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Abstract

This article analyses cartels that act as a Stackelberg leader with respect to a competitive fringe in

industries supplying di¤erentiated products. The main objectives are to investigate how cartel stability

changes with the degree of di¤erentiation and the cartel size, to predict endogenous cartels and to carry

out a welfare analysis. Both repeated and static games are considered as well as industries competing

in quantities and prices. The results indicate that the degree of stability can be either an increasing,

decreasing or non-monotonic function of the degree of product di¤erentiation, depending on the cartel

size, the industry size, the competition type and the reaction of cartel loyal members to defection. An

endogenous cartel size is also predicted. Other signi…cant results are: some cartels can be sustained

under simple static game Nash equilibrium, some cartels may be socially desirable, not all cartels are

bene…cial for the fringe members and a free riding problem does not necessarily emerge.
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I. Introduction
One of the most widely accepted structures to characterize industries with collusive be-

haviour it that of a leadership cartel versus a competitive fringe. Most of the models sharing

this view concentrate on the existence of stable cartels in static models of markets without

uncertainty. A cartel is de…ned as stable if neither cartel members, nor fringe members have

incentives to move to the fringe or to the cartel, respectively. These models have analysed in-

dustries competing in prices (D’Aspremont et al. (1983), D’Aspremont and Gabszewick (1986),

Donsimoni et al. (1986) and Daskin (1989)) as well as industries competing in quantities (Spul-

ber (1989), Martin (1990), Sha¤er (1995) and Konishi and Lin (1999)). Nevertheless, all this

work has considered industries supplying exclusively homogeneous goods.

Cartels in industries with non-spatial (Chamberlinian) product di¤erentiation have basically

been considered under the supergame-theoretic model approach2, for the particular case of a

duopoly (Deneckere (1983), Ross (1992), Rothschild (1992), Lambertini (1995), Rothschild

(1997) and; Lambertini and Albaek (1998)) and only a very few cases for industries with more

than two …rms (Majerus (1988)3, Eaton and Eswaran (1998) and Posada (2000)). None of these

models has considered a leadership role of the cartel.

This paper aims to analyse collusion in industries with di¤erentiated products in which the

cartels acts as a Stackelberg leader respect to the competitive fringe. The cartel is assumed to

set its output (price) in a sequential movement game, in which it has a …rst move advantage.

Since the products are not homogeneous, in a price competition industry the fringe does not

act as a price taker4 and it only reacts to the price set by the cartel according to its reaction

function. The work analyses cartel stability under both a repeated as well as a static game

approach. For the former, not only the classical Nash reversion strategy implemented to sustain

collusion is considered, but also the strategy of keeping the cartel with one less member. For

the latter, the well known D’Aspremont et al. (1983) de…nition of stability is considered. The

paper also carries out a welfare analysis.

2One exception is Hirth (1999) who considers a static game model for a price competition industry in which
the cartel does not play any leader role.

3Who considers the particular case of an industry-wide collusion.
4Thus, no extra assumptions like that of increasing marginal cost is needed for the fringe to set its output

according to the rule price equal marginal cost.
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For a quantity competition industry the most signi…cant …ndings are: a free riding problem

does not necessarily emerge, a cartel is not always desirable for the fringe members, some cartels

can be sustained under the simple static game Nash equilibrium concept and small cartels are

socially desirables. Regarding the stability under the supergame-theoretic model framework,

the critical return rate under which collusion is sustained is not a monotonic function. In

general, it reaches a maximum, with an in…nity value in some cases, for an internal value of

the cartel size and the degree of di¤erentiation. Therefore, cartels formed by a subset of the

industry and intermediate values of di¤erentiation imply more stability. Under the static game

framework, there exists a unique stable cartel whose size goes from 3, for heterogeneous goods,

to cartels formed by 40% ¡ 60% of the industry, for very homogeneous products.

For a price competition industry when the Nash reversion is implemented to sustain collu-

sion, the critical return rate is basically a decreasing function of the degree of homogeneity and

of the cartel size. When the cartel remains as a cartel in case a non-loyal member deviates, the

stability is almost always negative (no stability at all) with the exception of an industry-wide

cartel with homogeneous goods and for cartels of size 3 which, apart from particular cases, also

turn out to be the only two stable cartels predicted under the static game approach.

The paper is structured as follows. Section II describes the model. section III analyses the

quantity competition case under both a repeated as well as a static game framework. This

section also presents a welfare analysis. Section IV extends the analysis of section III for a price

competition industry. The …nal section presents the conclusions and suggests future research.

II. Model
Consider an industry composed of n ¸ 2 symmetric …rms. Assume that the industry

produces non-spatial horizontally di¤erentiated products such that the degree of di¤erentiation

between the products of any two …rms is the same. Hence, the inverse demand function exhibits

a Chamberlinian symmetry where the price of product i is given by

pi = a ¡ bqi ¡ c
X

j 6=i
qj; a > 0; b > 0; 0 < c < b: (1)

The value range for c implies that the products are viewed as substitutes rather than com-
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plements and that the price of each product is more susceptible to changes on its own demand

rather than changes on other product demand.

Let d ´ c=b 2 (0; 1) be the parameter to measure the degree of homogeneity between any two

products in the industry. Hence, d = 0 implies that the products are completely independent

and d = 1 indicates that they are perfect substitutes. We will usually refer as homogeneous

products to a value of d close to 1 and, as heterogeneous, to a value of d close to 0: Although

some results are valid for the extreme cases d = 0; 1; this is not necessarily true.

Assume that k 2 [0; n] of the …rms collude to form a leadership cartel. The rest n¡ k …rms,

called the fringe, act independently but as Stackelberg followers. Thus, the game basically

consist of three stages. In the …rst one the …rms decide independently whether or not to be

part of the cartel. In the second stage the cartel collectively sets the Stackelberg leader output

(price). Finally, in the third stage, the fringe sets it output (price). For simplicity, and without

loss of generality, it is assumed that the total production cost of the …rms is equal to zero5.

III. Quantity competition
To solve the game we can proceed backwards and start the analysis at the third stage. Each

fringe member faces the problem of maximising its pro…ts taken as given the output of all other

…rms in the industry. Hence, the optimization problem confronting one fringe member is

max
qi

qi(a ¡ bqi ¡ c
X

j 6=i
qj) = max

qi
qi(a ¡ bqi ¡ c

X

j 6=i2F
qj ¡ c

X

j2C
qj); (2)

where F and C denote the fringe and the cartel, respectively. The …rst order condition implies

a ¡ 2bqi ¡ c
X

j 6=i2F
qj ¡ c

X

j2C
qj = 0: (3)

However, by symmetry, all the outputs within the fringe and within the cartel must be the

same. Thus, the last expression can be written as

a ¡ 2bqf ¡ c(n ¡ k ¡ 1)qf ¡ ckqc = 0; (4)

5 i.e., the model is also valid for cost functions of the type c(q) = cq + F .
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where qc and qf represent the output supplied by each cartel member and by each fringe member,

respectively.

