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Abstract

Age, as an important soft biometric trait, can be inferred based on the

appearance of human faces. However, compared to other facial attributes like race

and gender, age is rather subtle due to the underlying conditions of individuals (i.e.,

their upbringing environment and genes). These uncertainties make age-related facial

analysis (including age estimation, age-oriented face synthesis and age-invariant face

recognition) still unsolved. In this thesis, we study these age-related problems and

propose several deep learning-based methods, each tackle a problem from a specific

aspect.

We first propose a customised Convolutional Neural Network architecture

called the FusionNet and also its extension to study the age estimation problem.

Although faces are composed of numerous facial attributes, most deep learning-based

methods still consider a face as a typical object and do not pay enough attention

to facial regions that carry age-specific features for this particular task. Therefore,

the proposed methods take several age-specific facial patches as part of the input

to emphasise the learning of age-specific patches. Through extensive evaluation, we

show that these methods outperform existing methods on age estimation benchmark

datasets under various evaluation matrices.

Then, we propose a Generative Adversarial Network (GAN) model for age-

oriented face synthesis. Specifically, to ensure that the synthesised images are within

target age groups, this method tackles the mode collapse issue in vanilla GANs with

a novel Conditional Discriminator Pool (CDP), which consists of multiple discrimin-

ators, each targeting one particular age category. To ensure the identity information

xiv



is unaltered in the synthesised images, our method uses a novel Adversarial Triplet

loss. This loss, which is based on the Triplet loss, adds a ranking operation to further

pull the positive embedding towards the anchor embedding resulting in significantly

reduced intra-class variances in the feature space. Through extensive experiments,

we show that our method can precisely transform input faces into the target age

category while preserving the identity information on the synthesised faces.

Last but not least, we propose the disentangled contrastive learning (DCL) for

unsupervised age-invariant face recognition. Different from existing AIFR methods,

DCL, which aims to learn disentangled identity features, can be trained on any

facial datasets and further tested on age-oriented datasets. Moreover, by utilising a

set of three augmented samples derived from the same input image, Disentangled

Contrastive Learning can be directly trained on small-sized datasets with promising

performance. We further modify the conventional contrastive loss function to fit

this training strategy with three augmented samples. We show that our method

dramatically outperforms previous unsupervised methods and other contrastive

learning methods.
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Chapter 1

Introduction

1.1 Age as a Soft Biometric Trait

Biometrics aim to determine the identity of an individual by leveraging the subjects’

physiological or behavioural attributes [75]. Physiological attributes refer to the

physical characteristics of the human body, like the face, iris, fingerprint, etc. On the

other hand, behavioural attributes indicate the particular patterns of the behaviour

of a person, which include gait, voice, keystroke dynamics, etc. Among all these

biometrics attributes, the face is the most commonly used one due to its accessibility

and the fact that face-based biometric systems require little cooperation from the

subject.

Besides the identity information, other ancillary information like age, race

and gender (often referred to as soft biometrics) can also be retrieved from the

face. Soft biometrics is the set of traits that provide some information to describe

individuals, but do not have the capability to discriminate identities due to their lack

of distinctiveness and permanence [74]. Although soft biometric traits alone cannot

distinguish among individuals, they can be used in conjunction with the identity

information to boost the recognition or verification performance or be leveraged in

other scenarios. For example, locating persons-of-interest based on a combination of

soft biometric traits by using surveillance footage.
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Compared to traditional biometrics, soft biometrics have the following merits.

First, when the identity information is not available, soft biometrics can generate

human-understandable descriptions to track the person-of-interest, such as in the

2013 Boston bombings [82]. Second, as the data abuse issue becomes more and

more severe in the information era, using soft biometric traits to capture subjects’

ancillary information can preserve their identity while achieving the expected goals.

For example, companies can efficiently recommend merchandises by merely knowing

the age or the gender of their potential customers. Third, collecting soft biometric

traits do not require the participation of the subject, which makes them easy to

compute.

Among all the soft biometric traits (age, gender, race, etc.) that can be

obtained from facial images, age has the widest range of real-life applications. To

begin with, the age information is widely utilised in security control and surveillance

monitoring systems. By determining the user’s age, vending machines or websites

that contains adult-exclusive content can prevent teenagers from access. Moreover,

faces within different age groups can be synthesised to predict the outcome of

cosmetic surgeries and generate special visual effects on characters of video games

and films [40]. Furthermore, age information can aid face recognition and verification

systems to track person-of-interest such as missing children, people with dementia,

or suspects over several years span [148].

1.2 Age-related Problems

Based on the form of expected output, the age-related problem can be categorised into

three sub-problems: age estimation, AOFS, and AIFR. Specifically, age estimation

is concerned with inferring the specific age from facial images; AOFS is concerned

with the rendering of facial images with natural ageing or rejuvenating effects; AIFR

involves the recognition of the identity of subjects correctly regardless of their age.
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Figure 1.1: A simplified diagram of a deep learning-based age estimation model.

1.2.1 Age Estimation

The purpose of age estimation is to estimate the real age (cumulated years after

birth) of the subject. The predicted age is mainly deduced based on the age-specific

features extracted by the feature extractor. Modern face-based age estimation

methods typically consist of two components, a feature extractor and an estimator.

The feature extractor is used to extract age-specific features from raw facial images,

and the estimator is used to predict the age based on the extracted features. Before

deep learning-based methods dominated the computer vision field, researchers used

to estimate ages with hand-crafted features [36, 43, 44]. With the growing size of

age-oriented datasets, CNNs are now the foundation of feature extractors. A block

diagram of a deep learning-based age estimation model can be found in Figure 1.1.

Since we are only interested in the face region, the face is located and aligned from

the original image before fed into the CNN model.

1.2.2 Age-Oriented Face Synthesis

Compared to age estimation, AOFS has not gained much attention from the research

community yet. AOFS methods aim to generate elder or younger faces by rendering

facial images with natural ageing or rejuvenating effects. The synthesis is usually

conducted between age categories (e.g. the 20s, 30s, 40s) rather than specific ages

(e.g. 22, 25, 29) since there is no noticeable visual change of a face over a several-year

span. A block diagram of an AOFS model with two parallel processes, an ageing
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Figure 1.2: A simplified block diagram of an AOFS model.

process and a rejuvenating process, can be found in Figure 1.2.

1.2.3 Age-Invariant Face Recognition

AIFR aims to recognise the identity of subjects regardless of their age and is an

important yet less studied topic compared to other sub-problems of face recognition.

Different from the conventional face recognition problem, AIFR needs to consider

the intra-class variance caused by the age information.

Existing AIFR methods can be categorised as either a discriminative model

or a generative model [94, 152]. Discriminative models [49, 132, 152, 159] aim to

learn and extract age-invariant features directly from input images while generative

models [88, 119] synthesise samples that match the target age before the feature

extraction.
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1.3 Motivations

All three age-related facial analysis problems have gained more and more attention

from the research community, and the performance has been boosted significantly

thanks to the recent development of machine learning methods, especially deep

learning methods. However, there is still a large margin to improve by paying

attention to details for each problem. Here, we discuss the limitations of existing

works tackling each problem and how the performance can be further improved.

As aforementioned, modern age estimation methods typically consist of two

components, a feature extractor and an estimator. Most state-of-the-art works

[14, 21, 39, 67, 93, 97, 98, 114, 117, 134] focus on designing customised estimators

while treating the facial image as an ordinary input, hence paying no attention to

the relative importance of the extracted features. However, related studies [53, 56]

show that age-specific patches are useful when predicting the age of the subject

from an image. In other words, customised feature extractors can be designed to

exploit age-specific patches during training to boost the performance of face-based

age estimation methods. Therefore, we focus on design customised feature extractors

to further boost the performance of age estimation. Figure 1.3 exemplifies discovered

age-specific patches represented as heatmaps. Each row in the figure depicts an

age-specific patch cross different subjects.

Regarding the AOFS problem, in order to synthesise realistic images, the

vanilla GAN [50] is commonly used as the backbone of state-of-the-art AOFS methods

[5, 47, 92, 118, 171]. One of the biggest advantages of the vanilla GAN over other

generative methods, like the Variational Autoencoder [79], is that it can generate

sharp and realistic images by playing a minimax game between the generator and

the discriminator.

However, the vanilla GAN suffers from the mode collapse issue caused by

the vanishing gradient due to the involvement of the negative log-likelihood loss

[6]. Specifically, once the discriminator converges, the loss does not penalise the
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Figure 1.3: Five most informative age-specific patches.
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Ageing

Figure 1.4: A demonstration of mode collapse in AOFS.

generator any further [17]. This allows the generator to find a specific mode (i.e.,

a distribution) that can easily fool the discriminator [10]. The mode collapse issue

may also occur in the AOFS problem, where a mode is represented by an age group.

Within this context, the vanilla GAN may generate faces with limited variations as

exemplified in Figure 1.4. The figure uses the ageing process as an example where the

top row depicts images generated by a vanilla GAN suffering from the mode collapse

issue, and the bottom row depicts images with rich and natural ageing effects.

For the AIFR problem, it is commonly known that cross-age facial images

are usually expensive to collect, which makes the size of noise-free age-oriented

datasets relatively small compared to that of widely-used large-scale facial datasets.

A statistical comparison between a widely used noise-free age-oriented face dataset

and a general large-scale face dataset is tabulated in Table 1.1. In the table, #images

indicates the number of images in the dataset, #images per subject indicates the

number of images per subject, and SOTA performance indicates the state-of-the-art

performance achieved on the corresponding dataset. It is worth noting that the
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Table 1.1: Comparison between a noise-free age-oriented face dataset and a large-scale
face dataset.

Dataset #images #images per subject SOTA performance

Age-oriented 1,002 12 60.01% [145]

General 3,310,901 363 96.10% [13]

performance achieved on the age-oriented dataset requires pre-training on large-scale

datasets before fine-tuning and evaluating on the target dataset. Additionally, in

real scenarios, images of the same subject at different ages are usually hard or even

impossible to obtain, which further limits the versatility of supervised AIFR methods.

1.4 Contributions

Motivated by the ideas mentioned in Section 1.3, this thesis focuses on developing

novel deep learning-based methods to tackle age-related facial analysis tasks. This

thesis proposed four methods in total, two for age estimation, one for AOFS, and

one for AIFR. The main contributions of this thesis are summarised as follows:

• We propose a customised CNN named FusionNet to solve the age estimation

problem. To the best of our knowledge, our network is the first CNN-based

model in which the learning of age-specific features is enhanced by using

selected input patches. The facial patch selection process is based on the BIF

and the AdaBoost algorithm. Moreover, these input patches form short-cut

connections that complement the learning process, which is useful to boost the

performance.

• To further improve the training efficiency and the performance of the FusionNet,

we propose a framework called ADPF for the age estimation problem. Instead

of using the BIF and the AdaBoost algorithm to locate age-specific patches,

ADPF uses an AttentionNet, which includes a novel attention mechanism. The

proposed attention mechanism dynamically produces ranked single-channel
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attention maps, where each attention map highlights a particular patch. Addi-

tionally, to reduce the overlap among patches, we propose a diversity loss to

force the attention mechanism to reveal diverse age-specific regions.

• Given the mode collapse issue in the GANs, we study this specific issue in

the AOFS task. To the best of our knowledge, our work is the first to tackle

the AOFS task from the aspect of mode learning. Specifically, to address the

mode collapse issue in the vanilla GAN and attain a high synthesis accuracy,

we propose the CDP, which allows our AOFS method to learn multiple modes

explicitly and independently. To preserve the identity information in the

synthesised images, we propose the Adversarial Triplet loss. Smaller intra-class

variance can be achieved by forcing triplets to play zero-sum games during

training.

• Instead of studying supervised AIFR problem, given the small-sized age-oriented

datasets, we tackle the unsupervised AIFR problem by proposing the DCL that

utilises three augmented samples from each input image. To learn disentangled

identity features, the DCL maximise the similarity between features that

represent the facial images of the same subject within different age groups. We

also modify the conventional contrastive loss to fit the training strategy with

three augmented samples.

1.5 Outline

This thesis is organised as follows:

• Chapter 2: Literature Review

This chapter provides a comprehensive overview of machine learning and deep

learning-based works from the research community that tackle the three age-

related facial analysis problem. We also review several widely used age-oriented

face dataset and various evaluation metrics for each problem.
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• Chapter 3: FusionNet for Age Estimation

This chapter discusses the proposed FusionNet that tackles the age estimation

problem. CNNs have been applied to age-related research as the core framework.

Although faces are composed of numerous facial attributes, most works with

CNNs still consider a face as a typical object and do not pay enough attention

to facial regions that carry age-specific feature for this particular task. To

this end, we propose the FusionNet. Apart from the whole facial image, the

FusionNet successively takes several age-specific facial patches as part of the

input to emphasise the age-specific features. Through experiments, we show

that the FusionNet significantly outperforms other state-of-the-art models on

the MORPH II benchmark.

• Chapter 4: Improving Age Estimation with Attention-Based Dy-

namic Patch Fusion

Chapter 4 presents the ADPF that is built based on the FusionNet. In

ADPF, two separate CNNs are implemented, namely the AttentionNet and

the FusionNet. The AttentionNet dynamically locates and ranks age-specific

patches by employing a novel RMHHA mechanism. The FusionNet uses the

discovered patches along with the facial image to predict the age of the subject.

Since the proposed RMHHA mechanism ranks the discovered patches based on

their importance, the length of the learning path of each patch in the FusionNet

is proportional to the amount of information it carries (the longer, the more

important). ADPF also introduces a novel diversity loss to guide the training

of the AttentionNet and reduce the overlap among patches so that the diverse

and important patches are discovered. Through extensive experiments, we

show that our proposed framework outperforms state-of-the-art methods on

several age estimation benchmark datasets.

• Chapter 5: Age-Oriented Face Synthesis with Conditional Discrim-

inator Pool and Adversarial Triplet Loss
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Chapter 5 focus on tackling the AOFS problem. The vanilla GANs are

commonly used to generate realistic images depicting aged and rejuvenated

faces. However, the performance of vanilla GANs in the AOFS problem is often

compromised by the mode collapse issue, which may result in the generation of

faces with minimal variations and a poor synthesis accuracy. In addition, recent

AOFS methods use the L1 or L2 constraint to preserve the identity information

on synthesised faces, which implicitly limits the identity permanence capabilities

when these constraints are associated with a trivial weighting factor. To this

end, we propose a method for the AOFS that achieves a high synthesis accuracy

with strong identity permanence capabilities. Specifically, to achieve a high

synthesis accuracy, our method tackles the mode collapse issue with a novel

CDP, which consists of multiple discriminators, each targeting one particular

age group. To achieve strong identity permanence capabilities, our method uses

a novel Adversarial Triplet loss. This loss, which is based on the Triplet loss

[131], adds a ranking operation to further pull the positive embedding towards

the anchor embedding resulting in significantly reduced intra-class variances in

the feature space. Through extensive experiments, we show that our proposed

method outperforms state-of-the-art methods in terms of synthesis accuracy

and identity permanence capabilities, qualitatively and quantitatively.

• Chapter 6: Unsupervised Age-Invariant Face Recognition with Dis-

entangled Contrastive Learning

Cross-age facial images are usually expensive to collect, which makes the size of

noise-free age-oriented datasets relatively small compared to that of widely-used

large-scale facial datasets. Additionally, in real scenarios, images of the same

subject at different ages are usually hard or even impossible to obtain, which

limits the versatility of supervised methods. To this end, we tackle the problem

of unsupervised AIFR by proposing the DCL. DCL aims to learn disentangled

identity features and can be trained on any facial datasets and further tested on
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age-oriented datasets. Moreover, by utilising a set of three augmented samples

derived from the same input image, DCL can be directly trained on small-sized

datasets with promising performance. We further modify the conventional

contrastive loss function to fit this training strategy with three augmented

samples. To demonstrate the effectiveness of the proposed method, we conduct

both homogeneous-dataset and cross-dataset experiments using several AIFR

benchmark datasets and general facial datasets. Experimental results show

that DCL outperforms state-of-the-art unsupervised method based on several

evaluation metrics.

• Chapter 7: Conclusion and Future Trends

This chapter concludes this thesis and discusses the future research trend by

discussing the unaddressed issues in three age-related facial analysis problems.
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Chapter 2

Literature Review

This chapter presents the survey of related datasets, evaluation metrics, and works

in age estimation, AOFS, and AIFR. Section 2.1 begins by presenting the commonly

used benchmark datasets for the age estimation problem, which followed by evaluation

metrics for this problem. Then, traditional machine learning-based and deep learning-

based age estimation methods and related techniques we use to tackle the problem

are discussed. Section 2.2 follows the same presentation style and focuses on the

AOFS problem. Section 2.3 focuses on the AIFR problem. After these three sections,

Section 2.4 reviews related machine learning concepts that are related to our works.

