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Abstract

We show that machine learning methods, in particular extreme trees and neural networks (NNs),

provide strong statistical evidence in favor of bond return predictability. NN forecasts based on

macroeconomic and yield information translate into economic gains that are larger than those ob-

tained using yields alone. Interestingly, the nature of unspanned factors changes along the yield curve:

stock and labor market related variables are more relevant for short-term maturities, whereas output

and income variables matter more for longer maturities. Finally, NN forecasts correlate with proxies

for time-varying risk aversion and uncertainty, lending support to models featuring both of these

channels.
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1 Introduction

The recent advancements in the fields of econometrics, statistics, and computer science

have spurred interest in dimensionality reduction and model selection techniques, as well as

predictive models with complex features, such as sparsity and non-linearity, both in finance

and economics.1 Over the last two decades, however, the use of such methods in the financial

economics literature has been mostly limited to data compression techniques, such as principal

component and latent factor analysis.2 A likely explanation for the slow adoption of advances in

statistical learning is that these methods are not suitable for structural analysis and parameter

inference (see Mullainathan and Spiess, 2017). Indeed, the primary focus of machine learning

is prediction, i.e., to produce the best out-of-sample forecast of a quantity of interest based on

a potentially large conditioning information set.

The suitability of machine learning methodologies for predictive analysis makes them partic-

ularly attractive in the context of financial asset return predictability and risk premia measure-

ment (e.g., Gu, Kelly and Xiu, 2018). As a matter of fact, while many problems in economics

rely on the identification of primitive underlying shocks and structural parameters, the quantifi-

cation of time variation in expected returns is essentially a forecasting problem. This practical

view complements the theory-driven approach, which often provides the building blocks for

the empirical analysis of financial markets. Modeling the predictable variation in Treasury

bond returns, which is the focus of this paper, provides a case in point. Forecasting excess

bond returns requires a careful approximation of the a priori unknown mapping between the

investors’ information set and excess bond returns (e.g., Duffee, 2013, pp. 391-392).

1See, for example, Rapach et al. (2013), Kelly and Pruitt (2013; 2015), Freyberger, Neuhierl and Weber
(2017), Giannone et al. (2017), Giglio and Xiu (2017), Heaton, Polson and Witte (2017), Kozak, Nagel and
Santosh (2017), Messmer (2017), Fuster et al. (2018), Gu, Kelly and Xiu (2018), Kelly, Pruitt and Su (2018),
Rossi (2018), Sirignano et al. (2018), Chen, Pelger and Zhu (2019), Feng, Giglio and Xiu (2019), Feng, Polson
and Xu (2019), and Huang and Shi (2019).

2In economics, the initial idea of data compression techniques can probably be traced back to Burns and
Mitchell (1946) who argue for a business cycle indicator that is common across macroeconomic time series. This
idea was formally modeled by Geweke (1977) and Sargent and Sims (1977). Since then principal component
analysis and factor analysis have been widely adopted in financial economics for forecasting problems involving
many predictors(see, among others, Stock and Watson (2002a; 2002b; 2006), Forni and Reichlin (1996, 1998),
Bai and Ng (2003, 2006, 2008), De Mol et al. (2008), and Boivin and Ng (2006a)).
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In this paper, we employ machine learning methods to revisit the debate on the presence

of predictable variation in bond returns. We work with two traditional frameworks; one that

exploits information in the yield curve only, as in Cochrane and Piazzesi (2005), and one that

also uses information from a dataset of hundreds of macroeconomic indicators as in Ludvigson

and Ng (2009). The research design follows the structure outlined in Gu et al. (2018), whereby

a comparison of different machine learning techniques is based on their out-of-sample predictive

performance. Methodologically, we consider a variety of machine learning techniques to fore-

cast excess Treasury bond returns across different maturities including partial least squares,

penalized linear regressions, boosted regression trees, random forests, extremely randomized

regression trees, and shallow and deep neural networks (NNs). All of these methods fall un-

der the heading of “supervised learning” in the computer science literature.3 Although not

exhaustive, this list covers the vast majority of modern statistical learning techniques (e.g.,

Friedman et al., 2001). We also employ more classical dimensionality reduction techniques,

such as principal component analysis (PCA), which arguably represents an almost universal

approach to regression-based forecasting of Treasury bond returns.

Our contribution to the bond return predictability literature is threefold. First, within

each empirical application (i.e., yields-only or yields plus macroeconomic variables), we show

that non-linear machine learning methods, such as extreme trees and NNs, are useful to detect

predictable variations in bond excess returns, as indicated by out-of-sample predictive R2s

that are significantly higher than those obtained by data compression techniques (e.g., linear

combinations of forward rates, as in Cochrane and Piazzesi (2005), and factors extracted from

macroeconomic variables, as in Ludvigson and Ng (2009)) and penalized regression techniques.

Importantly, a battery of asset allocation exercises confirm that the deviations from the Expec-

tations Hypothesis documented in this paper are economically large. In this regard, our paper

contributes to the debate on the statistical evidence supporting bond return predictability

(e.g., Fama and Bliss (1987), Campbell and Shiller (1991) and Cochrane and Piazzesi (2005),

3In “supervised” statistical learning the mapping between the quantity of interest y and the predictors x is
learned by using information on the joint distribution. Unsupervised learning instead is normally implemented
for data compression, e.g., PCA, and does not explicitly condition on the quantity of interest y to summarize
the information content in x.
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for applications with yields-only) or absence thereof (e.g., Thornton and Valente, 2012).

Second, zooming in on non-linear methods, we document that using information from

macroeconomic and financial variables improves the predictive accuracy of forecasts based only

on (potentially non-linear transformations of) the yield curve. Indeed, the best-performing NN

that exploits macroeconomic and term structure information attains out-of-sample R2s that

are about 10 percentage points larger (for maturities ranging from two to ten years) than the

best-performing NN that employs yields only. Similarly, we document that employing the NN

forecasts based on macroeconomic and yield information produces significantly higher certainty

equivalent return values than those implied by the NN forecasts based only on yield curve infor-

mation. In this respect, our paper contributes to the debate on whether there is macroeconomic

variation not spanned by bond yields that helps forecast excess bond returns (e.g., see Joslin

et al. (2014) for evidence in favor of unspanned macroeconomic information, and Bauer and

Rudebusch (2017); Bauer and Hamilton (2018) for a critical analysis of such evidence, along

with a discussion of econometric issues plaguing the “spanning” linear regressions). On one

hand, our analysis reinforces the evidence in favor of unspanned macroeconomic information

useful to forecast excess bond returns (e.g., Cooper and Priestley, 2009; Ludvigson and Ng,

2009; Duffee, 2011b; Joslin et al., 2014; Cieslak and Povala, 2015; Coroneo et al., 2016; Gargano

et al., 2019). On the other hand, our evidence is novel in three respects. First, we continue to

find support for unspanned macroeconomic risk even after accounting for potential nonlineari-

ties in interest rates. Second, we find that it is important to account for non-linearities within

macroeconomic categories in order to detect information useful for predicting excess bond re-

turns above and beyond the yield curve. Finally, we document substantial heterogeneity in the

relative importance of macroeconomic and financial variables across bond maturities: variables

pertaining to the stock and labor markets are more important for short-term maturity bonds,

whereas variables pertaining to orders and inventories, and output and income are more rel-

evant for variation in long-term bonds. Thus, the type and nature of unspanned factors may

depend on bond maturity.

Our third contribution concerns the economic properties of the forecasts implied by deep

3
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NNs. First, to provide insight on the origins of the improvements in out-of-sample predictabil-

ity, we investigate the ability of NNs to forecast the first three principal components of the

term structure: level, slope, and curvature. We show that when using yields only as predic-

tors, the NNs improve the forecast of the level of the term structure. However, when both

macroeconomic and financial information is used in addition to yields, we find that the factors

extracted from the NNs contribute to the ability to predict the level of the yield curve, as well

as the slope. This is consistent with the idea that the slope of the yield curve is related to the

state of the economy, and a NN is able to extract the relevant information from the large set

of macroeconomic variables used. Next, we document that NN forecasts are countercyclical

and mostly related to variables that proxy for macroeconomic uncertainty and time-varying

risk aversion. Thus, our results support models that feature both time variation in risk prices

and time-varying risk as in, e.g., Bekaert et al. (2009) and Creal and Wu (2018). However, our

statistical measure of expected bond returns contrasts recent survey-based measures like the

one proposed by Buraschi et al. (2019), which is mostly related to financial (specifically, bond)

volatility.

In the context of machine learning in asset pricing, we document three novel facts.4 First,

our result that random forests and NNs constitute the best-performing methods even in the

case when only information in the term structure is used to forecast bond returns (i.e., in a

low dimensional setting) is new and provides evidence that the gain from non-linear machine

learning methods is not relegated to a big data context.

Second, we show that an economically-driven choice of the network structure may perform

on par with more data-driven network architectures. More specifically, when macroeconomic

data are included as potential bond return predictors, we find that the out-of-sample predictive

R2 increases almost monotonically when we move from shallow specifications (one hidden layer)

to deeper networks (up to three hidden layers). However, we also find that economic priors

about the role of variables may improve the performance of the network. In particular, grouping

variables within economic categories and then training a shallow network within each group – a

4The literature on machine learning and asset pricing is rapidly growing (c.f., footnote 1). Except for Huang
and Shi (2019), none of these papers explore machine learning methods to forecast excess bond returns.
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network structure that we dub “group ensembling”– attains a performance that is on par with

the best-performing deep NN where no economic priors are utilized.5 Thus, the depth of the

network and the economic priors used to design the network (e.g., grouping within categories)

interact with one another, a result that is new to the empirical finance literature.

Third, the fact that the group ensembled network outperforms more complex and agnostic

specifications, is important since it highlights what type of non-linearities are important from

an economic perspective: Is it the interaction of many variables (across categories) or rather a

higher polynomial of the same variable (within a category)? Since our group-ensembled network

switches off interactions across categories, our analysis shows that it is the non-linearity within

a group that is ultimately relevant for the performance of the network. In this respect, our

results for Treasury bond returns echo those in Gu et al. (2018) and Chen et al. (2019) for the

equity market: the success of NNs lies in their ability to exploit the non-linear mapping between

returns and the predictors. However, whereas Chen et al. (2019) emphasize the importance of

identifying the relevant interaction between firm characteristics for equity returns, we document

that, in the bond market, the interaction across economic categories matters to a lesser extent

than the interaction within a category. Thus, different types of network structures may be

needed for different asset markets.

The remainder of this paper is organized as follows. Section 2 provides a discussion why

machine learning techniques can prove useful to measure expected bond returns within the

context of predictive regression. Section 3 outlines the estimation strategy and machine learn-

ing methodologies used in the paper. Section 4 summarizes the results on predictability of

bond excess returns. Section 5 dissects the predictability of bond excess returns uncovered

by machine learning methods along various dimensions. Section 6 examines whether gains

in predictive accuracy translate into better investment performance. Section 7 considers the

economic drivers of bond return predictability. Section 8 concludes.

5In this respect our paper is mostly related to Huang and Shi (2019). They use an adaptive group-lasso linear
regression and cluster economic variables. They show that a linear combination of such clusters significantly
predicts excess bond returns. Similar to them, we explore economically motivated structures based on an ex-
ante clustering. Differently from them, we focus on non-linear methodologies. In fact, our results show that
linear sparse regression methods, such as lasso and elastic net, substantially underperform, statistically and
economically, both shallow and deep non-linear methods, such as extreme trees and neural networks.
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2 Motivating Framework

In this section, we provide a motivation for the use of machine learning to predict excess

Treasury bond returns. The discussion is framed within the context of regression approaches

for forecasting treasury yields. We start with the accounting identity of Campbell and Shiller

(1991). We consider a zero-coupon bond with maturity t + n and a payoff of one dollar. We

denote its (log) price and (continuously compounded) yield at time t by p
(n)
t and y

(n)
t = − 1

np
(n)
t ,

respectively. The superscript refers to the bond’s remaining maturity. The (log) excess return

to the n-year bond from t to t + 1, when its remaining maturity is n − 1, is denoted by xr
(n)
t+1 =

p
(n−1)
t+1 − p

(n)
t − y

(1)
t . Then, it is possible to express the log returns to bonds as:

xr
(n)
t+1 = −(n − 1) (y

(n−1)
t+1 − y

(n)
t ) + (y

(n)
t − y

(1)
t ) . (1)

The identity states that (after controlling for the slope y
(n)
t − y

(1)
t ) any variable that forecasts

the change in the bond yield from t to t + 1, i.e., (y
(n−1)
t+1 − y

(n)
t ), also forecasts the log returns

to bonds. Assuming that the investors’ information set at time t can be summarized by a

latent k-dimensional state vector xt, and exploting the identity y
(n)
t = 1

n ∑
n−1
j=0 Et (y

(1)
t+j ∣ xt) +

1
n ∑

n−1
j=0 Et (xr

(n−j)
t+j+1 ∣ xt), we can write:

yt = f(xt;N),

where we stack time-t yields on bonds with different maturities in a vector yt, and the maturities

of the bonds in the vector N . Combining the equation above with equation (1), we obtain:

Et [xr
(n)
t+1] = g(xt;N) , (2)

for some function g(xt;N). Every term structure model reduces to a specific mapping between

yields and state variables.

In the simplest case, yields are linear affine functions of the state variables: yt = A +Bxt.

6
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The linearity of f (⋅), together with a dimensionality reduction of the space of yields, gives rise

to principal component regression (PCR) where the quantity of interest (excess bond returns)

is regressed onto principal components xt (see Chapter 3.5 in Friedman et al., 2001):

Et [xr
(n)
t+1] = α̂ + β̂

⊺
xt with xt =Wyt + b, (3)

where the columns of W form an orthogonal basis for directions of greatest variance, and b

captures the average “reconstruction error” or bias. Practically, the linear predictive system

outlined in equation (3) represents a two-step procedure where researchers extract the latent

factors xt, and then learn the regression coefficients θ̂ = (α̂, β̂
⊺
) by minimizing a loss function

that depends on the residual sum of squares. In addition to this yields-only specification,

researchers have often evaluated the role of macroeconomic variables as an important driver of

bond returns. This leads to an augmented predictive regression:

Et [xr
(n)
t+1] = α̂ + β̂

⊺
xt + γ̂

⊺F t (4)

where F t ⊂ ft and ft is an r × 1 vector of latent common factors extracted from a T ×N panel

of macroeconomic data with elements mit, i = 1, . . . ,N, t = 1, . . . , T , and r ≪ N . This is the

framework originally proposed by Ludvigson and Ng (2009). Equations (3) and (4) constitute

two important applications of unsupervised data compression for bond forecasting.

Another very popular set of reduced-form term structure models consists of Gaussian linear-

quadratic models (e.g., Ahn, Dittmar and Gallant, 2002). In this case, the relation between

yields and state variables is given by yt = A+Bxt +x
′
tCxt. Note that in this case the mapping

between yields and factors is non-linear in the state variables, meaning that standard linear

PCA represents a mere approximation and does not necessarily give consistent estimates of the

true underlying quadratic factor (see Schölkopf et al., 1998). Non-linearities are also featured

in reduced-form term structure models with regime switches (e.g., Dai et al., 2007), in shadow

rate models (Black, 1995; Wu and Xia, 2016), and in the model by Feldhutter et al. (2016)

where the price of a bond is a time-varying weighted average of bond prices in artificial, affine

7
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Gaussian economies.

Interestingly, non-linearity between bond yields and factors also emerges naturally in struc-

tural models with habit formation. For example, Buraschi and Jiltsov (2007) use habit for-

mation preferences as a source of time varying market price of risk in fixed income models.

In their model, yields are non-linear in the state variables, and depend on the habit stock

and the factors affecting the monetary aggregate. For completeness, Appendix A provides a

simple habit formation economy that leads to bond yields being a linear-quadratic function of

macroeconomic variables like consumption growth, expected inflation, and habit.

Motivated by this literature, we investigate the possibility that a more precise measurement

of bond risk premia can be obtained by using non-linear transformations of the data, an avenue

that has also been advocated by Stock and Watson (2002a, p. 154) within the context of fore-

casting macroeconomic time series. Differently from the Gaussian linear-quadratic models, we

do not postulate a specific functional form connecting bond yields and state variables; instead

we use various statistical techniques such as trees and networks to learn about it. Besides

being agnostic about the functional form between excess bond returns and macroeconomic

and financial variables, the use of machine learning techniques has two additional advantages

relative to the principal component regressions in equations (3) and (4).

First, the implementation of regression-based forecasts of excess bond returns using princi-

pal components as outlined in equations (3) and (4) implies that no direct use of the response

variable (i.e., the excess bond returns) is made to learn about the state variables xt and F t.

This is not surprising as data compression methods such as PCA are a form of “unsupervised

learning.” However, equation (2) suggests that excess bond returns play the implicit role of

a conditioning argument, namely, one should be able to tailor the extraction of hidden latent

states xt to the response variable xr
(n)
t+1 . In this respect, “supervised learning” algorithms,

such as the lasso, elastic net, partial least squares, regression trees, random forests, and NNs,

that explicitly condition on the response variables to summarize the information in the predic-

tors, may arguably prove useful to overcoming the limitations of standard data compression

8
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methods.6

Second, traditional PCA and factor analysis (FA) are based on the assumption that all vari-

ables could bring useful information for the prediction of future excess bond returns, although

the impact of some of them could be small. However, PCA or FA does not guarantee that by

simply adding any number of predictors, we can be sure that the extracted factors will provide

an optimal summary. Boivin and Ng (2006b) formalize this argument by providing evidence

that the structure of the common components is sensitive to the input variables, and that more

data does not always mean there will be more sensible estimates. In this respect, one may want

to “select” the variables that actually matter for forecasting excess bond returns. Penalized

regressions, such as lasso and elastic net, as well as NNs exploit the entire span of the input

variables without imposing that they all carry useful information for determining excess bond

returns. The existing literature on bond return predictability has vastly ignored the potential

capability of machine learning techniques to address the issue of non-linearity and variable

regularization. Arguably, this comes at the expense of not fully capturing the extent to which

yields and macroeconomic variables are relevant for the measurement of expected excess bond

returns. This is the focus of our paper.

