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Abstract

Tabular data is ubiquitous in modern computer science. However, the size

of these tables can be large so computing statistics over them is inefficient in

both time and space. This thesis is concerned with finding and using small

summaries of large tables for scalable and accurate approximation of the data’s

properties; or showing such a summary is hard to obtain in small space. This

perspective yields the following results:

• We introduce projected frequency analysis over an n× d binary table. If

the query columns are revealed after observing the data, then we show

that space exponential in d is required for constant-factor approximation

to statistics such as the number of distinct elements on columns S. We

present algorithms that use smaller space than a brute-force approach,

while tolerating some super constant error for the frequency estimation.

• We find small-space deterministic summaries for a variety of linear algeb-

raic problems in all p-norms for p ≥ 1. These include finding rows of high

leverage, subspace embedding, regression, and low rank approximation.

• We implement and compare various summary techniques for efficient

training of large-scale regression models. We show that a sparse random

projection can lead to fast model training despite suboptimal theoretical

guarantees than dense competitors. For ridge regression we show that a

deterministic summary can reduce the number of gradient steps needed

to train the model compared to random projections.

We demonstrate the practicality of our approaches through various experiments

by showing that small space summaries can lead to close to optimal solutions.
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Chapter 1

Introduction

Tabular data pervades modern data analysis and machine learning (ML). These

data tables are perceived as having rows corresponding to different “observa-

tions” and columns that take values over a set of measurable “features” or

“attributes”. This abstract starting point allows us to be domain-independent.

For example, the rows of the table may be time-ordered with each column rep-

resenting time series that could be used for, say, monitoring financial or health

signals [BJRL15, Coq21, SRD+18]. Alternatively, the table may represent a

sequence of unrelated observations, for instance, each row being an image with

features representing the colour of a pixel [LMB+14, WBW+11].

By exploiting large and rich datasets, machine learning has led to insightful

discoveries such as AlphaFold, [JEP+20] and technologies such as ride-hailing

apps [UberMLEng17], media recommendations [KBV09], and email filtering

[CL98, GJC20]. These works focus on achieving more with data. Our focus is

related but complementary. Large datasets are often highly redundant and this

causes an algorithmic headache [UT19]. The cost in time or space of solving

a given task exactly could scale superlinearly with respect to the input sizes,

either the number of observations n, or the dimensionality of the feature space

d. Common pitfalls might be that the algorithm for solving a task simply

takes too long (i.e. it is polynomial time or worse in either n or d) [BJW19],

or requires storing almost the entire input. However, even simple queries such

as counting the number of distinct values in a dataset require linear space to

evaluate [AMS99a] which is problematic when the number of samples is huge,

as may be common in modern data. Both of these issues render exact analyses

unscalable. This thesis is concerned with mitigating this problem: can we

do almost as well as solving the original problem, but without doing so? Is

it possible to create succinct “summaries” of the dataset which permit more

efficient solutions than solving the original instance?

Encoding the data in such large tables provides a common starting point

for a machine learning pipeline. These tables might be arbitrary arrays, or
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matrices when we are studying linear algebraic computations. Amongst many

others, key steps in this pipeline are data preparation or analysis followed by

“model training”. The former seeks to understand basic patterns or properties

of the data, such as the number of distinct values in a column, the median

value, or various other frequency statistics. The latter is concerned with using

this knowledge of the data to build a succinct description of the dataset which

can be used for predicting output values from future input values.

Corporations on the scale of Facebook and Walmart can regularly yield cus-

tomer behaviour data on the scale of terabytes to petabytes per day [SKIW17].

Due to this scale, even seemingly simple tasks regarding data management can

become difficult. For example, the data tables may be so large that they can

only be read once or may never be held completely in one single location. We

will consider abstractions of these concerns in our computation models and

algorithm design.

Our focus in this thesis is on both finding and using small summaries

of large tabular data. We should think of data summarisation as a two

dimensional axis over a “computational cost” independent variable and some

dependent variable, “utility”, measuring how well a summary performs for

a given task. One should think of the computational cost as an adjustable

parameter depending on our constraints, such as available compute time, space

consumption, the communication cost of moving data between distributed

locations, or the number of times one can view data. The goal is to minimise

the overall computation. First, we find a small description of the data that is

cheap to obtain. Next, we use this summary to perform a tractable approximate

analysis. The utility of the summary should come from a guarantee that it

is efficient to compute and the approximate analysis is close to that had no

summarisation been performed.

The starting point of all aspects of this thesis is to find a summary for a

given computational task over which we can prove guarantees on its utility.

Some pertinent high-level questions arise from this perspective that form the

central body of this thesis. Although the importance placed on each individual

question will change depending on the specific task at hand, they provide

a useful lens through which to view the entirety of this work. A central

question is always how to find such a summary efficiently, under notions of

efficiency that may change depending on the task. The next question is what

guarantees can we give upon using a summary, is it accurate (under differing

notions of accuracy or error)? We will strive to be as frugal as possible in

expending our computational effort; yet there must be fundamental limits

on the computational resources we need before our guarantees break down.1

Understanding this limit is what is known as the hardness of certain problems

1Otherwise, trivial or empty summaries would always suffice, which clearly is not true!
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to approximate using small summaries. Of course, not all problems are created

equal, so our task is three fold:

1 Scalability. To find efficiently computable summaries of tabular data.

2 Accuracy. To provide guarantees on the fidelity of a summary compared

to the original input, meanwhile;

3 Hardness. To acknowledge the inherent computational difficulty of

different problems in order to understand the overall scalability of our

solution, in comparison to established methods.

1.1 Contributions

We outline the high-level contributions in each chapter and how they relate to

the central theme of the thesis. More detailed statements on the contributions

can be found in each chapter. The thesis follows the outline given below.

Chapter 3. Projected Frequency Estimation

We give the first analysis of frequency estimation problems in the novel projected

summary model to be defined in Section 2.1.3. The input is an array A ∈
{0, 1}n×d and a column query S ⊆ [d] that is revealed after observing the data.

We study problems such as counting the number of distinct elements on the

columns S of A, termed a “projection”. We also study other problems related

to projected frequency analysis, such as row sampling and heavy hitters. The

majority of our results show that these problems are hard and require space

exponential in d to achieve even a constant factor approximation.

For upper bounds, we show that a small “net” N of subsets from the power

set P ([d]) can be chosen to avoid enumerating a sketch for every set in P ([d]).

The idea is that every U ∈ N has an associated sketch for the given frequency

problem. On receiving the query columns S, we “round” S to a neighbour

S′ ∈ N and return the estimate from the sketch for S′. Through the notion of

closeness, measured under symmetric difference, we can control the additional

deterministic error from returning the approximation on S′ rather than S.

Whilst |N | may still be exponential in d, we show how to control the size of

the net while characterising the error incurred. Specifically, if N = 2d and

0 < c < 1, then we achieve a N c approximation in NO(c) space.2

Chapter 4. Deterministic `p Summaries

We study matrix estimation and fundamental linear algebraic problems such as

regression and low-rank approximation in general `p norm. The tool that we

2The constants in O(·) are small, problem dependent, and explicitly known.
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use is an `p well-conditioned basis. However, finding such a basis costs O(nd5)

time so is not a scalable approach. Thus, we give a streaming algorithm that

computes small parts of such a basis based on local views of data. Our methods

are the first fully deterministic algorithms to approximate these problems

using small space for all p ≥ 1. The data summaries that we use have size

poly (d) × d, independent of n, and are evaluated over streaming data. We

apply these summaries to obtain provable guarantees on `p regression and

low rank approximation. Finally, we give a hardness result for `∞ regression

showing that our additive error guarantee cannot be improved to relative error

without substantially increasing the space usage.

Chapter 5. Iterative Sketching for Least Squares Problems

We study scalable variants of iterative algorithms for training regression models

using sketches. Much prior work has shown only coarse approximation of the

optimal regression weights whereas we seek high accuracy. Our results show

that sparse random projections can be used in the “Iterative Hessian Sketch”

framework. We show that using sparse sketches can yield a speedup roughly

2 ∼ 20x faster than the best dense competitors.

Chapter 6. Sketched Ridge Regression

For the special case of ridge regression we adapt the iterative sketch method

and use a single Frequent Directions sketch. In this setting, although Frequent

Directions sketch takes longer to obtain, it uses a third of the total iterations

used by both sparse and dense random projections. Overall, this yields total

running time similar to the fastest sparse methods but terminates in fewer

steps. This could be a huge benefit as in practice revisiting the data could

bear a substantial cost.
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Chapter 2

Background

Modern data can be both large, having in excess of millions of rows, and

high-dimensional, with hundreds or thousands of columns. Often, datasets

A ∈ Rn×d in tabular form are used to model interactions over the samples

(rows) according to certain features (columns). In order to gain insights

from such data, practitioners need to apply data analysis techniques to these

tables at scale. We study two classes of problems: frequency estimation over

column restrictions of A and linear algebraic operations on A. When studying

frequency analysis, we will use the mathematical notation of matrices, but

refer to A as an array. Meanwhile, for the remainder of the thesis, we will use

the language of linear algebra. Indeed, for modern machine learning, linear

algebra is the workhorse underpinning crucial computations so it is critical to

understand how matrix operations can be performed at scale.

Despite the necessity of linear algebra primitives, their cost is often con-

siderable, sometimes superlinear in one of the dimensions of the input data.

Common examples are inverting an n×n matrix in O(n3) time or performing an

SVD in O(nd2) time (if n > d). These complexities are not acceptable in mod-

ern applications when both n and d can be large, causing a major bottleneck.

Consequently, the task of finding scalable approximations to these fundamental

primitives has generated substantial research interest [Lib13, HMT11, Woo14b].

Our interest is not solely on linear algebraic problems. Even at scale

practitioners would like to answer “simple” queries of their input data. For

example, if A ∈ {0, 1}n×d represents a survey of n people over d yes/no (1/0)

questions, then simple queries such as “how many people answered yes to

questions 1, 2, . . . , k (for some k ≤ d but reasonably large)?” are of practical

interest. Prior work has generally focused on the single-column setting over a

large domain. With the growing scale of data, it is pertinent to study higher

dimensional queries. For these types of problems, we will introduce a novel

model of computation and describe the class of problems under consideration.

Unlike the linear algebra problems, these are more simple to internalise as
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they are roughly related to estimating frequencies observed under column

projections. Simply put, column projections are restrictions of the input table

(or questions, in the above example) to fewer columns than are present in the

entire set.

Chapter Outline

This chapter defines many of the concepts that are used throughout the thesis.

Each subsection should be regarded as an almost self-contained introduction

to the technical material with more sophisticated discussions deferred to the

necessary chapters.

• In Section 2.1 we define the computation models in which our results

apply. Section 2.1.1 defines the ‘standard’ streaming model which is a

fundamental starting point. Following this, some classical problem defin-

itions for the streaming model are given in Section 2.1.2. Sections 2.1.3

and 2.1.4 are independent of each other but both build upon 2.1.1 and

2.1.2. Section 2.1.3 defines the model used for high-dimensional data

perceived as an array, rather than a stream of items. Section 2.1.4

defines two single-pass models for estimating linear algebraic functions on

streams defined over matrices and one multi-pass model that is implicitly

and regularly used in machine learning.

• Section 2.2 gives an overview of the linear algebra material we need.

The starting point is to define different notions of matrix estimation

that we study in the Euclidean norm, first under random projections

(Section 2.2.1) and then with deterministic sketching (Section 2.2.2). In

Section 2.2.3 we extend the notion of matrix estimation introduced for `2

to arbitrary `p>0. We define the specific problems that will be considered

using these tools in Section 2.2.4.

• Section 2.3 presents the optimisation background. These ideas are the

starting points that our iterative regression algorithms build upon.

• The final part of this chapter is an overview of the tools we use from

communication complexity. Section 2.4 presents problem definitions and

overviews the type of arguments we will make to show space lower bounds.

It is independent of the linear algebra work outlined in the preceding

sections.

2.1 Models of Computation

Throughout this thesis we will encounter various models of computation that

address different problems. These can be seen as variants of the standard
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streaming model introduced presently. The classical model of computation

that is used for comparison is the RAM model of computation. In this setting,

all data is available and can be accessed in constant time. Simple operations

such as scalar addition and multiplication require O(1) time [CLRS09]. Many

fast algorithms for approximating linear algebraic properties implicitly operate

in this model [LMP13, CP15, CLM+15]. This is due to the assumption that

small amounts of the data can be accessed quickly and the data is available in

its entirety at any given time. Although many algorithms in this model run in

“input-sparsity” time, they may require multiple views of the data.

The RAM model is a natural model for computation. However, the as-

sumptions that all data is available and easily accessible are not reasonable

for truly large-scale data. In fact, modern data may be so large that only a

small amount of it (or small space function of the data) can be stored. This is

the motivation behind the streaming model proposed by [AMS99b]. The vital

contribution of [AMS99a] was to initiate the study function approximation of

data streams using only a small amount of working space. It is this perspective

we extend for matrix computation.

2.1.1 The Classical Streaming Model

The data arrives sequentially as a stream = (x1, x2, . . . , xn) and on observing

the final item of the stream, the algorithm must return an answer to a given

problem [CY20]. The items xi may be numeric or any other type that can be

appropriately mapped to a numeric universe. We refer to both as univariate

streams as mathematically they can be mapped to a stream of scalars. The

algorithm can keep a small space function, summary or subset of the data, but

it is not possible to revisit particular items. If revisiting the data is necessary,

then the entire dataset must be traversed once again.

