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Abstract

In recent years, computational pathology has emerged as a discipline repres-

enting big-data based approaches for the diagnosis and prognosis of cancer

patients using different sources of data, mainly digitised histology images and

clinical information. A plethora of computational methods have been developed

for fast and reproducible diagnosis and prognosis of cancer, lately dominated

by deep learning based methods. However, current deep learning methods do

not incorporate the whole spatial landscape of histology images due to limited

computational and memory resources. In this thesis, I develop deep learning

based methods which incorporate the broader spatial context of histology

images for cancer diagnosis and prognosis.

I propose a novel framework to incorporate large contextual information

inheritably available in histology images by a context-aware neural network.

The proposed framework first encodes the local representation of an input

image into low dimensional features then aggregates the features by considering

their spatial organization to make a final prediction. The framework is designed

for a set of histology problems which requires both high-resolution appearance

of tissue along with large contextual information such as colorectal grading,

and growth pattern classification. I have also proposed two novel objective

measures for the quantification of tumour microenvironment of head and neck

squamous cell carcinoma (HNSCC) patients for their better stratification and

prognostication. The first measure quantifies the tumour infiltrating lymph-

ocytes abundance (TILAb) whereas the second one is for the quantification

of tumour-associated stroma infiltrating lymphocytes to tumour-associated

stroma ratio (TASIL-Ratio). Both TILAb and TASIL-Ratio based scores show

prognostic significance similar to manual scores but with the added advantages

of a more rapid and objective quantification.
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Chapter 1

Introduction

1.1 Cancer

Cancer is the common name of a set of diseases that cause abnormal growth

of a human body’s cells and their spread into neighbouring tissues. If this

spread is not controlled in time, then it can result in death [3] . Cancer can

start almost anywhere in the human body, even in blood and may involve

any type of cells. A tumour is a cancer of solid tissue which can be benign or

malignant [3]. A benign tumour is noncancerous, and it usually stays at the

place of origin and does not spread to the neighbouring tissues. However, a

malignant tumour can invade into other solid tissues such as organs, muscles

or bones. The tumour invasion to distant tissues is known as metastasis. A

timely diagnosis of malignant tumour and the right treatment plan is a key

factor in disease-free and long term survival of a cancer patient [4].

Cancer can be diagnosed in different ways which include physical examin-

ation, laboratory tests, imaging tests, biopsies, and resections [5] . However,

a biopsy and resection are the most reliable and accurate ways for cancer

diagnosis. Tissue sample obtained by a biopsy or resection is sliced to be

placed on glass slides, stained to enhance the contrast of different tissue regions,

and analysed under a microscope by an expert pathologist for cancer diagnosis.

Apart from the binary diagnosis, a pathologist also determines the aggressive-

ness/grade of cancer in case of cancerous tissue. After diagnosis, treatment

comes as the next step, such as removing cancerous regions, reducing the

chance of cancer recurrence, and improving the patient’s life quality. Selection

of the right type of treatment depends on many factors, such as the site of

origin, histological types, and grade of cancer.
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1.2 Cancer Types

Cancers are mainly categorised in two different ways, site of origin and histo-

logical type. The site of origin based categorisation depends on the primary

location of the tumour where it first appears, such as oral, breast, lung and

colon. The histological type based categorisation lead to hundreds of different

cancer types due to number of different cell types, tissues, and organs. However,

these cancer types are grouped into six main categories according to the Inter-

national Classification of Diseases for Oncology, Third Edition [6]. Cancerous

tumours of epithelial origin fall under the carcinoma category. Carcinoma

accounts for 80− 90% of all the cancer cases [7]. Adenocarcinoma and squam-

ous cell carcinoma are the two main subtypes of carcinoma. Sarcoma is the

second category which encompasses the tumours of supportive and connective

tissues such as bones, muscle, and fat. Myeloma and Leukemia categories deal

with bone marrow tumours of plasma cells and white blood cells, respectively.

Malignancies of the lymphatic system come under the Lymphoma categories.

Finally, all those tumours that lie under two or more categories are grouped

under the mixed type category such as adenosquamous carcinoma, teratocar-

cinoma, and carcinosarcoma. Slightly more detailed histology of colorectal

adenocarcinoma (CRA) and head & neck squamous cell carcinoma (HNSCC)

is presented in the following sections as digital histological profiling of these

two types of cancers is studied in this thesis.

1.2.1 Colorectal Adenocarcinoma

Colorectal cancer, also known as bowel cancer, is the second deadliest and

fourth most common cancer in the United Kingdom [8]. CRA is the most

dominant type of colorectal cancer, which accounts for more than 90% of

colorectal cases [9]. It originates from epithelial cells in the lining of the colon

or rectum. The aggressiveness or growth of CRA is mainly determined by its

grade and/or stage. Early diagnosis and appropriate treatment are vital for

the long-term survival of CRA patients. However, CRA detection at a higher

grade and stage is one of the major causes of most CRA related deaths [10] as

high-grade cancer cells tend to grow and spread more quickly than low-grade

cancer cells.

The CRA grade is mainly based on cell aberrance and the morphology of

glandular structure in the lining of the bowel whereas CRA stage is defined

by the size of the tumour at the primary site and spread of the tumour to

other sites. In a normal case, all glands appear as either round or elliptical

depending on the section of tissue (see Figure 1.1 a-b). The American Joint

Committee on Cancer [11] described a four-tier grading system for CRA.

First, the well-differentiated grade is when all the glands are more normal like
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Figure 1.1: (a, b) Images of normal colorectal tissue. (c-d) Images of low and
high grade colorectal adenocarcinoma tissues.

morphological structure, and cell appearance is also close to normal. Second,

the moderately differentiated grade consists of glands with moderate aberrance

in glandular structure and cell appearance, but more than 50% glands preserve

their glandular morphology. Third, the poorly differentiated grade is assigned

to those cases where more than 50% of glands have loosed their structure and

cells become abnormal. Finally, the undifferentiated grade is when glands

appear as a sheet of abnormal cells instead of their typical glandular structure.

The task of cancer grading is subjective in nature and thus suffer from

inter- and intra-observer variability. Some studies [12, 13] suggested a two-

tier grading system to reduce the subjectivity. They merged the well and

moderately differentiated grades into one grade (see Figure 1.1a-b) and named

it as low grade, whereas high grade consists of poorly and undifferentiated

grades (see Figure 1.1c-d). The tumour, node and metastasis (TNM) staging

system [11] is another way to measure the severity of CRA. Each parameter in
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TNM staging is further divided into sub-stages. The T sub-stage of tumour

represents its size; N sub-stage describes the number of lymph nodes invaded by

tumour and the M sub-stage indicates the metastatic spread of CRA to other

organs. Grading requires biopsy or resection samples only from the primary

site as compared to TNM staging, which requires samples from lymph nodes

and distant organs as well as the primary site.

Although both grading and TNM staging have shown prognostic significa-

tion for CRA [9, 14, 15], the issue of subjectivity is still there. An objective

assessment of CRA may lead to better prognostic analysis. Moreover, the

whole process of CRA grading and staging is tedious and labour intensive,

which needs to be assisted by an automated method. Therefore, an object-

ive computer-aided method can address the subjectivity issue with objective

grading and staging with the added advantage of rapid assessment of CRA

cases.

1.2.2 Head & Neck Squamous Cell Carcinoma

HNSCC comprises of the tumours of oral cavity, pharynx, or larynx (Figure

1.2). It is the eighth most common cancer in the United Kingdom [16] and

accounts for 2% of all cancer-related deaths. Oral and oropharyngeal subtypes,

which are mainly studied in this thesis, are briefly described in the following

sections.

Oral Squamous Cell Carcinoma

Oral squamous cell carcinoma (OSCC) is the most common malignancy of the

head and neck (H&N) region [17] in both males (42%) and females (46%). The

OSCC prevalence is almost twice as common in males and three times more

in females than the next most common cancer, which is laryngeal squamous

cell carcinoma (26% in males, 13% in females) [18]. OSCC is associated

with invasion and destruction of local tissues and maxillofacial bones with

significant associated morbidity. In addition to early recurrence, frequent

lymph nodes metastasis and extranodal extension [19] are further challenges in

the management of OSCC patients. The high morbidity and mortality rates in

OSCC patients [20, 21] highlight the need for an objective and quantitative

analysis of any potential prognostic markers to help identify tumours which

may respond poorly to therapy [22].

Unlike CRA, grading of OSCC is mainly based on the amount of keratin

within the tumour [23] where low grade and high grade correspond to more

than 20% and less than 20% of keratin, respectively [24]. However, the OSCC

TNM based staging system is similar to CRA. The TNM staging has been used

for the treatment planning of OSCC, but the prognostic significance of some
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Figure 1.2: Anatomical sites and subsites of the H&N cancer [1].

stages is not consistent [25]. The pattern of tumour invasion is another system

for histological classification of OSCC [26] and the patterns are determined

based on the four features; the lymphocytic infiltration, pattern of invasion,

keratinisation, and nuclear pleomorphism [27, 28]. Some of these features have

shown prognostic significance for OSCC such lymphocyte infiltration in tumour

[29, 30] and pattern of invasion [31, 32]. Lymphocytes are the white blood

cells and part of human immune system. Tumour Infiltrating Lymphocytes

(TILs) are the lymphocytes which are moved from the blood into the tumour

regions. TILs are normally quantified into four groups: absent, low, moderate

and high. Their quantification is conducted by eyeballing over haemotoxylin

and eosin (H&E) stained histology tissue by an expert pathologist (Figure 1.3).

However, the quantification process is also subjective and prone to inter- and

intra-observer variability, just like cancer grading. Therefore, a computer-based

automated method is required to eliminate the subjectivity in the quantification

of lymphocytic infiltration.

Oropharyngeal Squamous Cell Carcinoma

The incidence rate of oropharyngeal squamous cell carcinoma (OPSCC) is

increasing in many developed countries [33, 34] such as the United Kingdom

where the number of OPSCC cases has doubled between 1990-2006 and 2006-
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Figure 1.3: Illustration of the degrees of tumour infiltrating lymphocytes in
oral squamous cell carcinoma. Each image represents a part of tumour region
where the number of lymphocytes, the round shaped purple dots, in each image
represent the degree of infiltration in tumour regions.
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2010. Human papillomavirus (HPV) infection is one of the causes of this rapid

rise, and it accounts for 70% of OPSCC cases. HPV status of OPSCC cases

is a strong prognostic indicator for survival analysis. However, the HPV test

requires immunohistochemistry stained slides which are not used in routine

histology diagnosis. TILs have also been studied for the prognosis of OPSCC

[35, 36]; however, the quantification process for TILs is same as in OSCC,

which suffers from the aforementioned issues. Therefore, a computer-based

automated method for TIL quantification is required for OPSCC as well.

1.3 Computational Pathology

The digitisation of histology slides [37] has led to widespread adaptation of

whole slide images (WSIs) in digital pathology. A stained tissue mounted on a

glass slide is digitally scanned at different resolutions up to 40× to produce

WSI (Figure 1.4). This digitisation opens up new avenues of research for

computer vision, machine learning and deep learning communities to develop

computational methods to quantify and improve cancer treatment procedures.

A plethora of computational methods [38–41] have been developed for fast

and reproducible diagnosis and prognosis of different types of cancers such as

head and neck, colorectal, breast, and lung cancer. Early works on histology

image analysis are mainly based on traditional machine learning methods where

the research community has proposed numerous handcrafted feature-based

methods [39] for cancer diagnosis and prognosis. However, deep learning based

methods have been used more frequently in recent years due to the technological

developments in computer hardware and availability of large histology dataset

[41].

Deep learning methods have significantly improved the state-of-the-art in

many natural images based computer vision problems such as visual object

detection and recognition [42–45] and scene labelling [46]. Multi-gigapixel WSIs

are also amenable to the application of deep learning methods for analysis due

to the sheer size of pixel data present in them. WSIs can be readily absorbed

by data-hungry deep learning methods to tackle computational pathology

problems. However, the processing of WSIs as a whole through a deep learning

method is still not possible due to limited computational and memory resources.

Most of the deep learning methods rely on a patch-based approach where WSIs

are chopped into small manageable patches for processing. The state-of-the-art

deep learning based methods for natural image classification and segmentation

are quite generic. They may apply to multiple cancer types with slight domain

adaptation by model retraining using WSIs of specific cancer types.

Convolutional neural networks (CNNs) are one of the most common deep

learning networks for computer vision problems. CNNs have been used for

7



Figure 1.4: Illustration of a multi-gigapixel WSI at different resolutions. Top
image presents the low resolution view of a whole slide image whereas each
subsequent image represents a higher resolution view of the rectangular region
in the previous image.

8



classification and segmentation of different histology primitives in a WSI.

The most common use cases are cell detection and segmentation [47–49],

metastasis detection [50–52], gland segmentation [53], cancer grading [54–56]

and cancer classification into sub-types [57]. Moreover, CNNs have been used

as an intermediate step for high-level histology image analysis tasks such

as morphometric analysis [58], mutation prediction [59] and patient survival

analysis [60].

1.4 Spatial Analysis

WSIs represent the whole landscape of histology tissues which consists of spatial

contextual information of the cellular organisation, gland structure, and tissue

architecture. The local context of a cell is important for cell classification,

whereas cancer grading requires a broader spatial context as the whole glandular

structure defines the CRA cancer grade. Contextual information about overall

tissue architecture helps in understanding the tumour microenvironment (TME).

Analysis of histology images with limited spatial context may lead to incorrect

diagnosis and prognosis in some cases.

1.4.1 Context-aware Analysis

Standard CNN based methods are not capable of capturing the spatial con-

text required for all types of histology image analysis tasks such as cancer

grading. These methods can only process moderately sized images due to

memory constraints which limits the amount of context captured by each

image. Although these methods are trained on tens of thousands of patches

extracted from several WSIs, the spatial relationship between these patches is

not incorporated during training and inference. Therefore, there is a need for

context-aware deep learning methods for the analysis of histology images (see

Figure 1.5).

1.4.2 Tumour Microenvironment Analysis

The TME consists of many different cell types (e.g. immune cells and stromal

cells) with different biological roles and their unique relationships with cancer

cells. Immune cells are part of body defence system where as stromal cells

are connective tissue cell. Genomic based analysis of the TME has resulted

in several prognostic biomarkers for different cancer types [61–63]. However,

information about spatial relationships between tumour and immune cells is

not available in genomics based analyses. Histology images have this missing

spatial relationship information which may help to understand the TME better.

Statistical methods can be employed to quantify spatial patterns in histology

9



Figure 1.5: Illustration of the importance of spatial context. Top left image
presents a colorectal tissue at lower magnification where tube like structures
represent glandular morphology which is key for colorectal adenocarcinoma
grading. However, the high resolution view of five differently colored regions do
not present holistic view of glandular morphology. Colors are used to indicate
the corresponding location of each region in the image.
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images such as TILs which can be quantified based on the spatial co-occurrence

of tumour and lymphocytes. However, there could be some other spatial

patterns that need to be explored to extend our understanding of TME and

develop better and reproducible digital biomarkers for cancer prognosis.

1.5 Aim of the Thesis

The overarching aim of the thesis to develop novel methods for diagnosis

and prognosis of cancer using the spatial contextual information available in

cancer histology images. Although the methods proposed in the thesis are

generic and can apply to many different cancer types, I only consider CRA

and HNSCC for evaluation. I propose different methods to incorporate spatial

contextual information for better diagnosis and prognosis of cancer. CNN based

novel methods are developed to capture contextual information to improve

cancer grading and tissue segmentation. However, a combination of CNN and

statistical methods is used to summarise the spatial landscape of histology

images for the development of novel digital biomarkers and enhanced cancer

prognosis.

1.5.1 Main Contributions

• I propose a novel framework for context-aware learning from large high-

resolution input images for CRA grading. I report the results of compre-

hensive experiments (with 100+ network models) and comparisons to

demonstrate the superiority of context-aware learning over traditional

patch-based methods. (Chapter 3).

• I propose a novel scoring method for TIL abundance, termed as the

TILAb score, to quantify the extent of spatial lymphocytic infiltration

in the tumour region which is a combination of lymphocyte to tumour

ratio and their statistical colocalisation in a WSI. The reproducibility

and objectivity of the TILAb score are investigated by evaluating the

prognostic significance of TILAb score for disease-free survival of OSCC

patients (Chapter 4).

• I propose a novel coarse segmentation method for segmentation of clinic-

ally significant regions which includes segmentation of tumour, tumour-

associated stroma, and lymphocytes in a WSI. The proposed method

also addresses the issues of limited context and noisy prediction, which

occurred in patch-based segmentation. It does not require pixel-level

ground truth and can learn from partially annotated images as well

(Chapter 5).
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• I profile the TME of HNSCC by 13 different quantification methods and

explore their prognostic significance for stratification of HNSCC patients

into low and high-risk groups. I show that tumour-associated stroma

infiltrating lymphocyte based scores have the prognostic ability to be

used as novel digital biomarkers for disease-specific survival of HNSCC

patients (Chapter 5).

1.6 Thesis Organisation

Chapter 2: Background

A review of existing literature on computational pathology in general and spatial

analysis, in particular, is presented in chapter 2. I summarise the existing

problem-specific methods for automated grading and HNSCC prognosis. I also

review existing methods for context-aware learning and tissue segmentation,

and discuss the limitations of existing methods and how these methods are

different from the proposed methods.

Chapter 3: Context-Aware Convolutional Neural Network

Digital histology images are amenable to the application of CNNs for analysis

due to the sheer size of pixel data present in them. CNNs are generally used

for representation learning from small image patches (e.g. 224× 224) extracted

from digital histology images due to computational and memory constraints.

However, standard CNNs based methods do not incorporate high-resolution

contextual information in histology images. I propose a novel way to incorporate

a broader context by a context-aware neural network based on images with

a dimension of 1792 × 1792 pixels. The proposed framework first encodes

the local representation of a histology image into low dimensional features

then aggregates the features by considering their spatial organisation to make

a final prediction. I evaluate the proposed method on two colorectal cancer

datasets for the task of cancer grading and show that our method outperforms

traditional patch-based approaches, problem-specific methods, and existing

context-based methods. I also present a comprehensive analysis of different

variants of the proposed method.

Chapter 4: Spatial Quantification of Tumour Infiltrating Lympho-

cytes Abundance

The abundance of TILs is a key prognostic indicator in a range of cancers with

emerging evidence of its role in OSCC progression and treatment response.

However, current methods for TIL quantification are subjective and prone
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to variability in interpretation. An automated method for quantification

of TIL abundance has the potential to facilitate better stratification and

prognostication of oral cancer patients. Chapter 4 presents a novel method

for objective quantification of TIL abundance in OSCC histology images.

The proposed tumour infiltrating lymphocytes abundance (TILAb) score is

calculated by first segmenting the WSIs into underlying tissue types (tumour

and lymphocytes) and then quantifying the spatial colocalisation of lymphocytes

and tumour regions in a novel fashion. The TILAb score is motivated by the

biological definition of TILs as tumour infiltrating lymphocytes, with the added

advantages of objective and reproducible quantification. I investigate the

prognostic significance of TILAb score on digitised WSIs of H&E stained slides

of OSCC patients. I show that the TILAb score is a strong prognostic indicator

(p = 0.0006) of disease-free survival on our OSCC test cohort. The automated

TILAb score has a significantly higher prognostic value than the manual TIL

score (p = 0.0024).

Chapter 5: Coarse Segmentation for Profiling of Tumour Microen-

vironment

I propose a new framework for the quantification of three most significant

components (tumour, tumour associated stroma and lymphocytes) of TME in

HNSCC. A novel coarse segmentation method is proposed to overcome the issue

of limited context and noisy predictions for segmentation of TME components

in HNSCC WSIs. Unlike patch-based segmentation methods, the proposed

method predicts a label for each 32×32 region in a patch of size 256×256, which

generates 64 times denser prediction map than a standard patch classifier. The

coarse segmentation of HNSCC WSIs through the proposed method is then used

for quantification of different spatial patterns of the tumour, tumour-associated

stroma, and lymphocytes. I show that our proposed quantification method

for the quantification of tumour-associated stroma infiltrating lymphocytes to

tumour-associated stroma ratio (TASIL-Ratio) carries prognostic significance

(p-value=0.002) for better disease-specific survival of HNSCC patients. The

TASIL-Ratio score remains prognostic indicator for disease-specific and disease-

free survival of OSCC and OPSCC. I also compared the predictive ability

of TASIL-Ratio based survival model with existing quantification methods

through concordance index measure where TASIL-Ratio achieved the highest

concordance score as compared to its counterparts. The TASIL-Ratio also

shows a positive correlation with molecular estimates of CD8 T cells which kill

the cancerous cells in the human body.
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Chapter 6: Conclusions

A summary of the proposed methods and some potential future directions for

each of the proposed methods are presented in the last chapter.
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Chapter 2

Background

Histology images represent the high-resolution view of histology landscape

which serve as the gold standard for cancer diagnosis and helps to understand

tumour microenvironment (TME) for better patient prognosis. Machine learn-

ing based methods have been the first choice for the development of histology

imaging based computational methods for cancer diagnosis and prognosis.

