
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/149400

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/149400
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

UNIVERSITAS WARWICENSIS

Towards Application-centric I/O Benchmarking
for Parallel Scientific Applications

by

James Dickson

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science
The University of Warwick

September 2018

Abstract

High performance computing (HPC) systems are undergoing an explosion in the

variation and complexity of their hardware components and architectures. By

the early 2020s, it is predicted that exascale systems will be in operation, and it

is the pursuit of this capability that is currently shifting the parallel computing

landscape.

Storage systems have developed alongside the other supercomputing compo-

nents, but have struggled to keep pace with the rate of progress of computational

hardware in particular. The resulting performance bottlenecks are problematic,

as the data storage demands for the purposes of analysis and resilience are

unlikely to be reduced by the current and future generations of HPC platforms.

The principle focus of the work presented in this thesis is to enable the bench-

marking and analysis of I/O in a meaningful way, such that the performance

expected from a scientific application can be accurately measured. Specifically,

this thesis presents a case study of the profiling of multi-physics workloads for

the purpose of extracting workload characteristics that are not limited by com-

mercial sensitivity, as with the application itself. A flexible and portable I/O

proxy application is developed and validated, before being deployed with the

previously defined workloads to benchmark I/O performance on a number of

current generation systems. This thesis ends with an analysis of the replicated

workloads’ sensitivity to the configuration of di�erent elements of the I/O soft-

ware stack. An evaluation is also performed on some alternative high level I/O

implementation strategies that can be adopted to simplify the adoption of new

burst bu�er storage architectures.

ii

Acknowledgements

I first joined the Department of Computer Science in October 2010 and during

this time I have been fortunate to work with and enjoy the company of many

great people. In the first instance, I would like to thank my supervisor, Professor

Stephen Jarvis, for a�ording me the opportunity to undertake a Ph.D. Equally,

I wish to express gratitude to Dr. Satheesh Maheswaran for fulfilling the role

of my industry supervisor, and I o�er my apologies for the rafts of paperwork

you were subjected to on my behalf.

I am certain that without the advice, support and distractions o�ered by

friends and colleagues, past and present, I would not have been able to complete

this Ph.D. In particular, I wish to thank Dr. James Archbold, Dr. Robert Bird,

Dr. Richard Bunt, Dr. Adam Chester, Dr. Peter Coetzee, Dr. James Davis,

Dr. Tim Law, Dr. James Marchant, Dr. Faiz Sayiid, Dr. Phillip Taylor and

Dr. Steven Wright. Thank you all for listening to ideas, proof reading drafts of

work, and for the day to day entertainment that has kept me going.

Furthermore, I have found the Department of Computer Science a unique

place to spend the past 8 years of my life, and I have enjoyed the professionalism

and assistance of both academic and support sta� during this time. Some

of those I am thankful to include Dr. Abhir Bhlereo, Mike Cribdon, Sharon

Howard, Professor Graham Martin, Lynn McLean, and Dr. Roger Packwood.

Outside of Warwick, I have been fortunate to collaborate with industrial

contacts who have o�ered me assistance and opportunities without which I

would have not have been successful. Many of the members of the Applied

Computer Science team at AWE have not hesitated to spare their valuable time

to assist me, for which I am very grateful. This are also true of a number of

individuals I have been fortunate to work with during my time at Lawrence

Livermore National Laboratory, in particular Dr. Kathryn Mohror, Dr. Mark

iii

Miller and Dr. Elsa Gonsiorowski.

I owe an immeasurable debt of gratitude to my family for their love and

support. Thank you to Mum, Dad, Jon and my wonderful Nana for your unwa-

vering belief and encouragement. Finally but by no means least, I have to say

how grateful I am to you Danielle, I hope you know I couldn’t have managed

any of this without you.

Declarations

This thesis is submitted to the University of Warwick in support of the author�s

application for the degree of Doctor of Philosophy. It has been composed by the

author and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried

out by the author except in the cases outlined below:

• I/O profiling data in Chapter 5 for an AWE multi-physics application

run on the SpruceA supercomputer were collected by Dr. Duncan Harris

(AWE)

• The original development work for the MACSio proxy application fea-

tured in Chapter 6 was carried out by Mark Miller at Lawrence Livermore

National Laboratory (LLNL)

Parts of this thesis have been previously published by the author in the following:

[26] J. Dickson. Parallel I/O Libraries. In 1st Symposium of the Centre for

Computational Plasma Physics, University of Warwick, November 2015

[27] J. Dickson. Investigating Application I/O. In JOWOG 34 Meeting, Atomic

Weapons Establishment, June 2016

[28] J. Dickson. Replicating I/O Behaviour in Production Applications. In

JOWOG 34 Meeting, Los Alamos National Laboratory, June 2017

[29] J. Dickson. I/O Performance Analysis with Proxy Applications. In JOWOG

34 Applied Computer Science Meeting, Sandia National Laboratory, Febru-

ary 2018

[30] J. Dickson, A. Herdman, S. Maheswaran, S. a. Wright, J. a. Herdman,

and S. a. Jarvis. MINIO : an I/O benchmark for investigating high

level parallel libraries. In 27th ACM/IEEE International Conference for

v

High Performance Computing, Networking, Storage and Analysis (SC’15),

pages 5–6, September 2015. ISBN Dickson, James, Maheswaran, Satheesh,

Wright, Steven A., Herdman, J. A. and Jarvis, Stephen A. (2015) MINIO

: an I/O benchmark for investigating high level parallel libraries. In: 27th

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (SCâ�è15), Austin, Texas, USA, 15-

20 Nov 2015 (In Press). URL http://wrap.warwick.ac.uk/73143/20/

WRAP_ExtendedAbstract%2BConferenceposter.pdf

[32] J. Dickson, S. Wright, S. Maheswaran, A. Herdman, M. C. Miller, and

S. Jarvis. Replicating HPC I/O workloads with proxy applications. In

Proceedings of PDSW-DISCS 2016: 1st Joint International Workshop on

Parallel Data Storage and Data Intensive Scalable Computing Systems -

Held in conjunction with SC16: The International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 13–18,

September 2017. ISBN 9781509052165. doi: 10.1109/PDSW-DISCS.2016.

007

[31] J. Dickson, S. Wright, S. Maheswaran, A. Herdman, D. Harris, M. C.

Miller, and S. Jarvis. Enabling Portable I / O Analysis of Commercially

Sensitive HPC Applications Through Workload Replication. In Cray User

Group 2017 Proceedings, pages 7–12, May 2017

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• Atomic Weapons Establishment, United Kingdom:

AWE Technical Outreach Programme (2014-2018, CDK0724)

• EPSRC ARCHER Resource Allocation Panel (RAP) Grant:

"Preparing for Exascale with Mini-applications" (2015-2017, e402)

vii

Abbreviations

ADIOS Adaptable I/O System

ANL Argonne National Laboratory

API Application Programming Interface

ATA Advanced Technology Attachment

AWE Atomic Weapons Establishment

B/W Bandwidth

CPU Central Processing Unit

DFS Distributed File System

FLOPS Floating Point Operations Per Second

GB Gigabyte - 10243 Bytes

GPFS IBM General Parallel File System

HDD Hard Disk Drive

HDF5 Hierarchical Data Format version 5

HPC High Performance Computing

I/O Input/Output

LANL Los Alamos National Laboratory

LLNL Lawrence Livermore National Laboratory

MB Megabyte - 10242 Bytes

MDS Metadata Server

MDT Metadata Target

MGS Management Server

MPI Message Passing Interface

NFS Networked File System

NVMe Non-Volatile Memory

ORNL Oak Ridge National Laboratory

OSS Object Storage Server

viii

OST Object Storage Target

PFS Parallel File System

POSIX Portable Operating System Interface

RAID Redundant Array of Independent Disks

RPM Revolutions Per Minute

SAN Storage Area Network

SSD Solid State Drive

TB Terrabyte - 10244 Bytes

UFS Unix File System

VFS Virtual File System

Contents

Abstract ii

Acknowledgements iii

Declarations v

Sponsorship and Grants vii

Abbreviations viii

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Motivation . 4

1.2 Thesis Contributions . 6

1.3 Thesis Overview . 8

2 Performance Analysis and Engineering 11

2.1 Parallel Computing . 12

2.2 Parallel I/O and Data Storage 13

2.2.1 Issues in Parallel I/O and Data Storage 16

2.2.2 Parallel File Systems . 19

2.2.3 I/O-aware Scheduling . 19

2.2.4 Parallel I/O Software Stack 21

2.3 Performance Analysis and Engineering 27

2.3.1 Benchmarking . 27

2.3.2 Profiling . 29

2.3.3 Simulation . 30

x

2.4 Summary . 32

3 Parallel Hardware and Software Overview 33

3.1 Storage Hierarchy . 34

3.1.1 Hard Disk Drive . 34

3.1.2 Solid State Drive . 35

3.2 File Systems . 37

3.2.1 The Extended File Systems 37

3.2.2 ZFS . 40

3.2.3 XFS . 41

3.3 Clustered File Systems . 43

3.3.1 The Lustre Parallel File System 45

3.3.2 The IBM Spectrum Scale File System 49

3.4 Computing Platforms . 50

3.5 I/O Benchmarking Applications 54

3.6 Summary . 55

4 Experimental Setup 57

4.1 Common Methodology: I/O Measurement 57

4.2 Chapter 5: Profiling Multi-physics I/O

Workloads . 58

4.2.1 Bookleaf Mini-Application 58

4.2.2 AWE01 Multi-Physics Application 58

4.3 Chapter 6: Application Workload Replication 59

4.3.1 Proxy Application Validation: Bookleaf 59

4.3.2 Proxy Application Validation: FLASH-IO 60

4.4 Chapter 7: I/O Performance Benchmarking and Optimisation . . 61

4.4.1 Tuning the Parallel I/O Software Stack: Middleware . . . 61

4.4.2 Parallel File System Performance 63

4.4.3 I/O Library and File Strategy Comparisons 64

4.5 Summary . 65

5 Profiling Multi-physics I/O Workloads 67

5.1 Application Pattern Identification 68

5.1.1 Runtime Profiling . 70

5.1.2 Bookleaf Mini-Application 74

5.1.3 AWE01 Multi-Physics Application 76

5.1.4 Multi-Physics Checkpoint Analysis 80

5.2 Summary . 81

6 Application Workload Replication 83

6.1 The MACSio Proxy Application 84

6.1.1 Application Overview . 84

6.1.2 Modifications . 87

6.2 Proxy Application Validation . 94

6.2.1 Bookleaf . 96

6.2.2 FLASH-IO . 103

6.3 Summary . 107

7 I/O Performance Benchmarking and Optimisation 110

7.1 Approach . 111

7.2 Tuning the Parallel I/O Software Stack 112

7.2.1 Middleware . 112

7.2.2 Parallel File System . 123

7.3 I/O Library and File Strategy Comparisons 128

7.3.1 TyphonIO E�ciency . 129

7.3.2 N-M Parallel File Modes 133

7.4 Discussion . 138

7.5 Summary . 139

8 Discussion and Conclusions 141

8.1 Limitations . 143

8.2 Future Work . 145

8.3 Final Remarks . 146

Bibliography 147

Appendices 163

A Profiling Multi-physics I/O Workloads 163

B Application Workload Replication 164

C I/O Performance Benchmarking and Optimisation 166

List of Figures

2.1 Parallel I/O Strategies . 17

3.1 Basic structure of a hard disk drive assembly 35

3.2 Basic structure of a solid state drive assembly 36

3.3 Internal structure of an XFS allocation group 42

3.4 An example Lustre configuration with one MGS, four OSSs, four

OSTs, and one MDT with two MDSs in failover. 46

3.5 An example GPFS configuration with four OSSs and four OSTs

connected over a switching fabric 49

5.1 An example of the general pattern of simulation phases found in

scientific applications. 69

5.2 Execution pattern for Bookleaf simulating the noh_large problem

at 1, 2, 4, 8, 16, 32, and 64 Nodes. These patterns of execution

were collected on Archer with a default stripe count of 4. 75

5.3 Execution pattern for AWE01 Simulation A 77

5.4 Execution pattern for AWE01 Simulation B 78

5.5 Dataset Growth of Input B . 79

5.6 Execution pattern for AWE01 Simulation D 80

6.1 MACSio application components 84

xiv

6.2 I/O timings representing the best case (10 repititions) for Book-

leaf and the MACSio replication running on Archer (Lustre stripe

count 48). For these results the best case is shown with the vari-

ation across repetitions being less than 9.4% for each run scale.

Timings shown: (a) Start to finish time for a checkpoint (b) Cu-

mulative time spent by all processors performing I/O (c) Time

for the slowest write operation issued by a processor during each

checkpoint. 98

6.3 I/O timings representing the best case (10 repititions) for Book-

leaf and the MACSio replication running on Tinis (GPFS). For

these results the best case is shown with the variation across rep-

etitions being less than 11% for each run scale. Timings shown:

(a) Start to finish time for a checkpoint (b) Cumulative time

spent by all processors performing I/O (c) Time for the slowest

write operation issued by a processor during each checkpoint. . 100

6.4 FLASH-IO 3D mesh decomposition to a 3D processor grid and

the corresponding file layout. 105

6.5 Best case I/O timings for FLASH-IO and the MACSio replication

collected on Archer (stripe count 48) showing: (a) Start to finish

time for a checkpoint (b) Cumulative time spent by all processors

performing I/O (c) Time for the slowest write operation issued

by a processor during each checkpoint. 106

7.1 Checkpoint bandwidth for Bookleaf and Flash workloads run in-

dependently and collectively on Archer, Quartz and Ray. 114

7.2 Perceived checkpoint bandwidth for the AWE01 workloads using

independent and collective calls on Archer, Quartz and Ray. The

Lustre stripe count used on Archer and Quartz is 4 for (a) and

20 for (b) and (c). These results represent the best observed

performance across 10 repetitions. 116

7.3 Perceived checkpoint bandwidth for the Bookleaf workload on

Archer with di�erent (a) aggregator node count (b) collective

bu�er size. 120

7.4 Perceived checkpoint bandwidth for the Flash workload on Archer

with di�erent (a) aggregator node count (b) collective bu�er size. 121

7.5 Perceived file bandwidth achieved for AWE01 workloads with

simple file striping strategies on the Spruce A, Titan, Archer,

Cab, Taurus, and Tinis platforms. 124

7.6 Perceived file bandwidth achieved for AWE01 workload B over

the duration of a run using five compute nodes. Results are shown

for Spruce A, Titan, Archer, Cab, Taurus, and Tinis platforms

with standard and increased striping (stripe count is shown in

brackets). 127

7.7 Layout of di�erent data writing modes tested in MACSio. 129

7.8 Checkpoint performance for AWE01 on Archer through standard

TyphonIO, a TyphonIO-like layout using raw HDF5, and an al-

ternative user-defined hyperslab arrangement also written using

raw HDF5. 130

7.9 Checkpoint performance for AWE01 on Quartz through standard

TyphonIO, a TyphonIO-like layout using raw HDF5, and an al-

ternative user-defined hyperslab arrangement also written using

raw HDF5. 131

7.10 File bandwidth achieved for the AWE01 Problem D workload on

Quartz when using Sequential and Parallel N-M access patterns. 134

7.11 File bandwidth achieved for the AWE01 Problem D workload on

Archer when using Sequential and Parallel N-M access patterns. 134

7.12 File bandwidth achieved for the AWE01 Problem D workload on

Cab when using Sequential and Parallel N-M access patterns. . . 135

7.13 File bandwidth achieved for the AWE01 Problem D workload on

Ray’s GPFS file system and node-local burst bu�ers with N-M

access patterns. 136

List of Tables

3.1 Hardware specification of the Titan and ARCHER supercomputers. 51

3.2 Hardware specification of the Spruce A and Cab supercomputers. 52

3.3 Hardware specification of the Quartz and Ray supercomputers. . 53

3.4 Hardware specification of the Taurus and Tinis supercomputers. 54

4.1 Bookleaf profile gathering setup 58

4.2 AWE01 profile gathering setup 59

4.3 MACSio-Bookleaf Validation on Archer 60

4.4 MACSio-Bookleaf Validation on Tinis 60

4.5 MACSio-FLASH Validation on Archer 60

4.6 Collective Operation Scaling on Archer 62

4.7 Collective Operation Scaling on Quartz 62

4.8 Collective Operation Scaling on Ray 62

4.9 cb_nodes and cb_bu�er_size parameter settings tested 63

4.10 Collective Bu�ering Parameter Performance on Archer 63

4.11 Parallel file system striping performance 64

4.12 I/O library and file strategy comparison experiments 65

4.13 Parallel file mode comparison experiments 66

5.1 Summary of AWE Multi-Physics application profile data show-

ing the calculated number of distinct I/O phases in a simulation

where an open-write-close cycle operates on a visualisation file

and the number of states actually observed in the file. 73

5.2 Checkpoint statistics for Bookleaf checkpoints at scales between

1 and 64 nodes collected on Archer with default stripe count of 4. 74

5.3 Checkpoint statistics for each problem class run by the AWE01

multi-physics application. 81

xviii

6.1 Configurable parameters in generated MACSio datasets 85

6.2 Input parameter values for MACSio validation runs of Bookleaf . 97

6.3 Input Parameter values for scaling Bookleaf validation runs. . . . 97

6.4 I/O timings for Bookleaf and MACSio replication checkpoints

run on Archer with 10 repetitions. 99

6.5 Checkpoint file size comparison between Bookleaf and a MACSio

replication run on Archer. 101

6.6 Checkpoint file breakdown for the Bookleaf noh large problem

and MACSio replication run on a single node. 102

6.7 Checkpoint file breakdown for the Bookleaf noh large problem

and MACSio replication run on 1 and 64 Nodes. 103

6.8 Input parameter values for MACSio validation runs of FLASH-IO 104

6.9 Checkpoint file size comparison between FLASH-IO and a MAC-

Sio replication. 107

6.10 Checkpoint file breakdown for a FLASH-IO run on a single node. 107

7.1 Summary of the experimental target applications used as work-

loads inside MACSio. 112

7.2 Write sizes issued to the parallel file system during a Bookleaf

checkpoint on Archer performed independently and collectively . 117

7.3 Write sizes issued to the parallel file system during a Bookleaf

checkpoint on Quartz performed independently and collectively . 117

7.4 File bandwidth changes for checkpointing over the course of the

AWE01 Problem B workload. 126

7.5 Performance improvement of Ray burst bu�ers over GPFS file

system under parallel N-M file modes. 137

7.6 Bandwidth achieved per number of files on Ray when writing to

burst bu�ers. 137

A.1 Darshan MPIIO counters . 163

B.1 I/O timings for Bookleaf and MACSio replicated checkpoints on

Archer. 164

B.2 Cumulative I/O timings for Bookleaf and MACSio replicated

checkpoints on Archer. 164

B.3 Slowest I/O operation time for Bookleaf and MACSio replicated

checkpoints on Archer. 164

B.4 I/O timings for Bookleaf and MACSio replicated checkpoints on

Tinis. 165

B.5 Cumulative I/O timings for Bookleaf and MACSio replicated

checkpoints on Tinis. 165

B.6 Slowest I/O operation time for Bookleaf and MACSio replicated

checkpoints on Tinis. 165

C.1 Perceived checkpoint bandwidth for the Bookleaf workload on

Archer. 166

C.2 Perceived checkpoint bandwidth for the Bookleaf workload on

Quartz. 166

C.3 Perceived checkpoint bandwidth for the FLASH-IO workload on

Archer. 166

C.4 Perceived checkpoint bandwidth for the FLASH-IO workload on

Quartz. 167

C.5 Perceived checkpoint bandwidth for the Bookleaf workload on Ray.167

C.6 Perceived checkpoint bandwidth for the FLASH-IO workload on

Ray. 167

C.7 Write bandwidth for the Bookleaf workload running on Archer

with di�erent collective bu�ering node counts. 167

C.8 Write bandwidth for the FLASH-IO workload running on Archer

with di�erent collective bu�ering node counts. 168

C.9 Perceived checkpoint bandwidth for the AWE01 Problem A work-

load running on the Spruce A, Titan, Archer, Cab, Taurus and

Tinis systems. 168

C.10 Perceived checkpoint bandwidth for the AWE01 Problem A work-

load running on the Spruce A, Titan, Archer, Cab, Taurus and

Tinis systems. 168

C.11 Perceived checkpoint bandwidth for the AWE01 Problem B work-

load running on the Spruce A, Titan, Archer, Cab, Taurus and

Tinis systems. 169

C.12 Checkpoint performance for AWE01 on Archer through standard

TyphonIO, a TyphonIO-like logically contiguous layout using raw

HDF5, and an block contiguous hyperslab arrangement in HDF5. 169

C.13 Checkpoint performance for AWE01 on Quartz through standard

TyphonIO, a TyphonIO-like logically contiguous layout using raw

HDF5, and an block contiguous hyperslab arrangement in HDF5. 170

C.14 File bandwidth achieved for the AWE01 Problem D workload on

Archer when using Sequential and Parallel N-M access patterns. 170

C.15 File bandwidth achieved for the AWE01 Problem D workload on

Quartz when using Sequential and Parallel N-M access patterns. 170

C.16 File bandwidth achieved for the AWE01 Problem D workload on

Cab when using Sequential and Parallel N-M access patterns. . . 170

C.17 File bandwidth achieved for the AWE01 Problem D workload

written through parallel N-M to GPFS and burst bu�ers on Ray. 171

CHAPTER 1
Introduction

The term ‘Super computing’ traces its origins back to as early as 1931 and

the electromechanical tabulating machines built by IBM to process census data

stored on punch cards. Thirty-three years later, the CDC 6600 was built by

the Control Data Corporation with the capacity to perform 3 million floating

point operations per second (FLOPS), what is now considered to be the first

supercomputer [86]. In the modern day, the Summit machine at Oak Ridge

National Laboratory (ORNL) can achieve 122.3 petaflops (122.3 quadrillion

floating point operations per second) and in June 2018 was listed as the most

powerful supercomputer in the world.

Over this period of several decades, the application of computing resources

to scientific problems has dramatically changed the way that these problems

can be approached. Computational simulation of real world phenomena can

o�er answers to problems that would otherwise be too time consuming, expen-

sive, or even unsafe to attempt to solve with physical experimentation. The

growth in power of supercomputing systems inevitably advances that which can

be achieved through computational simulation, with larger and more complex

systems allowing calculations to be performed much faster and at higher reso-

lutions than were previously possible. Larger and higher resolution simulations

running on highly parallel machines process and produce data at exceptional

rates. This data represents the true value of a simulation, and it is the analy-

sis and visualisation of this data that ultimately leads to knowledge discovery.

Consequently, the failure of a simulation and loss of valuable data and expensive

processing time is an important issue to be addressed by computational scien-

tists, and those in the field of High Performance Computing (HPC). Studies

1

Introduction

conducted at ORNL investigating failures on large-scale systems have demon-

strated that the mean time between failures for a range of platforms studied

over two generations ranged from 9 hours to 37 hours [43]. Here, failure is de-

fined as a hardware or system-software related error that causes an application

running on some part of the system to crash rather than a complete system

failure. Protecting simulation data against loss from these types of failures re-

quires transferring it to persistent storage, which can both stall the progress of

a simulation and interfere with resources needed by other system users.

Despite the importance of storage systems in supercomputing platforms,

they have not developed at the same rate as other system components. Fur-

thermore, the obscurity of the data storage process has lead to it being under-

prioritised by application developers. Failures to address the storage needs of

some applications has lead to this becoming a bottleneck; an issue that will be

exacerbated by advanced system architectures increasing the density of compute

power in a node and a corresponding increase in the data flowing in and out.

Consider a hypothetical scientific application that is being developed to sim-

ulate some real world phenomenon. The ultimate goal of the application would

be to produce an answer to some proposed scientific hypothesis. For the users

of this application, their aims are best served by simulating the largest possi-

ble problem space or producing the most high resolution representation of their

phenomenon allowed by the size of their platform, servicing both of these aims

will contribute to the production of greater physical quantities of data. Added

to this, the more points in the simulation that they can capture a snapshot of

its state, the greater the opportunity to understand what is happening inside

the simulation. All of these motivating factors contribute to domain scientists

wanting to generate greater quantities of I/O from their applications. The un-

derlying issue for I/O in HPC is derived from the fact that these desires to

generate greater quantities of I/O are rarely met with an equivalent investment

of time or e�ort into how that I/O is carried out. Furthermore, there is no

guarantee that the workloads generated by an application will be able to pro-

2

Introduction

duce optimal I/O patterns, or the user workflow explicitly prevents optimal I/O

behaviours from being observed.

A straightforward example to highlight a problem experienced by HPC appli-

cations is the variability in two of the most straightforward approaches, shared

or multiple file based I/O. For a number of applications, a simple approach of

writing a single file per processor is su�cient and performant enough to work

well. In other cases where follow-on processing or data portability is required,

a large number of files is unmanageable and the use of a single shared data file

is required to be compatible with the user’s workflow. These two approaches

are both common, but behave optimally under di�erent and conflicting storage

configurations. It is the responsibility of the user to decide how they wish to

implement their I/O workloads, but the responsibility of those operating the

HPC system to deliver the best possible service to all users. Clearly, balancing

requirements means that storage systems much be designed to work best in the

average case but the variability this introduces prevent users from gaining a

strong understanding of why their workloads are not performing optimally.

An example to illustrate this problem can be taken from the I/O workloads

commonly run at Los Alamos National Laboratory (LANL). The applications

that use the most resources at LANL utilise the single shared file strategy for

committing data from multiple distributed processors to a single output file. The

implementation of this strategy generates small unaligned I/O access patterns

for the storage system, however the available storage systems are not able to

perform this type of access well. The motivation for using such an approach

was user driven, due to the ease of data reuse for di�erent sized jobs making it

well suited to users’ needs. The conflict between the workloads that users are

wanting to run and what can work well on the available platforms is one of the

biggest issues for I/O and data storage.

The size of the parameter space that can be explored with respect to a

particular I/O workload has also prevented applications from running with the

best possible configurations. The modern I/O stack gives freedom to implement

3

Introduction

patterns of read and write operations at a low level, but equally to employ high

level libraries with simplified interfaces abstracting the mechanics away from

the developer. At each level in the software stack there are elements that can

be configured or parameters to be set that are critical to generating a well

performing I/O workload. As an example, the widespread use of HDF5 library

routines in applications allows for parallel operations to be performed with much

less technical implementation overhead than lower level approaches. However,

the way in which the library is instructed to marshal its processes, data, and file

accesses is still very much in the hands of the user. Exploring the state space

to establish how best to configure the implementation is time consuming for a

large application with many thousands of lines of code and tightly coupled I/O

routines. Flexibility in exploring the parameter space in terms of alternative

software libraries, I/O schemes and tuning parameters is clearly required to

uncover where poor performance is being generated.

1.1 Motivation

With the data storage requirements of applications growing, the ability to anal-

yse the I/O behaviour of an application and make informed decisions about

how it is likely to perform on new system architectures is key. Furthermore, the

ability to test out optimisations and improvements to current I/O software and

practices with the needs of a particular application in mind has the potential

to improve performance on current systems. Decoupling the I/O workload from

simulations o�ers opportunity for greater flexibility in both the performance

optimisation and benchmarking activities.

To illustrate this point, the HPC and I/O landscape inside a large organ-

isation charged with delivering critical scientific understanding is considered.

Lawrence Livermore National Laboratory (LLNL) is one of three vitally im-

portant Department of Energy laboratories that exist in the United States. A

key mission of LLNL is to deliver scientific understanding and provide experi-

4

Introduction

mentally based support to a number of cutting edge problems. HPC drives the

production of useful science at LLNL, with hundreds of domain scientists mak-

ing use of parallel simulations to produce answers to their problems. Modern

complex simulation codes are at the stage where they are the size of an entire

software eco-system and for these codes to be maintained requires an excep-

tional level of both domain knowledge and performance engineering skill. The

ability to separate concerns and allow I/O specialists to address problems in the

libraries and mechanisms used by scientific simulations, without the complex-

ities and overheads of working with the simulation itself, has the potential to

deliver more e�cient I/O in scientific codes and ultimately accelerate discovery.

This thesis demonstrates work that has been carried out in the development

and validation of an application designed to generate I/O activity on a system

from high-level descriptions of scientific datasets and I/O patterns. It is shown

that it is possible to recreate common I/O behaviours from the perspective of

scientific-like datasets. In addition, it is demonstrated how the high-level profiles

of an application’s I/O workload can be constructed based on the limited data

available through lightweight I/O characterisation [80] and accurately recreated

by the proxy application.

Additionally, this thesis contains a demonstration of the use of proxy I/O

workloads to benchmark a range of current day systems, an activity that is vi-

tal for the purposes of system design and procurements. An investigation into

how both the I/O software stack installed on a system, and the configuration

of di�erent software components can improve or degrade performance is pre-

sented. Specifically, the sensitivity of the parallel file system, middleware and

high level I/O library to improper use is highlighted. Finally, a demonstration

of the potential performance of an alternative parallel file strategy suitable for

deployment on new burst bu�er architectures is given.

5

Introduction

1.2 Thesis Contributions

The research presented in this thesis makes the following contributions:

• Standard profiling techniques are used to enable novel application under-

standing of a commercially sensitive production multi-physics application

and smaller scale hydrodynamics application. These applications are rep-

resentative of a real world scientific code used by a critical industrial or-

ganisation and a more lightweight representation designed to represent a

scientific simulation in a more portable form. An open source profiling

and characterisation library is used to collect data on the two applications

and their I/O patterns summarised from analysis of where I/O hotspots

occur and how data storage is used to preserve scientific data.. Due to the

size and complexity of the production application, more comprehensive

I/O tracing is rendered infeasible and hence straightforward observations

about the target applications are used to supplement the available profil-

ing data. Profiles of the Bookleaf hydrodynamics application demonstrate

how the I/O demands change in relation to the simulation as a whole and

the characterisation of the AWE01 application defines three distinct cat-

egories of I/O pattern that it generates. Working towards the goal of

enabling application focused I/O performance, the understanding of real

applications workloads is a fundamental building block in ensuring any

performance insights and optimisations that can be gained will be appli-

cable to HPC applications in practice.

• Development contributions and validation of an I/O proxy application

(MACSio) is described in detail. MACSio has been designed to recre-

ate the characteristics of real scientific datasets and generate I/O activity

based on a number of potential configurations. The I/O activity per-

formed by MACSio is generated at a high level by libraries currently used

in real world HPC applications, making it indistinguishable from an I/O

operation that would be performed by a genuine scientific simulation. Fea-

6

Introduction

tures such as additional library plugins and file management routines have

been introduced into the MACSio code base to enable the faithful replica-

tion of profiled I/O workloads. In particular, by looking at I/O function

performance and dataset accuracy it is shown that MACSio successfully

replicates the Bookleaf and FLASH applications through the use of pa-

rameters informed by the profiling work covered previously. As mentioned

previously, the decoupling of I/O workloads from large fully formed sci-

entific applications enables a separation of concerns for domain scientists

and HPC specialists. Validation of MACSio as a portable tool that I/O

engineers can work with in a streamlined way makes it possible for appli-

cation workloads to be investigated and optimised independently of the

large amount of application overhead that would normally form a barrier

to entry.

• Using MACSio, the performance of Bookleaf, FLASH and AWE01 are

benchmarked against several platforms providing file systems of contrast-

ing architectures and scales. Analysis of their performance is carried out

with considerations of each layer in the parallel I/O software stack. Specif-

ically, the impact of configuration changes at the parallel file system, mid-

dleware and high level library layers are explored, demonstrating that tra-

ditional advice on how to tune these components can cause performance

degradation for the targeted workloads. It is identified that the approach

to performance tuning is heavily dependent on the target workloads and

software configuration, demonstrated by performance losses when naively

spreading I/O work over Lustre targets. A comparison of di�erent data

layouts used by high level libraries is performed, highlighting potential

pitfalls when using HDF5 hyperslabs. This work culminates in an evalu-

ation of an alternative file mode to the single shared file approach used

through this thesis. To simplify I/O on future burst bu�er systems, an

N-M I/O mode is demonstrated through MACSio and regularly achieves

a speedup of more than 2◊ over both the single shared file and sequential

7

Introduction

N-M strategies used by the TyphonIO and Silo libraries. New libraries

and techniques widen the parameter space that exists for configuration of

the I/O stack, introducing new options that much be intelligently set for

an application to make best use of the storage systems available. This

performance study for a group of scientific applications provides guidance

to those looking to use said applications and the I/O strategies that they

employ. Moreover, the demonstration of a new and promising file access

pattern to work alongside an established parallel I/O library opens up the

possibility of incorporating burst bu�er technology for organisations like

AWE, who lack the flexibility in their large scale production applications

to adopt such techniques easily.

1.3 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2 provides an overview of some of the key underlying concepts in

high performance computing that underpin the work throughout this thesis.

Furthermore, an overview is given of current work in the field with a particular

focus on I/O and file systems. Specifically, current issues in parallel I/O are

covered, along with elements of parallel file systems, the I/O software stack,

profiling, and performance benchmarking in HPC.

Chapter 3 details the experimental processes followed to gather the results

presented throughout the rest of this thesis. The chapter exists as a reference

point for the use of di�erent systems and configurations in experiments shown

at later stages in the work.

Chapter 4 contains a brief description of hardware and software components

used in this thesis. The chapter begins by introducing the storage hierarchy, as

8

Introduction

typically found in HPC systems, from the operations of spinning and solid state

disks up to the distributed file systems that are built up of described compo-

nents. The conclusion of this chapter is an overview of the computing platforms

and applications that are used throughout this thesis.

Chapter 5 describes the process undertaken to profile and reconstruct I/O

workload patterns for the Bookleaf and AWE01 applications. Darshan lightweight

I/O characterisation is described and and example of the data that can be ex-

tracted from the resulting logs is shown. An example of how Darshan counters

are used to calculate features of a workload is shown for AWE01, which is

followed by description and illustration of the application patterns that are im-

portant for the later work in this thesis.

Chapter 6 introduces the MACSio I/O proxy application, and describes in

detail some of the components that have been developed in MACSio to enable

e�ective workload replication and I/O exploration to be performed. A demon-

stration of MACSio replication of the behaviour of Bookleaf and FLASH is pre-

sented, which is accompanied by validation studies showing that the behaviour

and performance of the replication e�ectively matches the original application.

In particular, these applications demonstrate MACSio operating with the HDF5

and TyphonIO plugins that are important for the performance study that fol-

lows.

Chapter 7 combines the work of the previous two chapters and presents a

series of benchmarking and performance analysis activities carried out on a col-

lection of di�erent scale HPC systems. An investigation is carried out on the

e�ect of simple parameter tuning on elements in the parallel I/O stack. The

e�ect of Lustre striping configurations, middleware optimisations and high level

library implementation on the Bookleaf, FLASH and AWE01 workloads repli-

cated through MACSio is shown, highlighting di�culties that exist in controlling

9

Introduction

I/O behaviours at low level with poor system configuration. A comparison of

the TyphonIO library is made with the HDF5 library that it implements un-

der the covers, demonstrating a large improvement in performance that can

be achieved by careful use of the HDF5 hyperslabs mechanism. Finally, this

chapter demonstrates the use of a new N-M file scheme that has been enabled

through MACSio. By controlling some of the management of files accessing

storage targets in parallel, a notable speedup can be achieved over both stan-

dard single shared file and Silo-like grouped sequential parallel access.

Chapter 8 concludes the thesis, and discusses the implications of the work pre-

sented. The limitations of the research presented are outlined, and the potential

for future work is suggested.

10

CHAPTER 2
Performance Analysis and Engineering

Computational techniques are key to mathematics, science and engineering in

both an academic and industrial setting. Consequently, developing advanced

techniques to increase computational power and e�ciency has been an ever

present goal of scientists seeking to reduce the time to solution or tackle com-

putational problems of increasing scale and complexity.

Advances in computer design and algorithm optimisation are the two funda-

mental components that drive improvements in solving computational problems.

In what could be considered a watershed moment, the introduction of parallel

computers and the associated parallelisation of computational techniques has

formed the basis of one of the most important advances experienced in the field;

they have been seen to reduce the time to solve some problems by orders of mag-

nitude, the time to simulate certain natural phenomena taking only seconds and

minutes rather than weeks and months.

Exploiting hugely parallel machines is, however, not a straightforward task.

Modern extreme scale systems posses tremendous amounts of raw computational

power, but the mapping of applications and processes to these systems must be

carried out in such a way as to tightly couple with the available subsystems to

avoid performance bottlenecks. It is here that the field of performance analysis

and engineering has contributed a substantial amount of work in understanding

application behaviour and continuously optimising out ine�ciencies where they

are found to exist.

This chapter contains a summary of: (i) some of the core concepts of parallel

computation and terminology used in high performance and scientific comput-

ing; (ii) an overview of the fundamental elements of parallel input/output and

11

Performance Analysis and Engineering

data storage in parallel computation; (iii) an introduction to performance anal-

ysis and engineering principles that are used to investigate, understand and

predict computational performance in high performance systems.

2.1 Parallel Computing

When executing a programmed sequence of instructions, computers rely on a

number of di�erent types of operation involving the movement, transformation,

and storage of data. In particular, the processing of data through arithmetic

operations is the basis of the majority of scientific applications. The ability to

perform more than one of these operations at once is the defining characteristic

of modern parallel computing. When a set of operations has been designed

such that they can be carried out concurrently, the addition of more hardware

components then increases the rate at which computation is completed, and

therefore performance. However, the process of scaling out the size of a machine

to generate greater parallel compute power is far from straightforward. The

addition of more components can increase complexity disproportionately, and

sophisticated algorithms and software is required to manage the optimal use of

these components.