We conclude this chapter in Section 2.5.

2.1 Age Estimation

2.1.1 Datasets for Age Estimation

Among all the age-oriented datasets, the MORPH II dataset [126] is the most broadly

used to evaluate age estimation models. This dataset contains more than 55,000

facial images from about 13,000 subjects with ages ranging from 16 to 77 with an

average age of 33. Each image in the MORPH II dataset is associated with identity,

age, race and gender labels. The second most commonly used dataset to evaluate

age estimation models is the FG-NET dataset [28] which contains 1002 images from
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Table 2.1: Most commonly used datasets to evaluate age estimation models.

Dataset #images #subjects age range noise-free label Mugshot

MORPH II 55,134 13,618 16-77 Yes Yes

FG-NET 1,002 82 0-69 Yes No

CACD 163,446 2000 16-62 No No

IMDB-WIKI 523,051 20,284 0-100 No No

82 subjects. However, due to the limited number of images, the FG-NET dataset

is usually only used during the evaluation phase. Since the training of CNN-based

models requires a large number of training samples, to meet this requirement, two

large-scale age-oriented datasets have been built, the Cross-Age Celebrity Dataset

(CACD) [18] and the IMDB-WIKI dataset [130]. The CACD contains more than

160,000 facial images from 2000 individuals with ages ranging from 16 to 62. The

IMDB-WIKI dataset contains 523,051 facial images (460,723 images from IMDB

and 62,328 images from Wikipedia) from 20,284 celebrities. However, both datasets

contain noisy (incorrect) labels. The details of these four datasets are tabulated in

Table 2.1.

2.1.2 Evaluation Metrics for Age Estimation Models

There are two evaluation metrics commonly used for age estimation models. The

first one is the MAE, which measures the average absolute difference between the

predicted age and the ground truth:

MAE =

∑M
i=1 ei
M

, (2.1)

where ei is the absolute error between the predicted age l̂i and the input age label li

for the i-th sample. The denominator M is the total number of testing samples.

The other evaluation metric is the CS, which measures the percentage of
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images that are correctly classified in a certain range:

CS(n) = −Mn

M
× 100%, (2.2)

where Mn is the number of images whose predicted age l̂i is in the range of [li−n, li+n],

and and n indicates the number of years.

2.1.3 Traditional Machine Leaning-based Age Estimation

In the past few decades, many works have been conducted on face-based age estima-

tion. One of the earliest works can be traced back to [85], in which the researchers

classify faces into three age groups based on the cranio-facial development theory

and wrinkle analysis. Later, [153] reveals that wrinkles play an important role in

modelling ageing faces and determining ages.

Before deep learning-based methods dominated the computer vision field,

researchers used to develop face-based age estimation methods with hand-crafted

features. For example, the Statistical Face Model [36] used in [88] is adopted to

extract features and reveal the relationship between features and the corresponding

age labels. Geng et al. [44, 45] propose the AGES to learn ageing pattern vectors

in a representative subspace from training images. Unseen faces are then projected

to this newly constructed subspace to predict their ages. Later, [43] reveals the

ambiguity of mapping ages to age groups and proposes the Fuzzy LDA to build

the classifier as an estimator. The authors define an Age Membership Function to

encode the relevance between ages and age groups and integrate this function as a

weighting factor into the conventional LDA. Guo et al. [51] propose a kernel-based

regression method to tackle the face-based age estimation problem. A worth-noting

algorithm designed to extract hand-crafted features for face-based age estimation is

BIF [53]. The BIF algorithm is based on the HMAX feature extraction method [127],

which models the visual processing in the cortex. Specifically, it adopts the first two

layers of HMAX, where the first layer convolves facial images with a set of Gabor
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filters [41] and the second layer performs maximum (max) pooling over the features

extracted by the first layer. The authors improve this bio-inspired method by adding

a normalisation operation after max pooling. They find that using only the first two

layers of HMAX achieves better results in the age estimation scenario than using the

entire HMAX method. Recently, Han et al. [56] attach binary decision trees after

the feature extraction process performed by the BIF algorithm to predict the age,

gender and race simultaneously.

2.1.4 Deep Leaning-based Age Estimation

Due to the appearance differences among different images of the same individual,

extracting age-specific features and predicting the precise age can be onerous. Due

to the extraordinary capability of CNN for feature extraction, [149] first employ a

CNN to tackle the age estimation problem. In [149], the authors design a two-layer

CNN to extract the age-specific features and use manifold learning algorithms (SVR

and SVMs) to compute the final output. Their results show a dramatic improvement

on the MORPH II dataset compared to the methods that use traditional machine

learning [15, 45, 166].

As aforementioned, recent deep learning-based attempts for age estimation

can be classified into two categories. The first category is about improving the

accuracy by leveraging customised loss functions rather than using conventional

classification loss functions, such as the cross-entropy loss. The second category

boosts the estimation performance by modifying the network architecture of a plain

CNN model. We first review the recent age estimation works based on these two

categories. Then, we discuss some works that involve multi-task learning frameworks

to learn age information along with other tasks.

Generally, the age estimation problem can be treated as a multi-class clas-

sification problem [116] or a regression problem [114]. Rothe et al. [130] propose a

formulation that combines regression and classification for this particular task. Since

age estimation usually involves a large number of classes (approximately 50 to 100)
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and based on the fact that the discretisation error becomes smaller for the regressed

signal when the number of classes becomes larger, they compute the final output

value by using the following equation:

E(O) =
n∑
i=1

piyi, (2.3)

where O is the output from the final layer of the network after a softmax function, yi

is the discrete year representing the i-th class and n indicates the number of classes.

Evaluation results demonstrate that this method outperforms both conventional

regression and classification in the ChaLearn LAP 2015 apparent age estimation

challenge [37] and other benchmarks.

Recent solutions for age estimation have shown that there is an ordinal

relationship among ages and leveraged this relationship to design customised loss

functions. The ordinal relation indicates that the age of an individual increase as

time elapses since ageing is a non-stationary process. Specifically, in [99], the authors

construct a label ordinal graph based on a set of quadruplets from training batches

and use a hinge loss to force the topology of this graph to remain constant in the

feature space. On the other hand, [114] treats the age estimation problem as an

ordinal regression problem [91]. The ordinal regression is a type of classification

method which transforms the conventional classification into a series of simpler

binary classification subproblems. In [114], each binary classification subproblem is

used to determine whether the estimated age is younger or elder than a specific age.

To this end, the authors replace the final output layer with n binary classifiers, where

n equals the number of classes. Let us assume that there are N samples {xi, yi}Ni=1,

where xi is the i-th input image and yi is the corresponding age label, and T binary

classifiers (tasks). The loss function to optimise the multi-output CNN can then be

formulated as [114]:

Em = − 1

N

N∑
i=1

T∑
t=1

λt1{oti = yti}wtilog(p(oti | xi,W t)), (2.4)
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where oti indicates the output of the t-th binary linear layer, yti indicates the label

for the t-th task of the i-th input, and wti indicates the weight of the i-th image

for the t-th task. Moreover, W t is the weight parameter for the t-th task, and λt

is the importance coefficient of the t-th task. Chen et al. [22] take a step further

by training separate networks for each age group so that each network can learn

specific features for the target age group rather than sharing the common features as

in [114]. Experiments show that this separate training strategy leads to a significant

performance gain on the MORPH II dataset under both evaluation metrics. Li et

al. [90] also consider the ordinal relation among ages in their work. However, instead

of applying the age estimation model on the entire dataset, they take the different

ageing pattern of different races and genders into consideration and leverage the

domain adaptation methodology to tackle the problem. As stated in their paper, it is

difficult to collect and label sufficient images of every population (one particular race

or gender) to train the network. Therefore, an age estimation model that is trained

on the population with an insufficient number of images would have lower accuracy

than models trained on other populations. In their work, they first train an age

estimation model under the ranking based formulation on the source population (the

population with sufficient images). Then, they fine-tune the pre-trained model on

the target population (the population with a limited number of images) by adopting

a pairwise loss function to align the age-specific features of the two populations. The

loss function used for feature alignment is [90]:

Ns∑
i=1

Nt∑
j=1

{1− lij(η − d(x̂si , x̂
t
j)) · ω(ysi , y

t
j)}, (2.5)

where x̂si and x̂tj are the high-level features extracted from the network, ysi and ytj

are the labels of the images from the source and target populations, respectively.

d(·) is the Euclidean distance. η and ω(·) are a predefined threshold value and a

weighting function, respectively. lij is set to 1 if ysi = ytj or -1 otherwise. The basic

idea behind this function is that when the two images have the same age label, the
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model tries to minimise [90]:

d(x̂si , x̂
t
j))− 1, (2.6)

which reduces the Euclidean distance between two features. When the two images

have different labels, i.e. ysi 6= ytj , the model tries to minimise [90]:

3

ω(ysi , y
t
j)
− d(x̂si , x̂

t
j)), (2.7)

where ω(ysi , y
t
j) is a number smaller than one. This pushes the two features away from

each other with a large distance value. In addition, the distance value is proportional

to the age difference between the two images.

Another research trend based on customised loss functions is to involve joint

loss functions to optimise the age estimation model. Current works that involve joint

loss functions include [68] and [117]. [68] studies the problem where the labelled data

are not sufficient. In that work, the authors use the Gaussian distributions as the

labels rather than specific numbers, which allows the model to learn the similarity

between adjacent ages. Since the labels are distributions, they use the KL-divergence

to minimise the dissimilarity between the output probability and the label. The

KL-divergence can be formulated as:

DKL(P ‖ Q) = Ex∼P [log(P )− log(Q)], (2.8)

where P and Q are two distributions. Besides the KL divergence, their model also

involves an entropy loss and a cross-entropy loss. The entropy loss is used to make

sure the output probability only has one peak since an image can only be associated

with one specific age. The cross-entropy loss is used to consider the age difference

between images for the non-labelled datasets. Moreover, for the non-labelled datasets,

their model accepts two images as input simultaneously. For example, for two images

a and b, where a is K years younger than b, then the age of a should not be larger

than K. For the image a, the authors split the output layer into two parts, the
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first part is the neurons with the indices 0 to K, and the second part is the neurons

with the indices K to M , where M is the total number of classes. Based on the

aforementioned assumption, the sum of the values in the second part should be 0

while the sum of the values in the first part should be a positive number. The authors

treat this problem as a binary classification problem and use the cross-entropy loss

to minimise the probability error.

[117] also uses the Gaussian distribution to represent the age label. In addition,

it proposes a mean-variance loss to penalise the mean and variance value of the

predicted age distribution. The mean-variance loss is used alongside the classification

loss to optimise the model, which currently achieves the best performance on the

MORPH II dataset and the FG-NET dataset under the MAE metric.

Other worth noting works that also use customised loss function are [100] and

[60]. [100] considers both the ordinal relation among ages and the age distribution

and involve the metric learning method to cluster the age-specific features in the

feature domain. On the other hand, [60] adopts the triplet loss [131] from the

conventional face recognition task and uses it for age estimation.

Instead of using plain CNN models (a stack of convolutional layers), some

works modify the network architecture to design efficient age estimation models,

which is another trending research topic to boost the estimation performance.

Yi et al. [162] design a multi-column CNN for age estimation. They take the

facial attributes (the eyes, nose, mouth, etc.) into consideration and train several

sub-networks for each attribute. All the features extracted from different attributes

are then fused before the final layer. [162] is also one of the earliest works that use a

CNN for age estimation.

Taheri and Toygar [140] also fuse the information during the learning process.

They design a fusion framework to fuse the low-level features, the middle-level

features, and the high-level features from a CNN to estimate the age.

Another challenging research area is multi-task learning, which combines age

estimation with other facial attribute classification problems or with face recognition.
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Multi-task learning is a learning scheme that can learn several tasks simultaneously,

which allows the network to learn the correlation among all the tasks and saves

training time and computational resources.

Levi and Hassner [89] first design a three-layer CNN to classify both the

age and the race. Recently, Hsieh et al. [65] design a CNN with ten layers for age

estimation, gender classification and face recognition. Results show that this joint

learning scheme can boost the performance of all three tasks. Similarly, Ranjan et

al. [125] propose an all-in-one face analyser which can detect and align faces, detect

smiles, and classify age, gender and identity simultaneously. They use a pre-trained

network for face recognition and fine-tune it using the target datasets. Authors argue

that the network pre-trained for the face recognition task can capture the fine-grained

details of the face better than a randomly-initialised one. Each sub-network used for

each task is then branched out from the main path based on the level of features on

which they depend. Experimental results demonstrate a robust performance on all

the tasks.

Lately, Han et al. [57] also involve age estimation in a multi-task learning

scheme for the face attribute classification problem. Different from the aforementioned

works, they group attributes based on their characteristics. For example, since the

age is an ordinal attribute, it is grouped with other ordinal attributes like the hair

length. Rather than sharing the high-level features among all the attributes, each

group of attributes has independent high-level features.

Different from above methods, our FusionNet and ADPF focus on the cus-

tomised feature extractor by involving dynamically detected age-specific patches.

Since the facial images and cropped patches are processed by a different number of

convolutional layers, i.e., the length of the learning path varies for different learning

sources, the FusionNet in both works involves fusing different levels of features. One

work that also fuses different levels of features is [156]. However, the fused features

in our work are from various inputs while the fused features in [156] are all from the

input facial image.
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2.2 Age-Oriented Face Synthesis

2.2.1 Datasets for Age-Oriented Face Synthesis

Since the age synthesis models also require age information for the training phase,

they can also rely on the datasets mentioned in Section 2.1 for training and evaluation.

The most broadly used datasets to evaluate age synthesis models are the MORPH II

dataset, the CACD and the FG-NET dataset. Typically, the MORPH II dataset

and the CACD are used for both training and evaluation, and the FG-NET dataset

is only involved in the evaluation phase due to its limited number of samples.

2.2.2 Evaluation Metrics for Age-Oriented Face Synthesis Models

Although age synthesis methods have attracted important attention from the research

community, several challenges make the synthesis process hard to achieve. First,

age synthesis benchmark datasets like the CACD involve other variations like the

PIE and occlusion. With these unexpected factors, extracting age-specific features

is onerous. Second, existing datasets do not have enough images covering a wide

age range for each subject. For example, the MORPH II dataset only captures

a time span of 164 days, on average, which may make the learning of long-term

personalised ageing and rejuvenating features an unsupervised task. Third, the

underlying conditions of the individuals, such as their upbringing environment and

genes, make the whole synthesis process a difficult prediction task.

Based on these aforementioned challenges, researchers have established two

criteria to measure the quality of synthesised faces. One is the synthesis accuracy,

under which synthesised faces are fed into an age classification model to test whether

the faces have been transformed into the target age category. Another criterion is

the identity permanence, which relies on face verification algorithms to test whether

the synthesised face and the original face belong to the same person [160].
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2.2.3 Traditional Machine Leaning-based Age-Oriented Face Syn-

thesis

The first AOFS methods can be traced back to [106, 107, 143], in which craniofacial

growth in young faces is studied. In the early stage, geometry-based methods were

a popular choice among researchers, and one of the most representative works is

the ASM [29]. The authors model the shape of faces by adjusting the positions of a

number of points. Each point marks one part of the face, such as the position of the

eyes and the boundary of the face. Synthetic facial images of different shapes and ages

can then be obtained by adjusting the position of these points. Another approach to

rendering ageing or rejuvenating effects is to directly synthesise or remove wrinkles

on a given facial image [8, 102, 112, 153, 154]. Later, Ramanathan and Chellappa

[124] propose an ageing-focused method called the craniofacial growth model for

synthesising elderly faces by leveraging facial landmark movements. Another worth-

noting early AOFS method is [136], where the authors use dictionary learning to

learn a personalised ageing process and associate an ageing dictionary to each subject

to represent their ageing characteristics.