3 Research Design

In this section, we outline the research design for the empirical analysis. We start with a

description of the data, along with the specific applications. We then review the methodologies

implemented in the main empirical analysis. We conclude with a short discussion of our

estimation strategy.

6Ludvigson and Ng (2009, p. 5034) acknowledge that “factors that are pervasive for the panel of data
[input] need not be important for predicting [the output]” and propose a three-step forecasting procedure
where a subset of principal components extracted from a large panel of macroeconomic variables is selected
according to the information criteria before running the bond return forecasting regressions. In line with this
intuition, we provide evidence that supervised learning methodologies, such as NNs, are useful to exploit the
information in predictors other than yields, and to improve the out-of-sample forecast of bond returns.

9
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3.1 Data and empirical applications

The empirical analysis is based on two main benchmark applications. The first application

concerns the forecasting of future bond excess returns based on the cross-section of yields as

originally proposed by Cochrane and Piazzesi (2005). We use the novel zero-coupon Treasury

yield curve dataset constructed by Liu and Wu (2019). This dataset allows us to study bond

returns with maturity greater than five years (the longest maturity in the Fama-Bliss dataset).

This is important since long maturity yields contain substantial extra predictive power over

and above the first five yields (Le and Singleton, 2013, discuss the importance of using long-

maturity bond yields in assessing the dynamic properties of risk premiums in Treasury mar-

kets). Moreover, Liu and Wu (2019) construct the zero-coupon curve using a non-parametric

kernel-smoothing method that does not discard Treasury bills, which is instead the case for the

parametric approach adopted by Gurkaynak et al. (2007). This is important since Liu and Wu

(2019) find that securities at the short end of the yield curve contain important information in

disciplining the overall behavior of the curve. Using the Liu and Wu (2019) yield curve dataset,

we then construct forward rates and excess bond returns as described in Section 2. We focus

on bonds with maturities up to 10 years. Since the U.S. Treasury started issuing 10-year notes

in September 1971, this also defines the start of our sample period. We do not use bonds with

longer maturities for two reasons. First, the Treasury began issuing 20-year bonds in July

1981, and 30-year bonds in November 1985. This would force us to start the analysis later,

reducing further the out-of-sample period since training the NNs requires a sufficient amount

of data.7 Second, the issuance of long-maturity Treasury notes and bonds occurs at irregular

intervals; to compensate for the lack of observations at long-maturities, the Liu and Wu (2019)

method pulls information for the 20- and 30-year bonds from maturities that are 10 years (or

more) away.

The second application consists of forecasting future bond excess returns based on both

7Contrary to typical machine learning applications, such as image recognition, common signal-to-noise ratios
in financial data are low, exacerbating the need for sufficient data. Hence, we delay the start of the out-of-sample
period so far that we have at least a handful of observations per weight to be estimated in our smallest NN (i.e.,
a single hidden layer with three nodes). For larger network architectures in which the number of parameters
exceeds the number of available observations, regularization methods are used to ensure satisfactory training.
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forward rates and a large panel of macroeconomic variables as proposed by Ludvigson and

Ng (2009). We consider a balanced panel of N = 128 monthly macroeconomic and financial

variables. A detailed description of how variables are collected and constructed is provided in

McCracken and Ng (2015). The series were selected to represent broad categories of macroeco-

nomic time series: real output and income, employment and hours, real retail, manufacturing

and sales data, international trade, consumer spending, housing starts, inventories and inven-

tory sales ratios, orders and unfilled orders, compensation and labor costs, capacity utilization

measures, price indexes, interest rates and interest rate spreads, stock market indicators, and

foreign exchange measures. This dataset has been widely used in the literature (e.g., Stock

and Watson, 2002a, 2006; Ludvigson and Ng, 2009), and permits comparison with previous

studies.

3.2 Forecasting methods

3.2.1 Principal component regressions and partial least squares

The first method we employ is a linear, dimensionality-reduction technique known as princi-

pal component regressions (PCRs). Undoubtedly, PCRs constitute the most common method

used to forecast interest rates and Treasury bond returns. Unfortunately, in the classical

implementation of PCRs, the target variable is discarded when extracting the latent factors.

Thus, we also consider an alternative data compression methodology called partial least squares

(PLS). Unlike PCR, with PLS the common components of the predictors are derived by con-

ditioning on the joint distribution of the target variable and the regressors. Appendix E.1

provides additional details on PLS, while contrasting this method to PCRs and penalized

regressions, which we discuss next.

3.2.2 Penalized regressions: ridge, lasso and elastic net

Confronted with a large set of predictors, a popular strategy is to impose sparsity in the

set of regressors via a penalty term. The idea is that by selecting a subset of variables with
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the highest predictive power out of a large set of predictors, and discarding the least relevant

ones, one can mitigate in-sample overfitting and improve the out-of-sample performance of the

linear model. In its general form, a penalized regression entails adding a penalty term on top

of the OLS objective function LOLS (θ) = 1
t ∑

t−1
τ=1 (xr

(n)
τ+1 − α −β

⊺yτ)
2

with θ = (α,β⊺):

L(θ; ⋅) = LOLS (θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Loss Function

+ φ (β; ⋅)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

Penalty Term

. (5)

Depending on the functional form of the penalty term, the regression coefficients can be regu-

larized and shrunk towards zero (as in ridge), exactly set to zero (as in lasso), or a combination

of the two (as in elastic net). In Appendix E.2, we describe each method in details.

Regularized regression still does not account for non-linear relations. To address this issue,

we consider a third class of non-linear methods: “shallow learners”, such as regression trees

and more deep structures, such as neural networks.

3.2.3 Regression trees

Regression trees are based on a partition of the input space into a set of “rectangles.” Then,

a simple linear model is fit to each rectangle. Figure 1 displays an example of a binary partition

(Panel (a)) and the corresponding regression tree (Panel (b)). Regression trees are conceptually

simple, yet powerful, and therefore highly popular in the machine learning literature. In

addition to a standard regression tree methodology, we consider extensions that employ an

ensemble of individual trees, like “random forests’ (Breiman, 2001), and, furthermore, take into

account the randomness in the predictors’ partition process, like “extremely randomized trees”

(Geurts et al., 2006). Appendix E.3 provides additional technical details on the estimation of

regression trees (and their extensions).
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3.2.4 Neural networks

Neural networks (NNs) represent a widespread class of supervised learning methods. We

focus on traditional “feed-forward” networks or multi-layer perceptrons (MLP). Throughout

the paper, we follow Feng et al. (2018) and adopt the convention of counting only the hidden

layers, without including the output layer. For details on the estimation of NNs, see Appendix

E.4. Next, we provide a high level description of the NNs structure we consider in our empirical

applications.

Neural networks: yields-only. When we forecast bond returns using only information

from the term structure of interest rates, we use variants of the NN architecture depicted in

Figure 2. That is, we use a classical MLP. An MLP consists of, at least, three layers of nodes

(the case displayed in the figure): an input layer, a hidden layer and an output layer. The

result is a powerful learning method that can approximate virtually any continuous function

with compact support (Kolmogorov, 1957; Diaconis and Shahshahani, 1984; Cybenko, 1989;

Hornik, Stinchcombe and White, 1989). In the empirical application, we study the predictive

accuracy of this classical network as we vary the number of hidden layers, as well as the number

of nodes per layer.

Neural networks: macro plus yields. When we forecast bond returns using macroeco-

nomic variables in addition to information from the term structure, we consider three alterna-

tive specifications that extend the typical MLP structure by taking into account the economic

structure of the input data, as well as the nature of the forecasting problem.

The first specification, displayed in Panel (a) of Figure 3, can be thought of as a “hybrid”

modeling framework in the sense that forward rates are simply included as an additional predic-

tor in the output layer (“fwd rates direct”). This structure simulates the idea of Ludvigson and

Ng (2009) in which the latent factors F t are extracted from a large cross-section of macroeco-

nomic variables and a linear combination of forward rates is included as proposed by Cochrane

and Piazzesi (2005). We label this structure where forward rates have been pre-processed a

“hybrid neural network”.
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The second specification, displayed in Panel (b) of Figure 3, ensembles two separate net-

works at the output layer level: one network is trained for the forward rates (“fwd rates net”)

and one for the macroeconomic variables. In contrast to the specification in Panel (a), this

specification allows for a non-linear transformation of forward rates.

The third specification, displayed in Panel (c) of Figure 3, entails a collection of networks,

one for each group of macroeconomic variables, which are trained in parallel and ensembled at

the output layer level. The groups of macroeconomic variables are constructed following the

classification provided by McCracken and Ng (2016).8 This latter specification, which we call

“group ensembling” switches off the (non-linear) interactions across groups of macroeconomic

variables, which are instead present in the specifications of Panels (a) and (b).

To the best of our knowledge, these specifications have not been proposed before in the

empirical asset pricing literature within the context of non-linear predictive methods. We

study the predictive accuracy of these networks as we vary the number of hidden layers, and

the number of nodes per layer.

3.3 Estimation strategy

Following common machine learning practice, we split the data into three sub-samples: a

training set used to train the model, a validation set used to evaluate the estimated model

on an independent data set, and a testing set, which represents the out-of-sample period in a

typical forecasting exercise.9

We follow Gu et al. (2018) and, conditional on the estimates from the training set, we

produce forecasting errors over the validation sample. We then use the prediction errors over

the validation sample to iteratively search the hyperparameters that optimize the objective

function. Thus, the validation sample represents the part of data that is used to provide an

8Specifically, we group 128 predictors into eight categories: i) output (16 series); ii) labor market (31 series);
iii) housing sector (10 series); iv) orders and inventories (10 series); v) money and credit (14 series); vi) bond
and FX and interest rates or financial (22 series); vii) prices or price indices (16 series); and viii) stock market (5
series). Four series in our sample could not be matched to McCracken and Ng (2016) and are left unclassified.

9See Chen et al. (2017) for an in-depth discussion of model fragility (i.e., the tendency of a model to over-fit
the data in-sample) at the expense of poor out-of-sample performance.
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unbiased evaluation of a model fit. It is trivial to see that predictions in the validation set are

not out-of-sample as they are used to tune the model hyperparameters. The third sub-sample,

or the testing sample, contains observations that are not used for estimation or tuning. This

third sub-sample is known as the “out-of-sample” period and can be used to test the predictive

performance on observations yet unseen by the machine learning model.10

There are a variety of splitting schemes that could be considered but the trade-off between

the size of the training and validation samples is ultimately an empirical question (see Arlot

et al., 2010 for a comprehensive survey of cross-validation procedures for model selection). We

keep the fraction of data used for training and validation fixed at 85% and 15% of the in-sample

data, respectively. The training and the validation samples are consequential. In this respect,

we do not cross-validate by randomly selecting independent subsets of data to preserve the

time-series dependence of both the predictors and the target variables. Forecasts are produced

recursively by using an expanding window procedure, that is we re-estimate a given model at

each time t and produce out-of-sample forecasts for one-year holding period excess returns.

Figure 4 provides a visual representation of the sample splitting scheme we adopt in the

empirical analysis. The blue area represents the sum of the training and validation sample. The

red area represents the testing sample. Notice that for some of the methodologies, validation is

not required. For instance, neither standard linear regressions nor PCA require a pseudo out-

of-sample period to validate the estimates. In these cases, we adopt a traditional separation

between in-sample versus out-of-sample period, where the former consists of both the training

data and the validation data.

We recursively forecast bond returns in excess of the short-term rate. We focus on one-year

holding period excess returns for comparability with the original settings in Cochrane and

Piazzesi (2005) and Ludvigson and Ng (2009).

We recursively fit machine learning methods at each time t (i.e., we increase the in-sample

10Note, the out-of-sample period is only “pseudo” out-of-sample in the sense that its observations are available
to the researcher at the time of the study. Nevertheless, given that the observations in the out-of-sample period
have not been used to train the model itself, it is standard in the machine learning literature (in asset pricing)
to refer to the testing sample as the “out-of-sample” period (e.g., see Gu et al., 2018; Feng et al., 2018).
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period by one monthly observation). This scheme allows us to incorporate the most recent

updates from the yield curve, as well as the set of macroeconomic and financial variables.11

When enlarging the in-sample period, we roll it forward to include the most recent information

in a recursive fashion but keep constant the ratio between the training sample and the validation

sample. In this respect, we always retain the entire history of the training sample, thus its

window size gradually increases. By keeping the proportion of the training and validation sets

fixed, the validation sample gradually increases as well. The result is a sequence of performance

evaluation measures that correspond to each recursive estimate. Although computationally

expensive, this leverages more information for prediction. In each empirical application, the

sample spans from 1971:08 to 2018:12.

Since our forecasting exercise is iterative, the computational challenge becomes sizable.

Thus, we perform all computations on a high performance computing cluster consisting of 84

nodes with 28 cores each, totaling to more than 2,300 cores. Appendix F provides a complete

description of the computational specifications.

3.4 Statistical performance

We compare the forecasts obtained from each methodology to a naive prediction based

on the historical mean of excess bond returns. In particular, we calculate the out-of-sample

predictive R2 as suggested by Campbell and Thompson (2007). The R2
oos is akin to the in-

sample R2 and is calculated as

R2
oos = 1 −

∑
T−1
t0=1 (xr

(n)
t+1 − x̂r

(n)
t+1 (Ms))

2

∑
T−1
t0=1 (xr

(n)
t+1 − xr

(n)
t+1)

2 , (6)

where xr
(n)
t+1 is the prediction error obtained based on the historical mean and x̂r

(n)
t+1 (Ms) is

the forecast of the excess bond returns for maturity n obtained using modelMs, and t0 is the

11Note that this is different from the implementation of machine learning methods for stock returns, where
trading signals from firm characteristics are often updated once per year, which means that retraining of the
models could be performed with lower frequency (Gu et al., 2018).
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date of the first prediction. The first forecast error obtains by comparing the excess holding

period return during the February 1989 through January 1990 period and its forecast made on

January 1989.

We also build a portfolio-level return forecast from the individual maturity forecasts pro-

duced by our models. We construct the forecast of an equally-weighted portfolio by x̂r
(EW )
t+1 =

1
6 ∑

10
n=2 x̂r

(n)
t+1 (Ms). We compute R2

oos,EW by constructing forecast errors using the realized

return xr
(EW )
t+1 = 1

6 ∑
10
n=2 xr

(n)
t+1 and comparing to the historical mean.

Testing the null hypothesis, R2
oos ≤ 0, against the alternative hypothesis, R2

oos > 0, is tanta-

mount to testing whether the predictive model has a significantly lower mean squared predic-

tion error (MSPE) than the historical average benchmark forecast. Thus, to test whether R2
oos

is significantly greater than zero, we implement the MSPE-adjusted Clark and West (2007)

statistic.

A limitation of the R2
oos measure is that it does not explicitly account for the risk borne by

an investor over the out-of-sample period. To this, end we also calculate realized utility gains

for a mean-variance or power utility investor (see Section 6).

4 An Empirical Study of U.S. Treasury Bonds

4.1 Bond return predictability and the yield curve

We start by forecasting the excess returns of Treasury bonds with the yield curve. In

this case, the classical specification is given by the principal component regression (PCR) in

equation (3). In words, excess returns are regressed on PCs of the Treasury term structure,

i.e. xt = [PC1,t . . . , PCk,t]. We use the first three, five, or ten PCs. The case with ten PCs

essentially corresponds to the setting in Cochrane and Piazzesi (2005), where excess returns are

regressed on a linear combination of short-rate, y
(1)
t , and nine forward rates for loans between

t + n − 1 and t + n, f
(n)
t , n = 2, . . . ,10. Table 1 displays the out-of-sample R2

oos (and its p-value)

for different bond maturities; we also report the R2
oos for an equally-weighted portfolio.
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Panel A of Table 1 displays the results for PCRs and partial least squares (PLS). The first

three rows show the predictive performance of PCRs for k = 3,5, and 10 PCs. The predictive

R2 are negative across different maturities. A parsimonious representation with only three

PCs significantly outperforms the specification with five and ten PCs, particularly at long

maturities. Further, adding simple forms of non-linearities such as squared PCs worsens the

performance. Perhaps surprisingly, a linear supervised learning method like PLS does not lead

to any improvement relative to PCR.

Panel B of Table 1 displays the results from various configurations of the linear penalized

regressions. Ridge regression performs poorly out-of-sample with predictive R2
oos that are

mostly negative across bond maturities. The second and third rows of Panel B show that

sparse modeling improves the forecasting performance of the current term structure relative to

ridge: the R2
oos for both the lasso and elastic net are positive for maturities greater than four

years, as well as for the equally-weighted bond portfolio. However, the performance of elastic

net is on par to that obtained from a principal component regression with three PCs, which

proves to be a tough benchmark.

