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Location Parameter Estimation of Moving Aerial
Target in Space-Air-Ground Integrated

Networks-Based IoV
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Member, IEEE, Nan Zhao, Senior Member, IEEE, Peng Liu, and Fengkui Gong, Member, IEEE

Abstract—Estimating the location parameters of moving target
is an important part of intelligent surveillance for Internet of
Vehicles (IoV). Satellite has the potential to play a key role
in many applications of space-air-ground integrated networks
(SAGIN). In this paper, a novel passive location parameter
estimator using multiple satellites for moving aerial target is
proposed. In this estimator, the direct wave signals in reference
channels are first filtered by a band-pass filter, followed by a
sequence cancellation algorithm to suppress the direct-path inter-
ference and multi-path interference. Then, the fourth-order cyclic
cumulant cross ambiguity function (FOCCCAF) of the signals in
the reference channels and the four-weighted fractional Fourier
transform fourth-order cyclic cumulant cross-ambiguity function
(FWFRFT-FOCCCAF) of signals in the surveillance channels are
derived. Using them, the time difference of arrival (TDOA) and
the frequency difference of arrival (FDOA) are estimated and the
distance between the target and the receiver and the velocity of
the moving aerial target are estimated by using multiple satellites.
Finally, the Cramer-Rao Lower Bounds of the proposed location
parameter estimators are derived to benchmark the estimator.
Simulation results show that the proposed method can effectively
and precisely estimate the location parameters of the moving
aerial target.

Index Terms—Frequency difference of arrival, Internet of vehi-
cles, location parameter estimation, space-air-ground integrated
networks, time difference of arrival.

I. INTRODUCTION

THE development of internet of Vehicles (IoV) and mobile
edge computing networks leads to urgent demand for

broadband access capability [1]-[2]. At the same time, the
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use of satellites is found to be of paramount importance
in IoV, such as intelligent surveillance. Thus, satellite-based
IoV is viewed as a vital part of space-air-ground integrated
networks (SAGIN) to provide broadband access [3]-[5]. Data
transmission and radar sensing are useful tools to extract
valuable information from the environment [6]-[7]. Among
them, passive location systems utilize the reflected echo sig-
nals from a moving target generated by a non-cooperative
radiation source for parameter estimation. As a result, moving
target passive location using an external radiation source has
been extensively studied [8]-[9].

To realize effective moving target passive localization, the
time difference of arrival (TDOA) and the frequency difference
of arrival (FDOA) are often accurately estimated first to
acquire useful information, including the distance and velocity
of the moving target for further tracking and positioning. In
recent years, much research effort has spent on TDOA and
FDOA estimation using satellite illuminator. The authors in
[10] proposed a TDOA estimator of GNSS signal using the
tensor-based filtering approach, in which the highly correlated
signal and noise components are separated using singular value
decomposition and spatial smoothing. After filtering weak
echo signals, cross correlation with the direct wave signal was
used to obtain the TDOA. This method had a high computa-
tional complexity due to the matrix processing. In [11], FDOA
estimation combining zero forcing and double fast Fourier
transform was proposed to tackle the poor accuracy of the
FDOA estimation for GNSS signals. However, the estimation
performance still poor for low input signal to interference
plus noise ratio. In [12], an FDOA estimation method with
optical phase-locked loop and broadcast ephemeris of GPS
was proposed. This method had poor adaptability and univer-
sality since it was sensitive to the change of satellite orbit and
elevation angle. An FDOA estimation method for GNSS echo
signal based on fast Fourier transform (FFT) was proposed
in [13], and this method can reduce the computational com-
plexity. However, it did not consider the influence of noise
on the estimation. As for the TDOA and FDOA estimation
using multiple satellites, the authors in [14] proposed a method
of passive location with multi-GNSS, but the method only
works for geometric modeling. Notably, the works mentioned
above only studied the TDOA or FDOA estimation methods
using the radiation source of a single satellite, which often has
small coverage, low reliability, as well as limited applications
and geographical environments. In practice, a receiver may
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receive radiation signals from multiple satellites of different
types at the same time. As a result, previous works using a
single satellite on target detection and parameter estimation
may not work well due to the detrimental interference from
other satellites. Therefore, in this paper, we study the location
parameter estimation in the presence of multiple satellites to
improve the estimation accuracy.

Specifically, considering multiple satellites, location param-
eter estimation methods based on fourth-order cyclic cumu-
lant cross ambiguity function (FOCCCAF) and four-weighted
fractional Fourier transform fourth-order cyclic cumulant cross
ambiguity function (FWFRFT-FOCCCAF) are proposed in
this paper. The main contributions of this paper are summa-
rized as follows:

• The statistics for parameter estimation with multiple weak
echo signals are obtained using the signal cyclostationar-
ity. The weighted fractional Fourier transform (WFRFT)
will be used to reduce the degree of coupling between
the signal and interference for interference suppression.

• TDOA and FDOA estimation method are proposed to
extract the spectral peak-values from the the statistics for
parameter estimation.

• The proposed method requires multi-satellite collabora-
tion through data fusion to estimate the distance from a
moving aerial target to a receiver as well as its velocity.