2.1.2 Classical Streaming Problems and Solutions

In this relatively new model of computation, there has been great interest in

approximating even the most basic functions using small space. The notion of

approximation that we are typically interested in is as follows:

Definition 2.1.1. Let a, b > 0 and let x? ∈ R be some quantity. An (a, b)-

approximation to x? is some x̂ ∈ R such that: ax? ≤ x̂ ≤ bx?. Often we may

write x̂ ∈ [ax?, bx?] to denote this ordering.

For the purposes of this thesis, Definition 2.1.1 may hold deterministically

with certainty or it may hold with some probability of success, say at least

1− δ for δ ∈ [0, 1]. A gold standard in randomised approximation is to obtain

a = 1 − ε and b = 1 + ε, referred to as a 1 ± ε approximation, in space
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polynomial in 1/ε. A “diamond standard” can be regarded as achieving 1± ε
approximation with space polynomial on 1/ε and log 1/δ (rather than, say,

1/δ). If the running time is also polynomial in the size of the input, then this

would be called a Fully Randomised Approximation Scheme and further details

can be found in [MR95, Chapter 11]. Indeed, we will later see such distinctions

in the context of subspace embeddings.

Studying the space complexity of approximate frequency analysis over data

streams was initiated in [AMS99b]. In particular, they showed that certain

Frequency Moments that can be approximated in logarithmic space. This class

of problems can be characterised through the following notation, suppose that

stream = (x1, x2, . . . , xn) with each xj ∈ [N ]. The number of times item i is

seen is denoted fi = |{j : streamj = i}|, known as its frequency. The frequency

vector is f = (fi)
N
i=1. For k > 0 we define the kth Frequency Moment as

Fk =

N∑
i=1

fki .

If k = 0 then let 1(u) be the indicator function for u so that,

F0 =
N∑
i=1

1(fi 6= 0)

= |{i : fi 6= 0}|

is simply the number of distinct elements present in frequency vector f over

the stream. Under this abstraction, there are many natural data analysis

queries that can be asked of a large stream. For example, F0 counts how

many distinct items are present in stream, F2 is Gini’s index of homegeneity, a

commonly-used economic metric, and for larger p, Fp can measure the skewness

of a data stream. There are many other problems, some of which we will later

study, such as heavy hitters, which asks us to return all items which contribute

more than some fraction of ‖f‖p. Another is `p-sampling, which also asks us

to approximately sample with respect to the estimated item frequencies.

Example 2.1.1. Suppose stream = (x, x, x, y, x, y, x, z). Then fx = 5, fy =

2, fz = 1. Hence, F0(stream) = 3 as there are three distinct items and

‖f(stream)‖22 = 30. If we fix p = 1 then the total frequency is ‖f‖1 = 8

and thus the `1-sampling problem would be to sample x, y, z) with a distribution

approximately (5/8, 2/8, 1/8). We also see that x is an `1-heavy hitter at a

threshold of at most 5/8 as it accounts for 5/8 of the total mass.

The “classical” streaming model we have described captures both impressive

theoretical and useful practical results, we outline only a few here:
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• F0: [KNW10] provide an space optimal algorithm for estimating F0 up to

1±ε in O(ε−2 +logN) space. An alternative algorithm, the HyperLogLog

has also been deployed for its practicality in estimating F0 [HNH13].

• For heavy hitters, there are various approaches. Some common methods

are the CountSketch of [CCFC02] which can find ε heavy hitters in

`2 using O(ε−2 logN) space. This is space-optimal if the stream has

deletions as well as insertions and O(logN) update time. Other works

try to achieve similar space but optimise for update time [BCI+17] or

improve the space bound if the stream only contains insertions. There

are similar approaches, such as the CountMinSketch which can find ε

heavy hitters in `1 using space O(ε−1 logN), again with O(logN) update

time [CM05]. The CountMinSketch has seen applications in database

technology [Hab16] as well as large-scale privacy enhancing technology

[Tea17].

• For general frequency moments [Woo04] showed that Ω(ε−2) space is

necessary which matches the Ω(ε−2) lower bound for F0 [IW03].

• The situation is a little more complex for `p sampling. However, the space

complexity has been fully characterised and behaves as O(logN log(1/δ))

[JW21] closing a line of work established in 2010 [MW10, JST11].

These results only apply in the standard “univariate” streaming setting. As

the dimensionality of datasets is typically large, we are also interested in

modifications of the streaming model that can adapt to queries over higher

dimensions. Also, for machine learning we are interested in streams of data

that represent matrices. We now introduce some variants on the standard

streaming model.

2.1.3 Projected Summary Model

Before introducing this model we will provide a motivating example: suppose

that the matrix A ∈ {0, 1}n×d represents which users i have purchased item

j from an online marketplace. We could say that a “purchasing pattern of

user i on item set S ⊆ [d]” is the binary string observed in row Ai on columns

S. Specifically, the binary string (Ai,j1 ,Ai,j2 , . . . ,Ai,j|S|). In this setup, an

analyst may wish to answer a question such as, “how many different purchasing

patterns are observed on items j = 1 to 20 over all users?” Since the set

of columns {1, 2, . . . , 20} is known in advance, the analyst could encode a

binary representation over the first |S| columns into integers from the set

{0, 1, 2, . . . 2|S|−1}. Following this transformation, the input would now be

univariate and thus they could apply a standard streaming algorithm such as

those described in Section 2.1.2.
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Of course, if the column set S is known in advance, then it is simple to

transform to a univariate problem. Hence, this problem becomes of interest

when the columns of A are not known until A has been fully observed. The

motivation here is that both n and d are large but a sample of cn rows of

length d could be stored for a small constant c. However, d is sufficiently

large so that the length 2d frequency vector, whose entries index all subsets of

[d], is too large to store, as is the raw n × d input. When A is observed an

analyst would like to answer basic statistics of the data which are restricted to

certain columns of A but they are not known until the analyst has already seen

the data. This generalisation of the streaming model is called the Projected

Summary Model. Before defining the model we will provide an example.

Example 2.1.2. Suppose A ∈ {a, b}4×3 with column indices {1, 2, 3} given

below. If S = {1, 2}, then we obtain AS and hence f(A, S) = (2, 1, 1, 0).

A =


a a a

b a b

a b b

a a a

 −→ AS =


a a

b a

a b

a a


The vector f = f(A, S) is the frequency vector over which we seek to compute

statistical queries such as ‖f‖0. In this example, faa = 2, fab = 1, fba = 1 so

‖f‖0 = 3 (there are three distinct rows in AS), and ‖f‖22 = 6. We use the

mapping aa 7→ 00 = 0, ab 7→ 01 = 1, ba 7→ 10 = 2, bb 7→ 11 = 3 to materialise f .

Any other bijection from {a, b}2 7→ {0, 1, 2, 3} would produce f̃ isomorphic to

f with the same frequency statistics.

Definition 2.1.2 (Projected Summary Model [CDW21]). The data A is

received but is too large to fit in memory so can be perceived as a data stream

(we make no assumption on the arrival order of items). After observing A a

column query S is presented which restricts A to only the columns (or projected

subspace) S, written AS. The frequency vector over A on column set S is

f(A, S). The problem is to evaluate a function F over f , denoted F(f(A, S)).

Examples of functions F are the `p-norms F(f(A, S)) = ‖f(A, S)‖p.

Remark 2.1.1. We are tasked with understanding how F(f(A, S)) can be

estimated in small space or to show hardness results. For upper bounds, the

approach is to design a summary of A during the observation phase which

approximates statistics of AS. The approximations are accessed through the

vector f(A, S). Note that functions are taken over the underlying vector f(A, S)

rather than the raw input data from column projection.

Typical problems that we will consider are column projected variants of

frequency estimation problems as introduced in Section 2.1.2. For example, for
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the frequency vector f(A, S) we may want to approximate the projected count

distinct problem on AS , denoted F(f(A, S)) = ‖f(A, S)‖0. Similarly, we have

analogues of the projected frequency estimation and `p sampling that will be

defined formally in Chapter 3.

2.1.4 Matrix Streams

The previous section studied data presented as a n× d table which is too large

to explicitly compute frequency vectors. Now we switch focus to understand

how such a table might be represented on a stream. Understanding how the

streaming model can be adapted for large-scale matrix data has been the

subject of recent algorithms and machine learning research [CW09, GRB+19].

One common method of storing (sparse) matrices is in the COOrdinate List

(COO) format which is a list of tuples (i, j,Aij) denoting the row i, column

j and value Aij of the matrix in that location. A further abstraction of the

COO format would allow multiple (i, j,aij) triples, where aij now represents

an additive ‘update’ to the value at location i, j rather than just its value.

Matrices expressed in such a form are not fully recorded and may even be

evolving over time. Examples of the former can be seen in the well-known

LIBSVM repository [CL11] that stores datasets for many common machine

learning tasks through updates to the nontrivial locations in A.

In essence, matrix streams are representations of an underlying matrix

A ∈ Rn×d that is not explicitly recorded. Rather, the stream that defines

A is a sequence of rows of A, or a sequence of triples over timesteps t with

(i(t), j(t),aij
(t)). Then the value Aij =

∑
t aij

(t). Generalisations of these

approaches also apply to tensors [TYUC19].

Row Arrival Streaming Model

Although the standard streaming model is natural for matrix computation,

it has also been shown to be somewhat restrictive compared to our first

alteration. In [GLPW16] the authors state: “Our paper shows that the row-

update model is strictly easier” than a model allowing updates (i, j,aij) to A

as described above. Rather than allowing arbitrary updates, if we relax to

row-wise updates then [GLPW16] shows that more practical results can be

obtained by demonstrating tighter bounds for matrix approximation.1 More

concretely, rather than the stream revealing updates to the entries of A, instead

the rows of A are revealed one-by-one. That is, if Ai ∈ R1×d is a row from

1Strictly speaking, this claim is made for a slightly different bound, namely regarding
low-rank approximation, than the error guarantee we will study for Frequent Directions.
To achieve such a guarantee, [CW09] show a tight space bound of Θ((n+ d)k/ε), while in
[GLPW16] demonstrate an algorithm achieving the same guarantee in O(dk/ε) space. The
latter is better by a factor of nk/ε, see Section 6 and Table 5 of [GLPW16] for details.
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the matrix A, then stream = (A1,A2, . . . ,An). The order in which the rows

appear may be arbitrary or adversarial. Although we previously motivated

matrix streaming through sparse updates, we need not be tied to this model

as both sparse and dense data is common in machine learning. Examples of

a typical dataset that might be suitably analysed in this model are image

datasets which are fed as d dimensional feature vectors to large neural networks

[WBW+11, LMB+14].

Definition 2.1.3 (Row Arrival Streaming Model). [Lib13, CDW18] Let

A ∈ Rn×d be the input data which is fed to the algorithm a row at a time:

stream = (A1,A2, . . . ,An). Let m� max(n, d) be the largest number of rows

that can be stored. The stored subset is used to compute local statistics which

are used to determine which of the stored rows should be kept or discarded.

Further rows are then appended and the process is repeated until the full matrix

has been read. An approximation to the given problem is then computed by

solving on the reduced subset of rows.

Although we have stated Definition 2.1.3 by assuming the summary is a

subset of the rows from A, this need not be the case. Some summary techniques

keep small functions of the stored rows. For example, we could keep random

linear combinations by hashing an entire row into buckets (using a row arrival

variant of [CW13]) or maintain deterministic linear combinations [Lib13] of

the rows for the summary, but the idea remains the same.

Distributed Summary Streaming Model

We now introduce a close relative of the row arrival streaming model which

is motivated by the modern tendency to store data in a distributed fashion.

One can imagine an environment where data is stored across multiple data

centres and a central coordinator would like to evaluate some query over the

entire dataset. Of course, each of the data centres could transmit their local

data (which itself could be large) to the central coordinator. This may entail

significant costs in time, space, and communication. Rather than pay this

cost, we propose a distributed model whereby each data centre would send

only a summary of their local data to the central coordinator. The coordinator

can then append all the summaries to approximate their problem, or perform

further reduction rounds on the currently held data.

Definition 2.1.4 (Distributed Summary Streaming Model [CDW18]). Let

γ ∈ (0, 1) be a small constant and A ∈ Rn×d be the input matrix. Suppose that

A is partitioned into 2L = n1−γ disjoint blocks B1, . . . ,B2L each containing (at

most) nγ rows. These blocks will be stored at the leaves of a computation tree

q1, q2, . . . , q2L. At the leaf node qi, the data is reduced by some summary tech-

nique Ci = Reduce(Bi). The smaller matrix Ci is then passed to a parent node
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B1 B2 B3 B4

Reduce Reduce

C1 C2 C3 C4

C1; C2 C3; C4

Merge Merge

E1 E2

Reduce

E1; E2

Merge

T

Figure 2.1: An example of the distributed summary model in a Merge−Reduce
tree over blocks Bi of A ∈ Rn×d. This computation tree represents 4 parties
communicating with a coordinator in pairs. It could be implemented in a single
streaming fashion over all 4 parties by computing the left subtree beneath
E1 first, the right subtree beneath E2 second, followed by a final round of
Merge−Reduce.

pi which is the parent node of qi and qi+1. At node pi, an operation is performed

to merge the two smaller matrices Ci,Ci+1 to obtain Dpi = Merge(Ci,Ci+1).

This process is repeated using the same Merge(·) and Reduce(·) operations with

the subsequent matrices being passed up the O(1/γ) levels in the tree until we

reach the root node where a single summary of bounded size is obtained. It

is this final summary that is used to compute an approximation to the given

problem.

