `w.

In the third block, the Markov Chain for ✓T is considered as two sub-blocks,

the first being ` conditional on {W,⇤,, ⌧}. As was the case with `w, updates are

performed within an AM sampling scheme where the target distribution is given by

⇡ (log `) / L (W, ✓T ,⇤|Y, Q)Gamma (`|a`, b`) `.

For the second sub-block, define the logit transform as

logitx ⌘ log
x

1� x
, (3.20)

such that logit : [0, 1] ! R. Then, the target distribution for an AM sampling
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scheme for  and ⌧ is

⇡ (logit, logit ⌧) / L (W, ✓T ,⇤|Y, Q)Beta (|a, b)Beta (⌧ |a⌧ , b⌧ )

 (1� ) ⌧ (1� ⌧) .

The block-at-a-time MCMC inference scheme is then completed by a final AM step

for ⇤i where

⇡ (log⇤) / L (W, ✓T ,⇤|Y, Q)
DY

i=1

Gamma (⇤i|a⇤, b⇤)⇤i.

All that remains is to select the appropriate number of factors, Q, given the

model evidence

p (Y|Q) =

Z

{W,✓T ,⇤,✓X }

p (Y,W, ✓T ,⇤, ✓X |Q) d {W, ✓T ,⇤, ✓X } . (3.21)

This is equivalent to the normalising constant of (3.19) and, given a Markov Chain

with this stationary distribution, the evidence can be estimated by a Bridge Sam-

pling scheme [Meng and Wong, 1996; Gronau et al., 2017a], which is straightforward

to implement using the bridgesampling package in R [Gronau et al., 2017b; R Core

Team, 2019]. With that, posterior inference for the PLVM is complete.

3.2.6 Ancestral Reconstruction

The PLVM developed above has been formulated for the ancestral reconstruction of

a FVT, while allowing uncertainty about the reconstruction to be quantified. This

amounts to obtaining

p (f⇤|Y, Q) =

Z

{W,✓T ,⇤,✓X }

p (f⇤,W, ✓T ,⇤, ✓X |Y) d {W, ✓T ,⇤, ✓X } (3.22)

where f⇤ = (f (t⇤,x1) , . . . , f (t⇤,xD)) for some ancestral position t⇤ 2 T . This

distribution can be sampled within the MCMC inference scheme.

Given the joint distribution

"
vec (Y)

f⇤

#
|W, ✓T ,⇤ ⇠ N

 
0,

"
(KX ⌦KT ) +

�
⇤�1

⌦ IN
�

(KX ⌦ kT ⇤)

(KX ⌦ kT ⇤)
> k⇤KX

#!
,

whereKX = WW>, kT ⇤ = (kT (t1, t⇤|✓X ) , . . . , kT (tN , t⇤|✓X ))
>, and k⇤ = kT (t⇤, t⇤|✓X ),
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the conditional distribution can be expressed as

p (f⇤|Y,W, ✓T ,⇤) = N (f⇤|m⇤,K⇤) , (3.23)

where

K⇤ = k⇤KX � (KX ⌦ kT ⇤)
>
�
(KX ⌦KT ) +

�
⇤�1

⌦ IN
���1

(KX ⌦ kT ⇤) ,

m⇤ = (KX ⌦ kT ⇤)
>
�
(KX ⌦KT ) +

�
⇤�1

⌦ IN
���1

vec (Y) .

While this distribution is analytically tractable, the O

⇣
(ND)3

⌘
cost of inverting

�
(KX ⌦KT ) +

�
⇤�1

⌦ IN
��

makes its computation infeasible. Fortunately, the

principles that underpin the pruned likelihood can be extended to ancestral re-

construction.

Firstly, recall that {Y}
post
⇤ denotes all the rows of Y descendant from and in-

cluding t⇤, and let {Y}
pre
⇤ = Y/{Y}

post
⇤ . Suppressing the notation of (W, ✓T ,⇤, T )

for clarity, it can be shown that

p (f⇤|Y) / p
�
{Y}

post
⇤ |f⇤

�
p (f⇤|{Y}

pre
⇤ ) . (3.24)

The quantity p
⇣
{Y}

post
i |fi

⌘
is computed for all i = 1, . . . , N +S+M in the pruned

likelihood algorithm presented in Appendix A.1, thus it remains only to find an

expression for p (f⇤|{Y}
pre
⇤ ). The key point to note is that, for the Markov process

over T , f⇤ is independent of {Y}
pre
⇤

given fpa(⇤), thus

p(f⇤| {Y}
pre
⇤

)

=

Z
p
⇣
f⇤, fpa(⇤)|

n
{Y}

post
sib(⇤)

o
, {Y}

pre
pa(⇤)

⌘
dfpa(⇤),

/

Z
p
�
f⇤|fpa(⇤)

�
0

@
Y

j2sib(⇤)

p
⇣
{Y}

post
j |fpa(⇤)

⌘
1

A p
⇣
fpa(⇤)|{Y}

pre
pa(⇤)

⌘
dfpa(⇤), (3.25)

where sib(⇤) denotes the siblings of t⇤ and
n
{Y}

post
sib(⇤)

o
the set

n
{Y}

post
i : i 2 sib(⇤)

o
.

This expression defines a recursion which can be solved up to a normalising con-

stant by traversing T from root to t⇤. This insight allowed Cybis et al. [2015] to

e�ciently compute closed-form conditional distributions for traits at terminal nodes

of a bifurcating tree, under a BM model for trait evolution.

Substituting (3.25) into (3.24), the conditional distribution of a FVT can be

e�ciently computed at all internal nodes of T by following a post-order traversal

of T with a pre-order traversal. The details of this algorithm, which applies to
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Parameter:  ⌧ ` �2w `w �
Value: 0.95 0.05 2.5 1 0.5 10

Table 3.1: The assumed parameter values for a simulation study of the PLVM.

general Gauss-Markov models for trait evolution even when traits are subject to

observation noise, is presented Appendix A.2. This allows samples be drawn from

(3.23) in O
�
N2

�
operations rather than O

�
N3

�
, which in turn allows (3.22) be

sampled from e�ciently.

3.3 Results for a Synthetic Example

Consider a dataset simulated from a PLVM, to which the MCMC inference scheme

will be applied. Here, Q = 3 independent and identically distributed factors are

sampled from an OU process over T where S = 32 and Ni = 4 for all i = 1, . . . , S,

yielding N = 128 samples from the model. Factors are then mapped to D = 9

manifest variables representing noisy observations of the FVT where ⇤ = �ID.

For the purposes of this experiment, T is set by first considering a phylogeny

with 32 terminal nodes generated by a coalescent process using default parameters

provided in ape [Paradis and Schliep, 2018], which is subsequently scaled such that

the distance from the root to each tip is 1. This phylogeny is then extended to yield

T by appending four nodes with zero edge weight to each terminal node. Phylo-

genetic hyper-parameters are fixed a-priori, where ⌧ = 0.05 reflects low intra-taxon

variation, and  = 0.95 implies that the process has strong heritability over T . Set-

ting ` = 2.5 further implies that, for short time-scales, the process is more strongly

correlated than BM with unit variance. The loading is fixed by sampling 3 indepen-

dent zero-mean Matérn-52 GPs at 9 points spread uniformly over the unit interval,

where �2w = 1 and `w = 0.5, and rotating the result with a QR decomposition such

that its upper triangular entries are 0. Finally, setting � = 10 specifies the model.

These parameter and hyper-parameter values are summarised in Table 3.1 and the

loading in Figure 3.4. The phylogeny, along with some samples from the model are

presented in Figure 3.5.

The first task is to check that bridge sampling identifies the number of latent

factors correctly. To do this, five chains of length 20,000 are sampled from the

posterior distribution (3.19) for Q = 1, . . . , 4, given a = b = a⌧ = b⌧ = 1 and

aw = bw = a⇤ = b⇤ = 0.1. Chains are initialised by sampling the prior at random

with the first 1000 samples discarded as warm-up samples and the remainder being

used for posterior inference, leaving 95,000 samples in total. These are used to
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Loadings

Figure 3.4: Loadings are sampled from zero-mean Matérn-52 GPs at D = 9 points
spread uniformly over the unit interval, and rotated by the QR decomposition such
that upper-triangular entries are 0.

Phylogeny and Trait Observations

(a) Phylogenetic Tree (b) Observed FVTs

Figure 3.5: Sub-figure (a) illustrates the taxon-level phylogeny simulated according
to a coalescent process and scaled such that the distance from root to each tip is
one, while sub-figure (b) illustrate the sampled manifest variables for selected taxa.
The position of each taxon on T is noted in (a).
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Q: 1 2 3 4
log p (Y|Q = 3)� log p (Y|Q): 686.53 109.81 0 20.34

Table 3.2: The log Bayes factor under p (Q) / 1 for each models considered, where
Q = 3 is the null model.

compute the model evidence (3.21) for each of the models sampled. Assuming

a uniform prior for Q, Bayes factors are then computed [Jarosz and Wiley, 2014],

letting Q = 3 serve as the null model. Log Bayes factors for each model are presented

in Table 3.2. According to Je↵reys [1939], such Bayes factors can be interpreted as

decisive evidence that the number of latent factors is, in fact, three.

Having correctly identified Q = 3 as the most probable model for the data, it

is the FVT distribution at internal nodes of T that is the primary object of interest.

These nodes fall into two broad categories. Taxon-level nodes, those that are parents

of nodes corresponding to observations, allow the definition of the FVT distribution

for each observed taxon, while nodes corresponding to the unobserved ancestral taxa

yield the ancestral reconstruction of the FVT. Samples from the FVT distribution at

one of each node type, that is the node labelled t17 in Figure 3.5 and the root of T ,

are presented in Figure 3.6. Comparing samples to the true conditional distribution

of the FVT given {W, ✓T ,⇤}, it can be seen that they match very closely, with

strikingly similar regions of high density, even as samples integrate over uncertainty

on {W, ✓T ,⇤, `w}. This is a very satisfying result, demonstrating the accuracy of

MCMC inference for the ancestral reconstruction of the FVT within a PLVM.

Given that the primary goal, the ancestral reconstruction of a FVT, has been

achieved, the convergence of Markov chains sampling from the model parameter and

hyper-parameter posterior distribution is also of interest. Consider first the loading

W, illustrated in Figure 3.7, for which rotation invariance has been corrected by a

QR decomposition and reflection invariance via the relabelling algorithm outlined

above. The correlation structure of the FVT over X is being identified accurately,

in that samples all have a very similar shape to the true loading, however, the

magnitude, i.e.
p
tr (W>W), is being underestimated. As would be expected, this

inflates the implied values for latent factors, which in turn inflates the intra-taxon

variation parameter ⌧ and reduces the phylogenetic length-scale `. These e↵ects

are manifest in Figure 3.8, although in no case does the true hyper-parameter value

lie outside the sampled posterior distribution. While this behaviour is somewhat

disappointing, it is not entirely unexpected, given that variance and length-scale

cannot be estimated consistently for Matérn covariance functions [Zhang, 2004].

Despite this, Markov chains do mix well and converge to a single posterior mode in
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Ancestral Reconstruction of Root Trait

Posterior Trait Distribution for Taxon 17

Figure 3.6: Comparison of the posterior distribution for a FVT at internal nodes
of T for Q = 3, integrating over the uncertainty in {W, ✓T ,⇤, `w} via the MCMC
inference scheme described above, to the conditional distribution given {W, ✓T ,⇤}.
Solid black lines represent the FVT conditional mean, dotted lines two standard
deviations around the mean, and each opaque grey line represents a sample from
the posterior.
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each case.

The posterior distributions of the phylogenetic hyper-parameters indicate

that care should be taken when attempting to interpret hyper-parameter values for

the PLVM with respect to the heritability of a trait, however, it is knowledge about

ancestral trait distributions that heritability seeks to define. Thus, given that the

ancestral trait reconstruction matches the true ancestral distribution well, this is

not considered a major cause for concern.

Analysis of the sampled Markov chains is completed in Figure 3.9, where

chains for both `w and ��1 can be seen to converge to a posterior mode. Samples

for `w do reflect the fact that deflating the magnitude of W implies more strongly

correlated functions however, and this is manifest in inflated values for `w given the

fixed �2w.

3.4 Discussion

This chapter has introduced a Phylogenetic Latent Variable Model (PLVM) for the

ancestral reconstruction of function-valued traits (FVTs), describing a spatially in-

homogeneous phylogenetic Gaussian process as a latent variable model within the

Phylogenetic Gaussian Process Regression (PGPR) framework. E�cient algorithms

computing the model likelihood and ancestral traits allow a Markov Chain Monte

Carlo (MCMC) inference scheme to provide a Bayesian approach to estimation of

model parameters and hyper-parameters, model selection, and ancestral reconstruc-

tion. Thus, it makes an important methodological contribution towards the study

of FVTs in evolution.

Considering how this work builds upon that of Hadjipantelis et al. [2013],

which had been state-of-the-art approach to inference within the PGPR framework,

makes this contribution clear. Rather than simply assuming Y = ZW> and then

breaking inference into two distinct steps, violating the assumption of dependence

between taxa that is at the heart of all PCMs [Felsenstein, 1985], the PLVM allows

for measurement error on traits and performs joint inference and uncertainty quan-

tification for the PGPR phylogeny-trait covariance function. While the inference

scheme proposed by Hadjipantelis et al. [2013] is computationally inexpensive and

has been shown to perform well for synthetic datasets, its disregard of the phylogeny

when inferring the trait covariance structure does run the risk of identifying spurious

correlations within the data. Furthermore, choosing the number of latent variables

is based on heuristics, such as the proportion of variance explained by principal

components. This problem is also addressed in this work, where Q is selected after
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Sampled Posterior Loading

Figure 3.7: Samples from the posterior distribution of loading W, mapped to a
single mode for identifiability. Solid black lines represent the true loading, while
each opaque grey line represents a sample.
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Sampled Posterior Phylogenetic Hyper-parameters

Figure 3.8: Trace plots of Markov chains sampling phylogenetic hyper-parameter
posterior distributions. Solid black horizontal lines represent the true hyper-
parameter value. MCMC chains converge to a single posterior mode, although
the true hyper-parameter values lie in the tail of the posterior distribution.
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Basis Function Length-Scale Posterior Samples: `w

Observation Noise Posterior Samples: ��1

Figure 3.9: Trace plots of Markov chains sampling from the basis function length-
scale and observation noise posterior distributions.

estimating the model evidence via Bridge sampling. Thus, the MCMC algorithm

presented here o↵ers a principled Bayesian approach to the ancestral reconstruction

of FVTs which fits a probabilistic model for trait evolution to observed data.

It is worth noting that this work introduced a form of the Ornstein-Uhlenbeck

(OU) phylogenetic covariance function which incorporates intra-taxon variation, of-

fering a flexible approach to modelling repeated measurements of extant taxa. Doing

so presented a number of challenges. In particular, it required the extension of ef-

ficient tree-traversal algorithms computing likelihood and conditional distributions

for Brownian Motion over a phylogeny to the general Gauss-Markov case. This

is a significant contribution in it’s own right, o↵ering a more flexible approach to

modelling stochastic processes over a phylogeny. It also serves to highlight links

between the PLVM and PCMs developed by Cybis et al. [2015] and Tolko↵ et al.

[2017], each of which rely on e�cient tree-traversal algorithms for Bayesian infer-

ence. In the sense that they o↵er a model for the evolution of both discrete and

continuous traits, these multivariate PCMs are more general than the PLVM pre-

sented here, however, neither method allows for intra-taxon variation, nor do they

consider anything other than a BM model for trait evolution. In this respect, the

PLVM generalises the models for trait evolution which underpin these PCMs.
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MCMC inference for the PLVM has been shown to e↵ectively reconstruct

ancestral traits while providing uncertainty quantification for this reconstruction,

the objective which motivated this work. As discussed above, this approach o↵ers

significant conceptual benefits over competing methods, however it does present

some practical drawbacks. A first point to note is that care must be taken when

drawing any conclusions from the absolute values of model parameters. While in-

ference has been constrained to ensure MCMC chain convergence, scale invariance

between the trait and phylogeny covariance functions remains problematic. This

is due to well-known problems with the estimation of variance and length-scale in

Matérn covariance functions [Zhang, 2004]. Thus, the PLVM is too flexible to make

definitive statements about the absolute values of the model parameters and hyper-

parameters. Although this issue could be addressed by taking an approach similar

to that of Tolko↵ et al. [2017] and assuming a BM phylogenetic covariance func-

tion, this results in a more rigid model for trait evolution. This is undesirable when

ancestral reconstruction is the objective.

A second, and altogether more serious problem with the method presented

here is that MCMC inference scales with O
�
D3

�
, making the approach wholly

impractical for high dimensional data. While it may be argued that this is simply

the price that must be paid in order to model FVTs, there is no denying that this

is a major limitation of the method. This is not an issue problem for Phylogenetic

Factor Analysis [Tolko↵ et al., 2017], for which inference scales with O (D). Within

this framework, the trait space of a FVT could be sampled much more densely. That

is to say, a much larger value for D may be chosen. It is also true that the PLVM

is formulated for the evolution a single FVT over the fixed phylogeny T . While

incorporating a distribution over phylogenies would be relatively straightforward,

such a distribution could be sampled within the MCMC inference, generalising the

model to a collection of discrete and continuous valued traits is not so elementary.

As discussed above, Phylogenetic Factor Analysis has been developed for collections

of continuous and discrete traits, although it does not incorporate FVTs.

Thus, even though work presented in this chapter does address important

issues, incorporating intra-taxon variation and scaling inference linearly with N ,

there do remain avenues for further development. One option would be to impose

stronger constraints on the model, i.e. assume a BM model for trait evolution

over the phylogeny, and link the result to well established methods for assessing

phylogenetic signal, such as Pagel’s � [Pagel, 1999b], Blombergs’sK [Blomberg et al.,

2003], or the Phylogenetic Mixed Model [Housworth et al., 2004]. Alternatively,

an even more flexible model could be developed, one which is unconcerned with
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identifiability and instead focusses solely on ancestral reconstruction for some set of

traits. It is the second option that will be tackled in the next chapter of this thesis.

Although measures of phylogenetic signal and heritability are well understood and

widely reported, their purpose is to describe knowledge of ancestral traits. Thus,

developing a method which tackles this question directly may provide even more

valuable insight. Furthermore, by addressing the issue of computational e�ciency

and generalising the model to collections of traits, it is hoped that an e↵ective,

practical method for ancestral reconstruction will be developed.
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Chapter 4

A Generalised Phylogenetic

Latent Variable Model

4.1 Introduction

In the context of evolutionary biology and phylogenetic comparative analysis, bat

echolocation represents a particularly fascinating characteristic. The call production

and signal processing system represents a particularly intricate natural phenomenon.

While echolocation in bats is well-studied [Fenton et al., 2016], describing the de-

velopmental pathways leading to the diversity seen in the call structures of extant

bats has proven challenging [Simmons and Stein, 1980; Schnitzler et al., 2004; Eick

et al., 2005; Collen, 2012; Meagher et al., 2018a,b]. Echolocation calls are complex,

multi-harmonic acoustic signals [Fenton et al., 2016], and obtaining a parsimonious

representation of such objects is a challenging task in and of itself [Cohen, 1995;

Oppenheim and Schafer, 2014]. Furthermore, there are over a thousand species

of bat currently recognised [Simmons, 2005], making the ancestral reconstruction

of bat echolocation calls, the objective of this thesis, a problem requiring the im-

plementation of techniques for “big data”. This chapter presents a novel method

developed specifically for this task, making an important contribution to the field

of evolutionary biology.

As has been discussed in earlier chapters, a bats echolocation call can be

thought of as a Function-Valued Trait (FVT). As such, the PGPR framework pro-

posed by Jones and Moriarty [2013] o↵ers a suitable probabilistic model for its

evolution. A Markov Chain Monte Carlo (MCMC) sampling scheme o↵ering a

Bayesian approach to the ancestral reconstruction of FVTs was proposed in Chap-

ter 3. This method addressed many of the limitations associated with Phylogenetic
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Comparative Methods (PCMs) proposed by Hadjipantelis et al. [2012], Cybis et al.

[2015], and Tolko↵ et al. [2017]. In particular, allowing joint inference over the

full phylogeny-trait covariance function meant that trait evolution could be flexibly

modelled as any Gauss-Markov process over a phylogeny. Despite this, the method

su↵ers from limitations of its own.

The first of these issues was the computational expense associated with the

inference scheme. MCMC methods are an inherently time-consuming approach to

Bayesian inference, best suited to small, expensive datasets [Blei et al., 2017]. The

algorithm presented in Chapter 3 was particularly problematic as, although it scaled

linearly with the number of extant taxa, it scaled cubically with the number of mea-

surements of each FVT. A second problem arose from the fact that constraints

needed to be placed on the PLVM in order to ensure convergence of MCMC chains.

This meant that latent variables over the phylogeny were assumed to be independent

and identically distributed, imposing a certain rigidity on the model. This may not

reflect reality, as it is entirely possible that some aspects of a FVT are strongly corre-

lated over the phylogeny while others are not. The final, and possibly most pressing,

limitation identified was the lack of generality for the PGPR framework, which has

been formulated for evolutionary inference on a single FVT only [Jones and Mori-

arty, 2013; Hadjipantelis et al., 2013; Goolsby, 2015; Mariñas-Collado et al., 2019].

Thus, PGPR is ine↵ective if the characterisation of a trait requires a combination

of discrete and continuous characters, or if correlation over a set of traits is to be

explored, limiting its scope.

Each of these issues will be addressed in this chapter. Firstly, PGPR is gen-

eralised to include collections of discrete and continuous traits, such that ordinal,

categorical, and continuous scalar-valued traits can all be modelled alongside FVTs.

To this end, the approach proposed by Cybis et al. [2015] is implemented, which

extends the probit likelihood of Albert and Chib [1993] to phylogenetic compar-

ative analysis by augmenting manifest (observed) traits with a set of real-valued

auxiliary variables. The evolution of these auxiliary variables over the phylogeny

is then modelled as a PLVM, where the assumption of independent and identically

distributed latent variables is relaxed such that latent variables are only assumed to

be independent. This relaxation provides a more flexible model, one which can fit

observed data closely. A Co-ordinate Ascent Variational Inference (CAVI) scheme

allows e�cient approximate Bayesian inference to be performed for the model.