Panel C of Table 1 shows the results for boosted regression trees, random forests, extremely

randomized trees, and neural networks. All these methods attain good performance with signif-

icantly positive R2
oos across maturities. With respect to trees, the randomization of the feature

split locations (i.e., for extreme trees) turns out to improve the out-of-sample performance over

random forests, particularly for long maturities. Turning to NNs, we observe that a shallow

network with a single hidden layer and three nodes (c.f. Figure 2) performs on par with the

best, deeper network with two hidden layers and seven nodes. Interestingly, further increasing

the depth of the network deteriorates its performance. This continues to be the case even

when we consider alternative structures, like a NN with three hidden layers and pyramidal

node architecture.12

The last row of Panel C presents the results of an interesting case. In their paper, Cochrane

12In Appendix B, we employ a Diebold and Mariano (1995) pairwise test to compare the predictions from
different models.
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and Piazzesi (2005) conclude that lags of forward rates (dated t − 1 and earlier) contain infor-

mation about excess returns that is not spanned by month t forward rates. They note that

this result is inconsistent with the logic that the time-t term structure contains all information

relevant to forecasting future yields and excess returns (c.f. equation (2)). We therefore ask

whether the flexibility of a NN can help reconcile the theoretical assumption that yields at time

t already incorporate all information about the term structure that is needed to understand

bond risk premia. To this end, the last row in Panel C reports the results obtained by feeding

the NN with the ten forward rates at time t and lagged forward rates from time t − 11 to

t− 1. By comparing the last row to the NN with one hidden layer and three nodes, we find no

evidence that we can improve upon a NN that uses just the month-t forward rates.13

The evidence in Table 1 confirms that, even in a small dimensional setting using only

information in the yield curve, we can improve bond risk premia measurement by acknowledging

that (1) the function g(yt;N) in equation (2) can be non-linear, and that (2) such improvement

depends on the neural network specification; a shallow NN with one hidden layer performs on

par with a network with two layers, but deeper networks worsen the performance. Finally,

consistent with equation (2), we do not find extra information in the lagged values of the yield

curve as opposed to just using the time-t term structure when we account for non-linearities.

4.2 Bond return predictability and macroeconomic variables

Next, we consider the set-up where information embedded in the yield curve does not

necessarily subsume information contained in macro variables. In this case, the classical spec-

ification is given by equation (4), where the factors Ft now have the potential to serve as the

model’s state vector beyond yields only. To ensure comparability with the literature, we adopt

the specification proposed by Ludvigson and Ng (2009), whereby F t is a subset of the first

eight PCs extracted from a large cross-section of macroeconomic variables and xt represents

a linear combination of forward rates as proposed by Cochrane and Piazzesi (2005), a.k.a. the

13We report only the best specification with lagged forward rates (i.e., a shallow NN with seven nodes). NNs
with more layers or a different number of nodes underperform.
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CP factor.

Panel A in Table 2 displays results from a simple principal component regression with

eight PCs, the specification proposed in equation (8) of Ludvigson and Ng (2009) (i.e., F t =

(F1t, F 3
1t, F3t, F4t, F8t)), and partial least squares (PLS). Panel B shows the results from two

alternative implementations of sparse and regularized linear regressions. In the first implemen-

tation (“using CP factor”), we employ the CP factor as an additional regressor; this specifica-

tion ensures a closer comparability to Ludvigson and Ng (2009). In the second implementation

(“using fwd rates directly”), we treat the whole set of forward rates as additional regressors

with respect to macroeconomic variables. The results in Panels A and B shows that: (1)

dense modeling, such as data compression techniques and ridge regression, tends to perform

poorly out-of-sample; and (2) sparse modeling with both regularization and shrinkage (i.e.,

elastic net regressions), perform well, particularly when restricting the linear combination of

forward rates. Comparing Panel B in Table 1 to that in Table 2, it seems apparent that there

is information beyond the term structure of interest rates that can be used to predict bond

returns.

Turning to non-linear machine learning methods, Panel C in Table 2 shows the results

from the three alternative network specifications discussed in Subsection 3.2.4: (1) a “hybrid”

framework in which the forward rates enter linearly as additional predictors in the output layer

(“fwd rates direct”; Figure 3, Panel (a)); (2) a specification that ensembles one network for the

forward rates (“fwd rates net”) and one for the macroeconomic variables (Figure 3, Panel (b));

and (3) a specification that entails a collection of networks, one for each group of macroeconomic

variables (Figure 3, Panel (c)). This latter specification, dubbed “group ensembling,” switches

off the (non-linear) interactions across groups of macroeconomic variables, which are present

in the hybrid network, as well as in the specification that ensembles separately forwards and

macroeconomic variables.

The performance of hybrid networks stands out. Interestingly, and differently from Table

1, increasing the depth of the NN from one- to three-layers improves its accuracy. However, a

careful choice of network structure based on prior economic information exerts a great impact on
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performance. In particular, a one-layer group ensembled model (see third-to-last row) performs

on par with the three-layer hybrid NN for short- and medium-term maturities, and attains the

highest predictive accuracy for the 7- and 10-year bonds. Interestingly, adding more layers is

detrimental to the performance of the group ensembled NN.

Panel C in Table 2 also shows that the performances of boosted regression trees, random

forests, and extreme trees improve substantially when using a large panel of macroeconomic

information. In fact, the extreme trees performs better than shallow (hybrid and ensembled)

NNs but worse than the (best performing) one-layer NN with group ensembling; see Appendix

B for a formal comparison of the predictions from different models using a Diebold and Mariano

(1995) pairwise test.

The results in Table 2 show that macroeconomic variables carry information that is not

contained in the yield curve. When we compare the best performing (one layer and three

nodes) NN in Table 1 to the 1-layer group ensembled NN, we observe approximately a 10

percentage point increase in R2
oos for each maturity. The results also show that the depth

and structure of the network interact with one another: having a separate network for each

group of macroeconomic variables compensates for the need of a deep NN when macroeconomic

variables are processed together without further classification.

5 Dissecting Predictability

5.1 Bond return predictability in expansions and recessions

We start by investigating whether bond return predictability varies over the economic cycle.

To this end, we split the data into recession and expansion periods using the NBER recession

indicator.

Table 3 shows the R2
oos values computed separately for the recession and expansion sub-

samples. For yields-only PCA, we recover a classical result: predictability is concentrated in

economic recessions (in particular for long maturity bonds) and is absent during expansions.
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Turning to NNs, we continue to observe R2
oos that are generally higher during recessions

than in expansions. However, the difference in R2
oos values decreases with bond maturity. More

importantly, a formal test confirms that the bond return prediction from NNs is statistically

different from that of the expectations hypothesis (EH) model both in expansion and reces-

sion. In contrast to NNs, the return predictability implied by trees is actually stronger during

expansions. A formal test confirms that the predictive accuracy of trees is significantly better

than that generated by the EH benchmark only for expansion periods. Finally, a pairwise test

(untabulated) confirms that the improvement of NNs over trees is mainly due to the better

predictive accuracy of networks in recessionary periods; however, the predictions from trees

and NNs are indistinguishable in expansions.

Our finding that the predictability of bond returns implied by machine learning methods

is not concentrated exclusively in bad times, but is present also in expansions is novel to

the literature and contrasts with evidence for equities (Rapach et al., 2010; Dangl and Halling,

2012) and bonds (Gargano et al., 2019). In Appendix C.1, we analyze the models’ performance

in different periods using the cumulative sum of squared errors and confirm that the out-

performance of machine learning-based forecasts versus the EH benchmark is not concentrated

in isolated events.

Interestingly, however, it is possible to relate, ex post, NN forecasts to specific patterns of

the yield curve. Appendix Table C.1 shows that NNs, and in particular the group ensemble

network that exploits macroeconomic and financial information in addition to interest rates,

predict high excess bond returns when there is a steep slope in the yield curve (e.g., right

after recessions) and when the level of the yield curve is high. Further, these NN predictions

(conditional on specific shapes of the yield curve) are highly correlated with realized returns,

thus leading to high R2s.
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5.2 Understanding the performance of neural networks: level, slope

or both?

In this subsection we provide an heuristic interpretation of the performance of the NNs

based on the Campbell and Shiller (1991) accounting identity (equation (1)). Such identity

posits that the forecasts of future yields (or their PCs) using current yields are necessarily also

forecasts of expected log returns to bonds. Thus, we investigate the ability of the latent factors

extracted by the NN to predict the year-on-year changes in the first three PCs extracted from

the cross section of forward rates. We denote these principal components as PC1,t, PC2,t, and

PC3,t. The auxiliary forecasting regressions are:

PCi,t+1 − PCi,t = b0 + b
⊺
1Pt + b

⊺
2xt + εi,t+1 for i = 1,2,3,

where we stack the first three PCs of the term structure in the vector Pt and denote by xt the

hidden factors extracted by the NN.14

Table 4 reports the in-sample R2 of such predictive regressions. The first row provides the

benchmark results based on the sole vector Pt. In support of Duffee (2011a, 2013), we find weak

evidence that changes in the first PC (level) are forecastable (R2 = 9.28% being the lowest),

whereas the slope and curvature are unquestionably forecastable with 21.66% (48.70%) of the

variation in slope (curvature) that is predictable.

Next, we add to the regression the hidden factors extracted from the two best performing

NNs in Table 1-2: the NN 1 Layer (3 nodes) – when forecasting only with the forward rates –

and NN 1 Layer Group Ensem + fwd rate net – when including also macroeconomic variables.

We observe that the factors extracted from NNs that use yields-only (second row in Table 4)

contribute substantially to the predictability of the level and curvature. On the other hand,

the statistical evidence for slope forecasts - after controlling for the standard three principal

14Take a shallow network with L = 1 hidden layers as an example, i.e.,: Et [xr(n)t+1] = α̂n + β̂
⊺

nxt, where,

xt = h (Wyt + b). The latent factor xt is extracted at each time t conditional upon estimates of the weights
W and bias b from the vector of inputs yt.
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components - is weak. We conclude that there is substantial information in the time-t term

structure not only about future values of slope, but also about the level (and curvature).

Standard PCs are not entirely able to extract all the relevant information about the level. A

shallow NN is successful in extracting such information about the future level of the curve, an

information which leads to excess returns being more predictable out-of-sample.

The last row in Table 4 focuses on factors extracted from a NN that exploits macroeconomic

variables in addition to forward rates. We observe that the factors extracted from the group

ensembled NNs not only contribute to the ability to predict the level of the yield curve, but also

the slope. This suggests that the slope of the yield curve is related to the state of the economy,

and our NN is able to extract the relevant information from our large set of macroeconomic

variables.

5.3 Relative importance of macroeconomic variables

In this subsection, we investigate which variables drive the performance of NNs studied in

Tables 1-2. To this end, we examine the marginal relevance of single variables based on the

partial derivative of the target variable, xr
(n)
t+1 , with respect to each input, where the gradient

is evaluated at the in-sample mean value of the input, i.e.,

E [
∂

∂yit
xr
(n)
t+1 ∣yit = yi] , (7)

where yi represents the in-sample mean of the input variable i. The partial derivative represents

the sensitivity of the output to the ith input evaluated at its sample mean, conditional on the

network structure and the average value of the other input variables (see Dimopoulos et al.,

1995). Further, we focus on the magnitude of the gradients by taking their absolute values.

Appendix C.3 provides additional discussion about the computational details.

Figure 5 shows the relative importance of each input variable based on the gradient in

equation (7). The analysis is carried out for the best-performing NN in Table 2, the NN with

one hidden layer where macroeconomic variables and forward rates are modeled separately
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through ensembling at the output layer level. For ease of exposition, we report only the top

20 most relevant predictors. Panels (a) and (b) display results for the 2- and 10-year bond

maturities, respectively. To gain further intuition about the systematic patterns in the drivers

of expected excess bond returns, we also calculate the relative importance from the absolute

gradients averaged for each class of input variables as labeled in McCracken and Ng (2016).

The results provide an indication of which economic category dominates.

In Panel (c) and (d) of Figure 5, the variables pertaining to inflation, and money and credit

are important independently from the maturity considered. However, the results also show

that the effect of other classes of predictors is heterogeneous over the term structure. For

instance, variables related to the stock and labor market are more important for the short-end

of the yield curve, while variables pertaining to the categories output & income and orders

& inventories become more relevant for the long-end of the curve. This analysis is important

for two reasons. First, it suggests that inflation has a level-like effect on bond yields, whereas

variables pertaining to the labor market (order & inventories) are likely to have a slope effect

acting mostly on short-term (long-term) bonds, while leaving long-term (short-term) bonds

unaffected. This evidence can therefore provide guidance for theoretical models that include

macro risk factors as drivers of bond risk premia by highligting their permanent or transient

nature. Second, our analysis suggests that the use of excess bond returns averaged across

maturities is unlikely to flesh out the true impact of macro risk factors on bond risk premia.15

In all, our results show that there is information in macroeconomic and financial variables

beyond that conveyed by the yield curve, and this information improves the predictions of

bond returns (Tables 1-2). In addition, the type of unspanned (by the yield curve) information

may vary across different bond maturities. To our knowledge, this fact is novel and provides a

new angle to revisit a central question in the term structure literature, which is whether yields

data contain all the relevant information to predict future bond returns.

15Our evidence of a level-like effect of inflation on bond yields is in line with the analysis in Joslin et al.
(2014, Section VI). Furthermore, within the orders & inventories category, we find that “New Orders for Durable
Goods” is of single-most importance for forecasts at the far end of the curve (see Panel (b) in Figure 5). Yang
(2011) provides theoretical and empirical evidence that is consistent with our finding by showing that the
impact of durable consumption growth on the yield curve strengthens with bond maturity.
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5.4 Interactions within or across categories?

The finding that a shallow group ensembled network performs on par with (or better than) a

deep, three layer NN that models all macroeconomic and financial variables together is novel to

the literature on machine learning and asset prices, and is important for two reasons. First, our

results on group ensembled NNs show that the depth of the network and the economic priors

used to design it (e.g., grouping variables that pertain to the same category) interact with one

another. In particular, for the application at hand, group ensembling can compensate for the

depth of the network. Second, our results highlight what type of non-linearities are important

from an economic perspective: Is it the interaction of many variables (across categories) or

a higher polynomial of the same variable (within a category)? Since our group ensembled

network switches off interactions across categories, our results show that it is the non-linearity

within a group that drives the outperformance of the network. Of course, this is true only in

so far as cross-group network weights are not already small in the fully connected network.

Table C.2 in the Appendix shows that this is indeed not the case. More precisely, we calculate

the second order derivatives of the output with respect to each input conditional on the inputs

being in different groups of predictors.16 We estimate cross-group partial derivatives for both

a fully connected network and a network with group-ensembling. The results in Panel A show

that the absolute value of the sum of interaction derivatives in the fully connected network

is orders of magnitude larger than the value obtained from a group-ensembled NN (i.e., the

cross-group interactions are indeed large in the fully connected network). In Panel B of Table

C.2, we provide the within-group second order partial derivatives of the outputs with respect

to the inputs conditional on being in the same group. We find that the magnitude of the

within-group effects is similar between the fully connected and group-ensembled NNs. Hence,

the performance of the group-ensembled NN is driven by imposing the absence of interactions

across categories while allowing for non-linearity within an economic category.

16That is, we calculate:

E [ ∂2

∂yi∂yj
xr
(n)
t+1 ∣yi ∈ GA, yj ∈ GB] , (8)

where GA and GB are two non-overlapping groups of variables defined as in McCracken and Ng (2016), and we
sum the absolute value of equation (8) for each interaction of variables that do not belong to the same group.
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5.5 Model uncertainty

Faced with multiple NN estimates, the question of how to best exploit ex-ante different

forecasting specifications immediately arises. In particular, should we rely on a single, ex post,

dominant model specification or should a combination of different forecasts be used to produce

a better forecast? From a pure theoretical perspective, unless the best forecasting model can be

identified ex-ante, forecast combinations may offer some diversification benefits (see Clemen,

1989, for a discussion). However, it may also be the case that a carefully designed validation

procedure is able to systematically pick the best out-of-sample model specification.

To answer this question, we first compare the best-performing NN within the context of

forecasting bond returns with both yields and macroeconomic variables – the NN 1 Layer

Group Ensem + fwd rate net (see Table 2) – against a combined forecast of the form,

x̂r
(n)
c,t+1 =

M
∑
i=1
ωi,t ⋅ x̂r

(n)
i,t+1 (9)

where x̂r
(n)
c,t+1 denotes the one-step ahead combined forecast for maturity n, ωi,t is the weight

assigned to each individual prediction, x̂r
(n)
i,t+1, and i = 1, . . . ,M are the forecasts from the set

of NNsM in Table 2. We choose two representative model combination schemes: (1) an equal

weight assigned to each forecast, i.e., ωi,t = 1/M, and (2) a linear combination of forecasts

based on the validation losses, i.e., ωi,t =
1/L(ei,t∣θi)

∑Mi=1(1/L(ei,t∣θi))
, where L (ei,t∣θi) is the validation loss

obtained from the cross-validation prediction error ei,t given the network hyperparameters θi.17

In addition to an equal-weight and a relative-performance combination scheme we also

compare our best-performing NN forecasts against a full-blown cross-validated network. In

particular, we expand the set of hyperparameters that are cross-validated and selected every

five years; that is, we let optimization procedures not only select the dropout rate and the

L1/L2 penalties, but also the number of hidden layers, the nodes per group of macroeco-

17Note that the loss function we use is a simple mean squared error plus a penalty to induce regularization
in the weights. This means that the weighting scheme reflects the performance of each model relative to the
performance of the average model (e.g., Bates and Granger, 1969; Newbold and Granger, 1974; Stock and
Watson, 1998; Elliott and Timmermann, 2004).
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nomic variables, and the nodes in the forward rate network (see Table F.1 for details on the

hyperparameters).18

The logic for comparing our best-performing model against two representative forecast

combination schemes and a full-blown cross-validated network is to make sure that our results

are robust to more flexible and adaptive modeling strategies. Table C.3 in Appendix C.5 reports

the results. Two interesting aspects emerge from the table. First, the group-ensembled NN

(see first row) outperforms both forecast combination schemes (second and third rows), the sole

exception being at the two-year maturity. Second, our group-ensemble network specification

tends also to perform on par with, or better than, the full-blown cross-validated network for

maturities greater than three years. Hence, we conclude that the optimal structure of layers and

nodes, which is endogenously chosen through an adaptive cross-validation exercise, does not

improve (except for the very short-end) upon a more parsimonious and economically motivated

network structure, like our one-layer group-ensemble NN.