Although there might be light synchronisation at each level in the tree,

because each node only computes a summary and returns to its parent, we will

not include this cost in our model. Since our interest in this model will primarily

be linear algebraic problems, we claim this is a reasonable cost to avoid. Usually

for linear algebra algorithms, the time complexity is polynomially dependent on

one of the input dimensions, hence even for moderately sized inputs, this should

be more significant than synchronisation. For simplicity, Definition 2.1.4 is

written using only two nodes that communicate their summaries which results

in a binary computation tree, as illustrated in Figure 2.1, however this can be

extended to greater than 2 communicating parties.

Remark 2.1.2. The two models are quite close: the row arrival streaming

model can be seen as a special case of the distributed model with only one
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participant who individually computes a summary, appends rows to the stored

set, and reduces the new summary. This is represented as a deep binary

tree, where each internal node has one leaf child as illustrated in Section 2.1.4.

Likewise, the Distributed Summary Model can be implemented in a full streaming

fashion over the entire binary tree.

B1

C1 B2

Reduce

C1; B2

Merge

E1 B3

Reduce

Merge

E1; B3 B4

T

Reduce

Figure 2.2: An example of the row arrival model in the Merge−Reduce
language of Definition 2.1.4. A single participant reads the first block B1 of
input matrix A ∈ Rn×d and performs Reduce(B1) to obtain a small summary
C1. Then the next block of input is read in by the operation Merge(C1,B2)
until the space budget is used and then Reduce(Merge(C1,B2)) is executed,
returning a small summary E1. This is repeated over all blocks of the input A
until a single small summary T is returned. The error in using T is controlled
through properties of the Reduce(·) operations.

Multi-Round Optimisation Model

Our previous computation models have been motivated by the strict requirement

that the data may only be viewed once. However, often in machine learning,

the dataset is too large to be stored in memory however, it can be queried

for decomposable functions such as matrix-vector products. We introduce the

Multi-Round Optimisation model for optimisation tasks such as regression in

this setting.

Definition 2.1.5 (Multi-Round Optimisation). Let the input data A ∈ Rn×d

have n observations of feature vectors from Rd and n > d. We operate in a

row-wise or entrywise streaming model of computation over A. Potentially,
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both n and d are large. Operations linear in n and d are acceptable but a

superlinear dependency on either in a product is not, for example n1+ad1+b for

0 < a, b. The task will be to design a summary of A using a pass over the data.

Any further access to the data will be for ‘cheap’ or ‘simple’ functions that are

linear in the input size, such as evaluating an inner product or gradient, for

example.

When the data is held by a single party setup, Definition 2.1.5 is reminiscent

of the matrix streaming model as introduced in Definition 2.1.3. However, we

will also permit entrywise arrival as well as row arrivals so that sparse sketches

can be exploited. We also have the relaxation that the data can be traversed

again when necessary. Similarly, in comparison to Definition 2.1.4, this model

can be conceptualised as a distributed environment in which many users can

communicate their local summaries and ‘simple’ functions over the input to a

central coordinator. In the latter, the cost of communication could be high so

both the number of communication steps and the size of communicated objects

should be minimized. This setting is reminiscent of the so-called federated

learning model [KMA+19] yet the key difference is the central coordinator

trains a model based upon approximate information given by the participants

rather than averaging each of the users’ models.

2.2 Linear Algebra Background

We introduce the basic linear algebraic notions that underpin the second part

of this thesis. The norm we will typically choose is the entrywise norm defined

over vectors and matrices as follows:

Definition 2.2.1. Let A ∈ Rn×d and p > 0. The entrywise `p-Norm is

‖A‖p =

∑
ij

Ap
ij

1/p

.

When A is a vector, the entrywise norm is known as the Minkowski norm.

A special case when p = 2 is known as the Euclidean norm for vector inputs

and denoted ‖·‖2. If the input is a matrix then p = 2 is known as the Frobenius

norm and denoted ‖·‖F . This distinction allows us to reserve the standard

notations ‖A‖2 and ‖A‖op for the operator or spectral norm over matrices

‖A‖2 = maxx 6=0 ‖Ax‖2 / ‖x‖2.

We will first introduce the notion of an `2-subspace embedding as a mechan-

ism for approximating vector norms. This is often (but not always) achieved by

a random linear transform S ∈ Rm×n that reduces the height of input data A

from n to m, with m = poly (d/ε), independent of n. Subspace embeddings are
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useful as they can reduce the computational burden of dealing with matrices.

If we can return a sketch SA of the matrix A in time Tsketch, then, ideally,

any expensive operations we would usually perform on A using poly (n, d)

time can be replaced with the same operation on SA which will now cost

poly (d/ε) time. Overall, the time complexity will scale as Tsketch + poly (d/ε)

which should be close to the time needed to simply read the data if Tsketch is

not prohibitively large. Recall that the notation a = (1± ε)b is shorthand for

(1− ε)b ≤ a ≤ (1 + ε)b.

Definition 2.2.1. [`2 Subspace Embedding] Let A ∈ Rn×d. A matrix S ∈
Rm×n is a (1 ± ε) subspace embedding for the column space of A if for all

x ∈ Rd:
‖SAx‖22 = (1± ε) ‖Ax‖22 .

We may often abuse terminology and state that S and SA are subspace

embeddings for A. The subspace embedding property is invariant to the basis

representing A, so it is sufficient to show that it holds for any orthonormal

basis for the column space of A.

2.2.1 Oblivious `2 Subspace Embeddings

Here, we briefly survey two ways to construct `2-subspace embeddings. A more

thorough treatment is given in Section 5.1.1. Our focus will be on random

linear maps S that are independent of A. These are referred to as being

oblivious, since they can be sampled prior to viewing A. Two examples of

suitable random linear maps which achieve the subspace embedding property,

Definition 2.2.1, with m random projections and failure probability δ are:

1. Gaussian sketch: sample a Gaussian matrix S ∈ Rm×n whose entries are

iid normal Sij
iid∼ N (0, 1/

√
m). Set m = (d + log(1/δ))/ε2 so that SA

takes O(nd2) time to compute.

2. CountSketch [CW13]: S = PD with every column of P ∈ Rm×n being

a uniformly selected canonical basis vector ei ∈ Rm and D a diagonal

matrix D ∈ Rn×n with Dii
iid∼ {±1}. Set m = O(d2ε−2δ−1). Note that

S need only be defined implicitly so that it can be applied as the data

is read in time O(nnz (A)). In this setup we have used uniform random

sampling, however, 4-wise and 2-wise independent hash functions suffice

for the row and sign selection, respectively [MM13, NN13].

These two examples highlight key compromises that must be understood when

using subspace embeddings. One could use the Gaussian sketch for a very small

summary in the optimal embedding dimension of m = O(d log(d/δ)ε−2), yet

such a summary is slow to obtain thus inhibiting its scalability. On the other
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hand, a CountSketch summary can be returned quickly in time proportional to

viewing the data. However, it may require more projections (d2 in comparison

to d) and has exponentially worse dependency on the failure probability (δ vs

log 1/δ). There is a spectrum of compromises that can be made which cover

the entire tradeoff between the space of the CountSketch and the Gaussian

approach while having more acceptable time complexities, see [Woo14b] for a

full review and Section 5.1.1 for our specific use-cases.

Data-Aware Embeddings

Alternative methods for obtaining subspace embeddings can be found by

sampling according to the so-called leverage scores. Leverage scores have a

history of study in statistics [CH+86, VW81] but have recently been applied

to summarising large matrices [DMMS11, CMM17]. The rough idea is that

datapoints with a higher leverage score contribute more to a particular direction

of the column space and thus are more unique. Consequently, they are more

important to composing the column space of A.

Definition 2.2.2. Let A ∈ Rn×d have full column rank and A = UΣV>. The

leverage scores of A are the row norms of an orthonormal basis for the column

space of A:

`i =
∥∥∥e>i U

∥∥∥2

2
.

Although this definition appears as if the `2-leverage scores are basis dependent,

one can in fact show that they are invariant with respect to the chosen basis

through the quantity:

`i = e>i A(A>A)−1Aei.

Therefore, any convenient basis will suffice to compute the leverage scores. A

line of results that uses randomised leverage score sampling to achieve subspace

embeddings is given in [Mah11, AM15, CMM17]. Complementary results

using deterministic sampling approaches [PKB14a, McC18] are also possible.

Leverage score sampling can be shown to provide a subspace embedding in the

optimal projection dimension (or sample complexity) of m = O(d log(d/δ)/ε2)

[Mah11, Woo14b].

There are some downsides to leverage score sampling. The first is that exact

leverage score sampling requires obtaining an orthonormal basis in time O(nd2)

which is as expensive as the SVD. Alternatively, we could find approximate

leverage scores in O(nd log n) time [DMIMW12]. Nevertheless, in both cases,

one would need another pass over the data to perform the sampling. Increasing

the number of rows in the sample can avoid the need to revisit the data. One

approach is an online sampling algorithm which inflates the sample size by

log(ε ‖A‖22) [CMP16]. On the other hand, sampling can preserve data sparsity
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in the summary which random projections may not. This could be beneficial

for sparse optimisation solvers that can exploit data sparsity when using the

summary after the sketching step, for example [Gurobi].

2.2.2 Frequent Directions: Algorithm and Properties

An alternative type of data-aware embedding that deserves special mention

is Frequent Directions (FD) [Lib13, GP14, GLPW16]. Unlike the subspace

embeddings above, Frequent Directions obtains only one-sided error which is

controlled through the size of the sketch. Frequent Directions is implemented

in Algorithm 1 and estimates the SVD of a matrix A by performing streaming

updates to a small number of stored directions.

Frequent Directions: Theoretical Properties

We will exploit that FD approximately preserves the norm of matrix-vector

products after sketching in a similar way to random projections. Theorem 2.2.1

outlines the guarantees obtained by the returned summary B ∈ Rm×d of

FD & Robust Frequent Directions (RFD). In [Hua18] it is shown that RFD

improves the accuracy of FD by a factor of 2 by adding “regularisation” to

every stored direction. Let Ak be the best rank-k approximation to A. We

use ∆k = ‖A−Ak‖2F & α = 1/m− k to write the bounds for both FD & RFD

(2.1).

Theorem 2.2.1 ([GLPW16, Hua18]). Let A ∈ Rn×d and m = dk + 1/εe.
Define ∆k = ‖A −Ak‖2F & α = 1/m− k. The (Robust) Frequent Directions

algorithm processes A one row at a time, returns a matrix B ∈ Rm×d and a

scalar δ such that: ∥∥∥A>A−
(
B>B + δId

)∥∥∥
2
≤ α′∆k. (2.1)

If [B, δ] = FD (A), then δ = 0 & α′ = α. Else if [B, δ] = RFD (A), δ is

adaptively chosen and α′ = α/2.

A different way of writing the Frequent Directions guarantee is:

‖Ax‖22 −
‖A−Ak‖2F
m− k

‖x‖22 ≤ ‖Bx‖22 ≤ ‖Ax‖22. (2.2)

The ‖A−Ak‖2F/m− k becomes ‖A−Ak‖2F/2(m− k) and B should be replaced with

(B>B + γId)
1/2 if the robust version is used.

The amortised running time of FD is O(ndm) to return a m× d summary

B. Obtaining this running time requires a mildly different implementation to

Algorithm 1 which uses a buffer of size 2m×d. The SVD is only updated when

the buffer is full and then the bottom half of singular directions are pruned out.
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Algorithm 1: Frequent Directions (FD) and Robust Frequent Direc-
tions (RFD).

Input: Data A ∈ Rn×d, sketch size m, method Sk ∈ {FD,RFD}
Output: B ∈ Rm×d

1 Initialise B← 02m×d ρ← 0 . Parameter for RFD
2 for i = 1 : n do
3 Insert row A[i, :] into all zeros row of B
4 if B has no zero rows then
5 U,Σ,V> = SV D(B)
6 α← σ2

m

7 ρ← ρ+ α/2

8 B←
√

max (Σ2 − αIm, 0)

9 end

10 end
11 if Sk = FD then
12 δ ← 0 . δ = 0 for standard FD
13 end
14 else
15 δ ← ρ . δ adaptively chosen for RFD
16 end
17 return B, δ

This avoids the need to compute the SVD at every step; details can be found

in [GLPW16]. The projection dimension should be chosen as m = dk + 1/εe
to achieve the stated guarantee. Because we choose m = O(1/ε), the running

time is O(nd/ε) which is faster than a single SVD on A for m < d.

Frequent Directions differs from randomised matrix sketching by determ-

inistically updating the top singular directions observed in the data stream.

Only the most important (or the most frequently occurring) are kept. Addi-

tionally, (2.2) shows that FD achieves deterministic one-sided error that will

always underestimate a matrix-vector product. This contrasts the two-sided

(1 ± ε) approximations of randomised methods from Definition 2.2.1. The

space usage grows as 1/ε for FD which is better than the 1/ε2 dependency of

randomised methods. Although it takes longer to obtain an FD sketch, FD

more accurately approximates A>A at a given projection dimension m than

randomised methods [GLPW16]. FD is also a mergeable summary so operates

in the distributed summary model [ACH+13], and can be adapted to sparse

data [GLP16] so should still be regarded as a scalable sketch despite having

time complexity O(nd/ε).

Shrinkage

One might ask why the shrinkage step Line 8 of Algorithm 1 is necessary.