Variational Inference (VI) describes a set of techniques for approximating in-

tractable posterior distributions [Jordan et al., 1999; Bishop, 2006; Blei et al., 2017].

Rather than sampling from the distribution of interest, VI proposes a variational
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family of distributions, governed by some variational parameters. The inference is

then treated as an optimisation problem, whereby variational parameters are chosen

to minimise the Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] be-

tween the variational family and the true model posterior. This approach has been

used to derive e�cient approximate solutions to many Bayesian inference problems,

including the classification of binary [Csató et al., 2000; Opper and Winther, 2000]

and multinomial [Girolami and Rogers, 2006; Damoulas and Girolami, 2008] random

variables, principal components and factor analysis [Bishop, 1999; Ghahramani and

Beal, 2000], and Gaussian process latent variable models [Titsias and Lawrence,

2010]. More recently, VI has been applied to phylogenetics with both Dang and

Kishino [2019] and Zhang and Matsen IV [2018] developing variational approaches

to inferring phylogenies from molecular sequences.

This chapter presents the generalised Phylogenetic Latent Variable Model,

a PCM for the ancestral reconstruction of collections of ordinal, categorical, con-

tinuous, or function-valued traits. Based on the threshold model for trait evolution

[Wright, 1934; Felsenstein, 2011; Cybis et al., 2015; Tolko↵ et al., 2017], the Phylo-

genetic Gaussian Process Regression (PGPR) framework is extended from a single

FVTs to any collection of traits via the probit likelihood [Albert and Chib, 1993].

A CAVI scheme for approximate Bayesian inference is derived, the performance of

which is assessed for a synthetic dataset, based on that presented by Hadjipantelis

et al. [2013].

4.2 Methods

4.2.1 Data Augmentation

Consider a set of P discrete and continuous traits, observed forN related individuals,

belonging to S  N separate taxa. Discrete traits may be categorical- or ordinal-

valued, while continuous traits are scalar- or function-valued. Given that each FVT

is a multivariate object, let Yn· = (yn1, . . . , ynD)
> for D � P denote the manifest

traits such that Y = (Y1·, . . . ,YN ·)
>, where OY is the set of ordinal trait indices

for Yn·, with CY and RY being analogously defined for categorical and continuous

traits respectively. Furthermore, the shared ancestry between individuals is given

by the phylogeny T , which is known and of the form described in sub-section 3.2.1,

although, for notational ease, it is assumed in this chapter that the taxon level

phylogeny is a bifurcating tree such that M = S � 1.

As described by Albert and Chib [1993] and Cybis et al. [2015], assume

that there exists a set of continuous random variables Xn· = (xn1, . . . , xnD0)> for
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D0
� D that govern the behaviour of Yn· via the deterministic mapping function

g : Xn· ! Yn·. In this case, manifest traits Y are a function of auxiliary traits,

denoted X = (X1·, . . . ,XN ·)
>. When yni is an ordinal trait, which is to say that it

takes one of Ki ordered values and i 2 OY, then

yni = g (xni0) = k, if �i,k�1  xni0 < �i,k,

is a one-to-one map from xni0 to yni, with i0 indexing the auxiliary trait correspond-

ing to the ith manifest trait throughout this chapter, and �i = (�i,0, . . . �i,Ki) being

the set of cut-o↵ points where �i,0 = �1, �i,1 = 0, and �i,Ki =1.

If yni is a categorical trait, in that it falls into to one of Ki unordered states

(categories), labelled ci,k for k = 1, . . . ,Ki, and i 2 CY, then

yni = g
�
xni0 , . . . , xn,i0+Ki�1

�
,

= ci,k�1 if xn,i0+k = sup
�
xni0 , . . . , xn,i0+Ki�1

�
,

defines the Ki-to-one map where, without any loss of generality, xn,i0+k = 0 when

yni = ci,k�1.

In order to complete the mapping, consider the continuous or function-valued

manifest traits, that is, Y·i for all i 2 RY. In this case, any monotonic function

from R to the manifest traits will su�ce. For example,

yni = g (xni0) = xni0 ,

is appropriate for yni 2 R.

4.2.2 A Generalised Phylogenetic Latent Variable Model

In order to develop a generalised model for Y, the auxiliary traits X are modelled

as a PLVM. That is to say, Xn· = WZ?
n· + ✏n·, such that

p (Xn·|W,Z?,⇤) = N
�
Xn·|WZ?

n·,⇤
�1
�
,

where W = (W1·, . . .WD0·)
> is the D0

⇥Q loading matrix, Z?
n· is the Q-dimensional

vector of factors associated with position tn 2 T such that Z? = (Z?
1·, . . . ,Z

?
N ·
)>,

and ✏n· ⇠ N
�
0,⇤�1

�
is aD0-dimensional error vector with diagonal precision matrix

⇤, This allows the auxiliary likelihood to be defined as

p (Y,X|�,W,Z?,⇤) = p (Y|X,�) p (X|W,Z?,⇤) ,
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=
NY

n=1

� (Yn· = g (Xn·))N
�
Xn·|WZ?

n·,⇤
�1
�
, (4.1)

where � is the set of cut-o↵ points associated with any ordinal traits and � (·) is an

indicator function.

In order to fully specify the model, prior distributions for the model load-

ing, factors, error precision, and cut-o↵ points must be defined. Consider factors

Z?
n· = (z1 (tn) , . . . , zQ (tn))

>, which are modelled as independent, zero-mean Gauss-

Markov processes over T , such that

zj (tn) ⇠ GP (0, kT (tn, tm|j , ⌧j , `j)) , (4.2)

where the phylogenetic covariance function is of the form

kT (tn, tm|j , ⌧j , `j) = (1� ⌧j)

✓
j exp

✓
�
dT (tn, tm)

`j

◆
+

(1� j) � (dT (tn, tm) = 0) � (n  N + S)

◆
+

⌧j � (n = m) � (n  N) . (4.3)

As discussed in section 3.2.4, given that dT (tn, tm) defines the patristic distance

between tn and tm over T , such a prior distribution assumes that factors are gener-

ated by an Ornstein-Uhlenbeck (OU) process over T with phylogenetic length-scale

`j 2 R+, within a Phylogenetic Mixed Model with heritability j 2 (0, 1) [Housworth

et al., 2004], and intra-taxon variation ⌧j 2 (0, 1), for j = 1, . . . , Q. Furthermore,

this prior ensures that kT (tn, tn|j , ⌧j , `j) = 1 for all n = 1, . . . , N and j = 1, . . . , Q,

fixing the scale of factors, a modelling choice which will force loadings to account

for the magnitude of X, easing the interpretation of model parameters and hyper-

parameters.

Note that factors are also implied at internal nodes of T under this prior dis-

tribution for Z⇤
n·, which is to say that there exists Z⇤

m· = (z1 (tN+m) , . . . , zQ (tN+m))>

for m = 1, . . . , 2S � 1, such that Z⇤ =
⇣
Z,
1· . . . ,Z

⇤

2S�1,·

⌘>
. Thus, given

Z =

"
Z?

Z⇤

#
,

the matrix of factors at all nodes of T , the Gauss-Markov structure of (4.2) allows

72



the definition of

p (Z|, ⌧ , `) =
QY

j=1

N+2S�2Y

n=1

N
�
Znj |�n,jZpa(n),j , ⌘n,j

�
N (ZR,j |0, ⌘R,j)

where  = (1, . . . ,Q)>, ⌧ = (⌧1, . . . , ⌧Q)>, ` = (`1, . . . , `Q)>, and

�n,j = kT
�
tn, tpa(n)|j , ⌧j , `j

�
kT

�
tpa(n), tpa(n)|j , ⌧j , `j

��1
,

⌘n,j = kT (tn, tn|j , ⌧j , `j)� kT
�
tn, tpa(n)|j , ⌧j , `j

�2
kT

�
tpa(n), tpa(n)|j , ⌧j , `j

��1
,

for n = 1, . . . , N+2S�2, with �R,j ⌘ 1 and ⌘R,j ⌘ kj (tR, tR|T ), whereR ⌘ N+2S�

1 denotes the root node of T . The prior distribution for Z is completed by defining

p (j) = Beta (j |a, b), p (j) = Beta (⌧j |a⌧ , b⌧ ), and p (`j) = Gamma (`j |2, 1).

The Beta prior is a natural choice for random variable defined on the unit interval,

while the Gamma prior reflects an approximation of the assumption that the OU

process over T , which is scaled such that max {dT (tn, tR)}
N
n=1 = 1, is similar to

Brownian Motion with unit variance over short time scales, as discussed in sub-

section 3.2.4.

An independent Gaussian prior is chosen for each column of the loading

matrix, denoted W·j , which is to say that

p (W·j |↵j) = N

⇣
W·j |0,↵

�1
j KW

⌘
, (4.4)

for j = 1, . . . , Q, where ↵j is an Automatic Relevance Determination (ARD) [Neal,

2012] hyper-parameter and KW is the prior loading covariance matrix. Letting

p (↵j) = Gamma (↵j |a↵, b↵), ARD hyper-parameters tune the prior distribution for

each column such that it can flexibly adjust to the magnitude of X. Furthermore,

large values of ↵j indicate that W·j is close 0, allowing unnecessary columns of W

to be deflated away to irrelevance. This means that, when fitting the model to data,

some large value for Q can be selected, with superfluous factors being e↵ectively

pruned away without any further user input.

The covariance matrix KW has a block diagonal structure, with non-zero

o↵ diagonal entries occurring only in those blocks corresponding to FVTs. As in

sub-section 3.2.4, each FVT is assumed to be a twice mean square di↵erentiable

function observed over X = Rd such that the corresponding block of KW is given
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by the Gram matrix of the Matérn-52 kernel

k (r) =

 
1 +

p
5r

`
+

5r2

3`2

!
exp

 
�

p
5r

`

!
, (4.5)

where the length-scale ` has been fixed, and r = |x� x0
| for x,x0

2 X . In this case,

fixing ` is not a restrictive assumption, due to the flexibility provided by ↵j , and

doing so will simplify inference for the model significantly.

At this point it is worth defining OX, CX, and RX, which index ordinal,

categorical, and continuous trait columns of X respectively, and are analogous to

OY, CY, and RY. Thus, following the approach of Albert and Chib [1993] a prior

distribution for ⇤ is then given by fixing ⇤i0 ⌘ 1 for i0 2 {OX, CX}, ensuring identi-

fiability in the model for discrete traits, and setting p (⇤i0) = Gamma (⇤i0 |a⇤, b⇤)

for i0 2 RX.

Finally, defining a uniform prior for free ordinal cut-o↵ points, that is

p (�i,k|�i,k�1) =

8
<

:

1
b���i,k�1

, for �i,k 2 [�i,k�1, �i,k�1 + b] ,

0, otherwise,

= U (�i,k|�i,k�1, �i,k�1 + b�) , (4.6)

for i 2 OY and k 2 {2, . . .Ki � 1}, completes the model specification, a graphical

representation of which is presented in Figure 4.1.

4.2.3 Approximate Posterior Inference

Fitting a generalised PLVM to some set of manifest traits Y, given the phylogeny

T , involves learning about the posterior distribution over model parameters and

hyper-parameters, which can be expressed as

p (X,Z,W,⇤,�,↵,, ⌧ , `|Y)

/ p (Y,X|Z,W,⇤,�) p (Z|, ⌧ , `) p () p (⌧ ) p (`) p (W|↵) p (↵) p(⇤)p (�) , (4.7)

where ↵ = (↵1, . . . ,↵Q)
>. Letting  = {X,Z,W,⇤,�,↵,, ⌧ , `}, the model de-

fined in sub-section 4.2.2 implies that this posterior is a multi-modal distribution.

For any set of parameter values  ⇤, there exist 2⇥Q!� 1 equivalent parametrisa-

tions due to permutations and reflections of W and Z. Furthermore, the model’s

flexibility suggests that there are likely to be multiple local optima. Thus, Markov

Chain Monte Carlo methods are unsuitable for inference on this object.
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The Generalised Phylogenetic Latent Variable Model

Ynj

Xni0�

Znj

⌧j

`j

j

Wi0j

↵j

⇤i0

N + 2S � 1

N

Q

D0

D

Figure 4.1: A graphical representation of the Generalised Phylogenetic Latent Vari-
able Model presented in section 4.2.2. As with Figure 3.3, each circle represents
a random variable, where those that are shaded grey have been observed. Boxes
around circles are plates, denoting the number of existing random variables of that
type. The box around � represents the fact that there is a variable number of
ordinal cut o↵ parameters within the model, depending on the number of ordinal
traits observed and the values each trait can take. Note also that the phylogeny
T , the space on which factors Znj are observed, has been omitted for clarity of
presentation.
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While this multi-modality is a cause for concern, the more constrained PLVM

for FVTs in Chapter 3 was developed to address this. A latent variable model, such

as Factor Analysis, is only ever picking one explanation for an observed dataset

from an infinitum of possibilities, all of which e↵ectively describe the same model

for data [Lopes, 2014]. Thus, given that the objective of this analysis is an ancestral

reconstruction for some collection of traits, these concerns are set aside while some

“optimal” expression for (4.7) is found. One approach to problems of this nature,

popular in Machine Learning, is Variational Inference (VI) [Jordan et al., 1999;

Bishop, 2006; Blei et al., 2017].

Given the variational family of distributions, denoted Q, parametrised by ⇠,

VI approximates the posterior distribution by finding

q⇤ ( ) = arg min
q( )2Q

KL (q ( ) || p ( |Y)) , (4.8)

where KL(·||·) is the Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951].

The approximate posterior q⇤ ( ) is optimal, not only in the sense that it minimises

the KL divergence, but also in that it is the best approximation within Q to the

Bayesian posterior [Knoblauch et al., 2019].

From the definition of KL divergence

KL (q ( ) || p ( |Y)) = Eq [log q ( )]� Eq [log p ( |Y)] ,

= Eq [log q ( )]� Eq [log p ( ,Y)] + log p (Y) , (4.9)

where Eq[·] denotes the expectation with respect to q ( ). This demonstrates the

dependence of the KL divergence in (4.8) on p (Y), the model evidence, a quan-

tity which cannot be computed, but is constant with respect to q (·). However, as

KL(·||·) � 0 by definition, an equivalent objective function can be defined, that is

ELBO (q) = Eq [log p ( ,Y)]� Eq [log q ( )] ,

= Eq [log p (Y| )] + Eq [log p ( )]� Eq [log q ( )] , (4.10)

the log Evidence Lower Bound (ELBO), which, as the name suggests, bounds the

logarithm of the model evidence from below.

The approach to VI taken here is to assume a mean-field variational family

for Q, and implement a Co-ordinate Ascent Variational Inference (CAVI) algorithm

which maximises the ELBO in (4.10) [Bishop, 2006; Blei et al., 2017]. That is to
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say

q ( ) =
MY

i=1

qi ( i) ,

where each set within a partition of  has its own variational factor qi ( i). In this

case

q⇤i ( i) / exp
�
Eq( / i) [log p ( ,Y)]

�
, (4.11)

which is to say that the optimal distribution over  i within the mean-field varia-

tional family is proportional to the exponentiated expectation of the log joint dis-

tribution over traits, model parameters, and model hyper-parameters, where every

other variational factor has been held fixed. By iteratively finding q⇤i ( i) for each

variational factor, where ELBO (q) increases at every iteration, the CAVI algorithm

finds a locally optimal solution for (4.8).

The mean-field variational family approximating (4.7) is given by

q ( ) = q (X) q (⇤,✓,↵)
 

D0Y

i0=1

q (Wi0·)

! 
N+2S�1Y

n=1

q (Zn·)

!0

@
Y

i2OY

Ki�1Y

k=2

q (�i,k)

1

A , (4.12)

where ✓ = {, ⌧ , `}, and subscripts on variational factors have been suppressed for

clarity of exposition. Here, the approximate posterior distribution factorises over

the auxiliary traits, free auxiliary precision parameters and model hyper-parameters,

the factors at each node of T , the loading matrix’s rows, and each of the ordinal

trait cut-o↵ points.

Deriving variational parameters for each variational factor is a somewhat

involved process, and as such is relegated to Appendix B.1, however, the result-

ing approximate posterior distribution is presented here. Employing the notation

h ii ⌘ Eq( ) [ i] it is shown that

q⇤ (Wi0·) = N
�
Wi0·|hWi0·i,S

W
i0
�
,

and

q⇤ (Zn·) = N
�
Zn·|hZn·i,S

Z
n

�
,

where the variational means and covariances are defined by Equations (B.6), (B.7),

(B.9), and (B.10) of Appendix B.1.

Interaction between the variational family and the true model posterior in-
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duces further factorisation such that

q (⇤,↵,✓) =
Y

i02RX

q (⇤i0)
QY

j=1

q (↵j) q (✓j) ,

where ✓j = {j , ⌧j , `j}. It is then shown that

q⇤ (⇤i0) = Gamma
⇣
⇤i0 |ã⇤i0 , b̃⇤i0

⌘

with shape ãi
0
⇤ and rate b̃i

0
⇤ defined by (B.14) and (B.14) respectively, and

q⇤ (↵j) = Gamma
⇣
↵j |ã

j
↵, b̃

j
↵

⌘

with ãj↵ and b̃j↵ defined by (B.18) and (B.19).

A problem arises for q⇤ (✓j), in that no closed form solution for this variational

factor exists. This could be addressed by drawing a Monte Carlo sample from the

optimal mean-field variational family distribution, presented up to a normalising

constant in (B.23), and then estimating the required expectations. This approach

is computationally expensive, however, particularly when CAVI requires a large

number of iterations to converge. Instead, given that ✓j are hyper-parameters for

the phylogenetic Gaussian process prior over factors Z, it is deemed appropriate to

simply optimise ELBO (q) with respect to ✓j . This is equivalent to setting q (✓j) =

� (✓j = h✓ji), and o↵ers a computationally e�cient approach, which does not require

any di�cult to compute expectations, as could be the case if some other parametric

form was chosen for the variational factor q (✓j). Furthermore, given that no closed

form solution exists for the variational factors of the free ordinal trait cut o↵ points,

the same arguments apply in setting q (�i,l) = � (�i,l = h�i,li).

The final set of variational factors to be considered are those for auxiliary

traits, also subject to an induced factorisation, such that

q (X) =
NY

n=1

D0Y

i0=1

q (Xni0) .

Three separate cases must be considered. The first is for continuous and function-

valued traits, that is when i0 2 RX, where the optimal approximate posterior is

simply

q⇤ (Xni0) = N

⇣
Xni0 |hWi0·i

>
hZn·i, h⇤i0i

⌘
.
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Secondly, ordinal traits, for which i0 2 OX, imply that

q⇤ (Xni0 |Yni = k) = T N

⇣
Xni0 |hWi0·i

>
hZn·i, 1, h�i,k�1i, h�i,ki

⌘
,

which is to say thatXni0 follows a truncated Gaussian distribution with unit variance

bounded below by h�i,k�1i and above by h�i,ki. Finally, for categorical traits, that

is when i 2 CY and Yni = ci,k

q⇤
�
Xn,i0+k�1

�
= �

�
Xn,i0+k�1 = 0

�

and the optimal approximate posterior for the remaining auxiliary traits associated

with Yni can be expressed as

Y

j 6=k

q⇤
�
Xn,i0+j�1|Yni = ci,k

�
=
Y

j 6=k

T N

⇣
Xn,i0+j�1|hWi0+j�1,·i

>
hZn·i, 1,�1, 0

⌘
.

Iteratively updating the variational parameters for each of these variational

factors in CAVI will then optimise ELBO (q) defined in (4.10), the derivation of

which is presented in Appendix B.2.

4.2.4 Ancestral Reconstruction

For the generalised PLVM presented above, the problem of ancestral reconstruction

is equivalent to finding the predictive distribution at some new position on the

phylogeny t⇤ 2 T . A variational approximation to this predictive distribution is

given by

p (Y⇤·|t⇤,Y) =

Z
p (Y⇤·| , t⇤,Y) p ( |Y) d 

⇡

Z
p (Y⇤·| , t⇤,Y) q⇤ ( |Y) d ,

however, integrating over the variational distributions of both the loading matrix

and phylogenetic factors is an intractable problem. While this integral could be

evaluated by Monte Carlo simulation, a more appealing approach is to simply obtain

an approximate predictive distribution by integrating over the phylogenetic factors

and auxiliary traits only, which yields

p (Y⇤·|t⇤,Y,W,⇤,�,↵,, ⌧ , `)

⇡

Z
� (g (X⇤·) = Y⇤·)N

⇣
X⇤·|hWihZ⇤·i, h⇤i

�1 + hWiSZ
⇤ hWi

>

⌘
dX⇤·. (4.13)
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Consider the marginal predictive distribution at internal nodes of T for each

type of manifest trait in turn, detailed derivations for which are included in Appendix

B.3. It is can be shown that, for i 2 OY

p (Y⇤i = k|t⇤,Y,W,⇤,�,↵,, ⌧ , `)

⇡ FN

✓
h�i,ki � hWi0·ihZ⇤·i

⌫⇤i0

◆
� FN

✓
h�i,k�1i � hWi0·ihZ⇤·i

⌫⇤i0

◆
,

where FN (·) denotes a standard normal cumulative density function and ⌫⇤i0 =p
1 + hWi0·i

>SZ
⇤ hWi0·i. For i 2 CY, a generalisation of the multinomial probit

regression predictive distribution derived by Girolami and Rogers [2006] yields

p (Y⇤i = ci,k|t⇤,Y,W,⇤,�,↵,, ⌧ , `) ⇡ Ep(u)

"
Ki�1Y

l=1

FN

⇣
uki⇤
l

⌘#
,

where uki⇤ is a function of u ⇠ N (0, 1) and the variational parameters.

Finally, for i 2 RY the predictive distribution is given by

p (Y⇤i|t⇤,Y,W,⇤,�,↵,, ⌧ , `)

⇡ N

⇣
Y⇤i|hWi0·ihZ⇤·i, h⇤i0i

�1 + hWi0·i
>SZ

⇤ hWi0·i

⌘
,

completing the ancestral reconstruction.