2.2.4 Deep Leaning-based Age-Oriented Face Synthesis

With the increasing popularity of deep learning, several attempts have been made to

tackle the AOFS problem using various network architectures. Both Wang et al. [151]

and Zhang et al. [170] use conditional adversarial learning [109] to synthesise aged

faces. Wang et al. further employ an age category classifier to boost the synthesis

accuracy and an L2 constraint on the identity-specific features to preserve the

identity information. Yang et al. [160] propose a GAN framework by implementing a

customised discriminator with a pyramid architecture, which leads to more realistic

results than a conventional discriminator as images can be discriminated based

on features at multiple scales. They further adopt a pre-trained identity classifier

to preserve the identity in the synthesised images. AOFS methods based on the
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Wavelet transform are proposed recently in [92, 101], where this transform is used

to enhance the texture information in the frequency domain so that richer ageing

and rejuvenating effects can be synthesised. He et al. [61] implement a GAN model

with a customised generator, where a number of decoders are implemented, each one

learning an age category. All the decoders are associated with a weight factor to

control their relative importance in each transformation. Since all the decoders in the

above methods are trained in parallel, the computational complexity of the method

is proportional to the number of age categories to be learned. On the contrary, by

selecting a particular discriminator from a discriminator pool, our CDP only uses one

discriminator for each transformation, which does not increase the computational

complexity.

Our work is different from the aforementioned deep learning-based methods

as it tackles the AOFS problem from a different angle (i.e., mode learning). Our

method can achieve high synthesis accuracy by learning multiple modes explicitly

and independently. Additionally, compared to the L1 loss, the L2 loss, and the simple

classifiers used in those methods, our AOFS method uses the proposed Adversarial

Triplet loss to keep the identity information unaltered in the synthesised facial

images.

2.3 Age-Invariant Face Recognition

2.3.1 Datasets for Age-Invariant Face Recognition

The datasets commonly used for evaluation of AIFR models are the MORPH II

dataset and the FG-NET dataset. Moreover, the CACD-VS, which is a noise-free

dataset derived from the CACD for cross-age face verification, is also used for AIFR.

The CACD-VS contains 2,000 positive cross-age image pairs and 2,000 negative

pairs. In addition, researchers also test their AIFR models on the conventional face

datasets such as the LFW dataset to demonstrate the generalisation ability of their

models.
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2.3.2 Evaluation Metrics for Age-Invariant Face Recognition Mod-

els

Rank-1 accuracy and the mAP are the two widely used evaluation metrics for AIFR

models. Given a set of query images Q, a set of retrieval results Ri and the number of

correct retrieval results mi for a query image qi, we first define the average precision

of qi as:

AP (qi) =
1

mi

mi∑
i=1

Precision(Ri). (2.9)

Then, the mAP of Q can be formulated as:

mAP (Q) =
1

Q

Q∑
i=1

AP (qi). (2.10)

2.3.3 Traditional Machine Leaning-based Age-Invariant Face Re-

cognition

The problem of AIFR has not gained much attention from the research community

yet as there are relatively limited works on it compared to works that study other

facial variations like pose, illumination and expression. One of the early works is [119],

in which the authors used 3D modelling to simulate facial ageing and compensate for

the age variations to improve the face recognition performance. In detail, 3D models

are built from 2D images, and separate modelling methods are used to generate aged

faces. Although they considered both the shape and texture in ageing simulation, the

generated faces are not well constructed due to the lack of efficient age estimation

algorithm. Later, Li et al. [94] defined two general approaches for AIFR. The

aforementioned method [119] is categorised as a generative approach, which first

synthesises the face that matches the target age and then performs recognition. The

other approach is called discriminative approach in which age-invariant features are

learned and extracted, and the recognition is based on these features.

Due to the low-quality samples synthesised by early generative models, most

existing AIFR methods are discriminative approaches [49, 81, 132, 152, 159]. Studies
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on human age [87, 112] show that age information on faces is associated with skin

textures, i.e., the texture becomes rough as the age progresses. To this end, early

discriminative approaches [94, 138, 158, 159] use the LBP to extract features from

facial images and then use techniques like PCA or LDA to perform dimensionality

reduction on extracted features. Gong et al. [49] model the extracted low-dimensional

features as a combination of multiple components, among which one component

represents the age information that can be decomposed from the global features

before performing the recognition.

2.3.4 Deep Leaning-based Age-Invariant Face Recognition

With the increased popularity of the CNNs, researchers have started to use them as

features extractors in discriminative AIFR methods. Wen et al. [152] are the first

using a CNN to tackle the AIFR problem. Instead of directly applying a CNN, the

authors designed a customised network with the latent identity analysis that learns

disentangled features. Zheng et al. [173] proposed a multi-task framework for AIFR

with one learning path for the face recognition task and another for the age estimation

task. To obtain age-invariant identity features, the authors subtract age features

from global features. However, they did not consider the correlation between age

features and identity features. Later, Wang et al. [150] followed the same multi-task

strategy and proposed a novel decomposition method to disentangle the age features

from the identity features by using a spherical coordinate system. They also used a

regression loss to learn finer age features in order to boost the effectiveness of the

decomposition process. The authors further proposed a discriminative method based

on adversarial learning and canonical mapping module to reduce the correlation

between the age features and the identity features [145]. This adversarial learning-

based method demonstrated a superior performance than their previous method on

several benchmark datasets.

With the dramatically improved quality of synthesised images, researchers

have moved their attention back to the generative approach. Zhao et al. [171]
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proposed an end-to-end method that can simultaneously synthesise faces at different

age groups and performed feature disentanglement. Specifically, the disentanglement

is achieved by leveraging a gradient reverse layer [42] that can reverse the gradient

of the age information during the back-propagation. Recently, Zhao et al. [172]

proposed a GAN model for AIFV. The model can synthesise realistic facial images

within different age groups by manipulating the latent features between the encoder

and the decoder. The verification is then conducted between the input image and

the synthesised one.

While all the aforementioned methods are designed for supervised AIFR,

unsupervised AIFR is rarely studied. The only worth noting work is [157] in which

a pair of auto-encoder is implemented to learn the ageing and de-ageing process

simultaneously. However, this method requires image pairs of the same subject as

input which may not be applicable in some extreme cases.

2.4 Review of Machine Learning Concepts

This section reviews related machine learning concepts that are related to our works.

Specifically, we first review various works on the attention mechanism since we use it

to discover age-specific patches in age estimation problem. Then, we discuss works

that alleviate the mode collapse issue in GANs as we tackle the AOFS from the

aspect of mode learning. Additionally, we review works related to the triplet loss.

Last, we present a review of contrastive learning.

2.4.1 Attention Mechanisms

We used both MHSA and Channel-wise Attention in our work. MHSA is first

proposed in [144] and has been widely deployed as the backbone model for various

NLP tasks [32]. MHSA can attend to multiple informative segments of the input

with an attention head attending to one specific segment. Therefore, the number

of segments MHSA can attend to is determined by the number of attention heads.
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MHSA has been recently used for imaging data. For example, Zhang et al. [165]

uses MHSA for the image synthesis task. Specifically, the authors propose the

self-attention GAN (SAGAN) by adding MHSA layers to both the generator and the

discriminator of a GAN [50]. With the help of MHSA layers, SAGAN can synthesise

images with finer details than other state-of-the-art GAN models like [12]. Several

recent works [9, 121] also use MHSA for image classification and object detection

tasks.

Ever since Zeiler et al. [164] visualised the feature maps learned by each

channel in each layer of the AlexNet [83] trained on the ImageNet dataset [31],

researchers have been exploiting channel-wise attention mechanism to guide the

network to pay attention to those channels that learn representative feature maps.

Hu et al. [66] integrate channel-wise attention into various CNN architectures

[58, 64, 137, 139] to boost their performance on image classification and object

detection tasks. Similarly, Zhang et al. [167] and Chen et al. [20] employ channel-

wise attention to generate high-resolution images and image captions, respectively.

Different from the aforementioned works where channel-wise attention is used to

highlight informative channels in the input, in the proposed RMHHA mechanism,

we use the computed channel-wise attention weights to merge the multi-channel

self-attention maps into a single-channel attention map that reveals a particular

age-specific patch.

2.4.2 Mode collapse in GANs

The vanilla GAN, which is introduced by Goodfellow et al. [50], is capable of

generating sharp and realistic images by playing a minimax game between its

generator and its discriminator. When training the vanilla GAN, the generator and

the discriminator try to reach a Nash equilibrium [108] by minimising the negative

log-likelihood loss and minimising the JS-divergence [96]. However, the involvement

of the negative log-likelihood loss may cause the discriminator to converge faster

than the generator [63]. Once the discriminator finds its global minima, the loss
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function stops penalising the generator [17]. This is also known as the vanishing

gradient problem [6, 38, 76] and is the main cause of the mode collapse issue. Since

the parameters in the discriminator are not further updated, the generator may

then find a specific mode that can easily fool the discriminator. When such an issue

occurs, the vanilla GAN can only generate limited varieties of samples. Solving this

mode collapse issue has become one of the most trending research topics on GANs.

Since the mode collapse issue is caused by the vanishing gradient problem due

to the involvement of the negative log-likelihood loss, one strategy to alleviate it is to

use an alternative loss function that minimises a different divergence. Nowozin et al.

[115] first show that the optimisation of GANs is a general process that can be done

by minimising any f -divergence [30, 95], which is a family of divergences aiming to

minimise the distance between two distributions. Some commonly used members of

the f -divergence family are the JS-divergence, the KL-divergence [84], the squared

Hellinger divergence, and the Pearson χ2 divergence [123]. The authors show that

GANs trained with other divergences, like the KL-divergence or the squared Hellinger

divergence, can generate images with more variations compared to those generated

by the vanilla GAN. Although the work in [115] does not tackle the mode collapse

issue directly, it shows the possibility of using other loss functions to optimise GANs.

Arjovsky et al. [7] propose the WGAN and use the Wasserstein or EM

distance to calculate the distance between distributions of the real and synthesised

data. Intuitively, the EM distance computes the cost of transforming one distribution

to another, which is more sensitive to the difference between two distributions

[7]. Therefore, even if the discriminator is well-trained, it can still keep rejecting

the data synthesised by the generator. The LSGAN [104], on the other hand,

replaces the negative log-likelihood loss by the L1 loss. Minimising the L1 loss is

equivalent to minimising the Pearson χ2 divergence, which can produce overdispersed

approximations and thus makes the LSGAN less mode-seeking [33, 105].

Although the methods discussed before may alleviate the mode collapse issue,

their discriminators still have to learn from all the modes. Therefore, recently
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proposed methods now focus on modifying the GAN structure. For example, Nguyen

et al. [113] propose the D2GAN where each discriminator favours data from a

different distribution. By using this strategy, their method can compute the KL

and reverse KL divergence simultaneously, which in turn increases the variety of

samples. Based on this idea, Zhang et al. [168] propose a D2GAN variation with two

customised discriminators. Specifically, one discriminator consists of residual blocks

to form a deep network aiming to increase the variety of generated samples. The

other discriminator uses the SELU function [80] as the non-linear activation function.

Adopting the SELU function guarantees that this discriminator produces a non-zero

value even if the distributions of the synthesised and real data are similar. The

authors further propose the D2PGGAN [169] to stabilise the training by leveraging

the idea of progressively increasing the complexity of the generator [77]. Durugkar

et al. [35] propose a GAN with multiple discriminators. Their method may alleviate

the mode collapse issue to some extent since the generator has to fool a set of

discriminators, which in turn makes the generated samples diverse. It is important

to note that by introducing additional discriminators in parallel, the aforementioned

methods are also more computationally complex than their plain counterparts (e.g.,

the vanilla GAN). On the contrary, by selecting a particular discriminator from a

discriminator pool, our CDP only uses one discriminator for each transformation,

which does not increase the computational complexity.

2.4.3 Triplet Loss

The Triplet loss is proposed in [131] aiming to learn feature embeddings for images by

optimising the geometric relationship, in the feature space, within a triplet consisting

of an anchor, a positive and a negative. Within this context, the anchor and positive

represent feature embeddings of the same class and the negative represents a feature

embedding of a different class. The goal is to minimise the distance between the

anchor and the positive and simultaneously push the negative away from the anchor.

Since then, a number of variations to this loss have been proposed. For instance,

30



Chen et al. [24] uses an additional negative embedding alongside the original triplet

to form a quadruplet. Huang et al. [69] implement three ranking operations in total

by using an anchor, a negative and three positives. Ye et al. [161], on the other hand,

adopt additional images from other modalities. It is worth noting that all these

variants leverage additional samples either within the same or from another modality.

Therefore, these losses can no longer help to optimise the geometric relationship

within a triplet.

2.4.4 Contrastive Learning

The first related work on contrastive learning can be traced back to [55] which learns

robust feature representations by contrasting positive pairs against negative pairs.

Dosovitskiy et al. [34] then used a similar strategy to train a CNN for an object

recognition task by discriminating samples generated by different augmentation

processes. Later, Wu et al. [155] replaced the linear classifier in [34] with a memory

bank to store representations for each class and used the noise contrastive estimation

to compare samples. The memory bank has been widely used in recent works

[110, 142]. He et al. [59] explored the contrastive learning from a different perspective

where feature representations are produced by a momentum encoder rather than a pre-

trained CNN. Most recently, Chen et al. [23] demonstrated that the aforementioned

contrastive learning methods can be simplified as long as the batch size is large

enough.

2.5 Concluding Remarks

In this chapter, we briefly reviewed the datasets, evaluation metrics, and related

works on the problem basis. Related works cover both traditional machine learning-

based methods and deep learning-based methods. At the end of this chapter, we

reviewed several machine learning concepts used in our methods and state-of-the-art

works related to these concepts.
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Chapter 3

FusionNet for Age Estimation

3.1 Introduction

Age estimation is an active research topic, which is intended to predict the age of

a subject based on the appearance of his or her face. Recently, CNNs have been

proved to be capable of dramatically boosting the performance of many mainstream

computer vision problems [58, 71, 120].

Neuroscience shows that when the primate brain is processing the facial

information, different neurons respond to different facial features [16]. Inspired by

this fact, we intuitively assume that the accuracy of age estimation may be largely

improved if the CNN could learn from age-specific patches. Consequently, in this

chapter, we propose the FusionNet, a novel CNN architecture for face-based age

estimation. Specifically, FusionNets take the face and several age-specific facial

patches as successive inputs. This data feeding sequence is shown in Figure 3.1.

As illustrated in the figure, there are a total of n+ 1 inputs (one face and n facial

patches) being fed into the network. The aligned face, which provides most of the

information, is the primary input that is fed to the lowest layer to have the longest

learning path. After all the inputs are fed into the network, the final prediction is

calculated based on this fused information that is learned through the convolutional

layers. We show later that the input at the middle-level layers can be viewed as
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Figure 3.1: Data feeding sequence in the FusionNet. The model takes the original
face and a total of n facial patches as inputs.

shortcut connections that boost the flow of the age-specific features.

Unlike previous multi-patch-based work [162] which use major facial attributes

(e.g. the eyes and the mouth) as input patches, our network takes adaptively-selected

features as the secondary learning source. Different from those dominating attributes

which may introduce certain and sophisticated patterns that cannot be learned

together with the original face, the selected patches in our case are mainly those

regions representing smooth facial skin with aged textures. Our results demonstrate

that these textures can be used to complement the features learned from the whole

face to emphasise the age-specific patterns.

3.2 FusionNet

The proposed method consists of three components, the facial patch selection, the

convolutional network and the age regression. The facial patch selector is based on

the BIF [53] and the AdaBoost algorithm. Selected patches are subsequently fed into

the convolutional network, in a sequential manner, together with the face. The final

prediction is calculated based on the output of the network by using a regression

method.
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3.2.1 Facial Patch Selection

We use the BIF [53] to extract age-specific feature from aligned faces. Faces are

convolved with a bank of Gabor filters [41], which can be formulated as:

G(x, y) = exp(−(x′2 + γ2y′2)

2σ2
)× cos(2π

x′

λ
) (3.1)

where (x, y) are the spatial coordinates, and x′ = x cos θ+ y sin θ and y′ = −x sin θ+

y cos θ denote the orientation of the filters with the angle θ ∈ [0, π]. γ, σ, and λ

are the parameters of the filters. We convolve each face with a total of 8 bands

and 8 orientations of Gabor filters to generate a k-dimensional feature vector to

detect textures in different sizes and orientations with minimum redundancy. In

our experiments, k is greater than 10,000 with each element encoding one potential

input for the subsequent CNN. Since we cannot use this high-dimensional feature

vector in the feeding sequence directly, we need to select k′ features from the BIF

feature vector to form a subset where k′ << k. We experimentally set k′ to 1000

and use the top 5 most informative features as the input to the subsequent network

to keep a balance between the training time and the performance. We observe that

5 features have a good coverage of age-specific regions, and including more features

can lead to redundancy. The top 5 selected features are represented as the 5 patches

marked in the face in Figure 3.2.

