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ABSTRACT

This paper introduces a novel class of Graph-based Trans-
form based on neural networks (GBT-NN) within the con-
text of block-based predictive transform coding of imaging
data. To reduce the signalling overhead required to recon-
struct the data after transformation, the proposed GBT-NN
predicts the graph information needed to compute the inverse
transform via a neural network. Evaluation results on several
video frames and medical images, in terms of the percentage
of energy preserved by a sub-set of transform coefficients and
the mean squared error of the reconstructed data, show that
the GBT-NN can outperform the DCT and DST, which are
widely used in modern video codecs.

Index Terms— intra-prediction, graph-based transform,
template-based prediction, DCT, DST, KLT

1. INTRODUCTION

Block-based predictive transform coding (PTC) [1, 2] is an
integral part of modern video codecs such as the High Ef-
ficiency Video Coding (HEVC) [3] and the Versatile Video
Coding (VVC) [4] standards. Intra-prediction is an important
tool used by block-based PTC, where each video frame is
divided into several non-overlapping blocks and processed in
a block-wise manner. Specifically, each block is predicted
based on the surrounding pixel values located immediately
above and to the left by using one of several intra-prediction
modes. These modes include several angular modes, a pla-
nar mode, and a DC mode. Each angular mode predicts a
block using a specific direction to accurately model edges
and directional patterns, while the planar and DC modes
predict gradually-changing and smooth textures, respectively
(see Fig. 1). A residual block is obtained for each block by
computing the difference between the original and predicted
block. Each residual block is then transformed, and the re-
sulting transform coefficients are quantized and encoded to
create a compressed bit-stream. To reconstruct the frame, the
bit-stream is decoded, dequantized and inverse-transformed
to recover the residual blocks. Each decompressed residual
block is then added to the predicted block to recover the orig-

inal block (with some losses due to the transformation and
quantization - see Fig. 2). Within this compression pipeline,
the transform reduces the correlation between the residual
values, while quantization reduces the number of bits needed
to store an integer value by reducing its precision [5]. Note
that in order to reconstruct a frame, extra-information is
needed to be signaled into the bitstream, which may lead to
an increased overhead. This information includes the predic-
tion mode used for each block, the block sizes, details of the
inverse transform, and the level of quantization. To reduce
this overhead, video codecs use well known transforms [6]
so that the information needed to compute the inverse trans-
form is common knowledge between the compression and
reconstruction processes.

For any arbitrary signal with a known covariance matrix,
it is well known that the Karhunen–Loève Transform (KLT)
is the linear transform with the best energy compaction prop-
erties, i.e., it can represent most of the signal energy with only
a few transform coefficients. The KLT is data-driven, as it de-
pends on the data being transformed. To compute the inverse
KLT, knowledge of the covariance matrix of each block must
be signaled into the bitstream. The Discrete Cosine Trans-
form (DCT) has been championed as the most suited trans-
form for compression applications since the KLT basis func-
tions of natural images are close to those of the DCT [7]. Un-
fortunately, the DCT offers little adaptability to the character-
istics of the signal, as a fixed transform is usually applied to
all residual blocks.

Recently, the Graph-Based Transform (GBT) has been
shown to attain promising results [8] for data decorrelation
and energy compaction for block-based PTC using intra-
prediction. The GBT is quite adaptive to the signal since for
each residual block a unique graph is generated to accurately
reflect the correlation among residual values [9]. In [10, 6],
we show that the GBT can outperform the DCT and the com-
bination of DCT/DST (Discrete Sine Transform), as used in
modern video codecs, in terms of energy compaction and
reconstruction quality. The work in [11] shows an attractive
solution for learning a mapping function to design a GBT
without requiring to signal additional information. Pavez et
al. [12] propose the Graph Template Transform (GTT) to ap-
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(a) (b) (c)

Fig. 1. (a) Direction of the 33 angular modes used in the HEVC
standard. (b) Sample 4 × 4 block, where the surrounding pixels lo-
cated above and to the left are used for prediction. (c) Corresponding
predicted block using the pure horizontal mode (Mode 10).

proximate the KLT by using a priori information about signals
represented by a graph template. In a recent work, Egilmez
et al. propose a GBT based on Gaussian-Markov Random
Field (GMRF) models that learn graphs from data and pro-
vide solutions for optimal separable and non-separable GBTs
[13].