Recently, deep learning, a branch of machine learning, based methods have

become the new standard for histology image analysis. In this chapter, I present

a brief review of state-of-the-art deep learning methods which are developed for

histology image analysis. I mainly focus on the methods which are technically

or clinically relevant to the novel methods proposed in the thesis. In technical

methods, I consider context-aware learning, automated tissue segmentation,

and TME profiling related approaches, whereas, in clinically related works, I

review the literature on automated patient prognosis and cancer grading.

2.1 Context-Aware Learning

In literature, various approaches have been presented to incorporate the con-

textual information for the classification of histology images. Most common

approaches for context-aware learning include image downsampling, use of

multi-resolution images, and use of two-step methods. A summary of these

approaches is presented in the following sections.

2.1.1 Image Downsampling

Histology images are large images (usually aroung 200000 × 100000 pixels)

which do not fit in the memory of a graphic processing unit. Therefore, image

downsampling is the most straightforward approach to fit these images into

memory to capture the context from these large histology images. Several

studies [64–66] have followed this approach as it is also a common practice

in natural image classification. However, this approach is only suitable for
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a limited amount of downsampling, e.g. 1/2 or 1/4. Downsampling with a

larger factor will result in loss of cell-level features which may result in poor

performance [67].

2.1.2 Multi-resolution Images

The use of multi-resolution images for context-aware learning is another obvious

approach. Inherently, histology images have multiple resolutions where each

resolution is the downsampled version of the highest resolution with a certain

downsampling factor (i.e. 1/2, 1/4, 1/8, or 1/16). Many studies [51, 67–

69] leverage the multi-resolution nature of histology images and used multi-

resolution based classifiers to capture contextual information. Alsubaie et al.

[68] used multi-resolution input images based convolutional neural networks

(CNNs) for the classification of growth patterns in lung cancer. They used

224× 224 patches at 20× and 10× where 10× patches contains 4 times larger

context as compared to 20× patches but at 1/4 times lower resolution. The

use of both resolutions results in better classification performance as compared

to single resolution based CNN classifiers. However, these multi-resolution

approaches only consider a small part of an image at high resolution and

the remaining part at low resolutions to make a prediction. Therefore, these

approaches lack the contextual information of cellular architecture of the whole

image at high resolution.

2.1.3 Traditional Classifiers with CNN

Some studies [57, 70–72] have used traditional methods to incorporate larger

context from patch-based feature representation of histology images. Awan

et al. [57] presented a context-aware network for breast cancer classification.

They used standard support vector machine (SVM) to learn the context from

CNN based features of patches extracted from a high-resolution image. This

method is only capable of capturing a limited context due to the use of a SVM,

which works well on low dimensional feature vectors. Wang et al. [70] used an

adaptive patch selection approach to aggregate the CNN based patch features

to generate a fixed-length feature vector. They used the random forest for the

classification of lung carcinoma whole slide images (WSIs). Li et al. [72] used a

CNN based feature extractor followed by a conditional random field (CRF) for

context learning from image patches of size 672× 672 in end-to-end trainable

manner.

2.1.4 Stacked Networks

Stacked or two-tiered networks have been used for context-aware learning in

histology images. Bejnordi et al. [73] used a stacked network for breast tissue
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classification. They trained their network in two steps. In the first step, they

used a small patch size, and in the second step, they fixed the weights of half of

the network to feed a larger patch for training the remaining half of the network.

They managed to train a network with the largest patch size of 1, 024× 1, 024

pixels with a small batch size of 10 patches. Recently, some works [74, 75] have

used larger high-resolution patches to improve the segmentation of histology

images. Agarawalla et al. [74] and Kong et al. [75] used a 2D Long Short-Term

Memory instead of CRF to improve tumor segmentation. Sirinukunwattana et

al. [76] presented a systematic comparison of different context-aware methods

to highlight the importance of context-aware learning.

2.2 Automated Cancer Grading

In literature, many automated methods have been developed for objective

grading of the prostate, and colorectal cancer [54, 56, 77–80]. Most of the

existing works used traditional machine learning methods [77–80], simple CNN

based method [54] or a combination of both [56].

Rathore et al. [80] develop a three-step method for the grading of colorectal

adenocarcinoma (CRA) images. First, they segment the glandular region in

each image using K-means clustering. Second, they use the cellular morphology,

spatial architectural patterns of glands, and texture features to train three

different SVM classifiers. Finally, an SVM based ensemble classifier is trained

using the probabilities of intermediate classifiers to predict the grade of an

input image.

Arvaniti et al. [54] used CNN based classifier for Gleason grading of prostate

cancer in tissue microarrays. They experimented with multiple standard

classifiers (i.e. Resnet [43], VGG-16 [42], Inception-V3 [44], DenseNet-121 [81]

and MobileNet [82]) to find best classifier. MobileNet turns out as the best

classifier which achieves best kappa score, which measure inter-rater reliability,

when compared to ground truth grades marked by two different pathologists.

Awan et al. [56] presented a method for two-tier CRA grading based on the

extent of deviation of the gland from its normal shape (circular/elliptical). They

developed a novel best alignment metric (BAM) for this purpose. The BAM

measures the aberrance in shape of each gland relative to the typical shape

of a normal gland. As a preprocessing step, CNN based gland segmentation

was performed, followed by the calculation of BAM for each gland. For every

image, average BAM was considered as a feature along with two more features

inspired by BAM values. Finally, an SVM classifier was trained using these

feature for CRA grading.

The method proposed in this thesis for CRA grading differs from these

existing methods in two ways. First, it does not depend on the intermediate step
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of gland segmentation, making it independent of segmentation inaccuracies.

Second, the proposed method is entirely based on a deep neural network

which makes this framework independent of cancer type. Therefore, the

proposed framework can be used for other context-based histology image

analysis problems.

2.3 Tissue Segmentation

Segmentation of WSIs into histological primitives such as nuclei, cells, glands,

and other tissue components is the basic building block for many histology

image analysis problems such as morphometric analysis, cancer grading, and

cancer classification. The pixel-level segmentation is the most accurate way

to delineate the contour of histological primitives. However, the patch-based

segmentation method is commonly used in histology image analysis as it requires

less computation and memory resources as compared to a deep learning based

pixel segmentation method.

2.3.1 Pixel based Segmentation

The pixel-based segmentation is mostly used for nuclei, cells, and glands

segmentation which can be then used for morphometric analysis of histology

images. Several methods have been developed for pixel-based segmentation

under different nuclei [83], and gland [84] segmentation challenges organised

by different research groups working on histology images.

Zhou et al. [85] presented a contour-aware CNN for the nuclei segmentation.

The network consists of two decoder modules, one for nuclei segmentation and

other for contour segmentation. A bi-directional hierarchical feature aggreg-

ation strategy is then used for final prediction. Their method outperformed

all its counterpart methods for the task of nuclei segmentation in MoNuSeg

challenge organised by Kumar et al. [83]. Graham et al. [86] presented a

multi-head CNN based method for simultaneous segmentation and classifica-

tion of nuclei. They used horizontal and vertical distance maps to separate

clustered nuclei for accurate instance segmentation. A separate decoder is

used to predict the label of each segmented nucleus. Their method has shown

superior performance than many existing pixel-based segmentation methods

[87–89] including Zhou et al. method [85].

Chen et al. [90] developed a generic CNN based segmentation network

which can be used for the segmentation of both nuclei and glands. Their method

simultaneously predicts an object and its contour, which is then integrated to

get more precise object segmentation. Their method stood first in the gland

segmentation challenge organised by Sirinukunwattana et al. [84]. Graham
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et al. [53] presented CNN based gland segmentation methods which consist

of multiple residual and dilated residual units and an atrous spatial pyramid

pooling unit. The network also contains two decoders for gland and contour

segmentation. Their method outperformed other gland segmentation methods,

including Chen et al. approach on the dataset used in the gland segmentation

challenge [84].

Although deep learning based pixel segmentation methods delineate object

of interests with high precision, these methods are computationally expensive

and take a significant amount of time, more than an hour, to process a WSI

[91]. Moreover, precise annotation of a large number of objects is required

for the robust training of the segmentation methods, which is a tedious and

error-prone task. Segmentation methods are mainly required for morphometric

based downstream analysis [58]. In contrast, spatial profiling of TME based

cancer prognosis can be conducted using patch-based methods since the spatial

location of TME constituent is required instead of precise segmentation of each

object of interest.

2.3.2 Patch based Segmentation

The most common use cases of patch-based tissue segmentation include cancer

detection and classification of cancer subtypes. In patch-based segmentation,

histology images are divided into many smaller patches, usually 224×224 pixels

at 20×, for classification into the required number of classes. The image-level

labels are then predicted by aggregation of the patch level predictions.

Most participants of Camelyon16 challenge [50] organized by Bejnordi

et al. used patch based tissue segmentation approach for the detection of

lymph node breast metastasis. Wang et al. [92], winner of the challenge, used

GoogLeNet [93] for patch based segmentation of WSIs followed by handcrafted

feature based random forest classifier. Similarly, different patch based tissue

segmentation methods have been used in breast cancer sub-type classification

challenge [94] by different teams [64–66].

Recently, patch-based segmentation methods have been used for TME

analysis [95–97]. Geessink et al. [95] is used VGG16 [42] for patch-based

segmentation of tumour and stromal regions to calculate tumour-stroma ratio

which is then used for survival analysis of rectal cancer patients. Kather et

al. [96] segment the colorectal cancer histology WSIs into 9 classes using a

patch-based segmentation method (VGG19) [42]. Then, they evaluate the

prognostic significance of the abundance of each class (tissue type). Saltz et

al. [97] used a CNN for patch-based segmentation of lymphocyte in the 13

different types of cancers for the spatial profiling of lymphocytes patterns to

explore their prognostic significance in different cancers.
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In patch-based segmentation methods, the size of a patch and its resolution

becomes important for segmentation precision, which then impacts the TME

analysis. Use of large patch at a lower resolution will results in noisy predic-

tion, whereas smaller patch size lacks the contextual information for correct

classification methods. The CNN based coarse segmentation method proposed

in this thesis addresses both segmentation precision and limited context issues.

2.4 Tumour Microenvironment

The TME consists of many different cell types, with different biological roles

and their unique relationships with cancer cells as shown in figure 2.1. The

main categories of cells in a TME are tumour cells, immune cells and stromal

cells.

Immune cells are the cell which are responsible to fight against the tu-

mour. Major types of immune cells are lymphocytes, neutrophils, and mono-

cytes/macrophages. Each type have specific function. Lymphocytes are white

blood cells and can be categories in three types B-cell, T-cell, and NK-cell.

B-cells develop in bone marrow and their main function is to produce antibodies

against the foreign substances in the body. T-cells complete their development

in thymus and their main responsibility is to attack the cells infected with

viruses. NK cells are natural kill cells and they kill cells infected by virus by

injecting a killer potion of chemicals in them. The half of the white blood cells

are Neutrophils which mainly kill bacteria by ingesting it. Monocytes make up

5 to 10 percent of white blood cells. Monocytes change their shape and size

when enter a tissue and become macrophages which are essential for killing

fungi and bacteria.

Stromal cells are connective tissue cells of an organ and support the function

of that organ. Fibroblast are the most common type of stromal cells. The

normal fibroblasts are vital in tissue repair in wound healing as they aid

in the production of extracellular matrix’s components such as collagens,

fibres, glycosaminoglycans and glycoproteins [98]. However, tumour associated

fibroblast is the key component of the TME [99] and known to promote

angiogenesis, supporting the formation of tumours and thus proliferation of

cancer cell and metastasis [100, 101].

The main categories of cells in TME can be analysed through routinely

used hematoxylin and eosin stained slides. The hematoxylin stains cell nuc-

lei as blue, and eosin stains the extracellular matrix and cytoplasm as pink.

Immunostaining is used to analyse the sub categories of lymphocytes. Im-

munohistochemistry (IHC) is the most common approach which selectively

identify antigens in tissue cells. It based on the principle of antibodies binding

specifically to antigens in biological tissues. B-cells are usually detected by
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Figure 2.1: Synthetic illustration of tumour microenvironment which shows
different types of cell present in a tumour microenvironment. Figure source:
[2]

CD19 (cluster of differentiation 19) or CD20 antigen based IHC stains whereas

T-cells are indetified by CD8 and CD4 glycoproteins.

2.5 Tumour Microenvironment Profiling

TME profiling refer to the in depth analysis of the TME which then use to

patient treatment planning. Currently, most of the work on TME profiling is

conducted using molecular profiling and omics data (e.g. genomics, proteomics,

metabolomics, and glycomics) which do not contain spatial information. How-

ever, the spatial analysis may help to understand the intrinsic architecture of

TME in several ways. Therefore, computational methods are required for the

spatial profiling of TME in histology images which contains spatial contextual

information of whole histology landscape. In literature, TME profiling using

histology images has been conducted in a limited number of studies for a

different type of cancers. However, to the best of our knowledge, there is

no existing work on the automated spatial profiling of TME of HNSCC. A

summary of the existing TME profiling method is presented in the following

sections.

2.5.1 Quantification of Lymphocytes

Immune cells (mainly, the lymphocytes) are very important for cancer suppres-

sion. Interaction between cancer cells and lymphocytes can be investigated

based on the quantification of lymphocyte count, ratio, hotspots, and colocal-

isation with a tumour cells.

Yinyin Yuan [102] investigates the role of lymphocyte infiltration in the
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TME of triple-negative breast cancer. A cell classifier is used to detect and

classify each cell in a WSI as a cancer cell or lymphocyte using 100 different

morphological features [103]. The lymphocytes are then categorised into three

classes (intra-tumour, adjacent-tumour, and distal-tumour) based on their

spatial location to neighbouring tumour cells. The ratio of each lymphocytic

category to the tumour is calculated for survival analysis. Only intra-tumoural

lymphocytes based ratio showed prognostic significance for disease-free survival

where a higher ratio is associated for more prolonged disease-free survival as

compared to a lower ratio.

Nawaz et al. [60] presented a statistical methodology to explore the clinical

significance of spatial heterogeneity of cancer and immune cells and their rela-

tionships in estrogen receptor negative breast cancer. First, cell detection and

cell classification were done using a morphological feature (size and circularity

of nucleus) based automated method [103]. Then they applied the Getis-Ord

[104] method, a hot spot analysis method, on the detected cells to get stat-

istically significant spatial hotspots. Three hotspot maps were generated for

tumour, immune and both types of cells. They found that the colocalised

hotspots of the tumour and immune cells correlate with better prognosis of

estrogen receptor negative breast cancer.

Maley et al. [105] explored the role of colocalization of tumour and lymph-

ocytes in TME of breast cancer. They employed a statistical measure of

colocalisation [106] for the quantification of spatial co-occurrence of tumour

and lymphocytes. They found that the higher colocalisation score is associ-

ated with good disease-specific survival. Saltz et al. [97] have studied the

correlation between the spatial organisation of tumour infiltrating lymphocytes

(TILs) and molecular characteristics in histology images of 13 different type of

cancers. First, they used CNN based classifier for detection of lymphocytes

in tissue regions, which they referred to as TILs. Then, they used an affinity

propagation algorithm to identify/quantify the local spatial patterns in the

detected lymphocytes for survival analysis. They found that some spatial

patterns of lymphocytes are associated with better patient prognosis for a few

cancer types.

2.5.2 Quantification of Tumour-associated Stroma

Tumour-associated stroma also plays a vital role in tumour development. Unlike

lymphocytes, stroma can change its natural behaviour during malignancy and

can start promoting cancer growth instead of suppressing it [107], which leads

to reduced survival of cancer patients. Some studies have explored the clinical

significance of stroma in TME through automated methods.

Lan et al. [108] study TME of ovarian cancer by quantifying the ratio of
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lymphocyte, and stromal cells in WSIs. Cells are detected by handcrafted

feature-based cell detection and classification method [103]. They found that

high stromal cell ratio and low lymphocyte ratio are associated with poor

overall survival. Moreover, the high stromal ratio also remains prognostic for

disease-free survival of ovarian cancer patients.

Yuan et al. [103] explored the prognostic significance of spatial patterns

of different types of cells in breast cancer. First, they used a morphological

feature based cell detection and classification method for the localisation of the

tumour, stroma, and lymphocytes. Then, they employed Ripley’s K statistics

[109] for the quantification of spatial patterns of each type of cells where high

K-score represents a dense cluster of cells, and low K-score denotes scattered

distribution of cells of a particular class. They found that high K-score of

stromal cells is associated with better survival of estrogen receptor negative

breast cancer. However, the same K-score statistics did not show any prognostic

significance for estrogen progesterone negative breast cancer.

Failmezger et al. [110] presented a graph-based method for the spatial

profiling of TME of melanoma. First, they detected tumour, stroma and

lymphocytes in WSIs. Then they constructed the graph over the cell locations

where nodes are connected based on their spatial distance from each other.

Finally, two quantification scores, stromal clusters and stroma barrier, were

calculated for prognostic analysis. Both scores were associated with poor

overall survival of melanoma patients.

2.5.3 Multi-class Cell Quantification

Most of the aforementioned works only considered one type of non-tumour cell

and explored its role to the tumour in TME of different cancer types. However,

some works [111, 112] have explored the role of multiple types of cells in TME,

simultaneously.

Heindl et al. [111] quantify the heterogeneity of different types of cells

(tumour, stroma, and lymphocytes) and their relative abundance in the TME

of metastatic lesions of ovarian cancer. The cell heterogeneity is calculated by

Shannon entropy [113] where higher heterogeneity represents the similar cell

abundance of different types and lower heterogeneity denotes the dominance

of one type of cells in TME. They found that the higher cell heterogeneity is

associated with poor overall and disease-free survival of ovarian cancer patients

with metastatic.

Sirinukunwattana et al. [112] predicted the distant metastasis by quantify-

ing the cell-cell connections in colorectal cancer WSIs. First, they used CNN

based cell detection and classification method to identify four different types

of cells. Then, the Delaunay triangulation based graph is constructed based
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on the cell locations to find a cell-cell connection. Histogram based features

are then used to quantify the occurrences of each type of cell-cell connections.

The resultant features are then used for the prediction of distant metastasis

using logistic regression.

2.6 Evaluation Measures

I use number of evaluation measures to evaluate the performance of my proposed

methods and to compare it with existing methods. Evaluation measures related

to classification performance and statistical analysis are described in following

sections.

2.6.1 Classification Performance Analysis

I use accuracy, sensitivity, specificity, precision, recall, f1-score, AUC, and

Rank-sum for classification related tasks. Accuracy measure the percentage of

correctly classified samples in a test dataset. Sensitivity measure the rate of

true positives whereas specificity is the rate of true negatives. Precision and

recall measures the proportion of true positives in total positive detections and

total positive samples in dataset, respectively. The f1-score is defined as

f1 =
2× (prec× rec)
prec+ rec

, (2.1)

where prec and rec represents precision and recall, respectively. The AUC

measure is used to measure the performance across all possible threshold values

in a binary classification task. AUC stands for area under the receiver operating

characteristic (ROC) curve. It is based on ROC curve which is plotted using

precision and recall values at different thresholds.

The Rank-sum measure rank the performances of different methods with

respect to the best performing method. The best performing method get

first rank and then the methods which lies within 97.5% and 95% of the best

performing method get second and third rank, respectively. All other methods

get the 4th rank.

2.6.2 Statistical Analysis

The statistical analysis is performed for disease-specific and disease-free survival

in order to demonstrate the prognostic significance of the proposed methods in

this thesis. The statistical analysis methods used in this thesis are described

below.

Kaplan-Meier [70] curve is used to check the probability of a survival event

at a certain time interval. It helps in visualizing the separation between two
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groups (low risk and high risk) of patients. Cox proportional-hazards model

[40] is used to investigate the association between the survival time of patients

and one or more predictor variables. Log-rank [114] and Wald [115] test are

used to assess the statistical significance (p-value) of the survival distributions

of two different patient groups. Along with p-value, hazard ratio (HR) is also

used to present the hazard rate (e.g. chances of death or recurrence) to in one

patient group with respect to other group.

The concordance index (C-index), developed by Harrell et al. [116] is used

to compare the predictive ability of patient risk survival models. The index

value will be if a patient with the higher risk score have a shorter time-to-

event and vice-versa. Spearman correlation coefficient is used to analyse the

correlation between to two variables. Its range is from -1 to 1 where negative

values represent negative correlation and positive values represent positive

correlation. Zero correlation indicates that both variable are independent.
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Chapter 3

Context-Aware Convolutional

Neural Network

3.1 Introduction

Convolutional neural networks (CNNs) have been widely used to achieve

state-of-the-art results for different histology image analysis tasks such as

nuclei detection and classification [47–49], metastasis detection [50–52], tumor

segmentation [117] and cancer grading [54–56]. Each task requires a different

amount of contextual information; for instance, cell classification needs only

high-resolution cell appearance along with little neighbouring tissue. In contrast,

tumour detection and segmentation rely on a larger context covering multiple

cells simultaneously. However, cancer grading requires both high-resolution

cell information and a broader view of the spatial organization of cells. Most

existing CNN based methods applied to histology images follow a patch-based

approach to train different models which tend to ignore contextual information

due to memory constraints. Although these models are often trained on a

large number of image patches extracted from histology images, often spatial

relationships between neighbouring patches are ignored. Due to the lack of

necessary contextual information, the inference is independent of underlying

tissue architecture, and it is performed based on the limited context captured

by individual patches. This approach works well for problems where contextual

information is relatively less important for prediction. However, contextual

information becomes vital in problems where diagnostic decisions are made

based on underlying tissue architecture, such as cancer grading.

