
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/160913

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/160913
mailto:wrap@warwick.ac.uk

Student ID: 1218779

This student has been formally diagnosed with Specific Learn-

ing Differences. Please make appropriate allowance when marking.

Guidance is available at: http://www2.warwick.ac.uk/services/

tutors/disability/guidance

Disability Services

http://www2.warwick.ac.uk/services/tutors/disability/guidance
http://www2.warwick.ac.uk/services/tutors/disability/guidance

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Data Structure Abstraction and Parallelisation of

Multi-Material Hydrodynamic Applications

by

Richard Oliver Kirk

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

The University of Warwick

September 2020

Copyright

c© British Crown Owned Copyright 2020/AWE. Published with permission of

the Controller of Her Britannic Majesty’s Stationery Office. This document is

of United Kingdom origin and contains proprietary information which is the

property of the Secretary of State for Defence. It is furnished in confidence and

may not be copied, used or disclosed in whole or in part without prior written

consent of Defence Intellectual Property Rights DGDCDIPR-PL—Ministry of

Defence, Abbey Wood, Bristol, BS34 8JH, England.

ii

Contents

Copyright ii

List of Figures viii

List of Tables x

List of Listings xiii

Acknowledgements xiv

Declarations xv

Abstract xvii

Abbreviations xviii

Sponsorship and Grants xxi

1 Introduction 1

1.1 Motivation . 3

1.2 Thesis Contributions . 4

1.3 Thesis Overview . 5

2 Analyse and Performance of Applications and Architectures 7

2.1 Benchmarking . 8

2.2 Representative Applications . 9

2.3 Profiling . 10

2.4 Speedup . 12

2.5 Amdahl’s Law . 12

2.6 Overhead . 13

2.7 Performance Portability . 14

iii

Contents

2.8 Summary . 16

3 Achieving Performance through Hardware Optimisations 17

3.1 Moore’s Law . 18

3.2 Flynn’s Taxonomy . 18

3.2.1 Single Instruction - Single Data 20

3.2.2 Single Instruction - Multiple Data 20

3.2.3 Multiple Instruction - Single Data 22

3.2.4 Multiple Instruction - Multiple Data 22

3.3 Parallelism . 23

3.3.1 Vectorising . 24

3.3.2 Multithreading and Multiprocessing 26

3.3.3 Distributed computing . 29

3.4 Memory Layouts and Data Structures 30

3.4.1 Structure of Arrays . 33

3.4.2 Array of Structures . 34

3.4.3 Array of Structures of Arrays 35

3.4.4 Abstract Data Structures 36

3.5 Summary . 41

4 Analysing the Performance Portability of a Heat-Conduction

Mini-Application 43

4.1 Motivation . 45

4.2 Parallelisation of a Heat-Conduction Mini-Application 46

4.2.1 Reference Implementation and Manual Parallelisations . . 47

4.2.2 Oxford Parallel Library for Structured-mesh solvers . . . 48

4.2.3 Kokkos and RAJA . 48

4.3 Performance of TeaLeaf . 49

4.3.1 Experimental Setup . 51

4.3.2 Results . 52

4.3.3 System Analysis . 59

iv

Contents

4.4 Performance Portability . 60

4.4.1 Architecture Efficiency . 62

4.4.2 Application Efficiency . 64

4.5 Summary . 65

5 Creation, Development, Implementation and Optimisations of

a Data Structure Abstraction Library 67

5.1 Motivation . 69

5.2 Initial Implementation . 71

5.3 Library Structure . 81

5.3.1 High-Level Functionality Classes 82

5.3.2 Data Storage Classes . 85

5.3.3 Data Access Classes . 89

5.4 Library Features . 93

5.4.1 Conversion of Variables 94

5.4.2 Data Adjacency . 96

5.5 Data Structures and Optimisations 99

5.5.1 Structure of Arrays . 102

5.5.2 Array of Structures of Arrays 103

5.5.3 Specialised Data Structures 105

5.6 Summary . 107

6 Performance Analysis of the Data Structure Abstraction Li-

brary 109

6.1 Benchmark Testing and Overhead 110

6.2 Mini-Application Performance and Overhead 112

6.2.1 Hardware and Compilers 114

6.2.2 Unstructured Physics Mini-Application 115

6.2.3 Heat Conduction Mini-Application 118

6.2.4 Molecular Dynamics Mini-Application 123

6.3 Scaling Performance and Overhead 125

v

Contents

6.4 Summary . 129

7 Data Structure Abstraction Library Specialisation 130

7.1 Motivation . 131

7.2 Multi-Material Data Structures 131

7.2.1 Compact Cell Multi-Material Data Structure 133

7.2.2 Compact Cell Flat Multi-Material Data Structure 135

7.3 Implementation of Abstract Data Structures 136

7.4 Performance of Data Structure Abstraction Library 140

7.4.1 Experimental Setup . 141

7.4.2 Results . 143

7.5 Summary . 145

8 Conclusion and Future Work 146

8.1 Limitations . 147

8.2 Future Work . 148

8.2.1 Warwick Data Store . 149

8.2.2 Multi-Material Data Structures 150

8.2.3 Data Structure Optimisations 151

8.2.4 Just-In-Time Compilation 152

8.3 Reflections . 153

Bibliography 154

Appendices 166

A Compilers and compiler flags used for Analysing the Perfor-

mance Portability of a Heat-Conduction Mini-Application (Chap-

ter 4) 167

vi

List of Figures

1.1 Trend of accelerators for the Top500 supercomputers [113] over

the last decade . 2

3.1 Graphical representation of the different categories in Flynn’s

Taxonomy . 19

3.2 Graphical representation of the Memory Hierarchy 32

3.3 Graphical representation of the memory when using a Structure

of Arrays (SoA) data structure 34

3.4 Graphical representation of the memory when using a Array of

Structures (AoS) data structure 35

3.5 Graphical representation of the memory when using a Array of

Structures of Arrays (AoSoA) data structure 36

3.6 Graphical Examples of Linked Lists data structures 38

3.7 Graphical example of a Binary Tree based data structure 39

3.8 Graphical example of a Graph data structure 40

3.9 Graphical examples of different types of Meshes 41

4.1 Times for TeaLeaf using 10002 dataset on Central Processing Unit

(CPU) systems . 54

4.2 Times for TeaLeaf using 10002 dataset on Graphics Processing

Unit (GPU) systems . 55

4.3 Times for TeaLeaf using 40002 dataset on CPU systems 56

4.4 Times for TeaLeaf using 40002 dataset on GPU systems 57

5.1 Graphical representation of the original structure and control flow

of Warwick Data Store (WDS) 72

vii

List of Figures

5.2 Graphical representation of the structure and control flow of the

final version of WDS . 82

5.3 Graphical example of how the order of the data can differ, without

changing the underlying data structure 97

6.1 Strong scaling results for MiniMD across all architectures and

compilers for one to 16 nodes on Isambard and one to 14 nodes

for Orac, utilising both problem sizes (643, 1000 timesteps for

small problem size, 1283, 500 timesteps for large problem size). . 128

7.1 Graphic representation of multi-material mesh 3 × 3 mesh with

four materials . 132

7.2 Graphical representation of Fogerty et al. Compact Cell [23] data

structure using the example mesh shown in Figure 7.1 134

7.3 Graphical representation of WDS’ Compact Cell Flat data struc-

ture using the example mesh shown in Figure 7.1 135

7.4 Graphical example of a randomised multi-material mesh 142

7.5 Graphical example of a geometric multi-material mesh 142

viii

List of Tables

4.1 Systems utilised to measure the performance of the different ver-

sion of TeaLeaf . 51

4.2 Computational architectural efficiency (%) and Performance Porta-

bility (P) on Xeon Broadwell, Intel’s Xeon Phi Knights Land-

ing (KNL) (Multi-Channel Dynamic Random Access Memory

(MCDRAM)) and a P100 card for the larger dataset (40002) . . 63

4.3 Memory bandwidth architectural efficiency (%) and Performance

Portability (P) on Xeon Broadwell, KNL (MCDRAM) and a

P100 card for the larger dataset (40002) 63

4.4 Application efficiency (%) and Performance Portability (P) on

Xeon Broadwell, KNL (MCDRAM) and a P100 card for the larger

dataset (40002) . 64

6.1 Systems used to measure the performance impact of Warwick

Data Store (WDS) when testing benchmarks 111

6.2 Results for different benchmark kernels across architectures, com-

pilers and data structures . 112

6.3 Input sizes for small and large problems across all mini-aplications113

6.4 Systems used to measure the performance impact of WDS when

tesing mini applications . 115

6.5 Results for BookLeaf input decks across architectures, compilers

and input decks. 119

6.6 Results for TeaLeaf Message Passing Interface (MPI), across all

input decks, solvers, architectures and compilers. 121

6.7 Results for TeaLeaf OpenMP, across all input decks, solvers, ar-

chitectures and compilers. 122

ix

List of Tables

6.8 Results for TeaLeaf MPI and OpenMP, across all input decks,

solvers, architectures and compilers. 122

6.9 Results for MiniMD input decks, across all architectures and com-

pilers. 124

6.10 Results showing the overhead for all strong scaling results utilis-

ing MiniMD . 127

7.1 Results of multi-material average kernel within Benchmarking

suite, across different architectures and compilers 143

7.2 Results of multi-material Equation of State (EOS) kernels within

Benchmarking suite, across different architectures and compilers 144

A.1 List of the manual implementation of TeaLeaf with compilers and

corresponding flags used on the single node, multi-core systems . 167

A.2 List of the Oxford Parallel Library for Structured mesh solvers

(OPS) implementation of TeaLeaf with compilers and correspond-

ing flags used on the single node, multi-core systems (Compute

Unified Device Architecture (CUDA) ran with a block size of 64

by 8) . 168

A.3 List of both the Kokkos and RAJA versions of TeaLeaf with com-

pilers and corresponding flags used on the single node, multi-core

systems . 168

x

List of Listings

1.1 Psuedo-code example of what is expected from the data structure

abstraction library. 4

3.1 Example C code of loop without vectorisation 21

3.2 Example C code of loop with vectorisation (utilising Streaming

Single Instruction - Multiple Data (SIMD) Extension (SSE)) . . 21

3.3 Example C code of loop without parallelisation 22

3.4 Example C code of loop with parallelisation (utilising OpenMP) 22

3.5 SSE example showing how branching statements can be vectorised 25

3.6 Advanced Vector Extensions (AVX) example showing how branch-

ing statements can be vectorised 26

3.7 PThread example of a parallelism loop 28

3.8 OpenMP example of a parallelism loop 28

3.9 Message Passing Interface (MPI) example of parallelism loop . . 31

3.10 Pseudocode example of Structure of Arrays (SoA) data structure 34

3.11 Pseudocode example of Array of Structures (AoS) data structure 35

3.12 Pseudocode example of Array of Structures of Arrays (AoSoA)

data structure . 36

4.1 Reference (FORTRAN) version of TeaLeaf’s cg_calc_w kernel

with OpenMP. 47

4.2 Oxford Parallel Library for Structured mesh solvers (OPS) (C++)

version of TeaLeaf’s cg_calc_w kernel. 49

4.3 Kokkos version of TeaLeaf’s cg_calc_w kernel. 50

4.4 RAJA version of TeaLeaf’s cg_calc_w kernel. 50

5.1 Key variables within OBJ . 73

5.2 Key functions within OBJ . 74

5.3 Key variables and functions within StructOBJ 76

xi

List of Listings

5.4 FORTRAN interface for the original implementation of Warwick

Data Store (WDS) . 80

5.5 Initialisation step for a WDS based application using the initial

implementation . 84

5.6 Initialisation step for a WDS based application using the final

implementation . 84

5.7 Addition of variables a and b to WDS using the initial implemen-

tation . 88

5.8 Addition of variables a and b using the addMeta and buildVar

method within WDS’ final implementation 88

5.9 Calculations using a and b through WDS’ initial function-based

interface . 91

5.10 Calculations using a and b through WDS’ initial view-based in-

terface . 91

5.11 Calculations of a and b, using the View objects from WDS’ final

implementation . 92

5.12 Calculations of a and b, using the ViewSpec objects from WDS’

final implementation . 92

5.13 C++ example of how WDS can be used to pass two variables a

and b into kernel, without kernel knowing the data structure. . . 93

5.14 C++ example showing how two variables a and b can be con-

verted from one data structure to another utilising WDS. 96

5.15 C++ example showing how a variable c can have it’s data adja-

cency’s altered, transparent to the kernel through the utilisation

of WDS. 98

5.16 Multi-dimensional access operator for the View class within WDS

used the initial implementation 100

5.17 Multi-dimensional access operator for the View class within WDS

used the final implementation . 101

5.18 SoA 2D data access function used in WDS’ initial implementation 103

xii

List of Listings

5.19 SoA 2D data access function used in WDS’ final implementation 103

5.20 AoSoA 2D data access function used in WDS’ initial implemen-

tation . 104

5.21 AoSoA 2D data access function used in WDS’ final implementation105

6.1 Reference BookLeaf getEnergy kernel 117

6.2 WDS BookLeaf getEnergy kernel 118

6.3 Reference (C++) TeaLeaf cg_calc_w kernel 120

6.4 WDS TeaLeaf cg_calc_w kernel 121

6.5 Reference MiniMD Thermo::temperature kernel 125

6.6 WDS MiniMD Thermo::temperature kernel 126

7.1 WDS psudocode for adding materials to cells according to Fig-

ure 7.1 . 133

7.2 Construction of WDS Views for Compact Cell 135

7.3 Construction of WDS Views for Compact Cell Flat 135

7.4 Uses of WDS Views for Compact Cell Flat 138

7.5 Uses of WDS Views for Compact Cell (Single Material) 139

7.6 Uses of WDS Views for Compact Cell (Multi-Material) 140

xiii

Acknowledgements

I would like to thank Prof. Steven Jarvis for giving me the opportunity to do

this PhD. I would also like to thank both him and Dr. Gihan Mudalige for their

supervision and support throughout the last four years. They have influenced

me greatly, and without them this work would not have been what it is today.

I would also like to thank my colleagues and friends in the High Perfor-

mance Scientific Computing Group: Dean Chester, Andrew Lamzed-Short, Alex

Cooper, Dr. Andrew Owenson and David Truby. Without you, the days spent

trying to get code to work would have been twice as long and only half as inter-

esting. I would like to thank Dr. Dominic Brown in particular. Having known

him for most of my student life, both as an undergraduate and as a PhD stu-

dent, I can say there is nobody I would have rather worked alongside. I would

also like to thank all of the lab supervisors: Dr. Steven Wright, Dr. James Davis

and Dr. Timothy Law. The assistance and time they gave me was invaluable

and helped me to work more efficiently and effectively.

From the Department of Computer Science, I would like to thank Dr. Claire

Rocks, Prof. Jane Sinclair, Sharon Howard and Dr. Arshad Jhumka for all their

guidance and support throughout the years. I would also like to thank Dr. Liam

Steadman, James Van Hinsbergh, Helen McKay, Dr. Matthew Bradbury and

Dr. David Purser for listening to me rant on about why my code wasn’t working

on any given day.

Last, but by no means least, I would like to thank all my friends from

the University of Warwick and from Sittingbourne, for making the bad days

brighter, and the good days excellent. I would like to thank my family: Mum,

Dad, Liz, Nan, Grandad and Jean. Without your love and support, I wouldn’t

have been able to do any of this. Finally, I would also like to thank my partner

Kirstie for being able to put up with me, even at my most annoying.

xiv

Declarations

This thesis is submitted to the University of Warwick in support of my appli-

cation for the degree of Doctor of Philosophy. It has been composed by myself

and has not been submitted in any previous application for any degree. The

work presented (including data generated and data analysis) was carried out by

the author except in the cases outlined below:

• Figures 7.4 and 7.5 in Chapter 7 were created by Dr. Timothy Law.

Parts of this thesis have previously been published by the author:

[49] R. O. Kirk, T. R. Law, S. Maheswaran, and S. A. Jarvis. Warwick Data

Store: A HPC Library for Flexible Data Storage in Multi-Physics Appli-

cations. In Super Computing 19 (SC19), Denver, CO, November 2019.

Association for Computing Machinery, New York, NY

[50] R. O. Kirk, G. R. Mudalige, I. Z. Reguly, S. A. Wright, M. J. Martineau,

and S. A. Jarvis. Achieving Performance Portability for a Heat Conduction

Solver Mini-Application on Modern Multi-core Systems. In 2017 IEEE

International Conference on Cluster Computing (CLUSTER), pages 834–

841, Honolulu, HI, September 2017. IEEE Computer Society, Los Alami-

tos, CA

[51] R. O. Kirk, M. Nolten, R. Kevis, T. R. Law, S. Maheswaran, S. A. Wright,

S. Powell, G. R. Mudalige, and S. A. Jarvis. Warwick Data Store: A

Data Structure Abstraction Library. In 11th IEEE International Work-

shop on Performance Modeling, Benchmarking and Simulation of High

Performance Computer Systems (PMBS20), pages 71–85, Atlanta, GA,

November 2020. IEEE Computer Society, Los Alamitos, CA

xv

Declarations

Each author contributed to the aforementioned publications in the following

ways:

• Prof. Stephen Jarvis was the lead supervisor for the project.

• Dr. Gihan Mudalige was the secondary supervisor for the project, taking

over from Prof. Stephen Jarvis as the lead supervisor when Prof. Stephen

Jarvis left the University of Warwick. He also developed and provided

insight into Oxford Parallel Library for Structured mesh solvers (OPS)

discussed in Chapter 4, alongside Dr. Istvan Reguly.

• Dr. Steven Wright helped oversee the research, and assisted in checking

the work.

• Dr. Timothy Law helped oversee the research, and was a point of contact

with the sponsors AWE plc.

• Dr. Satheesh Maheswaran was the lead contact with the sponsors AWE

plc.

• Dr. Martin Nolten, Dr. Robert Kevis and Dr. Seimon Powell were key

contacts at the sponsors AWE plc.

• Dr. Matt Martineau was a key contact for information regarding TeaLeaf,

a mini-application referred to in Chapters 4 and 6.

xvi

Abstract

The aim for High Performance Computing (HPC) is to achieve the best perfor-
mance for an application, in order to execute it as quickly as possible. This is of-
ten achieved through iterative improvements in Central Processing Unit (CPU)
technology such as: including more circuitry by shrinking or making proces-
sors larger; making the processor run faster by increasing the clock speed; or
increasing the amount of parallelism. Recently, there has been increasing di-
versity in how HPC systems achieve these performance improvements. The use
of Graphics Processing Unit (GPU) processors has become more common, and
there has been a growing interest in high bandwidth memory. This has lead
to a need for performance portable code, so programs may be written once but
compiled and ran on a range of differing systems, with minimal impact on the
performance.

As memory becomes a major focus, so too should the data structure used
by an application. Without a well designed data structure, the performance of
a program can be affected. However, it is key that this is done in a performance
portable way, where the data structure can be altered and optimised without the
need for the application to be rewritten. As such, a data structure abstraction
library was developed, called Warwick Data Store (WDS). This library is able to
provide objects, which allow for access to data, without the application needing
to know the detail of the data structure. The library also provides additional
functionality that would otherwise be difficult and time consuming to imple-
ment, such as the ability to convert a variable or a collection of variables from
one data structure to another. The performance impact of the library is shown
to be minimal, especially in larger problem sizes. Because of the flexibility of
the library, data structures for specialised cases can be implemented into WDS
without impacting the performance of other data structures. The performance
of these specialised data structures is also presented as being minimal.

xvii

Abbreviations

AI Artificial Intelligence

ALE Arbitrary Lagrangian-Eulerian

AoS Array of Structures

AoSoA Array of Structures of Arrays

AVX Advanced Vector Extensions

BW Bandwidth

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CPU Central Processing Unit

CSR Compressed Sparse Row

CUDA Compute Unified Device Architecture

DDR Double Data Rate

DoE United States Department of Energy

DSL Domain Specific Language

EAM Embedded Atom Model

ECMWF European Centre for Medium-Range Weather Forecasts

ECP Exascale Computing Project

EOS Equation of State

FLOP/s Floating Point Operations per Second

GB/s Gigabytes (109 bytes) per Second

GFLOP/s Giga (109) Floating Point Operations per Second

xviii

Abbreviations

GPU Graphics Processing Unit

HDD Hard Disk Drive

HPC High Performance Computing

JIT Just-In-Time

KNL Intel’s Xeon Phi Knights Landing

L1 Level 1 Cache Memory

L2 Level 2 Cache Memory

L3 Level 3 Cache Memory

LANL Los Alamos National Laboratory

LLNL Lawrence Livermore National Laboratory

MB/s Megabytes (106 bytes) per Second

MCDRAM Multi-Channel Dynamic Random Access Memory

MD Molecular Dynamics

MFLOP/s Mega (106) Floating Point Operations per Second

MIMD Multiple Instruction - Multiple Data

MISD Multiple Instruction - Single Data

ML Machine Learning

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

OP2 Oxford Parallel Library for Unstructured mesh solvers

OPS Oxford Parallel Library for Structured mesh solvers

OS Operating System

PARSEC Princeton Application Repository for Shared-Memory

Computers

PPCG Polynomially Preconditioned Conjugate Gradient (CG)

xix

Abbreviations

SDLT Intel’s Single Instruction - Multiple Data (SIMD) Data Layout

Templates

SIMD Single Instruction - Multiple Data

SISD Single Instruction - Single Data

SNL Sandia National Laboratory

SoA Structure of Arrays

SSD Solid State Drive

SSE Streaming SIMD Extension

UKMAC UK Mini-App Consortium

WDS Warwick Data Store

xx

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• UK Atomic Weapons Establishment (AWE plc):

“AWE Technical Outreach Programme” (CDK0724, 2016 - 2020)

xxi

CHAPTER 1
Introduction

One of biggest hurdles within High Performance Computing (HPC) is the exas-

cale barrier, which refers to the challenge of creating a supercomputer capable

of performing 1018 Floating Point Operations per Second (FLOP/s), otherwise

known as a exaFLOP/s. Exceeding this has been the goal since the petascale

(1015 FLOP/s) barrier was broken by the Roadrunner system at Los Alamos

National Laboratory (LANL) in 2008. [33] In order to pass the petascale barrier,

faster Central Processing Unit (CPU) processors with high levels of parallelism

were connected together through large networks, designed to act as one large

system. Such techniques have allowed HPC systems to get closer to an exascale

system. However, improvements through these mechanisms is no longer sustain-

able. The lower limit of transistor sizes is being reached. Increasing the clock

speed is not sustainable as the power required would generate a large amount of

heat that might be difficult to dissipate. [36] Thus, to continue to improve per-

formance, the inherent nature of parallelism within many scientific algorithms

needs to be exploited.

Whilst the increasing performance of CPUs has contributed towards achiev-

ing exascale, more radical ways have been explored to increase the performance.

The most prevalent idea has been the use of accelerators such as Graphics Pro-

cessing Unit (GPU) processors. These have shown that specialised hardware

can also greatly improve the performance of a system, especially when used

alongside fast CPUs. In fact, over the last decade, the number of systems

with accelerators has grown dramatically. Figure 1.1 shows this trend of the

largest supercomputers with accelerators over the last decade, as measured by

the Top500 [113].

1

1. Introduction

Ju
ne

20
10

N
ov
em

be
r
20
10

Ju
ne

20
11

N
ov
em

be
r
20
11

Ju
ne

20
12

N
ov
em

be
r
20
12

Ju
ne

20
13

N
ov
em

be
r
20
13

Ju
ne

20
14

N
ov
em

be
r
20
14

Ju
ne

20
15

N
ov
em

be
r
20
15

Ju
ne

20
16

N
ov
em

be
r
20
16

Ju
ne

20
17

N
ov
em

be
r
20
17

Ju
ne

20
18

N
ov
em

be
r
20
18

Ju
ne

20
19

N
ov
em

be
r
20
19

Ju
ne

20
20

0

20

40

60

80

100

120

140

Year

N
um

be
r
of

A
cc
el
er
at
or
s

Figure 1.1: Trend of accelerators for the Top500 supercomputers [113] over the
last decade

Even with improvements to CPUs and the use of accelerators, HPC systems

have not yet broken the exascale barrier. One of the key innovations in the last

few years is the development of hardware with higher bandwidths, which allow

for more data to be passed between the processor and the systems memory.

In fact, the current fastest machine in the world, Fugaku, has achieved 0.4155

exaflops through the use of ARM Fujitsu A64FX [25] processors which contain

high bandwidth memory. [114] The use of high bandwidth memory can improve

the performance of both CPUs and GPUs for many real-world applications.

Through the use of diverse hardware and new techniques such as high band-

width memory, the exascale barrier will be broken soon. Whilst some are looking

beyond exascale already [48, 85], there will be a massive undertaking to ensure

applications can maximise their performance on an ever-changing HPC land-

scape.

2

1. Introduction

1.1 Motivation

In recent years, the diversity and heterogeneity of systems within HPC has

dramatically increased. From high bandwidth memory being implemented into

GPUs (such as NVIDIA A100 [78]) and CPUs (such as ARM Marvell Thunder

X2 [65] and ARM Fujitsu A64FX [25]), to more novel CPUs (for example,

Intel’s Xeon Phi Knights Landing (KNL) [103]), there is no longer a single

approach to achieving better performance. This thesis explores performance

portability through the utilisation of modern HPC hardware and software. In

doing so, differences in both performance and performance portability can be

examined across a range of hardware, using a memory-bound heat conduction

proxy application as the base program. To effectively measure the performance

portability, both CPUs and GPUs need to be examined.

One of the key areas of development, especially with regard to newer CPU

design, is the growing importance attached to the performance of memory. This

has led to an increased emphasis on the structure of the data within an applica-

tion. This thesis demonstrates the idea of a data structure abstraction library

with a priority on minimising the impact on the performance of a program.

By implementing this approach, the data structure can be optimised to cater

for different architectures and applications without additional developer input.

Thus, the data structure and memory can become performance portable. An-

other benefit of using such a library is the ability to change the data structure

between sections of code, in order to allow potential optimisations through the

rearrangement of data. Listing 1.1 shows a C++ styled pseudo-code example

of how this should look. This example demonstrates that the kernel(s) do not

know, or need to know, that the data structure has been altered.

The creation, development, implementation and optimisation of the library

is presented in detail, along with details of the library’s impact on performance.

The performance study of the library is tested against a collection of benchmark

kernels and proxy applications, across a wide range of CPUs, each utilising mul-

3

1. Introduction

//Get the required data in a view-like object
auto a = library.getView("a");
auto b = library.getView("b");

//Use the data to perform some calculations
kernel(a, b);

//Alter the data structure of the required data
library.alter("a", "b");

//Use the newly rearranged data to perform more calculations
kernel2(a, b);

Listing 1.1: Psuedo-code example of what is expected from the data structure
abstraction library.

tiple compilers. The development and performance of specialised data structures

within the library is also presented. In order to simplify the problem, and to

show that there is a need for libraries such as the one presented in this thesis,

the library solely focuses on a wide range of different CPU processors, each with

varying designs and memory architectures. Potential future expansions are dis-

cussed, including the possibility of extending the library to work natively with

GPUs

1.2 Thesis Contributions

The research presented in this thesis makes the following contributions:

• Measure the performance of a heat-conduction proxy application utilising

different performance portable libraries, as well as manually parallelised

versions, across multiple different architectures. Alongside the application

efficiency, the architectural efficiency is also measured in order to gain

a more complete picture of the performance portability of each library,

across the given architectures.

• Development and implementation of a data structure abstraction library,

Warwick Data Store (WDS). The library should be flexible enough that

4

1. Introduction

additional data structures and features can be added with ease, as small

as possible, extensible and have a minimal impact on an application’s per-

formance as possible. Alongside this, show that the performance impact

of WDS is minimal across many different kernels, proxy applications and

when used at scale.

• Demonstrate how specialised data structures can be implemented into

WDS, using multi-material data structures as a basis. The performance

impact of the library on different multi-material kernels is shown to be

minimal, and altering the data structure can improve the performance of

particular kernels.

1.3 Thesis Overview

The remainder of the thesis is structured as follows:

• Chapter 2 explores how performance of applications and hardware can be

measured through different techniques. It also looks into how the changes

in performance can be quantified, and why this is necessary.

• Chapter 3 discusses how increases in performance has been achieved,

whether through the use of smaller components in processors, vectorisa-

tion of computation, paralleisation of processors through the use of mul-

tithreading, multiprocessing or distributed computing. Alongside this,

the importance of memory is discussed, as well as the way in which it is

utilised. In particular, different data structures are explored, including

there benefits and drawbacks.

• Chapter 4 presents and analyses the performance of a heat-conduction

mini-application across a multitude of different parallelisation models us-

ing three different hardware architectures. After this, the efficiency of each

model on each architecture is then measured to analyse the performance

portability of these models.

5

1. Introduction

• Chapter 5 introduces a data structure abstraction library, WDS. Details

on the development and the data structures are presented, as well as the

additional functionality the library can provide through the use of data

structure abstraction.

• Chapter 6 explores the performance of the data structure abstraction

library WDS. To do this, the library is tested using different benchmark

kernels and a variety of mini-applications. The scaling performance is also

measured and presented.

• Chapter 7 discusses how WDS can use specialised data structures for

given applications. The data structures are presented, along with the

implementation details and the performance utilising different kernels and

meshes.

• Chapter 8 concludes the thesis by exploring the limitations of the work,

the implications of the research, and where future work could be done

within the area.

6

CHAPTER 2
Analyse and Performance of Applications and Architectures

The main objective of High Performance Computing (HPC) is to extract the

most performance from a given application. This can be achieved through two

methodologies, redesign the software to maximise the utilisation of a given sys-

tem, or improve the system so that the application can execute faster. In either

case, without quantification of the improvements gained, it is impossible to

know how much of a gain has been achieved, and how much could theoretically

be possible. Thus, reliable methods are required to measure the performance

of both hardware and software, and tools are needed to analyse where further

improvements could be gained.

In this chapter, some of these different techniques are discussed:

• Sections 2.1 and 2.2 show how different techniques can be used to measure

the performance of hardware, in a way in which different aspects of a

system can be compared.

• Section 2.3 discusses how software can be analysed in order to see where

performance improvements could be made, both from a software and from

a hardware utilisation perspective.

• Sections 2.4 and 2.5 describe two different formulae for measuring the

performance improvements of an application.

• Section 2.6 outlines how the affect of adding a library affects the perfor-

mance of an application.

• Section 2.7 describes the importance of performance portability, the prin-

ciple of a single code base running on multiple systems with a high level

7

2. Analyse and Performance of Applications and Architectures

of performance. A formulae is also presented, allowing for multiple per-

formance portable libraries to be compared.

2.1 Benchmarking

Benchmarking is the use of kernels to analyse the performance of a given aspect

of a system. By doing this, it is possible to quantify performance and make com-

parisons with other systems, allowing for better informed decisions when procur-

ing a large system. The use of benchmarking also enhances the predictability of

how an application may perform on a given architecture. For example, say an

algorithm is heavily compute bound (i.e. the speed of the algorithm is limited by

how fast the computation can be done), then a benchmark which can measure

the amount of computation that can be done in a given time frame, (usually

in Mega (106) Floating Point Operations per Second (MFLOP/s) or Giga (109)

Floating Point Operations per Second (GFLOP/s)), is useful. Whereas, for

a memory bound problem (i.e. the speed of the algorithm is limited by how

fast data can be retrieved from memory), a benchmark which can measure the

memory bandwidth (usually in Megabytes (106 bytes) per Second (MB/s) or

Gigabytes (109 bytes) per Second (GB/s)) is more useful. Examples of these in-

clude Livermore Loops (also known as Livermore FORTRAN Kernels) [20], the

LINPACK Benchmark (which is used to categorise the most powerful machines

in the world) [17, 115], and the STREAM benchmark [67].

Because each benchmarking software measures a different aspect of the ma-

chine, it is very common to use multiple benchmarks to compare machines,

especially for procurement. Examples of these include the NAS Parallel Bench-

marks [5, 72] developed by NASA, Princeton Application Repository for Shared-

Memory Computers (PARSEC) benchmarking suite [10] developed by Christian

Beinia from Princeton University, and the ACS benchmarking suite [26] devel-

oped by Los Alamos National Laboratory (LANL) and Lawrence Livermore

National Laboratory (LLNL).

8

2. Analyse and Performance of Applications and Architectures

However, a major issue with benchmarks is that while they provide a good

indication of the hardware’s overall performance, they are often quoted as op-

timal numbers, and as such they may not properly convey the complexity of a

real-world application due to their simplicity. Therefore, when reporting bench-

marks, it is good practice to: use a geometric or harmonic mean; clearly state

confidence intervals; and specify the parameters used. [12, 21].

2.2 Representative Applications

As discussed in the previous section, whilst benchmarks are useful when com-

paring systems, they may not give an accurate picture of how a real-world

application may perform. One way to get around this is to actually use the

real-world application on a testbed system. However, this is not feasible due

to their size, complexity, and the fact that they often contain sensitive code,

commercially or otherwise. Therefore, there is a need for a representation of the

production real-world application. These codes are often referred to as proxy

applications, mini-applications, or mini-apps.

Mini-apps are much smaller than their production counterparts, consisting

of key computational kernels and enough code to load a given state. There are

many benefits to mini-apps, such as the fact that it is easy to implement par-

allelisation methodologies and optimisations. Additionally, they do not contain

commercially sensitive information, and therefore can be shared with multiple

parties. [31]

When used in the analysis of systems, proxy applications are grouped to-

gether to form suites. Proxy application suites can be used alongside bench-

marking suites to gain a better picture of the system performance. These

suites include the Mantevo suite [60], the UK Mini-App Consortium (UKMAC)

suite [118], and the newly formed Exascale Computing Project (ECP) proxy

app suite [19]. ECP also manage a large catalogue of mini-applications, to-

gether with their location.

9

2. Analyse and Performance of Applications and Architectures

2.3 Profiling

Profiling is defined as the examination of a program to better understand the

operations performed. The aim of profiling is to find performance issues and

potential bottlenecks. In this examination, the software being used to inspect

and application, (often referred to as the profiler), can measure a large range of

different factors, depending on what is required. These factors can include: the

instructions called by each processing unit; the amount of memory used; the

length of time spent in a function; and the number of calls to different hardware

elements such as: memory, hard drives, and network cards. Depending on

the data collected, the profiler may collect data at regular intervals (such as

the usage of memory), or may look for given signals built into the program at

compile time (such as when the program moves into or out of a function).

Due to the scope of profilers, they can identify many different issues with an

application. These issues may have come from poorly written code, the compiler

incorrectly generating code or generating code that is not performant, or utilis-

ing hardware incorrectly. As such, there are many uses for profilers, including:

understanding why a large number of unnecessary instructions are being used

(i.e. the run-time of a given function is higher than expected); large amounts of

data are being written to the hard disk or to memory; or communication with

another machine is taking longer than expected. By identifying these issues,

an application developer can take steps to alter the code in order to maximise

machine utilisation and program performance, or find issues that would have

been difficult to detect otherwise.

Profiling tools have been built into UNIX since 1974, with the use of the

prof, profil and monitor commands. These commands allowed for the kernel

to sample the program counter and record the execution status of the program.

This data was then stored in a separate file, which could later be read and inter-

preted by a separate program. [47] Later, improvements were realised through

the gprof command, which generated a call graph of the given application.

10

2. Analyse and Performance of Applications and Architectures

The introduction of gprof allowed for an amelioration in the analysis of func-

tion runtimes, and made it easier for the developer to read and understand the

software program. [29]

More detail can be obtained by using instrumentation to profile an applica-

tion. This involves integrating additional information into the program, either

through compilation or implementation into the code. In this way, a more accu-

rate profile can be achieved, and can be used to debug the application. However,

only functions which run will be tested (compared to analytical profiling which

inspects all possible branching paths for a program) The drawback to instu-

mented profiling is that it can increase the time it takes to run the code, and

requires the program to be modified in order to include specialised flags the

profiler can use. Examples of this include ATOM [104] and Caliper [11].