This phenomenon is illustrated by Amdahl’s law [6], proposed by Gene Am-

dahl in 1967, which states that for a parallel program, the speedup Sn for n

processors is given by:

Sn Æ 1
rs + rp

n

(2.1)

where rs and rp represent the serial and parallel ratios of a program respectively

and rs + rp = 1. This places an upper bound on the performance improvement

when scaling a problem of a fixed size to an increased number of processing

units, and is considered to be linked to the idea of strong scaling. It is clear

from this formalism that any components of a program that cannot be e�ectively

parallelised limit the benefits of increasingly large parallel machines.

A re-evaluation of Amdahl’s law was proposed in 1988, known as Gustafa-

12

Performance Analysis and Engineering

son’s law [44]. This formalism describes the theoretical speedup gained by in-

creasing the availability of parallel processing units. The important characteris-

tic of this law is in the consideration of a fixed time window, and demonstrating

how the parallel portion of a program allows for larger problem sizes to be solved

in this time window. Gustafason’s law can be expressed as:

Sn = n ≠ rs(n ≠ 1) (2.2)

where similarly Sn is the the scaled speedup for n processors and rs is the fixed

serial code portion that does not benefit from parallelism. As more processors

are added, larger scale problem sizes can be solved within the fixed time window

despite rs being present. In the same way that Amdahl’s law has been used

to represent strong scaling behaviour, Gustafason’s law can be considered to

represent the practice of weak scaling. In this practice, adding parallel hardware

to the solution of a problem sees the size of the problem grow proportionally to

be solved in a similar time frame.

2.2 Parallel I/O and Data Storage

The increase in computational capacity of new machines allows higher resolution

problems to be solved and a greater number of concurrent simulations to be per-

formed. Both of these advances will inherently lead to greater volumes of data

being generated by simulations, for both analysis and visualisation purposes.

The di�culty that is presented by this situation is the increase in failure rate

that accompanies increasingly large and complex systems [15, 43, 53, 79]. Fail-

ures and resilience in HPC systems has been well studied to understand the ways

in which a system can experience failure and attempt to predict how frequently

action should be taken to mitigate the risk of data or resource loss. A large num-

ber of works to understand system failures focuses on specific hardware compo-

nents with memory failures occupying a large percentage of these [48, 61, 76, 82].

This is hardly surprising given many studies such as the one carried out by El-

13

Performance Analysis and Engineering

Sayed and Schroeder [36], Snir et al. [79] showing that of the errors detected for

compute nodes a high proportion of these were attributable to CPU or memory

failures. These works are however not in agreement as to what the single most

common cause of node failure is, with Snir et al. [79] suggesting 80% of compute

node failures are attributable to memory where El-Sayed and Schroeder [36] ob-

serves only 20% of hardware failures to be memory related with 40% cause by

CPU errors. More generally, hardware failures are observed to be the most

common category of failure, this supported by a survey of a number of large-

scale HPC systems at Los Alamos National Laboratory (LANL) [37]. This work

highlights that in all of the systems studied hardware failures alone count for

more than 54.15% of failures with this number as high as 77.68% for one of the

studied systems. Moreover, similar field data provided by LANL has been used

to show that hardware or node failures in a system have a knock on e�ect and

increase the likelihood of follow up failures in the same node, nodes in the same

rack, and nodes in the system as a whole [36]. Software errors, while accounting

for a smaller percentage of job failures, can also be responsible for an application

failing to successfully run to completion and a loss of valuable simulation data

as well as a degradation in system availability. In particular, Martino et al. [60]

have found that while software errors accounted for 20% of node failures in the

Blue Waters HPC system, this corresponded to 53% of the node repair hours

to keep the system operational.

Given the likelihood of failures in HPC systems and the consequences for

users attempting to conduct important and expensive experiments, it is impor-

tant that measures are taken to protect against the loss of valuable solution

data due to component failure or calculation instabilities [74]. Time and re-

sources devoted to checkpointing the the avoidance data loss, while necessary,

are essentially wasting CPU cycles that could be devoted to valuable scientific

discovery. It is therefore desirable to minimise the time and resources that are

required for this task. Minimising this e�ort can be broadly approached in two

di�erent ways, being the reduction in the number of checkpoints written or a

14

Performance Analysis and Engineering

reducing the time required to commit the required data to storage. The first of

these approaches is based heavily in the realm of reliability and dependable sys-

tems, with a focus on detecting and modelling error behaviour in systems with a

view to informing the optimal checkpointing frequency. El-Sayed and Schroeder

[37] provide a methodology for computing the checkpoint interval to use based

on much older work proposed by Young [100] in 1974. Specifically, their work

attempts to demonstrate a practical application of the checkpointing formula

that accounts for an up to date estimation of the mean time to failure for the

system and the type of failures that have occurred most recently. This approach

demonstrates performance comparable to that seen with an optimal checkpoint

interval, but vitally relies on the data required to support the components of the

methodology being accurate, up-to-date, and crucially made available to users.

The authors recognise that even under optimal checkpoint placement, the limits

of traditional coordinated checkpointing might be reached soon, and alternative

techniques will be required to maintain viability.

The field of performance optimisation and engineering to reduce data storage

times is one that is much more aligned to traditional HPC method and practices.

While informing checkpointing frequency with dependability analysis can go

some way to reducing data storage load, it is the case that checkpoints, scientific

results and visualisation data will always need to be preserved. In the case of

results and visualisations, these are crucial for the purposes of analysis and

reporting experimental outcomes. The need to store data in these categories

exists as a component of the reliability problems discussed here but also as a

motivation for performant storage independently of reliability issues. In other

words, simulation data will need to be stored regardless of the likelihood of a

system failure occurring. It is the study of data storage and I/O performance

that is the focus of the work contained in this thesis, with the goal of the research

outcomes being relevant to the writing of checkpoint file and other simulation

data alike.

15

Performance Analysis and Engineering

2.2.1 Issues in Parallel I/O and Data Storage

The process of moving data from a large number of distributed compute elements

to a potentially equally large number of storage devices introduces a number of

complexities that do not typically plague serial I/O activities. At a high level,

there are a number of schemes governing the mapping of data from the compute

element that generated it to an output file. The approaches commonly adopted

can be seen in Figure 2.1.

One of the simplest ‘parallel’ strategy that can be considered is known as

file per process, or N-to-N where we have N processes, with each process writing

to its own file (shown in Figure 2.1(a)). Due to the fact no two processes are

writing to the same file, this approach is not considered to be ‘true’ parallel

I/O. Similarly, it is possible to commit data to a single output file using a single

nominated writer, traditionally process 0. Figure 2.1(c) demonstrates how each

rank communicates its data to process 0, which is responsible for aggregating

and writing data to the single output file. As with N-to-N, this Aggregated

N-to-1 scheme is not truly operating in parallel with regards to I/O, as the

distributed simulation data is essentially serialised by the aggregating process

to be committed to storage.

The single shared file, or N-to-1, approach is what is most commonly con-

sidered as ‘true’ parallel I/O. In this mode, every process accesses a single file,

either collectively or independently committing their data to di�erent regions

in the file.

Additionally, there are hybrid approaches to file I/O, which select a number

of output files between 1 and N. Within this N-to-M mapping, some of the

previously mentioned approaches can be incorporated to control the access of

processes in each of the M groups. For example, within each of the M subgroups

an aggregating process can be nominated or each process can access the groups

file in the N-to-1 scheme. An additional I/O pattern sometimes deployed for

N-to-M access serialises access to each of the M files for the processes in the

subgroup. A ‘poor man�s’ parallel access pattern is used, with each process

16

Performance Analysis and Engineering

File 0 File 1 File 2 File 3

P0 P1 P2 P3

(a) N-to-N

P0 P1 P2 P3

File 0

(b) N-to-1

File 0

P0 P1 P2 P3

(c) N-to-1 Aggregated

P0 P1 P2 P3

File 0 File 1

(d) N-to-M

P0 P1 P2 P3

File 0 File 1

P0 P1 P2 P3

File 0 File 1

Phase 0

Phase 1

(e) N-to-M Sequential

Figure 2.1: Parallel I/O Strategies

17

Performance Analysis and Engineering

waiting for control of a baton before it opens the file and commits data.

Each of these approaches to I/O in a parallel system deliver di�erent per-

formance characteristics, running into di�erent limiting factors and exploiting

system architectures in contrasting ways. In general, the use of a single file per

process (as per Figure 2.1(a)) is often the most performant strategy, but creates

issues with regards to file management at larger process counts. Additionally,

attempting to restart a simulation using a di�erent number of processes is not

possible without additional computational cost or data movement.

Conversely, the approach shown in Figure 2.1(b) is one that is commonly

used but has the potential to deliver poor performance if not optimised well for

the system hardware and software. Often performing I/O in parallel to a single-

shared-file is done with the use of middleware and higher level libraries, which

can simplify the implementation at the application level but requires a well

designed parallel file system and library implementations to o�er performance

comparable to other approaches.

The potentials for trade o� between complexity and performance for di�er-

ent file schemes is interesting in the context of application focused performance.

In particular, the availability of libraries that implement these approaches goes

some way to ensuring that more intelligent parallel I/O are accessible to ap-

plication developers, some of whom may lack detailed domain knowledge of

I/O. Moreover, a transition period for HPC seeing I/O burden being migrated

to alternative burst bu�er style systems will necessarily facilitate the adoption

of alternative techniques where, for instance, a straightforward single shared

file pattern can no longer be used. One of the objectives identified for this

work, namely the performance study of representative HPC applications, seeks

to identify the role that di�erent file access strategies plays in the context of

I/O libraries and future hardware. An evaluation of these di�erent approaches

would appear to fall firmly in the scope of this objective.

18

Performance Analysis and Engineering

2.2.2 Parallel File Systems

Permanent data storage in a regular personal or desktop computer is a relatively

straightforward process, usually involving the transfer of data from memory to

an on-board hard disk drive (HDD) or solid state drive (SSD). This system,

coupling a single computing unit with a single storage device, is generally suf-

ficient for the I/O requirements of desktop applications. However, distributed

systems comprised of multiple computing units and storage devices require a

decoupling of these elements to parallelise data operations. Doing so avoids the

serialisation of accesses to a single device, which is itself serial in its operation

due to all the data being routed via a single connector. The mechanics of HDDs

and SSDs are discussed in more detail in Chapter 3.

To provide a much greater storage capacity and eliminate unmanageable con-

tention from concurrent access to a single disk, distributed file systems (DFS)

are widely deployed in distributed computer networks and high performance

clusters. The basic principle behind the design of many DFSs is to have data

spread across independent storage devices, and furthermore spread storage re-

quests across multiple storage servers to widen the available channels for the

movement of data from the host to the storage medium. This structure can

also be achieved through the use of some versions of a Redundant Arrays of

Independent Disks (RAID) [69], which is deployed widely as a component of

DFS.

2.2.3 I/O-aware Scheduling

Parallel file systems (PFS) such as Lustre (described in Section 3.3.1) are a

shared resource accessible by all users and nodes in a HPC system. The size of

performance of the PFS in relation to the scale of the machine and number of

users therefore has a great deal of impact on the likelihood of a job running on a

portion of the machine from su�ering I/O resource contention. To illustrate this,

between generations of IBM Blue Gene systems at Argonne National Laboratory

19

Performance Analysis and Engineering

(ANL) there was an 20 times increase in compute resource but only a 3 times

increase in the total I/O throughput of the attached PFS [4]. Comparison of

the expected performance of di�erent system components shows that a fraction

of the compute nodes are able to saturate the bandwidth of the PFS, in the case

of Mira at ANL this fraction is around a quarter. Focusing on I/O performance

as a system wide problem rather than with an application centric focus, the

reduction of interference between jobs on the system is something that has the

potential to improve the quality of service experienced by all users.

I/O-aware scheduling is an approach that has been investigated with the

intention of mitigating I/O congestion using a system wide batch scheduling

approach. This approach is managed at the level of the batch scheduler for the

reasons that a global coordinated knowledge of jobs and resource availability

is needed to successfully manage the jobs attempting to stress the I/O subsys-

tems. Specifically, the scheduler must have the ability to initiate, suspend, and

terminate user jobs based on its scheduling policies independent of user activ-

ity [91, 92]. Herbein et al. [46] put forward an I/O-aware scheduling component

to be integrated into existing batch scheduling system used at Lawrence Liv-

ermore National Laboratory (LLNL). Their work demonstrates how the use of

a scheduler with an internal I/O contention model maximises the percentage

of runtime individual jobs spend doing blocking I/O. Furthermore, the consis-

tency of a job’s performance under an I/O-aware scheduler is seen to increase

as a job will not be launched unless the required I/O resources are known to

be available. A key point identified by both Herbein et al. [46] and Zhou et al.

[102] is that while a number of the performance and contention metrics used to

evaluate I/O resource usage show scheduling to be an e�ective technique at job

level, the overall system utilisation and turnaround times for jobs as a whole

fail to improve and in some cases are worse than the baseline. Because of these

results and the continued focus on compute utilisation in production systems,

I/O-aware scheduling techniques are not currently implemented in live systems

and the importance of application level I/O performance continues to persist.

20

Performance Analysis and Engineering

The application centric focus of I/O performance that marks a key objective

of this thesis is one that has the potential to benefit from I/O-aware scheduling.

As discussed, this technique operates at a system-wide level and deploying work-

loads on such a system have been shown to operate with greater consistency.

However, the approach of blocking an individual user’s job from running until

I/O resources are unimpeded does not necessarily reduce the time to that user

completing their required workflow. Furthermore, improper use of I/O libraries

and the underlying parallel file system are not addressed by a scheduling based

approach, instead these techniques would be complementary to the work in this

thesis rather than an alternative approach to achieving the performance study

objectives.

2.2.4 Parallel I/O Software Stack

The file systems deployed alongside HPC systems enable data to be stored in

parallel e�ciently. For applications to perform their data transfer to these files

systems in parallel, a great deal of programming complexity must be overcome

to avoid collisions from distributed processes. Protecting data output from race

conditions and file corruption requires careful calculation of file o�sets or a

defensive file locking approach. To reduce this complexity, a variety of parallel

I/O middlewares and higher level libraries exist to provide an interface to the

file system with simpler programming semantics.

Middleware

Portable Operating System Interface (POSIX) provides a set of standards de-

scribing an API and semantics for a widely portable interface to file systems.

However, the POSIX interface lacks the required semantics for optimized paral-

lel I/O patterns, and hence a higher level middleware abstraction was required.

The first step of achieving a portable I/O abstraction for parallel applications

was introduced by the Message Passing Interface (MPI) Forum as part of the

MPI-2 standard [85]. The I/O specific portion of the standard, called MPI-

21

Performance Analysis and Engineering

IO, outlines an extensive parallel API with specific mechanisms for performant

operation.

Underpinning the original goal of the MPI-IO standard is the idea of mod-

elling I/O as being similar in execution to how message passing is carried out

between distributed processes. Against this paradigm, the practice of writing to

a file can be compared to sending a message. Similarly, processes in a simulation

can view reading from a file in the same way as if a message was being received

from a neighbouring process.

As MPI-IO is itself a specification there have been a number of portable and

machine-specific implementations [40, 51, 70, 83]. Of these implementations,

ROMIO [84] is by far the most commonly utilised and underpins OpenMPI,

MPICH2, and a number of vendor-specific MPI distributions.

Implementations of MPI-IO permit concurrent I/O from distributed pro-

cesses via independent or collective operations. The former carrying out file

operations with no coordination from any other processes in the simulation,

while the latter requires each process in a communicator group to participate.

Furthermore, collective operations can allow the implementation or underlying

file system to analyse the individual I/O requests as a whole, enabling request

merging and optimisations to be made and improving performance.

MPI-IO introduces two important performance features to optimise the re-

quests that are issued to parallel file systems. The first of these is referred to

as collective bu�ering or two-phase collective I/O. Data is re-organised between

processes to a subset of aggregators in a communication phase, following which

data can then be sent to the file system. By aggregating data, a smaller number

of processes can issue larger requests utilising more of the available bandwidth

and better matching the data layout in file. Collective bu�ering can generate

improvements for both small and large requests; in the former case, combining

small accesses into larger ones and the latter splitting operations into multiple

phases with overlapping communication and I/O.

Secondly, data sieving is a mechanism that can reduce the performance hit of

22

Performance Analysis and Engineering

issuing many small I/O requests. Instead of reading or writing to multiple non-

contiguous locations in a file the entire region is read or written via a temporary

local bu�er. In the case of writing, a contiguous block of data is read into the

bu�er and small non-contiguous regions are modified before writing the entire

block as a single large write. While this has been shown to improve performance

for a number of applications, many modern parallel file systems are capable of

performing a similar optimisation and allowing MPI-IO based data sieving can

inadvertently a�ect performance [24].

Collective operations, collective bu�ering, and data sieving are now well

established mechanisms for MPI based parallel I/O to be handled in user appli-

cations. For this reason they can often be overlooked by application developers

as important strategies and optimisations that can be applied both directly and

indirectly to I/O operations. The uptake of higher level abstractions to handle

the lower level details of how I/O will be performed by an applications further

reduce the focus on what workloads are doing at the middleware level, this in

part driven by the complexity and domain knowledge required to hand craft

e�cient MPI procedures. Given a key objective of this thesis is to understand

I/O behaviour with a representative application centric focus, an evaluation of

these techniques applied to real workloads is a valuable avenue for exploration.

Furthermore, the access to and control over middleware operations from higher

level interfaces is a pertinent question to consider with the popularity of these

interfaces among applications and scientists.

A strategy that is implemented by many MPI distributions to reduce bot-

tlenecks is to allow for the overlapping of operations. This is achieved through

the use of calls to non-blocking functions, with program execution allowed to

continue without waiting for the function to complete. The use of non-blocking

over blocking functions enables an application to perform MPI operations asyn-

chronously, meaning that the operation will return immediately regardless of

completion and program execution can carry on to the next instruction. The

typical model for asynchronous MPI operations is designed around point-to-

23

Performance Analysis and Engineering

point non-blocking communication, where a send and receive are called on two

communicating processes and both continue their execution without any expec-

tation of the communication completing successfully [20]. Any benefits that

can be drawn from asynchronous progress require an MPI implementation that

supports progress threads, these being dedicated threads that poll the non-

blocking operation for the completion status [96]. Dickens and Thakur [25], Ma

et al. [59] demonstrated how this mechanism could be used for collective I/O

performance, but found that naïve usage of threads could decrease performance.

Furthermore, Patrick et al. [68] presented a similar approach spawning a thread

when non-blocking MPIIO functions are called which in turn will manage the

operation of its blocking counterpart. The use of asynchronous non-blocking

I/O routines has potential to alleviate the bottleneck on application progres-

sion, however this relies on an MPI distribution being available on the system

that supports these routines in addition to this support being built in at com-

pile time. From the perspective of an application developed, asynchronous I/O

through MPIIO may not be possible due to the requirement for data to remain

unchanged until the routines transferring it have been confirmed to have com-

pleted to avoid data corruption. In order to continue to operate on simulation

data that is being asynchronously written to storage, the application would have

to wait for the progress thread to have completed or create a fixed snapshot of

the data. This in turn places additional load on the available node memory and

would be undesirable for memory intensive applications. The use of higher level

libraries, discussed in the next subsection, also removes some of the control of

which MPIIO operations are used to perform data transfer and users wishing

to make use of these libraries are limited by the implementation choices of the

library developers. As a technique that requires fundamental change to appli-

cation design to enable uncorrupted overlap of computation and I/O, this work

does not currently explore the use of asynchronous I/O, but recognises it as a

suitable candidate for future continuation of this research. Moreover, a focus

on the industry specific TyphonIO library for the replication and performance

24

Performance Analysis and Engineering

studies carried out in this thesis preclude invasive changes to the internal im-

plementations of the I/O stack as this is not currently a practical avenue of

exploration for the industry project.

High Level Libraries

While MPI-IO provides a portable software layer with some of the key mech-

anisms required for parallel performance, the data files that are produced are

themselves not standardised or portable between applications or systems. Higher

level libraries have been developed in part to address this problem by defining

self describing data models that can be easily written and read by library calls

or standard tools.

Furthermore, libraries have been developed to simplify I/O from the per-

spective of the application developer by abstracting away low level details such

as the calculation of file o�sets. In doing so, some of the burden of managing I/O

operations to maximise performance has also been taken on by these libraries

to streamline I/O across the board as much as possible.

The Hierarchical Data Format version 5 (HDF5) is a data model, software

library, and file format that can be built on top of I/O middleware to deliver

the required performance and portability for applications [41]. As the name

suggests, the HDF5 data model and file format is based around a hierarchical

structure similar to a directory and file structure, with data being organised into

containers and labelled with user-level attributes. When built with support for

parallel operations, HDF5 can operate independently or collectively using the

mechanisms provided by middleware. Due to its portability and continuing

development, HDF5 continues to be used for storing mission-critical data by a

number of industrial and academic organisations [22, 47, 99].

Even at this higher level of abstraction, there is still a great deal of respon-

sibility on application developers to shape their I/O routines in a way that

is scalable and optimised for their target system. This inevitably results in a

design decision being made on a per application basis as to whether a single

25

Performance Analysis and Engineering

shared file or file per process approach is taken, neither of which scale well to

future exascale machines [57]. To address the need for flexibility, the Adaptable

I/O System (ADIOS) [56] decouples the descriptive parameters of how data is

structured and how it should be handled from the library routines built into

an application. I/O behaviour can therefore be changed transparently as far

the application is concerned simply by adapting an external XML file. ADIOS

specifies a number of available transport methods for handling data under the

covers, including classic POSIX; independent or collective MPI-IO; MPI-IO op-

timised for the Lustre parallel file system (Lustre is described in Chapter 3); an

aggregate MPI-IO approach; and even other high level libraries such as parallel

HDF5.

Similarly to how ADIOS adds a further abstraction to the software stack,

HPC institutions have long since devoted considerable e�orts to developing their

own I/O layers and interfaces, both to handle specific application needs and in

attempts to standardise practices across the code bases. Moreover, bringing

application suites together with regard to their data handling increases the

interoperability of output files and reduces the complexity of optimising I/O

performance for all application users. Libraries such as HDF5 and NetCDF are

used as the basis for in-house packages, as is the case with the TyphonIO [88]

and Silo [62] libraries developed by AWE and LLNL respectively. Both of these

examples persist data with the help of the HDF5 file format and its library

routines, while imposing their own scientific data model and I/O pattern on

top.

As discussed in the context of MPIIO middleware, a key objective of this

thesis is to understand I/O behaviour with a representative application centric

focus. The application centric focus is a crucial part of this for organisations

like AWE as application performance and user experience is understandably

the critical factor that progress is made towards. Specifically, targeting specific

production applications with a top-down approach is common practice, this is

where high level libraries such as TyphonIO and HDF5 are deployed to handle

26

Performance Analysis and Engineering

the burden of performing complicated parallel I/O routines outside the expertise

of domain scientists. Correct use of these libraries is not always guaranteed,

and it is important to undergo performance studies to highlight how di�erent

application workloads are making use of I/O libraries and the scope that exists

to improve performance within the eco-system as a whole. An example of such

work being the combination of a vanilla TyphonIO build and an alternative file

access strategy detailed in an earlier section.

2.3 Performance Analysis and Engineering

The driving force for HPC is to enable faster, more accurate scientific results.

Procuring larger, more powerful, systems seeks to fulfil this goal but is heavily

dependent on the practice of performance engineering to guarantee success.

Motivations for performance engineering are two-fold. Firstly, achieving what

is known to be the peak performance for an operational system; complemented

by e�orts to predict performance, and secondly support the procurement of

new machines to e�ciently and economically provide greater capabilities than

are currently available.

A collection of di�erent approaches to performance engineering are used

to measure, predict, model and replicate the behaviour of parallel applica-

tions. These techniques often require sophisticated software tools to capture

and understand the performance intricacies of complex workloads interacting

with equally complex systems.

2.3.1 Benchmarking

The first port of call for many performance engineers is to gain an accurate rep-

resentation of what a system can and is achieving with regards to performance.

Benchmarking is the practice of physically executing code on a system to obtain

data to compare to expected values or to serve as the baseline to be compared

against. This practice can be performed for both hardware and software.

27

Performance Analysis and Engineering

By far the most famous HPC specific benchmark is the LINPACK linear

solver code, designed to measure a system’s peak floating point computing

power [34]; the metric used for this purpose being floating point operations

per second (FLOPS). The results returned by LINPACK are used to rank the

most powerful supercomputers in the well established TOP500 list [33].

Having an understanding of precisely what a particular benchmark is mea-

suring is crucial to building up an accurate picture of performance. For example,

LINPACK represents a largely compute bound problem and hence naively re-

ports peak FLOPS that may be unobtainable by any real calculation due to

the host of other performance limiting factors experienced by large systems.

Features of memory bandwidth, network communication, and data storage are

missing from the LINPACK performance value. This fundamental limitation

has been widely acknowledged, but demonstrates the risks involved in attempt-

ing to benchmark complex interoperating sub-systems as a whole.

One approach taken to ensure benchmarking results remain representative

of the features they are targeting is to use heavily simplified or low-level ap-

plications known as micro-benchmarks. By exercising specific components as

independently as possible from the rest of the system, a more accurate picture

of the performance thresholds for the respective components can be learned.

Much as a great deal of work has been done to benchmark the components

of a system responsible for computational performance, so too has this process

been carried out for parallel file systems and data storage capabilities. In this

area, tools such as b_e�_io [71], iozone [66], mpi-tile-io [7], The Flexible File

System Benchmark [7], benchio [38], and IOR [35] are all synthetic benchmarks

with a focus on benchmarking storage bandwidth to a parallel file system un-

der di�erent scenarios. As file system performance is dependent on factors other

than just storage bandwidth, applications like mdtest focus specifically on meta-

data performance for file creations and deletions to asses the rate at which these

can be processed by the file system.

The highly specialised approach to benchmarking seen in many of the ap-

28

Performance Analysis and Engineering

plications listed su�ers the drawback of failing to capture the characteristics of

interconnected components and consequently is not suitable for gaining com-

prehensive system performance insights.

Moving the focus away from evaluating just the file system, application

benchmarks and mini-applications seek to exhibit behaviour akin to that found

in a real application or software library. The focus in this case is on benchmark-

ing the data storage pattern taken from an existing simulation to assess how well

the parent application might perform on a new system or using an alternative

I/O library. These benchmarks have also successfully been used as optimisation

tools; their representative nature and relative simplicity making the perfor-

mance tuning process much simpler for performance engineers. This process

has been demonstrated by the FLASH-IO [103], S3D-IO [18], MADBench2 [13],

and Chombo I/O [7] benchmarks which were all derived by extracting the I/O

kernels from their respective parent applications.

2.3.2 Profiling

Tracking the time it takes to execute an application or benchmark is a straight-

forward way of comparing relative performances of machines or their compo-

nents. E�ective performance engineering requires a great deal more insight,

specifically capturing the characteristics of a run with more fine grained data.

This is achieved through the intermittent sampling of system state or through

capturing individual function calls and recording parameters and other data

instrumentation. Both of these approaches are used in the practice of system

and application profiling. When making use of application profiling techniques,

the output generated is usually in the form of a profile or trace file that can be

interpreted to show characteristics or a full record of the application during its

run. For the case of a straightforward profile, a high level representation of the

run can be used to assess overall behaviour through counters and statistic based

metrics. Alternatively, a trace file can allow for the run to be replayed function

by function and so low level code execution behaviour can be investigated.

29

Performance Analysis and Engineering

For the parallel computing domain, profiling requires the collection of data

from a potentially large number of distributed processes executing di�erent

portions of code. Consequently, simple profiling tools such as gprof [42] and

perf [23] must be replaced by more sophisticated parallel profilers.

Intel Vtune Amplifier [50] and Arm MAP [8] are profiling tools that identify

where performance hotspots occur in an application, in addition to monitor-

ing features such as cache usage and communication synchronisation. Data is

available on individual function calls as well as on hardware counters to iden-

tify and address performance bottlenecks and measure how e�ectively hardware

is utilised. Similar tools like mpiP [90], TAU [78], Caliper [12], and the HPC

Toolkit [2] o�er similar capabilities with varying degrees of sophistication and

usability.

The majority of monitoring and profiling tools available will provide some

I/O capability alongside more general execution data. This can often be limited

in detail for I/O specific counters and fail to profile higher level library calls.

Darshan is a scalable I/O profiling tool that is specifically designed to capture an

accurate picture of application I/O behaviour [16]. The lightweight interception

and aggregation of file operations at the POSIX, MPI-IO and HDF5 levels

enable Darshan to e�ciently capture data over the duration of a run. Moreover,

sites such as Argonne National Laboratory (ANL) are enabling Darshan on

production systems by default to make I/O profiles available to users with no

intervention.

For the work carried out in this thesis, profiling is a key technique that is

used to capture application workloads to allow for their characteristics to be

compared to synthetic workload replications.

2.3.3 Simulation

In a number of situations performance analysis goals cannot be achieved through

execution on real hardware. Particularly when looking to evaluate the perfor-

mance of new hardware architectures that aren’t yet physically deployed, or

30

Performance Analysis and Engineering

to drill down into the characteristics of an application where data collection is

di�cult, simulation is a valuable tool for performance engineers.

The Structural Simulation Toolkit (SST), developed by Sandia National

Laboratory (SNL), is a framework for micro-, meso-, and macro-scale simu-

lation [72]. Contained in SST are a number of built-in models for hardware

components and network topologies, enabling novel programming models and

hardware organisations to be explored. SST has been e�ective at studying

specific execution characteristics such as memory access and network commu-

nications, but as far simulation of parallel file systems there is a notable gap in

capabilities.

Replicating the behaviour of an individual HDD at a low level can be a

challenging task in and of itself; specifics such as data layout and cache utilisa-

tion can dramatically a�ect the behaviour observed despite possessing a good

understanding of the hardware specification. Despite this di�culty, there are

a number of storage simulators that focus on imitating drive and RAID array

behaviour, DiskSim [14], RAIDFrame [49], Pantheon [95], HRaid [21], Stora-

geSim [73], and SIM-Array [98] to name some notable examples.

Simulation of networked parallel file system presents added di�culty, with

additional components such as the separate data and metadata concerns in

architectures like Lustre adding behavioural complexity. The IMPIOUS parallel

file system simulator attempts to approximate the behaviour of real systems with

just enough detail to observe important characteristics [65]. This is achieved

with the use of abstract simulation models of object-based parallel file systems,

driven by parallel I/O traces. It was demonstrated that IMPIOUS’s accuracy

was su�cient to observe the trends of the simulated file system, but results

underestimated performance values by a factor of ten.

A more recent example of work to produce PFS simulation capability can be

seen in the Co-design of Exascale Storage Systems (CODES) framework [19].

CODES has been developed to evaluate storage designs for upcoming exascale

supercomputers, notably including up-to-date storage technologies such as SSD

31

Performance Analysis and Engineering

and NVMe based burst bu�ers and I/O accelerators [54].

2.4 Summary

High performance computing is a field in constant motion, delivering more pow-

erful supercomputers in the pursuit of greater scientific understanding. The

evolution of HPC systems, and the parallel techniques required to exploit them,

is a source of constant research and development. This chapter has presented an

overview of parallel computing techniques and research focused on the problem

of parallel I/O.

Parallel file systems have been deployed by organisations to deliver a de-

gree of storage performance to their HPC machines, and the I/O software stack

makes this accessible to application users and developers. Despite this I/O never

ceases to trouble scientific applications, and breaking the exascale milestone is

likely to require a more complex storage hierarchy. Engineering I/O perfor-

mance from new systems relies on a three-fold approach, combining sensible

application behaviour, library optimisations and file system tuning (examined

in further detail in Chapter 7). The research presented in this thesis examines

the process of I/O performance analysis of scientific applications through work-

load replication, contrasting to traditional synthetic and kernel benchmarking

approaches. It will also address the question of how relative performance can be

measured for applications against theoretical and realistic system expectations,

quantifying the performance envelope with which developers can confidently

work within.

32

CHAPTER 3
Parallel Hardware and Software Overview

The work contained in this thesis is supported by, and makes use of, a number

of hardware and software components. A proportion of these are specific to high

performance and parallel computing, however some are more widely applicable

to computing in general. This chapter provides an overview of these components,

focusing on storage systems in particular, as well as computing platforms and

benchmarking applications used in this work.

The material in this chapter is provided to give a complete understanding

of the components that are used to construct modern day parallel file systems

to handle the I/O tra�c generated by parallel compute clusters. In particular,

one of the objectives of this work is to understand how applications can employ

new and existing file access modes or strategies to avoid contention and similar

limitations on parallel file systems like Lustre. To aid in this understanding, the

description given of Lustre and some of its fundamental components provide

valuable context when attempting to reason about where ine�ciencies in I/O

performance may be coming from in later chapters. Furthermore, details of

physical storage devices are explained here to provide a basis for understanding

the limitations of the parallel file systems that are tested. One possible solution

to these limitations is the inclusion of node-local burst bu�ers in HPC systems

which motivate some of the later experiments in Chapter 7, highlighting here

how their physical design can o�er greater storage performance than traditional

hard disk drives gives a point of reference point on the results we can expect

when testing one of these systems. These storage devices o�er great potential

improvements over current generation parallel file systems, a quantification of

which is made possible by the work covered in later chapters.

33

Parallel Hardware and Software Overview

3.1 Storage Hierarchy

In modern computing systems, data storage components support a number of

important functions. The di�ering requirements of these functions call for a

hierarchy of storage devices with di�erent physical mechanisms; the purpose of

such a hierarchy is to e�ectively handle the competing requirements of capacity,

performance and cost to service the use cases of a system.

3.1.1 Hard Disk Drive

Storage technology has continuously developed to o�er greater capacity and

performance at lower cost though the adoption of solid state drive (SSD) devices.

However, the current generation of parallel storage systems still rely heavily on

the conventional mechanical spinning hard disk drive (HDD). Consequently,

understanding the characteristics of a HDD is important when considering the

performance of these parallel storage systems.

The key mechanism underpinning the operation of a conventional HDD is the

storage of data on spinning magnetic disk platters. The basic internal structure

of the drive assembly can be seen in Figure 3.1.

HDD are available at di�erent grades, meaning di�erent physical character-

istics of drives give variable reliability and performance. The three most widely

deployed types of HDD are:

• Serial Attached SCSI (SAS) - SAS disks o�er the greatest reliability, main-

tain performance under more di�cult conditions and o�er a greater peak

performance than other drive grades. The SAS interface contains a dif-

ferent feature set to that found in SATA that enable greater performance

such as command queuing and concurrent data channels.

• Nearline-SAS (NL-SAS) - A NL-SAS drive is an enterprise SATA drive

with a fully featured SAS interface. As a result, the drives are able to

exploit some of the features of the SAS interface but still maintain the

34

Parallel Hardware and Software Overview

Figure 3.1: Basic structure of a hard disk drive assembly.1

reliability characteristics of a traditional SATA drive, with performance

largely resembling that of SATA also.

• Serial ATA (SATA) - Of the three classes of drive, SATA o�ers the best

price per capacity but maintains a order of magnitude worse reliability

than SAS in terms of bit error rate. SATA class HDDs have lower rota-

tional speeds than are used for SAS, by far the biggest indicator of the

performance di�erence between the two.

The disk platters are made up of multiple layers of ferromagnetic disks,

which are accessed via a moving read/write head. To perform a data read or

write to the disk, the read/write head must seek to the correct position on the

relevant magnetic disk to retrieve or set the polarity of a location; this polarity

encoding either a 1 or a 0.

3.1.2 Solid State Drive

SSD storage devices have existed since as early as 1978, however the technology

has remained too expensive for broad adoption. In contrast to the mechanical

spinning disk based HDD, the design of SSDs contain no moving parts.

The mechanism underpinning the design of SSDs is the use of memory like
1Image includes resources from: https://commons.wikimedia.org/wiki/File:35-Desktop-

Hard-Drive.jpg
2Image includes resources from: https://commons.wikimedia.org/wiki/File:Sf-ssd.jpg

35

Parallel Hardware and Software Overview

Figure 3.2: Basic structure of a solid state drive assembly.2

technologies as the storage medium, coupled with a controller to read and write

states to the medium. Traditionally, the storage medium used in SSDs has been

Dynamic random-access memory (DRAM). However, due to the lack of voltage

persistence in the underlying capacitors, these devices are not considered to be

non-volatile. To allow DRAM based drives to store data in the absence of power

from the host system, an internal battery or external power adaptor is required.

DRAM permits very fast data access, but has a relatively high cost per byte

for a storage medium. As a result, a more commonly used SSD design relies on

NAND flash memory as the base storage medium.

NAND flash memory is a non-volatile memory (NVMe) technology that traps

an electron charge on a capacitor indefinitely in a no-power state. A high voltage

pulse adds or removes electrons from the capacitors to write data to the storage

medium. The charge of a NAND cell is sensed by circuitry on the chip, and data

is read from the device using an analogue to digital converter. Devices using

NAND flash can either be single-level cells (SLC) or multi-level cells (MLC); the

di�erence between these is that SLC based devices can only store a single bit of

information using one of only two voltage levels. MLCs will typically use four

distinct voltage levels to store two data bits per cell. Intuitively, a MLC based

SSD will have a much higher storage density, and hence much larger volume

SSDs can be produced.