On the other hand, the cartel aims to maximise its joint pro…ts which, by symmetry, is k

times the pro…t of each one of its members

max
qi

kqi(a ¡ bqi ¡ c
X

j 6=i
qj) = max

qi
kqi(a ¡ bqi ¡ c

X

j2F
qj ¡ c

X

j 6=i2C
qj) =

max
qi

kqi(a ¡ bqi ¡ c(n ¡ k)qf ¡ c(k ¡ 1)qi):6 (5)

The Stackelberg leader output is obtained by maximising (5), subject to the reaction func-

tion of a fringe member (4). Thus, the …rst order condition implies

a ¡ 2bqc ¡ c(n ¡ k)(qc
dqf
dqc

+ qf ) ¡ 2c(k ¡ 1)qc = 0; (6)

where dqfdqc and qf are directly obtained from (4). Thus, it is directly shown that

qc =
a(d ¡ 2)

2b(¡2 + 3d ¡ d2 ¡ dk ¡ dn + d2n)
; (7)

qf =
a(4 ¡ 6d + 2d2 + d2k + 2dn ¡ 2d2n)

2b(¡2 + d + dk ¡ dn)(¡2 + 3d ¡ d2 ¡ dk ¡ dn + d2n)
; (8)

¼c =
a2(d ¡ 2)2

4b(¡2 + d + dk ¡ dn)(¡2 + 3d ¡ d2 ¡ dk ¡ dn + d2n)
; (9)

and

¼f =
a2(4 ¡ 6d + 2d2 + d2k + 2dn ¡ 2d2n)2

4b(¡2 + d + dk ¡ dn)2(¡2 + 3d ¡ d2 ¡ dk ¡ dn + d2n)2
; (10)

where ¼c and ¼f represent the pro…t of each cartel member and each fringe member, respectively.

It will be assumed that for the cartel to be a leader it must have at least two …rms. Therefore,

the pro…t of the …rms when the cartel is of the size of zero-one (no cartel) is given exclusively

by ¼f(k = 0) and not by ¼c(k = 1): Moreover, any variable referring to a situation where there

is no cartel is given by the condition k = 0 while k = 1 does not have any interpretation.

6When the cartel determines the output set by one of its …rms it must not take as given the output of the
other cartel members, since these are variable that it also controls and, by symmetry, take the same value.
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It can be …rstly observed that ¼f > ¼c , k > (2 + d(n ¡ 1))=2:7 Thus, the characteristic

free riding problem emerges only in industries with large cartels or heterogeneous products.

As a function of k; the pro…t of a cartel member increases when this goes from k = 0 (no

cartel) to k = 2 (¼c(k = 2) > ¼f(k = 0))8. However, for k ¸ 2; ¼c reaches a local minimum at

k = (2 + d(n ¡ 1))=2 and its global maximum at k = n.

It is important to point out that the minimum pro…t that a cartel member obtains (when

k = (2 + d(n ¡ 1))=2) corresponds to the pro…t that each …rm earns when there is no cartel

(¼f (k = 0)): Therefore, it is always pro…table for the cartel members to form a cartel of any

size, compared to the situation where there is no cartel. However, small cartels are in general

not willing to accept an extra member. The reason is because if the cartel is small an extra

member does not mean a considerable increase of pro…ts since the competition level in the

industry would be basically the same (the fringe still remains very large) but, on the other

hand, the cartel has to share its pro…ts with another member. The cartel is willing to accept

an extra member if this means a considerable decrease in the competition level, i.e., when the

fringe is small or, in other words, when the cartel is large.

As a function of d; ¼c is decreasing for k > (3 + 5n ¡
p

9n2 ¡ 2n ¡ 7)=8: However, for

k < (3 + 5n ¡
p

9n2 ¡ 2n ¡ 7)=8 it reaches a local minimum at some d 2 (0; 1):

Regarding the fringe members pro…t, one of the most important results is that ¼f is a non-

monotonic function of k that reaches a global minimum at k = (2 ¡ d + dn)(2(d ¡ 1) + (2 ¡
d)

p
1 ¡ d)=d2 and its global maximum at k = n ¡ 19:

Therefore, unlike many models developed in the literature, the pro…t of one fringe member

is not necessarily an increasing function of k: It can be easily shown that a cartel is pro…table

for the fringe members (¼f(k) > ¼f (k = 0)) , k > (2 + d(n ¡ 1))=2. Thus, when the cartel is

7As d 2 (0; 1) for any cartel of size k ¸ (n+1)=2 the pro…t of a fringe member is always larger than the pro…t
of a cartel member.

8Except when d = 2=(n¡ 1); in which case both pro…ts are the same.
9The global maximum is actually reached at k = n. However, the fringe does not exist in this case.
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small, the fringe would prefer to be in an industry with no cartel instead of being a Stackelberg

follower. The reason is because even though the competition level in the industry has decreased,

the fringe now has a follower status, which can lead it into a worse situation. This result might

have important implications in explaining the Stackelberg leader position of small cartels since

it is not possible for the cartel to threaten the fringe not to form a cartel if it is not allowed to

be a Stackelberg leader. However, as it will be shown later in this paper, this is not the case

for an endogenous stable cartel.

¼f is a decreasing function of d:

III. 1. Supergame solution
Although we have mentioned that the game consists of three stages, we refer to the process

in which the cartel is formed and the supply decisions take place. However, in this section we

allow the number of periods in which the …rms meet in the market to be in…nite. We take k

rather as an exogenous variable and analyse stability as a function of k and d:

As Friedman (1971) has shown, it is possible for …rms to sustain cooperation in a in…nitely

repeated game which would not be possible in the corresponding static case. In order to sustain

cooperation, every …rm in the cartel plays a trigger strategy, i.e., they set an output qc as long

as every other cartel member has done so in previous periods. When one member, called the

non-loyal member from now on, deviates to any other output, the remaining members revert

to the non-cooperative case or Nash reversion qf (k = 0) forever, but with one lag period.

Cooperation can be sustained if there exists a discount factor in the industry large enough to

prevent a …rm from deviating. In other words, the extra pro…ts that this non-loyal member

earns in the deviating period is o¤set by the lowered pro…t the …rm gets once every …rm has

reverted to the non-cooperative case.

The condition of maintaining stability is that the present discounted value of remaining a

cartel member must exceed the present discounted value of deviating, i.e.

1X

t=0
¼c¾t ¸ ¼ch +

1X

t=1
¼f (k = 0)¾t; (11)
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where ¾ is the discount factor of the industry and ¼ch is the pro…t of the non-loyal member

in the deviating period. Evaluating this condition in terms of the return rate, r = (1 ¡ ¾)=¾;

results in

r · r¤ ´ ¼c ¡ ¼f (k = 0)
¼ch ¡ ¼c

: (12)

r¤ is the critical value below which a cartel member does not have incentives to deviate. A

large (low) value of r¤ implies that it is more (less) likely that the corresponding return rate of

the industry is below this critical value. Therefore, r¤ can be seen as a measure of the cartel

stability.

Although the trigger strategy ensures a certain degree of stability, the threat of reverting to

the non-cooperative case might not be collectively credible since, as is well known, the cartel

punishes itself when it punishes the non-loyal member. A further possible reaction is simply to

assume that the remaining cartel members will keep acting as a cartel with one less member.

Following Eaton and Eswaran (1998) this will be called stacked reversion from now on. Hence,

the non-loyal member gets a pro…t equal to ¼f(k ¡ 1) from the second period on. Thus, the

stability condition becomes

r · r¤ ´ ¼c ¡ ¼f(k ¡ 1)
¼ch ¡ ¼c

: (13)

It is very important to point out that this strategy is not being considered as a punishment

strategy implemented to sustain collusion but for two other di¤erent reasons. The …rst one is

that this is the most reasonable reaction we would expect from the loyal members of the cartel:

to keep the cartel. Thus, we are interested in …nding out if collusion can be endogenously

sustained by the market structure itself without considering any kind of punishment from the

cartel loyal members. It is also worth mentioning that any punishment strategy from the cartel

loyal members must necessarily lie between the Nash reversion (most severe punishment10)

and the stacked reversion (no punishment at all). The second reason is because this strategy

is closely related to the D’Aspremont et al. (1983) static de…nition of internal stability, to be

considered ahead. This is because the sign of r¤ is given exclusively by the sign of ¼c¡¼f (k¡1)

since, by construction of ¼ch; the denominator is always non-negative. However, a positive value

10 It is worth mentioning that there exist in principle more severe punishments than Nash reversion, set the
price below the cost (depredation), for instance.
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of this amount corresponds to the static internal stability concept.