In this chapter, I consider colorectal adenocarcinoma (CRA) grading to

demonstrate the significance of context-aware CNN in cancer histology image

analysis. CRA is the fourth most common cause of cancer-related deaths

worldwide [118]. Pathologists determine the grade of CRA by collective analysis

of individual cancer cells’ abnormality and their spatial organization as a
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distorted glandular structure in the histology image. Several studies have

adopted a two-tiered grading system to reduce the inter-observer variability

[15, 119] by merging the well and moderately differentiated glands into a low-

grade tumour and classifying tissue with poorly and undifferentiated glands as

a high-grade tumour. I opted for the same two tier CRA grading approach for

automated grading.

A CNN based method for CRA grading requires an input image with

large contextual information to capture cell organization for accurate grading.

I propose a novel framework for context-aware grading of histology images.

The proposed framework first learns the local representation by a CNN (LR-

CNN) and then aggregates the contextual information through a representation

aggregation CNN (RA-CNN), as shown in Figure 3.1. The proposed framework

takes a large size image (1792× 1792) as an input unlike the usual input image

size (224× 224) of standard patch classifiers. The input image is then divided

into small patches (224× 224) in sliding window fashion with no-overlap. The

LR-CNN takes the patches as input and converts them into low-dimensional

feature vectors where the length of feature vectors depends on the choice of LR-

CNN network. These feature vectors are arranged in the form of a feature-cube

using the same spatial arrangement in which the corresponding patches were

extracted. The feature-cube is then fed into the RA-CNN to make predictions

based on both low-resolution feature representation and spatial context. The

proposed context-aware framework is flexible enough to incorporate any state-of-

the-art image classifier as LR-CNN for local representation learning with the RA-

CNN. I present detailed results and show that our proposed framework achieves

superior performance over traditional patch-based approaches and existing

context-aware methods. Moreover, the proposed framework also outperforms

the methods designed specifically for CRA grading using handcrafted features

based on gland architecture. Our main contributions in this work are as follows:

• I propose a novel framework for context-aware learning from large high-

resolution input images.

• The proposed framework is highly flexible since it can leverage any

state-of-the-art network design for local representation learning.

• I explore different context-aware learning and training strategies to

examine the framework’s ability to learn the contextual information.

• I report the results of comprehensive experiments (with 100+ network

models) and comparisons to demonstrate the superiority of the proposed

context-aware learning framework over traditional patch-based methods

and existing context-aware learning methods.
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3.2 Method

The proposed framework for context-aware grading consists of two stacked

CNNs, as shown in Figure 3.1. The first network, LR-CNN, converts a high-

resolution input image into low dimensional feature-cube through patch-based

feature extraction. The second network, RA-CNN, aggregates the learned

representation in order to learn the spatial context from the feature-cube

to make a prediction. I leverage the power of traditional patch classifiers

to learn local representation from individual patches. However, I explore

different network architectures for context blocks in RA-CNN for context-

aware learning. Moreover, different training strategies are explored to find the

optimal configurations of the context-aware grading framework. The following

section explains each building block of the proposed framework in detail. The

notations used to describe each building block are summarized in Table 3.1.

3.2.1 Network Input

The input to our framework is an image (Xk) from a dataset, D = {Xk, Y k, Sk;

k = 1, . . .K}, of large high resolution images which consists of K images with

corresponding labels Y k ∈ {1, . . . , C} for classification into C classes and patch

level segmentation masks Sk ∈ {1, . . . , C} for multi-task learning. Each image

is divided into M ×N patches of same size where xkij and ykij represent the ijth

patch of kth image and its corresponding label, respectively. I used a patch

dataset, d = {(xkij , ykij), | xkij ∈ Xk, ykij ∈ Y k}, which consists of patches and

their corresponding labels for pre-training of LR-CNN.

3.2.2 Local Representation Learning

The first part of the proposed framework encodes an input image Xk into a

feature-cube F k. All the input images are processed through the LR-CNN

in a patch-based manner. The proposed framework is flexible enough to

use any state-of-the-art image classifier as LR-CNN such as ResNet50 [43],

MobileNet [82], Inception-v3 [44], or Xception [120]. This flexibility also

enables it to use pre-trained weights in case of a limited dataset. Moreover,

it is possible to train the LR-CNN independently before plugging it into the

proposed framework, enabling it to learn meaningful representation [121] which

leads to early convergence of the context-aware learning part of the framework.

3.2.3 Feature Pooling

The spatial dimensions of the output feature fkij of a patch xkij may vary

depending on the input patch dimensions and the network architecture of

LR-CNN. A global feature pooling layer is employed to get a one-dimensional
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Table 3.1: Enumeration of symbols used in this chapter.

Symbol Description Symbol Description

D Image dataset Xk kth image

K Number of images Y k Label of kth image

C Number of Classes Sk Mask of kth image

X Set of all images Y Labels of X

S Masks of X d Patch dataset

M Patches in an image row i 1, . . . ,M

N Patches in an image column j 1, . . . , N

xkij ijth patch of Xk ykij Label of xkij patch

F(·) Feature extractor fkij Features of xkij
Lf Fully connected layer Lgp Global pooling layer

La×ac a× a convolution layer Ls Softmax layer

→ Transition between layers • Preceding layer’s output

⊗ Hadamard product ⊕ Feature Concatenation

B(·) Context-block C(·) Context-Net

F Feature of X F′ Weighted Feature of X

Y′ Predicted labels of X Y ′k Predicted label of Xk

S′ Predicted Masks of X S′k Predicted Mask of Xk

W k kth image weight θ Learnable Parameters

Lcls Classification cost function Lwgt Weighted cost function

Lseg Segmentation cost function Ljoint Joint cost function

feature vector for all variations of the proposed framework. Both global average-

pooling and global max-pooling strategies are explored. In global average-

pooling, values of each feature map are averaged across spatial dimensions

whereas only maximum value is considered in global max-pooling from each

feature map. After global pooling, features of all patches are rearranged in the

same spatial order (M ×N) as extracted patches to construct the feature-cube

F k for context-aware learning. The depth of the feature-cube, again, depends

on the choice of LR-CNN architecture. Let F be the output of our LR-CNN

which is defined as,

F = F(X, θF )→ Lgp(•) (3.1)

where F represents the fully convolutional part of the LR-CNN and acts as a

feature extractor whereas X is the batch of images and F is the local feature

representation of X after pooling Lgp, which could be a global average-pooling

or global max-pooling layer. The operator (→) provides the output of the

preceding layer to the following layer, and the operator (•) represents the

output of the preceding layer.

3.2.4 Feature Attention

The input of the proposed framework has large spatial dimensions; therefore,

there may be some regions of the input image that may be more significant
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than others for the prediction of the image label. To exploit these significant

regions, I introduce an attention block which gives more weight to the features

of the significant regions and less weight to the features of insignificant regions.

The architecture of the attention block is illustrated by red dotted lines in

Figure 3.1. This attention block takes feature-cube as input and learns the

weights for each value in the feature-cube. Hadamard product (element-wise

product) is then taken between the weights and input feature-cube to increase

the impact of more important regions of an image in label prediction. The

weighted feature-cube F′ is defined as:

F′ = L1×1
c (F, θc)→ Ls(•)⊗ F, (3.2)

where L1×1
c and θc represent the 1× 1 convolution layer and its parameters,

respectively. Ls denotes the softmax layer, and the operator ⊗ is used to

represent Hadamard product.

3.2.5 Context Blocks

Since the LR-CNN is used to encode the patch-based image representation into

a feature-cube, the main aim of the context block (CB) is to learn the spatial

context within the feature cube. The CB learns the relation between the features

of the image patches considering their spatial location. I propose three different

CB architectures, each with different complexity and capability to capture the

context information. First CB, B1(·), is comprised of a 3× 3 convolution layer

followed by ReLU activation and batch normalization. Second CB, B2(·), uses

residual block [43] based architecture with two different filter sizes. It consists

of three convolution layers each followed by a batch normalization and ReLU

activation. The first and last layers are with 1× 1 convolution filter to squeeze

and expand the feature depth. The output feature-maps of the last layer are

concatenated with the input features-maps which makes its final output. The

B2(·) is defined as:

B2(F′, θB2) = [L1×1
c (F′, θB12)→ L3×3

c (•, θB22)→ L1×1
c (•, θB32)]⊕ F′, (3.3)

where L1×1
c and L3×3

c denote the convolution layers with 1× 1 and 3× 3 filter

sizes; θB12 , θB22 , and θB32 are the parameters of different convolution layers and

θB2 represents parameter of the whole context block for brevity. The operator

⊕ represents the concatenation of feature-maps.

Unlike the previous two context blocks, our third CB processes the input

feature-maps in parallel with different filter sizes to capture context from

varying receptive fields. Similar to the blocks in [44], it consists of multiple

1× 1 and 3× 3 convolution layers each followed by a batch normalization and
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ReLU activation. A 3× 3 average pooling layer L3×3
p is also used to average

the local context information. The CB, B3, is defined as:

B3(F′, θB3) = [L1×1
c (F′, θB13)→ L3×3

c (•, θB23)→ L3×3
c (•, θB33)]

⊕ [L1×1
c (F′, θB43)]

⊕ [L1×1
c (F′, θB53)→ L3×3

c (•, θB63)]

⊕ [L3×3
p (F′)→ L1×1

c (•, θB73)],

(3.4)

where θB13 to θB73 are the parameters of different convolution layers and θB3

represents parameter of the whole context block for the sake of notational

simplicity.

3.2.6 Representation Aggregation

A cascaded set of three context blocks (C(·)) of the same type (B1,B2, or B3)
is used in RA-CNN. The output of C(·) is followed by a global average pooling

layer, a fully connected layer, and a softmax layer to make the final prediction

in the required number of classes. The final prediction Y′ from the features of

input images X is computed as:

Y′ = C(F′, θC)→ Lgp(•)→ Lf (•, θf ′)→ Ls(•), (3.5)

where θC and θf ′ represent the parameters of all context blocks and the fully

connected layer in RA-CNN, respectively. The architecture of the RA-CNN is

illustrated by black lines in Figure 3.1.

3.2.7 Auxiliary Block

The proposed framework is designed for the classification of large input images.

Therefore, the label of an input image may depend on a set of different primitive

structures (such as glands, nerves, or vessels ) and their spatial organization.

I proposed an auxiliary block to exploit these primitive structures. The

architecture of the auxiliary block is highlighted by blue dotted lines in Figure

3.1. This auxiliary block acts as a patch based segmentation of the primitive

structures in an input image (k) and outputs a patch based segmentation mask

(S
′k). The segmentation masks (S′) of input images X from their features F′

is defined as:

S′ = C(F′, θC)→ L1×1
c (•, θc′)→ Ls(•), (3.6)

where L1×1
c is a convolution layer with θc′ parameters. The addition of auxiliary

block enables the proposed framework to learn in a multi-task setting [122–125]

where both tasks share the same base network which helps to overcome the
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issues of representation bias and overfitting. The loss function for one task

acts as a regularizer for the other tasks.

3.2.8 Loss Functions

The proposed framework without auxiliary block is trained only with categorical

cross-entropy loss based cost function Lcls(·) which is defined as:

Lcls(Y,Y′) = − 1

K

K∑
k=1

C∑
c=1

Y k
c log2(Y

′k
c ), (3.7)

where Y k
c and Y

′k
c are the ground truth and predicted probabilities of kth

image for cth class, respectively. The weights of the proposed framework with

auxiliary block are optimized based on a joint loss(Ljoint) which consist of Lcls
and segmentation-map based loss function (Lseg). Both Lseg and Ljoint are

defined as:

Lseg(S,S′) = − 1

K

K∑
k=1

C∑
c=1

Skc log2(S
′k
c ), (3.8)

Ljoint(Y,Y′,S,S′) =α× Lcls(Y,Y′)+

(1− α)× Lseg(S,S′),
(3.9)

where α is a hyper-parameter which defines the contribution of both loss

functions in the final loss. The loss functions are minimized with RMSprop

optimizer [126].

3.2.9 Training Strategies

I trained the proposed framework in four different ways for the sake of com-

pleteness in experimentation. First, the proposed framework is trained without

attention block and by minimizing the Lcls(·) loss only. Solid black line blocks

in Figure 3.1 represent this configuration. Second, the same configuration as

first but trained with a sample-based weighted loss function, Lwgt(·), which

give more weight to the input patches with relatively less region of interest

(glandular region) as compared to the background. The weight of an input

patch and Lwgt(·) are defined as follow,

W k =


1

Rk
roi

, if Rkroi > α

1
α , otherwise

(3.10)

Lwgt(Y,Y′) = − 1

K

K∑
k=1

C∑
c=1

W kY k
c log2(Y

′k
c ), (3.11)
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Table 3.2: Distribution of visual fields of different classes for both dataset.

Dataset Normal Low Grade High Grade Total

CRA [56] 71 33 35 139

Extended CRA 120 120 60 300

where Rkroi and W k represent the ratio of the region of interest and the weight

of the kth image. The α is the ratio threshold, selected empirically as 0.10,

sets the upper limit of an image weight. Third, multi-task learning based

training with the help of an auxiliary block by using joint classification and

segmentation loss, Ljoint. Last, training using the same joint loss but with

attention-based feature-cube to amplify the contribution of more important

features in the feature-cube. The network configuration of this strategy is

represented by both solid and dotted lines blocks in Figure 3.1. I termed these

strategies as standard, weighted, auxiliary, and attention, respectively.

3.3 Datasets & Performance Measures

I evaluate our proposed framework on two CRA datasets using multiple evalu-

ation metrics. A detailed explanation of both datasets and evaluation metrics

is presented in the following subsections.

3.3.1 Datasets

The proposed framework is evaluated on two CRA datasets in order to demon-

strate its context-aware grading capabilities. The first CRA dataset was used

by Awan et al. [56] for the same task of CRA grading. It is comprised of visual

fields extracted from 38 haemotoxylin and eosin (H&E) stained whole slide

images (WSIs) of CRA cases based on the two-tier grading system [15, 119].

The CRA dataset consists of 139 visual fields with an average size of 4548×7520

pixels obtained at 20× magnification. These visual fields are classified into

three different classes (normal, low grade, and high grade) based on the or-

ganization of the glands in the visual fields by expert pathologists. I extend

this dataset with more visual fields extracted from another set of 68 H&E

stained WSIs using the same criteria. Our extended CRA (Extended CRA)

dataset consists of 300 visual fields with an average size of 5000× 7300 pixels.

A detailed distribution of the visual fields of different grades is presented in

Table 3.2 for both datasets.

I follow 3-fold cross-validation for a fair comparison of the proposed method

with the method presented by Awan et. al. [56]. All visual fields extracted

from one case only lies in one fold, and I use one fold for training, one for

validation (hyper-parameter tuning) and one for the testing to do strong
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Non-Glandular Normal

100 µm 100 µm

100 µm 100 µm

Low Grade High Grade

Figure 3.2: Exemplar patches of size 1792× 1792 pixels used for the training
of the proposed method. Each box of the overlaid grid shows the 224× 224
patch used for the training of patch classifiers.

cross-validation on extended CRA dataset. Patches of two different sizes

224× 224 and 1792× 1792 pixels are extracted for the training of traditional

patch classifiers and our proposed framework, respectively (Figure 3.2). A

background class is introduced to handle the patches with no or little glandular

regions, and background patches are only extracted from normal visual fields.

However, patches of all other classes are extracted from glandular regions of

the visual fields of respective classes. I extracted 30 000 patches for patch

classification and 6000 overlapping patches for context-aware classification for

each class in each fold, using random rotation and flipping based augmentation

for both datasets.

3.3.2 Performance Measures

I used two metrics, the accuracy and Rank-sum measure, for performance

evaluation. The average accuracy refers to the percentage of visual fields
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classified correctly. In contrast, weighted accuracy is the sum of the accuracy

of each class weighted by the number of samples in that class. The Rank-sum

measure rank the performances of different methods with respect to the best

performing method. The best performing method get first rank and then the

methods which lies within 97.5% and 95% of the best performing method get

second and third rank, respectively. All other methods get the 4th rank.Rank-

sum based evaluation metric is used to summarize the accuracy of different

models in order to compare models trained with different context-blocks and

LR-CNNs. Different colours are used to represent different rank for better

illustrative visualization, as shown in Tables 3.4 and 3.5. The orange colour

indicates the best performing method, whereas the green and blue colours

indicate that the results are within 97.5% and 95% of the best performing

method, respectively. The rank for these colors are: orange = 1, green = 2, blue

= 3, and no colour = 4. The lowest rank-sum represents the best performance.

3.4 Experimental Results

The results of the different variants of the proposed framework are presented

to show the superior performance of these variants over simple patch-based

methods. These variants include the use of four different state-of-the-art

classifiers for local representation learning in LR-CNN; spatial dimensionality

reduction through global average-pooling and global max-pooling; the usage of

three different context-blocks in RA-CNN; and four different training strategies.

By employing different combinations of variations mentioned above, I trained

around 100 models in total for each fold on the CRA dataset. The details of

experimental evaluation are given in following subsections.

3.4.1 Experimental Setup

The CRA visual fields are divided into patches of size 1792× 1792, and the

label of each patch is predicted using the proposed framework with a stride

of 224× 224. The use of small stride can significantly increase the processing

time of a visual field due to redundant processing of overlapping regions. I

process each visual field with LR-CNN to get representation features of a whole

visual field. Afterwards, RA-CNN has applied in a sliding window manner on

the features of the visual field to aggregates local representation for context-

aware predictions. Through this approach, I process a visual field with a 64

times bigger context as compared to standard patch classifier with only 10%

additional processing time. The overall label of a visual field is derived from

counting the most predicted class (majority voting), excluding background

class in a visual field. Both accuracy and Rank-sum based evaluation measures
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Table 3.3: Accuracy based comparison of four patch classifiers.

Network Fold-1 Fold-2 Fold-3 Mean Standard Deviation

ResNet50 93.48 93.62 89.13 92.08 2.08

MobileNet 93.48 95.74 89.13 92.78 2.74

Inception-v3 95.65 91.49 86.96 91.37 3.55

Xception 93.48 91.49 91.30 92.09 0.98

represent the performance at visual fields level.

3.4.2 LR-CNN based Classifiers

Four different LR-CNNs are trained using ResNet50 [43], Inception-v3 [44],

MobileNet [82], and Xception [120] with patch size of 224 × 224 to get the

baseline patch-based classification results. The ResNet-50 [43] and Inception

network are the winner of Image-Net [127] challenge in 2015 and 2016, re-

spectively. MobileNet is a lightweight network with just 3 million parameters,

whereas the Xception network uses separable convolutions which results in a

significant reduction in computational complexity. The performance of these

classifiers for CRA grading is reported in Table 3.3. Although the performance

of all classifiers is comparable, MobileNet shows superior performance with the

highest mean accuracy. On the other hand, Xception classifier shows consistent

performance across three folds, with the lowest standard deviation.

3.4.3 RA-CNN based Context-Aware Learning

I experimented with three context-blocks, B1, B2, and B3, to train three

different variations of RA-CNN, which I termed as RA-CNN 1, RA-CNN 2,

and RA-CNN 3. These three RA-CNN classifiers are trained separately with

all four LR-CNNs, as explained in section 3.2.6, hence giving 12 different

combinations of the context-aware network. The results in table 3.4 shows that

context-aware networks achieve superior performance as compare to standard

patch-based classifiers. The RA-CNN 3 achieves the best Rank-sum (lowest)

which shows its robustness across different representation learning networks.

The other two context-aware networks also show comparable performance by

remaining in the 97.5% of the best performer.

3.4.4 Local Representation Robustness

I also conducted different experiments to analyze the robustness of local

representation learned by different LR-CNNs. These LR-CNNs are used in

combination with different RA-CNNs for context learning along with different

feature pooling strategies. Each LR-CNN is used to training three RA-CNNs

with both global average, and global max pooled feature-cubes. The table
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Table 3.4: Rank-sum based comparison of three different context-aware net-
works with standard patch classifiers. The orange, green, and blue represent
the rank 1, 2 and 3, respectively.

LR-CNN (Avg) Baseline RA-CNN 1 RA-CNN 2 RA-CNN 3

ResNet50 92.08±2.08 94.25±2.70 92.08±2.08 93.51±3.10

MobileNet 92.78±2.74 93.52±3.55 93.52±1.78 94.25±2.70

Inception-v3 91.37±3.55 94.23±3.71 94.96±2.72 95.68±1.78

Xception 92.09±0.98 94.96±2.72 94.96±2.72 95.68±3.55

Rank-sum 10 7 8 5

Table 3.5: Robustness analysis of feature extractors across different methods.
The orange, green, and blue represents the rank 1, 2 and 3, respectively.