The multi-class AdaBoost is used to select the subset k′ from the high-

dimensional feature vector. A Decision Tree is built as the weak classifier in AdaBoost,

which is similar to the implementation in [56]. Briefly, for a dataset with m samples,

we pick the k′ most informative features from a k-dimensional vector by using the

weak classifier h,

Fj = argmink(

m∑
i=1

wk
′
i e(hk(xi), yi)) (3.2)

where Fj is the j-th selected feature and j ∈ [1, k′]. xi is the high dimensional feature

vector after the i-th sample is filtered by Gabor filters and yi is the associated age
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label. In addition, wk
′
i is the weight in AdaBoost, which is updated and normalised

after each Fj is found. The error function e(hk(xi), yi) in Eq. (3.2) is defined as

follows:

e(hk(xi), yi) =


0 hk(xi) = yi

1 otherwise

(3.3)

We find that a 28-level Decision Tree can be implemented as the weak classifier

in our case to give us a good classification performance while keeping the training

time manageable.

3.2.2 Network Architecture

The architecture of the FusionNet is illustrated in Figure 3.2. In the figure, the block

arrows indicate the feature extraction process and the dashed lines between blocks

denote copying. All of the blocks shown in Figure 3.2 are residual blocks [58], and

each block after concatenation (B1 to B5) contains bottleneck layers. Note that

we do not apply feature reduction to B5 in Figure 3.2, since we have found that

lowering the number of feature maps right before the global pooling largely reduces

the performance. Moreover, we apply a batch normalization layer [72] before each

convolutional layer to improve the training speed and overall accuracy. After the

convolutional stage, a global average pooling layer and a FC layer are attached to

generate the final output of the network.

Instead of training separate shallow CNNs for each input and concatenating

the information before the final fully-connected layer, we merge the features in the

convolution stage. In the FusionNet, all the features from different inputs have a

longer and more efficient learning path compared to the multi-path CNN in [162].

Moreover, the common age-specific features among the inputs can be extracted and

emphasised. For example, the skin feature, which has ordinal relationship to the

age, can be enhanced since all the simultaneous inputs share almost the same skin

texture.
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The use of concatenation is inspired by the DenseNet [71]. In a DenseNet,

the network is divided into several dense blocks, and layers within the same block

typically share the identical spatial dimension. More importantly, inside each dense

block, the output of each layer flows directly into all of the subsequent layers. As a

result, the l-th layer receives feature maps from all the previous layers within the

same block as the input [71]:

xl = Hl([x0, x1, ..., xl−1]) (3.4)

where x represents the output of each layer and Hl denotes the learning hypothesis

of the l-th layer. [·] is used to represent the concatenation operation.

In the FusionNet, the formulation is based on blocks, and the output of each

residual block after concatenations can be represented as:

xi = Bi([xi−1, si]) (3.5)

where Bi[·] denotes the synthesised learning function of the i-th block and i ∈ [1, 5]

since we decide to use 5 input patches in our network. Therefore, the shortcut

connections in FusionNet are block-wise operations rather than layer-wise operations

as in [71]. In addition, xi−1 is the output from the previous residual block and si is

the feature map learned from the i-th input patch. Since the patches share common

features with the original face, and based on Eq. (3.4) and (3.5), the incoming

patches can be viewed as shortcut connections that refresh and amplify the flow of

age-specific information.

3.2.3 Age Regression

Based on the fact that the discretization error becomes smaller for the regressed signal

when the number of classes becomes larger [128], we calculate the final prediction

through a regression approach.
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After the features are processed by the fully-connected layer, we first eliminate

all the negative values in the output vector and feed it to a Softmax function to form

a probability distribution. Then, we normalise the distribution to make it sum up to

1.

The final prediction is the summation of products of the probabilities by the

corresponding age labels.

E(O) =

j∑
i=1

piyi (3.6)

where pi denotes the normalized probability for the i-th class, yi is the associated

age label, and j is the number of classes.

3.3 Experiments

3.3.1 Experimental Settings

We use the most frequently used MORPH II benchmark [126] for age estimation to

test the performance of our network. Following the previous works [19, 114, 128], in

this work, the dataset is randomly divided into two parts, about 80% for training

and the other 20% for testing. There is no overlap between the training and testing

sets. To perform statistical analysis and follow previous works [22, 114, 128], we use

20 different partitions (with same ratio but different distribution) in the experiment

and report the mean values.

We use the open-source computer vision library dlib [78] for the image

preprocessing in our work. All the faces are cropped to 96× 96 pixels and converted

to gray-scale images since the MORPH II dataset suffers from the colour cast issue.

After the facial patches are selected, the cropped patches are then resized to 24× 24

pixels.

The proposed network is implemented based on the open-source deep learning

framework Pytorch and trained with the SGD algorithm with momentum. The batch

size is set to 64. We train our network for 200 epochs with an initial learning rate of
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0.1. The learning rate drops by a factor of 0.1 after every 50 epochs.

3.3.2 Results

To demonstrate the efficiency of our proposed network, we use the CS criteria to

evaluate the performance of the FusionNet compared with a baseline model, which

is a plain network with all selected patches removed. In Table 3.1, the model in

the second row represents a FusionNet taking major facial attributes like the eyes,

the nose and the mouth as secondary inputs and using classification method to

calculate the predicted age. The model in third row uses age-specific patches and the

model in the last row uses regression to produce the final age. The reason why the

second row (FusionNet + FAttrs + Cls) performs worse compared to the baseline

may due to that major facial attributes carry identity-specific details rather than

age-specific features, which could be treated as noise during training and degrade

the performance.

We compare our approach with other recent state-of-the-art CNN-based mod-

els: DEX [128], OR-CNN [114], and Ranking-CNN [21]. To have a fair comparison,

only works with the same data partition ratio are evaluated. In [128], authors

use a pre-trained VGG-16 [137] as the core model and further fine-tune it on the

IMDB-WIKI dataset [128]. In the comparison, we use the result without fine-tuning

on the additional dataset. As shown in Table 3.2, the FusionNet achieves the lowest

MAE of 2.82, which outperforms other state-of-the-art models. This result shows

that our network has a much more efficient feature extraction architecture. Moreover,

the modern network design philosophy used (i.e., the residual blocks and bottleneck

layers) helps to improve the performance even further.

3.4 Conclusion

In this chapter, we presented the FusionNet to tackle the face-based age estimation

problem. Our model takes not only the face but also other age-specific facial
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Table 3.2: MAE values of three state-of-the-art CNN-based models and our method
on MORPH II dataset. The best result is highlighted in bold.

Method MAE

OR-CNN [114] 3.27

DEX [128] 3.25

Ranking-CNN [22] 2.96

baseline 3.05

FusionNet + FAttrs + Cls 3.18

FusionNet + AdaP + Cls 2.95

FusionNet + AdaP + Reg 2.82

patches as inputs. The input facial patches can be considered as being shortcut

connections in the network, which amplify the learning efficiency for age-specific

features. Experiments show that our network significantly outperforms other CNN-

based state-of-the-art methods on the MORPH II benchmark.

However, we find that the proposed method takes too much time to train

(normally a few days). This is mainly caused by the involvement of the BIF and

Adaboost algorithm. To reduce the training complexity, we further propose a modified

method based on attention mechanisms. The details of this modified method is

presented in the next chapter.
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Chapter 4

Improving Age Estimation with

Attention-Based Dynamic Patch

Fusion

4.1 Introduction

Modern face-based age estimation methods typically consist of two components,

a feature extractor and an estimator. The feature extractor is used to extract

age-specific features from raw facial images and the estimator is used to predict

the age based on the extracted features. Many recent works [14, 21, 39, 67, 93, 97,

98, 114, 117, 134] focus on designing customised estimators while treating the facial

image as an ordinary input, hence paying no attention to the relative importance of

the extracted features. However, related studies [53, 56, 146] show that age-specific

patches are useful when predicting the age of the subject from an image. In other

words, customised feature extractors can be designed to exploit age-specific patches

during training to boost the performance of face-based age estimation methods. As

a consequence, many works now tackle the face-based age estimation problem by

leveraging cropped age-specific patches as complementary inputs to their estimator
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[4, 26, 56, 146, 162]. The patches used in most of these works are those depicting

dominant facial attributes like the eyes, nose, and mouth. However, early studies on

face-based age estimation [2, 11, 48, 86, 87, 112, 153] show that the most informative

patches for this problem are where wrinkles typically appear, like eye bags and

laugh lines. To locate these age-specific patches, Han et al. [56] leverage the BIF

proposed in [53]. Later, Wang et al. [146] design a customised CNN to fuse the

features learned from the facial image and the BIF-based patches. Unfortunately,

the computed BIF-based patches in these methods are fixed in every image, which

prevents extracting features that are robust to the location and shape variations of

age-specific regions.

In this chapter, we propose a novel framework named ADPF based on our

preliminary work [146] to tackle the face-based age estimation problem. ADPF

comprises a customised feature extractor that consists of an AttentionNet and a

FusionNet. The AttentionNet dynamically discovers age-specific patches by em-

ploying a novel attention mechanism, while the FusionNet predicts the age of the

subject by fusing features learned from the facial image and the discovered age-

specific patches. To improve performance, the discovered patches are fed into the

FusionNet sequentially in a descending order based on the amount of age-specific

information they carry. To this end, we introduce the RMHHA mechanism into

the AttentionNet. RMHHA is inspired by the MHSA mechanism [144]. However,

instead of using the multi-channel feature maps produced by MHSA, each attention

head in RMHHA yields a compact single-channel attention map, which is used to

crop the corresponding age-specific patch from the facial image. RMHHA assigns a

learnable weight to the produced attention maps to rank their importance. Hence,

RMHHA not only helps to dynamically learn age-specific patches, but it also ensures

the discovered patches are fed into the FusionNet in the desired order.
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4.2 Attention-based Dynamic Patch Fusion

In this section, we explain in detail ADPF by first discussing the core of the

AttentionNet, i.e., the proposed RMHHA mechanism. Then, we formulate the

diversity loss followed by explaining the FusionNet used to fuse features from various

learning sources. The architecture of ADPF is illustrated in Fig. 4.1.

4.2.1 Ranking-guided Multi-Head Hybrid Attention

Since RMHHA is based on MHSA and the key component in MHSA is the self-

attention mechanism, we first discuss the self-attention mechanism followed by the

proposed hybrid attention mechanism. Then, we detail the complete RMHHA

mechanism.

Let us consider an input tensor X, as shown in Fig. 4.1, that has a dimension

of H ×W ×C, where H denotes the height, W denotes the width and the C denotes

the number of channels. X is convolved into three separate tensors: Q with a shape

of H×W ×CQ, K with a shape of H×W ×CK , and V with a shape of H×W ×CV ,

where CQ, CK , and CV indicate the number of channels in the corresponding tensor.

The intuition behind self-attention is to compute a weighted summation of the values,

V , where the weights are computed as the similarities between the query, Q, and

the corresponding key, K. Therefore, in order to compute the similarity, Q and K

normally have the same shape, i.e., CQ = CK . The output of a single self-attention

mechanism is computed as [144]:

SA = Softmax(
Q′ ·K ′T√

CK
) · V, (4.1)

where Q′ and K ′ are flattened tensors in order to perform the dot product.

After the scaling operation, i.e., dividing the similarity matrix Q′ ·K ′T by a

factor of
√
CK and applying the softmax function, we perform a dot product between

the normalized similarity matrix and V to generate the self-attention maps SA with

a dimension of H ×W × CV .
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Since we flatten two-dimensional feature maps into an one-dimensional vector

in Eq. (4.1), the original structure of the feature maps is therefore distorted. To

make it efficient when dealing with structured data like images and multi-dimensional

features, we adopt the relative positional encoding in [133] and [9]. Specifically, the

relative positional encoding is represented by the attention logit, which encodes how

much an entry in Q′ attends to an entry in K ′. The attention logit is computed as

[9]:

li,j =
qTi√
CK

(kj + rWjx−ix + rHjy−iy), (4.2)

where qi is the i-th row in Q′ indicating the feature vector for pixel i := (ix, iy)

and kj is the j-th row in K ′ indicating the feature vector for pixel j := (jx, jy).

rWjx−ix and rHjy−iy are learnable parameters encoding the positional information within

the relative width jx − ix and relative height jy − iy. With the relative positional

encoding, the output of a single self-attention mechanism can be reformulated as [9]:

SA = Softmax(
Q′ ·K ′T +MH +MW√

CK
) · V, (4.3)

where MH [i, j] = qTi r
H
jy−iy and MW [i, j] = qTi r

W
jx−ix are matrices of relative positional

logits.

The output of the self-attention mechanism in Eq. (4.3) has a dimension of

H ×W × CV . However, we want each attention head to produce a single-channel

attention map to depict one particular age-specific patch. To this end, we use

channel-wise attention alongside self-attention to form a hybrid attention mechanism.

Channel-wise attention is used to compute weights for each channel and a weighted

summation is performed along the channel axis of the self-attention maps to generate

the final single-channel attention map, indicated as the hybrid attention map in Fig.

4.2.

As depicted in Fig. 4.2, in the proposed hybrid attention mechanism, we

first use a 1x1 convolutional layer on the input tensor, Z, to ensure the number of

channels before computing the channel-wise attention weights matches the number of
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channels in the self-attention maps, i.e., CV . The tensor after this 1x1 convolution is

denoted as CA. We then aggregate each feature map in CA with a pooling operation

to produce a feature vector, in which each entry represents the features for the

corresponding channel. Different from [21, 66], in which average pooling is used,

we use max pooling as we want to emphasise the most important features with

high activation values. Following the procedure in [66], we use a gating mechanism

with two sequential FC layers to form a bottleneck. The first FC layer reduces the

dimentionality, i.e., the number of channels, and the second FC layer increases the

dimentionality of the previous layer to match the original shape. The output from

the second FC layer is the set of channel-wise attention weights that we need, which

are computed as:

WCA = σ(WFC2δ(WFC1δ(CA))), (4.4)

where δ indicates the non-linear ReLU function, σ refers to the Sigmoid function used

to normalise the attention weights, and WFC1 and WFC2 are learnable parameters

in the two FC layers.

After the self-attention maps and channel-wise attention weights are computed,

we perform a weighted summation over these two tensors along the channel dimension

to get the single-channel hybrid attention map. The hybrid attention map is then

computed as:

HA =

CV∑
c

SAcW
CA
c , (4.5)

where c is the channel index and SA is computed using Eq. (4.3).

To perform hybrid attention in a multi-head manner, each hybrid attention

head takes a certain number of feature maps from the previous convolutional layer as

the input. Specifically, assume there are CP feature maps in the tensor produced by

the previous layer. Then, we have CP = CHEAD ×N , where N denotes the number

of heads.

Different from MHSA [144], in which the attention maps from each head are

concatenated right after the attention operation, we assign a learnable scale to each
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Figure 4.3: Architecture of the proposed RMHHA, where five attention heads are
implemented.

hybrid attention map to rank their importance when predicting ages, as shown in

Fig. 4.3. RMHHA can then be formulated as:

RMHHA = [HA1a1, HA2a2, ...,HAnan], (4.6)

where an indicates the learnable scale, which is updated by using the age estimation

loss function presented in section 4.2.4 and n ∈ [1, N ]. HAnan is equivalent to HA′n

in Fig. 4.3. All weighted hybrid attention maps used in ADPF are then concatenated

before the final FC layer in the AttentionNet.

It is worth noting that multi-head attention methods always involve heavy

matrix multiplications, which may be computationally expensive especially when the

input matrices have a high dimentionality, which is common in CNNs. Therefore,

differently from [9, 121], which stack dozens of MHSA models to compute the output,

our work only uses one multi-head attention model to discover age-specific patches.
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4.2.2 Diversity Loss

The number of patches that can be discovered is determined by the number of

attention heads implemented in RMHHA. However, during implementation, we find

that when using more than four heads, patches tend to overlap with each other

especially in informative regions. As demonstrated in Section IV, without further

supervision, two attention maps may overlap in the nose region. This overlap of

attended patches may led to redundant learning sources and leave other age-specific

patches undiscovered. To alleviate this overlap issue, we propose a diversity loss to

learn diverse and non-overlapping patches by minimizing the summation of product

of corresponding entries in two hybrid attention maps, HAm and HAn. The diversity

loss is formulated as:

Ldiversity =
N∑
m,n
m6=n

H∑
h

W∑
w

HAm(h,w)HAn(h,w), (4.7)

where (h,w) denotes the location of the corresponding entry in a hybrid attention

map.

4.2.3 FusionNet

The architecture of the FusionNet is illustrated in Fig. 4.2. To get the input

patches, i.e., P1 to P5, we first rank the learned hybrid attention maps based on

their associated weights, i.e., a1 to a5. M1 has the highest weight indicating that

the corresponding age-specific patch represents the most age-specific information.