Greedy incremental heuristics for the SVD do not perform this step but can be
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shown to perform arbitrarily badly [Hua18]. Without shrinkage, setting only

the final singular value to zero [Bra02], a small number of high norm directions

seen early in the stream can prevent many orthogonal rows arriving afterwards

with lower norm from being represented. This is because small norm directions

never have large enough singular value in each of the SVD calls to enter the

sketch. Hence the greedy approach would always zero out the smallest/final

direction, meaning such “smaller” rows will never be promoted into the sketch

despite the fact they constitute an orthogonal component of the column space

[Gha17, Chapter 4.2]. In contrast, Line 8 of Algorithm 1 always subtracts off

the mass of the removed directions. Thus, even if there are a (very) small

number of high-norm orthogonal “corrupting” rows of A, these corruptions

will be outweighed by the normal rows.

Building Upon Frequent Directions

We use Frequent Directions in two different ways. The first is to build upon

the algorithmic idea of FD. In Chapter 4, we design a matrix summary that

operates in the same model and in a similar fashion to FD. That is, our

summary reads m rows, computes a basis, prunes out rows, and then continues

over the remainder of the stream. Although the algorithm operates similarly

to FD, we obtain a In Chapter 6, we directly exploit the Frequent Directions

guarantees for scalable training of a ridge regression model. We will exploit the

structure of FD as well as its competitive space guarantee to design a highly

efficient “preconditioner” for an iterative scheme to estimate the regression

weights.

2.2.3 `p Subspace Embeddings

Subspace embeddings are not restricted to only the `2 norm and we can

introduce a similar concept over arbitrary p > 0.

Definition 2.2.2. Let A ∈ Rn×d, p > 0 and c1, c2 ≥ 0 be constants. A matrix

T ∈ Rm×d is a (c1, c2) `p-subspace embedding for the column space of A if for

all x ∈ Rd:
c1 ‖Ax‖pp ≤ ‖Tx‖pp ≤ c2 ‖Ax‖pp .

Definition 2.2.2 is simply a generalisation of Definition 2.2.1 to arbitrary

p > 0. Note that we alter the presentation in using T rather than SA. We

may of course take T = SA for `2, similar representations hold when S is the

so-called Fast Cauchy Transform in `1 [CDMI+16], or related constructions

for `p∈[1,2] [MM13]. In `1, one can use sparse random projections to obtain

a (c1, c2) = (1, O(d log d)) `1-subspace embedding which is also shown to be

optimal in [WW19]. However, it will be convenient to use the presentation
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from Definition 2.2.2 due to the algorithms we present in Chapter 4 which

return summaries that are not linear transformations of the input data.

2.2.4 Linear Algebra Problems

The two classes of linear algebra problems we study are `p-regression and low-

rank approximation. The `p-regression task is to find the hyperplane which has

the smallest distance to all points in A under the `p loss. This reconstruction

can then be used for later prediction tasks. Similarly, we can think of low-rank

approximation as trying to approximately reconstruct the input data using

fewer features than are present in the original input.

`p-Regression

Definition 2.2.3. Let A ∈ Rn×d be the sample-by-feature input data and

y ∈ Rn be the target vector. The (exact) `p-regression problem for 0 < p <∞
is to evaluate:

min
x∈Rd

‖Ax− y‖pp (2.3)

The approximate `p-regression problem is to find an x̂ ∈ Rd such that:

‖Ax̂− y‖pp ≤ c · min
x∈Rd

‖Ax− y‖pp (2.4)

There are various related problems that are covered by Definition 2.2.3.

For example, when p = 2 we obtain ordinary least squares regression and

p = 1 yields least absolute deviation regression. Rather than optimising over all

x ∈ Rd, occasionally we may study variants which use a convex constraint set

K. The constraint set may define certain `p-balls which can result in penalised

forms of the regression problem (2.3) such as ridge regression, LASSO regression

or a combination of both, elastic net regression. We will not study the cost

of projection onto these constraint sets, which sometimes can be expensive.

Our focus on the general algorithmic techniques for solving a large instance of

regression through a reduction to a smaller instance.

In Chapter 5 we will study how sketches can be used to solve the approximate

`2 regression problem in the above setup. The main idea that is used to

approximate these regression tasks is to sketch down to a small dimension

using a subspace embedding and solve the reduced-size problem. The fastest

algorithm for `2 regression uses a CountSketch for the embedding to achieve a

c = 1 + ε in (2.4) in time O(nnz (A)) + poly (d/ε). For `1 regression, a similar

but more involved argument can also be shown to achieve c = 1 + ε in time

O(nnz (A)) + poly (d/ε) [MM13].
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Low-Rank Approximation

A second fundamental problem in Numerical Linear Algebra is that of Low-

Rank Approximation. This problem is motivated by redundancy in the dataset,

typically over the spectrum of the input data. The input data is of size n× d
which can be large. If many of the directions are irrelevant, uninformative, or

noisy, it can be much cheaper to store a rank-k approximation that exploits

low-dimensional structure in the data. Such an approach yields a factorisation

of A into two matrices U ∈ Rn×k and V ∈ Rd×k so that A ≈ UV>. The

benefit of low rank approximation is that now only O((n+ d)k) values need to

be stored which can be substantially less than O(nd) if k is small. Secondly,

matrix-vector products can now be carried out in time O((n+ d)k) which is

again a saving over O(nd). Applications of low-rank approximation include non-

negative matrix factorisation [FI11] which is useful in recommender systems,

latent semantic analysis, and forms of clustering [DHS05].

Definition 2.2.4. Let A ∈ Rn×d be the sample-by-feature input data. The

(exact) `p-low rank approximation problem for 0 < p <∞ is to solve

min
A′:rank(A′)=k

∥∥A−A′
∥∥
p
.

The approximate `p-low rank approximation problem is to return Â which

satisfies: ∥∥∥A− Â
∥∥∥
p
≤ c · min

A′:rank(A′)=k

∥∥A−A′
∥∥
p

(2.5)

The solution matrix in both settings should be returned in factored form as

UV> with U ∈ Rn×k and V ∈ Rd×k to obtain computational benefits.

Solving Low Rank Approximation

For a limited class of problems certain solutions are known. The SVD of A

yields the optimal solution in both Frobenius (p = 2) and spectral norms [EY36].

However, this takes O(nd2) time and O(nd) space so sketched approximations

have been proposed. The fastest sketching algorithm for low-rank approxima-

tion in Frobenius norm is given by [CW17] in time O(nnz (A))+(n+d) poly (k)

to obtain c = 1 + ε. When assumptions such as Gaussian noise or the presence

of outliers are made, p = 1 may be more robust than p = 2 [SWZ17]. How-

ever, solving the low-rank approximation problem for p = 1 is known to be

NP-hard [GV18]. For p = 1, a solution obtaining c = log dpoly (k/ε) in time

O(nnz (A)) + (n+ d) poly (k/ε) was given in [SWZ17].

Sampling approaches are common for `2-low rank approximation in machine

learning. In this setting, one asks for a structured low-rank approximation

Â = CUR where C is a subset of the columns of A, U is a low rank matrix,

22



and R is a subset of rows from A [MD09]. This is closely related to the

Nyström method [WS01] which can also be approximated using only a linear

number of kernel function evaluations [MM17]. However, a full comparison to

sketching for kernel methods is outside the scope of this thesis and the reader

should consult [MW17, DKM20, GM13].

2.3 Optimisation Background

We will introduce sketching analogues for the following methods for solving

regression. The methods introduced below are standard so this section can be

skipped for readers familiar with using direct solvers, gradient descent, and

Newton methods for regression. For simplicity, we focus solely on standard

“deterministic optimisation” algorithms rather than stochastic optimisation

methods (such as stochastic gradient descent). Nevertheless, extending sketches

into the stochastic optimisation regime could be an exciting future direction

[YCRM17]. For simplicity, we focus on ordinary least squares, which has

the objective function, gradient and Hessian given below. Although we focus

on this simple case, many of the ideas directly map across to penalised or

constrained forms of `2 regression.

f(x) =
1

2
‖Ax− y‖22 (2.6)

∇f(x) = A>(Ax− y) (2.7)

∇2f(x) = A>A. (2.8)

2.3.1 Direct Solver

We split the time costs into setup time and solve time. The setup time is the

preprocessing time required to put the data into a form so that one can simply

call a ‘solve’ operation that we treat as a black box. There are roughly two

approaches that a direct solver may use to solve regression when n� d which

are introduced below and summarised in Table 2.1.

1. Compute a QR decomposition or SVD of the input matrix [GVL13].

Suppose we obtain the SVD of A = UΣV> ∈ Rn×d requiring a setup

time of O(nd2) and O(nd) space to store the orthonormal basis U ∈ Rn×d.
The solution vector is then x? = VΣ−1U>y. Hence, the solve time is

O(d2 + nd), assuming the SVD is given.

2. Setup the normal equations A>Ax = A>y explicitly in time O(nd2).

This can be done on a data stream using rank-one updates of the rows

of A. The space usage is O(d2) which is sublinear in n unlike the SVD
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Method Time Space

Setup Solve

SVD O(nd2) O(d2 + nd) O(nd) for U
Normal Equations O(nd2) O(d3) O(d2) for A>A

Table 2.1: Comparison of two direct solver approaches.

approach above. The worst-case solve time is then O(d3) assuming that

A>A has no special structure.

As computing the SVD of A is not practical for large-scale data, we will assume

that the regression problem is solved using method 2. The cost is then O(nd2)

setup time, O(d3) solve time and O(d2) space. The space bound is O(d2)

as outer products of rows AiA
>
i ∈ Rd×d can be accumulated. This applies

even in the row-arrival (Definition 2.1.3) or multi-party computation models

(Definitions 2.1.4 and 2.1.5), highlighting that the models we have introduced

capture common machine learning settings.

2.3.2 Iterative Methods

A variety of iterative methods can also be used for solving regression that

take multiple computation rounds to update the weights. These methods

operate in the multi-round optimisation model (Definition 2.1.5). As the data

is viewed many times, we measure the cost of a single iteration in time and

space. Another concern is the number of iterations rounds we must take. Every

round needs another pass over the data, which may be acceptable for small

data, but is a substantial cost if the data is large or distributed. Surveying

all of these methods is beyond the scope of this chapter so we detail only the

most pertinent. Table 2.2 provides a brief summary for readers familiar with

these methods.

Gradient Descent

The time cost of O(nd2) may be prohibitive if d is moderate to large, so to

avoid this cost gradient descent is employed which only depends linearly on n

and d for some desired accuracy. Gradient descent is an iterative scheme that

exploits linear approximation of the quadratic objective function about a fixed

point. The iterates are defined as:

x(t+1) = x(t) − νt∇f(x(t)) (2.9)

The parameter νt is referred to as the step size and strongly affects the

convergence behaviour of a gradient descent. For general convex functions
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gradient descent needs to the number of steps to grow linearly in 1/ε? as

O(1/ε?) to return an estimate within ε? relative error [BBV04, Chapter 9].2

‖x̂− x?‖2 ≤ ε? ‖x?‖2. This is referred to as sublinear convergence.

On the other hand, since data A is full-rank, the least squares function

is strongly convex. This means that the second derivate ∇2f(x) = A>A has

eigenvalues bounded between positive constants L1 and L2. For the least

squares objective function, we have σ2
min(A) ≤ λi(∇2f(x)) ≤ σ2

max(A) so f is

strongly convex with L1 = σ2
min(A) and L2 = σ2

max(A). For strongly convex

functions the number of steps needed to achieve ‖x̂− x?‖2 ≤ ε? ‖x?‖2 grows

logarithmically in 1/ε?. This is an exponential improvement over the general

convex setting above and is referred to as linear convergence.3

However, in both settings, the step size ηt must be correctly tuned. The

theoretically optimal step size for a gradient step is ηt = 2/(σ2
max(A)+σ2

min(A))

which can be pessimistic in practice and requires knowledge of the singular

values of A [BBV04, Chapter 9]. Moreoever, we may have no knowledge of the

spectrum of A meaning that we do not know how to set the step size ahead of

time. Hence, gradient descent is brittle to changes in ηt and its effect on the

parameter E.

One way of seeing the effect of the step size is the following argument.

Suppose that A is full-rank. Initialise x(0) = 0d×1 and select νt = 1/σ2
max(A).

Then: ∥∥∥x(t+1) − x?
∥∥∥

2
≤
∥∥∥∥Id − 1

σ2
max(A)

A>A

∥∥∥∥
2

∥∥∥x(t) − x?
∥∥∥

2

...

≤
∥∥∥∥Id − 1

σ2
max(A)

A>A

∥∥∥∥t+1

2

‖x?‖2

which will descend towards x? provided that
∥∥∥Id − 1

σ2
max(A)

A>A
∥∥∥

2
< 1. Equi-

valently, by the SVD of A = UΣV> and orthonormality of V:∥∥∥∥Id − 1

σ2
max(A)

A>A

∥∥∥∥
2

=

∥∥∥∥Id − 1

σ2
max(A)

Σ2

∥∥∥∥
2

.

Since Σ2 is diagonal the matrix in the norm above is diagonal so the spectral

norm is the largest diagonal entry. This occurs at the smallest singular value

of A. Hence: ∥∥∥∥Id − 1

σ2
max(A)

A>A

∥∥∥∥
2

= 1− σ2
min(A)

σ2
max(A)

∈ (0, 1).

2Thought of as the number of decimal place to which the estimate and solution agree.
3Sometimes also confusingly called exponential convergence.
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Let E = 1− σ2
min(A)/σ2

max(A) so that after t+ 1 iterations the error is Et+1. For

a given accuracy tolerance ε?, we must complete T iterations so that ET = ε?.