Methods ResNet50 (%) MobileNet(%) Inception-v3(%) Xception(%)

RA-CNN 1 (Avg) 94.25±2.70 93.52±3.55 94.23±3.71 94.96±2.72

RA-CNN 1 (Max) 93.52±1.87 93.51±3.10 94.23±2.07 93.54±3.03

RA-CNN 2 (Avg) 92.08±2.08 93.52±1.78 94.96±2.72 94.96±2.72

RA-CNN 2 (Max) 95.68±3.55 93.52±3.55 92.80±2.72 93.54±3.03

RA-CNN 3 (Avg) 93.51±3.10 94.25±2.70 95.68±1.78 95.68±3.55

RA-CNN 3 (Max) 94.23±2.07 92.82±2.01 94.25±2.70 94.96±2.72

Rank-sum 12 12 10 8

3.5 compares the results using Rank-sum based measure. It can be observed

that the Xception model turns out as the most robust feature extractor in

LR-CNNs with the best rank-sum score of 8. The Inception-v3 model shows

comparable results to the best performer as its network design has significant

overlap with Xception architecture.

3.4.5 Training Strategies

I experimented with four different context related training strategies (Standard,

Weighted, Auxiliary and Attention) to explore their impact on overall perform-

ance. Details of each training strategy are given in Section 3.2.9. Table 3.6

shows the comparison of these training strategies for Xception based LR-CNN.

Each entry in the table contains the average accuracy across three RA-CNNs

for particular feature pooling (shown in rows) and the training strategies (in

columns). Attention based training shows the superior results for max-pooled

features, whereas standard training strategy achieves comparable performance

for average-pooled features. However, auxiliary loss based training remains

robust for both pooling types and achieves the best overall accuracy. More

importantly, most of the model shows superior performance than the baseline

LR-CNN classifier as shown in Figures 3.3, 3.4, 3.5, and 3.6. These figures

present the graphical illustration of 96 experiments using different LR-CNNs.

The results obtained with different combinations of feature pooling type, the

context blocks in RA-CNN and the training strategies used for the experiments
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Table 3.6: Comparison for different training strategies based on average accur-
acy across three RA-CNNs with Xception based features.

Feature (Pooling) Standard Weighted Auxiliary Attention

Xception (Max) 94.01 94.49 94.73 95.21

Xception (Avg) 95.20 94.72 94.72 94.00

Mean 94.61 94.60 94.72 94.61

Figure 3.3: Results of 24 experiments using the best performing local represent-
ation features (Xception). Legend represents the different training strategies,
whereas different bars represent the results for three context-aware networks
with max and average pooling based features. Red line indicates the baseline
accuracy of patch based Xception classifier.

are illustrated in bar-chart format for better visual comparison. The accur-

acy obtained by LR-CNN is considered as the baseline and represented by a

horizontal red line in each figure for comparative analysis.

3.4.6 Result Summary

The gist of the detailed experimentation and comparisons is that bigger contex-

tual information helps in better automated grading of CRA and the proposed

approach demonstrated the ability to capture broader context. In practice,

Xception based LR-CNN is the most robust feature extractor for context-aware

learning and RA-CNN 3 showed robustness to most of the feature extraction

methods. Attention based training strategy is suitable for both RA-CNN 1

and RA-CNN 3 with max-pooling features. Last but not least, almost all pro-

posed variations of context-aware framework perform better than the baseline

patch-based classifiers.
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Figure 3.4: Results of 24 experiments using Inception-v3 based local represent-
ation features. Results show that all variations of the proposed context-aware
method achieved superior performance compared to the Inception-v3 based
patch classifier performance (denoted by horizontal red line).

Figure 3.5: Results of 24 experiments using ResNet50 based local representation
features. Results show that most of the variations of the proposed context-
aware method achieved superior performance compared to the ResNet50 based
patch classifier performance (denoted by horizontal red line).
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Figure 3.6: Results of 24 experiments using MobileNet based local represent-
ation features. Results show that MobileNet based patch classifier achieved
reasonably high performance (denoted by horizontal red line) but some of the
variations of the proposed context-aware method with MobileNet features does
not performed as good as the simple patch classifier.

3.5 Comparative Results

The results of the best performing context-aware method are compared with

state-of-the-art approaches on both CRA and Extended CRA datasets. These

approaches are categorized into problem-specific methods, traditional patch-

based classifiers, and context-aware methods. The brief description of these

approaches and comparative analysis is presented in the following subsections.

3.5.1 Problem Specific Methods

Awan et al. [56] presented a two-step problem-specific method for CRA grading.

They experimented with best alignment metric based two feature sets which

I refer to as BAM-1 and BAM-2. BAM-1 comprises of average BAM and

BAM entropy while BAM-2 comprises of an additional feature known as

regularity index. They evaluated their method using only average accuracy

based measures for both binary and 3-class grading. I reported the results

presented by the author in their paper [56] on CRA dataset to avoid any

retraining bias and compared using average accuracy based measure for a fair

comparison. Their method achieved good accuracy for binary grading, normal

vs cancer; however, it lacks the robustness required for multi-class grading of

CRA visual fields whereas the proposed method achieved superior performance

on both tasks (see Table 3.7).
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Table 3.7: Average Accuracy based grading comparison of the proposed context-
aware method with state-of-the-art methods on CRA Dataset.

ID Methods Binary (%) Three-class (%)

1 BAM - 1 [56] 95.70±2.10 87.79±2.32

2 BAM - 2 [56] 97.12±1.27 90.66±2.45

3 ResNet50 [43] 98.57±1.01 92.08±2.08

4 MobileNet [82] 97.83±1.77 92.78±2.74

5 Inception-v3 [44] 98.57±1.01 91.37±3.55

6 Xception [120] 98.58±2.01 92.09±0.98

7 CNN-SVM [128] 96.44±3.61 92.12±3.57

8 CNN-LR [128] 98.58±2.01 93.52±0.07

9 CNN-LSTM [76] 96.44±3.61 89.96±3.54

10 Proposed 99.28±1.25 95.70±3.04

Table 3.8: Accuracy based grading comparison of the proposed context-aware
method with state-of-the-art methods on the Extended CRA Dataset.

ID Methods Patch Size
Binary Classification 3-Class Classification

Average (%) Weighted (%) Average (%) Weighted (%)

1 ResNet50 [43] 224x224 95.67±2.05 95.69±1.53 86.33±0.94 80.56±1.04

2 MobileNet [82] 224x224 95.33±2.49 95.42±2.23 84.33±3.30 77.78±4.83

3 Inception-v3 [44] 224x224 93.67±1.89 94.31±1.57 84.67±1.70 81.11±1.97

4 Xception [120] 224x224 96.67±2.05 96.80±1.71 86.33±0.94 81.39±1.71

5 Xception [120] 112x112 92.00±3.27 92.22±2.64 81.33±3.40 74.72±4.53

6 Xception [120] 448x448 97.00±2.83 97.08±2.36 86.67±0.94 80.42±1.25

7 CNN-SVM [128] 224x224 96.00±0.82 96.39±0.86 82.00±1.63 76.67±2.97

8 CNN-LR [128] 224x224 96.33±1.70 96.39±1.37 86.67±1.25 82.50±0.68

9 CNN-LSTM [76] 1792x1792 95.33±2.87 94.17±3.58 82.33±2.62 83.89±2.08

10 Proposed 1792x1792 97.67±0.94 97.64±0.79 86.67±1.70 84.17±2.36

3.5.2 Patch-based Classifiers

The results for four standard patch classifiers on both datasets are presented in

Tables 3.7 and 3.8. There is a slight difference in the ranking of these classifiers

on both datasets. However, Xception classifier remains consistent in terms of

low variance in performance on both datasets. I further experimented with

different patch sizes using Xception classifier on the Extended CRA dataset.

The results show that the significant change in the patch size without any

modification in the network architecture leads to a decrease in the performance

as can be seen in Table 3.8 for Xception network. The performance of all the

patch based classifiers is below the performance of the proposed method.

3.5.3 Context-Aware Methods

The decision fusion based methods [128, 129] can be loosely considered as

context-aware methods if used to predict the visual field labels through the

aggregation of patch predictions. I compared our method with the two ap-

proaches used by Hou et al.[128] on the Extended CRA dataset. They used
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Figure 3.7: Visual results on CRA grading dataset are shown for patch classifier
(MobileNet), existing context (CNN-LSTM), and the proposed method on an
image of size 1792× 1792. The stride size for context networks is equal to the
size of patch (224× 224) used for patch classifier. Green, blue and red colours
of overlaid rectangular boxes show the normal, low and high-grade predictions
respectively, whereas empty box areas represent non-glandular/background
regions. See text for result analysis.
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support vector machine (SVM) with radial basis function kernel (CNN-SVM)

and logistic regression (CNN-LR) for decision fusion from the class histogram of

patch probabilities. I used the best performing patch classifiers for each dataset

(MobileNet for CRA, Xception for Extended CRA) to get the patch probab-

ilities. The CNN-LR shows some performance improvements over the best

performing patch classifiers, but this performance is still below the proposed

method on both datasets (see Table 3.7 and 3.8). The CNN-SVM method

does not perform as good as the simple majority voting based patch classi-

fier. A similar performance pattern can be observed in the Hoe et al. paper

[128] for the task of Glioma classification. I believe that the major difference

between these simple decision fusion and context-aware methods is the ability

to adjust the prediction of a patch using its neighbourhood information. The

decision fusion based methods only use predicted patch probabilities whereas

as context-aware methods have access to the features of neighbouring patches.

I also compared our method with a long short-term memory (LSTM) based

context-aware method (CNN-LSTM) proposed in a systemic study on context-

aware learning by Sirinukunwattana et al. [76] using prostate and breast cancer

datasets. They used LSTM to capture the context from CNN features of four

downsampled versions (1×, 2×, 4×, and 8×) of the input patch. The code

is publicly available by the authors of the paper [76] and I use that code to

retrain the method on both datasets for a fair comparison. Our best performing

context-aware method outperformed the CNN-LSTM method on both datasets

(see Table 3.7 and 3.8). This performance improvement could be attributed to

the proposed method’s ability to use high-resolution input patch without any

downsampling for context learning, unlike CNN-LSTM. Moreover, I used a

relatively more powerful CNN network (e.g. Xception) for LR-CNN for feature

extraction whereas Sirinukunwattana et al. opted for a lightweight network for

feature extraction to make their network end-to-end trainable.

3.5.4 The Proposed Method

The different variants of the proposed method have shown comparable per-

formance, but I consider our best performing context-aware configuration for

comparative analysis. The best performance is achieved by RA-CNN 1 trained

with attention based training strategy on max pooled features. It shows 3.61%

and 2.78% better performance as compared to simple patch classifiers on both

CRA (Table 3.7) and Extended CRA (Table 3.8) datasets, respectively. I also

investigated the performance based on the patch-based segmentation using

RA-CNN 1 trained with auxiliary training strategy on the Extended CRA

dataset. Although it achieves the weighted accuracy of 87.50%, it has a high

variance of 5.14% across three folds of the Extended CRA dataset. Therefore,
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I did not consider it as our benchmark for comparative analysis in Table 3.8.

3.5.5 Visual Comparison

The visual comparison of best performing patch classifier (MobileNet), Siri-

nukunwattana et al. (CNN-LSTM) and the proposed method on three different

images with normal, low and high grades are shown in Figure 3.7. Patch

classifier’s prediction is quite irregular for any given image due to the lack of

contextual information. The predictions of CNN-LSTM are relatively smooth,

but it predicts the wrong label for the low-grade image, which might be due to

the use of low-resolution images for context learning. However, the proposed

method predictions are smooth and consistent with the ground truth labels.

3.6 Summary

In this chapter, I present a novel context-aware deep neural network for CRA

grading, which is able to incorporate 64 times larger context than standard

CNN based patch classifiers. The proposed network is well-suited for the CRA

grading task, which relies on recognizing abnormalities in glandular structures.

These clinically significant structures vary in size and shape that cannot be

captured efficiently with standard patch classifiers due to computational and

memory constraints. The proposed context-aware network is comprised of two

stacked CNNs. The first LR-CNN is used for learning the local representation

of the histology image. The learned local representation is then aggregated,

considering its spatial pattern by RA-CNN. The proposed context-aware model

is evaluated on two datasets for CRA grading. A comprehensive analysis of dif-

ferent variations of the proposed model is presented and compared with existing

approaches in the same evaluation setting. The qualitative and quantitative

results demonstrate that our method outperformed the patch-based classifica-

tion methodologies, the problem-specific techniques, and existing context-based

methods. This approached is suitable for cancer analysis which requires large

contextual information in the histology images. This includes Gleason grading

in prostate cancer and tumour growth pattern classification in lung cancer.
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Chapter 4

Spatial Quantification of

Tumour Infiltrating

Lymphocytes Abundance

4.1 Introduction

Tumour infiltrating lymphocytes (TILs) have been analysed in a wide range

of cancers with strong evidence demonstrating their prognostic value as a

supplement to the tumour, node, and metastasis (TNM) staging [27, 28, 31].

TILs mainly comprise T lymphocytes which migrate from the blood into the

tumour as part of the body’s immune ‘fight-back- response’. However, it

is crucial to analyse these cells in the correct context. A large number of

lymphocytes can be present in inflamed and cancerous tissues and, therefore, it

is vital to develop methods to specifically analyse lymphocytes infiltrating the

tumour as these are the ones that are likely to be of prognostic significance [29,

30, 130]. These areas can be referred to as the TIL regions where both tumour

cells and lymphocytes are co-localised (as illustrated in Figure 4.1). Numerous

studies have reported the correlation of TIL density with improved disease-

specific survival and longer disease-free survival [131, 132]. It has been shown

that the quantification of spatial patterns of TILs in the tumour regions can have

a prognostic value significantly supplementing or even superseding the TNM

staging in certain settings [97, 133]. However, the currently used method of

visual TIL quantification is subjective with inter- and intra-observer variability

and lack of diagnostic reproducibility [134]. Therefore, it is imperative to

develop an automated method for objective spatial quantification of TIL to

address these challenges.

In this chapter, I present a novel framework for spatial quantification of

TILs and explore its prognostic significance for disease-free survival of oral

squamous cell carcinoma (OSCC) patients. The proposed framework, as illus-
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WSI TIL Region

Tumour Lymphocytes

Figure 4.1: An example image of tumour infiltrating lymphocytes region (black)
in a whole slide image. High resolution view of tumour (red) and lymphocyte
(green) regions are shown in the bottom row.
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trated in Figure 4.2, comprises of three main components: WSI segmentation

into biologically significant tissue phenotypes, identification and quantification

of TILs, and their prognostic analysis. First, WSI segmentation into biologically

significant tissue phenotypes is modelled as a patch-based tissue classification

problem. Different tissue regions such as tumour and lymphocytes in a WSI are

classified using a CNN. Second, a tumour-lymphocyte colocalisation based bin-

ary classifier is developed using statistical colocalisation measures for detecting

the presence or absence of TILs in OSCC tissue slides. The extent of spatial

lymphocytic infiltration, which I term as the tumour infiltrating lymphocytes

abundance (TILAb) score, in the tumour region is quantified by a combination

of lymphocyte to tumour ratio and their statistical colocalisation. Finally, the

prognostic significance of the TILAb score for disease-free survival is invest-

igated by employing univariate and multivariate analysis. To the best of our

knowledge, there is no existing method for automated spatial quantification

of TIL abundance from digitised WSIs for OSCC patients survival analysis.

I show that the TILAb score is a strong prognostic indicator of disease-free

survival in OSCC patients in agreement with previous findings based on manual

TIL quantification [135]. Our main contributions in this work are as follows:

• A methodology for the segmentation of biologically significant regions in

OSCC tissue is presented, which includes segmentation of tumour areas

and lymphocytes in a WSI.

• I propose a novel scoring of TIL abundance, termed as the TILAb score,

to quantify the extent of spatial lymphocytic infiltration in the tumour

region which is a combination of lymphocyte to tumour ratio and their

statistical colocalisation in a WSI.

• The reproducibility and objectivity of the TILAb score are investigated in

two different ways: First, by analysing the consistency between statistical

colocalisation based TIL detection and a pathologist’s detection. Second,

by evaluating the prognostic significance of TILAb score for disease-free

survival of OSCC patients.

4.2 Methods

WSIs are multi-gigapixel images and cannot be used directly for image analysis

tasks, particularly training a deep learning based classifier. Therefore, I divide

the WSIs into patches for processing. A deep learning based classifier (see next

section) is applied on the patches to identify whether the patch contains tumour,

lymphocytes or other histological primitives. However, the regions where the

lymphocytes are infiltrating the tumour may not be confined within a patch.
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Besides, there is considerable variation in the size of TIL regions, making the

quantification of TILs a non-trivial task. I identify TILs by calculating spatial

colocalisation of tumour and lymphocyte patches. The colocalisation measure

is further incorporated into the computation of the proposed score of spatial

lymphocytic infiltration, i.e. the TILAb score.

4.2.1 Tissue Region Classifier

A tissue section in a WSI contains many different types of cells and regions, such

as tumour cells, lymphocytes, and other regions (i.e. fibroblasts, endothelial

cells, blood vessels, muscle, fat and red-blood cells). A WSI may also contain

slide preparation and scanning artefacts, such as tissue folding and blurring,

which need to be ignored. Therefore, I classify OSCC tissue sections into

biologically significant regions. Tumour and lymphocyte rich regions are

important for the detection and quantification of TILs. Precise classification

of all other regions is necessary to discriminate between TILs and regular

lymphocytes that do not lie within the vicinity of tumour regions. The fourth

and final class of regions consists of scanning and tissue artefacts, which are

labelled as non-region of interest (Non-ROIs). I opted for patch-based tissue

region classification instead of pixel-based classification. Figure 4.3 shows three

exemplar patches of size 128× 128 pixels at 20× of each class.

Deep learning models have significantly improved the state-of-the-art in

many natural image-based problems such as visual object detection and recogni-

tion [127, 136] and scene labelling [46]. Most popular deep learning networks for

the classification task are ResNet [43], DenseNet [81], Inception [44], Xception

[120] and MobileNet [82]. Each network shows competitive results on one of

the largest image classification datasets, ImageNet [127]. I train these networks

for tissue classification task to get a strong baseline model. I extracted 400, 000

patches for training and 100, 000 patches for validation from WSIs. Both

training and validation datasets have equal numbers of patches for each class.

During training, I leverage online data augmentation with a random rotation

of 0, 90, 180 or 270 and random flipping. I select the best model of each

classifier after training it for at least 125, 000 optimisation steps with RMSProp

optimiser. During testing, the patch classifier takes non-overlapping patches

from a WSI and outputs probabilities of all classes for each patch, resulting in

a probability map at the WSI level. The probability maps are converted into

prediction maps by selecting the class with the highest probability for each

patch (Figure 4.2). The prediction map at the WSI level is eventually used for

TIL identification and computation of the TILAb score.
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Figure 4.3: Exemplar patches of tumour, lymphocyte, other, and Non-ROI
(artefacts) classes.
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4.2.2 TIL Detection and Quantification

The TIL regions can easily be detected just by localising the lymphocyte in the

vicinity of tumour regions. However, objective quantification of TILs is a non-

trivial task as it depends on the meticulous aggregation of the colocalisation

of a tumour and lymphocytic regions. In ecology, colocalisation of different

species is used to understand their community structure [137, 138]. Tumour and

lymphocytes in a WSI could be considered as two different interacting species in

the histological landscape. Therefore, I investigate the utility of colocalisation

based methods, used in ecology domain, for objective TIL quantification in a

WSI. For this purpose, a WSI is divided into m× n grid of equally sized cells,

such that grid-cell size is greater than the size of input patch for the region

classifier. The colocalisation score M in terms of the Morisita-Horn [106] index

is then defined as follows,

M =
2
∑m

i=1

∑n
j=1(p

l
ij × ptij)∑m

i=1

∑n
j=1(p

l
ij)

2 +
∑m

i=1

∑n
j=1(p

t
ij)

2
, (4.1)

where plij and ptij represent the percentage of lymphocytic and tumour patches

(regions) in the (i, j)th grid-cell, respectively (Figure 4.4). Each grid-cell

represents the spatial colocalization of tumour and lymphocytes, whereas M

is the overall colocalization score. If a grid-cell does not contain any tumour

and lymphocytic region, then it would not contribute towards the overall

colocalization score. However, if a grid-cell only contains one type of region,

either tumour or lymphocyte, then it only contributes to the denominator of

the equation thus results in a relatively small colocalization score. If all the

grid-cells contain only a unique type of regions, then the colocalization score

becomes zero. The overall colocalization score ranges from 0 to 1, and the

score is maximum when each of the grid-cell has the same number of tumour

and lymphocyte regions, as shown in Figure 4.4.

I also consider the Shannon diversity index [113] to quantify the colocaliza-

tion of tumour and lymphocytic regions in a WSI. It computes the diversity of

two classes in a given region that is also aligned with the definition of TILs.