In the deviating period the non-loyal member maximizes its pro…ts given that the other

cartel members have supplied qc and that the fringe members have each supplied qf

max
qch

qch(a ¡ bqch ¡ c(n ¡ k)qf ¡ c(k ¡ 1)qc); (14)

which implies

qch =
a(d ¡ 2)2(2 ¡ d + dn)

4b(2 ¡ d ¡ dk + dn)(2 ¡ 3d + d2 + dk + dn ¡ d2n)
; (15)

and

¼ch =
a2(d ¡ 2)4(2 ¡ d + dn)2

16b(2 ¡ d ¡ dk + dn)2(¡2 + 3d ¡ d2 ¡ dk ¡ dn + d2n)2
: (16)

Proposition 1: qch = qc , k = (2 + d(n ¡ 1))=2:

Proof. Directly shown by substitution.

The implications of this proposition turn out to be one of the main results of the paper.

Given a certain degree of di¤erentiation, there exists a cartel which can be sustained under the

simple Nash static equilibrium, from each …rm’s point of view. In other words, although the

Stackelberg leader position of the cartel is not a Nash equilibrium for the cartel as a whole, it

is for each individual …rm. Therefore, an endogenous cartel size under the classical Nash static

equilibrium de…nition is predicted for this particular market structure. It is worth mentioning

that the stable cartel is not in general an integer number however, there always exist certain

degrees of di¤erentiation such that any cartel between 1 (for d close to 0) and (n + 1)=2 (for d

close to 1) is stable.

The explanation for this result can be understood as follows. When the products are ho-

mogeneous, a non-loyal member deviates by restricting its supply, which is compensated for

the increase of prices. Surprisingly, it can be easily shown that the pro…t of the remaining

cartel members as well as the pro…t of the fringe members also increase in the deviating period.

However, when the products are heterogeneous, a non-loyal member deviates by expanding its

supply. Unlike the case with homogeneous goods, in this case the cartel loyal member pro…ts
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as the fringe member pro…ts decrease in the deviating period since, although the products have

a rather low substitution level, the consumers switch to buying the much cheaper product of

the non-loyal member. Thus, there must be a certain degree of di¤erentiation for which the

non-loyal member is willing neither to expand, nor to restrict its supply. Figure 1 helps to

understand easily this argument. It shows the di¤erence between qch and qc as a function of d

for k = 5 and n = 15. Figure 2 shows the extra pro…t that the non-loyal member gets in the

deviating period which is, of course, non-negative.

That everyone in the industry, the non-loyal cartel member, the cartel loyal members as well

as the fringe member, is better o¤ in the deviating period when the products are homogeneous

deserves some more attention, since it could be argued that there is no justi…cation for the cartel

loyal members and for the fringe to complain about and/or to react to the non-loyal member

defection. However, although the fringe members are also better o¤, their independent nature

leads them to react to the non-loyal member movement, which implies an eventual reaction of

the cartel as well. Figures 3 and 4 show the extra pro…ts that each loyal member and each

fringe member gets in the deviating period for k = 5 and n = 15, compared with ¼c and ¼f ,

respectively. As we can see, the extra pro…ts are positive for homogeneous goods and negative

for heterogeneous goods.

III. 1. a. Nash reversion

By direct substitution of (9), (10) and (16), the condition to sustain stability (12) becomes

r · r¤ ´ 4(2 ¡ d ¡ dk + dn)(2 ¡ 3d + d2 + dk + dn ¡ d2n)
(d ¡ 2)2(2 ¡ d + dn)2

: (17)

Proposition 2: The critical return rate is a non-monotonic function of d that starts at 1 for

d = 0; it reaches a local minimum at d = (2(n ¡ 1 ¡
p

k(n ¡ k)(n ¡ 1)))=((1 + k ¡ n)(n ¡ 1)),

a local maximum at d = 2(k ¡ 1)=(n ¡ 1); where the function takes a value of 1. It …nishes at

a value of 4k(n + 1 ¡ k)=(n + 1)2 at d = 1.

Proof : See appendix.

It is directly shown that the minimum is in the valid interval for d (0,1) if and only if

k < (n + 1)2=(n + 3): Similarly, the maximum is in the valid interval for d if and only if
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k < (n + 1)=2:

The intuition behind this result can be understood as follows. When the products are

heterogeneous, there are no incentives to deviate from the cartel since it is not possible to

steal other markets and thus the cartel is rather stable. When the products become more

homogeneous it gets easier for the non-loyal member to supply other …rm’s consumers, the

incentives to defect increase and the stability decreases. However, as the homogeneity increases

the e¤ect described in proposition 1 emerges, the point where the cartel is sustained under the

static Nash equilibrium is reached, there are no incentives to deviate and the stability reaches a

maximum. As the products become more and more homogeneous the stability decreases again

since the non-loyal member, and everyone in the industry, gains by restricting the output.

Figure 5 shows the critical return rate as a function of d for k = 5 and n = 15.

Proposition 3: The critical return rate is a non-monotonic function of k that reaches a global

maximum at k = (2 + d(n ¡ 1))=2 where it takes a value of 1.

Proof. Directly shown by taking @r
¤
@d and @

2r¤
@d2 :

Figure 6 presents the critical return rate as a function of k for n = 15 and d = 0:9.

III. 1. b. Stacked reversion

In this case the condition for stability becomes

r · r¤ ´ 4(2 ¡ d ¡ dk + dn)(2 ¡ 3d + d2 + dk + dn ¡ d2n)A
(d ¡ 2)2(2 ¡ d ¡ 2k + dn)2(2 ¡ dk + dn)2(¡2 + 4d ¡ d2 ¡ dk ¡ dn + d2n)2

; (18)

where A = ¡48+144d¡144d2+64d3¡13d4+d5+64k¡192dk+168d2k¡64d3k+12d4k¡d5k¡
16k2 + 48dk2 ¡ 36d3k2 + 28d4k2 ¡ 9d5k2 + d6k2 ¡ 24d2k3 + 28d3k3 ¡ 16d4k3 + 3d5k3 + 4d2k4 ¡
4d3k4+2d4k4¡48dn+112d2n¡80d3n+22d4n¡2d5n+64dkn¡160d2kn+136d3kn¡68d4kn+

19d5kn¡2d6kn¡16dk2n+40d2k2n¡24d3k2n+6d4k2n+6d5k2n¡2d6k2n¡4d3k3n+4d4k3n¡
3d5k3n ¡ 8d2n2 + 4d3n2 + 11d4n2 ¡ 7d5n2 + d6n2 + 16d2kn2 ¡ 32d3kn2 + 30d4kn2 ¡ 20d5kn2 +
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4d6kn2 ¡4d2k2n2 +8d3k2n2 ¡7d4k2n2 +3d5k2n2 +d6k2n2 +4d3n3 ¡12d4n3 +10d5n3 ¡2d6n3 +

2d5kn3 ¡ 2d6kn3 + d4n4 ¡ 2d5n4 + d6n4:

Due to the complexity of this expression, it becomes very di¢cult, if not impossible, to

prove formally any proposition regarding the behaviour of the critical return rate for this case.

However, all the particular cases analysed, informal proofs and mainly some results presented

in the next section, closely related to this one, suggest that r¤ certainly follows a well de…ned

pattern that can be summarized in the following two conjectures.

Conjecture 1: For cartels of size k > (5 + 3n¡
p

n2 ¡ 2n ¡ 7)=4 the stability is negative for

every value of d. For cartels of size k < (5 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4; the stability starts at a

negative value (3¡k)=(k¡1) for d = 011, it reaches a positive in…nity value at d = 2(k¡1)=(n¡1)

and it subsequently decreases, ending up with a positive value.

Figure 7 shows the critical return rate as a function of d for k = 5 and n = 15: In this case

the cartel is rather small and the stability follows the pattern described in the second part of

this conjecture.

Regarding the stability as a function of k; this seems to follow a rather complex pattern.