The reminder of the paper is organized as follows. Section
II shows the system model. In Section III, the joint passive
location parameter estimation method is proposed. Section IV
presents the Cramer-Rao lower bounds for location parameter
estimators. In Section V, simulation results are provided.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

The moving aerial target localization system for SAGIN-
based IoV is shown in Fig. 1. Signal form the satellite
illuminators signals are received in both surveillance channel
and reference channel. The reference channel is composed
of omnidirectional antennas at the vehicle, which receives
the satellite illuminator signal for positioning as baseline
measurements. On the other hand, the surveillance channel
is composed of directional antennas at the vehicle, which
receives the weak echo signal of a moving aerial target in
the presence of direct-path interference (DPI) and multi-path
interference (MPI). The signal processing module is used
to process the received signals and analyze the correlation
between the reference channel and surveillance channel. The
surveillance channel reflected echo signal contains a receiving
antenna, an amplifier, a filter, a down conversion circuit, and a
digital storage oscilloscope. In addition to the reflected echoes
received by the plurality of satellite signals from the target,
DPI and MPI occur in the surveillance channel.

The signal in the reference channel is given by [15]

x(t) =
∑M ′

i=1
risi(t) + n (t) , (1)

where M ′ is the number of satellites, si(t) and ri represent the
ith satellite illuminator direct wave signal and its amplitude,
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Fig. 1. Location system model in space-air-ground integrated networks-based
IoV.

respectively, and n (t) stands for the complex zero-mean white
Gaussian noise in the reference channel.

The signal in the surveillance channel is

z(t)=
∑M ′

η=1
r′ηsη(t−Dη)e

−j2πfdη t+
∑M ′

η=1
Ωηsη(t)

+
∑M ′

η=1

∑H

j=1
ωηjsη(t− τηj) + n′(t) ,

(2)

where r′η is the amplitude of the ηth weak echo signal, Dη

and fdη stand for its TDOA and FDOA, respectively, Ωη is
the amplitude of ηth direct wave signal in the surveillance
channel, H represents the number of multipath components in
the surveillance channel, ωηj and τηj are the amplitude and
time delay of the ηth direct wave signal through the jth multi-
path, respectively. In addition, n′(t) is the complex zero-mean
white Gaussian noise in the surveillance channel.

III. JOINT LOCATION PARAMETER ESTIMATION FOR
MOVING AERIAL TARGET

In this section, the sequence cancellation algorithm will
be employed to suppress DPI and MPI. Afterwards, DOA
and FDOA will be estimated by FOCCCAF and FWFRFT-
FOCCCAF, and data fusion method will be utilized to estimate
the velocity and distance of the moving target.

A. DPI and MPI Suppression in the Surveillance Channel

The receiver in the reference channel receives multiple
different direct wave signals at the same time. Thus, it is
necessary to separate them first to provide reference signals,
in order to suppress DPI and MPI in the surveillance channel.
As the frequencies of different satellite signals are different,
a band-pass filter can be used to separate the multiple direct
wave signals in the reference channel. The transfer function
of the band-pass filter H(ejω) is [16]:

H(ejω) =

∑E
r=0 br

(
ejω

)−r

1 +
∑S

k=1 ak(e
jω)

−k
, (3)
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where ak and br are the coefficients for the band-pass filter.
The separation of different direct wave signals in the reference
channel can be achieved by using several parallel filters,
whose parameters should be chosen according to the operating
frequency spectrum ranges, and the values of E, S, ak and br
of the bandpass filters should be carefully selected. After band-
pass filtering, the reference channel signals are converted into
M direct wave signals uncoupled with each other. The ith
satellite radiation direct wave signal after separation can be
expressed as

xi (t) = risi(t) + ni(t). (4)

We propose a multi-sequence cancellation algorithm (M-
SCA), which is able to simultaneously suppress the interfer-
ence caused by multiple direct wave signals and multi-path
signals in the surveillance channel [17], [18]. First of all, the
direct wave signals in the reference channel and the weak echo
in the surveillance channel are sampled, giving

xi = [xi[−R+ 1], xi[−R+ 2], . . . , xi[N − 1]] T , (5)

where i = 1, 2, 3, . . . ,M and M is the number of direct wave
signals, xi denotes the ith direct wave signal, N is the number
of sampling points, R stands for the sampling point where the
reference signal is more than the surveillance channel signal,
xi[·] represents the different sampling points of the ith direct
wave. Similarly, the signal vector in the surveillance channel
after sampling can be expresses as

z = [z[0], z[1], . . . , z[N − 1]] T . (6)

To reduce the problem with large the computational complex-
ity, the original direct wave signals and surveillance channel
signals are segmented. Let NB = N/b be the length of
each segment, where N and b are the total length of the
original signal and the number of segments, respectively. The
segmented signals are

x′
i =

[
xT
i0 , x

T
i1 , . . . , x

T
ib−1

]T
, (7)

z′ =
[
zT
0
, zT

1
, . . . , zT

b−1

]T
, (8)

where

xik
= [xi [kNB −R+ 1], . . . , xik [(k + 1)NB − 1]]

T
, (9)

z
k
= [zk[kNB], . . . , zk[(k + 1)NB − 1]]

T
, (10)

and k = 0, 1, . . . , b−1. The signal in the surveillance channel
after DPI and MPI suppression can be expressed as

zMSCA−B =
[
zTSCA−B0

, zTSCA−B1
, . . . , zTSCA−Bb−1

]T
,

(11)
where zSCA−Bi

(i = 0, 1, . . . , b− 1) is

zSCA−Bi
= Q1Q2 . . . QMz′, (12)