After the hybrid attention maps are ranked, they are resized into the same spatial

size as the original facial image and used to crop the corresponding highlighted area

by keeping all the pixels where the activation values in the resized feature maps are

non-zero.

Instead of training separate shallow CNNs for each input and concatenating

the information before the final FC layer, we merge the features in the convolution
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stage. In the FusionNet, the length of the path to learn from an input is directly

proportional to the amount of information it carries. This approach also allows

extracting and emphasising common age-specific features among all inputs. For

example, the skin feature, which has an ordinal relationship with the age, can be

emphasised since all inputs are expected to share the same skin texture.

In the FusionNet, we preform concatenation operations on pairs of feature

maps, one from the previous layer in the main stream (yellow blocks in Fig. 4.1),

I , and the other representing the features learned from one particular age-specific

patch (red blocks in Fig. 4.1), P . Therefore, the concatenation in the FusionNet is

formulated as:

R = Concate[I, P ]. (4.8)

This formulation is also commonly used in modern CNN architectures like the

ResNet [58] and the DenseNet [71]. Therefore, a sub-stream in the FusionNet can be

treated as a shortcut connection, which emphasises the learning of the age-specific

information shared by all inputs.

4.2.4 Age Estimation Loss

To estimate the age, we use a commonly used method that combines a regression loss

to learn the exact age and a divergence loss to learn the age distribution. Specifically,

after the features are processed by a Softmax function, we eliminate all the negative

values in the output vector and normalise the remaining values so that they can

form a probability distribution that sums up to 1:

op :=


0 ot ≤ 0

∑q
p=1 max(0,op)

op
ot > 0,

(4.9)

where op is the p-th element in the output vector O ∈ Rq and q is the total number

of classes.
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The final prediction is the summation of products of the probabilities by the

corresponding age labels:

E =

q∑
p=1

opgp, (4.10)

where op denotes the normalized probability from Eq. (4.9) and gp is the associated

age label for class p.

We use the MAE to compute the error between the prediction and the

corresponding ground truth label:

LMAE =
1

B

B∑
b

|Eb −GTb|, (4.11)

where B is the batch size and GT refers to the ground truth label.

To learn the age distribution, we use the KL-divergence to measure the

difference between a Gaussian distribution derived from the label [117] and the

learned distribution. The KL-divergence is formulated as:

LKL =

q∑
p=1

P (p)log

(
P (p)

P ′(p)

)
, (4.12)

where P is the ground truth distribution and P ′ is the learned distribution. The

complete age estimation loss is then defined as a summation of these two losses:

LAE = LMAE + LKL. (4.13)

4.2.5 Training Strategy

Since the training of the FusionNet requires well-learned and stabilised patches, we

first train the AttentionNet with RMHHA until convergence. The overall loss to

train this network is the summation of two loss functions:

LAttentionNet = LAE + λLdiversity, (4.14)
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where λ controls the relative importance between two learning objectives.

When the AttentionNet converges, we freeze its parameters and start training

the FusionNet. The loss function used to train the FusionNet is the loss formulated

in Eq. (4.13).

4.3 Experiments

4.3.1 Experimental Settings

Data Pre-processing. We use the open-source computer vision library dlib [78]

for image pre-processing. Firstly, 68 facial points are detected in each facial image

to crop them based on the location of the eyes to a size of 128× 128 pixels.

Further, data augmentation is used to increase the dataset size. Specifically,

images are zero-padded first and then cropped to the original size. Finally, the

cropped images are randomly flipped horizontally.

Dataset Partition. We conduct experiments on three commonly used face-

based age estimation benchmark datasets, the MORPH II dataset [126], the FG-NET

dataset [28], and the CACD [18]. For the MORPH II dataset, three commonly

used settings are adopted. In the first setting, i.e., Setting I, following prior works

[21, 98, 114, 117, 141, 146, 156], we randomly split the whole dataset into two subsets,

one with 80% of the data for training and the other with 20% for testing. In this

setting, there is no identity overlap between the two subsets. To perform statistical

analysis, we use 20 different partitions (with the same ratio but different distribution)

and report mean values. In the second setting, i.e., the Setting II, to compensate for

the imbalance of race distribution, we randomly split the dataset into three subsets,

denoted as S1, S2, and S3, and ensure the ratio between Black and White labels is 1:1

and that between Male and Female labels is 1:3. In order to follow the same protocol

as other works [25, 26, 51, 93, 162], the results under this setting are reported in

three different ways: 1) training on S1 and testing on S2+S3 ; 2) training on S2 and

testing on S1+S3 and 3) the average value from the previous two scenarios. Finally,
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Table 4.1: MAE values for several state-of-the-art Face-based Age Estimation
Methods on the MORPH II Dataset under Setting I.

Method MAE

OR-CNN [114] 3.27

DEX [130] 3.25

SMMR [70] 3.24

ARN [1] 3.00

Ranking-CNN [21] 2.96

MSFCL [156] 2.90

DAG-GoogleNet [141] 2.87

DAG-VGG16 [141] 2.81

Mean-Variance Loss [117] 2.80

MSFCL-LR [156] 2.79

Hu et al. [67] 2.78

BIF + FusionNet [146] 2.76

MSFCL-KL [156] 2.73

ADPF (ours) 2.54
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Table 4.2: MAE values for several state-of-the-art Face-based Age Estimation
Methods on the MORPH II Dataset under Setting II.

Method
MAE

S1/S2+S3 S2/S1+S3 Average

KPLS [51] 4.21 4.15 4.18

MS-CNN [162] 3.63 3.63 3.63

MRNPE (AlexNet) [25] 2.98 2.73 2.86

MRNPE (VGG16) [25] 2.85 2.60 2.73

ARAN [26] 2.77 2.48 2.63

BridgeNet [93] 2.74 2.51 2.63

ADPF (ours) 2.63 2.50 2.55

in the third setting, i.e., the Setting III, we select 5,492 facial images of White people

to reduce the variance caused by imbalanced race distribution [1, 52, 130, 149]. Then,

these 5,492 facial images are randomly split into two subsets, 80% of the them are

used for training and the remaining 20% for testing. To further reduce the data

distribution variance, in this setting, we use 5-fold cross validation to produce the

final results.

For the FG-NET dataset, we use the LOPO strategy [44, 46, 98, 103, 135, 156].

In each fold, we use facial images of one subject for testing and the remaining images

for training. Since there are 82 subjects, this process consists of 82 folds and the

reported results are the average values.

For the CACD, following the setup in [25, 130, 135], the whole dataset is

divided into three subsets, denoted as the training set, validation set, and testing set.

The training set has facial images from 1,800 subjects, the validation set has facial

images from 120 subjects, and the testing set has facial images from 80 subjects. The

reported results are computed by training either on the training set or the validation

set and evaluating on the testing set.

Implementation Details. ADPF is implemented based on the open-source
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Table 4.3: MAE values for several state-of-the-art Face-based Age Estimation
Methods on the MORPH II Dataset under Setting III.

Method MAE

AGES [45] 8.83

MTWGP [166] 6.28

CA-SVR [19] 5.88

DLA [149] 4.77

Rothe et al. [129] 3.45

DLDLF [135] 2.94

DRF [135] 2.80

ADPF (ours) 2.71

deep learning framework Pytorch [122] and trained with the SGD algorithm with

a batch size of 32. We first train the AttentionNet for 200 epochs and then the

FusionNet for another 200 epochs with the parameters of the AttentionNet fixed.

The initial learning rate for both networks is set to 0.1 and drops by a factor of

0.1 after every 50 epochs. When training the AttentionNet, we empirically set λ in

Eq. 4.14 to 0.01. Following our prior work, we use 5 patches when comparing with

other state-of-the-art methods. All experiments are run on a single NVIDIA GTX

2080Ti GPU. To have a fair comparison against our prior work, we replace the age

regression model used by our prior work with the age estimation loss in Eq. 4.13.

4.3.2 Evaluations on the MORPH II Dataset

The MAE values for the three aforementioned settings of the MORPH II dataset

are tabulated in Table 4.1-4.3, respectively. In Table 4.2, the headings indicate the

subsets used to compute the results. For example, S1/S2+S3 indicates the model is

trained on the S1 subset and evaluated on the S2 and S3 subsets, and the Average

column tabulates the mean value of the two columns on the left. The CS curves

for the three settings are presented in Fig. 4.4-4.6, respectively. Note that not all
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Figure 4.4: CS curves for several state-of-the-art Face-based Age Estimation Methods
on the MORPH II Dataset under Setting I.

methods report the results under this metric. As can be seen from these tables and

figures, ADPF outperforms all state-of-the-art methods that focus on improving the

feature extractor like the DAG family (DAG-GoolgeNet and DAG-VGG16) [141],

MSFCL family (MSFCL, MSFCL-LR, and MSFCL-KL) [156], and our prior work

[146]. Also note that ADPF achieves comparable results to other methods that use

customized estimators. For all three settings, the superior performance demonstrate

that ADPF can predict ages accurately regardless of the imbalanced data distribution

caused by other information like race.

4.3.3 Evaluations on the FG-NET Dataset

The MAE values and the CS curve are tabulated in Table 4.4 and depicted in Fig.

4.7, respectively, for the FG-NET dataset. Again, not all methods report the results
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Table 4.4: MAE values for several state-of-the-art Face-based Age Estimation
Methods on the FG-NET Dataset.

Method MAE

AGES [45] 6.77

IIS-LLD [46] 5.77

LARR [52] 4.87

Feng et al. [39] 5.05

BIF [53] 4.77

CPNN [46] 4.76

DEX [130] 4.63

CS-LBFL [103] 4.43

CS-LBMFL [103] 4.36

Mean-Variance Loss [117] 4.10

GA-DFL [97] 3.93

LSDML [98] 3.92

ARAN [26] 3.79

M-LSDML [98] 3.74

DLDLF [135] 3.71

DRF [135] 3.47

DAG-VGG16 [141] 3.08

DAG-GoogleNet [141] 3.05

ADPF (ours) 2.86

Table 4.5: MAE values for several state-of-the-art Face-based Age Estimation
Methods on the CACD.

Method
MAE

train val

DEX [130] 4.79 6.52

DLDLF [135] 4.68 6.16

DRF [135] 4.61 5.63

ADPF (ours) 4.72 5.39
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Figure 4.5: CS curves for several state-of-the-art Face-based Age Estimation Methods
on the MORPH II Dataset under Setting II.

under the CS metric for the FG-NET dataset. It can be seen from Table 4.4 that

ADPF achieves an MAE value under 3.00, which shows that it can perform well even

with small datasets.

4.3.4 Evaluations on the CACD

Evaluation results for the CACD under the MAE metric are tabulated in Table 4.5.

ADPF achieves the best performance when trained on the validation dataset but

only achieves the third best performance when trained on the training set. This

may due to the age labels in the training set not being accurate. Since the input to

the FusionNet of ADPF is sixfold, i.e., it includes one facial image and five patches,

compared to other single-input networks, inaccurate labels may confuse the model

due to mis-information.
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Figure 4.6: CS curves for several state-of-the-art Face-based Age Estimation Methods
on the MORPH II Dataset under Setting III.

4.3.5 Ablation Study

We conduct ablation experiments to demonstrate the effectiveness of each component

of ADPF. Specifically, we aim to demonstrate that: 1) the hybrid attention mechanism

is more effective than the self-attention mechanism when discovering age-specific

patches; 2) the ranking operation in RMHHA is beneficial for feature learning in

the FusionNet; 3) the effectiveness of the diversity loss; and 4) the importance of

combining the FusionNet and the AttentionNet in a single framework. To this end,

we design several baseline models as follows:

• ADPF w/SA: ADPF with the self-attention mechanism instead of the hybrid

attention mechanism in the AttentionNet. The single channel feature maps

are then generated by performing summation along the channel axis of the

self-attention maps.
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Figure 4.7: CS curves for several state-of-the-art Face-based Age Estimation Methods
on the FG-NET Dataset.

• ADPF w/o ranking : ADPF without the ranking operation for age-specific

patches.

• ADPF w/o diversity : ADPF without the diversity loss.

• AttentionNet : ADPF with no FusionNet.

The evaluation results on the MORPH II dataset, Setting I, for the afore-

mentioned baseline models and ADPF are tabulated in Table 4.6. The attention

maps computed by the ADPF w/SA baseline model are shown in Fig. 5.7. As shown

in this figure, although ADPF w/SA can reveal key regions for age estimation, it

may also reveal non-important regions, including sections of the background, which

may be treated as noise during the feature learning process and eventually hinder

the performance. In ADPF w/o ranking, we feed the patches into the FusionNet
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based on their original order in the input tensor along the channel axis as produced

by RMHHA. This feeding strategy cannot guarantee that the learning path for the

most informative patch is long enough to extract meaningful features.

To demonstrate the effectiveness of the proposed diversity loss, we visualise

the attention maps learned on the MORPH II dataset, Setting I, by ADPF and

the baseline model ADPF w/o diversity. As shown in Fig. 4.9, in the ADPF w/o

diversity baseline model, the two attention maps overlap in the highlighted nose

region, which leads to redundant input information to the network. With the aid

of the diversity loss, these key regions detected by these two attention maps are

forced to move in opposite directions resulting in two attention maps with negligible

overlap.

MAE values tabulated in Table 4.6 confirm the importance of combining

the AttentionNet and the FusionNet in a single framework instead of using the

AttentionNet exclusively. As we can see from this table, the performance of the

AttentionNet baseline model significantly drops compared to that of ADPF. This

is mainly due to the limited number of feature maps available to the FC layer

in the AttentionNet. With such a limited number of feature maps, the estimator

cannot get enough information from the feature extractor. However, implementing

the AttentionNet in this way is essential to learn and rank multiple single-channel

attention maps, which shows the importance of combining the AttentionNet and the

FusionNet in a single framework.

4.3.6 Discussions

Training Efficiency

We compare the training time required by our prior work [146] and the ADPF on

the MORPH II dataset with Setting I. The training times are tabulated in Table

4.7. Note that it takes about 70 hours to train the whole method in [146] out of

which 60 hours are required to compute and rank BIF-based patches and 10 hours
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Table 4.6: MAE values for several baseline models and the complete ADPF framework
on the MORPH II Dataset under Setting I.

Method MAE

ADPF w/SA 2.90

ADPF w/o ranking 2.74

ADPF w/o diversity 2.65

AttentionNet 3.31

ADPF 2.54

Figure 4.8: Attention maps computed by (upper row) the ADPF framework and
(bottom row) the ADPF w/SA baseline model.

to train the CNN. Thanks to the proposed RMHHA mechanism, ADPF only takes

about one third of this time to converge with significantly boosted performance (see

MAE values). In addition, the process of acquiring patches and training the CNN

can only be done separately in [146]. On the contrary, in ADPF, the training of

the FusionNet can be done directly after the AttentionNet converges, which further

makes the training process more time-efficient.
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Figure 4.9: Left: Two attention maps overlap in the annotated area with out the
supervision from the diversity loss. Middle: By minimising the diversity loss, the
two attention maps are forced to move in opposite directions. Right: attention
maps generated by using the diversity loss.

Table 4.7: The time it costs when the FusionNet and ADPF converges.

Method Training time (hours) MAE

BIF + FusionNet [146] 70 2.76

ADPF 25 2.54

Robustness of Age-Specific Patches

We visually compare the patches computed by the BIF and Adaboost algorithms

used in [146] and those computed by RMHHA. This comparison is conducted on

the CACD dataset as the facial images in this dataset contain PIE variations. Fig.

4.10 depicts sample patches, where the most informative patches computed by [146]

are marked with red boxes. It is clear that the location and shape of each patch

computed by [146] are identical for all the images. On the contrary, the location

and shape of the patches computed by the RMHHA vary from image to image. For

example, in the bottom row, the patch capturing the right laughline is larger than
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Figure 4.10: Sample age-specific patches computed by our prior work [146] and the
ADPF framework. The left column depicts the original facial images with patches
computed by [146] highlighted in red. The five patches computed by the ADPF
framework are depicted in the last five columns. Within these columns, the patches
are depicted from left to right in descending order in terms of their importance.

that of the other two images, which allows capturing the complete skin texture of

this key region.

Number of Heads

The performance of ADPF with different number of attention heads is tabulated

in Table 4.8. We can see that the best performance can be achieved when 5 or 6

attention heads are implemented. This may due to the fact that with less heads,

some age-specific patches may remain undiscovered. Moreover, since most of the

facial regions are already revealed when 5 attention heads are used, adding more

heads only forces the framework to attend to irrelevant regions like the background,

which as discussed previously, can be treated as noise and degrade the performance.