We next examine the recursive performance, meaning cross-validation error, of the top

performing neural network. In principle, the performance of the NN 1 Layer Group Ensem +

fwd rate net specification could be justified by the fact that such network is consistently chosen

through cross-validation and across time. In Table C.4 in Appendix C.5, we compare how

often the four on average best-performing NN structures from Table 2 are selected throughout

the out-of-sample period. Two interesting facts emerge. First, our best-performing group-

ensembled NN generates the smallest validation error (and thus it would have been chosen

through cross-validation) for about a half of the out-of-sample period. This could explain the

similar performance between the best-performing (group-ensemble) NN in Table 2 and the

full-blown cross-validate model, which contains the benchmarking specification in the model

set. Second, shallow NNs tend to consistently deliver lower validation errors. This reinforces

our result that network depth and structure interact with one another: in fact, a carefully

designed network outperforms a deeper, and more data-driven, network structure.

18We thank an anonymous referee for suggesting this exercise.
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6 Economic Value of Excess Bond Return Forecasts

So far, our analysis concentrated on statistical measures of predictive accuracy. Next we

evaluate whether the apparent gains in predictive accuracy translate into better investment

performance relative to the no-predictability alternative. This is important since Thornton and

Valente (2012) find that yield-based predictors, when used to guide the investment decisions of

an investor with mean-variance preferences, do not lead to higher out-of-sample Sharpe ratios

compared with investments based on a no-predictability expectations hypothesis (EH) model.

Sarno et al. (2016) reach a similar conclusion. However, the large amount of time variation in

expected bond returns that is detectable in real time by machine learning methods naturally

calls for revisiting these findings.

6.1 The asset allocation framework

In order to assess the economic importance of machine learning methods (particularly trees

and NNs) in forecasting bond returns, we use a classic portfolio choice problem (Della Corte

et al., 2008; Thornton and Valente, 2012). Specifically, we consider an investor who optimally

invests in a portfolio comprising K+1 bonds: a risk-free one-period bond and K risky n-period

bonds.

We consider both univariate and multivariate asset allocation exercises. In the univariate

case, the investor selects between an n-year bond and the risk-free return based on the expected

return implied by a given model. We focus on the results for n = 2 and n = 10 years. In the joint

asset allocation exercise, the investor selects bonds with maturities of two- to ten-years, and

the risk-free return. We analyze the asset allocation decisions of a mean-variance investor and

those of a power utility investor. The discussion of the power utility problem and its solution

is in Appendix D.1, and in the remaining discussion focus on the mean-variance case.

At each time t, the decision-maker selects the weights on the risky n-period bonds wt =

[w
(2)
t . . .w

(10)
t ] to maximize the quadratic utility:
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max
wt

E [Rp,t+1] −
γ

2
Var (Rp,t+1) ,

where γ is the risk aversion coefficient of the mean-variance investor, Rp,t+1 = 1+y
(1)
t +w′

txrt+1 is

the gross return on the portfolio, E [Rp,t+1] is the sample mean portfolio return, and Var (Rp,t+1)

is the sample variance portfolio return. Then the solution of the above optimization is wt,s =

1
γΣ−1

t+1∣tx̂rt+1 (Ms), where x̂rt+1 (Ms) is the vector of bond returns’ forecast obtained using

model Ms, and Σt+1∣t = V art (xrt+1 −Et [xrt+1]). For the univariate allocation exercise we

have: w
(n)
t,s =

x̂r
(n)
t+1(Ms)
γσ
(n)

t+1∣t

where x̂r
(n)
t+1 (Ms) is the bond returns’ forecast for maturity n given

model Ms, and σ
(n)
t+1∣t the diagonal element of Σt+1∣t relative to the bond with n-year maturity.

To proxy for Σt+1∣t, we employ a rolling sample variance estimator as in Thornton and

Valente (2012): Σ̂t+1∣t = ∑
∞
l=0 Ωt−l ⊙ εt−lε′t−l, where εt = [ε

(2)
t . . . ε

(10)
t ]

′
are forecast errors, Ωt−l =

α exp (−α)11′ is a symmetric matrix of weights, ⊙ denotes element-by-element multiplication,

and we set the decay rate α to 0.05 (same value as in Thornton and Valente (2012) and within

the range of those reported in studies like Fleming et al. (2001)). We also winsorize the weights

for each of the n-period bonds to −1 ≤ w
(n)
t ≤ 2 to prevent extreme investments; however, we

evaluate the robustness of our results to alternative assumptions about the portfolio weights.

Finally, to make our results directly comparable to other studies (e.g., Thornton and Valente,

2012; Gargano et al., 2019), we assume a coefficient of risk aversion of five.

Given the Markowitz optimal weights on the risky bonds, we compute the realized utilities.

Then, following Fleming et al. (2001), we obtain the certainty equivalent gains (annualized and

in percentages) by equating the average utility of the EH model with the average utility of any

of the alternative models.

To test whether the certainty equivalent return (CER) values are statistically greater than

zero, we use a Diebold and Mariano (1995) test. Specifically, to evaluate the allocation implied

by the NN forecasts, we estimate the following regression:

ut+1,NN − ut+1,EH = α(n) + εt+1 ,

where ut+1,s = w′
t,sxrt+1 −

γ
2w

′
t,sΣt+1wt,s and s = {EH,NN}, i.e., we use the optimal weights

together with the realized returns.

30

Electronic copy available at: https://ssrn.com/abstract=3232721



6.2 Asset allocation: results

Table 5 shows the annualized CER values computed relative to the EH model. Positive

values indicate that the predictive model performs better than the EH model. We focus on

the best predictive models from Tables 1-2, the extreme trees and the NN 1 Layer (3 nodes)

– when forecasting only with forward rates – or NN 1 Layer Group Ensem + fwd rate net –

when including the macroeconomic variables.

With the sole exception of the mean-variance investor selecting the two-year bond, the

remaining CER values for the trees and NNs are significantly higher than those generated by

the EH benchmark. The CER values increase with bond maturity, but the highest CER values

are found in the multivariate setting, which suggests that the economic gains associated with

NNs forecasts are not limited to specific maturities.

Interestingly, when the (mean-variance or power utility) investor makes no use of infor-

mation beyond the term structure of interest rates, then trees deliver CER values that are

0.2%-0.7% greater than those obtained using NNs. However, when the investor also considers

information from macro and financial variables, then NNs outperform trees by 0.5% (power

utility and 10-year bond) to 1% (multivariate setting). A pairwise test confirms that this

improvement of NNs over trees is statistically significant. Furthermore, the results in Table

5 also show that (for the univariate and multivariate allocation, independently from utility)

the group-ensemble NN that exploits macroeconomic information produces significantly higher

CER values than those implied by the best-performing NN using yields-only. Overall, our

machine learning-based forecasts of bond returns provide support for the hypothesis that a

(statistically and economically) significant portion of macroeconomic information is not cap-

tured by the yield curve, even after accounting for non-linearity in interest rates.19

Appendix Table D.1 shows the investment performance when we change assumptions about

the portfolio weights. In the first scenario (Panel A), we restrict the weights on the risky bonds

19The p-values based on power utility (Panel B) are lower than those reported for mean-variance (Panel A).
This is because the power utility setting generates less volatile CER series. To address the higher persistence
of power utility CER, we compute Newey-West standard errors using a larger truncation parameter equal to
20 lags (see Lazarus et al., 2018). Even in this case, we continue to find statistical support for our conclusions.
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to the interval [0, 0.99] to ensure that the expected utility is finite even with an unbounded

return distribution (e.g., Kandel and Stambaugh, 1996; Geweke, 2001a). In the second scenario

(Panel B), we leave the portfolio weights unrestricted and instead restrict the bond returns

to fall between −100% and 100% to prevent the expected utility from becoming unbounded

(e.g., Johannes et al., 2014). In both cases, our conclusions continue to hold: the CER values

of the tree and NN models are generally significantly higher than those generated by the

EH benchmark; moreover, NNs outperform trees provided that macroeconomic variables are

included in the set of predictors.

In summary, we find that a NN that exploits the non-linearities within groups of macroeco-

nomic variables delivers high predictive accuracy (see Table 2), which, in turn, translates into

investment strategies with large economic value (see Table 5).

7 Economic Drivers of Bond Return Predictability and

Portfolio Performance

In this section, we investigate whether our forecasts of excess bond returns are consistent

with explanations based on time-varying risk premia. We then examine the economic drivers

of bond return predictability and portfolio performance.

7.1 Cyclical pattern of expected excess bond returns

We start by investigating the cyclicality of our forecasts of excess bond returns. Indeed,

standard asset pricing models featuring habit persistence like Wachter (2006) suggest that

bond risk premia are countercyclical.

In Panels (a) and (b) in Figure 6, we plot the forecast of 10-year bond returns obtained

from the best-performing NNs against the industrial production index growth. The results are

similar for alternative maturities. We report the prediction based on yields only (Panel (a)),
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as well as the prediction obtained by adding macroeconomic variables to forward rates (Panel

(b)). In Panels (c) and (d), we overlay our forecasts with the realized ten-year excess bond

returns series.20

Independently of the set of predictors employed, Panels (a) and (b) in Figure 6 reveal

that the bond risk premium obtained from NNs displays a clear countercyclical pattern. In

particular, the contemporaneous correlations between forecasts of the ten-year excess bond

returns and industrial production is −12.4% (p-value of 0.07) when only information in the term

structure is used (Panel (a)). This correlation almost doubles to −24.6% (p-value of 0.01) when

we add macroeconomic variables to forward rates (Panel (b)).21 Thus, using macroeconomic

variables greatly improves the estimates of the risk premium.

This prima facie evidence suggests that our forecasts may be consistent with the fact that

investors want to be compensated for bearing recession-related risks. To the extent that our

forecasts of excess bond returns reflect time-varying risk premia, we would also expect higher

Sharpe ratios in recessions. To this end, Table 6 reports, for the 2- and 10-year bond maturities,

the Sharpe ratios computed separately for recession and expansion periods. We find that,

across all maturities and forecasting models, the Sharpe ratios are substantially higher during

recessions than in expansions.

7.2 Economic drivers of expected excess bond returns

Having established that our forecasts of excess bond returns, and the associated Sharpe

ratios, move counter-cyclically, we next investigate whether these forecasts are linked to key

drivers of bond risk premia suggested by asset pricing theory and previous evidence. In particu-

lar, we regress the forecasts of ten-year excess bond returns obtained from the best-performing

NNs in Tables 1-2 on a set of structural risk factors that arise in equilibrium models and

generate time-varying bond risk premia. Each row in Table 7 corresponds to a different speci-

20Relative to yields-only, the addition of macroeconomic variables leads to: (1) NN forecasts that are higher
in the recession of 2007-2009, and (2) better predictive performance. In Appendix C.1, and in particular Panels
(b) and (d) of Figure C.1, we examine the predictive accuracy of NNs throughout our sample period.

21The correlation p-values are computed using Newey and West (1987) standard errors with 12 lags.
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fication.22

Motivated by the literature on the role of disagreement in asset prices (e.g., Buraschi and

Jiltsov, 2007; Dumas et al., 2009), we examine the role played by differences in beliefs for the

dynamics of excess bond returns. The results are in row (i) in Table 7. We proxy for real

disagreement (DiB(g)) and nominal disagreement (DiB(π)) using the interquartile range of

four-quarter-ahead forecasts of GDP and consumer prices (CPI), respectively, obtained from

the Survey of Professional Forecasters (SPF).

We investigate the link between time-varying risk aversion and excess bond returns in

rows (ii) and (iii) of Table 7. Asset pricing models featuring habit persistence suggest that

risk premia should be higher during recessions due to a reduced surplus consumption ratio.

Following Wachter (2006), we proxy for risk aversion using (the negative of) a weighted average

of 10 years of quarterly consumption growth rates (dubbed −Surplus). We also employ the new

measure of time-varying risk aversion proposed by Bekaert et al. (2019) (dubbed RAbex). This

risk aversion measure is calculated from observable financial information at high frequencies.

We next examine the role played by economic growth and inflation uncertainty, UnC(g) and

UnC(π), for expected bond returns in row (iv). This link can be motivated by long-run risk

models like Bansal and Shaliastovich (2013) or by habit-models that allow for time variation

in quantities of risk like Creal and Wu (2018).23

Finally, we examine the link between bond volatility and our forecasts of excess bond returns

in row (v) of Table 7. To assess this link, we employ two proxies: (1) the intra-month sum of

squared yield changes (returns) on a constant maturity 10-year zero-coupon bond (denoted as

σ(n)); and (2) the one month implied 10-year maturity bond risk-neutral volatility published

by the CME (denoted as TY V IX).24

22We focus on the 10-year maturity bond to make a clean comparison with Buraschi et al. (2019). However,
we find our conclusions to be robust across maturities.

23To proxy for uncertainty, we adapt the procedure of Bansal and Shaliastovich (2013). In the first step, we
use our SPF on consensus expectation of four-quarter GDP growth and inflation and fit a bivariate VAR(1). In
a second step, we compute a GARCH(1,1) process on the VAR residuals to estimate the conditional variance
of expected real growth and inflation.

24https://www.cboe.com/products/vix-index-volatility/volatility-on-interest-rates/

cboe-cbot-10-year-u-s-treasury-note-volatility-index-tyvix.
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Several conclusions emerge from the results in Table 7. First, the link between structural

risk factors and realized returns is generally weak. The sole factor that is statistically linked

to realized bond returns is the risk neutral volatility (Panel A, row v).

Our forecasts of excess bond returns paint a completely different picture. Independently

from the set of predictors we use, we find a strongly positive coefficient on uncertainty about

economic growth but not on inflation uncertainty (Panels B and C, row iv). We also find strong

support for the prediction of equilibrium models based on habit preferences (Panels B and C,

row ii). Adding macroeconomic information strengthens this conclusion: in this case, the slope

coefficient on the risk aversion measure proposed by Bekaert et al. (2019) is also positive and

statistically significant (Panel C, row iii). Finally, in line with Duffee (2002), we find only a

weak link between expected bond returns and bond volatility (Panels B and C, row v; the link

is marginally significant in Panel B but the R2 is small).

There are minor differences between Panel B and C. In particular, the addition of macroe-

conomic variables leads to a positive and statistically significant slope coefficient on nominal

disagreement (Panel C, row i). However, in a horse race only (habit) risk aversion and macroe-

conomic uncertainty continue to stay significant, leading to a large R2 of about 25%. Instead,

(nominal) disagreement is driven out (Panel C, row vi). This is also the case in Panel B.

Comparing row (vi) in Panels B and C to Panel A, it is apparent that using the measure of

excess bond returns implied by NNs instead of realized returns leads to stronger support of the

predictions of equilibrium models.25

In Appendix D.3, we discuss the relation between the realized utility obtained in the port-

folio analysis in Section 6 and the same structural risk factors presented in this section. The

results in Tables D.2-D.3 show that the relation between utility gains from our portfolio analysis

is the strongest with risk aversion and time-varying uncertainty.

The evidence in Table 7 for bond returns forecasts, and that in Tables D.2-D.3 for realized

utility, confirm that the variation in expected bond returns implied by a NNs can be understood

25A saturated regression that includes all variables simultaneously leads to the same conclusion: only habit-
based risk aversion and macroeconomic uncertainty remain significant. The R2 from the saturated regressions
are 12%, 25.51%, and 25.60%, adding little explanatory power to the specification (vi) in Panels A, B, and C.
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in terms of time variation in risk prices and time-varying (macroeconomic) risk. Overall, our

results support models that feature both channels, such as Bekaert et al. (2009) and Creal and

Wu (2018).

Our evidence stands in stark contrast to the recent finding of Buraschi et al. (2019). They

find that the quantity of risk as measured by bond volatility has a strong role, whereas habit-

based risk aversion matters little. Thus, our statistical measure of bond risk premia likely

captures a potentially different channel component from the subjective bond risk premia of

Buraschi et al. (2019). We investigate this point further in the next subsection.

7.3 Statistical versus subjective forecasts

Table 8 reports the correlations between our forecasts of ten-year excess bond returns ob-

tained from the best-performing tree and NNs in Tables 1-2 with three recent proxies for risk

premia that rely on interest rates forecasts as surveyed by the Blue Chip Financial Forecasts

(BCFF): (1) the measure of subjective bond risk premia (EBR∗) proposed by Buraschi et al.

(2019) based on aggregation of expectations of (the top decile of) professional forecasters; (2)

the Piazzesi et al. (2015) consensus measure of subjective bond risk premia constructed as the

difference between subjective and VAR interest-rate expectations, E∗
t [i

(n−h)
t+h ]−Et [i

(n−h)
t+h ]; and

(3) the forecasts by Giacoletti et al. (2016) based on a learning rule that updates beliefs using

the history of bond yields and disagreement among forecasters.26,27

The results in Table 8 show that, across all bond maturities and model specifications, the

correlation between our forecasts and the subjective bond risk premia of Buraschi et al. (2019)

is small, and not statistically significant. This is in line with our previous analysis of economic

drivers of bond return predictability (Table 7): our forecasts are associated with proxies for

26We kindly thank Paul Whelan and Marco Giacoletti for sharing their proxy of bond risk premia with us.
27We measure E∗

t [i(n−h)t+h ] using the median survey forecast of i
(n−h)
t+h for the 10-year Treasury bond from the

Survey of Professional Forecasters. Importantly, Piazzesi et al. (2015) find that “median forecasts from the
SPF are similar to those from the Bluechip survey.” The statistical forecasts follow Piazzesi et al. (2015): we
compute the forecasts by running OLS directly on the system Yt+h = µ + φYt + εt+h, so that we can compute
the h-horizon forecast simply as µ + φYt. The vector of interest rates Y includes the 1-, 2-, 3-, 4-, 5-, 7-, and
10-year maturity.
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time-varying risk aversion and macroeconomic uncertainty whereas Buraschi et al. (2019) find

a strong link between the quantity of risk channel (as proxied by bond volatility) and their

proxy for bond risk premia.