Qj = IN −
x̃j−1 · x̃H

j−1

x̃H
j−1 · x̃j−1

, (13)

x̃j−1 = Pjxj−1, (14)

PM = IN , (15)

Pj = Qj+1Qj+2 . . . QM , (16)

and xj−1 is the jth column of matrix Xk. Also,

Xk = [Bx′′
1k
, Bx′′

2k
, Bx′′

3k
, . . . , Bx′′

Mk
], (17)

B = { bmn } , bmn =

{
1 , m = n−R+ 1,
0 , else,

(18)

and m = 1, 2, . . . , NB ,

x′′
i k

=
[
xik

, Dxik
, D2xik

, . . . , DTmax−1xik

]
, (19)

i = 1, 2, . . . ,M , k = 0, 1, . . . , b− 1,

D={ dmn}m,n=1,2,...,NB+R−1, dij=

{
1 , m=n+1,
0 , else,

(20)
where Tmax = Lmax/c is the maximum of TDOA, Lmax is
the maximum detection distance, and c is the speed of light
in free space.

We use y(t) to represent the signal in the surveillance
channel after the suppression of DPI and MPI as

y(t) =
∑M ′

η=1
r′ηsη(t−Dη)e

−j2πfdη t + n′(t). (21)

B. TDOA and FDOA Estimation

1) Fourth-Order Cyclic Cumulant Cross Ambiguity Func-
tion: The signals possess the characteristics of cyclic station-
ary and the cross ambiguity function can reflect the time-
frequency characteristics of the signal. The cross ambiguity
function using the fourth-order cyclic cumulant of the direct
wave signal and the weak echo signal are [19]

χαi−f,αi
y,xi

(u, f)=

∫ +∞

−∞
Cαi−f

xixixiy(τ)C
αi
4xi

(τ − u)
∗
ejπfτdτ,

(22)
where Cαi

4xi
(τ) is the fourth-order self-cyclic cumulant of xi(t)

when the cycle frequency is αi, and Cαi−f
xixixiy(τ) is the fourth-

order cross-cyclic cumulant of xi(t) and y(t) when the cycle
frequency is αi − f , Cαi

4xi
(τ) is given by

Cαi
4xi

(τ) = r4iM
αi
4si

(τ)− 3Ar2iM
αi
2si

(τ), (23)

where A = E[s2i (t)], Mαi
4si

(τ) and Mαi
2si

(τ) are the fourth-
order self-cyclic moment and second-order self-cyclic moment
of si(t), which can be obtained as

Mαi
4si

(τ)= lim
T→∞

1

T

T−1∑
t=0

(si(t)si(t)si(t)si(t+ τ))e−j8παit,

(24)

Mαi
2si

(τ) = lim
T→∞

1

T

T−1∑
t=0

(si(t)si(t+ τ))e−j4παit, (25)

and T is the finite time. Also, Cαi−f
xixixiy(τ) can be expressed

as

Cαi−f
xixixiy(τ) = r3i r

′
ie

−jπfdiτe−jπ(αi−f+fdi )Di

· e−jπ(αi−f+fdi )DiM
αi−f+fdi
sisinsi (τ −Di)

− 3Brir
′
ie

−jπfdiτe−jπ(αi−f+fdi )Di

·Rαi−f+fdi
si (τ−Di)+r3iM

αi−f+fdi
sisin′si

(τ−Di),

(26)
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where B = E[xi(t)y(t)], R
αi−f+fdi
si (τ − Di) is the cyclic

self-correlation of si(t), given by

R
αi−f+fdi
si (τ) = lim

T→∞

1

T

T−1∑
t=0

(si(t)si(t+ τ))e−j2παit.

(27)
In addition, M

αi−f+fdi
sisinsi (τ − Di) is the fourth-order cross-

cyclic cumulant between si(t) and the noise in the reference
channel, Mαi−f

sisin′si
(τ) is the fourth-order cross-cyclic cumulant

between si(t) and the noise in the surveillance channel, given
by

M
αi−f+fdi
sisinsi (τ −Di) = lim

T→∞

1

T

T−1∑
t=0

(si(t)si(t)n(t))

· si(t+τ−Di)e
−j2π(αi−f+fdi )t,

(28)

and

M
αi−f+fdi
sisin′si

(τ −Di) = lim
T→∞

1

T

T−1∑
t=0

(si(t)si(t)n
′(t))

· si(t+ τ −Di)e
−j2π(αi−f+fdi )t.