Conjecture 2: For n = 3; r¤(k = 3) < r¤(k = 2)12 for every value of d: For n ¸ 4;

r¤(k = 3) < r¤(k = 2) only for low values of d: For k 2 [3; (5 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4] and

d < 4=(n¡ 1); r¤ is a decreasing function that starts at a positive value at k = 3 and ends with

a negative value at k = (5 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4: For k 2 [3; (5 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4] and

d > 4=(n¡1); r¤ start at a positive value, it reaches a positive in…nity value at k = (2+d(n¡1))=2

and it subsequently decreases, ending up at a negative value at k = (5+3n¡
p

n2 ¡ 2n ¡ 7)=4:

r¤ is always negative for every k > (5 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4:

Although the pattern followed by the critical return rate seems rather messy, this is only the

result of two di¤erent e¤ects given by the numerator and denominator of (13). We can …rstly

11With the exception of k = 3 in which case it starts at r¤ = 0:
12r¤(k = 2) is given by (17) and not by (18) since, as has been mentioned before, k = 1 makes no sense in this

model.
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observe that r¤ is positive for small cartels and negative for large cartels, which means that a

non-loyal member is always willing to leave a large cartel. The reason is because by joining the

fringe he gets a larger market size without increasing considerably the competition level in the

industry. Moreover, if the products are heterogeneous, even defecting from small cartels does

not increase competition too much. On the other hand, if the cartel is small and the products

are homogeneous, joining the fringe when this is already large does not mean a considerable

gain in the market size but it can bring about high competition levels (the fringe is large and

the cartel become even smaller). Therefore, the non-loyal member is likely to remain loyal to

the cartel. The fact that the critical return rate becomes in…nity is again due to the e¤ect

described in proposition 1.

III. 2. Static Stability
In this section we come back to the …rst stage of the game and try to predict an endogenous

cartel size. The section is called static stability in the sense that …rms meet in the market only

once.

Following D’Aspremont et al. (1983) we de…ne a cartel to be stable if it is internally stable,

¼c(k) ¸ ¼f (k = 0) for k = 2 and ¼c(k) ¸ ¼f (k ¡ 1) for k ¸ 3;13 and externally stable,

¼f(k) ¸ ¼c(k + 1); for k · n ¡ 1;14 i.e., no cartel (fringe) member has incentives to join the

fringe (cartel).

Proposition 4: A cartel of size k = 2 is always internally stable. For k 6= 2 a cartel is

internally stable , k 2 [3; ko]; where ko is the unique root of A within the interval (3; n):

Proof : See appendix.

Taking the extreme values d = 0; 1 it can be shown that ko 2 (3; (5+3n¡
p

n2 ¡ 2n ¡ 7)=4)

where @ko@d > 0: Therefore, for low values of d; apart from k = 2; the only internal stable cartel

13Although the original de…nition of stability by D’Aspremont et al. (1983) permits the solution k = 1; this, as
has been mentioned before, makes no sense in our model. Moroever, we would be interested in a non-degenerated
solution, i.e., k ¸ 2:

14The de…nition of external stability makes no sense for k = n: Therefore, a cartel of size n is stable as long as
it is internally stable only.
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is that of size 3. As d increases, larger cartels start to be internally stable up to cartels of size

(5 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4:

Proposition 5: A cartel is externally stable , k 2 (ko ¡ 1; n ¡ 1]:

Proof : See appendix.

Therefore, for n > 3 every cartel of size 2 is externally unstable. On the other hand, for

low values of d only cartels of size k ¸ 3 are externally stable, as d increases, small cartels start

to be externally unstable up to cartels of size ko(d = 1) ¡ 1 = (1 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4 for

homogeneous products. Consequently, every cartel of size k > (1 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4 is

always externally stable.

Proposition 6: There exists a unique stable cartel. For n = 2 this is of size 2 for every d;

for n = 3; 4 this is of size 3 for every d and for n ¸ 5 its size is de…ned by the largest integer

lower than ko:

Proof : See appendix.

The last proposition implies that for n ¸ 5 the unique stable cartel goes from k = 3; for low

values of d; up to a size equal to the largest integer smaller than (5+ 3n¡
p

n2 ¡ 2n ¡ 7)=4 for

large values of d:

The next table shows the unique stable cartel for di¤erent values of n and d

d n n 2 3 4 5 7 10 15 25 50 100

0:1 2 3 3 3 3 3 3 3 4 7

0:3 2 3 3 3 3 3 4 5 9 16

0:5 2 3 3 3 3 4 5 8 14 26

0:7 2 3 3 3 4 5 7 10 19 36

0:9 2 3 3 4 4 6 8 12 24 46

As has been mentioned previously, the fringe is willing to accept a cartel , k > (2 + d(n ¡
1))=2: Numerical calculations show that this amount is always below the stable cartel for the

14



di¤erent cases presented in the previous table. Thus, one could conjecture that the unique

stable cartel o¤ers larger pro…ts for the fringe members compared to the situation where there

is no cartel. Thus, the stable cartel can threaten the fringe not to form a cartel if it is not

allowed to lead. Therefore, although an endogenous mechanism to form leadership cartels is

not justi…ed for small cartels, it is for the unique stable cartel.

III. 3. Welfare Analysis
A question naturally arises regarding the welfare cost of collusion as a function of the

degree of di¤erentiation and the cartel size. The consumer utility function for the particular

case of a duopoly has been studied by Dixit (1979) and Singh and Vives (1984). In their

model, a representative consumer derives utility from the consumption of two goods and a

third numeraire good, sold in a competitive sector. The utility function can be easily extended

into an economy with n di¤erentiated products as follows

U(q1; q2; :::; qi; :::; qn) = a
X

i
qi ¡

b
2

X

i
q2i ¡ c

2

X

j 6=i

X

i
qiqj: (19)

Thus, U is assumed to be a quadratic and strictly concave function. A representative

consumer maximises U ¡ P
i

piqi, which leads directly to the Chamberlinian inverse demand

function with n goods (1). Total welfare can be de…ned as the consumer surplus, U ¡ P
i

piqi;

plus the total pro…t in the industry,
P
i

piqi. Considering that there are only two di¤erent kind

of …rms in the industry, k in the cartel and n ¡ k in the fringe, total welfare is given by

W = U(qc; qf) = akqc + a(n ¡ k)qf ¡ b
2
kq2c ¡ b

2
(n ¡ k)q2f

¡ c
2
k(k ¡ 1)q2c ¡ c

2
(n ¡ k)(n ¡ k ¡ 1)q2f ¡ ck(n ¡ k)qcqf ; (20)

where the di¤erent coe¢cients stand for the di¤erent combinations of pairs of …rms within the

cartel, within the fringe and between the cartel and the fringe.

The expression for total welfare can be easily calculated by direct substitution of (7), (8)

and c = db: However, this is not shown here for reasons of space.

The …rst result we obtain is that, as expected, total welfare is a decreasing function of d;
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which is explained because consumers value diversity. However, as a function of the size of the

cartel we have the surprising result that total welfare is not a non-monotonic function of k that

reaches an internal global maximum at some k 2 (0; n) and its global minimum at k = n:

The implications of this result are outstanding. Total welfare in the economy does not

necessarily decrease with the size of a cartel. Therefore, and against antitrust policy principles,

the existence of a cartel can be socially desirable. The explanation is related to one of the results

we have mentioned before. If a small cartel is formed, the fringe …rms sell their product at a

lower price and, although the cartel price increases, the e¤ect is not fully compensated and the

consumers bene…t from the fringe price reduction, increasing thus their surplus. In other words,

total welfare in the economy increases at the expenses of the fringe …rm’s losses. However, it is

also very important to mention that total welfare when the cartel is of size k = (2+d(n¡1))=2

corresponds to the welfare when there is no cartel (k = 0): On the other hand, as has been

mentioned before, the unique stable cartel is always of a size k > (2 + d(n ¡ 1))=2. Therefore,

although small cartels can be socially desirable, the endogenous stable cartel is always harmful.