When the GBT is used in block-based PTC, the same
graph used to compute the GBT during compression should
be available at the reconstruction stage to compute the inverse
GBT of each block. This extra information should be then
signaled into the bitstream, hence increasing the overhead.
To address this issue, this paper proposes a GBT based on a
neural network approach (GBT-NN). Our proposed method
uses an encoding-decoding neural network (NN) to map a
graph obtained from a set of similar blocks to the block to
be encoded, to the graph of the corresponding residual block.
Specifically, our method adopts a template-based strategy to
first predict a residual block from a set of similar blocks, from
which a graph can be computed. The corresponding graph
Laplacian of such a graph is then used by a NN to predict the
graph Laplacian associated with the current residual block,
from which the inverse transform can be computed. To avoid
signalling extra information into the bitstream, the template-
based strategy is replicated during reconstruction to compute
the same graph Laplacian and hence the inverse GBT. To the
best of our knowledge, no method has been proposed be-
fore to learn a graph Laplacian by using deep learning and
a template-based strategy within the context of block-based
PTC and GBTs.

Our evaluations over several video frames and medical
images show that the proposed GBT-NN outperforms the
DCT/DST, DCT and other related GBTs [10] in terms of per-
centage of preserved energy (PE), mean squared error (MSE),
and Peak Signal-to-Noise Ratio (PSNR).

2. PROPOSED GBT-NN

Let us denote a (square) residual block with zero mean as
S ∈ R

√
N×
√
N , with a total of N residual values. Recall

that S is computed by subtracting the predicted block from
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Fig. 2. Video compression/decompression pipeline used by the
HEVC and VVC standards for block-based intra-prediction.
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Fig. 3. (a) Residual frame and a 4 × 4 residual block (b) Values
of the example residual block. (c) Normalized residual values to the
range [0, 1]. (d) Corresponding graph with a 4-connected topology
with unit edge weights and self-loops in each vertex. (e) 4-connected
topology with no self-loops. (f) All-connected topology with no self-
loops (i.e., each node is connected to every node in the graph)

the original block [14]. S can be represented as an undirected
weighted graph, G = (V,E,A), where V is the set of N
nodes V = {vn}Nn=1, E is the set of edges, and A ∈ RN×N

is the symmetric adjacency matrix. The adjacency matrix of a
weighted graph stores the weights of the edges. The GBT for
S can be computed by the eigen decomposition of the graph
Laplacian, L = D−A, where D is the diagonal degree ma-
trix. The eigen decomposition of L can be used as an orthogo-
nal transform for S, since it has a complete set of eigenvectors
with real, non-negative eigenvalues [15]. The connectivity
and the edge weights of the graph are generally inferred from
the data (see Fig. 3).

As the graph Laplacian requires the computation of the
symmetric adjacency matrix, our objective is to develop a
one-to-one mapping between symmetric adjacency matrices:
one computed based on previously encoded and reconstructed
blocks within the same frame and the other one associated
with the current block:

Ab ≈ f(Ap), (1)
where Ap is computed based on the graph of a residual block
predicted for the current residual block and Ab is the sym-
metric adjacency matrix of the current residual block, i.e., the
block to be encoded. Our solution to learn the mapping func-
tion in Eq. (1) is based on an encoding-decoding NN, as illus-
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Fig. 4. Architecture of the proposed GBT-NN for 8× 8 blocks and
a normalized all-connected (All-C) symmetric adjacency matrix.

trated in Fig. 4 for the case of 8×8 blocks with all-connected
graphs. The encoder consist of 4096 input neurons and 7 fully
connected hidden layers, while the decoder consists of 6 fully
connected hidden layers and an output layer. For each hidden
layer, we apply the ReLu activation function, while the Sig-
moid activation function is applied to the output layer. Note
that the architecture in Fig. 4 is also suitable for graphs with
other topologies, e.g., 4-connected with self-loops. Also note
that the input is normalized to the range [0, 1].

2.1. Prediction strategy

The matrix used as input to the network is generated from a
residual block predicted by a template-based prediction strat-
egy [10]. Such a strategy uses a weighted average of all the
previously encoded and reconstructed blocks within a specific
region of the same frame to predict the current block (see Fig.
5 (a)). The weight assigned to the jth reconstructed block is:

wj = e
‖x−tj‖

2
2

h2 , (2)
where tj is the jth reconstructed template, h is the average
of the standard deviation of the pixel values of the j − 1 re-
constructed templates, and x contains the pixel values of the
target template. We use templates of 4 rows and 4 columns,
which results in 72 samples surrounding an 8× 8 block to the
left and above (see Fig. 5(b)).