(29)

2) Four-Weighted Fractional Fourier Transform Fourth-
Order Cyclic Cumulant Cross Ambiguity Function: Fractional
Fourier transform (FRFT) can show signals in the fractional
domain between the time domain and the frequency domain,
which can be defined as [20]

Fβ(u) = Fβ [f(t)] (u) =

∫ ∞

−∞
f(t)κβ(u, t)dt, (30)

where Fβ denotes the FRFT operators, the relationship be-
tween the order p and the angle β of FRFT is β = π

2 p, κ(u, t)
is the integral kernel and it is the continuous function of p,
which can be expressed as [21]-[22]

κ(u, t) =
∑+∞

n=0
e−jnβH∗

n(t)Hn(u),

=

 Aβe
j
2 (t

2+u2) cot β−jtu csc β β ̸= kπ,
δ(t− u) β = 2kπ,
δ(t+u) β = (2k−1)π,

(31)

where k is an integer and Aβ =
√

(1− j cotβ)/2π. The
transformation relationships of coordinates can be given by[

t
ω

]
=

[
cosβ sinβ
− sinβ cosβ

][
u
f

]
=

[
u cosβ + f sinβ
−u sinβ + f cosβ

]
,

(32)
and [

u
f

]
=

[
t cosβ − ω sinβ
t sinβ + ω cosβ

]
. (33)

There are no cross terms because FRFT is a linear trans-
formation, which is beneficial to effectively separate signal
form interference or noise. From the properties of Fourier
transform (FT), we can obtain the four-weighted fractional
Fourier transform (FWFRFT) as [23]

F β
4w[g(x)] = ω0(β)g0(x) + ω1(β)g1(x)

+ ω2(β)g2(x) + ω3(β)g3(x),
(34)

where p is the order of FWFRFT, g0(x)−g3(x) denote the 0-3
times FT of g(x), the weighting factor ω0(β)−ω3(β) can be
expressed as

ωl(β)=cos

[
(p−l)π

4

]
cos

[
2(p−l)π

4

]
exp

[
3(p−l)π

4

]
, (35)

where l = 0, 1, 2, 3. From (31), the FRFT of the ambiguity
function is equivalent to its rotation by β degrees into frac-
tional domain, that is

AFβ(t, w) = AF(t cosβ − ω sinβ, t sinβ + ω cosβ). (36)

When AF (u, f) = χαi−f,αi
y,xi

(u, f) and β = 0, π
2 , π,

3π
2 , we

can get the 0th to 3rd order FT of the ambiguity function
AF

(0)
β (t, ω), AF

(1)
β (t, ω), AF

(2)
β (t, ω) and AF

(3)
β (t, ω). The

weighting factors will be determined as long as β is deter-
mined. The four-weighted fractional Fourier transform fourth-
order cyclic cumulant cross ambiguity function (FWFRFT-
FOCCCAF) can be obtained by

F β
4w(t, ω) = ω0(β)AF

(0)
β (t, ω) + ω1(β)AF

(1)
β (t, ω)

+ ω2(β)AF
(2)
β (t, ω) + ω3(β)AF

(3)
β (t, ω).

(37)

3) Feature extraction: We can obtain the abscissas Dmax

and fdmax by using appropriate peak extraction to search from
the two two-dimensional sections on the time axis and the
frequency axis, and the combination of the two abscissas is
the coordinate for the peak of the three-dimensional graph
of FWFRFT-FOCCCAF, and it contains the information of
TDOA and FDOA. This is formulated as

(Dmax, fdmax) = argmax
[
F β
4w(t, ω)

]
. (38)

We can calculate the TDOA and FDOA accordingly as
D = N ′

2fs
− 2Dmax,

fd = N ′

2fs
− 4fc + fdmax,

(39)

where N ′ is the length, fs is the sampling frequency, and fc
denotes the carrier frequency of the signal.

The direct wave signal and echo signal show a strong corre-
lation when the time and frequency parameters equal TDOA
and FDOA, and the amplitude of the FWFRFT-FOCCCAF
peaks in the two two-dimensional sections. The following
spectral peak extraction method can extract the coordinates
τmax and fdmax from the peaks accurately and effectively:

i) Put the data of two-dimensional section into the array W ,
and mark an ith element as wi;

ii) Obtain a new array W ′ through the backward differential
processing of W . The jth element of W ′, w′

j can be obtained
by

w′
j = wj − wj−1. (40)

Let w′
j = 0 when w′

j < 0. The mutation at the spectral
peak is stored in the array as a maximum after the backward
differential operation;

iii) The array element of W ′, which is greater than zero, is

ave =
1

n

∑n

i=1
w′

j , (41)
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Fig. 2. Geometrical structure of the velocity and distance.

w′
j =

{
w′

j − (ave)2

w′
j

w′
j > 0,

0 w′
j ≤ 0,

(42)

where n is the number of elements that are greater than zero
in the array. (41) finds the mean of all array elements greater
than zero and all the elements of the array are reduced by
the subtraction operation in (42). Because the array elements
that contain spectral peaks are the maximum values, they are
almost unchanged after the subtraction in (42).

iv) Calculate the sum and average of the array obtained in
iii) and set the array element less than the average to zero.

v) Do the loop operation on iv) until the sum of the array
equals to one of the elements w′′

k exactly, the subscript of
which is the abscissa of spectral peak of two-dimensional
sections.