For m× n grid of equal cell sizes in a WSI, the Shannon diversity index, S, is

defined as follow,

S =
−
∑m

i=1

∑n
j=1(p

l
ij × ln plij + ptij × ln ptij)

m× n
, (4.2)

where plij and ptij represent the percentage of lymphocytic and tumour regions

in the (i, j)th grid-cell. The colocalization computed using Shannon diversity

index is relatively smaller in magnitude as compared to the Morisita-Horn

index with the maximum value of 0.7 at the maximum colocalization point of
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Lymphocyte Region Tumour Region

Figure 4.4: The illustration of tumour and lymphocyte colocalization patterns
in synthetic images with 4×4 grid size. (Left) The highly segregated appearance
of tumour and lymphocytic regions. (Center) Fully co-localized regions. (Right)
Lymphocyte rich colocalization.

tumour and lymphocytic regions (Figure 4.5).

4.2.3 TIL Abundance Score

The Morisita-Horn and Shannon diversity are two objective and efficient

measures for quantification of colocalisation. However, these methods give

equal importance to all the constituent classes (or species), which consequently

results in a symmetric colocalisation score (as can be seen in Figure 4.5).

For instance, 20% lymphocytes and 80% tumour in a region will give the

same colocalisation score as another region consisting of 80% lymphocytes

and 20% tumour. However, the lymphocyte proliferation in the tumour is

considered to be a good prognostic indicator for patient survival. Therefore,

the symmetric nature of these measures is not ideal for obtaining an objective

TIL quantification score of prognostic importance. I proposed the TILAb

score, T , which is a combination of the lymphocyte to tumour ratio and their

colocalisation, as defined below,

T =


C
2 ×

∑m
i=1

∑n
j=1(p

l
ij)∑m

i=1

∑n
j=1(p

t
ij)
, if

∑m
i=1

∑n
j=1(p

t
ij) > 0

1, otherwise
(4.3)

where C is a colocalisation measure and M or S can be used as a colocalisation

measure. The right half of the above equation shows the lymphocytes to

tumour ratio in WSI. I normalise the range of TILAb score between 0 to 1 by

dividing it by a factor of 2. The proposed TILAb score objectively quantifies the

TILs, and its formulation is generic enough to work with both Morisita-Horn

and Shannon diversity indices. Figure 4.5 shows the distribution of TILAb

score using Morisita-Horn index based colocalisation at different percentages
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Figure 4.5: Plots of Morisita-Horn, Shannon diversity and TILAb indices for
different percentages of lymphocyte in a grid-cell. At each point, the percentage
of tumour is equal to 1 − percentage of lymphocyte. TILAb is calculated using
Morisita-Horn index based colocalisation.
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of lymphocytes. It can be seen that both Morisita-Horn and Shannon diversity

indices have relatively small values even with high lymphocytic percentage,

whereas the TILAb score increases with the increase in lymphocytic infiltration

(Figure 4.6). Moreover, TILAb score remains the same for different tumour

and lymphocyte density with the same ratio (Figure 4.7).

4.2.4 Statistical Analysis

The TILAb score based statistical analysis is performed for disease-free survival

in order to demonstrate its prognostic significance as an independent biomarker.

Kaplan-Meier [70] and Cox proportional-hazards model [40] are used for survival

and hazard analyses, respectively. To stratify patients into high-risk (short-

term survival) and low-risk (long-term survival) groups, I find an optimal

cut-point on the TILAb score value from the modelling subset where the

statistical significance of the difference in disease-free survival between the

two groups is the largest. Log-rank test based p-value is used to assess the

statistical significance of the survival models where p < 0.05 is considered

significant. For multivariate analysis, Cox proportional-hazards model is used,

which simultaneously evaluates the effect of several factors on survival. I report

the hazard ratio along with lower and upper 95% confidence interval. Global

statistical significance of the model is measured by the Wald test [115] which

is a way to find out if explanatory variables in a model are significant or not.

4.3 Dataset

4.3.1 Ethical approval

Ethical approval was obtained from the institutional review board (Ref. No.

17-02-17-10) at Shaukat Khanum Memorial Cancer Hospital and Research

Centre (SKMCH&RC) and national bioethics committee (No.4-87/17/NBC-

234-Exempt/NBC/2592), Pakistan. All methods and experiments were carried

out by following relevant guidelines and regulations. The institutional review

board granted exemption from written consent at SKMCH&RC and national

bioethics committee because the data and images used in the study were already

in existence and were collected and reported in an anonymised way ensuring

confidentiality of participants. The study did not involve any intervention or

interaction with the participants. The research involved no more than minimal

risk to the participants and involved no procedures for which written consent

is normally required outside of the research context, and the waiver did not

adversely affect the rights and welfare of the participants.
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Figure 4.6: Both figures show the distribution of TILAb score with respect
to lymphocyte percentage in a grid. (Top) TILAb score curve based on the
simplest grid with only one cell. (Bottom) TILAb score map for a grid with
two cells. Lymphocyte percentage in each cell is independent of other cells.
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Figure 4.7: The illustration of TILAb score’s invariance to tumour and lympho-
cyte density patterns. Each pair of images has a varying tumour and lymphocyte
density but has same TILAb score.
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4.3.2 Patient selection

Patients with OSCC diagnosed between 2010-11 at SKMCH&RC were se-

lected from the electronic medical records (hospital information system).

SKMCH&RC follows a multidisciplinary approach; therefore, all patients

were treated by both a radiation oncologist and by a head and neck surgeon.

Cases included both primary and recurrent tumours that underwent complete

tumour resection with or without lymph node dissection and for which at

least three-year survival data were available. After the initial review of data,

60 patients were selected out of 155 oral cancer cases as per the study pro-

tocol (Figure 4.8). The cases excluded were those with either an incomplete

resection and those where survival follow up was less than three years. A

final cohort of 60 malignant cases and ten controls were finalised where the

control cases did not suffer from OSCC. Formalin-fixed paraffin-embedded

blocks were retrieved, and representative slides from each case were reviewed

by the study pathologists and confirmed to be OSCC. Additionally, slides

were reviewed for additional histopathological features such as patterns of

invasion, TILs and perineural invasion. For this study, oral cavity cancers were

defined as carcinomas of the mouth including lip, tongue, cheeks, the floor

of the mouth, hard and soft palate, whereas tumours of the salivary glands

were excluded. After compilation of the clinical and pathologic information,

including American Joint Committee on Cancer 7th edition stage, clinical and

pathological information was retrieved from the electronic medical records, as

summarised in Table 4.1. De-identified, tissue slides were digitally scanned in

University Hospitals Coventry & Warwickshire using Omnyx Integrated Digital

Pathology system at 40× magnification with a resolution of 0.275µm per pixel.

There were 193 tissue sections in 70 digitally scanned WSIs as many WSIs

contain multiple tissue sections.

4.3.3 Patient characteristics

Our study cohort consists of 70 cases, including 60 OSCC and ten control cases.

Disease-free survival information is available for all the malignant cases where

survival time was calculated from the date of diagnosis. Disease-free survival

had a census taken at the date of first recurrence or death, whichever occurred

first, or the date of the last contact for the patients alive and without recurrent

disease. The follow-up period ranged from 3.8 years to a maximum of 6.10

years at the time of data retrieval (2017). Median disease-free survival was 58

months (range, 4 – 86 months) and median age 50 years (range, 25 – 75 years).

Approximately 32% (n = 19) of patients suffered from disease recurrence

whereas 22% (n = 13) had died by the time of data retrieval. About 60%

(n = 36) of the patients were male, while 42% (n = 25) are at stage I/II and
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Figure 4.8: The Prisma flow diagram for patient selection. Eligible cases are
those cases that underwent complete tumour resection with or without lymph
node dissection and for which survival data were available. The cases excluded
were those where either a complete resection was not done as this was needed
to report all parameters and those where survival follow up of less than three
years.
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Table 4.1: Summary of clinical parameters of the OSCC Cohort.

Clinical Parameters Full Cohort Modelling Set Test Set

No. of Patients 60 30 30

Age (years) 49.77 ± 10.99 50.57 ± 9.77 48.97 ± 12.03

Survival
(months)

Overall 54.78 ± 17.91 56.00 ± 17.75 53.47 ± 17.96
Disease Free 48.87 ± 22.51 50.00 ± 22.44 48.00 ± 22.55

Gender
Male 36 17 19

Female 24 13 11

Node-Stage
I/II 25 17 8

III/IVa 35 13 22

Grade
I/II 48 23 25
III 12 7 5

Growth Patterns
Type 1/2 21 13 8
Type 3/4 39 17 22

TILs
Absent/Mild 32 17 15

Moderate/Severe 28 13 15

Patient
Status

Alive 47 24 23
Dead 13 6 7

Disease
Recurrence

Yes 19 9 10
No 41 21 20

remaining are at stage III/IVa. Further details of all clinical parameters are

given in Table 4.1.

4.3.4 Pathologist annotations

I split our OSCC cohort into two equal-sized subsets, one for modelling and

the other for the test. Six cases from the modelling set were considered for

validation of the proposed tissue region classifier. An oral and maxillofacial

pathologist reviewed all the digitised WSIs and marked the ground truth at

two different level of abstraction: TIL presence or absence on all the slides,

and tumour/lymphocytic regions on the modelling subset. At a high level,

the presence or absence of TILs in 193 tissue section from all WSIs was

marked where 111 were TIL positive (T+) and 82 TIL negative (T−). For the

classification of biologically significant regions, more than half a million regions

(belonging to different classes such as a tumour, lymphocytes, and other) were

marked in all WSIs of the modelling cohort. The annotations were then used

for training and validation of the proposed method.

4.4 Results

I evaluate the performance of the proposed framework at three different levels.

First, five different tissue region classifiers are compared using different evalu-

ation metrics. Second, TIL detection performance is measured quantitatively.

Finally, the prognostic significance of spatial TIL quantification is evaluated

by disease-free and disease-specific survival of OSCC patients. The detail of
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Table 4.2: Quantitative performance of five different tissue region classifiers on
validation dataset of 100, 000 patches.

Classifiers Accuracy Sensitivity Specificity F1-Score AUC

TRC-1 (ResNet50 [43]) 94.04 88.19 96.03 88.08 97.88

TRC-2 (DenseNet [81]) 95.40 90.80 96.94 90.78 98.56

TRC-3 (Inception-v3 [44]) 95.84 91.91 97.25 91.70 98.86

TRC-4 (Xception [120]) 95.94 92.16 97.32 91.88 98.83

TRC-5 (MobileNet [82]) 96.31 92.66 97.55 92.62 98.91

each level of evaluation is presented in the following sections.

4.4.1 Tissue Region Classification

In order to get a best multi-class tissue region classifier (TRC) model, I

employ five state-of-the-art convolutional neural network models (ResNet50

[43], DenseNet [81], Inception [44], Xception [120] and MobileNet [82]), denoted

as TRC-1 to TRC-5 respectively. Table 4.2 gives the quantitative performance

of these TRCs for multi-class patch level classification on the validation dataset,

whereas the inter-class confusion results are presented in Figure 4.9. Among the

five classifiers, MobileNet (TRC-5) shows superior performance as compared

to the other networks. It is a lightweight network that leverages separable

convolutions to reduce the number of required parameters and computations,

resulting in the consumption of relatively less memory and computational

resources and making it an attractive choice for the processing of multi-gigapixel

WSIs.

Visual results for tissue region classification obtained with TRC-5 are shown

for illustration in Figure 4.10, where tumour, lymphocytic, other and non-ROI

regions are shown in different colours. Lymphocytic regions are classified

with the highest accuracy, whereas tumour and non-ROI regions show a slight

overlap. In general, TRC-5 gives the best classification performance, as can

also be seen in the precision-recall curve in Figure 4.11, which shows the

relatively high true-positive rate and low false-positive rate for both tumour

and lymphocyte areas.

4.4.2 TIL Detection

For the evaluation of the proposed framework, I used both the best performing

(TRC-5) and the least performing (TRC-1) tissue region classifiers for down-

stream analysis. Therefore, the colocalisation of tumour and lymphocytes for

each tissue section is calculated based on the equation (4.1) by using both

TRC-1 and TRC-5 prediction maps. Five different performance measures are

used to evaluate the performance of TIL detection in tissue sections through

the colocalisation score, as shown in Table 4.3. Colocalisation score based
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Figure 4.9: Confusion matrix for all four classes using best performing tissue re-
gion classifier model. Results show that the classifier classifies the lymphocytes
with few false positive and false negative compared to other classes.
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Figure 4.10: Tissue region classification results by TRC-5 where tumour,
lymphocytic, other and non-ROI regions are represented by red, green, blue
and black colours, respectively. Middle row presents classifier’s predictions
whereas bottom row represents ground truth labels of different regions.
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Figure 4.11: Precision-recall curves for tumour and lymphocytic region classific-
ation using the TRC-5 classifier. The TRC-5 classifier classifies the lymphocytic
regions with better precision and recall compared to tumour regions.
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Table 4.3: Performance of tissue section classification into TIL positives and
negatives.

Classifiers Accuracy Sensitivity Specificity F1-Score AUC (95% CI)

TRC-1 80.19 85.45 74.51 81.74 87.54 (80.95 - 94.12)

TRC-5 79.05 79.69 78.05 82.26 88.96 (82.68 - 95.13)

on the best performing region classifier (TRC-5) achieved 88.96% area under

the curve (AUC). It is pertinent to mention that the least performing region

classifier (TRC-1) also performed reasonably well with 87.54% AUC.

4.4.3 TIL Quantification

The TILAb score at WSI level is also computed according to equation (4.3) for

spatial quantification of TILs. The TILAb score is evaluated by both visual and

survival analysis. Figure 4.12 shows the colocalisation heatmaps of different

tissue segments in two different WSIs along with WSI level TILAb scores. The

WSI at the top shows high colocalisation and TILAb scores which is aligned

with the spatial pattern of tumour and lymphocytes in the prediction map.

However, the WSI at the bottom shows a lower value of TILAb score as there

is less colocalisation of tumour and lymphocytes regions and low lymphocyte

to tumour ratio.

The TILAb score based prognostic model is used to classify the OSCC

patients into low- and high-risk groups for disease recurrence. The prognostic

model finds the optimal cut-off point for TILAb score on the modelling subset

and uses that cut-off on the test subset for binary classification. The TIL

quantification methods have one hyper-parameter, which is the size of a grid-cell.

I experimented with eight different neighbourhood sizes on tissue section to

investigate their impact on survival analysis. The size of the smallest grid-cell

is 0.28mm × 0.28mm, and I used a fixed step size of 0.14mm for increment

in grid-cell size, up to the largest grid-cell of size 1.2mm × 1.2mm. Table

4.4 shows that our proposed TILAb score is statistically significant for all

sizes with both best and least performing tissue region classifiers (TRC-1 and

TRC-5). However, the Morisita-Horn (MH) and Shannon diversity (SD) indices

based TIL quantification scores show significant results only for the smallest

grid-cell size when using the best performing region classifier (TRC-5), which

indicates the significance of TILAb score for disease-free survival analysis.

Moreover, the high concordance indices of the prognostic models are also

evidence of the predictive ability of proposed models. Figures 4.13 and 4.14

show the c-index value for both disease-free and disease-specific survival models.

Models for disease-free survival achieve high c-index value as compare to the

disease-specific survival models. On the other hand, models with different

colocalisation methods (TILAb-MH, TILAb-SD) show similar result patterns
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Figure 4.12: Visualisation of colocalisation score as heatmap. (a, c) Whole
slide images at low resolution (1.5×) with tumour and lymphocytic region
predictions overlaid in red and green colours, respectively. (b, d) Tumour-
lymphocyte colocalization maps along with colocalization score for each tissue
section in the upper right corner and WSI level TILAb score. Colour codes
map the colocalization score to respective tissue sections.
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Table 4.4: Comparison of the different TIL quantification methods based on
their prognostic significance (logrank test based p-values) in eight experiments
(1-8) with different grid-cell sizes (smallest to largest).

Region
Classifier

Quantification
Methods

1 2 3 4 5 6 7 8

TRC-1

MH 0.1590 0.1610 0.1560 0.3250 0.2340 0.4760 0.4760 0.4760
SD 0.1590 0.1610 0.1610 0.3250 0.2190 0.6550 0.4760 0.4760

TILAb-MH 0.0146 0.0258 0.0146 0.0012* 0.0258 0.0006* 0.0020* 0.0006**
TILAb-SD 0.0146 0.0146 0.0258 0.0146 0.0258 0.0258 0.0006** 0.0006**

TRC-5

MH 0.0416 0.0666 0.1030 0.1800 0.0666 0.1800 0.2340 0.1790
SD 0.0416 0.0666 0.0666 0.1160 0.0666 0.1800 0.2340 0.1790

TILAb-MH 0.0191 0.0191 0.0077* 0.0077* 0.0258 0.0236 0.0020* 0.0038*
TILAb-SD 0.0191 0.0359 0.0146 0.0258 0.0110 0.0146 0.0020* 0.0020*

Significance codes: 0.05, 0.01*, 0.001**

for disease-free and disease-specific survival.

4.4.4 Survival Analysis

The prognostic significance of TILAb score for disease-free survival is invest-

igated using Kaplan-Meier curves and Cox hazard analyses by conducting

the univariate and multivariate analysis of digital, clinical, and pathological

parameters. Kaplan-Meier curves in Figure 4.15 show that the proposed TILAb

score is significantly associated with long term (low risk) disease-free survival

of OSCC patients (p = 0.00062). However, the lymphocytic percentage in a

WSI without any correlation with tumour does not show any statistical signi-

ficance. The proposed digital TILAb score has better statistical significance as

compared to the manual TIL score given by expert pathologists after visual

inspection. Kaplan-Meier curves for other clinical and pathological parameters

are shown in Figure 4.16.

Results of the univariate analysis of the prognostic significance of digital,

clinical and pathological parameters on the test subset are shown in Figure 4.17.

I employed Cox proportional hazards method for univariate analysis for both

quantitative and categorical predictor variables. The clinical parameters do not

show any significant correlation with disease-free survival, with the confidence

interval range of hazard ratios (lower and upper 95% bounds) being quite

large, except for age. The pathological parameters show better association

with disease-free survival as compared to clinical parameters, especially tumour

grade and manual quantification of TILs. Among digital scores, the proposed

TILAb score is shown to be statistically significant (p = 0.0065) with hazard

ratio of 0.0001 (1.446× 107− 0.0769). I also investigate the prognostic value of

the TILAb score in the context of other pathological parameters such as grade,

stage and patterns, as shown in Table 4.5. For this purpose, I conduct the

multivariate Cox proportional hazards analysis using the TILAb score adjusted

by other histological features. The results in Table 4.5 show that TILAb score

is independent of pathological parameters, e.g. grade, stage and pattern of
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Figure 4.13: C-Indices of TRC-1 and TRC-5 based prognostic models for
disease-free survival in eight experiments (1-8) with different grid-cell sizes
(smallest to largest).
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Figure 4.14: C-Indices of TRC-1 and TRC-5 based prognostic models for
disease-specific survival in eight experiments (1-8) with different grid-cell sizes
(smallest to largest).
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Figure 4.15: Kaplan-Meier curves for disease-free survival of OSCC on test
subset. First three are the Kaplan-Meier curves for pathological parameters
(stage, grade, and manual TIL quantification) whereas last three are the Kaplan-
Meier curves of digital parameters (Lymphocyte percentage in WSI, TILAb
score using TRC-1 and TRC-5). It should be noticed that the optimal cut-point
values for digital parameters are 0.017, 0.124 and 0.137, respectively.
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Figure 4.16: Kaplan-Meier curves of clinical and pathological parameters for
disease-free survival of OSCC on test subset.
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Figure 4.17: Univariate analysis for clinical (red), pathological (green) and
digital (blue) parameters. Hazard ratios are represented by a filled circle
along the x-axis, whereas the edges of each line represent the lower and upper
confidence interval of 0.95%. P-value using the Wald test is shown on the
right end for each parameter. Digital parameters are computed using TRC-5
predictions.

invasion.

4.5 Discussion

The presence of lymphocytes in the vicinity of tumour cells has been reported

to carry high prognostic value [131, 132]. Quantification of TILs can not only

significantly supplement clinical cancer staging information but could be used

as an accurate predictor of disease progression [27, 28, 31]. The abundance

of TILs in a tissue slide (or its digitised WSI) indicates the host immune

response against cancer and/or response to treatment. The density and spatial

arrangement of TILs are correlated with improved disease-specific survival

and longer disease-free survival. However, the manual quantification of TIL is

subjective, leading to inter-/intra- observer variability and lacking diagnostic

reproducibility.