Since 6 heads requires more time to train with no significant performance gains, 5 is

an appropriate number to be used by ADPF.
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Table 4.8: Performance of ADPF with different number of attention heads on the
MORPH II dataset under Setting I.

# Heads 3 4 5 6 7 8

MAE 2.77 2.62 2.54 2.54 2.55 2.61

4.4 Conclusion

In this chapter, we proposed the ADPF framework to improve the performance of

the face-based age estimation task. Our framework merges an AttentionNet and a

FusionNet. The AttentionNet includes a novel hybrid attention mechanism, namely

RMHHA, which allows learning multiple single-channel attention maps to reveal

age-specific patches. After ranking them, these patches are used by the FusionNet,

along with the facial image to compute the final age prediction. Based on evaluations

on several benchmark datasets, ADPF significantly improves prediction accuracy

compared to several state-of-the-art methods. ADPF also outperforms our previous

work, both in terms of accuracy and training times. Since this work focuses on

building customised feature extractors, in the future, we will investigate the design

of customised estimators to further boost performance by, for example, considering

the ordinal information among ages and further minimising the distance between

label distributions and feature distributions.
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Chapter 5

Age-Oriented Face Synthesis

with Conditional Discriminator

Pool and Adversarial Triplet

Loss

5.1 Introduction

AOFS is a generative task aiming to generate older and younger faces by rendering

facial images with natural ageing and rejuvenating effects. An efficient AOFS method

can be integrated into a wide range of forensic and commercial applications, e.g.,

tracking persons of interest like suspects or missing children over a long time span,

predicting the outcomes of a cosmetic surgery, and generating special visual effects

on characters of video games, films and dramas [40, 88]. The synthesis in recent

works [92, 151, 160, 170] is usually conducted among age categories (e.g., the 30s,

40s, 50s) rather than specific ages (e.g., 32, 35, 39) since there is no noticeable visual

change of a face over a few years.

The vanilla GAN [50] is commonly used as the backbone of several state-of-
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the-art AOFS methods [5, 47, 92, 118, 171]. One of the biggest advantages of the

vanilla GAN over other generative methods, like the Variational Autoencoder [79], is

that it can generate sharp and realistic images by playing a minimax game between

the generator and the discriminator. However, the vanilla GAN suffers from the

mode collapse issue caused by the vanishing gradient due to the involvement of the

negative log-likelihood loss [6]. Specifically, once the discriminator converges, the loss

does not penalise the generator any further [17]. This allows the generator to find a

specific mode (i.e., a distribution) that can easily fool the discriminator [10]. The

mode collapse issue may also occur in the AOFS task, where a mode is represented

by an age category. Within this context, the vanilla GAN may generate faces with

limited variations, resulting in poor synthesis accuracy.

To boost the state-of-the-art performance in the AOFS task, this work pro-

poses an AOFS method that includes two novel components. Namely, a CDP and

an Adversarial Triplet loss. The proposed CDP helps to achieve a high synthesis

accuracy by alleviating the mode collapse issue. Specifically, it allows learning

multiple modes (i.e., age categories) explicitly and independently to generate realistic

faces with a wide range of variations. Our CDP comprises multiple feature-level dis-

criminators that learn the transformations from the source age category to the target

age category. For each transformation, only the feature-level discriminator associated

with the target age category is used. As a result, each feature-level discriminator

only needs to learn one age category throughout the entire training process. The

proposed Adversarial Triplet loss helps to preserve the identity information in the

synthesised faces. This loss, which improves the Triplet loss [53], uses an additional

ranking operation that can further optimise the distances within a triplet of feature

embeddings comprising an anchor, a positive and a negative. Specifically, it helps to

bring the positive much closer to the anchor, while guaranteeing that the distance

between the anchor and the negative is larger than that between the anchor and

the positive. The additional ranking operation forces the triplets to a play zero-sum

game [5] during training. As a result, our Adversarial Triplet loss yields high-density
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clusters with dramatically reduced intra-class variances in the feature space.

5.2 Proposed AOFS Method

In this section, we explain in detail our proposed method by first formulating the

problem and explaining the pre-trained MTFE used to extract age-specific and

identity-specific features. We then present the proposed CDP and the Adversarial

Triplet loss. Finally, we explain the overall loss used to train our method.

5.2.1 Problem Formulation

Since the transformation is conducted among age categories rather than specific ages,

following the prior work in [92, 101, 160], we divide the data into four categories

according to the following age ranges: 30−, 31− 40, 41− 50, and 51+. Each category

is denoted by Ci, where i ∈ [1, 4].

To render ageing and rejuvenating effects, the proposed AOFS method takes

two faces, x ∈ CX and y ∈ CY , and the age label of y , lyage, as the inputs, where

X 6= Y . Specifically, x is the face that is to be aged or rejuvenated and y carries the

desired age information. Our method aims to generate an aged or rejuvenated x,

denoted by x̃, which is expected to belong to the same age category as y. Moreover,

to ensure that the identity information is effectively preserved in x̃, our method also

uses other images in the same batch, {x′}, to compute the Adversarial Triplet loss.

It is worth noting that both x′ and y do not share the same identity information of

x.

In summary, the proposed method achieves three goals simultaneously: 1) To

generate realistic aged and rejuvenated faces; 2) to force the synthesised faces to be

within the target age category; and 3) to preserve the identity information in the

synthesised image. The architecture of our proposed AOFS method is illustrated in

Fig. 5.1.
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5.2.2 Multi-Task Feature Extractor

The CDP and the Adversarial Triplet loss of the proposed AOFS method use age-

specific and identity-specific features from input images and synthesised images. To

extract and disentangle these features, we use the decomposition method proposed

in [150]. Specifically, we use a ResNet-50 [58] as the backbone. The architecture of

this feature extractor is depicted in Fig. 5.2. This model decomposes all the features

extracted from a facial image into two components based on a spherical coordinate

system, which is formulated as:

fsphere := {r; theta} , (5.1)

where the fsphere is the set of features after the decomposition in which the angu-

lar component theta = {θ1, θ2, ..., θk} indicate the identity-specific features for k

identities, and the radial component r encodes the age-specific features.

We replace the regression loss used to learn age-specific features in [150] with

an age regression model [130, 146] to supervise the age-specific learning process,

which has been shown to achieve better performance for the age estimation task.

We observe that feature extractors trained in this multi-tasking manner can achieve

higher accuracy on both the age category classification and identity classification

tasks than single-task networks. Additionally, we use our proposed Adversarial

Triplet loss to learn identity-specific features.

5.2.3 Conditional Discriminator Pool

In the vanilla GAN with a single image-level discriminator, the loss function for face

synthesis is usually formulated as:

Ladv =Ey[logD(y)]

+ Ex[log(1−D(G(x))],

(5.2)
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Feature-Level
Discriminator

Adversarial 
Triplet Loss

Global Features Age-Specific Features Identity-Specific Features

ResNet50

Figure 5.2: Architecture of our MTFE. After the decomposition, we resize each set
of task-specific features to be used by the corresponding feature-level discriminator
of the CDP or the Adversarial Triplet loss.

where G is the generator trying to minimise the loss, and D is the discriminator trying

to maximise the loss. As mentioned before, GANs based on this loss function suffer

from the mode collapse issue. To force the network to learn each mode independently

and thus alleviate this issue, one can add more discriminators directly. However, such

an strategy may lead to a high computational complexity and redundancy during

training, as not all the discriminators are expected to back-propagate the loss during

each transformation. Therefore, we propose a mechanism to select the corresponding

discriminator for each transformation based on the input label that represents the

target age information. Let us recall that our proposed AOFS method treats each

age category as a mode, which results in four modes in total. We use the input label,

lyage, to select the corresponding discriminator that learns the target age category.

Our proposed method implements this mechanism on discriminators at the feature

level, which are used to synthesise ageing and rejuvenating effects. Therefore, we

assemble four feature-level discriminators with an identical architecture to form our

CDP. Each feature-level discriminator targets one mode. Our method additionally

uses an image-level discriminator to remove artificial effects from the synthesised

faces. As illustrated in Fig. 5.1, in each transformation, our method leverages the

selected feature-level discriminator alongside the image-level discriminator.
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It is important to note that an alternative way to select the feature-level

discriminator is by employing an additional classifier. However, within the context

of AOFS, the accuracy of classifying age categories may be very low, from 25% to

60% depending on the specific age category in different AOFS benchmark datasets

[101, 151]. Employing such a low-accuracy classifier may result in a selecting a

discriminator that learns an incorrect mode. Instead, we directly use lyage to select

discriminators, which guarantees that, in each transformation, the discriminator

associated with the target mode is used. We then formulate the feature-level

adversarial loss as follows:

Ladvfeature = Efyage [log(FDCi(f
y
age)|lyage)]

+Ef x̃age [log(1− (FDCi(f
G(x|lyage)
age )|lyage))],

(5.3)

where FDCi is the selected feature-level discriminator trying to maximise the loss;

fyage denotes the age-specific features extracted from the target image, y; and f
G(x|lyage)
age

denotes the age-specific features extracted from the synthesised image, x̃, where

G(x|lyage) is the generator that produces x̃ conditioned on lyage. Finally, lyage is a

one-hot encoded vector indicating the label for the target age category, Ci.

5.2.4 Adversarial Triplet Loss

The Triplet loss [131] with three feature embeddings is formulated as:

LTriplet(a, p, n) =
∑
a,p,n

[m+Dista,p −Dista,n]+, (5.4)

where Distj,k indicates the Euclidean distance between embeddings j and k in the

feature space and a, p, n are the indices of the anchor, the positive and the negative,

respectively. This loss forces Dista,n to be larger than Dista,p by at least a margin

m. However, once this criterion is satisfied, Dista,p cannot be further minimised,

which may lead to large intra-class variances. To overcome this problem, we add

another ranking operation to Eq. (5.4), which forces Dista,n to be larger than the

73



a

p'

n 1

n 2n 3
n 4

a

p
n 1

n 2n 3
n 4

D
is

t a
p'

a

p'
n 1

n 2n 3
n 4

Tr
ip

le
t

A
dv

er
sa

ria
l 

Tr
ip

le
t

p

a

p'
n 1

n 2n 3
n 4

p'
'

(a
)

(b
)

(c
)

F
ig

u
re

5
.3

:
A

n
ex

a
m

p
le

sh
ow

in
g

h
ow

th
e

A
d

v
er

sa
ri

a
l

T
ri

p
le

t
lo

ss
w

o
rk

s.
a

(a
n

ch
o
r
)

a
n

d
p

(p
o
si

ti
ve

)
a
re

fe
a
tu

re
em

b
ed

d
in

g
s

re
p
re

se
n
ti

n
g

th
e

sa
m

e
cl

as
s.

T
h
e

n
eg

a
ti

ve
s
n
1
,
n
2
,
n
3
,

an
d
n
4

in
d
ic

at
e

fe
at

u
re

em
b

ed
d
in

gs
fr

om
ot

h
er

cl
as

se
s,

ea
ch

on
e

fr
om

a
d
is

ti
n
ct

cl
a
ss

.
(a

)
O

ri
g
in

a
l

p
o
si

ti
o
n

s
o
f

th
es

e
fe

a
tu

re
em

b
ed

d
in

g
s.

(b
)

B
y

u
si

n
g

th
e

T
ri

p
le

t
lo

ss
,
p

ca
n

m
ov

e
to

w
a
rd

s
p
′

w
h

en
m

in
im

is
in

g
E

q
.

(5
.4

).
(c

)
O

u
r

A
d

v
er

sa
ri

a
l

T
ri

p
le

t
lo

ss
g
u

a
ra

n
te

es
th

a
t

fo
r

ea
ch

n
i

w
h

er
e
i
∈

[1
,2
,3
,4

],
D
is
t a
n
i
≈
D
is
t n

i
p

b
y

a
d

d
in

g
a
n

a
d

d
it

io
n

a
l

o
p

er
a
ti

o
n

a
s

fo
rm

u
la

te
d

in
E

q
.

(5
.5

).
In

th
is

ca
se

,
p
′

m
ay

co
n
ti

n
u

e
m

ov
in

g
to

w
a
rd

s
a

a
n

d
en

d
u

p
a
t

a
lo

ca
ti

o
n

w
h

ic
h

is
ex

tr
em

el
y

cl
os

e
to

it
,

i.
e.

,
p
′′ .

74



distance between n and p, Distn,p. This additional operation helps to further bring

p closer to a by forcing different triplets with the same a and p but different n to

play a zero-sum game:

LAT (a, p, n) =
∑
a,p,n

[m+Dista,p −Dista,n]+

+ [Distn,p −Dista,n].

(5.5)

Let us assume there are several triplets with the same a and p, but different

n, where each distinct n is denoted by ni. Under this assumption, the Triplet loss in

Eq. (5.4) can be minimised as long as Dista,ni > Dista,p +m, which may result in

clusters with large intra-class variances. To reduce such variances, Dista,ni should

be larger than Distni,p. Let us take the triplets a − p − n1 and a − p − n3 in Fig.

5.3 as an example, where n1, n2, n3, and n4 are all from different classes. In this

example, both n1 and n3 should maintain their relative position with respect to

the a− p cluster in order to also be far from other neighbouring clusters. In other

words, n1 and n3 should not move towards either n2 or n4. In this case, LAT (a, p, n1)

tries to pull p towards n1 and minimise Distn1,p, while LAT (a, p, n3) tries to pull p

towards n3 and minimise Distn3,p. Therefore, LAT (a, p, n1) and LAT (a, p, n3) play

a zero-sum game as minimising one loss increases the other. This is also true for

LAT (a, p, n2) and LAT (a, p, n4). In order to minimise all losses in this example, i.e.,

to have a total loss equal to zero, p should be in the same position as a so that

Dista,ni = Distni,p. In practice, however, our Adversarial Triplet loss pulls p to a

position very close to a so that Dista,ni ≈ Distni,p.

Fig. 5.4 demonstrates the performance of the Adversarial Triplet loss on a

real dataset. In this example, the feature distribution of the MNIST dataset for

classification is presented. To this end, we employ an Alexnet [83] as the deep

network, but replace all the fully-connected layers, except the output layer, by a

single linear layer with two neurons for visualisation purposes. From the figure, we

can observe that the features learned by the Adversarial Triplet loss dramatically
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Figure 5.4: Feature distribution of the MNIST dataset for classification on (a),(c)
the training set and (b),(d) the test set when the Triplet loss and the Adversarial
Triplet loss are used.
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Table 5.1: Classification accuracy (%) n on the MNIST dataset.

Loss Triplet Adversarial Triplet

Accuracy 99.43 99.67

reduce the intra-class variances compared to the features learned by the Triplet loss.

The classification accuracy attained by each loss is tabulated in Table 5.1.

One of the most critical issues in the Triplet loss is that as the number of

triplets grows, many triplets can easily satisfy the constraint in Eq. (5.4), which in

turn may lead to poor convergence [131]. To overcome this issue in the Adversarial

Triplet loss, we adopt a hard negative mining strategy [62]. Specifically, we use an

online hard sample mining method in which each batch consists of samples from T

classes, and each class has S samples within one batch, for a batch size of B = TS.

In this method, each sample in a batch acts as the anchor for one triplet, thus, there

are a total of B triplets within one batch. For each anchor, a hardest positive sample

with the largest distance and a hardest negative sample with the smallest distance

are selected to form a triplet. This method does not require pre-defining the triplets

and can generate hard triplets in an online manner. After incorporating this hard

sample mining strategy, our Adversarial Triplet loss in Eq. (5.5) is as follows:

LAT (a, p, n) =
T∑
t=1

S∑
s=1

[m+ max
p
Dista,p −min

n
Dista,n]+

+ [Distn,p −min
n
Dista,n],

(5.6)

where t is the class index and s is the image index for each class in one batch.

Since we are trying to optimise the identity-specific features on the synthesised

faces when training our AOFS method, we use the identity-specific features, fxid,

from the source image as the anchor and the identity-specific features, f x̃id, from the

synthesised image as the positive. In addition, we use all other images in the same

batch that do not share the same identity with the source image as the negatives.
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The Adversarial Triplet loss of our AOFS method with the hard sample mining

strategy is then formulated as:

LAT (fxid, f
x̃
id,
{
fx

′
id , f

y
id

}
) =

T∑
t=1

S∑
s=1

[m+Distfxid,f
x̃
id
− min{

fx
′

id ,f
y
id

}Distfxid,{fx′id ,f
y
id}]+

+ [Dist{fx′id ,f
y
id},f x̃id − min{

fx
′

id ,f
y
id

}Distfxid,{fx′id ,f
y
id}],

(5.7)

where
{
fx

′
id

}
are the identity-specific features of images within the same age category

as the source image but carrying different identity information, and fyid are the

identity-specific features of images within the target age category. It is worth noting

that the above equation do not have the max operation as in Eq. (5.6) since the

positive in this case, f x̃id, is synthesised thus cannot be selected.