It is worth noting that manifest traits at internal nodes of T have been

denoted Y⇤· rather than f⇤ as in sub-section 3.2.6. This is because, although intra-

taxon variation and, in the case of ancestral nodes, non-phylogenetic noise e↵ects

on the factors have been stripped away, the observation noise has been included in

the predictive distribution presented here, which was not the case for (3.22).

4.3 Results for a Synthetic Example

Performance of the CAVI algorithm for ancestral reconstruction of traits modelled

with a generalised PLVM is investigated for a synthetic dataset, based on that

studied by Hadjipantelis et al. [2013]. Given the phylogeny with S = 128 terminal

nodes presented in Figure 4.2a, three observations are made for each extant taxon

such that N = 384 and the full phylogeny with N terminal nodes is denoted T .

A collection of P = 4 traits are considered in this analysis, an ordinal trait

with three ordered categories labelled as {1, 2, 3}, a categorical trait made up of three

unordered categories labelled {0, 1, 2}, a continuous trait, and a function valued trait
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Q `  ⌧
1 2.50 0.850 0.050
2 1.00 0.100 0.050
3 1.75 0.500 0.010
4 2.00 0.950 0.025

Table 4.1: Phylogenetic hyper-parameter values for independent Ornstein-
Uhlenbeck processes over T .

which has been observed at 32 points spread uniformly over the interval [0, 1].

The evolution of these traits over the phylogeny is driven by Q = 4 indepen-

dent OU processes, as defined by (4.2) and (4.3). That is to say, trait evolution over

T is driven by four independent factors. Hyper-parameters governing each of these

processes are presented in Table 4.1. To gain some intuition on an interpretation

of hyper-parameter values, consider the first independent factor in some detail. In

this case, `1 = 2.5 indicates that on short time scales the OU process is more slowly

varying than a Brownian Motion with unit variance over the same interval, implying

a strong phylogenetic signal for this factor. The heritability 1 = 0.85 can be inter-

preted as saying 85% of inter-taxon variation is due to the phylogeny as opposed to

independent environmental e↵ects [Housworth et al., 2004]. Finally, ⌧1 = 0.05 is the

within-taxon variation and indicates that variability of factors within each taxon is

low.

Factors are mapped to auxiliary traits given the loading matrix W and diag-

onal trait precision matrix ⇤, where the precision for discrete traits is always fixed

to 1, and for continuous and function valued traits is set to 10 and 500 respectively.

Mapping auxiliary to manifest traits requires the definition of ordinal trait cut-o↵

points, where � = (�1, 0, 2,1). The phylogeny, loadings, and manifest traits are

all presented in Figure 4.2.

4.3.1 Model Fitting

In order to fit the model, a length-scale for the Matérn-52 prior covariance func-

tion on the FVT loading, that is, ` in (4.5), must be set. Here, ` is chosen by

Type-II Maximum Likelihood estimation [Rasmussen and Williams, 2006], under

the assumption that manifest FVTs are themselves independent and identically dis-

tributed Matérn-52 processes with unit variance, subject to some observation noise,

allowing the choice of ` to be informed by the data. Thus, the value ` = 0.13 is set

prior to fitting a generalised PLVM for Y.

The second choice to be made when fitting a generalised PLVM is the number
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A Synthetic Collection of Traits on a Phylogeny

(a) Phylogenetic Tree

(b) Loading

(c) Manifest Traits

Figure 4.2: The phylogeny of evolutionary relationships between taxa for the sim-
ulated data (a), along with the loading mapping factors to the auxiliary traits (b)
and the set of synthetic manifest traits (c), such that each trait is represented by
opaque points and lines.
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The log Evidence Lower Bound

Figure 4.3: Variational Inference from four di↵erent initialisation values ofW, where
the first 20 iterations in each case have been omitted for clarity. The Varimax
initialisation (V-PLVM) performs uniformly better than any other candidate model
maximises the ELBO, converging after approximately 600 iterations.

of latent factors, Q. One option is to simply choose some value for Q that is

greater than the anticipated number of factors required and trust that the ARD

precision parameters ↵ and phylogenetic length-scales ` will e↵ectively prune away

superfluous factors without overfitting the data. An alternative approach, the one

taken here, is first to perform Principal Components Analysis (PCA) [Tipping and

Bishop, 1999] for a random sample of auxiliary traits given Y and randomly selected

ordinal cut o↵ points. Given the results of this analysis, Q can be selected such that

the first Q principal components capture some proportion of variation in the data.

For the synthetic dataset, 90% of the variation in a random set of auxiliary traits is

explained by the first five principal components.

Fixing Q = 5, the generalised PLVM is fitted to the data for multiple initial-

isation values, with the model that maximises ELBO (q) being selected for ancestral

reconstruction. Four strategies for initialising the CAVI algorithm are considered

here. The first strategy is simply to initialise inference at random, producing a

model which is referred to as R-PLVM. The three alternative strategies are very

closely related and they are: initialising inference at the first Q principal compo-

nents (P-PLVM); the Varimax rotation of the first Q principal components (V-

PLVM) [Kaiser, 1958]; and initialising with Q independent components [Blaschke

and Wiskott, 2002]. In each case, CAVI is said to have converged when ELBO (q)

increases by less than 10�2 from one iteration to the next, or after 1000 iterations

have been completed.

83



On inspection of Figure 4.3, it can be seen that initialisations informed by

an exploratory analysis of the data resulted in uniformly better performance than

R-PLVM. The V-PLVM converged in approximately 600 iterations1, at which point

it was found to maximise ELBO (q), even after allowing all other candidate models

to run for the full 1000 iterations. Given that it is the best performing model, the

V-PLVM is considered for further analysis.

4.3.2 Ancestral Reconstruction

Selecting the V-PLVM as a model for trait evolution allows a distribution for traits

at each internal node of T to be defined. For those nodes that are parents of

terminal nodes, that is tn 2 T for n 2 {N + 1, . . . , N + S}, this is the extant

taxon trait distribution, while at all other internal nodes, i.e. tn 2 T for n 2

{N + S + 1, . . . , N + 2S � 1}, this distribution yields an ancestral reconstruction.

In order to investigate the performance of the V-PLVM for ancestral recon-

struction, consider the trait distribution at tR 2 T , that is the root of T . The

ancestral reconstruction, as defined by (4.13), is presented in Figure 4.4. An ex-

amination of this figure reveals that the inferred ancestral distribution captures the

salient features of the true ancestral distribution. The probabilities for discrete traits

are well approximated and distributions for continuous traits closely matched. For

the ordinal trait, presented in Figure 4.4a, both ancestral distributions have state 2

as most probable, followed closely by state 3, with state 1 being very improbable.

The categorical trait (Figure 4.4b) has state 2 as the overwhelmingly most probable,

with state 1 being slightly less improbable than state 0 in both cases. This repre-

sents a remarkably faithful ancestral reconstruction by the V-PLVM, particularly as

it is based only on knowledge of the phylogeny T and manifest traits Y, while the

true distribution is based on full knowledge of the model including factors at ter-

minal nodes of T . The means and standard deviations are nearly identical in both

ancestral distributions for the continuous trait, while for the FVT, the trait mean

function is reproduced faithfully, including a negative bump early in the interval,

and only slight di↵erences exist between regions of high density over the interval.

These di↵erences can be attributed to uncertainty in the inferred factors, which

may inflate the variance of ancestral reconstruction, as compared to the case when

factors at the terminal nodes are known. Thus, using the V-PLVM for ancestral

reconstruction provides a very satisfactory result.

1
This took approximately 20 minutes on a Mac Book Pro with a 2.3 GHz Intel Core i5 processor,

and an 8 GB 2133 MHz LPDDR3 memory
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Root Ancestral Distribution

(a) Ordinal Trait (b) Categorical Trait

(c) Ancestral Distribution

(d) Approximate Ancestral Distribution

Figure 4.4: A comparison of the true ancestral distribution at the root of T , with
approximate ancestral distribution given by V-PLVM. In (a) and (b) each colour in
the bars represent the probability that the trait was of that particular state, while
in (d) and (c), grey error markers represent two standard deviations from the mean.
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4.3.3 Parameter Inference

While ancestral reconstruction is the primary objective of the generalised PLVM,

a task for which it has been demonstrated to perform well, the accuracy of ap-

proximate inference for model parameters and hyper-parameters, in particular, the

loading W and phylogenetic hyper-parameters ✓, are also of interest.

Figure 4.5 presents a comparison of the true loading W and posterior ex-

pected loading hWi, which have been reordered and reflected to match W. It can

be seen that the shape of hWi matches the truth, indicating that the correlation

structure between traits has been modelled faithfully. W does not always lie within

the region of high density around hWi however, and while it is well known that

variational inference underestimates the posterior distribution of correlated vari-

ables [Bishop, 2006], a↵ecting hWi with respect to the FVT in particular, this may

also be attributed to scale invariance in the model, as discussed in section 3.3. Fur-

thermore, the large bias in the categorical weights for the fourth loading can be

explained by the link function defined in sub-section 4.2.1, where Xn,i0+k = 0 when

Yni = ci,k�1. This causes the large positive values in this loading to be shifted

towards zero. The fifth loading demonstrates the e↵ect of including superfluous

latent factors in the inference and is close to 0, as desired. The results represent

remarkably good performance, given the flexibility of the model.

Within the CAVI algorithm, h✓i is updated via optimisation of ELBO (q),

i.e. assuming that q (✓j) = � (✓j = h✓ji), which does not provide any uncertainty

quantification for the phylogenetic hyper-parameters. An expression for the mean-

field variational family approximation to the posterior distribution of ✓, up to a

normalising constant, has been derived and is presented in Appendix B.2. Sampling

from this distribution after convergence of the CAVI algorithm allows some insight

into the uncertainty on h✓i. For the V-PLVM, this sample is presented in Figure

4.6.

Consider the phylogenetic length-scale `. At first glance, it appears to be

poorly estimated, in no case is the true value within the region of high posterior

density. On closer inspection, however, factors 2 and 3 have low heritability, and

so inference for `j is somewhat irrelevant. For factor 4, which has high heritability,

the approximation is much closer to the truth. As regards factor 1, although `1

is underestimated, this corresponds to the first bump on the FVT interval and

would appear to be well modelled over the phylogeny, given that it is faithfully

reconstructed at the ancestral node. Thus, this underestimation does not have a

significant impact on the conclusions drawn from the model. If anything, these

observations simply indicate that caution should be exercised when attempting to
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draw conclusions from the inferred values for phylogenetic hyper-parameters. As a

final note on h`i, the superfluous fifth factor has a very large length-scale, indicating

that these factors are near-constant over T . In this respect it is behaving as an ARD

hyper-parameter [Neal, 2012]. While this may be undesirable, in that it obscures the

interpretation of h↵i, it does indicate that unnecessary factors will automatically

become irrelevant within the model.

Next, examine the approximate posterior for the heritability of each factor

. These approximations perform much better than those for `, in that, with factor

3 being an exception, they all lie close to the true hyper-parameter value. A possible

explanation for the poor estimation in factor 3 is that the intra-taxon variation is

so large as to completely dominate the inference on h3i. Interestingly, h5i is very

close to 1, indicating that those factors are indeed constant over T .

Finally, note that in each case intra-taxon variation ⌧ is estimated remark-

ably well, with h⌧5i being close to 0, indicating that the V-PLVM will provide

very accurate estimates of extant-taxon trait distributions. Thus, this examination

of Figure 4.6 suggests a hierarchical approach to interpreting phylogenetic hyper-

parameters. That is, h⌧ i can be trusted to reflect the underlying process, then,

when h⌧ji is low, the corresponding hji will reflect the heritability of the process

over T . Finally, care must be taken when interpreting h`ji as even relatively small

values may result in an important phylogenetic signal.

4.4 Discussion

This chapter presents a generalised Phylogenetic Latent Variable Model (PLVM) for

ancestral trait reconstruction. It extends the Phylogenetic Gaussian Process Regres-

sion (PGPR) framework for function-valued traits (FVTs) to include scalar-valued

ordinal, categorical, and continuous traits with Co-ordinate Ascent Variational Infer-

ence (CAVI) providing a computationally e�cient method for approximate Bayesian

inference. In doing so, the generalised PLVM o↵ers a novel, flexible tool for evolu-

tionary inference on any set of phenotypes, designed for the analysis of thousands

of data points.

The generalised PLVM and its CAVI scheme represents an important method-

ological contribution of this thesis, building on the work presented in Chapter 3. It

retains advantages of the PLVM, incorporating repeated measurements for extant

taxa and joint inference of the phylogeny-trait covariance function, while address-

ing its shortcomings. Firstly, by linking PGPR to the threshold model for discrete

trait evolution [Wright, 1934; Felsenstein, 2011], the generalised PLVM allows the
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Inferred Loading

Figure 4.5: A comparison of the true loading (black points / dotted line) to the
approximate posterior (grey error bars / ribbons) inferred by V-PLVM. Error bars
and ribbons represent two standard deviations around the approximate posterior
mean. See sub-section 4.3.3 for a discussion of the results presented in this figure.
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Inferred Phylogenetic Hyper-parameters

(a) ` (b)  (c) ⌧

Figure 4.6: A comparison of the true phylogenetic hyper-parameters (horizontal
black lines) to the approximate posterior (grey density plots) inferred at the final
iteration of V-PLVM. Note that rows are ordered such that the hyper-parameters in
the ith row correspond with the loading in the ith row of Figure 4.5. Note also the
fifth phylogenetic length-scale has been plotted on a di↵erent scale. See sub-section
4.3.3 for a discussion of the results presented in this figure.
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ancestral reconstruction of ordinal and categorical traits alongside FVTs. As such,

it o↵ers a model for the evolution of a far richer class of phenotypes than that

considered in Chapter 3. In addition, relaxing the assumption of independent and

identically distributed latent variables in the PLVM provides a more flexible model

for observed data, allowing for correlations between taxa and traits that depend on

the phylogeny to varying degrees. Finally, CAVI performs approximate Bayesian

inference for the phylogeny-trait covariance function in minutes where the MCMC

algorithm proposed in Chapter 3 would take days, if not weeks. Thus, the gen-

eralised PLVM o↵ers a general approach to ancestral trait reconstruction and is a

practical tool for the phylogenetic comparative analysis of big data.

The Phylogenetic Comparative Method (PCM) introduced in this chapter

o↵ers a novel approach which develops and extends those proposed by Hadjipantelis

et al. [2013], Cybis et al. [2015], and Tolko↵ et al. [2017]. Setting aside the fact

that a generalised PLVM models discrete and continuous scalar-valued traits along-

side FVTs, it builds upon the method proposed by Hadjipantelis et al. [2013] in

much the same way as the PLVM presented in Chapter 3. CAVI for the generalised

PLVM clarifies that inference within the PGPR framework should be cognisant of

dependence between taxa due to the phylogeny and performs joint inference for the

phylogeny-trait covariance function, rather than separating inference into two dis-

tinct steps. While dimension reduction is relevant to selecting suitable initialisation

values, this iterative inference scheme updates the parameters and hyper-parameters

to account for the shared evolutionary history and patterns within the observed data.

Furthermore, the problem of model selection with respect to the number of latent

variables Q is addressed via automatic relevance determination [Neal, 2012].

It is worth noting that the objective of this work di↵ers from that of Cybis

et al. [2015] and Tolko↵ et al. [2017], in that it has been explicitly formulated for

ancestral reconstruction rather than focussing on elucidating relationships between

traits for related taxa. Although this is a subtle distinction, indeed these alternative

approaches do imply a set of reconstructed ancestral traits, it does manifest itself in

several key di↵erences. The most important of these is that the generalised PLVM

provides a far more flexible model for trait evolution than the multivariate phylo-

genetic latent liability model [Cybis et al., 2015] or Phylogenetic Factor Analysis

(PFA) [Tolko↵ et al., 2017]. In fact, each of these methods lie within the extended

PGPR framework and can be thought of as special cases of the generalised PLVM

where X = ZW> and X = ZW> + ✏ respectively. For each of these models, la-

tent variables Z are assumed to be fixed, independent, and identically distributed

Brownian Motion processes over the phylogeny. This leads to the second key di↵er-
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ence, that is, these models do not include intra-taxon variation and as such do not

accommodate repeated trait measurements for extant taxa. Finally, optimising the

Evidence Lower Bound via CAVI provides a scalable approach to inference, while

the MCMC schemes proposed by Cybis et al. [2015] and Tolko↵ et al. [2017] scale

with O
�
N2

�
and repeated sampling from their respective posterior distributions.

A potential issue for this generalised PLVM is rooted in its flexibility, which is

a result of non-identifiable parameters and hyper-parameters. It is possible that this

model fits to observed data without necessarily providing a sensible model for trait

evolution and that conclusions are heavily dependant on the initialisation of CAVI.

Given that phylogenetic comparative analyses rarely posses validation datasets (it

is often impossible to measure traits of long extinct ancestors), this would call into

question any resulting ancestral trait reconstruction These concerns are allayed by

results presented in Appendix C, where the ancestral trait reconstruction at the

phylogeny’s root is presented for each of the generalised PLVMs discarded in favour

of the V-PLVM. These figures shows that each model results in remarkably similar

ancestral trait distributions, even the R-PLVM (see Figure 4.7), which was initialised

at random. Thus, with respect to the ancestral reconstruction of synthetic data

at least, is seems that CAVI for a generalised PLVM results in broadly similar

conclusions, irrespective of initialisation values.

There do remain some extensions to the generalised PLVM that could be

considered. Firstly, a more structured Variational inference scheme could be im-

plemented, perhaps assuming that the mean-field variational family factorised over

columns of W and Z rather than rows. This would likely result in improved uncer-

tainty quantification; however, it would come at the cost of greater computational

expense. A second extension may be to consider a deep latent variable model, link-

ing phylogenetic Gaussian processes and deep Gaussian processes [Damianou and

Lawrence, 2013]. This would result in an even more flexible model that the gen-

eralised PLVM, potentially allowing non-Gaussian traits to be modelled. Finally,

extending the model to allow latent factors to be distributed according to a stable

process [Elliot and Mooers, 2014] may o↵er an alternative approach to modelling

evolution.

In conclusion, a generalised PLVM for ancestral reconstruction has been de-

veloped which can be fitted flexibly and e�ciently to datasets containing thousands

of observations. It is hoped that over the coming years this will prove to be an

invaluable tool in the evolutionary biologists’ toolbox. All that remains now is to

apply this model to a set of bat echolocation calls.

91



Root Ancestral Distribution: R-PLVM

(a) Ordinal Trait (b) Categorical Trait

(c) Ancestral Distribution

(d) Approximate Ancestral Distribution

Figure 4.7: A comparison of the true ancestral distribution at the root of T , with
approximate ancestral distribution given by R-PLVM. In (a) and (b) each colour in
the bars represent the probability that the trait was of that particular state, while
in (d) and (c), grey error markers represent two standard deviations from the mean.
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Chapter 5

Ancestral Reconstruction of the

Bat Echolocation Call

5.1 Introduction

Ancestral reconstruction can be understood as an interpolation between the traits

of existing populations to those of their common ancestors, providing insight into

the behaviour and reproductive strategies of organisms living millions of years ago.

Such trait reconstructions are inherently uncertain however, and only as reliable as

the model for evolution which underpins them. The Phylogenetic Latent Variable

Model (PLVM) developed in Chapters 3 & 4 represents the current state-of-the-

art approach to this problem, although applying these methods to the evolution

of bat echolocation is not straightforward. Echolocation calls are acoustic signals,

precisely structured in both time and frequency, best described by a time-frequency

representation [Cohen, 1995; Hlawatsch and Auger, 2008]. Ancestral reconstruction

of the bat echolocation call must be based on manifest traits derived from such a

representation, however, care must be taken to ensure that the PLVM o↵ers a co-

herent model for the evolution of these features, providing a sensible distribution

for ancestral traits. Thus, by identifying an appropriate time-frequency represen-

tation for a bat’s echolocation call and modelling the evolution of these traits as a

PLVM, this chapter presents the first ancestral reconstruction of bat echolocation

to allow playback of ancestral bat echolocation calls, with results presented in this

web application.1

A bats echolocation call is best described as a multi-harmonic signal of du-

ration T 2 R+ [Hopp et al., 2012; Fenton et al., 2016], subject to both frequency

1
https://jpmeagher.shinyapps.io/test reconstruction/
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and amplitude modulation. This is to say that the signal

y (t) =
KX

k=1

Ak (t) cos (�k (t)) + ✏ (t) , (5.1)

is defined by its harmonic order K, its amplitude envelope Ak (t) 2 R+ and instan-

taneous phase �k (t) for k = 1, . . . ,K, and an independent noise process, assumed

to be of the form ✏ (t) ⇠ N
�
0,�2 (t)

�
, when t 2 [0, T ]. The harmonic structure of

the call is then defined by

�k (t) = 2⇡k

✓Z t

0
f (s) ds

◆
+ 'k, (5.2)

where the instantaneous fundamental frequency f (t) 2 R+ must be a slowly varying

function and phase shift 'k 2 [0, 2⇡] is constant.

When characterising echolocation calls it is the fundamental frequency curve

f (·), harmonic order K, and duration T that are of most interest [Fenton et al.,

2016]. While amplitude envelope curves Ak (·) are dependent on the conditions

in which the signal was recorded [Hopp et al., 2012], the dominant harmonic, the

component carrying most energy in the signal, is an important feature [Fenton

et al., 2016]. Thus, estimating Ak (·), at least relative to Ak0 (·) for k 6= k0, is also

relevant for the characterisation of bat echolocation calls. Finally, the phase shift

'k and variance �2 (t) are considered to be irrelevant and are treated as nuisance

parameters.

It is assumed that by estimating the relevant parameters for call character-

isation and subsequently modelling their evolution over a phylogeny, the ancestral

reconstruction of bat echolocation calls may be performed. Unfortunately, prob-

lems with this approach are immediately apparent. In general, the model described

by (5.1) and (5.2) is ill defined. There exist infinite combinations of {Ak (t) ,�k (t)}

pairs which will yield a signal equivalent to y (t) [Cohen, 1995; Hlawatsch and Auger,

2008]. For mono-component signals, this can be addressed by defining an analytic

signal ya (·) such that y (t) = < (ya (t)), for which an instantaneous frequency can be

estimated [Gabor, 1946; Boashash, 1992; Huang et al., 2009]. Some attempts have

been made at extending this approach to multi-component signals, interestingly both

Olhede and Walden [2005] and DiCecco et al. [2013] used bat echolocation calls as

a motivating example. Each of these methods requires the definition of frequency

bands within which components lie a priori, however, making their application to

large datasets di�cult.