Thus, T grows as

T =
log(1/ε?)

log(1/E)
(2.10)

which has a satisfying dependence on log(1/ε?). On the other hand, it depends

heavily on 1/log(1/E) which can be large even for full-rank data A. A similar

argument holds if we choose the optimal ηt with adjusted constants.

Absent of knowledge about the spectrum of A, one often resorts to heuristics

to obtain an appropriate step size. Methods such as approximate line search

only change the (asymptotic) number of steps required for convergence by

constants [BBV04]. Although performance looks reasonable if f is strongly

convex and the correct step size can be tuned, if either of these assumptions is

not met, performance degrades to the general convex setting (even for OLS)

and the number of steps required grows as T = O(1/ε?) which is slow.

In terms of computational complexity, the time cost per iteration is simply

O(nd) as only inner products are needed for the gradient. Equation (2.7) can

be computed from right to left in the parentheses so A>A is not materialised.

We execute T gradient steps and if T < d, then this can be attractive in

comparison to a direct solver. In terms of space, only O(d) working space is

needed to store vectors at any given iteration, however, multiple passes of the

data are necessary and the number of passes is dependent on the accuracy as

well as the quantity E.

In summary, gradient descent is simple and requires only inner products of

gradient vectors. When compared to our computation models from Section 2.1.4,

one can consider gradient descent as a distributed protocol that requires

communicating O(d) sized vectors, however, the slow convergence also means

many (possibly expensive) rounds of communication are necessary to obtain

accurate estimators. In the models from Section 2.1.4, we can consider the

central coordinator as holding approximate weights x̂ at any given time point.

A pass through the dataset is taken to evaluate ∇f(x̂) = A>(Ax̂− y) which

is used to update the weights.

Newton’s Method

Newton’s method is conceptually similar to gradient descent except a quadratic

approximation to f is used at every point rather than a linear approximation.

The Newton iterates are mild variants on the gradient method ([BBV04,

Chapter 9]):

x(t+1) = x(t) − [∇2f(x(t))]−1∇f(x(t)). (2.11)
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The key difference is that rather than a step parameter, we evaluate the second

derivative at every iterate. Note that we need not obtain the inverse explicitly

and can solve the linear system

∇2f(x(t))
(
x(t+1) − x(t)

)
= −∇f(x(t)). (2.12)

Measured by number of iterations, convergence using Newton’s method is faster

than for gradient descent4 but it comes at the cost of (i) forming the Hessian

matrix in space O(d2) space and (ii) solving a linear system needing O(d3)

time per iteration. Consider the specific case of ordinary least squares and an

initial guess of x(0) = 0d. Newton’s method will converge in a single step as

the update is equivalent to solving the normal equations. There is a tradeoff

to strike; substantially fewer iterations are necessary but at a much greater

cost, so it isn’t immediate from a practical or theoretical perspective which

should be preferred.

Approximate Newton Method

The high cost of a single Newton step often makes it impractical to use. Hence,

we are more interested in approximating the Hessian matrix H = ∇2f(x) to

estimate the solution of (2.12). The approximation Ĥ should be cheaper to

compute than obtaining the Hessian exactly.

The main idea is that the Newton method uses H−1∇f(x) at every step.

This “normalises” all of the directions so that taking a unit step length is

appropriately scaled based on the singular values’ magnitude. We will use this

idea with an estimate of the Hessian to take approximately unit-sized step in

every direction. The iterates follow the update rule

x(t+1) = x(t) − [ ˜∇2f(x(t))]−1∇f(x(t)). (2.13)

where ˜∇2f(x(t)) is an appropriate estimate of ∇2f(x(t)). For Ordinary Least

Squares (OLS), we recall that the Hessian is constant over x so this amounts

to finding a good estimate Ĥ for H = ∇2f(x). The iterates (2.13) can be

performed in time O(d2 + nd) if Ĥ ∈ Rd×d is explicitly materialised. In

Chapter 5, we will investigate better ways to implement this step.

Similar to gradient descent, the approximate Newton method can be per-

formed in the distributed setting. Now the central coordinator holds an estimate

to the Hessian matrix as well as the estimated weights x̂ = x(t). Of course,

this requires a slight increase in the size of communicated objects from O(d) to

4For general convex functions, Newton’s method is only locally convergent, so one is
not necessarily guaranteed to descend towards the optimal solution. However, for the least
squares problems we will consider, this will not be a problem as we will show that initialising
at zero suffices for convergence.
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Method Iteration Cost Number of iterations

Space Time

Gradient Descent O(d) O(nd) O(log(1/ε))
Approximate Newton Method O(md) O(md+ nd) Om(log(1/ε))
Newton Method O(d2) O(d3) 1

Table 2.2: Comparison of the related iterative methods for ordinary least
squares on full-rank data. The parameter m should be used to control the
space and time usage per iteration and should be thought of as a tunable
parameter that determines how well the Hessian is approximated. Consequently,
different values of m will have an impact on how many iterations must be
completed, represented by the Om(·) notation. The role of m and the number
of iterations will become clear in Chapter 5.

O(d2), however the hope is that many fewer communication rounds are neces-

sary than gradient descent. More details on how we exploit the approximate

Newton method are presented in Section 5.1.3.

In summary for OLS, the approximate Newton method seeks a tradeoff

between gradient descent and the (exact) Newton method. Gradient descent

has a cheap per-iteration cost as it needs only inner products to be computed

for every step; however, many iterations are necessary. Newton’s method is

expensive for every iteration as a the d× d Hessian must be obtained, followed

by a linear solve, yet few iterations are needed. For the particular case of OLS,

exact Newton is equivalent to solving the normal equations. The approximate

Newton method exploits spectral information of the data so that better steps

can be taken than in gradient descent, meaning fewer iteration rounds are

necessary. Also, a good approximate Newton scheme should efficiently find

the estimate Ĥ to yield computational gains over the exact Newton method.

These relationships are summarised in Table 2.2.

2.4 Communication Complexity

We introduce the Index problem which is used in Chapters 3 and 4 to prove

space lower bounds required to solve a problem up to certain approximation

factors (e.g. a constant factor). The typical setup for Index is given in the

following definition.

Definition 2.4.1. Alice holds a vector a ∈ {0, 1}N and Bob holds an index

i ∈ [N ]. Bob is tasked with finding ai following communication with Alice.

Definition 2.4.1 is the general Index problem. Note that if there are no

requirements on the direction or number of communication rounds, Bob can

output ai exactly in 2 rounds of communication by sending Alice i and Alice
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returning dlogNe bits for ai. However, we will focus on the one-way commu-

nication complexity model. In this setting, Alice communicates information to

Bob so that Bob can output ai. Alice must send Bob Ω(N) (a linear number

of bits in the size of Alice’s vector a) bits for him to solve the Index problem

[KNR99]. We use this model because the size of the message Alice sends to

Bob is the same as the space consumption of an algorithm that Bob can query.

Index has been used many times in proving lower bounds for classical

streaming algorithms, such as frequency moment estimation [LW13] or finding

the median of all items seen on a stream [GM09]. These ideas have been

extended to matrix problems [Woo14a] and we will adapt this communication

problem for our lower bounds. Unlike typical reductions to Index, we require

nontrivial constructions from coding theory which will generate a sufficiently

large instance to our input problem. Our lower bounds will typically make use

of a binary code C, comprised of a collection of codewords, which are vectors

(or strings) of fixed length. Informally, we will sample a code C ⊂ {0, 1}d with

certain properties, such as low weight and small number of collisions amongst

u,u′ ∈ C so that |C| = 2Ω(d). The input to the problem may then be either the

codewords in the raw state, or some function of the codewords. Upon defining

a suitable instance, we will argue that Bob can solve Index, and thus incur the

associated lower bound.

2.4.1 Outlining Lower Bound Arguments

More concretely, let C be a binary code with |C| = N and suppose Alice holds

a subset of words T ⊂ C. Alice’s input T encodes a binary membership vector

a ∈ {0, 1}N such that ai = 1 if Alice holds the string wi ∈ T . Note here that

we simply need a suitable enumeration over C to generate the indexing i of

a. Since we can take the canonical mapping over [N ] into binary, this is not

problematic. We will abuse notation to refer to binary strings i ∈ C; meanwhile

when i is used as an index, it is assumed to be in binary representation. By this

we mean that if the code is C = {00, 01, 10, 11} and Alice holds T = {00, 10},
then the binary representation of Alice’s codewords are 00 7→ 0 and 10 7→ 2

so a = (1, 0, 1, 0). It is precisely this vector a whose indices Bob would like to

learn using communication from Alice.

Roughly, our approach will be as follows. As above, Alice holds T ⊂ C and

populates her membership vector a. She will define an instance A for the given

problem P based on φ(x) for every codeword x she holds in T . Here, φ is the

identity operator if no transformation is made (Chapter 5, Theorem 4.5.2), or

a particular function we may define if we need something more sophisticated.

In the simple case that φ is the identity map, then A ∈ {0, 1}N×d is simply a

matrix whose rows are the codewords from Alice’s held set T . However, for
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the more complex constructions of φ we will use in Chapter 3, A may have

many more rows than N and we will have to address concerns regarding the

size of A, ensuring that it does not grow unboundedly large.

Bob’s Approach

Independent of any information Alice has, Bob is also given a test vector y ∈ C
so that y is guaranteed to share properties of the code that we have determined

a priori. We will then hypothesise that there exists an algorithm ALG for the

problem P with a certain approximation guarantees. For example, ALG returns

a constant factor approximation to P. Bob will query ALG using the input

A and his task is to distinguish between two cases: (i) y ∈ T ; (ii) y ∈ C \ T .

These two cases are sufficient for Bob, because if he can tell which of (exactly

one) (i) or (ii) is true, then he can return the value of Alice’s membership

vector a. Note again, that Bob doesn’t need to know the underlying indexing

scheme that Alice has used to populate a, all he needs is that if y ∈ T then

Alice will have ay = 1, that is, case (i) is true. Otherwise, case (ii) is true and

Bob knows that ay = 0. Hence, Bob is able to solve the Index problem.

Although this appears simple, the trick is in how we design both C and

φ so both the code and the test instance A have certain properties we can

reason against in establishing the performance of ALG. The second difficulty

is in determining the separation between the two cases (i) and (ii) and how

that interacts with the approximation factor guarantee of the algorithm. In

particular, if we assume ALG returns a constant factor approximation for P,

then we need to be able to show a constant factor gap between some output

corresponding to case (i) and case (ii) which will involve some combinatorial

calculations. At this point, we can be satisfied Bob can determine which case

he is in, thus solving Index and incurring the space bound of Ω(N) which is the

size of Alice’s membership vector. Since N = |C| and |C| = 2Ω(d), the space

cost for an algorithm with guarantees of ALG will be 2Ω(d).
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Chapter 3

Projected Frequency

Estimation

In this chapter, we are interested in “projected frequency estimation” which can

be understood as follows. Given an n× d dimensional dataset A, a projection

query specifies a subset S ⊆ [d] of columns which yields a new n× |S| array.

We present a theoretical study of the space complexity for computing data

analysis functions over such subspaces, including heavy hitters and norms,

when the subspaces are revealed only after observing the data. We show that

this important class of problems is typically hard: for many problems, we show

2Ω(d) lower bounds. Our results are based on careful constructions of instances

using coding theory and novel combinatorial reductions that exhibit such space-

approximation tradeoffs. However, we present upper bounds which demonstrate

space dependency better than 2d. That is, for c, c′ ∈ (0, 1) and a parameter

N = 2d an N c-approximation can be obtained in space min(N c′ , n), showing

that it is possible to improve on the näıve approach of keeping information

for all 2d subsets of d columns. More concretely, the accuracy-space tradeoff

is controlled by a tunable parameter α ∈ (0, 1/2). We have c′ = H(1/2− α)

where H(t) ≤ 1 is the binary entropy function.1 For the error, we can think of

c ≈ |1− p|α when operating in `p, which is less than 1 for appropriate α.

The computation model outlined above has not been previously studied

so before moving on to the technical details, we will show a high level illus-

trative example. This example is intended only to present the main setup and

motivation for our chapter, enabling the reader to more easily conceptualise

the mathematical detail given at a later stage. Our aim in this example is to

show how the model is motivated and also how a user could use the model in

practice.

1See Figure 3.4
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Preface: Practical Motivation

Suppose that an online advertising broker has deployed a new set of adverts

whose performance they wish to monitor. We can imagine that they have a

set of D adverts aj that may or may not be presented to their n users ui.

The presentation of advert aj to user ui can be represented as simple binary

Yes, No values. Following this, the users experience a set of events that we

will assume for simplicity are binary. The events may be relatively simple, for

example, suppose the broker also monitors whether

• users interact with the advert in full. Traditionally, users might have

interacted with adverts through simple clicks, but nowadays there are

a huge number of possible formats such as click-through ads, product

trailers or banner adverts on YouTube videos, Spotify adverts between

different audio media, Instagram product adverts and many more. The

Yes/No variable now represents whether a click-ad was clicked or a video

advert was watched in full, an entire Instagram product advert has been

swiped and so on. A user ui’s interaction with advert aj is denoted by

ej ∈ {Yes, No}. We make the distinction of interacting with the advert in

full to prevent enforcing too much redundancy in the available patterns

as this allows each (aj , ej) ∈ {(Yes, Yes), (Yes, No), (No, No)} but clearly

(aj , ej) cannot be (No, Yes) as the user must at least observe the advert

aj before being capable of interacting with it.