5.2.5 Overall Loss

The image-level adversarial loss in our AOFS method is formulated as:

Ladvimage
=Ey[logD(y)]

+ Ex[log(1−D(G(x|lyage))].
(5.8)

The overall loss function, Loverall, to train our method is a weighted summa-

tion of several losses, with Ladvimage
removing ghost artifacts, Ladvfeature synthesising

ageing and rejuvenating effects and attaining a high synthesis accuracy, and LAT

preserving the identity information:

Loverall =Ladvimage
+ λadvfeatureLadvfeature

+ λATLAT ,
(5.9)

where λadvfeature and λAT control the relative importance among learning objectives.
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5.3 Experiments

In this section, we first briefly describe the two AOFS benchmark datasets used in

our experiments followed by the implementation details of our method. Then, we

compare our method with state-of-the-art methods and conduct ablation studies,

both qualitatively and quantitatively, to show that our method can achieve a high

synthesis accuracy while preserving the identity information on the synthesised facial

images.

5.3.1 Experimental Settings

All images are cropped to 128×128 pixels and aligned based on the location of

the eyes. Since not all images can be aligned by using this technique, in the end,

55,062 images from the MORPH II dataset and 159,226 images from the CACD are

used in our experiments. For each dataset, we use 80% of the images for training

and the remaining 20% for testing. The number of training images for each age

category in the MORPH dataset is 19,949, 12,496, 8,982, and 2,622, for the categories

{30−, 31− 40, 41− 50, 51+}, respectively. For the CACD, the number of training

images of each age category is 39,416, 33,742, 30959, and 23,262, respectively. There

is no identity overlap between the training and test sets.

Follow previous works [151, 160], we conduct a five-fold cross validation for

all our experiments. For the MORPH II dataset, each fold has about 2,550 subjects

with 3,989, 2,499, 1,796, and 524 images within each age category, respectively. For

the CACD, each fold contains about 400 subjects with 7,883, 6,748, 6,191 and 4,652

images within each age category, respectively.

To evaluate our method and demonstrate its robustness, we use another

two large-scale benchmark datasets to train two separate validation networks, one

for each criterion. In particular, we use the AgeDB dataset [111], which is widely

used for age estimation, to train the network that evaluates the synthesis accuracy

and a face recognition benchmark dataset, the VGGFace2 dataset [13], to train the
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Table 5.2: Architecture of the generator.

Encoder

#Layer Convolution Normalisation Non-linear

1 k=7, s=1, p=1 Instance ReLU

2 k=3, s=2, p=1 Instance ReLU

Residual Block (× 6)

#Layer Convolution Normalisation Non-linear

1 k=3, s=2, p=1 Instance ReLU

2 k=3, s=2, p=1 Instance ReLU

Decoder

#Layer Deconvolution Normalisation Non-linear

1 k=3, s=2, p=1 Instance ReLU

2 k=3, s=2, p=1 Instance Tanh

Table 5.3: Architecture of the discriminators.

Feature-Level (× 4)

#Layer Fully-Connected Normalisation Non-linear

1 128 Instance LeakyReLU

2 64 Instance LeakyReLU

3 32 Instance LeakyReLU

4 16 Instance LeakyReLU

5 1 - -

Image-Level

#Layer Convolution Normalisation Non-linear

1 k=3, s=2, p=1 Instance LeakyReLU

2 k=3, s=2, p=1 Instance LeakyReLU

3 k=3, s=2, p=1 Instance LeakyReLU

4 k=3, s=2, p=1 Instance LeakyReLU

5 k=3, s=1, p=1 - -
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network that evaluates the identity permanence capabilities. In addition, we use the

commonly used ResNet-50 as the backbone for both evaluation networks.

5.3.2 Network architecture

We employ the architecture from [174] for our generator. The generator has six

residual blocks and each convolutional and deconvolutional layer is followed by an

instance normalization and a ReLU function. For the image-level discriminator, we

implement a patch discriminator [73] with five convolutional layers, each followed by

an instance normalization and a LeakyReLU function. Each feature-level discrimin-

ator has the same architecture as that of the image-level discriminator but consists

of fully-connected layers.

The details of the architectures of the generator and discriminators in our

AOFS method are tabulated in Tables 5.2 and 5.3, respectively. In both tables, for

each convolutional and deconvolutional layer, k indicates the kernel size, s indicates

the stride, and p indicates the padding size. In Table 5.3, the second column for the

feature-level discriminators tabulates the dimensions of the corresponding layer.

5.3.3 Data augmentation

When training the MTFE and validation networks, we use a combination of rotation,

flip, and crop operations to augment the data. Specifically, we first randomly rotate

each image by a angle between +10 deg. and -10 deg., and then randomly flip the

rotated image with a probability of 0.5. Finally, we pad the image on all sides with

10 pixels and crop the padded image at a random location to the original image

size (i.e. 128× 128 pixels). When training the proposed AOFS method, in order to

increase the size of the training set without introducing additional variance to the

dataset, we only use the flip operation.
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5.3.4 Hyper-parameter setting

When training the MTFE, we set the batch size to 128 and the initial learning rate

to 0.002 for both datasets. We train it for 500 epochs while decreasing the learning

rate by 0.1 every 150 epochs. When training the AOFS method, we set the batch size

to 8 and the initial learning rate to 0.0002. The learning rate decreases linearly after

the first 25 epochs. We empirically set λadvfeature to 1 and λAT to 0.001. The margin

hyper-parameter, m in Eq. (5.7), is set to 0.3. We use the PyTorch framework [122]

for the implementation and run each experiment for 50 epochs. All experiments are

run on a single NVIDIA GTX2080Ti GPU.

5.3.5 Synthesis accuracy

We first qualitatively evaluate the synthesised facial images based on their visual

quality. We then present quantitative results based on age category classification

accuracy, image quality and the degree of mode collapse. We perform these evalu-

ations for our AOFS method and several state-of-the-art methods. Note that, except

for the IPCGAN, we tried our best to re-implement existing methods and obtained

the results from our implementations.

Visual Quality

Fig. 5.5 and 5.6 show some sample images synthesised by our AOFS method. Fig.

5.5 shows ageing results for 6 subjects from the MORPH II dataset and 6 from the

CACD using a source image from the youngest category (30−). We can see that

our method turns hair gray or white, introduces forehead wrinkles and nasolabial

folds, and makes the skin to appear rough. Fig. 5.6 shows rejuvenating results for 6

subjects from each dataset using a source image from the oldest category (51+). We

can see that for these cases, our method removes wrinkles and gray/white hair.

We also evaluate six state-of-the-art methods, namely the method by Antipov

et al. [5], the IPCGAN [151], the S2GAN [61], and the methods by Liu et al. [101],
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Table 5.6: ResNet Score and Fréchet ResNet Distance on the MORPH II dataset.

Model RS FRD

Antipov et al. [5] 27.83 +− 1.34 31.72 +− 0.60

IPCGAN [151] 36.70 +− 1.18 28.08 +− 0.44

S2GAN [61] 38.92 +− 1.14 25.64 +− 0.32

Liu et al. [101] 39.14 +− 1.23 25.57 +− 0.42

Li et al. [92] 39.26 +− 1.22 25.51 +− 0.41

Yang et al. [160] 43.35 +− 1.36 22.30 +− 0.59

w/o CDP 30.19 +− 1.26 28.62 +− 0.49

Proposed 44.04 +− 1.25 21.93 +− 0.46

Table 5.7: ResNet Score and Fréchet ResNet Distance on the CACD.

Model RS FRD

Antipov et al. [5] 24.71 +− 2.04 33.83 +− 0.95

IPCGAN [151] 33.21 +− 1.82 30.18 +− 0.79

S2GAN [61] 34.24 +− 1.75 27.01 +− 0.61

Liu et al. [101] 34.54 +− 1.86 26.99 +− 0.63

Li et al. [92] 35.00 +− 1.91 26.91 +− 0.67

Yang et al. [160] 37.39 +− 2.09 24.62 +− 0.87

w/o CDP 30.87 +− 1.87 30.71 +− 0.82

Proposed 38.55 +− 1.90 23.98 +− 0.73
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Table 5.8: Degree of mode collapse as measured by the KL divergence.

Model MORPH II CACD

Antipov et al. [5] 1.86 +− 0.10 1.93 +− 0.13

IPCGAN [151] 0.64 +− 0.15 0.68 +− 0.21

S2GAN [61] 0.59 +− 0.08 0.62 +− 0.11

Liu et al. [101] 0.55 +− 0.09 0.57 +− 0.13

Li et al. [92] 0.55 +− 0.11 0.58 +− 0.14

Yang et al. [160] 0.49 +− 0.04 0.52 +− 0.05

w/o CDP 1.19 +− 0.09 1.30 +− 0.14

Proposed 0.37 +− 0.04 0.42 +− 0.07

Li et al. [92], and Yang et al. [160]. To have a fair comparison, we replace the

feature extractors in these methods with our pre-trained MTFE and use the same

number of residual blocks in their generator expect for the method in [5], as there is

no residual block originally involved in this particular method.

Since the synthesis accuracy of our AOFS method depends on the CDP, we

also evaluate a baseline model without the CDP (hereinafter called w/o CDP) as

part of an ablation study. The w/o CDP model replaces the CDP with a simple

feature-level discriminator, which makes this model similar to a vanilla GAN but

with two discriminators, one at the feature level and the other at the image level.

Fig. 5.7 depicts the visual results of these evaluations. Note that it is visually

evident that the results generated by the w/o CDP model do not contain much

ageing and rejuvenating effects as this model suffers from the mode collapse issue. On

the contrary, our proposed method can synthesise the ageing and rejuvenating effects

realistically. Among all state-of-the-art methods, Yang et al. [160] is able to synthesise

the most realistic effects due to the use of a multi-level feature discriminator.
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Age category classification accuracy

Table 5.4 and 5.5 tabulate the age category classification accuracies of various

methods on the synthesised images when images from the 30− and 51+ categories are

used as source images, respectively. In these tables, the Natural Faces row tabulates

the accuracy attained when using the original facial images. Since [5] uses a relatively

shallow generator compared to other works, its performance is hence below others

by a significant margin. IPCGAN uses the age labels as conditions in the GAN

learning process and incorporates an age category classification loss. However, due

to the fact that the classification error is high (the classifier is noisy), the gradient

for the age information is not accurate. As a result, although its performance is

higher than that of [5], it is still lower than the one attained on the original facial

images by a large margin. The recently proposed S2GAN attains a higher accuracy

by implementing a customised generator where each age category is associated with

a decoder. The methods of Liu et al. [101] and Li et al. [92] achieve similar accuracy

since both use the Wavelet transform. Among all the other evaluated methods,

the one proposed by Yang et al. [160] achieves the best performance by using a

multi-level feature discriminator. By adding a feature-level discriminator to the

vanilla GAN, the baseline w/o CDP model achieves a comparable performance to

that achieved by IPCGAN. Our proposed AOFS method outperforms all evaluated

methods for the majority of age categories.

Image Quality

The synthesis accuracy is also related to the quality of the generated images [151].

The quality and diversity of the synthesised images are usually measured in terms of

the IS and the FID. IS measures the image quality and diversity by computing the KL

divergence between the real and the generated class distributions. On the other hand,

FID uses a multivariate Gaussian distribution to model the data distribution and

the mean and the covariance from two distributions to compute their distance. Since
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we use a ResNet-50 to evaluate the identity permanence capabilities (see Section

5.3.7), we rename these two metrics as the RS and the FRD. The RS and FRD are

tabulated in Table 5.6 and Table 5.7, respectively, for our AOFS method and several

state-of-the-art methods. Since our AOFS method can render more realistic ageing

and rejuvenating effects than other evaluated methods and has stronger identity

permanence capabilities, it achieves the best performance for both metrics, especially

for the FRD, which is sensitive to the mode collapse issue.

Degree of Mode Collapse

Since our method tackles the AOFS task from the aspect of mode learning, we also

measure the degree of mode collapse by computing the KL-divergence between the

distribution of the synthesised images and the expected distribution. We compute

this divergence for all synthesised images within each fold.

As shown in Table 5.8, the proposed AOFS method significantly outperforms

the baseline model and the method in [5], which use the negative log-likelihood loss

from the vanilla GAN. By using different discriminators to learn different modes,

our method also achieves a lower divergence value compared to other methods that

leverage the least square loss from the LSGAN.

5.3.6 Identity permanence

To evaluate the identity permanence on the synthesised images, we design a new

baseline, the Triplet model. Specifically, in the Triplet model, we replace the

Adversarial Triplet loss with the original Triplet loss to directly compare these two

loss functions. The identity permanence capabilities are measured in terms of the

face verification accuracy, i.e.. whether the synthesised image and the original image

depict the same person. To this end, we define three input settings based on three

different target age categories for each synthesis process. Specifically, the query

images are the original facial images from the datasets, while the gallery images are

the synthesised images that are expected to be within the target age category, as

92



tabulated in Table 5.9 with the column headings S31-40, S41-50, and S51+ for the

ageing process and headings S41-50, S31-40, and S30− for the rejuvenating process.

For example, S31-40 refers to the synthesised images expected to be within the

31− 40 category. We use the cosine similarity to measure the distance of each pair

of query and gallery images.

As tabulated in Table 5.9, all the state-of-the-art methods achieve a similar

accuracy since they all use a similar strategy, namely, minimising the distance

between two identity-specific features using the L1 or L2 loss. Li et al. [92] slightly

outperforms other methods as it uses a combination of these two losses. The subtle

difference in accuracy among these methods may also be due to the quality of the

images, since the identity information may be distorted in images of poor quality. By

replacing the L1 or L2 loss with the Triplet loss, the identity permanence capability

can be remarkably boosted by about 3 % on both datasets. Our AOFS method,

which uses the Adversarial Triplet loss, reduces intra-class variances within each age

category in the feature space. Consequently, it achieves the highest accuracy among

all evaluated methods.

5.4 Conclusion

In this chapter, we tackle the Age-Oriented Face Synthesis task from the aspect

of the mode learning. Specifically, we present an AOFS method that incorporates

a novel Conditional Discriminator Pool to alleviate the mode collapse issue in the

vanilla GAN. Our method also incorporates a novel Adversarial Triplet loss to attain

strong identity permanence capabilities. By using the proposed CDP, only the target

feature-level discriminator that learns the current mode is deployed, which does

not increase the computational complexity during training. Our CDP then allows

learning multiple modes explicitly and independently. As a result, our proposed

AOFS method outperforms several state-of-the-art methods on AOFS benchmark

datasets. In the future, we will investigate into improving the ageing and rejuvenating
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effects by including the synthesis and removal of wrinkles and face shape manipulation

among different age categories. Improving these aspects of the synthesis process is

expected to further boost the synthesis accuracy and have the potential to simulate

a more personalised ageing and rejuvenating process.
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Chapter 6

Unsupervised Age-Invariant

Face Recognition with

Disentangled Contrastive

Learning

6.1 Introduction

AIFR aims to recognise the identity of subjects regardless of their age and is an

important yet less studied topic compared to other sub-problems of face recognition.

Different from the conventional face recognition problem, AIFR needs to consider the

intra-class variance caused by the age information. A robust solution for AIFR can be

used in various biometrics and forensics applications like tracking a person-of-interest,

such as missing children, people with dementia, or suspects over several years span

[148].

Most existing AIFR methods try to solve the AIFR problem under supervised

settings. However, cross-age facial images of the same subject are extremely hard to

collect, as a result existing noise free age-oriented face datasets are of small size with
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(a) (b)

Figure 6.1: Data augmentation strategy used in (a) conventional contrastive learning,
where two augmented samples are used to learn the shared features representing
the identity within the input image and (b) DCL, where the additional sample is
synthesised by a GAN model and used to learn age-invariant features.

limited samples per subject [28, 126]. Moreover, in real scenarios, images of the same

subject at different ages are usually hard or even impossible to obtain, which yields

insufficient supervised information and limits the versatility of supervised models.