The profilers discussed thus far measure different aspects of an application,

but don’t measure the hardware these programs are running on. As such, these

profilers provide a good indication on where potential optimisations could be

made, but cannot tell why the application might be running slower than is

possible though better utilisation of the system. To overcome this issue, a

profiler with the ability to measure the hardware usage is required. For memory,

hard drives, and network interfaces, the profiler would have to poll the usages

for a given frequency. However, for most processors, profiling the hardware can

be achieved through the monitoring of processor counters. These profilers are

used to determine how many times a given operation has been carried out. This

can include the movement of data to and from the processor’s cache and how

many times a request has been made to a hard drive. Due to the nature of

these profilers, they are often more specialised, and developed for a particular

architecture. Examples include Intel VTune [40], Nvprof [79] Arm Forge [3],

and PAPI [107]. Other hardware aspects can be profiled more explicitly, such

as the memory through the use of Valgrind [121], and I/O interactions through

the use of RIOT [127].

11

2. Analyse and Performance of Applications and Architectures

2.4 Speedup

When optimising a program or making it run in parallel, it is useful to quantify

the effect of these changes. The most common way to create this is to measure

the new time, and compare this to the original, creating a ratio. This method

is often used to show how an application scales when parallelised. Equation 2.1

shows the equation, where Ts is the serial/original time and Tp is the paral-

lel/optimised time.

S =
Ts

Tp
(2.1)

Because the equation relies on only two times, it can be used as a quick metric to

show how well a program scales, or how much of an effect optimisations have on

the program. This metric can also be used to examine how well a program scales

with larger systems, by looking at how the score increases as more resources are

given to the program. If speedup increases at the same rate as the resources

increase, then the program scales well.

2.5 Amdahl’s Law

Amdahl’s Law was proposed in 1967 by Gene Amdahl and shows the perfor-

mance differences for a program across different amounts of parallelism. [2] The

equation (shown in Equation 2.2, where p is the fraction of the code parallelised

and n is the number of processors used when running the parallel code) shows

that the amount of speedup is dependant on two sections, the serial portion of

the program and the parallel portion of the program.

S =
1

(1− p) + p
n

(2.2)

The first section (relating to (1 − p)) determines the amount of time spent in

serial parts of the program. In order to increase the performance of this section,

the performance of the core itself needs to be improved. The most common

ways to achieve this are to increase the core complexity, or to increase the speed

12

2. Analyse and Performance of Applications and Architectures

of the core.

The second section (relating to p
n) determines the amount of time spent in

parallel parts, and how a change in the number of processors will affect this.

Due to the nature of this portion of the program, the easiest way to increase

the performance is to increase the number of cores that can operate on the

application. Recently, the performance of an individual core has slowed, along

with the proportion of programs that can be run with parallelisation. So in order

to increase the performance of an average application, the number of processors

has had to be increased. This in turn has driven the need for larger systems.

2.6 Overhead

To achieve additional functionality or parallelisation in an application, a library

or framework is often utilised. In doing so, the requirement for specialised

code within the programs development is negated. This result is that, should

the application need to be run on different hardware, it is not necessary to

make large modifications to the code. However, this carries a cost in the form

of additional computation (also known as overhead), which may slow down

the program in like-for-like comparisons. To measure the amount of impact,

Equation 2.3 can be used, where n is the time taken for the new implementation,

and r is the time taken for the reference implementation.

O =
n

r
− 1 (2.3)

The equation produces a percentage overhead cost for the library. As such, the

aim is to achieve an overhead value as close to 0% as possible. In order to

effectively use this equation, it is imperative that both versions of the program

should be running with the same configurations, compiler, hardware, problem

sizes and parallelisation strategies.

13

2. Analyse and Performance of Applications and Architectures

2.7 Performance Portability

Within HPC, the majority of computations have traditionally been performed

on a Central Processing Unit (CPU) with multiple cores. This has meant that,

until recently, there has been a large focus on optimisations and increasing

the parallelism of these processors. However, with the mainstream adoption of

Graphics Processing Unit (GPU) within HPC, new programming paradigms are

necessary. In order for this new hardware to be effectively utilised, a multitude

of different technologies have been developed. Some of these, such as Compute

Unified Device Architecture (CUDA) [77], allowed code to be specifically written

for particular GPUs. Whilst these allowed for better performance when com-

pared to other techniques, a full redevelopment of the program is required in

order to utilise this. Other technologies, such as OpenCL [109], allowed for the

application to be written in such a way that the code could be transformed when

compiled for a given architecture. As a wider range of different processors and

memory configurations are adopted, these paradigms became more important.

Time, energy and money did not need to be spent writing multiple versions of

the same program. However, this often came at the cost of additional computa-

tion and runtime. This cost often outweighed the additional development time

required, spawning an area of research called Performance Portability. [8, 9]

Whilst the exact definition has been debated, it is generally agreed that the

principle of a Performance Portable program is one where the code could be

run across multiple different architectures, with minimal change to the applica-

tion and minimal cost to the performance compared with a similar application

written with manual optimisations. [55]

One of the first frameworks to embrace this idea was OpenCL [68, 109]. Us-

ing this method, the code to be parallelised was compiled at runtime for the

required architecture. This meant that some of runtime would be spent compil-

ing code, but utilising this framework ensured that the code was compiled for

the correct architecture. SYCL [110] has now become the main way to utilise

14

2. Analyse and Performance of Applications and Architectures

OpenCL, rather than writing an application with the OpenCL library. A differ-

ent approach has been taken by both OpenACC [80, 105] and OpenMP 4+ [82].

These frameworks use pragma statements within code. pragma statements are

sections of code written as specialised comments before blocks of code that are

to be parallelised or optimised in some way. Thus, if the compiler recognises the

statement, it can perform the required actions to improve the code. However, if

the compiler does not support the framework, the statements are ignored with-

out error. Template C++ libraries have also been built to enable performance

portability within applications. Kokkos [18] and RAJA [32] are the most used

examples of this. In these frameworks, C++ templates and lambda functions

are used to optimise as much code as possible at compile time for the required

architecture.

A different methodology is to use a Domain Specific Language (DSL) such

as Oxford Parallel Library for Structured mesh solvers (OPS) [93] and Oxford

Parallel Library for Unstructured mesh solvers (OP2) [27]. These are specialised

frameworks that allow for more specialised optimisations, but are limited in the

scope of problems they can be used to solve. OPS and OP2 work by the user

implementing specific functions into the application, then utilising a source-to-

source translator to transform the application, depending on what is required.

In particular, this technique has been used in these DSLs to allow for a variety

of different parallelism methodologies (such as the ones mentioned above) to

be implemented into the same code base, thus allowing an application to be

performance portable.

With a wide range of different frameworks designed to work on a large range

of different architectures, it is difficult to measure their overarching performance

and to make comparisons. A library might perform better on one architecture,

but might perform worse on another. In order to overcome this issue, Penny-

cook et al. developed a metric which allowed for comparisons between different

frameworks across multiple architectures. [87] Equation 2.4 shows how this can

be calculated, where H is the set of architectures, a is a given application, p

15

2. Analyse and Performance of Applications and Architectures

is the set of parameters for the given application, and e is the efficiency of the

given application with the given parameters.

P (a, p,H) =


|H|∑

i∈H
1

ei(a,p)

if i is supported ∀i ∈ H

0 otherwise

(2.4)

From the equation, it can be seen that if the library is not supported by a

system tested on, then the library is given a performance portability of 0%.

This is due to the fact that if the library cannot run on a tested architecture,

then it is not performance portable. The term efficiency is also loosely defined.

This is so that it can apply to both the application efficiency (how fast a given

version of the application runs compared to other versions) and the architectural

efficiency (how well the version of the application utilised a given hardware).

Even then, the architecture efficiency can be measured in different ways, such

as the computational efficiency and the memory efficiency. The metrics used to

calculate the performance portability should be dependant on what is the most

appropriate for the application tested.

2.8 Summary

In this chapter, the use of benchmark suites and proxy applications in assessing

the effectiveness of a system has been discussed. The benefits and disadvantages

of benchmarks were discussed, and how mini-applications can help resolve this.

Analysis of a program can be achieved through profiling, examining both break-

down of functions and utilisation of hardware. As well as this, the performance

of applications, and the effect of a library on an application, can be measured in

a multitude of different ways. Finally, the principle of performance portability

was discussed, along with its importance and how it can be calculated for a

given library.

16

CHAPTER 3
Achieving Performance through Hardware Optimisations

As discussed at the beginning of Chapter 2, one way to achieve better perfor-

mance for an application is to improve the system which is being used. These

system improvements have taken many different forms since the creation of the

silicon Central Processing Unit (CPU). Two key ways in which this has been

achieved is through improvements to the processor itself (whether through the

use of smaller transistors or the utilisation of parallelism) and the use of larger,

faster memory hardware. However, there is still a need for software advance-

ments that can make use of these new hardware improvements.

This following chapter is broken down as follows:

• Section 3.1 discusses Moore’s Law, and its impact in both High Perfor-

mance Computing (HPC) and beyond.

• Section 3.2 discusses Flynn’s Taxonomy and the categorisation of systems

by the way in which data and instruction streams are handled.

• Section 3.3 explores how parallelism within computing allows for better

performance within applications, through the utilisation of vectorisation,

multithreading, multiprocessing and distributed computing.

• Section 3.4 explores the importance of the memory hierarchy and data

structures in relation to an applications performance.

17

3. Achieving Performance through Hardware Optimisations

3.1 Moore’s Law

Gordon E. Moore, born in 1929, is one of the most important names in Com-

puter Science. Having gained his PhD in Physical Chemistry at the California

Institute of Technology in 1954, Moore worked at Fairchild Semiconductors. He

worked on the manufacturing process for transistor contacts, and eventually

worked his way up to manage the research and development department. In

1965, Moore wrote Cramming More Components onto Integrated Circuits [69].

The paper stated that: for a given size of chip, the number of components

would double every year. This would result in: more powerful computers, lower

manufacturing expense and, as a consequence, reduced purchasing costs. This

concept would later be known as Moore’s Law. In 1968, Moore and his col-

league Robert Noyce founded the Intel Corporation, which is now one of the

largest chip manufacturers in the world. Moore’s Law would later be revised to

‘a doubling every two years’ [70]. [99]

In general, Moore’s law has proven to be true. However, the physical lim-

its of transistor sizes are now starting to reached. The limits of silicon-based

integrated circuits mean that transistors can be no smaller than 5nm, because

a single nanometer can accommodate only two silicon atoms. [100] There are

also physical constraints associated with voltages, heat dissipation, and clock

frequencies, all of which are limiting factors for computing power. [112, 124]

Subsequently: algorithmic changes to programmes, the use of larger multi-core

systems and the introduction of accelerator cards have allowed computer per-

formance to increase, and have enabled better utilisation of hardware.

3.2 Flynn’s Taxonomy

In 1966, Michael Flynn set out to categorise the different ways in which a com-

puter could theoretically perform operations on data. He generalised that a

computer processor comprises of two elements: a data stream and an instruc-

tion stream (which provides operations for the computer to apply to the data

18

3. Achieving Performance through Hardware Optimisations

stream). From this idea, he proposed that a computer could utilise each of these

streams in either a serial or parallel fashion. He developed the theory further to

state that each machine could be classified as one of four categories. [22] This is

colloquially known as Flynn’s Taxonomy. For simplicity, the term stream is of-

ten omitted when referring to both the data and instruction streams. Figure 3.1

shows a graphical representation of these different classifications.

Processor
Unit

Data Stream

In
st
ru
ct
io
n
St
re
am

(a) SISD

Processor
Unit

Processor
Unit

Data Stream

In
st
ru
ct
io
n
St
re
am

(b) SIMD

Processor
Unit

Processor
Unit

Data Stream

In
st
ru
ct
io
n
St
re
am

(c) MISD

Processor
Unit

Processor
Unit

Data Stream

In
st
ru
ct
io
n
St
re
am

(d) MIMD

Figure 3.1: Graphical representation of the different categories in Flynn’s Tax-
onomy

19

3. Achieving Performance through Hardware Optimisations

3.2.1 Single Instruction - Single Data

Single Instruction - Single Data (SISD) (Figure 3.1a) is the simplest classifica-

tion, as the computer in this category will run in a serial manner. Each single

piece of data is acted upon by a single instruction. Once this is complete, the

next piece of data will undergo its operation. In order to achieve an improved

performance from a machine using SISD, the clock speed of the machine would

have to be increased. However, this often leads to higher voltages and increased

heat generation. Therefore, cheaper, parallel-based systems are often favoured

over this category.

3.2.2 Single Instruction - Multiple Data

Single Instruction - Multiple Data (SIMD) (Figure 3.1b) offers a degree of par-

allelism by performing the same instruction across multiple items of data si-

multaneously. The amount of data that can be coincidentally operated upon

is dependant on the hardware used. Thus, a simple way to improve the per-

formance of a SIMD computer is to increase the amount of data that can be

processed by a single instruction. However, because only a single instruction can

be used, some algorithms may not be expressed in a way that makes full use of

the hardware. Examples of this include Streaming SIMD Extension (SSE) [91]

and Advanced Vector Extensions (AVX) [37], which allow for programmers to

make full use of SIMD hardware. Listings 3.1 and 3.2 show a side-by-side com-

parison of a simple loop before and after it has been vectorised using SSE. Both

of the code examples multiply each corresponding element from arrays a and

b, and then adds the result to the corresponding element in the array c. How-

ever, in Listing 3.2, the loop contains far fewer iterations. This can be achieved

through packing data into vector registers (performed by _mm_load_ps), per-

forming the calculations on all variables stored in the registers at the same time

(in this case, _mm_add_ps and _mm_mul_ps), then storing the resulting values

back into the correct area in main memory (performed by _mm_store_ps). As

20

3. Achieving Performance through Hardware Optimisations

the number of iterations may not be exactly divisible by the number of elements

that can fit into a vector register, a “cleanup loop” is required. This performs

the required calculations on any remaining elements, in the same manner as the

original code.

/*
* Initialisation of array of

* floats a, b and c,

* and variables i and N

*/
for (i = 0; i < N; i++) {

c[i] += a[i] * b[i];
}

Listing 3.1: Example C code of loop
without vectorisation

/*
* Initialisation of array of

* floats a, b and c,

* and variables i and N

*/
int loopN = (N/4)*4;
for (i = 0; i < loopN; i+=4) {

__m128 aVec=_mm_load_ps(a+i);
__m128 bVec=_mm_load_ps(b+i);
__m128 cVec=_mm_load_ps(c+i);
cVec=_mm_add_ps(cVec,

_mm_mul_ps(aVec, bVec));
_mm_store_ps(cVec, c+i);

}

//Cleanup loop
//(needed if (N%4) != 0)
for (; i < N; i++) {

c[i] += a[i] * b[i];
}

Listing 3.2: Example C code of loop
with vectorisation (utilising SSE)

SIMD is also utilised within modern Graphics Processing Unit (GPU) hard-

ware, owing to the fact that the processor will have to apply the same function

to multiple pixels in graphical computation. As such, GPUs contain a much

larger number of threads which are grouped together to form Streaming Multi-

processors. Each thread within a Streaming Multiprocessor will run the same

instruction, but will operate on separate pieces of data, with multiple Streaming

Processors will being contained within a single GPU. It follows, therefore, that

GPUs are large SIMD processors. [126]

21

3. Achieving Performance through Hardware Optimisations

3.2.3 Multiple Instruction - Single Data

Multiple Instruction - Single Data (MISD) (Figure 3.1c) is the least popular

category, as it relies on a single piece of data being operated on in different ways,

at the same time. This is because algorithms which fit the remit of a shared

data store being used in differing calculations, are rare. As such, machines in

this category are not often found in HPC.

3.2.4 Multiple Instruction - Multiple Data

Multiple Instruction - Multiple Data (MIMD) (Figure 3.1d) is one of the most

common parallelisation methodologies in modern HPC. This category allows

for multiple processors to perform instructions on different pieces of data simul-

taneously; it is therefore analogous to the multi-core processor arrangements

used in many computation devices and HPC systems. Listings 3.3 and 3.4

show a side-by-side comparison of a simple loop before and after it has been

parallelised through the framework called OpenMP. In the example shown in

Listing 3.4, OpenMP creates multiple threads, then partitions the iterations

into the threads, and finally destroys the threads once complete. This process

is carried out at compile time, and is denoted by the tag #pragma omp.

/*
* Initialisation of arrays a, b

* and c, and variables i and N

*/
for (i = 0; i < N; i++) {

c[i] += a[i] * b[i];
}

Listing 3.3: Example C code of loop
without parallelisation

/*
* Initialisation of arrays a, b

* and c, and variables i and N

*/
#pragma omp parallel for
for (i = 0; i < N; i++) {

c[i] += a[i] * b[i];
}

Listing 3.4: Example C code of
loop with parallelisation (utilising
OpenMP)

22

3. Achieving Performance through Hardware Optimisations

3.3 Parallelism

When the modern silicon processor was first introduced, the easiest way to in-

crease the performance of a program was to either: increase the clock speed,

which allowed more computational cycles in a unit of time; to use more spe-

cialised circuitry; or to make the components smaller; or a combination of these

options. However, the physical limits of this approach were quickly reached.

Increasing the clock speed required more power which, in turn, generated more

heat, making the chip more unreliable and prone to breaking down. [61] The

inclusion of more specialised circuitry increased the cost of the processor, as

it meant that it was harder to create code for. A reduction in the size of the

components allowed for more transistors to be contained in the same area and,

if too much power was supplied, issues such as electron tunnelling arose, mean-

ing that the data within the processor would become corrupted. Therefore, a

different technique was required in order to continue improving performance.

Many algorithms contain loops where calculations can be done independently

of each other. This is the ideal case when attempting to introduce parallelism as

an algorithm, as each each loop iteration can be executed separately. However,

there are also many algorithms where a given loop iteration is dependant on

previous loop iterations, or where data may be altered out-of-sequence to its

serial counterpart. When implementing algorithms and applications in HPC,

these situations are avoided wherever possible through the use of approximations

or refactoring the algorithm to avoid data dependencies. We can, therefore,

explore the idea of performing multiple calculations at the same time in order

to increase the performance of a program.

As highlighted in Section 3.2, a parallel processor can fit into three different

categories: SIMD, MISD, and MIMD. Due to the fact that MISD computers

only exist in very particular situations, SIMD and MIMD computers will be

discussed. In Section 3.3.1, vectorisation as a form of SIMD processing is dis-

cussed. Two different MIMD processors are then discussed through the use of

23

3. Achieving Performance through Hardware Optimisations

multithreading and multiprocesors in Section 3.3.2, and distributed computing

is discussed in Section 3.3.3.

3.3.1 Vectorising

Vectorising is one of the simplest ways in which an algorithm can be parallelised.

This involves the placing of concurrent memory in larger registers, known as

vector registers, followed by the application of specialised instructions to the

entire register. As such, this follows the SIMD model discussed in Section 3.2.2.

This approach is limited by the fact that all data accessed by the vectorised

algorithm needs to be in the form of concurrent memory addresses, as the data

needs to be loaded in and out of vector registers in full blocks.

One of the earliest frameworks for vectorisation was MMX. Initially intro-

duced by Intel in 1996, it was one of the first frameworks with a unified set

of instructions. Whilst Intel had produced chips with SIMD instructions, they

were not for general purpose use, so code had to be specifically written to exploit

a given chip. Furthermore, code had to be rewritten if moved to a different pro-

cessor. With MMX, the aim was to provide a a generalised set of instructions

for a fixed vector register of 64 bits. [86]

SSE was developed on the principles outlined by MMX, which extended the

range of instructions. Specifically: SSE allowed for four floating-point opera-

tions to be calculated through SIMD, and allowed for larger registers. This was

necessary for accelerating 3D graphics. [108, 91] The instruction set was ex-

tended multiple times, forming SSE2, SSE3/SSSE3, SSE4, SSE4.1, and SSE4.2.

AVX extended the functionality of SSE4.2, as well as the size of the vector

registers to 256 bits. [37] This was later extended to AVX2 [38], to include more

instructions; then, again, to AVX-512 [95], which included more instructions

and increased the vector register sizes further to 512 bits.

Listings 3.5 and 3.6 show how the same simple example can be vectorised

using SSE and AVX. Both vectorised examples take the same form as the

example shown in Listing 3.1, which is found in Section 3.2.2. Specifically, these

24

3. Achieving Performance through Hardware Optimisations

examples show how calculations and branching statements can be achieved in

vectorisation, both with SSE and AVX The examples demonstrate a kernel

where if the value of a[i] is less than 0.5, it is set to 1, otherwise it is set to 2.

/* Creation of loopFactor = 4, N, i, and a float* a */
int loopN = (N/loopFactor)*loopFactor;
for (i = 0; i < loopN; i+=loopFactor) {

/* Load vector aVec = (0.8, 0.2, 0.3, 0.7) */

/* Setup mask */
__m128 half = _mm_set1_ps(0.5); //half = (0.5, 0.5, 0.5, 0.5)
__m128 mask = _mm_cmpgt_ps(aVec, half); //mask = (T, F, F, T)

/* Set up vectors for if everything is True or False */
__m128 branchT = _mm_set1_ps(1.0); //branchT=(1.0,1.0,1.0,1.0)
__m128 branchF = _mm_set1_ps(2.0); //branchF=(2.0,2.0,2.0,2.0)

/* Merge the branches together */
__m128 resultT = _mm_and_ps(mask, branchT);
//resultT = (1.0, 0.0, 0.0, 1.0)
__m128 resultF = _mm_andnot_ps(mask, branchF);
//resultF = (0.0, 2.0, 2.0, 0.0)
__m128 result = _mm_or_ps(resultT, resultF);
//result = (1.0, 2.0, 2.0, 1.0)

/* If processor is able to use SSE4.1, blendv can be used *
* __m128 result = _mm_blendv_ps(branchF, branchT, mask);

* //result = (1.0, 2.0, 2.0, 1.0)

*/

/* Store vector result in a */
}
//Cleanup loop

Listing 3.5: SSE example showing how branching statements can be vectorised

Whilst it is possible to write programs using these instruction sets, it is often

not recommended as it limits the ability to compile and run the application on

other platforms and CPUs. It can also make the code harder to read and update.

Instead, nearly all modern compilers will detect which vectorisation frameworks

can be applied on the hardware, and will automatically vectorise all applicable

code. This method facilitates an increase in performance without the need to

extensively change the code.

25

3. Achieving Performance through Hardware Optimisations

/* Creation of loopFactor = 8, N, i, and a float* a */
int loopN = (N/loopFactor)*loopFactor;
for (i = 0; i < loopN; i+=loopFactor) {

/* Load vector aVec = (0.8, 0.2, 0.3, 0.7, 0.5, 0.6, 0.1, 0.4) */

/* Setup mask */
__m256 half = _mm256_set1_ps(0.5);
//half = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
__m256 mask = _mm256_cmp_ps(aVec, half, _CMP_GT_OQ);
//mask = (T, F, F, T, T, T, F, F)

/* Set up vectors for if everything is True or False */
__m256 branchT = _mm256_set1_ps(1.0);
//branchT = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
__m256 branchF = _mm256_set1_ps(2.0);
//branchF = (2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

/* Apply mask to data */
__m256 result = _mm256_blendv_ps(branchF, branchT, mask);
//result = (1.0, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0)

/* Store vector result in a */
}
//Cleanup loop

Listing 3.6: AVX example showing how branching statements can be vectorised

3.3.2 Multithreading and Multiprocessing

Although vectorisation of a program can provide a performance improvement,

the impact may be limited by the fact that only a given number of elements can

be processed in a clock cycle. Therefore, to improve the performance of a HPC

application, parallelism can be used to further increase the performance of an

application. One of the primary ways to do this is through multithreading. A

thread is a section of code, which can be run on a CPU; utilising the resources

available, until the execution has been completed. Once completed, the thread

is destroyed. [53] By using multiple threads, it is possible to execute code, which

utilises different parts of a variables data, or will execute different parts of the

same algorithm.

26

3. Achieving Performance through Hardware Optimisations

Multithreading can be used on single CPU cores, and also on CPUs with

multiple cores. However, when mutlithreading is used on a single-core CPU,

concurrency is achieved, rather than parallelisation. This is because, in order

for a single-core processor to compute each thread, the CPU has to evacuate

the current thread and load in a new thread from memory. This takes up clock

cycles which could be better utilised executing the already-running thread. In

HPC, when using a multi-core processor, it is considered optimal to have a

thread running on each core of the processor. Thus, the thread does not need to

be switched out for other threads, thereby ensuring more parallelism and higher

performance.

Whilst multithreading through the use of multiple cores increases the amount

of parallelism, and therefore performance, the processor may not be fully utilised

if threads have to wait for other operations to complete. These other operations

may comprise of memory requests or waiting for other threads to finish due to

load imbalances. In order to better utilise the hardware in these cases, simul-

taneous multithreading (also called hyperthreading) can assist in using up this

available time. In simultaneous multithreading, each CPU core can have mul-

tiple threads. Whilst a thread is being executed, the core can run a separate

thread which does not need the same hardware as the first thread. [117] In order

to achieve this, specialised hardware is required. Most modern Intel processors

have been designed to have two threads per core [96], with some processors such

as ARM Marvell Thunder X2 being designed to have four threads per core [65].

Multithreading is achieved in much the same way as vectorisation, through

the use of frameworks. One of the most well known implementations is POSIX

Threads, commonly known as PThreads. This framework allows for threads

to be created, and access gained to the shared memory on the CPU, before

being joined back up to the main thread. The behaviour of these threads is

defined by an IEEE Standard (IEEE POSIX 1003.1c). [35] This approach is

also supported by multiple compilers. [7] However, it is not often used in HPC

due to its complexity, as can be seen in Listing 3.7. This example creates a

27

3. Achieving Performance through Hardware Optimisations

collection of threads based on THREAD_COUNT, each of which runs the function

kernel and passes the arguments to the function as specified in the structure

element arg_threads.

#include <pthread.h>
/*
* Initialisation of arrays, variables threadCounter, THREAD_COUNT

* and N, an array of structure arg_threads, array of pthread_t

* threads and a virtual function kernel

*/
for (threadCounter = 0; threadCounter < THREAD_COUNT;

threadCounter++) {
pthread_create(&(threads[threadCounter]), NULL,

kernel, (void *) &(arg_threads[threadCounter]));
}
for (threadCounter = 0; threadCounter < THREAD_COUNT;

threadCounter++) {
pthread_join(threads[threadCounter], NULL);

}

Listing 3.7: PThread example of a parallelism loop

More often, a HPC application will use OpenMP to implement multithread-

ing for particular sections of code, as OpenMP uses specialised statements in

FORTRAN and C/C++ to inform the compiler on how to parallelise a given

section. These statements are designed in such a way that they will be ignored

by the compiler, should it not be compatible with OpenMP. [81] Listing 3.8

shows an example of OpenMP multithreading being utilised on the function

kernel.

#include <omp.h>
/*
* Initialisation of arrays, and variables i and N

*/
#pragma omp parallel
kernel(/* Kernel arguments */);

Listing 3.8: OpenMP example of a parallelism loop

28

3. Achieving Performance through Hardware Optimisations

Multithreading, whether using PThreads or OpenMP, is limited by the fact

that the threads can only access local memory. This means that, in order to

increase the performance through the use of multithreading, larger processors

with more cores are required. However, like vectorising and the reduction of

component size, the size of the processor is limited by: the voltage requirements,

heat dissipation, and larger production cost required to power a larger, more

complex CPU. Therefore, a more efficient way to increase the level of parallelism

is to locate multiple CPUs within the same computer, and design them so that

they can act as one, larger, processor. This is known as multiprocessing, and

is often implemented with HPC systems. The Operating System (OS) sees

both processors as a single unit, with different Non-Uniform Memory Access

(NUMA) regions. Therefore, when running multithreaded problems, it is often

recommended that the threads are limited to a single NUMA region, to avoid

conflicts and slow memory access.

3.3.3 Distributed computing

Achieving performance through parallelism has often lead to better utilisation

of hardware by exploiting the nature of many computational algorithms. We

have explored parallelism through vectorisation, multithreading and multipro-

cessing, but we can also achieve parallelism through the idea of splitting a given

problem across multiple machines. This is how HPC solves its largest problems,

and consequently how the largest supercomputers have been designed to date.

The Top500 tracks the computational performance of these machines across the

world. [113] Within a supercomputer, a user can request access to a collection of

individual computers (referred to as nodes) for a period of time. To ensure that

other users do not operate on the same nodes at the same time, a scheduling

program such as Slurm [98] or OpenPBS [84] is used to manage access.

The issue with distributed computing in this fashion is that, if a given block

of data is partitioned across multiple machines, computation of an algorithm on

a given node may require data that resides on a different node. For example, an

29

3. Achieving Performance through Hardware Optimisations

algorithm may need to calculate the average value for a given position based on

it’s neighbours data. However, for data located on the edge of a node’s partition,

the results would be incorrect as a neighbour would be on a different machine.

Thus, for the program to execute correctly, the nodes need to communicate

between each other. The most common library used to achieve this is Message

Passing Interface (MPI). First discussed in 1992 [122] and proposed a year

later [111], MPI allows for communication of data between different processors

regardless of whether they are on the same machine or on a machine on the same

network. This methodology is widely used within HPC to allow for parallelism

across a large number of nodes, and across both NUMA regions and cores within

a single node. Listing 3.9 gives an example of how MPI can be utilised. In this

example, the MPI environment is initialised using the requested parameters.

This would include information such as the number of ranks available, and

which cores/processors these ranks are attached to. The current rank number

and total number of ranks is then obtained. This information can be used to

split up (often referred to as decompose) the data. The code can then be ran,

before the MPI environment is finalised. There are different implementations of

MPI, including OpenMPI [83] and Intel MPI [39]. [6]

3.4 Memory Layouts and Data Structures

Optimising the amount of computation is not the only way to increase the

performance of a program. The utilisation and speed of a particular system’s

memory is also critical to the execution speed. In an ideal situation, the memory

would be as fast as possible, with all of the fastest memory being used all of the

time. However, this is not always possible for a number of reasons. In order

to achieve fast access to memory, the memory has to be physically close to the

CPU, if not within it. A large amount of channels are also required in order

to allow the data to move in as few clock cycles as possible. A consequence

of this approach is that the economic cost of the memory becomes much more

30

3. Achieving Performance through Hardware Optimisations

#include <mpi.h>
/*
* Initialisation of arrays.

*/

//Create the MPI environment
MPI_Init(NULL, NULL);

//Get the current rank ID of and the total number of ranks
int currentRank, totalRanks;
MPI_Comm_rank(MPI_COMM_WORLD, ¤tRank);
MPI_Comm_size(MPI_COMM_WORLD, &totalRanks);

kernel(/* Kernel arguments */);

//Finalise the MPI environment
MPI_Finalize();

Listing 3.9: MPI example of parallelism loop

expensive, and means that either the processor has to become physically larger

(the disadvantages have been discussed in Chapter 3.1) or, conversely, less room

is made available to the computational part of the processor.

Due to these constraints, a memory hierarchy is formed, with the fastest

but smallest at the top, extending down to the slowest, but largest formats.

The memory hierarchy can be seen in Figure 3.2. At the top, registers are small

blocks of memory that are used in instructions, often containing the instructions

themselves and the current piece of data being operated upon. Whilst it is

important to the operation of the processor, it is not often that an application

will be optimised specifically for registers, due to their size and the fact that

they are usually completely controlled by the CPU’s internal controller. Instead,

a HPC application will often optimise for the next level of memory, cache. The

cache is usually placed in blocks inside the chip, whereas registers would be

interlaced with the circuitry. Cache often comes in multiple levels, with the

closest being Level 1 Cache Memory (L1), followed by Level 2 Cache Memory

(L2), and then Level 3 Cache Memory (L3). In much the same way as the

overarching memory, these cache levels have a similar hierarchy, with L1 being

31

3. Achieving Performance through Hardware Optimisations

the closest to the chip and the fastest, but containing less memory than the

other levels.

Register

Cache

Main Memory

Hard Disk

Speed of Access
and Cost Increases

Capacity
Increases

Figure 3.2: Graphical representation of the Memory Hierarchy

Following cache, there is main memory. This is often the first level of mem-

ory that does not reside on the CPU itself, and, as such, requires a large amount

of clock cycles to access. There are many different types of main memory, de-

pending on the purpose. The most common type is known as Double Data

Rate (DDR). DDR memory allows for double the data transfer rate of it’s pre-

decessor, and is therefore faster. As this type of memory operates on its own

clock, the speed of the main memory is also important to the performance of

the program. As well as DDR memory, there are other types of main memory

which can perform error corrections and can manage larger amounts of band-

width, which allows for faster transfers through the use of more channels, rather

than relying on faster clock speeds.

Finally, hard disks allow for bulk storage of large amounts of data. Hard

disks also have the benefit of not losing the data stored in the memory when

the machine is powered off. However, this comes at a cost as this is the slowest

type of memory for the CPU to access. There are many different types of hard

drives, depending on the size, speed and economic cost required. These range

from magnetic tapes (one of the slowest hard drives, but also one of the longest

lasting and most dense), to Hard Disk Drive (HDD) (consisting of a series

of spinning, metallic plates that are read with a small armature). HDD are

32

3. Achieving Performance through Hardware Optimisations

frequently utilised within computers for larger storage, which is often a specific

requirement. In addition, Solid State Drive (SSD) are available, which are faster

than HDD due to the lack of moving parts, but, conversely, are more expensive.

In a large HPC cluster, there will often be a small hard disk included on each

server in order to store the OS and essential programs, and also a networked

collection of hard disks, on which user programs can be stored.

In an ideal world, the most relevant piece of data should reside in the fastest

memory near the top of the hierarchy. However, most programs could not

completely reside in the fastest memory due to there size. As such, data needs to

be moved into and out of faster memory as and when required. Ensuring that the

CPU does this efficiently is key to an optimally-performing application. When

the processor requests a piece of data, the processor will look at each level of the

memory hierarchy in turn, requesting the required data at each level. As soon as

the relevant data is found, it is moved up the hierarchy as necessary, displacing

an older piece of data back down the order. An optimally designed program

will do this as little as possible, allowing the CPU to spend more time on the

computation, and less time on memory management. A well designed memory

structure can help the performance of the program, by allowing the CPU to

exploit techniques such as prefetching. In Sections 3.4.1, 3.4.2 and 3.4.3, the

three basic data structures are examined, with the advantages and disadvantages

of each being considered in turn. Then, in Section 3.4.4, the more abstract data

structures are discussed.

3.4.1 Structure of Arrays

Structure of Arrays (SoA) is one of the most common ways to structure the data

for any given application, and is often the first that is taught in any computing

course. This often consists of a series of arrays, each of which consist of a

collection of elements. Each array does not necessarily have the same number

of elements, but key groups often will. Figure 3.3 and Listing 3.10 show both a

graphical representation and a code example of an SoA in a C-styled pseudocode.

33

3. Achieving Performance through Hardware Optimisations

It should be noted that the arrays do not need to be explicitly in a struct,

but has been included for comparison to other data structures described in

Sections 3.4.2 and 3.4.3.

0 1 2 . . . 38 39 0 1 . . . 38 39 0 1 . . . 38 39

Figure 3.3: Graphical representation of the memory when using a SoA data
structure

struct SoAExample {
int foo [40];
double bar [40];
char baz[40];

};

SoAExample soaDataStructure;

Listing 3.10: Pseudocode example of SoA data structure

SoA allows for all the elements in the same variable to be concurrent in

memory. This allows for better cache performance when dealing with a few

variables within a given algorithm, as cache lines do not need to be swapped

out as often and optimisations such as prefetching can be achieved.. However,

once the number of variables used becomes too large, the cache reuse will drop

as cache lines containing elements that are still in use, or might be required

later, have to be evacuated to make room for the new data.