A characteristic that SSDs display which is not seen in traditional HDDs is

the limit on the number of write cycles that a drive can undergo. For a write

36

Parallel Hardware and Software Overview

to be performed, an erasure operation on the NAND flash chip must first be

performed by supplying a large electrical charge to the chip. This charge causes

a small amount of degradation to the physical semiconductor layer of the chip,

and after a certain number of erase/write cycles the chip can no longer e�ectively

store a data charge. The predicted write limit of an SSD is dependent on the

geometry of component flash dies and whether or not SLC or MLC technologies

are in use. The reduction in physical size of storage chips and increasing use

of MLCs to increase the storage densities of modern SSDs both contribute to a

reduction in the expected lifetime of a drive.

A combination of the hardware lifetime limits and price-per-byte character-

istics of SSDs have contributed to the fact that, at the time of writing, these

storage devices still sit behind HDDs as the most widely deployed technology

for servicing large scale and intensive data storage requirements, particularly at

industrial scale.

3.2 File Systems

A file system manages the interaction between a user and the physical storage

hardware. Without file system layers providing structure, data written to a

medium would exist in one continuous body without any indication of where

distinct elements begin and end. The file system implementation in use will

dictate how interactions between the operating system and the storage hardware

are conducted, influencing performance.

3.2.1 The Extended File Systems

The extended file system family, originating with the first extended file sys-

tem (ext), is a series of file systems created exclusively for the Linux kernel.

Originally based on the metadata structure of the Unix File System (UFS) and

developed to replace the MINIX file system, itself developed as a cut-down ver-

sion of UFS, ext was the first implementation to make use of the Virtual File

37

Parallel Hardware and Software Overview

System (VFS).

The original ext implementation improved upon some of the limiting factors

of MINIX, crucially, addressing a maximum size limit of 2 gigabytes and 255

character limit on file names. However, ext still possessed a number of limi-

tations and consequently was superseded by the second version extended file

system (ext2) almost immediately.

An important feature missing from ext, addressed by ext2, included support

for separate timestamps for file access, inode modification, and data modifica-

tion. Additionally, the second iteration of the file system attempted to address

performance issues that arose through the use of linked lists to keep track of free

blocks and inodes; the performance becoming worse as file system fragmentation

increased.

Around 8 years after the introduction of ext2, the third version extended

file system (ext3) added the concept of journalling. A journalling file system

being one that uses a dedicated portion of the file system to track changes in

a ‘journal’ data structure or log; the benefit of journalling is that file systems

are more robust to a system failure and can be recovered much faster. More-

over, in some situations where journal entries are written to a contiguous disk

region, performance improvements can be seen. Conversely, in situations where

metadata and file contents must be written twice, poorer performance can be

observed. Three levels of journalling are implemented in ext3:

• Journal - The first level is the most robust, with both metadata and file

contents being appended to the journal. This is done before the data is

committed to the main portion of the file system.

• Ordered - O�ering a greater level of risk than the first, ordered jour-

nalling commits only metadata and not file contents to the journal log.

File contents must be committed to the main file system before metadata

associated with the file can be marked as committed in the journal.

• Writeback - The final and highest risk journal level also stores metadata

38

Parallel Hardware and Software Overview

and not file contents. However, the journal contents may be updated

before or after file contents are committed to the main portion of the file

system; allowing files modified just before a crash to become corrupted.

Journals can be stored on the file system they are in turn journalling, but in

many cases can exist externally on a separate device. To improve performance,

SSDs or battery supported non-volatile random access memory (RAM) can

provide journalling capability, while a regular HDD handles the main file system

data storage.

The newest version of the extended file system, version four (ext4), builds

directly on ext3 with an ability to support individual file sizes of 16 terabytes

and a maximum file system size of 1 exabyte. Furthermore, features such as

journal checksumming, faster file system consistency checks, delayed allocation

and multiblock allocation improve the performance and reliability of ext4 over

its predecessors. Originally these extensions were developed for the Lustre file

system [77], and were designed to maintain a large amount of backwards com-

patibility with ext2 and ext3. A number of additional extensions to ext4 have

been developed, and make up the ldiskfs file system for use as the underlying

file system in a Lustre deployment.

In each of the extended file system versions, a key building block object is

the inode data structure, describing all of the information for a file or directory

except its name and actual data contents. Upon file creation a name and a

unique inode number are assigned, and when a file is referenced by a user or

application the file name is used to perform a look up of its inode. In addition

to storing the metadata for a file, the inode structure contains 15 pointers that

are used to indicate the starting point of the data blocks containing the file

contents. The first 12 of these pointers are used to indicate the starting point of

file blocks directly, while the remaining pointers use one, two, and three levels of

indirection respectively. An indirect block pointer references a data block, that

itself contains a table of addresses that point to data blocks. A single indirect

block pointer uses this lookup table to then point directly to blocks containing

39

Parallel Hardware and Software Overview

file contents, with double indirection having to go through two pointer lookup

blocks in turn before accessing file blocks. This structure enables faster data

retrial for smaller files, but through levels of slower indirection, a larger number

of data blocks increase the total possible file size.

The inode block mapping scheme described is implemented in ext2 and ext3,

but was replaced in ext4 by the concept of extents. One of the benefits of

changing the internal structure of inodes in this way is a reduction in the amount

of metadata that is required to keep a record of data blocks for large files. An

extent is a range of contiguous physical blocks of up to 128 MB (assuming a

4 KB block size). The 16 pointers previously stored inside an inode are replaced

by 4 extents, with each extent reserved and addressed at once. Furthermore,

the use of larger contiguous blocks reduces file fragmentation and in turn can

improve performance.

3.2.2 ZFS

ZFS is a file system and logical volume manager, developed by Sun Microsystems

for the Solaris operating system. Historically, storage systems were created on

top of a single hardware device, and the combination of file system and volume

manager in ZFS addresses the use of multiple devices and provides redundancy.

ZFS is designed to run on a single server, with many attached storage devices

potentially numbering up to thousands. These storage devices are pooled and

managed as a single entity, with a theoretical upper limit on scalability of 256

quadrillion zettabytes (2128 bytes).

In managing physical storage devices, ZFS uses the concept of virtual devices

(vdevs). A vdev can be either a single device, multiple devices using mirroring,

or multiple devices in a ZFS specific RAID configuration (RAIDZ). Available

vdevs are pooled into a storage pool, which acts as an arbitrary data store to

be used to create a file system. The model used by ZFS storage pools is similar

to that of virtual file system (VFS), where new hardware can be added to the

pool and is immediately available for use by the file system without additional

40

Parallel Hardware and Software Overview

management e�ort.

When a storage pool is first created, a form of data striping is used across

all of the available vdevs to maximise file system performance. Consequently,

each vdev must have a su�cient level of redundancy to protect the pool against

the loss of any of the vdevs, which could in turn cause the loss of the pool as a

whole.

To ensure the file system is always consistent on disk, ZFS adopts a transac-

tional model. File system inconsistency is traditionally a problem experienced

when a system failure occurs midway through the process of committing changes

to disk. For example, when creating a file, the loss of system power between

data block allocation and linking into a directory would leave the file system

in an inconsistent state. A common solution to maintaining consistency is to

use journalling, as discussed in Section 3.2.1. Alternatively, transactional file

systems rely on copy-on-write (CoW) data management semantics. During this

process, existing data is not overwritten in place and a sequence of operations

is either marked as completely committed or ignored in its entirety. To modify

a file’s contents modified data is written to new data blocks, and at completion

relevant metadata blocks can then be read, reallocated and written to complete

the update. Requiring data copies will naturally involve a performance over-

head, which can be reduced by grouping operations into transactional groups.

Similarly to ldiskfs (essentially ext4 with extensions), ZFS can be deployed

as the backend storage in a Lustre parallel file system, which is discussed later on

in this chapter. Motivating factors for this adoption include the aforementioned

extreme scalability, good underlying write performance, and built in redundancy

ZFS o�ers.

3.2.3 XFS

XFS is a 64-bit journalling file system originally developed for the SGI IRIX

operating system. From inception, the file system was designed to excel in

handling parallel and streaming I/O for large multiprocessor systems and disk

41

Parallel Hardware and Software Overview

arrays rather than small single disk workstations.

The design of XFS is based on the concept of allocation groups (AG), equal

sized subdivisions of the physical volume that keep track of their own free blocks

and inodes. Each AG can conceptually be thought of as an individual file

system with a maximum size of 1 TB, this upper limit being independent of

the underlying device sector size. It is the availability of multiple AGs in a file

system that permit concurrent file operations without introducing contention

and performance degradation.

Free list (4 blocks)

AG inode B+ tree (1 sector)

AG free block info (1 sector)

Root of free space B+ tree (1 block)
(B+ tree key is block number)

Inodes (64 inodes)

Root of inode B+ tree (1 block)

AG internal free space (1 sector)

XFS Allocation Group

Superblock (1 sector)

Root of free space B+ tree (1 block)
(B+ tree key is block count)

Remaining space for metadata and file data

Figure 3.3: Internal structure of an XFS allocation group

The internal structure of an AG can be seen in Figure 3.3. The first block

is made up of four sectors, beginning with the AG superblock. The superblock

belonging to the primary AG is used to store aggregate file system information

such as the total free space and number of inodes across the entire file sys-

tem; subsequent superblocks are used only for recovery purposes on a primary

superblock corruption.

Following the superblock sector is the free space block, which points to two

B+ trees for tracking free space by block number and by block size. Each entry

42

Parallel Hardware and Software Overview

in the B+ trees is a descriptor of a free extent in the AG, consisting of a starting

block and length for the extent. By using two B+ trees with di�erent indexing

the process of searching for available free space is more e�cient for the di�erent

types of allocation that are required. The other AG component required for

free space management is a free list, containing an array of reserved space for

growing the free space B+ trees that cannot be used by user data.

Storage of inodes is performed by a similar method to that of free space

blocks with the use of a B+ tree. Inodes are allocated in chunks of 64 and

the B+ tree is tasked with tracking these allocations, as well as the freeing of

inode chunks. In particular, the file and metadata performance improvements

XFS demonstrates over other file system approaches can be attributed to the

e�ciency of B+ tree, in part due to their ability to minimise the number of

traversal operations to retrieve metadata and file data.

File system consistency is achieved in XFS with the use of journalling via

a write-ahead transaction log. In contrast to the journalling implemented in

ext3 however, journal updates can be performed both synchronously and asyn-

chronously; the latter avoiding performance hits by decoupling the rate meta-

data is updated from the speed of the disks.

3.3 Clustered File Systems

File systems such as ext4 and ZFS are e�ective at managing direct-attached

storage on a single local system; managing non-local storage between variable

numbers of clients and servers in a way that provides unified file and directory

structures however requires the use of clustered file systems. The term clustered

file systems is a general one encompassing di�erent categories of non-local stor-

age, the distinctions of which are not necessarily universal. Furthermore, file

system architectures may fulfil some definitions and design goals of more than

one category. Consequently, the following terms are used to describe types of

clustered file systems: networked file system, distributed file system, shared-disk

43

Parallel Hardware and Software Overview

file system, and parallel file system.

Networked File System

A networked file system is one that allows a client to access data on remote

storage devices via a network service. One of the most widely implemented

networked file system solutions is the Network File System (NFS) developed by

Sun Microsystems. In the NFS model, a server exports a directory structure

to be mounted in a client’s local file space alongside its direct-attached stor-

age. The Remote Procedure Call (RPC) protocol enables the client to issue

I/O commands over the network, which are translated by the NFS server into

commands issued to its local file system. Internally, an NFS server accesses

local storage devices via a traditional local file system (such as ext4); as such,

NFS is not a traditional standalone file system and is sometimes referred to as

a network abstraction to a file system.

Distributed File System

Distributed file systems (DFS) are considered to be those that build on the

client/server model to present a unified file system backed by multiple servers.

As with networked file systems there is no block level access to storage devices,

with I/O requests handled by a network protocol. For this reason, DFSs are

commonly categorised as or alongside networked file systems.

Spreading storage requirements across a number of devices, that are in turn

accessed through multiple servers, generally yields better performance than

would be achieved by a single server when scaling the number of clients and

size of the network. Importantly, DFS protocols deliver a distributed storage

capability transparently such that client nodes are unaware of the distinction

between distributed and local files when they are accessed, and a consistent

namespace for both is presented.

44

Parallel Hardware and Software Overview

Shared-disk File System

A shared-disk file system di�ers from a DFS in that clients are able to gain

direct block level access to storage devices. The connection between clients

and file system servers is achieved across a storage-area network (SAN). Due to

clients making direct disk accesses to remote storage, the translation from file

level operations to block level operations must be done on the client side before

being transmitted across the SAN.

Architectures for shared-disk file systems can di�er, notably in how meta-

data is stored containing file information. A fully distributed architecture will

balance metadata out across all of the file system’s servers; the opposing ap-

proach relying on a centralized server to manage file information and records of

where a file’s data is stored.

Parallel File System

A parallel file system (PFS) is a particular type of clustered file system that

distributes data across multiple storage elements to o�er greater redundancy

but most importantly better performance. PFSs have been designed to use

both the distributed and shared-disk file system models, with examples such as

Ceph [94] able to operate using both approaches depending on configuration.

3.3.1 The Lustre Parallel File System

Lustre is by far the most widely used parallel distributed file system for HPC

systems. Furthermore, Lustre remains the file system of choice for the largest

and most powerful machines in the world. Of the machines occupying the top 10

places in the global TOP500 list published in November 2017, seven use Lustre

for their primary high performance storage systems3.

The architecture of Lustre is based on the principle of object based storage,

the key component of which is the management of data as objects instead of files
3The Sunway TaihuLight, K computer, and Gyoukou machines do not use Lustre; however,

TaihuLight and the K computer have storage systems that are either based on or a branch of
Lustre.

45

Parallel Hardware and Software Overview

MDS

Client

Client

Client

Client

OST

OSS

OST

OSS

MDS

OST

OSS

OSS

OST

MGT

MGS

MDT

System Interconnect

Figure 3.4: An example Lustre configuration with one MGS, four OSSs, four
OSTs, and one MDT with two MDSs in failover.

or blocks. In designing storage this way, the concerns of metadata and actual

file data can be separated. Most modern clustered file systems that share this

architecture are based on six components, for which Lustre has a well defined

naming convention. The structure of these file system components is shown in

Figure 3.4.

Object Storage Target (OST)

The base unit of storage hardware, be it a single HDD or multiple drives organ-

ised into a RAID array, is referred to as an Object Storage Target. Each OST

46

Parallel Hardware and Software Overview

manages a single local disk file system for performing block level data opera-

tions. The data blocks that make up a file are stored in stripes on one or many

OSTs, with the total number of OSTs dictating the total capacity of the file

system.

Object Storage Server (OSS)

Each of the servers directly connected to one of more OSTs are designated an

Object Storage Server. Commonly an OSS will be primarily responsible for file

data operations on a group of OSTs, with failover links to a second group of

OSTs managed by another OSS. Overlapping the mapping of OSSs and OSTs

in a file system provide high availability access to OSTs and protects the file

system from individual OSS failure.

Metadata Target (MDT)

File metadata is stored separately to data on a dedicated storage device or

devices. Similar to an OST, a Metadata Target can be made up of a single

HDD or often a RAID array to provide greater performance and redundancy.

Importantly, the namespace metadata stored on an MDT includes information

such as filenames, access permissions and file layouts; unlike block-based PFSs

no data on file block allocations are stored in a Lustre MDT, meaning the

metadata server does not have to be directly involved in file I/O operations.

Instead, block allocation data is managed internally by the OSTs.

Metadata Server (MDS)

A Lustre file system contains one or more dedicated servers controlling access

to one or many MDTs, referred to as the Metadata Server. For a file system

comprising multiple MDSs and MDTs, overlapping connections provides high

availability and redundancy in the same way as can be achieved for OSSs and

OSTs.

47

Parallel Hardware and Software Overview

Management Server (MGS)

Configuration information for a Lustre file system required by servers and clients

is managed by the central Management Server. It is possible for the MGS to run

on a shared server alongside the MDS, however production file system typically

have a dedicated MGS node.

Client

The Lustre client is mounted on a host’s operating system to present a unified

namespace for all of the files and data contained in the file system. Applications

running on a host can interact with the file system using standard POSIX

semantics to read and write data concurrently.

Communication between Lustre components is done through the Lustre Net-

work (LNet) layer, which can operate across a number of interconnects. In

HPC systems, InfiniBand is a common choice for high speed interconnect and is

supported for LNet communication; alternatively Ethernet, TCP/IP and pro-

prietary technologies such as Intel Omni-Path [11] or Cray Gemini [5] are com-

patible with the LNet layer.

Where made possible by the network infrastructure, Remote Direct Memory

Access (RDMA) transfers can be exploited by Lustre. RDMA bypasses operat-

ing system bu�ers allowing the network adaptor to access data in application

memory, reducing the CPU load and improving throughput when performing

LNet communication.

Lustre Architecture

In a typical HPC system, the Lustre client is installed on each compute node’s

operating system allowing communication between the compute portion of the

system and the Lustre OSSs and MDSs. With a Lustre file system mounted on

each compute node, there exists an all-to-all mapping between distributed com-

pute nodes and distributed storage components. Importantly, a HPC platform

48

Parallel Hardware and Software Overview

Client

Client

Client

Client

OST

OST

OST

OSS

OST

OSS

OSS

OSS

Sw
it
ch

in
g

Fa
br

ic

System Interconnect

Figure 3.5: An example GPFS configuration with four OSSs and four OSTs
connected over a switching fabric

can support multiple Lustre file systems concurrently each containing their own

distinct MDS and storage target pools.

3.3.2 The IBM Spectrum Scale File System

The IBM Spectrum Scale File System (also known as the General Parallel File

System [GPFS] [75]) is an alternative clustered file system, which is based on

the shared-disk model. GPFS features in a number of machines in the TOP500,

but is less widely adopted than Lustre; it does however share some common

operational characteristics. In particular, both Lustre and GPFS distribute file

data across multiple storage targets via a number of storage servers.

One of the key elements that di�erentiates GPFS from Lustre is the ability

to operate with both distributed metadata and a centralised metadata target.

When configured with distributed metadata, file information is stored alongside

file data across all of the available OSTs in the system. This avoids a single

point of failure and can improve performance for large numbers of concurrent

metadata operations, which can be observed in the superior file creation rate

49

Parallel Hardware and Software Overview

GPFS has over Lustre. A caveat to this is that file operations must be carried

out in di�erent directories due to the distributed locking GPFS implements to

enable full POSIX semantics.

The OSS to OST mapping in GPFS has full connectivity, meaning all of the

storage servers can communicate with all of the disks across a switching fabric.

Having full connectivity in the file system maximises the potential for parallel

data transfers to disk, which is performed under the control of the distributed

lock manager. An example of this architecture is shown in Figure 3.5.

3.4 Computing Platforms

The work carried out in this thesis has made use of nine di�erent HPC platforms.

Two of the platforms are leading class supercomputers, entering the TOP500 list

at the time of their commissioning and occupying rankings in the top 20. One of

these was formally the most powerful machine in the world, hosted at Oak Ridge

National Laboratory (ORNL) in the United States, while the other is the United

Kingdom’s national supercomputing service hosted at the Edinburgh Parallel

Computing Centre (EPCC). A further three systems are built of commodity

hardware, one hosted at the Atomic Weapons Establishment (AWE) and two

at Lawrence Livermore National Laboratory (LLNL) in the United States. Also

installed at LLNL is the Ray IBM cluster, which is an early access platform

for the Sierra advanced technology system. Finally, two machines housed by

universities have been used from the University of Warwick and Technische

Universität Dresden in Germany.

Specifically, the machine configurations used are:

Titan

A capability system installed in the Oak Ridge Leadership Computing Facility

(OLCF) at ORNL. Titan is a hybrid architecture Cray XK7 system consisting

of 18,688 nodes, each housing a 16-core AMD Opteron processor and an NVidia

50

Parallel Hardware and Software Overview

Titan ARCHER

Processor AMD Opteron 6274 Intel Xeon E5-2697v2
CPU Speed 2.2 GHz 2.7 GHz
Cores Per Node 16 24
Memory Per Node 32 GB 64 GB
Nodes 18,688 4,920
Interconnect Cray Gemini Cray Aires

File System
I/O Servers 288 12

Storage Metadata Storage Metadata
Number of Disks 10,080 30 480 14
Disk Size 2 TB 900 GB 4 TB 600 GB
Spindle Speed 10,000 RPM 15,000 RPM 7,200 RPM 10,000 RPM
Bus Connection NL-SAS SAS SAS SAS
RAID Configuration RAID 6 (8 + 2) RAID 1 + 0 RAID 6 (8 + 2) RAID 1 + 0

Table 3.1: Hardware specification of the Titan and ARCHER supercomputers.

K20X Kepler GPU with 14 streaming multiprocessors. Titan is serviced by two

large centre-wide Lustre file systems, each housing 1008 OSTs, and nodes are

connected via the Cray Gemini interconnect in a 3D torus topology. The full

specification can be found in Table 3.1.

ARCHER

A capability system installed as the UK’s national supercomputing service at

EPCC. ARCHER is a Cray XC30 consisting of 4920 nodes, each containing two

12-core Intel Ivy Bridge processors connected via two QuickPath Interconnect

(QPI) links. The Cray Aries interconnect is used to link the nodes together in

a dragonfly topology, and the machine is serviced by three Lustre file systems.

Two of these file systems contain 48 OSTs, with the third slightly larger housing

56 OSTs. A summary of the archer configuration is found in Table 3.1.

Spruce

A capacity system installed at AWE, partitioned into two halves that can oper-

ate independently. The partition used in this thesis was Spruce A, an SGI ICE

X consisting of 2226 nodes containing two 10-core Intel Ivy Bridge EP proces-

sors running at 2.8 GHz. Spruce is serviced by a 140 OST Lustre file system,

and the nodes are connected by FDR InfiniBand. A Summary of the Spruce

51

Parallel Hardware and Software Overview

Spruce A Cab

Processor Intel Xeon E5-2680v2 Intel Xeon E5-2670
CPU Speed 2.8 GHz 2.6 GHz
Cores Per Node 20 16
Memory Per Node 64 GB 32 GB
Nodes 2,226 1,296
Interconnect InfiniBand FDR InfiniBand QDR

File System
I/O Servers 32

Storage Metadata Storage Metadata
Number of Disks 4,800 30 (+2)
Disk Size 450 GB 147 GB
Spindle Speed 10,000 RPM 15,000 RPM
Bus Connection SAS SAS
RAID Configuration RAID 6 (8 + 2) RAID 1 + 0 RAID 6 (8 + 2) RAID 1 + 0

Table 3.2: Hardware specification of the Spruce A and Cab supercomputers.

configuration is shown in Table 3.2.

Cab

A capacity system installed in the Open Compute Facility (OCF) at LLNL. Cab

is a Cray built Xtreme-X cluster consisting of 1296 nodes, containing two 8-core

Intel Sandy Bridge EP processors running at 2.6 GHz. Nodes are connected

using an InfiniBand interconnect in a fat tree topology. Storage systems in the

OCF are connected to compute platforms via a central storage network, allowing

di�erent Lustre installations to be accessed by di�erent machines. In this thesis,

the lscratche file system was predominantly used as one of the three Lustre file

systems available to Cab. This particular file system contains 80 OSTs.

Quartz

The Quartz system (summarised in Table 3.3) exists to fill a similar role to Cab

at LLNL, and indeed belongs to the generation of systems intended to take over

from Cab. Quartz is a Penguin Linux cluster consisting of 2634 nodes, contain-

ing two 16-core Intel Broadwell CPUs running at a frequency between 2.1 GHz

and 3.3 GHz. Nodes are connected via the Intel Omni-Path interconnect and

a 36 OST Lustre file system (lscratchh) is mounted via the central site storage

network.

52

Parallel Hardware and Software Overview

Quartz Ray

Processor AMD Opteron 6274 IBM POWER8
CPU Speed 2.2 GHz 2.6 GHz
Cores Per Node 16 16
Memory Per Node 32 GB 32 GB
Nodes 18,688 1,296
Interconnect Cray Gemini InfiniBand QDR

File System
I/O Servers 36 2

Storage Metadata Storage Metadata
Number of Disks 2,880 96 82 2
Disk Size 8 TB 800 GB 6 TB 400 GB
Spindle Speed 15,000 RPM (SSD) 7,200 RPM 7,200 RPM
Bus Connection SAS SAS NL-SAS NL-SAS
RAID Configuration RAIDZ2 RAID 1 + 0 RAID 6 (8 + 2) RAID 1 + 0

Table 3.3: Hardware specification of the Quartz and Ray supercomputers.

Ray

Of the systems used in this thesis, the Ray early access cluster is the most dis-

tinct. Ray is installed at the OCF at LLNL, and is an IBM hybrid architecture

system designed as a scaled down system for porting software and applications to

the Sierra supercomputer. Ray consists of 62 nodes, each containing two 10-core

IBM POWER8 processors and 4 NVidia Tesla P100 GPUs with 56 streaming

multiprocessors each giving a total of 3584 GPU cores. A Mellanox EDR In-

finiBand interconnect links the nodes and a reasonably limited size GPFS file

system serves as the main parallel file system. Furthermore, Ray nodes each

contain a 1.6 TB SSD burst bu�er as a high bandwidth persistent storage layer.

Ray is summarised in Table 3.3.

Taurus

A research system installed at the Centre for Information Services and High Per-

formance Computing at Technische Universität Dresden. Taurus (summarised

in Table 3.4) is a bullx DLC 720 system consisting of three tightly coupled is-

lands each based on a di�erent processing architecture. In this thesis, work has

been performed using the phase two island of 1456 nodes, each containing two

12-core Intel Haswell processors. Nodes are connected in the system with FDR

InfiniBand and storage is provided by a 96 OST Lustre parallel file system.

53

Parallel Hardware and Software Overview

Taurus Tinis

Processor Intel Xeon E5-2680v3 Intel Xeon E5-2630 v3
CPU Speed 2.5 GHz 2.4 GHz
Cores Per Node 24 16
Memory Per Node 64 GB 64 GB
Nodes 1,456 203
Interconnect InfiniBand FDR InfiniBand QDR

File System GPFS
I/O Servers 24 2

Storage Metadata Storage Metadata
Number of Disks 9,600 14 120 -
Disk Size 6 TB 900 GB 6 TB -
Spindle Speed 10,000 RPM 10,000 RPM 7,200 RPM -
Bus Connection NL-SAS SAS NL-SAS -
RAID Configuration RAID 6 (8 + 2) RAID 1 + 0 RAID 6 (8 + 2) -

Table 3.4: Hardware specification of the Taurus and Tinis supercomputers.

Tinis

A research system installed at the Centre for Scientific Computing at the Uni-

versity of Warwick. Tinis consists of 203 Lenovo NeXtScale NX360 nodes, each

housing two 8-core Intel Haswell processors. Nodes are connected with QLogic

TrueScale 4x QDR InfiniBand and storage is provided by a small GPFS instal-

lation organised into six data disk pools.

3.5 I/O Benchmarking Applications

The work contained in this thesis focuses heavily on using software applications

to benchmark I/O performance. For this purpose, benchmarks have been used

throughout. Specifically these applications are:

MACSio

An application developed for I/O performance testing, as well as evaluation of

trade-o�s in data model interfaces and parallel I/O paradigms for multi-physics

HPC applications. Two key design features of MACSio [63] set it apart from

existing I/O proxy applications and benchmarking tools. The first is the level of

abstraction at which MACSio operates and the second is the degree of flexibility

MACSio provides in driving an HPC I/O workload through parametrised, user-

54

Parallel Hardware and Software Overview

defined data objects and a variety of parallel I/O paradigms and I/O interfaces.

The MACSio proxy application is used particularly heavily throughout this

thesis, and is the focus of the workload replication and optimisation presented

in Chapter 6 and Chapter 7. More detail on MACSio will be discussed in these

chapters.

Bookleaf

Bookleaf is a 2D unstructured Lagrangian hydrodynamics application, solving

the Sod, Sedov, Saltzmann and Noh shock-hydro problems [89]. The application

has a fixed checkpointing scheme that produces initial and final output files

covering the complete dataset. All the I/O operations performed in Bookleaf

are done through the TyphonIO library, writing to an underlying HDF5 file

with an N-1 scheme.

3.6 Summary

Increasingly the hardware deployed by HPC sites is diverging as new architec-

tures and approaches are required to forge the path to exascale. To handle the

complexity of these architectures, advanced software and programming inter-

faces are being developed to maintain performance portability and user acces-

sibility. With regards to HPC storage systems, the principles limiting perfor-

mance have remained largely consistent across di�erent sites due to the reliance

on HDDs and well established DFS approaches. In this chapter the background

and history of I/O and data storage in HPC has been presented, covering the

base HDD storage device up to the widespread Lustre PFS. These components

form the basis of the storage systems deployed in the HPC systems that are

tested in later chapters, and understanding the limitations of the hardware and

design of these components motivates a goal of this work in mitigating poor I/O

pattern choice for the underlying storage system.

The parallel file systems described in this chapter share the common de-

55

Parallel Hardware and Software Overview

sign philosophy of object storage. This architecture has proved successful for

distributing storage to provide greater performance to large scale supercomput-

ers, however even these sophisticated file systems remain a bottleneck to the

heavy data requirements of scientific simulations. Adopting modern storage ar-

chitectures and technologies, including things such as SSDs and NVMe devices

in storage design, will alleviate some of the burden traditionally placed on the

PFS if I/O approaches can e�ectively evolve to exploit these capabilities.

Finally, this chapter provides a comprehensive overview of supercomputer

hardware configurations that are used throughout this thesis to analyse I/O

performance. In addition, the applications that are used to test these systems

are introduced here.

56

CHAPTER 4
Experimental Setup

In this chapter, a detailed run-down of the configurations and experimental

procedures used throughout the remainder of this thesis is given. Experimental

results for the configurations listed are not presented here, instead this is a point

of reference for the experiments contained primarily in Chapters 5 to 7. For ease

of navigation, the sections and subsections in this chapter have been arranged

to reflect the location of the experiments in the respective chapters in which

they are featured.

4.1 Common Methodology: I/O Measurement

All of the experimentation throughout this thesis is done with the purpose of

measuring I/O related metrics, the most common being I/O times and band-

widths. In each experimental run, the target application was instrumented using

the Darshan I/O profiling and characterisation library. Darshan can be stati-

cally linked or dynamically loaded at runtime, both of which were used based

on the requirements of the MPI library installed, however the operation and

data reported is the same for both usage methods. Darshan itself calculates

and reports I/O timings based on the starting and ending timestamp for open,

close, read and write operations. For verification of accuracy, all of the I/O tim-

ings used in these experiments were calculated using the timestamps for each

operation. Darshan also records bytes that have been transferred by read and

write operations, and these measurements were used in conjunction with the

calculated timings to produce bandwidth or throughput figures. It is also worth

nothing that throughout the results in this thesis the results that are quoted

are measured in terms of binary multipliers, that is KB represents 1024 Bytes,

57

Experimental Setup

MB represents 1024 KB, and GB represents 1024 MB.

4.2 Chapter 5: Profiling Multi-physics I/O

Workloads

The focus of the results collected in Chapter 5 is to extract representations of

the I/O work performed by the targeted applications.

4.2.1 Bookleaf Mini-Application

A profile of the Bookleaf mini-application is presented in Figure 5.2. This profile

was extracted from Darshan logs generated on the Archer platform. Bookleaf

was configured to use the noh_large problem and to use the TyphonIO check-

pointing sub-routines.

Setup Component
Application Bookleaf
Configuration noh_large problem
Platform Archer
Scale 1, 2, 4, 8, 16, 32, 64 Nodes
Lustre Stripe Count 4
Lustre Stripe Size 1 MB

Table 4.1: Bookleaf profile gathering setup

Ten repetitions at each node scale were collected and the best case in terms

of overall runtime was selected for presentation.

4.2.2 AWE01 Multi-Physics Application

Five profiles of the AWE01 Application are presented in Section 5.1.3. Each

of these profiles was extracted from Darshan logs generated on the Spruce A

platform. The AWE01 application was configured to run five di�erent problem

input decks and to use TyphonIO checkpointing and visualisation writing.

Due to the extremely limited access to the machine to run these problems,

the length of runtime required and the reasonable probability of a calculation

58

Experimental Setup

Setup Component
Application AWE01 Multi-Physica
Configuration Problems A, B, C, D, and E
Platform Spruce A

Scale 1 Node (Problem A)
5 Nodes (Problems B-E)

Lustre Stripe Count -1
Lustre Stripe Size 1 MB

Table 4.2: AWE01 profile gathering setup

halting due to instability, only 5 repetitions of problems B-E were collected. For

problem A the resource required was only a single node for a shorter runtime

and so 10 repeats were possible. The best performing run in terms of overall

runtime were selected for use in the relevant section.

4.3 Chapter 6: Application Workload Replication

The focus of the results in Chapter 6 is to validate the MACSio proxy ap-

plication’s ability to generate an I/O workload representative of Bookleaf and

FLASH-IO.

4.3.1 Proxy Application Validation: Bookleaf

The experiments run in Section 6.2.1 used the Bookleaf mini-application with

the noh_large problem input and the MACSio proxy application using a Book-

leaf input parameter set. Two platforms were used to collect validation results

for both of these applications, Archer and Tinis. All of the values presented in

these results are taken from profiling logs collected via Darshan instrumentation

and the values quoted verbatim.

On both systems, 10 repeats were collected at each scale and the best per-

forming run in terms of I/O time is presented. Importantly, the best performing

run at each scale was selected and all three measurements (I/O time, cumula-

tive write time, and max write operation time) were taken from this run rather

than the best result being cherry picked across di�erent repeats for the three

59

Experimental Setup

Setup Component
Application Bookleaf MACSio
Configuration noh_large Bookleaf profile
Platform Archer
Scale 1, 2, 4, 8 ,16, 32, 64 Nodes
Lustre Stripe Count -1
Lustre Stripe Size 1 MB

Table 4.3: MACSio-Bookleaf Validation on Archer

Setup Component
Application Bookleaf MACSio
Configuration noh_large Bookleaf profile
Platform Tinis
Scale 1, 2, 4, 8 ,16, 32, 64 Nodes
Lustre Stripe Count N/A (GPFS)
Lustre Stripe Size N/A (GPFS)

Table 4.4: MACSio-Bookleaf Validation on Tinis

measures. I/O timings are presented separately for the two checkpoints that

are generated by both applications, the run with the best time across both of

these checkpoints was selected at each node scale.

4.3.2 Proxy Application Validation: FLASH-IO

The experiments run in Section 6.2.2 used the FLASH-IO application and the

MACSio proxy application using a derived FLASH input parameter set. Results

for FLASH-IO and MACSio were gathered from the Archer platform and values

were obtained directly from Darshan profiling logs.

Setup Component
Application FLASH-IO MACSio
Configuration 3D Large FLASH-IO Profile
Platform Archer
Scale 1, 2, 4, 8 ,16, 32, 64, 128 Nodes
Lustre Stripe Count -1
Lustre Stripe Size 1 MB

Table 4.5: MACSio-FLASH Validation on Archer

The results presented in Figure 6.5 represent the best case in terms of I/O

60

Experimental Setup

time across 15 repetitions. At each scale the best performing run was selected

and all three measurements (I/O time, cumulative write time, and max write

operation time) were taken from this run rather than the best result being cherry

picked across di�erent repeats for the three measures.

4.4 Chapter 7: I/O Performance Benchmarking

and Optimisation

The results presented in Chapter 7 cover a wide spectrum of experiments com-

prising a varied performance study of I/O software and parallel file system tun-

ing. These experiments were conducted using a wide range of platforms across

a period of 42 months.

4.4.1 Tuning the Parallel I/O Software Stack: Middleware

Collective Operation Scaling

The experiments shown in Figures 7.1 and 7.2 used the MACSio proxy appli-

cation to generate replicated Bookleaf, FLASH-IO, and AWE01 workloads on

the Archer, Quartz, and Ray platforms. For each of the applications tested two

sets of runs were performed, one with the I/O library enforcing independent I/O

operations and one with the library attempting to use collective operations. Ad-

ditionally, two sizes of workload were tested for Bookleaf and FLASH-IO. Book-

leaf used a small 1800◊720 and larger 14400◊5760 problem size and FLASH-IO

used the standard reference 3D problem and a large reference problem twice the

size of the original.

For each machine, application profile, and problem size 10 repeats of the

run were collected. The results presented represent the best case performance

at each scale in terms of the observed I/O checkpoint bandwidth.

61

Experimental Setup

Setup Component
Application MACSIO

Configuration
Bookleaf Profile

FLASH-IO Profile
AWE01 Problem A, B, D

Platform Archer

Scale
1, 2, 4, 8 ,16, 32, 64, 128 Nodes (Bookleaf, FLASH-IO)

1 Node (AWE01 Problem A)
5 Nodes (AWE01 Problem B, D)

Lustre Stripe Count -1
Lustre Stripe Size 1 MB

Table 4.6: Collective Operation Scaling on Archer

Setup Component
Application MACSIO

Configuration
Bookleaf Profile

FLASH-IO Profile
AWE01 Problem A, B, D

Platform Quartz

Scale
1, 2, 4, 8 ,16, 32, 64, 128 Nodes (Bookleaf, FLASH-IO)

1 Node (AWE01 Problem A)
5 Nodes (AWE01 Problem B, D)

Lustre Stripe Count -1
Lustre Stripe Size 1 MB

Table 4.7: Collective Operation Scaling on Quartz

Setup Component
Application MACSIO

Configuration
Bookleaf Profile

FLASH-IO Profile
AWE01 Problem A, B, D

Platform Ray

Scale
1, 2, 4, 8 ,16, 32 Nodes (Bookleaf, FLASH-IO)

1 Node (AWE01 Problem A)
5 Nodes (AWE01 Problem B, D)

Lustre Stripe Count N/A (GPFS)
Lustre Stripe Size N/A (GPFS)

Table 4.8: Collective Operation Scaling on Ray

Collective Bu�ering Parameters

Figures 7.3 and 7.4 show experiments to study the impact of changes to the col-

lective bu�ering control parameters, specifically cb_nodes and cb_bu�er_size.