An example of this result can be seen in …gure 8, which shows total welfare as a function

of the cartel size for n = 15 and d = 0:8. In this example the most socially desirable cartel is

that of size 4, although the unique stable cartel is k = 7.

IV. Price competition
The demand function for n di¤erentiated products can be calculated by inverting (1)

qi = ® ¡ ¯pi + °
X

j 6=i
pj; (21)

where

® =
a

b ¡ c + nc
; ¯ =

b + nc ¡ 2c
(b ¡ c)2 + nc(b ¡ c)

and ° =
c

(b ¡ c)2 + nc(b ¡ c)
: (22)

Following the same argument as in the quantity competition case, it is directly shown that

the cartel maximizes its pro…ts

max
pc

kpc(® ¡ ¯pc + °(n ¡ k)pf + °(k ¡ 1)pc); (23)
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subject to the reaction function of the fringe members

® ¡ 2¯pf + °(n ¡ k ¡ 1)pf + °kpc = 0; (24)

which imply

pc =
®(2 + ±)

2¯(2 + 3± + ±2 ¡ ±k ¡ ±n ¡ ±2n)
; (25)

pf =
®(4 + 6± + 2±2 + ±2k ¡ 2±n ¡ 2±2n)

2¯(2 + ± + ±k ¡ ±n)(2 + 3± + ±2 ¡ ±k ¡ ±n ¡ ±2n)
; (26)

¼c =
®2(2 + ±)2

4¯(2 + ± + ±k ¡ ±n)(2 + 3± + ±2 ¡ ±k ¡ ±n ¡ ±2n)
(27)

and

¼f =
®2(4 + 6± + 2±2 + ±2k ¡ 2±n ¡ 2±2n)2

4¯(2 + ± + ±k ¡ ±n)2(2 + 3± + ±2 ¡ ±k ¡ ±n ¡ ±2n)2
: (28)

where ®, and ¯ are given by (22) and ± = °=¯ = d=(1 + nd ¡ 2d).

In this case the pro…t of a fringe member is always larger than the pro…t of a cartel member.

Besides, the pro…t of a cartel member and the pro…t of a fringe member are always decreasing

functions of d and increasing functions of k.

IV. 1. Supergame solution
As usual, the non-loyal member maximizes its pro…t given than the other …rms have charged

prices pc and pf , respectively

max
pch

pch(® ¡ ¯pch + °(n ¡ k)pf + °(k ¡ 1)pc); (29)

which implies

pch =
®(2 + ±)2(2 + ± ¡ ±n)

4¯(2 + ± + ±k ¡ ±n)(2 + 3± + ±2 ¡ ±k ¡ ±n ¡ ±2n)
(30)

and

¼ch =
®2(2 + ±)4(2 + ± ¡ ±n)2

16¯(2 + ± + ±k ¡ ±n)2(2 + 3± + ±2 ¡ ±k ¡ ±n ¡ ±2n)2
: (31)

IV. 1. a. Nash reversion
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The case k = n is an especial case where it makes no sense for the cartel to lead, since there

is no fringe. Moreover, this case must be analysed separately since when the non-loyal member

deviates to pch; the remaining demand of the cartel loyal members may become negative for

large values of d: Thus, in this case, the non-loyal …rm maximizes its pro…ts by reducing its

price until the demand of the remaining cartel members is equal to zero

® ¡ ¯pc + °(n ¡ 2)pc + °pch = 0; (32)

which results in

pch =
®(n± ¡ 1)

2¯±(± ¡ n± + 1)
(33)

and

¼ch =
®2(± + 1)(n± ¡ 1)
4¯±2(± ¡ n± + 1)

: (34)

The critical value for d; d¤; is found by equalling expressions (30) with (33) evaluated at

k = n, which implies

d¤ =
n ¡ 3 +

p
n2 ¡ 1

3n ¡ 5
: (35)

Therefore, the non-loyal member deviates according to (30) for d 2 (0; d¤] and according to

(33) for d 2 [d¤; 1):

Hence, the measure of stability, r¤, is given by

r¤ =

8
>>>><
>>>>:

4(1¡d)(1+nd¡2d)
(2+nd¡3d)2 for d 2 (0; d¤]; a)

d4(n¡1)2
(2+nd¡3d)2(¡1+3d¡3d2¡nd+2nd2) for d 2 [d¤; 1): b)

(36)

Proposition 7: r¤ takes a value of 1 at d = 0 and a value of 1=(1¡n) at d = 1 for every n. For

n 2 f2; 3; 4g; the stability reaches a global minimum at d = (12¡4n¡2
p

2(3 + n)(n ¡ 1))=(21¡
14n + n2), and it is always a decreasing function of d for n ¸ 5:

Proof : See appendix.

The economic intuition behind this result is clear. As the products become more homoge-

neous the incentives to deviate increase, since the non-loyal member can now supply its product
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to other …rm’s consumers. When d¤ is reached, the pro…t of the non-loyal member is restricted

to avoid the rest of the industry having a negative demand. Therefore, the incentive to deviate

diminishes and the stability fall is lessened. Figure 9 shows this pattern for an industry with 7

…rms.

For k < n the non-loyal member always deviates according to (30). The condition to sustain

stability becomes

r · r¤ ´ 4(1 ¡ 2d + dn)(2 ¡ 3d + dk + dn)(2 ¡ 5d + 3d2 ¡ dk + 2d2k + 3dn ¡ 4d2n ¡ d2kn + d2n2)
(2 ¡ 3d + dn)2(2 ¡ 3d + 2dn)2

:

(37)

Proposition 8: The critical return rate is a decreasing function of d and k.

Proof : See appendix.

Therefore, the most likely cartels to exist under this scenario are small cartels with hetero-

geneous products. To understand this we can notice that a large cartel implies a high price in

the industry. Therefore, a non-loyal member gets high pro…ts by deviating from large cartels,

since the high prices of its new competitor and the low numbers of competitors will permit him

to get a larger market share and a large gain margin.

IV. 1. b. Stacked reversion

For k = n; r¤ is given by

r¤ =

8
>>>><
>>>>:

(1¡d)(12¡48d+57d2¡17d3¡4n+40dn¡77d2n+33d3n¡8dn2+32d2n2¡20d3n2¡4d2n3+4d3n3)
(n¡1)(¡2+4d¡d2¡2dn+d2n)2 for d 2 (0; d¤];

d4(n¡1)(12¡48d+57d2¡17d3¡4n+40dn¡77d2n+33d3n¡8dn2+32d2n2¡20d3n2¡4d2n3+4d3n3)
4(1¡2d+dn)(¡2+4d¡d2¡2dn+d2n)2(¡1+3d¡3d2¡dn+2d2n) for d 2 [d¤; 1):

(38)

Proposition 9: The critical return rate is an increasing function of d that takes a negative

value of (3 ¡ n)=(n ¡ 1) at d = 015 and a positive value of 1=(n ¡ 1) at d = 1.

Proof. See appendix.

15For the case n = 3 the critical return rate starts at 0.
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That the critical return rate takes negative values and no cartel is stable for low values of

d is explained because there is no punishment against the non-loyal member. However, the

interesting result appears as the products become more homogeneous, the stability increases

and can reach positive values. At …rst glance, this result could seem contradictory since, as

was just mentioned, there is no punishment against the non-loyal member. In this case, the

punishment comes from the market itself. When the degree of homogeneity is large, so is

the degree of competition between the cartel and the non-loyal member, acting now as the

fringe. The prices in the industry can fall substantially, nevertheless there are only two entities

competing. Although the market share is larger for the non-loyal member, the price fall has

reduced its pro…ts. This e¤ect is not observed for heterogeneous goods because competition is

not present in this case. The stability is even strengthened when d is close to one, because the

pro…ts that the non-loyal member gets in the deviating period is, as is known, restricted for

d ¸ d¤. Figure 10 shows the critical return rate as a function of d for an industry-wide cartel

of size 4.