The predicted current block is subtracted from the cor-
responding predicted block computed by intra-prediction to
compute a predicted residual block (see Fig. 5(c)). From this
predicted residual block, the normalized symmetric adjacency
matrix, Ap, is computed, vectorized and normalized into ap.
The encoder NN transforms ap into a hidden representation,
h as follows:

h(le) = ReLU(W(le)h(le−1)), (3)

where h(0) = ap, W(le) is a weight matrix and h(le) is the
hidden representation for the encoder layer (le). Then, h is
transformed back to a reconstructed vector âb by the decoder
NN over a number of hidden layers until the output layer:

âb = Sigmoid(W(ld)h(ld−1)), (4)

where ld denotes the last layer of the decoder, W(ld) is a
weight matrix for the decoder layer ld, and h(ld−1) is the hid-
den representation of decoder layer (ld − 1). Note that âb is
an approximation of the vectorized and normalized symmet-
ric adjacency matrix of the current residual block. Also note

Region to be used to predict the current block

. . . . . . . . . . . .. . .. 

. . . . . . . . . . . .. . .. 

. . . . . . . . . . . .. . .. 

Target Block

Reconstructed Blocks

Reconstructed 
Template

Target Template

(a)

Target Template

8 x 8 
Target 
Block

(b)

Region to be used to predict 
the current block

. . . . . . . . . 

Predicted block 
based on 

template-based 
prediction

Predicted block 
based on 

intra-prediction

Reference 
Samples

Best 
Intra-prediction 
Mode Selection

Target 
Block

Predicted 
residual block

. . . . . . . . . 

. . . . . . . . . 

(c)
Fig. 5. (a) Region to be used to predict the target block; i.e, the
current block. (b) Sample target template and target block. (c)
Template-based prediction (TBP).

that the architecture in Fig. 4 differs from that of an autoen-
coder, as our NN does not reconstruct the same input.

2.2. Optimization process

Optimization of the NN aims to find the parameters W(1e), · · · ,
W(le),W(1d), · · · ,W(ld) that minimize following loss func-
tion:

L = Lrecon + αLsym + λ ‖W(:) ‖1, (5)

where ‖ . ‖ is the L1 matrix norm, W(:) represents the learn-
able parameters in vector form, α is the weight of the second
loss component, and λ controls the amount of L1 regulariza-
tion on the learnable parameters. Here Lrecon, Lsym are the
losses for reconstruction and symmetry, respectively. We use
the MSE for the reconstruction loss:

Lrecon =‖ âb − ab ‖22, (6)
where ab is the vectorized ground truth for the normalized
symmetric adjacency matrix of the current residual block.

An essential property of an adjacency matrix is to be sym-
metric. We then use the following loss to enforce symmetry:

Lsym =
‖ âb(anti) ‖1

‖ âb(sym) ‖1 + ‖ âb(anti) ‖1
, (7)

where âb(sym) = (âb + (â
b
)T )/2 and âb(anti) = (âb −

(â
b
)T )/2, i.e., they measure the symmetry and anti-symmetry

of the predicted matrix. Lsym ∈ [0, 1], which tends to the up-
per bound for a symmetric matrix and to the lower bound for
an asymmetric matrix. The graph used to compute the GBT
for the current residual block is then Ĝ = (V,E, Âb), after
de-normalizing the predicted symmetric adjacency matrix.

To reconstruct the current block, the same graph used to
compute the GBT should be used to compute the inverse GBT.
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Fig. 7. A specific trained network is selected based on the intra-
prediction mode used for each block. The figure shows a section of
a frame predicted by several prediction modes.

To this end, the template-based prediction strategy described
in Section 2.1 is also used to predict the residual block of the
current block during reconstruction. The predicted residual
block is used to compute the symmetric adjacency matrix to
be used as the input to the trained GBT-NN after normaliza-
tion, which produces a predicted symmetric adjacency matrix
for the current residual block (see Fig. 6). Our method as-
sumes that the trained GBT-NN is common knowledge be-
tween the compression and reconstruction processes. There-
fore, our method does not require to signal any extra infor-
mation. Based on the prediction mode used, the reconstruc-
tion process uses a specific trained GBT-NN associated with
that mode. Fig. 7 explains this mechanism assuming an
HEVC codec. Namely, our framework relies on five trained
GBT-NNs: one for horizontal (H) modes, one for vertical (V)
modes, one for diagonal (D) modes, one for the DC mode,
and one for the planar (P) mode.

3. PERFORMANCE EVALUATION

We train 5 different networks (H, V, D, DC, P) based on the
35 HEVC intra-prediction modes. We use 8 × 8 blocks and
graphs with an all-connected (All-C) topology with no self
loops with unit edge (UE) weights. Each training example is
represented by a tuple: {Ap,S,Ab}, where Ap is the pre-
dicted symmetric adjacency matrix for residual block S (as
computed by the template-based prediction strategy) and Ab

is the ground truth symmetric adjacency matrix for S. The
networks are trained only with {Ap} and {Ab} with α = 0.5
and λ = 0.002 (see Eq. 5). The hyper-parameters are selected
based on cross-validation. We train each network for 100
epochs using Adam optimizer with a learning rate = 0.0001.