An alternative approach to parameter estimation is to consider fundamental

94



frequency extraction, also known as pitch tracking, which is an important problem

in speech processing [Gerhard, 2003]. Given that no set of signal and fundamen-

tal frequency curve pairs for bat echolocation are known a priori, an unsupervised

approach is required. Unsupervised pitch tracking algorithms can be separated

into two categories, parametric and non-parametric methods. Non-parametric ap-

proaches, which include Cepstrum pitch determination [Noll, 1967] along with the

RAPT [Talkin, 1995], YIN [De Cheveigné and Kawahara, 2002], SWIPE [Camacho

and Harris, 2008] and PEFAC [Gonzalez and Brookes, 2014] algorithms, provide

a computationally e�cient estimate for the fundamental frequency curve. Despite

this e�ciency, however, these methods are not appropriate for the problem at hand.

Fundamental frequency curve estimates can be error-prone, particularly when the

signal-to-noise ratio (SNR) is low, and hyper-parameters within an algorithm may

require careful manual tuning. Furthermore, the harmonic order and amplitude

envelopes are not estimated by these methods. Thus, a parametric approach to

fundamental frequency extraction must be considered.

Parametric pitch tracking is based on a harmonic model for acoustic signals

[Quinn and Thomson, 1991; Shi et al., 2019], similar in spirit to the Spectrogram

[Cohen, 1995]. Defining a set of (overlapping) frames of a signal and assuming each

frame to be stationary allows a harmonic model approximating that defined by (5.1)

and (5.2), to be fit for each frame. This approach provides estimates for f (·), K,

and Ak (·). A major benefit of the parametric approach is that it allows for Bayesian

inference of these parameters [Davy and Godsill, 2003; Nielsen et al., 2013; Shi et al.,

2019], providing a coherent approach to model fitting and selection. Prior to this

work, such methods had not been applied to bat echolocation, despite o↵ering a

parsimonious call characterisation and a promising approach to the comparative

analysis of calls.

This chapter is laid out as follows. In section 5.2 a harmonic model for

bat echolocation is formulated, for which a maximum-a-posteriori inference scheme

is derived. Selected results from the fitting of this model to bat echolocation call

recordings are presented and discussed. Subsequently, section 5.3 presents the prob-

lem of ancestral call reconstruction. A set of echolocation call features is then

inferred from a post-hoc correction of the raw harmonic model output. One of

those features, the fundamental frequency curve, represents a function-valued trait

and as such is subject to a functional data analysis prior to performing evolution-

ary inference [Meyer and Kirkpatrick, 2005; Srivastava and Klassen, 2016]. Given

this set traits representing echolocation calls and a phylogeny describing the shared

evolutionary history between the observed bat taxa, the generalised Phylogenetic
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Latent Variable Model developed in Chapter 4 is employed for ancestral trait re-

construction, allowing ancestral bat echolocation calls to be estimated. The chapter

concludes with a discussion of these results and signposts directions for future re-

search.

5.2 A Harmonic Model for Bat Echolocation

Consider the sinusoidal signal y (t) 2 R for t 2 [0, T ], that is a bats echolocation

call. Firstly, define a rectangular window function of size ⇢, that is

w⇢ (t) ⌘ �
⇣
�
⇢

2
< t 

⇢

2

⌘

where � (·) is the indicator function. Then, let tn 2 [0, T ] for n = 1, . . . , N and

tn < tn+1 define a set of (possibly overlapping) frames spanning [0, T ] such that

xn (t) ⌘ w⇢ (t� tn) y (t) .

A harmonic model for each frame is then defined as

xn (t) = w⇢ (t� tn) zn (t) ,

for

zn (t) =
KnX

k=1

�(1)n,k cos (2⇡ k fnt) + �(2)n,k sin (2⇡ k fnt) + ✏n (t) ,

where Kn is the harmonic order, fn is the fundamental frequency, and �n (Kn) ⌘⇣
�(1)n,1,�

(2)
n,1, . . . ,�

(1)
n,Kn

,�(2)n,Kn

⌘>
is the set of sinusoidal basis coe�cients, for which

the shorthand �Kn
⌘ �n (Kn) is used when appropriate. The independent noise

process is then assumed to be Gaussian with constant variance, which is to say that

✏n (t) ⇠ N
�
0,�2n

�
.

The intuition which underpins the model described above is exactly that

which motivates the short-time Fourier transform (STFT) [Cohen, 1995]. Firstly,

the window function defines an interval of size ⇢ over which the signal is assumed

to be locally stationary [Dahlhaus, 1996]. Then, defining frames of y (·) via w⇢ (·),

rather than applying a Fourier transform, as would be the case with a STFT, each

frame is described by a harmonic model. It is worth noting that a rectangular win-

dow, rather than the Hamming or Gaussian windows typically used in the STFT

[Hlawatsch and Auger, 2008], should be employed when modelling frames as station-

ary multi-harmonic signals. This is due to the assumption of constant amplitude
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in the harmonic model. Furthermore, the model defined by (5.2) is simply a re-

parametrisation of (5.1), where

f (·) = fn,

Ak (·) =

r⇣
�(1)n,k

⌘2
+
⇣
�(2)n,k

⌘2
, (5.3)

'k = atan2
⇣
�(2)n,k,�

(1)
n,k

⌘
,

�2 (·) = �2n,

and K = Kn. As will be seen in the following, estimation of the model parame-

ters becomes much more straightforward for the sinusoidal basis defined under this

parametrisation.

This harmonic model has been defined as a process that is continuous in time.

While conceptually useful, the signal will, in fact, be observed at discrete time points.

Therefore, letting tn,m 2
⇥
tn �

⇢
2 , tn + ⇢

2

⇤
for tn,m < tn,m+1 and m = 1, . . . ,M define

a uniform sampling over the interval, which indexes all non-zero observations of

xn (·), the nth frame can be defined as

xn ⌘ (xn (tn,1) , . . . , xn (tn,M ))> ,

where xn (·) has been sampled at rate 1
tn,m+1�tn,m

. Furthermore, defining the sinu-

soidal basis matrix

W (Kn, fn) ⌘ (w (Kn, fn, tn,1) , . . . ,w (Kn, fn, tn,M ))> ,

given the sinusoidal basis functions

w (Kn, fn, tn,m) ⌘
�
cos (2⇡ fn tn,m) , sin (2⇡ fn tn,m) , . . . ,

cos (2⇡ Kn fn tn,m) , sin (2⇡ Kn fn tn,m)
�>

,

and ✏n ⌘ (✏n (tn,1) , . . . , ✏n (tn,1))
>, (5.2) implies that

xn = W (Kn, fn)�Kn
+ ✏n.

And so, the likelihood associated with the nth frame is

L(✓n|xn) = N
�
xn|W (Kn, fn)�Kn

,�2nI
�
, (5.4)

where ✓n ⌘
�
Kn, fn,�Kn

,�2n
 
. With that, a harmonic model for bat echolocation
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calls has been defined.

5.2.1 Prior Specification

In order to complete the specification of this model, a prior distribution for ⇥ =

{✓1, . . . , ✓N} is required. In this respect, an approach similar to that of Shi et al.

[2019], which builds on methods for Bayesian signal processing developed by Nielsen

et al. [2013], is adopted.

The first point to note is that frames are not independent of one another.

If they overlap, then the intersection between adjacent frames is a non-empty set,

and even if X = (x1, . . . ,xN ) partitions the observed signal, dependence between

frames is implied by the assumption that f (·) in (5.1) is a slowly varying function.

A practical approach to such problem is to assume a first order Markov prior for ⇥,

which is to say that

p (⇥) = p (✓1)
NY

n=1

p (✓n|✓n�1) , (5.5)

preserving dependence between frames. Thus, by defining p (✓1) and p (✓n|✓n�1), a

Hidden Markov Model for X is developed [Rabiner, 1989; Bishop, 2006]

Consider first Kn 2 N, the harmonic order of xn. In (5.1), K is assumed

to be constant, however, allowing each frame its own harmonic order defines a far

more flexible model, one which fits to data in a straightforward manner. Thus, it is

assumed that Kn is dependent on Kn�1, such that

p (Kn|Kn�1, nK ,Kmax)

/ � (1  Kn  Kmax)

✓
nK

Kn

◆✓
Kn�1

nK

◆Kn
✓
1�

Kn�1

nK

◆nK�Kn

,

= � (1  Kn  Kmax)B

✓
Kn|nK ,

Kn�1

nK

◆
(5.6)

whereKmax and nK are the maximum harmonic order and number of prior Bernoulli

trials respectively, both of which must be fixed a-priori. This truncated Binomial

prior for Kn, which implies that max {p (Kn|Kn�1)}
Kmax
Kn=1 = Kn�1, encourages sta-

bility in the harmonic order between frames, while still allowing the model to fit

observed data well. This prior is completed by setting p (K1) / � (1  Kn  Kmax).

Given Kn, a prior distribution for the fundamental frequency fn must now be

defined. Firstly, let f1/2 be the Nyquist frequency, defined as half the sampling rate,

which is the highest frequency component of xn that can be detected [Oppenheim
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and Schafer, 2014]. Then,

p
�
fn|fn�1,Kn, fmin, fmax,�

2
f

�

/ �

✓
fmin  fn < min

⇢
fmax,

f1/2
Kn

�◆
N
�
fn|fn�1,�

2
f

�
(5.7)

where the fundamental frequency variance �2f , along with minimum and maximum

fundamental frequencies, fmin and fmax respectively, all of which are fixed a-priori,

defines a truncated Gaussian prior for fn such that maxfn {p (fn|fn�1)} = fn�1. In

order to complete this prior, simply define p (f1) / �
⇣
fmin  f1 < min

n
fmax,

f1/2
Kn

o⌘
.

The next parameter to be considered is the independent noise process vari-

ance, �2n. Strictly speaking, �2n should be dependent on �2n�1, either through obser-

vations being shared for adjacent frames, or by making an assumption that �2 (·)

in (5.1) is some slowly varying process. Encoding this dependence will result in a

more complex model, however, and such an e↵ort is deemed unnecessary for what

is a nuisance parameter [Shi et al., 2019]. Thus, Je↵reys’ prior is assumed [Je↵reys,

1946], such that

p
�
�2n
�
/

1

�2n
. (5.8)

The final set of model parameters for which a prior distribution must be de-

fined is the set of sinusoidal basis coe�cients, �Kn
. These parameters relate to both

the amplitude Ak (·) and phase shift 'k in (5.1). As such, defining a dependence be-

tween �Kn
and �Kn�1

would require very careful consideration. Similarly to �2n how-

ever, these parameters are not of particular interest in and of themselves, and given

that dependency between frames has already been encoded in p (Kn, fn|Kn�1, fn�1),

the conditionally independent prior distribution described by Nielsen et al. [2013] is

employed here. In order to motivate this choice, first consider

�̂Kn
= argmax

�Kn

L(✓n|xn),

=
⇣
W (Kn, fn)

>W (Kn, fn)
⌘�1

W (Kn, fn)
> xn, (5.9)

which states that, given Kn and fn, an analytic expression for the maximum likeli-

hood estimate of �Kn
exists. Zellner’s g-prior [Zellner, 1986] then states that

p
�
�Kn

|�2n,Kn, fn, gn
�
= N

✓
�Kn

|0, gn�
2
n

⇣
W (Kn, fn)

>W (Kn, fn)
⌘�1

◆
, (5.10)
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where

p(gn|⇣) =
⇣ � 2

2
(1 + gn)

�
⇣
2 , (5.11)

is the hyper-prior distribution for the hyper-parameter gn, with 2 < ⇣  4 such that

(5.11) is a special case of the Beta prime distribution [Liang et al., 2008]. Zellner’s

g-prior can be interpreted as the posterior distribution for �Kn
that results from the

analysis of a sample x0 = 0, given the basis W (Kn, fn), a uniform prior on �Kn
,

and the scaled variance gn�2n [Bové et al., 2011]. The g-prior covariance, which is

the scaled inverse Fisher information matrix, implies that a large prior variance is

assigned when �Kn
is di�cult to estimate.

With that, a harmonic model for bat echolocation calls has been fully spec-

ified, a graphical representation of which is presented in Figure 5.1. Before consid-

ering inference for this model, however, there remains an important point to note.

Firstly, let

Inv-Gamma (x|a, b) ⌘
ba

� (a)
x�a�1 exp

✓
�
b

x

◆
, (5.12)

be the pdf of an inverse Gamma random variable. Then, given the prior defined by

(5.8) and (5.10), the joint distribution for xn, �Kn
, and �2n, conditional on Kn, fn,

and gn can be expressed as

p
�
xn,�Kn

,�2n|Kn, fn, gn
�

= L(✓n|xn,pn) p
�
�Kn

|�2n,Kn, fn, gn
�
p
�
�2n
�
,

/ N
�
xn|W (Kn, fn)�Kn

,�2nI
�

N

✓
�Kn

|0, gn�
2
n

⇣
W (Kn, fn)

>W (Kn, fn)
⌘�1

◆
��2
n ,

= N

✓
�Kn

|
gn

1 + gn
�̂Kn

,
gn

1 + gn
�2n

⇣
W (Kn, fn)

>W (Kn, fn)
⌘�1

◆

Inv-Gamma

✓
�2n|

M

2
,
M �̂2n
2

◆
�

✓
M

2

◆✓
1

⇡M �̂2n

◆M
2
✓

1

1 + gn

◆ 2Kn
2

, (5.13)

where

�̂2n ⌘
x>
n

⇣
I� gn

1+gn
PW

⌘
xn

M
,

and

PW ⌘W (Kn, fn)
⇣
W (Kn, fn)

>W (Kn, fn)
⌘�1

W (Kn, fn)
> .
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A Harmonic Model for Bat Echolocation

xnxn�1 xn+1

�2n�2n�1 �2n+1

�Kn
�Kn�1

�Kn+1
gngn�1 gn+1

fnfn�1 fn+1

KnKn�1 Kn+1

· · · · · ·

· · · · · ·

Figure 5.1: A graphical representation of the harmonic model for bat echolocation
calls.

Integrating over the basis coe�cients and variance implies that

p (xn|Kn, fn, gn) / �

✓
M

2

◆✓
x>
nxn

⇡M �̂2n x>
nxn

◆M
2
✓

1

1 + gn

◆ 2Kn
2

/
(1 + gn)

M�2Kn
2

(1 + gn (1�R2 (Kn, fn)))
M
2

, (5.14)

where

R2 (Kn, fn) ⌘
x>
nPWxn

x>
nxn

.

Thus, a marginal likelihood is defined for each frame. This expression implies that

an inference scheme need only estimate Kn, fn, and gn for each frame.
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5.2.2 Maximum-a-Posteriori Inference

Performing inference for the harmonic model defined above involves learning about

the posterior distribution

p (k, f , g|X,↵) / p (X|k, f , g) p
�
f |k, fmin, fmax,�

2
f

�
p (k|nK ,Kmax) p (g|⇣) ,

= p (x1|K1, f1, g1) p (f1|K1, fmin, fmax) p (K1|Kmax) p(g1|⇣)

NY

n=2

p (xn|Kn, fn, , gn) p
�
fn|fn�1,Kn, fmin, fmax,�

2
f

�

p (Kn|Kn�1, nK ,Kmax) p(gn|⇣), (5.15)

where k = (K1, . . . ,KN ), f = (f1, . . . , fN )>, g = (g1, . . . , gN )>, and the set of quan-

tities to be specified a-priori is denoted ↵ =
n
fmin, fmax,�2f , nK ,Kmax, ⇣

o
. In or-

der to complete this task, a forward-backwards algorithm for maximum-a-posteriori

(MAP) inference is developed [Rabiner, 1989; Bishop, 2006], which shall be pre-

sented as a Variational Inference (VI) scheme where the approximating distribution

is a product of indicator functions.

As discussed in sub-section 4.2.3, rather than attempting inference for a

posterior distribution directly, the objective of VI is to find the parametrisation for

a variational family Q which maximises the log evidence lower bound. For (5.15),

that is

ELBO (q) ⌘ Eq
⇥
log p (X|k, f , g) p

�
f |k, fmin, fmax,�

2
f

�
p (k|nK ,Kmax) p (g|⇣)

⇤

� Eq [log q (k, f , g)] ,

which must be maximised with respect to the approximate posterior q (k, f , g) 2 Q.

Firstly, it is assumed that the variational family consists of distributions that

factorise according to

q (k, f , g) =
NY

n=1

q (Kn, fn, gn) ,

then, interaction between this variational family and (5.15) induces a further fac-

torisation such that

q (Kn, fn, gn) = q (Kn, fn) q (gn) .

Finally, the variational family is fully specified assuming that

q (Kn, fn) = � (Kn = hKni, fn = hfni) ,
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and

q (gn) = � (gn = hgni) .

This implies that Eq [log q (k, f , g)] = 0 and optimising ELBO (q) with respect to

variational parameters ⇠n ⌘ {hKni, hfni, hgni} for n = 1, . . . , N is equivalent to

MAP estimation.

Consider first the optimisation of ELBO (q) with respect to hgni. It can be

shown that
@ ELBO (q)

@gn
=
@Eq [log p (xn|Kn, fn, gn) p (gn|⇣)]

@gn
,

which allows the definition of

hgni = max

⇢
MR2 (hKni, hfni)� (2hKni+ ⇣)

(2hKni+ ⇣) (1�R2 (hKni, hfni))
, 0

�
, (5.16)

depending only on the nth frame.

In order to complete the inference scheme, define the respective forward and

backward framewise objective functions as

ELBOf
n+1 (q) ⌘ Eq [log p (xn+1|Kn+1, fn+1, gn+1)]

+ Eq
⇥
log p

�
fn+1|fn,Kn+1, fmin, fmax,�

2
f

�⇤

+ Eq [log p (Kn+1|Kn, nK ,Kmax)] + Eq [log p(gn+1|⇣)] , (5.17)

ELBOb
n (q) ⌘ ELBOf

n (q) + Eq
⇥
log p

�
fn+1|fn,Kn+1, fmin, fmax,�

2
f

�⇤

+ Eq [log p (Kn+1|Kn, nK ,Kmax)] , (5.18)

for n = 1, . . . , N � 1, and let

ELBOf
1 (q) ⌘ Eq [log p (x1|K1, f1, g1)] + Eq [log p (f1|K1, fmin, fmax)]

+ Eq [log p (K1|Kmax)] + Eq [log p(g1|⇣)] (5.19)

be the initialisation objective. Each of these quantities can be computed up to a

normalising constant given (5.6), (5.7), (5.14), and (5.11). This allows (hKni, hfni) 2

{1, . . . ,Kmax}⇥

h
fmin,min

n
fmax,

f1/2
hKni

oi
to be found by a grid search, given g0, an

initial value for the g-hyperprior, tolerance ", and maximum number of iterations

for each frame Imax. A description of the forward-backwards inference scheme is

presented in Algorithm 4.
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Algorithm 4: A Harmonic Model for Bat Echolocation Calls
Data: X,↵, g0, ", Imax

Result: MAP estimation of k, f and g
/* Forward Pass */

1 for n 2 {1, . . . , N} do
2 g0 ! hgni;

3 max(hKni,hfni)

�
ELBOf

n (q)
 
! (hKni, hfni);

4 ELBOn (q)! `n;
5 for i 2 {1, . . . , Imax} do
6 update hgni according to (5.16);

7 max(hKni,hfni)

�
ELBOf

n (q)
 
! (hKni, hfni);

8 if ELBOf
n (q)� `n < " then

9 break
10 else
11 ELBOf

n (q)! `n;
12 end

13 end

14 end
/* Backward Pass */

15 for n 2 {N � 1, . . . , 1} do
16 max(hKni,hfni)

�
ELBOb

1 (q)
 
! (hKni, hfni);

17 ELBOn (q)! `n;
18 for i 2 {1, . . . , Imax} do
19 update hgni according to (5.16);

20 max(hKni,hfni)

�
ELBOb

n (q)
 
! (hKni, hfni);

21 if ELBOb
n (q)� `n < " then

22 break
23 else
24 ELBOb

n (q)! `n;
25 end

26 end

27 end
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5.2.3 Fitting the Harmonic Model

The harmonic model described above was fit to a sample of 1816 bat echolocation

calls recorded at a sampling rate of 500 kHz. This dataset has been made publicly

available by Stathopoulos et al. [2018] and will be discussed in more detail in sub-

section 5.3.1. The fundamental frequency for calls in the sample is assumed to lie

over the interval [fmin = 15 kHz, fmax = 212 kHz]. While the range [9 kHz, 212 kHz]

was discussed in section 2.1, this value of fmin better reflects the properties of calls

observed in this particular dataset. Furthermore, raising fmin can significantly im-

prove the fit of model. It forces low frequency background noise to be ignored and

reduces incidence of “pitch halving”, which refers to the phenomenon of a fitted fun-

damental frequency being half the true value, as identified by visual inspection of the

signals spectrogram. Standard deviation for the change in fundamental frequency

from one frame to the next is then assumed to be �f = 5 kHz. This represents a

somewhat balanced prior, that should discourage pitch halving or doubling between

frames without prohibiting it. It is also worth noting that the Nyquist frequency

f1/2 = 250 kHz

The maximum harmonic order takes some relatively large value, which is to

say that it is greater than the anticipated number of harmonics for any call in the

sample. In this case Kn = 8 is deemed appropriate, while the number of trials in

the Binomial prior on harmonic order nK must be greater than Kmax to prevent

B (Kn|nK , 1) from occurring. Here nK = 2Kmax is chosen. Fixing the g-hyper-prior

parameter ⇣ = 3, all the required quantities have been specified such that

↵ =
�
fmin = 15 kHz, fmax = 212 kHz,�2f = (5 kHz)2, nK = 16,Kmax = 8, ⇣ = 3

 
.

The harmonic model is then fit the set of bat echolocation calls. After first

passing recordings through a Butterworth bandpass filter of order 10 defined by

[fmin, fmax] [Butterworth et al., 1930], frames are defined by a window of size ⇢ ⌘

0.512 ms, implying that M ⌘ 256, with 75% overlap of adjacent frames.