3.4.2 Array of Structures

The Array of Structures (AoS) arrangement structures the data in the opposite

way to SoA. In this data structure, elements from different variables are placed

concurrently in memory, looping round until all elements in a variable have

been placed. As such, all the variables are required to have the same number of

elements. If a variable does not have the same number, then the extra elements

would have to be iterated through in a different data structure. Figure 3.4 and

34

3. Achieving Performance through Hardware Optimisations

Listing 3.11 show how the data can be laid out in an AoS data structure, both

graphically and in C-style pseudocode.

0 0 0 1 1 1 2 . . . 38 38 39 39 39

Figure 3.4: Graphical representation of the memory when using a AoS data
structure

struct AoSExample {
int foo;
double bar;
char baz;

};

AoSExample aosDataStructure[40];

Listing 3.11: Pseudocode example of AoS data structure

AoS performs best when there are a larger number of variables used within

an algorithm which requires large amounts of data to perform calculations. This

allows for data to be close together, thus allowing for better cache reuse. In some

languages, padding is added by the compiler. Whilst not required as part of the

C standard [45], it is often added as it allows for better memory alignment of

the processor, and, as such, enables quicker memory access. However, by doing

this, some memory space is lost, which may not be desirable if the system has

a small amount of memory or if there are a lot of elements.

3.4.3 Array of Structures of Arrays

Array of Structures of Arrays (AoSoA) is the hybrid approach to both SoA and

AoS, and allows for the interleaving of multiple elements and multiple variables.

Each array inside the structure can consist of a different number of elements.

This means that, unlike AoS, each inner variable does not necessarily need to

have the same size. However, each variable must have a common multiple of

elements. The common multiple becomes the number of overarching structure

35

3. Achieving Performance through Hardware Optimisations

elements. Figure 3.5 and Listing 3.12 shows an example of AoSoA data struc-

ture, where each variable inside the structure has an array of two, and a common

multiple of 20.

0 1 0 1 0 1 2 . . . 37 38 39 38 39 38 39

Figure 3.5: Graphical representation of the memory when using a AoSoA data
structure

struct AoSoAExample {
int foo[2];
double bar[2];
char baz[2];

};

AoSoAExample aosoaVariable[20];

Listing 3.12: Pseudocode example of AoSoA data structure

AoSoA is able to provide the benefits of both SoA and AoS, whereby some

elements within the same variable are concurrent, and allows for a larger number

of variables. However, to achieve these benefits, a large amount of care needs

to be taken to ensure the structure fits into cache as optimally as possible. If

not, additional padding could be inadvertently introduced meaning that faster

cache memory might not be fully utilised.

3.4.4 Abstract Data Structures

Whilst SoA, AoS and AoSoA represent different ways to efficiently lay out the

data, these structures can often be difficult to apply to a problem. An applica-

tion could lay out the data in multiple different ways, depending on the needs

and which operations are being more commonly carried out. For example, some

algorithms require the addition and removal of new pieces of data, whilst others

require knowledge of the position of a given element.

36

3. Achieving Performance through Hardware Optimisations

Thus, abstract data structures are used to more easily describe how data

could be laid out for different problems, independent of their implementation.

Each of the data structures presented here can be implemented in multiple

ways, including a SoA implementation and an AoS implementation. Because

of this, the efficiency of each of these data structures can be given as neither

an amount of time nor a definitive number of steps, but, instead, as a notation

which gives the order of magnitude of the largest operation. This is called

Big-O notation. In Big-O notation, the scale of the efficiency is represented.

For example, for O(n), if the number of elements double, the operation would

take double the time. However, for O(n2) or O(n3), if the number of elements

double, the operation would take four (22) times or eight (23) times longer

respectively. As such, the lower the complexity is desired, with the lowest being

that the algorithm will take the same time no matter how much data is passed

to algorithm, O(1). [4, 73]

Linked Lists

The first abstract data structure examined is a linked list, two different versions

of which can be seen in Figure 3.6. In this data structure, the initial data

element is stored and is referred to as the head element. Each data element

consists of at least two sections. The first is the data itself. The second is the

position of the next element in the list. Thus, to get to a given element, the

program retrieves the head element and if this is not the element required, the

program then looks at the next element. This can repeat until the element is

found, or the element does not point to another. Figure 3.6a shows the most

basic example of this. Each data element can also be extended to allow for the

position of the previous element to be stored as well. Because of this, the last

element is also often stored, and is referred to as the tail element. An example

of this can be seen in Figure 3.6b. The addition of this facility allows for easier

navigation through the list, but comes at the cost of requiring more memory.

37

3. Achieving Performance through Hardware Optimisations

A B C
. . .

n

Head

Data

Next Element

(a) Single Linked List

A B C

. . .

n

Head Last

Data

Next Element

Previous Element

(b) Double Linked List

Figure 3.6: Graphical Examples of Linked Lists data structures

Unlike SoA, AoS and AoSoA, the linked list data structure does not require

knowledge about the number of elements it needs to contain. This is because

the next or previous elements positions can be any valid memory. Therefore,

to append a new element to the list, a new block of memory can be allocated,

and the next element in the appropriate node is updated to point to the newly

created element. Thus, appending an element to the list can be achieved in

O(1). The removal of an element can be carried out in a similar way and with

a similar cost, as the elements on either side can be updated to point to each

other. However, finding a particular element means going through the entire

list. Thus, the efficiency of this is O(n) (where n is the number of elements).

38

3. Achieving Performance through Hardware Optimisations

Tree Data Structures

Another type of abstract data structures are trees. Like linked lists, tree data

structures consist of data elements (called nodes) with two sections. Similar

to linked lists, the first section is the data itself. The second section consists

of two or more locations of other nodes. Depending on the type of tree data

structure, the number of node locations specified may be fixed. For example, in

a Binary Tree data structure (as seen in Figure 3.7), each node can only have

a maximum of two nodes that it can point two, referred to as the left and right

hand branches. One of the key conditions of tree data structures is that links

between nodes cannot become circular, and must be directional. This, followed

by fact that traversal must always start from the top node (referred to as the

root node), means that the tree can be fully traversed without worry that it

could loop.

A

B C

D

Root

Figure 3.7: Graphical example of a Binary Tree based data structure

Due to the nature of this particular structure, it is often used to store data

that requires a strict hierarchy and a particular ordering. The tree data struc-

ture allows for a process called re-balancing. Re-balancing enables an ordered

tree to be reorganised in such a way that no particular branch has a large pro-

portion of nodes. By so doing, the data structure can ensure faster traversal of

the data, taking O(log(n)), where n is the number of nodes in the entire tree.

39

3. Achieving Performance through Hardware Optimisations

Graph Data Structures

Graph data structures are similar to tree data structures, but are more gener-

alised. Like trees, graphs contain nodes linked together (the links are referred to

as edges in graph theory). Each node can be linked to multiple different nodes,

and in some particular cases, to itself. However, unlike trees, edges on a graph

do not have to be directional, they can form loops across the same or multiple

nodes, and edges can store data as well as nodes. An example of a graph can be

seen in Figure 3.8. In this example, it can be seen that each node has multiple

connections, and each edge has a weight attached to it. These data structures

have been used widely within different Machine Learning (ML) and Artificial

Intelligence (AI) algorithms and programs, as they easily lend themselves to a

network of differently connected pieces of data, each with a cost to travel from

one to another.

A

B

C

D

E

F

5

7

12

4

6

8

6

9
5

3

Figure 3.8: Graphical example of a Graph data structure

Meshes

Mesh data structures are often used within physics applications to represent a

plane of particles, materials or fluids. In this data structure, it is assumed that

the real world physics happens either along intersections or in the centre of a

grid cells, depending on the physics being modelled. Figure 3.9 shows the two

different types of meshes often seen within physics applications, structured (Fig-

ure 3.9a) and unstructured (Figure 3.9b). Structured meshes store all their data

in a rigid format, thus allowing for more optimisations. So if one particle is al-

40

3. Achieving Performance through Hardware Optimisations

tered the adjacent particles can be quickly determined and adjusted accordingly.

However, in order to achieve a higher resolution on a particular area, the entire

grid has to change resolution, dramatically increasing the amount of memory

required. Unstructured meshes do not have to follow this strict pattern, as they

are allowed to make more or fewer connections depending on what is required.

This allows for meshes to morph over the course of a program, thus producing

more detail in specific areas as required. However, this means that the same

assumptions used to optimise structured meshes cannot be applied, as a given

cell might have more or less neighbours than before. As a consequence, these

structures can be more complex to implement, and can be slower to process.

(a) Structured Mesh (b) Unstructured Mesh

Figure 3.9: Graphical examples of different types of Meshes

3.5 Summary

In this chapter, the use of different techniques to increase the performance of

an application through HPC systems were discussed. The concepts of Moore’s

Law and Flynn’s Taxonomy were explored, and how they initially pushed com-

putation and parallelisation respectively. Parallelisation was then explored more

deeply, specifically looking at how vectorisation, multithreading, multiprocess-

ing and distributed computed has been used to exploit inherent parallelism in

many algorithms.

41

3. Achieving Performance through Hardware Optimisations

As well as discussing how a programs performance could be improved through

the use of parallelism, the use of memory and data structures was explored.

Specifically, how different elements of memory was discussed, along with the

rational behind the size, speed and therefore importance of each. This fed

into a exploration of a number of data structures, starting with SoA, AoS and

AoSoA. Finally, the advantages and disadvantages of abstract data structures

were considered.

42

CHAPTER 4
Analysing the Performance Portability of a Heat-Conduction

Mini-Application

Modernising production-grade, often legacy applications, to take advantage of

modern multi-core and many-core architectures can be a difficult and costly

undertaking. Often, these applications have been developed over decades and

consist of code bases with hundreds-of-thousands or even millions of lines of

code. Adapting to newer systems may require major re-engineering, depending

on the support for different languages, parallel programming models and optimi-

sations across platforms. At the same time, there is a growing range of different

systems, each with their own parallelisation methodologies, and all aiming to

provide the best performance in the long term. It is therefore clear that manu-

ally porting large code-bases to use various different programming models and

languages, and then maintaining each of these different versions, is infeasible.

One common strategy is to use small, representative applications to test

and evaluate new technologies, programming models, frameworks, and optimi-

sations. The use of such programs, called proxy or mini-applications, is not

new. The idea can be traced to the development of small benchmark codes such

as LINPACK [17] and the NAS Parallel Benchmarks [5]. More recent efforts in-

clude the Mantevo [60] and UK Mini-App Consortium (UKMAC) [118] suites.

Due to their small size, mini-apps are much more manageable than production

applications and can feasibly be re-written in different programming languages,

and with specific optimisations. They are also unrestricted and/or devoid of

any commercially sensitive code, allowing them to be readily distributed to

many parties and sites. Sections 2.1 and 2.2 contain for more information on

benchmarks and mini-apps respectively.

43

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

In this chapter, the performance of one such mini-app called TeaLeaf is

explored. TeaLeaf implements a set of linear equations which form a sparse

structured mesh and then uses a five point stencil and cell-centred tempera-

tures to calculate the conduction coefficient [64]. It has been parallelised using

a variety of different programming models and language extensions, including:

OpenMP, Message Passing Interface (MPI), Compute Unified Device Architec-

ture (CUDA), and OpenACC. It also has been implemented using the Oxford

Parallel Library for Structured mesh solvers (OPS) embedded Domain Spe-

cific Language (DSL) [93], and the C++ template libraries Kokkos [18] and

RAJA [32]. Whilst many other proxy applications have been written to use a

wide range of parallelisation models (such as CloverLeaf [59] and other mini-apps

found in the Mantevo suite [60]), TeaLeaf was chosen as it had not been explored

as thoroughly. Many of these programming frameworks allow for compilation

and execution on multiple different systems and architectures. The chapter

therefore compares the performance of different implementations of TeaLeaf,

including how manually parallelised and optimised versions compare to those

using the frameworks from the OPS, Kokkos and RAJA. By examining these

different libraries, the performance impact across different multi-core hardware

and their performance portability can be assessed. This is especially important

for OPS, which utilised techniques which have been less explored on multi-core

machines, and allows for comparisons of this technique compared to both the

reference application, and implementations of Tealeaf which use different tech-

niques. The chapter goes on to analyse the performance of TeaLeaf against other

multi-core systems such as Intel’s Xeon Phi Knights Landing (KNL) processor

and NVIDIA’s Tesla P100 GPU.

An application is said to be highly performance portable if it achieves the

best execution possible (or close to best) on each platform it is tested on. The

chapter therefore explores the idea of performance portability through the use of

multiple versions of TeaLeaf using a recently developed metric for performance

portability, and analyses the achieved performance of TeaLeaf when developed

44

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

with the above programming models and frameworks [87].

The rest of the chapter is organised as follows:

• Section 4.1 briefly explores mini-applications, and discusses the develop-

ment of TeaLeaf.

• Section 4.2 looks into the various implementations of TeaLeaf to achieve

parallelism through different techniques.

• Sections 4.3 discusses the performance of the many versions of TeaLeaf.

• Section 4.4 discusses the performance portability relating to the systems

of interest when utilising the different implementations of TeaLeaf.

4.1 Motivation

Improving the performance of large-scale, production applications is a significant

undertaking. Often, these applications have been developed over decades by

multiple teams, using several third party libraries. The resultant developments

consist of code bases with thousands or even millions of lines of code. In many

cases however, the performance is dominated by a only few units within the

application. In order to overcome the issue of the scale and size of the production

application, a representative program, often smaller in size, can be created to

act as a proxy of the original code. A key benefit of representative applications

such as this, is that they can be modified and deployed on a range of systems

quickly, and subsequently implemented with multiple parallelisation models and

optimised using a wide range of techniques [31].

Notable efforts in developing and using mini-apps include the NAS Parallel

Benchmarks in the late 1980s [5], the ASCI applications in the 1990s [75], and

more recently the Mantevo [60] and UKMAC [118] benchmark suites. Mini-apps

have been developed to represent production applications from a wide range

of scientific and engineering areas, including Computational Fluid Dynamics

45

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

(CFD) [5, 24, 27], particle transport [15], hydrodynamics [59, 116] and Machine

Learning (ML) [106], to name just a few.

The proxy application used in this chapter is the heat conduction solver mini

application TeaLeaf [64], part of the Mantevo and UKMAC suites. Martineau

et al. [64, 62, 63] discuss several variants of TeaLeaf that have been parallelised

using a number of programming models. Furthermore, they compare different

solvers within TeaLeaf: Conjugate Gradient (CG), Chebyshev and Polynomially

Preconditioned CG (PPCG), on three different Intel Xeon processors, an IBM

Power8 processor, an NVIDIA Tesla K20x GPU and an Intel Knights Corner

accelerator card [62, 63, 64]. TeaLeaf has also been re-engineered to use the

OPS [93] embedded DSL, and the Kokkos [18] and RAJA [32] C++ template

libraries.

4.2 Parallelisation of a Heat-Conduction Mini-

Application

TeaLeaf is one of 15 mini-applications within the Mantevo suite [60]. The refer-

ence version has been written in FORTRAN, and includes both OpenMP and

MPI parallisation methodologies that can be run independently or together. In

order to make use of other parallel programming models, the application has

also been converted to C/C++. In this section we detail the different versions of

TeaLeaf used in our study. Section 4.2.1 describes the original reference appli-

cation and a number of versions ported manually to make use of various parallel

programming models. Secondly, Section 4.2.2 details the version parallelised

using OPS. Finally, Section 4.2.3 describes versions parallelised by the C++

template libraries, Kokkos and RAJA.

46

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

4.2.1 Reference Implementation and Manual Parallelisa-

tions

The initial reference version of TeaLeaf employs both OpenMP and MPI to

allow parallelisation on both shared and distributed memory systems. Subse-

quently, it has been manually ported to use other parallel programming models.

TeaLeaf’s CUDA ports are aimed primarily at accelerator cards. The CUDA im-

plementation specifically targets the NVIDIA Graphics Processing Unit (GPU).

Included also is an implementation that uses OpenACC directives, to offload the

computation to accelerator devices such as NVIDIA GPUs. Each of these man-

ual ports are standalone programs, replicating the full mini-app that has over

7000 lines of code, and which require maintenance by the authors of the code.

The latest versions can be found on the UKMAC website and GitHub reposi-

tory [119]. Listing 4.1 shows the reference version of TeaLeaf’s cg_calc_w kernel

in FORTRAN, and the manual parallelisation methodologies applied there. In

this case, OpenMP has been utilised.

pw = 0.0_08

!$OMP PARALLEL
!$OMP DO REDUCTION(+:pw)
DO k = y_min,y_max
DO j = x_min,x_max
w(j, k) = (1.0_8 &
+ ry*(Ky(j,k+1)+Ky(j,k)) &
+ rx*(Kx(j+1,k)+Kx(j,k)))*p(j,k) &
- ry*(Ky(j,k+1)*p(j,k+1) +Ky(j,k)*p(j,k-1)) &
- rx*(Kx(j+1 k)*p(j+1,k) +Kx(j,k)*p(j-1,k))

pw = pw + w(j,k)*p(j,k)
ENDDO

ENDDO
!$OMP END DO
!$OMP END PARALLEL

Listing 4.1: Reference (FORTRAN) version of TeaLeaf’s cg_calc_w kernel with
OpenMP.

47

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

4.2.2 Oxford Parallel Library for Structured-mesh solvers

OPS is a DSL embedded in C/C++ and FORTRAN consisting of a domain

specific API that facilitates the development of applications operating over a

multi-block structured mesh. [93] Such a mesh can be viewed as an unstructured

collection of structured mesh blocks, together with associated connectivity in-

formation between blocks. Using OPS, an application developer can write a

multi-block structured-mesh application using the API, in the form of calls to

a traditional library. The OPS source-to-source translator is then used to parse

the API calls and produce different parallelisations. A number of mini-apps have

been re-engineered to use the OPS API, including CloverLeaf [71] and TeaLeaf.

OPS is able to automatically produce code that makes use of a range of

parallel programming models and extensions such as OpenMP, CUDA, OpenCL,

OpenACC and their combinations with MPI. The generated code attempts to

use the best optimisations for the given programming model. Examples include

the use of cache-blocking tiling to reduce data movement in the OpenMP and

MPI versions of the generated code. [94] The key advantage of using OPS is

that all these parallelisations and optimisations are produced automatically,

from a single high-level source, without the need for maintaining each parallel

version. Listing 4.2 demonstrates how the cg_calc_w kernel in TeaLeaf (shown

in Listing 4.1 is implemented in the OPS version. As can be seen, the kernel is

abstracted out in order for OPS to apply different parallelisation methodologies

through the use of its source-to-source translator.

4.2.3 Kokkos and RAJA

Kokkos [18] and RAJA [32] are both C++ template libraries, designed with a

similar goal to OPS. Through template metaprogramming, they aim to add

portability to applications, whilst supporting a wider range of domains.

Both Kokkos and RAJA have unique features. Kokkos is able to select

the most appropriate data layout (Array of Structures (AoS) or Structure of

48

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

*pw = 0.0;

ops_par_loop_tea_leaf_cg_calc_w_reduce_kernel(
"tea_leaf_cg_calc_w_reduce_kernel",
tea_grid,
2,
rangexy,
ops_arg_dat(w, 1, S2D_00, "double", OPS_WRITE),
ops_arg_dat(Kx, 1, S2D_00_P10, "double", OPS_READ),
ops_arg_dat(Ky, 1, S2D_00_0P1, "double", OPS_READ),
ops_arg_dat(p, 1, S2D_00_0M1_M10_P10_0P1, "double", OPS_READ),
ops_arg_gbl(&rx, 1, "double", OPS_READ),
ops_arg_gbl(&ry, 1, "double", OPS_READ),
ops_arg_reduce(red_temp, 1, "double", OPS_INC)

);

ops_reduction_result(red_temp, pw);

Listing 4.2: OPS (C++) version of TeaLeaf’s cg_calc_w kernel.

Arrays (SoA)) based on the underlying architecture. However, RAJA can use

lambda functions in order to allow for more flexibility when building kernels.

Both Kokkos and RAJA are able to produce optimisations with both OpenMP

and CUDA, but Kokkos is able to produce a PThread version of the application,

and RAJA is able to include MPI within its implementation.

Listings 4.3 and 4.4 show TeaLeaf’s cg_calc_w kernel implemented into the

Kokkos and RAJA versions respectively. Both versions use lambda and template

metaprogramming to abstract the parallelisation methodologies away from the

kernel, allowing them to applied by the library at compile time.

4.3 Performance of TeaLeaf

In this section, each of the different implementations of TeaLeaf outlined in

Section 4.2 are executed across multiple different architectures in order to com-

pare each of the implementations efficiencies, and to explore which frameworks

and systems are able to offer the best performance. Section 4.3.1 discusses the

experimental setup, whilst Section 4.3.2 explores the results for each of the dif-

49

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

void cg_calc_w(
const int x, const int y, const int halo_depth, KView w,
KView p, KView kx, KView ky, double* pw)

{
parallel_reduce(x*y, KOKKOS_LAMBDA

(const int& index, double& pw_temp)
{

const size_t kk = index % x;
const size_t jj = index / x;

if(kk >= halo_depth && kk < x - halo_depth &&
jj >= halo_depth && jj < y - halo_depth)

{
const double smvp = SMVP(p);
w(index) = smvp;
pw_temp += w(index)*p(index);

}
}, *pw);

}

Listing 4.3: Kokkos version of TeaLeaf’s cg_calc_w kernel.

void cg_calc_w(
RAJALists* raja_lists, const int x, const int y,
const int halo_depth, double* pw, double* p, double* w,
double* kx, double* ky)

{
ReduceSum<reduce_policy, double> pw_reduce(0.0);

forall<policy>(
raja_lists->inner_domain_list, [=] RAJA_DEVICE (int index)

{
w[index] = SMVP(p);
pw_reduce += w[index]*p[index];
});

*pw += pw_reduce;
}

Listing 4.4: RAJA version of TeaLeaf’s cg_calc_w kernel.

50

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

ferent libraries analysed. Finally, Section 4.3.3 discusses an analysis of each of

the systems when running the proxy application.

4.3.1 Experimental Setup

The results in this section have been collected from three different, single node,

multi-core/many-core systems. Each of these systems has been configured with

the same set of compilers (where possible) in order to obtain comparable results.

The Linux kernel and Operating System (OS) used on each system is 3.16.0-

4-amd64 and Debian GNU/Linux 8 respectively. These systems can be found

listed in Table 4.1. As can be seen, there are two Central Processing Unit (CPU)

processors (an Intel Xeon Broadwell and a KNL), and a GPU processor (an

NVIDIA P100).

System Key information
Intel Xeon E5-2660
v4 (Broadwell) [43]

2 processors, each with 14 core and 2 hyperthreads
per core. 2.00GHz

Intel Xeon Phi
7210 [41] (KNL)

1 processor with 64 cores and 4 hyperthreads per core.
1.30GHz, Flat memory mode, Quadrant clustering
mode

NVIDIA Tesla
P100 [76]

3840 single precision CUDA cores (1920 double preci-
sion CUDA cores).

Table 4.1: Systems utilised to measure the performance of the different version
of TeaLeaf

Where possible, the Intel compiler (17.0u2) and Intel MPI (2017u2) were

used when executing the applications on Intel hardware. For the Tesla P100

system, CUDA 8.0.61 was utilised. There were, however, two exceptions to

this:

1. When using the C++ template libraries Kokkos or RAJA with CUDA,

GNU 5.4.0 was employed instead of the equivalent Intel compiler;

2. When using OpenACC, the PGI compiler (17.3) and OpenMPI (1.10.6)

were used in place of the Intel and CUDA compilers, to enable support

for OpenACC pragma statements.

51

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

. All compilers and flags used for each implementation can be seen in Ap-

pendix A.

Some of the versions, such as OPS’s CUDA, can take parameters at runtime

to further optimise the program. On this implementation, the block size for the

kernels can be set by the user to allow for better performance on GPUs. For

this chapter, the block size has been set to (64, 8) as this approach was shown to

provide the greatest improvements. This was achieved through experimentation

with different block sizes.

4.3.2 Results

Figures 4.1, 4.2, 4.3 and 4.4 detail the performance on each system across two

different problem sizes. Figures 4.1 and 4.2 present the time taken by ten

iterations of the main time-marching loop of TeaLeaf solving a 2D problem size

of 10002, whereas Figures 4.3 and 4.4 show the same but for the larger problem

size of 40002. In Figures 4.1 and 4.3, the first four sets of columns represent

results from manually parallelised versions of TeaLeaf on the Broadwell CPU and

the KNL system. The next four groups are from OPS on the same systems, and

the final three groups represent the C++ template libraries Kokkos and RAJA.

Figures 4.2 and 4.4 show the performance of implementations capable of running

on GPU architectures. The first two bars represent the manually parallelised

CUDA and OpenACC implementations, the third and fourth bars represent

the OPS’ CUDA and OpenACC versions, and the final two bars represent the

Kokkos and RAJA CUDA implementations.

The times given in Figures 4.1, 4.2, 4.3 and 4.4 are the minimum execution

times given all the available options for an implementation. For example, the

OpenMP versions were tested over a large range of configurations to find the

optimal number of threads. Of particular note, the KNL system consists of

multiple Non-Uniform Memory Access (NUMA) regions, one containing the

high-bandwidth Multi-Channel Dynamic Random Access Memory (MCDRAM),

and another containing the slower Double Data Rate (DDR) memory. The KNL

52

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

is unique in that the system can be specified at boot to reconfigure the memory

into different configurations, including treating the MCDRAM as an additional

layer of cache. For the purposes of this chapter, the MCDRAM for the KNL

system was set up to be in flat mode, using Quadrant clustering [103]. This

enables the memory to be separately addressable and allocates the memory to

the closest set of processors. Our experiments showed that this configuration

provided the fastest run times compared to the other memory modes. To access

this memory, numactl was used to allocate all the memory required by the

program to the MCDRAM. Should the MCDRAM run out of available memory,

numactl would start to use the available DDR memory.

OpenMP and MPI

The only parallelisation model used within all the libraries tested is OpenMP.

This provides an opportunity to compare each of the libraries with a consistent

model. OpenMP was the slowest on all systems utilising CPU architectures

when using the small problem set. The slowest two executions were achieved

by Kokkos, with a runtime of 4.49 seconds on the Broadwell processor, and

11.02 seconds on the KNL. Out of all the OpenMP versions, the manual im-

plementation of OpenMP on the KNL achieved close to the fastest time for the

platform, with OPS’s MPI Tiled implementation matching this performance, or

performing marginally better. This was not the case when looking at the larger

dataset, where the manually parallelised version of OpenMP achieved the worst

time out of any implementation when run on the Xeon. However, this appears

to be an outlier, being almost 3× slower than any other implementation. In

particular, the manually parallelised version using MPI is almost always faster

than its OpenMP counterpart. NUMA issues may be contributing to part of

this performance degradation, but it is apparent that further optimisations may

be required for the manual OpenMP version to improve performance. The best

OpenMP performance on the KNL system for the larger dataset is given by the

53

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

OpenMP MPI Hybrid OpenACC
0
1
2
3
4
5
6
7
8
9

10
11
12

T
im

e
(s
ec
)

Xeon E5-2660 v4 KNL (Flat MCDRAM)

(a) Manual

OpenMP MPI Hybrid MPI Tiled
0
1
2
3
4
5
6
7
8
9

10
11
12

T
im

e
(s
ec
)

Xeon E5-2660 v4 KNL (Flat MCDRAM)

(b) OPS

Kokkos OpenMP RAJA OpenMP
0
1
2
3
4
5
6
7
8
9

10
11
12

T
im

e
(s
ec
)

Xeon E5-2660 v4 KNL (Flat MCDRAM)

(c) Kokkos and RAJA

Figure 4.1: Times for TeaLeaf using 10002 dataset on CPU systems

54

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

CUDA OpenACC
0
1
2
3
4
5
6
7
8
9
10
11
12

T
im

e
(s
ec
)

P100

(a) Manual

CUDA OpenACC
0
1
2
3
4
5
6
7
8
9
10
11
12

T
im

e
(s
ec
)

P100

(b) OPS

Kokkos CUDA RAJA CUDA
0
1
2
3
4
5
6
7
8
9
10
11
12

T
im

e
(s
ec
)

P100

(c) Kokkos and RAJA

Figure 4.2: Times for TeaLeaf using 10002 dataset on GPU systems

55

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

OpenMP MPI Hybrid OpenACC
0

200

400

600

800

1,000

1,200

1,400
T
im

e
(s
ec
)

Xeon E5-2660 v4 KNL (Flat MCDRAM)

(a) Manual

OpenMP MPI Hybrid MPI Tiled
0

200

400

600

800

1,000

1,200

1,400

T
im

e
(s
ec
)

Xeon E5-2660 v4 KNL (Flat MCDRAM)

(b) OPS

Kokkos OpenMP RAJA OpenMP
0

200

400

600

800

1,000

1,200

1,400

T
im

e
(s
ec
)

Xeon E5-2660 v4 KNL (Flat MCDRAM)

(c) Kokkos and RAJA

Figure 4.3: Times for TeaLeaf using 40002 dataset on CPU systems

56

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

CUDA OpenACC
0

200

400

600

800

1,000

1,200

1,400

T
im

e
(s
ec
)

P100

(a) Manual

CUDA OpenACC
0

200

400

600

800

1,000

1,200

1,400

T
im

e
(s
ec
)

P100

(b) OPS

Kokkos CUDA RAJA CUDA
0

200

400

600

800

1,000

1,200

1,400

T
im

e
(s
ec
)

P100

(c) Kokkos and RAJA

Figure 4.4: Times for TeaLeaf using 40002 dataset on GPU systems

57

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

version using the RAJA library.

Most of the frameworks used to parallelise TeaLeaf included an MPI im-

plementation. All of the MPI implementations tested also contain an option

to use OpenMP alongside MPI. With MPI+OpenMP, TeaLeaf often performed

better than the equivalent, OpenMP only implementation. OPS allows the user

to generate code with specific optimisations on top of the MPI+OpenMP par-

allelisation. One such optimisation allows for cache-blocking tiling to reduce

data movement [94]. The tiling optimisation made the code faster than the

equivalent OpenMP and MPI+OpenMP implementations without tiling. This

is especially true for the KNL system, where it gained the fastest time for the

small dataset and the second fastest for the larger dataset.

RAJA and Kokkos

Out of all of the OpenMP implementations tested on the CPU architectures,

RAJA gave the best performance on the small dataset using the Broadwell

system, and the large problem size on the KNL. In contrast, the Kokkos im-

plementation was often the slowest out of all OpenMP implementations, the

exception being the large dataset being run on the KNL system.

While Kokkos’ OpenMP implementation of TeaLeaf may not perform well

on either the Broadwell processor or the KNL system, the CUDA version does

perform better on NVIDIA’s Tesla P100 GPU. For both problem sets, the

Kokkos implementation was faster than the OPS and RAJA versions designed

for GPUs. However, the fastest variant of TeaLeaf on a GPU was the manually

parallelised implementation using CUDA.

For both the small and large problem sizes, RAJA’s CUDA implementation

was slower than both the manually implemented CUDA version and the Kokkos

implementation. Using the larger dataset, RAJA CUDA was quicker than all

of the OPS implementations. However, the same cannot be said for the smaller

dataset, where it was slower than all implementations of OPS running on the

P100 system.

58

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

OpenACC

Another parallelisation model designed primarily for GPU compilation is Ope-

nACC. Two OpenACC implementations were tested on the P100 GPU. One

generated using OPS and one which was manually implemented. For the larger

problem set, the manually parallelised OpenACC implementation performed

very well, achieving the second fastest time, running on the graphics card. How-

ever, both OpenACC implementations were slower than the Kokkos CUDA im-

plementation using the smaller dataset. When using both datasets, the CUDA

implementations of TeaLeaf was faster than the OpenACC counterparts.

As well as offloading to the GPU, OpenACC can offload to the host processor.

This means that the CPU can do all of the processing that would be executed on

the GPU. Currently, OPS’s OpenACC implementation does not support offload

to the host device, so this was tested using the manually parallelised version of

TeaLeaf OpenACC. For the smaller dataset, the OpenACC implementation on

CPUs performed marginally better than the manually parallelised OpenMP and

Kokkos versions. It was, however, slower than both OPS’s and RAJA’s OpenMP

implementations. Regarding the larger problem size, the manually parallelised

OpenACC version worked extremely well, with the best performance of any

implementation on the Broadwell. OpenACC cannot offload to a KNL as a host

device using the PGI 17.3 compilers, so could not be tested with the OpenACC

implementation.

4.3.3 System Analysis

Of the two Intel architectures considered, performance on the Broadwell was

generally greater than the KNL when the smaller problem size was used. With

the 10002 dataset, the application requires in the region of 200 MB of memory;

for the 40002 dataset, this increases to 2.5 GB. Analysing the caching behaviour

for the two cases shows that the Broadwell system has a third of the cache misses

of the KNL for the small dataset. For the larger dataset, the KNL has less cache

59

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

misses, and less cache accesses overall. The application is memory-bound (as will

be seen in Section 4.4.1) and the MCDRAM therefore increases performance.

The P100 specific implementations are generally more performant than those

that can be run on either the Broadwell or KNL systems, when using the large

problem set. However, the percentage difference between the fastest time on a

GPU compared to the fastest on a CPU is not as large when the smaller dataset

is used (3.04% for the small dataset, 50.57% for the larger dataset). This is an

expected performance trait of GPUs where smaller problem sizes benefit less

from the increased parallelism available. Overheads (as a proportion of total

run time), such as kernel calls and memory copies, further reduce performance

when working on smaller problem sizes.

4.4 Performance Portability

Performance portability has been a topic of interest within High Performance

Computing (HPC) community for some time; the United States Department

of Energy (DoE)’s Centers of Excellence Performance Portability Meeting was

set up specifically to discuss how to mitigate the problems with platform di-

versification and how different laboratories are working on the issue. During

and following the April 2016 meeting, an attempt was made to establish a more

concrete definition of performance portability. Performance and Portability are

subjective terms, heavily dependent on the user’s point of view and the problem

being solved [55]. One similarity in all definitions was the inclusion that a per-

formance portable code should be able to run on a variety of machines. There

have been many different approaches to arrive at a solution to this, including

compiler directives such as OpenACC [97] and OpenMP, languages designed

for performance portability such as Chapel [101] and PetaBricks [89], execution

models such as EARTH [129], and the utilisation of embedded DSLs such as

OPS [93] and Oxford Parallel Library for Unstructured mesh solvers (OP2) [92].

Template libraries have also been used to add performance portability to an ap-

60

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

plication, examples of which include Kokkos [18] and RAJA [32].

Assessing the portability of a particular program is usually carried out by

measuring performance on multiple machines and then comparing the results.

Quantifying the “performance portability” of an application from these results

is difficult. To remedy this, Pennycook et al. [87] proposed the metric:

P (a, p,H) =


|H|∑

i∈H
1

ei(a,p)

if i is supported ∀i ∈ H

0 otherwise

(4.1)

where, H is the set of systems used to test the application, and e is the efficiency

of the application a given the input parameters p [87]. The metric uses the

harmonic mean to assess either:

1. the application efficiency, i.e., how fast the application runs compared to

the best time on each system;

2. the architecture efficiency, i.e., the achieved number of floating point op-

erations per second compared to the maximum possible on each system.

The resultant score ranges between 0% and 100%; should the program not be

portable to one or more systems, a score of 0% is achieved.

In this chapter, the metric is used to evaluate the different versions of

TeaLeaf. Because the systems tested fall under two distinct architectures: CPUs

and GPUs, two sets of performance measures have been taken. The first con-

siders the CPU architectures only and the second looks at all available systems.