62

Experimental Setup

The Bookleaf and FLASH-IO replicated workloads were run in MACSio on the

Archer platform to produce these results. A set of seven parameter values are

tested for the cb_nodes setting and a set of five used for cb_bu�er_size.

cb_nodes cb_bu�er_size
1 16MB
2 32MB
4 64MB
8 128MB

16 256MB
32
64

Table 4.9: cb_nodes and cb_bu�er_size parameter settings tested

Setup Component
Application MACSIO
Configuration Bookleaf Profile

FLASH-IO Profile
Platform Archer
Scale 1, 2, 4, 8 ,16, 32, 64, 128 Nodes
Lustre Stripe Count -1
Lustre Stripe Size 1 MB

Table 4.10: Collective Bu�ering Parameter Performance on Archer

Due to the number of combinations of parameters that were tested, these

experiments were carried out with only 8 repetitions of each configuration. The

results selected for presentation represent the best case performance at each

scale in terms of the observed I/O checkpoint bandwidth.

4.4.2 Parallel File System Performance

Figures 7.5 and 7.6 present experimental results showing the file bandwidth

achieved on a host of platform under di�erent Lustre striping conditions. These

experiments were run using the Spruce A, Titan, Archer, Cab, Taurus, and Tinis

machines. The application used to gather these results was the MACSio proxy

application running the replicated problem workloads of AWE01 problems A,

B, and D.

63

Experimental Setup

Setup Component
Application MACSIO
Configuration AWE Problem A,B,D

Scale 1 Node (Problem A)
5 Nodes (Problem B, D)

Platform Spruce Titan Archer Cab Taurus Tinis
Lustre Stripe Count
(Default) 8 4 4 1 96 N/A (GPFS)

Lustre Stripe Count
(Increased/Striped) N/A 80 48 80 N/A N/A (GPFS)

Lustre Stripe Size 1 MB 1 MB 1 MB 1 MB 1 MB 1 MB

Table 4.11: Parallel file system striping performance

The number of repeats that were gather for these experiments was 10 for all

platforms apart from Titan due to limited access to the machine and the lead-

time of having jobs accepted and scheduled, hence only 6 repeats were possible.

From the runs collected the best performing repeat was select with respect to

the file bandwidth achieved on each platform under the two di�erent Lustre

configurations.

4.4.3 I/O Library and File Strategy Comparisons

TyphonIO E�ciency

Figures 7.8 and 7.9 demonstrate experiments to measure the performance vari-

ation of the MACSio AWE01 workloads when generating di�erent file layouts

on disk through two high level libraries. The selection of the di�erent libraries

and file schemes was achieved by setting the interface and layout parameters

in MACSio. These experiments were run using the Archer and Quartz systems

and each AWE01 problem workload was run at 1,2, and 4 times its standard

node count.

Each data point selected for presentation represents the best achieved band-

width for each platform, problem, scale, and file scheme. To collect these results,

10 repeats were used for each configuration on both machines.

64

Experimental Setup

Setup Component
Application MACSIO
Configuration AWE Problem A,B,D
Library File Schemes TyphonIO - Contiguous

TyphonIO - Chunked
HDF5 - Logically Contiguous
HDF5 - Block Contiguous

Scale 1, 2, 4 Nodes (Problem A)
5, 10, 20 Nodes (Problem B, D)

Platform Archer Quartz
Lustre Stripe Count
(Default) 48 80

Lustre Stripe Size 1 MB 1 MB

Table 4.12: I/O library and file strategy comparison experiments

N-M Parallel File Modes

Figures 7.10 to 7.13 demonstrate experiments to do a side-by-side comparison

of classic single shared file, sequential N-M, and parallel N-M file modes. All of

these experiments were conduced using the MACSio AWE01 Problem D repli-

cated workload. The Quartz, Archer, Cab, and Ray platforms were used to

collect these results at three di�erent node scales. At each scale, an N-M se-

quential and N-M parallel run was taken with the files per node count varied

from 1 to 16. In the case of the experiments run on Ray, these consisted of two

versions of each configuration, one run with I/O to the parallel file system and

one writing to node-local burst bu�ers. Despite the large number of combina-

tions, each data point represents the best of 10 repeats in terms of the observed

file bandwidth.

4.5 Summary

This chapter contains a reference of the experimental configurations used through-

out the rest of these thesis. Details on the application, platform and experimen-

tal setting are presented here to aid in the interpretation of experimental results

later on.

65

Experimental Setup

Setup Component
Application MACSIO
Configuration AWE Problem B
File Modes Single Shared File

N-M Sequential
N-M Parallel

Platform Quartz Archer Cab Ray
Scale (Nodes) 5, 10, 20 5, 10, 20 8, 16, 32 4, 8, 16
Files per Node 1, 2, 4 1, 2, 4 1, 2, 4, 8 1, 2, 4, 8, 16

Lustre Stripe Count 80 48 80 N/A
(GPFS+Burst Bu�ers)

Lustre Stripe Size 1 MB 1 MB 1 MB N/A

Table 4.13: Parallel file mode comparison experiments

66

CHAPTER 5
Profiling Multi-physics I/O Workloads

Modern storage systems are being placed under increasingly heavy loads as

supercomputers break the exascale barrier [52]. In particular, the trend of

moving away from conventional CPU only architectures towards a hybrid of

both CPU and accelerator components is increasing the density of computation

power that can be packed in to a node; consequently, more data can be processed

and generated by these nodes for the purpose of results gathering, resilience, and

visualisation.

To properly study I/O performance in an application focused way, it is criti-

cally important to be able to generate I/O tra�c in a system that closely mirrors

that of the target application. Unfortunately, performance benchmarking and

engineering work is di�cult to perform in an agile way when constrained by

large, fully formed scientific applications. Benchmark applications are typically

used as a stand in for the purpose of testing out system I/O performance and at-

tempting to uncover the ine�ciencies in I/O libraries, but these lack resemblance

to more complex and nuanced scientific codes and present a limited picture as

to the true implications for the original application. Particular consideration is

made to the IOR benchmark, which has become the de-facto tool for demon-

strating I/O performance limits on a system. A fundamental drawback with

IOR is that it is designed to marshal dummy blocks of data in a heavily simpli-

fied pattern that you would be unlikely to find in any real scientific application.

Moreover, higher level scientific concepts can also influence the way that data is

moved around a simulation or indeed committed to file as ultimately the data

must be easily interpretable by a user.

It is hypothesised that the representative profiles of genuine scientific sim-

67

Profiling Multi-physics I/O Workloads

ulation codes is of great value for the goals of this thesis, to demonstrate and

utilise an I/O proxy application stand-in to enable much more targeted investi-

gations of current and future I/O hardware and practices. To achieve this goal,

the work in this chapter demonstrates the use of standard application profiling

techniques to collect data on two previously unstudied scientific applications.

Profile descriptions are created for the I/O workloads of these novel applications

and analysis is presented to outline the regularities and irregularities present in

their pattern of execution. These profiles will be utilised in later chapters to

verify and demonstrate the proxy application specific objectives of this work.

5.1 Application Pattern Identification

The execution pattern of many simulations has traditionally been made up of

a number of distinct phases that occur in order. Dependent on the parallel

programming model used and often the characteristics of the algorithm itself,

the phases that can be identified in an application may vary drastically.

In a message passing based simulation, a portion of a calculation and its

associated data is distributed across a number of nodes. The process that is

usually followed is a setup phase with parameters and initial data being read

from storage and the controlling elements of the run being determined. What

follows is a repeating cycle of individual calculations by each processor and a

communication of some portion of the resulting data to neighbouring processors

or to a nominated controlling processor. After this communication phase, the

simulation is in a coordinated state and a decision can be taken to repeat another

sequence of the calculation, terminate the simulation, or perform some auxiliary

function. This phase is where the greatest proportion of I/O activity is likely

to take place. Logically the point of synchronisation marks a sensible stage at

which to perform checkpointing or the preservation of results for visualisation

purposes. A simple high-level execution pattern exhibited by simulations is

shown in Figure 5.1.

68

Profiling Multi-physics I/O Workloads

Setup
Simulation

Distribute
Data

Calculate
Timestep

Communicate
Data

Checkpoint
Simulation

State

Store
Visualisation

State

Calculate
Timestep

Communicate
Data

Checkpoint
Simulation

State

Store
Visualisation

State

Read Input

Finalise
Simulation

Store Final
State

Figure 5.1: An example of the general pattern of simulation phases found in
scientific applications.

Threading based parallel programming models, those favoured by GPU-like

hardware, discretise units of work and spread them out across a number of avail-

able threads. Upon completion, a point of synchronisation is usually required to

ensure the data is in a known consistent state before progressing on to the next

phase of the calculation. Similar to how communication is used to coordinate

process in the previous example, this point of synchronisation o�ers a logically

desirable phase in which to perform coordinated I/O.

In both of the described simulation patterns there is a clear distinction made

between the I/O phase and the phases responsible for calculation and data up-

dates. As a result, the I/O pattern exhibited by an application will resemble

bursts of concentrated activity at intervals that can be predictably regular or

vary throughout execution. Bursty I/O is a commonly observed pattern in HPC

applications, however this behaviour is not conducive to e�cient use of parallel

file systems. Approaches that attempt to mitigate the obvious bottleneck of

concentrated I/O load generally approach the problem in one of two ways. The

first approach would be to somehow stage the data in a high performance bu�er

comprising faster storage hardware. Burst bu�er systems adopt this approach

through the use of very fast node-local storage in the form of high performance

flash based storage. In this instance the mechanism in place to alleviate the

application becoming blocked by I/O is to stage the data in the local stor-

age, either temporarily or permanently, with much greater speed than can be

achieved from the main parallel file system. The decrease in solid state drive

technology has facilitated an increase in uptake of burst bu�er systems, and

one of the elements of the performance study carried out in Chapter 7 seeks to

69

Profiling Multi-physics I/O Workloads

quantify the potential benefits of this approach.

An alternative to burst bu�ers for handling bursty I/O patterns is the use

of asynchronous I/O, as reviewed in Chapter 2. This approach looks to amor-

tise the I/O cost of transferring data to the parallel file system over subsequent

computational steps and does not cause the application to block its progression.

Equipping an application to successfully perform asynchronous I/O operations

relies on support from the underlying MPIIO implementation available on the

system, and while masking the issue from a user’s perspective, does not ulti-

mately reduce the stress on the parallel file system. For the purpose of the

work carried out in this thesis, the burst bu�er approach is evaluated and asyn-

chronous I/O considered as a valuable avenue for future research.

A complete replication of an I/O profile will incorporate the frequency and

predictability of activity bursts, in conjunction with more fine grained detail

regarding the composition of a file and the operations issued to move data to

and from the file. We have constructed profiles for two scientific applications

based on coarse grained data collection for the purpose of further I/O analysis

and performance engineering.

5.1.1 Runtime Profiling

Modelling the I/O patterns displayed by an application requires user knowledge

and profiling data collected from a representative simulation run. The profiles

that are described in Sections 5.1.2 and 5.1.3 are derived from logs generated

by the Darshan I/O characterisation library [16].

Profiling methods that are capable of collecting data on each I/O specific

operation rely on the interception and logging of function calls and associated

data. Commonly this process is carried out in the form of function tracing where

a record of each function call is stored along with associated parameters, times-

tamps and calling contexts. In a parallel simulation the volume of data that

can be generated becomes prohibitively large, requiring profiling counters to be

aggregated to avoid interfering with the footprint of the simulation itself. To

70

Profiling Multi-physics I/O Workloads

avoid overhead issues associated with this granularity of data storage, Darshan

uses a lightweight process for logging I/O events from an application. A set of

data counters (listed in Table A.1) are used to record a characterisation of the

operations that are being performed, eliminating the need for each function invo-

cation to be stored. The operations targeted here are primarily the open, close,

read, and write based operations but these also include some of the lower level

functions used in MPIIO to perform these actions. The minimal data collection

overhead makes this technique a viable approach for the profiling of production

applications with the potential to issue thousands of I/O specific function calls

over the course of a run lasting multiple days. The lightweight nature of Dar-

shan profiling has been demonstrated against production scale I/O benchmarks,

with the most intensive application shutdown operation introducing less than

4.6 seconds of fixed overhead [17, 81].

Records generated by Darshan characterisation are produced in the for-

mat demonstrated in Listing 5.1. Function calls are intercepted by one of the

POSIX, MPIIO, HDF5, or Lustre modules and if these correspond to any of the

record counters then the counter is updated accordingly. For example, a simple

MPIIO_File_write function call would be intercepted by the MPIIO module and

this would cause values for the MPIIO_F_WRITE_TIME, MPIIO_INDEP_WRITES,

and MPIIO_BYTES_WRITTEN counters to be updated among others. The coun-

ters returned at the end of the run reflect the operations captured at each of

these levels. Furthermore, the correlation of records for a file generated at dif-

ferent levels in the I/O stack present the opportunity for characteristics of the

workload introduced by I/O libraries to be derived.

The high level execution pattern describing points in the simulation where

an I/O phase occurs can be constructed from the timestamp counters associated

with each file. A limitation of Darshan’s approach of not recording timestamps

for every function call is that file reuse obscures the write access pattern. This

a�ects situations such as the appending of visualisation states to a single file

throughout a simulation. In this instance, we are able to determine an access

71

Profiling Multi-physics I/O Workloads

<rank> <counter> <value> < f i l e name>
≠1 MPIIO_F_OPEN_TIMESTAMP 0.448894 checkpo int . 0 1 . h5
≠1 MPIIO_F_WRITE_START_TIMESTAMP 0.594944 checkpo int . 0 1 . h5
≠1 MPIIO_F_WRITE_END_TIMESTAMP 1.428066 checkpo int . 0 1 . h5
≠1 MPIIO_F_CLOSE_TIMESTAMP 1.440608 checkpo int . 0 1 . h5
≠1 MPIIO_F_WRITE_TIME 12.113718 checkpo int . 0 1 . h5
≠1 MPIIO_F_META_TIME 0.662519 checkpo int . 0 1 . h5
≠1 MPIIO_INDEP_WRITES 245 checkpo int . 0 1 . h5
≠1 MPIIO_COLL_WRITES 800 checkpo int . 0 1 . h5
≠1 MPIIO_BYTES_WRITTEN 426989900 checkpo int . 0 1 . h5
. . .

Listing 5.1: Decompressed Darshan log demonstrating the record format pro-
duced by an instrumented application. The output file is shared between pro-
cessors (ranks), which is indicated by the rank field containing a value of ≠1.
Records additionally contain a module, record id, mount point, and file system
field which are omitted for brevity.

pattern through correlation of open operation counters on files with repeated

access and those containing a single checkpoint state. Analysis of the darshan

profile logs collected shows that for single use files (i.e. opened and closed only

once during the simulation) all processes will issue a collective open function call

only once, consequently the MPIIO_COLL_OPENS counter will match the pro-

cessor count. The same sequence of operations recorded by the POSIX module

returns a POSIX_OPENS counter with a number one greater than the processor

count due to the creation of the file by the first rank in the communicator adding

an extra operation to the counter. This is demonstrated by the log extract shown

in Listing 5.2. Recognising the relationship between the processor count and

the file open counters makes it possible to determine the number of times visu-

alisation files undergo an open-write-close cycle without requiring the files itself

to be inspected for each run. For the first of the AWE Multi-Physics application

problems the visualisation file viz .h5 records a MPIIO_F_COLL_OPENS value of

800, which when divided by the number of processors used gives 50 visualisa-

tion states. Manual verification of the file contents was able to confirm that

this problem indeed generated 50 visualisation states and hence 50 open-write-

close phases were generated for visualisation purposes. This counters extracted

72

Profiling Multi-physics I/O Workloads

<rank> <counter> <value> < f i l e name>
≠1 MPIIO_F_COLL OPENS 16 checkpo int . 0 1 . h5
. . .

≠1 POSIX_OPENS 17 checkpo int . 0 1 . h5
. . .

≠1 MPIIO_F_COLL OPENS 800 v i z . h5
. . .

≠1 POSIX_OPENS 801 v i z . h5
. . .

Listing 5.2: Decompressed Darshan log extract showing the observed relation-
ship between the MPIIO_F_COLL_OPENS and POSIX_OPENS counters for a
checkpoint file that is opened and closed once by all processes and a visuali-
sation file that is opened and closed 50 times.

for the verification are shown in Listing 5.2 and the relationship between pro-

cesses, open count, and I/O phases is summarised in Table 5.1 for the AWE

Multi-Physics application.

Simulation Process Count MPIIO Opens Calculated
I/O Phases Actual States

A 16 800 50 50
B 80 2320 29 29
C 80 2320 29 29
D 80 9280 116 116
E 80 7040 88 88

Table 5.1: Summary of AWE Multi-Physics application profile data showing the
calculated number of distinct I/O phases in a simulation where an open-write-
close cycle operates on a visualisation file and the number of states actually
observed in the file.

Recording and deriving timestamps for the I/O phases in a simulation allows

us to construct a timeline of the components shown in Figure 5.1. Factoring

in the information collected about the volume of data that is being transferred

to the file system, and how this data is laid out in the application, a basic I/O

pattern can be defined.

The POSIX_BYTES_WRITTEN record represents the total data transferred

through calls to the POSIX library, specifically the write() function. Both the

MPI-IO interface and the parallel file systems investigated in this thesis are

POSIX compliant and therefore any I/O function calls made to any of the avail-

73

Profiling Multi-physics I/O Workloads

able libraries will consequently be translated to the POSIX level and captured

in this record.

5.1.2 Bookleaf Mini-Application

Bookleaf is a 2D unstructured hydrodynamics mini-application for approximat-

ing the solutions to a collection of di�erent physics problems. At the time of

writing, input configurations for Bookleaf are available to solve the Sod shock

tube problem, Sedov blast wave test, Saltzman planar shock problem, and Noh

gas impact problem. Moreover, the application is capable of producing solutions

to these problems using both Lagrangian and Eulerian methods.

Nodes
1 2 4 8 16 32 64

Posix

File Opens 25 49 97 193 385 769 1537
File Seeks 496 934 1810 3538 6994 13,906 27,730
File Writes 524 956 1820 3548 7004 13,916 27,740
Sequential Writes 457 859 1664 3238 6560 13,088 26,144
(Proportion of Total) (87.2%) (89.9%) (91.4%) (91.3%) (93.7%) (94.0%) (94.2%)
Consecutive Writes 30 24 12 12 12 12 12
(Proportion of Total) (6.6%) (2.5%) (0.7%) (0.3%) (0.2%) (0.1%) (<0.1%)
MPI-IO

File Opens 24 48 96 192 384 768 1536
Collective Writes 0 0 0 0 0 0 0
Independent Writes 524 956 1820 3548 7004 13,916 27,740
File Syncs 24 48 96 192 384 768 1536
File Views 0 0 0 0 0 0 0

Table 5.2: Checkpoint statistics for Bookleaf checkpoints at scales between 1
and 64 nodes collected on Archer with default stripe count of 4.

The runtime characteristics displayed by Bookleaf can vary based on the

problem definition given, but in terms of the general simulation pattern are

largely fixed for any calculation performed. As a consequence the phases of

I/O in a Bookleaf run occur predictably; the composition of the I/O activity

depending on the scale of the simulation and problem itself.

Checkpointing behaviour is implemented at the beginning and end stages

of the simulation, primarily for the purpose of verifying calculation correctness

and visualisation. The execution pattern of Bookleaf is illustrated in Figure 5.2,

showing the footprint and chronology of the important phases in the simulation.

74

Profiling Multi-physics I/O Workloads

Initialise
Checkpoint
Solve
Finalise

0 50 100 150 200 250 300 350

1 Node

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

Wallclock Time/s

Figure 5.2: Execution pattern for Bookleaf simulating the noh_large problem at
1, 2, 4, 8, 16, 32, and 64 Nodes. These patterns of execution were collected on
Archer with a default stripe count of 4.

What is interesting to observe from these profiles of the Bookleaf application is

that the I/O overhead for the checkpointing phases does not scale with the node

count as seen with the solve phase, or indeed remain constant. Instead the I/O

overhead increases to dominate the overall execution time and deliver greatly

disappointing performance. To illustrate this point, the checkpoint bandwidth

for the single node profile is around 35 MiB/s with this dropping to just 1 MiB/s

at 64 nodes. Considering serial I/O speeds are expected to be tens or hundreds

of megabytes this is generally disappointing and a world away from what ap-

plications should be aiming for to make use of the current generation of I/O

hardware as well as future innovations to support exascale problems.

75

Profiling Multi-physics I/O Workloads

A selection of the statistics extracted from Bookleaf are shown in Table 5.2.

These statistics are taken from Darshan counter values reported in the logs

produced by Darshan instrumented runs. Additional characteristics of the I/O

being performed by Bookleaf can be observed in some of these statistics. First

and foremost, the profiling identifies that none of the I/O operations used in

writing a checkpoint are performed collectively. The number of writes to con-

secutive o�sets is very small, both the actual count and proportion of the total

writes issued. The proportion of writes to increasing o�sets in the file is much

larger, and increases as the application scales. These statistics indicate that on

the creation of a checkpoint, all ranks are independently sweeping through the

file and issuing smaller interleaved writes rather than writing multiple contigu-

ous blocks.

5.1.3 AWE01 Multi-Physics Application

The AWE01 multi-physics application is a 2D production code primarily built

around the simulation of hydrodynamics problems. The multi-physics capability

in the application is provided by a suite of di�erent physics packages that can

be activated to simulate additional phenomenon within the core hydrodynamics

problem. Due to the number of packages that are available in AWE01, both

the execution pattern and the dataset composition can vary drastically between

di�erent simulation types and within a particular run.

There are five simulation configurations used for the work carried out in

this thesis, which represent some important workloads generated by application

users. These problem configurations were provided by a computational physicist

recognised as a domain expert in the simulations performed by the multi-physics

application. These inputs are labelled A to E and present an overview of their

characteristics. In all of the execution patterns profiled both checkpoint/restart

and visualisation data is written to the file system. In the case of checkpointing,

a new file is created for each checkpoint phase whereas visualisation data is

appended to a single file for the duration of the simulation.

76

Profiling Multi-physics I/O Workloads

Each of these application profiles has been collected from runs taken from

the Spruce A platform as described in Section 4.2.2.

Simulation A

The first simulation type is the most simple to characterise in terms of its I/O

behaviour, representing a baseline calculation run on a single compute node.

Over the course of the 119 minute runtime, 48 checkpoints are written with

213 MB of data stored in each. Additionally there are 50 states written to a

visualization file giving a total visualization output of 1.75 GB. This simulation

represents a reference test problem and so is typically run on a single node, the

run profile is shown in Figure 5.3. It is important to note that each checkpoint

that occurs is represented by a thin black line rather than a solid block due to

the required timeline scale. Similarly, the finalise region occurs at the end of the

final Solve phase but is not clearly observable due to its relatively short time

period.

Initialise
Checkpoint
Solve
Finalise

0 10 20 30 40 50 60 70 80 90 100 110
Wallclock Time/min

Figure 5.3: Execution pattern for AWE01 Simulation A

Simulation B

The second simulation (Figure 5.4) has the additional characteristic that the

composition of the dataset used for checkpointing and visualization is varied

77

Profiling Multi-physics I/O Workloads

Initialise
Checkpoint
Solve
Finalise

0 20 40 60 80 100 120
Wallclock Time/min

Figure 5.4: Execution pattern for AWE01 Simulation B

through the course of execution. Similarly to 5.3, individual checkpoint phases

are represented by the black lines and the finalise region is too small to show

up at this scale. The simulation runs on 5 compute nodes and a runtime of 131

minutes spans 27 checkpoints and 28 visualization states.

The dataset increases from 259 MB at the beginning of the simulation and

reaches a total size of 1.9 GB, this pattern is shown in Figure 5.5. The total

size of visualization data written reaches 285 MB.

It can be seen that there is a non-linear increase in the total checkpoint

output, with a much greater rate of increase around the fifth checkpoint, which

corresponds to the activation of additional simulation components.

From the perspective of understanding the I/O workload requirements of

the simulation, it could be valuable to exploit knowledge of when this change

will occur to influence a variation in I/O strategy such as modifying checkpoint

frequency.

Simulation C

Simulation C performs the same experiment as Simulation B, but with an im-

portant additional physics package added. The I/O pattern of this simulation,

including the observed dataset growth, matches Simulation B but a much larger

78

Profiling Multi-physics I/O Workloads

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

500

1,000

1,500

2,000

Wallclock Time/s

Fi
le

Si
ze

(M
B

)

Checkpoint File

Figure 5.5: Dataset Growth of Input B

volume of data is required to visualize the additional data elements. As a result

the total size of visualization data reaches 20.2 GB.

Simulation D

Simulation D, shown in Figure 5.6, represents a larger calculation typically run

over multiple days. As with previous simulation patterns, the length of the

runtime means checkpoint phases are represented by the vertical black lines.

In this figure the initialise region at the beginning of the timeline and finalise

region at the end are too small to show up at this scale.As with simulation

problems B and C this run is performed with 5 compute nodes. Checkpointing is

performed at a small number of key stages in the simulation, with 7.3 GB of data

committed to file before and after a particularly important and unstable phase

of the simulation, as well as the final state being saved upon finalisation. The

visualization file data totals 1.8 GB, and is stored in 116 separate state outputs,

giving a much higher temporal granularity to the results for visualisation and

focusing less on checkpoint restart.

Simulation E

The final problem considered here performs a similar experiment to Simulation

D. Similarly, three checkpoints of 7.7 GB are written at irregular intervals, while

1.4 GB of visualization data is produced across 88 simulation states.

79

Profiling Multi-physics I/O Workloads

Initialise
Checkpoint
Solve
Finalise

0 200 400 600 800 1,000 1,200
Wallclock Time/min

Figure 5.6: Execution pattern for AWE01 Simulation D

5.1.4 Multi-Physics Checkpoint Analysis

The statistics generated for the AWE01 workloads are summarised in Table 5.3.

Unlike the Bookleaf counters shown earlier on in this chapter, checkpoint files

here are written using collective operations. This leads to a greater proportion of

the dataset being written to consecutive blocks in the file as aggregation is able

to reconstruct the decomposed dataset before issuing a write call. Considering

the number of collective writes issued, it is possible to approximate the number

of di�erent datasets stored in a file. In problem A a total of 864 collective

calls were issued, which is the equivalent of 54 calls in the HDF5 layer being

translated to MPI_File_write_at_all calls in the middleware layer. On inspection

of the file, the total number of distinct variable arrays is identified at around

49, which when factoring in additional mesh related data comes out to be 54

total dataset objects.

Out of the five workloads analysed, there are broadly three di�erent classes

identified. In particular, the patterns established in problems B and C, as well as

problems D and E are largely similar in their profiles and dataset compositions.

For this reason, the B and D problems are selected as representative of their

workload class, and with the addition of problem A will make up the set of three

application profiles for AWE01 used through the remainder of this thesis.

80

Profiling Multi-physics I/O Workloads

AWE01 Multi-Physics Application
Problem A Problem B Problem C Problem D Problem E

POSIX

File Opens 17 325 485 241 401
File Seeks 1377 4482 6596 10,016 13,581
File Writes 3869 6870 7008 23,000 27,708
Sequential Writes
(Proportion of Total)

3687
(95.3%)

6582
(95.8%)

6705
(95.7%)

21,477
(93.4%)

26,262
(94.8%)

Consecutive Writes
(Proportion of Total)

2515
(65.0%)

4347
(63.3%)

4432
(63.2%)

13,554
(58.9%)

17,463
(63.0%)

MPI-IO

File Opens 16 164 244 160 240
Collective Writes 864 1316 1316 25,360 25,360
Independent Writes 3815 6531 6669 21,738 26,446
File Syncs 32 168 328 320 480
File Views 1728 3912 6312 50880 65,280

Table 5.3: Checkpoint statistics for each problem class run by the AWE01 multi-
physics application.

5.2 Summary

In order to study I/O performance of HPC system in a meaningful way, per-

formance engineers must be able to stress the I/O subsystems in ways that are

as representative of real production applications in use by experts and domain

scientists. The first step to perform targeted I/O engineering work is to capture

the profile of I/O workloads with regards to the size, composition and frequency

of I/O phases.

In this chapter the application of the Darshan lightweight tracing library to

capture I/O operations and translate these logs to high-level workload profiles

has been presented. The profiling approach used by Darshan captures a series

of I/O based counters rather than storing fine-grained trace records, making

it ideal for near transparent data collection in production environments. This

work focuses on profile data collected for a production multi-physics application

and demonstrates a case study of how the I/O work generated by an application

can vary dramatically depending on the simulation configuration. The config-

urations used in this work are designed by a domain expert in computational

physics and hence provide a high degree of certainty as to their representative-

ness for production I/O workloads.

81

Profiling Multi-physics I/O Workloads

The construction of the profiles in this chapter, in particular A, B, and

D, are intended to be deployed as representative workloads for the purpose of

benchmarking and procuring systems with greater accuracy than is currently

possible.

82

CHAPTER 6
Application Workload Replication

As HPC storage systems become more complex to cope with the demands of

exascale computing, new I/O strategies and software libraries are being incorpo-

rated into applications. Traditional large scale spinning disk parallel file systems

(PFS), such as Lustre and GPFS, are being supplemented by additional stor-

age tiers made up of much faster SSD and NVMe devices. These so called

burst bu�ers can be incorporated into storage systems in vastly di�erent ways

and hence application behaviour must be tailored for a system to obtain best

performance.

The lack of flexibility of applications to support performance engineering ac-

tivities for data storage creates an obstacle to exploiting maximum performance

from new storage systems. I/O benchmarking addresses this inflexibility, but

achieving accuracy and representativeness in benchmark workloads can be dif-

ficult due to the variation in data models and libraries used by applications.

This chapter documents the development and operation of the Multi-Purpose

Application Centric Scalable I/O proxy application (referred to throughout the

rest of this chapter by the acronym MACSio), described in [31, 32] to replicate

the I/O behaviour of three scientific applications. MACSio is a parametrised

proxy application for generating datasets to drive one of a number of high

level library plugins using the I/O paradigms explored in detail in Chapter 2.

The ability of MACSio to replicate the behaviours of real scientific applications

allows portable benchmarking and exploration of alternative I/O libraries and

paradigms.

The remainder of this chapter is structured as follows: Section 6.1 introduces

the MACSio proxy application and describes the developments made to both

83

Application Workload Replication

Plugins

MIF Template

SILO

HDF5

EXODUS

TyphonIO

MACSio Core

Data Generation

Argument Processing

Data Logging

Timing

Dummy Work

Plugin
Interface

I/O Mode Management
(MIF, MSF)

JSON-CWX

Figure 6.1: MACSio application components

the core and plugin components; Section 6.2 presents a validation of MACSio’s

ability to replicate the I/O workloads of two physics applications; finally, Sec-

tion 6.3 summarises this research.

6.1 The MACSio Proxy Application

MACSio is a proxy application for generating I/O activity representative of that

seen in scientific simulations. As a proxy application, MACSio is intended to act

as a flexible and portable stand-in for the data generation and transfer portions

of a fully fledged science code.

6.1.1 Application Overview

The design principle that a�ords MACSio the flexibility to investigate a mul-

titude of I/O libraries is the use of a plugin based structure. Core application

logic is contained in an upper-level driver, with control being passed on to one of

a number of plugins at the point an I/O phase is entered. The general structure

of the application is shown in Figure 6.1.

Generation of data for the purpose of performing I/O is controlled by a

84

Application Workload Replication

Feature Values

Mesh Dimensions 1D, 2D, 3D
Mesh Structure Structured (rectilinear),

Structured (curvilinear),
Unstructured (unstructured cell data zoo),
Unstructured (arbitrary shape)

Mesh Part Size (Bytes) Integer values greater than 1
Mesh Part Decomposition Integer value for each required mesh dimension
Distributed Parts Per Rank Integer value greater than one and less

than the total number of ranks
Mesh Part Dimensions Integer value for each mesh dimension
Variables Per Mesh Part

Rectilinear Greater than 1
Curvilinear Greater than the number of spatial dimensions
Unstructured Number of spatial dimensions + 2Number of topological dimensions

Data Generation Algorithm Constant value,
Increasing value,
Random / chaotic value,
Sinusoidal,
Spherical

Table 6.1: Configurable parameters in generated MACSio datasets

number of routines that produce distributed multi-dimensional meshes and ar-

rays. The datasets that can be produced by MACSio are variable to approxi-

mate a broad spectrum of scientific applications in both dataset structure and

magnitude. In particular, the variable features in a dataset are summarised

in Table 6.1.

In the application start-up phase, workload parameters are read from the

command line and missing values can be filled by either computing a sensible

value from the set of defined parameters or reverting to known default values.

For example, when creating and populating a mesh dataset the mesh part di-

mensions can be specified to generate data chunks of di�ering physical shapes.

In the absence of explicit chunk dimensions, a layout for the data chunk is com-

puted by factorisation of the total number of elements to achieve a predictable

regular shape. The parameters required to generate a general workload with

MACSio can be approximated by a user with a good working knowledge of

85

Application Workload Replication

1 typedef struct MACSIO_IFACE_Handle_t
2 { char name [MACSIO_IFACE_MAX_NAME] ;
3 char ext [MACSIO_IFACE_MAX_NAME] ;
4 int s lo tUsed ;
5 ProcessArgsFunc processArgsFunc ;
6 DumpFunc dumpFunc ;
7 LoadFunc loadFunc ;
8 QueryFeaturesFunc queryFeaturesFunc ;
9 Iden t i f yF i l eFunc i d e n t i f y F i l e F u n c ;

10 } MACSIO_IFACE_Handle_t ;
Listing 6.1: Interface handle structure for registering an I/O plugin with the
application management routines.

mesh based datasets and the volume of data a particular size of mesh with gen-

erate when written. For more specific use cases like the replication work in this

thesis, more careful parameter selection is required and this process is described

in more detail in Section 6.2.

Di�erent levels of coordination are required for distributed I/O depending

on the library and I/O mode in use. Management of the creation and accesses

of files in di�erent modes can be marshalled in MACSio by a set of core util-

ity functions. When operating in modes that require processes to coordinate,

groups of processes are partitioned at initialisation and pass a baton struct to

signal which process currently has control of the group and corresponding files.

I/O libraries are integrated into MACSio’s core routines through a plugin

interface. Each plugin populates the MACSIO_IFACE_Handle_t structure shown

in Listing 6.1, which in turn is stored in an interface lookup table. At runtime

the target I/O library plugin is retrieved from the lookup table and function

pointers for data dump library functions used to dynamically hand o� execution

to a plugin.

Optionally, performance data can be recorded by MACSio during execution

and stored in a text based log, demonstrated in Listing 6.2. Included in the

recorded data is a record of data volumes, operation timings, and corresponding

bandwidths for each I/O dump on a per process basis. Furthermore, statistics

are gathered by process 0 and aggregated values for these metrics are reported

86

Application Workload Replication

≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Proces sor 000000≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
In f o :Dump 00 BW: 1.4365 Mi/ 0 .1282 s e c s = 11.2007 Mi/ sec
In f o :Dump 00 Stat BW: 1.4445 Mi/ 0 .1282 s e c s = 11.2637 Mi/ sec
In f o : Overa l l BW: 1.4365 Mi/ 128.2470 msecs = 11.2007 Mi/ sec
In f o :Summed BW: 22.3827 Mi/ sec
In f o : Total Bytes : 2 .8729 Mi ; Total I /O Time = 129.0784 msecs ;
Total BW = 22.2570 Mi/ sec

≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Proces sor 000001≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
In f o :Dump 00 BW: 1.4365 Mi/ 0 .1284 s e c s = 11.1821 Mi/ sec
In f o :Dump 00 Stat BW: 1.4445 Mi/ 0 .1284 s e c s = 11.2450 Mi/ sec
In f o : Overa l l BW: 1.4365 Mi/128.4601 msecs = 11.1821 Mi/ sec
. . .

Listing 6.2: Example log output for a MACSio run showing two processors
performing a single checkpoint dump.

to show the performance of the application as a whole as well as individual

processes.

6.1.2 Modifications

To enable MACSio to carry out the experiments presented in this thesis, a

number of modifications have been made to the application. Each of these

modifications is intended to increase the diversity of workloads that can be

produced and similarity to real physics simulations.

Simulation Control and I/O Scheduling

The main control flow used in scientific simulations is based on a timestep loop,

which contains the equations and logic to progress the state of the simulation

by some amount of logical time. Importantly, the progression of logical simu-

lation time is independent of both the system wall-clock and real-world time.

Depending on the fidelity of time intervals used, an iteration of the timestep

loop can move the logical simulation time on by an amount that can range from

a single second to a millionth of a second.