For each harmonic order, maximisation of the fundamental frequency is per-

formed by a grid search. Given a coarse uniform grid over permissible frequencies,

defined by intervals of size 0.25 kHz, an intermediate frequency, ftmp, maximising

the objective is identified. Then a finer grid search, defined by the interval of size

0.01 kHz, is performed over

[max {fmin, ftmp � 0.25 kHz} ,min {fmax, ftmp + 0.25 kHz}] .
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The tolerance and maximum number of iterations selected for the inference scheme

is " ⌘ 10�2 and Imax ⌘ 10.

The model fit is assessed by a visual comparison of call spectrograms and

fitted values for the fundamental frequency and harmonic order in each frame. A

representative selection of echolocation calls are presented in Figure 5.2.

Figure 5.2a shows the model fit and call spectrogram for a bat from the

species Balantiopteryx plicata within the Emballonuridae family. This call can be

best described as a constant frequency, multi-harmonic signal, for which the second

component is dominant. The fitted model agrees with the call spectrogram, yielding

a harmonic order of 4 and frequency component curves that lie along peaks of the

spectrogram. However, on close inspection of Figure 5.2a, there appears to be a

discontinuity in the frequency components from the first to the second frame. This

error occurs due to an absence of any frequency component in the first frame, i.e.

there is a low signal-to-noise ratio (SNR).

Similarly the model fits well to the single-component, short-duration, broad-

band sweep ofMyotis volans (Vespertilionidae, Figure 5.2b), and the multi-harmonic

constant frequency to broadband sweep call of Pteronotus parnellii (Mormoopidae,

Figure 5.2c). In the case of Tadarida brasiliensis (Molossidae, Figure 5.2d) however,

the model fit is poor. This multi-harmonic, broadband call appears to have been

recorded with a low SNR, as evidenced by seemingly unstructured areas of high en-

ergy density on the spectrogram. Thus, the fitted model su↵ers from order errors in

a number of frames, resulting in pitch halving, although some frequency component

of the model does identify the dominant component throughout.

Although the model does not provide a perfect fit for the data, fundamental

frequency extraction is a very challenging problem, as evidenced by the plethora

of algorithms that have been developed for this purpose [Noll, 1967; Talkin, 1995;

De Cheveigné and Kawahara, 2002; Gerhard, 2003; Camacho and Harris, 2008; Gon-

zalez and Brookes, 2014]. Thus, such performance is to be expected when applying

any fundamental frequency extraction algorithm to recordings sampled in the field.

In reality, Figure 5.2 presents reasonably satisfactory results, which will allow the

desired feature representation of echolocation calls to be obtained after a post-hoc

correction of raw output from the model, as will be discussed in sub-section 5.3.3.

5.2.4 A Brief Discussion of the Harmonic Model

The objective in developing this harmonic model for bat echolocation was to define

a set of features for which ancestral reconstruction could be performed. In many

respects, this has been successful. As will be discussed in detail in the next section,
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Fitted Harmonic Models

(a) Balantiopteryx plicata (b) Myotis volans

(c) Pteronotus parnellii (d) Tadarida brasiliensis

Figure 5.2: The harmonic model fit to a sample of bat echolocation calls, overlaid on
the call spectrogram. Frequency components of the echolocation call are identified
by black points in each frame. Thus, at any particular point in time, the lowest
frequency point is the fundamental frequency, while the number of points corre-
sponds to the harmonic order. Discussion of each case presented above is provided
in sub-section 5.2.3.
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this model allows the harmonic order, fundamental frequency curve, and dominant

harmonic of a given call recording to be defined. Figure 5.2 demonstrates that, for

the most part, the model provides a very good fit for the data. This represents an

important contribution towards the comparative analysis of bat echolocation.

The model described here is not without some significant shortcomings, how-

ever. Firstly, it is computationally expensive to implement, taking an average of

three minutes to fit each call in the sample, although this issue could be addressed

by implementing an algorithm for e�cient likelihood computation derived by Nielsen

et al. [2017]. This would represent the first step in any further development of this

method for fundamental frequency estimation.

A second issue is that the model does not include the case where there is no

periodic signal in a frame. This causes discontinuities in the fundamental frequency

curve to occur over frames at the beginning and end of calls (see Figure 5.2a). A

potential solution to this problem would be to replace the model defined by (5.2)

with

zn (t) = un

 
KnX

k=1

�(1)n,k cos (2⇡ k fnt) + �(2)n,k sin (2⇡ k fnt)

!
+ ✏n (t) , (5.20)

which introduces the variable un 2 {0, 1} indicating the presence or absence of a

periodic signal. In this respect, the model and inference scheme developed here is

less sophisticated than that presented by Shi et al. [2019]. Inclusion of such an

indicator variable may allow the model to be adapted for problems such as call

identification and classification [Stathopoulos et al., 2018; Mac Aodha et al., 2018].

The third problem identified here is that order errors do occur for some calls

within the sample (Figure 5.2d). When these are due to unstructured noise corrupt-

ing the signal, this may prove an impossible problem to solve completely, however,

a more sophisticated Bayesian inference scheme may mitigate such issues. While it

may be computationally expensive, a Reversible Jump Markov Chain Monte Carlo

inference scheme inferring the harmonic order and fundamental frequency for each

frame, similar to the approach for non-stationary periodic signals proposed by Hadj-

Amar et al. [2019], could provide an interesting avenue for future research. Alterna-

tively, a more carefully considered Variational inference scheme than that presented

above, perhaps employing a Variational family where q (fn) = N
�
fn|µn,��1

n

�
, could

o↵er similar advantages. Such an approach would allow some uncertainty quantifi-

cation without a massive computational expense

Despite these issues and potential directions for further work, when a rich

set of echolocation call features is required, the parametric approach to fundamen-
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tal frequency extraction proposed here is undoubtedly superior to alternative, non-

parametric methods. While the YIN algorithm is based on the autocorrelation

function for the signal in question De Boor [1972], methods such as RAPT [Talkin,

1995], SWIPE [Camacho and Harris, 2008] and PEFAC [Gonzalez and Brookes,

2014] are not based on any explicit model for periodic signals. Instead, they rely on

frequency-domain representations of a signal, attempting to identify peaks in the

power spectral density associated with the fundamental frequency. Although these

methods represent the standard approach to pitch determination, they do not allow

estimation of the harmonic order and amplitude envelope in a straightforward man-

ner. As such, they would be unsuitable for obtaining feature representations of bat

echolocation calls. Furthermore, they can be error prone and require careful parame-

ter tuning for e↵ective performance. While the harmonic model developed here does

result in some errors, as judged by a comparison of its raw output with call spectro-

grams, these occur in a clear and systematic manner. Thus, a post-hoc correction

procedure o↵ers a pragmatic solution to this issue, defining a feature representation

for bat echolocation call, which in turn allows their ancestral reconstruction. This

analysis will be presented in the following section.

5.3 Echolocation Call Reconstruction

Ancestral reconstruction for a set of echolocation call features is presented here.

Features are defined by a post-hoc correction of raw output from the harmonic

model presented in section 5.2 and will subsequently be modelled as a generalised

Phylogenetic Latent Variable Model (PLVM), for which Variational Inference will

be performed, as described in Chapter 4.

5.3.1 Echolocation Call Data

Bat echolocation call recordings gathered across north and central Mexico have been

made publicly available by Stathopoulos et al. [2018]. These calls were collected

from June to November 2012 and from February to May 2013. Bats were captured

in 10 mist nets placed at ground level, that is 0-3 metres high, and identified to

species level using field keys. Echolocation calls were recorded by two methods:

bats were released from the hand in open areas away from vegetation, between 6

and 10 metres away from a bat detector, or; bats were attached to a zip line and

recorded as they flew along the zip line path. Calls were recorded by a Pettersson

1000x bat detector, set to record calls manually in realtime, full-spectrum, at a

sampling rate of 500 kHz. Calls were selected from recordings of 449 individual bats
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Species Key Individuals Calls
Family: Emballonuridae
Balantiopteryx plicata Bapl 16 100
Family: Molossidae
Nyctinomops femorosaccus Nyfe 16 100
Tadarida brasiliensis Tabr 49 100
Family: Vespertilionidae
Antrozous pallidus Anpa 58 100
Eptesicus fuscus Epfu 74 100
Idionycteris phyllotis Idph 6 100
Lasiurus blossevillii Labl 10 90
Lasiurus cinereus Laci 5 42
Lasiurus xanthinus Laxa 8 100
Myotis volans Myvo 8 100
Myotis yumanensis Myyu 5 89
Pipistrellus hesperus Pihe 85 100
Family: Mormoopidae
Mormoops megalophylla Mome 10 100
Pteronotus davyi Ptda 8 100
Pteronotus parnellii Ptpa 23 100
Pteronotus personatus Ptpe 7 51
Family: Phyllostomidae
Artibeus jamaicensis Arja 11 82
Desmodus rotundus Dero 6 38
Leptonycteris yerbabuenae Leye 26 100
Macrotus californicus Maca 6 53
Sturnira ludovici Stlu 8 51
Sturnira lilium Stli 4 20

Table 5.1: Mexican Bat Echolocation Call Dataset

from Sb = 22 species across five families, each consisting of multiple calls. For each

species, as many calls as possible, up to a maximum of 100, were selected from the

recordings. This resulted in N b = 1816 sample calls, with the number of calls for

each species denoted N b
i for i = 1, . . . , Sb. Species have been assigned a four-letter

identifying key based on their binomen (the scientific name for the species), made

up of the first two letters of the genus and species names respectively. This dataset

is summarised in Table 5.1.

5.3.2 Bat Phylogeny

It is assumed that evolutionary relationships between the Sb = 22 species of bat

are accurately described by the bat supertree of Collen [2012], based on studies
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conducted between 1970 and 2009, which dates the most recent common ancestor

for all bats in the sample to 52.5 million years ago. This phylogeny, denoted PS , is

presented in Figure 5.3.

As described in section 3.2.1, multiple observations per species are accom-

modated by defining P, which retains the inter-taxon structure of PS , but now has

N b observation (terminal) nodes, each of which has an edge weight of zero with its

parent, one of the Sb extant taxon nodes. Let pn 2 P for n = 1, . . . , N b denote the

positions on P of the observation nodes, pn 2 P for n = N b +1, . . . , N b +Sb be ex-

tant taxon nodes, and pn 2 P for n = N b+Sb+1, . . . , N b+Sb+M b be the ancestral

nodes corresponding to the M b = 16 internal nodes in PS . Furthermore, given the

patristic distance operator dP (·, ·), which computes the distance between positions

on P, the phylogeny P is scaled such that dP
�
pn,pNb+Sb+Mb

�
= 1 for n = 1, . . . , N ,

which is to say that the patristic distance between each of the observation nodes

and the root of P is 1.

5.3.3 Echolocation Call Features

It is assumed that echolocation calls are well characterised by a set of four fea-

tures. They are the harmonic order, fundamental frequency curve, call duration,

and dominant component. Fitting the harmonic model described in section 5.2 to

each echolocation call recording produces the raw output f̂n =
⇣
hfn

1 i, . . . , hf
n
Nc

n
i

⌘>
,

k̂n =
⇣
hKn

1 i, . . . , hK
n
Nc

n
i

⌘>
, and ĝn =

⇣
hgn1 i, . . . , hg

n
Nc

n
i

⌘>
, where N c

n denotes the

number of frames for the nth call recording for n = 1, . . . , N b. As demonstrated in

Figure 5.2, this raw output may contain order errors, and so a post-hoc correction

of the data is performed before defining the feature set.

Before proceeding, define the operator

whichmax (x1, . . . , xN ) = i,

which identifies the index i such that

max (x1, . . . , xN ) = xi

for some N 2 N. Then, note that for any {fn
i ,K

n
i , g

n
i }, (5.3), (5.9) and (5.13) imply

the values ân,i =
⇣
hAn

i,1i, . . . , hA
n
i,Kn

i
i

⌘>
and let â2n,i =

⇣
hAn

i,1i
2, . . . , hAn

i,Kn
i
i
2
⌘>

.

Consider first the fundamental frequency curve. In cases such as those pre-

sented in Figures 5.2a-5.2c, any errors can be corrected simply by pruning away

components for which the estimated squared amplitude envelope, denoted â2n,i, is
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A Phylogeny for Sampled Mexican Bats

Figure 5.3: The phylogenetic tree assumed to model evolutionary relationships be-
tween observed bat species, as described by Collen [2012].

112



below a defined threshold, a2n,0, typically set at 0.005max
n
â2n,i

oNc
n

i=1
, although there

is variation from one call to the next. In Figure 5.2d, however, the fundamental

frequency has been correctly identified in some frames, but order errors occur in

others, resulting in discontinuous jumps in fundamental frequency curve. These

errors are addressed by identifying a reference frame in,0 and implementing a pro-

cedure iteratively matching frequency components with those of an adjacent frame.

In most cases in,0 = whichmax
n
â>n,iân,i

oNc
n

i=1
, which is approximately the frame for

which the SNR is highest, is an appropriate choice. Furthermore, in a very small

proportion of calls, pitch halving occurs in every frame. For such cases, the funda-

mental frequency curve is simply doubled. If after executing each of these steps the

model fit remains unsatisfactory, fitting the model for new values for fmin and fmax

was attempted. If this proved unsuccessful, as happened for some recordings with

a particularly low SNR, the call was omitted from the analysis. In total 1805 of the

1816 calls were deemed suitable for comparative analysis. Examples of corrected

fundamental frequency vector, denoted f̃n, are presented in Figure 5.4.

Before completing the definition of fundamental frequency curves, it is worth

considering the harmonic order, duration and dominant component for each call. A

straightforward definition of the harmonic order for the call would be to set it as

max k̂n simply. Such a definition could result in the harmonic order being mis-

specified, however, given that order errors may have occurred. A similar definition,

which accounts for corrections made to the fundamental frequency, is to let k̃n be

the vector of harmonic orders corresponding to f̃n such that
⇣
k̃n

⌘

i
= K̃n

i where

K̃n
i = max

⇢
k|
⇣
Ãn

i,k

⌘2
> a2n,0

�Kmax

k=1

and Ãn
i,k is analogous to hAn

i,ki. Then, the final estimate for the harmonic order of

the call is given by

K̄n = max k̃n. (5.21)

The duration of the call is then estimated given t̃n,1 and t̃n,Nc
n
0 , the first and last

time index associated with f̃n respectively, by

T̄n = t̃n,Nc
n
0 � t̃n,1 + ⇢, (5.22)
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Corrected Fundamental Frequency Curves

(a) Mormooops megalophylla (b) Sturnira lilium

(c) Myotis yumanensis (d) Tadarida brasiliensis

Figure 5.4: The corrected fundamental frequency fit for a sample of bat echolo-
cation calls, overlaid on the call spectrogram. The fitted fundamental frequency
component of the echolocation call is identified by black points in each frame, while
the corrected fundamental frequency curve is presented as a solid black line. Fig-
ure 5.4a presents a case where fundamental frequency estimates for the first four
frames have been discarded due to the absence of any signal; Figure 5.4b corrects for
misidentification of the fundamental frequency in the final three frames of the call;
Figure 5.4c illustrates the e↵ect of correcting for pitch halving throughout the call
recording; and Figure 5.4d demonstrates the correction when pitch halving occurs
in a few frames only.
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Time Registration of Fundamental Frequency Curves

(a) Observed fundamental frequency curves

(b) Registered fundamental frequency curves

Figure 5.5: A comparison of observed and registered fundamental frequency curves
for sampled Pteronotus parnellii calls.

with the dominant component given by

d̄n = whichmax

8
<

:

Nc
n
0X

i=1

⇣
Ãn

i,k

⌘
9
=

;

K̄n

k=1

.

All that remains now, is the definition of fundamental frequency curves given

f̃n for n = 1, . . . , N b. The fundamental frequency curve, as defined by f (·) in (5.2),

is a slowly varying function of time, Therefore, it is assumed that f̃n, representing

discrete observations of the fundamental frequency curve for the nth echolocation call

which are associated with time indices
�
t̃n,1, . . . , t̃n,Nc

n
0
 
, is a function-valued trait

(FVT) for which Functional Data Analysis (FDA) must be performed. [Ramsay,

2004; Meyer and Kirkpatrick, 2005] Thus, in order to define the set of fundamen-

tal frequency curves for ancestral reconstruction, each f̃n must be smoothed and

registered appropriately.

The first step in the FDA is to map f̃n to the unit interval. This is simply a
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case of defining a new set of time indices where

tn,i =
t̃n,i � t̃n,1

t̃n,Nc
n
0 � t̃n,1

.

Then, assuming that f̃n represents noisy observations of a twice di↵erentiable func-

tion, a smoothing spline can be fitted [Friedman et al., 2001; R Core Team, 2019],

such that f̃n (t) is defined for all t 2 [0, 1]. Fundamental frequency curves must then

be time registered [Ramsay and Li, 1998]. This describes the process of stripping out

phase variation in the curves such that fn (t) is meaningfully comparable with fm (t)

for n 6= m. Here, fundamental frequency curves are registered within each taxon,

though no between-taxon registration is performed. The Bayesian registration al-

gorithm of Cheng et al. [2016], which registers the square-root velocity function of

the fundamental frequency curves and is implemented in the fdasrvf R package

[Tucker, 2019; R Core Team, 2019], is employed for this task, with the e↵ect of time

registration on the fundamental frequency curves for Pteronotus parnellii presented

in Figure 5.5. Finally, let Nf -dimensional vector f̄n represent the smoothed, regis-

tered fundamental frequency curve sampled on a regular grid over the unit interval

for n = 1, . . . , N b, where Nf = 51.

5.3.4 Ancestral Reconstruction

The set of echolocation call features defined above are: the harmonic order K̄n 2

{1, . . . , 6}, which is considered to be an ordinal trait; the time registered fundamental

frequency curve f̄n 2 (R+)N
f

, a FVT; the dominant component d̄n 2 {1, 2, 3}, a

categorical trait; and the call duration T̄n 2 R+; all of which are defined for n =

1, . . . , N b0, where N b0 = 1805 given that the harmonic model did not fit successfully

to all N b = 1816 recordings. Note that the maximum value of K̄n inferred during

feature extraction was 6, indicating that setting Kmax = 8 was appropriate.

The evolution of these traits over the phylogeny P is modelled as a generalised

PLVM, as presented in Chapter 4, with P = 4 manifest traits such that

Yn· =

2

666664

K̄n

d̄n⇣
log T̄n �

1
Nb0

PNb0

n=1 log T̄n

⌘
/�̂T̄

log f̄n �
1

Nb0
PNb0

n=1 log f̄n

3

777775
,
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where

�̂T̄ =

vuut
⇣
log T̄n �

1
Nb0

PNb0

n=1 log T̄n

⌘2

N b0 � 1
,

and D = Nf + 3. That is to say, the logarithm of call duration has been centred

and scaled to have variance 1, while the fundamental frequency curves logarithm

has been centred. Taking the logarithm of variables that have been defined for the

positive real numbers allows them to be modelled over the real number line, as

specified for the generalised PLVM.

Manifest traits are then modelled by auxiliary traits Xn· 2 RD0
given the

map g : Xn· ! Yn·, defined in sub-section 4.2.1, and ordinal cut o↵ points � where

Xn· = WZn· + ✏,

for ✏ ⇠ N
�
0,⇤�1

�
, with diagonal precision matrix ⇤ and D0 = Nf + 5.

The factors Znj = zj (pn) for j = 1, . . . , Q are assumed to follow univariate

phylogenetic Gaussian processes, that is

zj (pn) ⇠ GP (0, kP (tn,pm|j , ⌧j , `j)) ,

where the phylogenetic covariance function is of the form

kT (pn,pm|j , ⌧j , `j) = (1� ⌧j)

✓
j exp

✓
�
dT (pn,pm)

`j

◆
+

(1� j) � (dP (pn,pm) = 0) � (n  N + S)

◆
+

⌧j � (n = m) � (n  N) ,

where heritability j , intra-taxon variation ⌧j , phylogenetic length-scale `j , and

the patristic distance operator dP (·, ·) define an Ornstein-Uhlenbeck Phylogenetic

Mixed Model with intra-taxon variation.

The prior distribution for loading W is defined for each of the Q columns

with

p (W·j |↵j) = N

⇣
W·j |0,↵

�1
j KW

⌘
, (5.23)

where KW is a block diagonal matrix. Non-zero o↵ diagonal elements of KW

occur only in the block corresponding to the fundamental frequency curve, which is

assumed to be twice mean square di↵erentiable, given by the Gram matrix of the
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Matérn-52 kernel

k (r) =

 
1 +

p
5r

`
+

5r2

3`2

!
exp

 
�

p
5r

`

!
, (5.24)

for r = |ti � ti0 |, when ti 2 [0, 1] indexes the time registered fundamental frequency

curves. The length-scale is fixed a-priori such that ` = 0.5. This value chosen

after Type II maximum likelihood estimation for a zero-mean GP, given covariance

function (5.24), fitted to the sample of manifest traits corresponding to fundamental

frequency curves [Rasmussen and Williams, 2006].

In order to define the prior for ⇤, note that those diagonal elements corre-

sponding to discrete traits are fixed to 1 and let �T ,�f be the precision parame-

ters for the call duration and fundamental frequency curve respectively. Then set

p (�T ) = Gamma (�T |1, 1) and p (�f ) = Gamma (�f |1, 1).

The model specification is completed given hyper-prior distributions for the

model hyper-parameters. They are p (j) = Beta (j |1, 1); p (⌧j) = Beta (⌧j |1, 1);

p (`j) = Gamma (`j |2, 1); and p (↵j) = Gamma (↵j |0.001, 0.001) for j = 1, . . . , Q.

This model is then fit for Y =
�
Y1·, . . . ,YNb0·

�>
, given the phylogeny P, by

the Co-ordinate Ascent Variational Inference (CAVI) scheme presented in Chapter

4. In order to initialise this algorithm, the number of factors Q must be selected,

and so a set of auxiliary traits were generated at random and were subject to Prin-

cipal Components Analysis (PCA) [Tipping and Bishop, 1999]. This PCA indicated

that the first four principal components capture 94% of variance in the auxiliary

dataset, while eight principal components capture 99.9%. Given that ancestral

reconstruction is the objective, and that the Automatic Relevance Determination

(ARD) hyper-parameters ↵j will automatically deflate superfluous factors to in-

significance, Q = 8 was chosen for the model.