This means that some of the implementations of TeaLeaf can be compared to

the other implementations even though an implementation cannot be run on a

particular system.

In order to compare all versions effectively, the manually parallelised imple-

mentations have been combined together into one version, which will be referred

to as “Manual”. When calculating the performance portability, the best per-

forming implementation was then used for the architecture and the application

61

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

efficiency. Note that the implementation that achieves the best architecture

efficiency may not also achieve the best application efficiency and vice versa.

This is because, whilst an implementation might use all the available hardware,

it may not use it effectively. Thus, the implementation would have a high archi-

tectural efficiency, but low application efficiency. The opposite may also occur,

where an implementation may run the fastest out of all implementations on a

given architecture, but may not fully utilise the hardware.

When calculating either the application or the architecture efficiency, the

equation stated in Chapter 2.4 was utilised. To effectively represent the archi-

tecture efficiency, we calculated two metrics. The first is the achieved number

of Floating Point Operations per Second (FLOP/s) (i.e. compute intensity) for

each parallelisation and the second is the memory bandwidth used. Both mea-

sures were obtained using, Intel’s VTune 2017 profiler for the CPU systems,

and NVIDIA’s CUDA profiler Nvprof for the GPU systems. It should be noted

that all of the results recorded used the larger 40002 dataset.

Sections 4.4.1 and 4.4.2 explore the performance portability of both the ar-

chitecture efficiency and application efficiency respectively. In each of these sec-

tions, the relevent efficiencies are presented, along with the performance porta-

bility result for all CPU architectures (Broadwell and KNL) and the performance

portability across all three architectures.

4.4.1 Architecture Efficiency

Tables 4.2 and 4.3 show the computational and memory bandwidth efficiencies

respectively, as well as the performance portability results, across all tested

hardware and frameworks. From these results, it can see that the compute

efficiency accounts for a significantly smaller proportion of the system peak,

on all systems. Barely 5% of the peak is achieved. However the bandwidth

efficiency is mostly over 50%. As such, it is clear that TeaLeaf is a memory-

bound application. Therefore, the rest of this section will concentrate only on

the memory bandwidth results presented in Table 4.3.

62

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

Version Broadwell KNL
P (CPU)

P100
P (CPU ∪GPU)(%) (%) (%)

Manual 0.96 1.52 1.18 2.36 1.42
OPS 1.35 3.39 1.93 2.83 2.16

Kokkos 2.73 1.57 2.00 5.30 2.52
RAJA 0.91 1.60 1.16 1.87 1.33

Table 4.2: Computational architectural efficiency (%) and Performance Porta-
bility (P) on Xeon Broadwell, KNL (MCDRAM) and a P100 card for the larger
dataset (40002)

Version Broadwell KNL
P (CPU)

P100
P (CPU ∪GPU)(%) (%) (%)

Manual 60.49 91.61 73.19 75.70 74.01
OPS 89.61 95.93 92.66 61.21 79.11

Kokkos 64.11 23.59 34.49 65.86 41.00
RAJA 53.13 60.87 56.74 70.63 60.72

Table 4.3: Memory bandwidth architectural efficiency (%) and Performance
Portability (P) on Xeon Broadwell, KNL (MCDRAM) and a P100 card for the
larger dataset (40002)

With the exception of Kokkos on the KNL, the amount of memory band-

width used by the different parallelisation models exceeds 60%. The highest

bandwidth usage was achieved by OPS on the KNL, utilising 95.93% of the

available bandwidth. When looking specifically at the KNL results, the amount

of memory bandwidth used correlates with the application efficiency, with mod-

els using more bandwidth gaining the higher application efficiency. This is

acceptable, as it would be expected that a faster program would better utilise

the hardware available. Across all of the CPU architectures, OPS achieved the

highest bandwidth, and thus gained the largest performance portability for CPU

systems.

Considering the results for the Tesla P100 system, the bandwidth efficiency

is relatively high, and spread over a small range (14.49% in range for the GPU,

compared to 36.48% for Broadwell and 72.34% for KNL). As with the KNL

system, the fastest implementation achieved the highest bandwidth. However,

unlike the KNL system, the highest bandwidth utilisation was achieved by the

63

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

manually parallelised implementation. This leads to both the manually paral-

lelised and OPS versions having very close performance portability based on the

architecture efficiency (74.01% and 79.11% respectively).

4.4.2 Application Efficiency

Version Broadwell KNL
P (CPU)

P100
P (CPU ∪GPU)(%) (%) (%)

Manual 100.00 93.73 96.76 100.00 97.82
OPS 67.02 100.00 80.26 57.32 70.81

Kokkos 91.45 31.40 46.74 72.65 53.05
RAJA 80.73 84.25 82.45 67.46 76.77

Table 4.4: Application efficiency (%) and Performance Portability (P) on Xeon
Broadwell, KNL (MCDRAM) and a P100 card for the larger dataset (40002)

Table 4.4 shows the application efficiency and performance portability of

this metric across all tested implementations and architectures. When analysing

these results, it can be seen that nearly all the results on the CPU architectures

are greater than 80%. The exceptions are OPS on the Broadwell (67.02%), and

Kokkos on the KNL (31.40%). These low results are reflected in the performance

portability metric for the CPU, where Kokkos is approximately 34% away from

the next highest performance portability score across all CPU architectures.

As stated previously, almost all the other implementations of TeaLeaf per-

formed very well, achieving above 80% efficiency. This is reflected in the per-

formance portability metric, with the highest being 96.76% utilising the man-

ual implementation. Both OPS and RAJA achieved very similar performance

portability scores across both CPU architectures, with only a 2.19% difference.

However, very few implementations gained a high application efficiency when

executed on the P100 system. The manually parallelised versions were the

fastest, with Kokkos coming in second with a 72.65% application efficiency.

Due to the low performance portability on the CPU architectures, Kokkos’

overall performance portability for application efficiency was the lowest of all

64

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

the frameworks assessed, scoring 53.05%. On the other hand, the manually

parallelised implementations scored the highest of all models, being the only

one to score above 90%. This very much aligns with the intuition that manually

optimising and parallelising the code will achieve the best results, even if longer

development time is required. Both OPS and RAJA achieved lower performance

portability once the GPU architecture was included.

4.5 Summary

In this chapter, the performance of different implementations of TeaLeaf, a mini-

application that solves the linear heat conduction equation, was investigated.

First, the performance of the mini-app across 3 different multi-core systems: In-

tel’s Xeon E5-2660 v4 CPU; Intel’s Xeon Phi Knights Landing processor; and,

NVIDIA’s Tesla P100 GPU was explored. This showed that the GPU implemen-

tations of the different frameworks were faster for larger datasets, with the KNL

system closely behind. The best times on the CPU were achieved by the man-

ually parallelised OpenACC implementation and the MPI tiled implementation

of OPS.

Secondly, the performance portability of different version of TeaLeaf was

examined. Overall, the architecture efficiency based on compute intensity was

significantly low. However, this was expected, as real-world programs such as

TeaLeaf, are usually more complex than traditional benchmarking applications

such as LINPACK, which are typically designed to stress the hardware fully.

On the other hand, architecture efficiency based on the bandwidth was almost

always over 50%, leading to the confirmation that TeaLeaf is a memory bound

application.

OPS’s architectural efficiency, based on bandwidth, was the highest on CPU

architectures. However, for the GPU systems, the manually parallelised version

utilised a higher percentage of the peak bandwidth. Overall, both OPS and

manual implementations achieved comparable architecture efficiencies.

65

4. Analysing the Performance Portability of a Heat-Conduction Mini-Application

In terms of application efficiency, the manually parallelised implementations

achieved the highest scores, showing that hand-coding of the parallelisations

and optimisations will typically produce better results. However, the downside

to this method is the need to develop and maintain each separate version. Of all

the library based methods, both OPS and RAJA produced good performance

results, achieving above 70% overall performance portability.

66

CHAPTER 5
Creation, Development, Implementation and Optimisations

of a Data Structure Abstraction Library

Over recent years, there has been a noticeable shift in the development of new,

High Performance Computing (HPC) architectures. The disparity between pro-

cessor speeds and memory speeds has resulted in an increased focus on the

performance of the memory subsystem, as demonstrated by the rising use of

high-bandwidth memory in newer Central Processing Unit (CPU) processors

such as ARM Fujitsu’s A64FX [25] and Graphics Processing Unit (GPU) accel-

erators such as NVIDIA’s A100 [78]. This development is necessary, as it will

close the gap between the speed of performing data read and writes compared

with the speed of floating point operations. Without this type of development,

applications which relied upon large amounts of data movement between the

processor and its memory would not see any significant increase in performance

when executing on newer architectures. However, even with an improvement

in memory performance, the memory efficiency is often lower than its com-

pute counterpart [52]. Combine this fact with the increasingly complex data

structures used within applications, and the need for code to be performance

portable [50], it can be seen that the structure of the data becomes incredibly

important for ensuring high memory and application performance.

This chapter will discuss the design and implementation of a library, which

will allow data structures to be abstracted away from applications and algo-

rithms, Warwick Data Store (WDS). There are two benefits to be gained from

designing and implementing in such a way. Firstly, large-scale changes to the

data structure can be performed without the need for a significant proportion of

the program to be re-written. These can range from restructuring the data for

67

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

the code, to placing the data onto a different level in the memory hierarchy, or

altering the existing data structure. The changes specified here are set by the

user. Secondly, the data structures can be tweaked for different applications and

hardware, thus enabling better utilisation of the available hardware. Unlike the

first benefit, these changes are made within the library itself. To demonstrate

the need for a library such as the one described, the focus has been placed on

the challenges faced by different physics applications.

The WDS is a template C++ library, designed to replace hard-coded data

structures in applications [49]. The resultant library provides a means whereby

data structures can be altered and optimised, without the risks associated with

large-scale changes to the code. Alongside this, further functionality can be

provided that would otherwise be difficult to introduce. Examples of this in-

clude the ability to easily switch between different data structures (for example,

changing the data structure from Structure of Arrays (SoA) to Array of Struc-

tures (AoS) or vice versa, without the need for large, complicated code), and

being able to change the data adjacency’s of given variables (for example, swap-

ping from row-major to column-major indexing, and vice versa). The changes

described above would need to be achieved with the smallest possible cost to an

application’s performance.

The aim of this chapter is to demonstrate the creation, development and im-

plementation of the data-structure abstraction library, WDS; and thus demon-

strating the key criteria of WDS as extensibility, minimal size, ease of implemen-

tation and minimal performance impact on an application, as well as additional

functionality provided in the library. The rest of the chapter is laid out as

follows:

• Section 5.1 discusses similar systems, and how WDS differs from these.

• Section 5.2 explores the initial implementation of the library, and discusses

the issues and lessons learnt whilst developing this version of the library.

• Section 5.3 explores the final implementation of the library, going into

68

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

detail around the three different areas of the library, the high level func-

tionality (Section 5.3.1), the data storage classes (Section 5.3.2) and the

data access classes (Section 5.3.3).

• Section 5.4 discusses the different features achieved by WDS.

• Section 5.5 explores optimisations made to the data structures imple-

mented within the library, in order to ensure minimal performance impact.

In addition to the above areas, the implementation of new, specialised data

structures is also explored.

5.1 Motivation

WDS is a template C++ library designed to allow for the abstraction of data

structures within applications [49]. By adopting this approach, the data struc-

ture can be manipulated and optimised without the need to change the pro-

gram’s code. Additional functionality can be provided through the library, that

would otherwise be complex, time-consuming, and bespoke to a given program.

An example of this is the conversion of variables between different data struc-

tures. When developing WDS, the focus was on the core functionality alongside

four key criteria: extensibility, minimal size of library, ease of implementation

into applications, and the performance impact of the library. By ensuring these

four criteria are met alongside the core functionality, it can be ensured that the

library maximises its effectiveness and usability.

Two contemporary projects which provide the capability to work with ab-

stract data layouts are Kokkos [18] and RAJA [32]. The goal of both of

these tools is to facilitate the development of performance-portable applications

that can execute on a wide range of hardware and achieve good performance.

Throughout the development of WDS, data storage and manipulation was the

primary focus. The aim for WDS is to inject domain-specific knowledge into

the library, and make the conversion between different layouts a key feature.

69

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

The functionality provided by WDS is therefore orthogonal to that offered by

Kokkos and RAJA.

Other specialised data storage libraries have also been designed, but these

have been for specific use cases. One such example of this is Atlas, designed

by the European Centre for Medium-Range Weather Forecasts (ECMWF) [16].

This library is designed to store unstructured mesh data within climate and

weather simulations, and provides a variety of layout options depending on the

type of discretisation used. WDS aims to support a wider range of applications.

Another example is Axom, developed by the Lawrence Livermore National

Laboratory (LLNL) [56]. This project aims to provide tools for multi-physics ap-

plications, with one such tool being a data management tool called Sidre. Sidre’s

aim is to allow for transparent data accesses for physics applications across a

large range of hardware options [57]. Sidre provides similar functionalities and

capabilities as WDS and was developed at the same time, but independently

to WDS. Sidre’s development shows that there is a demand for a library that

performs these data structure abstractions.

Libraries have also been created which abstract the data layout, allowing

for auto-vectorisation, more utilisation of bandwidth and, as a consequence,

higher performance. The most commonly used library for this is Intel’s Single

Instruction - Multiple Data (SIMD) Data Layout Templates (SDLT). [46] While

the main aim of this library is to manipulate the data in order to increase

performance, WDS aims to extend the available features, such as the ability

to convert between data structures, and to allow more flexibility in how the

data is defined. One example of WDS’ flexibility is that domain-specific data

structures can be created within the library, such as those required for multi-

material physics applications. [23]

70

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

5.2 Initial Implementation

The initial idea for the WDS library was to have a class which could store all

the data for a given variable. This would then be accessed through an object

which would store all the variables relating to a given program. It would then be

possible to set up a collection of these objects stored in a single data-repository

object. By taking this approach, operations which only affect a given level of

abstraction could be implemented without the need for large, sprawling changes

to the library. C++ was used as the key programming language, as it allows for

large amounts of flexibility, whilst being incredibly performant and accessible

to a large range of HPC platforms.

The structure of the initial implementation of the WDS can be seen in Fig-

ure 5.1. The following key has been used to denote key sections of the library:

• Bold lines are interactions between the users applications and the library.

• Green sections are classes which store data. These classes also have func-

tionality to allow access to the data.

• Red sections are classes which manage interactions between the users ap-

plications and the library. As such, these are often referred to as controller

classes.

• The blue class is the view class, which allows for quicker access to the data,

and can be passed to the kernel rather than relying on going through the

controller classes.

• Orange sections are interfaces between the library, C and FORTRAN.

One of the first sections to be developed was the storage classes. These

classes were used to store all the data relating to a given data structure. This

data structure could hold multiple variables (such as AoS), or contain a single

variable such as an array (for example, from an SoA data structure). The key

class within this collection was the OBJ class. The primary aim of this class was

71

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

User Application

C
in
te
rf
ac
e

FO
R
T
R
A
N

in
te
rf
ac
e

Program Pool

Program Data

OBJ

StructOBJ

View

Figure 5.1: Graphical representation of the original structure and control flow
of WDS

to store important information about the data structure, such as the variable

name, number of items, and variable class information such as the types name

and size. It also managed a void pointer to the block of memory where the data

is stored. A void pointer stores the beginning address of a block of memory, but

does not store the type of data, and therefore cannot be iterated through in the

same way an array would be. To overcome this issue, the library used the size

of the data class (and the data structure if the structure contained more than

one variable), to perform pointer arithmetic to calculate the location of a given

element within the data block.

Listing 5.1 shows the key variables used within the OBJ. As can be seen, the

data is stored in the dat pointer, which is allocated memory depending on the

arguments passed to the object at construction. datName and datClass store

the name of the variable, and the name of the type of variable being stored. In

the initial specification, the guidelines on how these variables should be used was

very relaxed, and could be set to anything that was required by a particular data

structure, so long as it could be interpreted by a different part of the library.

datClassSize stores the number of bytes for a given element in the data block,

72

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

class OBJ {
private:
/* The data stored. */

void * dat;

/* The variable name for the block of data. */
string datName;

/* The name of the class for the block of data. */
string datClass;

/* The size of the class for the block of memory */
int datClassSize;

/* The number of elements stored in the block of memory */
int datNumItems;

/* Stores whether or not the block of memory is a structure. */
bool isStructure;

/* Rest of the OBJ object */
};

Listing 5.1: Key variables within OBJ

whilst datNumItems stores the number of elements in the data block. The OBJ

can also contain variables required for all other data structures implemented

into the library. For example, in Listing 5.1, a variable is used to say whether

the data stored is in a structure (isStructure).

The OBJ class also managed all operations on the data, as well as the func-

tionality needed for the interfaces between the data and other languages. This

functionality included extending or shrinking the data structures, printing out

a representation of the contents of the data structure, as well as testing if the

object is empty and generating View objects. The function signatures for these

can be seen in Listing 5.2. It should be noted that template functions have been

utilised to allow for compilation optimisations (as the compiler can then know

what types are required, and how to interpret these requests), but only in cases

where the data is being directly accessed. This allows for type checking to be

achieved, without the class having to be converted to a template class.

73

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

/* Sets an element in the block of data to a new value. */
template <class T> bool setData(T newDataItem, int place=-1);
template <class T> bool setData

(T * newDataItems, int numItems, int place=-1);

/* Provides the data stored in the block. */
template <class T> T * getData();
template <class T> T getData(int place);

/* Removes an element of data from the block. */
bool removeData(int element);
bool removeData(int * elements, int count);

/* Adds a piece of data to the block. */
template <class T> bool addData (T newDataItem, int place = -1);
template <class T> bool addData

(T * newDataItems, int numItems, int place = -1);

/* Adds a piece of data to the block. */
bool add (int element);
bool add (int * elements, int count);

/* Returns the name of the block of memory. */
string getName();

/* Returns the name of the class of the block of memory. */
string getClassName();

/* Returns the size of the class of the block of memory. */
int getClassSize();

/* Returns the number of elements stored in the block of memory. */
int getNumItems();

/* Frees the data in object. */
bool freeDat();

/* Returns whether the block of memory is classed as "empty" */
bool isEmptyOBJ();

/* Prints out the OBJ */
void print();

/* Generates a View object */
template <class T> View<T> getView(string varName = "");

Listing 5.2: Key functions within OBJ

74

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

When initially implemented, the OBJ class was only meant to handle SoA

data structures. However, in order to allow AoS data structures to be incorpo-

rated, the metadata stored within OBJ was extended to keep track of whether it

was a structure or an array, and could store specific data relating to the struc-

ture. This structure-specific metadata was stored in a separate class, called

StructOBJ. In this class, a name, the number of elements, and the variable class

name and size could be stored, as well as a vector (a specialised array which can

have its size changed) of StructOBJ objects. As such, the initial level stored a

specific name for the structure, the overall size of the structure, and the number

of elements at this given level. If we use Figure 3.4 and Listing 3.11 in Chap-

ter 3.4.2 as an example, the OBJ object would contain the name of foo_bar_baz,

a size of 13 (8 bytes for a double, 4 bytes for an integer and 1 byte for a char), the

number of elements would be set to 40, and a void pointer, pointing to a block

of memory 520 (13× 40) bytes long. In the vector of StructOBJ, three objects

would be found, containing data relating to one of the three variables foo, bar

and baz. Due to its recursive design, Array of Structures of Arrays (AoSoA)

data structures could also be easily represented in this format, along with any

combination of AoSoA, SoA and AoS.

Listing 5.3 shows the key variables and function signatures within StructOBJ.

Applying the above example to this StructOBJ interface, structName would

be foo_bar_baz, the className variable would be left blank, numItems would

equal 40, structSize would equal 13, and innerStruct would contain an ar-

ray of three StructOBJ objects. The functions within this class allow for key

information and data to be retrieved and set, depending on what is required.

Functionality such as generating View objects and storing the data is left to the

OBJ class. This allows for the StructOBJ class to only contain the functionality

that allows for the interpretation of the data block.

In order to manage the potentially large number of variables that could be

stored within an application, and to control potential high-level functionality,

two controller classes were developed called ProgOBJ (referred to as Program

75

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

class StructOBJ {
private:
/* The name of the structure */
string structName;

/* The class of the element */
string className;

/* The number of items at this element */
int numItems;

/* The size of the structure/element from this point */
int structSize;

/* A vector that stores the structure tree. */
vector<StructOBJ> innerStruct;

public:
/* Constructors */

string getName() { return structName; }
string getClassName() { return className; }
int getNumItems() { return numItems; }
int getSize() { return structSize; }
int getInnerStructSize() { return innerStruct.size(); }
bool isInnerEmpty() { return innerStruct.empty(); }

/* Gets the StructOBJ object at a given position. */
StructOBJ getInnerStructOBJ(int pos);

/* Sets the pointer to a given position. */
static void * setPointer
(void * data, int offset, int totalIncrements, int totalSize);

/* Inserts some data into a set pointer. */
template <class T> static bool insertDataPtr
(void * setDataBlock, T data);

/* Gets some data in a set data block. */
template <class T> static T getDataPtr (void * setDataBlock);

/* Finds a given variable within the structure. */
bool findInStruct (string varName);

/* Sets the number of items at a given variable name. */
bool setNumItems (string varName, int newNumItems);

/* Gets the amount of bytes to the beginning of a variable. */
int getOffset(string varName, int * places, int numLevels);
vector<int> getOffsets(string varName, int offset);

};

Listing 5.3: Key variables and functions within StructOBJ

76

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

Data in Figure 5.1) and ProgPool (referred to as Program Pool in Figure 5.1).

ProgOBJ was designed to store all variables for a given collection of kernels. As

such, this class stored the OBJ objects in a vector, along with another vector

storing the data structure type for the given OBJ object. In order to identify

the ProgOBJ object later, a name field was used to act as a unique key, in the

same way the name field in the OBJ object was used. ProgPool was designed

to control all the different ProgOBJ objects, and to manage all user interactions

between the library. As such, the only data this class stored was a vector of the

ProgOBJ objects. From this class, the user application could request OBJ to be

created or removed from given ProgOBJ, or make a request for a print out of

details relating to a particular variable, data structure or a collection of data

structures. Data can also be examined and set through this interface, though

due to the fact that at least two searches would be required for each request

(one to find the specific ProgData object, and one to find the specific OBJ within

this, and potentially more if the data structure is either AoS or AoSoA), this

was not the preferred method.

Instead of accessing data through the library interface, a specialised object

could be requested. Thus, the view class was created, which became the pre-

ferred method for accessing data quickly. The class could be requested through

the library interface for a particular variable, and would be generated by the

corresponding OBJ class. View objects were only allowed to be created through

an OBJ object, as this contained all the required information such as the pointer

to the data, the structure of the data, and the amount of data. A reference

to the corresponding OBJ object was also stored in the View object. The View

class was built as a template class (a class which can take a type of data as a

parameter when first created), to ensure that the data was being consistently

accessed and to reduce the amount of pointer arithmetic the library was required

to undertake.

Initially, the View class would access all the data through the OBJ functions.

However, this proved to be a slow process as the data could not be immediately

77

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

accessed. This, therefore, caused a level of indirection, meaning that the com-

piler could not perform optimisations on the data. As such, the View class was

designed so that these calculations could be performed within the required func-

tions, with as few steps as possible. In order to access the data, the functionality

of both [] and () operators were overridden, and set to access the data in the

correct pattern. This proved to be more efficient, and because this interface is

closer to how native C/C++ data structures are implemented, re-implementing

a program to use the library was simpler.

In order to allow for the library to be used by a wide range of HPC appli-

cations, an interface section was built. This allowed the library to be used by

both native C and FORTRAN applications, alongside the C++ interface. These

were designed such that the overall functionality of WDS can be provided across

as many different applications as possible. However, the functionality for the

C and FORTRAN interfaces had to be limited due to the restrictions on the

languages. Because the C language does not have classes or objects, access to

the data could not be achieved by passing the View object to the application, as

the application would not know how to interpret the object. As such, multiple

functions outside the ProgPool were created to access the functionality that the

class provided. As well as classes and objects, C does not allow for templates.

To resolve this issue, functions were duplicated to allow for specific types of data

to be added, removed and accessed by the library. In particular, these types

were doubles, integers and long integers.

The FORTRAN interface had similar constraints due to the way it had to

be implemented. In order to interface the FORTRAN and C++ languages,

the C language has to be used as an interim step. This meant that the same

restrictions on the type of data had to be applied. The types of data also had

to be limited in FORTRAN, as an integer in FORTRAN could be a different

size than the integer in C/C++. As such, the FORTRAN interface had to use

specific types in order to ensure the data was being read correctly. However,

newer versions of FORTRAN allow for classes and objects to be created and

78

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

passed between functions. Theoretically this could have allowed view objects

containing the required information to be generated. This was not carried out

due to the fact that all the required information would have to be passed through

the C interface and then built (meaning that any changes to the View class would

have to be reproduced in the FORTRAN view class), and also because classes

within FORTRAN are not well supported by FORTRAN HPC compilers or

applications at the time.

Due to these limitations, the FORTRAN interface for WDS was very verbose.

The majority of this interface can be seen in Listing 5.4. This interface contains

both functions and subroutines that allow for all the functionality of the WDS to

be utilised, as long as the data was either a INTEGER or a REAL type. This includes

the creation and deletion of program pools and variables, as well as expanding

and shrinking variables and accessing data within requested variables. In order

for the FORTRAN interface to be connected to WDS, ISO_C_BINDING had to be

used. This allows for functions and subroutines in FORTRAN to be connected

to C functions with the same function signature, by using the BIND keyword.

To ensure the function signatures are correct, ISO_C_BINDING provides types

for each C primitive, which can be used to set the corresponding FORTRAN

type to the same size. This is done through the use of the keyword KIND. The

interface for accessing INTEGER types is shown within Listing 5.4, but not the

version for REAL types. This is because both use the similar function names, but

with different function signatures.

Whilst this version of the library showed that some key points could be

achieved, there were a number of issues. One of the most important issues was

the way in which the variables were stored and accessed. Due to all the data

structure information having to be contained within a single class, if the data

structure was to become more complex than a simple SoA/AoS, then the class

would become far more complex and difficult to ensure the performance impact

would be minimal. The functionality would also become slower and slower,

as there would need to be more checks to determine how to perform certain

79

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

! The Fortran interface with WDS.
MODULE WDS
USE ISO_C_BINDING
INTERFACE

! Create a program in the pool
FUNCTION createProgram(newProgName) BIND (C, name="createProg")
CHARACTER(KIND=C_CHAR) :: newProgName(*)
LOGICAL(KIND=C_BOOL) :: createProgram

END FUNCTION createProgram
! Finds the position of a program in the pool

FUNCTION findProgram(progName) BIND (C, name="findProg")
CHARACTER(KIND=C_CHAR) :: progName(*)
INTEGER(KIND=C_INT) :: findProgram

END FUNCTION findProgram
! Checks whether a program exists

FUNCTION programExists(progName) BIND (C, name="progExists")
CHARACTER(KIND=C_CHAR) :: progName(*)
LOGICAL(KIND=C_BOOL) :: programExists

END FUNCTION programExists
! Deletes the pool

FUNCTION destroyProgramPool() BIND (C, name="destroyProgPool")
LOGICAL(KIND=C_BOOL) :: destroyProgramPool

END FUNCTION destroyProgramPool
! Prints the entire pool

SUBROUTINE printPool () BIND (C, name="printPool")
END SUBROUTINE printPool

! Prints all details about a program.
SUBROUTINE printProg (progName) BIND (C, name="printProg")
CHARACTER(KIND=C_CHAR) :: progName(*)

END SUBROUTINE printProg
! Prints all details about a variable.

SUBROUTINE printOBJ (progName, varName) BIND (C, name="printOBJ")
CHARACTER(KIND=C_CHAR) :: progName(*)
CHARACTER(KIND=C_CHAR) :: varName(*)

END SUBROUTINE printOBJ

! -- DELETE --
! Removes an element of data from a variable.

FUNCTION removeInOBJ_Val(progName, varName, posInOBJ) BIND (C, name="removeInOBJ_Val")
CHARACTER(KIND=C_CHAR) :: progName(*)
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: posInOBJ
LOGICAL(KIND=C_BOOL) :: removeInOBJ_Val

END FUNCTION removeInOBJ_Val
! Removes a collection of elements of data from a varaiable.

FUNCTION removeInOBJ_Ptr(progName, varName, posInOBJ, countPos) BIND (C, name="removeInOBJ_Ptr")
CHARACTER(KIND=C_CHAR) :: progName(*)
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT) :: posInOBJ(*)
INTEGER(KIND=C_INT), VALUE :: countPos
LOGICAL(KIND=C_BOOL) :: removeInOBJ_Ptr

END FUNCTION removeInOBJ_Ptr

! -- INTEGER --
! Adds a new variable to a program.

FUNCTION addOBJ_Int_Val(progName, newData, varName, dataNumItems) BIND (C, name="addOBJ_Int_Val")
CHARACTER(KIND=C_CHAR) :: progName(*)
INTEGER(KIND=C_INT),VALUE :: newData
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: dataNumItems
LOGICAL(KIND=C_BOOL) :: addOBJ_Int_Val

END FUNCTION addOBJ_Int_Val
! Adds a new variable to a program.

FUNCTION addOBJ_Int_Ptr(progName, newData, varName, dataNumItems, isMalloc) BIND (C, name="addOBJ_Int_Ptr")
CHARACTER(KIND=C_CHAR) :: progName(*)
INTEGER(KIND=C_INT) :: newData(:)
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: dataNumItems
LOGICAL(KIND=C_BOOL), VALUE :: isMalloc
LOGICAL(KIND=C_BOOL) :: addOBJ_Int_Ptr

END FUNCTION addOBJ_Int_Ptr
! Adds a new variable to a program.

FUNCTION addOBJ_Int_Ptr_2D(progName, newData, varName, dataNumItems, isMalloc) BIND (C, name="addOBJ_Int_Ptr_2D")
CHARACTER(KIND=C_CHAR) :: progName(*)
INTEGER(KIND=C_INT) :: newData(:,:)
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: dataNumItems
LOGICAL(KIND=C_BOOL), VALUE :: isMalloc
LOGICAL(KIND=C_BOOL) :: addOBJ_Int_Ptr

END FUNCTION addOBJ_Int_Ptr_2D
! Adds a data element to a variable

FUNCTION addToOBJ_Int_Val(progName, newData, varName, posInOBJ) BIND (C, name="addToOBJ_Int_Val")
CHARACTER(KIND=C_CHAR) :: progName(*)
INTEGER(KIND=C_INT),VALUE :: newData
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: posInOBJ
LOGICAL(KIND=C_BOOL) :: addToOBJ_Int_Val

END FUNCTION addToOBJ_Int_Val
! Adds a collection of data elements to a variable

FUNCTION addToOBJ_Int_Ptr(progName, newData, sizeOfData, varName, posInOBJ) BIND (C, name="addToOBJ_Int_Ptr")
CHARACTER(KIND=C_CHAR) :: progName(*)
INTEGER(KIND=C_INT) :: newData(*)
INTEGER(KIND=C_INT), VALUE :: sizeOfData
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: posInOBJ
LOGICAL(KIND=C_BOOL) :: addToOBJ_Int_Ptr

END FUNCTION addToOBJ_Int_Ptr
! Sets a data element within a variable.

FUNCTION setInOBJ_Int_Val(progName, newData, varName, posInOBJ) BIND (C, name="setInOBJ_Int_Val")
CHARACTER(KIND=C_CHAR) :: progName(*)
INTEGER(KIND=C_INT),VALUE :: newData
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: posInOBJ
LOGICAL(KIND=C_BOOL) :: setInOBJ_Int_Val

END FUNCTION setInOBJ_Int_Val
! Sets a collection of data elements to a variable

FUNCTION setInOBJ_Int_Ptr(progName, newData, sizeOfData, varName, posInOBJ) BIND (C, name="setInOBJ_Int_Ptr")
CHARACTER(KIND=C_CHAR) :: progName(*)
INTEGER(KIND=C_INT) :: newData(*)
INTEGER(KIND=C_INT), VALUE :: sizeOfData
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: posInOBJ
LOGICAL(KIND=C_BOOL) :: setInOBJ_Int_Ptr

END FUNCTION setInOBJ_Int_Ptr
! Gets a data element from a variable.

FUNCTION getInOBJ_Int_Val(progName, varName, posInOBJ) BIND (C, name="getInOBJ_Int_Val")
CHARACTER(KIND=C_CHAR) :: progName(*)
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), VALUE :: posInOBJ
INTEGER(KIND=C_INT) :: getInOBJ_Int_Val

END FUNCTION getInOBJ_Int_Val
! Gets a collection of elements from a variable.

SUBROUTINE getInOBJ_Int_Ptr(progName, varName, posInOBJ, countPos, dataReturn) BIND (C, name="getInOBJ_Int_Ptr_F")
CHARACTER(KIND=C_CHAR) :: progName(*)
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT) :: posInOBJ(*)
INTEGER(KIND=C_INT), VALUE :: countPos
INTEGER(KIND=C_INT), INTENT(OUT) :: dataReturn(*)

END SUBROUTINE getInOBJ_Int_Ptr
! Gets all the elements within a variable.

SUBROUTINE getAllInOBJ_Int(progName, varName, dataReturn) BIND (C, name="getAllInOBJ_Int_F")
CHARACTER(KIND=C_CHAR) :: progName(*)
CHARACTER(KIND=C_CHAR) :: varName(*)
INTEGER(KIND=C_INT), INTENT(OUT) :: dataReturn(*)

END SUBROUTINE getAllInOBJ_Int

! -- DOUBLE --
! Repetition of INTEGER functions and subroutines

END INTERFACE
END MODULE

Listing 5.4: FORTRAN interface for the original implementation of WDS

80

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

operations. There would also be a knock on effect to the View class, which

would have to become more complex in order to handle the different cases. Due

to the amount of data accesses within a kernel, any additional computation

would slow the program down dramatically. The structure of the library also

became difficult to control, as different pieces of required data were stored in

different places. As such, the library was redesigned whilst retaining key lessons

learnt from this implementation, and improving on the design and flexibility.

5.3 Library Structure

Whilst the initial implementation showed that the creation of a data structure

abstraction library was achievable, some of the key principles were not realised

in this implementation. One of the key principles that was not achieved in the

initial implementation was to allow for flexibility in creating new data structures,

whilst ensuring that the performance was not severely impacted. This needed

to be achieved, whilst ensuring the interfaces between different data structures

remained consistent. When developing the current version of the library, it was

key to ensure these objectives for the library was met, alongside the minimal

size and the ease of implementing the library into an existing code.

Figure 5.2 shows an overview of the current library structure, split across

multiple sections. These are:

• Bold arrows are interactions between the user and the library.

• Bold text are substitutes for different data structure names. A and B

are not the only data structures within the library, but show how key in-

teractions between classes of the same and different data structures occur.

• Red elements are high level functionality classes, or interactions managed

by high level classes.

• Green elements are classes that manage the storage to variables, as well

as any large changes to the data structures such as expansion or shrinking

81

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

of the variables data structure.

• Blue elements are classes that manage fast data accesses between the user

application and the library.

User Application

WDS

Controller

Var Interface

VarA

VarB

View Interface〈. . . 〉

ViewA〈. . . 〉

ViewB〈. . . 〉

View〈. . . 〉

ViewSpec〈{A,B}, . . . 〉

Figure 5.2: Graphical representation of the structure and control flow of the
final version of WDS

Comparing this list to the original library implementation shows that some of

the key principles have remained the same. In particular, that there is collection

of high-level classes, a collection of low level memory management classes and a

collection of data access classes. By dividing the library in this way, it is possible

to extend one type of class without impacting the functionality of the others.