The scheduling of regular I/O activity, such as checkpointing and storing

visualisation states, is dictated by the progression of logical time-steps. It is

87

Application Workload Replication

common for an I/O interval to be set in terms of the number of timestep iter-

ations that have progressed, for example a checkpoint interval can be specified

every 0.1 seconds of simulation time and a visualisation interval set similarly

every 0.03 seconds. Scheduling I/O phases in this way can generate irregular

patterns of access for an application writing to its output files, and hence an

equivalent structure is required in MACSio.

Source code demonstrating the structure of the MACSio timestep loop is

given in Listing 6.3. The condition to control whether a further iteration of

the loop should be performed checks the current timestep t and the maximum

simulation timestep maxT. Alongside these values, a dt value indicates the the

time delta by which a timestep can be expected to progress the simulation

time. Variation of the dt value throughout the course of a simulation allows an

irregular pattern of checkpointing to be generated.

Mirroring a fully featured simulation, the first instruction in the control loop

is an optional call to the MACSIO_WORK module. This module can perform

di�erent degrees of computation that are explained in greater detail later on in

this section.

When a timestep is reached that indicates the next checkpoint interval, the

function corresponding to the target plugin interface is called to take control

of the I/O phase. This function is accessed through a function pointer to the

dumpFunc member function of the target plugin interface struct.

After completion of an I/O phase, a tracking counter dumpNum is advanced

and the next checkpoint timestep is calculated using the current dt value. Op-

tionally a transformation can be applied to the I/O dataset by the MACSIO_DATA

module.

TyphonIO Plugin

To demonstrate the flexibility of MACSio to investigate high level I/O libraries

and perform faithful replication of the applications featured in this thesis, a plu-

gin implementation for the TyphonIO library (introduced in Chapter 2) has been

88

Application Workload Replication

1 // Main t imes tep loop c o n t r o l l e d by time t
2 while (t < maxT){
3 // Allows computation to advance the current t imes tep
4 i f (doWork){
5 MACSIO_WORK_DoComputeWork(&t , dt , work_intens i ty) ;
6 }
7
8 // Main checkpo in t b u r s t phase to be executed when
9 // we reach a checkpo in t t imes tep i n t e r v a l

10 i f (t >= tNextBurstDump | | ! doWork){
11 // Ca l l the checkpo in t f un c t i on
12 // f o r the chosen p l u g i n i n t e r f a c e
13 (� (i f a c e ≠>dumpFunc)) (arg i , argc , argv , main_obj ,
14 dumpNum, dumpTime) ;
15
16 // Advance dump counter and c a l c u l a t e
17 // next checkpo in t i n t e r v a l
18 dumpNum++;
19 tNextBurstDump += dt ;
20
21 // Perform a l t e r a t i o n s to the d a t a s e t
22 // i f r equ i red f o r t h i s s imu la t ion
23 i f (f a c t o r > 1 . 0) {
24 unsigned long long prev_bytes =
25 MACSIO_UTILS_StatFiles (dumpNum≠1);
26 int growth_bytes = (prev_bytes � f a c t o r)≠prev_bytes ;
27
28 i f (growth_bytes > 0){
29 MACSIO_DATA_EvolveDataset(main_obj ,
30 &dataset_evolved , f a c t o r , growth_bytes) ;
31 }
32 }
33 }
34
35 // Increase the t imes tep i f computation rou t ine i sn � t used
36 i f (! doWork) t++;
37
38 } // End of t imes tep loop

Listing 6.3: Simplified source code extract demonstrating the main timestep
loop in MACSio for checkpointing. Lines of code containing variable declarations
and logging functionality have been omitted for brevity.

89

Application Workload Replication

added. This plugin implements the interface functions defined in macsio_iface

(see Listing 6.1) that are required to process plugin specific arguments and

generate the desired I/O tra�c.

Development work to produce a plugin for MACSio was largely completed

over a period of 24 months, although this was not a concentrated e�ort and the

estimated development time would be expected to be much less for an individual

with experience of HPC software development. Importantly, an individual look-

ing to develop an interface plugin for MACSio would require a good familiarity

with the I/O library targeted by the plugin and a working understanding of the

plugin interface routines in MACSio. It is anticipated that gaining a familiar-

ity with the required routines in MACSio does not introduce a large barrier to

uptake, and the availability of previously developed plugins provide a valuable

resource to demonstrate the correct approach with which to take. Considering

all of these factors, an expected development time to produce a functioning

plugin could be estimated at between two and twelve months depending on

experience and concentration of e�ort.

An incremental approach to plugin development was taken for TyphonIO,

meaning that core functionality was implemented and immediately followed by

a period of testing and experimentation. Following this, the scope of the plugin

was increased to support a larger set of the features of both MACSio and Ty-

phonIO. For example, initial plugin development and experimentation focused

exclusively on the single shared file I/O routines in MACSio and TyphonIO

with this applied strictly to a structured rectilinear mesh. Once this functional-

ity was explored fully and verified to demonstrate agreement with the expected

behaviour the remaining mesh routines in TyphonIO were able to be added to

the plugin. Extensions to MACSio itself were also worked on during this period

and once features such as the N-to-M file writing were developed the TyphonIO

plugin could be re-evaluated to ensure it continued to generate behaviour that

agreed with the applications targeted for replication.

The entry point for MACSio into the plugin is a common dump function, to

90

Application Workload Replication

which a JSON container object is passed housing the application configuration

parameters and generated datasets. Using the parallel_file_mode parameter, a

decision is made to pass control to an appropriate I/O mode function in addition

to performing a check that the given parameter values are valid for TyphonIO.

At the top level, a distinction is made between I/O modes that will operate with

parallel accesses and those where processes access the same file sequentially.

Parallel access modes are specified by the Single Shared File (SIF) parameter,

indicating the configuration where all processes write to a single file, or groups

of processes write to multiple shared group files (MSF). The choice between

these two I/O modes is indicated by the file count value that follows the SIF

parameter, with a value of 1 opting for the former and a number between 1 and

the total process count indicating the latter.

Non-parallel I/O modes are indicated by the parallel_file_mode parameter

selecting Multiple Independent File (MIF). MIF accesses can be further divided

into modes with a single file per process, indicated by the file count matching

the process count, and a group shared file mode with sequential accesses to

shared files.

TyphonIO is designed to natively operate in parallel shared file mode, mean-

ing no coordination is required in MACSio when using a single shared file. In

all other configurations, the I/O mode manager is used to set up and manage

which ranks in each group are allowed to issue calls to the underlying library.

After each processor has created or opened their shared or individual output

files, the transfer of data out of the application is handled by one of four writing

functions. These functions are characterised by their handling of a structured

or unstructured mesh, and whether a single part or the whole mesh is being

committed to file in a single action. The combination of mesh type and I/O

mode in use requires di�erent processing of the JSON data container, the result

of which is passed to specific TyphonIO functions for correct placement in the

file. Ultimately, TyphonIO calls are made to create the desired type of mesh,

define the characteristics of its data in the output file, and transfer all of the

91

Application Workload Replication

1 TIO_Call (TIO_Create_Mesh (f i l e _ i d , state_id , " mesh " , &mesh_id ,
2 mesh_type , TIO_COORD_CARTESIAN, TIO_FALSE,
3 " mesh_group " , (TIO_Size_t)1 ,TIO_DATATYPE_NULL,
4 TIO_DOUBLE, (TIO_Dims_t) ndims , (TIO_Size_t) dims [0] ,
5 (TIO_Size_t) dims [1] , (TIO_Size_t) dims [2] ,
6 TIO_GHOSTS_NONE, (TIO_Size_t)1 , NULL, NULL, NULL,
7 NULL, NULL, NULL) ,
8 " Create Mesh Fa i l ed \n ") ;
9 . . .

10 TIO_Call (TIO_Set_Quad_Chunk(f i l e _ i d , mesh_id , (TIO_Size_t)0 ,
11 (TIO_Dims_t) ndims , 0 , dims [0] ≠1 , 0 , dims [1] ≠1 , 0 ,
12 dims [2] ≠1 , 0 , 0) ,
13 " Set Quad Mesh Chunk Fa i l ed ") ;
14 TIO_Call (TIO_Write_QuadMesh_All (f i l e _ i d , mesh_id ,
15 TIO_DOUBLE, coords [0] , coords [1] , coords [2]) ,
16 " Write Mesh Coords f a i l e d \n ") ;
17 . . .
18 j son_object � vars_array = json_object_path_get_array (part_obj , " Vars ") ;
19
20 for (int i = 0 ; i < json_object_array_length (vars_array) ; i++)
21 {
22 TIO_Size_t var_dims [3] ;
23 TIO_Object_t var_id ;
24 j son_object � var_obj = json_object_array_get_idx (vars_array , i) ;
25 j son_object � data_obj = json_object_path_get_extarr (var_obj , " data ") ;
26 char const �varname = json_object_path_get_str ing (var_obj , "name") ;
27 char � c e n t e r i n g = strdup (
28 json_object_path_get_str ing (var_obj , " c e n t e r i n g ")) ;
29 TIO_Centre_t t i o _ c e n t e r i n g = strcmp (cente r ing , " zone ") ?
30 TIO_CENTRE_NODE : TIO_CENTRE_CELL;
31 int ndims = json_object_extarr_ndims (data_obj) ;
32 void const � buf = json_object_extarr_data (data_obj) ;
33
34 TIO_Dims_t ndims_tio = (TIO_Dims_t) ndims ;
35
36 TIO_Data_t dtype_id =
37 json_object_extarr_type (data_obj) == json_extarr_type_f l t64 ?
38 TIO_DOUBLE : TIO_INT;
39
40 for (int j = 0 ; j < ndims ; j ++){
41 var_dims [j] = json_object_extarr_dim (data_obj , j) ;
42 }
43
44 TIO_Call (TIO_Create_Quant (f i l e _ i d , mesh_id , varname , &var_id ,
45 dtype_id , t i o_center ing , TIO_GHOSTS_NONE, TIO_FALSE, " qun i t s ") ,
46 " Create Var Quant Fa i l ed \n ") ;
47
48 TIO_Call (TIO_Write_QuadQuant_Chunk(f i l e _ i d , var_id , (TIO_Size_t)0 ,
49 TIO_XFER_INDEPENDENT, dtype_id , buf , (void �)TIO_NULL) ,
50 " Write Quad Quant Var Fa i l ed \n ") ;
51 TIO_Call (TIO_Close_Quant (f i l e _ i d , var_id) ,
52 " Close Quant Fa i l ed \n ") ;
53
54 }
55 TIO_Call (TIO_Close_Mesh (f i l e _ i d , mesh_id) ,
56 " Close Mesh f a i l e d \n ") ;

Listing 6.4: TyphonIO plugin source code demonstrating creation of a struc-
tured rectilinear (quadrilateral colinear) mesh and writing of the associated
data.

92

Application Workload Replication

associated data to the file as seen in Listing 6.4

Multiple Shared File I/O Mode

The MIF behaviour implemented in MACSio mirrors that used in the SILO

library, with groups of processes accessing a shared file in sequence. In this sce-

nario the MIF I/O mode manager is responsible for first partitioning processes

into groups. Within a group, a leader is nominated to create the group’s file and

dump its data before handing over exclusive access to the next process in the

group. This behaviour has been adapted to provide MACSio, and its underlying

libraries, to perform multi-shared file I/O using true parallel accesses.

Mirroring the MIF I/O manager, a Multiple Shared File (MSF) mode module

has been implemented to manage the initialisation of processes into groups such

that groups are able to issue I/O requests concurrently without collision.

Each process in the simulation populates a MACSIO_MSF_baton_t struct

when the MACSIO_MSF_Init() function is invoked by a plugin. The processor

rank assigned by global MPI communicator is used by each processor to allocate

itself to a group, at which point the global communicator is split to create a

group communicator. For the purpose of coordinated parallel communications

required by some I/O libraries, each processor in MSF mode must have knowl-

edge of the ranks in its group and the global rank of the nominated group root.

This information is distributed by means of an MPI_Allgather() call between all

ranks of each group.

When invoked by a plugin, MSF mode is used in largely the same way as

SIF single shared file I/O. Initially the creation and opening of files must be

performed collectively by every rank in a group using the group communicator.

Following this, parallel accesses are carried out by processors issuing library

calls with reference to the shared group file handle, transferring their chunk of

the dataset to non-overlapping regions of the file.

93

Application Workload Replication

6.2 Proxy Application Validation

To assess the suitability of the MACSio proxy application to simulate I/O work-

loads, validation experiments have been carried out for two scientific applica-

tions. The applications used for this are the Bookleaf hydrodynamics mini-

application and the FLASH-IO benchmark of the FLASH astrophysical ther-

monuclear explosion code. The steps of this validation involve, firstly, the profil-

ing of behaviour and output files from the applications, followed by an analysis

of the accuracy of their translation to a MACSio workload.

Modelling of applications workloads has been explored in detail in Chap-

ter 5. From the profiles described by the previous chapter, the input parameter

sets for both Bookleaf and FLASH-IO were constructed and fed into MACSio

(see Tables 6.2 and 6.8). The replications were executed on two of the ma-

chines used in this thesis and profiled using Darshan to verify the I/O load

when compared to the original applications.

The process of constructing MACSio parameters sets was completed mostly

by manual definition with the inclusion of calculated components. Tables 6.2

and 6.3 contain the parameter values that were derived for Bookleaf at 1 Node

to 64 Node scales. Considering the parameters listed in the table in turn, the

first value specified is the plugin interface that will be used by MACSio. For the

validation work in this chapter the TyphonIO and HDF5 plugin interfaces were

used for Bookleaf and FLASH-IO respectively. This value is one determined

from domain knowledge of the target application as profiling libraries are not

able to extract this information. Similarly the parallel file mode, dimensionality,

and part type are based on application domain knowledge as they represent

higher level concepts than can be detect through analysis of I/O profiling data.

In the parameter table, part size per processor and checkpoint interval rep-

resent values that are calculated based on Darshan logs recorded from runs of

the target applications. For part size this is determined based on a relationship

between the overall size of the output file and how the data is distributed across

94

Application Workload Replication

1 f i l e s i z e = <MPIIO_BYTES_WRITTEN value>
2 v a r i a b l e s = <Dataset v a r i a b l e count>
3 processor_count = <Proces sor count>
4
5 factor_a = 1070.7
6 constant_a = 10967.0
7
8 factor_b = 75 .1
9 constant_b = 547 .0

10
11 factor_c = 0 .9
12 constant_c = 5 .1
13
14 step1 = (f i l e s i z e ≠ (factor_a � v a r i a b l e s) ≠ constant_a) / processor_count
15 step2 = step1 ≠ (factor_b � v a r i a b l e s) ≠ constant_b
16 step3 = step2 / ((factor_c � v a r i a b l e s) + constant_c)
17
18 p a r t s i z e = step4 / 1024

Listing 6.5: Script used to calculate part sizes for MACSio based on target
application output file size, number of array variables and processor count

processors and array variables. In the first instance a simple division of the

MPIIO_BYTES_WRITTEN counter by the nprocs counter will give the volume of

data written per processor. In order to further divide this between the array

variables that make up a MACSio dataset, and in turn TyphonIO dataset, the

number of variables must be factored in. Dividing the volume of data writ-

ten per processor by the variable count gives an approximation of the part size

required by MACSio. Initial attempts to translate Bookleaf file sizes to MAC-

Sio part sizes using a known fixed number of variables were found to contain

a small margin of error due to the mesh coordinates and associated labelling

(elements such as the coordinate array dimensions) influencing the total value

of data that was actually written by MACSio. To account for this, file sizes

were measured using MACSio while automating the varying of variable counts

or part sizes. Measuring the increase in file size and factoring in the increase

in variable counts and part sizes produced a series of scaling constants that are

combined in the script shown in Listing 6.5. The part size values generated for

Bookleaf were calculated using this script and were able to produce file sizes

consistent with the original runs as demonstrated in the following section.

95

Application Workload Replication

1 checkpo int f i l e count := t o t a l checkpo int s l i s t e d by Darshan MPIIO f i l e summary
2
3 for n := checkpo int f i l e count to 1 :
4 open time := checkpoint_n (MPIIO_F_OPEN_TIMESTAMP)
5 c l o s e time := checkpoint_n ≠1(MPIIO_F_CLOSE_TIMESTAMP)
6 checkpo int interval_n ≠1 := open_time ≠ c lose_time

Listing 6.6: Psedocode example for extracting checkpoint intervals from darshan
timestamp counters.

The checkpoint intervals used to separate I/O phases during a simulation are

extracted from the timestamps associated with each checkpoint file. A pseudo-

code representation of the generation is shown in Listing 6.6. Similarly the

checkpoint dump count is also extracted from the Darshan MPIIO per-file I/O

summary which requires a simple count for the number of lines returned by

this section of the log. The final parameter set in Table 6.2 is the no collective

operations flag which is set to true for the original Bookleaf runs. The pres-

ence of collective operations is detected from the MPIIO_COLL_WRITES counter

value in the Darshan log and this is read via a simple Python script similar to

previously mentioned counters.

6.2.1 Bookleaf

Figure 6.2 shows the measured I/O times at di�ering process counts, specifically

the total I/O time from start to finish of a checkpoint; the cumulative time spent

by each processor performing I/O transfers; and the maximum time spent by

any individual processor performing a single I/O operation. These results were

collected using the Archer platform with a stripe count of 48 and represent

the best case observed for both Bookleaf and MACSio across ten repetitions of

the experiment. Each of the three graphs shown contain data points for four

di�erent categories, these being two di�erent checkpoint files for the two appli-

cations. For clarity, MACSio #1 and Bookleaf #1 refer to the first checkpoint

in the simulation and MACSio #2 and Bookleaf #2 refer to the second.

96

Application Workload Replication

Parameter
Bookleaf Parameter Value

Noh

Interface TyphonIO
Parallel File Mode SIF 1
Part Size per Processor See Table 6.3
Number of Dimensions 2D
Part Type Unstructured Mesh
Vars Per Part 9
Number of Checkpoint Dumps 2
Checkpoint Interval See Table 6.3
Visualisation Part Size N/A
Number of Visualisation Dumps N/A
No Collective Operations True
Dataset Growth Sequence N/A

Table 6.2: Input parameter values for MACSio validation runs of Bookleaf

Parameter 1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes 64 Nodes

Processor Count 24 48 96 192 384 768 1536
Part Size per Processor 398.4 KB 197.5 KB 98.8 KB 49.4 KB 24.8 KB 12.4 KB 6.2 KB
Checkpoint interval 266s 120s 53s 22s 11s 7s 5s

Table 6.3: Input Parameter values for scaling Bookleaf validation runs.

From these experiments it can be seen that the time spent executing the

I/O workloads of the two applications are similar in their magnitude and trend

as the applications scale. In particular, the average di�erence in the I/O time

shown by Figure 6.2(a) has been calculated as 4%, with the largest di�erence

being a 15% speedup for MACSio over Bookleaf. Similarly the cumulative, or

aggregated, I/O times of each rank match up closely between the two appli-

cations and give a good degree of confidence in the spread of I/O work across

ranks being suitably similar. The final graph shown in Figure 6.2(c) demon-

strates the di�erence in the time taken for the longest recorded write operation

issued in each of the application checkpoints. The variation in this metric is

notably greater than in the previous two figures, with the average di�erence at

the scale of a single node showing MACSio’s slowest I/O operation taking 26%

longer than Bookleaf. It is important to note however that the amount of time

required for this operation on 1 node ranges between 0.72 and 1.67 seconds and

97

Application Workload Replication

1 2 4 8 16 32 64

4

8

16

32

64

128

Nodes

T
im

e
(s

)

MACSio File#1
MACSio File#2
Bookleaf File#1
Bookleaf File#2

(a) I/O time

1 2 4 8 16 32 64
64

512

4,090

32,700

262,000

Nodes

T
im

e
(s

)

MACSio File#1
MACSio File#2
Bookleaf File#1
Bookleaf File#2

(b) Cumulative Write Time

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Nodes

T
im

e
(s

)

MACSio File#1
MACSio File#2
Bookleaf File#1
Bookleaf File#2

(c) Max Write Operation Time

Figure 6.2: I/O timings representing the best case (10 repititions) for Bookleaf
and the MACSio replication running on Archer (Lustre stripe count 48). For
these results the best case is shown with the variation across repetitions being
less than 9.4% for each run scale. Timings shown: (a) Start to finish time for a
checkpoint (b) Cumulative time spent by all processors performing I/O (c) Time
for the slowest write operation issued by a processor during each checkpoint.

at this scale variation due to machine noise is likely amplified.

Given that the best observed performance is shown up to this point, it is

worth looking at the variation in performance in the repeated runs. In the

graphs seen so far, the smallest I/O times are shown as these are judged to

be the I/O timings that are least likely to display interference. However, to

verify that there is reproducability in the experiments other results should be

considered to ensure that the times reported here are not outliers. Table 6.4

shows the I/O timings corresponding to Figure 6.2(a). These values show the

minimum timings in addition to the average and maximum values observed in

the data. Inspecting the average values when compared to the plotted minimum

98

Application Workload Replication

Nodes Bookleaf Checkpoint #1 MACSio Checkpoint #1
Min Average Max Min Average Max

1 3.63 3.97 4.57 4.66 4.79 4.96
2 16.49 17.33 17.78 15.87 17.27 18.83
4 20.81 23.09 27.55 26.61 26.81 27.03
8 33.16 34.68 35.51 35.26 35.99 36.74
16 50.11 50.49 51.18 50.44 52.26 54.78
32 79.66 86.36 89.83 92.47 93.03 93.89
64 134.20 136.65 138.94 137.81 138.17 140.26

Nodes Bookleaf Checkpoint #2 MACSio Checkpoint #2
Min Average Max Min Average Max

1 5.04 5.13 5.47 3.83 4.61 5.23
2 16.80 17.37 18.01 17.43 18.57 18.84
4 21.24 22.99 24.14 20.67 22.27 26.93
8 34.27 34.86 36.14 33.29 35.41 36.20
16 45.29 48.31 51.87 45.51 48.21 51.02
32 83.09 85.79 89.45 85.22 86.85 87.89
64 129.83 133.71 137.58 131.80 136.18 138.01

Table 6.4: I/O timings for Bookleaf and MACSio replication checkpoints run
on Archer with 10 repetitions.

I/O times, there is minimum di�erence to be seen at each scale. While there is

a small amount more variation between the minimum and maximum recorded

values at larger scales, this is to be expected due to the larger timings overall.

Regardless, the variation between the plotted best case values, the calculate

mean average, and the maximum values are a handful of seconds or less in all

of the cases. From these values there is confidence that the experimentation is

demonstrating a fair representation of the system performance for the targeted

workloads.

To increase the robustness of this validation the same set of experimental

results have been collected on the Tinis platform. Tinis uses a GPFS file system

and as such striping is not user controlled. As with the results taken from

Archer, these results represent the best case recorded across 10 repeats in order

to discount system noise as much as possible.

Figure 6.3 shows the three di�erent time metrics measured on Tinis. As with

99

Application Workload Replication

1 2 4 8 16 32 64

16

32

64

128

256

Nodes

T
im

e
(s

)

MACSio File#1
MACSio File#2
Bookleaf File#1
Bookleaf File#2

(a) I/O time

1 2 4 8 16 32 64

512

2,050

8,180

32,700

131,000

523,000

Nodes

T
im

e
(s

)

MACSio File#1
MACSio File#2
Bookleaf File#1
Bookleaf File#2

(b) Cumulative Write Time

1 2 4 8 16 32 64

4

8

16

32

64

128

Nodes

T
im

e
(s

)

MACSio File#1
MACSio File#2
Bookleaf File#1
Bookleaf File#2

(c) Max Write Operation Time

Figure 6.3: I/O timings representing the best case (10 repititions) for Bookleaf
and the MACSio replication running on Tinis (GPFS). For these results the
best case is shown with the variation across repetitions being less than 11% for
each run scale. Timings shown: (a) Start to finish time for a checkpoint (b)
Cumulative time spent by all processors performing I/O (c) Time for the slowest
write operation issued by a processor during each checkpoint.

Archer, the results show a strong correlation between the I/O timings for MAC-

Sio and Bookleaf suggesting that the replication is indeed valid. Specifically, the

average di�erence in I/O time shown by Figure 6.3(a) has been calculated as 9%

with the largest di�erent being an 18% di�erence at 8 nodes. The cumulative

I/O time shown in Figure 6.3(b) again demonstrates that the distribution of

I/O work across all of the processes performing I/O is in agreement between

the two applications. Finally, the slowest write operation recorded by the two

applications shows the MACSio replications taking slightly longer or on average

14%. This trend as the node count scales is notably more consistent that that

observed on Archer.

100

Application Workload Replication

Scale Checkpoint Size (MB) Size Di�erence (MB) Size Di�erence %
Bookleaf MACSio

1 124.05 124.38 0.32 0.26 %
2 124.24 123.93 0.30 0.24 %
4 124.50 123.43 1.06 0.85 %
8 125.87 123.46 1.41 1.13 %
16 125.41 123.08 2.33 1.86 %
32 126.20 122.55 3.64 2.89 %
64 127.35 122.24 5.11 4.01 %

Table 6.5: Checkpoint file size comparison between Bookleaf and a MACSio
replication run on Archer.

The structure of the data that is transferred to the parallel file system by

the original application and the similarly of that produced by MACSio is also

important to the faithfulness of the replication. Inspection of the files produced

by both applications demonstrate firstly that, when MACSio is not launched

with the exact dimensions of the target dataset, a reasonably accurate estima-

tion can be produced. Furthermore, by supplying the correct type of dataset

and an estimate of the number of variables resident in the data, the checkpoint

file produced is extremely close in size and contents to the original application.

In Table 6.5 the variation in total file size between Bookleaf and MACSio shows

that for our experiments up to 64 nodes a maximum di�erence of 2% is observed.

Closer analysis of the checkpoint files produced by the applications, detailed

in Table 6.6, shows that the file elements in the MACSio generated dataset

are faithful to a Bookleaf checkpoint in both their number and distribution.

The di�erences observed between the data elements of the two files can be

largely attributed to minor di�erences in the dataset dimensions, in addition

to the selection of the datatype for each element. In particular, the physical

topology of the dataset in both two and three dimensions has been identified as

a component that can introduce variations in the number of data entries required

to describe the coordinates and connectivity between nodes in the mesh. In our

experiments however, the underestimation of the mesh data is counteracted

by an overestimation of its associated variables. Of the nine data quantities

checkpointed by Bookleaf, six of these use double precision floating point values

101

Application Workload Replication

Bookleaf MACSio
Dataset Dimensions 1800 x 720 Dataset Dimensions 760 x 1596

Element Type Count Size (MB) Element Type Count Size (MB)
Mesh Mesh
Cell IDs integer 1296000 4.94 Cell IDs integer 1202040 4.59
Connectivity integer 5184000 19.78 Connectivity integer 4808160 18.34
I Coord double 1298521 9.91 I Coord double 1212960 9.25
J Coord double 1298521 9.91 J Coord double 1212960 9.25
Node IDs integer 1298521 4.95 Node IDs integer 1212960 4.63

Sub Total (MB) 49.49 Sub Total (MB) 46.06
Variables Variables
Density double 1296000 9.89 Constant double 1202040 9.17
Energy double 1296000 9.89 Constant_000 double 1202040 9.17
Material integer 1296000 4.94 Noise double 1212960 9.25
Node integer 1298521 4.95 Noise Sum double 1212960 9.25
Pressure double 1296000 9.89 Random double 1202040 9.17
X Velocity double 1298521 9.91 Spherical double 1202040 9.17
Y Velocity double 1298521 9.91 X Layers integer 1202040 4.59
csqrd double 1296000 9.89 X Ramp double 1212960 9.25
ielreg integer 1296000 4.94 Y Sin double 1212960 9.25

Sub Total (MB) 74.21 Sub Total (MB) 78.29
Total (MB) 123.69 Total (MB) 124.35
Metadata (MB) 0.02 Metadata (MB) 0.02
File Size (MB) 123.71 File Size (MB) 124.37

Table 6.6: Checkpoint file breakdown for the Bookleaf noh large problem and
MACSio replication run on a single node.

occupying 64-bits per value. The remaining three quantities are represented

by 32-bit integers. Due to the procedural method by which data arrays are

generated in MACSio, the ratio of double to integer variables is eight to one,

meaning there is a greater amount of replication data written to contiguous

file regions. Finally, the aggregated data totals show that the same amount of

metadata is written by each file for the purpose of labelling and indicating the

location of data quantities.

In order to replicate the behaviour of a strong scaled application the part_size

parameter value must be adjusted when running the same Bookleaf configura-

tion across a greater number of processes. A comparison of the dataset generated

in the largest and smallest scale experiments is presented in Table 6.7. It can be

seen that the dataset dimensions generated by MACSio at larger scale produce a

smaller number of mesh cells overall than at a single node, and indeed the orig-

inal Bookleaf run. It is notable however, that the I Coord, J Coord, and Node IDs

102

Application Workload Replication

MACSio 1 Node MACSio 64 Node
Dataset Dimensions 760 x 1596 800 x 1536

Element Type Count Size (MB) Count Size (MB) Di�erence
Mesh
Cell IDs integer 1202040 4.59 1142784 4.36 -5.05%
Connectivity integer 4808160 18.34 4571136 17.44 -5.05%
I Coord double 1212960 9.25 1228800 9.38 1.30%
J Coord double 1212960 9.25 1228800 9.38 1.30%
Node IDs integer 1212960 4.63 1228800 4.69 1.30%
Sub Total (MB) 46.06 45.23 -1.81%
Variables
Constant double 1202040 9.17 1142784 8.72 -5.05%
Constant_000 double 1202040 9.17 1142784 8.72 -5.05%
Noise double 1212960 9.25 1228800 9.38 1.30%
Noise Sum double 1212960 9.25 1228800 9.38 1.30%
Random double 1202040 9.17 1142784 8.72 -5.05%
Spherical double 1202040 9.17 1142784 8.72 -5.05%
X Layers integer 1202040 4.59 1142784 4.36 -5.05%
X Ramp double 1212960 9.25 1228800 9.38 1.30%
Y Sin double 1212960 9.25 1228800 9.38 1.30%
Sub Total (MB) 78.29 76.73 -2.00%
Total (MB) 124.35 121.97 -1.93%
Metadata (MB) 0.02 0.17 152.27%
File Size (MB) 124.37 122.14 -1.81%

Table 6.7: Checkpoint file breakdown for the Bookleaf noh large problem and
MACSio replication run on 1 and 64 Nodes.

arrays all contain 2% more elements at the larger scale. When considering the

mesh specific elements as a whole, this works out at a 2% di�erence between the

runs with the single node container the larger of the two data volumes. This

pattern is mirrored by the remaining variables in the dataset and indeed the

total overall size of the checkpoints.

6.2.2 FLASH-IO

Following the same process, the parameters in Table 6.8 were taken from a run

of the standard FLASH-IO problem. Notably, FLASH-IO uses a 3D structured

rectilinear mesh and performs I/O through the parallel HDF5 API. The de-

composition that is used by FLASH-IO and replicated by MACSio is a regular

3D mesh decomposition across a 3D grid of processors which is illustrated by a

simple example in Figure 6.4.

In contrast to Bookleaf the FLASH-IO application is configured to use a

103

Application Workload Replication

Parameter FLASH-IO Parameter Value

Interface HDF5
Parallel File Mode SIF 1
Number of Dimensions 3D
Mesh Part Dimensions 16 16 16
Part Type Rectilinear Mesh
Vars Per Part 27
Number of Parts Per Rank 100/101
Number of Checkpoint Dumps 1
Checkpoint Interval N/A
Visualisation Part Size N/A
Number of Visualisation Dumps N/A
No Collective Operations True
Dataset Growth Sequence N/A

Table 6.8: Input parameter values for MACSio validation runs of FLASH-IO

weak scaled problem, with an irregular number of fixed size data blocks per

processor simulating a load imbalance. The size of the dataset, and consequently

the resulting checkpoint file, is therefore easily predictable when running the

application on di�erent processor counts.

Figure 6.5 shows the I/O timings for FLASH-IO and the corresponding

MACSio replication at di�erent scales. As with the the Bookleaf replication

experiments, the time spent performing checkpoint I/O for the application as

a whole and cumulatively across all ranks are notably close for the original

and replicated workloads. In particular, the average di�erence in time spent

performing I/O between FLASH-IO and MACSio has been measured at 7%

while the average cumulative time for all ranks di�ers by 19%. However, this

relatively large cumulative time di�erence decreases as the scale is increased,

suggesting that imbalance in individual I/O times is amortised as the scale of

the run increases.

The timings for the slowest write operation performed during checkpointing

demonstrate some interesting characteristics not present in the previous exper-

iments. In Figure 6.5(c) the increase in maximum write operation time can be

seen to be broadly linear as processor count increases, however also display a

104

Application Workload Replication

/

x

y
z

P0

P1

P2
P3

P4

P5

P7

File Layout

Figure 6.4: FLASH-IO 3D mesh decomposition to a 3D processor grid and the
corresponding file layout.

saw-tooth pattern of a larger increase between consecutive experiment scales fol-

lowed by a comparatively smaller increase. This trend is displayed by both the

original application and replicated workload, suggesting that the dataset com-

position and I/O operations generated by this dataset share similar performance

characteristics on ARCHER.

Checkpoint files generated by the FLASH-IO setup in these experiments

are made up of variables in the form of HDF5 scalar datasets. The variable

unknowns in the simulation that represent the majority of the data is stored

in a number of four dimensional datasets, with the first three dimensions being

that of the block size and the fourth the number of data blocks in the simulation.

The data layout used in a FLASH-IO allows for each of the data blocks on a rank

to be stored in one contiguous region in a checkpoint file and is achieved using

105

Application Workload Replication

1 2 4 8 16 32 64 128

2

8

32

128

Nodes

T
im

e
(s

)

FLASH-IO
MACSio

(a) I/O time

1 2 4 8 16 32 64 128
32

512

8,180

131,000

Nodes

T
im

e
(s

)

FLASH-IO
MACSio

(b) Cumulative Write Time

1 2 4 8 16 32 64 128
0.0625

0.25

1

4

16

Nodes

T
im

e
(s

)

FLASH-IO
MACSio

(c) Max Write Operation Time

Figure 6.5: Best case I/O timings for FLASH-IO and the MACSio replication
collected on Archer (stripe count 48) showing: (a) Start to finish time for a
checkpoint (b) Cumulative time spent by all processors performing I/O (c) Time
for the slowest write operation issued by a processor during each checkpoint.

the HDF5 hyperslabs functionality. This layout is mirrored by the hyperslab

definitions used in the MACSio HDF5 plugin, and hence produce an equivalent

dataset layout. The total volume of file data this generates at each experimental

scale is shown in Table 6.9. It should be noted that MACSio produces a volume

of data that is around 0.02% less than the equivalent FLASH-IO run. The source

of this discrepancy is mainly due to additional metadata and labelling datasets

that are produced by FLASH-IO to describe features such as the block size and

block bounding box, the composition of which is shown in Table 6.10. Because

of the specialised nature of these datasets, they are not easily reproducible

in MACSio and hence result in the checkpoint di�erences observed. However,

this proportion of data not represented in MACSio is extremely small when

106

Application Workload Replication

Scale Checkpoint Size (GB) Size Di�erence (MB) Size Di�erence %
FLASH-IO MACSio

1 1.78 1.78 0.38 0.021 %
2 3.56 3.55 0.76 0.021 %
4 7.10 7.10 1.52 0.021 %
8 14.20 14.20 3.04 0.021 %
16 28.41 28.40 6.07 0.021 %
32 56.82 56.81 12.14 0.021 %
64 113.64 113.62 24.27 0.021 %
128 227.30 227.25 48.53 0.021 %

Table 6.9: Checkpoint file size comparison between FLASH-IO and a MACSio
replication.

FLASH-IO Checkpoint Composition
Block Size 16x16x16
Blocks Per Rank 100

Count Dimension Sizes Type Dataset Size
Regular Datasets
4D Unknown Variables 24 100x16x16x16 64-bit float 1.8 GB
Irregular Datasets
Bounding Box 1 100x3x2 64-bit float 112.5 B
Block Sizes 1 100x3 64-bit float 56.3 B
Coordinate Count 1 100x3 64-bit float 56.3 B
Grid ID 1 100x15 32-bit int 140.6 B
Node Type 1 100 32-bit int 9.4 B
Refine Level 1 100 32-bit int 9.4 B
Variable Label 24x1 string 96 B

Table 6.10: Checkpoint file breakdown for a FLASH-IO run on a single node.

compared to the I/O load generated as a whole. Moreover, the closeness of the

data volumes, dataset compositions and the performance characteristics of the

two applications indicates that a faithful replication of the I/O work performed

in FLASH-IO has been carried out by MACSio.

6.3 Summary

Modern supercomputer designs are becoming increasingly diverse, and changes

to processing architectures are seeing the balance between compute and data

sub-systems shift as the compute density of nodes featuring components such as

GPUs far exceeds that of traditional CPU systems. To address data movement

and reliability issues in these new platforms, storage system architectures are

107

Application Workload Replication

also changing to introduce new hardware and software layers to prevent an even

larger gulf opening between compute and I/O capability. However, evaluating

the best way to deploy these new storage layers is not straightforward, with

a need to asses the performance of the current application I/O practices in

addition to new paradigms and software libraries. As such, representative yet

flexible generation of application I/O is vital to enable successful research to be

conducted.