For k < n the critical return rate is given by

r · r¤ ´ 4(1 ¡ 2d + dn)(2 ¡ 3d + dk + dn)BC
(2 ¡ 4d + dk + dn)2(2 ¡ 3d + 2dn)2(¡2 + 3d + 2k ¡ 4dk ¡ dn + 2dkn)2D2 ; (39)

where B = 2¡5d+3d2¡dk+2d2k+3dn¡4d2n¡d2kn+d2n2; C = ¡48+432d¡1584d2+3008d3¡
3085d4+1587d5¡306d6+64k¡576dk+2088d2k¡3840d3k+3660d4k¡1583d5k+174d6k¡16k2+

144dk2¡480d2k2+676d3k2¡188d4k2¡439d5k2+319d6k2¡24d2k3+164d3k3¡424d4k3+493d5k3¡
218d6k3+4d2k4 ¡28d3k4 +74d4k4 ¡88d5k4+40d6k4 ¡240dn+1792d2n¡5232d3n+7414d4n¡
5040d5n + 1287d6n + 320dkn ¡ 2400d2kn + 6936d3kn ¡ 9492d4kn + 5941d5kn ¡ 1243d6kn ¡
80dk2n + 600d2k2n ¡ 1576d3k2n + 1570d4k2n ¡ 118d5k2n ¡ 469d6k2n ¡ 92d3k3n + 472d4k3n ¡
813d5k3n+471d6k3n+16d3k4n¡84d4k4n+148d5k4n¡88d6k4n¡488d2n2+2908d3n2¡6349d4n2+

5975d5n2¡2020d6n2+656d2kn2¡3936d3kn2+8502d4kn2¡7692d5kn2+2365d6kn2¡164d2k2n2+

984d3k2n2 ¡ 1903d4k2n2 + 1169d5k2n2 + 49d6k2n2 ¡ 132d4k3n2 + 452d5k3n2 ¡ 389d6k3n2 +

24d4k4n2 ¡ 84d5k4n2 + 74d6k4n2 ¡ 516d3n3 + 2304d4n3 ¡ 3348d5n3 + 1571d6n3 + 704d3kn3 ¡
3168d4kn3 + 4546d5kn3 ¡ 2038d6kn3 ¡ 176d3k2n3 + 792d4k2n3 ¡ 998d5k2n3 + 275d6k2n3 ¡
84d5k3n3 + 144d6k3n3 + 16d5k4n3 ¡ 28d6k4n3 ¡ 299d4n4 + 890d5n4 ¡ 646d6n4 + 416d4kn4 ¡
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1248d5kn4 +892d6kn4 ¡ 104d4k2n4 + 312d5k2n4 ¡ 191d6k2n4 ¡ 20d6k3n4 +4d6k4n4 ¡ 90d5n5 +

134d6n5 + 128d5kn5 ¡ 192d6kn5 ¡ 32d5k2n5 + 48d6k2n5 ¡ 11d6n6 + 16d6kn6 ¡ 4d6k2n6 and

D = ¡2 + 4d ¡ d2 + dk ¡ 2d2k ¡ 3dn + 3d2n + d2kn ¡ d2n2:

Again, the complexity of this expression makes it very di¢cult to prove formally any propo-

sition regarding the behaviour of the r¤: However, all the particular cases analysed, as well as

informal proofs, suggest that there exists a well de…ned pattern for the critical return rate.

Conjecture 3: The critical return rate is always negative for every k > 3. For k = 3 it is a

positive increasing function of d that starts at a value of 0 at d = 0:

Therefore, no cartel larger than 3 can exist, with the exception of an industry-wide collusion

with homogeneous products. To understand this we can observe that, as long as there is at

least one …rm in the fringe, a non-loyal member defection does not drastically increase the

competition level. This was already present even before he deviates. However, he can now get

a larger market share since he does not have to share its pro…ts. Therefore, the only possible

stable cartels are those where the pro…ts are not shared among many members, let us say 3. This

e¤ect does not take place so drastically in a quantity competition industry since competition is

not very severe in that case.

IV. 2. Static stability
Conjecture 4: A cartel of size k = 2 is internally stable for every n. For n = 3; the cartel

k = 3 is also internally stable. For n = 4, k = 3 is internally stable and k = 4 is internally

stable only for homogeneous products. For n = 5; k = 3 is internally stable and k = 4; 5 are

internally stable only for homogeneous products. For n ¸ 6; apart from k = 2, the only two

other internally stable cartel are those of size k = 3 for every d and k = n for homogeneous

products.

Conjecture 5: Every cartel is externally stable with three exceptions: a cartel of size k = 2

for every d and n, a cartel of size k = n¡1 for homogeneous products and a cartel of size k = 3

for n = 5 for homogeneous products.

Conjecture 6: For n = 2, k = 2 is stable. For n = 3, k = 3 is stable. For n = 4 the cartel

k = 3 is stable only for heterogeneous products and the cartel k = 4 is so only for homogeneous
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products. For n = 5; the cartel k = 3 is stable only for heterogeneous products and the cartel

k = 5 is stable for very homogeneous products. For n ¸ 6 there exist only two stable cartels,

that of size 3 for every d and that of size n for homogeneous products.

IV. 3. Welfare analysis
The explicit expression for the total welfare can be easily obtained by calculating qc = ¼c=pc

and qf = ¼c=pf : However, it is not presented here for reasons of space. Anyway, in this case we

have the rather reasonable result that total welfare in the economy is a decreasing function of

d and k:

V. Conclusion
The most signi…cant …nding of this paper regarding an industry competing in quantities

are: fringe members can have lower pro…ts than cartel members, a cartel is not always desirable

for the fringe members, some cartels can be sustained under the simple static game Nash

equilibrium and small cartels are socially desirable, although the unique stable cartel is not.

Under the repeated game framework for a Nash reversion, the stability of the cartel is

not a monotonic function of d. In general, it reaches two maximums, at d = 0 and at d =

2(k ¡ 1)=(n ¡ 1) and a global minimum at d = 1: As a function of k the stability reaches a

global maximum at k = (2 + d(n ¡ 1))=2: For the staked reversion, the stability is negative for

every k > (5+3n¡
p

n2 ¡ 2n ¡ 7)=4: For smaller cartels the stability starts at a negative value

for low values of d and it reaches a positive in…nity value at d = 2(k¡1)=(n¡1): Under the static

game framework, there exists a unique stable cartel whose size goes from 3, for heterogeneous

products up to k = (5 + 3n ¡
p

n2 ¡ 2n ¡ 7)=4 for very homogeneous products. Total welfare

is a decreasing function of d but it reaches an internal global maximum as a function of k:

For a price competition industry, the critical return rate is basically a decreasing function

of d and k when Nash reversion is implemented to sustain collusion. For the stacked reversion

however, the cartel is almost always unstable with two exceptions: an industry-wide collusion

for homogeneous products and cartels of size 3, which also turn out to be the only two stable

cartels under the static de…nition of stability. Total welfare is a decreasing function of d and k:
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Future research might be focused on more general forms of the demand and cost function. It

is also worth …nding out how the predictions of the model would change considering asymmetric

…rms, i.e., by relaxing the symmetries regarding the size of the market, the cost function and

the own and cross demand elasticities. Industries with spacial di¤erentiation products could

also be considered.