Two alternative initialisations for CAVI were then considered, initialising

the loading at the first Q principal components, referred to as P-PLVM, and at the

VARIMAX rotation of those components (V-PLVM), with the model maximising

the log evidence lower bound ELBO (q) (see Appendix B.2) at convergence being

selected for ancestral reconstruction. Here, CAVI is adjudged to have converged

when ELBO (q) increases by less than 10�2 from one iteration to the next. As can

be seen in Figure 5.6, it is V-PLVM which maximises ELBO (q) after approximately

6000 iterations, and so this is the model selected for the ancestral reconstruction of

bat echolocation calls

A reconstruction of the echolocation calls of bats Most Recent Common An-

cestor (MRCA), based on the sample of Mexican bat echolocation call recordings and
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The log Evidence Lower Bound

Figure 5.6: A comparison of log Evidence Lower Bounds (ELBO (q)) for the P-
PLVM and V-PLVM models for the evolution of bat echolocation. It is V-PLVM
that maximises the ELBO.

the phylogeny P is presented in Figure 5.7. This analysis suggests that the ancestral

bat echolocation call was a multi-harmonic, broadband sweep from approximately

40 to 30 kHz, lasting 3-8 ms. Finally, the fundamental frequency component was

dominant with a probability greater than 0.5.

The V-PLVM is not restricted to analysing the ancestral trait at the root of P

only. Trait distributions have been defined at every internal node of P, such that the

distributions of traits for all extant and ancestral taxa can be explored. This allows

the identification of intermediate echolocation calls, those that may have existed as

bats evolved from using one call structure to another. Furthermore, it provides a

sense check for the model. Should a reconstructed echolocation call be unreasonable

(i.e. physically impossible for the larynx to produce) for any node on P, this would

call any conclusions based on the model into question. A representation of the

implied echolocation call parameters at each internal node of P under the V-PLVM

is presented in Figure 5.8. Here, the shape and position of frequency components

are given by the MAP fundamental frequency, while the length of components along

the x-axis is proportional to MAP duration. The probability that component k is

present in the call, that is p (K(pi) � k), is proportional to the opacity of the line

used to represent that component, while line width is proportional to the probability

of the component being dominant. Call representations at terminal nodes can be

thought of as the representative call for that species, with edges (which are in no

way representative of evolutionary time between calls) illustrating the evolutionary

path taken by each call. Those internal calls that are labelled represent MRCA

for that particular family. Furthermore, an interactive web application allowing the

exploration and playback of ancestral echolocation calls throughout bats life history

can be found at https://jpmeagher.shinyapps.io/test reconstruction/.
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Echolocation in Bats Most Recent Common Ancestor

(a) Ancestral Reconstruction of Echolocation Call Parameters

(b) Reconstructed Call Recording and Spectrogram

Figure 5.7: The ancestral reconstruction of echolocation in the most recent common
ancestor for the sample of Mexican bat species. Sub-plot (a) presents the posterior
distribution of call parameters while (b) presents a hypothetical call recording and
spectrogram for this bat. The call was simulated given the MAP call duration and
fundamental frequency, assuming a Gaussian amplitude envelope and random phase
for each component where Ak(t) / (1 + p (d = k)) p (K = k).
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Q `j j ⌧j
1 2.55 (1.52, 3.62) 1.00 (0.88, 1.00) 0.040 (0.038, 0.043)
2 4.90 (3.41, 7.82) 1.00 (0.95, 1.00) 0.006 (0.006, 0.006)
3 3.59 (2.14, 5.42) 0.96 (0.81, 1.00) 0.005 (0.004, 0.005)
4 3.34 (2.09, 5.35) 1.00 (0.89, 1.00) 0.003 (0.002, 0.003)
5 7.95 (4.94, 11.77) 1.00 (0.97, 1.00) 0.000 (0.000, 0.000)
6 3.48 (2.27, 5.78) 1.00 (0.88, 1.00) 0.004 (0.003, 0.004)
7 5.70 (3.44, 8.38) 1.00 (0.94, 1.00) 0.002 (0.002, 0.002)
8 3.04 (1.76, 4.81) 1.00 (0.89, 1.00) 0.029 (0.028, 0.031)

Table 5.2: MAP estimates and intervals of 90% posterior density for phylogenetic
hyper-parameters of the V-PLVM.

An examination of the two unobserved descendants of the sample MRCA

reveals a point of particular interest. As may be expected, these echolocation calls

are very similar; however, the most probable dominant component for the MRCA of

Vespertilionidae and Molossidae is the first, while for the MRCA of Mormoopidae

and Phyllistomidae it is the second. This suggests that early bat species separated

based on a preference for one frequency component over the other.

As discussed in Chapter 4, interpretation of phylogenetic hyper-parameters

and loading can be challenging, particularly when signal over the phylogeny is low.

Nonetheless, for V-PLVM, the inferred phylogenetic hyper-parameters and intervals

of 90% posterior density are presented in Table 5.2, while the loading is illustrated

in Figure 5.9.

Consider first the intra-taxon variation ⌧j . In every case, this is less than

0.05, indicating that the intra-taxon variation for echolocation calls is low and so

variation in the factors over the phylogeny must be described by heritability j

and phylogenetic length-scale `j . Given that j ⇡ 1 in every case bar one (3 ⇡

0.96), there is strong heritability for factors over the phylogeny. Finally, consider `j .

Although care must be taken when interpreting the value of the phylogenetic length-

scale, in this case, intra-taxon variation is low while heritability is high. Therefore,

any variation over the phylogeny must be modelled by `j . Thus, more weight can

be placed on the interpretation of its value. To this end, note that for short time

scales, Brownian Motion with unit variance is well approximated by a unit variance

Ornstein-Uhlenbeck process with a length scale of 2. Therefore, large values for `j

(that is `j > 2), indicate the presence of a strong phylogenetic signal in the factors

over P. That is to say, factors for closely related taxa are more strongly correlated

than would be expected under a Brownian Motion model for factor evolution.

An examination of the inferred loading may shed further light on the workings
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Figure 5.8: The Evolution of Bat Echolocation.
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of this model, illustrating the structure of independent evolutionary features. For

example, the first factor links a flattening and raising of the fundamental frequency

with a reduction in the harmonic order, the second factor links the introduction of

a broadband sweep in the latter part of an otherwise constant frequency call to a

lengthening in call duration, and the eighth factor links flattening and lowering of

the fundamental frequency to a decreased probability of the first component being

dominant.

Finally, the free observation noise parameters associated with the scaled du-

ration and fundamental frequency traits are �T ⇡ 2.06 and �f ⇡ 3⇥105 respectively.

This indicates that approximately half the variation in call duration is independent

of the factors, while fundamental frequency curves are modelled with very high pre-

cision. These results imply that call duration is variable, even within species, while

high precision measurements of the fundamental frequency are to be expected for

traits that have been smoothed and registered.

5.4 Discussion

This chapter has presented a harmonic model for bat echolocation calls and per-

formed ancestral reconstruction for a set of call features, given the phylogeny P.

This represents a novel application of the generalised PLVM, allowing a previously

unattainable insight into the evolutionary dynamics of bat echolocation. Based on

an analysis of 1816 echolocation call recordings sampled from 22 species of extant

bat, conclusions regarding the structure of ancestral bat echolocation calls over P

can be drawn and hypothesised call recordings synthesised, allowing the playback

ancestral bat calls.

The Most Recent Common Ancestor (MRCA) for this sample of Mexican

bats employed multi-harmonic, broadband sweep from approximately 40 to 30 kHz,

lasting 3-8 ms. In the MRCA of the Vespertilionidae and Molossidae families, The

first harmonic was most probably dominant, while in the MRCA of Mormoopidae

and Phyllistomidae, it was most probably the second. These conclusions are in

broad agreement with those of Collen [2012] and Schnitzler et al. [2004], however,

results presented here are based on statistical models for both echolocation and trait

evolution.

There are several particularly pleasing aspects to these results. The first is

the clarity with which ancestral echolocation calls are reconstructed. The structure

of frequency components over the phylogeny is being modelled directly, meaning

that the output can be interpreted without any post-processing, a feature that
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Inferred Loadings

Figure 5.9: V-PLVM inferred loadings.
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Collen [2012] could not achieve. Secondly, using the reconstructed echolocation call

features to propose ancestral echolocation recordings, which can then be listened to,

is straightforward given the model defined by (5.1) and (5.2). Finally, inference, for

what could be considered a large and unwieldy dataset in the context of phylogenetic

comparative analysis, was performed by CAVI for a generalised PLVM in the order

of tens of minutes. This demonstrates that the true potential of generalised PLVM

lies in the analysis of much larger datasets than are studied here. Applying this

method to the Echobank of bat echolocation calls [Collen, 2012], which contains

echolocation call recordings for 410 species of extant bat, may allow new insight

into the development of echolocation in Chiroptera.

Some areas for further research do remain. As discussed in sub-section 5.2.4,

the raw output of the harmonic model for echolocation does require a post-hoc

correction to be applied prior to analysis. Developing an approach to fundamental

frequency extraction for which this correction is not required represents an avenue

worth exploring. Furthermore, linking this model to the estimation of instantaneous

frequency in multi-component signals, as described by Olhede and Walden [2005]

and DiCecco et al. [2013], may provide a general approach to precise time-frequency

analysis.

For the ancestral reconstruction of bat echolocation, however, this model

appears to perform as well as could be hoped, given the dataset available. This

presents the most exciting avenue for future work stemming from this thesis, the

application of a generalised PLVM, as described here, to a much more diverse set of

calls, allowing scientific conclusions on bats ancestral echolocation call to be drawn.

This remains a priority for future work.
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Chapter 6

Final Remarks

The development and application of novel statistical methodology have driven ad-

vances in both Phylogenetics and Phylogenetic Comparative Methods (PCMs) for

decades [Felsenstein, 1973, 1985; Hansen, 1997; Drummond et al., 2002; Suchard

et al., 2018]. Models for the mutation of molecular sequences elucidate shared an-

cestry with a degree of certainty that was previously unattainable [Suchard et al.,

2018; Amador et al., 2018], while PCMs allow the evolution of ever more complex

phenotypes to be studied [Hadjipantelis et al., 2012; Cybis et al., 2015; Tolko↵ et al.,

2017]. This thesis makes a significant contribution to the latter of these endeavours.

The methods developed here may yet prove widely applicable across the disciplines

of Evolutionary Biology, Morphometrics, and Bioacoustics, providing new and pro-

found insights into the development of life on earth.

From a human’s perspective, echolocation represents a fascinating natural

phenomenon, being so far removed from our own lived experiences as to be near

incomprehensible. Despite this, the principles which underpin the process have

come to be well-understood [Denny, 2007; Fenton et al., 2016]. What has remained

much more mysterious, is the path by which this characteristic developed in Chi-

roptera [Simmons and Stein, 1980; Schnitzler et al., 2004; Collen, 2012], despite the

consensus that has emerged on the structure and timing of the order’s ancestral

relationships [Teeling et al., 2000, 2005; Eick et al., 2005; Tsagkogeorga et al., 2013;

Amador et al., 2018]. Thus, the objective of this thesis was to shed light on this

mystery through the development of novel techniques for the phylogenetic compar-

ative analysis acoustic signals, and by so doing, reconstruct the calls of ancestral

bats with a degree of certainty that was previously unavailable.

Given that echolocation is a continuous process in time and, as such, is a

Function-Valued Trait (FVT) [Kirkpatrick and Heckman, 1989; Meyer and Kirk-
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patrick, 2005], the Phylogenetic Gaussian Process Regression (PGPR) framework

provided a useful, though limited, approach to modelling its evolution [Jones and

Moriarty, 2013]. The framework su↵ered from several shortcomings. It was formu-

lated for a single FVT, assuming a separable phylogeny-trait covariance structure.

This implied trait measurements were free of independent observation noise. Fur-

thermore, existing inference schemes for models of trait evolution either approxi-

mated PGPR [Hadjipantelis et al., 2013], or failed to take a fully Bayesian approach

to inferring the phylogenetic covariance structure [Cybis et al., 2015; Tolko↵ et al.,

2017]. These limitations made such methods unsuitable for ancestral reconstruction.

Thus, the first contribution of this thesis was to introduce the Phylogenetic Latent

Variable Model (PLVM), o↵ering a new perspective on the PGPR framework which

addressed each of these challenges.

The PLVM provides a flexible approach to modelling the evolution of a

FVT over a known phylogeny. Its construction, which is similar to Factor Analysis

[Bartholomew et al., 2011; Lopes, 2014] and Phylogenetic Factor Analysis [Tolko↵

et al., 2017] allowed separability of the phylogeny-trait covariance function to be re-

laxed. Not only that, but it also facilitated the development of the first fully Bayesian

approach to PGPR, which inferred both the trait and phylogeny covariance func-

tions and incorporated repeated measurements for extant taxa. A Markov Chain

Monte Carlo (MCMC) inference scheme for doing so was developed in Chapter 3,

based on state-of-the-art sampling techniques for Gaussian processes [Murray et al.,

2010; Murray and Adams, 2010; Yu and Meng, 2011; Filippone et al., 2013]. This

inference scheme relied on the e�cient computation of both the pruned likelihood

and conditional distributions for general Gauss-Markov processes over a phylogeny,

each a novel contribution in its own right. This algorithm allowed the extension of

both Brownian Motion (BM) and Ornstein-Uhlenbeck (OU) models for trait evolu-

tion to the Phylogenetic Mixed Model (PMM) [Housworth et al., 2004] while also

modelling intra-taxon variation. The planned release of a statistical software pack-

age implementing this likelihood computation will aid its broader dissemination,

allowing more researchers to fit flexible models for trait evolution and maximising

the impact of this contribution. While the approach presented in Chapter 3 did

o↵er excellent ancestral reconstruction and uncertainty quantification, it su↵ered

from significant shortcomings. The PLVM considered the evolution of a single FVT

only and while inference scaled linearly with observed individuals, it scaled cubi-

cally with the number of trait measurements. It was these issues that motivated

development of the practical approach to ancestral reconstruction that followed.

The generalised PLVM, presented in Chapter 4, modelled the evolution of
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any collection of traits taking discrete or continuous values within a single frame-

work. Furthermore, the development of a Co-ordinate Ascent Variational Inference

(CAVI) scheme provided a flexible and e�cient approach to approximate Bayesian

inference for the model [Jordan et al., 1999; Bishop, 2006; Blei et al., 2017]. This

approach o↵ers significant theoretical and practical advantages over the PCMs pro-

posed by Hadjipantelis et al. [2013], Cybis et al. [2015], and Tolko↵ et al. [2017],

particularly with respect to ancestral reconstruction. It represents the first method

for evolutionary inference on a collection of traits that includes FVTs alongside

scalar-valued discrete and continuous traits, allows further relaxation of separability

for the phylogeny-trait covariance function governing PGPR, and easily accommo-

dates repeated measurements of extant taxa. Finally, CAVI performs approximate

Bayesian inference in a fraction of the time required by MCMC inference schemes,

allowing the method scale to datasets consisting of thousands of observations.

Though the generalised PLVM represents a complete solution for phyloge-

netic comparative analysis, there do remain many opportunities for further research.

For example, the method could be adapted to the case when some or all extant taxa

are missing one or more trait measurements. Given that the generalised PLVM

defines a probabilistic model for evolution, it provides a natural approach to this

problem, to which CAVI could be adapted in a reasonably straightforward manner.

In a similar vein, the model could also include trait measurements for ancestral taxa,

should they be available. Because the generalised PLVM infers correlation structure

over a set of traits, including some elements of this set for ancestral taxa may allow

the reconstruction of remaining traits with a much higher degree of certainty than

would otherwise be possible. Furthermore, this would provide valuable data for the

model to fit. As an illustrative example, consider the relationship between a bats

body mass and its echolocation call. The echolocation calls of more massive bats

tend to be at lower frequencies than for those with less body mass [Collen, 2012].

Fitting a generalised PLVM which includes a measurement of body mass alongside

the feature representation of bat echolocation should allow this correlation to be

quantified. When this is the case, estimating the body mass of ancestral bats from

the fossil record and including this ancestral trait in the generalised PLVM may

result in more certainty on the reconstruction of ancestral bat echolocation calls.

A more speculative direction to explore would be the development of a ro-

bust approach to evolutionary inference with the PLVM. Biological data is often

non-Gaussian, with empirical trait distributions often having heavy tails [Elliot and

Mooers, 2014]. In such situations, a small number of outlying observations may

severely bias any ancestral reconstruction based on Gaussian models for trait evo-
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lution. Modelling data as a stable process presents one approach to this problem,

applied to the ancestral reconstruction of eutherian mammal’s body size [Elliot and

Mooers, 2014]. Such models allow mean square continuity for the stochastic pro-

cess describing trait evolution over the phylogeny to be relaxed, and as such o↵er

methods that are robust to outliers [Nolan, 2012]. Assuming that latent variables

in the PLVM come from such a distribution may provide an even more flexible class

of models for trait evolution, although inference may prove challenging. Alterna-

tively, the application of recently proposed methods for robust Bayesian inference

to the PLVM may yield a similar e↵ect [Futami et al., 2017; Knoblauch et al., 2019;

Nakagawa and Hashimoto, 2020].

As a final remark on the PLVM, note that this PCM is conditional on a

phylogeny, as are those proposed by Hadjipantelis et al. [2013], Cybis et al. [2015],

and Tolko↵ et al. [2017]. There is no doubt that such an approach is justified. Phe-

notypes result from the interaction between an organism’s genotype and its environ-

ment, which is to say that they are a function of both the genes and environmental

conditions [Campbell et al., 1997]. This plasticity means that closely related species

may exhibit vastly di↵erent phenotypes, making phylogenetic inference challenging.

On the other hand, the genotype is passed directly from one generation to the next,

preserving far more of the phylogenetic signal. Thus, Bayesian inference for mod-

els of gene mutation represents the current state-of-the-art approach to inferring

phylogenies [Suchard et al., 2018; Amador et al., 2018], which can then provide

the structure required for phylogenetic comparative analysis, as described by both

Cybis et al. [2015] and Tolko↵ et al. [2017]. Despite this clear justification for sepa-

rating phylogenetic inference from the phenotype, future research may challenge this

reasoning. Even after molecular analysis, there does remain uncertainty on the phy-

logeny. The logic of phylogenetic comparative analysis and ancestral reconstruction

assumes that traits do carry some phylogenetic signal; otherwise, each individual

would represent an independent observation, making the reconstruction of common

ancestors impossible. Although the phylogenetic signal-to-noise ratio may be low for

any given phenotype, including multiple phenotypes within a single analysis may al-

low this ratio to be improved. Thus, it is possible that the generalised PLVM, which

models evolution for extensive collections of traits, may be adapted to provide rig-

orous methods for phylogenetic inference. Furthermore, the pruned likelihood for

generalised Gauss-Markov processes could allow such methods to look beyond a BM

model for trait evolution. Adapting the MCMC and Variational inference schemes

proposed here to this problem even opens up the possibility of developing a unified

approach to phylogenetic inference, incorporating both molecular and phenotypic
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data.

Applying the PLVM to bat echolocation posed a particularly unusual set of

challenges for evolutionary inference. Echolocation calls are non-stationary periodic

signals. As such, their comparative analysis required a time-frequency representa-

tion of the call. Furthermore, this representation had to cohere with a linear model

for evolution. Although echolocation calls are well known to be multi-harmonic sig-

nals [Fenton et al., 2016], exploiting this structure for their comparative analysis had

proven challenging. A harmonic model for bat echolocation, such as that developed

in Chapter 5, provides a straightforward characterisation of the echolocation call,

based on models for human speech [Shi et al., 2019]. Though inference is challenging,

as it is for time-frequency analysis in general [Olhede and Walden, 2005; Hlawatsch

and Auger, 2008; Huang et al., 2009; DiCecco et al., 2013], this model o↵ers a new

perspective on bat echolocation and rigorously defines a feature representation of

the echolocation call that is straightforward to interpret. As discussed in sub-section

5.2.4, there remain many strategies for developing this harmonic model further and

doing so may well facilitate the development of new methods for echolocation call

classification [Redgwell et al., 2009; Stathopoulos et al., 2018; Mac Aodha et al.,

2018]. Given that bats have been identified as a bioindicator species [Jones et al.,

2009], bat call classification may o↵er a low-cost approach to biodiversity monitor-

ing. As such, methods for doing so accurately and e�ciently are essential. Existing

methods do not model the echolocation call itself, thus, classifiers based on the

harmonic model may prove to generalise more easily to data from many di↵erent

sources.

A single overarching goal motivated each of the methodological contributions

outlined above, that was, the ancestral reconstruction of bat echolocation. Their

application to this problem, which considered a sample of 1816 call recordings for

22 species of Mexican bat [Stathopoulos et al., 2018], concluded that extant bats

most recent common ancestor employed a multi-harmonic call with at least two

frequency components. These components consisted of a broadband sweep from

approximately 40 to 30 kHz, lasting between 3 and 8 ms. Either the first or sec-

ond harmonic was dominant, although there was a greater than 50% chance that

it was the first. These findings contradict the conclusions of Simmons and Stein

[1980], who posited that the ancestral bat call was a narrowband multi-harmonic

signal; however, they are in broad agreement with those of Schnitzler et al. [2004]

and Collen [2012]. An exceptionally satisfying aspect of the analysis presented here

is that hypothetical call recordings are easy to produce, allowing playback of the

estimated calls for long-extinct bats. Though this analysis does o↵er new insight
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into the evolution of bat echolocation, it was somewhat limited in its scope. The

study considered 22 species spread over 5 families [Stathopoulos et al., 2018], though

over 1000 extant species and 21 families are currently recognised [Simmons, 2005].