This chapter has detailed work towards the development and operation of

MACSio, a parametrised proxy application consisting of a set of core benchmark

functionalities and I/O library plugins for the synthetic generation of workloads

with a close resemblance to real scientific applications. This research has served

to validate the ability of MACSio, with careful parameter selection, to generate

scientific-like datasets and patterns of I/O that can be used to e�ectively stand-

in for the data storage phase of a scientific application. The results presented

demonstrate that for two applications that checkpoint with high level I/O li-

braries, MACSio recreates the resulting dataset to within 0.5% and 0.02%. In

the former case, an approximation used to generate a data layout and achieves a

high level of accuracy when provided with relatively little information about the

target data. This accuracy is then improved up, with the second replication of

the FLASH-IO code maintaining a consistent 99.98% similarity to the original

dataset.

Analysis of the performance characteristics achieved by the target applica-

tions and their replications demonstrate that MACSio is able to produce an I/O

workload achieving comparable performance on the system, with the largest

di�erence in checkpoint duration measured at 15% and 19% and an average

replication error of 4% and 7%.

The work in this chapter directly motivates a use case for proxy applica-

tion based benchmarking and optimisation, which can build on the knowledge

gained through library plugin development and deployment for the purpose of

influencing I/O practices going forward. In the next chapter, we demonstrate

108

Application Workload Replication

the benchmarking process for a number of application workloads, including those

profiled in Chapter 5. Proxy applications like MACSio are uniquely well suited

to this task due the the flexibility of a parameter based configuration and the

ability to swap out I/O components with much less work than would be required

in a real application.

109

CHAPTER 7
I/O Performance Benchmarking and Optimisation

The evolution of data storage systems, which can incorporate new storage layers

and devices, has led to multi-layered software stacks obscuring the movement

of data between an application and some end-point storage device.

For those looking to achieve optimal I/O performance, this has created a

barrier which needs to be overcome. From the perspective of application devel-

opers, I/O performance is easily ignored as a problem to be solved by software

library developers and system procurements. However, work invested in tuning

the parameters of a high level library, MPI-IO implementation and parallel file

system will often be highly specific and require repeating many times over. This

can quickly become infeasible when dealing with large code bases that can take

large amounts of time to build and run under experimental configurations. A

number of research e�orts have been carried out to demonstrate the value of tun-

ing elements in this software stack for di�erent applications in an e�ort to guide

best practices for I/O. The research presented by Yu et al. [101], Acharya et

al. [1], and Behzad et al. [9] all suggest that performance improvements upwards

of an order of magnitude are possible through correct selection of parameters

for the high level library, middleware, and parallel file system.

System administrators and those charged with procurements will often seek

to solve their institutions I/O problems by providing larger storage systems

promising a higher ceiling on IOPS and bandwidths. In reality, these are di�cult

to evaluate in a way that truly represents the applications that will be used in

production. The problems this generates are two-fold where (a) the impact of

introducing new hardware such as burst bu�er layers cannot be easily quantified

to make the most e�cient procurement decisions, and (b) it is rarely clear to

110

I/O Performance Benchmarking and Optimisation

users if they are achieving peak performance from these storage devices.

Replicating the characteristics of an I/O workload in a portable and flexi-

ble way presents a host of opportunities for optimisation in the form of both

parameter tuning and more dramatic I/O strategy changes. For example, the

substitution of the entire I/O library, or shift to a di�erent file scheme alongside

tradition tuning of Lustre stripes and MPI-IO hints. This chapter presents a

collection of performance optimisation studies carried out using MACSio and

workloads representative of three scientific applications. With similar aims to

those of [101], [1], and [9], the first study contains an investigation of the

parameter space to find optimal configurations for a set of workloads for each

application. Secondly, comparisons of how di�erent I/O libraries perform for the

given workloads when also factoring in alternative file strategies to those used

by the target application. Finally, an evaluation of two contrasting burst bu�er

technologies is demonstrated alongside a characterisation of how the presence

of burst bu�ers impact the I/O performance of a system from the perspective

of an application.

7.1 Approach

All of the experimentation performed in this chapter has used the MACSio

proxy application to represent the I/O behaviour of three physics simulations.

The first two of these targeted codes are the Bookleaf and FLASH-IO appli-

cations that have been previously used to validate the capabilities of MACSio.

Additionally, a large production multi-physics application labelled AWE01 has

been replicated; this is particularly valuable owing to the lack of portability of

the application that results from both its size and commercial sensitivity.

The three source applications are represented by a total of seven MACSio

workload configurations. Of these configurations, Bookleaf and FLASH-IO are

both used with a standard and large workload while AWE01 is configured with

three notable I/O pattern variations. The suite of experimental configurations

111

I/O Performance Benchmarking and Optimisation

is summarised in Table 7.1.

Bookleaf FLASH-IO AWE01
Physics Domain Shock Hydrodynamics High-energy Density Physics Multi-Physics
I/O Library TyphonIO HDF5 TyphonIO
File Configuration N-1 N-1 N-1
Default Scaling Strong Scaling Weak Scaling Strong Scaling
Dimensions 2D 3D 2D
Problem Inputs Standard, Large Standard, Large A, B, D

Table 7.1: Summary of the experimental target applications used as workloads
inside MACSio.

The AWE01 application is made up of a core hydrodynamics package with

a number of additional physics packages that can be enabled depending on the

user supplied input deck. Consequently, the application can behave di�erently

depending on the addition packages activated during a simulation. This can

have a notable e�ect on the I/O that is performed, producing di�erent pro-

files. The profiles used for these experiments were extracted from the target

application and detailed in Chapter 5.

For reference, Chapter 4 contains details of the experimental configurations

used in this and previous chapters.

7.2 Tuning the Parallel I/O Software Stack

The assessment of tuned I/O stack performance involved experiments run pri-

marily on Archer, Quartz and Ray. However, a proportion of the results for the

AWE01 workloads have also been collected from the Cab, Titan, Taurus, and

Tinis machines1.

7.2.1 Middleware

The entirety of the parallel I/O performed in this thesis is completed indirectly

through the use of the MPI-IO middleware layer working underneath a higher
1Di�erent groups of machines have been used for experimentation throughout this chap-

ter due to the period of time over which data was collected and the variation in machine
availabilities over this period.

112

I/O Performance Benchmarking and Optimisation

level library. Consequently, performance can be gained or lost in all of the

targeted workloads through correct tuning of the operations performed at this

middleware layer.

File writes in MPI-IO can be performed using either the MPI_File_write_at or

MPI_File_write_at_all functions, the former called independently between ranks

and the latter called collectively by all ranks taking part in the I/O. Issuing

collective calls a�ords the library the opportunity to perform a number of op-

timisations, namely the nomination of a subset of writers, aggregation of data

into large requests, and reduction in file locking where parallel actions do not

clash. The default behaviour implemented in both Bookleaf and FLASH-IO

is to issue independent writes through the use of data transfer property list

parameters, which instruct their I/O libraries to invoke MPI_File_write_at for

performing data transfer.

Figure 7.1 demonstrates the checkpoint bandwidth for both workloads in

their default configuration and with write calls made collectively. The impact

of enabling collective operations varies between machines, with the largest dif-

ference apparent in the Bookleaf workload on Archer and Quartz. Interestingly,

the checkpoint performance on the two machines is impacted in contrasting

ways (as seen in Figure 7.1(a) and Figure 7.1(c)). On a single Archer node,

a standard Bookleaf checkpoint sees a speedup of 7.8◊ with a large problem

speedup of 1.4◊ when collective writes are enabled. As the node count in-

creases, the independent checkpoint times experience a large slowdown despite

the fixed checkpoint size. However, the checkpoints performed with collective

writes remain largely consistent with regards to time taken. As a result of the

di�erence in scaling behaviour, at 128 nodes the collective operation speedup

grows to 101.1◊ and 12.7◊ for the standard and large workloads respectively.

The scaling behaviour of the two checkpoint classes on Quartz is broadly

the reverse of that observed on Archer, but with a much smaller slowdown in

checkpoint time as the number of nodes increases. Specifically, the slowdown

in checkpoint time for collective calls dominates that of the independent con-

113

I/O Performance Benchmarking and Optimisation

1 2 4 8 16 32 64 128
0.5

2

8

32

128

512

Nodes

B
an

dw
id

th
(M

B
/s

)
1800x720 Independent

1800x720 Collective
14400x5760 Independent

14400x5760 Collective

(a) Bookleaf - Archer

1 2 4 8 16 32 64 128

64

128

256

512

1,020

Nodes

B
an

dw
id

th
(M

B
/s

)

Flash Ref Independent
Flash Ref Collective

Flash 2x Independent
Flash 2x Collective

(b) FLASH-IO - Archer

1 2 4 8 16 32 64 128
8

32

128

512

2,050

Nodes

B
an

dw
id

th
(M

B
/s

)

(c) Bookleaf - Quartz

1 2 4 8 16 32 64 128

2,050

4,090

8,180

Nodes

B
an

dw
id

th
(M

B
/s

)

(d) FLASH-IO - Quartz

1 2 4 8 16 32
8

32

128

512

2,050

8,180

Nodes

B
an

dw
id

th
(M

B
/s

)

(e) Bookleaf - Ray

1 2 4 8 16 32
256

512

1,020

2,050

4,090

Nodes

B
an

dw
id

th
(M

B
/s

)

(f) FLASH-IO - Ray

Figure 7.1: Checkpoint bandwidth for Bookleaf and Flash workloads run inde-
pendently and collectively on Archer, Quartz and Ray.

figuration by 3.1◊ to 1.8◊ for the standard workload size and 1.8◊ to 1.3◊ for

the large workload. This results in a 1.7◊ and 1.9◊ improvement in checkpoint

time when using the default independent operations for the two workload sizes.

114

I/O Performance Benchmarking and Optimisation

Performance characteristics of the FLASH-IO workloads run on the two

Lustre systems further illustrate the pattern of collective calls outperforming

independent calls on Archer but the trend being more varied on Quartz. Specif-

ically, Figure 7.1(b) shows collective calls consistently outperforming indepen-

dent calls by a minimum of 2.3◊ for a standard problem size and 1.4◊ for the

large problem on Archer. Of note at the 128 node count is the fact that the

collective run performance at reference scale decreases relative to the bandwidth

at 64 nodes by around 150 MB/s. Coupled with this the continued increase of

the larger independent run performance appears to show the two converging.

It is inconclusive as to the strength of this trend without the availability of

further data points, however the cause of this conversion may be the result of

the reference problem size reaching a scale at which data stripes are colliding

on the Lustre OSTs. A similar behaviour is not seen for the larger problem

sizes as the additional e�ciency of larger writes per process dominates any Lus-

tre e�ects. The optimal configuration for FLASH-IO workloads on Quartz is

less clear, and Figure 7.1(d) shows minimal performance di�erences between

independent and collective runs until the node count reaches 128, where the

independent timings dominate by 2.2◊ and 1.4◊. The surprising lack of dis-

crepancy between the di�erent problem sizes and the the di�erent write modes

is not well understood currently, and the poor performance shown by collective

operations similar to that observed with Bookleaf suggests that configuration

of the underlying MPIIO library and file system setup may be conflicting to

prevent the anticipated improvements.

The final experiments carried out in this set use the GPFS file system in Ray,

and overall demonstrate a minor performance penalty when enabling collective

operations. Bookleaf checkpoint times demonstrate identical scaling behaviour

for both configurations with the maximum performance di�erence measured

at 1.5◊ for the larger workload running on 8 nodes. Similarly, FLASH-IO

checkpoints performed without collective calls are subject to a performance

improvement of around 1.2◊ with the exclusion of the single node runs which

115

I/O Performance Benchmarking and Optimisation

have a discrepancy of between 6.9◊ and 6.0◊ at standard and large problem

sizes respectively.
A

rc
he

r

Q
ua

rt
z

R
ay

0

200

400

600

800

Machine

C
he

ck
po

in
t

B
W

(M
B

/s
)

(a) Problem A - 1 node

A
rc

he
r

Q
ua

rt
z

R
ay

0

50

100

150

Machine

Independent
Collective

(b) Problem B - 5 Nodes
A

rc
he

r

Q
ua

rt
z

R
ay

0

1,000

2,000

3,000

Machine

(c) Problem D - 5 nodes

Figure 7.2: Perceived checkpoint bandwidth for the AWE01 workloads using
independent and collective calls on Archer, Quartz and Ray. The Lustre stripe
count used on Archer and Quartz is 4 for (a) and 20 for (b) and (c). These
results represent the best observed performance across 10 repetitions.

Figure 7.2 shows the result of applying the same configuration to three pro-

duction workloads taken from the AWE01 application. Due to the simulation

constraints, the calculation and consequently checkpointing can only be carried

out by a limited number of nodes. Under the typical simulation configuration

each of the three experimental platforms demonstrate similar performance char-

acteristics to those seen previously. Archer experiences a minimum speedup of

8.4◊ for collective calls from what is a notably slow baseline when writes are

performed independently. Such a low baseline figure suggests the uncoordinated

writes are colliding at the OST and hence lock contention could be a key compo-

nent limiting performance. This is supported by the large speedup to bandwidth

figures that equate to those seen on Quartz for problem A and B collective runs

which are made possible by coordination of writes eliminating lock contention

at the OST level. The same behaviour is also observed for problem D, however

116

I/O Performance Benchmarking and Optimisation

the use of collective operations does not match the 2000 MB/s performance

seen on Quartz. Quartz demonstrates di�erent behaviour in response to the

introduction of collective writes, only achieving between 81% and 92% of the

checkpoint bandwidth of the original runs. This response to coordinated writes

suggests that Quartz was unlikely to have been experiencing a bottleneck due

to OST lock contention, suggesting that the file system is not configured to hold

file locks in the same way as that seen on Archer. The small drop in perfor-

mance could then be attributed to the coordination overhead between writing

processes which would normally be masked by the improved write speed.

Independent Collective
Access Size Count Access Size Count
3712 B 24,576 1 MB 119
1856 B 12,288 284 B 20
4 B 6142 64 B 11
6720 B 3071 207 B 6

Table 7.2: Write sizes issued to the parallel file system during a Bookleaf check-
point on Archer performed independently and collectively

Independent Collective
Access Size Count Access Size Count
2640 B 36,864 2640 B 36,864
1320 B 12,288 1320 B 12,288
4 B 6142 4 B 6142
4640 B 3071 4640 B 3071

Table 7.3: Write sizes issued to the parallel file system during a Bookleaf check-
point on Quartz performed independently and collectively

Allowing MACSio to issue collective operations to the I/O library for each

target workload on Archer does indeed deliver the expected performance op-

timisations. However, the same e�ect is not observed for the equivalent runs

on Quartz, despite both systems performing I/O to Lustre parallel file systems.

Furthermore, the GPFS based file system in Ray also fails to demonstrate any

performance improvement from the collective bu�ering. Closer analysis of the

access sizes generated during each run identify di�erences in the middleware

behaviours that are observed on these three platforms. Table 7.2 and Table 7.3

show the most common write sizes generated by the Bookleaf workload at 128

117

I/O Performance Benchmarking and Optimisation

nodes on Archer and Quartz. By default the number of aggregators used for

collective write bu�ering will attempt to match the stripe count used, which on

Archer would be 48 due to this being the number of OSTs available for these ex-

periments. In the case of Archer, the large number of writes generated with sizes

in the range of thousands of bytes are replaced by comparatively few aggregated

writes of 1 MB. In contrast, due to a lack of file system driver support the size

of writes issued to the file system for the equivalent workload on Quartz remain

identical despite collective routines being requested. In this case the MPIIO

library supported by Quartz has been built without the inclusion of the Lustre

Abstract-Device Interface for I/O (ADIO) driver. This prevents some MPIIO

capability around collective bu�ering from operating correctly. A similar con-

figuration also causes Ray to demonstrate the same lack of data aggregation for

writes. The translation of many smaller writes to fewer larger writes that are

aligned with 1 MB stripes on the parallel file system is responsible for both re-

ducing the number of file locks that need to be held during the checkpoint, and

maximising the write bandwidth that can be achieved by parallelising writes

across storage targets. Consequently, the failure of the middleware implemen-

tation on Quartz and Ray to successfully aggregate data writes leads not only

to a loss of potential performance, but due to added overheads for collective

synchronisation experiences a slowdown in real terms when compared to the

default routines. Importantly, routines in both the HDF5 and TyphonIO li-

braries identified the transfers carried out in these cases as collective, despite

the discrepancy in behaviours further down the I/O stack.

Having quantified the performance improvements seen on Archer with collec-

tive bu�ering in the middleware layer, additional experiments have been carried

out to determine the potential for tuning the parameters that control collec-

tive bu�ering. In particular, the total number of bu�ering nodes and the total

bu�er size that can be used are components that can be specified to a�ect how

middleware optimisations are performed.

The purpose of these tests is to identify potential for a greater number

118

I/O Performance Benchmarking and Optimisation

of aggregators or larger bu�ers to improve the throughput of data from the

higher level libraries to the parallel file system. Firstly, changing the number

of aggregators to identify if bu�ering data into optimal sized writes can be

improved by a greater number of aggregator nodes issuing collective bu�ered

writes in parallel. Additionally, increasing the size of the bu�er available to

aggregating ranks to eliminate any hidden bu�ering latency in the first phase

of the two phase collective algorithm.

Figures 7.3 and 7.4 show the observed bandwidth for cb_nodes values be-

tween 1 and 64 nodes and cb_bu�er_size values from 16 MB to 256 MB, in

addition to the bandwidth achieved by the default configuration shown earlier.

For both target workloads, explicitly setting the parameters can be seen to

cause large variations in checkpoint bandwidth, however tuning these compo-

nents fails to demonstrate a consistent performance improvement. Selecting a

lower number of aggregators, between 1 and 4 aggregator ranks, delivers compa-

rable or slightly better performance than that measured in previous experiments.

Importantly, these aggregator counts are less than or equal to the number of

Lustre OSTs used in the experiments, which was kept at the system wide de-

fault of 4. When cb_nodes is configured to use an aggregator count greater

than the number of storage targets available the middleware layer is unable to

avoid write collisions with multiple writers attempting to access blocks in the

same file region. When this occurs, one of the writers holds the file lock and the

second must wait for this to be released before a write can be completed. The

penalty for causing this collision on an OST clearly negating any potential ben-

efits from attempting to increase aggregator count alongside the node count for

the simulation. This is clearly demonstrated by the FLASH-IO workload run-

ning on 8 or more nodes, where collective performance with a large aggregator

count drops to below that achieved by using non-collective routines.

Having identified lower numbers of aggregators (specifically less than the file

stripe count) as the most e�ective value for cb_nodes, an increase in the size of

the bu�er available to these aggregators was trialled. As expected, the strongly

119

I/O Performance Benchmarking and Optimisation

1 2 4 8 16 32 64 128
0

100

200

300

Nodes

B
an

dw
id

th
(M

B
/s

)
1 2 4 8
16 32 64

Default Collective
Default Independent

(a) cb_nodes

1 2 4 8 16 32 64 128
0

100

200

300

Nodes

B
an

dw
id

th
(M

B
/s

)

16MB 32MB
64MB 128MB
256MB

Default Collective
Default Independent

(b) cb_bu�er_size

Figure 7.3: Perceived checkpoint bandwidth for the Bookleaf workload on
Archer with di�erent (a) aggregator node count (b) collective bu�er size.

scaled Bookleaf workload exhibited very little performance deviation from the

original run due to the amount of data per aggregator not changing as the

simulation scales to larger node counts. More surprisingly, increasing the size of

the bu�er demonstrated an equal lack of performance improvement for FLASH.

With the weak scaling behaviour of the workload producing around 40 MB

120

I/O Performance Benchmarking and Optimisation

1 2 4 8 16 32 64 128
0

200

400

600

800

1,000

Nodes

B
an

dw
id

th
(M

B
/s

)

1 2 4 8
16 32 64

Default Collective
Default Independent

(a) cb_nodes

1 2 4 8 16 32 64 128
0

200

400

600

800

1,000

Nodes

B
an

dw
id

th
(M

B
/s

)

16MB 32MB
64MB 128MB
256MB

Default Collective
Default Independent

(b) cb_bu�er_size

Figure 7.4: Perceived checkpoint bandwidth for the Flash workload on Archer
with di�erent (a) aggregator node count (b) collective bu�er size.

of data per process coupled to a comparatively small number of aggregators,

it would be expected that an increase in bu�er size is required as the node

count grows. For the 128 node setup, a total of 123 GB of data is generated,

corresponding to the default number of four aggregators having to gather and

transfer 30 GB of data each. With the performance of any of the bu�er sizes

121

I/O Performance Benchmarking and Optimisation

failing to provide a performance speedup (with the exception of 64 MB bu�ers

on 16 nodes), it can be concluded that the bu�ering algorithm implemented in

the middleware layer is able to operate su�ciently fast for our workloads as to

not introduce a bottleneck. Furthermore, neither of sets of experiments identify

any notable capacity for performance tuning at this level of the I/O stack.

A final observation from the attempts to tune MPI-IO middleware param-

eters is that while I/O performance cannot be improved by changing the be-

haviour of this layer in isolation, the impact that middleware configuration can

have in the context of the parallel file system can be very important. This was

demonstrated by the requirement that aggregator count remain less than or

equal to the number of storage targets in use. Moreover, any change to the file

system configuration should be followed by validation of the current parameter

settings remains optimal.

Alongside the results presented in this section it is useful to consider a refer-

ence point for the performance that has been observed in another study on one

of the experimental platforms. Turner et al. [87] presents a range of experiments

designed to measure the peak bandwidth available on Archer with the use of a

simplified benchmark problem. This work uses a simple 3D block decomposed

problem to write to a single shared file and measure the maximum throughput

available compared to the theoretical peak. The theoretical bandwidth achiev-

able from the parallel file system on Archer is dictated by the number of scalable

storage units that it is built from, in this case a theoretical 30 GiB/s is available

from 5 storage units. Benchmarking work in this study shows that for the sim-

plified problem, I/O performed through the NetCDF library (operating through

HDF5) achieved 11.49 GiB/s in a setup configured to make use of Lustre strip-

ing. For reference, the performance observed on Archer for experiments using

MACSio FLASH-IO workloads achieve just 10% of this performance, failing to

display equivalent scaling behaviour. The reasons for this gulf in scalability

are not immediately clear, and clearly the workload generated by MACSio is

exhibiting much more complex I/O behaviour than the simplified test problem

122

I/O Performance Benchmarking and Optimisation

preventing it from achieving anywhere near peak performance.

7.2.2 Parallel File System

Di�culties in tuning I/O middleware behaviour have demonstrated how failure

to configure parallel file system parameters in addition to the rest of the I/O

stack can cause dramatic degradation of performance. Furthermore, the scale

and distribution of a real application’s workload may be such that it is not

possible to benefit from the peak available performance of a large parallel file

system.

Making use of the rapid workload deployment enabled by MACSio, the three

AWE01 problems described in Chapter 5 were run on the Titan, Archer, Cab,

Taurus and Tinis platforms. This process simulated the type of file system

benchmarking that may be performed for the purpose of evaluating a system

for procurement. Initially, each problem was run in its default configuration,

with Problem A occupying a single node and Problems B and D occupying 5

nodes. The provided system MPI installation with default drivers was used

for each machine with no explicit tuning of library parameters to benchmark

application performance of the system as is provided to users. For the file system

configuration both the default stripe count and in increased stripe count were

tested, the increased count being equal to the total number of cores used or the

total OST count should this number be the smaller of the two.

Figure 7.5 shows the observed checkpoint bandwidth of the A and D work-

loads recorded on each machine in addition to the original application running

on the AWE Spruce A system. Interestingly, the original simulation outperforms

all other systems for the first problem achieving a peak of 636 MB/s; conversely,

problem D performs better on the five benchmarked machines achieving only

498 MB/s on Spruce A.

Of the benchmarked systems, the highest throughput under the standard

file system configuration comes from Titan delivering 539 MB/s and 1087 MB/s

representing a 0.85◊ and 2.18◊ speedup. In addition, an increase in the number

123

I/O Performance Benchmarking and Optimisation

Sp
ru

ce

T
ita

n

A
rc

he
r

C
ab

Ta
ur

us

T
in

is

0

200

400

600

Machine

B
an

dw
id

th
(M

B
/s

)

(a) Default Setting/ Small Stripe Count
(b) Increased Stripe Count (Lustre Only)

(a) Problem A

Sp
ru

ce

T
in

is

T
ita

n

A
rc

he
r

Ta
ur

us

C
ab

0

500

1,000

Machine
(b) Problem D

Figure 7.5: Perceived file bandwidth achieved for AWE01 workloads with simple
file striping strategies on the Spruce A, Titan, Archer, Cab, Taurus, and Tinis
platforms.

of storage targets used leads to a performance degradation of 35%. While the

increase in storage devices and greater utilisation of available I/O servers o�ers

a greater amount of aggregate parallel bandwidth to disk, the transfer sizes

generated by the application and subsequent I/O stack are poorly aligned to

stripe boundaries. The resulting collisions by overlapping processes prevent the

storage target increase from having the desired e�ect.

Archer proves to be the benchmarked system o�ering the worst performance

in these experiments achieving just under 23% of the bandwidth of Spruce.

This may seem surprising given the scale of the system, Archer being a tier-1

system, however the Lustre file system alongside Archer is smaller than expected

for a petabyte scale machine due to the hardware deployment strategy used;

by comparison the file system available to Cab is around twice the size for a

machine o�ering a quarter of the processing capacity. Three Lustre file systems

are used to support data storage requirements, with users allocated to one of

the three for the duration of their project. An architecture such as this makes

124

I/O Performance Benchmarking and Optimisation

use of type of static load balancing, attempting to avoid file contention by

allocating users to file systems without any consideration of the I/O footprints of

their individual workloads. Statically load balancing across file system resources

will inevitably improve overall storage throughput, however this is unlikely to

perform as optimally as the dynamic load balancing that occurs in the Lustre

stripe allocation policy. Additionally, the file system ratio of OSTs to OSSs in

Archer is the highest of any of the benchmarked systems at 4 OSTs per server;

a greater disk to server ratio further contributing to storage target contention

with a greater number of requests processed by each server.

The final production platform in this list is Cab, which achieves checkpoint

bandwidths of 227 MB/s and 721 MB/s under standard configuration. This

performance is particularly noteworthy due to system being configured to use

only a single storage target by default. Increasing the stripe count to make use

of all available OSTs produces similar results to that observed on Titan with an

11% and 21% loss in bandwidth.

Aside from Titan, which exists is in a di�erent class of system, the next

largest file system by OST count is Taurus. By default data stripes are dis-

tributed across each of the 96 storage targets, delivering 188 MB/s and 837 MB/s

checkpoint bandwidths. Due to an atypical system configuration, it was not

possible to request a di�erent stripe count during the launch of a job making

it impossible to record a run using a smaller proportion of the file system as

with the other platforms. Considering the large number of OSTs that must be

used on Taurus, the perceived bandwidth in these results equates to less than

10 MB/s per OST which is a fraction of what a system like this would aim to

achieve.

Tinis is the only system in these benchmarking tests that uses a GPFS file

system for parallel data storage. This file system is of a comparatively small

size comprising only 2 I/O servers managing a total of 12 storage volumes. Due

to the expected constraints of such a small system, it is surprising that Tinis

achieves higher file bandwidth than Archer, Cab, and Taurus for all configura-

125

I/O Performance Benchmarking and Optimisation

tions of the two workloads. The cause of this level of performance is di�cult to

attribute to specific file system characteristics due to the dynamic striping used

in GPFS that cannot be configured by the user at runtime.

Figure 7.6 shows the observed bandwidth for Problem B checkpoint plotted

over the duration of a run across five nodes. Each figure is also overlaid with the

size of the checkpoint at that point in the simulation to correlate changes in I/O

performance with the change in dataset composition. From beginning to end a

1.7 GB change in checkpoint size occurs between the initial state of 256 MB to

the terminating state at 1.9 GB, representing a 656 % increase in data volume.

In conjunction with data increase, checkpoint performance also increases in each

configuration that has been tested by di�erent amount summarised in Table 7.4.

The reference run from the original application on Spruce shows that the

first checkpoint achieves just 49.9 MB/s. The first major change in data vol-

ume occurs around the fifth checkpoint with a 94% increase in data triggering a

50% jump in throughput. Between here and checkpoint fifteen the dataset size

increases at diminishing increments, which corresponds to an unpredictable fluc-

tuation in I/O performance with the peak bandwidth achieved at 278.5 MB/s.

After this point the checkpoint di�erences become more incremental, corre-

sponding to stabilisation in performance with the exception of a 15% dip around

the twentieth timestep. Overall a 229.5 MB/s swing is measured, which in fact

corresponds to a 468% increase when considering the poor initial performance.

Perceived File Bandwidth (MB/s)
Minimum Maximum Change % Change

Spruce 49.9 278.5 229.5 468 %
Titan (Default) 489.5 961.0 471.5 96 %
Titan (Striping) 171.0 282.8 111.8 65 %
Archer (Default) 27.0 206.3 179.3 633 %
Archer (Striping) 25.7 284.4 258.8 1008 %
Cab (Default) 94.7 443.3 348.5 368 %
Cab (Striping) 34.7 201.7 167.0 481 %
Taurus 162.1 588.9 426.8 263 %
Tinis 51.0 399.9 348.5 684 %

Table 7.4: File bandwidth changes for checkpointing over the course of the
AWE01 Problem B workload.

Out of the the machines surveyed, the greatest similarity in performance

126

I/O Performance Benchmarking and Optimisation

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Checkpoint Number

B
an

dw
id

th
(G

B
/s

)

Spruce A (8 Stripes) Taurus (96 Stripes) Tinis (GPFS)
Titan (4 Stripes) Archer (4 Stripes) Cab (1 Stripe)
Titan (80 Stripes) Archer (48 Stripes) Cab (80 Stripes)
Checkpoint size

(a) Spruce A Default

5 10 15 20 25
Checkpoint Number

(b) Taurus Default

0.5

1

1.5

2

C
he

ck
po

in
t

Si
ze

(G
B

)

5 10 15 20 25
Checkpoint Number

(c) Tinis Default

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Checkpoint Number

B
an

dw
id

th
(G

B
/s

)

(d) Titan Default

5 10 15 20 25
Checkpoint Number

(e) Archer Default

0.5

1

1.5

2

C
he

ck
po

in
t

Si
ze

(G
B

)

5 10 15 20 25
Checkpoint Number

(f) Cab Default

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Checkpoint Number

B
an

dw
id

th
(G

B
/s

)

(g) Titan Striped

5 10 15 20 25
Checkpoint Number

(h) Archer Striped

0.5

1

1.5

2

C
he

ck
po

in
t

Si
ze

(G
B

)

5 10 15 20 25
Checkpoint Number

(i) Cab Striped

Figure 7.6: Perceived file bandwidth achieved for AWE01 workload B over the
duration of a run using five compute nodes. Results are shown for Spruce A,
Titan, Archer, Cab, Taurus, and Tinis platforms with standard and increased
striping (stripe count is shown in brackets).

to Spruce comes from Tinis and the default configuration on Cab. Both of

these performance profiles show a similar increase in throughput around the

fifth checkpoint with almost identical range between the smallest and largest

checkpoint bandwidths of 348.5 MB/s. Taurus is also able to match the general

127

I/O Performance Benchmarking and Optimisation

profile of the run, notably experiencing the same fluctuations between the fifth

and fifteenth checkpoints as the dataset experiences rapid growth. Furthermore,

a greater bandwidth increase of 426.8 MB/s is noted but due to the initial

performance starting o� much greater than on Spruce, this only equates to a

percentage improvement of 263%.

The three Lustre systems Titan, Archer, and Cab all repeat some of the

characteristics seem previously with regards to the impact of their striping

configuration on performance. Under the default conditions, the systems each

achieve bandwidth numbers consistent with expectations drawn from their rel-

ative sizes and measurements taken up to this point. A previously unobserved

volatility is noted on Titan which demonstrates a sort of two levelled perfor-

mance profile with certain sized checkpoints causing the bandwidth to jump up

to around 900 MB/s for it then to return to the baseline of between 600 MB/s

and 700 MB/s. The increased striping configuration also introduced volatility

on Archer, giving a higher peak for the same workload but fluctuating greatly

between consecutive I/O phases.

7.3 I/O Library and File Strategy Comparisons

Preceding work in this chapter looks at the lower end of the I/O stack, namely

the parallel file system and MPI-IO middleware layer. Application source code

can be written to perform file I/O through MPI-IO calls (or indeed serially with

calls directly to the POSIX layer); however, it is commonplace for production

applications to make use of higher level libraries as their interface to storage,

which is the case for the three applications focused on throughout this thesis.

Higher level libraries are designed to abstract away complicated implementation

details from application developers, however this does not remove the need for

care to be taken ensuring I/O is carried out as e�ciently as possible.

128

I/O Performance Benchmarking and Optimisation

7.3.1 TyphonIO E�ciency

The AWE01, Bookleaf, and FLASH-IO applications each make use of the par-

allel routines in the HDF5 library; the first two applications do this through the

TyphonIO library abstraction, while FLASH-IO makes calls to HDF5 directly.

The mechanism used by HDF5 to transfer data in regions of memory to regions

of a file in parallel is referred to as a hyperslab. A hyperslab selection can be

both a logically contiguous collection of data elements or a regular pattern of

blocks of data, this is true for data in memory and in file dataspaces.

P1 P2 P3 P4

…
…

(a) HDF5 -Block Contiguous

P1 P2 P3 P4

…
…

…
…

(c) TyphonIO - Contiguous

…
…

P1 P2 P3 P4

(b) HDF5 - Logically Contiguous

P1 P2 P3 P4

(b) TyphonIO - Chunked

Application
Layout

File
Layout

Storage
Layout

Application
Layout

File
Layout

Storage
Layout

Figure 7.7: Layout of di�erent data writing modes tested in MACSio.

TyphonIO imposes a hierarchical structured data model onto its output

files. Hyperslabs are used to flatten application defined multidimensional data

129

I/O Performance Benchmarking and Optimisation

1 2 4
0

200

400

600

800

Nodes

C
he

ck
po

in
t

B
W

(M
B

/s
)

(a) Problem A

5 10 20
0

200

400

600

800

Nodes

TyphonIO-Contiguous
TyphonIO-Chunked
HDF5-Logically Contiguous
HDF5-Block Contiguous

(b) Problem B

5 10 20
0

500

1,000

1,500

Nodes

(c) Problem D

Figure 7.8: Checkpoint performance for AWE01 on Archer through standard
TyphonIO, a TyphonIO-like layout using raw HDF5, and an alternative user-
defined hyperslab arrangement also written using raw HDF5.

chunks into one dimensional arrays. These arrays can then be stored in either a

contiguous or chunked dataset, depending on the library build. TyphonIO also

stores chunk metadata to describe the logical structure of a dataset, allowing it

to be re-assembled from the flat one dimensional dataspace. The design of the

library delivers portability of output files and a degree of simplicity for users,

however adding this layer on to an existing high level library limits some of the

available flexibility.

An evaluation of TyphonIO and HDF5 has been carried out using the AWE01

application workloads on two platforms with Lustre file systems. For these ex-

periments, the three I/O profiles were written to the parallel file system in four

configurations: (a) TyphonIO writing contiguous datasets; (b) TyphonIO writ-

ing chunked datasets2; (c) HDF5 writing a contiguous dataset with block conti-

guity; (d) HDF5 writing a contiguous dataset with mesh contiguity. Figure 7.7

illustrates how data is translated from array chunks distributed across proces-
2Achieved by building with the ≠D_ENABLE_HDF5_CHUNK flag enabled.

130

I/O Performance Benchmarking and Optimisation

1 2 4
0

1

2

Nodes

C
he

ck
po

in
t

B
W

(G
B

/s
)

(a) Problem A

5 10 20
0

0.5

1

Nodes

TyphonIO-Contiguous
TyphonIO-Chunked
HDF5-Logically Contiguous
HDF5-Block Contiguous

(b) Problem B

5 10 20
0

5

10

15

Nodes

(c) Problem D

Figure 7.9: Checkpoint performance for AWE01 on Quartz through standard
TyphonIO, a TyphonIO-like layout using raw HDF5, and an alternative user-
defined hyperslab arrangement also written using raw HDF5.

sors to a logical file dataspace, and ultimately its physical layout on disk for

each of these configurations.

Figures 7.8 and 7.9 demonstrate library plugin performance of each workload

at 1, 2 and 4 times the base problem definition on the Archer and Quartz

systems. These experiments were carried out with the Lustre stripe count set to

≠1 to allow 1 MB blocks of data to be striped across all of the available OSTs, 48

on Archer and 36 on Quartz. Results show that on Archer, minor performance

improvements can be obtained in some cases when bypassing TyphonIO and

writing directly to one of the HDF5 configurations provided with MACSio. On

Quartz, the performance di�erence between TyphonIO and the best performing

HDF5 configuration is much greater with a speedup between 2.1◊ and 7.2◊

(average 4.4).

On Archer the use of non-contiguous chunked datasets in TyphonIO delivers

equivalent performance to the contiguous strategy in the worst case. For the

A and D inputs, switching to the chunked build actually improves checkpoint

131

I/O Performance Benchmarking and Optimisation

bandwidth by up to 28% in the case of the smallest scale run for Problem A,

representing a 115.5 MB/s increase in real terms. In this instance, the actual

I/O requests issued to the file system are practically equivalent due largely to

the middleware write aggregation that is occurring, The small improvements

that are experienced in some cases can be attributed to the e�ects of chunk

caching happening inside HDF5. When writing a chunked dataset, caching can

be enabled for the entirety of a data chunk if the available cache is large enough.

In the case of these experiments, the chunk cache has not been optimised and

consequently only a subset of the chunk data can be cached to reduce write time.