We use 40 different gray level YUV frames of Class A,
B, C, D, E and Screen Content, which are video sequences
widely used to test modern video codecs [3]. We also use
the green (G) component of 10 color pathology images from
the Center for Biomedical Informatics and Information Tech-

Table 1. Characteristics of the evaluated GBTs.

Name
Topology Edge Weight Residual
4-C All-C DIFF UE SL IP TBP

GBTA-All∗ X X X
GBT-LA-All∗ X X X X
GBTWpix-All X X X

GBT-NN (ours) X X X
GBT-LWpix-All X X X X

GBT-L∗A X X X X
GBT-LWpix X X X X

4-C: 4-connected. All-C: all-connected.
DIFF: edge weights computed as the squared difference between the connected nodes.
UE: unit edge weights. SL: self-loops with normalized weights.
IP: actual residual block used (no prediction). TBP: residual block predicted by template-based prediction.
∗ Requires information about the graph of each block to compute the inverse transform for reconstruction.

Table 2. Performance of the NNs on the test data.

NN Loss function
Metrics

MSE MAE Ψ

Horizontal
L 165.95 4.66 0.99

Lrcon (only) 271.10 5.29 0.94

Vertical
L 170.4 4.35 0.97

Lrcon (only) 258.59 6.43 0.93

Diagonal
L 169.65 5.44 0.92

Lrcon (only) 234.98 6.91 0.82

DC
L 184.28 8.40 0.95

Lrcon (only) 284.16 15.4 0.88

Planar
L 156.52 5.21 0.98

Lrcon (only) 258.5 6.99 0.93

nology of the US National Cancer Institute [16]. In total, for
the five networks, we use 61, 440 samples of symmetric adja-
cency matrices. We use 80% of the data for training and 20%
for testing. There is no overlap in the training and testing sets.

Table 1 summarizes the characteristics of all the GBTs we
use in the evaluations. Namely, it tabulates the topology used
to construct the graph, the edge weights, and how the residual
for the current block is computed. We also evaluate the KLT,
the DCT, and DCT/DST as used in the HEVC and VVC stan-
dards, where the DCT/DST are used as separable transforms
for rows and columns of the residual block depending on the
prediction mode used. We use the MSE and Mean-absolute-
error (MAE) to measure how well the values of the symmetric
adjacency matrix are predicted compared to the ground truth.
We measure the symmetrical property of the predicted matri-
ces as [17, 18]:

Ψ =
|âb(sym) ‖1 − ‖ âb(anti) ‖1
‖ âb(sym) ‖1 + ‖ âb(anti) ‖1

∈ [−1, 1], (8)

where a value of 1 means perfect symmetry.
Table 2 tabulates the performance of the five trained GBT-

NNs on the test data. We perform an ablation study by re-
moving the Lsym component of the loss function. This table
shows that Lsym is vital to enhance the performance of the
networks since the MSE and MAE values increase and Ψ val-
ues decrease if Lsym is removed.

Since the efficiency of a transform is measured by its



decorrelating properties and the maximum energy it con-
centrates in only a few transform coefficients, we compute
the percentage of PE and the MSE of the reconstructed
frames/images using only a few coefficients under the as-
sumption that no quantization is applied. The sub-set of
coefficients used for reconstruction is selected by setting a
threshold that indicates the minimum absolute value that the
coefficients in the sub-set should have. By gradually de-
creasing an initial large threshold, this approach gradually
includes in the sub-set the largest coefficients [10]. We also
compute the reconstruction quality achieved by the evaluated
transforms, in terms of the PSNR, when there is quantization.
To this end, we use the 4 quantization parameters (QPs) (22,
27, 32, 37) widely used by the HEVC and VVC standards.