This allows for new data structures to be implemented with relative ease. In

the following sections, each one of these collections will be explored in turn

(high-level functionality in Section 5.3.1, data storage classes in Section 5.3.2

and data access classes in Section 5.3.3).

5.3.1 High-Level Functionality Classes

In order to control and manage the variables stored within the library, and to

efficiently build tools that can alter or change a variables data structure, col-

82

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

lection of high-level functionality classes were created. This resulted in other

classes being more focused on specific tasks, and meant that the addition of more

high-level functionalities did not rely on the modification of a large amount of

classes. Instead, only one or two classes had to be altered. Similarly to the

initial implementation, there are two classes in this collection, each performing

similar functionality. These are the Controller class (as a replacement to the

Program Data class) and the WDS class (replacing the Program Pool class). Each

of these classes controlled different functionality within the library. This split

ensured that the appropriate functionally could be developed without chang-

ing the interface for implemented functionality within the library. In addition,

by not allowing the user direct access to the variable management classes, an

extension of the data structures available to the user can be achieved, without

affecting applications which do not require this facility. Because this abstrac-

tion can view all variables and possible data structures, adding and extending

high-level functionality becomes simpler, compared to when this was carried out

within, or between, specific programs.

The Controller class deals with user interactions and transformations within

variables, including the management thereof. Focusing on the management, the

class contains a vector of a structure called Variable. This is a different class

to those used to store the variable data. In this Variable structure, a pointer

to a given data structure variable object, and a value representing the data

structure are both stored. This arrangement is required owing to the way in

which the data storage classes are implemented; a list of variables with data

structure in their native classes is not possible, as this would mean that differ-

ently sized classes would be stored in the same list. To resolve this problem,

the variable object stored is denoted as the parent class, the interface which

they inherit from. However, this means that some of the data is lost. So, to

ensure correct interactivity with the variables, the data structure type is stored

with the variable object, to ensure that it can be cast into the correct class

before it is utilised. Once this is done, the other functionalities of the class, the

83

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

transformations, can then be correctly applied to the variable.

The WDS class controlled all functionality that was undertaken externally

to variables, such as the movement of variables and changing variables data

structures. However, unlike its predecessor, the WDS class does not store multiple

Controller classes for any longer than required. Instead, it retains a single

Controller object, and generates new ones only when new variables are required

that might clash with the functionality of the permanent Controller object.

An example of this is where two variables with the same key are required, even

if one is later going to be deleted. This method is used when a variable or

collection of variables is changed to a new data structure. The WDS class also

acts as the main interface between the user application and the library.

Due to the simplification of the library by removing the concept of multiple

Controller/ProgData objects, the user interface can be stream-lined. List-

ings 5.5 and 5.6 show the differences between the C++ interface for the initial

implementation of WDS, and the final version. The key difference is that the

data is stored within the object (called data in Listing 5.6), rather than globally

with a key to access specific sections ("example" in Listing 5.5). In addition,

the final implementation utilises a wds namespace (which ensures all the WDS

classes are contained and do not conflict with other classes) and only a single

file has to be included for the entire library, rather than one for each class.

#include "Prog_Pool.hpp"
#include "View.hpp"

int main() {
createProg(string("example"));

/* Rest of code here... */

return 0;
}

Listing 5.5: Initialisation step for a
WDS based application using the ini-
tial implementation

#include <wds.hpp>

int main() {
wds::WDS data = wds::WDS();

/* Rest of code here... */

return 0;
}

Listing 5.6: Initialisation step for a
WDS based application using the fi-
nal implementation

84

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

5.3.2 Data Storage Classes

The variable collection of classes controls the allocation and management of

the data itself. These classes are referred to as Var within the library. Each

of the data structures implemented within WDS is created within a separate

class in this collection of classes, and inherits from the parent interface. This

ensures the data structures are sandboxed from each other, and that the high

level classes can access all of the necessary functionality. These variable classes

include everything that would be needed for the data structure, except for how

the user accesses the data. This action is managed by the final collection of

classes, the views.

The Var class acts as an interface on which data structure classes can be

based. This ensures that, no matter which data structure is required for a given

application, the high-level classes are able to create, store and alter variables

using these data structures. It was a requirement that each data structure class

had to be capable of implementing the following functionalities:

• Sanitise meta data - This would ensure that the meta data is in the correct

format for the data structure, thus it can be easily interpreted by the vari-

able class and its corresponding view class. This may involve combining

multiple meta data objects into one (or vice versa), altering the dimension

data or ensuring that the data adjacency list is correct.

• Check that a given variable reference is located within the current data

structure. This may be complex, as it may be located within the inner

data structure, or multiple variable references may be merged.

• Add/Remove elements - This determines how the data structure can be

expanded or contracted given how many elements are required to be

added/removed; the dimension in which this is to occur; and the posi-

tion in which this occurs within the given dimension. The functions may

also alter the dimension list to better reflect the current state

85

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

• Calculate the number of elements within a given data structure.

• Generate View and ViewInterface objects - This builds a View and

ViewInterface object, depending on what is requested. Through the

View functionality, only information present within the meta data object

can be passed. The functionality for building ViewInterface objects is

more flexible, as it is defined by the corresponding view for the given data

structure.

• Delete variable name - This variable manages how a variable will be deleted

within a data structure. For some data structures such as SoA, this is fairly

trivial (the array with the variable can be deleted). However, for others

such as AoS or AoSoA, this is more complicated (the variables data is

interleaved with other variables, so cannot be easily removed).

The Var class also stores the meta data object, ensuring that all data structures

and the variables using them have the meta data object.

As well as the ability to determine how variables are created and stored, this

collection of classes can also determine the storage of data relating to a variable.

Two classes in particular are central to managing the meta-data of a variable or

collection of variables. The first is the DataStoreType. This class manages the

storage of a value corresponding to a set list of data structures. As such, this

is often used within all the sections to determine which data structure is being

used by a given variable. To make this as small and optimal as possible, a C++

enum class is used for DataStoreType. The second class is the VarMeta class.

This manages the storage of all the data that may be required by a Var class,

including:

• Variable Name - Used to identify a given Var or View object. The default

for this is an empty string, but should always be set

• Type of data structure stored - Used to identify the data structure stored

if required. Whilst this would be the same as the Variable structure

86

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

stored in the Controller object, it is stored here to ensure that the user

application can query this, if required. It is also used to ensure the data

has been checked and is ready for a given data structure (discussed later).

As such, the default state for this is undefined

• Class name - Used to validate that the View is passed the correct class.

The default for this is an empty string, but should always be set

• Class size - Used both to validate the View is passed the correct class, and

to calculate where in a memory block a given piece of data resides. By

default, this is set to zero, but should always be set

• List of dimensions - Used to identify how the data can be accessed, and

how to calculate the position of a given element of data. By default, this

is set to a single element list with the number of elements in the variable

• Data adjacency list - Used to determine where an element of data is stored,

by determining the order in which the dimensions should be used. By

default, this is set to be in the order the dimensions are initialised as

• Inner structure (stored as a vector of VarMeta objects) - Used to store

recursive meta data. This is usually left empty

The VarMeta class also has a few functions, such as calculating the total size of a

given variable based on the dimensions. Due to its importance, the class is used

by all three categories for different purposes. The high-level section uses this

class to search for the correct variable. The data access section uses this class to

determine how the data should be accessed, and the data storage section uses

the class to determine the way in which a given variable is modified or built.

As discussed in previous sections, the data storage classes should not be able

to be accessed by the user. As such, the only interactions should be through the

user interface. In the initial interface, all the elements of the data structure had

to be given in the manner in which they needed to be created. This was fine

for SoA data structures, but made constructing more complex data structures

87

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

such as AoS and AoSoA more difficult. The example in Listing 5.7 shows how

two SoA variables a and b can be created. If the user required a more complex

data structure utilising the initial data structure, then the arguments within the

addOBJ function would have to be completely modified. The other issue is that

the initial implementation of WDS was not able to handle multi-dimensional

arrays. Instead, it had to be implemented as a 1D array with a mapping. This

can be seen in variable b, which is a 2D array of double values with dimensions

1000× 4.

#define NEL 1000
#define NSHAPE 4
/* Creation of variables "a" and "b" in Program Pool "example" */
addOBJ("example", int(), "a", NEL);
addOBJ("example", double(), "b", NEL*NSHAPE);

Listing 5.7: Addition of variables a and b to WDS using the initial implemen-
tation

Listing 5.8 shows how the final interface accomplishes the same as the orig-

inal interface as shown in Listing 5.7. The key differences is that, rather than

multiple interfaces for different data structures, only one interface is required.

A list of different variables is created by passing VarMeta into the addMeta func-

tion. Each variable is contained within a VarMeta object. These objects are not

processed until WDS is told which data structure is to be built from the given

VarMeta objects.

#define NEL 1000
#define NSHAPE 4
/* Creation of WDS variables "a" and "b" */
data.addMeta(wds::VarMeta("a", {NEL}, int()));
data.addMeta(wds::VarMeta("b", {NEL, NSHAPE}, double()));
data.buildVar{WDS_DT::SOA};

Listing 5.8: Addition of variables a and b using the addMeta and buildVar
method within WDS’ final implementation

88

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

To build the data structure, and to generate the required specialised Var ob-

jects, the buildVar function should be used. This takes all the VarMeta objects

previously added to the data store, calculates how these should be combined

for the required data structure, and generates the required specialised Var ob-

ject(s). The data structure is decided by the user, by passing in a DataStoreType

(wds::DataStoreType has been aliased to WDS_DT through type definitions) value

to the buildVar function. Unlike the initial interface, if the data structure needs

to be changed, then this argument needs to be changed and the code recompiled.

5.3.3 Data Access Classes

The view collection of classes controls how the user accesses the data stored

within the library. These classes intentionally use a very similar design to the

variable collection of classes. When a variable class is created for a new data

structure, at least one new view class should also be created. This enables a

data structure with multiple parts to be represented easily, as each part would

be accessed through its own view class. Each of these view classes inherit from

a common interface, to allow for the same flexibility as the variable collection,

and to allow this interface to be passed to the user. The interface is defined in

the appropriately-named ViewInterface class. This arrangement allows for the

appropriate view class to be called, whilst being data structure agnostic.

Whilst the view interface is a good way to access the variable without wor-

rying about its data structure, it comes at the cost of the code using VTable

lookups. This means that, for every data access, the application has to lookup

how to access the data and thus adds unnecessary computation whenever a

data access is required. To overcome this issue, two separate view classes have

been created. The first, simply named View, is designed to provide data access

for any data structure with a uniform striding pattern, and as such, is data

structure agnostic. This is very common within data structures, as it allows for

memory optimisations such as cache prefetching. The second class is ViewSpec.

This class allows for direct access to the original view, without having to use

89

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

VTables. To do this, each of the functions are inlined within specific versions of

ViewSpec, defined through template specialisation. As such, the data structure

is required to be passed to the library by the user in order for this to be used.

Both View and ViewSpec are designed to have common functions to access

the data. Specifically, both classes override the functions operator[](int i),

operator()(int i) and operator()(int i0, int i1). These versions allow

for array accesses within applications to be readily replaced with WDS views.

The only change would be to replace [] with () where appropriate. In more

complex data structures within WDS, a distinction is made between

operator[](int i) and operator()(int i). The first function accesses the

raw pointer without calculation, whereas the second calculates where the ele-

ment at that position should be. This allows for data structures which contain

irregular data access patterns to be accessed differently, depending on the sce-

nario presented by the algorithm. All of this ensures that WDS can be easily

implemented into existing applications.

The simplicity of adding WDS to an application can be seen through the

development of the interface. Listings 5.9 and 5.10 show the function-based

interface used predominately for C and FORTRAN programs (Listing 5.9) and

templated view based interface (Listing 5.10). The function-based interface

required large amounts of adjustments to the kernels, which meant that each

access would require two searches (one for the correct Program Pool, and one

for the variable within the Program Pool). The template view interface allows

for fewer changes to the kernel, as the operator[] function can be used on the

object, making it resemble an array. However, accesses were limited to 1D, so if

a variable was multi-dimensional (such as b in these examples), then additional

calculations would have to be carried out within the kernel. In addition, due to

the limitations of the initial implementation of WDS; the operator[] function

called a corresponding function within the OBJ, meaning that multiple levels of

indirection and function calling had to be taken for each data access.

90

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

for (int i = 0; i < NEL; i++) {
double total = 0.0;
for (int j = 0; j < NSHAPE; j++) {

total += getInOBJ<double>("example", "b", i*NSHAPE+j);
}
setInOBJ("example", (int) (total*total), "a", i);

}

Listing 5.9: Calculations using a and b through WDS’ initial function-based
interface

/* Creation of View objects */
aView = getView<int>("example", "a");
bView = getView<double>("example", "b");

/* Calculation loop using only access function */
for (int i = 0; i < NEL; i++) {

double total = 0.0;
for (int j = 0; j < NSHAPE; j++) {

total += bView[i*NSHAPE+j];
}
aView[i] = (int) (total*total);

}

Listing 5.10: Calculations using a and b through WDS’ initial view-based inter-
face

The final implementation and interface for WDS, as shown in Listings 5.11

and 5.12, demonstrate the improvements to the library against the initial imple-

mentation. Both code examples utilise multi-dimensional access directly though

inlined functions, minimising the amount of function and memory indirection.

Therefore, both View and ViewSpec can be compiled more effectively. The only

difference between the two examples is that the first (Listing 5.11) uses the

generic view class, whereas the second (Listing 5.12) uses the specialised view

class. Where the variables are AoS, AoSoA or (as they are in this case) SoA,

either technique will provide equivalent results. However, in more specific cases,

such as the ones described in Section 5.5.3, Listing 5.11 may not be viable and

only Listing 5.12 can be used.

91

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

/* Creation of generic view (wds::View) objects */
auto aView = data.getView<int>("a");
auto bView = data.getView<double>("b");

/* Calculation loop using natural access function */
for (int i = 0; i < NEL; i++) {

double total = 0.0;
for (int j = 0; j < NSHAPE; j++) {

total += bView(i, j);
}
aView(i) = (int) (total*total);

}

Listing 5.11: Calculations of a and b, using the View objects from WDS’ final
implementation

/* Creation of specialised view (wds::ViewSpec) objects */
auto aView = data.getViewSpec<int, WDS_DT::SOA>("a");
auto bView = data.getViewSpec<double, WDS_DT::SOA>("b");

/* Calculation loop using natural access function */
for (int i = 0; i < NEL; i++) {

double total = 0.0;
for (int j = 0; j < NSHAPE; j++) {

total += bView(i, j);
}
aView(i) = (int) (total*total);

}

Listing 5.12: Calculations of a and b, using the ViewSpec objects from WDS’
final implementation

92

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

5.4 Library Features

Due to the way in which the library has been developed and structured, the

data structure can be abstracted in such a way that a kernel does not need to

know the underlying data structure. This can be seen in Listing 5.13, where

the variables a and b are set up in WDS and passed to the kernel, without

the kernel knowing the underlying data structure. In addition to its intended

function, the library is able to provide further functionality that would otherwise

be difficult and time-consuming to implement, and which would be bespoke to

the application. These additions include extensions to low level functionalities

such as more control over the way in which data structures are expanded and

shrunk (the dimension, position and size can be specified).

#include <wds.hpp>

int main(int, char **) {
//Create data store

wds::WDS datastore;
//Specify the variables "a" and "b"

const int len = 250, depth = 4;
datastore.addMeta("a", {len}, double()));
datastore.addMeta("b", {len, depth}, int()));

//Build the variables given the metadata provided, specifying the
//layout desired. In this case, SOA has been specified.

datastore.buildVar(WDS_DT::SOA);
{

//Views used to access and modify data
auto a = datastore.getView<double>("a");
auto b = datastore.getView<int>("b");

//Kernels operate on views without knowledge of the underlying
//layout

kernel(a, b, len, depth);
}
return 0;

}

Listing 5.13: C++ example of how WDS can be used to pass two variables a
and b into kernel, without kernel knowing the data structure.

93

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

Enhancements to high level functionality are also presented by WDS, such

as the ability to extend the functionality of current data structures and to

implement new data structures. This will be discussed later in Section 5.5.3. In

this section, two difficult functionalities are described. These are: the ability to

convert a variable or a collection of variables from one data structure to another

(Section 5.4.1), and the ability to change the adjacency of data within a given

variable (Section 5.4.2).

5.4.1 Conversion of Variables

The way in which the library has been developed and designed, functionality

that would otherwise be difficult to implement can be provided with quickly to

the application developer. This additional functionality ranges from the ease of

implementing new data structures, to additional functionality that can change

and manipulate existing variables. One of the extra features is the ability to

convert a variable or collection of variables from one data structure to another.

To do this, the WDS object builds two lists. The first containing all the meta data

of the variables that are to be converted, and the second containing View<void>

objects relating to the variables to be converted. The View<void> class is a

specialisation of the generic View class, where the data type is set to void.

Without this specialisation, the View object would treat the data as a void type

when requesting data, potentially resulting in issues arising when the data is

read. Due to this, and because the void datatype is very rarely used with respect

to variables, the functionality of View<void> has been overridden to provide a

specific data type (an unsigned char), and to provide a 1D access pattern across

each element and between each element.

Once these two lists are generated, a new, temporary Controller object

is built to store and maintain the new variables. In this temporary object,

the new variables based on the required data structures and the list of meta

data previously generated. From this, a collection of new View<void> objects

relating the the new variables is generated. Both lists have the variable keys

94

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

in the same order, to minimise searching through for corresponding keys. The

data is then copied from the old view to the new, iterating through every single

byte and placing it in the new variable. The old variables are then removed

from the permanent Controller object using the removeVar functionality (as

discussed in Section 5.3.2), and the new variables are migrated from the tem-

porary Controller object to the permanent one (as discussed in Section 5.3.1),

before the temporary object is destroyed.

This whole process is carried out within the library, with the user required to

provide very little in the way of information. In fact, the user is only required

to provide information relating to which data structure they would like the

variable(s) to be converted to, and the list of variable keys to be converted. A full

example of this process being used can be seen in Listing 5.14. In this example,

variables a and b are created as SoA variables, and the kernel is executed with

these variables. The variables are then converted to an AoS data structure

(which would interleave one value of a with four values of b), and the kernel is

executed again, unaware of the change.

As discussed in Section 5.3.3, the View object has some limitations. Even

with the View<void> specialisations, the View object is not designed to handle

data structures that do not, or may not have a uniform access pattern. In these

cases, the developer of a data structure that would like to include this function-

ality has two options. The first is to build a specialisation of the corresponding

ViewSpec class to act in the same manor as View. The other is to implement

the functionality within the necessary Var class. Whilst the first option is the

easiest to implement, the second allows for a faster conversion. The latter op-

tion has been used for the specialised data structure conversion discussed later

in Chapter 7.

95

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

#include <wds.hpp>

int main(int, char **) {
//Create data store

wds::WDS datastore;
//Specify the variables "a" and "b"

const int len = 250, depth = 4;
datastore.addMeta("a", {len}, double()));
datastore.addMeta("b", {len, depth}, int()));

//Build the variables given the metadata provided, specifying the
//layout desired

datastore.buildVar(WDS_DT::SOA);
{

//Views used to access and modify data
auto a = datastore.getView<double>("a");
auto b = datastore.getView<int>("b");

//Kernels operate on views without knowledge of the underlying
//layout

kernel(a, b, len, depth);
}

//Convert variables "a" and "b" from one data layout to another. In
//this case, the variables "a" and "b" are being converted from SoA
//to AoSoA

datastore.convertData(WDS_DT::AOS, {"a", "b"});
{

auto a = datastore.getView<double>("a");
auto b = datastore.getView<int>("b");

//Unmodified kernel
kernel(a, b, len, depth);

}

return 0;
}

Listing 5.14: C++ example showing how two variables a and b can be converted
from one data structure to another utilising WDS.

5.4.2 Data Adjacency

Different algorithms may prefer to iterate through a given variable in different

ways, depending on the need of the users application. Changing the adjacency

of data elements can lead to improvements in the speed of an algorithm, by

ensuring the next element is closer to the current element and thus allowing

for more efficient data prefetching. Much like the conversion between variables,

96

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

this can be complex to implement for large variables. As such, it is possible to

implement this functionality into the library, and to allow for a wide range of

data accesses. However, owing to the nature of implementing such a function-

ality, it can only be applied in certain cases where the data can be re-ordered

without affecting the underlying data structures. For example, take an SoA

representation of a 2D structured mesh. As can be seen from Figure 5.3, the

data can be structured in a column-major or row-major way whilst still being

represented in an SoA data structure.

The variable can be set with a given data adjacency when first created. If

none is provided, then the data adjacency is set to follow the order of dimensions.

However, the library also allows for the data adjacency to be changed once the

variable has been created. This is achieved in the library in the same way as

the conversion of variables. As such, the user can utilise the functionality in

the same way, as it takes the variable key, and a list of the new data adjacency

order. For example, in Figure 5.3, the column-major access pattern would be {1,

2}, and the row-major access pattern would be {2, 1}. This data adjacency

information can then be used by the variable and view classes to adjust the way

in which the data is stored, and by extension, the data access pattern.

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

0 1 2

3 4 5

6 7 8

0 3 6 1 4 7 2 5 8

Figure 5.3: Graphical example of how the order of the data can differ, without
changing the underlying data structure

97

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

Whilst the transformation depicted in Figure 5.3 is trivial, WDS allows this

to apply to variables with two or more dimensions. As such, this can be very

useful in restructuring variables with a large number of dimensions, in order to

achieve a better data adjacency. This can also be useful if the application uses

data from other program languages which use different access pattern (such as

FORTRAN and C++). Listing 5.15 shows how this could be applied to a 3D

variable c, which can be altered with different data adjacency, transparently to

the kernel.

#include <wds.hpp>

int main(int, char **) {
//Create data store

wds::WDS datastore;
//Specify the variable "c"

const int len = 250, depth = 4, width = 20;
datastore.addMeta("c", {len, depth, width}, double()));

//Build the variables given the metadata provided, specifying the
//layout desired. Default data adjacency is {1,2,3}

datastore.buildVar(WDS_DT::SOA);
{

//Views used to access and modify data
auto c = datastore.getView<double>("c");

//Kernels operate on views without knowledge of the underlying
//layout

kernel(c, len, depth, width);
}

//Change the adjacency of the variable "c". In this case, the data
//adjacency of the first two dimensions have been reversed

datastore.changeAdjacency("c", {2,1,3});
{

auto c = datastore.getView<double>("c");
//Unmodified kernel

kernel(c, len, depth, width);
}

return 0;
}

Listing 5.15: C++ example showing how a variable c can have it’s data adja-
cency’s altered, transparent to the kernel through the utilisation of WDS.

98

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

5.5 Data Structures and Optimisations

Two of the most used data structures, SoA and AoSoA have been implemented

within the library. This allowed for easier testing and debugging of the system,

as they are some of the least complicated structures to examine. These data

structures also enabled the library to be easily validated, as the outputs could

be easily matched to a reference version. A set of specialised data structures

were also implemented, in order to validate that this implementation could be

undertaken with minimal impact to the application. Details of the specialised

data structures and the impact the abstraction had can be seen in Chapter 7.

From the initial implementation to the final implementation, optimisations

and code practises were changed to ensure that the library ran as fast as possi-

ble, thus minimising the impact of the library on the application. Whilst some

of these actions only applied to particular data structures, some of the largest

impacts came from generalised optimisations. One of the key optimisations car-

ried out involved not including branching statements in the libraries view classes.

These branching statements were introduced into the initial implementation to

facilitate parameter checking and validation, whilst allowing for exceptions to

be thrown should these checks fail. In cases where multiple dimensions were re-

quired, loops were used within data access functions to determine the position

of the data element. This caused data access to be incredibly slow compared to

reference implementations. To rectify this, several changes were made. The use

of exception objects was replaced by the use of assertion function found in the

C++ standard library [13]. These are only compiled and used when the appli-

cation is built with a debugging flag, thus ensuring that they are only included

when necessary. The use of branching and statements was also minimised. In so

doing, less computational steps are included with a data access, and it is easier

for the compiler to achieve vectorisation and parallelisation. In nearly all cases,

looping statements were replaced by unrolling the loop.

99

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

Listings 5.16 and 5.17 show the multi-dimensional access operators for the

View class in both the initial and final implementations respectively. As can

be seen, these take two very different forms. The initial implementation shown

in Listing 5.16 relies on the use of branching statements to check to see if the

function should be used. This can be incorporated into an assert function, as

shown in Listing 5.17. The other key difference is that the initial implementation

used a variadic function for the access operator. In this way, the function can

be generalised to allow for any number of dimensions. However, this approach

came with the disadvantage of the requirement for a loop through the list of

parameters, which made the access operator slow. Therefore, separate functions

were built for different numbers of dimensions. The 2D version is shown in

Listing 5.17.

DataType &operator() (int n, ...) {
if (dimensions.empty()) {

return this->operator[](n);
} else {

assert(n <= dimensions.size()+1);
va_list dim;
va_start(dim, n);
int pos = va_arg(dim, int);
for (int i = 0; i < n-1; i++) {

int var = va_arg(dim, int);
pos = (pos * dimensions.at(i))+var;

}
va_end(dim);

return this->operator[](pos);
}

}

Listing 5.16: Multi-dimensional access operator for the View class within WDS
used the initial implementation

Another optimisation that helped to improve performance involved ensuring

that any data access functions were inlined. By doing this, the compiler places

any functionality of the function directly into the code, rather than pushing the

current state of the program onto the stack and running the function indepen-

100

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

inline T& operator()(int i0, int i1)__attribute__((always_inline)){
assert(meta.dim.size() == 2);
assert(i0 >= 0);
assert(i0 < meta.dim[0]);
assert(i1 >= 0);
assert(i1 < meta.dim[1]);
unsigned long pos = (dimMultiplier[0] * (unsigned long)i0) +

(dimMultiplier[1] * (unsigned long)i1) +
aosOffset;

return *((T*)(((unsigned char*)data) + pos));
}

Listing 5.17: Multi-dimensional access operator for the View class within WDS
used the final implementation

dently. However, if the function is large or complex, inlining this function can

impact the performance. Hence why this was only applied to data access func-

tions, which are designed to be as light-weight as possible. This often involves

including only essential calculations and with no, or only very small branching

statements. It is not always possible for compilers to ascertain whether the

function should be inlined. As a consequence they may take an overly cautious

approach when making this decision. This can mean that, for some compilers,

no functions in WDS are inlined. In order to overcome this problem, WDS will

inform the compiler which functions must be inlined. In order to do this, both

the C++ keyword inline [14] and the compiler attribute always_inline [28]

were applied to the functions. This can be seen in Listings 5.16 and 5.17. The

function shown in Listing 5.16 would be too large to effectivly inline due to

the large branching statement and the loop contained within the function. It

is also reliant on other functions, which is a good indication that inlining is

not appropriate in this situation. On the other hand, Listing 5.17 contains no

branching statements or loops, and only contains basic arithmetic calculations

(as the assert statements will be removed by the compiler if not being compiled

in debug mode). As such, inlining should be used, and will be forced on through

the use of inline and __attribute__((always_inline)).

101

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

Some optimisations were carried out on specific data structures, due to the

way in which they were initially implemented. For example, this includes using

functions from other classes (in the case of the SoA data structure), or over com-

plication in order for generalisation (in the case of the AoSoA data structure).

In order to continue support for these data structures, and to ensure perfor-

mance gains were being achieved and could be validated, each data structure

class was copied into a new class. This new class was duly optimised, then once

this was achieved, the old class was replaced by the new class. Sections 5.5.1

and 5.5.2 discuss the optimisations applied to the SoA and AoSoA data struc-

tures respectively. In Section 5.5.3, the process of implementing a new data

structure in the library is discussed.

5.5.1 Structure of Arrays

In the initial implementation of the SoA data structure, all accesses to the data

had to be achieved through the variable class. Originally, in order to access a

piece of data from a variable through a view class (either specialised or generic),

the view object would calculate the amount of bytes into a data block in which

the requested piece of data resided. The relevant information was then passed to

the relevant variable object through the 1D access function, which would then

return the memory address back to the view object. The view object would

then cast the data to the required data type, and then return the result to

the application. If the variable data access was more than a single dimension,

then further calculations were carried out by the view object, before passing the

result onto the 1D access function within the variable object.

Even with the inlining of all data access functions including the single-

dimension data access, the performance of data access was much lower than

expected. To correct this, the pointer to the data block was passed into the

view, and was cast to the correct data type at the creation of the view object.

This action reduced the amount of repetitive computation carried out at data

access time. Furthermore, each data access function, regardless of the number

102

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

of dimensions requested, performed all the calculations and returned the result

on the same line. The computation of each line was minimised, using only ad-

ditions and multiplications. Listings 5.18 and 5.19 demonstrate these changes

to the 2D data access function for the SoA specialised view classes in the initial

and final implementations respectively.

inline T& operator[](int i) override final {
return variable->getRef<T>(i);

}
/* Other data access functions */
inline T& operator()(int i0, int i1) override final {

return this->operator[](this->meta.dim[0] * (i1) + i0);
}

Listing 5.18: SoA 2D data access function used in WDS’ initial implementation

inline T& operator()(int i0, int i1) override final {
assert(this->meta.dim.size() == 2);
return rawData[(this->meta.dim[1] * i0) + i1];

}

Listing 5.19: SoA 2D data access function used in WDS’ final implementation

5.5.2 Array of Structures of Arrays

Optimisations of the AoSoA data structure had some similar issues to the SoA

data structures, but were further exacerbated by the way in which the flow

of data was managed. Much like the SoA data structure as discussed in Sec-

tion 5.5.1 and demonstrated in Listings 5.18 and 5.19, the AoSoA data structure

accessed all the data by requesting the memory position with a given offset, via

the single-dimension data access function. This meant that this function had to

retroactively calculate the structure element requested, alongside the required

element within the given structure. This required the use of modulus calcula-

tions and divisions; two operations that are drastically more expensive when

compared to the cost of a multiplication or an addition. This situation was only

103

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

made worse by the fact that multi-dimensional data access functions had to per-

form calculations to put it into this 1D format, only for some of the calculations

to then be undone.

Listing 5.20 demonstrates the issue with the initial implementation of the

AoSoA data structure. In the initial implementation of the data structure in

WDS, all data access were limited to the 1D access function operator[](int

i). Therefore, to access a particular data point within a structure, the 2D access

function had to encode the required information. This could then be decoded by

the 1D access function. However, to decode the data point required, expensive

calculations such as modulus calculations and divisions were required.

inline const T& operator[](int i) const override final {
int offset =
offsetCycle[i % offsetCycle.size()] +
(this->meta.size * floor((double)i/(double)offsetCycle.size()));

return variable->getFromOffset<T>(offset);
}
/* Other data access functions */
inline T& operator()(int i0, int i1) override final {
return this->operator[](this->meta.dim[0] * (i1) + i0);

}

Listing 5.20: AoSoA 2D data access function used in WDS’ initial implementa-
tion

Multiple steps were taken in order to correct this problem. Firstly, the

pointer to the block of memory was copied into the view class, resulting in a

reduction in the number of calls to other functions and objects. Secondly, to

reduce the amount of calculations required when accessing a given data element,

the view class performed more calculations in the creation of the object. Pre-

dominantly, this involved calculating the amount of offset for each dimension

necessary. Thirdly, each data access function was replaced by a 2D access func-

tion. This eliminated all the modulus and division calculations from the data

access functions, and just used the pre-calculated values with additions and

multiplications of the required data. This last optimisation however, required a

104

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

change in definition of what the single-dimension functions achieved. Instead of

iterating through every single element in the variable, these functions returned

the first element in a requested structure. Listing 5.21 shows the final, optimised

version of the AoSoA 2D data access function within WDS. Due to the removal

of the encoding and decoding stages, the final version solely relies on additions

and multiplications, improving the performance of the access function.

inline T& access(int i0, int i1) {
assert(i0 > -1 && i0 < this->meta.dim[0]);
assert(i1 > -1 && i1 < this->innerNumItems);
unsigned long pos = (sizeOfStruct * (unsigned long)i0) +

(sizeOfClass * (unsigned long)i1) +
offset;

assert(variable->totalOffset > pos);
return *((T*)(((char*)data) + pos));

}
/* Other data access functions */
inline T& operator()(int i0, int i1) override final {

assert(i0 >= 0);
assert(i1 >= 0);
assert(this->meta.dim.size() == 2 && this->meta.dim[1] != 1);
return access(i0, i1);

}

Listing 5.21: AoSoA 2D data access function used in WDS’ final implementation

5.5.3 Specialised Data Structures

Within certain algorithms, the required data structure cannot be expressed with

the SoA or AoSoA data structures. As a consequence there will be applications

and algorithms that will require their own data structure in order to perform

computations efficiently such as the data structures described in Chapter 7.

The way in which the library has been developed allows for this to be carried

out relatively easily. To create a specialised data structure, first create a new

variable class, inheriting from the variable class interface Var. This ensures

that all the necessary functionality is included, and that it can be stored in the

Controller class. As discussed in Section 5.3.2, this class manages the storage

105

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

of the data, as well as any large scale changes. It should be noted that at this

stage, the variable class cannot be linked to a view or set of views. Once this

process has been completed, the necessary view classes can be created. Like

the variable class, the view class must inherit from the ViewInterface class.

Whilst there should only be one variable class for a given data structure, there

can be multiple views for a given data structure. This may be because there

are multiple ways of iterating through the data or because the data structure

can be split into multiple smaller sections. Following this stage, the variable

class and the view class(es) can be linked, so that the variable class can pass

all the required information to each of the view classes. If a variable is able to

create multiple views, then either the view-building function can generate the

correct view depending on a given key, or multiple view-building functions can

be created, one for each view class.

After these classes have been created, there is then a need to extend the

relevant functions to include the new data structure. Firstly, the DataStoreType

should be extended with identifying names for each new view created. This is

created first, as all other extensions rely on the ability to identify the data

structure and its views. The functions within WDS and Controller classes can

then be expanded to include the new data structure, using the new identifiers

in DataStoreType. Without this step, the library would not be able to build,

let alone find or perform actions on, any variable with this new data structure.

Finally, new specialisations of ViewSpec need to be created, to ensure that

data is accessed faster. This is usually quick and easy to implement, as the

function names will be the same. Each view is created and has an identifier

in DataStoreType as the data structure will require a specialisation within this

class.

With this completed, all the required functionality of the library is in place,

and the data structure can be used and validated. However, additional func-

tionality can also be implemented if the data structure allows it and is required.

One of the additional functionalities involves the extension of View class to al-

106

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

low the class to utilise the new data structure. This allows for the user to be

more data-structure independent in their code, thus allowing for easier switch-

ing of data structures. However, this can only be done if the data structure can

access the data in a uniform and consistent pattern. Another additional func-

tionality with the potential to be extended is the extra high level functionality

built within the WDS and Controller classes. This includes the conversion of

variables and the changing of data adjacency’s. Whist it gives extra function-

ality to the developer, there may be no logical way to convert to or from the

new data structure. Finally, additional functions may need to be built into WDS

and Controller to allow for better utilisation of the data structure. This extra

functionality should not interfere with the operations of other data structures

or variables.

All of the aforementioned processes have been put into practice when build-

ing specialised data structures for multi-material problems. The development

and functionalities of this data structure has been outlined in Chapter 7, along

with its performance.

5.6 Summary

In this chapter, the creation, development, implementation and optimisations

of the data structure abstraction library WDS have been presented. The initial

implementation showed how some of the key features could be implemented, and

proved as a functional prototype showing that it was possible to abstract the

data structure away from an application. However, this initial implementation

came with some caveats. Firstly, the library was not flexible. Trying to extend

this version of the library to include specialised data structures would have

been very difficult, and would have created fragmented and ill-performing code.