We instead find a strong and positive association between our forecasts and the Piazzesi

et al. (2015) measure of bond risk premia, in particular when yields-only based forecasts are

considered. This is perhaps not surprising given the evidence in Buraschi et al. (2019): the

consensus is not a sufficient statistic for the cross-section of expectations so that aggregation of

subjective bond risk premia for each single contributor (as in EBR∗) may differ from measures

that rely on the simple arithmetic average of the cross-section of forecasters (as in Piazzesi

et al., 2015). However, we note that adding macroeconomic variables weakens the correlation

between our forecasts and subjective measures based on consensus.

Finally, the correlation between our forecasts and those of Giacoletti et al. (2016) are quite

large and mostly significant. This effect is generally stronger for long maturity bonds and when

yields-only based forecasts are considered. Overall, dynamic learning effects could account for

some of our findings of bond return predictability.

8 Conclusion

In this paper we evaluate the benefits of using machine learning methods for understanding

bond price fluctuations. Three main findings emerge from our analysis.

First, we show that non-linear machine learning techniques, such as extreme trees and neural

networks, detect predictable variations in bond returns that are statistically large; importantly,

the forecasts implied by these methods translate into similarly large out-of-sample economic

gains. Second, we document that employing the NN forecasts based on macroeconomic and

yield information produces significantly higher certainty equivalent return values than those

implied by the NN forecasts based on yields-only variables, thus providing support for infor-

mation that is unspanned by (potentially non-linear transformations of) the yield curve and
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yet useful to forecast bond returns. We also provide evidence of a significant heterogeneity in

the relative importance of macroeconomic variables across bond maturities. Hence, the type

and nature of unspanned factors may depend on the bond maturity. Finally, we document that

NN forecasts are countercyclical and mostly related to variables that proxy for macroeconomic

uncertainty and time-varying risk aversion. Our results provide support for models that fea-

ture both time variation in risk prices and time-varying risk as in, for example, Bekaert et al.

(2009) and Creal and Wu (2018). However, our statistical measure of expected bond returns

contrasts with recent survey-based measures like the one proposed by Buraschi et al. (2019),

which is mostly related to financial (specifically, bond) volatility.

From a pure machine learning perspective in the context of asset pricing, we make three

contributions. First, we find that NNs perform well even when, in the context of bond return

regressions, we employ just yield-based variables (i.e., in a low dimensional setting). This

finding emphasizes that the success of NNs is largely due to their ability to capture complex

non-linearities in the data. Second, we document that non-linearities within macroeconomic

categories (output, inflation, labor market, etc) are more important than interactions across

categories. Finally, we document that a carefully chosen structure of the network (like group

ensembling) may compensate for the depth of the network.

Overall machine learning methods that dispense with the linearity assumption in the return-

predicting function may prove useful to improve our empirical understanding of asset price

movements.
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Table 3: Forecasting Performances in Expansions and Recessions

This table reports the out-of-sample performances, measured by R2
oos, separately for expansions (Exp) and

recessions (Rec) as defined by the NBER recession index. For ease of exposition, we report the results for the
Principal Component Regression with three PCs and for the best performing non-linear methodologies, that is
extreme trees and the NN 1 Layer (3 nodes) – when forecasting with only the forward rates – and NN 1 Layer
Group Ensem + fwd rate net – when including also macroeconomic variables – (see Table 1-2 for reference).
We focus on the prediction exercise with two- and ten-year maturity bonds. We denote in boldface values for
which the predictive accuracy of a given model is better than that obtained from the EH benchmark at the
5% level (p-value calculated as in Clark and West (2007)). The out-of-sample predictions are obtained by a
recursive forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Forward rates Fwd rates + Macro

R2
oos R2

oos

Exp Rec Exp Rec

PCA (10-year maturity) 7.69% 34.88% -1.08% -41.19%

PCA (2-year maturity) -15.27% -30.04% -8.30% 22.98%

Extreme tree (10-year maturity) 26.80% 2.85% 33.38% -8.74%

Extreme tree (2-year maturity) 7.19% -14.18% 25.08% 11.63%

Neural net (10-year maturity) 26.28% 27.33% 35.70% 42.54%

Neural net (2-year maturity) 9.42% 30.31% 17.34% 34.23%

Table 4: Ex-post Diagnostics Based on Principal Components Forecasts

This table reports the in-sample R2 of a predictive regression where the dependent variable is the year-on-year
change in the first three principal components extracted from the term structure of interest rates. The first row
reports results when the independent variables are the lagged first three principal components. The second and
third rows display the in-sample R2 when, in addition to the first three principal components, we include the
factors extracted from the best performing neural networks obtained using either forward rates only or forward
rates plus a large set of macroeconomic variables (see Table 1-2 for reference).

Level Slope Curvature

PCA 9.28% 21.66% 48.70%

Neural net (fwd rates only) 36.67% 22.05% 70.52%

Neural net (fwd rates + macro) 30.98% 30.91% 65.43%
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Table 5: Economic Significance of Bond Predictability

This table reports the annualized certainty equivalent values (in %) for portfolio decisions based on the out-
of-sample forecasts of bond excess returns for an investor with either mean-variance (Panel A) or power utility
(Panel B) and a coefficient of risk aversion equal to five. The table reports two asset allocation exercises.
In the univariate asset allocation case, the investor selects either the two- or the ten-year bond, along with
the one-year short-rate. In the multivariate case, the investor selects bonds across the six maturities, two- to
five-, seven- and ten-years. The asset allocation decision is based on the predictions implied by either the best
performing regression tree specification, i.e., extreme tree, or the best performing neural network, namely the
NN 1 Layer (3 nodes) – when forecasting with only the forward rates – and NN 1 Layer Group Ensem + fwd
rate net – when including also macroeconomic variables – (see Table 1-2 for reference). The row ∆ reports
the value added by NN relative to extreme tree within each application (“Fwd rates” and “Fwd + Macro”).
The column ∆ reports the value added by “Fwd+Macro” relative to “Fwd rates” within each model (NN and
extreme tree). The models are benchmarked against the expectation hypothesis. The out-of-sample predictions
are obtained by a recursive forecast which starts in January 1990. The sample period is from 1971:08-2018:12.
Statistical significance is based on a one-sided Diebold and Mariano (1995) test as extended by Harvey et al.
(1997) to account for autocorrelation in the forecasting errors. We flag in bold those values that are statistically
significant at the 5% confidence level.

Panel A: Mean-Variance Utility

2-year maturity 10-year maturity All

Fwd rates Fwd + Macro ∆ Fwd rates Fwd + Macro ∆ Fwd rates Fwd + Macro ∆

Neural net -0.044 -0.002 0.042 2.622 4.194 1.571 3.555 5.015 1.461

p-value (0.552) (0.981) (0.422) (0.002) (0.000) (0.000) (0.017) (0.050) (0.000)

Extreme tree -0.151 -0.022 0.128 2.881 2.955 0.074 3.266 3.961 0.695

p-value (0.464) (0.675) (0.355) (0.001) (0.000) (0.864) (0.078) (0.078) (0.112)

∆ 0.106 0.020 -0.258 1.239 0.289 1.054

p-value (0.421) (0.680) (0.510) (0.001) (0.722) (0.024)

Panel B: Power Utility

2-year maturity 10-year maturity All

Fwd rates Fwd + Macro ∆ Fwd rates Fwd + Macro ∆ Fwd rates Fwd + Macro ∆

Neural net 0.056 0.111 0.054 2.714 3.077 0.363 3.152 4.829 1.678

p-value (0.002) (0.000) (0.000) (0.000) (0.000) (0.020) (0.000) (0.000) (0.000)

Extreme tree 0.022 0.092 0.072 3.301 2.511 -0.795 3.831 3.943 0.113

p-value (0.486) (0.002) (0.000) (0.000) (0.000) (0.021) (0.000) (0.000) (0.835)

∆ 0.034 0.017 -0.591. 0.567 -0.680 0.886

p-value (0.212) (0.267) (0.023) (0.024) (0.030) (0.029)
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Table 6: Sharpe Ratios in Expansions and Recessions

This table reports the out-of-sample annualized Sharpe ratio, separately for expansions (Exp) and recessions
(Rec) as defined by the NBER recession index. We report the results for the benchmarking regression that
employ the first three principal components of the yield curve, and for the best performing non-linear method-
ologies, that is extreme trees and the NN 1 Layer (3 nodes) – when forecasting with only the forward rates
– and NN 1 Layer Group Ensem + fwd rate net – when including also macroeconomic variables – (see Table
1-2 for reference). We focus on the prediction of two- and ten-year bond. The out-of-sample predictions are
obtained by a recursive forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Forward rates Fwd rates + Macro

Exp Rec Exp Rec

PCA (10-year maturity) 0.087 1.364 -0.118 0.190

PCA (2-year maturity) 0.037 1.524 0.403 1.356

Extreme tree (10-year maturity) 0.261 0.521 0.491 0.555

Extreme tree (2-year maturity) 0.253 1.688 0.740 1.541

Neural net (10-year maturity) 0.506 1.769 0.749 1.707

Neural net (2-year maturity) 1.077 2.384 1.093 2.098
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Table 7: Drivers of Bond Risk Premia

This table reports the regression estimates of realized (Panel A) and expected (Panel B and C) bond excess
returns on 10-year bonds on a set of structural determinants of risk premia (see discussion in the paper for
details). The expected bond return (dependent variable) is based on the predictions implied by the best
performing neural network, namely the NN 1 Layer (3 nodes) – when forecasting with only the forward rates –
and NN 1 Layer Group Ensem + fwd rate net – when including also macroeconomic variables – (see Table 1-2
for reference). We standardize both left- and right-hand side variables, so that a 1-standard deviation change
in the right hand variables implies a β-standard deviation in the dependent variable. We report the regression
estimates as well as Newey-West p-values. Bold font indicates significance at the 5% level. The out-of-sample
predictions are obtained by a recursive forecast which starts in January 1990. The sample period is from
1971:08-2018:12.

Panel A: 10-year realized bond excess returns

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) -0.19 0.29 6.43

(0.41) (0.19)

(ii) 0.01 0.25

(0.90)

(iii) 0.01 0.25

(0.81)

(iv) -0.14 0.28 5.82

(0.42) (0.14)

(v) 0.25 -0.22 6.36

(0.02) (0.38)

(vi) 0.27 0.04 -0.03 0.09 7.01

(0.08) (0.66) (0.67) (0.14)

Panel B: 10-year expected bond excess returns (fwd rates)

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) 0.02 0.31 3.06

(0.96) (0.22)

(ii) 0.35 9.85

(0.01)

(iii) 0.15 1.58

(0.21)

(iv) 0.40 -0.11 10.34

(0.00) (0.72)

(v) -0.11 0.74 3.30

(0.53) (0.04)

(vi) 0.01 0.43 0.04 0.28 23.69

(0.95) (0.00) (0.77) (0.00)

Panel C: 10-year expected bond excess returns (fwd rates + macro)

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) -0.35 0.55 8.22

(0.43) (0.01)

(ii) 0.32 11.80

(0.02)

(iii) 0.27 6.06

(0.02)

(iv) 0.38 -0.15 8.49

(0.01) (0.71)

(v) 0.05 0.59 5.44

(0.80) (0.14)

(vi) 0.19 0.35 0.15 0.21 25.22

(0.35) (0.00) (0.14) (0.09)
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Table 8: Statistical Vs. Subjective Forecasts of Bond Risk Premia

This table reports the correlation between our machine learning implied forecasts and existing measures of bond
risk premia based on subjective forecasts or on asset pricing models with learning dynamics. Panel A: shows
the results for the forecasts generated using only the forward rates, whereas Panel B: shows the results for the
forecasts generated using both forward rates and a large panel of macroeconomic variables. Correlations are
computed with respect to the subjective bond risk premia in Buraschi et al. (2019) (EBR∗

10y and EBR∗

2y), the
subjective risk premia measure proposed by Piazzesi et al. (2015) (SUBJ BRP), and the out-of-sample bond
returns forecasts in Giacoletti et al. (2016) (GLS). In parentheses we report Newey-West p-values with 12 lags.
Bold font indicates significance at the 5% level. The out-of-sample predictions are obtained by a recursive
forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Panel A: Forecasting with forward rates

10-year maturity
EBR∗

10y SUBJ BRP GLS

Extreme tree -7.5% 49.5% 52.3%
(0.45) (0.00) (0.00)

NN - 1 Layer (3 nodes) 3.3% 56.3% 59.5%
(0.75) (0.00) (0.00)

2-year maturity
EBR∗

2y SUBJ BRP GLS

Extreme tree -18.7% 42.7% 63.8%
(0.17) (0.00) (0.00)

NN - 1 Layer (3 nodes) 4.1% 53.8% 50.3%
(0.78) (0.00) (0.00)

Panel B: Forecasting with forward rates and macro variables

10-year maturity
EBR∗

10y SUBJ BRP GLS

Extreme tree -1.6% 40.9% 48.3%
(0.88) (0.00) (0.00)

NN - 1 Layer Group Ensem + fwd rate net 13.4% 38.0% 47.2%
(0.26) (0.00) (0.00)

2-year maturity
EBR∗

2y SUBJ BRP GLS

Extreme tree 3.5% 21.3% 20.0%
(0.80) (0.13) (0.16)

NN - 1 Layer Group Ensem + fwd rate net 6.4% 27.5% 30.3%
(0.61) (0.03) (0.03)
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Figure 1: Example of a Regression Tree

This figure shows an example of a regression tree for a predictive regression with a univariate target variable,
e.g., the holding period excess return of a one-year treasury bond, and two predictors, e.g., the two-year and

the five-year forward rates, which we label y
(2)
t and y

(5)
t . Left panel shows the partition of the two-dimensional

regression space by recursive splitting. Right panel shows the corresponding regression tree.

(a) Recursive Binary Splitting (b) Partition Tree

Figure 2: Examples of a Neural Network with only forward rates

This figure shows a neural network with one hidden layer when forecasts are based only on forward rates as
e.g. in Cochrane and Piazzesi (2005).
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Figure 4: Sample splitting strategy

This figure shows the sample splitting used for cross-validation of the hyper-parameters of the penalized re-
gressions, i.e., lasso, elastic net, ridge, and the neural networks. The forecasting exercise involves an expanding
window that starts in January 1990. The full sample period is from 1971:08 to 2018:12. The blue area represents
the sum of the training and validation sample. The former consists of the first 85% of the observations while
the latter consists of the final 15% of observations. The training and the validation samples are consequential
and not randomly selected in order to preserve the time series dependence. The red area represents the testing
sample, which consists of the non-overlapping one-year holding period excess returns of treasury bonds.
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Figure 5: Relative importance of macroeconomic variables

This figure shows the relative importance of different macro economic variables use to forecast bond excess
returns. Panels (a) and (b) show results for individual variables, while panels (c) and (d) present results for
groups of macro variables. The groups are labelled according to McCracken and Ng (2016). The relative
importance of an input variable is computed based on the absolute value of the gradient of the network outputs
with respect to the input variable. The gradient is evaluated at the in-sample mean of the input variable. The
gradient-at-the-mean is calculated for each time t of the recursive forecasting exercise and then averaged over
the out-of-sample period. For the grouped results in panels (c) and (d) the relative importance is averaged
within groups.
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Figure 6: Bond excess returns, Model-implied risk premia, and Economic growth

Panels (a) and (b) plot the model-implied expected bond excess returns for the 10-year maturity (blue lines)
against the annual growth rate of industrial production in the US (red dashed line). Panels (c) and (d) display
the time series of annual realized (red dashed line) and expected (blue line) ten-year bond excess returns (in
percentage terms). We report the two best performing forecasts from the neural nets, that is the NN 1 Layer (3
nodes) – when forecasting with only the forward rates – and NN 1 Layer Group Ensem + fwd rate net – when
including also macroeconomic variables (see Table 1-2 for reference). The left panels report the results for the
expected bond excess returns obtained by using the forward rates, whereas the right panels report the results
for the expected bond excess returns obtained by using a large set of macroeconomic variables in addition to
the forward rates.
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A A Simple Motivating Framework

Relying on the large literature on time varying risk premia (see e.g. Campbell and Cochrane, 1999,
Wachter, 2006 and Buraschi and Jiltsov, 2007) we present a simple model with external habit forma-
tion which leads to the Quadratic Linear model.1

The representative agent maximizes

E [∫
∞

0
u(Ct,Xt, t)dt] ,

where the instantaneous utility function is given by

u(Ct,Xt, t) =
⎧⎪⎪⎨⎪⎪⎩

e−ρt (Ct−Xt)
1−γ

1−γ if γ > 1

e−ρt log (Ct −Xt) if γ = 1

where Xt is an external habit level as in Campbell and Cochrane (1999). Consider now the Surplus
Consumption Ratio

St =
Ct −Xt

Ct
.

We model external habit formation as in Pastor and Veronesi (2005), i.e. we assume:

St = est

st = a0 + a1zt + a2z2t
dzt = kz (z̄ − zt)dt + σzdWc,t .

Pastor and Veronesi (2005) show that by choosing ai appropriately (in particular, a2 < 0), then

st < 0 → St ∈ [0,1]. In addition, we must have
∂s(y)
∂y = a1 + 2a2yt > 0 so that positive shocks to

consumption dWc,t translate into positive shocks to the surplus consumption ratio St. The rest of the
model is defined by:

dct = gtdt + σcdWc,t

dqt = itdt + σqdWq,t

where we let ct = logCt and qt = logQt be log consumption and log inflation. Finally assume that
Xt = (gt, it, zt)′ follows the process

dXt =K(Θ −Xt)dt +ΣdW t , (A.1)

where dW t is a vector of Brownian motions.
In this economy, the SDF is given by Mt = eηt−γ(ct+a0+a1zt+a2y

2
t )−qt and the interest rate has a linear

quadratic structure
rt = δ0 + γgt + it + δzzt + δzzz2t (A.2)

Finally, denote the zero coupon bond price by P (Xt, t;T ). Given the specification of the model (A.1),
the price of the zero coupon bond P (Xt, t;T ) is the solution to the Partial Differential Equation (PDE)

rZ = ∂P
∂t
+ ∂P
∂X

K(Θ −Xt) +
1

2
tr ( ∂2P

∂X∂X ′ΣΣ′)

1This material is based on the 2015 Version of Pietro Veronesi’s lecture notes on “Topics in Dynamic Asset
Pricing”.
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subject to the final condition P (XT , T ;T ) = 1. Using the method of undetermined coefficients and
exploiting the risk free rate equation (A.2), we can verify that the log bond price is given by

logP (Xt, t;T ) = A(t;T ) +B(t, T )′Xt +X′
tC(t;T )Xt

where A(t;T ),B(t, T ) and C(t;T ) satisfy a set of ODEs - see Ahn et al. (2002) and Leippold and Wu
(2003).2 Hence, the bond pricing formula is also linear-quadratic with factors given by consumption
growth gt, expected inflation it and habit zt.