Thus, the conclusions drawn are subject to the caveat that a more representative

sample may o↵er a far greater degree of certainty on the structure of ancestral bat

echolocation calls. Despite this being the case, these results do concur with those

of [Schnitzler et al., 2004] and [Collen, 2012]. Furthermore, the rigorous approach

to uncertainty quantification taken here makes it reasonable to expect that a more

extensive study would still produce results that lie within the regions of high poste-

rior density identified here. Such a study is currently in preparation, applying the

methods developed here to the Echobank, a database containing call recordings for

the 410 species of extant bat [Collen, 2012]. Thus, while the Bayesian approach to

ancestral reconstruction has already provided novel insight into the evolution of bat

echolocation, there remains the promise of yet more to come.
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Appendix A

Tree Traversal Algorithms

A Toy Phylogeny

t6

t5

t1 t2 t3 t4

Figure A.1: A phylogeny with N = 4 terminal nodes and M = 2 internal nodes, the
positions for which are denoted ti for i = 1, . . . , N +M .

A.1 Pruned Likelihood Calculation

Consider the trait-phylogeny separable Gaussian process over T ⇥ X such that

f (t,x) ⇠ GP
�
0, kT

�
t, t0

�
kX

�
x,x0

��
(A.1)

where T denotes a phylogeny with N terminal and M internal nodes, and kT (·, ·) is

the covariance function for a first order Markov process. The model for observations

at terminal nodes is given by

Yn· ⇠ N (fn, ) ,
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for n = 1, . . . , N , where fn = (f (tn,x1) , . . . , f (tn,xD))
> for registered indices

xi 2 X for i = 1, . . . , D, and  is a diagonal covariance matrix.

Let ki,j ⌘ kT (ti, tj), and ki ⌘ ki,i, then define

�i ⌘ ki,pa(i)k
�1
pa(i), (A.2)

⌘i ⌘ ki � ki,pa(i)k
�1
pa(i)kpa(i),i, (A.3)

the conditional weighted mean and variance due to the process over T , such that

fi|fpa(i) ⇠ N (�ifpa(i), ⌘iKX ), (A.4)

for i = 1, . . . , N +M � 1, where KX is the Gram matrix of kX (·, ·).

It can be shown that

Yn|fpa(n) ⇠ N
�
�nfpa(n), ⌘nKX + 

�
, (A.5)

for n = 1, . . . , N , and the distribution of the root node is assumed to be

fN+M ⇠ N (0, kN+MKX ). (A.6)

Let ⇤n = (⌘nKX + )�1 for n = 1, . . . , N , and ⇤i = ⌘�1
i K�1

X
for i =

N + 1, . . . , N +M � 1. If KX = WW> + ✏ID, where ✏ > 0 is some small constant

which prevents kx from being ill conditioned. ⇤n can be calculated e�ciently by

the Woodbury identity [Petersen and Pedersen, 2012, sec 3.2.2]. Reformulating

Equation (3.8) here for clarity, the joint distribution over observed trait values and

the latent phylogenetic GP can be expressed as

p (Y, fN+1, . . . fN+M ) =
 

NY

n=1

p
�
Yn·|fpa(n)

�
! 

N+MY

i=N+1

p
�
fi|fpa(i)

�
!
p (fN+M ) ,

Given (3.8), consider the marginal density in the case of the toy example in

figure 3.1, that is

p(Y1·,Y2·,Y3·,Y4·) =

Z  Z  
3Y

i=1

p(Yi·|f5)

!
p(f5|f6)df5

!
p(Y4·|f6)p(f6)df6,

=

Z
p(Y1·,Y2·,Y3·|f6)p(Y4·|f6)p(f6)df6.
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From this example, (3.10) can be deduced, that is

p({Y}
post
h |fpa(h)) =

Z
p({Y}

post
h |fh)p(fh|fpa(h))dfh,

=

Z 0

@
Y

i2ch(h)

p({Y}
post
i |fh)

1

A p(fh|fpa(h))dfh, (A.7)

where {Y}
post
h denotes the set of observed traits descendant from and including th,

and ch (h) is the set of children for th. Thus, the marginal density p(Y1, . . . ,YN )

can be calculated by a post-order traversal of T , which proceeds from terminal

nodes to the root, calculating the partial mean vector, mpost
i ; precision matrix,

⇤post
i ; and scaling constant, ci; associated with distribution at each ti 2 T ; for i =

1, . . . , N +M , “pruning” away descendant nodes. The marginal density calculated

by this algorithm is called the pruned likelihood.

Initialise the algorithm by setting mpost
n = Yn·,⇤

post
n = ⇤n, and cn = 1 for

n = 1, . . . , N . For h = N + 1, . . . , N +M and i 2 ch (h)

p({Y}
post
i |fh) = N

✓
mpost

i |�ifh,
⇣
⇤post

i

⌘�1
◆
,

= ��D
i N

✓
fh|�

�1
i mpost

i ,
⇣
�2i⇤

post
i

⌘�1
◆
,

= ��D
i N

⇣
fh|m̃i, ⇤̃

�1
i

⌘
,

where mean of the Gaussian distribution has been rearranged [Petersen and Peder-

sen, 2012, eq 357] and

m̃i = ��1
i mpost

i ,

⇤̃i = �2i⇤
post
i .

It can be shown that

Y

i2ch(h)

p({Y}
post
i |fh) =

Y

i2ch(h)

��D
i N

⇣
fh|m̃i, ⇤̃

�1
i

⌘
,

= ch

0

@
Y

i2ch(h)

��D
i

1

AN

0

@fh|m
post
h ,

0

@
X

i2ch(h)

⇤̃i

1

A
�11

A (A.8)

by considering the product of Gaussian densities [Petersen and Pedersen, 2012, eq

371].
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In this case

mpost
h =

0

@
X

i2ch(h)

⇤̃i

1

A
�10

@
X

i2ch(h)

⇤̃im̃i

1

A , (A.9)

is the partial mean vector for fh given {f}posth .

The associated scaling constant is given by

ch =

dj�1Y

i=2

N

⇣
m̃ch(h)i

|mc
i ,⌃

c
i

⌘
,

where

mc
i =

0

@
i�1X

j=1

⇤̃ch(h)j

1

A
�10

@
i�1X

j=1

⇤̃ch(h)j
m̃ch(h)j

1

A ,

⌃c
i =

0

@
i�1X

j=1

⇤̃ch(h)j

1

A
�1

+ ⇤̃
�1
ch(h)i

,

=

0

@
i�1X

j=1

⇤̃ch(h)j

1

A
�10

@
i�1X

j=1

⇤̃ch(h)j
+ ⇤̃ch(h)i

1

A ⇤̃�1
ch(h)i

.

Substituting (A.8) into (A.7) yields

p({Y}
post
h |fpa(h)) =

Z
N

⇣
fh|�hfpa(h), (⇤h)

�1
⌘
⇥

ch

0

@
Y

i2ch(h)

��D
i

1

AN

0

@fh|m
post
h ,

0

@
X

i2ch(h)

⇤̃i

1

A
�11

A dfh,

= ch

0

@
Y

i2ch(h)

��D
i

1

AN

✓
mpost

h |�hfpa(h),
⇣
⇤post

h

⌘�1
◆
, (A.10)

where

⇤post
h =

0

@⇤�1
h +

0

@
X

i2ch(h)

⇤̃i

1

A
�11

A

�1

,

= ⇤h

0

@⇤h +
X

i2ch(h)

⇤̃i

1

A
�10

@
X

i2ch(h)

⇤̃i

1

A ,
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The algorithm is completed by noting that �N+M = 1 and ⌘N+M = kN+M

and so the pruned likelihood is expressed as

p (Y) =

 
N+MY

h=1

��D
h ch

!
N

✓
mpost

N+M |0,
⇣
⇤post

N+M

⌘�1
◆
.

A.2 Pruned Conditional Distribution

Given that

p (f⇤|Y,W, ✓T ,⇤) = N (f⇤|m⇤,K⇤) , (A.11)

for f⇤ = (f (t⇤,x1) , . . . , f (t⇤,xD)) for some ancestral position t⇤ 2 T , where T

denotes a phylogeny with N terminal and M internal nodes, and xi 2 X indexes

the registered trait space, the following describes an algorithm computing m⇤ and

K⇤ in O
�
N2

�
operations.

LetY�n· denoteY less it’s nth row. Let {Y}
pre
⇤ = Y/{Y}

post
⇤ , where {Y}

post
h

denotes the set of observed traits descendant from and including th. This is to say

that {Y}
pre
⇤ [ {Y}

post
⇤ = Y, {Y}

pre
N+M = ?, and {Y}

pre
n = Y�n· for n = 1, . . . , N .

Suppressing notation for the dependence of f⇤ on {W, ✓T ,⇤}, rewriting (A.11) yields

p (f⇤|Y) = p
�
f⇤|{Y}

post
⇤ , {Y}

pre
⇤

�
,

/ p
�
f⇤, {Y}

post
⇤ |{Y}

pre
⇤

�
,

= p
�
{Y}

post
⇤ |f⇤

�
p (f⇤|{Y}

pre
⇤ ) . (A.12)

It has already been shown in (A.8) that

p({Y}
post
⇤ |f⇤) =

Y

i2ch(⇤)

p({Y}
post
i |f⇤),

/ N

0

@f⇤|m
post
⇤ ,

0

@
X

i2ch(⇤)

⇤̃i

1

A
�11

A ,

and so it remains to find p(f⇤|{Y}
pre
⇤ ).

Consider the expression

p(f⇤|{Y}
pre
⇤ ) =

Z
p
⇣
f⇤, fpa(⇤)|

n
{Y}

post
sib(⇤)

o
, {Y}

pre
pa(⇤)

⌘
dfpa(⇤),

=

Z
p
�
f⇤|fpa(⇤)

�
p
⇣
fpa(⇤)|

n
{Y}

post
sib(⇤)

o
, {Y}

pre
pa(⇤)

⌘
dfpa(⇤). (A.13)
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where sib(⇤) denotes the siblings of t⇤ and
n
{Y}

post
sib(⇤)

o
is the set

n
{Y}

post
i : i 2 sib(⇤)

o
.

The first term of (A.13) is defined in (A.4). The second term is more involved

and, similarly to (A.12), can be expressed as

p
⇣
fpa(⇤)|{{Y}

post
sib(⇤)}, {Y}

pre
pa(⇤)

⌘
/ p

⇣
fpa(⇤), {{Y}

post
sib(⇤)}|{Y}

pre
pa(⇤)

⌘
,

= p
⇣
{{Y}

post
sib(⇤)}|fpa(⇤)

⌘
p
⇣
fpa(⇤), |{Y}

pre
pa(⇤)

⌘

=

0

@
Y

j2sib(⇤)

p
⇣
{Y}

post
j |fpa(⇤)

⌘
1

A p
⇣
fpa(⇤)|{Y}

pre
pa(⇤)

⌘
.

(A.14)

From (A.8) it can be seen that that

Y

j2sib(⇤)

p
⇣
{Y}

post
j |fpa(⇤)

⌘
/

Y

j2sib(⇤)

N

⇣
fpa(⇤)|m̃j , ⇤̃

�1
j

⌘
, (A.15)

and so, substituting (A.15) into (A.14), which in turn is substituted into (A.13),

p(f⇤|{Y}
pre
⇤ ) /

Z
N
�
f⇤|�⇤fpa(⇤),⇤

�1
⇤

�
⇥

0

@
Y

j2sib(⇤)

N

⇣
fpa(⇤)|m̃j , ⇤̃

�1
j

⌘
1

A⇥

N

✓
fpa(⇤)|m

pre
pa(⇤),

⇣
⇤pre
pa(⇤)

⌘�1
◆
dfpa(⇤),

/

Z
N

⇣
fpa(⇤)|�

�1
⇤ f⇤,

�
�2⇤⇤⇤

��1
⌘
N

⇣
fpa(⇤)|m̂⇤, ⇤̂

�1
⇤

⌘
dfpa(⇤),

/ N

⇣
��1
⇤ f⇤|m̂⇤,

�
�2⇤⇤⇤

��1
+ ⇤̂�1

⇤

⌘

/ N

⇣
f⇤|m

pre
⇤ , (⇤pre

⇤ )�1
⌘
,

where the new temporary variables

⇤̂⇤ = ⇤pre
pa(⇤) +

X

j2sib(⇤)

⇤̃j ,

m̂⇤ = ⇤̂�1
⇤

0

@⇤pre
pa(⇤)m

pre
pa(⇤) +

X

j2sib(⇤)

⇤̃jm̃j

1

A ,

allow a convenient expression of the pre-order traversal partial mean vector and
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precision scalar, that is

mpre
⇤ = �⇤m̂⇤. (A.16)

⇤pre
⇤ =

✓
(⇤⇤)

�1 +
⇣
��2
⇤ ⇤̂⇤

⌘�1
◆�1

,

= ⇤⇤

⇣
⇤⇤ + ��2

⇤ ⇤̂⇤

⌘�1
��2
⇤ ⇤̂⇤ (A.17)

The quantities (A.17) and (A.16) can be calculated by traversing T the root to t⇤,

given that mpre
N+M = 0 and ⇤pre

N+M = (kN+MKX )
�1.

Therefore

p (f⇤|Y) / p
�
{Y}

post
⇤ |f⇤

�
p (f⇤|{Y}

pre
⇤ ) ,

= N

0

@f⇤|m
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⇤ ,
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@
X

i2ch(⇤)

⇤̃i

1

A
�11

AN

⇣
f⇤|m
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⇤ , (⇤pre

⇤ )�1
⌘
,

/ N (f⇤|m⇤,K⇤) ,

where

K⇤ =
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@⇤pre
⇤ +

X
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1

A
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,

m⇤ = K⇤
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Appendix B

Derivations for Variational

Inference

B.1 Co-ordinate Ascent Variational Inference Updates

The posterior distribution at (4.7) is to be approximated by the mean-field varia-

tional family which factorises according to (4.12). Given that the optimal distribu-

tion over the variational factors is q⇤ ( i) / exp
�
Eq( / i) [log p ( ,Y|T )]

�
, each of

the variational parameters required to implement CAVI can be found in turn where

the shorthand E� i [·] ⌘ Eq( / i) [·] and h ii ⌘ Eq( ) [ i] is used to provide a less

cluttered notation and dependence on fixed model parameters has been supressed.

q⇤ (X)

Interaction between the variational and true joint distributions induces the factori-

sation

q⇤(X) /
NY

n=1

DY

i=1

q⇤({X}ni),

where {X}ni denotes the auxiliary traits associated with Yni and so q⇤({X}ni) can

be considered for ordinal, categorical, and continuous traits independently.

For ordinal traits, that is for i 2 OY,

q⇤(Xni0 |Yni = k)

/ exp
�
E�Xni0 [log p (Y|X,�) p (X|Z,W)]

�

/ exp
⇣
E�Xni0

h
log � (�i,k�1  Xni0 < �i,k) N

⇣
Xni0 |W

>

i0·Zn·, 1
⌘i⌘

,
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/ � (h�i,k�1i  Xni0 < h�i,ki) Z
�1
ni0 N

⇣
Xni0 |hWi0·i

>
hZn·i, 1

⌘
,

= T N

⇣
Xni0 |hWi0·i

>
hZn·i, 1, h�i,k�1i, h�i,ki

⌘

a truncated normal distribution, where setting aXni0 ⌘ h�i,k�1i � hWi0·i
>
hZn·i and

bXni0 ⌘ h�i,ki � hWi0·i
>
hZn·i implies that

Zni0 = FN

�
bXni0

�
� FN

�
aXni0

�
(B.1)

hXni0i = hWi0·i
>
hZn·i+ Z

�1
ni0

�
N
�
aXni0

�
�N

�
bXni0

��
, (B.2)

where Zni0 is a normalising constant,N (·) ⌘ N (·|0, 1) and FN (·) ⌘
R
·

�1
N (x|0, 1) dx.

For categorical traits, when i 2 CY, the optimal variational distribution is

q⇤({X}ni|Yni = ci,k)

/ exp
�
E�{X}ni

[log p (Y|X) p (X|Z,W)]
�

/ exp
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=
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T N
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>
hZn·i, 1,�1, 0

⌘

where for bXn,i0+j�1 ⌘ �hWi0+j�1,·i
>
hZn·i

Zn,i0+j�1 = FN

�
bXn,i0+j�1

�
(B.3)

hXn,i0+j�1i = hWi+j�1,·i
>
hZ?

n·i � Z
�1
n,i0+j�1N

�
bXn,i0+j�1

�
. (B.4)

Finally, for continuous and function-valued traits, that is for all i 2 RY, the

auxiliary and manifest traits are equivalent and so q⇤(Xni0 |Yni) = � (Xni0 = Yni)

and

hXni0i = Yni. (B.5)

.
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q⇤ (Wi0·)

The optimal variational distribution for the loading matrix rows is given by

q⇤ (Wi0·)

/ exp
�
E�Wi0· [log p (X|W,Z,⇤) p (W|W,↵)]

�
,

/ exp

 
E�Wi0·

"
log

NY

n=1

N

⇣
Xni0 |W

>

i0·Zn·,⇤
�1
i0

⌘
N

✓
Wi0·|W

⇤

i0·,
⇣
Ai0

⌘�1
◆#!

,

/ N
�
W·i0 |hWi0·i,S

W
i0
�
,

where the variational parameters are defined as

SW
i0 =

⇣
h⇤i0ihZ

?>Z?
i+ hAi0

i

⌘�1
, (B.6)

hWi0·i = SW
i0

⇣
h⇤i0ihZ

?
i
>
hX·i0i+ hA

i0
ihW⇤

i0·i

⌘
(B.7)

which are functions of

hZ?>Z?
i =

NX

n=1

hZn·Z
>

n·i,

=
NX

n=1

SZ
n + hZn·ihZn·i

>, (B.8)

hW⇤

i0·i = hW�i0,·i
>
�
KW

�i0,�i0
��1

KW
�i0,i0

and the Q-dimensional diagonal matrix Ai with entries

hAi0
j i = h↵ji

⇣
KW

i0i0 �KW
i0,�i0

�
KW

�i0,�i0
��1

KW
�i0,i0

⌘�1
,

for the fixed prior covariance matrix KW.

q⇤ (Zn·)

When deriving the approximate posterior for the factors over T , the terminal and

internal nodes must be considered as separate cases. Starting with the terminal

nodes, that is Zn· for n = 1, . . . , N

q⇤ (Zn·)

/ exp (E�Zn· [log p (X|W,Z,⇤) p (Z|✓)]) ,
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/ exp

0

@E�Zn·

2

4logN
�
Xn·|WZn·,⇤

�1
� QY

j=1

N
�
Znj |�n,jZpa(n),j , ⌘n,j

�
3

5

1

A ,

/ N
�
Zn·|hZn·i,S

Z
n

�
,

where

SZ
n =

⇣
hW>⇤Wi+ hEn

i

⌘�1
, (B.9)

hZn·i = SZ
n

⇣
hWi>h⇤ihXn·i+ hE

n�n
ihZpa(n),·i

⌘
. (B.10)

Note that pa (n) denotes the parent node of node n, �n and En are Q-dimensional

diagonal matrices with entries �n
j = �n,j and En

j = ⌘�1
n,j , and

hW>⇤Wi =
D0X

i=1

h⇤i0ihWi0·Wi0·i
>,

=
D0X

i0=1

h⇤i0i

⇣
SW
i + hWi0·ihWi0·i

>

⌘
. (B.11)

For internal nodes, that is Zn· for n = 1, . . . , N + 2S � 1, the optimal ap-

proximate posterior is given by

q⇤ (Zn·)

/ exp (E�Zn· [log p (Z|✓)]) ,

/ exp

0

@E�Zn·

2

4log
QY

j=1

N
�
Znj |�n,jZpa(n),j , ⌘n,j

� Y

k2{ch(n)}

N (Zk,j |�k,jZnj , ⌘k,j)

3

5

1

A ,

/

QY

j=1

N

⇣
Znj |hZnji,

�
SZ
n

�
j

⌘
,

where SZ
n is a diagonal matrix with elements

�
SZ
n

�
j
=

0

@h⌘�1
n,ji+

X

k2{ch(n)}

h�2n,k⌘
�1
n,ki

1

A
�1

, (B.12)

hZnji =
�
SZ
n

�
j

0

@h⌘�1
n,j�n,jihZpa(n),ji+

X

k2{ch(n)}

h�n,k⌘
�1
n,kihZkji

1

A , (B.13)

and at the root node, that is R ⌘ N + 2S � 1, �R,j ⌘ 1, ⌘R,j ⌘ kj (tR, tR|T ), and
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Zpa(R)· ⌘ 0.

q⇤ (⇤,↵,✓)

For the approximate distribution over auxiliary trait precision parameters, ARD

precision hyper-parameters on the loading, and hyper-parameters of the Gaussian

process over T , interaction between the true joint distribution and the mean-field

variational family results in further factorisation of the approximate posterior such

that

q (⇤,↵,✓) = q (⇤) q (↵) q (✓) ,

=
Y

i02RX

q (⇤i0)
QY

j=1

q (↵j) q (✓j) ,

and each of the approximate posterior distributions can be derived independently.

The optimal distribution for the i
0th diagonal element of the model precision

matrix, when i0 2 RX and so is a free parameter, is given by

q⇤ (⇤i) / exp
�
E�⇤i0 [log p (X|Z,W,⇤) p(⇤)]

�
,

/ exp
�
E�⇤i0

⇥
logN

�
X·i0 |ZWi0·,⇤

�1
i0
�
Gamma (⇤i0 | a⇤, b⇤)

⇤�
,

/ Gamma
⇣
⇤i0 |â

i0
⇤, b̂

i0
⇤

⌘
,

for

âi
0
⇤ = a⇤ +

N

2
, (B.14)

b̂i
0
⇤ = b⇤ +

1

2

⇣
hX·i0i

>
hX·i0i � 2hX·i0i

>
hZihWi0·i+ tr

⇣
hWi0·W

>

i0·ihZ
>Zi

⌘⌘
,

(B.15)

which implies that

h⇤i0i =
âi

0
⇤

b̂i
0
⇤

, (B.16)

hlog⇤i0i =  
⇣
âi

0
⇤

⌘
� log b̂i⇤, (B.17)

where  (·) is the digamma function. When i /2 RX, h⇤i0i ⌘ 1 and hlog⇤i0i = 0. If

it is assumed that any ⇤i0 = ⇤k0 for some i0, k0 2 RX, i0 6= k0, then q⇤ (⇤i0) can be

obtained by summing over all relevant indices.