This accounts for the small and inconsistent improvements where this caching

can benefit certain datasets but o�ers negligible benefits in other cases where

the minor speedup is amortised over the time to write the rest of the dataset.

Performance results from Quartz di�er notably from Archer, with the use

of the ‘block contiguous’ HDF5 implementation achieving a peak bandwidth

of 14,648 MB/s for the 20 node run on input D. Unlike Archer, no noticeable

benefits are gained from the chunked datasets being turned on in TyphonIO

and analysis of individual write operations shows that the two modes generate

exactly the same set of operations at the middleware layer. Interestingly, the

contiguous TyphonIO and block-contiguous HDF5 layouts both use I/O con-

figurations mapping the same application data to the same layout on file, yet

the raw HDF5 method notably outperforms its equivalent in TyphonIO as high-

lighted previously. In both cases, the transfer sizes generated by the libraries

to store the bulk of the dataset are the same, the di�erence occurring in the

volume and placement of metadata in addition to library management routines

that are executed at the end of the checkpoint phase. This can be identified

from a single metadata write issued to the file at finalise time which is preceded

by a significant gap compared to all previous completed operations.

The logically contiguous layout in HDF5 generates the most distinct pattern

of I/O behaviour out of the four tested. The complex hyperslab definitions used

by this plugin to arrange the dataset in such as was as to match its logical layout

132

I/O Performance Benchmarking and Optimisation

in the simulation causes the HDF5 library to perform a large amount of data

aggregation on rank 0 in order to re-assemble the decomposed problem. What

results is an all gather of data to rank 0, which essentially takes full control of

outputting the entire dataset to file. The transfers generated by the aggregator

alternate between 16 MB and 4.2 MB writes which are distributed to 17 and 5

OSTs respectively. Aggregation in this instance avoids contention from multiple

ranks attempting to write to the same OST, however, as expected this method

is outperformed by all ranks writing their own contiguous blocks should the

number of OSTs be suitably large as to minimise collisions. Furthermore, for

the largest of the three inputs the performance can be seen to be beginning to

fall below that of both TyphonIO strategies.

7.3.2 N-M Parallel File Modes

Performance benchmarking carried out this chapter so far has focused on char-

acteristics of the machine architecture, parallel file system and software stack.

One of features of these experiments is that despite tuning e�orts it can be dif-

ficult to influence how these components operate together to avoid contention

at di�erent stages. It is especially problematic when attempting these optimisa-

tions across a range of platforms providing di�erent implementations and builds

of the required components. To illustrate this point, the avoidance of file lock-

ing and contention in the shared file workloads we have considered requires the

correct selection of high level library routines, middleware drivers, middleware

hints, and parallel file system tuning parameters.

The simplest method of storing data in parallel from a software perspective

has traditionally involved each rank writing to its own individual file (N-to-N), a

strategy that was standard practice before the introduction of MPI-IO and is still

used by some applications. Intuitively the use of independent files can help to

avoid some performance limiting issues stemming from rank synchronisation and

lock contention. Conversely, it is well understood that N-to-N based I/O lacks

scalability due partially to bottlenecks at the file system metadata server [3]. In

133

I/O Performance Benchmarking and Optimisation

this scenario there is still a requirement placed on the file system to distribute

the files across the available storage targets to avoid ranks contending for the

same resource.

1 2 4
0

2

4

6

8

Files Per Node

B
an

dw
id

th
(G

B
/s

)

(a) 5 Nodes

1 2 4
0

2

4

6

Files Per Node

N-M Sequential N-M Parallel
Single Shared File

(b) 10 Nodes

1 2 4
0

5

10

Files Per Node

(c) 20 Nodes

Figure 7.10: File bandwidth achieved for the AWE01 Problem D workload on
Quartz when using Sequential and Parallel N-M access patterns.

1 2 4
0

2

4

6

Files Per Node

B
an

dw
id

th
(G

B
/s

)

(a) 5 Nodes

1 2 4
0

2

4

6

8

Files Per Node

N-M Sequential N-M Parallel
Single Shared File

(b) 10 Nodes

1 2 4
0

5

10

Files Per Node

(c) 20 Nodes

Figure 7.11: File bandwidth achieved for the AWE01 Problem D workload on
Archer when using Sequential and Parallel N-M access patterns.

To investigate whether a mid point between these two strategies can be

performant, a parallel N-M file strategy has been added to MACSio to operate

134

I/O Performance Benchmarking and Optimisation

on top of the existing I/O plugins. This is motivated by the increasing adoption

of systems featuring node local fast storage referred to as burst bu�ers. With

these systems, libraries such as TyphonIO that are designed to write to a single

shared file require di�erent implementation inside an application to operate in

this hybrid mode. Results from this approach are compared against an existing

N-M approach used by the Silo library[62] where groups of ranks access multiple

files sequentially.

1 2 4 8
0

2

4

6

Files Per Node

B
an

dw
id

th
(G

B
/s

)

(a) 8 Nodes

1 2 4 8
0

5

10

Files Per Node

N-M Sequential N-M Parallel
Single Shared File

(b) 16 Nodes

1 2 4 8
0

5

10

15

Files Per Node

(c) 32 Nodes

Figure 7.12: File bandwidth achieved for the AWE01 Problem D workload on
Cab when using Sequential and Parallel N-M access patterns.

Figures 7.10 and 7.11 show the results of these runs on Quartz and Archer,

for which observed checkpoint bandwidth is available at 5, 10, and 20 nodes with

1, 2 and 4 files per node (for clarity, 5 nodes with 1 file per node corresponds

to 5 checkpoint files in total). As expected, both platforms demonstrate greater

overall throughput when using the new parallel multiple-shared file writing ap-

proach. Specifically, the average speedup at each scale on Archer is measured at

3.02◊, 3.00◊, and 2.24◊. Importantly, this approach outperforms the standard

single shared file (SSF) method with a minimum speedup of 3.51◊ for the 5

node problem writing 1 file per node. In the best case, the observed checkpoint

bandwidth increases by 837% from 1.2 GB/s to 8.4%.

135

I/O Performance Benchmarking and Optimisation

On Quartz the greatest di�erence between the two approaches comes when

writing to 2 files per node (18 ranks per file) with shared parallel achieving just

over 7.7 GB/s to the sequential 198.8 MB/s. At each scale increasing the file

count from two to four files per node causes a drop in throughput, of which the

5 node runs experience the biggest drop of 37%. Unlike Archer, the sequential

approach on Quartz is unable to match the SSF performance in any of the tested

configurations.

1 2 4 8 16
0

2

4

6

Files Per Node

B
an

dw
id

th
(G

B
/s

)

(a) 4 Nodes

1 2 4 8 16
0

5

10

Files Per Node

GPFS Burst Bu�ers

(b) 8 Nodes

1 2 4 8 16
0

5

10

15

20

Files Per Node

(c) 16 Nodes

Figure 7.13: File bandwidth achieved for the AWE01 Problem D workload on
Ray’s GPFS file system and node-local burst bu�ers with N-M access patterns.

The same set of experiments is shown in Figure 7.12 on Cab, with the ad-

dition of an 8 file-per-node data point and the basic problem size starting at 8

nodes. Parallel shared file performance is on average double the original strat-

egy, and peaks at 6.5 GB/s, 10.5 GB/s, 14.7 GB for the three problem sizes.

SSF performance on Cab remains largely consistent as the simulation scales, as

a result an improvement of 856% can be gained on 32 nodes writing to 8 files

(4 ranks per node).

With the ability to checkpoint to decentralised storage being a necessity for

node-local burst bu�er systems, the new N-M file scheme has been evaluated on

Ray using both GPFS and BB storage. In Figure 7.13, the results predictably

see the burst bu�er runs exceeding that of the GPFS file system by a minimum

136

I/O Performance Benchmarking and Optimisation

of 37% (shown in Table 7.5) and delivering a peak checkpoint throughput of just

under 20 GB/s when checkpoint data is spread across 16 files. The GPFS file

system in Ray peaks at 5.7 GB/s for the largest problem size and file count, the

mostly regular scaling for multiple files made possible by an update to GPFS

disabling the directory level locking.

Files Per Node 4 Nodes 8 Nodes 16 Nodes
1 66% 1075% 2334%
2 38% 244% 1550%
4 146% 185% 299%
8 78% 123% 234%
16 139% 158% 245%

Table 7.5: Performance improvement of Ray burst bu�ers over GPFS file system
under parallel N-M file modes.

Files Per Node 4 Nodes 8 Nodes 16 Nodes
1 2.70 4.83 10.24
2 1.94 3.33 6.07
4 1.07 2.01 3.81
8 0.61 1.12 2.00
16 0.37 0.70 1.23

Table 7.6: Bandwidth achieved per number of files on Ray when writing to burst
bu�ers.

Writing to a greater number of files displays feasible scalability for the burst

bu�er setup, with these workloads not reaching the point of overloading the

metadata capacity of the disk attempting to access multiple files concurrently.

From a workflow perspective the generation of a large number of files may be

undesirable due to added complexity when processing and visualising output

files. For this reason, a trade-o� for throughput against file count is of interest

may be an important factor for both I/O library developers and application

users. A summary of the ‘bandwidth per file count’ is listed in Table 7.6 showing

that the performance scaling is not proportional to the increase in file count

required, with the ratio decreasing such that some configurations achieve less

than 1 GB/s per checkpoint file.

137

I/O Performance Benchmarking and Optimisation

7.4 Discussion

An important observation to make about some of the results presented in this

chapter (and in previous chapters) is how the performance of many of the ex-

perimental configurations used compares to theoretical and expected values. A

large number of configurations are tested for parallel I/O, including variations

in middleware, high level libraries, file system striping and parallel files modes.

What is evident from many of these tests is that there are a number of factors

that can be shown to increase, or decrease, the e�ciency with which I/O is

performed. An underlying trend throughout these experiments is the relative

performance that is achieved for the di�erent platforms when considered in the

context of their expected throughput. To highlight this point, the file system

deployed on Archer and the experimental results obtained from the machine can

be compared.

Archer hosts a Lustre file system comprising 48 OSTs, which are expected to

deliver 0.5 GB/s each. While there are a number of performance limiting factors

that mean the total throughput on each OST is unlikely to ever be realised, an

expected baseline for a well utilised Archer file system with little contention

should be in the range of tens of GB/s. Comparing this to the figures ob-

tained in Figure 7.8, the application workloads tested through MACSio achieve

a maximum single shared file bandwidth of 1.5 GB/s. This represents one

of the highest I/O throughput figures obtained from the platform, and many

other results achieve considerably less than this. In terms of performance en-

gineering, the gulf between what is theoretically possible on Archer and what

has been measured is somewhat disappointing. Clearly the workloads that are

used to represent scientific applications in these experiments are poorly suited

to achieving an truly e�cient return on I/O, which highlights some of the is-

sues that individual applications will need to overcome to make best use of the

available hardware. As a final point to note, the results shown in Figure 7.11

do achieve much greater file bandwidth performance figures when employing

138

I/O Performance Benchmarking and Optimisation

a multiple shared file writing strategy. The peak throughput measured does

reach around 10 GB/s, which represents a much more positive utilisation of the

Archer file system. Achieving a greater throughput in this way suggests that

the coordination to perform shared file I/O is not well implemented in the work-

loads tested earlier on in this work, and there are changes that can be made to

better unlock the parallel I/O potential provided by HPC systems.

7.5 Summary

In this chapter, a comprehensive benchmarking study has been shown covering

each level in the parallel I/O stack. However, it has been shown that optimi-

sation e�orts for di�erent elements of this stack are not as e�ective as some

literature suggests [9, 45, 97] when applied to a set of replicated production

workloads due largely to variations in software environments and file system

configuration. Similar findings have been reported in a small amount of litera-

ture [58], but these lessons have not been widely incorporated into the industry

standard advice for performing e�cient parallel I/O.

The previous chapter explored work towards building a flexible proxy appli-

cation to rapidly deploy representative scientific workloads. MACSio has been

shown to be capable of generating such workloads with a good degree of accuracy

for the multi-physics applications studied. The work in this chapter provides a

demonstration of how these portable workloads can be used to easily benchmark

the performance that could be expected from production applications when de-

ployed to a new system with a varied file system architecture. Furthermore,

lightweight I/O profiling has been used in conjunction with these workloads to

explore the sensitivity of di�erent machine configurations to optimisation in the

available software stack.

Using a variety of parameter sweeps aimed at the middleware and parallel

file system components, the results in this chapter have shown that the system

provided MPI-IO library on a number of production class systems are not built

139

I/O Performance Benchmarking and Optimisation

with adequate support for e�cient collective I/O operations. As a consequence,

the expected performance that has been shown to be be achievable through

striping data over parallel file systems cannot be easily obtained. In fact, some

of the experiments conducted show that the absence of suitable software support

can cause an application’s checkpointing performance to su�er when distributing

these workloads over a large number of OSTs.

Finally, this chapter is concluded with a top down look at the I/O stack. A

comparison is made between four data layouts strategies controlled at the level

of the HDF5 and TyphonIO parallel I/O libraries, demonstrating a degree of

overhead introduced by the TyphonIO abstraction. Furthermore, careless use of

hyperslabs to influence the file data layout in HDF5 can dramatically degrade

the performance ceiling of a checkpoint phase.

A demonstration of a new parallel N-M file management scheme implemented

by MACSio has been given, showing that this approach can o�er significant im-

provement over the standard single shared file or Silo-like sequential strategies.

Furthermore, introducing parallelism at this high level is able to insulate an

application from a failure to perform contention avoiding optimisations further

down the stack, ensuring that ranks attempts to access the same file regions or

OSTs are minimised. Moreover, a strategy such as this is inevitably required to

bridge the gap between PFS and burst bu�er I/O strategies, hence a demon-

stration of this technique on a burst bu�er enabled system has been conducted

showing considerable performance improvements and highlighting this as a vi-

able approach for I/O libraries going forward.

140

CHAPTER 8
Discussion and Conclusions

The work presented in this thesis outlines the current state of I/O in scientific

applications, and o�ers some insight into how future developments can be made.

Studies carried out at some of the largest supercomputing sites in the world have

shown that the current generation of extreme scale machines are operating with

a mean time between failures of just 9 hours, and so defensively writing data

out to persistent storage is necessary to protect valuable simulation results [43].

A large proportion of the work that is done to improve I/O focuses on in-

creasing the idealised peak bandwidth that can be achieved by a file system.

For this reason, tools such as IOR have become industry standard as a simple

way to generate I/O tra�c to benchmark the performance ceiling [35]. How-

ever, a disconnect exists between the idealised performance of tools such as IOR

and the real performance of large complex scientific applications. This thesis

suggests that application focused benchmarking o�ers the solution of more ac-

curate evaluations of future I/O systems and a greater amount of flexibility to

facilitate prototyping and development of new I/O strategies.

Often, advice about how to maximise I/O performance is administered in

the form of the ‘rule of thumb’ and little attention to detail is paid. In this the-

sis, it is demonstrated that unoptimised software environments and the complex

interactions between layers in the I/O stack can make tuning attempts di�cult

to succeed in. This means that practically there is little incentive to perform

such activities with large cumbersome code-bases that lack flexibility. Further-

more, the ability to measure accurate representations of the speedup o�ered by

new I/O technologies on existing workloads can look to better advise supercom-

puting sites when procuring these expensive components.

141

Discussion and Conclusions

Chapter 5 has demonstrated that data collected via lightweight profiling

techniques can be used to extract the I/O characteristics of applications. A

hydrodynamics mini-application and a large commercially sensitive production

simulation are analysed and profiles of their I/O workloads are outlined. These

I/O descriptions can inform users how their strategy selection plays out over the

course of a simulation, and can be used to guide more accurate benchmarking

and procurements.

Chapter 6 demonstrates the design and development of the MACSio I/O

proxy application, which is able to generate application focused I/O workloads

and execute these workloads through a variety of checkpoint strategies and high

level libraries. A plugin for the TyphonIO library is developed, which enables

the first portable and representative tool for benchmarking and re-engineering

the library and its applications for future file systems. By drawing on the

application profiling approach described in chapter 5, a validation of MACSio’s

ability to generate proxy I/O workloads for scientific applications is shown to

be successful.

Finally, Chapter 7 combines the work of the preceding chapters and demon-

strates the use of MACSio to conduct a range of benchmarking and optimisation

tasks using the workload profiles of the studied scientific applications. A demon-

stration of the rapid deployment of MACSio to a number of platforms with file

systems of contrasting architectures and scales is performed. Further, analysis

is done on these workloads reacting to changes in configuration at the middle-

ware and parallel file system layers, which is able to demonstrate that poor

configuration renders some traditional I/O optimisation advice invalid for these

workloads. With no modification to the parallel I/O software stack, settings

intended to utilise greater file system parallelism are shown to degrade check-

pointing performance in the test cases. These results were most notable when

experimenting with collective bu�ering parameters, and in particular attempts

to increase the number of aggregators for larger scale runs impacted the perfor-

mance negatively due to the corresponding Lustre stripe count not being high

142

Discussion and Conclusions

enough. This chapter also presents an evaluation of di�erent file data layouts

achieved through the HDF5 and TyphonIO libraries, showing that the use of

hyperslabs as a mechanism for mapping simulation data to checkpoint files can

lead to a loss of performance in cases where rearrangement of data blocks causes

an aggregation bottleneck on the root process. The conclusion of this chapter

demonstrates the performance of a multiple parallel file (N-M) I/O strategy that

may be implemented in a library such a TyphonIO to future proof I/O against

a shift to new storage layouts, in particular the use of fast node local burst

bu�ers. This strategy also considerably outperforms the traditional shared file

and multiple file approach used by Silo on current generation storage systems

with no tuning of the rest of the I/O stack required.

8.1 Limitations

The primary limitation in this thesis is that experimentation and analysis fo-

cuses entirely on the write performance of parallel applications, with no con-

sideration of improving read performance. In the type of application studied,

initial states and configurations are read from a file at the initialisation stage

after which point the flow of data generally is intermediate states being written

out to storage for checkpointing and visualisation. Because the proportion of

reads to writes over the course of a simulation is so skewed, write performance

has been prioritised as the path to delivering the most notable improvements

to an application overall. However, the tuning and selection of di�erent I/O

strategies featured in this work has been shown to reduce storage contention,

a factor that will also improve the performance of parallel reads from the file

system.

Another potential limitation is the choice of applications that have been stud-

ied for performance optimisation in Chapters 4 and 6. In particular, the AWE01

application is very specific in its pattern of usage and is not commonly used for

large scale runs across the entirely of a machine. Nevertheless, it has been iden-

143

Discussion and Conclusions

tified as one of the biggest I/O bottlenecks in the production workflow at AWE.

Furthermore, as numerical methods and system architectures change the poten-

tial for the usage pattern similarly changes, meaning that lessons learned in the

design and use of the I/O software environment at this scale will be valuable to

the continued use of the application going forward.

A key limitation that was highlighted in Chapter 7 was the use of poorly

configured MPI-IO middleware on multiple machines used for benchmarking. In

particular, the lack of file system aware components in the MPI distribution pre-

vented e�ective collective bu�ering to be performed. The MPI implementations

used on all the experimental platforms was supplied as the system-wide default

and built by administrators responsible for maintaining the user development

environment. It is interesting to note that software provided to users would be

unoptimised for the task of parallel I/O, and the remainder of the performance

work carried out in the chapter was carried out with these unoptimised libraries.

This way, a true representation of how systems will likely be typically used in

gained.

A common limitation with I/O specific work is that by the nature of parallel

file systems being shared by multiple users, it can di�cult to avoid the e�ects of

machine load and background noise. Each of the supercomputers used through-

out this thesis were either production or publicly accessible research systems

with other users sharing a proportion of the available resources. To account

for the variability that can be caused by system noise, each of the experiments

carried out were repeated multiple times, often at di�erent times of day and

spread out over a number of days or in some cases weeks. As the performance

characteristics of interest in this thesis were specific to the I/O software en-

vironment and it’s interaction with the storage system, the highest possible

throughput measured is presented as this is likely the result demonstrating the

truest performance of a system when removing external interference.

144

Discussion and Conclusions

8.2 Future Work

The work in this thesis is focused primarily on the performance of current gen-

eration production system and the developments in I/O techniques that will be

required to best utilise future systems, with a view to the procurement of these

systems. It has been shown that some of the characteristics of real application

I/O workloads lend themselves to poor performance, and a lack of understand-

ing and continued optimisation e�orts prevent this problem being successfully

addressed. More recent e�orts to update the libraries currently used to per-

form I/O, notably with tools such as ADIOS [55, 56], o�er potential solutions

to the problems hindering I/O optimisation work. In particular, ADIOS acts

in a similar fashion to a domain specific language where a high level interface

can be written into an application and control of the I/O routines handled by

an external configuration file provided at runtime. The flexibility of this ap-

proach coupled with a tool like MACSio has a great deal of potential to benefit

production applications, where optimisations can be discovered in MACSio and

immediately implemented in the target code simply by supplying an I/O con-

figuration file for users to adopt.

Machine architectures are currently undergoing a large shift in paradigm,

and data storage is an important consideration. In particular, the widespread

adoption of advanced architectures such as GPUs as the primary processing

units in a node have meant that the density of compute power in a single node

has increased. These devices have the potential to reduce the time to solution

for a simulation, but only if the devices are suitably saturated with the data

required to maximise the amount of parallel computation. The upshot of the

increased compute density is therefore a similar increase in the density of data

being processed and exported from each of the nodes in the system. Attempts

to alleviate bottlenecks that halt the progress of a node when I/O is being

performed have lead to the introduction of burst bu�er devices [10, 54, 67, 93].

The purpose of a burst bu�er is to provide fast SSD and NVMe based storage

145

Discussion and Conclusions

to reduce the amount of time it takes for data to flow to and from the parallel

file system. Competing architectures for deploying burst bu�ers have been put

into production, and at the time of writing it has proved too early to identify

which technique is likely to be accepted as the industry standard. On one hand,

solutions such as Cray’s DataWarp place a centralised collection of burst bu�er

nodes between the compute nodes and the file system to be shared by multiple

nodes and jobs, where as node local burst bu�ers in machines like Summit [39]

are dedicated for use by their host node only. A key consideration for the

use of the second configuration is the incompatibility that decentralised storage

devices has with the common practice of writing to shared files [64]. The N-

M mode implemented in MACSio has shown potential as a solution for this

issue, allowing a group of processors on each node to perform shared writes as

they currently do, but to separate files stored locally on node. Bringing this

capability down into the TyphonIO library to operate alongside the traditional

method could o�er an e�ective solution to the migration of I/O strategies to

these modern and future storage architectures.

8.3 Final Remarks

This thesis has presented a set of steps towards representative and flexible I/O

benchmarking and analysis. The existence of tools and techniques such as these

will no doubt be vital in continuing to adapt I/O behaviour and tackle perfor-

mance issues that arise with traditional storage systems and software libraries.

Additionally, great pressure is placed on supercomputing sites to procure more

advanced systems that meet the needs of their user base, meaning accurate

benchmarking and analysis are fundamental to making correct decisions.

Ultimately, the explosion in complexity of system architectures, both general

and storage specific, means that users and library developers must work to

ensure their techniques continue to deliver I/O performance on the road to

exascale systems.

146

Bibliography

[1] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon,

J. Hollingsworth, J. Saltz, and A. Sussman. Tuning the performance of

I/O-intensive parallel applications. In Proceedings of the Annual Work-

shop on I/O in Parallel and Distributed Systems, IOPADS, IOPADS

’96, pages 15–27, New York, NY, USA, 1996. ACM. ISBN 0-89791-813-

4. doi: 10.1145/236017.236027. URL http://0-doi.acm.org.pugwash.

lib.warwick.ac.uk/10.1145/236017.236027.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent. HPCTOOLKIT: Tools for performance anal-

ysis of optimized parallel programs. Concurrency Computation Practice

and Experience, 22(6):685–701, 2010. ISSN 15320626. doi: 10.1002/cpe.

[3] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and F. Verzel-

loni. Parallel I/O and the metadata wall. In PDSW’11 - Proceedings of the

6th Parallel Data Storage Workshop, Co-located with SC’11, pages 13–18.

ACM, 2011. ISBN 9781450311038. doi: 10.1145/2159352.2159356.

[4] G. Almasi, S. Asaad, R. E. Bellofatto, H. R. Bickford, M. A. Blumrich,

B. Brezzo, A. A. Bright, J. R. Brunheroto, J. G. Castanos, D. Chen,

and Others. Overview of the IBM Blue Gene/P project. IBM Journal of

Research and Development, 52(1-2):199–220, 2008.

[5] R. Alverson and D. Roweth. The gemini system interconnect. In Pro-

ceedings - 18th IEEE Symposium on High Performance Interconnects,

HOTI 2010, pages 83–87. IEEE, 2010. ISBN 9780769542089. doi:

10.1109/HOTI.2010.23.

[6] G. M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In AFIPS Conference Proceedings - 1967

147

http://0-doi.acm.org.pugwash.lib.warwick.ac.uk/10.1145/236017.236027
http://0-doi.acm.org.pugwash.lib.warwick.ac.uk/10.1145/236017.236027

BIBLIOGRAPHY

Spring Joint Computer Conference, AFIPS 1967, AFIPS ’67 (Spring),

pages 483–485, New York, NY, USA, 1967. ACM. doi: 10.1145/1465482.

1465560.

[7] Argonne National Laboratory. Parallel I/O Benchmarking Con-

sortium, 2011. URL http://www.mcs.anl.gov/research/projects/

pio-benchmark/.

[8] Arm. Arm MAP. Documentation at the URL:

{https://static.docs.arm.com/101136/1822/userguide-forge.pdf},

2019. URL https://www.arm.com/products/development-tools/

server-and-hpc/forge/map.

[9] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,

Q. Koziol, and M. Snir. Taming parallel I/O complexity with auto-

tuning. In International Conference for High Performance Computing,

Networking, Storage and Analysis, SC, SC ’13, page 68, New York, NY,

USA, 2013. ACM, ACM. ISBN 9781450323789. doi: 10.1145/2503210.

2503278. URL http://0-doi.acm.org.pugwash.lib.warwick.ac.uk/

10.1145/2503210.2503278.

[10] W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,

M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia, S. Byna, S. Farrell,

D. Gursoy, C. S. Daley, V. Beckner, B. V. Straalen, D. Trebotich, C. Tull,

G. Weber, N. J. Wright, K. Antypas, and Prabhat. Accelerating Sci-

ence with the NERSC Burst Bu�er Early User Program. Proceedings of

the 2016 Cray User Group, 2016. URL https://cug.org/proceedings/

cug2016_proceedings/includes/files/pap162.pdf.

[11] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rim-

mer, K. D. Underwood, and R. C. Zak. IntelÂ� Omni-path Architecture:

Enabling Scalable, High Performance Fabrics. In Proceedings - 2015 IEEE

148

http://www.mcs.anl.gov/research/projects/pio-benchmark/
http://www.mcs.anl.gov/research/projects/pio-benchmark/
https://www.arm.com/products/development-tools/server-and-hpc/forge/map
https://www.arm.com/products/development-tools/server-and-hpc/forge/map
http://0-doi.acm.org.pugwash.lib.warwick.ac.uk/10.1145/2503210.2503278
http://0-doi.acm.org.pugwash.lib.warwick.ac.uk/10.1145/2503210.2503278
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf

BIBLIOGRAPHY

23rd Annual Symposium on High-Performance Interconnects, HOTI 2015,

pages 1–9. IEEE, 2015. ISBN 9781467391603. doi: 10.1109/HOTI.2015.22.

[12] D. Boehme, T. Gamblin, D. Beckingsale, P. T. Bremer, A. Gimenez,

M. Legendre, O. Pearce, and M. Schulz. Caliper: Performance Introspec-

tion for HPC Software Stacks. In International Conference for High Per-

formance Computing, Networking, Storage and Analysis, SC, pages 550–

560. IEEE Press, 2017. ISBN 9781467388153. doi: 10.1109/SC.2016.46.

[13] J. Borrill, L. Oliker, J. Shalf, H. Shan, and A. Uselton. HPC global file

system performance analysis using a scientific-application derived bench-

mark. Parallel Computing, 35(6):358–373, 2009. ISSN 01678191. doi:

10.1016/j.parco.2009.02.002.

[14] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger. The disksim

simulation environment version 4.0 reference manual (cmu-pdl-08-101).

Parallel Data Laboratory, page 26, 2008.

[15] F. Cappello. Fault tolerance in petascale/exascale systems: Current

knowledge, challenges and research opportunities. International Journal

of High Performance Computing Applications, 23(3):212–226, 2009. ISSN

10943420. doi: 10.1177/1094342009106189.

[16] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 24/7

characterization of petascale I/O workloads. In Proceedings - IEEE In-

ternational Conference on Cluster Computing, ICCC, pages 1–10. IEEE,

2009. ISBN 9781424450121. doi: 10.1109/CLUSTR.2009.5289150.

[17] P. H. Carns, K. Harms, R. Latham, and R. B. Ross. Performance Analysis

of Darshan 2.2.3 on the Cray XE6 Platform. Technical report, Argonne

National Lab.(ANL), Argonne, IL (United States), 2012.

[18] J. H. Chen, a. Choudhary, B. De Supinski, M. Devries, E. R. Hawkes,

S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki,

149

BIBLIOGRAPHY

R. Sankaran, S. Shende, and C. S. Yoo. Terascale direct numerical sim-

ulations of turbulent combustion using S3D. Computational Science and

Discovery, 2(1):15001, 2009. ISSN 17494680. doi: 10.1088/1749-4699/2/

1/015001.

[19] J. Cope, N. Liu, S. Lang, P. H. Carns, C. D. Carothers, and R. B.

Ross. CODES: Enabling Co-Design of Multi-Layer Exascale Storage Ar-

chitectures. In Workshop on Emerging Supercomputing Technologies 2011

(WEST 2011), volume 2011, pages 303–312, 2011.

[20] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost,

M. Snirt, B. Traversat, and P. Wong. Overview of the MPI-IO parallel I/O

interface. In Input/Output in Parallel and Distributed Computer Systems,

pages 127–146. Springer, 1996.

[21] T. Cortes and J. Labarta. HRaid: A Flexible Storage-system Simula-

tor. In International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA), pages 772–778, 1999.

[22] F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Y. Parkinson, F. Khan,

N. Schwarz, D. J. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville,

T. Lanzirotti, Y. Sun, Y. P. Hong, and C. Jacobsen. Scientific data ex-

change: A schema for HDF5-based storage of raw and analyzed data.

Journal of Synchrotron Radiation, 21(6):1224–1230, 2014. ISSN 16005775.

doi: 10.1107/S160057751401604X.

[23] A. C. de Melo. The New Linux ’perf’ Tools. In Linux Kongress, volume 18,

2010.

[24] P. M. Dickens and J. Logan. A high performance implementation of

MPI-IO for a Lustre file system environment. Concurrency Computa-

tion Practice and Experience, 22(11):1433–1449, 2010. ISSN 15320626.

doi: 10.1002/cpe.1491.

150

BIBLIOGRAPHY

[25] P. M. Dickens and R. Thakur. Improving collective I/O performance using

threads. In Proceedings of the International Parallel Processing Sympo-

sium, IPPS, pages 38–45. IEEE, 1999.

[26] J. Dickson. Parallel I/O Libraries. In 1st Symposium of the Centre for

Computational Plasma Physics, University of Warwick, November 2015.

[27] J. Dickson. Investigating Application I/O. In JOWOG 34 Meeting, Atomic

Weapons Establishment, June 2016.

[28] J. Dickson. Replicating I/O Behaviour in Production Applications. In

JOWOG 34 Meeting, Los Alamos National Laboratory, June 2017.

[29] J. Dickson. I/O Performance Analysis with Proxy Applications. In

JOWOG 34 Applied Computer Science Meeting, Sandia National Labo-

ratory, February 2018.

[30] J. Dickson, A. Herdman, S. Maheswaran, S. a. Wright, J. a. Herdman, and

S. a. Jarvis. MINIO : an I/O benchmark for investigating high level parallel

libraries. In 27th ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis (SC’15), pages 5–6,

September 2015. ISBN Dickson, James, Maheswaran, Satheesh, Wright,

Steven A., Herdman, J. A. and Jarvis, Stephen A. (2015) MINIO : an

I/O benchmark for investigating high level parallel libraries. In: 27th

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (SCâ�è15), Austin, Texas, USA, 15-

20 Nov 2015 (In Press). URL http://wrap.warwick.ac.uk/73143/20/

WRAP_ExtendedAbstract%2BConferenceposter.pdf.

[31] J. Dickson, S. Wright, S. Maheswaran, A. Herdman, D. Harris, M. C.

Miller, and S. Jarvis. Enabling Portable I / O Analysis of Commercially

Sensitive HPC Applications Through Workload Replication. In Cray User

Group 2017 Proceedings, pages 7–12, May 2017.

151

BIBLIOGRAPHY

[32] J. Dickson, S. Wright, S. Maheswaran, A. Herdman, M. C. Miller, and

S. Jarvis. Replicating HPC I/O workloads with proxy applications. In

Proceedings of PDSW-DISCS 2016: 1st Joint International Workshop on

Parallel Data Storage and Data Intensive Scalable Computing Systems -

Held in conjunction with SC16: The International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 13–18,

September 2017. ISBN 9781509052165. doi: 10.1109/PDSW-DISCS.2016.

007.

[33] J. Dongarra, H. W. Meuer, E. Strohmaier, and H. Simon. The TOP 500

List, 2000.

[34] J. J. Dongarra, P. Luszczek, and A. Petite. The LINPACK benchmark:

Past, present and future. Concurrency Computation Practice and Expe-

rience, 15(9):803–820, 2003. ISSN 15320626. doi: 10.1002/cpe.728.

[35] S. Ed and L. Berkeley. Using IOR to analyze the I/O performance for

HPC. Cray User Group 2007 Proceedings, 2010.

[36] N. El-Sayed and B. Schroeder. Reading between the lines of failure logs:

Understanding how HPC systems fail. In Proceedings of the International

Conference on Dependable Systems and Networks, pages 1–12. IEEE, 2013.

ISBN 9781467364713. doi: 10.1109/DSN.2013.6575356.

[37] N. El-Sayed and B. Schroeder. Checkpoint/restart in practice: When

simple is better. In 2014 IEEE International Conference on Cluster Com-

puting (CLUSTER), pages 84–92. IEEE, 2014.

[38] EPCC I/O Benchmarking applications. benchio, 2018. https://github.

com/EPCCed/benchio, last accessed on September 2, 2018.

[39] M. Feldman. Oak Ridge readies Summit supercomputer for 2018 debut.

Top500. org, http://bit. ly/2ERRFr9, 2017.

152

https://github.com/EPCCed/benchio
https://github.com/EPCCed/benchio

BIBLIOGRAPHY

[40] S. a. Fineberg, O. Wong, B. Nitzberg, and C. Kuszmaul. PMPIO - a

portable implementation of MPI-IO. In Frontiers of Massively Parallel

Computation - Conference Proceedings, pages 188–195. IEEE, 1996.

[41] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson. An overview

of the HDF5 technology suite and its applications. In ACM Interna-

tional Conference Proceeding Series, pages 36–47. ACM, 2011. ISBN

9781450306140. doi: 10.1145/1966895.1966900.

[42] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: A call graph exe-

cution profiler. In Proceedings of the 1982 SIGPLAN Symposium on Com-

piler Construction, SIGPLAN 1982, volume 17, pages 120–126. ACM,

1982. ISBN 0897910745. doi: 10.1145/800230.806987.

[43] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari. Failures in large scale

systems: Long-term measurement, analysis, and implications. In Proceed-

ings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC 2017, page 44. ACM, 2017. ISBN

9781450351140. doi: 10.1145/3126908.3126937.

[44] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the

ACM, 31(5):532–533, May 1988.

[45] R. Hedges, B. Loewe, T. McLarty, and C. Morrone. Parallel file system

testing for the lunatic fringe: The care and feeding of restless I/O power

users. In Proceedings - Twenty -second IEEE/Thirteenth NASA Goddard

Conference on Mass Storage Systems and Technologies, pages 3–17. IEEE

Computer Society, 2005. ISBN 0769523188. doi: 10.1109/MSST.2005.22.

[46] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman, M. Gron-

dona, J. Garlick, B. Springmeyer, and M. Taufer. Scalable I/O-aware job

scheduling for burst bu�er enabled HPC clusters. In HPDC 2016 - Pro-

ceedings of the 25th ACM International Symposium on High-Performance

153

BIBLIOGRAPHY

Parallel and Distributed Computing, pages 69–80. ACM, 2016. ISBN

9781450343145. doi: 10.1145/2907294.2907316.

[47] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf. Tuning HDF5

for Lustre File Systems. In Workshop on Interfaces and Abstractions for

Scientific Data Storage (IASDS10), 2010.

[48] A. a. Hwang, I. a. Stefanovici, and B. Schroeder. Cosmic rays don’t strike

twice: Understanding the nature of DRAM errors and the implications for

system design. In International Conference on Architectural Support for

Programming Languages and Operating Systems - ASPLOS, volume 47,

pages 111–122. ACM, 2012. ISBN 9781450307598. doi: 10.1145/2150976.

2150989.

[49] W. V. C. Ii, G. Gibson, M. Holland, L. N. Reilly, and J. Zelenka. RAID-

frame : A Rapid Prototyping Tool for RAID Systems. Technical Report

August, Carnegie-Mellon University, 1997.