VI. Appendix
VI. 1. Proof proposition 2
By taking @r

¤
@d it is directly shown that r¤ has 4 critical points, at d = 0; d = 2(k¡1)=(n¡1);

d = (2(n¡1¡
p

k(n ¡ k)(n ¡ 1)))=((1+k¡n)(n¡1)) and d = (2(n¡1+
p

k(n ¡ k)(n ¡ 1)))=((1+

k ¡ n)(n ¡ 1)): The last critical point is always out of the valid interval for d since for k = n it

takes a value of 2, for k = n ¡ 1 it goes to in…nity and it is always negative for k < n ¡ 1 since

(1+k¡n)(n¡1) < 0 and n¡1+
p

k(n ¡ k)(n ¡ 1) > 0: @
2r¤
@d2 (d = 2(k¡1)=(n¡1)) = ¡(n¡1)2(k¡

1)2=(2k2(n¡k)2) < 0, hence d = 2(k¡1)=(n¡1) is a maximum. r¤(d = 2(k¡1)=(n¡1)) = 1 is

directly shown by substitution. @
2r¤
@d2 (d = 0) = ¡(k¡1)2=2 < 0, hence d = 0 is also a maximum.

Since d = 0 and d = 2(k ¡1)=(n¡1) are maximums and there exists only another critical point

in the interval (0,1), this must be d = (2(n ¡ 1 ¡
p

k(n ¡ k)(n ¡ 1)))=((1 + k ¡ n)(n ¡ 1)) and

it must be a minimum.

VI. 2. Proof proposition 4
¼c(k = 2) > ¼f(k = 0) , 2 ¡ d + d2 + dn ¡ d2n > 0; which is true since this is a concave

parabola (its second derivative is ¡2(n ¡ 1)) which takes a positive value at d = 0 (2) and

a positive value at d = 1 (2). Thus a cartel of size 2 is internally stable. For k ¸ 3 we can

observe that ¼c(k) ¡ ¼f (k ¡ 1) ´ IS = (a2d2A)=(4b(2 + d(n ¡ k))2(2 ¡ d + d(n ¡ k))(2 ¡ 3d +

d2 + dk + dn ¡ d2n)(¡2 + 4d ¡ d2 ¡ dk ¡ dn + d2n)2). Since 2 ¡ 3d + d2 + dk + dn ¡ d2n > 0

(this is concave parabola that takes a positive value at d = 0 (2) and a positive value at d = 1

(k)); and 2 ¡ d + d(n ¡ k) > 0; ¼c(k) > ¼f(k ¡ 1) , IS > 0 , A > 0: Therefore, it is enough

to prove that A(k = 3) > 0, A(k = n) < 0 and A has only one root in the interval (3; n).

A(k = 3) > 0 , 36¡20d+5d2 ¡2d3 +9d4 ¡8n+4dn¡20d2n+28d3n¡24d4n+4n2 ¡20dn2 +

38d2n2 ¡ 40d3n2 + 22d4n2 + 4dn3 ¡ 12d2n3 + 16d3n3 ¡ 8d4n3 + d2n4 ¡ 2d3n4 + d4n4 ´ E > 0:

To show that E > 0 the particular cases n = 3; 4 and 5 can be directly veri…ed. For n > 5
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we can easily check that E(d = 0) > 0, @E@d (d = 0) > 0, E(d = 1) > 0, @E@d (d = 1) < 0 and
@2E
@d2 (d = 1) > 0: Thus E is a positive increasing function at d = 0 and a positive decreasing

convex function at d = 1: Therefore, E cannot take negative values because this would require

at least three concavity changes, which is not possible for a fourth degree polynomial. A(k =

n) < 0 , ¡12 + 24d ¡ 9d2 + d3 + 4n ¡ 20dn + 13d2n¡ 2d3n + 4dn2 ¡ 4d2n2 + d3n2 ´ F > 0: It

is directly shown that F (d = 0) > 0, @F@d (d = 0) > 0, F (d = 1) > 0, @F@d (d = 1) < 0 for n ¸ 4:

Therefore, F must be positive in all the interval d 2 (0; 1) since otherwise F would have to reach

two maximums and one minimum, which is not possible for a third degree polynomial. At this

moment it is worth noticing that the dominant terms of A for large values of k are the terms

containing k4: It can be easily seen that these terms, once factorized, are 2d2(2 ¡ 2d + d2)k4:

Since this coe¢cient is always positive, A must take positive values for very large positive values

of k and positive values (with a negative slope) for very large negative values of k. On the other

hand, @A@k (k = 1) > 0 , 8¡12d+6d2¡2d3+d4+4dn¡4d2n+2d3n¡2d4n+d4n2 > 0; which is

true since this function at n = 1 is positive (2(2 ¡ d)2) its …rst derivative respect to n at n = 1

is positive (2d(2 ¡ 2d + d2)) and its second derivative respect to n is positive(2d4). Therefore,

A necessarily reaches one minimum at some k < 1 since A has a negative slope for very large

negative values of k: For A to have more than one root in the interval (3; n) it would require A

to reach at least two other minimums and two maximums, since A(k = n) < 0 and A …nishes

up with positive values for large values of k: However, A has at most three critical points since

it is a fourth degree polynomial. Therefore, A has only one root in the interval (3; n).

VI. 3. Proof proposition 5
Let ES ´ ¼f (k) ¡ ¼c(k + 1). Thus, as long as ES is positive (negative) a cartel of size k

is internally stable (unstable). It can be observed …rstly that if IS has a root at ko, then the

function ES necessarily has a root at ko ¡ 1: On the other hand, if IS (de…ned in the previous

proof) is a decreasing function at ko; ES is necessarily an increasing function at ko¡1: Therefore,

based on these results and on the proof of proposition 4, proposition 5 is directly implied.

VI. 4. Proof proposition 6
The particular cases can be directly veri…ed by substitution. The general results are a direct
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implication from propositions 4 and 5 and some of the properties mentioned in the proofs of

these two propositions. However, an alternative formal proof of existence would be as follows:

We have proved that ¼c(k = 2) > ¼f(k = 0): This implies that k = 2 is internally stable.

¼f(n¡1) > ¼c(k = n) , ¡12+24d¡9d2+d3+4n¡20dn+13d2n¡2d3n+4dn2¡4d2n2+d3n2 ´
G > 0. It can be easily shown that G takes positive values at d = 0 and d = 1 for n ¸ 5 and its

derivative at d = 0(1) is positive (negative). Thus, G must be positive for any d 2 (0; 1) since G

could only become negative by reaching at least two maximums and one minimum within the

interval d 2 (0; 1); which is not possible for a cubic function. Therefore, k = n¡ 1 is externally

stable. We proceed to compare ¼f (k = 2) with ¼c(k = 3). There exist only two possibilities,

if ¼f (k = 2) > ¼c(k = 3) ) k = 2 is externally stable and then k = 2 is a stable cartel. If

¼f(k = 2) < ¼c(k = 3) ) k = 3 is internally stable and we proceed to compare ¼f (k = 3) with

¼c(k = 4). There exist only two possibilities, if ¼f (k = 3) > ¼c(k = 4) ) k = 3 is externally

stable and then k = 3 is a stable cartel. If ¼f(k = 3) < ¼c(k = 4) ) k = 4 is internally

stable. If we keep this procedure there will be only two options. If we stop at some point it is

because a stable cartel has been found. If not, we will reach a stage where the cartel k = n¡ 1

is internally stable. However, it is known that a cartel of size n ¡ 1 is externally stable and

therefore this cartel of size k = n ¡ 1 would be a stable cartel.

VI. 5. Proof proposition 7
By substitution, it is directly shown that the critical return rate takes a value of 1 at

d = 0 and a value of 1=(1 ¡ n) at d = 1 for every n. For the interval d 2 (0; d¤]; @r
¤
@d =

¡4d(n ¡ 1)2=(2 + d(n ¡ 3))3, which is clearly negative for every n ¸ 2: At this point it is

useful to consider that, by construction, the critical return rate is a continuous function. It

is also directly shown, by evaluating the …rst derivative of 36a and 36b at d¤; that continuity

is also a property of the …rst derivative. Therefore, 36b is also a decreasing function at d¤.