For a fairly general framework with non-linear dynamics under the historical measure, and en-
compassing many equilibrium models with recursive preferences and habit formation see Le et al.
(2010). Finally, note that besides habit-based term structure models, non-linearities are also featured
in state-dependent, learning-based models (see, e.g. Veronesi, 2004).

B Pairwise Test of Predictive Accuracy

We follow Gu et al. (2018) and implement a pairwise test as proposed by Diebold and Mariano
(1995) (DM) to compare the predictions from different models. Diebold and Mariano (1995) show
that the asymptotic normal distribution can be a very poor approximation of the test’s finite-sample
null distribution. In fact, the DM test can reject the null too often, depending on the sample size and
the degree of serial correlation among the forecast errors. To address this issue, we adjust the DM
test by making a bias correction to the test statistic as proposed by Harvey et al. (1997).

Figure B.1 confirms the statistical significance of the conclusions reached in Section 4.1 and 4.2 by
implementing such test. The figure reports the significance of the performance gaps while the direction
can be inferred by looking at Tables 1-2. We color-coded the statistical significance of the test, with
lighter color suggesting a stronger rejection of the null (H0: the pairs have the same performance).

The top panel reports the analysis when yields are the only predictors. We observe that: (1)
the performances across classes of machine learning methods tend to differ markedly, with penalized
regressions that have significantly worse accuracy relative to trees, and NNs (white cells); (2) shallow
learners and NNs with 2-layers often tend to have similar performance (darker red); however, increas-
ing the depth of the NN further worsen the performance (lighter red); (3) lagged forward rates do not
improve the predictive accuracy of a shallow learner (red cell).

The bottom panel reports the pairwise DM tests when the macro variables from the FRED-MD
database are added to forward rates. The test confirms that we observe that the depth of the network
matters, as testified by the statistically significant out-performance (lighter cells) of a three-layer
hybrid network (NN 3 Layer, fwd rates direct) over a shallow and two-layer hybrid network. At the
same time the figure confirms that a shallow network with group ensembling performs on par with a
deeper, three-layer network that does not distinguish between economic categories.

2More precisely, we conjecture P (Xt, t;T ) = eA(t;T )+B(t,T )
′Xt+X

′

tC(t;T )Xt , we compute derivatives ∂P
∂t

, ∂P

∂X ,

and ∂2P

∂X∂X ′ , we substitute r and partial derivatives in the PDE, and we collect terms.
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Figure B.1: Pairwise tests of predictive accuracy

This figure shows the results of a pairwise test of predictive accuracy based on Diebold and Mariano (1995) and
extended by Harvey et al. (1997). The figure reports the results when forecasts are based only on the forward
rates (top panel) and when both macroeconomic variables and forward rates are used (bottom panel). The red
color scale indicates the statistical significance of the test, that is the lighter the color the lower the p-value for
the null hypothesis that the forecasts between a pair are not statistically different.
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C Dissecting predictability: Further discussion and ad-

ditional results

C.1 Bond Return Predictability and Cumulative SSE

To identify the periods in which the models perform best, we follow Welch and Goyal (2008) and
compute the difference in the cumulative sum of squared errors (SSE) for the EH model versus the
machine learning model of interest, ∆CumSSE. Positive and increasing values of ∆CumSSE suggest
that the model under consideration generates more accurate point forecasts than the EH benchmark.

Figure C.1 plot the ∆CumSSE for the best performing regression tree specification, i.e., extreme
tree (Panels (a) and (c)), and for the best performing neural network, namely the NN 1 Layer (3
nodes) – when forecasting with only the forward rates (Panel (b)) – and NN 1 Layer Group Ensem +
fwd rate net – when including also macroeconomic variables (Panel (d)) – (see Table 1-2 for reference).
We focus on the ten-year bond maturity.

[Insert Figure C.1 about here]

In general the plots show that the various machine learning models perform well relative to the EH
model as manifested by lines that are increasing for most periods. Indeed, only when we consider
exclusively yields-based predictors, we then observe occurrence of decreasing graphs (i.e. periods
where the models underperform against this benchmark). However, these are few isolated occasions
(e.g., around 2001 and 2008). Interestingly, adding macroeconomic variables improves the predictive
accuracy of the models relative to the benchmark. Comparing panel (c) to (d), we note that: (1)
the performance of extreme trees is particularly effective in few, rather prolonged, periods, namely
1992 to 1996 and the aftermath of the financial crisis; (2) the performance of the NN with group
ensembling is instead characterized by an almost steady improvement in performance.

Another interesting aspect to investigate is whether expected bond returns could have evolved
differently in response to availability of technology.3 However, referring to our plots of out-of-sample
R2 over time, even in later years when adoption of neural networks spread, we still notice the outper-
formance of neural networks vis-a-vis the expectation hypothesis.

Overall, we take these patterns as rather reassuring that the value-added through machine learning
based forecasts is rather pervasive and not concentrated in isolated events.

3The theory necessary to apply our networks was available in the 1990 when our out-of-sample period starts.
The overarching concept of back-propagation in multi-layer neural networks was introduced in Werbos (1974).
The use of automatic differentiation (AD) that is necessary for fast computation of gradients during back-
propagation was used in Werbos (1982). An early example of a study using neural networks for prediction in a
finance context, on gas markets to be precise, with similar models as used by us is Werbos (1988) and others
exist before 1990. What is less clear is whether the necessary computational power was available to estimate
the models in a reasonable amount of time. Also, while the most fundamental building blocks were in place in
the late 1980s, regularization concepts such as dropout (Srivastava et al., 2014) and batch normalization (Ioffe
and Szegedy, 2015) were only introduced later.
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Figure C.1: Squared forecast errors across time

This figure plots the time series of difference in squared forecast errors from a given model versus the expec-
tations hypothesis. We scale the forecast errors by the variance of the dependent variable times T − 1, i.e.

each month t we plot the value attained by
(ε̂EH

t+1 )
2
−(ε̂Model

t+1 )

(T−1)Var(rxt+1)
. The out-of-sample period starts in 1990. The

expectation hypothesis uses all data starting from the in-sample period in 1971:08. The figures present results
for the 10-year maturity and focus on the best performing regression tree and neural network when forecasts
are generated either based on forward rates only or by macroeconomic variables + forward rates.
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C.2 Bond Return Predictability and Shape of the Yield Curve

Table C.1: Conditional Forecast Accuracy: Double Sorts on Prevailing Yield Curve Level &
Slope

This table reports the forecast accuracy when conditioning on the prevailing shape of the yield curve, i.e. its
level and slope. As a measure of of yield curve level we use the 2-year yield, while the measure of yield curve
slope is the difference between the 10-year and 2-year yield. We sort all observations in our out-of-sample
period based on the median level and slope of the yield curve prevailing at the start of the holding period. The
double sort is performed unconditionally. We denote observations below the median by “Low” and observations
above the median by “High”. For example, “Level Low - Slope High” refers to all observations for which the
prevailing yield curve level was below the median, while the yield curve slope was above the median. The median
yield curve level over our out-of-sample period is 3.84% and the median yield curve slope is 1.33%. Forecast

accuracy is proxied by the R2 in regressions of realized returns, xr
(i)
t+1, on the predicted bond risk premium,

x̂r
(i)
t+1: xr

(i)
t+1 = α + βx̂r(i)t+1 + ε

(i)
t+1, where the regressions are performed using all the observations that fall into

the four distinguished yield curve shape cases. Predicted bond risk premia stem from forecasting either with
only the forward rates (Panel A) – using NN 1 Layer (3 nodes) – or with forward rates plus macroeconomic
variables (Panel B) – using NN 1 Layer Group Ensem + fwd rate net – (see Table 1-2 for reference). The
out-of-sample predictions are obtained by a recursive forecast which starts in January 1990. The sample period
is from 1971:08-2018:12. For each case, we report R2, the mean fitted value, the p-values for the hypothesis
tests H0 ∶ α = 0 and H0 ∶ β = 1, and the fraction of the sample period falling into the respective case.

Panel A: Forecasting with Forward Rates

R2 (%) Mean Fitted Value p-val (α = 0) p-val (β = 1) Sample Fraction

All 21.97 4.33% 0.69 0.10 100.0%

Level Low - Slope Low 7.79 -2.27% 0.00 0.91 9.8%

Level Low - Slope High 16.18 6.26% 0.76 0.70 40.2%

Level High - Slope Low 23.79 3.60% 0.00 0.15 40.2%

Level High - Slope High 58.84 5.96% 0.09 0.00 9.8%

Panel B: Forecasting with Forward Rates + Macro

R2 (%) Mean Fitted Value p-val (α = 0) p-val (β = 1) Sample Fraction

All 27.95 4.33% 0.91 0.21 100.0%

Level Low - Slope Low 14.06 -2.27% 0.00 0.99 9.8%

Level Low - Slope High 18.48 6.26% 0.83 0.42 40.2%

Level High - Slope Low 28.16 3.60% 0.01 0.12 40.2%

Level High - Slope High 65.75 5.96% 0.06 0.01 9.8%
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C.3 Relative Importance of Macroeconomic Variables: Further Dis-
cussion

To study the relative importance of macroeconomic variables we rely on the partial derivative of
the target variable with respect to sample average of each input. These partial derivatives represent
the sensitivity of the output to the ith input, conditional on the network structure and the average
value of the other input variables (see Dimopoulos et al., 1995), and are akin to the betas of a simple
linear regression.

In principle, the partial derivative of the target variable with respect to the sample average of
each input, see equation (7) is a deterministic object. As such, one may question the robustness and
reliability of our estimates given the stochastic nature of the training process of neural networks (see,
e.g., Hansen and Salamon, 1990 and Dietterich, 2000). The training process of NNs is stochastic
in so far that the optimization path will generally depend on its initialization. Therefore, different
initializations of the network weights can lead to different outcomes. To address this issue, we estimate
the relative importance from different starting values of the neural network weights, and average
the results. To be precise, we initialize network weights using the He (2015a) normal initialization
procedure and use 100 different, but fixed seeds. Then we construct predictions from all network
estimates and calculate the corresponding partial derivatives as in equation (7). The final result is
obtained by averaging across the estimated models.

Alternative methodologies for measuring relative variable importance in NNs have been proposed
in the literature. For instance, Sung (1998) proposed a stepwise method that consists of adding or
rejecting one input variable at a time and noting the effect on the Mean Squared Error (MSE). Based
on the changes in MSE, the input variables can be ranked according to their importance in several
different ways depending on different arguments. The major drawback of stepwise methods is that at
each step of the selection algorithm a new model is generated that requires training. For an exercise
like ours, in which there are more than 120 input variables and forecasts are generated recursively
this is computationally too expensive to execute. Alternatively, Lek et al. (1995) and Lek et al.
(1996) propose to study each input variable successively when the others are blocked at fixed values.
Depending on the users’ needs one can set single inputs to their sample mean, their median, or simply
to zero (see, e.g., Gu et al., 2018). The relative importance of a given input is then investigated by
looking at the changes in the MSE.

Figure 5 shows the relative importance of each input variable based on the gradient in equation
(7). The figure shows the rescaled value of the gradient such that a value of zero means that a variable
is least relevant and a value of one means that a variable is the most important in relative terms. The
gradient-at-the-mean is calculated for each time t of the recursive forecasting, then averaged over the
out-of-sample period.
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C.4 Interactions Within or Across Categories: Results

Table C.2: Magnitude of Cross- and Within-group Interactions

This table reports the sum of the absolute value of the cross-group (Panel A) and within-group (Panel B)
interactions obtained from an ensembled neural network with one hidden layer (“Groups ensemble”) and a
(non-ensembled) neural network with three hidden layers (“Fully connected network”). See Table 2 for their
performance (row “NN 3 Layer (32, 16, 8 nodes), fwd rates direct” and “NN 1 Layer Group Ensem (1 node per
group), fwd rates Net (1 layer: 3 nodes)”). Interactions magnitudes are computed by numerically approximating
the network Hessian’s, i.e. the second derivatives of network outputs with respect to two distinct network inputs.
The NNs take as inputs both macroeconomic variables and forward rates. The out-of-sample prediction errors
are obtained by a recursive forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Panel A: Sum of Cross-Group Hessian Absolute Values

Model 2y 3y 4y 5y 7y 10y

Fully connected network 60.24 108.61 153.22 184.43 247.84 336.49

Groups ensemble 0.04 0.07 0.09 0.11 0.14 0.18

Panel B: Sum of Within-Group Hessian Absolute Values

Model 2y 3y 4y 5y 7y 10y

Fully connected network 11.93 21.30 30.12 36.03 48.51 65.77

Groups ensemble 16.93 32.05 45.09 54.70 78.85 117.05
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C.5 Model Uncertainty: Results

Table C.3: Alternative Model Combination Strategies

This table reports the out-of-sample R2
oos obtained using a large panel of macroeconomic variables and forward

rates to predict annual excess bond returns for different maturities. In addition to the best performing neural
network – NN 1 Layer Group Ensem + fwd rate net (see Table 2), we compute the R2

oos for three alternative
model combination strategies. The first is a recursive full cross-validation that selects every five years not only
the dropout rate and the L1/L2 penalties, but also the number of layers, the nodes per macro group, and
the nodes in fwd rate net. The second and third model combination are based on a weighted average of each
neural network forecasts with weights that are calculated as the inverse of the validation loss or, alternatively,
simply as 1/N where N is the number of neural networks estimated. The out-of-sample R2

oos is calculated by
considering the expectations hypothesis as a benchmark. That is, we compare the forecasts obtained from each
methodology to the prediction based on the historical mean of bond excess returns. In addition to the R2

oos we
report the p-value calculated as in Clark and West (2007) in parentheses. The out-of-sample prediction errors
are obtained by a recursive forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Models R2
oos R2

oos EW

xr
(2)
t+1 xr

(3)
t+1 xr

(4)
t+1 xr

(5)
t+1 xr

(7)
t+1 xr

(10)
t+1 xr

(EW )
t+1

NN 1 Layer Group Ensem (1 node per group), fwd rate net (1 layer: 3 nodes) 20.0% 25.6% 29.5% 31.2% 33.6% 36.3% 34.0%

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Inverse Val. Loss Weighted Model (across all NNs) 22.3% 25.6% 29.1% 30.8% 32.0% 34.4% 32.6%

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Equally Weighted Model (across all NNs) 22.0% 25.2% 28.6% 30.4% 31.6% 33.9% 32.1%

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Full CV Model 24.7% 27.6% 30.4% 31.7% 32.3% 34.7% 33.4%

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Table C.4: Stability of the Neural Network Ranking

This table reports how often the four best performing neural networks are selected throughout the sample.
More specifically, we select the top 4 models based on the unconditional average of (inverse) validation loss.
Then we count how often the four models rank 1st, 2nd, 3rd and 4th, in terms of their inverse validation error.
The sum of the values in each column equals the number of periods in our out-of-sample period. This gives
an approximate measure of how often one model ranks on top in terms of validation loss. The out-of-sample
prediction errors are obtained by a recursive forecast which starts in January 1990. The sample period is from
1971:08-2018:12.

Ranking

Model 1st place 2nd place 3rd place 4th place

NN 1-Layer Group Ensem + Fwd. Rate Net 170 42 115 21

NN 1-Layer Group Ensem + Fwd. Rates 137 50 154 7

NN 3-Layer + Fwd. Rates 31 112 16 189

NN 2-Layer Group Ensem + Fwd. Rates Net 10 144 63 131
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C.6 Model Performance and Lagged Macroeconomic Variables

We assess the robustness of the performance of our non-linear methods with respect to the timing
of the macroeconomic predictors. Information flow to investors could occur with a lag such that
macroeconomic information is not available right away, therefore leading to our models overfitting. In
order to rule out that this is the case, we follow Rapach and Zhou (2019) and lag all macroeconomic
variables by one month to account for data becoming available with a delay. Note, we do not lag
market-based variables including interest rates, exchange rates, stock market data and the oil price
since these variables are available to investors virtually in real-time.

In Table C.5 we summarize the results of the recursive forecasting exercise with lagged macroe-
conomic variables. Overall, we find that the performance of the non-linear models that are at the
center of our analysis is robust to lagging the macroeconomic predictors by one month. Also, the
ordering of models in terms of their predictive performance is basically unchanged: the set of neu-
ral networks outperforms the regression tree approaches as long as the NNs are deep enough or use
group ensembling. We continue to find that a shallow group ensembled neural network performs on
par with or better than a deeper neural network that does not group variables according to their
macroeconomic character. In particular, the ensembled neural network with 1 hidden layer per group
of macroeconomic variables and a network for the forward rates continues to perform best out of all
models studied: the overall model performance (R2 EW of 34.0%, c.f. Table 2) without lagging the
predictors is on par with the model performance when predictors are lagged (R2 EW of 32.8%).