I propose a deep learning based approach for the identification and quanti-

fication of TILs in OSCC cases. A digital score of TIL abundance is computed,

and its prognostic potential is investigated for disease-free survival in OSCC

patients. The biologically significant regions in tissue such as tumour and

lymphocytes are classified using a CNN. Several techniques are available in lit-

erature for detection and classification of histological structures in WSI images

[48, 50, 90, 139–141]. However, very few are used for downstream prognostic
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Table 4.5: Multivariate analysis of TILAb score along with other clinical
parameters. TILAb score is computed with the Morisita-Horn as colocalization
measure on TRC-5 predictions, while the p-value is computed using the Wald
test.

p HR Lower 95% Upper 95%

A - Overall Significance (0.0334)

TILAb 0.0103 3.423× 105 1.321× 108 0.0887

Grade 0.3625 1.9720 0.4574 8.5003

Stage 0.2307 1.5280 0.7637 3.0587

Pattern 0.9387 1.0370 0.4105 2.6196

B - Overall Significance (0.0090)

TILAb 0.0085 6.701× 105 5.232× 108 0.0858

Grade 0.0745 2.3810 0.9177 6.1798

C - Overall Significance (0.0128)

TILAb 0.0061 3.267× 105 2.044× 108 0.0522

Stage 0.1377 1.6610 0.8499 3.2466

D - Overall Significance (0.0105)

TILAb 0.0038 2.243× 105 1.610× 108 0.0313

Pattern 0.1324 1.6750 0.8555 3.2803

analysis for disease-free survival. In this study, the results of the tumour and

lymphocytic region classification are used to compute the TILAb followed

by its evaluation as a prognostic marker. For tissue region classification, I

experiment with different state-of-the-art CNN based image classifiers. I have

chosen the classifiers giving the highest (TRC-5) and the lowest (TRC-1) patch

level classification accuracy for further analysis of TIL detection, computing

the abundance score and survival analysis. The results obtained by both of

the classifiers are statistically significant.

The prognostic significance of TILAb score for disease-free survival is

investigated by employing univariate and multivariate analyses using clini-

copathological parameters. I analyse the prognostic significance of the TILAb

score using the Cox proportional hazard model. The TILAb score shows

good statistical significance in both univariate (Table 4.4) and multivariate

(Table 4.5) analyses (p < 0.05). Therefore, the TILAb score can be used as

an independent prognostic parameter in OSCC patients. The Kaplan-Meier

curves showed the ability of TILAb score to stratify patients into long-term

(low risk) and short-term (high risk) disease-free survival (p = 0.0006). Al-

though the main focus of the work is on disease-free survival, the prognostic

significance of TILAb score for disease-specific survival is also investigated.

The Kaplan Meier curves are shown in Figure 4.18, which illustrates that the

TILAb score gives good separation for disease-specific survival too. The 3-fold

cross-validation with random initial image selection is used for disease-free

survival to highlight the independence of the proposed model on initial image
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Figure 4.18: Kaplan-Meier curves for disease-specific survival of OSCC on test
subset. Top row contains the Kaplan-Meier curves for pathological parameters
(stage, grade and manual TIL quantification) whereas bottom bottom row
shows the Kaplan-Meier curves of digital parameters (Lymphocyte percentage
in WSI, TILAb score using TRC-1 and TRC-5). It should be noticed that
the optimal cut-point values for digital parameters are 0.017, 0.124 and 0.137,
respectively.
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Figure 4.19: Kaplan-Meier curves for disease-free survival of OSCC on 3-fold
cross-validation using TRC-1 and TRC-5.

selection for discovery and validation splits. The Kaplan-Meier curves and

associated p-values, shown in Figure 4.19, illustrate that the proposed models

(TRC-1 and TRC-5) are prognostically significant for different sets of discovery

and validation splits. Moreover, to show the robustness of our method, the

C-indices (with 95% confidence intervals) of prognostic models for disease-free

survival and disease-specific survival are also computed and shown in Figures

4.13 and 4.14, respectively. The results of the proposed method are also in

agreement with previous findings based on manual and immunohistochemistry

based TIL quantification [135, 142, 143] in OSCC. Fang et al. [143] analysed

the prognostic significance of tumour infiltrating immune cell in OSCC. The

immune cells were identified by their specific markers (CD8, CD4, T-bet,

CD68 and CD57). High CD8 (T-cells) and CD57 (NK-cell) expression were

significantly associated with longer survival.

Hematoxylin and eosin staining is routinely used in pathology labs around

the globe in clinical practice for cancer diagnostics. Automated methods for

extracting information related to TILs from the whole slide images can help in

treatment planning according to the immune response. The proposed framework

for automated quantification of TILs, computation of their abundance score,

and its prognostic analysis of patient survival using OSCC histology images is

the first of its kind. Even though the total number of cases involved in this

study is limited (n = 70), some other studies have reported results on smaller

cohorts [144] (n = 48) or using tissue microarrays [145], which contain much

smaller snapshots of tumour and lymphocytes characteristics as compared to

the whole slide images. Having said that, the results of this study need to be

cross-validated on data from sizeable multi-centric patient cohorts before they

can be adopted in clinical practice.

In addition to the application to cancer resections and information about

future behaviour, our proposed TILAb score can be applied to the initial biopsy
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specimen undertaken before surgical resection or chemoradiotherapy. A biopsy

and histological assessment is the gold standard for pre-operative diagnosis

and a prerequisite for staging. As part of this assessment, pathologists report

the presence/absence and comment on the density of the host lymphocytic

response. The TILAb score can provide an objective quantification on this

initial biopsy providing vital information about prognosis to the clinical team

with the potential to guide treatment decisions and risk stratification.

75



Chapter 5

Coarse Segmentation of

Histology Images for Profiling

of Tumour Microenvironment

5.1 Introduction

Tumour microenvironment (TME) is the environment around the tumour which

consists of stromal cells, immune cells and extracellular matrix components

[146]. TME is known to influence the tumour growth positively or negatively

depending on the state of its components and their interaction with each

other [147–149]; therefore, TME profiling becomes important for better patient

prognosis. Objective quantification of different TME constituents helps to

profile the TME, which may then lead to the prediction of tumour behaviour

[60, 150].

Profiling of TME in histology images requires localisation of its components,

followed by quantification of their abundance and spatial interactions with

each other. Convolutional neural networks (CNNs) have been used for the

segmentation of varying tissue objects and components in histology images

such as nuclei [86], cells [89], glands [53], and tissue sub-types [151]. Generally,

segmentation of large objects, e.g. glands, require large contextual information

whereas segmentation of small objects, e.g. nuclei and cells, require high-

resolution appearance for precise segmentation. High precision in object

segmentation is crucial for morphometric analysis [58]. However, patch-based

segmentation of different tissue types is enough for whole slide image (WSI)

level analysis of histology tissues such as TME profiling [97, 152], mutation

prediction [59].

Patch-based segmentation of histology images is the most commonly used

method for histology image analysis [50, 57, 153]. In patch-based segmentation,

a single label is assigned to each patch instead of each pixel of a histology
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Figure 5.1: Small images in the middle show the amount of context captured
by a patch of 256 × 256 at 40× magnification. These patches with limited
context are less discriminative as compared to their corresponding images with
larger context.

image and most common patch size is 224 × 224 pixels [50, 153]. However,

the visual appearance of some tissue types in a patch is quite similar to other

tissue types; therefore, their spatial context becomes key for correct prediction.

For instance, classification of the normal and malignant epithelium in head and

neck squamous cell carcinoma (HNSCC) requires a broader spatial context than

the spatial context captured by the input patch of a standard patch classifier,

as illustrated in Figure 5.1. The use of lower resolution/magnification patches

is the most straightforward approach to increase the spatial context within

input patches. However, this approach will result in less certain segmentation

maps as lower resolution patch may contain other types of tissue as well (see

Figure 5.2). In histology landscape, different tissue components appear in

various sizes at different locations. Whenever the size of these components is

much smaller than the patch size, then the less certain segmentation issue will

arise.

I proposed a novel coarse segmentation method to overcome the issue

of limited context and less certain segmentation issue. Unlike patch-based

segmentation methods, the proposed method predicts a label for each 32× 32

pixel region in a patch of size 256× 256 pixels, which generates 64 times denser

prediction map than a standard patch classifier. The dense prediction ability of

our method enables it to take patches at low resolution (e.g. 20×, or 10×) to

incorporate a broader context without introducing noise in tissue segmentation.

The proposed method does not require pixel-level ground truth and the use of

sparse weighted loss function enable it to learn from partially annotated images

during training. The proposed method takes the same amount of memory and

time as compared to standard patch-based segmentation methods but with

the added advantage of better and denser segmentation. Our method achieved

4% better segmentation performance as compared to standard patch classifiers.

I used the proposed method for coarse segmentation of HNSCC WSIs into
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Figure 5.2: Illustration of two 256× 256 patches at different resolution with
different types of tissue regions. Patch based segmentation by using lower
resolution patches will results in less certain segmentation map as each patch
may contains multiple type of tissue regions (tumour, tumour-associated stroma,
and lymphocyte).

clinically significant tissue types to profile TME of HNSCC.

I quantify different spatial patterns of the tumour, tumour-associated

stroma, and lymphocytes to profile the TME of HNSCC. I proposed novel

quantification measures for the quantification of lymphocyte infiltration into

tumour and tumour-associated stroma. The proposed measure calculates the

ratio between lymphocytes colocalisation with the tumour or tumour-associated

stroma and overall tumour or tumour-associated stroma. I evaluate the pro-

gnostic significance of the proposed quantification method on three patient

cohorts. Our proposed measure based tumour-associated stroma infiltrating

lymphocyte (TASIL-Ratio) score shows prognostic significance (p-value=0.002)

for better disease-specific survival of HNSCC patients. The TASIL-Ratio score

remains prognostic indicator for disease-specific and disease-free survival of oral

squamous cell carcinoma (OSCC) and oropharyngeal squamous cell carcinoma

(OPSCC). I also compared the predictive ability of TASIL-Ratio based survival

model with existing quantification methods through concordance index meas-

ure where TASIL-Ratio achieved the highest concordance score as compared

to its counterparts. The TASIL-Ratio also shows a positive correlation with

molecular estimates of CD8 T cells which kill the cancerous cells in the human

body. The main highlights of this work are as follows:

• I propose a new coarse segmentation network which addresses the issues of

limited context and less certain segmentation in patch-based segmentation

methods.

• Our method does not require pixel-level ground truth and can learn from
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partially annotated images as well.

• I profile the TME using different quantification methods including a novel

TASIL-Ratio score.

• I evaluate the prognostic significance of the proposed quantification

method on three different patient cohorts.

• Our proposed TASIL-Ratio score shows prognostic significance for disease-

specific and disease-free survival on all three patient cohorts.

5.2 Method

Our TME profiling approach consists of two stages. First, segmentation of WSIs

into different tissue types using a novel coarse segmentation method. Second,

the calculation of different quantitative measures from clinically significant

tissue types for TME profiling. The detailed descriptions of both stages are

presented in the following sections.

5.2.1 Coarse Segmentation

There are two main motives behind the proposal of the novel coarse seg-

mentation method as an alternative approach to current pixel or patch-based

segmentation algorithms. First, the use of pixel-based segmentation meth-

ods add precise ground truth dependency for network training and requires

longer inference time due to their memory and computation-intensive network

architectures. Therefore, most of the existing work on TME analysis either

used cell-based [60, 150] or patch-based [97] quantification measures. Second,

the patch-based segmentation methods, usually faster than the pixel-based

segmentation methods, are bound to predict only one label regardless of input

image size. Therefore, the segmentation precision decreases with the increase

of input image size or use of lower resolution image to incorporate larger con-

textual information. Hence, the prediction of each patch becomes less certain,

as illustrated in Figure 5.2.

The concept of coarse segmentation is generic in term of network design and

can be implemented by using any existing state-of-the-art patch classification

network, e.g. DenseNet [81], ResNet[43], or MobileNet [82]. It takes an M ×N
patch as an input just like standard patch classifiers, but its output is an

m×n coarse segmentation map of the input patch unlike a single patch label of

standard patch classifiers. The m and n are eight times smaller than the M and

N , respectively. Although its output is more like the output of segmentation

networks, it does not contain any decoder module or up-sampling layers unlike
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segmentation architectures [87, 154]. Figure 5.3 shows the DenseNet [81] based

coarse segmentation network (CSNet), which is explained in the following

sections.

Network Architecture

The proposed architecture presented in Figure 5.3 consists of multiple convo-

lution, pooling, and feature concatenation layers. All the convolution layers

preceded by a batch norm and ReLU based activation layers apart from the

first one where these two layers are used after the convolution layer. The main

building block of the proposed network is the dense block which consists of

multiple pair of convolution layers where the depth of a block depends on

the number of iterations selected for the block. In each iteration, the pair of

convolution layers converts the input feature-map into 32 channels feature-map

and concatenate it with the input feature-map. The last convolution layer

followed by softmax layer takes the output feature-maps of all the dense blocks

through skip connections after spatial average pooling, if required, and outputs

the probability maps for the given number of classes.

Network Variants

I consider three variants of the proposed coarse segmentation approach which

differs only in network architecture. The first variant, CSNet-121, is the

simplest variant with a minimal difference from standard DenseNet-121 [81].

It replaces the last average-pooling and fully connected layer of DenseNet-121

with a 1× 1 convolution layer which enables it to produce coarse prediction

map instead of the single label for each input image. The second variant,

CSNet-121-SC, is an extension of the former which feeds the average pooling

based down-sampled features of the intermediate layers to the final convolution

layer through skip connections (SC), as shown in Figure 5.3. The last variant,

CSNet-61-SC, is a lightweight version of CSNet-121-SC as it uses DenseNet

architecture with only 61 layers as a baseline.

Weighted Sparse Loss Function

The loss function of the most segmentation methods [87, 154] requires fully

annotated images for error calculation during the model training. However,

annotation of every region of histology images is not a trivial task. There

are many regions which lie on the boundary of two different classes such as

dysplastic regions which are neither normal nor malignant. Annotation of these

regions introduces noise in the ground truth due to inter- and intra-observer

variability. I use a sparse loss function which does not require fully annotated

images and enable us to use partially annotated images with high confidence
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Figure 5.3: The architecture of the proposed coarse segmentation network
using DenseNet as a baseline. Each box in the prediction map represents the
prediction of a 32× 32 corresponding region in the input patch. The letters N,
F, K, and S represent the dense block depth, output feature maps, kernel size,
and stride size, respectively.
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Figure 5.4: Three partially annotated images where red, green, blue, and
white boxes represent tumour, lymphocytes, tumour-associated stroma and
unannotated regions, respectively.

(Figure 5.4). However, the use of sparse loss worsens the natural class imbalance

issue in any histology dataset. Therefore, I introduce a weighted sparse loss

function which consists of categorical cross-entropy loss weighted by a weight-

map. Zero weight is assigned to all unannotated regions, whereas batch-based

weights are calculated for all the annotated regions in all images of a batch.

More weight is given to classes with fewer number of regions to address the

class imbalance issue in a batch. Let E be the expected count of the annotated

number of regions of each class in a batch,

E =

∑C
i=1 ri
C ′

(5.1)

where ri, and C represent the number of annotated regions of ith class and total

number classes in a dataset, respectively. C ′ denotes the number of classes

which have more than one annotated region in the current batch. The weight

of each region of ith class is defined as:

Wi =
E

ri
(5.2)

Wi will be greater than one if the total number of regions of ith class are less

than the expected number of regions (E) and vise-versa. The final loss is the

sum of the product of categorical cross-entropy loss and the weight-map.

Model Training

Each variant of the proposed coarse segmentation network is trained on 256×256

input patches at 10× magnification and predicts a label for each 32× 32 region

in the input patches. The size of tissue in each input patch is 280× 280µm and

in each predicted region is 35× 35µm. Input patches are randomly augmented

during the training with random rotation (0, 90, 180, and 270 degrees), random

flipping (horizontal, vertical), random jittering (0-128 pixels) and random
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colour perturbation. All models are trained with RMSProp optimiser for at

least 1 million iterations (optimisation steps).

5.2.2 TME Profiling

I have used both existing and new methods for quantification of different spatial

patterns in histology images to profile the TME of HNSCC. I only explore the

spatial patterns of the tumour, tumour-associated stroma, and lymphocytes

as some of these patterns have shown prognostic significance in many clinical

studies of different tumour types [95, 105]. I quantify the percentage of a tissue

type, the ratio of one tissue type to another tissue type, colocalisation of two

different tissue types, the abundance of lymphocytes in the vicinity of another

tissue type, and different patterns of adjacent tissue types.

Percentage and Ratio

The percentage and ratio based measures are the most straightforward quan-

tification measures for TME profiling which rely on WSI level statistics and

do not consider spatial patterns of tissue types. The percentage measure has

shown prognostic significance in ovarian cancer [108]. However, ratio based

quantification measures have shown prognostic significance in more than one

tumour types [155, 156]. I calculate the percentage of a tumour (T-Percentage),

tumour-associated stroma (TAS-Percentage), and lymphocytes (L-Percentage)

to the total tissue in a WSI. For ratio based quantification, I consider tumour-

associated stroma to tumour ratio (TAST-Ratio), lymphocyte to tumour ratio

(LT-Ratio) and lymphocyte to tumour-associated stroma ratio (LTAS-Ratio).

Colocalisation

The co-occurrence of tumour and other tissue types has also shown the pro-

gnostic significance for a range of tumour types. Therefore, I quantify the

co-occurrence of two different tissue types in a WSI using Morisita-Horn index

[106], which is a measure of colocalisation in the ecological domain. The coloc-

alisation measure calculates the co-occurrence of two different tissue types in

fixed-size regions of a WSI to capture the spatial patterns of their co-occurrence.

A given WSI is first divided into r × s small regions, and then the percentage

of both tissue types is calculated for each region. The Morisita-Horn index is

defined as:

M =
2
∑r

i=1

∑s
j=1(p

c1
ij × p

c2
ij )∑r

i=1

∑s
j=1(p

c1
ij )2 +

∑r
i=1

∑s
j=1(p

c2
ij )2

, (5.3)

where pc1ij and pc2ij represent the percentage of two tissue types in the (i, j)th

region. The value of M ranges from 0 to 1, where zero and one represent

no and maximum colocalisation, respectively. I consider the colocalisation of
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tumour-associated stroma and tumour (TAST-Col), lymphocyte and tumour

(LT-Col), and lymphocyte and tumour-associated stroma (LTAS-Col) for TME

profiling.

Lymphocyte Abundance

The higher lymphocytes infiltration in the tumour is associated with better

patient survival. Therefore, I quantify the abundance of lymphocytes in the

vicinity of another tissue type for TME profiling. The measure of lymphocyte

abundance relies on both spatial colocalisation and ratio of lymphocyte to

other tissue types. The abundance of lymphocytes in the vicinity of tumour

or tumour-associated stroma is calculated by the abundance score [152]. The

abundance score quantifies the abundance of lymphocytes in the vicinity of a

given tissue type such as a tumour or tumour-associated stroma. It is defined

as the product of lymphocytes to given tissue type ratio and their colocalisation.

The formulation of abundance score using Morisita-Horn index as colocalisation

measure is given below,

A =


∑r

i=1

∑s
j=1(p

l
ij×pcij)∑r

i=1

∑s
j=1(p

l
ij)

2+
∑r

i=1

∑s
j=1(p

c
ij)

2 ×
∑r

i=1

∑s
j=1 p

l
ij∑r

i=1

∑s
j=1 p

c
ij
, if

∑r
i=1

∑s
j=1 p

c
ij > 0

1, otherwise
(5.4)

where plij and pcij represents the percentage of lymphocyte and the given tissue

type in (ij)th region. The value of A ranges from 0 to 1, where zero and one

represent no and maximum lymphocyte abundance, respectively. I consider

tumour infiltrating lymphocytes abundance (TILAb) and tumour-associated

stroma infiltrating lymphocytes abundance (TASILAb) for TME profiling.

Proposed Quantification Measure

I formulate objective and automated scores for the quantification of tumour

infiltrating lymphocytes to tumour ratio (TIL-Ratio) and tumour-associated

stroma infiltrating lymphocytes to tumour-associated stroma ratio (TASIL-

Ratio) using the statistics of adjacent tissue types in a WSI. First, six different

patterns of adjacent tissue type are defined based on three clinically significant

tissue types, as shown in Figure 5.5. Then the TIL-Ratio is defined as:

TIL-Ratio =
TL

TT + TL+ ST
(5.5)

where TL represents the number of times tumour and lymphocyte regions

appear adjacent to each other in a WSI. Similarly, TT and ST denotes the

number of times tumour regions appear adjacent to another tumour and

tumour-associated stroma region, respectively. The TASIL scores is defined as:
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Figure 5.5: Visual illustration of different patterns of adjacent regions over a
synthetic image. Right half of the figure list down the six different clinically
significant patterns appeared in the synthetic image. Here, term stroma is used
to refer tumour-associated stroma for the sake of brevity.

TASIL-Ratio =
SL

SS + SL+ ST
(5.6)

where SL and SS represent the number of times tumour-associated stroma

regions appear adjacent to lymphocyte and tumour-associated stroma, respect-

ively. Both TIL-Ratio and TASIL-Ratio range from zero to one, where zero

represents no infiltration of lymphocytes, and one represents high infiltration

of lymphocytes in tumour and tumour-associated stroma, respectively.