C. Velocity and Distance Estimation

The moving aerial target has the same velocity and the same
distance between the target and the receiver from different
satellites. Therefore, the TF-LV transform of different TDOA-
FDOA spectrum is used to unify the distance and velocity
of the target form different satellite signals. The geometrical
structure of the velocity and distance is shown in Fig. 2, where
L denotes the distance from the target to the receiver, α stands
for the bi-static angle and δ represents the angle between bi-
static angle bisector and the velocity v of the target. Therefore,
the TF-LV transform of different TDOA-FDOA spectrum is
used. The relationship between the TDOA and the distance is L+Rt = Rr + cD,

R2
t = R2

r + L2 − 2RrL cos θ,
(43)

where L is the distance from the target to the receiver, α stands
for the bistatic angle and δ is the angle between bistatic angle
bisector and the velocity v of the target. We can obtain

L =
c2D2 + 2RrcD

2(Rr + cD −Rr cos θ)
= f(D), (44)

Rt =
Rr(Rr −Rr cos θ + cD − cD cos θ) + 1

2c
2D2

Rr + cD −Rr cos θ
. (45)

The relationship between fd and v is

fd =
2v

λ
cos δ cos

α

2
≈ 2v

λ
cos

α

2
= g(v), (46)

v =
fdλ

2 cos α
2

, (47)

where λ = 1/fc, fc is the frequency of the signal, and α can
be obtained as

cosα =
Rt

2 + L2 −Rr
2

2RtL
. (48)

The data weighted fusion method based on the minimum
overall variance is used to fuse multiple pairs of L and v after
the TF-LV transformation. A weighting factor is assigned to
each data so that the overall variance reaches the minimum.
Finally, global estimation is obtained by the local estimation
and weighting factor. The process of the fusion is described
as follows.

Assuming that the weighting factor of Li is wi(i =
1, 2, . . . ,M ′), the overall estimate L̂ after fusing is [22]{

L̂ =
∑M ′

i=1 wiLi,∑M ′

i=1 wi = 1.
(49)

We can get the overall variance for the TDOA estimation from
(49) as

σ2
L = E

[(
L− L̂

)2
]
= E


M ′∑

i=1

wiL−
M ′∑
i=1

wiLi

2


= E


M ′∑

i=1

wi (L− Li)

2


=E

M ′∑
i=1

w2
i (L−Li)

2
+

M ′∑
i,j=1
i ̸=j

wiwj (L−Li) (L−Lj)

 .

(50)

Because Li and Lj are independent of each other when i ̸= j,
one has ∑M ′

i,j=1
i ̸=j

wiwj (L− Li) (L− Lj) = 0, (51)

and (50) can be further written as:

σ2
L = E

[∑M ′

i=1
w2

i (L− Li)
2

]
=

∑M ′

i=1
w2

i Pi, (52)

where Pi = E
[
(L− Li)

2
]

is the variance of each estimate.
It can be seen from (52) that σ2

L is a multivariable quadratic
function of random weighting factors wi(i = 1, 2, ...,M ′). Ac-
cording to the multivariate extreme value theory, the minimum
of σ2

L exists and is given as

σ2
Lmin

= min

(∑M ′

i=1
w2

i Pi

)
. (53)

By solving (53), the optimal random weighting factor when



IEEE INTERNET OF THINGS JOURNAL 6

the overall variance is minimum is

w∗
i =

1

Pi

∑M ′

i=1
1
Pi

. (54)

Therefore, the minimum of the overall variance is

σ2
Lmin

=
1∑M ′

i=1
1
Pi

. (55)

We can get the final distance L̂ through (49) after the fusion
of Li(i = 1, 2, ...,M ′) with the weighting factor getting by
(54). The process for the fusion of v̂ is the same as L̂.

IV. CRLBS OF LOCATION PARAMETERS ESTIMATORS

Cramer-Rao Lower Bound (CRLB) is one of the criteria
for analyzing the effectiveness of estimation [24]. The CRLBs
of the estimated location parameters will be deduced in this
section. Let y(t) represent the signal in the surveillance
channel after the DPI and MPI suppression. y(t) only contains
the weak echo signal and complex zero-mean white Gaussian
noise as

y(t) =
∑M ′

η=1
r′ηsη(t−Dη)e

−j2πfdη t + n′(t), (56)

and the energy of the ηth weak echo signal without noise is

Eη = (r′η)
2

∫ ∞

−∞
|sη(t)|2dt, (57)

and the power spectral density of the noise satisfies

E {n(t)n(t′)} = 0, (58)

E {n(t)n∗(t′)} = N0δ(t− t′), (59)

where N0 is the power spectral density of the noise, E {·} is
the expectation operator, superscript stands for the complex
conjugate of a signal, and δ {·} denotes the Dirac delta
function.

The estimated vector consisting of TDOA and FDOA is
given by

θ = [D1 D2 . . . DM ′ fd1 fd2 . . . fdM′ ]
T . (60)

The probability density function (P.D.F.) of the echo signal
can be expressed as

p(y; θ) = K exp

{
− 1

N0

∫ ∞

−∞

· |y(t) −
M ′∑
η=1

r′ηsη(t−Dη) e−j2πfdη t
∣∣2dt} ,

(61)

where K = 1/
√
2π. The log-likelihood function is

ln p(y; θ) = − 1

N0

∫ ∞

−∞
|y (t)

−
M ′∑
η=1

r′ηsη(t−Dη)e
−j2πfdη t |2dt+ lnK.

(62)

Thus,

∂ ln p(y, θ)

∂Dη
=−2r′η

N0
Re

∫ ∞

−∞
n′(t)ṡ∗η(t−Dη)e

j2πfdη tdt,

(63)
∂ ln p(y, θ)

∂fdη

=−4πr′η
N0

Im

∫ ∞

−∞
t n′(t)s∗η(t−Dη)e

j2πfdη tdt,

(64)
where η, η′ = 1, 2, . . . ,M ′, ṡ (t) = ds(t)

dt , Re {·} and Im {·}
denote the real part and imaginary part of a function, respec-
tively.