• users give feedback on the quality or usefulness of the advert aj which

is represented by fj . For our example we assume the feedback is initially

neutral/negative (No) or the user gives positive feedback (Yes).

For user ui, we generate the entire length d = 3D user pattern which is the

binary string describing their behaviour over each of the adverts and its events.

An example user pattern is illustrated in the following table:

Adverts and Events
Users a1 e1 f1 . . . aD eD fD
ui Yes Yes No Yes No Yes

This setup leads to a sequence of Yes, No bitstrings for every user ui which

generates the input array describing the user-level behaviour across all of the

adverts. Over all of the users in the company’s database, the behaviour is

represented as a array A ∈ {0, 1}n×d under the mapping 0 7→ No and 1 7→ Yes

with every row Ai representing user ui’s behaviour across every advert-event

tuple. At this point, having curated their user data, the company can begin to

ask analytical questions about the behaviour.
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The Broker’s Analysis

Suppose that the broker wishes to answer to the following question.

Question 3.0.1. How many users were presented with adverts a1 and a2,

interacted with each of them, and gave positive feedback to both?

Such behaviour is described by the bitstring

(a1, e1, f1, a2, e2, f2) = 11×6.

Under this model, one could pass through the array A and count the number

of times 11×6 is present amongst the columns

S = (a1, e1, f1, a2, e2, f2).

Of course, this appears to be a simple counting problem. However, the

computational and statistical challenges of counting the number of distinct

items from large-scale data in sublinear space inspired the (standard) streaming

model [AMS99b].

Alternatively, the broker might be interested in slightly different queries

such as

Question 3.0.2. How many different behaviours were observed on adverts a1

and a2?

Although, questions 3.0.1 and 3.0.2 are related, there is a subtle difference

in that 3.0.1 asks for the frequency of item 11×6 while 3.0.2 asks how many

distinct user patterns from {0, 1}|S| are observed on columns S. Indeed, if

the broker knows the columns of interest before generating or observing A,

then they could simply maintain these statistics as the data is observed. On

the other hand, it is plausible that the user-base or number of advert-event

tuples is so large that generating this data even for a small timeframe (for

instance, the time window across the halftime interval at the Super Bowl)

yields an extremely large array A, so large that taking another pass over it

is not practical. In such a situation, the columns of interest, S, are decided

after observing the data. As a result, the analyst can no longer simply scan

through A and count the patterns as they are seen. Consequently, a new

approach is needed to deal with this scenario in which we face both large-scale

and high-dimensional data.

Extending the example, suppose the company has 4 users in its database

with the user patterns described in the following table.

If this were the input data, then the answer to Question 3.0.1 would be 1 as

only u1 has a user pattern of 11×6. Question 3.0.2 has an answer of 4 as each

user u1, . . . , u4 has a unique user pattern.
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Adverts and Events
Users a1 e1 f1 a2 e2 f2

u1 Yes Yes Yes Yes Yes Yes

u2 Yes No No No No No

u3 No No No Yes Yes Yes

u4 Yes Yes No Yes No Yes

In a nutshell, the broker is interested in estimating the frequency of certain

patterns after the data has been observed. The data is so large that it cannot

be accessed in full so some technique of summarisation is necessary in order to

approximately answer queries. These queries are roughly of the form how many

different behaviours were experienced on a chosen advert-event columnset? Or

similarly, how many times was a given advert-event behaviour observed? This

general setup motivates our subsequent work.

3.1 Introduction

In many data analysis scenarios, datasets of interest are of moderate to high

dimension, but many of these dimensions are spurious or irrelevant. Thus, we

are interested in subspaces, corresponding to the data projected on a particular

subset of dimensions. Within each subspace, we are concerned with computing

statistics, such as norms, measures of variation, or finding common patterns.

Such calculations are the basis of subsequent analysis, such as regression and

clustering. In this chapter, we introduce and formalize novel problems related

to functions of the frequency in such projected subspaces. Already, special cases

such as subspace projected distinct elements have begun to generate interest,

e.g., in Vu’s work [Vu18], and as an open problem in sublinear algorithms

[Sublinear Open Problems: 94].

In more detail, we consider the original data to be represented by a (usually

binary) array with n rows of d dimensions. A subspace is defined by a set S ⊆ [d]

of columns, which defines a new array with n rows and |S| dimensions. Our

goal is to understand the complexity of answering queries, such as which rows

occur most frequently in the projected data, computing frequency moments

over the rows, and so on. If S is provided prior to seeing the data, then the

projection can be performed online, and so many of these tasks reduce to

previously studied questions. Hence, we focus on the case when S is decided

after the data is seen. In particular, we may wish to try out many different

choices of S to explore the structure of the subspaces of the data. Our model

is given in detail in Chapter 3.2.

For further motivation, we outline some specific areas where such problems

arise.
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• Bias and Diversity. A growing concern in data analysis and machine

learning is whether outcomes are ‘fair’ to different subgroups within the

population, or whether they reinforce existing disparities. A starting point

for this is to quantify the level of bias within the data when different

features are considered. That is, we want to know whether certain

combinations of attribute values are over-represented in the data (heavy

hitters), and how many different combinations of values are represented

in the data (captured by measures like F0). We would like to be able to

answer such queries accurately for many different (typically overlapping)

subsets of dimensions.

• Privacy and Linkability. When sharing datasets, we seek assurance

that they are not vulnerable to attacks that exploit structure in the data

to re-identify individuals. An attempt to quantify this risk is given in

recent work [CDP+19], which asks how many distinct values occur in the

data for each partial identifier, specified as a subset of dimensions. This

prior work considered the case where the target dimensions are known in

advance, but more generally we would like to compute such measures for

arbitrary subsets, based on frequency moments and sampling techniques.

• Clustering and Frequency Analysis. In the area of clustering, the

notion of subspaces has been studied under a number of interpretations.

The common theme is that the data may look unclustered in the original

space due to spurious dimensions inflating the distance between points

that are otherwise close. Many papers addressed this as a search problem:

to search through exponentially many subspaces to find those in which the

data is well-clustered. See the survey by Parsons, Haque and Liu [PHL04].

In our setting, the problem would be to estimate various measures of

density or clusteredness for a given subspace. A related problem is to

find subspaces (or “subcubes” in database terminology) that have high

frequency. Prior work proceeded under strong statistical independence

assumptions between feature dimensions dimensions, for example, that

the distribution can be modeled accurately with a (Näıve) Bayesian

model [KMVX18].

3.2 Preliminaries and Definitions

For a positive integer Q, let [Q] = {0, 1, . . . , Q − 1}, and A ∈ [Q]n×d be the

input data. The objective is to keep a summary of A which is used to estimate

the solution to a problem P upon receiving a column subset query S ⊆ [d].

Problems P of interest are described in Section 3.2.1. Define the restriction of

A to the columns indexed by S as AS whose rows ASi , 1 ≤ i ≤ n, are vectors
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over [Q]|S|. We use the Minkowski norm ‖X‖p = (
∑

i,j |Xij |p)1/p to denote the

entrywise-`p norm for vectors (j = 1) and matrices (j > 1).

Computational Model. We operate in the projected summary model

of Definition 2.1.2. First, the data A is received under the assumption that

it is too large to hold entirely in memory so can be modeled as a stream of

data. Our lower bounds are not strongly dependent on the order in which the

data is presented. After observing A, a column query S is presented. The

frequency vector over A induced by S is f = f(A, S) whose entries fi(A, S)

denote the frequency of Q-ary word wi ∈ [Q]|S|. We study functions of the

frequency vector f = f(A, S) after the observation of A and receiving column

query S. The task is, during the observation phase, to design a summary of

A which approximates statistics of AS , the restriction of A to its projected

subspace S. Approximations of AS are accessed through the frequency vector

f(A, S). Note that functions (e.g., norms) are taken over f(A, S) as opposed

to the raw vector inputs from the column projection.

Remark 3.2.1 (Indexing Q-ary words into f). Recall that the frequency vector

f(A, S) has length Q|S| with each entry fi counting the occurrences of word

wi ∈ [Q]|S|. To clearly distinguish between the (scalar) index i of f and the

input vectors wi whose frequency is measured by fi we introduce the index

function e(wi) = i. We may think of e(·) as simply the canonical mapping

from [Q]|S| into {0, 1, 2, . . . , QS − 1}, but other suitable bijections may be used.

Example 3.2.1. Suppose Q = 2 and A ∈ {0, 1}5×3 with column indices

{1, 2, 3} given below. If S = {1, 2}, then using the canonical mapping from

{0, 1}|S| into {0, 1, 2, 3} (e.g e(00) = 0, e(01) = 1, . . . e(11) = 3) we obtain

AS and hence f(A, S) = (1, 1, 0, 3) as 00 occurs once, 01 occurs once, and 11

occurs 3 times while 10 never occurs.

A =


1 1 0

0 1 0

0 0 1

1 1 1

1 1 0

 −→ AS =


1 1

0 1

0 0

1 1

1 1


The vector f = f(A, S) is then the frequency vector over which we seek to

compute statistical queries such as ‖f‖0. In this example, ‖f‖0 = 3 (there are

three distinct rows in AS), while ‖f‖1 = 5 is independent of the choice of S.

3.2.1 Problem Definitions

The problems that we consider are column-projected forms of common stream-

ing problems ([KNW10, BCI+17, BGL+18]). Here, we refer to these problems

36



as “projected frequency estimation problems” over the input A. We define

fi(A, S) = |{j : AS
j = wi, j ∈ [n]}| (3.1)

Fp(A, S) =
∑

i∈{0,1}|S|
fi(A, S)p. (3.2)

The quantity fi(A, S) should be thought of as counting how many times the

pattern (at location) i (under the indexing from e(·)) occurs on AS . Hence,

the function Fp(A, S) then evaluates frequency moments over all of the entries

in f .

• Fp estimation: Given a column query S, the Fp estimation problem is

to approximate the quantity Fp(A, S) = ‖f(A, S)‖pp under some measure

of approximation to be specified later (e.g., up to a constant factor). Of

particular interest to us is (projected) F0(A, S) estimation, which counts

the number of distinct row patterns in AS .

• `p-heavy hitters: The query is specified by a column query S ⊆ [d],

a choice of metric/norm `p, p > 0 and accuracy parameter φ ∈ (0, 1).

The task is then to identify all patterns wi observed on AS for which

fi(A, S) ≥ φ‖f(A, S)‖p. Such values wi (or equivalently i) are called

φ-`p-heavy hitters, or simply `p-heavy hitters when φ is fixed. We will

consider a multiplicative approximation based on a parameter c > 1,

where we require that all φ-`p heavy hitters are reported, and no items

with weight less than (φ/c) · ‖f(A, S)‖p are included.

• `p-frequency estimation: A related problem is to allow the frequency

fi(A, S) to be estimated accurately, with error as a fraction of Fp(A, S)1/p =

‖f(A, S)‖p, which we refer to as `p frequency estimation. Specifically, for

a given wi, return an estimate f̂i which satisfies |f̂i(A, S)− fi(A, S)| ≤
φ‖f(A, S)‖p.

• `p sampling: The goal of this sampling problem is to sample patterns

wi according to the distribution pi ∈ (1 ± ε) fpi (A,S)

‖f(A,S)‖pp
+ ∆ where ∆ =

1/poly (nd), and return a (1± ε′)-approximation to the probability pi of

the item wi returned.

Casting our mind back to the advertising example given at the start of

the chapter, we can begin to see how the functions described above have

applications. For example, after the frequency vector f(A, S) is built, the

`p-heavy hitters problem is asking for which advert-event user patterns occur

most frequently on the projection S. Similarly, Question 3.0.1 is asking for the

frequency of a fixed user pattern; if this is relaxed to estimating the frequency

of the pattern, then it is an instance of `p frequency estimation. Question 3.0.2
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asks for all patterns observed on a particular AS which is an example of

projected F0 estimation. Finally, if the analyst wanted to return a random set

of users or user patterns that represents the general population-level behaviour,

then they could instantiate this as an instance of projected `p sampling.

When clear, we may drop the dependence upon S in the notation and write

fi and Fp instead. We will use Õ and Ω̃ notation to supress factors that are

polylogarithmic in the leading term. For example, lower bounds stated as

Ω̃(2d) suppress terms polynomial in d.

3.2.2 Related Work

The model we study is reminscent of, but distinct from, some related formula-

tions. In the problem of cascaded aggregates [JW09], we imagine the starting

data as an array, and apply a first operator (denoted Q) on each row to obtain

a vector, on which we apply a second operator P . One can think of P as a

function such as F0 which returns the number of nonzeros in every row and

populates a new vector with this value in the corresponding location. That is,

update ri = Q(Ai) for every input row Ai. Following this first aggregation, a

second operator P is applied which is evaluated over the row-wise frequency

vector r. This is written as P (r) = P (Q(A)). Our problems can be understood

as special cases of cascaded aggregates where Q is a project-then-concatenate

operator, to obtain a vector whose indices correspond to the concatenation of

the projection of a row.

Another example of a cascaded aggregate is a so-called correlated aggregate

[TW12], but this was only studied in the context of two dimensions. In this

setting, the data is viewed as a 2-dimensional stream (xi, yi) for 1 ≤ i ≤ n.

Then one wishes to evaluate a function f over all values of xi provided that

yi ≤ c for a constant c. Note that this differs from our model as the goal is to

compute a function over only a subset of the stream based upon the condition

yi ≤ c being satisfied. In contrast, our aim is to compute a function over all

of the items in the stream which can vary depending on which columns are

included in the query. To the best of our knowledge, our projection-based

definitions have not been previously studied under the banner of cascaded

aggregates.