Similarly, the optimal approximate posterior for the ARD precision para-
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mater of the jth column of the loading matrix is

q⇤ (↵j) / exp
�
E�↵j [log p (W|↵) p(↵)]

�
,

/ exp
⇣
E�↵j

h
logN

⇣
W·j |0,↵

�1
j KW

⌘
Gamma (↵j | a↵, b↵)

i⌘
,

/ Gamma
⇣
↵j |â

j
↵, b̂

j
↵

⌘
,

for

âj↵ =
D0

2
+ a↵ (B.18)

b̂j↵ =
1

2
tr
⇣�

KW
��1
hW·jW

>

·j i

⌘
+ b↵ (B.19)

where

hW·jW
>

·j i = VW
j + hW·jihW·ji

>, (B.20)

with diagonal matrix
⇣
VW

j

⌘

ii
⌘
�
SW
i

�
jj
. This implies that

h↵ii =
âj↵

b̂j↵
, (B.21)

hlog↵ji =  
�
âj↵
�
� log b̂j↵., (B.22)

Finally, the variational distribution for ✓j is given by

q⇤ (✓j) / exp
�
E�✓j [log p (Z·j |✓j) p(✓j)]

�

/ exp

 
E�✓j

"
N+2S�1Y

n=1

logN
�
Znj |�n,jZpa(n), ⌘n,j

�

Gamma (`j |2, 1)Beta(j |1, 1)Beta(⌧j |1, 1)

#!

/ exp

 
N+2S�1X

n=1

�
1

2
log ⌘n,j �

hZ2
nji � 2hZnjihZpa(n),ji+ �2n,jhZ

2
pa(n),ji

2⌘n,j

+ log ⌧j + log (1� ⌧j) + log j + log (1� j) + log `j � `j

!
(B.23)

where

hZ2
nji =

�
SZ
n

�
jj
+ hZnji

2.
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This distribution does not yield an analytic solution for ✓j , however it’s computa-

tion does scale linearly with N . If full uncertainty quantification for these hyper-

parameters is required then a Monte Carlo method (i.e. Adaptive Metropolis [Haario

et al., 2001; Roberts and Rosenthal, 2009]) can be employed to draw SMC samples

from this distribution. The required expectations can then be estimated by

h'ji =
SMCX

s=1

'(s)
j (B.24)

where

'j =

⇢
`j ,j , ⌧j , log p (✓j) ,

n
�n,j , ⌘n,j , log ⌘n,j ,�n,ji⌘

�1
n,j ,�

2
n,j⌘

�1
n,j

oN+2S�1

n=1

�

A less computationally expensive approach is to set the approximating dis-

tribution to be an indicator function, such that q (✓j) ⌘ � (✓j = h✓ji), and optimise

the ELBO directly. In this case
�
h�n,ji, h⌘n,ji, hlog ⌘n,jih�n,ji⌘

�1
n,ji, h�

2
n,j⌘

�1
n,ji

 N+2S�1
n=1

can be computed directly from h✓ji.

q⇤ (�i,k)

The optimal mean-field variational family approximate posterior distribution for

free ordinal cut-o↵ points, that is when i 2 OY and k = 2, . . . ,Ki � 1, is given by

q⇤ (�i,k)

/ exp
�
E�Xni0 [log p (Y|X,�) p (�)]

�

/ exp

0

@E��i,k

2

4log
NY

n=1

0

@
KiX

j=1

� (Yni = j) � (�i,j�1  Xni0 < �i,j)

1

A

3

5

1

A , (B.25)

for which no closed form solution exists. In this case however, uncertainty quantifica-

tion for �i,k is not a priority. Thus rather than attempting to find h�i,ki under (B.25),

simply set q (�i,k) = � (�i,k = h�i,ki) and optimse with respect to the ELBO , noting

that h�i,ki 2
⇥
b�i,kc, d�i,ke

�
where b�i,kc = max{max{hXni0i|Yni = k}, h�i,k�1i} and

d�i,ke = min{min{hXni0i|Yni = k + 1}, h�i,k+1i, h�i,k�1i+ b�}.
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B.2 The Evidence Lower Bound

The Evidence Lower Bound (ELBO) is the objective function being maximised in

Variational Inference. For the generalised PLVM the ELBO is of the form

ELBO (q) = Eq [log p (Y|X,�)]

+ Eq [log p (X|Z,W,⇤)]� Eq [log q (X)]

+ Eq [log p (Z|✓, T )]� Eq [log q (Z)]

+ Eq [log p (W|↵)]� Eq [log q (W)]

+ Eq [log p (⇤)]� Eq [log q (⇤)]

+ Eq [log p (�)]� Eq [log q (�)]

+ Eq [log p (↵)]� Eq [log q (↵)]

+ Eq [log p (✓)]� Eq [log q (✓)] . (B.26)

It is worth noting that, for a continuous random variable X, the di↵erential

entropy is defined by �Ep(x) [log p (X)] [Bishop, 2006]. Thus if Eq [log p (Y|X,�)] is

considered to be the expected likelihood of the manifest traits with respect to the

variational distribution q (⇥) , then each subsequent each line of the ELBO presented

above can be in terms of an entropy term �Eq [log q ( i)] less a cross-entropy term

�Eq [log p ( i| �i)]. Each line of ELBO (q) is considered in turn below and by

substituting each of these into (B.26), ELBO (q) can be computed.

Eq [log p (Y|X,�)]

The expected log likelihood of the manifest traits given auxiliary traits and ordinal

cut-o↵ points can be expressd as Eq [log p (Y|X,�)] = Eq [log � (Yn· = g (Xn·))],

which is to say that ELBO (q) is undefined when the conditions set out by the

auxiliary to manifest mapping are not satisfied.

Eq [log p (X|Z,W,⇤)]� Eq [log q (X)]

To compute the contribution of auxiliary traits to ELBO (q) consider each type of

trait in turn. Given that the entropy of an indicator function is 0, for function-valued

and continuous traits the auxiliary contribution is given by

X

i02RX

NX

n=1

Eq [log p (Xni0 |Zn·,Wi0·,⇤i0)]� Eq [log q (Xni0)]
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=
X

i02RX

NX

n=1

Eq
⇥
logN

�
Xni0 |Wi0·Zn·,⇤

�1
i0
�⇤
� Eq [log � (Xni0 = Yni0)] ,

=
X

i02RX

�
N

2
log 2⇡ +

N

2
hlog⇤ii

�
h⇤ii

2

⇣
hX·i0i

>
hX·i0i � 2hX·ii

>
hZ?
ihWi0·i+ tr

⇣
hZ?>Z?

ihWi0·W
>

i0·i

⌘⌘
,

(B.27)

where the required quantities are defined in (B.17), (B.16), (B.5), (B.10), (B.7),

(B.8), and (B.11).

For continuous traits, when Yni = ci,kn for kn 2 {1, . . . ,Ki}, the following

holds

X

i02CX

NX

n=1

KiX

l=1

Eq
⇥
log p

�
Xn,i0+l�1|Zn·,Wi0+l�1,·

�⇤
� Eq

⇥
log q

�
Xn,i0+l�1

�⇤

=
X

i02CX

NX

n=1

Eq
⇥
logN

�
0|Wi0+kn�1,·Zn·, 1

�⇤
� Eq [log � (Xn,i+kn�1 = 0)]

+
X

l 6=kn

Eq
⇥
logN

�
Xn,i0+l�1|Wi0+l�1,·Zn·, 1

�⇤

� Eq

h
log �

�
Xn,i0+l�1 < 0

�
Z

�1
n,i0+l�1 N

⇣
Xn,i0+l�1|hWi0+l�1,·i

>
hZn·i, 1

⌘i
,

=
X

i02CX

NX

n=1

�
1

2
log 2⇡ �

1

2
tr
⇣
hZn·Z

>

n·ihWi0+kn�1,·W
>

i0+kn�1,·i

⌘

+
X

l 6=kn

�
1

2
log 2⇡ �

1

2

⇣
hX2

n,i0+l�1i � 2hXn,i0+l�1ihWi0+l�1,·i
>
hZn·i

+ tr
⇣
hZn·Z

>

n·ihWi0+l�1,·W
>

i0+l�1,·i

⌘⌘

+ logZn,i0+l�1 +
1

2
log 2⇡ +

1

2

✓
hX2

n,i0+l�1i

� 2hXn,i0+l�1ihWi0+l�1,·i
>
hZn·i+

⇣
hWi0+l�1,·i

>
hZn·i

⌘2◆
,

=
X

i02CX

�
N

2
log 2⇡ +

NX

n=1

�
1

2
tr
⇣
hZn·Z

>

n·ihWi0+kn�1,·W
>

i0+kn�1,·i

⌘

+
X

l 6=kn

�
1

2
tr
⇣
hZn·Z

>

n·ihWi0+l�1,·W
>

i0+l�1,·i

⌘
+

1

2

⇣
hWi0+l�1,·i

>
hZn·i

⌘2

+ logZn,i0+l�1, (B.28)

where the categorical normalising constant Zn,i0+l�1 is defined in (B.3).
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Finally, the contribution of ordinal traits to ELBO (q) when Yni = kn with

kn 2 {1, . . . ,Ki} can be expressed as

X

i02OX

NX

n=1

Eq
⇥
log p

�
Xn,i0 |Zn·,Wi0·

�⇤
� Eq [log q (Xni0)]

=
X

i02RX

NX

n=1

Eq [logN (Xni0 |Wi0·Zn·, 1)]

� Eq

h
log � (h�i,kn�1i  Xni0 < h�i,kni) Z

�1
ni0 N

⇣
Xni0 |hWi0·i

>
hZn·i, 1

⌘i
,

=
X

i02OX

�
N

2
log 2⇡ �

1

2

⇣
hX>

·i0X·i0i � 2hX·ii
>
hZ?
ihWi0·i

+ tr
⇣
hZ?>Z?

ihWi0·W
>

i0·i

⌘⌘

+
N

2
log 2⇡ +

1

2

⇣
hX>

·i0X·i0i � 2hX·ii
>
hZ?
ihWi0·i

+ tr
⇣
hZ?
i
>
hZ?
ihWi0·ihW

>

i0·i

⌘⌘
+

NX

n=1

logZni0 ,

=
X

i02OX

�
1

2
tr
⇣
hZ?>Z?

ihWi0·W
>

i0·i

⌘
+

1

2
tr
⇣
hZ?
i
>
hZ?
ihWi0·ihW

>

i0·i

⌘
+

NX

n=1

logZni0 ,

(B.29)

where the ordinal normalising constant Zn,i0 is given in (B.1). This completes the

contribution of the auxiliary traits to ELBO (q)

Eq [log p (Z|✓, T )]� Eq [log q (Z)]

The contribution of all factors over T to ELBO (q) is given by

Eq [log p (Z|✓, T )]� Eq [log q (Z)]

=
N+2S�1X

n=1

�Eq [log q (Zn·)] +
QX

j=1

Eq
⇥
logN

�
Znj |�n,jZpa(n),j , ⌘n,j

�⇤
,

=
N+2S�1X

n=1

Q

2
log 2⇡ +

1

2
log |eSZ

n |+
QX

j=1

�
1

2
log 2⇡ �

1

2
hlog ⌘n,ji

�
hZ2

njih⌘
�1
n,ji

2
+ hZnjih�n,j⌘

�1
n,jihZpa(n),ji �

h�2n,j⌘
�1
n,jihZ

2
pa(n)ji

2
,

=
N+2S�1X

n=1

1

2
log |eSZ

n |+
QX

j=1

�
1

2
hlog ⌘n,ji

148



�
hZ2

njih⌘
�1
n,ji

2
+ hZnjih�n,j⌘

�1
n,jihZpa(n),ji �

h�2n,j⌘
�1
n,jihZ

2
pa(n)ji

2
,

where SZ
n is defined in (B.9) and (B.12) and the functions of ✓j can be estimated by

(B.24) or computed directly when q (✓j) = � (✓j = h✓ji).

Eq [log p (W|↵)]� Eq [log q (W)]

The contribution to ELBO (q) from the loading matrix is given by

Eq [log p (W|↵)]� Eq [log q (W)]

=
QX

j=1

Eq

h
logN

⇣
W·j |0,↵

�1
j KZ

⌘i
�

D0X

i0=1

Eq [log q (Wi0·)] ,

= �
Q

2
log |KW

|+
QX

j=1

D0

2
hlog↵ji �

h↵ji

2
tr
⇣
hW·jW

>

·j i
�
KW

��1
⌘

+
D0X

i0=1

1

2
log |eSW

i0 |, (B.30)

where the required quantities are defined at (B.22), (B.21), (B.20), and (B.6).

Eq [log p (⇤)]� Eq [log q (⇤)] + Eq [log p (↵)]� Eq [log q (↵)]

Auxiliary and ARD precision parameters both have Gamma prior and approximate

posterior distributions and so are presented together. Note that this presentation

assumes that ⇤i0 is a free parameter for all i0 2 RX. If this does not apply then

the summation for ⇤ should be over free parameters only. Their contribution to

ELBO (q) is

Eq [log p (⇤)]� Eq [log q (⇤)] + Eq [log p (↵)]� Eq [log q (↵)]

=
X

i02RX

Eq [logGamma (⇤i0 |a⇤, b⇤)]� Eq

h
logGamma

⇣
⇤i0 |â

i0
⇤, b̂

i0
⇤

⌘i

+
QX

j=1

Eq [logGamma (↵j |a↵, b↵)]� Eq

h
logGamma

⇣
↵j |â

j
↵, b̂

j
↵

⌘i
,

=
X

i02RX

a⇤ log b⇤ � âi
0
⇤ log b̂i

0
⇤ � log�(a⇤) + log�(âi

0
⇤)

+
⇣
a⇤ � âi

0
⇤

⌘
hlog⇤ii �

⇣
b⇤ � b̂i

0
⇤

⌘
h⇤ii (B.31)
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+
QX

j=1

a↵ log b↵ � âj↵ log b̂
j
↵ � log�(a↵) + log�(âj↵)

+
�
a↵ � âj↵

�
hlog↵ji �

⇣
b↵ � b̂j↵

⌘
h↵ji (B.32)

where the relevant quantities are defined at (B.14), (B.15), (B.17), (B.16), (B.18),

(B.19), (B.22), and(B.21).

Eq [log p (�)]� Eq [log q (�)]

The contribution of the ordinal trait cut-o↵s is relatively straightforward to compute,

and is given by

Eq [log p (�)]� Eq [log q (�)]

=
X

i2OY

X

k2{2,....Ki�1}

Eq [logU (�i,k|�i,k�1, �i,k�1 + b�)]� 0,

=
X

i2OY

X

k2{2,....Ki�1}

� log b� , (B.33)

where b�i,kc and d�i,ke have been defined along with (B.25).

Eq [log p (✓)]� Eq [log q (✓)]

The final contribution to ELBO (q) comes from the phylogenetic hyperparameters

✓. Two approaches to optimising ✓ have been outlined, sampling from the optimal

mean field variational family approximate posterior and setting q (✓) = � (✓ = h✓i).

Each of these approximations require di↵erent approaches to calculating ELBO (q).

When the sampling approach has been taken

Eq [log p (✓)]� Eq [log q (✓)] =
QX

j=1

hlog p (✓j)i � hlog q (✓j)i,

where hlog p (✓j)i is estimated in (B.24) and hlog q (✓j)i must be estimated using

some multivariate estimation technique such as that provided by the “IndepTest”

package in R [Berrett et al., 2018, 2019].

Alternatively, when approximating the posterior for ✓ with an indicator func-

tion,

Eq [log p (✓)]� Eq [log q (✓)] =
QX

j=1

log p (h✓ji) .
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B.3 Predictive Distribution

Consider the variational predictive distribution over manifest traits at some unob-

served position t⇤ 2 T approximating the true predictive distribution given the

observed manifest trait, a known phylogeny, loading matrix, auxiliary precision ma-

trix, ordinal trait cut-o↵ points, hyper-parameters for the Gaussian processes over

T , and the ARD precision parameters. Assuming that each parameter takes it’s

expectation unter the optimal approximate posterior yields

p (Y⇤·|t⇤,Y, T ,W,⇤,�,✓,↵)

⇡ q (Y⇤·|t⇤,Y, T , hWi, h⇤i, h�i, h✓i, h↵i) ,

=

Z
q (Y⇤·X⇤·,Z⇤·|t⇤,Y, T , hWi, h⇤i, h�i, h✓i, h↵i) dX⇤· dZ⇤·,

=

Z
p (Y⇤·|X⇤·, h�i) p (X⇤·|Z⇤·, hWi, h⇤i) q (Z⇤·) dX⇤· dZ⇤·,

=

Z
� (Y⇤· = g (X⇤·))N

�
X⇤·|hWiZ⇤·, h⇤i

�1
�
N
�
Z⇤·|hZ⇤·i,S

Z
⇤

�
dX⇤· dZ⇤·,

=

Z
� (Y⇤· = g (X⇤·))N

⇣
X⇤·|hWihZ⇤·i, h⇤i

�1 + hWiSZ
⇤ hWi

>

⌘
dX⇤·.

To obtain the marginal predictive distribution for each manifest trait, recall

that ⇤i0 = 1 for all i0 2 {OX, CX} and set ⌫⇤i0 =
p
1 + hWi0·i

>SZ
⇤ hWi0·i, then for

i 2 OY

p (Y⇤i = k|t⇤,Y, T ,W,⇤,�,✓,↵)

⇡

Z
� (h�i,k�1i  X⇤i0 < h�i,ki)N

⇣
X⇤i0 |hWi0·i

>
hZ⇤·i, (⌫

⇤

i0)
2
⌘
dX⇤i0 .

=

Z
h�i,ki

h�i,k�1i

N

✓
X⇤i0 � hWi0·i

>
hZ⇤·i

⌫⇤i0
|0, 1

◆
dX⇤i0 .

= FN

✓
h�i,ki � hWi0·i

>
hZ⇤·i

⌫⇤i0

◆
� FN

✓
h�i,k�1i � hWi0·i

>
hZ⇤·i

⌫⇤i0

◆

where FN (·) is the standard Gaussian CDF.

Deriving the predictive distribution for categorical traits requires the def-

inition of further notation. Let {W}⇤i and {X}⇤i denote the loading and auxil-

iary traits associated with manifest trait Y⇤i, while {W�k}⇤i and {X�k}⇤i are the

same auxiliary traits and loadings less those associated with ci,k. For notational

ease, define mi⇤
⌘ h{W}⇤iihZ⇤·i, Ni⇤

⌘ I + h{W}⇤iiSZ
⇤ h{W}⇤ii and ⌫⇤i0+k�1 ⌘ ⌫⇤k ,

which can be extended to m̃i⇤
�k = mi⇤

�k +Ni⇤
�k,k (⌫

⇤

k)
�2 �X⇤i0+k�1 �mi⇤

k

�
and Ni⇤

�k =

Ni⇤
�k,�k �Ni⇤

�k,k (⌫
⇤

k)
�2Ni⇤

k,�k, where k again refers to ci,k. Let Li
�k

�
Li
�k

�>
= Ni⇤

�k,
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then, when i 2 CY

p (Y⇤i = ci,k|t⇤,Y, T ,W,⇤,�,✓,↵)

⇡

Z
� (X⇤i0+k�1 > X⇤i0+l�1 8 l 6= k)N

�
{X}⇤i|m

i⇤,Ni⇤
�
d{X}⇤i,

=

Z
1

�1

N

⇣
X⇤i0+k�1|m

i⇤
k , (⌫

⇤

k)
2
⌘Z X⇤i0+k�1

�1

N
�
{X�k}⇤i|m̃

i⇤
�k,N

i⇤
�k

�
d{X}⇤i dX⇤i0+k�1,

=

Z
1

�1

N (u|0, 1)

Z u⌫⇤k+mi⇤
k

�1

N

⇣
{X�k}⇤i|m
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�k +Ni⇤

�k,k (⌫
⇤

k)
�1 u,Li

�k

�
Li
�k

�>⌘
d{X}⇤i du,

= Ep(u)

"
Ki�1Y

l=1

Z uki⇤
l

�1

N (vl|0, 1) dvl

#
,

= Ep(u)

"
Ki�1Y

l=1

FN

⇣
uki⇤
l

⌘#
,

where uki⇤ has been defined such that Li
�ku

ki⇤ =
�
u⌫⇤k +mi⇤

k

�
1�

⇣
mi⇤

�k +Ni⇤
�k,k (⌫

⇤

k)
�1 u

⌘
,

where 1 is a vector of 1’s.

Finally, when i 2 RY,

p (Y⇤i = ci,k|t⇤,Y, T ,W,⇤,�,✓,↵)

⇡

Z
� (X⇤i0 = Y⇤i)N

⇣
X⇤i0 |hWi0·i

>
hZ⇤·i, (⌫

⇤

i0)
2
⌘
d{X}⇤i,

= N

⇣
Y⇤i|hWi0·i

>
hZ⇤·i, (⌫

⇤

i0)
2
⌘
.
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Appendix C

Alternative generalised PLVMs

The ancestral distributions implied by the R-PLVM, P-PLVM, and I-PLVM models

fit in Chapter 4 are presented in the following.
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Root Ancestral Distribution: R-PLVM

(a) Ordinal Trait (b) Categorical Trait

(c) Ancestral Distribution

(d) Approximate Ancestral Distribution

Figure C.1: A comparison of the true ancestral distribution at the root of T , with
approximate ancestral distribution given by R-PLVM. In (a) and (b) each colour in
the bars represent the probability that the trait was of that particular state, while
in (d) and (c), grey error markers represent two standard deviations from the mean.
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Root Ancestral Distribution: P-PLVM

(a) Ordinal Trait (b) Categorical Trait

(c) Ancestral Distribution

(d) Approximate Ancestral Distribution

Figure C.2: A comparison of the true ancestral distribution at the root of T , with
approximate ancestral distribution given by P-PLVM. In (a) and (b) each colour in
the bars represent the probability that the trait was of that particular state, while
in (d) and (c), grey error markers represent two standard deviations from the mean.

155



Root Ancestral Distribution: I-PLVM

(a) Ordinal Trait (b) Categorical Trait

(c) Ancestral Distribution

(d) Approximate Ancestral Distribution

Figure C.3: A comparison of the true ancestral distribution at the root of T , with
approximate ancestral distribution given by I-PLVM. In (a) and (b) each colour in
the bars represent the probability that the trait was of that particular state, while
in (d) and (c), grey error markers represent two standard deviations from the mean.
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