3.1. Results

Table 3 presents the average PE (%) and MSE values for all
evaluated data using a small percentage of coefficients. As ex-
pected, the KLT provides the best performance. The GBT-NN
preserves 10.46%, 6.37%, and 5.42% more energy than the
DCT/DST, the DCT, and the GBT-LWpix [10], respectively,
if only 5% of the largest coefficients are used. We observe that
the GBT-LA outperforms our proposed GBT-NN, however, as
the GBT-LA requires information about the graph to compute
the inverse transform needed to reconstruct each block, this
transform is not practical as this entails greatly increasing the
overhead. Fig. 8 plots the PE (%) and MSE values vs. the
percentage of coefficients used for reconstruction of a frame
of sequence BQTerrace (Class B) and PeopleOnStreet (Class
A). Table 4 tabulates average PSNR values for the evaluated
frames/images when 4 different QPs are applied to the trans-
form coefficients. Note that the proposed GBT-NN outper-
forms both the DCT and DCT/DST. Fig. 9 plots the PSNR
values for a frame of the ChinaSpeed (Class Screen Content)
and BlowingBubbles (Class D) sequences. Fig. 10 shows a re-
constructed frame of the sequence RaceHorse (Class D) after
transformation by the KLT, DCT and our proposed GBT-NN,
and quantization with QP= 37. As depicted, the GBT-NN
achieves a higher visual reconstruction quality than the DCT.

3.2. Computational complexity

Any GBT involves eigendecomposition of the graph Lapla-
cian. Hence, the GBT is as computationally complex as the
KLT. However, the GBT-NN does not need to signal any extra
information for reconstruction thanks to the template-based
prediction strategy and the trained NNs. For any fully con-
nected layer l, the number of learnable parameters, i.e., the
size of matrix W(l) is k × d, where {d, k} are the number of
input and output neurons, respectively. Once the networks are
trained offline, the learned weights are assumed to be com-
mon knowledge between the transformation and reconstruc-
tion stages.
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Fig. 8. (a,c) PE (%) and (b,d) MSE vs. percentage of coeffi-
cients used for reconstruction of (1st row) a frame of sequence Peo-
pleOnStreet (Class A) and (2nd row) a frame of sequence BQTerrace
(Class B).
Table 3. Average PE (in %) and MSE using a small percent-
age of the largest coefficients.

Percentage of coefficients used
1% 5% 10%

PE MSE PE MSE PE MSE
KLT 55.51 44.49 90.85 10.22 93.56 07.97
DCT 16.84 82.99 52.11 48.38 69.07 32.03
DCT/DST 16.14 83.69 50.18 50.64 66.88 34.24
GBTA-All 12.47 87.23 37.14 63.57 52.66 49.04
GBT-LA-All 13.07 83.69 38.62 50.64 54.42 34.24
GBTWpix

-All 12.71 86.78 38.00 62.85 53.86 47.79
GBT-NN (ours) 18.97 78.72 55.43 44.46 72.40 28.94
GBT-LWpix

-All 12.79 86.91 37.77 63.21 53.58 48.05
GBT-LA 24.71 75.17 60.47 40.21 74.28 26.47
GBT-LWpix

17.01 82.82 52.58 47.93 69.18 31.86

4. CONCLUSIONS

In this paper, we proposed the GBT-NN, a new class of
GBTs that performs efficiently in block-based PTC with
intra-prediction. The GBT-NN is based on a deep encoding-
decoding NN that learns a mapping function to approximate
a symmetric adjacency matrix associated with the graph of
the residual block to be encoded. Moreover, thanks to a
template-based prediction strategy, the GBT-NN does not
require to explicitly compute the graph Laplacian for each
residual block during reconstruction. We evaluate the perfor-
mance of the GBT-NN in terms of the PE (%) and MSE when
a small percentage of the largest coefficients are used for re-
construction, as well as in terms of the PSNR when different
quantization levels are applied to the transform coefficients.
Evaluation results show that the proposed GBT-NN outper-
forms DCT and DCT/DST, which are widely used by modern
video codecs.
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Fig. 9. PSNR vs. QP for a frame of (a) sequence ChinaSpeed (Class
Screen Content) and (b) sequence BlowingBubbles (Class D).

Table 4. Average reconstruction PSNR values when using
quantization on the transform coefficients.

Quantization Parameters
QP=22 QP=27 QP=32 QP=37

KLT 40.22 36.05 32.71 29.62
DCT 35.21 31.02 28.29 23.07
DCT/DST 20.56 19.02 18.25 17.10
GBTA-All 8.62 7.65 6.55 6.96
GBT-LA-All 16.38 15.47 14.73 12.73
GBTWpix

-All 10.14 9.83 9.11 8.56
GBT-NN (ours) 35.86 31.69 29.18 23.93
GBT-LWpix

-All 11.25 11.49 9.18 8.89
GBT-LA 36.69 33.84 30.31 25.73
GBT-LWpix

35.71 31.58 28.55 23.16

(a) (b)

(c) (d)

Fig. 10. (a) An original frame of sequence RaceHorse (Class D). (b)
An area reconstructed after using the KLT (PSNR = 28.45 dB), (c)
the proposed GBT-NN (PSNR = 23.92 dB), and (d) the DCT (PSNR
= 22.67). In all cases, QP=37.
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