Other work includes results on provisioning queries for analytics [AKLT16],

but the way these statistics are defined is different from our formulation. In

that setting there are different scenarios (“hypotheticals”) that may or may not

be turned on: this corresponds to “what-if” analysis whereby a query is roughly

“how many items are observed if a given set of columns is present (turned on)?”

The number of distinct elements for the query is the union of the number of

distinct elements across scenarios. In our setting, we concatenate the distinct
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items into a vector such as r above, and count the number of distinct vectors in

r. Note that in the hypotheticals setting in the binary case, each column only

has 2 distinct values, 0 and 1, and thus the union also only has 2 distinct values.

However, we can obtain up to 2d distinct vectors. Consequently, Assadi et al.

are able to achieve poly (d/ε) space for counting distinct elements, whereas

we show a 2Ω(d) lower bound. Moreover, they achieve a 2Ω(d) lower bound

for counting (i.e., F1), whereas we achieve a constant upper bound. These

disparities highlight the differences in our models.

More recently, the notion of “subset norms” was introduced by Braverman,

Krauthgamer and Yang [BKY18]. This problem considers an input that defines

a vector v, where the objective is to take a subset s of entries of v and

compute the norm of v only over the specified subset of entries. Results

are parameterized by the “heavy hitter dimension”, which is a measure of

complexity over the set system from which s can be drawn. While sharing

some properties with our scenario, the results for this model are quite different.

In particular, in [BKY18] a trivial upper bound follows by maintaining the

vector v explicitly, of dimension n. Meanwhile, many of our results show lower

bounds that are exponential in the dimensionality, as 2Ω(d), though we also

obtain non-trivial upper bounds.

3.3 Contributions

The main challenge here is that the column query S is revealed after observing

the data; consequently, applying a known algorithm to just the columns S as

the data arrives is not possible. For example, consider the exemplar problem of

counting the number of distinct rows under the projection S, i.e., the projected

F0 problem. Recall that AS
i denotes the i-th row of array AS . Then the task

is to count the number of distinct rows observed in AS , i.e.,

F0(A, S) = |{AS
j : j ∈ [n]}| = ‖f(A, S)‖0.

Observe that F0(A, S) can vary widely over different choices of S. For

example, even for a binary input A ∈ {0, 1}n×d, F0(A, S) can be as large as

2d when S consists of all columns from a highly diverse dataset, and as small

as 1 or 2 when S is a single column or when S selects homogeneous columns

(e.g., the columns in S are all zeros).

3.3.1 Summary of Results

Our main focus, in common with prior work on streaming algorithms, is on

space complexity. For the above problems we obtain the following results:
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• In Section 3.4 we show that projected F0 estimation requires 2Ω(d) space

for a constant factor approximation, demonstrating the essential hardness

of these problems. Nevertheless, we obtain a tradeoff in terms of upper

bounds described below.

• Section 3.5 presents results for `p frequency estimation, `p heavy hit-

ters, Fp estimation, and `p sampling. We show a space upper bound of

O(ε−2 log(1/δ)) for `p frequency estimation when 0 < p < 1 and com-

plement this result with lower bounds for heavy hitters when p > 1, Fp

estimation and `p sampling for all p 6= 1, showing that these problems

require 2Ω(d) bits of space.

• In Section 3.6 we show upper bounds for F0 and Fp estimation which

improve on the exhaustive approach of keeping summaries of all 2d

subsets of columns, by showing that we can obtain coarse approximate

answers with a smaller subset of materialized answers. Specifically, for

parameters N = 2d and α ∈ (0, 1) we can obtain an Nα approximation in

min
(
NH(1/2−α), n

)
space. Since the binary entropy function H(x) < 1,

this bound is better than the trivial 2d bound.

These bounds show that there is no possibility of “super efficient” solutions

that use space less than exponential in d. Nevertheless, we demonstrate some

solutions whose dependence is still exponential but weaker than a näıve 2d.

Thinking of N = 2d, the above upper and lower bounds imply the actual

complexity is a nontrivial polynomial function of N .

The bounds also show novel dichotomies that are not present in comparable

problems without projection. In particular, we show that (projected) `p

sampling is difficult for p 6= 1 while (projected) `p-heavy hitters has a small

space algorithm for 0 < p < 1. This differs from the standard streaming

model in which the (classical) `p heavy hitters problem has a small space

solution for p ≤ 2 without projection [LNNT16], and (classical) `p sampling

can be performed efficiently for p ≤ 2 [JW18]. Our lower bounds are built on

amplifying the frequency of target codewords for a carefully chosen test word.

Note that there are trivial näıve solutions which simply retain the entire

input and so answer the query exactly on the query S: to do so takes Θ(nd)

space, noting that n may be exponential in d. Alternatively, if we know

t = |S| then we may enumerate all
(
d
t

)
subsets of [d] with size t and maintain

(approximate) summaries for each choice of S. However, this will entail a cost

of at least Ω(dt) and as such does not give a major reduction in cost.
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3.3.2 Coding Theory Definitions

Our lower bounds will typically make use of a binary code C, constituted of

a collection of codewords, which are vectors (or strings) of fixed length. We

write B(l, k) to denote all binary strings of length l and (Hamming) weight

k. We first consider the dense, low-distance family of codes C = B(d, k) but

will later use more sophisticated randomly sampled codes. When k < d/2, we

have
(
d
k

)
≥ (d/k)k and when k = d/2, we have

(
d
d/2

)
≥ 2d/

√
2d. A trivial but

crucial property of B(d, k) is that any two codewords from this set can have

intersecting 1s in at most k − 1 positions.

We define the support of a string x as supp(x) = {i : xi 6= 0}, the

set of locations where x is non-zero. We define child words to be the set

of new codewords obtained from C by generating all Q-ary words z with

supp(z) ⊆ supp(x) for some x ∈ C, and construct them with the star operator

defined next. The purpose of starQ is to amplify the incidence and frequency

of strings in order to construct a hard instance for the lower bound.

Definition 3.3.1 (starQ operation, child words). Let d be the length of a binary

word, k be a weight parameter, and suppose y ∈ B(d, k). Let M = supp(x). We

define the function starQ(x) to be the operation which lifts a binary word x to a

larger alphabet by generating all the words over alphabet [Q] on M . Formally,

starQ(x ∈ {0, 1}d) = {z : z ∈ [Q]d, supp(z) ⊆ supp(x)}

Since the alphabet size Q is often fixed when using this operation, when clear

we will drop the superscript and abuse notation by writing star(x). Elements

of the set starQ(x) are referred to as child words of x.

Example 3.3.1 (Action of starQ(·)). Suppose the string length is d = 4 and

the weight is k = 2. Consider C = B(4, 2) which is the set of all binary strings

of length 4 and weight 2. If we take w = (0, 0, 1, 1) and Q = 3 we generate the

following child words of w:

C =



0 0 1 1

0 1 0 1

1 0 0 1

1 0 1 0

1 1 0 0

0 1 1 0


−→ starQ(w) =



0 0 0 0

0 0 0 1

0 0 0 2

0 0 1 0

0 0 1 1

0 0 1 2

0 0 2 0

0 0 2 1

0 0 2 2


.

For any y ∈ B(d, k), there are Qk words generated by starQ(x). When star(·)
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is applied to all vectors of a set U then we write star(U) = ∪u∈U star(u). For

example, if x ∈ {0, 1}d and Q = 2, then starQ(x) is simply all possible binary

words of length d whose support is contained in supp(x). For the projected

F0 problem, the code C = B(d, k) is sufficient. However, for our subsequent

results, we need a randomly chosen code whose existence is demonstrated in

Lemma 3.3.1. The proof follows from a Chernoff bound.

Lemma 3.3.1. Fix ε, γ ∈ (0, 1) and let C ⊆ B(d, εd) be such that for any

two distinct x,y ∈ C we have |x ∩ y| ≤ (ε2 + γ)d. With probability at least

1 − exp(−2dγ2) there exists such a code C with size 2O(γ2d) instantiated by

sampling sufficiently many words i.i.d. at random from B(d, εd).

Proof. Let Z be the random variable for the number of 1s in common between

x and y sampled uniformly at random. Then the expectation of Z is E[Z] =
(εd)2

d = ε2d and although the coordinates of x,y are not independent, they

are negatively correlated. We claim that z = (Z1, Z2, . . . , Zd) with Zi = XiYi

also inherits this negative correlation over its coordinates. We have E(ZiZj) =

E(XiYiXjYj). By reordering and using the independence of Xi and Yi we have

E(ZiZj) = E(XiXj)E(YiYj) upon which we may use the negative correlation

amongst the X· and Y· and reorder to obtain E(ZiZj) ≤ E(Zi)E(Zj). Hence

the (Z1, Z2, . . . , Zd) are negatively correlated and such random variables obey

Chernoff bounds (see Section 1.10.2 of [Doe20] for self-contained details). Our

aim is to show that the number of 1s in common between x and y can be at

most γd more than its expectation. Then, via an additive Chernoff-Hoeffding

bound:

P(Z − E(Z) ≥ γd) ≤ exp(−2dγ2).

This is the probability that any two codewords x and y are not too similar, so

by taking a union bound over the Θ(|C|2) pairs of codewords, the size of the

code is |C| = exp(dγ2) = 2γ
2d/ ln 2.

3.3.3 Overview of Lower Bound Constructions

Our lower bounds rely upon non-standard reductions to the Index problem

using codes C defined in Section 3.3.2. These reductions are more involved

than is typically found as we need to combine the combinatorial properties of

C along with the star(·) operation on Alice’s input. In particular, the interplay

between C and star(·) must be understood over the column query S given by

Bob, which again relies on properties of C used to define the input.

Recall that the typical reduction from Index is as follows: Alice holds a

vector a ∈ {0, 1}N , Bob holds an index i ∈ [N ] and he is tasked with finding ai

following one-way communication from Alice. The randomized communication

complexity of Index is Ω(N) [KNR99]. We adapt this setup for our family
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of problems, following an approach that has been used to prove many space

lower bounds for streaming algorithms. Here the gadgets we need to reduce

from the Index problem are highly non-trivial. The technical details of the

lower bounds can be quite involved, so before progressing, we first present a

high-level schematic of the different steps in the lower bound arguments.

Instantiating The Lower Bound Argument: Figure 3.1

First we choose a binary code C (usually independently at random as in

Lemma 3.3.1) with certain properties such as a specific weight and a bounded

number of 1s in common locations with other words in the code. In the

communication setting, Alice holds a subset T ⊆ C while Bob holds a codeword

y ∈ C and is tasked with determining whether or not y ∈ T . The corresponding

bitstring for the Index problem that Alice holds is a ∈ {0, 1}|C| which has

aj = 1 for every element wj ∈ T using the index function to map strings to

indices (Remark 3.2.1) in a. In comparison to the standard setting mentioned

above, Alice’s vector is of length N = |C| which our constructions establish is

exponentially large in d.

C

Tw1

w2

w3

w4

w5 w6

Bob holds y ∈ C

?

?

a =

0

0

1

0

0

1





Figure 3.1: Alice holds a subset T of the code C = {w1, . . . ,w6}, using that
to populate her membership vector a. Bob queries algorithm A with his test
vector y and a column set S. The algorithm returns estimate which Bob
compares to some threshold thld. If estimate ≥ thld then Bob knows y ∈ T
and can return 1 as ae(w) = 1 for all w ∈ T . Otherwise, Bob reports 0 as
Alice’s vector ae(w) = 0 for all w ∈ C \ T .

Bob can also access the index function e(y) which returns the index or

location that y is enumerated in C. His task is to answer the question is y ∈ T
or is y ∈ C \ T? This would enable Bob to return 1 if y ∈ T , or 0 otherwise,

which is the value of ae(y), meaning that Bob can solve the Index problem.

Generating A Hard Instance Using starQ(T ): Figure 3.2

We use the starQ(T ) operator (Definition 3.3.1 and example 3.3.1) to map

strings into an input A for each of the problems (i.e., a collection of rows
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w

{
starQ(w)

}
1{

starQ(w)
}

2{
starQ(w)

}
3

...{
starQ(w)

}
m




starQ(w)

Figure 3.2: Alice maps her word w ∈ T to a larger set of child words starQ(w).
For a code C with weight k, the number of words in starQ(w) is Qk. Alice will
concatenate starQ(w) for every w ∈ T to generate the input data A.

of datapoints). The starQ(T ) function is necessary to ‘diversify’ the possible

representations of a particular word. Roughly speaking, we would like a

frequency-type function to be ‘large’ if y ∈ T and ‘small’ otherwise (or vice

versa). Using starQ(T ) boosts the frequency of certain patterns in such a

way that we can control to reason in which of the two cases Bob is in. Alice

evaluates starQ(w) for every w ∈ T that she holds.

Example 3.3.2. Recall Example 3.3.1 with C = B(4, 2) and Q = 3. Suppose

Alice’s set T is {w1,w2} = {0011, 0101}. Then the associated array which

is used as input to a later algorithm is (absence of ellipsis marks all zeros

column):

A =

[
− star3(w1) −
− star3(w2) −

]
−→ A =



0 0 0 0

0 0 0 1
...

...

0 0 2 2

0 0 0 0

0 0 0 1
...

...

0 2 0 2


∈ [3]2·3

2×4.