By calculating @r
¤
@d for the interval d 2 [d¤; 1) it is directly shown that r¤ has a minimum at

d = (12 ¡ 4n ¡ 2
p

2(3 + n)(n ¡ 1))=(21 ¡ 14n + n2) 2 (d¤; 1) only for n 2 f2; 3; 4g. Since r¤

has a negative derivative at d¤ and it does not have any minimum for n ¸ 5; in this case the

function is always decreasing in d.
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VI. 6. Proof proposition 8
@r¤
@d < 0 , ¡4+12d¡9d2+4k¡16dk+15d2k¡4dn+6d2n+8dkn¡15d2kn¡d2n2+4d2kn2 ´

H > 0: H(k = 1) = d(n¡1)(4+3d(n¡2)) > 0; H(k = n) = (n¡1)(2+d(2n¡3))2 > 0 ) H > 0

for every k 2 [1; n] since H is a straight line in k. @r
¤
@k < 0 , ¡2+3d+2k¡4dk¡dn+2dkn > 0;

easily shown to be true by evaluating at the extreme values d = 0; 1 or k = 1; n.

VI. 7. Proof proposition 9
The particular case n = 3 can be directly veri…ed. For n ¸ 4 we proceed as follows: For

d 2 (0; d¤]; @r
¤
@d > 0 , 12¡66d+132d2 ¡111d3 +31d4 ¡4n+54dn¡174d2n+204d3n¡74d4n¡

12dn2 + 78d2n2 ¡ 137d3n2 + 65d4n2 ¡ 12d2n3 + 40d3n3 ¡ 26d4n3 ¡ 4d3n4 + 4d4n4 ´ I < 0;

provided ¡2 + 4d ¡ d2 ¡ 2dn + d2n < 0: The second condition is clearly true since this is

a convex parabola (its second derivative (2(n ¡ 1)) is positive) that takes negative values at

d = 0(¡2) and d = 1(1¡n). Since d¤ <
p

3¡1 for every n > 2. It is su¢cient to show that I < 0

for d 2 (0;
p

3 ¡ 1). It can be directly checked that I is a negative decreasing concave function

at d = 0 and a negative increasing convex function at d =
p

3¡1 for every n ¸ 3: Therefore, I is

always negative 2 (0;
p

3¡ 1) since otherwise for I to become positive would require it to reach

two minimums and one maximum within this interval, i.e., three concavity changes, impossible

for a third degree polynomial. For d 2 [d¤; 1]; it is enough to show that it @r
¤
@d > 0 for d > 2=3

since d¤ > 2=3 for every n. @r
¤
@d > 0 , ¡96 + 936d ¡ 3852d2 + 8644d3 ¡ 11374d4 + 8734d5 ¡

3614d6+627d7+32n¡744dn+4836d2n¡14844d3n+24840d4n¡23244d5n+11414d6n¡2310d7n+

144dn2 ¡ 1960d2n2 + 9192d3n2 ¡ 20718d4n2 + 24434d5n2 ¡ 14544d6n2 + 3486d7n2 + 256d2n3 ¡
2416d3n3 + 8164d4n3 ¡ 12816d5n3 + 9546d6n3 ¡ 2770d7n3 + 224d3n4 ¡ 1488d4n4 + 3444d5n4 ¡
3378d6n4+1227d7n4+96d4n5¡424d5n5+600d6n5¡288d7n5+16d5n6¡40d6n6+28d7n6 ´ J > 0,

provided ¡2 + 4d ¡ d2 ¡ 2dn + d2n < 0; which has been shown to be true previously. It can

easily be veri…ed that J, its …rst, second, third, fourth, …fth and sixth derivative at d = 2=3 as

well as its seventh derivative are positive for every n ¸ 4. Therefore J > 0 for every d > 2=3:

Figures
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Figure 1. (qch ¡ qc) as a function of d for k = 5

and n = 15.
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Figure 2. (¼ch ¡ ¼c) as a function of d for k = 5

and n = 15.
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Figure 3. Extra pro…ts of a cartel loyal member in

the deviating period as a function of d for k = 5

and n = 15:
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Figure 4. Extra pro…ts of a fringe member in the

deviating period as a function of d for k = 5 and

n = 15:
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Figure 5. Critical return rate as a function of d for

a Nash reversion for k = 5 and n = 15.
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Figure 6. Critical return rate as a function of k for

a Nash reversion for n = 15 and d = 0:9.
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Figure 7. Critical return rate as a function of d for

a stacked reversion for k = 5 and n = 15.
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Figure 8. Total welfare as a function of k for n =

15 and d = 0:8.
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Figure 9. Critical return rate as a function of d

for a Nash reversion for k = n = 7 in a price

competition industry.
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Figure 10. Critical return rate as a function of d

for a stacked reversion for k = n = 4 in a price

competition industry.

References
D’Aspremont, C., Jacqueming, A., Gabszewicz, J. and Weymark, J., 1983, On the Stability

of Collusive Prices Leadership, Canadian Journal of Economics 16, 17-25.

D’Aspremont, C. and Gabszewicz, J., 1986, On the Stability of Collusion, in New Develop-

ments in the Analysis of Market Structure, edited by J. Stiglitz and G. Mathewson. Cambridge,

Mass.: The MIT Press, 243-261.

Daskin, A., 1989, Cartel Stability in the Price Leadership Model: Three-Firm Cartel and

the Role of Implicit Collusion, Working Paper 89-17, Boston University School of Management.

Deneckere, R., 1983, Duopoly Supergames with Product Di¤erentiation, Economics Letters

11, 37-42.

28



Dixit, A, 1979, A Model of Duopoly Suggesting a Theory of Entry Barriers, Bell Journal of

Economics 10, 20-32.

Donsimoni, M., Economides, N. and Polemarchakis, H., 1986, Stable Cartels, International

Economics Review 27, 317-327.

Eaton, C. and Eswaran, M., 1998, Endogenous Cartel Formation, Australian Economic

Papers 37, 1-13.

Friedman, J., 1971, A Non-cooperative Equilibrium for Supergames, Review of Economic

Studies 38, 1-12.

Konishi, H. and Lin, P., 1999, Stable Cartels with a Cournot Fringe in a Symmetric

Oligopoly, Keio Economic Studies 36, 1-10.

Lambertini L., 1995, Exogenous Product Di¤erentiation and the Stability of Collusion, Uni-

versita degli Studi di Bologna, Economia, Working Paper 219.

Lambertini, L. and Albaek, S., 1998, Collusion in Di¤erentiated Duopolies Revisited, Eco-

nomics Letters 59, 305-308.

Majerus, D., 1988, Price vs Quantity Competition in Oligopoly Supergames, Economics

Letters 27, 293-297.

Martin, S., 1990, Fringe Size and Cartel Stability, EUI Working Paper ECO No. 90-16,

European University Institute, Florence.

Posada, P., 2000, Cartel Stability and Product Di¤erentiation: How Much do the Size of the

Cartel and the Size of the Industry Matter?, Working Paper 556, Department of Economics,

University of Warwick.

Ross, T., 1992, Cartel Stability and Product Di¤erentiation, International Journal of Indus-

trial Organization 10, 1-13.

Rothschild, R., 1992, On the Sustainability of Collusion in Di¤erentiated Duopolies, Eco-

nomics Letters 40, 33-37.

29



Rothschild, R., 1997, Product Di¤erentiation and Cartel Stability: Chamberlin versus Hotelling,

Annals of Regional Science 31, 259-271.

Sha¤er, S., 1995, Stable Cartels with a Cournot Fringe, Southern Economic Journal 61,

744-754.

Singh, N. and Vives, X., 1984, Price and Quantity Competition in a Di¤erentiated Duopoly,

Rand Journal of Economics 15, 546-554.

Spulber, D., 1989, Regulation and Markets, Cambridge, Mass.: The MIT Press.

30