Secondly, and more importantly, the version of the library heavily impacted the

performance of the program.

107

5. Creation, Development, Implementation and Optimisations of a Data Structure
Abstraction Library

These problems were fixed within the current version of WDS. This version

was designed in such a way that data structures could be added trivially, with

minimal impact to the performance of the library or the application it is be-

ing utilised in. Through the use of interfaces, consistency in functionality was

maintained between data storage classes. The same principle, alongside tem-

plate programming, was also applied to data access classes whilst maintaining

performance. The design of the current data structure abstraction library also

allowed for high-level functionality to be implemented more easily, such as the

conversion of variables from one data structure to another, and the alterations

of a variables data adjacency.

108

CHAPTER 6
Performance Analysis of the Data Structure Abstraction

Library

In Chapter 5, the aim, implementation and development of the data structure

abstraction library Warwick Data Store (WDS) was discussed, and how it can

be used to abstract data layout from an application. However, this did not cover

how improve programmer productivity, minimising the impact on application

performance, as these are also significant targets for the library. As such, the aim

of this chapter is to show how the library can be used and the overhead incurred

by WDS. In particular, the implementation of the data structure abstraction

library into different kernels and proxy applications is discussed. Alongside

this, the overhead of the implementation of WDS into these different codes is

examined. It is also important to show how the library scales as an application

runs over multiple nodes on a supercomputer. This chapter has been broken up

into the following sections:

• Section 6.1 discusses the implementation of a benchmark suite, and the

overhead of these kernels across different compilers and architectures.

• Section 6.2 explores the implementation of WDS into three different physics

proxy applications, and the overhead associated with these. These mini-

apps are examined across different parallelism methodologies, problem

sizes, compilers and architectures.

• Section 6.3 discusses how the performance of a physics mini application

across multiple nodes with strong scaling, to show how the overhead

changes.

109

6. Performance Analysis of the Data Structure Abstraction Library

6.1 Benchmark Testing and Overhead

In order to start testing and validating that the library worked, the library was

developed alongside multiple example codes. These examples built trivial data

structures, ensured the data could be accessed properly accessed and validated

key features. However, these example codes were too small and trivial to be

used to generate meaningful results with respect to the amount of overhead the

library would create. As such, a collection of benchmarks were utilised.

The benchmarking suite was made to test all the benchmarks within a single

application. In this suite, different benchmark kernels were implemented along-

side there WDS counterpart. When a benchmark kernel was tested, the WDS

counterpart used the same data structure. This allowed for just the overhead of

the library to be measures, and not count any performance differences gained

or lost from the use of a different data structure. The suite then measured

the amount of time each kernel took, and would repeat the process multiple

times, storing the maximum time for each kernel. These times were then used

to calculate the overhead.

In order to ensure that the results were as comparable as possible, thus in-

creasing the confidence in the results; the benchmarking suite generated the

same starting data for both the reference kernel and the WDS kernel, and val-

idated this through inspection. The benchmarking suite would also validate

that the kernel ran correctly by comparing the end state of all the data of both

the reference and WDS version for any discrepancies. Throughout this process,

the benchmarking suite was used to replace the small example programs, and

became the primary way to test the library. In order to ensure the library

worked well across a range of environments, the benchmarking suite was tested

on multiple architectures and compilers. Table 6.1 lists both of the systems

tested, and both of the compilers used on each of these systems, alongside key

statistics. To calculate the bandwidths, the STREAM benchmark [67] was used

with optimisation flags. In particular, both the Ofast and appropriate OpenMP

110

6. Performance Analysis of the Data Structure Abstraction Library

flags across all systems. Where a compiler with streaming stores was available,

this was utilised along with the appropriate flag. Thus, for Orac, this meant

using the Intel 19.1.0 compiler with qopt-streaming-stores flag. It should be

noted that Orac is the very similar to the system utilised in Chapter 4, the only

difference being the speed of the processor.

Isambard Orac

Processor ARM Marvell Thunder
X2 [65]

Intel Xeon E5-2680
v4 [44]

Sockets per Node Dual Dual

P
er

So
ck
et Cores 32 14

Bandwidth (BW) 116.5 GB/s 59.1 GB/s

Cache 32 MB L3 35 MB L3

Compilers CCE 9.1.3 Intel 19.1.0.166
GNU 9.2.0 GNU 8.3.0

Message Passing
Interface (MPI) Cray MPICH 7.7.12

Intel - IMPI Build
20191121
GNU - OpenMPI 3.1.4

Table 6.1: Systems used to measure the performance impact of WDS when
testing benchmarks

The benchmarking suite consisted of key kernels from a variety of bench-

marks and mini-applications, specifically STREAM [67], HLP [88], and SNAP [128].

The STREAM benchmark is a memory focused benchmark comprising of four

kernels, and was utilised in order to calculate the memory bandwidths of the

processors being tested. The HPL benchmark is used to calculate the peak

Floating Point Operations per Second (FLOP/s) of large supercomputers, and

consists of a large number of kernels. For the purposes of testing, a single

kernel (DGemm) was extracted, converted and utilised. Finally, SNAP is a

discrete ordinates proxy application developed by Los Alamos National Labo-

ratory (LANL). The key kernel from the SNAP (Sweep) was utilised to test

the effectiveness of WDS. As well as testing the overhead, the HPL and SNAP

kernels were also used to validate different data structures. Table 6.2 shows the

overhead percentages (described in Chapter 2.6) from each of the kernels, across

111

6. Performance Analysis of the Data Structure Abstraction Library

both architectures and compiler.

From Table 6.2, it can be seen that across all STREAM kernels, the overhead

Benchmark Kernel

Overhead(%)

Isambard Orac

Cray GNU Intel GNU

STREAM

Copy 1.52 -1.28 -0.92 1.28
Scale -0.52 -1.00 -1.62 0.47
Add 0.68 -0.56 -0.22 0.32
Triad 0.95 0.46 -0.10 2.13

SNAP Sweep 5.91 -8.51 -7.11 -12.9

HPL DGemm 4.23 -0.67 -10.5 -0.41

Table 6.2: Results for different benchmark kernels across architectures, compil-
ers and data structures

peaks at 1.52%, and for the majority of cases, the overhead is close to 0%. For

the other kernels, the highest overhead is 5.91%, with the majority being close to

0%, showing that the library has a minimal impact on these benchmark kernels.

6.2 Mini-Application Performance and Overhead

Whilst benchmark kernels can show particular issues, and are useful for valida-

tion due to there size, it can be difficult to predict the actual overhead cost of the

library when used in a production application. Thus, in order to demonstrate

how WDS performs in a more realistic settings, the library has been imple-

mented into three different mini-applications [31]. These mini-applications are

small, self-contained codes that are designed to be representative of larger ap-

plications, and are therefore perfect to test and develop new ideas in an agile

way. The objective of this is to show that the library incurs a low overhead cost,

when compared to the reference application under the same conditions.

To fully explore this, multiple different parameters were tested to see the full

range of effects of WDS. Firstly, a variety of different architectures and com-

pilers were used, to see if there were differences in how the hardware and com-

pilers handled the library (Section 6.2.1). Multiple different mini-applications

112

6. Performance Analysis of the Data Structure Abstraction Library

were also used to test the library across each different permutation of architec-

ture and compiler. These mini-applications were BookLeaf [116] (Section 6.2.2),

TeaLeaf [62] (Section 6.2.3) and MiniMD [31] (Section 6.2.4). Finally, two input

decks were created for each mini-application, a small and large variant. By doing

this, problems could be tested when more memory or computationally bound,

thus exploring how this affected the overhead of WDS. Each problem size was

also ran on all architectures and compilers. The different problem configuration

for each mini-application can be seen in Table 6.3.

Mini-app Input Deck Small Large

BookLeaf Noh Problem Size 200× 60 2530× 126
Sedov Problem Size 179× 179 566× 566

TeaLeaf Problem Size 1000× 1000 8000× 8000
Timestep 20 10

MiniMD Problem Size 64× 64× 64 128× 128× 128
Timesteps 1000 500

Table 6.3: Input sizes for small and large problems across all mini-aplications

In order to ensure fair results, each configuration of architecture, compiler,

mini-application and problem size was executed five times, with the average

of these results being used to calculate the overhead. Similarly to how the

benchmarks were tested, the WDS version of the mini-applications were ran

using the same data structure configuration as the reference version, so that the

difference in time related only to the additional time required by the library,

thus ensuring a fair comparison. As few changes to the applications logic were

made as possible, in order to ensure a direct comparison between both of the

versions.

For each configuration, two sets of results are presented. The first set of re-

sults is the time taken for the reference version to be executed, given in seconds.

The second is the percentage overhead of the library version. For all results

tables within this section, a colour scheme has been used for overheads to show

the difference in results. All green cells are values below 10%, orange cells are

values between 10% and 30% inclusive, and red cells are values above 30%. The

113

6. Performance Analysis of the Data Structure Abstraction Library

aim for the library is to get the overhead as low as possible though it is expected

to see trends across compilers and architectures.

6.2.1 Hardware and Compilers

To ensure that the performance impact of WDS is small across a variety of HPC

systems, all problems were ran across three different systems, each of which use

a different processor, and across two different compilers on each system. Specif-

ically, an ARM ThunderX2 system, an Intel Xeon Cascade Lake AP system

and an AMD Rome Epyc system were utilised. Details for each of these sys-

tems can be seen in Table 6.4. Each of these systems have varying amounts

of cache, bandwidth and processing power, allowing for a wide range of archi-

tectural differences to be inspected. To calculate the bandwidths, we used the

STREAM benchmark [67] with optimisation flags. We used both the Ofast and

appropriate OpenMP flags across all systems. Where a compiler with stream-

ing stores was available, this was utilised along with the appropriate flag. For

Kingfisher, this meant using the Intel compiler with qopt-streaming-stores

flag. For Rome, the AOCC compiler was used, with the fnt-store compiler

flag and transparent huge pages tuned off.

For all systems, all MPI problems were executed across all physical cores

in a node, all OpenMP problems across a single Non-Uniform Memory Access

(NUMA) region within a node, and all hybrid (MPI + OpenMP) problems such

that the MPI ranks are allocated to seperate NUMA regions, with OpenMP

threads filling each NUMA region. For Isambard, each socket consists of a

NUMA region. So, when running hybrid problems, two MPI ranks are used,

with each rank consisting of one thread per core. As such, each Isambard

NUMA region has 32 threads. Each socket in a Kingfisher node consists of two

NUMA regions. This means that when running hybrid problems on Kingfisher,

four MPI ranks are used with each NUMA region containing 24 threads. For

Rome, the processor was split into four NUMA regions. The hybrid runs were

achieved by splitting the processor further, and using a single MPI rank per

114

6. Performance Analysis of the Data Structure Abstraction Library

Isambard Kingfisher Rome

Processor ARM Marvell
Thunder X2 [65]

Intel Xeon
9242 [42]

AMD EPYC
7742 [1]

Sockets per
Node Dual Dual Dual

P
er

So
ck
et Cores 32 48 64

BW 116.5 GB/s 187.3 GB/s 176.4 GB/s

Cache 32 MB L3 71.5 MB Smart
Cache 256 MB L3

Compilers CCE 9.1.3 Intel 19.1.1 AOCC 2.2.0
GNU 9.2.0 GNU 8.2.0 GNU 9.2.0

MPI
Cray
MPICH
7.7.12

IMPI
7.217

AOCC - Open-
MPI 4.0.3
GNU - Open-
MPI 4.0.2

Table 6.4: Systems used to measure the performance impact of WDS when
tesing mini applications

Level 3 Cache Memory (L3) region, consisting of four cores. Each NUMA region

consists of four L3 regions, so a configuration of 32 MPI ranks, each with four

OpenMP threads, was used. It should be noted that the AMD processor can

be configured to consist of one NUMA region if required. To ensure fairness

when comparing both MPI and MPI + OpenMP implementations of the mini-

applications, the implementation of all WDS versions of the proxy applications

mirrored the reference implementations as closly as possible. In addition, and for

all experiments, thread balancing was used through the job management system

for the machine. This ensured that all the cores were being used efficiently.

6.2.2 Unstructured Physics Mini-Application

BookLeaf [54, 116] solves the compressible Euler equations on an unstructured

grid using an Arbitrary Lagrangian-Eulerian (ALE) formulation. These equa-

tions describe the dynamics of inviscid fluids, and are used widely to solve many

problems in science and engineering. Two classic test problems are used to test

115

6. Performance Analysis of the Data Structure Abstraction Library

WDS; Sod’s shock tube [102] and Noh’s cylindrical artificial viscosity prob-

lem [74]. In this subsection, the C++ OpenMP version of the code is utilised as

the base for the WDS version, and also the reference version used to compare

its performance.

Creation of the WDS version of BookLeaf was relatively simple. The C++

version of BookLeaf contains a data storege system, complete with its own view

class. As such, the majority of code was simple to change, as the reference data

storage and view objects were swapped for the WDS equivalents. Listings 6.1

and 6.2 show how this was achieved through the use of the getEnergy kernel

within BookLeaf. Listing 6.1 shows the reference version of this particular ker-

nel, whilst Listing 6.2 shows the WDS version. As can be seen, the only change

is the function signature; the computation carried out by the kernel has not

been altered. The initialisation of the variables in the data structure could not

be treated in the same way. For this, a simple function was used to generate all

the variables that could be used, at the required sizes.

Most routines within BookLeaf have a low arithmetic intensity, meaning that

the code is typically memory-bound. As such, it is expected that the library

will have a larger overhead with smaller problem sizes, and a relatively small

overhead for larger problems. This is due to the fact that on larger problems,

the processor will be more memory constrained, allowing for computation to be

done in the time the processor is waiting on data.

Table 6.5 shows the time taken to complete the reference version, and the

overheads for all variations of problem decks, processors and compilers. The

average time taken for the WDS implementations can be calculated from the

reference execution time and the percentage overhead. This additional data is

not presented however, as the key elements are already presented in the form of

the relative execution time, and the scale of overhead incurred by implementing

WDS into the application. The colour scheme discussed at the end of Section 6.2

has been applied to Table 6.5, where overhead values below 10% are highlighted

in green, overhead values between 10% and 30% are highlighted in orange, and

116

6. Performance Analysis of the Data Structure Abstraction Library

void getEnergy(
double dt,
double zerocut,
ConstView<double, VarDim, NCORN> cnfx,
ConstView<double, VarDim, NCORN> cnfy,
ConstView<double, VarDim, NCORN> cnu,
ConstView<double, VarDim, NCORN> cnv,
ConstView<double, VarDim> elmass,
View<double, VarDim> elenergy,
int nel)

{

#pragma omp parallel for
for (int iel = 0; iel < nel; iel++) {

double w1 = cnfx(iel,0)*cnu(iel,0)+cnfy(iel,0)*cnv(iel,0)+
cnfx(iel,1)*cnu(iel,1)+cnfy(iel,1)*cnv(iel,1)+
cnfx(iel,2)*cnu(iel,2)+cnfy(iel,2)*cnv(iel,2)+
cnfx(iel,3)*cnu(iel,3)+cnfy(iel,3)*cnv(iel,3);

w1 = -w1 / std::max(elmass(iel), zerocut);
elenergy(iel) += w1 * dt;

}
}

Listing 6.1: Reference BookLeaf getEnergy kernel

overhead values above 30% are highlighted in red.

As expected, for both Noh and Sedov problems, the small problem sets

have a larger overhead, than the large problem sets. This is independent of

both the system and the compiler, though there is some fluctuations in how

the compilers performed on the small problem sets. For the large problem set,

the compilers produced close to the same overhead on the same system and

across architectures. Across both BookLeaf problem sizes, the WDS times are

very similar across the different compilers within a given architecture. However,

with the smaller problem size, the runtimes are shorter than there large problem

size counter part, making the overhead more sensitive to differences. This is why

there is a larger range of overheads for the smaller problem sizes, and why the

slower runtime within an architecture has the smaller overhead. Even with these

factors, it is clear that the overheads for the smaller problem is greater than the

117

6. Performance Analysis of the Data Structure Abstraction Library

void getEnergy(
double dt,
double zerocut,
wds::ViewSpec<double, WDS_DT::SOA>& cnfx,
wds::ViewSpec<double, WDS_DT::SOA>& cnfy,
wds::ViewSpec<double, WDS_DT::SOA>& cnu,
wds::ViewSpec<double, WDS_DT::SOA>& cnv,
wds::ViewSpec<double, WDS_DT::SOA>& elmass,
wds::ViewSpec<double, WDS_DT::SOA>& elenergy,
int nel)

{

#pragma omp parallel for
for (int iel = 0; iel < nel; iel++) {

double w1 = cnfx(iel,0)*cnu(iel,0)+cnfy(iel,0)*cnv(iel,0)+
cnfx(iel,1)*cnu(iel,1)+cnfy(iel,1)*cnv(iel,1)+
cnfx(iel,2)*cnu(iel,2)+cnfy(iel,2)*cnv(iel,2)+
cnfx(iel,3)*cnu(iel,3)+cnfy(iel,3)*cnv(iel,3);

w1 = -w1 / std::max(elmass(iel), zerocut);
elenergy(iel) += w1 * dt;

}
}

Listing 6.2: WDS BookLeaf getEnergy kernel

larger problems across all architectures and compilers.

6.2.3 Heat Conduction Mini-Application

TeaLeaf [119] solves the linear heat conduction equation on a structured grid.

Parabolic equations like this are often solved using implicit methods, requiring

the use of a linear solver. TeaLeaf’s primary purpose is to support experimen-

tation with different types of linear solver in a simple setting [62]. A C/C++

version has been created by the University of Bristol [120], which we use here,

specifically the MPI and OpenMP variant. We focus on the Conjugate Gradi-

ent (CG), Polynomially Preconditioned CG (PPCG) and Chebyshev solvers.

TeaLeaf contains a structure called Chunk, which stores all the data for the

chunk of the mesh contained within the MPI rank. The kernels then pull out

relevant references from this structure, to be used within the kernels. In order

118

6. Performance Analysis of the Data Structure Abstraction Library

System Compiler Result
Noh Sedov

Small Large Small Large

Isambard
Cray Ref (sec) 32.0 62.7 8.00 57.1

Overhead (%) 16.3 6.69 19.7 4.31

GNU Ref (sec) 35.4 63.2 12.4 3.12
Overhead (%) 6.21 1.51 4.91 3.12

Kingfisher
Intel Ref (sec) 15.9 48.9 4.69 46.1

Overhead (%) 26.3 4.16 37.7 -1.50

GNU Ref (sec) 19.9 49.1 5.59 43.5
Overhead (%) 18.2 6.08 19.0 5.85

Rome
AOCC Ref (sec) 16.8 112 5.27 100

Overhead (%) 31.9 1.64 31.0 2.16

GNU Ref (sec) 20.4 112 5.68 99.8
Overhead (%) 17.4 0.99 20.9 1.49

Table 6.5: Results for BookLeaf input decks across architectures, compilers and
input decks.

to implement WDS into TeaLeaf, the Chunk data structure was replaced with a

WDS object, and rather than passing pointer references to kernels, view objects

were passed instead. Initially, the view objects were being copied into functions

when using some compilers. This negatively affected the performance of smaller

functions that did not scale by the mesh size, but rather scaled by the number

of MPI ranks. Thus, when implementing WDS into TeaLeaf, it was ensured

that the view object was passed by reference in all cases. Listings 6.3 and 6.4

show the same kernel for both the reference version and the WDS version of

TeaLeaf’s cg_calc_w kernel respectively. As can be seen, the Chunk ID had

to be passed in, as the WDS required it in order to access the correct values.

The other main change involved altering the data access function from [index]

to (chunk, index), in order to use the WDS views correctly. All solvers were

validated using the same methodology as used when validating BookLeaf.

Two optimisations were also implemented in order to ensure consistency

between runs and compilers. The first optimisation included an MPI barrier

before both AllReduce functions. This was done in such a way that it did not

count towards the final runtime, and ensured that any load imbalance did not

119

6. Performance Analysis of the Data Structure Abstraction Library

void cg_calc_w(
const int x,
const int y,
const int halo_depth,
double* pw,
double* p,
double* w,
double* kx,
double* ky)

{

double pw_temp = 0.0;

#pragma omp parallel for reduction(+:pw_temp)
for(int jj = halo_depth; jj < y-halo_depth; ++jj) {

#pragma ivdep
for(int kk = halo_depth; kk < x-halo_depth; ++kk) {

const int index = kk + jj*x;
const double smvp = SMVP(p);
w[index] = smvp;
pw_temp += w[index]*p[index];

}
}

*pw += pw_temp;
}

Listing 6.3: Reference (C++) TeaLeaf cg_calc_w kernel

affect the results. The second optimisation was to add pragma ivdep to compute

functions that could safely be vectorised. This ensured that all functions were

being optimised in the same manner, meaning that differences in time were

caused solely by the addition of WDS. This particular optimisation can be seen

in both Listings 6.3 and 6.4. Both of these optimisations were added to both

the reference and WDS versions across all architectures and compilers.

TeaLeaf, like BookLeaf, is typically memory bound. As such, the smaller

problem size is expected to have a larger overhead than the larger problem

size, as less computation can be shadowed by memory accesses. Tables 6.6, 6.7

and 6.8 show the overhead of the WDS version of TeaLeaf against the reference

version across different architectures, compilers and solvers. The tables also

120

6. Performance Analysis of the Data Structure Abstraction Library

void cg_calc_w(
const int x,
const int y,
const int halo_depth,
double* pw,
wds::ViewSpec<double, WDS_DT::SOA>& p,
wds::ViewSpec<double, WDS_DT::SOA>& w,
wds::ViewSpec<double, WDS_DT::SOA>& kx,
wds::ViewSpec<double, WDS_DT::SOA>& ky,
const int chunk)

{

double pw_temp = 0.0;

#pragma omp parallel for reduction(+:pw_temp)
for(int jj = halo_depth; jj < y-halo_depth; ++jj) {

#pragma ivdep
for(int kk = halo_depth; kk < x-halo_depth; ++kk) {

const int index = kk + jj*x;
const double smvp = SMVPWDS(p);
w(chunk, index) = smvp;
pw_temp += w(chunk, index)*p(chunk, index);

}
}

*pw += pw_temp;
}

Listing 6.4: WDS TeaLeaf cg_calc_w kernel

System Compiler Result
CG Chebyshev PPCG

Small Large Small Large Small Large

Isambard
Cray Ref (sec) 5.82 1877 1.82 1583 2.54 2007

Overhead (%) 12.1 0.45 33.8 0.25 23.1 1.46

GNU Ref (sec) 3.97 1441 1.96 1501 2.74 1970
Overhead (%) 12.2 -1.38 8.64 0.19 8.03 4.41

Kingfisher
Intel Ref (sec) 0.65 862 0.33 808 0.41 1055

Overhead (%) 39.5 -1.27 65.5 -2.07 66.5 0.83

GNU Ref (sec) 0.99 854 0.53 805 1055
Overhead (%) 30.5 1.81 43.0 -0.54 2.34

Rome
AOCC Ref (sec) 1.51 1181 1111 0.59 1474

Overhead (%) 3.14 -0.52 -0.10 39.8 -0.25

GNU Ref (sec) 0.75 1182 0.37 1111 0.55 42.2
Overhead (%) 53.1 -0.36 39.1 -0.32 42.2 -0.24

Table 6.6: Results for TeaLeaf MPI, across all input decks, solvers, architectures
and compilers.

121

6. Performance Analysis of the Data Structure Abstraction Library

System Compiler Result
CG Chebyshev PPCG

Small Large Small Large Small Large

Isambard
Cray Ref (sec) 12.3 3614 4.45 3238 4.01 3562

Overhead (%) 3.25 2.05 4.46 0.83 7.09 2.68

GNU Ref (sec) 11.3 3106 5.35 3454 6.25 4407
Overhead (%) -3.68 0.63 -1.13 0.95 -3.16 0.26

Kingfisher
Intel Ref (sec) 4.17 3398 2.48 3179 1.98 3669

Overhead (%) 1.78 -2.01 2.92 -0.96 1.63 -0.38

GNU Ref (sec) 7.75 3369 3.02 3204 3675
Overhead (%) 2.81 -0.48 -7.40 -0.40 -0.42

Rome
AOCC Ref (sec) 8.22 9362 8855 1.89 10348

Overhead (%) 0.54 -0.05 0.00 10.4 -0.12

GNU Ref (sec) 2.46 8856 2.47 10291
Overhead (%) 0.33 0.00 2.02 0.04

Table 6.7: Results for TeaLeaf OpenMP, across all input decks, solvers, archi-
tectures and compilers.

System Compiler Result
CG Chebyshev PPCG

Small Large Small Large Small Large

Isambard
Cray Ref (sec) 6.96 1885 1.88 1647 2.33 1824

Overhead (%) 4.24 0.16 10.5 1.03 6.15 8.26

GNU Ref (sec) 7.90 1591 3.32 1763 4.33 2240
Overhead (%) -8.44 0.61 -8.15 2.02 -8.40 4.16

Kingfisher
Intel Ref (sec) 1.27 838 0.66 813 0.74 911

Overhead (%) 12.1 0.99 13.9 -2.64 8.64 0.88

GNU Ref (sec) 4.63 839 814 920
Overhead (%) 1.92 1.25 0.90 2.59

Rome
AOCC Ref (sec) 1.56 1178 1113 0.58 1379

Overhead (%) 3.84 -0.17 -0.28 34.9 -0.22

GNU Ref (sec) 0.82 1180 0.41 1113 0.60 1373
Overhead (%) 6.47 -0.33 16.9 -0.15 24.1 -0.08

Table 6.8: Results for TeaLeaf MPI and OpenMP, across all input decks, solvers,
architectures and compilers.

contain information on the time taken for the reference application to execute.

WDS execution times have not been included for the same reason why they

were not included when investigating the performance of implementing WDS

into BookLeaf (described in Section 6.2.2). These tables utilise the same high-

lighting as used in the BookLeaf results, where overhead values below 10% are

highlighted in green, overhead values between 10% and 30% are highlighted in

orange, and overhead values above 30% are highlighted in red.

Each table focuses on a different parallisiation methodology; Table 6.6 fo-

cuses on the MPI results, Table 6.7 focuses on the OpenMP results and Table 6.8

focuses on the MPI+OpenMP results. The configuration for the number of ranks

122

6. Performance Analysis of the Data Structure Abstraction Library

and threads for each parallelisation methodology is described in Section 6.2.1.

Across all of these results, for the majority of cases, the smaller problem sizes

incur a higher overhead than the larger problem size counterpart regardless of

architecture.

Of the three parallelisation methodologies used, it can be seen that the MPI

implementation incurs the highest overheads, followed by the the hybrid im-

plementation then the OpenMP version. This is especially true in the smaller

problem sizes. For the smaller problem sizes, this is due to the fact that the

communications take up a large fraction of the runtime. However, in the larger

problems, the computation kernels take up a much larger proportion of the run-

time, compared to the communications. Because this is not as much of an issue

for the hybrid version, and not an issue at all for the OpenMP implementation,

we see lower overheads.

Much like BookLeaf, the runtimes for TeaLeaf are consistent across compilers

on the same architecture for the majority of cases. This is true for both problem

sets, but is more prominent in the smaller problem size. When examining the

variance for the larger problem size, it can be seen that the results overlap for

the majority of cases. This means that these results will have a small, if not 0%

overhead.

6.2.4 Molecular Dynamics Mini-Application

MiniMD is a proxy-application for the much larger LAMMPS Molecular Dy-

namics (MD) code developed and maintained by Sandia National Laboratory

(SNL) [90]. MD codes such as LAMMPS are widely used by scientists to study

the microscopic properties of matter. MiniMD is designed to use the same al-

gorithms as its parent code, but has been structured to be much simpler to

support co-design. The mini-application supports two inter-atomic potentials:

the Lennard-Jones potential and the Embedded Atom Model (EAM). For the

purposes of this paper, we test WDS with a simulation using the Lennard-Jones

potential and MPI+OpenMP reference version.

123

6. Performance Analysis of the Data Structure Abstraction Library

In order to create the WDS version, the arrays within MiniMD’s data struc-

ture were swapped for WDS variables. View objects were then created to replace

the variables, which were then passed to kernels in a similar way the original ref-

erences were passed. This made the conversation process simple. Listings 6.5

and 6.6 show the Thermo::temperature kernel for both the reference and WDS

versions of MiniMD respectively. Because the WDS view classes were added

directly into MiniMD’s data structure class (called Atom) and replaced the key

arrays, the function signature did not need to be altered. Instead, rather than

copying the pointer of the arrays required from the Atom class, the WDS views

can be accessed directly. In order to make the WDS version more readable, the

access function was altered to represent 2D notation by changing [i * PAD +

0] to (i, 0). This alteration would not affect the performance of the program,

as the code would be compiled to the same assembly instructions.

System Compiler Result
MPI OpenMP Hybrid

Small Large Small Large Small Large

Isambard
Cray Ref (sec) 19.7 81.4 59.9 33.9 124

Overhead (%) 6.33 5.54 3.61 3.58 3.00

GNU Ref (Sec) 17.7 73.5 71.1 40.1 147
Overhead (%) 1.37 -0.02 2.22 2.42 1.76

Kingfisher
Intel Ref (sec) 6.89 28.5 48.6 198 14.1 51.3

Overhead (%) 0.41 2.93 11.5 12.0 10.1 11.7

GNU Ref (sec) 6.20 26.5 39.7 164 11.5 42.9
Overhead (%) 6.20 5.58 10.1 9.31 8.02 8.05

Rome
AOCC Ref (sec) 5.74 22.6 45.4 192 6.49 26.0

Overhead (%) 0.72 0.54 6.50 6.26 7.52 7.42

GNU Ref (sec) 5.77 22.3 46.6 197 6.59 26.6
Overhead (%) 0.81 1.63 5.21 5.74 6.69 6.30

Table 6.9: Results for MiniMD input decks, across all architectures and compil-
ers.

The results for MiniMD across all systems and compilers running on a single

node can be seen in Table 6.9, with Hybrid representing OpenMP + MPI. The

configurations used for ranks and threads can be found in Section 6.2.1. The

colour scheme discussed at the end of Section 6.2 has been applied to Table 6.9,

where overhead values below 10% are highlighted in green, overhead values

between 10% and 30% are highlighted in orange, and overhead values above

30% are highlighted in red. As can be seen, the overhead for the application

124

6. Performance Analysis of the Data Structure Abstraction Library

MMD_float Thermo::temperature(Atom &atom) {
MMD_int i;
MMD_float vx, vy, vz;
MMD_float t = 0.0;
t_act = 0;

#pragma omp barrier
MMD_float* v = atom.v;

OMPFORSCHEDULE
for(i = 0; i < atom.nlocal; i++) {

vx = v[i * PAD + 0];
vy = v[i * PAD + 1];
vz = v[i * PAD + 2];
t += (vx * vx + vy * vy + vz * vz) * atom.mass;

}
#pragma omp atomic

t_act += t;
#pragma omp barrier

MMD_float t1;
#pragma omp master

{
if(sizeof(MMD_float) == 4)

MPI_Allreduce(&t_act, &t1, 1, MPI_FLOAT, MPI_SUM,
MPI_COMM_WORLD);

else
MPI_Allreduce(&t_act, &t1, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
}
return t1 * t_scale;

}

Listing 6.5: Reference MiniMD Thermo::temperature kernel

does not go above 12% for any configuration of either problem size. Some of the

overheads are slightly negative. This is most likely due to machine fluctuations.

In addition, the OpenMP 3 implementation has the largest range of overheads,

with the OpenMP + MPI approach coming in second for all systems.

6.3 Scaling Performance and Overhead

While the previous results show that the single node performance impact of

WDS is minimal for a variety of different scenarios, it is also appropriate to

examine the performance at scale of the data structure abstraction library. This

125

6. Performance Analysis of the Data Structure Abstraction Library

MMD_float Thermo::temperature(Atom &atom) {
MMD_int i;
MMD_float vx, vy, vz;
MMD_float t = 0.0;
t_act = 0;

#pragma omp barrier
OMPFORSCHEDULE

for(i = 0; i < atom.nlocal; i++) {
vx = atom.wds_v(i, 0);
vy = atom.wds_v(i, 1);
vz = atom.wds_v(i, 2);
t += (vx * vx + vy * vy + vz * vz) * atom.mass;

}
#pragma omp atomic

t_act += t;
#pragma omp barrier

MMD_float t1;
#pragma omp master

{
if(sizeof(MMD_float) == 4)

MPI_Allreduce(&t_act, &t1, 1, MPI_FLOAT, MPI_SUM,
MPI_COMM_WORLD);

else
MPI_Allreduce(&t_act, &t1, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
}
return t1 * t_scale;

}

Listing 6.6: WDS MiniMD Thermo::temperature kernel

allows us to analyse the impact of the library in a scenario which more accurately

represents how applications are typically executed on large parallel systems. To

show this, MiniMD and the larger problem size was used in a strong scaling

manner, from one node to 16 nodes across each two architectures and systems,

as can be seen in Table 6.1. It should be noted that Orac only allows for up to

and including 14 nodes to be utilised for a single job.

Scaling has been examined with both the small and large problem sizes,

and use the same reference and WDS versions as the single node performance

analysis in Section 6.2.4. Each run uses only MPI parallelisation, using one rank

per core. The maximum number of ranks that would ensure all cores have a

126

6. Performance Analysis of the Data Structure Abstraction Library

single rank has been used. Similarly to the testing of the mini-applications on a

single node, each configuration of system, compiler and problem size was tested

five times, and an average was used to calculate the runtime.

Nodes Problem Size

Overhead(%)

Isambard Orac

Cray GNU Intel GNU

1 Small 6.33 1.37 -1.55 6.54
Large 5.54 -0.02 -2.14 6.16

2 Small 6.18 1.06 -2.58 6.98
Large 3.85 0.59 -2.52 6.13

4 Small 4.45 2.12 -2.96 5.30
Large 3.86 0.48 -2.61 5.93

8 Small 38.1 1.65 0.63 6.06
Large 44.3 -1.30 -2.87 6.25

14 Small -1.85 7.05
Large -1.14 5.94

16 Small 12.7 4.81
Large 29.7 5.00

Table 6.10: Results showing the overhead for all strong scaling results utilising
MiniMD

The graphs in Figure 6.1 show the average time for each experimental setup

across both problem sizes. The overheads for each configuration have also been

presented in Table 6.10. Much like the tables presented in Section 6.2, a colour

coding scheme has been used for Table 6.10. Results below 10% have been high-

lighted in grren, results between 10% and 30% have been highlighted in orange,

and results above 30% have been highlighted in red. Across both data sets,

we see that the difference in time decreases across the majority configurations,

as the number of nodes increases. However, because the execution time also

decreases as the number of nodes increases, the overhead value is consistent, or

slightly increases with the node count. Even so, the overhead does not go over

8%, with the exception of Isambard Cray on 8 and 16 nodes.

The runtimes for the results presented in Table 6.10 can be seen in Fig-

ure 6.1. It is expected that the runtimes for both the reference and WDS ver-

127

6. Performance Analysis of the Data Structure Abstraction Library

Isambard Cray Ref Orac Intel Ref
Isambard GNU Ref Orac GNU Ref
Isambard Cray WDS Orac Intel WDS
Isambard GNU WDS Orac GNU WDS

1 2 4 8 16100

101

102

Nodes

T
im

e
(s
ec
)

(a) Small problem size - Isambard

1 2 4 8 14100

101

102

Nodes

T
im

e
(s
ec
)

(b) Small problem size - Orac

1 2 4 8 16100

101

102

103

Nodes

T
im

e
(s
ec
)

(c) Large problem size - Isambard

1 2 4 8 14100

101

102

103

Nodes

T
im

e
(s
ec
)

(d) Large problem size - Orac

Figure 6.1: Strong scaling results for MiniMD across all architectures and com-
pilers for one to 16 nodes on Isambard and one to 14 nodes for Orac, utilis-
ing both problem sizes (643, 1000 timesteps for small problem size, 1283, 500
timesteps for large problem size).