Generally, existing AIFR methods can be categorised as either discriminative

models or generative models [94, 152]. Discriminative models [49, 132, 152, 159] aim

to learn and extract age-invariant features directly from input images while generative

models [88, 119] synthesise samples that match the target age before the feature

extraction. The research community usually favours the discriminative approach

in light of the fact that traditional generative models are time-consuming to train,

and the quality of the synthesised samples is usually unsatisfactory. Recently, many

works [5, 147, 160] have demonstrated that GANs [50] can synthesise high-realistic

images of subjects within different age groups, which brings researchers’ attention

back to the generative approach [171, 172].

In this chapter, we combine these two approaches and propose a novel method

96



called DCL to tackle the unsupervised AIFR problem. Specifically, we adopt the idea

of contrastive learning [55] to maximise the similarity between features extracted from

a pair of augmented samples from the same input image. Different from conventional

contrastive learning methods [23], we use a generative model to synthesise an

additional augmented sample within a different age group. By maximising the

similarity among features from samples derived from the same image but within

different age groups, disentangled identity features can be learned. Examples of

augmented samples in conventional contrastive learning and DCL are depicted in

Fig. 6.1. We further modify the conventional contrastive loss to fit this three-sample

setting. The modified contrastive loss can simultaneously maximise the similarity

among the set of three features and minimise the similarity between them and other

samples from different images.

6.2 Disentangled Contrastive Learning

In this section, we explain in detail the proposed DCL by first formulating the

contrastive AIFR. Then, we discuss the data augmentation process involved in our

method, followed by the modified contrastive loss.

6.2.1 Problem Formulation

Since we aim to tackle unsupervised AIFR, we use no labels associated with input

images. Given an input image x, we aim to obtain its disentangled identity features

that are not affected by the age variation.

As shown in Fig. 6.2 (a), by using contrastive learning, a pair of augmented

samples are generated through a stochastic data augmentation process, T . The two

augmented samples are considered as a positive pair and denoted as x̃i and x̃j . Then,

a feature extractor f(·) produces multi-dimensional features hi and hj from the two

augmented samples. hi and hj are further fed into a projection head g(·) that is used

to produce feature vectors zi and zj . This procedure is summarised by the following
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equations [23]:

zi = g(f(x̃i)), (6.1)

and

zj = g(f(x̃j)), (6.2)

where f(x̃i) is equivalent to hi and f(x̃j) is equivalent to hj . To extract multi-

dimensional features, f(·) is usually formulated as CNNs. To produce one dimensional

feature vectors, g(·) is usually formulated as a stack of fully-connected layers.

The contrastive learning can learn robust identity features for a conventional

face recognition task, where age variation is not considered [27]. To learn disentangled

identity features, the model needs to disentangle the age features from the identity

features. To this end, we leverage additional augmented samples. By maximising the

similarities among features that represent the same subject but within different age

groups, the model can gain disentangle capabilities and learn age-invariant features.

As shown in Fig. 6.2 (b), in DCL, the third augmented sample, x̃k, is

synthesised from a GAN model with features hk and zk produced by corresponding

networks. The maximisation is then performed among a set of three features: zi, zj ,

and zk.

6.2.2 Data Augmentation

For xi and xj , we follow the stochastic data augmentation process in [23]. Spe-

cifically, the process consists of random cropping, a resizing operation to make the

spatial dimension of the cropped image the same as the original one, random colour

distortions, and random Gaussian blur. As demonstrated in [23], random cropping

and random colour distortion are crucial for contrastive learning to achieve good

results.

For x̃k, we adopt the GAN model from [147] as depicted in Fig.6.3. The label,

l̃, used for the GAN is randomly generated so that the DCL can utilise images within

different age groups. In addition, we allow each age group to span 5 years rather
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GAN

Figure 6.3: Data augmentation by using a GAN model. l̃ is randomly generated for
the GAN model to synthesise faces within a random age group.

than the four groups used in [147]. This finer age group granularity can further

increase the disentangle capabilities of the model.

6.2.3 Modified Contrastive Loss

As aforementioned, given a pair of feature vectors zi and zj , the contrastive loss tries

to maximise the similarity between them. The similarity between a pair of features

is computed as:

sim(z̃i, z̃j) =
z̃Ti · z̃j
||z̃i||||z̃j ||

, (6.3)

where · indicates dot product. ||z̃i|| and ||z̃j || are L2 normalized feature vectors.

Instead of only maximising the similarity between features representing the same

subject, we also want to minimise the similarity between features extracted from

other images. To this end, the normalized temperature-scaled cross-entropy loss

(NT-Xent) is employed in previous works [23, 155]. The NT-Xent loss for a pair of

features is formulated as:

LNT−Xent(i, j) = −log
exp(

sim(zi,zj)
τ )∑2B

b=1 1{b 6= i}exp( sim(zi,zb)
τ )

, (6.4)
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where 1[n6=i] equals to 1 iff n 6= i, otherwise 0. τ indicates the temperature parameter

[155] and zb indicates an augmented sample from other images within the same batch.

Given a batch size of B, there are 2B augmented samples in conventional contrastive

learning. The conventional contrastive loss can then be formulated as [23]:

Lcontrastive =
1

2B

B∑
b=1

[LNT−Xent(2b− 1, 2b)+

LNT−Xent(2b, 2b− 1)].

(6.5)

Given three augmented samples, Eq. 6.4 can be modified as:

LNT−Xent(i, j, k) = −log
exp(

sim(zi,zj)
τ ) + exp( sim(zi,zk)

τ )∑2B
b=1 1{b 6= i}exp( sim(zi,zb)

τ )
, (6.6)

which simultaneously maximises the similarity among a set of feature vectors, zi. zj .

zk.

With three augmented samples, there will be 3B samples in total in a batch

and the contrastive loss in Eq.5 can therefore be modified as:

Lcontrastive =
1

3B

B∑
b=1

[LNT−Xent(3b− 2, 3b− 1, 3b)+

LNT−Xent(3b− 1, 3b, 3b− 2)+

LNT−Xent(3b, 3b− 2, 3b− 1)].

(6.7)

6.3 Experiments

6.3.1 Experiment Settings

Data Pre-processing. We use the open-source computer vision library dlib [63]

for image pre-processing. Specifically, 68 facial points are detected in each facial

image to crop images based on the location of the eyes to a size of 128× 128 pixels.

Data Partition. For the FG-Net dataset, we use the leave-one-image-out

strategy as in previous works [157]. For homogeneous dataset evaluation, 1 image is
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Table 6.1: Rank-1 accuracy and mAP value for state-of-the-art methods on the
FG-NET dataset for homogeneous-dataset evaluations.

Method Rank-1 mAP

MoCo [59] 55.6 49.2

SimCLR [23] 59.8 52.5

Xu et al. [157] 86.5 80.3

DCL 90.1 82.7

Table 6.2: Rank-1 accuracy and mAP value for state-of-the-art methods on the
FG-NET dataset for cross-dataset evaluations.

Method Rank-1 mAP

MoCo [59] 31.6 24.3

SimCLR [23] 35.2 26.5

DCL 51.7 45.4

used for testing, and the remaining 1001 images are used for training. The whole

process is repeated 1002 times, and the average is reported. For cross dataset

evaluation, we also evaluate the model 1002 times and report the average result.

For the CACD-VS dataset, we follow the previous work [157] by preforming

10-fold cross-validation. For homogeneous-dataset evaluation, we use 9 folds for

training and the remaining fold for testing.

For the MORPH II dataset, we use the partition strategy in [145, 150], where

images of 10,000 subjects are used to construct the training set, and images of 3,000

subjects are used to construct the testing set. For the cross-dataset evaluation, only

the testing set is used.

Implementation Details. We employ the ResNet-50 [58] as the function

f(·) to extract comprehensive features from input images and a 3-layer fully-connected

network to produce the features used by the NT-Xent loss. We use a batch size of

1,024 as [23] have argued that a large batch size is crucial for contrastive learning

to achieve good performance except for the homogeneous-dataset evaluation on the
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FG-NET dataset. Additionally, the LARS optimiser [163] is utilised for multi-GPU

training. In order to prevent overfitting, we use the AgeDB dataset [111] and the

UTKFace dataset [170] to train the GAN model. When training DCL, parameters

in the GAN model are fixed.

6.3.2 Comparison with State-of-the-Art Methods

The Rank-1 accuracy and the mAP value of the FG-NET dataset are tabulated

in Table 1 and 2. Due to the limited number of works on unsupervised AIFR, we

include two state-of-the-art unsupervised methods, MoCo [59] and SimCLR [23] for

comparison. We can see that DCL dramatically outperforms these two unsupervised

methods since they do not consider the age variation in facial images. Our method

also outperforms the state-of-the-art unsupervised method [157] by a large margin

under the two metrics. The CMC curve for homogeneous-dataset evaluations and

cross-dataset evaluations are depicted in Fig. 6.4.

The Rank-1 accuracy and the mAP value of the MORPH II dataset is

tabulated in Table 3 and 4. The CMC curves of the MORPH II dataset are depicted

in Fig. 6.5. Again, thanks to the additional augmented sample synthesised by the

GAN model, DCL can explicitly disentangle the age features representing different

age groups from the identity features, which yields age-invariant features. We report

the Rank-1 accuracy on the CACD-VS dataset in Table 5 with comparisons to the

human performance. DCL outperforms the human average performance by about

8% and has a comparable performance with the human voting performance, where

decisions from multiple participants are combined.

6.4 Conclusion

In this chapter, we proposed the DCL for unsupervised AIFR. Compared to previous

contrastive learning works, our method utilises an additional augmented sample

generated by a GAN to force the method to maximise the similarities among features
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Table 6.3: Rank-1 accuracy and mAP value for state-of-the-art methods on the
MORPH II dataset for homogeneous dataset evaluations.

Method Rank-1 mAP

MoCo [59] 58.9 44.8

SimCLR [23] 65.8 50.1

Xu et al. [157] 87.5 78.0

DCL 91.5 79.4

Table 6.4: Rank-1 accuracy and mAP value for state-of-the-art methods on the
MORPH II dataset for cross datasets evaluations.

Method Rank-1 mAP

MoCo [59] 39.7 27.4

SimCLR [23] 42.2 29.3

DCL 57.6 48.1

Table 6.5: Rank-1 accuracy and mAP value for state-of-the-art methods on the
CACD-VS dataset for homogeneous-dataset evaluations.

Method Rank-1

Human, Average 85.7

Human, Voting (2015) 94.2

MoCo [59] 83.3

SimCLR [23] 85.7

Xu et al. [157] 92.3

DCL 93.9
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from the facial images of the same subject within different age groups. Differently

from previous unsupervised AIFR methods, DCL merges a discriminative approach

and a generative approach together for stronger feature disentangling capabilities. In

addition, a modified contrastive loss for three augmented samples is proposed. Based

on evaluations on several AIFR benchmark datasets, DCL dramatically outperforms

both state-of-the-art unsupervised AIFR methods and contrastive learning methods.

Since this work only focuses on the AIFR task, in the future, we will apply DCL to

other tasks to explore the versatility of the method.
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Chapter 7

Conclusions

In this thesis, we focus on developing deep learning-based methods for age-related

facial analysis. We first discussed all three age-related facial analysis tasks and our

motivations. We then analysed the shortcomings of existing methods and proposed

methods from these perspectives. Specifically, we proposed two methods for age

estimation that utilising age-specific facial patches while most existing works pay no

attention to these informative regions. Then, we proposed a method for AOFS that

aims to learn independent modes, which is not achievable by using a vanilla GAN

that is widely used as the backbone model in existing AOFS works. Last but not

least, we proposed a method to study the understudied but important unsupervised

AIFR problem.

7.1 Contributions and conclusions

We summarise our main contributions as follows.

In Chapter 3, we proposed a customised CNN architecture called FusionNet

for age estimation. Apart from the whole facial image, the FusionNet successively

takes several age-specific facial patches as part of the input to emphasise the age-

specific features. The age-specific facial patches are discovered by using the BIF and

Adaboost algorithm. This work is the first deep learning-based method in which
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the learning of age-specific features is enhanced. Experimental results showed that

leveraging age-specific facial patches as inputs to the network is more robust than

using dominant facial attributes like the eyes and nose that is widely adopted by

existing works.

In Chapter 4, we proposed a modified method called ADPF for the age

estimation problem. The ADPF aims to reduce the training complexity of the

previous method by replacing the BIF and Adaboost algorithm with an AttentionNet

that contains a novel hybrid attention mechanism. The hybrid attention leverages the

merits from the multi-head self-attention mechanism and the channel-wise attention

mechanism and produces multiple single-channel attention maps with each highlights

one particular age-specific facial patches. As a result, the training time is reduced

from 70 hours from the previous method to 25 hours with a boosted performance.

We also conducted experiments on more datasets under additional settings to show

the versatility of this method.

In Chapter 5, we proposed a GAN model with a CDP to achieve high synthesis

accuracy for AOFS and an Adversarial Triplet loss to ensure the identity information

is unaltered in the synthesised image. This method aims to alleviate the mode collapse

issue in the vanilla GAN by using different discriminator to learn a particular mode.

The discriminator is selected by the target label. Experimental results showed that

CDP can alleviate the mode collapse issue to a great extent and achieve a higher

synthesis accuracy than other state-of-the-art methods. The Adversarial Triplet

loss aims to reduce the intra-class variations caused by age information in each

identity cluster. A toy example on the MNIST dataset demonstrated that the

Adversarial Triplet loss yields highly compact clusters with dramatically reduced

intra-class variations. Experiments on age-oriented datasets also showed its superior

performance compared to other identity preserving losses.

In Chapter 6, we proposed the DCL to tackle the understudied unsupervised

AIFR problem. Most existing works study the supervised AIFR problem. However,

cross-age facial images are not often collectable, which limits the implantation
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and deployment of these supervised learning methods. Different from previous

unsupervised AIFR method which requires input pairs for training, DCL only require

a single image as the input and utilise advanced data augmentation processes to

learn the constant features of the representation of the subject in the input image.

In addition to the existing data augmentation methods, we use the GAN model that

is proposed in Chapter 5 to synthesis facial images within different age groups to

learn age-invariant features. Experimental results show that DCL outperforms both

existing contrastive learning methods and unsupervised AIFR methods under widely

used evaluation metrics on several benchmark datasets.

7.2 Future research directions

This thesis only tackles age-related facial analysis from some particular perspectives.

Some other directions can be taken to further improve the deep learning-based

methods. Some possible directions for each problem are as follows.

7.2.1 Age estimation

Although deep learning-based age estimators have achieved much better results than

models that use traditional machine learning methods, there are still some issues that

have not been addressed yet. First, existing age-oriented datasets like the MORPH

II dataset and the FG-NET dataset involve other variations like PIE and occlusion.

With these unexpected factors, extracting age-specific features is onerous. [3] shows

that the expression can downgrade the performance of the age estimation models,

and proposes a graphical model to tackle the expression-invariant age estimation

problem. Such disentangled age estimation problem has not been studied by using a

CNN yet, which could be a possible future research trend.

Another possible topic is to build large-scale noise-free datasets. Recent data-

sets for face recognition have several millions of training samples [13, 54]. However,

the largest noise-free dataset for age estimation (the MORPH II dataset) has only
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40,000 to 50,000 images for training based on different data partition strategies.

Therefore, a larger noise-free dataset is needed to help to boost the age estimation

performance further.

7.2.2 Age-Oriented Face Synthesis

The most important topic that none of the above works cover is standardising the

evaluation methods of age synthesis models. Early attempts [5, 170] mainly use

subjective evaluation methods by taking surveys. Recent works [151, 160] evaluate

their model based on the two criteria mentioned in Section 3.2, but they use different

evaluation models. Specifically, [160] uses a commercial face recognition and age

estimation tool, while [151] uses their pre-trained face recognition and age estimation

model. Such differences make related works hard to compare, which may hinder the

development of further research.

Moreover, existing AOFS methods use a pre-trained face recognition model

or an age estimation model to guide the training process. However, those models

may be noisy. According to [151], the age estimation accuracy of their age estimator

is only about 30%. Due to the fact that the classification error is high (the classifier

is noisy), the gradient for the age information is not accurate. The performance can

then be boosted by developing other methods to guarantee the synthesis accuracy

and keep the identity information simultaneously. New methods could also make the

whole training process end-to-end instead of pre-training several separate networks,

which can save training time and computational resources.

7.2.3 Age-Invariant Face Recognition

Although recent AIFR models can attain good results, these results could be further

improved if larger age-oriented datasets are available for training and testing. Instead

of building the dataset from the ground up, age synthesis methods can be used to

enlarge and augment existing datasets by generating the images of each subject at

different ages or age groups. As a result, the training process could benefit from
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more training samples, and higher accuracy could be achieved.
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