Finally, let us observe that Table 2 and Table C.5 rely on two different frameworks, and demand
to be interpreted accordingly. Table 2 relies on the “economic agents know” framework: the econome-
trician has limited information relative to economic agents who, in contrast, know the history of prior
macroeconomic data and how bond returns react to real quantities. This is the relevant framework
for us, since our main objective is, through the lens of machine learning methods, to provide a better
understanding of the dynamics of bond risk premia and its economic drivers, rather than to create a
trading strategy. For further discussions on how to interpret out-of-sample tests see, e.g., Atanasov,
Moller and Priestley (2019).
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D Economic Value of Excess Bond Returns Forecasts:

Additional Discussions and Tests

D.1 The Asset Allocation Framework for a Power Utility Investor

We consider the investment decision of an agent that selects the weights on the risky n-period

bonds wt = [w(2)t . . .w
(10)
t ] versus a one-period bond that pays a risk-free rate equal to y

(1)
t . In the

main text we discuss an investor with mean-variance utility; here we discuss an extended framework
whereby a representative investor has a power utility of the form,

U (wt,xrt+1) =
[(1 −w′

tι) exp (y(1)t ) +w′
t exp (y(1)t ι +xrt+1)]

1−γ

1 − γ
, γ > 0 (D.1)

where γ captures the investor’s risk aversion and ι is a vector of ones. We follow Campbell and
Viceira (1999), Campbell and Viceira (2004) and Gargano et al. (2019) and assume excess bond
returns are jointly log-normal distributed so that the excess returns on a portfolio of treasury bond
can be approximated by

Rp,t+1 = 1 + y(1)t +w
′
txrt+1 +

1

2
w′
tσ

2
t+1∣t −

1

2
w′
tΣt+1∣twt (D.2)

where Σt+1∣t denotes the covariance matrix of the excess bond returns, and we denote with σt+1∣t its
diagonal elements. Campbell and Viceira (2004) show that under log-normality of excess returns, the
optimal allocation on a maturity-specific bond can be defined as

w
(n)
t = 1

γ (σ(n)
t+1∣t)

2
[x̂r(n)t+1 + (σ(n)

t+1∣t)
2
/2] (D.3)

Given these optimal set of weights, the realized utility for, say, the univariate case can be computed
by plugging wt into equation (D.1).

Similar to the mean-variance case (see Section 6.1) we proxy for Σt+1∣t by using a rolling sample
variance estimator as in Thornton and Valente (2012), and set the coefficient of relative risk aversion
equal to γ = 5. Further, to test if the annualized CER values are statistically greater than zero, we
employ again a Diebold and Mariano (1995) test. Specifically, for a power utility investor that selects
a single risky asset with maturity n using when the forecast from a NN, we estimate the regression

u
(n)
t+1,NN − u

(n)
t+1,EH = α(n) + εt+1

where

u
(n)
t+1,j =

1

1 − γ
[(1 − ω(n)t,j ) exp(y(1)t ) + ω(n)t,j exp(y(1)t + xr

(n)
t+1)]

1−γ

and j = {EH,NN}.
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D.2 Further Results on the Economic Value of Return Forecasts

In addition to the benchmark case that restricts the weights to be in the interval −1 ≤ w(n)t ≤ 2 to
prevent extreme investments, we also consider two alternative scenarios. The first scenario restricts

the optimal weights to be non-negative, i.e., w
(n)
t ∈ (0,0.99). Such scenario ensures that the expected

utility is finite even in the case of unbounded returns (see Geweke, 2001b for a discussion). The
second scenario leaves the portfolio weights unrestricted but instead restricts the bond returns to fall
in the interval (−100%, +100%). Similar to restricting the weights to be non-negative, such restriction
prevents the expected utility from being unbounded (see Johannes et al., 2014).

The results in Table D.1 confirm our results in the main text (c.f. Section 6). For instance, Panel
A shows that including macroeconomic information tend to improves the economic performance with
respect to a model which exploits only information from the yield curve, and that forecasts from the
best performing neural network achieves a higher utility with respect to a competing non-linear model
such as extreme trees.

Panel B shows that by winsorizing the returns instead of the optimal weights the conclusion
remains qualitatively the same; again macroeconomic information brings additional economic value
and even more so when neural networks are used. As a whole, these results are in line with the main
evidence described in Section 6.
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Table D.1: Economic Significance of Bond Predictability: Robustness

This table reports two robustness exercises concerning the out-of-sample economic performance reported in
Table 5. Panel A reports the results for the weights restricted to be non-negative, whereas Panel B restricts the
realized returns on each maturity to be between -100% and 100%. We report results for an investor with either
mean-variance or power utility and a coefficient of risk aversion equal to five. The models are benchmarked
against the expectation hypothesis. The table reports both multi-asset results and the case of a single risky
asset. In the univariate asset allocation case, the investor selects either the two- or the ten-year bond, along
with the one-year short-rate. In the multivariate case, the investor selects bond excess returns across the six
maturities, two- to five-, seven- and ten-years. The asset allocation decision is based on the predictions implied
by either the best performing regression tree specification, i.e., extreme tree, or the best performing neural
network, namely the NN 1 Layer (3 nodes) – when forecasting with only the forward rates – and NN 1 Layer
Group Ensem + fwd rate net – when including also macroeconomic variables – (see Table 1-2 for reference).
The row ∆ reports the value added by NN relative to extreme tree within each application (“Fwd rates” and
“Fwd + Macro”). The column ∆ reports the value added by “Fwd+Macro” relative to “Fwd rates” within
each model (NN and extreme tree). The models are benchmarked against the expectation hypothesis. The out-
of-sample predictions are obtained by a recursive forecast which starts in January 1990. The sample period is
from 1971:08-2018:12. Statistical significance is based on a one-sided Diebold and Mariano (1995) test extended
by Harvey et al. (1997) to account for autocorrelation in the forecasting errors. We flag in bold those values
that are statistically significant at the 5% confidence level.

Panel A: Non-negative weights

2-year maturity 10-year maturity All

Fwd rates Fwd + Macro ∆ Fwd rates Fwd + Macro ∆ Fwd rates Fwd + Macro ∆

Mean-Variance Neural net 0.017 0.025 0.007 0.915 1.242 0.318 2.340 3.867 1.527

p-value (0.322) (0.000) (0.557) (0.011) (0.000) (0.041) (0.010) (0.011) (0.000)

Extreme tree 0.034 0.011 -0.023 0.958 0.863 0.159 2.812 3.376 0.555

p-value (0.416) (0.512) (0.449) (0.003) (0.000) (0.473) (0.009) (0.009) (0.004)

∆ -0.017 0.013 -0.043 0.379 -0.472 0.491

p-value (0.597) (0.471) (0.261) (0.014) (0.023) (0.015)

Power Utility Neural net 0.045 0.098 0.053 1.235 1.765 0.530 2.624 4.133 1.509

p-value (0.000) (0.000) (0.010) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Extreme tree 0.007 0.075 0.068 1.507 1.198 -0.308 2.568 2.995 0.427

p-value (0.763) (0.000) (0.004) (0.000) (0.000) (0.010) (0.000) (0.000) (0.242)

∆ 0.038 0.023 -0.272 0.566 0.056 1.138

p-value (0.034) (0.057) (0.055) (0.000) (0.820) (0.000)

Panel B: Winsorized returns

2-year maturity 10-year maturity All

Fwd rates Fwd + Macro ∆ Fwd rates Fwd + Macro ∆ Fwd rates Fwd + Macro ∆

Mean-Variance Neural net 0.044 0.088 0.045 0.910 2.331 1.413 2.551 3.143 0.592

p-value (0.110) (0.091) (0.098) (0.000) (0.000) (0.000) (0.011) (0.006) (0.012)

Extreme tree 0.028 0.078 0.050 1.191 2.171 0.970 1.156 2.756 1.600

p-value (0.261) (0.076) (0.094) (0.023) (0.000) (0.000) (0.063) (0.001) (0.002)

∆ 0.016 0.009 -0.282 0.160 1.395 0.387

p-value (0.171) (0.519) (0.067) (0.087) (0.016) (0.023)

Power Utility Neural net 0.056 0.110 0.054 1.170 3.143 1.961 2.294 4.411 2.117

p-value (0.012) (0.011) (0.034) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Extreme tree 0.022 0.023 0.001 1.518 2.681 1.162 2.601 3.712 1.111

p-value (0.486) (0.324) (0.577) (0.000) (0.000) (0.006) (0.000) (0.000) (0.024)

∆ 0.034 0.087 -0.348 0.459 -0.307 0.697

p-value (0.093) (0.032) (0.041) (0.034) (0.169) (0.039)

72

Electronic copy available at: https://ssrn.com/abstract=3232721



D.3 Economic Drivers of Portfolio Performance

In this section, we investigate the potential drivers of the economic gains from bond return pre-
dictability. Intuitively one may expect large economic gains during bad times, when uncertainty and
disagreement are large. Indeed Sarno et al. (2016) find large economic gains from predictability of
bond returns during times with high macroeconomic uncertainty.

Specifically, we study the relation between the realized utility obtained in the portfolio analysis of
Section 6 and the structural risk factors presented in Section 7.2. Table D.2 reports the results when
we employ as predictors the macro variables from the FRED-MD database in addition to forward
rates. Panels A and B show the analysis for the CER obtained by a mean-variance and power utility
investor, respectively.

Most of the results confirm the evidence in Table 7 for our forecasts of excess bond returns. Indeed,
across panels, we find that bond volatility is only weakly related to realized utility. The link between
our realized utility and nominal disagreement is positive and statistically significant whereas we find
only a weak association with real disagreement. This confirms the recent findings of Gargano et al.
(2019) that inflation disagreement is an important driver of portfolio performance.4 Other variables
stand out as important determinants of variation in realized utility, namely the risk aversion proxies
and (macro and inflation) uncertainty. Interestingly, in a kitchen sink regression where we preselect
predictors based on their statistical significance (specification (vi)), we continue to find that variation
in risk aversion (as proxied by the measure of Bekaert et al., 2019), and macroeconomic uncertainty
are important drivers of the economic gains.

The results in Appendix Table D.3 show the case for yield-only based forecasts. The results
substantiate further our conclusion that the relation between utility gains from our portfolio analysis
is the strongest with risk aversion and time-varying uncertainty.

In all, the evidence in Table 7 for our forecasts of excess bond returns, and Table D.2 and D.3
for the risk-adjusted economic gains, paints a consistent picture of a significant link between time-
varying risk aversion and risk, and bond risk premia. This link is obfuscated when using future
realized returns but becomes apparent when using expected returns obtained from machine learning
methods. Therefore, models like Bekaert et al. (2009) and Creal and Wu (2018) that combine time
variation in economic uncertainty with changes in risk aversion seem to be a promising avenue for
research.

4Gargano et al. (2019) call the cross-sectional inter-quartile range in GDP and CPI forecasts uncertainty. We
follow Buraschi et al. (2019) and refer to the cross-sectional inter-quartile range in forecasts as to disagreement.

73

Electronic copy available at: https://ssrn.com/abstract=3232721



Table D.2: Drivers of Portfolio Performance (Forecasts based on Forward Rates + Macro Vari-
ables)

This table reports the regression estimates of economic gain obtained from a mean-variance (panel A) and
power utility (panel B) on a set of structural determinants of risk premia (see discussion in the paper for
details). The economic gains are based on the predictions implied by the best performing neural network when
both yields and macroeconomic variables are considered as predictors, namely the NN 1 Layer Group Ensem +
fwd rate net (see Table 2 for reference). We standardize both left and right hand variables, so that a 1-standard
deviation change in the right hand variables implies a β-standard deviation in the dependent variable. We
report the regression estimates as well as Newey-West p-values. Bold font indicates significance at the 5% level.
The out-of-sample predictions are obtained by a recursive forecast which starts in January 1990. The sample
period is from 1971:08-2018:12.

Panel A: Mean-variance utility

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) 0.07 0.05 6.76

(0.06) (0.14)

(ii) 0.03 15.51

(0.65)

(iii) 0.02 6.59

(0.01)

(iv) 0.07 0.08 25.61

(0.00) (0.00)

(v) 0.06 -0.01 0.50

(0.64) (0.75)

(vi) 0.03 0.03 0.02 0.08 0.09 29.52

(0.25) (0.78) (0.01) (0.00) (0.00)

Panel B: Power utility

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) -0.01 0.03 10.27

(0.34) (0.02)

(ii) 0.56 20.84

(0.00)

(iii) 0.02 9.18

(0.00)

(iv) 0.08 0.13 10.16

(0.04) (0.00)

(v) 0.02 -0.00 0.90

(0.14) (0.99)

(vi) 0.02 0.04 0.02 0.03 0.02 33.77

(0.29) (0.06) (0.00) (0.01) (0.01)
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Table D.3: Drivers of Portfolio Performance (Forecasts based on Forward Rates only)

This table reports the regression estimates of economic gain obtained from a mean-variance (panel A) and
power utility investor (panel B) on a set of structural determinants of risk premia (see discussion in the paper
for details). The economic gains are based on the predictions implied by the best performing neural network
when only yields are considered as predictors, namely the NN 1 Layer (3 nodes) (see Table 1 for reference).
We standardize both left and right hand variables, so that a 1-standard deviation change in the right hand
variables implies a β-standard deviation in the dependent variable. We report the regression estimates as well
as Newey-West p-values. Bold font indicates significance at the 5% level. The out-of-sample predictions are
obtained by a recursive forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Panel A: Mean-variance utility

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) 0.06 0.03 12.30

(0.03) (0.12)

(ii) 0.02 10.41

(0.00)

(iii) 0.01 6.99

(0.01)

(iv) 0.04 0.12 8.28

(0.00) (0.00)

(v) 0.01 -0.01 -1.16

(0.72) (0.38)

(vi) 0.03 0.01 0.02 0.03 0.03 18.12

(0.14) (0.07) (0.02) (0.00) (0.01)

Panel B: Power utility

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) -0.02 0.02 15.58

(0.12) (0.09)

(ii) 0.38 20.38

(0.00)

(iii) 0.01 9.18

(0.03)

(iv) 0.09 0.10 7.24

(0.02) (0.02)

(v) 0.02 -0.01 6.47

(0.02) (0.12)

(vi) 0.02 0.05 0.01 0.03 0.02 30.08

(0.09) (0.09) (0.01) (0.01) (0.01)
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E Algorithmic Procedures

In this section we provide details on the algorithmic procedures used for each class of models
implemented in the main empirical analysis. We start from the simple penalized regressions, e.g.,
lasso, ridge, and elastic net. We then turn to non-linear methods starting with shallow regression
trees and random forest. We conclude by discussing the different neural network specifics.

E.1 Partial Least Squares

Following the extant practice (see, Ch.3.5 Friedman et al., 2001) Partial Least Squares (PLS) is
constructed iteratively as a two-step procedure: in the first step we regress excess bond returns on
each predictor j = 1, . . . , p separately and store the regression coefficient ψj . The first partial least
squares direction is constructed by multiplying the vector of coefficients by the original inputs, that
is x1 = ψ′yt. Hence the construction of x1 is weighted by the strength of the relationship between the
excess bond returns and the predictors. In the second step, excess bond returns are regressed onto
x1 giving the coefficient θ1. Then all inputs are orthogonalized with respect to x1. In this manner,
PLS produces a sequence of l < p derived inputs (or directions) orthogonal to each other.5

Notice that since the response variable is used to extract features of the input data, the solution
path of PLS represents a non-linear function of excess bond returns. Stone and Brooks (1990) and
Frank and Friedman (1993) show that, unlike PCA which seeks directions that maximize only the
variance, the PLS maximizes both variance and correlation with the response variable subject to
orthogonality conditions across derived components.6 PLS does not require the calibration of hyper-
parameters as the derived input directions are deterministically obtained by the two-step procedure
outlined above. In this respect, unlike penalized regressions no shrinkage/regularization parameters
are required to be calibrated.

E.2 Penalized Regressions

We present the algorithms utilized to estimate the penalized regression models, i.e. the ridge,
lasso and elastic net regressions. To recall, penalized regressions add a penalty term φ(β; ⋅) to the
least squares loss function L(θ) where θ = (α,β⊺). The penalty terms in the individual methods are
given by

φ (β; ⋅) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
p

∑
j=1

β2j Ridge regression (E.1a)

λ
p

∑
j=1

∣βj ∣ Lasso (E.1b)

λµ
p

∑
j=1

β2j +
λ (1 − µ)

2

p

∑
j=1

∣βj ∣ Elastic net (E.1c)

5It is easy to see that for l = p we go back to usual linear least squares estimates similar to PCR.
6In particular, the m-th direction solves:

max
γ

Corr2 (xr(n),yγ) ⋅Var (yγ)

subject to ∥γ∥ = 1, γ′Σψ̂j = 0, j = 1, . . . ,m − 1
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Apart from the estimation of θ, we have to determine the level of the shrinkage / regularization
parameters λ and µ. Usually, this is achieved by cross-validation, i.e. λ and µ are chosen from a
suitably wide range of values by evaluating the pseudo out-of-sample performance of the model on
a validation sample and picking the λ,µ that yield the best validation error. In the context of time
series forecasts the validation sample should be chosen to respect the time-dependence of the observed
data, meaning that the validation sample is chosen to follow upon the training sample used to obtain
θ in time. In the following we discuss in more detail the algorithms that are used to obtain coefficient
estimates for the penalized regression models.

In contrast to ridge, which is discussed further below, lasso and elastic net coefficient estimates
cannot be obtained analytically because of the L1 component that enters their respective penalty
terms (c.f. Eq. (E.1b) and (E.1c)). Hence, we estimate θ by means of cyclical coordinate descent
proposed by Wu et al. (2008) and extended in Friedman et al. (2010). In our exposition of the
algorithm of Friedman et al. (2010) we focus on the elastic net case since the lasso case is contained
as a special case therein (i.e. by setting µ = 0).