5.2.3 Statistical Analysis

The concordance index is used to compare the predictive ability of different

automated quantification scores based survival models. Survival analysis is per-

formed with disease-specific and disease-free survival data. The Kaplan–Meier

estimator is used, and the log-rank test is performed to test differences among

low and high-risk patient groups where log-rank test p-value < 0.05 is con-

sidered significant. The Cox proportional hazards regression model is fitted for

univariate and multivariate analysis, and 95% confidence intervals computed

to determine prognostic values. Spearman correlation is used for correlation

analysis between TASIL-Ratio and molecular estimates.

5.3 Datasets

Three different patient cohorts (TCGA-HN [157], SKMCH&RC, PredicTR2)

are used in this study. The TCGA-HN is a publicly available cohort of 528

HNSCC cases, whereas the other two are internal cohorts. The SKMCH&RC
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cohort consists of 100 OSCC cases collected from one centre in Pakistan.

PredicTR2 cohort contains 95 OPSCC cases collected from 6 different centres

across the United Kingdom. The detailed description of patient selection

criteria, patient characteristics and available clinical, pathological, and survival

data is presented in the following sections.

5.3.1 Patient Selection

The TCGA-HN cohort contains diagnostic slides of 450 squamous cell carcinoma

cases from different sites of head and neck. However, there are many slides

with severe slide preparation and scanning artefacts. Therefore, I excluded the

cases with poor quality of slides from overall cases. Our final cohort consists of

342 cases with one slide per case. The tissue slides of these cases are stained

with H&E stains, and most of the cases are scanned at 40× magnification

with slightly varying micron per pixel resolution, which varies from 0.23µm to

0.25µm. However, some cases are scanned at 20× magnification with around

0.50µm per pixel.

The SKMCH&RC cohort is curated for our previous study on oral cavity

cases, whereas PredicTR2 cohort is part of another multi-centre study on

cases from the oropharyngeal site. The representative tissue sections from

formalin-fixed and paraffin-embedded tissue blocks were collected for all cases.

Tissue slides of all cases were stained with H&E stains and scanned at 40×
magnification with 0.275µm per pixel resolution.

5.3.2 Patient Characteristics

The patients’ survival information is available for most of the cases in three

cohorts. The disease-specific survival time is calculated from the date of

diagnosis to the date of death or the date of the last follow-up in case of censored

data. The disease-free survival is censored at the date of first recurrence or

death, whichever occurred first, or the date of the last contact for the patients

alive without recurrent disease. The information about different clinical and

pathological parameters is also available for all cohorts.

In TCGA-HN cohort, most of the patients were diagnosed between 2007

to 2013, and the average age of the patients is 61.09 years with a standard

deviation of 11.82. There are more male patients (n = 252) as compared to

female (n = 90) patients. The distribution of TNM-stage of the cases is a

bit skewed toward higher stages with 52% cases of stage IVa. The ratio of

alive and deceased patients is also imbalanced, with only 25% deceased cases,

and the average disease-specific survival of all patients is 28.69 months with a

standard deviation of 24 months. Detailed statistics of the cohort are presented

in Table 5.1.
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Table 5.1: Summary of available parameters of the TCGA-HN cohort along
with log-rank test based p-values for disease-specific survival.

Categorical Parameters Count Percentage DSS p-value

Number of Patients 342 100% -

Gender
Male 252 74%

0.401
Female 90 26%

TNM Stage

Stage I 20 6% 0.143
Stage II 48 14% 0.0851
Stage III 50 14% 0.0212
Stage IVa 177 52% 0.00341
Stage IVb&c 10 3% 0.00255
Not Reported 37 11% -

Patient Status
Alive 255 74.6%

-Deceased 85 24.8%
Not Reported 2 0.6%

Continuous Parameters Mean Standard Dev p-value

Age (years) 61.09 11.82 0.647

Survival (Months) 28.69 24.00 -

In SKMCH&RC cohort, all the patients were diagnosed between 2010 to

2013, and the average age of the patients is around 50 years, with 11.12 years of

standard deviation. The grade, growth pattern, and pathologists’ manual TIL

score information along with TNM stage is available for almost all the patients.

The most dominant stage is stage-IVa, and grade is grade-II in the cohort.

The manual TIL score was assigned to each case by an expert pathologist

based on the amount of TIL infiltration, and it is categorised into four groups

(absent, low, moderate, and high). The low and moderate TIL groups show

the prognostic significance for both disease-specific and disease-free survival.

In terms of survival, most patients were alive until the last follow-up; however,

32 patients have suffered from disease recurrence. Table 5.2 presents a detailed

description of all the available parameters of the cohort and their prognostic

significance, if applicable.

Patients in PredicTR2 cohort were diagnosed between 2000 to 2010, and

the patients were tracked until 2014. The cases in this cohort are collected from

six different data centres with a minimum of nine and a maximum of 23 cases

from a data centre. The disease-specific survival information is available for 84

cases, whereas disease-free information is available only for 77 cases. There

are 24 recurrent and 25 deceased cases out of cases with survival data. Unlike

SKMCH&RC cohort, TILs are manually scored into only three categories low,

moderate and high. Presence of lymphocytes in 80% or more of tumour/stroma

is categorised as high TILs and lymphocytes in less than 20% of tumour/stroma

is denoted by mild TILs. Unlike SKMCH&RC cohort, the low and high groups

have prognostic significance in this cohort instead of low and moderate, which
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Table 5.2: Summary of available parameters of the SKMCH&RC cohort along
with log-test based p-values for disease-specific survival (DSS) and disease-free
survival (DFS).

Categorical Parameters Count Percentage DSS p-value DFS p-value

Number of Patients 100 100% - -

Gender
Male 57 57%

0.259 0.196
Female 43 43%

TNM
Stage

I 25 25% 0.0203 0.183
II 14 14% 0.982 0.738
III 15 15% 0.813 0.914
IVa 43 43% 0.0211 0.124

Not Reported 3 3% - -

Grade
I 35 35% 0.484 0.54
II 50 50% 0.996 0.769
III 15 15% 0.363 0.688

Growth
Pattern

I 18 18% 0.25 0.0792
II 18 18% 0.212 0.156
III 35 35% 0.238 0.24
IV 28 28% 0.209 0.0805

Not Reported 1 1% - -

Manual
TIL

Score

Absent 10 10% 0.574 0.23
Low 34 34% 0.00013 0.0188

Moderate 47 47% 0.00019 0.0148
High 9 9% 0.792 0.503

Patient
Status

Alive 86 86%
- -

Deceased 14 14%

Disease
Recurrence

Yes 32 32%
- -

No 68 68%

Continuous Parameters Mean Standard Dev DSS p-value DFS p-value

Age (years) 49.57 11.12 0.861 0.364

Survival
(Months)

Overall 60.10 17.75
- -

Disease Free 53.56 22.29
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Table 5.3: Summary of available parameters of the PredicTR2 cohort along
with log-rank test based p-values for disease-specific survival and disease-free
survival.

Categorical Parameters Count Percentage DSS p-value DFS p-value

Number of Patients 95 100% - -

Gender
Male 61 64%

0.13 0.239
Female 34 36%

Manual
TIL Score

Low 22 23% 0.0189 0.00948
Moderate 37 39% 0.414 0.445

High 36 38% 0.00811 0.00632

Patient
Status

Alive 59 62%
- -Deceased 25 26%

Not Reported 11 12%

Disease
Recurrence

Yes 24 25%
- -No 53 56%

Not Reported 18 19%

Continuous Parameters Mean Standard Dev DSS p-value DFS p-value

Age (years) 57.74 11.50 0.0649 0.134

Survival
(Months)

Overall 47.22 30.33
- -

Disease Free 47.25 29.12

may be due to the inter-observer variability in TIL scoring. Table 5.3 presents

a detailed description of all the available parameters of the cohort along with

the prognostic significance where applicable.

5.3.3 Pathologist Annotations

I used 24 cases, one WSI per case, for training and evaluation of the coarse

segmentation method. Half of the cases are taken from the TCGA-HN cohort,

and the remaining half are selected from SKMCH&RC cohort. Multiple visual

fields of size 256 × 256 at 10× magnification (280 × 280 µm) are extracted

from each case for multi-class tissue annotation by an expert pathologist.

The pathologist then assigned a label to each 32 × 32 (35 × 35 µm) region,

64 per visual field, in all the visual fields from the pre-defined set of seven

tissue types: Tumour, Lymphocyte/Inflammatory, Tumour-associated stroma,

Keratin, Epithelium, Artifacts, and Other for remaining tissue regions. All the

annotated visual fields are then split into training and validation sets where all

visual fields from a case lie only in one set. Training and validation sets consist

of 141,541 and 38,893 annotated regions, respectively. Table 5.4 presents the

detailed distribution of annotated regions in each set.

5.3.4 Stain Invariance

Stain variation is the most common issue in histology datasets, especially

when datasets are curated from multiple centres. I normalize [158] the visual

fields in training set using multiple target images to make proposed coarse
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Table 5.4: Distribution of annotated regions for each class in each training and
validation sets.

Classes Training (%) Validation (%) Total

Tumour 35,627 (73) 12,863 (27) 48,490

Lymphocytes 10,488 (65) 5736 (35) 16,224

Tumour-associated stroma 15,248 (88) 2161 (12) 17,409

Keratin 6735 (65) 3552 (35) 10,287

Epithelium 17,884 (80) 4354 (20) 22,238

Others 39,331 (84) 7450 (16) 46,781

Artifacts 16,228 (85) 2777 (15) 19,005

Total 141,541 (78) 38,893 (22) 180,434

Figure 5.6: The images of target stains used for stain normalisation of the
training cohort.

segmentation model invariant to stain variations (Figure 5.6). All visual fields

from SKMCH&RC cohort are normalised using nine target images with diverse

stains from TCGA-HN cohort, which results in a 10-time increase in the dataset,

one original and nine normalised copies of each visual field. The same process

is repeated for TCGA-HN visual fields using 9 SKMCH&RC visual fields as

target images.

5.4 Results

I evaluate our proposed method for TME profiling using different evaluation

metrics. The coarse segmentation method is evaluated in term of accuracy

and time complexity, whereas prognostic significance measures are used to

evaluate different spatial quantification methods. The detailed analysis of the

performance of the proposed method is given in the following sections.
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Figure 5.7: Input patches with yellow rectangles representing the regions
corresponding to the predicted labels. Left, centre, and right patches are the
input of standard patch classifiers, patch classifiers with context, and coarse
segmentation network, respectively.

5.4.1 Coarse Segmentation Evaluation

I evaluate the performance of our proposed coarse segmentation method on

38K+ annotated regions from seven different tissue types, as explained in the

dataset section. Average accuracy and average F1-score metrics are used to

summarise the performance across seven tissue types, whereas box-plots are

used to illustrate the variation in F1-score of different tissue types. The results

of our proposed method are compared with three standard patch classifiers

and their variants with a larger context.

Comparative Methods

Three standard patch classification methods (ResNet-50, MobileNet-1.0, and

DenseNet-121) are used for comparison. These methods are trained on patches

of size 128× 128 pixels at 40× magnification which is equivalent to 35× 35µm

tissue region used for coarse segmentation prediction in the proposed method.

The input patches do not contain the same amount of context as the CSNet’s

input patches. Therefore, I train another set of models for these methods using

the same CSNet input patches, 256 × 256 pixels at 10× magnification, but

the predicted label only represents the central 32 × 32 pixels (35 × 35µm).

This training strategy enables us to make a fair comparison of the proposed

method with patch classification methods as both types of methods are trained

using the same amount of contextual information as shown in Figure 5.7.

For the sake of clarity, I renamed these classifiers by adding ‘Context’ as

post-fix to discriminate them (ResNet-50-Context, MobileNet-1.0-Context, and

DenseNet-121-Context) from their standard version.
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Table 5.5: Comparison of different variants of the proposed method with
existing patch classifier methods in term of average accuracy and average
F1-Score.

Methods Accuracy F1-Score

ResNet-50 0.6108 0.5797

MobileNet-1.0 0.6714 0.6373

DenseNet-121 0.6954 0.6610

ResNet-50-Context 0.7615 0.7323

MobileNet-1.0-Context 0.7662 0.7478

DenseNet-121-Context 0.8125 0.7876

CSNet-121 0.8165 0.7928

CSNet-121-SC 0.8511 0.8311

CSNet-61-SC 0.8205 0.8056

Comparative Analysis

The comparative results are presented in Table 5.5 and Figure 5.8. All variants

of the proposed method outperformed the standard patch classifiers with

and without context on both accuracy and F1-score metrics. The results of

the proposed variants justify the need for different architectural modification

in the baseline DenseNet-121 architecture. The CSNet-121 is the simplest

variant and significantly similar to DenseNet-121; therefore, its performance

is just above the DenseNet-121. However, the CSNet-121-CS achieves the

highest performance due to the use of skip connection to link the features of

intermediate layers to the final convolution layer. The CSNet-61-CS which

consist of almost half of the parameters as compared to CSNet-121-CS and

CSNet-121 but it outperformed the CSNet-121 variant just because of efficient

architecture. Moreover, it shows the least variance in the F1-score of all tissue

types.

In summary, the performance gain achieved by the proposed method is due

to the use of broader context, more network parameters, and efficient network

design. Similar performance patterns can be observed in the standard patch

classifiers with and without context. The context-based patch classifiers perform

significantly better than the one without context but with extra processing cost

in term of time due to the requirement of overlapping patch-based prediction

of whole slide images.

Time Comparison

WSIs are large images, and processing of these images may take from 1 minute

to 1 hour. The processing time depends on several factors such as image

magnification (e.g. 40×, 20×), type of problem, model complexity, inference

pipeline, and available computational and memory resources. I compared the
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Figure 5.8: (Left) Bar-chart representing average accuracy and F1-score of
9 different methods. (Right) Boxplot based illustration of F1-score variation
across different classes for each method.

Table 5.6: Comparison of time that different methods took to process a WSI
at 40×. Sizes are given in pixels and time is reported in minutes.

Size Time

Methods Batch Patch Stride Prediction Loading Processing Total

DenseNet-121 512 128×128 128×128 128×128 10.33 10.61 20.94

DenseNet-121-Context 512 256×256 32×32 32×32 544.79 663.49 1208.28

DenseNet-121-Context 1 7168×7168 6944×6944 32×32 12.41 11.32 23.73

CSNet-121-SC 512 256×256 256×256 32×32 10.34 10.64 20.98

Deeplab-V3+ 128 512×512 512×512 1×1 10.57 16.90 27.47

time taken by the proposed method and its counterparts to process a WSI

with dimensions 76, 608 × 111, 328 at 40×. The proposed method and the

standard Densenet-121 took a similar amount of time ( 21 minutes) whereas

DenseNet-121-Context took significantly longer time (20+ hours) to process the

WSI due to requirement of small stride size to produce a complete prediction

map. However, efficient implementation of inference pipeline helps to reduce

this stride overhead by using a large patch and stride size. I also reported the

time a pixel-based segmentation method (Deeplab-V3+) took to process the

WSI. Table 5.6 presents the time comparison conducted on same machine with

12GB TitanX GPU.

Visual Results

The visual results of the best performing coarse segmentation method (CS-121-

SC) are presented in Figure 5.9 on SKMCH&RC visual fields. Each row shows

the original and overlaid visual field in two separate columns. The visual field

in the first row highlights the segmentation of tumour and tumour-associated

stroma, where CS-121-SC has reliably segment the two tissue types. The

tumour region in the upper left corner of the visual field in the second row

has similarity with the border of the epithelium appeared in the visual field in
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100 µm

Figure 5.9: Visual results of the coarse segmentation method on three
SKMCH&RC visual fields. The middle column shows the overlay of pre-
dicted tissue type and right column shows the ground truth tissue types in
different colours where tumour, lymphocyte, tumour-associated stroma, and
normal epithelium regions are represented by red, green, blue, and yellow
colours. Non-overlaid regions belong to other tissue types.
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the third row. The proposed methods segmented the majority of the tissue

regions correctly. In general, the proposed method has performed well with

some exception of small mispredictions which do not have a significant effect

on the downstream analysis.

5.4.2 TME Profiling Analysis

I analyse the prognostic significance of different spatial quantification methods

based survival models using Log-rank test based p-value, concordance index.

Kaplan Meier curves are used to illustrate the difference between low and high-

risk patient groups in univariate analysis. Cox regression model is employed

to investigate the potentially interacting clinical and pathological covariates.

Disease-specific survival analysis is conducted using TCGA-HN as discovery

and SKMCH&RC and PredicTR2 as a joint validation cohort (SKMCH&RC +

PredicTR2). However, disease-free analysis is performed only on SKMCH&RC,

and PredicTR2 cohorts separately as TCGA-HN does not has disease recurrence

data.

Concordance Analysis

I use Harrell’s concordance index (C-Index) [116] to evaluate the predictive

ability of different quantification scores based survival models. Figure 5.10

presents the C-Index of all quantification measures on both TCGA-HN and

SKMCH&RC + PredicTR2 cohorts when used as a validation cohort for

disease-specific survival. C-Index results show that our proposed TIL-Ratio

and TASIL-Ratio measures have better predictive ability for quantification of

different spatial patterns. For the quantification of tumour-associated stroma

and lymphocytes based spatial patterns, the proposed TASIL-Ratio achieved

higher C-Index score as compared to LTAS-Ratio, LTAS-Col, and TASILAb

based quantification methods. Similarly, for the quantification of tumour

and lymphocytes based spatial patterns, the proposed TIL-Ratio achieved

comparable C-Index score as compared to LT-Ratio, LT-Col, and TILAb based

quantification methods.

Univariate Analysis

I further explore the prognostic significance of each quantification method

independent to other clinical and pathological parameters. Patients in the

validation cohorts are divided into two groups based on quantification scores

using an optimal threshold value selected using the discovery cohort. Table 5.7

presents the hazard ratio (HR) with 95% confidence interval (CI) and Log-rank

test based p-values of different quantification methods on both validation

cohorts for disease-specific survival. Our proposed quantification methods
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TCGA-HN SKMCH&RC + PredicTR2

T-Percentage 0.49 0.59

L-Percentage 0.61 0.58

TAS-Percentage 0.51 0.64

LT-Ratio 0.58 0.63

TAST-Ratio 0.48 0.59

LTAS-Ratio 0.57 0.65

LT-Col 0.62 0.67

LTAS-Col 0.55 0.53

TAST-Col 0.53 0.62

TILAb 0.61 0.66

TASILAb 0.59 0.70

TIL-Ratio 0.62 0.70

TASIL-Ratio 0.61 0.72
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Figure 5.10: C-Index based comparison of different quantification methods
across validation cohorts for disease-specific survival.
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Table 5.7: The hazard ratio with 95% confidence interval and Log-rank test
based p-values of different quantification methods across different validation
cohorts for disease-specific survival.

TCGA-HN SKMCH&RC + PredicTR2

Methods HR CI-Lower CI-Upper p-value HR CI-Lower CI-Upper p-value

T-Percentage 0.96 0.60 1.50 0.863 2.70 0.97 7.70 0.048

TAS-Percentage 0.29 0.09 0.92 0.025 0.62 0.26 1.50 0.287

L-Percentage 0.70 0.31 1.60 0.407 1.50 0.36 6.20 0.587

LT-Ratio 0.63 0.41 0.97 0.035 0.41 0.21 0.80 0.008

LTAS-Ratio 0.76 0.50 1.20 0.209 0.32 0.10 1.00 0.046

TAST-Ratio 1.30 0.47 3.50 0.623 2.00 1.00 4.00 0.043

LT-Col 0.67 0.44 1.00 0.069 0.37 0.19 0.69 0.001

LTAS-Col 0.80 0.48 1.30 0.379 0.98 0.52 1.90 0.959

TAST-Col 1.10 0.72 1.70 0.640 2.30 0.88 5.80 0.082

TILAb 0.83 0.50 1.40 0.461 0.32 0.17 0.62 0.0003

TASILAb 0.62 0.37 1.00 0.073 0.42 0.22 0.79 0.005

TIL-Ratio 0.57 0.36 0.91 0.018 0.48 0.23 1.00 0.049

TASIL-Ratio 0.49 0.30 0.78 0.002 0.20 0.10 0.43 0.000003

(TIL-Ratio and TASIL-Ratio) remains prognostic on both validation cohorts.

Patient group with higher TASIL-Ratio score shows significantly better disease-

specific survival (p=0.00239, HR = 0.49, 95% CI 0.30–0.78) on TCGA-HN

cohort. Similar pattern (p=0.000003, HR = 0.20, 95% CI 0.10–0.43) was

observed on our joint cohort (SKMCH&RC + PredicTR2). The LT-Ratio is

the only existing method which shows prognostic significance on both validation

cohorts.

I use the Kaplan Meier curves to visualise the difference between the

survival probability of low and high-risk patients for TL-Ratio, TIL-Ratio, and

TASIL-Ratio based methods. Figure 5.11 presents the survival curve along with

log-rank test based p-values for disease-specific survival of HNSCC patients

from both cohorts. The TASIL-Ratio based Kaplan Meier curve shows a clear

separation between low and high-risk patients on both cohorts as compared to

TL-Ratio and TIL-Ratio based quantification methods.