It is well known that the CRLB of any unbiased estimator
θ̂i must satisfy

var(θ̂i) ≥
[
I−1(θ)

]
i,i
, (65)

where
[
I−1(θ)

]
i,i

denotes the [i, i]th element of the inverse
of the Fisher Information Matrix (FIM) is defined by

[I(θ)]i,i = Ii,j = E

{
∂ ln p(y; θ)

∂θi

∂ ln p(y; θ)

∂θj

}
. (66)

For convenience, define

SNRη =
Eη

N0
(67)

Pη =
(r′η)

2

Eη

∫ ∞

−∞
t|sη(t)|2dt (68)

Gη =
(r′η)

2

Eη

∫ ∞

−∞
t2|sη(t)|2dt (69)

Hη =
(r′η)

2

Eη
Im

∫ ∞

−∞
s∗η(t)ṡη(t)dt (70)

Lη =
(r′η)

2

Eη

∫ ∞

−∞
|ṡη(t)|2dt (71)

Qη =
(r′η)

2

Eη
Im

∫ ∞

−∞
ts∗η(t)ṡη(t)dt (72)

These symbols have physical meanings and can also be
expressed in the frequency domain, where (68) stands for
SNR, (68)-(72) are the waveform parameters of the weak echo
signal described in [25]-[26]. Thus,

Iηη =
∂2 ln p(y, θ)

∂D2
η

=
2(r′η)

2

N0
Re

∫ ∞

−∞
|ṡη(t−Dη)|2dt

= 2SNRηLη = 2SNRηAη,

(73)

Iη,η+M ′ = Iη+M ′,η =
∂2 ln p(y, θ)

∂Dη∂fdη

=
4π(r′η)

2

N0
Im

∫ ∞

−∞
tṡη(t−Dη)s

∗
η(t−Dη)dt

= 4πSNRη(Qη +HηDη) = 2SNRη2πBη,

(74)
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Iη+M ′,η+M ′ =
∂2 ln p(y, θ)

∂f2
dη

=
8π2(r′η)

2

N0
Re

∫ ∞

−∞
t2s∗η(t−Dη)sη(t−Dη)dt

= 8π2SNRη[Gη + 2PηDη −D2
ηEη]

= 2SNRη4π
2Cη,

(75)

Iother=
∂2 ln p(y, θ)

∂Dη∂Dη′
=

∂2 ln p(y, θ)

∂Dη∂fdη′

=
∂2 ln p(y, θ)

∂fdη∂fdη′

=0, (76)

where η, η′ = 1, 2, . . . ,M ′, η ̸= η′. And Aη, Bη and Cη are
defined as

Aη = Lη, (77)

Bη = Qη +HηDη, (78)

Cη = Gη + 2PηDη −D2
ηEη. (79)

Therefore, the FIM can be expressed as

I(θ) =

2SNR



A1 2πB1

. . . . . .
AM ′ 2πBM ′

2πB1 4π2C1

. . . . . .
2πBM ′ 4π2CM ′ .


(80)

Taking the inverse of FIM, we can obtain the CRLBs of joint
TDOA and FDOA estimation of the ηth weak echo signal as

V ar(D̂η)CRLB =
1

2SNRη
· Cη

AηCη −B2
η

, (81)

V ar(f̂dη )CRLB =
1

8π2SNRη
· Aη

AηCη −B2
η

. (82)

From (81) and (82), we can see that the CRLBs of the joint
estimation of TDOA and FDOA for the ηth weak echo signal
are related to SNR and waveform parameters Aη, Bη and Cη ,
which are determined when the satellite type is determined.

The relationship between the TDOA of the weak echo
signal and the distance from the target to the receiver is
Lη = Rr − Rt + cDη, η = 1, 2, ...,M ′, and Rr and Rt

are constants. However, Dη may affect the accuracy of the
estimation because Dη is also a variable needs to be estimated.
According to the definition of the CRLB for the non-random
parameter function, we can obtain the CRLB of the ηth
distance estimate as

V ar(L̂η)CRLB = c2V ar(D̂η)CRLB , (83)

where η = 1, 2, . . . ,M ′. From the weighted data fusion
algorithm, we obtain the CRLB of L̂ as

V ar(L̂)CRLB=
1

M ′∑
η=1

1
V ar(L̂η)CRLB

=
c2

M ′∑
η=1

1
V ar(D̂η)CRLB

,

(84)
The relationship between the FDOA of the weak echo

signal and the velocity of the target is vη =
fdηλ

2 cos
βη
2

,

η = 1, 2, . . . ,M ′, where βη is the bistatic angle. Therefore,
vη is a function of the FDOA and can be further written
as vη = Uηfdη when Uη = λ

2 cos
βη
2

, where fdη is also a
variable and will affect the accuracy of the estimation of
velocity. According to the definition of the CRLB for the
non-random parameter function, we can obtain the CRLB of
velocity estimate for the ηth weak echo signal as

V ar(v̂η)CRLB = U2
η V ar(f̂dη )CRLB , (85)

where η = 1, 2, . . . ,M ′. From the weighted data fusion
algorithm, we can obtain the CRLB of v̂ as

V ar(v̂)CRLB=
1

M ′∑
η=1

1
V ar(v̂η)CRLB

=
1

M ′∑
η=1

1
U2

η V ar(f̂dη )CRLB

.