At a high-level coordinate descent can be described as an optimization method aimed at minimizing
a loss function one parameter at a time while keeping all other parameters fixed. More precisely,
consider the loss function for the elastic net

L(θ) = 1

2N

N

∑
i=1

(yi − α −x⊺i β)
2 + λµ

p

∑
j=1

β2j +
λ(1 − µ)

2

p

∑
j=1

∣βj ∣ (E.2)

where the factor two in the denominator in front of the sum is introduced to simplify subsequent
expressions for the gradient of the loss function. The minimization of the loss function is unaffected
by multiplication with a scalar. Denote by L(θ)(k) the loss function after the k-th optimization step.

The gradient of the loss function with respect to βj evaluated at its current estimate β̂
(k)
j is given by

− 1

N

N

∑
i=1
xij(yi − α −x⊺i β̂) + λ(1 − µ)βj + λµ (E.3)

if β̂j > 0. A similar expression can be obtained for the case β̂j < 0 and β̂j = 0 (c.f. Friedman et al., 2007).
Then, it can be shown that the optimal β is obtained by following the Algorithm (1). Commonly, a
“warm-start” approach is used to obtain the parameter estimates over the range for λ and µ during
cross-validation, meaning that when moving from one set of regularization parameters λ,µ to the
next, the prior estimates β̂ are utilized as initial parameters for the subsequent coordinate descent
optimization.
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Algorithm 1: Coordinate Descent

Choose initial estimates for α̂ = ȳ and β̂
(0)

for given λ and µ, where ȳ is the
unconditional mean of y.

Standardize the inputs xij such that ∑
N
i=1 xij = 0, 1

N ∑
N
i=1 x

2
ij, for j = 1, . . . , p.

Set ε to desired convergence threshold
while there is an improvement in the loss function, i.e. ∣L(θ)(k+1) − L(θ)(k)∣ > ε do

for all predictors j = 1, . . . , p do

ŷ
(j)
i = α̂ +∑l≠j xilβ̂l, i.e. the fitted value when omitting the covariate xij

β̂j ←
S( 1

N ∑
N
i=1 xij(yi−ŷ

(j)
i ),λµ)

1+(1−µ) , defines the parameter-wise update, where S, the

soft-thresholding operator, is given by S(a, b) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a − b, if a > 0 ∨ b < ∣a∣

a + b, if a < 0 ∨ b < ∣a∣

0, b ≥ a

end

end

Output: Estimates β̂ for given level of λ,µ;

In contrast to lasso and elastic net regressions, the Ridge regression has a closed-form solution
given by (e.g., see Friedman et al., 2001, Ch. 3)

β̂Ridge = (X⊺X + λI)−1X⊺y (E.4)

where X is the input N × p matrix of p regressors, I is an N ×N identity matrix and y is the vector
of dependent variables.

Although, there exists an elegant analytical solution to the ridge regression setup, it is common
to apply a matrix decomposition technique to circumvent issues incurred by matrix inversion. Thus,
we use a singular value decomposition (SVD) of the matrix X with the form

X = UDV ⊺ (E.5)

where U is an N ×N orthogonal matrix, V is an p× p orthogonal matrix and D is an N × p diagonal
matrix containing the singular values of X. Then it can be shown that the fitted values are given as

Xβ̂Ridge = UD (D2 + λI)−1DD⊺y. (E.6)

The shrinkage parameter λ is chosen by cross-validation. Alternative estimation approaches such as
conjugate gradient descent (Zou and Hastie, 2005) become relevant when X gets larger in dimension.

E.3 Tree-Based Methods

Regression trees can approximate any a priori unknown function while keeping the interpretation
from a recursive binary tree. However, with more than two inputs, the interpretation is less obvious
as trees like the one depicted in Figure 1 grow exponentially in size. Nevertheless the algorithmic
procedure is equivalent. Suppose one deals with a partition of M regions A = {A1, . . . ,AM} of the
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vector of yields yt such that

g(yt;N) =
M

∑
m=1

βmI (yt ∈ Am) .

By minimizing the sum of squared residuals, one can show that the optimal estimate β̂m is just the

average of the excess bond returns in that region, i.e., β̂m = E [xr(1)t+1∣y1∶t ∈ Am]. Finding the optimal

partition by using a least squares procedure is generally infeasible, however. We thus follow Friedman
(2001) and implement a gradient boosting procedure. Gradient boosting in a tree context boils down
to combining several weak trees of shallow depth.

Boosting is a technique for reducing the variance of the model estimates and increasing precision.
However, trees are “grown” in an adaptive way to reduce the bias, and thus are not identically dis-
tributed. An alternative procedure would be to build a set of de-correlated trees which are estimated
separately and then averaged out. Such modeling framework is known in the machine learning lit-
erature as “Random Forests” (see Breiman, 2001). It is a substantial modification of bagging (or
bootstrap aggregation) whereby the outcome of independently drawn processes is averaged to reduce
the variance estimates. Bagging implies that the regression trees are identically distributed – that
is the variance of the average estimates, as the number of simulated trees increases, depends on the
variance of each tree times the correlation among the trees. Random forests aim to minimize the
variance of the average estimate by minimizing the correlation among the simulated regression trees.

We also consider an extended version of the random forest procedure which is called “Extremely
Randomized Trees” (Geurts et al., 2006) . While similar to ordinary random forests, in that they still
represent an ensemble of individual trees, extreme trees have two main distinguishing features: first,
each tree is trained using the whole training sample (rather than a bootstrap sample); and second,
the top-down splitting in the tree learner is randomized. That means that instead of computing the
optimal cut-point locally for each input variable under consideration, a random cut-point is selected.
In other words, with extreme trees the split of the trees is stochastic; with random forests the split is
instead deterministic.
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Tree-based methods such as Gradient Boosted Regression Trees or Random Forests are essen-
tially modifications of a universal underlying algorithm utilized for the estimation of regression trees,
commonly, that is the Classification and Regression Tree (CART) algorithm (Breiman et al., 1984)
presented in Algorithm (2).

Algorithm 2: Classification and Regression Trees

Initialize tree T (D) where D denotes the depth; denote by Rl(d) the covariates in
branch l at depth d.
for d = 1, . . . ,D do

for R̃ in {Rl(d), l = 1, . . . ,2d−1} do
Given splitting variable j and split point s define regions

Rleft(j, s) = {X ∣Xj ≤ s,Xj ∩ R̃} and Rright(j, s) = {X ∣Xj > s,Xj ∩ R̃}

In the splitting regions set

cleft(j, s) ←
1

∣Rleft(j,s)∣
∑

xi∈Rleft(j,s)

yi(xi) and cright(j, s) ←
1

∣Rright(j,s)∣
∑

xi∈Rright(j,s)

yi(xi)

Find j∗, s∗ that optimize

j∗, s∗ = argmin
j,s

[ ∑
xi∈Rleft(j,s)

(yi − cleft(j, s))
2 + ∑

xi∈Rright(j,s)

(yi − cright(j, s))
2]

Set the new partitions

R2l(d) ← Rright(j
∗, s∗) and R2l−1(d) ← Rleft(j

∗, s∗)

end

end
Output: A fully grown regression tree T of depth D. The output is given by

f(xi) =
2L

∑
k=1

avg(yi ∣ xi ∈ Rk(D))1{x∈Rk(D)},

i.e. the average response in each region Rk at depth D.

Next, we present the Algorithm (3) used to populate random forests as suggested by Breiman
(2001). Random Forests consist of trees populated following an algorithm like CART, but randomly
select a sub-set of predictors from the original data. In this manner, the individual trees in the
forest are de-correlated and overall predictive performance relative to a single tree is increased. The
hyperparameters to be determined by cross-validation include first and foremost the number of trees in
the forest, the depth of the individual trees and the size of the randomly selected sub-set of predictors.
Generally, larger forests tend to produce better forecasts in terms of predictive accuracy. Finally,
Algorithm (4) delivers the gradient boosted regression tree (GBRT) (Friedman, 2001). GBRTs are
based on the idea of combining the forecasts of several weak learners. The GBRT comprises of trees of
shallow depth that produce weak predictions stand-alone, however, tend to deliver powerful forecasts
when aggregated adequately.
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Algorithm 3: Random Forest

Determine forest size F
for t = 1, . . . , F do

Obtain bootstrap sample Z from original data.
Grow full trees following Algorithm (2) with the following adjustments:

1. Select p̃ variables from the original set of p variables.

2. Choose the best combination (j, s) (c.f. Algorithm (2)) from p̃ variables

3. Create the two daughter nodes

Denote the obtained tree by Tt
end
Output: Ensemble of F many trees. The output is the average over the trees in the
forest given as

f(xi) =
1

F

F

∑
t=1
Tt(xi)

Algorithm 4: Gradient Boosted Regression Trees

Initialize a gradient boosted regression tree f0(x) = 0 and determine number of
learners F . Let L(y, f(x)) be the loss function associated with tree output f(x).
for t = 1, . . . , F do

for i = 1, . . . ,N do
Compute negative gradient of loss function evaluated for current state of
regressor f = ft−1

rit = −
∂L(yi, ft−1(xi))

∂ft−1(xi)
.

end
Using the just obtained gradients grow a tree of depth D (commonly, D ≪ p where
p is the number of predictors) on the original data replacing the dependent
variable with {rit,∀i}. Denote the resulting predictor as gt(x).

Update the learner ft by
ft(x) ← ft−1(x) + νgt(x)

where ν ∈ (0,1] is a hyperparameter.
end
Output: fF (x) is the gradient boosted regression tree output.
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E.4 Neural Networks

A commonly used algorithm to fit neural networks is stochastic gradient descent (SGD). For this
paper we make use of a modified form of gradient decent by adding Nesterov momentum (Nesterov,
1983). In comparison to plain SGD which is often affected by oscillations between local minima,
Nesterov momentum (also known as Nesterov accelerated gradient) accelerates SGD in the relevant
direction. Algorithm (5) outlines the procedure. It is best practice to initialize neural network
parameters with zero mean and unit variance or variations thereof such as He et al. (2015b) like we
do in this paper. Over the course of the training process this normalization vanishes and a problem
referred to as covariate shift occurs. Thus, we apply batch normalization (Ioffe and Szegedy, 2015)
to the activations after the last ReLU layer.

Algorithm 5: Stochastic Gradient Decent with Nesterov Momentum

Initialize the vector of neural network parameters θ0 and choose momentum
parameter γ. Determine the learning rate η and set v0 = 0.
while No convergence of θt do

t← t + 1
vt = γvt−1 + η∇θtL(θt)
θt ← θt−1 − vt

end
Output: The parameter vector θt of the trained network.

Batch normalization reduces the amount of variability of predictors by adjusting and scaling
the activations. This increases the stability of the neural network and the speed of training. The
output of a previous activation is normalized by subtracting the batch mean and dividing by the
batch standard deviation. This is particularly advantageous if layers without activation functions, i.e.
the output layer, follow layers with non-linear activations, such as ReLU, which tend to change the
distributions of the activations. Since the normalization is applied to each individual mini-batch, the
procedure is referred to as batch normalization. The SGD optimization remains largely unaffected; in
fact, by using batch normalization the structure of the weights is much more parsimonious. Algorithm
(6) outlines the procedure from the original paper.

Algorithm 6: Batch Normalization per mini-batch

Let B = x1,...,m be a mini-batch of batch-size m. Set parameters λ,β.
µB ←

1
m ∑

m
i=1 xi

σ2
B ←

1
m ∑

m
i=1(xi − µB)

2

x̂i ←
xi−µB√
σ2
B
+ε

yi ← γx̂i + β ≡ BNγ,β(xi)
Output: The normalized mini-batch mathrmBNγ,β(xi).

Algorithm (7) presents the early stopping procedure that is used to abort the training process early
when the loss on the validation sample has not improved for a specific number of consecutive iterations.
Early stopping is used to improve the performance of the trained models and reduce over-fitting. By
evaluating the validation error it prevents the training procedure from simply memorizing the training
data (see Bishop, 1995 and Goodfellow et al., 2016). More specifically, by means of early stopping
the training process is stopped prematurely if the loss on the validation sample has not improved for
a number of consecutive epochs. In detail, our algorithm is stopped early if any of the following is
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true: maximum number of epochs reached the value of 1000, gradient of loss function falls below a
specified threshold, or the MSE on validation set has not improved for 20 consecutive epochs. When
early stopping occurs we retrieve the model with the best validation performance. Early stopping has
two effects. Firstly, early stopping prevents over-fitting by aborting the training when the pseudo out-
of-sample performance starts to deteriorate, hence it reduces over-fitting. Secondly, since the optimal
number of weight updates is unknown initially, early stopping helps to keep the computational cost
at a minimum by potentially stopping the training far before the maximum number of iterations is
reached.

Algorithm 7: Early Stopping

Initialize the validation error ε = inf and define a patience φ, also set k = 0
while k < φ do

Update θ using Algorithm (5) to get θ(j), i.e. the parameter vector at iteration j
Compute loss function on validation sample ε′ = Lval(θ; ⋅) if ε > ε then

j ← j + 1
end
else

j ← 0
ε← ε′

θ′ = θ(j−p)
end

end
Output: The early-stopping optimized parameter vector θ′

Finally, it is important to highlight that we use a form of forecast averaging / ensembling, i.e. we
train multiple copies of networks with different seeds for the randomly drawn initial network weights.
Using fixed seeds will in general lead to replicable results. Nevertheless, different seeds will produce
different forecasts as discussed also in Gu et al. (2018). Therefore, in order to reduce prediction
variance, we average over forecasts from networks initialized with different seeds. To be precise, for
each time t we initialize 100 models with different but fixed seeds. The 100 models are then trained
and as part of the training we obtain the validation sample loss. The validation sample loss is then
used to select the 10 out 100 models with the smallest validation sample error. Finally, we average
the forecasts of those 10 in-sample best performing models.

F Computational Details

For our implementation of the various machine learning techniques in Python we utilize the well-
known packages Scikit-Learn7 and Tensorflow8 in the Keras9 wrapper. Scikit-Learn provides
the functionality to estimate regression trees (both gradient boosted regression trees and random
forest), partial least squares and penalized regressions (ridge, lasso, elastic net). Furthermore, we
make use of numerous auxiliary functions from Scikit-Learn for data pre-processing such as in-
put standardization / scaling and train-test splits. A particularly useful Scikit-Learn function is
GridSearchCV, which allows streamlined systematic investigation of neural network hyperparameters.
Our neural networks are trained using Keras and Google’s Tensorflow. The Keras wrapper provides

7http://scikit-learn.org/stable/, as of 26th October 2018
8https://www.tensorflow.org/, as of 26th October 2018
9https://keras.io/, as of 26th October 2018
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two distinct approaches to construct neural networks, i.e. a sequential API and a functional API.
The sequential API is sufficient to construct relatively simple network structures that do not require
merged layers, while the functional API is used to build those networks that require merged layers as
for example in the case of the exogenous addition of forward rates into the last hidden layer. Keras

also implements a wide range of regularization methods applied in this paper, i.e. early-stopping by
cross-validation, L1 / L2 penalties, drop-out, and batch normalization.

F.1 Setup

Since the forecasting exercise in this paper is iterative and since we use model averaging, the
computational challenge becomes sizable. For that reason, we perform all computations on a high
performance computing cluster consisting of 84 nodes with 28 cores each, totaling to more than
2300 cores. We parallelize our code using the Python multiprocessing10 package. Specifically, we
parallelize our code execution at the point of model averaging such that for each forecasting step a
large number of models can be estimated in parallel and averaged before moving to the next time step.
Although it is common in applications such as image recognition to perform neural network training
on GPUs, we refrain from doing so since the speed-up from GPU computing would be eradicated
by the increased communication over-head between CPU and GPU as the computational effort of
training an individual neural network is relatively small in our exercise.

F.2 Full Cross-Validated Neural Network vs. Group-Ensemble

In Section C.5 we compare our best performing group-ensemble model (labeled as NN 1 Layer
Group Ensem (1 node per group), fwd rate net (1 layer: 3 nodes)) against two different types of model
averaging schemes, i.e., weighting based on the inverse of the validation loss and an equal-weighted
model, as well as a fully cross-validated (CV) network. While the logic of the weighting schemes for
the model-averaging may be intuitive, the specifications for the fully CV network may be not. Table
F.1 gives an outline of these specifications vis-a-vis the choice made for the group-ensemble structure.

A number of aspects should be discussed; in the full CV setting we recursively choose the number
of hidden layers (between 1 and 2) as well as the number of nodes for each group of macroeconomic
variables. Similarly, the number of nodes in the forward rate net is allowed to change whereas for
the group-ensemble it is kept fixed. In addition, the full CV allows for a bit more flexibility in the
L1/L2 penalty terms for both the group-specific networks as well as for the forward rates. Increasing
the flexibility comes at the cost of increased computational expense (423 possible combinations vs.
6). To keep the computational cost manageable we employ a procedure referred to as randomized
cross-validation that randomly draws combinations of hyperparameters from the set of available com-
binations. Specifically, we perform randomized cross-validation over 60 specifications from the the set
of hyperparameters above. Note, even under randomized cross-validation as we employ it here the
effective training time increases by a factor of 10 (60 specifications vs 6 specifications).

10https://docs.python.org/3.4/library/multiprocessing.html, as of 26th October 2018
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Table F.1: Specifics of Full Cross-Validation vs. Group-Ensembling

This table reports the hyperparameters for the full cross-validated network vs. the shallow network with group
ensemble (see Table C.3). The out-of-sample predictions are obtained by a recursive forecast which starts in
January 1990. The sample period is from 1971:08-2018:12.

Hyperparameter Set Full CV CV for group ensemble

Number of Layers 1, 2 1

Nodes Per Group 1, 2, 3 1

Nodes in Fwd Rate Net 1, 3 3

Dropout - Group Net 0.1, 0.3, 0.5 0.1, 0.3, 0.5

Dropout - Fwd Rate Net 0, 0.3 0

L1/L2 Penal - Group Net 0.01, 0.001, 0.0001 0.01, 0.001

L1/L2 Penal - Fwd Rate Net 0.001, 0.0001 0.0001

Combinations per retraining 432 6

CV frequency 5 years 5 years
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