SKMCH&RC and PredicTR2 cohorts are curated from the oral cavity

and oropharynx, respectively. Therefore, I also investigate the prognostic

significance of TASIL-Ratio for patients of a specific HNSCC site. First, oral

(SKMCH&RC) cohort is considered as a discovery cohort for validation on

oropharyngeal (PredicTR2) cohort. Similar to our previous finding, TASIL-

Ratio remains prognostic (p=0.000159, HR = 0.20, 95% CI 0.08–0.49) for

oropharyngeal squamous cell carcinoma patient stratification into low and

high-risk groups for disease-specific survival. Second, I consider (SKMCH&RC)

cohort as validation while using oropharyngeal (PredicTR2) cohort as the

discovery cohort. I found that TASIL-Ratio based oral squamous cell carcinoma

patient stratification again proved prognostic (p=0.000935, HR = 0.08, 95% CI

0.01–0.65). I repeated the same set of the experiment to evaluate the prognostic

significance of TASIL-Ratio for disease-free survival. The results follow the same
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TCGA-HN SKMCH&RC + PredicTR2

Figure 5.11: Kaplan Meier curves along with log-rank test based p-values for
disease-specific survival of three automated scores.
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Figure 5.12: Kaplan Meier curves along with log-rank test based p-values for
disease-specific and disease-free survival of using TASIL-Ratio based quantific-
ation method.

pattern where TASIL-Ratio stratifies the patients in prognostically significant

low and high-risk groups. Patient stratification into low and high-risk groups

is presented Figure 5.12 through Kaplan Meier curves for all four experiments.

Comparison with Pathologist Score

Pathologist score for tumour/stroma infiltrating lymphocytes is a categorical

score with absent, low, moderate, and high infiltration categories. Only some

categories show prognostic significance in SKMCH&RC and PredicTR2 cohorts

for disease-specific and disease-free survival, as shown in Tables 5.2 and 5.3.

Therefore, I group these categories into two categories, where one group consists

of absent and low, and other contains moderate and high categories. I present

the comparison of most prognostic quantification method (TASIL-Ratio) and

pathologist manual TIL score in Figure 5.13. TASIL-Ratio shows the better

separation between low and high-risk groups in 3 out of 4 experiments as
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compared to pathologist score.

Multivariate Analysis

I investigate the prognostic significance of TASIL-Ratio in the presence of

clinical and pathological variables whose information is available for TCGA-HN

cohort for disease-specific survival. TASIL-Ratio remains prognostic (p=0.043,

HR = 0.58, 95% CI 0.34–0.98) in presence of other clinicopathological variables:

age, gender, grade and pathological stage. Although stage IVb and IVc show

high prognostic values, the total number of patients in stage IVb and IVC are

9 and 1, respectively, which is quite small as compared to the total number

of patients (Figure 5.14). I further evaluated the independence TASIL-Ratio

in SKMT&CH cohort, which has more clinical and pathological parameters

as compare to TCGA-HN, and both disease-specific and disease-free survival

information. In disease-specific survival, I found a similar pattern as in TCGA-

HN cohort. Both TASIL-Ratio (p=0.027, HR = 0.10, 95% CI 0.01–0.76) and

pathological stage (p=0.043, HR = 2.02, 95% CI 1.02–3.97) turned-out as

independent variables against all other variables (Figure 5.15). However, in

disease-free survival, TASIL-Ratio is the only independent variable (p=0.004,

HR = 0.29, 95% CI 0.12–0.67) against age, gender, smoke and smokeless

tobacco status, grade, patterns of invasion, and pathological stage.

Correlation with Molecular Estimates of Immune Subtypes

I further investigate the correlation of proposed TASIL-Ratio with molecular

estimates of immune cell fractions in TCGA-HN cohort. Throsson et al. [159]

have estimated the fraction of 22 immune cell types in the histology sample of

each patient in the TCGA cohort using CIBERSORT. I used those estimates

for the correlation analysis with our TASIL-Ratio. The immune subtypes were

grouped based on nine different immune cell types: dendritic, mast, neutrophils,

eosinophils, monocytes, macrophages, natural killer cells, T cells and B cells.

The TASIL-Ratio shows a moderate but highly significant positive correlation

with T cells estimates and negative correlation with macrophages estimates

(Figure 5.16). This correlation pattern indirectly indicates the correctness

of lymphocyte segmentation by our coarse tissue segmentation method as

lymphocytes largely comprise of T cells and B cells. CD8 T cell fraction shows

the highest positive correlation among all immune subtypes (Table 5.8), which

may indicate that the lymphocytes in the vicinity of the tumour-associated

stroma are mainly CD8 T cells. A very high correlation between TASIL-Ratio

is not expected as TASIL-Ratio and molecular estimates are computed from

formalin-fixed paraffin-embedded and fresh frozen tissue sections, respectively.

Although both tissues sections belong to the tissue block of the same patient,
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Figure 5.13: Comparison of manual pathologist TIL score and proposed TASIL-
Ratio.
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TASIL.Ratio

Stage

Grade

Gender

Age

Low−Risk

High−Risk

IVc

IVb

IVa

III

II

I

IV

III

II

I

Male

Female

(N=157)

(N=185)

(N=1)

(N=9)

(N=177)

(N=50)

(N=48)

(N=20)

(N=6)

(N=80)

(N=208)

(N=43)

(N=252)

(N=90)

(N=342)

 0.58

reference

94.10

 8.06

 3.35

 0.95

 1.52

reference

reference

 1.34

 1.05

reference

 0.89

reference

 1.01

(0.34 −    0.98)

(7.55 − 1173.54)

(1.45 −   44.87)

(0.81 −   13.88)

(0.17 −    5.22)

(0.31 −    7.38)

(0.54 −    3.33)

(0.44 −    2.51)

(0.52 −    1.53)

(0.99 −    1.03)

0.043 *

<0.001 ***

0.017 *

0.096 

0.949 

0.604 

0.527 

0.911 

0.672 

0.371 

# Events: 71; Global p−value (Log−Rank): 0.0011078 

AIC: 722.64; Concordance Index: 0.67
0.5 1 5 10 50 100 500 1000

Figure 5.14: Multivariate analysis of TASIL-Ratio in the presence of available
clinical and pathological variables of TCGA-HN cohort.
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Figure 5.15: Multivariate analysis of TASIL-Ratio in the presence of available
clinical and pathological variables of SKMCH&RC cohort.
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Figure 5.16: Spearman correlation between TASIL-Ratio and molecular estim-
ates of macrophages and T Cell fractions.

their exact spatial relation is unknown.

5.5 Discussion

In this chapter, I profile the TME of HNSCC in the context of the tumour,

stroma, lymphocytes. The role of stroma and lymphocytes in TME has

been explored in many clinical studies [160–162] on HNSCC. The consensus

is that the tumour-associated stroma helps in tumour development whereas

tumour infiltrating lymphocytes act against the tumour. The standardised

quantification of stroma and lymphocytes in the tumour is still an open

challenge in HNSCC, just like many other cancer types. However, some

guidelines have been proposed for TILs to make the quantification process

more objective and to reduce the inter- and intra-observer variability [163–165].
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Table 5.8: Spearman correlation between TASIL-Ratio and molecular estimates
of immune subtypes.

Cell Types ρ p-value Cell Subtypes ρ p-value

Dendritic Cells 0.01 8.17×10−1
Activated 0.01 8.34×10−1

Resting 0.01 8.83×10−1

Mast Cells -0.18 8.22×10−4
Activated -0.18 1.19×10−3

Resting 0.12 2.84×10−2

Neutrophils 0.09 9.73×10−2 Neutrophils 0.09 9.73×10−2

Eosinophils -0.10 6.52×10−2 Eosinophils -0.10 6.52×10−2

Monocytes 0.18 7.70×10−4 Monocytes 0.18 7.70×10−4

Macrophages -0.37 2.67×10−12
M0 -0.39 2.08×10−13

M1 0.32 2.62×10−9

M2 -0.24 1.05×10−5

Natural Killer Cells 0.05 3.52×10−1
Activated 0.05 3.44×10−1

Resting 0.00 9.94×10−1

T-Cells 0.46 1.32×10−18

CD4 Memory Activated 0.32 2.04×10−9

CD4 Memory Resting -0.09 9.66×10−2

CD4 Naive -0.20 3.11×10−4

CD8 0.45 9.28×10−18

Follicular Helper 0.26 2.37×10−6

Gammadelta 0.07 1.94×10−1

Regulatory 0.26 1.16×10−6

B-Cells 0.22 3.97×10−5
Memory -0.02 7.37×10−1

Naive 0.22 4.32×10−5

Plasma 0.11 4.77×10−2

Despite these efforts, manual quantification remains as a subjective process

which leads to a lack of reproducibility.

In recent years, researchers have developed several automated quantification

methods for TME analysis [60, 97, 150, 152]. The use of automated methods

eliminate the issue of subjectivity and outputs objective and reproducible

quantification scores. Most of the methods either rely on nucleus/cell detection

and classification [60, 150] or used patch-based segmentation methods for

the segmentation of different TME components [97, 152]. The nucleus/cell

detection and classification work on higher image magnifications (40× or

20×) which requires more time for WSI processing, usually around an hour.

Moreover, training for these methods requires a large number of annotated cells

of different types which is a tedious and error-prone task. On the other hand,

patch-based segmentation methods lose the precision in the segmentation of

different TME components due to the large size of the patch. The use of small

patch size results in the lack of contextual information which is essential for

correct segmentation of some TME components.

Our proposed framework for automated quantification of TME is based on

a novel coarse segmentation method which is more precise and accurate than

the standard patch-based segmentation methods. The proposed method has

achieved higher precision with 64× dense predictions as compare to standard

patch classifiers whereas higher accuracy is achieved by the use of broader
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spatial context and addition of skip connections in the network architecture.

In Table 5.5, it can be seen that even standard patch classifiers can achiever

up to 10% of performance improvements by using input patches with larger

spatial context. However, classification with larger context requires more WSI

processing time due to the small stride size as compare to patch size. Our

proposed method predicts a label for each region of the input patch; therefore,

it does not process a WSI using an overlapping sliding window based approach

which makes it faster.

Our proposed coarse segmentation method segment a WSI into seven

tissue types/classes. Although I were only interested in the tumour, tumour-

associated stroma, and lymphocyte classes, the remaining four classes (normal

epithelium, keratin, others and artefacts) were also important. The normal

epithelium is very similar to the malignant epithelium (tumour); therefore,

it could easily be misclassified as tumour if I put it in the other class which

already consists of many different tissue regions. Similarly, artefacts class

contains tissue regions from different classes with some blurring, tissue folding,

and staining artefacts. However, keratin as separate class was considered to

explore its prognostic significance in survival analysis, but it did not show any

significance for any type of quantification method; therefore, I dropped it from

the downstream analysis.

In the literature, several methods have been developed for quantification

of different pairs of TME components such as stroma to tumour ratio in

breast and ovarian cancer [95, 166], lymphocyte and tumour colocalisation

in breast cancer [105], and abundance of tumour infiltrating lymphocyte in

oral cancer [152]. I explored the significance of 13 differ spatial patterns

of the tumour, tumour-associated stroma, and lymphocytes, along with the

existing quantification methods in HNSSC. The percentage (T-Percentage,

L-Percentage, and TAS-Percentage) and ratio (LT-Ratio, TAST-Ratio, LTAS-

Ratio) based quantification scores are shallow scores as they just calculate

the overall percentage or ratio and ignore the spatial co-occurrences of the

tumour, tumour-associated stroma, and lymphocytes. The colocalisation base

scores (LT-Col, LTAS-Col, and TAST-Col) contain more information about the

spatial patterns of the pair of tissue types. Although high colocalisation score

represents a relatively equal ratio of two tissue types, the low colocalisation

score does give any information about the actual ratio between the pair of tissue

types. It just represents that one tissue type is more prevalent as compared to

another tissue type. However, the lymphocyte abundance scores (TILAb and

TASILAb) capture both colocalisation and ratio information simultaneously. A

higher lymphocyte abundance score represents high infiltration of lymphocytes

in tumour or stroma regions, whereas lower score represents low lymphocytes

infiltration. Both colocalisation and abundance-based quantification measures
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calculate the colocalisation using the percentage of given tissue types in small

pre-defined regions, which results in some loss of spatial patterns. However,

our proposed quantification measures (TIL-Ratio, and TASIL-Ratio) captures

the spatial patterns from the lowest level of coarse segmentation maps of WSIs,

as illustrated in Figure 5.5.

In survival analysis, I found that higher infiltration of lymphocytes in

tumour-associated stroma is associated with better disease-free survival of

HNSCC patients. Our proposed automated TASIL-Ratio measure quantifies

the extent of tumour-associated stroma infiltrating lymphocytes. The TASIL-

Ratio is independent of HNSCC site and shows prognostic significance in both

oral and oropharyngeal cohorts. Furthermore, the TASIL-Ratio is independent

of clinical and pathological parameters, including grade, and stage. I compared

TASIL-Ratio with the current spatial quantification methods for tumour,

tumour-associated stroma and lymphocyte quantification. The TASIL-Ratio

achieve high concordance score as compared to its counterparts. The TASIL-

Ratio also shows a moderate but highly significant correlation with molecular

estimates of 22 immune subtypes. In general, our quantification score based

findings are aligned with the clinical knowledge with the added advantage of

objectivity and reproducibility. Although I validated our method on relatively

large cohorts, a comprehensive evaluation on a sizeable multicentric cohort is

required before adopting the proposed digital biomarkers in clinical practice.
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Chapter 6

Conclusions and Future

Directions

In this thesis, I proposed a set of computational methods for spatial context

based automated analysis of haemotoxylin and eosin (H&E) digitised histology

images. First, a context-aware convolutional neural network (CNN) based

method was proposed to capture the spatial architecture of the colorectal

adenocarcinoma (CRA) glands for better CRA grading. Second, a statistical

measure was formulated for spatial quantification of lymphocyte abundance

in the vicinity of tumour in oral squamous cell carcinoma (OSCC). Third, a

coarse segmentation method was developed for precise tissue segmentation

which was then used for the profiling of tumour microenvironment (TME) of

head and neck squamous cell carcinoma (HNSCC).

I evaluated thoroughly the performance of the proposed methods on both

internal and public cohorts and also compared the results with existing ap-

proaches for the respective tasks. Context-aware CNN based CRA grading

methods outperformed all its counterparts, whereas spatial quantification

method for tumour infiltrating lymphocytes (TILs) have shown prognostic

significance for disease-free survival of OSCC patients. The coarse segmenta-

tion of digitised tissue into multiple tissue types enabled us to simultaneously

quantify different spatial patterns of the tumour, tumour-associated stroma,

and lymphocytes in HNSCC cohorts. I have shown that our novel quantific-

ation of tumour-associated stroma infiltrating lymphocytes is a statistically

significant prognostic indicator for disease-specific survival of HNSCC patients

as compared to existing quantification methods for TILs and tumour stroma

ratio.

I present a summary of each proposed method, along with a set of future

directions in the following sections.
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6.1 Context-aware Convolutional Neural Network

I have presented a novel context-aware CNN, which can incorporate 64 times

larger context than standard CNN based patch classifiers. The proposed

network is well-suited for the CRA grading task as glandular structures in

CRA vary in size and shape which does not fit in an input patch of standard

patch classifiers. The proposed context-aware CNN is comprised of two stacked

CNNs. The first local representation CNN is used for learning the local

representation of the patches in a histology image. Second, representation

aggregation CNN (RA-CNN) predicts the CRA grade by aggregating local

representation of the patches and their spatial context. The proposed method

has been evaluated on two CRA grading datasets. A comprehensive analysis

of different variations of the proposed method and comparison with existing

approaches has been presented. The qualitative and quantitative results have

demonstrated that our method has outperformed the patch-based classification

methods, domain-specific CRA grading techniques, and existing context-based

methods. The proposed approach is also suitable for other tasks which require

broader contextual information, such as Gleason grading in prostate cancer

and tumour growth pattern classification in lung cancer.

The RA-CNN in the proposed context-aware CNN method incorporates

spatial contextual information through convolutional layers. One potential

future direction could be to develop a representation aggregation network

using recurrent neural network (RNN) instead of convolutional neural networks.

However, RNNs are generally prone to overfitting (especially vanilla RNNs).

Two-dimensional long short-term memory based RNNs have potential to

capture bi-directional context, therefore, suitable for context-aware learning in

histology images [167].

The idea of context-aware learning through CNN is generic, and I only

explored it in term of spatial context. However, contextual information from

other image modalities (e.g. immunohistochemistry) and sources (e.g. clinical

or genomics data) can be incorporated in the CNN networks. Recently, some

works [168, 169] have been done in this direction where authors tried to fuse

data from multiple sources to build deep learning based cancer prognosis model.

6.2 Coarse Segmentation of Histology Images

I have proposed a novel coarse segmentation network (CSNet) to eliminate the

issues of noisy patch-based segmentation of histology images due to patch size

and limited context. The CSNet leverages the spatial context of the input image

to segment each 32× 32 region of the input image. The segmentation map of

CSNet is 64× denser than standard patch-based image segmentation methods.
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Figure 6.1: Illustration of super-pixel based segmentation of histology image.
Each cyan colored region in the right image represent one super pixel.

The CSNet is a fully convolutional neural network with skip connections from

intermediate layers to the final layer for better spatial segmentation of a given

input image. Unlike pixel-based segmentation methods, our proposed method

does not require pixel-level ground truth and high computation requirements of

network training. The use of weighted sparse loss function has enabled CSNet

to learn from partially annotated images which further ease the process of

ground truth marking in large datasets. The proposed network has achieved

superior performance for HNSCC tissue segmentation task when compared

with its counterparts. The CSNet is also faster in time as compared to pixel-

based segmentation methods. The proposed method is suitable for histology

image segmentation problems where segmentation of the small region of tissue

requires larger contextual information such as segmentation of normal and

malignant epithelium, and normal and tumour associated stroma.

The current architecture of the proposed method only supports 64 times

denser prediction map as compared to a standard patch-based classifier. The

architecture of the proposed method can be further improved by the use

of spatial pyramid pooling layers [170] to adjust (increase or decrease) the

density of the prediction map. However, a larger/denser prediction map also

requires more precise ground truth for the training of the proposed method.

Another future direction could be the use of super-pixel based unsupervised

segmentation method (6.1) as postprocessing step where each super-pixel will

get the label from the corresponding prediction in the prediction map generated

by the proposed method. This postprocessing approach will help to increase

the precision in final tissue segmentation without any extra annotation.

110



6.3 Profiling of Tumour Microenvironment

I have profiled the tumour microenvironment by quantifying the spatial pat-

terns of the tumour, tumour-associated stroma, and lymphocytes using novel

quantification methods. In the fourth chapter, I have proposed tumour infilt-

rating lymphocytes abundance (TILAb) score which is the product of spatial

colocalisation of tumour and lymphocytes, and lymphocyte to tumour ratio.

I have shown that our proposed TILAb score is a prognostic indicator for

disease-free survival of OSCC patients. The TILAb score has also shown

independence from tumour invasion pattern, grade, and stage in multivariate

analysis.

In the fifth chapter, I have developed another automated score for tumour-

associated stroma infiltrating lymphocytes (TASIL-Ratio) which is the ratio

between tumour associated stroma colocalised with lymphocytes and overall

tumour associated stroma. The TASIL-Ratio has shown better predictive

ability when compared with other existing automated quantification methods

for HNSCC. The TASIL score is also a prognostic indicator for disease-specific

survival of HNSCC patients. It has shown a moderate but highly significant

positive correlation with molecular estimates of CD8 T cells. I have also

demonstrated the prognostic significance of TASIL score for disease-free and

disease-specific survival of OSCC and pharyngeal squamous cell carcinoma

patients.

Both TILAb and TASIL-Ratio scores are based on a two-step approach

where histology images are first segmented into clinically significant tissue

types. Then spatial patterns are quantified using statistics such as TILAb and

TASIL-Ratio scores. However, one future direction could be to predict risk

score directly from the histology image through deep learning based methods

using survival information as ground truth information. Furthermore, attention-

based strategies could be used to highlight image regions associated with a high

or low-risk score to improve the interpretability of the deep learning methods.

One potential challenge to train such networks is the limited availability of

large patient cohort, with reliable survival data.

6.4 Concluding Remarks

The proposed methods have shown generalisability with promising results

on reasonably large datasets. The most common factors that impact the

generalisability of a method across multiple cohorts are related to tissue

preparation (e.g. tissue shrinkage, fixation artefacts, staining artefacts) and

digitisation of tissue slides (e.g. out of focus scanning). I have used different

strategies (stain normalisation and stain invariant training) to overcome the
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staining variabilities in the available datasets. Similarly, most of the artefacts

are detected and excluded by the use of a separate class. Further evaluation on

large cohorts of patients with diverse demographics information may increase

the generalisability of the proposed methods, especially in the context of

personalised healthcare. However, a rigorous independent evaluation of the

proposed methods on multiple cohorts is required before the adoption of these

methods in clinical practice.
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