[50] Intel Developer Zone. Intel VTune Amplifier. Documen-

tation at the URL: https: // software. intel. com/ en-us/

intel-vtune-amplifier-xe-support/ documentation , 2018.

[51] T. Jones, R. Mark, J. Martin, J. May, E. Pierce, and L. Stanberry. An

MPI-IO Interface to HPSS. Technical report, Lawrence Livermore Na-

tional Lab., CA (United States), 1996.

[52] Kogge, Peter \emphet. al. ExaScale Computing Study: Technology

Challenges in Achieving Exascale Systems. Defense Advanced Research

Projects Agency Information Processing Techniques O�ce (DARPA

IPTO), Tech. Rep, 15:278, 2008.

[53] P. Kovatch, M. Ezell, and R. Braby. The malthusian catastrophe is upon

us! Are the largest HPC machines ever up? In Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence

154

BIBLIOGRAPHY

and Lecture Notes in Bioinformatics), volume 7156 LNCS, pages 211–220.

Springer, 2012. ISBN 9783642297397. doi: 10.1007/978-3-642-29740-3-25.

[54] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,

and C. Maltzahn. On the role of burst bu�ers in leadership-class storage

systems. In IEEE Symposium on Mass Storage Systems and Technologies,

pages 1–11. IEEE, 2012. ISBN 9781467317450. doi: 10.1109/MSST.2012.

6232369.

[55] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible

IO and integration for scientific codes through the adaptable IO system

(ADIOS). In CLADE - Proceedings of the 6th International Workshop

on Challenges of Large Applications in Distributed Environments 2008,

CLADE’08, pages 15–24. ACM, 2008. ISBN 9781605581569. doi: 10.

1145/1383529.1383533.

[56] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata

rich IO methods for portable high performance IO. In IPDPS 2009 -

Proceedings of the 2009 IEEE International Parallel and Distributed Pro-

cessing Symposium, volume 00, pages 1–10, 2009. ISBN 9781424437504.

doi: 10.1109/IPDPS.2009.5161052. URL doi.ieeecomputersociety.

org/10.1109/IPDPS.2009.5161052.

[57] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,

K. Schwan, and M. Wolf. Managing variability in the IO performance of

petascale storage systems. In 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis, SC

2010, pages 1–12. IEEE, 2010. ISBN 9781424475575. doi: 10.1109/SC.

2010.32.

[58] J. Logan and P. Dickens. Towards an understanding of the performance

of MPI-IO in Lustre file systems. In Proceedings - IEEE International

Conference on Cluster Computing, ICCC, volume Proceedings of the 2008

155

doi.ieeecomputersociety.org/10.1109/IPDPS.2009.5161052
doi.ieeecomputersociety.org/10.1109/IPDPS.2009.5161052

BIBLIOGRAPHY

IEEE International Conference on Cluster Computing, ICCC 2008, pages

330–335. IEEE, 2008. ISBN 9781424426409. doi: 10.1109/CLUSTR.2008.

4663791.

[59] X. Ma, M. Winslett, J. Lee, and S. Yu. Improving MPI-IO output perfor-

mance with active bu�ering plus threads. In Proceedings - International

Parallel and Distributed Processing Symposium, IPDPS 2003, pages 10—

-pp. IEEE, 2003. ISBN 0769519261. doi: 10.1109/IPDPS.2003.1213165.

[60] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,

and W. Kramer. Lessons learned from the analysis of system failures

at petascale: The case of blue waters. In Proceedings - 44th Annual

IEEE/IFIP International Conference on Dependable Systems and Net-

works, DSN 2014, pages 610–621. IEEE, 2014. ISBN 9781479922338. doi:

10.1109/DSN.2014.62.

[61] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A large-scale study of flash

memory failures in the field. Performance Evaluation Review, 43(1):177–

190, 2015. ISSN 01635999. doi: 10.1145/2796314.2745848.

[62] M. Miller. Silo: A Genrral-Purpose API and Scientific Database. Tech-

nical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA

(United States), 2015.

[63] M. C. Miller. Design & Implementation of MACSio. Technical report,

Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United

States), 2015.

[64] S. Mittal and J. S. Vetter. A Survey of Software Techniques for Using

Non-Volatile Memories for Storage and Main Memory Systems. IEEE

Transactions on Parallel and Distributed Systems, 27(5):1537–1550, 2016.

ISSN 10459219. doi: 10.1109/TPDS.2015.2442980.

[65] E. Molina-Estolano, C. Maltzahn, J. Bent, and a. Brandt. Building a

parallel file system simulator. In Journal of Physics: Conference Series,

156

BIBLIOGRAPHY

volume 180, page 12050. IOP Publishing, 2009. doi: 10.1088/1742-6596/

180/1/012050.

[66] W. D. Norcott and D. Capps. Iozone filesystem benchmark, 2003.

[67] X. Ouyang, S. Marcarelli, and D. K. Panda. Enhancing checkpoint

performance with staging IO and SSD. In Proceedings - 2010 Inter-

national Workshop on Storage Network Architecture and Parallel I/Os,

SNAPI 2010, pages 13–20. IEEE, 2010. ISBN 9780769540252. doi:

10.1109/SNAPI.2010.10.

[68] C. M. Patrick, S. Son, and M. Kandemir. Comparative evaluation of

overlap strategies with study of I/O overlap in MPI-IO. Operating Systems

Review (ACM), 42(6):43–49, 2008. ISSN 01635980. doi: 10.1145/1453775.

1453784.

[69] D. a. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant

Arrays of Inexpensive Disks (RAID), volume 17. ACM, 1988. doi: 10.

1145/971701.50214.

[70] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges. MPI-

IO/GPFS, an optimized implementation of MPI-IO on top of GPFS. In

Supercomputing, ACM/IEEE 2001 Conference, pages 17–17. IEEE, 2001.

doi: 10.1145/582034.582051.

[71] R. Rabenseifner, A. E. Koniges, J.-P. Prost, and R. Hedges. The Parallel

E�ective I/O Bandwidth Benchmark: b_e�_io. Parallel I/O for Cluster

Computing, pages 107–132, 2004. URL http://www.hlrs.de/people/

rabenseifner/publ/cpj_b_eff_io_nov19.pdf.

[72] a. F. Rodrigues, E. CooperBalls, B. Jacob, K. S. Hemmert, B. W.

Barrett, C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook, and

P. Rosenfeld. The structural simulation toolkit. ACM SIGMETRICS

Performance Evaluation Review, 38(4):37, 2011. ISSN 01635999. doi:

10.1145/1964218.1964225.

157

http://www.hlrs.de/people/rabenseifner/publ/cpj_b_eff_io_nov19.pdf
http://www.hlrs.de/people/rabenseifner/publ/cpj_b_eff_io_nov19.pdf

BIBLIOGRAPHY

[73] C. San-Lucas and C. L. Abad. Towards a fast multi-tier storage system

simulator. In 2016 IEEE Ecuador Technical Chapters Meeting, ETCM

2016, pages 1–5. IEEE, 2016. ISBN 9781509016297. doi: 10.1109/ETCM.

2016.7750836.

[74] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. De

Supinski, and S. Matsuoka. Design and modeling of a non-blocking check-

pointing system. In International Conference for High Performance Com-

puting, Networking, Storage and Analysis, SC, page 19. IEEE Computer

Society Press, 2012. ISBN 9781467308069. doi: 10.1109/SC.2012.46.

[75] F. Schmuck and R. Haskin. {GPFS}: A Shared-Disk File System for

Large Computing Clusters. Proceedings of the First Conference on File

and Storage Technologies, pages 231–244, 2002. URL http://portal.

acm.org/citation.cfm?id=1083349.

[76] B. Schroeder, E. Pinheiro, and W. D. Weber. DRAM errors in the wild: A

large-scale field study. In Communications of the ACM, volume 54, pages

100–107. ACM, 2011. doi: 10.1145/1897816.1897844.

[77] P. Schwan. Lustre: Building a File System for 1,000-node Clusters. Pro-

ceedings of the Linux Symposium, pages 401–409, 2003. doi: 10.1.1.2.456.

[78] S. S. Shende and A. D. Malony. The TAU parallel performance system.

International Journal of High Performance Computing Applications, 20

(2):287–311, 2006. ISSN 10943420. doi: 10.1177/1094342006064482.

[79] M. Snir, R. W. Wisniewski, J. a. Abraham, S. V. Adve, S. Bagchi, P. Bal-

aji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. a. Chien, P. Coteus,

N. a. Debardeleben, P. C. Diniz, C. Engelmann, M. Erez, S. Fazzari,

A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Ley�er, D. Lib-

erty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V. Hensber-

gen. Addressing failures in exascale computing. International Journal of

158

http://portal.acm.org/citation.cfm?id=1083349
http://portal.acm.org/citation.cfm?id=1083349

BIBLIOGRAPHY

High Performance Computing Applications, 28(2):129–173, 2014. ISSN

17412846. doi: 10.1177/1094342014522573.

[80] S. Snyder, P. Carns, R. Latham, M. Mubarak, R. Ross, C. Carothers,

B. Behzad, H. V. T. Luu, S. Byna, and Others. Techniques for Modeling

Large-scale {HPC} {I/O} Workloads. In Proceedings of the 6th Interna-

tional Workshop on Performance Modeling, Benchmarking, and Simula-

tion of High Performance Computing Systems, page 5. ACM, 2015.

[81] S. Snyder, P. Carns, K. Harms, R. Latham, and R. Ross. Performance

Evaluation of Darshan 3.0.0 on the Cray XC30. Technical report, Argonne

National Lab.(ANL), Argonne, IL (United States), 2016. URL http:

//www.osti.gov/scitech/.

[82] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Guru-

murthi. Feng Shui of supercomputer memory positional e�ects in DRAM

and SRAM faults. In International Conference for High Performance

Computing, Networking, Storage and Analysis, SC, page 22. ACM, 2013.

ISBN 9781450323789. doi: 10.1145/2503210.2503257.

[83] K. Stockinger and E. Schikuta. ViMPIOS, a "truly" portable MPI-IO

implementation. In Proceedings - 8th Euromicro Workshop on Parallel

and Distributed Processing, EURO-PDP 2000, pages 4–9. IEEE, 2000.

ISBN 0769505007. doi: 10.1109/EMPDP.2000.823386.

[84] R. Thakur, E. Lusk, and W. Gropp. Users guide for ROMIO: A high-

performance, portable MPI-IO implementation. Technical report, Techni-

cal Report ANL/MCS-TM-234, Mathematics and Computer Science Di-

vision, Argonne National Laboratory, 1997.

[85] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO portably

and with high performance. In Proceedings of the Annual Workshop on

I/O in Parallel and Distributed Systems, IOPADS, pages 23–32. ACM,

1999.

159

http://www.osti.gov/scitech/
http://www.osti.gov/scitech/

BIBLIOGRAPHY

[86] J. E. Thornton. The CDC 6600 Project. Annals of the History of Comput-

ing, 2(4):338–348, 1980. ISSN 01641239. doi: 10.1109/MAHC.1980.10044.

[87] A. Turner, X. Guo, D. Sloan-Murphy, J. Rodriguez Herrera, C. Maynard,

and B. Lawrence. Parallel I/O Performance Benchmarking and Inves-

tigation on Multiple HPC Architectures. Technical report, EPCC, The

University of Edinburgh, 2017.

[88] UK Mini App Consortium. TyphonIO. https://github.com/UK-MAC/

typhonio, 2013. last accessed on September 2, 2018.

[89] UK Miniapp Consurtium. Bookleaf Unstructured Lagrangian Hydro Mini-

app. https://github.com/UK-MAC, 2016. last accessed on September 2,

2018.

[90] J. Vetter and C. Chambreau. mpiP: Lightweight, Scalable MPI Pro-

filing Using mpiP. http://gec.di.uminho.pt/Discip/MInf/cpd1415/

PCP/MPI/mpiPLightweightScalableMPIProfiling.pdf, 2005. last ac-

cessed on September 2, 2018.

[91] K. Wang, X. Zhou, H. Chen, M. Lang, and I. Raicu. Next genera-

tion job management systems for extreme-scale ensemble computing. In

HPDC 2014 - Proceedings of the 23rd International Symposium on High-

Performance Parallel and Distributed Computing, pages 111–114. ACM,

2014. ISBN 9781450327480. doi: 10.1145/2600212.2600703.

[92] K. Wang, M. Lang, X. Zhou, B. McClelland, K. Qiao, and I. Raicu.

Towards scalable distributed workload manager with monitoring-based

weakly consistent resource stealing. In HPDC 2015 - Proceedings of the

24th International Symposium on High-Performance Parallel and Dis-

tributed Computing, pages 219–222. ACM, 2015. ISBN 9781450335508.

doi: 10.1145/2749246.2749249.

[93] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu. Burst-

Mem: A high-performance burst bu�er system for scientific applications.

160

https://github.com/UK-MAC/typhonio
https://github.com/UK-MAC/typhonio
https://github.com/UK-MAC
http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiPLightweightScalableMPIProfiling.pdf
http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiPLightweightScalableMPIProfiling.pdf

BIBLIOGRAPHY

In Proceedings - 2014 IEEE International Conference on Big Data, IEEE

Big Data 2014, pages 71–79. IEEE, 2015. ISBN 9781479956654. doi:

10.1109/BigData.2014.7004215.

[94] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.

Ceph: A scalable, high-performance distributed file system. In Proceedings

of the 7th symposium on Operating systems design and implementation,

pages 307–320. USENIX Association, 2006.

[95] J. Wilkes. The Pantheon storage-system simulator. Hewlett-Packard Lab-

oratories Technical Report HPL-SSP-95-114, 1995.

[96] M. Wittmann, G. Hager, T. Zeiser, and G. Wellein. Asynchronous MPI for

the Masses. arXiv preprint arXiv:1302.4280, 2013. URL http://arxiv.

org/abs/1302.4280.

[97] S. a. Wright and S. a. Jarvis. Quantifying the E�ects of Contention on Par-

allel File Systems. In Proceedings - 2015 IEEE 29th International Parallel

and Distributed Processing Symposium Workshops, IPDPSW 2015, pages

932–940. IEEE, 2015. ISBN 0769555101. doi: 10.1109/IPDPSW.2015.8.

[98] Z. Xiao, Z. Xiao-Nan, and C. Jian-Quan. SIM-array: A flexible storage

system simulator. In Proceedings - International Symposium on Computer

Science and Computational Technology, ISCSCT 2008, volume 2, pages

221–225. IEEE, 2008. ISBN 9780769534985.

[99] M. Yang, R. E. McGrath, and M. Folk. HDF5 - A high performance

data format for earth science. In 85th AMS Annual Meeting, American

Meteorological Society - Combined Preprints, pages 1161–1166, 2005.

[100] J. W. Young. A First Order Approximation to the Optimum Check-

point Interval. Communications of the ACM, 17(9):530–531, 1974. ISSN

15577317. doi: 10.1145/361147.361115.

161

http://arxiv.org/abs/1302.4280
http://arxiv.org/abs/1302.4280

BIBLIOGRAPHY

[101] W. Yu, J. S. Vetter, and H. S. Oral. Performance characterization and

optimization of parallel I/O on the cray XT. In IPDPS Miami 2008

- Proceedings of the 22nd IEEE International Parallel and Distributed

Processing Symposium, Program and CD-ROM, pages 1–11. IEEE, 2008.

ISBN 9781424416943. doi: 10.1109/IPDPS.2008.4536277.

[102] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang, and Z. Lan. I/O-

aware batch scheduling for petascale computing systems. In Proceedings

- IEEE International Conference on Cluster Computing, ICCC, volume

2015-October, pages 254–263. IEEE, 2015. ISBN 9781467365987. doi:

10.1109/CLUSTER.2015.45.

[103] M. Zingale. FLASH I/O Benchmark Routine. http://www.ucolick.

org/~zingale/flash_benchmark_io/, 2001. last accessed on September

2, 2018.

162

http://www.ucolick.org/~zingale/flash_benchmark_io/
http://www.ucolick.org/~zingale/flash_benchmark_io/

APPENDIX A
Profiling Multi-physics I/O Workloads

MPIIO_INDEP_OPENS MPIIO_COLL_OPENS
MPIIO_INDEP_READS MPIIO_INDEP_WRITES
MPIIO_COLL_READS MPIIO_COLL_WRITES
MPIIO_SPLIT_READS MPIIO_SPLIT_WRITES
MPIIO_NB_READS MPIIO_NB_WRITES
MPIIO_SYNCS MPIIO_HINTS
MPIIO_VIEWS MPIIO_MODE
MPIIO_BYTES_READ MPIIO_BYTES_WRITTEN
MPIIO_RW_SWITCHES MPIIO_MAX_READ_TIME_SIZE
MPIIO_MAX_WRITE_TIME_SIZE MPIIO_SIZE_READ_AGG_0_100
MPIIO_SIZE_READ_AGG_100_1K MPIIO_SIZE_READ_AGG_1K_10K
MPIIO_SIZE_READ_AGG_10K_100K MPIIO_SIZE_READ_AGG_100K_1M
MPIIO_SIZE_READ_AGG_1M_4M MPIIO_SIZE_READ_AGG_4M_10M
MPIIO_SIZE_READ_AGG_10M_100M MPIIO_SIZE_READ_AGG_100M_1G
MPIIO_SIZE_READ_AGG_1G_PLUS MPIIO_SIZE_WRITE_AGG_0_100
MPIIO_SIZE_WRITE_AGG_100_1K MPIIO_SIZE_WRITE_AGG_1K_10K
MPIIO_SIZE_WRITE_AGG_10K_100K MPIIO_SIZE_WRITE_AGG_100K_1M
MPIIO_SIZE_WRITE_AGG_1M_4M MPIIO_SIZE_WRITE_AGG_4M_10M
MPIIO_SIZE_WRITE_AGG_10M_100M MPIIO_SIZE_WRITE_AGG_100M_1G
MPIIO_SIZE_WRITE_AGG_1G_PLUS MPIIO_ACCESS1_ACCESS
MPIIO_ACCESS2_ACCESS MPIIO_ACCESS3_ACCESS
MPIIO_ACCESS4_ACCESS MPIIO_ACCESS1_COUNT
MPIIO_ACCESS2_COUNT MPIIO_ACCESS3_COUNT
MPIIO_ACCESS4_COUNT MPIIO_FASTEST_RANK
MPIIO_FASTEST_RANK_BYTES MPIIO_SLOWEST_RANK
MPIIO_SLOWEST_RANK_BYTES MPIIO_F_OPEN_TIMESTAMP
MPIIO_F_READ_START_TIMESTAMP MPIIO_F_WRITE_START_TIMESTAMP
MPIIO_F_READ_END_TIMESTAMP MPIIO_F_WRITE_END_TIMESTAMP
MPIIO_F_CLOSE_TIMESTAMP MPIIO_F_READ_TIME
MPIIO_F_WRITE_TIME MPIIO_F_META_TIME
MPIIO_F_MAX_READ_TIME MPIIO_F_MAX_WRITE_TIME
MPIIO_F_FASTEST_RANK_TIME MPIIO_F_SLOWEST_RANK_TIME
MPIIO_F_VARIANCE_RANK_TIME MPIIO_F_VARIANCE_RANK_BYTES

Table A.1: Darshan MPIIO counters

163

APPENDIX B
Application Workload Replication

Node Count MACSio File 1
Write Time (s)

MACSio File 2
Write Time (s)

Bookleaf File 1
Write Time (s)

Bookleaf File 2
Write Time (s)

1 3.8 4.6 3.6 5.0
2 15.8 17.3 16.4 16.8
4 26.6 20.6 20.8 21
8 35.2 33.2 33 34.2
16 50.4 45 50 45.2
32 92.4 85.2 79.6 83.5
64 137.8 137.8 134.2 129.8

Table B.1: I/O timings for Bookleaf and MACSio replicated checkpoints on
Archer.

Node Count MACSio File 1
Write Time (s)

MACSio File 2
Write Time (s)

Bookleaf File 1
Write Time (s)

Bookleaf File 2
Write Time (s)

1 112.9 95.3 90.4 119.1
2 572.7 815.2 749.6 751.9
4 2043.5 1671.6 1693.8 1761.6
8 5613.1 5745.9 5466.1 5536.9
16 15289.6 13495.4 15881.8 14335.8
32 57565.4 53755.2 50650.9 52087.0
64 172951.6 173648.8 165415.9521 158804.0

Table B.2: Cumulative I/O timings for Bookleaf and MACSio replicated check-
points on Archer.

Node Count MACSio
Op Time 1 (s)

MACSio
Op Time 2 (s)

Bookleaf
Op Time 1 (s)

Bookleaf
Op Time 2 (s)

1 1.0 0.7 0.7 1.6
2 2.3 3.2 3.1 3.0
4 5.4 4.3 4.0 4.4
8 10.4 10.6 7.4 8.7
16 21.1 16.8 14.9 13.7
32 33.7 29.5 28.34 26.6
64 46.8 51.1 51.5 44.3

Table B.3: Slowest I/O operation time for Bookleaf and MACSio replicated
checkpoints on Archer.

164

Application Workload Replication

Node Count MACSio File 1
Write Time (s)

MACSio File 2
Write Time (s)

Bookleaf File 1
Write Time (s)

Bookleaf File 2
Write Time (s)

1 17.4 15.4 14.5 16.6
2 29.1 33.7 35.1 34.8
4 41.4 44.0 43.5 44.9
8 63.9 77.3 78.4 60.3
16 102.8 95.5 104.4 96.2
32 166.9 155.7 169.3 176.2
64 268.0 288.2 278.2 296.5

Table B.4: I/O timings for Bookleaf and MACSio replicated checkpoints on
Tinis.

Node Count MACSio File 1
Write Time (s)

MACSio File 2
Write Time (s)

Bookleaf File 1
Write Time (s)

Bookleaf File 2
Write Time (s)

1 807.3 574.4 656.7 699.8
2 1459.0 1672.7 1593.1 1336.8
4 3716.0 3214.1 2920.3 3405.1
8 11012.4 8515.3 9971.6 9828.9
16 30316.9 20823.8 27675.2 25932.1
32 114610.8 91481.4 86406.6 106643.6
64 319602.3 263225.7 276152.2 314260.7

Table B.5: Cumulative I/O timings for Bookleaf and MACSio replicated check-
points on Tinis.

Node Count MACSio
Op Time 1 (s)

MACSio
Op Time 2 (s)

Bookleaf
Op Time 1 (s)

Bookleaf
Op Time 2 (s)

1 3.9 3.2 3.3 3.1
2 6.0 5.4 5.6 5.2
4 9.4 8.0 7.9 8.1
8 19.0 16.8 15.8 18.3
16 39.1 34.0 27.7 25.6
32 58.9 52.4 51.4 50.6
64 81.1 93.7 97.8 85.1

Table B.6: Slowest I/O operation time for Bookleaf and MACSio replicated
checkpoints on Tinis.

165

APPENDIX C
I/O Performance Benchmarking and Optimisation

Node Count Standard Problem
Independent BW (MB/s)

Standard Problem
Independent BW (MB/s)

Large Problem
Independent BW (MB/s)

Large Problem
Collective BW (MB/s)

1 34.02 234.86 579.39 792.09
2 9.58 114.43 252.94 523.49
4 6.75 126.13 255.03 543.97
8 4.67 102.53 196.41 645.46
16 3.01 127.49 103.57 535.34
32 2.58 114.74 82.13 612.52
64 1.56 106.69 55.54 671.80
128 0.86 92.92 46.46 590.51

Table C.1: Perceived checkpoint bandwidth for the Bookleaf workload on
Archer.

Node Count Standard Problem
Independent BW (MB/s)

Standard Problem
Independent BW (MB/s)

Large Problem
Independent BW (MB/s)

Large Problem
Collective BW (MB/s)

1 29.33 30.02 1266.13 905.97
2 23.81 27.43 1079.68 1955.84
4 27.33 26.31 1064.44 1067.85
8 22.46 24.61 1147.25 1034.05
16 20.40 20.60 988.28 752.88
32 20.45 18.56 1710.74 666.23
64 20.18 13.73 1117.66 547.95
128 18.41 11.12 960.03 512.42

Table C.2: Perceived checkpoint bandwidth for the Bookleaf workload on
Quartz.

Node Count Standard Problem
Independent BW (MB/s)

Standard Problem
Independent BW (MB/s)

Large Problem
Independent BW (MB/s)

Large Problem
Collective BW (MB/s)

1 119.16 847.87 129.13 917.31
2 56.90 908.32 104.78 572.34
4 107.45 708.41 186.29 638.96
8 136.16 659.41 291.16 663.52
16 244.33 677.85 492.85 696.12
32 344.40 787.75 497.05 690.28
64 396.44 893.83 532.03 868.70
128 237.24 744.32 621.23 996.88

Table C.3: Perceived checkpoint bandwidth for the FLASH-IO workload on
Archer.

166

I/O Performance Benchmarking and Optimisation

Node Count Standard Problem
Independent BW (MB/s)

Standard Problem
Independent BW (MB/s)

Large Problem
Independent BW (MB/s)

Large Problem
Collective BW (MB/s)

1 1657.42 1557.22 1587.11 1651.09
2 2663.41 1996.93 3113.66 2596.28
4 4999.55 4003.84 6003.96 5163.16
8 7419.09 6201.30 6072.44 5818.89
16 4865.48 5429.00 6012.32 5855.46
32 2965.73 5209.04 4560.15 6053.40
64 2673.23 3469.22 3382.78 3998.92
128 3790.13 1742.09 5358.94 3751.30

Table C.4: Perceived checkpoint bandwidth for the FLASH-IO workload on
Quartz.

Node Count Standard Problem
Independent BW (MB/s)

Standard Problem
Independent BW (MB/s)

Large Problem
Independent BW (MB/s)

Large Problem
Collective BW (MB/s)

1 476.37 717.23 6303.23 4375.44
2 76.42 65.70 2571.65 2420.95
4 33.67 29.09 1976.40 1629.26
8 20.12 19.07 947.67 1081.76
16 14.07 10.94 567.33 638.17
24 12.83 10.87 443.37 447.11

Table C.5: Perceived checkpoint bandwidth for the Bookleaf workload on Ray.

Node Count Standard Problem
Independent BW (MB/s)

Standard Problem
Independent BW (MB/s)

Large Problem
Independent BW (MB/s)

Large Problem
Collective BW (MB/s)

1 2101.17 302.60 3265.06 539.97
2 330.62 283.44 599.04 493.10
4 416.41 327.78 754.79 619.83
8 511.52 426.35 920.03 979.34
16 671.62 514.32 1355.97 1010.06
24 869.87 655.44 1495.75 1142.98

Table C.6: Perceived checkpoint bandwidth for the FLASH-IO workload on
Ray.

Node
Count

Collective Bu�ering Nodes
1 2 4 8 16 32 64

1 199.98 255.59 126.52 157.04 128.63 123.09 174.84
2 96.05 115.28 179.48 62.82 79.27 86.71 63.85
4 119.27 141.68 79.02 133.79 85.85 145.90 60.23
8 128.91 148.20 133.18 43.03 29.14 48.28 38.09
16 117.06 138.43 99.29 51.34 64.73 54.21 47.49
32 121.21 147.20 158.67 43.17 71.82 94.65 81.55
64 127.17 109.23 97.46 59.40 54.10 72.12 79.26
128 105.35 84.82 84.38 45.30 47.83 53.89 38.03

Table C.7: Write bandwidth for the Bookleaf workload running on Archer with
di�erent collective bu�ering node counts.

167

I/O Performance Benchmarking and Optimisation

Node
Count

Collective Bu�ering Nodes
1 2 4 8 16 32 64

1 636.83 824.29 867.23 723.39 467.51 540.25 756.23
2 574.60 713.83 842.38 353.97 678.99 704.25 648.51
4 528.48 796.49 751.91 742.91 476.45 631.47 711.67
8 644.08 766.58 613.42 103.21 123.77 145.19 149.19
16 592.72 895.18 651.85 119.85 153.62 146.86 209.72
32 566.06 731.89 797.69 157.00 165.21 249.98 288.26
64 614.92 826.64 525.29 188.34 170.74 235.56 372.06
128 661.17 850.01 735.52 217.16 113.33 231.41 453.75

Table C.8: Write bandwidth for the FLASH-IO workload running on Archer
with di�erent collective bu�ering node counts.

Machine Default BW (MB/s) Increased Stripe
Count BW (MB/s)

Spruce 636.44 -
Titan 539.19 400.61
Archer 145.96 123.46
Cab 227.26 202.71
Taurus - 187.7267512
Tinis 347.88 -

Table C.9: Perceived checkpoint bandwidth for the AWE01 Problem A workload
running on the Spruce A, Titan, Archer, Cab, Taurus and Tinis systems.

Machine Default BW (MB/s) Increased Stripe
Count BW (MB/s)

Spruce 498.38 -
Titan 1087.38 834.31
Archer 540.32 674.92
Cab 720.97 564.56
Taurus - 837.18
Tinis 1025.17 -

Table C.10: Perceived checkpoint bandwidth for the AWE01 Problem A work-
load running on the Spruce A, Titan, Archer, Cab, Taurus and Tinis systems.

168

I/O Performance Benchmarking and Optimisation

Checkpoint
Number

System
Spruce A Titan Archer Cab Taurus Tinis

0 49.00 489.54 27.04 94.79 162.11 65.85
1 49.87 538.96 39.92 111.48 222.41 82.87
2 49.56 662.28 36.01 98.30 219.49 51.01
3 63.50 600.27 35.76 127.96 221.11 87.95
4 98.20 815.28 101.81 196.36 336.09 162.91
5 110.81 711.59 131.77 217.71 353.71 232.78
6 202.22 898.74 166.64 242.33 480.76 264.71
7 192.15 723.61 156.58 337.14 517.33 305.04
8 247.08 717.37 124.11 327.50 486.41 328.42
9 182.16 723.16 141.86 322.92 484.96 352.77
10 260.22 961.01 174.17 297.75 565.02 341.67
11 96.61 748.75 135.20 393.12 388.31 265.98
12 78.36 722.68 125.44 380.40 277.10 355.27
13 160.28 717.84 143.87 387.94 530.00 331.31
14 278.55 727.67 144.88 373.49 509.71 354.29
15 221.52 911.53 158.85 406.53 588.95 304.35
16 247.94 672.03 151.96 415.34 566.62 375.84
17 259.68 698.18 161.44 443.34 564.78 313.02
18 267.32 695.24 149.20 376.32 579.99 353.76
19 267.88 691.23 190.18 371.44 551.20 267.65
20 226.87 680.97 183.92 403.45 558.58 379.55
21 206.32 887.98 183.23 396.74 559.51 397.91
22 231.72 684.39 164.01 400.51 569.09 340.07
23 242.01 854.30 206.31 433.91 553.34 371.66
24 247.72 647.65 149.09 377.29 568.28 339.22
25 236.70 680.42 192.26 417.89 584.07 399.87
26 242.14 699.13 153.41 420.08 587.49 298.80

Table C.11: Perceived checkpoint bandwidth for the AWE01 Problem B work-
load running on the Spruce A, Titan, Archer, Cab, Taurus and Tinis systems.

Problem Nodes HDF5 - Logically
Contiguous

HDF5 - Block
Contiguous

TyphonIO -
Contiguous

TyphonIO -
Chunked

HDF5 Speedup
Over TyphonIO

A
1 427.54 606.35 418.37 533.83 1.13
2 577.77 638.72 481.51 568.14 1.12
4 775.15 787.97 558.22 625.96 1.25

B
5 311.16 289.99 177.24 173.24 1.76
10 472.69 361.24 342.44 343.96 1.37
20 751.18 568.42 523.46 519.51 1.44

D
5 1150.30 1155.04 1014.78 1162.38 0.99
10 1325.31 1239.83 1202.39 1259.46 1.05
20 1334.59 1321.20 1223.15 1482.87 0.90

Table C.12: Checkpoint performance for AWE01 on Archer through standard
TyphonIO, a TyphonIO-like logically contiguous layout using raw HDF5, and
an block contiguous hyperslab arrangement in HDF5.

169

I/O Performance Benchmarking and Optimisation

Problem Nodes HDF5 - Logically
Contiguous

HDF5 - Block
Contiguous

TyphonIO -
Contiguous

TyphonIO -
Chunked

HDF5 Speedup
Over TyphonIO

A 1 385.24 1178.56 176.00 193.17 6.10
2 544.32 1381.70 338.38 293.81 4.08
4 916.54 2180.09 514.52 534.69 4.08

B 5 566.39 719.57 90.90 99.55 7.23
10 677.29 1148.89 169.35 168.92 6.78
20 983.46 1280.29 286.53 276.79 4.47

D 5 1291.78 4086.45 1980.07 1837.67 2.06
10 2869.79 7687.39 3184.56 3051.34 2.41
20 5697.35 14648.22 5609.42 5590.70 2.61

Table C.13: Checkpoint performance for AWE01 on Quartz through standard
TyphonIO, a TyphonIO-like logically contiguous layout using raw HDF5, and
an block contiguous hyperslab arrangement in HDF5.

Files Per
Node

Sequential N-M Parallel N-M
5 Nodes 10 Nodes 20 Nodes 5 Nodes 10 Nodes 20 Nodes

1 941.08 1691.84 2865.08 3565.91 6468.04 8373.29
2 1634.09 2251.57 4332.94 4997.57 8135.71 10238.04
4 3059.95 4060.92 6236.89 6762.82 6467.09 8924.05

Table C.14: File bandwidth achieved for the AWE01 Problem D workload on
Archer when using Sequential and Parallel N-M access patterns.

Files Per
Node

Sequential N-M Parallel N-M
5 Nodes 10 Nodes 20 Nodes 5 Nodes 10 Nodes 20 Nodes

1 533.32 1091.58 2075.61 5091.72 5747.33 10671.90
2 198.83 2110.02 808.92 7953.82 7306.43 12493.40
4 1831.74 822.10 1653.14 5025.47 6217.43 10935.81

Table C.15: File bandwidth achieved for the AWE01 Problem D workload on
Quartz when using Sequential and Parallel N-M access patterns.

Files Per
Node

Sequential N-M Parallel N-M
5 Nodes 10 Nodes 20 Nodes 5 Nodes 10 Nodes 20 Nodes

1 1365.80 1707.05 1110.67 3814.42 2921.09 2533.60
2 2454.94 3237.81 3001.13 5046.70 6301.10 5752.49
4 2892.71 3256.90 6916.97 6654.19 8529.21 12242.21
8 3203.04 4191.97 7075.50 6228.06 10709.53 15046.39

Table C.16: File bandwidth achieved for the AWE01 Problem D workload on
Cab when using Sequential and Parallel N-M access patterns.

170

I/O Performance Benchmarking and Optimisation

Files Per
Node

GPFS Burst Bu�ers
5 Nodes 10 Nodes 20 Nodes 5 Nodes 10 Nodes 20 Nodes

1 1658.7 421.2 430.6 2760.7 4950.8 10483.0
2 2884.0 1980.0 753.0 3974.0 6812.0 12424.9
4 1790.8 2889.3 3920.3 4402.9 8226.8 15625.4
8 2832.0 4110.7 4893.8 5033.6 9175.3 16365.7
16 2515.46 4466.0 5848.4 6015.5 11540.5 20155.4

Table C.17: File bandwidth achieved for the AWE01 Problem D workload writ-
ten through parallel N-M to GPFS and burst bu�ers on Ray.

171

	Abstract
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Contributions
	Thesis Overview

	Performance Analysis and Engineering
	Parallel Computing
	Parallel I/O and Data Storage
	Issues in Parallel I/O and Data Storage
	Parallel File Systems
	I/O-aware Scheduling
	Parallel I/O Software Stack

	Performance Analysis and Engineering
	Benchmarking
	Profiling
	Simulation

	Summary

	Parallel Hardware and Software Overview
	Storage Hierarchy
	Hard Disk Drive
	Solid State Drive

	File Systems
	The Extended File Systems
	ZFS
	XFS

	Clustered File Systems
	The Lustre Parallel File System
	The IBM Spectrum Scale File System

	Computing Platforms
	I/O Benchmarking Applications
	Summary

	Experimental Setup
	Common Methodology: I/O Measurement
	chap:modellingreplicationioworkloads: Profiling Multi-physics I/O Workloads
	Bookleaf Mini-Application
	AWE01 Multi-Physics Application

	chap:workloadreplication: Application Workload Replication
	Proxy Application Validation: Bookleaf
	Proxy Application Validation: FLASH-IO

	chap:ioperformanceoptimisation: I/O Performance Benchmarking and Optimisation
	Tuning the Parallel I/O Software Stack: Middleware
	Parallel File System Performance
	I/O Library and File Strategy Comparisons

	Summary

	Profiling Multi-physics I/O Workloads
	Application Pattern Identification
	Runtime Profiling
	Bookleaf Mini-Application
	AWE01 Multi-Physics Application
	Multi-Physics Checkpoint Analysis

	Summary

	Application Workload Replication
	The MACSio Proxy Application
	Application Overview
	Modifications

	Proxy Application Validation
	Bookleaf
	FLASH-IO

	Summary

	I/O Performance Benchmarking and Optimisation
	Approach
	Tuning the Parallel I/O Software Stack
	Middleware
	Parallel File System

	I/O Library and File Strategy Comparisons
	TyphonIO Efficiency
	N-M Parallel File Modes

	Discussion
	Summary

	Discussion and Conclusions
	Limitations
	Future Work
	Final Remarks

	Bibliography
	Appendices
	Profiling Multi-physics I/O Workloads
	Application Workload Replication
	I/O Performance Benchmarking and Optimisation
	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/149400