(86)

V. NUMERICAL RESULTS AND DISCUSSION

Simulation results are presented in this section. The sim-
ulation setups are described as follows. The satellite models
are GPS, DVB-S and INMARSAT. Their carrier frequencies
are 1575.42MHz, 12.38GHz and 1640MHz, respectively. Their
symbol rates are 1.023MHz, and 22.425MHz, 2.2MHz [27].
The TDOA are 25µs, 16µs and 10µs, and the FDOA are
17640Hz, 14480Hz and 11080Hz, respectively. The velocity of
the target is set to 350 m/s. the distance between the target and
the receiver is 20 km and the angle of FWFRFT is π/4. The
number of sampling points is 107 and additive complex white
Gaussian noise (AWGN) is adopted. The SNRs of echo signals
are set to -112 dBm. In addition, we use 2000 Monte Carlo
experiments for every scene. The normalized mean square
error (NMSE) is adopted as the performance measure with
[25]

NMSE =
|ρ̂− ρ|2

ρ2
, (87)

where ρ is the theoretical value and ρ̂ is the estimated value
of the parameter. The normalized CRLB is defined as:

V ar(ρ̂)NCRLB ==
V ar(ρ̂)CRLB

ρ2
, (88)

where V ar(ρ̂)CRLB is the CRLB of the estimated parameter.

A. Location Parameter Estimation Performance with Different
SNRs

To reveal the effect of the echo SNR on the location
parameter estimation performance, the performances of the
two proposed parameter estimation methods are simulated for
different SNRs ranging from -80dB to -10dB. Fig. 3 and Fig.
4 show the estimation performance of TDOA and the distance
between the target and receiver, respectively. It can be seen
from Fig. 3 that the three satellite signals can be used to
estimate the TDOA of weak echo signals. Besides, the TDOA
estimation performance is improved and close to the NCRLB
when the SNR increases. The NMSEs of TDOA estimation for
GPS, DVB-S and INMARSAT echo signals reach 10−3 when
the SNR is -45dB, -40dB and -30dB, respectively, indicating
that the TDOA estimation performance based on the GPS is
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Fig. 3. TDOA estimation performance with different SNRs.
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Fig. 4. Distance estimation performance with different SNRs.

the best, while that based on the INMARSAT is the worst.
Fig. 4 illustrates that the three satellite signals can be used to
estimate the distance between the target and the receiver when
the SNR is large. Fig. 5 shows that the three satellite signals
can be used to estimate the FDOA of the weak echo signal,
and the FDOA estimation performance of the three satellites
weak echo signals are improved and close to the NCRLB with
the increase of SNR. From Fig. 6, we can observe that the
NMSE of velocity estimation for the target reaches to 10−3

when the SNR is -35dB. Moreover, the CAF and FOCCCAF
yield higher NMSE than the FWFRFT-FOCCCAF TDOA and
FDOA estimation method, implying that the CAF and FOC-
CCAF have worse location parameter estimation performance
and the FWFRFT has better suppression of interference and
noise.

B. Location Parameter Estimation Performance with Different
Numbers of Coherent Cumulative Points of Signals

To investigate the impact of the number of coherent cumu-
lative points of the signal on the location parameter estimation
performance, simulations are conducted under the signal sam-
pling points number of 106, 107 and 108. The GPS signal
is adopted to estimate the TODA and FDOA, and the GPS,
DVB-S and INMARSAT are used to estimate the distance and
velocity. Fig. 7 and Fig. 8 show the estimation performance
of the TDOA and the distance between a target and a receiver.
Fig. 9 and Fig. 10 depict the estimation performance of FDOA
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Fig. 5. FDOA estimation performance with different SNRs.
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Fig. 6. Velocity estimation performance with different SNRs.

and the velocity of the target. From Fig. 7, it is easy to see
that the TDOA estimation performance improves when the
number of coherent points increases. Furthermore, the NMSE
of TDOA for GPS reaches 10−3 when the SNR is -35dB and
the number of signal point is 106. Moreover, the performance
is improved by 10 dB when the number increases by an
order of magnitude. This is because the spectral peak becomes
more prominent with the increase of the number of cumulative
points, equivalent to improve the gain of SNR. As a result, it
can improve the TDOA estimation performance. Fig. 8 shows
that the distance estimation performance improves with the
increase of the number of coherent points. The NMSEs of
distance estimate become 10−3 under the SNR of -15dB, -
30dB, -40dB and the number of point of 106, 107 and 108,
respectively. As the accuracy of the distance estimate depends
on the performance of TDOA estimations, an accurate TDOA
estimation with the increasing number of points results in an
accurate estimation of the distance between a target and a
receiver. It can be seen from Fig. 9 that with the increase
of the number of points, the FDOA estimation performance
is improved, and the NMSE of FDOA estimation reaches
to 10−3 when the SNR is -35dB and the number of point
is 106. Moreover, the performance is improved by 10 dB
when the number of signal cumulative points increases by
an order of magnitude. The reason behind this phenomenon
is that the spectral peak becomes more prominent with the
increase of the number of cumulative points. It is also equiv-
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Fig. 7. TDOA estimation performance with different coherent cumulative
points of the signals.
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Fig. 8. Distance estimation performance with different coherent cumulative
points of the signals.