128

6. Performance Analysis of the Data Structure Abstraction Library

sions follow the same trend as the number of nodes increase. It is also expected

that the trend will be inverse square, thus producing a straight line in a log-log

graph. Figure 6.1 depicts the execution times on a log-log graph, and shows

that most of the results follow the expected trend. This is especially true on the

larger datasets, as the parallelisable region is larger. Figures 6.1a and 6.1c allow

for the exploration of the higher overheads on the Isambard system when Cray

compiler is utilised. It can be seen that this spike in overhead is not caused by

additional parallelism in the reference version, but by an increase in time taken

by the WDS version. From a brief exploration into the problem, this seems to

be an issue with the implementation of the Cray compilers used to run these

experiments. However, further exploration is required.

6.4 Summary

In this chapter, the performance impact for the data structure abstraction li-

brary WDS as described in Chapter 5, has been tested in multiple ways. These

tests were carried out using a range of different Central Processing Unit (CPU)

architectures, and each processor was tested using two compilers. Along with

the fact that an average of five runs were taken when presenting the final run-

time. All of this ensured that WDS was fairly and exhaustively tested.

Across the majority of the tests carried out, the overhead incurred for using

the library is small. When exploring the benchmark kernels tested, the overhead

does not go over 6% for both architectures and all compilers tested on. When

the library was tested using mini-applications, the overhead decreased as the

problem size increased. As such, on the larger problem sizes, the majority of

the results were below 5%. For smaller problems, this overhead is larger, but

still within reason. Finally, a scaling study was used with one of the mini-

applications. This showed that the overhead did not fluctuate as the problem

was scaled across multiple nodes.

129

CHAPTER 7
Data Structure Abstraction Library Specialisation

A key aim for a library within the High Performance Computing (HPC) space

is for the library to either improve the performance it is implemented into, or at

the very least, minimise the performance impact whilst providing new function-

ality that would not otherwise be possible. When developing the data structure

abstraction library Warwick Data Store (WDS), the aim was to provide the

functionality of being able to swap data structures, without making large alter-

ations to an application. As such, it was expected that the library will impact

the performance of a program, even if it is very slight, as shown in Chapter 6.

However, the aim for WDS was that it should be flexible enough for new, spe-

cialised data structures to be implemented into the library, whilst maintaining

this minimal impact to the library. In this chapter, specialised multi-material

physics data structures have been used to show how WDS can be extended

whilst maintaining the small performance impact.

The rest of the chapter is broken up into the following:

• Section 7.1 discusses the need to explore specialised data structures within

WDS.

• Section 7.2 explores two multi-material data structures that have been

implemented into WDS, and the key elements within each.

• Section 7.3 discusses how each of these data structures were implemented

into the data structure abstraction library, with particular emphasis on

usability and performance.

• Section 7.4 explores the performance impact of specialised data structures

built within the library compared to a reference version.

130

7. Data Structure Abstraction Library Specialisation

7.1 Motivation

In real-world problems of interest, it is common to find highly specialised data

structures that have been carefully designed to address a particular issue. Ex-

amples include lock-free hash tables for k-mer counting in Bioinformatics [66],

Morton-ordered texture caches in computer graphics [125], and Compressed

Sparse Row (CSR) data structures for sparse linear algebra [123].

Another example, which this chapter will focus on, are interface tracking

algorithms in solid-fluid mechanics applications. Numerical methods designed

for such applications often run into difficulties treating the sharp discontinuities

in state variables that occur at boundaries between two distinct physical mate-

rials. Interface tracking methods are a broad family of approaches designed to

ameliorate these issues by keeping a record of exactly where such boundaries are

located, and applying correction terms to the solution variables in these areas.

The methods used to store this boundary information are sometimes termed

multi-material data structures [23].

A key design goal for WDS is to provide sufficient flexibility that specialised

domain-specific data structures such as those required for multi-material prob-

lems can be efficiently described and stored using its mechanisms.

7.2 Multi-Material Data Structures

One of the key requirements of the data structure abstraction library is that

it should be extensible. To demonstrate this, a specialised data structures for

multi-material applications have been implemented into WDS. A multi-material

problem is a particular subset of physics applications where the cells are not con-

strained by each cell occupying only one material. Figure 7.1 shows a simple

multi-material problem. In this problem, a small 3× 3 mesh can be seen, con-

taining four different materials. Some of the cells in the mesh, such as Cell 0

and Cell 6, contain only one material. However, in the majority of cells, two or

more materials occupy the same cell. If this was a single-material problem, the

131

7. Data Structure Abstraction Library Specialisation

mesh resolution (the number of cells within a mesh) would have to be increased,

requiring large amounts of memory to store. Alternatively, the mesh resolution

could remain the same, and the accuracy of the results would be decreased.

Through the use of specialised data structures, an accurate representation of

the problem can be achieved, with minimal extra use of memory. This exam-

ple shows the key difficulties in representing multi-material problems. When

describing and demonstrating data structures within this section, this example

will be used as the basis.

0 1 2

3 4 5

6 7 8

Material 1 (Cells 0, 1, 2, 3, 4)

Material 2 (Cells 1, 2, 4, 5)

Material 3 (Cells 1, 3, 4, 6, 7)

Material 4 (Cells 4, 5, 7, 8)

Figure 7.1: Graphic representation of multi-material mesh 3× 3 mesh with four
materials

To demonstrate that specialised data structures for multi-material applica-

tions can been implemented into WDS, two multi-material data structures have

been utilised. In particular, these are the Compact Cell data structure outlined

by Fogerty et al. [23] and a variant called Compact Cell Flat. In order to define

a mesh in either data structure, WDS has been extended to include functions

that allow for the addition and removal of materials from cells. Much like other

WDS functions described in Sections 5 and 6, these take the variable name as

the key identifier for the variable. Listing 7.1 shows how the materials for the

cells described in Figure 7.1 can be added to a variable "var". WDS is told

that it is COMPACTCELL (a multi-material data structure, described and used in

Sections 7.2.1 and 7.2.2) variable type, and thus expects two dimensions. The

first is the number of cells in the grid, and the second is the maximum number

of materials possible within the grid. In this case, this would be {9, 4}. Mate-

rials can then be added to the given variable using the addMaterial function.

132

7. Data Structure Abstraction Library Specialisation

This function takes the variable name and checks to see if it is a correct type

(the variable is COMPACTCELL). WDS then extends the data structure for the

given variable to include the material for the required cell, making any neces-

sary adjustments to other cells, such as altering indirect access indexes. The

function removeMaterial uses the same interface as addMaterial, but removes

the required material from the given cell.

#include <wds.hpp>
/* Initialise dataStore, number of cells (numCells=9) and max

* number of materials (numMats=4) */

//Create var with the number of cells and max number of materials
dataStore.buildVar(WDS_DT::COMPACTCELL,

wds::VarMeta("var", {numCells, numMats}, double()));

//Assign materials to variables and cells
dataStore.addMaterial("var", 0, 0);
dataStore.addMaterial("var", 1, 0);
dataStore.addMaterial("var", 1, 1);
dataStore.addMaterial("var", 1, 2);
dataStore.addMaterial("var", 2, 0);

/* Materials added here */
dataStore.addMaterial("var", 7, 3);
dataStore.addMaterial("var", 8, 1);
dataStore.addMaterial("var", 8, 3);

Listing 7.1: WDS psudocode for adding materials to cells according to Figure 7.1

7.2.1 Compact Cell Multi-Material Data Structure

Figure 7.2 shows the Compact Cell data structure outlined by Fogerty et al. [23],

and represents the mesh outlined in Figure 7.1. This data structure consists

of two parts, one for storing all cells containing only a single material and

associated metadata, and another for storing multi-material cells in the form of

a packed linked list. The single-material portion of the data structure consists

of the data for all single-material cells and the number of materials in each

cell. It also stores either the material used in the cell, or the position of the

133

7. Data Structure Abstraction Library Specialisation

1 1

-1 3 2 2 4 2 -1 2 2

1 0 -3 -5 -7 -11 3 -13 -15

1 2 -1 4 -1 6 -1 8 9 10 -1 12 -1 14 -1 16 -1

1 1 1 2 2 3 3 4 4 4 4 5 5 7 7 8 8

1 2 3 1 2 1 3 1 2 3 4 2 4 3 4 2 4

0.7 0.1 0.2 0.1 0.9 0.4 0.6 0.1 0.1 0.6 0.2 0.7 0.3 0.4 0.6 0.2 0.8

Cell Data

Multi-material Data

Cell Data

No. of Materials

Material (> 0) / Linked list Index (≤ 0)

Next Mat
Index

Cell Index

Material
Multi-Mat
Data

Figure 7.2: Graphical representation of Fogerty et al. Compact Cell [23] data
structure using the example mesh shown in Figure 7.1

first multi-material element stored in the multi-material portion of the data

structure. These links are represented by the arrows in the figure. The multi-

material portion acts as a single linked list, where the head is provided by the

single-material portion. Alongside the data for a given portion of the cell, the

cell index (the cell corresponding to the segment) and the material is stored in

the linked list.

In order to implement this data structure into WDS, two View classes were

created that utilised the data from the COMPACTCELL variable type. One was

created for the single-material cell data, and the other for the multi-material

data. To request a particular view, the enum WDS_DT was extended with two new

variables, COMPACTCELL_SINGLE and COMPACTCELL_MULTI. This allowed for each

key section of the data structure to be accessed. Listing 7.2 shows how views

can be created for both the single-material cell data, and the multi-material

data. Each of the views contain specialised functions that allow for access to

each element within each block. The key functions are discussed in Section 7.3.

134

7. Data Structure Abstraction Library Specialisation

auto varSingle =
dataStore.getViewSpec<double, WDS_DT::COMPACTCELL_SINGLE>("var");

auto varMulti =
dataStore.getViewSpec<double, WDS_DT::COMPACTCELL_MULTI>("var");

Listing 7.2: Construction of WDS Views for Compact Cell

1 0.7 0.1 0.2 0.1 0.9 0.4 0.6 0.1 0.1 0.6 0.2 0.7 0.3 1 0.4 0.6 0.2 0.8

0 1 4 6 8 12 14 15 17

1 1 2 3 1 2 1 3 1 2 3 4 2 4 3 3 4 2 4

1 3 2 2 4 2 1 2 2

Data

Cell Index

Material
No. of Materials in Cell

Figure 7.3: Graphical representation of WDS’ Compact Cell Flat data structure
using the example mesh shown in Figure 7.1

7.2.2 Compact Cell Flat Multi-Material Data Structure

As well as Compact Cell, a variation on this data structure was developed enti-

tled Compact Cell Flat, shown in Figure 7.3. Much like Figure 7.2, Figure 7.3

shows how the Compact Cell Flat data structure can be used to represent the

multi-material mesh in Figure 7.1. In this data structure, all the data is placed

in a single, concurrent block of memory, placed in cell order, then in material

order. A corresponding material array allows each segments material to be iden-

tified. The cell index array builds the link between a given cell and the first

segment related to this cell. In order to iterate through a cell without having

to perform additional calculations, a fourth and final array is provided with the

number of elements.

auto varFlat =
dataStore.getViewSpec<double, WDS_DT::COMPACTCELL>("var");

Listing 7.3: Construction of WDS Views for Compact Cell Flat

135

7. Data Structure Abstraction Library Specialisation

Due to the data structure having a simpler access pattern, only a single

WDS view is required. As such, the view took the name of the variable type,

COMPACTCELL. The view can be created in the same way as any other view, an

example of which can be seen in Listing 7.3.

The rationale behind developing Compact Cell Flat was to combat some of

the issues with Compact Cell with regard to iterating over data. The original

Compact Cell implementation described in Section 7.2.1 relies on the single and

multi-material data being split, and the fact that the multi-material data may

not be in order with regards to the cells or their materials. Thus, Compact Cell

is useful if the algorithm being used is one which looks at the single material data

and multi-material data separately. However, if the algorithm requires iterating

over single element materials, then Compact Cell will incur a heavy performance

cost as indirection would be encountered. In addition, if the algorithm needs

to apply a function on all data without needing to know if the cell is single or

multi-material, then using Compact Cell would mean applying the same function

on both, separate blocks of memory. Compact Cell Flat aims to overcome

this problem by maintaining the data in contiguous memory (allowing it to be

iterated over without the need to access multiple blocks of memory), in cell,

and then in material order (ensuring minimal indirection memory accesses).

However, this comes at a cost to performance if the algorithm only requires

single or multi-material data.

7.3 Implementation of Abstract Data Structures

Out of both Compact Cell and Compact Cell Flat, the first data structure

to be implemented into the library was Compact Cell Flat. As discussed in

Chapter 5.5.3, the variable class was created first, storing each of the arrays.

The arrays would be expanded and contracted as more materials were added and

removed respectively. In order to maintain the ordering, the data was shifted

where appropriate to fill in any gaps that could form. A corresponding view

136

7. Data Structure Abstraction Library Specialisation

class was then created. To do this efficiently, the data was placed into the data

structure out-of-order, setting a flag in the process. When the view class was

requested, the flag was checked and the data was re-ordered to the correct order

if required.

In order to facilitate interactions between the user and the data structure,

WDS treated the data as a two-dimensional array, where the first dimension

is the cell index and the second is the material. The library passes this infor-

mation to the variable and view classes, which then interprets it appropriately,

depending on the required functionality. As an example: when adding a new

material to the cell, the variable class will use this data to expand the arrays

rather than altering the dimensions of the variables. Another example can be

seen in the way in which the data can be accessed through the view class. As

discussed in Chapter 5.3.3, ViewSpec has multiple ways in which the data can

be accessed. Specialised ways in which the data can be accessed can therefore

be created, depending on what is passed to the Compact Cell Flat view class.

For Compact Cell Flat, [int] was designed to allow for direct access to the

data array, (int) allowed for access to the first element of the given cell index

thus allowing the user to iterate through the cell without needing to know the

materials in the cell, and (int, int) allows for access to the given material for

a given cell. If an incorrect element is given, the WDS specification specifies

that this should be classed as undefined behaviour. Specialised functions were

also created to allow for access to the material and number-of-materials arrays.

All of this demonstrates the flexibility of WDS and can be seen in the example

shown in Listing 7.4.

Compact Cell was also implemented into WDS. For this data structure to

be implemented, a Structure of Arrays (SoA) implementation was used for both

the single-material and multi-material data. Because a linked list is used in

this data structure, the addition or removal of materials is simpler. Due to the

arrangement of this particular data structure, it would not be possible to easily

implement Compact Cell in a single view class. Instead, two views are required,

137

7. Data Structure Abstraction Library Specialisation

/* Compact Cell Flat data */
/* Set the third piece of data in the data structure (corresponds

* to Cell 2, Material 2 in this example) */
varFlat[2] = 0.1;

// Set first material in cell 2 (Material 1 in this example)
varFlat(1) = 0.7;

//Set the third material in Cell 2 (may not be Material 3)
varFlat(1, 2) = 0.2;

//Prints the number of pieces of data, 17
std::cout << "Size: " << varFlat.size() << std::endl;

/* Prints whether a given cell contains multiple materials.

* For Cell 2, this is true */
std::cout << "Check if Cell 1 contains multiple materials: "

<< varFlat.isMM(1) << std::endl;

/* Prints the number of materials for a given cell.

* For Cell 2, this is 3 */
std::cout << "Number of materials in Cell 1: "

<< varFlat.sizeMM(1) << std::endl;

/* Get a pointer to the first element in material list for a

* given cell */
auto matPointer = varFlat.getMaterials(1);

Listing 7.4: Uses of WDS Views for Compact Cell Flat

one for accessing data in the single material data, and one for the multi-material

data. Because of the flexibility WDS has, this can easily be achieved. This

is achieved by having two values in DataStoreType outlined in Chapter 5.3.2

and demonstrated in Listing 7.2 found in Section 7.2.1, one corresponding to

the single-material section and one corresponding to the multi-material section.

Much like the view class created for Compact Cell Flat, both of these view classes

are specialised in order to allow the user to access the other arrays stored in the

data structure as well as the data. The use of [int] and (int) mirrors that

of the Compact Cell Flat data structure, but only the multi-material view has

the need for the (int, int) access function, as the single-material view only

has to worry about the cells. Example uses for both the single material and

138

7. Data Structure Abstraction Library Specialisation

multi-material WDS views can be seen in Listings 7.5 and 7.6 respectively.

/* Compact Cell Single material data */
// Set a single cell value. Can also use varSingle(0)
varSingle[0] = 1;

//Prints the number of cells, 9
std::cout << "Size: " << varSingle.size() << std::endl;

/* Prints the number of materials for a given cell.

* For Cell 2, this is 3 */
std::cout << "Number of materials in Cell 1: "

<< varSingle.sizeMM(1) << std::endl;

/* Prints whether a given cell contains multiple materials.

* For Cell 2, this is true */
std::cout << "Check if Cell 1 contains multiple materials: "

<< varSingle.isMM(1) << std::endl;

Listing 7.5: Uses of WDS Views for Compact Cell (Single Material)

Because the two data structures are used for similar purposes, one of WDS’

key features can be utilised, this being the conversion of variables from one data

structure to another as described in Chapter 5.4.1. This functionality was built

into the variable class, and was carried out when the user requested a given

view class. When the user requested a Compact Cell Flat view object, a check

would be done to see whether the variable was already in required the data

structure. If the requested data structure differed from the data structure in

use, then the variable class would convert the data structure, ordering the data

as it was being converted. The converse would be true for the Compact Cell

data structure.

139

7. Data Structure Abstraction Library Specialisation

/* Compact Cell Multi-material data */
// Set a fraction of a cell. Can also use varMulti(0)
varMulti[0] = 0.7;

/* Sets a particular cell and material value.

* If material is not in cell, default value is given. */
varMulti(1, 2) = 0.1;

/* Gets the cell ID for a given index.

* For [0], this would be cell 1. */
std::cout << "Cell ID: " << varMulti.getElement(0) << std::endl;

/* Gets the material ID for a given index.

* For [0], this would be material 0. */
std::cout << "Cell ID: " << varMulti.getMaterial(0) << std::endl;

//Prints the number of multi-materials, 17
std::cout << "Size: " << varMulti.size() << std::endl;

Listing 7.6: Uses of WDS Views for Compact Cell (Multi-Material)

7.4 Performance of Data Structure Abstraction

Library

As discussed in Section 5.5.3, one of the key features of WDS is that new data

structures can be added with little cost to performance, and are able to perform

transformations transparently to the user. To demonstrate this, the two multi-

material data structures implemented into WDS, as described in Section 7.3 are

going to be tested through two kernels.

The first takes an average of all multi-material cells in a mesh, and stored this

in a single-material array. As such, it is expected that the Compact Cell data

structure would perform better than the Compact Cell Flat data structure. This

due to the fact that, in the Comapct Cell data structure, the multi-material data

has been independent of the single-material data, and so can be iterated easily.

However, in the Comapct Cell Flat data structure, all data has to be iterated

through, looking for mutli-material cells. Because of this, the average kernel

was used to test the overhead of using WDS for specialised data structures.

140

7. Data Structure Abstraction Library Specialisation

The second kernel performs an Equation of State (EOS) material lookup.

Two versions of the second kernel were made; one which iterated though the

cells and found the EOS material it corresponded to, and the other iterated

through the EOS materials and then searched for cells with that material. In

the first version, the kernel iterates through all cells materials, performs a lookup

and then a calculation based on this material. The second kernel performs a

similar action, but iterates through the material list then finds cells with that

material. Because both of these kernels do not need to know whether the cell is

single-material or multi-material (only what materials a cell has), the Compact

Cell Flat data structure should perform better than the Compact Cell data

structure. This is because the Compact Cell Flat data structure has all the

materials in concurrent memory, making it quick and fast to iterate through.

As such, these kernels will be used to show how altering the data structure can

increase the performance of certain kernels.

7.4.1 Experimental Setup

In order to exhaustively test the multi-material data structure and kernels,

two meshes outlined by Fogerty et al. [23] were used. These meshes sit at the

extremes of possible multi-material meshes. The first is a randomised mesh,

with a given proportion of cells containing two, three and four materials within

a cell and can be seen in Figure 7.4. In particular, 20% of cells were randomly

picked to be multi-material cells. Of these multi-material cells, 62.5% were

allocated two materials, 25% were allocated three materials, and the remaining

12.5% were allocated four materials.

The second multi-material mesh is a geometric patterned mesh, as seen in

Figure 7.5. This consists of a much lower portion of multi-material cells to

single material cells, compared to the randomised mesh (95% single-material

cells and 5% multi-material cells). To ensure the kernels validate when using

both meshes, and in order to guarantee a fair comparison, the mesh is generated

once, and then duplicated for both the reference and WDS versions.

141

7. Data Structure Abstraction Library Specialisation

(a) Whole Mesh (b) Zoomed Mesh

Figure 7.4: Graphical example of a randomised multi-material mesh

(a) Whole Mesh (b) Zoomed Mesh

Figure 7.5: Graphical example of a geometric multi-material mesh

142

7. Data Structure Abstraction Library Specialisation

In order to measure the performance of the kernels specified, with both

meshes, the kernels were built into the benchmarking suite outlined in Chap-

ter 6.1. This allowed for quick testing of the kernels and data structures. Unlike

the benchmarks, the multi-material kernels were tested on a larger range of

Central Processing Unit (CPU). In fact, these kernels were tested on the same

range of architectures and compilers as the mini-applications outlined in Chap-

ter 6.2. A full breakdown of the architectures and compilers used can be seen

in Table 6.4 in Chapter 6.2.1.

7.4.2 Results

The overhead results presented in this section (Tables 7.1 and 7.2) have been

colour-coded with the same scheme as the overhead results presented in Chap-

ter 6, and were calculated using the formula described in Chapter 2.6. Table 7.1,

shows the average kernel across four different architectures, each using two dif-

ferent compilers. As can be seen, the overhead across the board is very low, less

than 3% for most systems, compilers and across both types of mesh. Whilst

expected, this shows that WDS can be extended easily, with very little impact

to the performance.

System Compiler
Overhead (%)

Random Mesh Geometric Mesh

Isambard Cray 2.03 -1.79
GNU -2.74 -3.32

Kingfisher Intel -1.54 -2.44
GNU -7.46 -6.35

Rome AOCC 5.30 7.78
GNU 11.7 16.2

Table 7.1: Results of multi-material average kernel within Benchmarking suite,
across different architectures and compilers

Table 7.2 shows the overhead for the EOS kernels. In this table, it can be

seen that a majority of systems and configurations have a negative overhead,

143

7. Data Structure Abstraction Library Specialisation

with the lowest being −32.1%. This negative overhead is most likely due to the

fact that under the reference version, the EOS kernel has to be called twice (once

for the single-material data, then again for the multi-material data), whereas

the Compact Cell Flat version only needs to be called once. As well as this, the

Compact Cell Flat data structure ensures that all the valid data is contiguous

allowing for better utilisation of vectorisation. Whilst the data is accessed in

contiguous order for Compact Cell, there are gaps where data does not need to be

processed. Finally, when looking at the version of the EOS kernel which iterates

through the cells first, the reference version is required to check that there is a

valid material at all given positions before performing the calculations. This is

not required in the Compact Cell Flat version, as the data structure ensures all

pieces of data has a corresponding material.

System Compiler

Overhead (%)

EOS (Cell) EOS (Mat)

Random Geometric Random Geometric

Isambard Cray -14.5 -3.57 4.74 -6.61
GNU -8.74 -1.95 -10.6 -27.5

Kingfisher Intel -30.8 -5.83 17.8 -23.7
GNU -25.3 -2.09 -0.55 2.33

Rome AOCC -25.2 6.37 8.81 -45.5
GNU -21.4 7.48 3.42 -32.1

Table 7.2: Results of multi-material EOS kernels within Benchmarking suite,
across different architectures and compilers

There is also a difference between the two EOS kernels for each of the meshes.

For the random mesh, the method of iterating through cells and then locating

the materials performs better than the reverse. The opposite is true for the

geometric mesh. However, on the kernels where the mesh does not match the

best EOS kernel, the overhead is not large.

144

7. Data Structure Abstraction Library Specialisation

7.5 Summary

In this chapter, WDS has been shown to be flexible enough for new, specialised

data structures to be implemented within it. This has been shown through the

use of two multi-material data structures. Specifically, it has been shown how

the library is able to expand to include the data structures in key functionality

such as the conversion of variables from one data structure to another. It has

also been shown that it is flexible enough to allow for different access patterns,

depending on the requirements of the user application.

The performance of these data structures were compared to the reference

multi-material data structure, across multiple architectures, compilers and meshes.

It was shown that, in a like-for-like comparison, the overhead of utilising WDS

is minimal, approximately 3% in most cases. The variant data structure built

into the library was then compared to the same reference data structure for a

different use case, and was shown to be a performance improvement.

145

CHAPTER 8
Conclusion and Future Work

Throughout this thesis, an emphasis has been placed on the development of

memory within a High Performance Computing (HPC) system. This emphasis

on memory can be seen in the increase in high bandwidth memory hardware de-

veloped in recent years, such as Intel’s Xeon Phi Knights Landing (KNL) [103],

the ARM Fujistu A64FX [25] and the NVIDIA A100 [78]. The emphasis on

memory development, coupled with the growing diversity of hardware in the

HPC space highlights the importance of the performance portability of these

heterogeneous systems. This thesis has set out to show that more efficient and

effective performance portability can be achieved through the use of libraries

that can abstract concepts from a program, thus applying specialisations with-

out the need for large rewriting of code. Hence the need for the data structure

abstraction library Warwick Data Store (WDS).

Chapter 4 presented the way in which the performance of a heat-conduction

proxy application differs between parallelisation libraries and architectures. It

was shown that higher bandwidth memory can improve the performance of

largely memory bound problems. The need for performance portability was

also emphasised, and information was provided as to how this can be measured

effectively from both an application and architectural viewpoint.

Chapter 5 focused on the development of a data structure abstraction li-

brary, WDS. The chapter documented how flexibility was incorporated into the

design, without sacrificing performance. The additional features gained though

the abstraction of the data structures highlighted another benefit of the library.

Finally, the data structures implemented into the library were discussed, along-

side steps taken to ensure minimal performance impact. Furthermore, ways in

146

8. Conclusion and Future Work

which specialised data structures could be built, was discussed.

Chapter 6 explored the performance of WDS. The performance assessment

of WDS was achieved through the implementation of the library into a collection

of benchmark kernels and mini-applications. The collections were then tested

across a multitude of different processors and compilers in order to ensure that

the cost of utilising the library was low. WDS was also tested at scale to ensure

that the library did not impact performance when utilised across multiple nodes.

It was shown that the overhead was larger for smaller problems, but was still

rather small (less than 30% for most settings). The overhead for larger problems

decreased to less than 10% for nearly all cases, showing that WDS does not

majorly impact the performance.

Chapter 7 described a specialised case for WDS, this being the use of multi-

material data structures. In this chapter, two multi-material data structures

were implemented into the library, and through the use of two kernels and a

collection of architectures and compilers, it was shown that the performance

of these custom data structures through the library is similar to that of the

reference version. It was also shown that changing the data structure could

further enhance performance.

The remainder of this chapter will focus on three areas. Firstly, in Sec-

tion 8.1, the limitations of the work are discussed. Section 8.2 then explores

how work carried out in this thesis could be taken forward, expanding upon the

limitations discussed in Section 8.1. This includes expansions to WDS and the

work undertaken on the multi-material kernels. A final reflection on the thesis

is then presented in Section 8.3.

8.1 Limitations

The primary limitation of this thesis relates to the restricted scope of some

of the areas that each chapter focused on. One such example of this is the

range of systems examined in Chapter 4. Within this chapter, the performance

147

8. Conclusion and Future Work

portability of the mini-application was measured across two different Intel sys-

tems as well as a NVIDIA Graphics Processing Unit (GPU). Whilst this covers

the majority of HPC systems, there is an increasing variety of different pro-

cessors available. This includes a growing presence of AMD processors, IBM

Power 8 [30] and Power 9 [34] systems, and a larger variety of ARM proces-

sors such as Marvell’s Thunder X2 [65] and Fujitsu’s A64FX Central Processing

Unit (CPU) [25] processors. The latter of these is now utilised to run the most

powerful supercomputer in the world. [114]

Another limitation, driven by the necessity for a smaller scope, is seen in

the development of the data structure abstraction library WDS which was dis-

cussed in Chapter 5. When developing the library, the main focus was on

memory accessible to the CPU, and in particular, main memory. By adopting

this approach, the possibility of using the library in Compute Unified Device

Architecture (CUDA) applications, or in any application that utilises GPUs to

achieve parallelism, was limited. This also comes with the added caveat that

the library is only performance portable across CPU architectures, such as Intel

Xeon CPUs, as well as KNL, AMD and ARM processors.

Furthermore, WDS was also designed with an additional limitation follow-

ing it’s initial implementation. As discussed briefly in Chapter 5.2, the initial

implementation of WDS had a FORTRAN and C interface that could be used

to interact with the library from a wider range of applications. However, due

to their performance within the library, these interfaces were depreciated when

transitioning to the current implementation. This meant that support for these

languages were dropped, in favour of more development and optimisation in the

core, C++ implementation.

8.2 Future Work

Whilst a significant amount of work in this area has already been achieved, there

are still more areas of interest that can be explored. Such work would mainly

148

8. Conclusion and Future Work

expand from the data structure abstraction library itself, and would include

work on how improvements could be made and how more functionality could

be included. The following sections discuss in detail the different aspects of the

future work.

8.2.1 Warwick Data Store

Even with the feature set outlined in Chapter 5, the functionality provided by

WDS has the potential to be extended in order to encompass more data op-

erations. One of the key limitations of WDS is that it can only handle main

memory of a CPU centric system, meaning that specialisations for different

memory hierarchies are not accounted for. An example of this is the KNL

system. In this system, a separate block of Multi-Channel Dynamic Random

Access Memory (MCDRAM) can be configured into multiple different config-

urations. Depending on the memory configuration of the KNL system being

utilised, it may be useful for the library to manage which data resides on the

higher bandwidth MCDRAM, and what data is located on the larger-capacity

main memory. Through this approach, processors with multiple Non-Uniform

Memory Access (NUMA) regions, such as the KNL could be better supported.

Another area for expansion with the WDS library is the exploration of al-

lowing data to reside across multiple devices on the same node, such as an

accelerator such as a GPU. Whilst, in the case of CUDA capable GPUs, uni-

fied memory techniques can be utilised to get around this issue with minimal

development time, this approach has been shown to be slower than manual

allocation. [58] As such, expanding the capabilities of WDS such that it can

handle memory on different devices, and transfer data more efficiently would be

a beneficial feature in ensuring better performance portability.

Whilst WDS can handle Message Passing Interface (MPI) applications, these

have been limited to Structure of Arrays (SoA) data structures. For Array of

Structures (AoS) data structures, this would mean either sending individual

values one at a time, packing and unpacking the data into an SoA buffer, or

149

8. Conclusion and Future Work

knowing the underlying data structure and building an MPI data type that

could iterate through the variable properly. None of these options are ideal

when the library is designed to handle data structure interactions. Therefore,

a good improvement to WDS would be to include mechanisms into the View

and ViewSpec classes that would allow for better interactions with MPI. For

example, this could include WDS generating the relevant MPI data type auto-

matically.

Another feature that would be helpful when developing a mini-application

with WDS, is the idea of grouping variables together. This would involve al-

tering the data structure for one variable which would alter the data structure

for the other variables, even if the the variables are not part of the same data

structure. This is useful if, for example, the sizes of multiple SoA variables

change together. Without using this feature, the application developer would

have to iterate through each variable and apply the alteration to each individual

variable. However, such an approach could easily lead to variables being missed,

or incorrectly altered.

Finally, a useful additional feature for those working with WDS, would be to

include a mechanism for the collection of statistics that are collated centrally and

are reported either when requested, or when the data store object is destroyed.

In order to eliminate the effect on performance on every run, this collection

process would only be included when the program is compiled in debug mode,

in the same way the C++ assert statements are handled. This could be very

useful when analysing the data access pattern of a given program, and could even

lead to recommendations on those data structure changes which may improve

the performance of a program.

8.2.2 Multi-Material Data Structures

Multi-material physics within the HPC space is still relatively unexplored, es-

pecially when discussing their data structures. It would be a useful exercise to

explore this area further and to examine the other data structures for multi-

150

8. Conclusion and Future Work

material physics outlined by Fogerty et al. [23], in order to assess the perfor-

mance in actual kernels, and to understand the effect on these data structures

of different levels of parallelism and memory bandwidth. These data structures,

outlined in Chapter 7.3, could be implemented into WDS and may be able to

follow the same format as the already-implemented Compact Cell and Compact

Cell Flat data structures. From this, the data structures could be swapped

between themselves by changing a single value, and recompiling the code.

In addition, it would be interesting to explore whether it is possible to create

a variation of Compact Material (a similar data structure to Compact Cell out-

lined in Chapter 7.3 where the data structure orders the data in material order

through a linked list, both designed by Fogerty et al. [23]). This variant would

be similar to the differences between the Compact Cell Flat and the Compact

Cell data structure. As such, the Compact Material Flat data structure outlined

would aim to place all the data in concurrent memory, at the cost of being able

to add or remove cells from materials easily.

As shown in Chapter 7.4, each of the six data structures has the potential to

perform best for a given kernel. It is therefore apparent that there is a require-

ment to convert the multi-material data structure from one to another. Whilst

WDS has mechanisms in place to handle such conversions, care would have to

be taken in order to ensure that the conversion process is applied efficiently and

in a way that ensures that data is not lost between conversions. This approach

could result in the provision of a data structure optimisation analysis for a given

collection of multi-material kernels or potentially for a mini-application.

8.2.3 Data Structure Optimisations

As alluded to in Section 8.2.2, the work covered in the thesis has not included a

performance analysis on the conversion of variables from one data structure to

another. This is, however, an interesting area of research, and one that would

need to be explored over multiple different scenarios. This would involve iden-

tifying kernels within a mini-application that could be improved by altering

151

8. Conclusion and Future Work

the data structure. Altering the data structure could involve a complete re-

structuring of the data structure (for example, SoA to AoS or vice versa) or an

alteration within a variable (for example, changing the data adjacency as out-

lined in Chapter 5.4.2). The performance of the reference version, the original

WDS version and modified WDS version would then be measured, examining

both the hardware utilisation through the use of profiling tools and the runtimes

of the kernels and conversion process. By applying this method across a range of

architectures and problem sizes, it can be ascertained at what point it is worth

altering the data structure for better performance on a particular kernel, and

also when the conversion process is more expensive than the gains provided by

the alteration.

In order for this analysis to be useful, it would be necessary to explore the

utilisation of the current data structure and the performance of the conversion

process. Otherwise, the effective point at which the conversion process would

be better in terms of the performance, would be skewed and may be higher than

required. As such, the performance of this conversion process needs to be as

optimal as possible.

8.2.4 Just-In-Time Compilation

Within WDS, the majority of calculations performed are done at runtime. This

is due to the fact that the information required for these operations, such as

calculating the offset and access patterns for a given data structure, are only

provided once the program has begun execution. However, once the data struc-

ture is created, this information is not often changed. As such, it would be

beneficial for the performance of the library to calculate these values prior to

compilation, and use them as static, constant values. In cases where the data

structure is altered, a new data structure would be created and the old one dis-

carded. This process would help the performance of the library, as the compiler

knows what will be constant, and can ensure that the program does not make

unnecessary checks to see if these values have changed.