alent to improving the gain of SNR, so that it can improve
the FDOA estimation performance. Fig. 10 shows that the
velocity estimation performance improves with the increase
of the number of coherent points, and the NMSE of FDOA
estimation becomes 10−3 when the SNR is -25 dB and the
number of point is 106. Beside, the performance is improved
by 10 dB when the number increases by an order of magnitude.
This is because the accuracy of velocity estimation depends
on the performance of FDOA estimation and the increase of
points leads to more accurate FDOA estimation and velocity
estimation.

C. Location Parameter Estimation Performance with Different
SDRs

Fig. 11-Fig. 14 present the location parameter estimation
performance versus different signal-to-direct signal-ratio (S-
DR). From Fig. 11, it can be observed that the TDOA
estimation performance improves with the increase of SDR
under the same SNR. Besides, the estimation performance
increases by 5dB when SDR increases by 20dB, as it is
equivalent to enhance the power of echo signal and make
the spectrum peak more prominent when the direct wave
power is fixed. Therefore, it can improve the performance of
TDOA estimation through increasing the SDR. Fig. 12 shows
that the distance estimation performance is improved with
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Fig. 9. FDOA estimation performance with different coherent cumulative
points of the signals.

−80 −70 −60 −50 −40 −30 −20 −10
0

0.5

1

1.5

2

2.5

3

SNR/dB

N
M

S
E

 

 
1e6−FOCCCAF
1e6−FWFRFT−FOCCCAF
1e7−FOCCCAF
1e7−FWFRFT−FOCCCAF
1e8−FOCCCAF
1e8−FWFRFT−FOCCCAF

Fig. 10. Velocity estimation performance with different coherent cumulative
points of the signals.

the increase of SDR, and the NMSE of distance estimation
reach to 10−3 when the SNR is -20dB and the SDR is -
40dB, and the distance estimation performance increases by
5dB when SDR adds by 20dB similarly. Because the accuracy
of the distance estimation depends on the performance of the
TDOA estimation. The TDOA estimation is more accurate
when SDR increases, so the distance estimation becomes more
accurate. It can be seen from Fig. 13 that the FDOA estimation
performance of the weak echo signal becomes better with the
increase of SDR, and the NMSE of FDOA estimation reach
10−3 when the SNR is -35dB and the SDR is -40dB. The
estimation performance increases by 5dB when SDR increases
by 20dB. Therefore, there is a better FDOA estimation perfor-
mance. Fig. 14 shows that the velocity estimation performance
is improved with the increase of SDR, and the NMSE of
FDOA estimation reach 10−3 when the SNR is -25dB and the
SDR is -40dB. Besides, the estimation performance increases
by 5dB when SDR adds by 20dB. Because the accuracy of the
velocity estimation depends on the performance of the FDOA
estimation. The FDOA estimation is more accurate with the
increase of SDR, so the velocity estimation becomes more
accurate. Moreover, the FOCCCAF has a higher NMSE than
that of the FWFRFT-FOCCCAF method, indicating that the
FWFRFT has a better effect on the suppression of interference
and noise.
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Fig. 11. TDOA estimation performance with different SDRs.
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Fig. 12. Distance estimation performance with different SDRs.

D. Location Parameters Estimation Performance with Differ-
ent Number of Satellites

Fig. 15 and Fig. 16 show the the distance and velocity
estimation performance under the different number of satel-
lites, respectively. From Fig. 15, we can see that the NMSEs
of distance estimation reach to 10−3 when the SNR are -
32dB, -30dB and -28dB and the number of satellite is 2, 3
and 4, respectively. This indicates that the distance estimation
becomes worse when the number of satellite increases, since
the increase of satellites leads to the increase of DPI and MPI
in the surveillance channel. However, the increasing number of
satellites will improve the reliability of parameter estimation.
From Fig. 16, the NMSEs of distance estimation reach 10−3

when the SNR are -36dB, -34dB and -32dB and the number of
satellite is 2, 3 and 4. The performance of velocity estimations
gradually decreases with the increasing number of satellites,
while the reliability gradually improves, which is consistent
with distance estimation.

VI. CONCLUSION

In order to enhance the accuracy and reliability of moving
aerial target location parameter estimation, a novel framework
of the passive location system in space-air-ground integrated
networks-based internet of vehicles has been designed and
corresponding location parameter estimation method based
on FOCCCAF and FWFRFT-FOCCCAF has been proposed
in this paper. Simulation results shown that the proposed
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Fig. 13. FDOA estimation performance with different SDRs.
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Fig. 14. Velocity estimation performance with different SDRs.

method has estimated effectively the location parameters of
moving aerial target and FWFRFT-FOCCCAF outperforms
FOCCCAF on location parameter estimations. Moreover, the
performance of proposed method improves by increasing the
SNR of the echo signal, the coherent cumulative points of
the signals and the SDR between the direct wave and the
echo signal, while increasing the number of satellites does
not improve the estimation performance but can improve the
estimation reliability.
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