152

8. Conclusion and Future Work

The aforementioned scenario highlights where newer techniques such as Just-

In-Time (JIT) compilation could be beneficial to WDS. JIT compilation is

formed of two stages. The first is the compilation of only the required and

necessary code. The remainder of the code, or code which has been labelled, is

then packaged together with a small program. While the program is executed,

the second stage is executed. During execution, the program will reach a sec-

tion which has not yet been compiled. When this occurs, the small program

bundled with the uncompiled code is executed, and compiles the next section of

code. The original program continues executing, now with the newly compiled

code which is specialised to the given state of the program. The use of JIT

compilation could be explored for WDS, to ascertain whether a performance

improvement could be gained, bringing the library closer to a 0% overhead for

more situations.

8.3 Reflections

With the rapid pace of development seen within the HPC research community,

the architecture of future systems is not, nor has it ever been, certain. Some

trends, such as the growth of memory-focused systems and the reliance on per-

formance portable code, will continue into the foreseeable future. This thesis

only scratches the surface on memory-based improvements from both a soft-

ware and hardware perspective, and touches on some of the key issues within

the area.

153

Bibliography

[1] AMD. AMD EPYC 7742. https://www.amd.com/en/products/cpu/

amd-epyc-7742 (Accessed: 28th August 2020), 2020.

[2] G. M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Spring Joint Computer Confer-
ence (AFIPS ’67 (Spring)), pages 483–485, Atlantic City, NJ, April 1967.
Association for Computing Machinery, New York, NY.

[3] Arm. Arm Forge | Profiling with Arm MAP - Arm De-
veloper. https://developer.arm.com/tools-and-software/

server-and-hpc/debug-and-profile/arm-forge/resources/

tutorials/profiling-with-arm-map (Accessed: 10th August 2020),
2020.

[4] P. G. H. Bachmann. Die analytische Zahlentheorie. Dargestellt von Paul
Bachmann. Leipzig B.G. Teubner, 1894. (in German).

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The
NAS Parallel Benchmarks—Summary and Preliminary Results. In Pro-
ceedings of the 1991 ACM/IEEE Conference on Supercomputing (Super-
computing ’91), pages 158–165, Albuquerque, NM, August 1991. Associ-
ation for Computing Machinery, New York, NY.

[6] B. Barney. Message Passing Interface (MPI). https://computing.llnl.
gov/tutorials/mpi/ (Accessed: 26th July 2020), 2020.

[7] B. Barney. POSIX Threads Programming. https://computing.llnl.

gov/tutorials/pthreads/ (Accessed: 25th July 2020), 2020.

[8] Berkeley Lab. 2019 International Workshop on Performance, Portabil-
ity and Productivity in HPC (P3HPC). https://p3hpc2019.lbl.gov/

(Accessed: 14th August 2020), 2019.

[9] Berkeley Lab. DOE Performance, Portability and Productivity Annual
Meeting. https://doep3meeting2019.lbl.gov/ (Accessed: 14th August
2020), 2019.

[10] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

154

https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/resources/tutorials/profiling-with-arm-map
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/resources/tutorials/profiling-with-arm-map
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/resources/tutorials/profiling-with-arm-map
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
https://p3hpc2019.lbl.gov/
https://doep3meeting2019.lbl.gov/

8. BIBLIOGRAPHY

[11] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz. Caliper: Performance Intro-
spection for HPC Software Stacks. In SC ’16: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, pages 550–560, Salt Lake City, UT, November 2016. IEEE
Computer Society, Los Alamitos, CA.

[12] M. Ciżnicki, M. Kierzynka, P. Kopta, K. Kurowski, and P. Gepner. Bench-
marking Data and Compute Intensive Applications on Modern CPU and
GPU Architectures. Procedia Computer Science, 9:1900–1909, April 2012.

[13] cppreference.com. assert. https://en.cppreference.com/w/cpp/error/
assert (Accessed: 24th July 2021), 2020.

[14] cppreference.com. inline specifier. https://en.cppreference.com/w/

cpp/language/inline (Accessed: 9th August 2020), 2020.

[15] T. Deakin, S. McIntosh-Smith, and W. P. Gaudin. Many-Core Accel-
eration of a Discrete Ordinates Transport Mini-App at Extreme Scale.
In High Performance Computing, volume 9697, pages 429–448. Springer-
Verlag, Berlin, Germany, June 2016.

[16] W. Deconinck, P. Bauer, M. Diamantakis, M. Hamrud, C. Kühnlein,
P. Maciel, G. Mengaldo, T. Quintino, B. Raoult, P. K. Smolarkiewicz, and
N. P. Wedi. Atlas: A library for numerical weather prediction and climate
modelling. Computer Physics Communications, 220:188–204, November
2017.

[17] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark:
past, present and future. Concurrency and Computation: Practice and
Experience, 15(9):803–820, July 2003.

[18] H. C. Edwards and C. R. Trott. Kokkos: Enabling Performance Porta-
bility Across Manycore Architectures. In 2013 Extreme Scaling Workshop
(xsw 2013), pages 18–24, Boulder, CO, August 2013. IEEE Computer
Society, Los Alamitos, CA.

[19] Exascale Computing Project. ECP Proxy Applications. https://

proxyapps.exascaleproject.org/ (Accessed: 13th August 2020), 2020.

[20] F H McMahon. The Livermore Fortran Kernels: A computer test of
the numerical performance range. Technical report, Lawrence Livermore
National Lab, United States Department of Energy, Livermore, CA, De-
cember 1986.

155

https://en.cppreference.com/w/cpp/error/assert
https://en.cppreference.com/w/cpp/error/assert
https://en.cppreference.com/w/cpp/language/inline
https://en.cppreference.com/w/cpp/language/inline
https://proxyapps.exascaleproject.org/
https://proxyapps.exascaleproject.org/

8. BIBLIOGRAPHY

[21] P. J. Fleming and J. J. Wallace. How Not to Lie with Statistics: The
Correct Way to Summarize Benchmark Results. Communications of the
ACM, 29(3):218–221, March 1986.

[22] M. J. Flynn. Very High-Speed Computing Systems. Proceedings of the
IEEE, 54(12):1901–1909, 1966.

[23] S. Fogerty, M. Martineau, R. Garimella, and R. Robey. A comparative
study of multi-material data structures for computational physics applica-
tions. Computers & Mathematics with Applications, 78(2):565–581, July
2019.

[24] K. Franko. MiniAero and Aero: An Overview. Technical report, Sandia
National Laboratories, Albuquerque, NM, 2015.

[25] Fujitsu Limited. Fujitsu Presents Post-K CPU Specifica-
tions. https://www.fujitsu.com/global/about/resources/news/

press-releases/2018/0822-02.html (Accessed: 5th July 2020), 2018.

[26] S. Futral and LLNL. ASC Sequoia Benchmark Codes. https://asc.

llnl.gov/sequoia/benchmarks/ (Accessed: 13th August 2020), 2013.

[27] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H. J. Kelly. Per-
formance Analysis of the OP2 Framework on Many-Core Architectures.
SIGMETRICS Performance Evaluation Review, 38(4):9–15, March 2011.

[28] GNU. 6.45 An Inline Function is As Fast As a Macro. https://gcc.gnu.
org/onlinedocs/gcc/Inline.html (Accessed: 9th August 2020), 2020.

[29] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A Call Graph
Execution Profiler. SIGPLAN Notices, 17(6):120–126, June 1982.

[30] D. Henderson. POWER8 Processor-Based Systems RAS. Technical re-
port, IBM Server and Technology Group, Armonk, NY, March 2016.

[31] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich. Improving Performance via Mini-applications. Technical
report, Sandia National Laboratories, Albuquerque, NM, September 2009.

[32] R. D. Hornung and J. A. Keasler. The RAJA Portability Layer: Overview
and Status. Technical report, Lawrence Livermore National Lab, Liver-
more, CA, November 2014.

[33] IBM. Fact Sheet & Background: Roadrunner Smashes the Petaflop Bar-
rier. https://www-03.ibm.com/press/us/en/pressrelease/24405.wss

(Accessed: 23rd September 2020), 2008.

156

https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html
https://asc.llnl.gov/sequoia/benchmarks/
https://asc.llnl.gov/sequoia/benchmarks/
https://gcc.gnu.org/onlinedocs/gcc/Inline.html
https://gcc.gnu.org/onlinedocs/gcc/Inline.html
https://www-03.ibm.com/press/us/en/pressrelease/24405.wss

8. BIBLIOGRAPHY

[34] IBM. POWER9 processor chip | IBM. https://www.ibm.com/

it-infrastructure/power/power9 (Accesssed: 6th September 2020),
2020.

[35] IEEE Computer Society. 1003.1-2008 - IEEE Standard for Information
Technology - Portable Operating System Interface (POSIX(R)). Technical
report, IEEE Standards Association, September 2008.

[36] Intel. Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor White Paper. Technical report, Intel, Santa Clara, CA, March
2004.

[37] Intel. Intel Advanced Vector Extensions Programming Reference. Tech-
nical report, Intel Corporation, January 2009.

[38] Intel. Optimizing Performance with Intel Advanced Vector Extensions.
Technical report, Intel Corporation, September 2014.

[39] Intel. Intel MPI Library. https://software.intel.com/content/www/

us/en/develop/tools/mpi-library.html (Accessed: 26th July 2020),
2020.

[40] Intel. Intel VTune Profiler. https://software.intel.com/content/

www/us/en/develop/tools/vtune-profiler.html (Accessed: 10th Au-
gust 2020, 2020.

[41] Intel. Intel Xeon Phi Processor 7210. https://

ark.intel.com/content/www/us/en/ark/products/94033/

intel-xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html

(Accessed: 28th August 2020), 2020.

[42] Intel. Intel Xeon Platinum 9242 Processor. https:

//ark.intel.com/content/www/us/en/ark/products/194145/

intel-xeon-platinum-9242-processor-71-5m-cache-2-30-ghz.html

(Accessed: 28th August 2020), 2020.

[43] Intel. Intel Xeon Processor E5-2660 v4. https://

ark.intel.com/content/www/us/en/ark/products/91772/

intel-xeon-processor-e5-2660-v4-35m-cache-2-00-ghz.html (Ac-
cessed: 28th August 2020), 2020.

[44] Intel. Intel Xeon Processor E5-2680 v4. https://

ark.intel.com/content/www/us/en/ark/products/91754/

intel-xeon-processor-e5-2680-v4-35m-cache-2-40-ghz.html (Ac-
cessed: 22nd September 2020), 2020.

157

https://www.ibm.com/it-infrastructure/power/power9
https://www.ibm.com/it-infrastructure/power/power9
https://software.intel.com/content/www/us/en/develop/tools/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://ark.intel.com/content/www/us/en/ark/products/94033/intel-xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html
https://ark.intel.com/content/www/us/en/ark/products/94033/intel-xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html
https://ark.intel.com/content/www/us/en/ark/products/94033/intel-xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html
https://ark.intel.com/content/www/us/en/ark/products/194145/intel-xeon-platinum-9242-processor-71-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194145/intel-xeon-platinum-9242-processor-71-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194145/intel-xeon-platinum-9242-processor-71-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91772/intel-xeon-processor-e5-2660-v4-35m-cache-2-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91772/intel-xeon-processor-e5-2660-v4-35m-cache-2-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91772/intel-xeon-processor-e5-2660-v4-35m-cache-2-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91754/intel-xeon-processor-e5-2680-v4-35m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91754/intel-xeon-processor-e5-2680-v4-35m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91754/intel-xeon-processor-e5-2680-v4-35m-cache-2-40-ghz.html

8. BIBLIOGRAPHY

[45] International Organization for Standardization. ISO/IEC 9899:1999 Pro-
gramming languages - C. Technical report, International Organization for
Standardization, December 1999.

[46] J. Jeffers, J. Reinders, and A. Sodani. Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition, pages 251–267. El-
sevier, Amsterdam, Netherlands, 2016.

[47] K. Thompson, D. M. Ritchie. UNIX PROGRAMMER’S MANUAL. Bell
Telephone Laboratories, Incorporated, 5 edition, June 1974.

[48] X. ke Liao, K. Lu, C. qun Yang, J. wen Li, Y. Yuan, M. che Lai,
L. bo Huang, P. jing Lu, J. bin Fang, J. Ren, and J. Shen. Moving
from exascale to zettascale computing: challenges and techniques. Fron-
tiers of Information Technology & Electronic Engineering, 19(10):1236 –
1244, October 2018.

[49] R. O. Kirk, T. R. Law, S. Maheswaran, and S. A. Jarvis. Warwick Data
Store: A HPC Library for Flexible Data Storage in Multi-Physics Appli-
cations. In Super Computing 19 (SC19), Denver, CO, November 2019.
Association for Computing Machinery, New York, NY.

[50] R. O. Kirk, G. R. Mudalige, I. Z. Reguly, S. A. Wright, M. J. Mar-
tineau, and S. A. Jarvis. Achieving Performance Portability for a Heat
Conduction Solver Mini-Application on Modern Multi-core Systems. In
2017 IEEE International Conference on Cluster Computing (CLUSTER),
pages 834–841, Honolulu, HI, September 2017. IEEE Computer Society,
Los Alamitos, CA.

[51] R. O. Kirk, M. Nolten, R. Kevis, T. R. Law, S. Maheswaran, S. A. Wright,
S. Powell, G. R. Mudalige, and S. A. Jarvis. Warwick Data Store: A
Data Structure Abstraction Library. In 11th IEEE International Work-
shop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS20), pages 71–85, Atlanta, GA,
November 2020. IEEE Computer Society, Los Alamitos, CA.

[52] P. Kogge and J. Shalf. Exascale computing trends: Adjusting to the “new
normal” for computer architecture. Computing in Science & Engineering,
15(6):16–26, October 2013.

[53] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers, C-
28(9):690–691, 1979.

158

8. BIBLIOGRAPHY

[54] T. R. Law, R. Kevis, S. Powell, J. Dickson, S. Maheswaran, J. A. Herd-
man, and S. A. Jarvis. Performance Portability of an Unstructured Hydro-
dynamics Mini-application. In Proceedings of 2018 International Work-
shop on Performance, Portability, and Productivity in HPC (P3HPC),
Dallas, TX, November 2018. Association for Computing Machinery, New
York, NY.

[55] Lawrence Livermore National Laboratory. DOE Centers of Excellence
Performance Portability Meeting. Technical report, Lawrence Livermore
National Laboratory, Glendale, AZ, 2016.

[56] Lawrence Livermore National Laboratory. Axom. https://github.com/
LLNL/axom (Accessed: 4th July 2020), 2020.

[57] Lawrence Livermore National Laboratory. Sidre User Documenta-
tion. https://axom.readthedocs.io/en/develop/axom/sidre/docs/

sphinx/index.html (Accessed: 4th July 2020), 2020.

[58] W. Li, G. Jin, X. Cui, and S. See. An Evaluation of Unified Memory Tech-
nology on NVIDIA GPUs. In 2015 15th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, pages 1092–1098, Shenzhen,
China, May 2015. IEEE Computer Society, Los Alamitos, CA.

[59] A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman, J. M.
Levesque, and S. A. Jarvis. CloverLeaf: Preparing Hydrodynamics Codes
for Exascale. In A New Vintage of Computing (CUG2013), pages 1–15,
Napa, CA, May 2013. Cray User Group.

[60] Mantevo Organization. Mantevo Project | Mantevo. https://mantevo.

github.io/ (Accessed: 13th August 2020), 2020.

[61] I. L. Markov. Limits on fundamental limits to computation. Nature,
512(7513):147–154, 2014.

[62] M. Martineau, S. McIntosh-Smith, M. Boulton, and W. P. Gaudin. An
Evaluation of Emerging Many-core Parallel Programming Models. In
Proceedings of the 7th International Workshop on Programming Models
and Applications for Multicores and Manycores (PMAM’16), pages 1–
10, Barcelona, Spain, March 2016. Association for Computing Machinery,
New York, NY.

[63] M. Martineau, S. McIntosh-Smith, M. Boulton, W. P. Gaudin, and
D. Beckingsale. A Performance Evaluation of Kokkos & RAJA using the
TeaLeaf Mini-App. In Supercomputing 2015 (SC15), Austin, TX, Novem-
ber 2015.

159

https://github.com/LLNL/axom
https://github.com/LLNL/axom
https://axom.readthedocs.io/en/develop/axom/sidre/docs/sphinx/index.html
https://axom.readthedocs.io/en/develop/axom/sidre/docs/sphinx/index.html
https://mantevo.github.io/
https://mantevo.github.io/

8. BIBLIOGRAPHY

[64] M. Martineau, S. McIntosh-Smith, and W. Gaudin. Assessing the perfor-
mance portability of modern parallel programming models using TeaLeaf.
Concurrency and Computation: Practice and Experience, 29(15), January
2017.

[65] Marvell. Manufacturing Applications on Marvell ThunderX2. Technical
report, Marvell, Hamilton, Bermuda, June 2019.

[66] G. Marçais and C. Kingsford. A fast, lock-free approach for efficient par-
allel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770,
January 2011.

[67] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pages 19–25, De-
cember 1995.

[68] S. McIntosh-Smith and T. Mattson. Chapter 22 - Portable Performance
with OpenCL. In J. Reinders and J. Jeffers, editors, High Performance
Parallelism Pearls, pages 359–375. Morgan Kaufmann, Boston, 2015.

[69] G. E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8):114 – 117, April 1965.

[70] G. E. Moore. Progress in digital integrated electronics. International
Electron Devices Meeting, pages 11 – 13, 1975.

[71] G. R. Mudalige, I. Z. Reguly, M. B. Giles, A. C. Mallinson, W. P. Gaudin,
and J. A. Herdman. Performance Analysis of a High-Level Abstractions-
Based Hydrocode on Future Computing Systems. In Performance Model-
ing, Benchmarking and Simulation of High Performance Computer Sys-
tems (PMBS 2014), pages 85–104, New Orleans, LA, November 2014.
Springer International Publishing, New York City, NY.

[72] NASA. NAS Parallel Benchmarks. https://www.nas.nasa.gov/

publications/npb.html (Accessed: 12th August 2020), 2020.

[73] A. A. Nasar. The history of Algorithmic complexity. The Mathematics
Enthusiast, 13(3):226–227, August 2016.

[74] W. F. Noh. Errors for Calculations of Strong Shocks Using an Artificial
Viscosity and an Artificial Heat Flux. Journal of Computational Physics,
72(1):78–120, September 1987.

160

https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html

8. BIBLIOGRAPHY

[75] D. A. Nowak and R. C. Christensen. ASCI Applications. Technical re-
port, Lawrence Livermore National Laboratory, Livermore, CA, Novem-
ber 1997.

[76] NVIDIA. NVIDIA Tesla P100. Technical report, NVIDIA, Santa Clara,
CA. WP-08019-001_v01.1.

[77] NVIDIA. CUDA Zone | NVIDIA Developer. https://developer.nvidia.
com/cuda-zone (Accessed: 14th August 2020), 2020.

[78] NVIDIA. NVIDIA A100 Tensor Core GPU Architecture. Technical report,
NVIDIA, Santa Clara, CA, 2020. V1.0.

[79] NVIDIA Developer Zone. Profiler :: CUDA Toolkit Documenta-
tion. https://docs.nvidia.com/cuda/profiler-users-guide/index.

html (Accessed: 10th August 2020, 2020.

[80] OpenACC. OpenACC. https://www.openacc.org/ (Accessed: 14th Au-
gust 2020), 2020.

[81] OpenMP. OpenMP. https://www.openmp.org/ (Accessed: 25th July
2020), 2020.

[82] OpenMP Architecture Review Board. OpenMP Application Program In-
terface. Technical report, OpenMP, July 2013.

[83] OpenMPI. Open MPI: Open Source High Performance Computing.
https://www.open-mpi.org (Accessed: 26th July 2020), 2020.

[84] OpenPBS. OpenPBS Open Source Project. https://www.openpbs.org/

(Accessed: 26th July 2020), 2020.

[85] L. A. Parnell, D. W. Demetriou, V. Kamath, and E. Y. Zhang. Trends
in High Performance Computing: Exascale Systems and Facilities Beyond
the First Wave. In 2019 18th IEEE Intersociety Conference on Ther-
mal and Thermomechanical Phenomena in Electronic Systems (ITherm),
pages 167 – 176, Las Vegas, NV, May 2019. IEEE Computer Society, Los
Alamitos, CA.

[86] A. Peleg and U. Weise. MMX Technology Extension to the Intel Archi-
tecture. IEEE Micro, 16(4):42–50, 1996.

[87] S. J. Pennycook, J. D. Sewall, and V. W. Lee. Implications of a metric for
performance portability. Future Generation Computer Systems, 92:947–
958, March 2019.

161

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://www.openacc.org/
https://www.openmp.org/
https://www.open-mpi.org
https://www.openpbs.org/

8. BIBLIOGRAPHY

[88] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL - A
Portable Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers. http://www.netlib.org/benchmark/

hpl/ (Accessed: 14th June 2020), 2018. Version 2.3.

[89] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe.
Portable Performance on Heterogeneous Architectures. In Proceedings of
the eighteenth international conference on Architectural support for pro-
gramming languages and operating systems (ASPLOS ’13), pages 431–
444, Houston, TX, March 2013. Association for Computing Machinery,
New York, NY.

[90] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynam-
ics. Journal of Computational Physics, 117(1):1–19, March 1995.

[91] S. K. Raman, V. Pentkovski, and J. Keshava. Implementing streaming
SIMD extensions on the Pentium III processor. IEEE Micro, 20(4):47–57,
2000.

[92] I. Z. Reguly, G. R. Mudalige, C. Bertolli, M. B. Giles, A. Betts, P. H. J.
Kelly, and D. Radford. Acceleration of a Full-scale Industrial CFD Appli-
cation with OP2. IEEE Transactions on Parallel and Distributed Systems,
27(5):1265–1278, July 2015.

[93] I. Z. Reguly, G. R. Mudalige, and M. B. Giles. Design and Development
of Domain Specific Active Libraries with Proxy Applications. In IEEE
International Conference on Cluster Computing (CLUSTER), pages 738–
745, Chicago, IL, September 2015. IEEE Computer Society, Los Alamitos,
CA.

[94] I. Z. Reguly, G. R. Mudalige, and M. B. Giles. Loop Tiling in Large-Scale
Stencil Codes at Run-time with OPS. IEEE Transactions on Parallel and
Distributed Systems, 29(4):873–886, November 2017.

[95] J. Reinders. Intel AVX-512 Instructions. https://software.intel.com/
content/www/us/en/develop/articles/intel-avx-512-instructions.

html (Accessed 24th July 2020), 2013.

[96] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra, and R. Biswas. The
Impact of Hyper-Threading on Processor Resource Utilization in Produc-
tion Applications. In 2011 18th International Conference on High Per-
formance Computing (HIPC 2011), pages 1–10, Bangalore, India, 2011.
IEEE Computer Society, Los Alamitos, CA.

162

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html

8. BIBLIOGRAPHY

[97] S. Sawadsitang, J. Lin, S. See, F. Bodin, and S. Matsuoka. Understand-
ing Performance Portability of OpenACC for Supercomputers. In IEEE
International Parallel and Distributed Processing Symposium Workshop
(IPDPSW), pages 699–707, Hyderabad, India, 2015. IEEE Computer So-
ciety, Los Alamitos, CA.

[98] SchedMD. Slurm Workload Manager - Overview. https://slurm.

schedmd.com/overview.html (Accessed: 26th July 2020), 2020.

[99] Science History Institute. Gordon E. Moore. https://www.

sciencehistory.org/historical-profile/gordon-e-moore (Accessed:
22nd July 2020).

[100] J. M. Shalf and R. Leland. Computing beyond Moore’s Law. Computer,
48(12):14–23, 2015.

[101] A. Sidelnik, S. Maleki, B. L. Chamberlain, M. J. Garzar’n, and D. Padua.
Performance Portability with the Chapel Language. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 582–594,
Shanghai, China, May 2012. IEEE Computer Society, Los Alamitos, CA.

[102] G. A. Sod. A Survey of Several Finite Difference Methods for Systems
of Nonlinear Hyperbolic Conservation Laws. Journal of Computational
Physics, 27(1):1–31, April 1978.

[103] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu. Knights Landing: Second-
generation Intel Xeon Phi Product. IEEE Micro, 36(2):34–46, April 2016.

[104] A. Srivastava and A. Eustace. ATOM: A System for Building Customized
Program Analysis Tools. SIGPLAN Notices, 29(6):196–205, June 1994.

[105] T. Sterling, M. Anderson, and M. Brodowicz. Chapter 16 - The Essen-
tial OpenACC. In T. Sterling, M. Anderson, and M. Brodowicz, edi-
tors, High Performance Computing, pages 483–508. Morgan Kaufmann,
Boston, 2018.

[106] S. R. Sukumar, M. A. Matheson, R. Kannan, and S.-H. Lim. Mini-apps
for High Performance Data Analysis. In IEEE International Conference
on Big Data (Big Data), pages 1483–1492, Washington, DC, December
2016. IEEE Computer Society, Los Alamitos, CA.

[107] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting Performance
Data with PAPI-C. In Tools for High Performance Computing 2009, pages
157–173, Dresden, Germany, 2010. Springer, Berlin Heidelberg.

163

https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://www.sciencehistory.org/historical-profile/gordon-e-moore
https://www.sciencehistory.org/historical-profile/gordon-e-moore

8. BIBLIOGRAPHY

[108] S. Thakkur and T. Huff. Internet Streaming SIMD Extensions. Computer,
32(12):26–34, 1999.

[109] The Khronos Group Inc. OpenCL Overview - The Khronos Group Inc.
https://www.khronos.org/opencl/ (Accessed: 14th August 2020), 2020.

[110] The Khronos Group Inc. SYCL Overview - The Khronos Group Inc.
https://www.khronos.org/sycl/ (Accessed: 14th August 2020), 2020.

[111] The MPI Forum. MPI: A Message Passing Interface. In Proceedings
of the 1993 ACM/IEEE Conference on Supercomputing, pages 878–883,
Portand, OR, 1993. Association for Computing Machinery, New York,
NY.

[112] T. N. Theis and H.-S. P. Wong. The End of Moore’s Law: A New Be-
ginning for Information Technology. Computing in Science Engineering,
19(2):41–50, 2017.

[113] Top500. Home - Top500. https://www.top500.org/ (Accessed: 26th July
2020), 2020.

[114] Top500. Japan Captures TOP500 Crown with Arm-
Powered Supercomputer. https://www.top500.org/news/

japan-captures-top500-crown-arm-powered-supercomputer/ (Ac-
cessed: 6th September 2020), 2020.

[115] Top500. The Linpack Benchmark. https://top500.org/project/

linpack/ (Accessed: 12th August 2020), 2020.

[116] D. R. Truby, S. A. Wright, R. Kevis, S. Maheswaran, J. A. Herdman, and
S. A. Jarvis. BookLeaf : an unstructured hydrodynamics mini-application.
In Third International Workshop on Representative Applications, pages
1–8, Belfast, United Kingdom, September 2018. IEEE Computer Society,
Los Alamitos, CA.

[117] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithread-
ing: Maximizing on-Chip Parallelism. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture (ISCA ’95), pages
392–403, S. Margherita Ligure, Italy, 1995. Association for Computing
Machinery, New York, NY.

[118] UK Mini-App Consortium. UK Mini-App Consortium. https://uk-mac.
github.io/ (Accessed: 13th August 2020), 2014.

[119] UK Mini-App Consortium. UK-MAC/TeaLeaf. https://github.com/

UK-MAC/TeaLeaf (Accessed: 16th August 2020), 2020.

164

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.top500.org/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://top500.org/project/linpack/
https://top500.org/project/linpack/
https://uk-mac.github.io/
https://uk-mac.github.io/
https://github.com/UK-MAC/TeaLeaf
https://github.com/UK-MAC/TeaLeaf

. BIBLIOGRAPHY

[120] University of Bristol. TeaLeaf. https://github.com/UoB-HPC/TeaLeaf

(Accessed: 18th June 2019), 2019.

[121] Valgrind Developers. Valgrind. https://valgrind.org/ (Accessed: 12th
August 2020), 2020.

[122] D. W. Walker. Standards for Message-Passing in a Distributed Memory
Environment. In Center for Research on Parallel Computing (CRPC)
workshop on standards for message passing in a distributed memory envi-
ronment, Williamsburg, VA, April 1992. U.S. Department of Energy Office
of Scientific and Technical Information, Washington, DC.

[123] J. B. White and P. Sadayappan. On improving the performance of sparse
matrix-vector multiplication. In Proceedings Fourth International Con-
ference on High-Performance Computing, pages 66–71, Bangalore, India,
December 1997. IEEE Computer Society, Los Alamitos, CA.

[124] R. S. Williams. What’s Next? [The end of Moore’s law]. Computing in
Science & Engineering, 19(2):7–13, 2017.

[125] D. S. Wise. Ahnentafel Indexing into Morton-Ordered Arrays, or Matrix
Locality for Free. In Euro-Par 2000 Parallel Processing, pages 774–783,
Munich, Germany, August 2000. Springer, Berlin, Heidelberg.

[126] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU
Architecture. IEEE Micro, 31(2):50–59, 2011.

[127] S. A. Wright, S. J. Pennycook, S. D. Hammond, and S. A. Jarvis. RIOT :
a parallel input/output tracer. In UK Performance Engineering Workshop
(UKPEW’11), Bradford, United Kingdom, July 2011.

[128] J. Zerr and R. Baker. SNAP: SN (Discrete Ordinates) Application Proxy.
https://github.com/lanl/SNAP (Accessed: 14th June 2020), 2020.

[129] W. Zhu, Y. Niu, and G. R. Gao. Performance Portability on EARTH: A
Case Study Across Several Parallel Architectures. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Denver, CO,
April 2005. IEEE Computer Society, Los Alamitos, CA.

165

https://github.com/UoB-HPC/TeaLeaf
https://valgrind.org/
https://github.com/lanl/SNAP

Appendices

166

APPENDIX A
Compilers and compiler flags used for Analysing the

Performance Portability of a Heat-Conduction

Mini-Application (Chapter 4)

Version Compiler Flags

OpenMP, Message
Passing
Interface (MPI),
Hybrid

Intel 17.0u2,
IMPI 2017u2

-O3 -no-prec-div -fpp -align
array64byte -qopenmp -ip
-fp-model strict -fp-model
source -prec-div -prec-sqrt

Compute Unified
Device
Architecture
(CUDA)

Intel 17.0u2,
CUDA
8.0.61

ifort -O3 -fpp -no-prec-div
-qopenmp -fp-model strict
-fp-model source -prec-div
-prec-sqrt
nvcc -gencode
arch=compute_60,code=sm_60
-restrict -DNO_ERR_CHK -O3
icc -O3 -qopenmp -fp-model
strict -fp-model source
-prec-div -prec-sqrt

OpenACC
PGI 17.3,
OpenMPI
1.10.6

-O3 -acc (-ta=multicore or
-ta=tesla:cc60) -mp

Table A.1: List of the manual implementation of TeaLeaf with compilers and
corresponding flags used on the single node, multi-core systems

167

A. Compilers and compiler flags used for Analysing the Performance Portability of a
Heat-Conduction Mini-Application (Chapter 4)

Version Compiler Flags

OpenMP, MPI,
Hybrid, MPI
Tiled

Intel 17.0u2,
IMPI 2017u2

-O3 -ipo -fp-model strict
-fp-model source -no-prec-div
-prec-sqrt -vec-report2 -xHost
-parallel -restrict -fno-alias
-inline-forceinline -qopenmp

CUDA

Intel 17.0u2,
IMPI
2017u2,
CUDA
8.0.61

icc -O3 -ipo -fp-model strict
-fp-model source -no-prec-div
-prec-sqrt -vec-report2 -xHost
-parallel -restrict -fno-alias
-inline-forceinline -qopenmp
nvcc -O3 -restrict
-use_fast_math -gencode
arch=compute_60,code=sm_60

OpenACC
PGI 17.3,
OpenMPI
1.10.6

-acc -ta=tesla:cc60 -O2 -Kieee
-Minline -ldl

Table A.2: List of the Oxford Parallel Library for Structured mesh solvers (OPS)
implementation of TeaLeaf with compilers and corresponding flags used on the
single node, multi-core systems (CUDA ran with a block size of 64 by 8)

Version Compiler Flags

K
ok

ko
s OpenMP Intel 17.0u2

-O3 -no-prec-div -fpp -fp-model
strict -fp-model source -prec-div
-prec-sqrt

CUDA
GNU-5.4.0,
CUDA
8.0.61

-O3 -march=native -funroll-loops
-DKOKKOSP_ENABLE_PROFILING
-ffloat-store

R
A
JA

OpenMP Intel 17.0u2,
IMPI 2017u2

-O3 -no-prec-div -restrict
-fno-alias -xhost
-std=c++11 -qopenmp -DNO_MPI
-DENABLE_PROFILING

CUDA
GNU-5.4.0,
CUDA
8.0.61

g++ -march=native -funroll-loops
-std=c++11 -ffloat-store -fopenmp
nvcc -ccbin g++ -O2
-expt-extended-lambda -restrict
-arch compute_60 -std=c++11
-Xcompiler -fopenmp -x cu

Table A.3: List of both the Kokkos and RAJA versions of TeaLeaf with compilers
and corresponding flags used on the single node, multi-core systems

168

	Copyright
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Declarations
	Abstract
	Abbreviations
	Sponsorship and Grants
	Introduction
	Motivation
	Thesis Contributions
	Thesis Overview

	Analyse and Performance of Applications and Architectures
	Benchmarking
	Representative Applications
	Profiling
	Speedup
	Amdahl's Law
	Overhead
	Performance Portability
	Summary

	Achieving Performance through Hardware Optimisations
	Moore's Law
	Flynn's Taxonomy
	Single Instruction - Single Data
	Single Instruction - Multiple Data
	Multiple Instruction - Single Data
	Multiple Instruction - Multiple Data

	Parallelism
	Vectorising
	Multithreading and Multiprocessing
	Distributed computing

	Memory Layouts and Data Structures
	Structure of Arrays
	Array of Structures
	Array of Structures of Arrays
	Abstract Data Structures

	Summary

	Analysing the Performance Portability of a Heat-Conduction Mini-Application
	Motivation
	Parallelisation of a Heat-Conduction Mini-Application
	Reference Implementation and Manual Parallelisations
	Oxford Parallel Library for Structured-mesh solvers
	Kokkos and RAJA

	Performance of TeaLeaf
	Experimental Setup
	Results
	System Analysis

	Performance Portability
	Architecture Efficiency
	Application Efficiency

	Summary

	Creation, Development, Implementation and Optimisations of a Data Structure Abstraction Library
	Motivation
	Initial Implementation
	Library Structure
	High-Level Functionality Classes
	Data Storage Classes
	Data Access Classes

	Library Features
	Conversion of Variables
	Data Adjacency

	Data Structures and Optimisations
	Structure of Arrays
	Array of Structures of Arrays
	Specialised Data Structures

	Summary

	Performance Analysis of the Data Structure Abstraction Library
	Benchmark Testing and Overhead
	Mini-Application Performance and Overhead
	Hardware and Compilers
	Unstructured Physics Mini-Application
	Heat Conduction Mini-Application
	Molecular Dynamics Mini-Application

	Scaling Performance and Overhead
	Summary

	Data Structure Abstraction Library Specialisation
	Motivation
	Multi-Material Data Structures
	Compact Cell Multi-Material Data Structure
	Compact Cell Flat Multi-Material Data Structure

	Implementation of Abstract Data Structures
	Performance of Data Structure Abstraction Library
	Experimental Setup
	Results

	Summary

	Conclusion and Future Work
	Limitations
	Future Work
	Warwick Data Store
	Multi-Material Data Structures
	Data Structure Optimisations
	Just-In-Time Compilation

	Reflections

	Bibliography
	Appendices
	Compilers and compiler flags used for Analysing the Performance Portability of a Heat-Conduction Mini-Application (Chapter 4)
	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/160913