Bob’s Approach

Suppose that for a chosen problem we claim algorithm A achieves a certain

approximation factor, for example, a constant factor approximation. Bob holds

the vector y and chooses a column query S based upon y; typically, this will

be supp(y). Algorithm A is executed with the input array A, column query

S and returns an estimate estimate. Bob compares estimate to a threshold

value thld which is a function of the input parameters. Should estimate be

larger than the threshold, Bob is assured that y was present on the input A

so can happily return 1, otherwise returning 0.
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Example 3.3.3. We illustrate how Bob would use algorithm A for the projected

F0 problem. Suppose as in Examples 3.3.1 and 3.3.2 that C = B(4, 2), Q = 3

& T = {w1,w2} is Alice’s set. Consider y ∈ T and assume y = w1 so

y = (0011), supp(y) = {3, 4} which defines AS as in (3.4). Bob queries A
over the stream of length-2 strings in AS used to build the frequency vector

f(A, S). Bob uses the index function e(00) = 0, e(01) = 1, . . . , e(22) = 8 so

AS implicitly defines the following stream and frequency vector

stream(A, S) = (0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 0, 1, 2, 0, 1, 2)

f(A, S) = (4, 4, 4, 1, 1, 1, 1, 1, 1).

On the other hand, if y = (0110) /∈ T , then Bob’s column query is S′ = {2, 3},
yielding AS′ as shown in (3.4). Now the patterns that Bob observes define

the stream and frequency vector in (3.3). We recognise that ‖f(A, S)‖0 = 9

whereas ‖f(A, S′)‖0 = 3.

stream(A, S′) = (0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2) (3.3)

f(A, S′) = (6, 6, 6, 0, 0, 0, 0, 0, 0).

AS =



0 0

0 1

0 2

1 0

1 1

1 2

2 0

2 1

2 2

0 0

0 1

0 2

0 0

0 1

0 2

0 0

0 1

0 2



AS′ =



0 0

0 0

0 0

0 1

0 1

0 1

0 2

0 2

0 2

0 0

0 0

0 0

0 1

0 1

0 1

0 2

0 2

0 2



. (3.4)

The gap between the two cases y ∈ T & y /∈ T is controlled through the weight

k of C along with the child word alphabet Q. The main property we use is that

the number of patterns observed after projection is proportional to the number

of 1s located in the same place between y & members of Alice’s set T .
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3.4 Lower Bounds for F0

In this section, we focus on the F0 (distinct counting) projected frequency

problem. The main result in this section is a strong lower bound for the

problem, which is exponential in the domain size d. We use codes C = B(d, k)

as defined in Section 3.3.2. We generate a hard instance and reduce to Index

which gives an information-theoretic lower bound on the necessary space.

Theorem 3.4.1 and its corollaries follow the skeleton argument outlined

in Section 3.3.3. First, Alice populates her vector a based upon her held set

T ⊂ C. Alice’s input is expanded into the highly diverse set of child words

starQ(T ) with every word from this set representing a row of the input array

A. Bob takes a test vector y ∈ C and will query the projected algorithm with

S = supp(y). We will argue that if Alice holds y, then she must have included

starQ(y) into A, hence Bob observes at least all of the Qk different patterns over

[Q]k so the estimate is ‘large’. On the other hand, we also show that if Alice

does not hold y the algorithm returns an estimate for the projected F0 problem

which is ‘small’, being bounded above by kQk−1. This separation allows Bob to

solve Index, assuming the existence of an appropriate approximation algorithm.

Theorem 3.4.1. Let Q ≥ 2 be the target alphabet size and k < d/2 be a fixed

query size with Q > k. Any algorithm achieving an approximation factor of

|Q|/k for the projected F0 problem requires space 2Ω(d).

Proof. Fix the code C = B(d, k), recalling that any x ∈ C has Hamming weight

k, and for distinct x,y ∈ C at most k − 1 bits are shared in common. We will

use these facts to obtain the approximation factor.

We will reduce from the Index problem in communication complexity as

follows. Alice has a set of (binary) codewords T ⊆ C and initializes the input

array A for the algorithm with all strings from the set starQ(T ). Bob has a

vector y ∈ C and wants to know if y ∈ T or not. Let S = supp(y) so that

|S| = k and Bob queries the F0 algorithm on columns of A restricted to S.

First suppose that y ∈ T . Then Alice holds y so star(y) is included in A and

there must be at least Qk patterns observed. Conversely, if y /∈ T , then Alice

does not include y in A. However, by the construction of C, y shares at most

(k − 1) 1s with any distinct y′ ∈ C. Thus, the number of patterns observed on

the columns corresponding to S is at most
(
k
k−1

)
Qk−1 = kQk−1.

We observe that if we can distinguish the case of kQk−1 from Qk, then we

could correctly answer the Index instance, i.e., if we can achieve an approxima-

tion factor of ∆ such that:

∆ =
Qk

kQk−1
=
Q

k
. (3.5)

Any protocol for Index requires communication proportional to the length
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of Alice’s input vector a, which translates into a space lower bound for our

problem. Alice’s set T ⊂ C defines an input vector for the Index problem built

using a characteristic vector over all words in C, denoted by a ∈ {0, 1}|C|, as

follows. Under a suitable enumeration of C = {w1,w2, . . . ,w|C|}, Alice’s vector

is encoded via ai = 1 if and only if Alice holds the binary word wi ∈ T . From

the separation shown earlier, Bob can determine if Alice holds a word in T ,

thus solving Index and incurring the lower bound. Hence, space proportional to

|C| =
(
d
k

)
is necessary. We use the standard relation

(
d
k

)
≥ (d/k)k and choose

k = ad/2 for a constant a ∈ [0, 1) from which we obtain |C| ≥ 2ad/2 to achieve

the stated approximation guarantee.

Setting k = ad/2 allows us to vary the query size and directly understand

how this affects the size of the code necessary for the lower bound. For a

query of size k, the input array A to the projected F0 problem is an array

whose rows are words contained in starQ(T ), hence A has size |T |Qk × d.

Theorem 3.4.1 is for k < d/2. When k = d/2 we can use the tighter bound for

the central binomial term on the sum of the binomial coefficients and obtain the

following stronger bounds. The subsequent results use the same encoding as in

Theorem 3.4.1. However, at certain points of the calculations the parameter

setttings are slightly altered to obtain different guarantees.

Corollary 3.4.1. Let Q ≥ d/2 be an alphabet size and d/2 be the query

size. There exists a choice of input data A ∈ [Q]n×d such that any algorithm

achieving approximation factor 2Q/d for the projected F0 problem on the query

requires space 2Ω(d).

Proof. Repeat the argument of Theorem 3.4.1 with k = d/2. The approxima-

tion factor from Equation (3.5) becomes: ∆ = 2Q/d. The code size for Index is

|C| ≥ 2d/
√

2d. Note that |C| is 2Ω(d) as 1
2 log2(d) can always be bounded above

by a linear function of d. The instance is an array whose rows are the Qd/2

child words in starQ(T ). Hence, the size of the instance to the F0 algorithm is

bounded above by |T |Qd/2 × d.

Corollary 3.4.2 follows from Corollary 3.4.1 by setting Q = d.

Corollary 3.4.2. A 2-factor approximation to the projected F0 problem on a

query of size d/2 needs space 2Ω(d) with an instance A whose size is |T |Qd/2×d.

Theorem 3.4.1 and its corollaries suffice to obtain space bounds over all

choices of Q. However, Q could potentially grow to be very large, which may be

unsatisfying. As a result, we will argue how the error varies for fixed Q. To do

so, we map Q down to a smaller alphabet of size q and use this code to define

the communication problem from which the lower bound will follow. The cost

of this is that the instance is a logarithmic factor larger in the dimensionality.
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Table 3.1: Comparison of parameter settings for projected F0 lower bounds.
Theorem 3.4.1 uses C = B(d, k), corollaries use C = B(d, d/2). Alice’s set T ⊂ C
so is no larger than 2d, so we can always upper bound the size of the instance
required for the lower bounds.

Instance A for F0 Approx. Factor

Theorem 3.4.1 |T |Qk × d over [Q] Q/k

Corollary 3.4.1 |T |Qd/2 × d over [Q] 2Q/d

Corollary 3.4.2 |T |Qd/2 × d over [d] 2

Corollary 3.4.3 |T |Qd/2 × d logq Q over [q] 2Q/d

Corollary 3.4.3. Let q be a target alphabet size such that 2 ≤ q ≤ Q. Let

α = Q logq(Q) ≥ 1 and d′ = d logq(Q). There exists a choice of input data

A ∈ [q]n×d
′

for which any algorithm for the projected F0 problem over queries

of size d/2 that guarantees error Õ(α/d′) requires space 2Ω(d).

Proof. Fix the binary code C = B(d, d/2), Alice’s set T ⊂ C and generate all

child words starQ(T ) over alphabet [Q] to obtain the approximation factor

∆ = 2Q/d as in Corollary 3.4.2. For every w ∈ T there are Qd/2 child words so

starQ(T ) has size n = |T |Qd/2 words. SinceQ can be arbitrarily large, we encode

it via a mapping to a smaller alphabet but over a slightly larger dimension;

specifically, use a function [Q] 7→ [q]logq(Q) which generates q-ary strings for

each symbol in [Q]. Hence, all of the stored strings in starQ(T ) ⊂ [Q]d are

equivalent to a collection, Cq over [q]d logq(Q). Although |starQ(T )| = |Cq|, words

in starQ(T ) are length d, while the equivalent word in Cq has length d logq(Q).

This multiset of words from Cq now defines the instance A ∈ [q]n×d logq(Q), each

word being a row of A. Taking α = Q logq(Q) and d′ = d logq(Q) results in an

approximation factor of:

∆ =
2Q

d
=

2α

d′
. (3.6)

Alice’s input vector a is defined by the same code C and held set T ⊂ C as in

Theorem 3.4.1 so we incur the same space bound. Likewise, Bob’s test vector

y and column query S also remain the same as in that theorem.

Corollary 3.4.3 says that the same accuracy guarantee as Corollary 3.4.1 can

be given by reducing the arbitrarily large alphabet [Q] to a smaller one over [q].

However, the price to pay for this is that the size of the instance A increases by

a factor of logq(Q) in the dimensionality. These various results are summarized

in Table 3.1.
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3.5 `p-Frequency Based Problems

In this section, we extend the techniques from the previous section to understand

the complexity of projected frequency estimation problems related to the `p

norms and Fp frequency moments (defined in Section 3.2.1). A number of our

results are lower bounds, but we begin with a simple sampling-based upper

bound to set the stage.

3.5.1 `p Frequency Estimation

We first focus on the projected frequency estimation problem showing that a

simple algorithm keeping a uniform sample of the rows works for p < 1. The

algorithm uSample(A, S, t, b) first builds a uniform sample of t rows (sampled

with replacement at rate α = t/n) from A and evaluates the absolute frequency

of string b on the sample after projection onto S. Let g be the absolute

frequency of pattern b on the subsample. To estimate the true frequency of b

on the entire dataset from the subsample, we return an appropriately scaled

estimator f̂e(b) = g/α which meets the required bounds given in Theorem 3.5.1,

recalling the e(b) is the index location associated with the string b. The proof

follows by a standard Chernoff bound argument.

Theorem 3.5.1. Let A ∈ {0, 1}n×d be the input data and let S ⊆ [d] be a

given column query. For a given string b ∈ {0, 1}|S|, the absolute frequency of

b, fe(b), can be estimated up to ε‖f‖1 additive error using a uniform sample

of size O(ε−2 log(1/δ)) with probability at least 1− δ.

Proof. Let T = {i ∈ [n] : AS
i = b} be the set of indices on which the projection

onto query set S is equal to the given pattern b. Sample t rows of A uniformly

with replacement at a rate q = t/n. Let the (multi)-subset of indices of rows

sampled be denoted by B and the array formed from the rows whose index

is in B be denoted Â. For every i ∈ B, define the indicator random variable

Xi which is 1 if and only if the randomly sampled index i satisfies AS
i = b,

which occurs with probability |T |/n. Next, we define T̂ = T ∩ B so that

|T̂ | =
∑t

i=1Xi and the estimator Z = n
t |T̂ | has E(Z) = |T |. Finally, apply an

additive form of the Chernoff bound:

P (|Z − E(Z)| ≥ εn) = P
(∣∣∣n
t
|T̂ | − |T |

∣∣∣ ≥ εn)
= P

(∣∣∣∣|T̂ | − t

n
|T |
∣∣∣∣ ≥ εt)

≤ 2 exp
(
−ε2t

)
.

Setting δ = 2 exp
(
−ε2t

)
allows us to choose t = O(ε−2 log(1/δ)), which is

independent of n and d. The final bound comes from observing that ‖f‖1 =
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n, fe(b) = |T | and f̂e(b) = Z.

The same algorithm can be used to obtain bounds for all 0 < p < 1. By noting

that ‖f‖1 ≤ ‖f‖p for 0 < p < 1 we can obtain the following corollary.

Corollary 3.5.1. Let A,b, S be as in Theorem 3.5.1. Let 0 < p < 1. Then

uniformly sampling O(ε−2 log(1/δ)) rows achieves
∣∣∣f̂e(b) − fe(b)

∣∣∣ ≤ ε‖f‖p with

probability at least 1− δ.

Both Theorem 3.5.1 and Corollary 3.5.1 are stated as if S is given. However,

since the sampling did not rely on S in any way, we can sample complete rows

of the input uniformly prior to receiving the query S, which is revealed after

observing the data. The uniform sampling approach also allows us to identify

the `p heavy hitters in small space: for each item included in the sample (when

projected onto column set S), we use the sample to estimate its frequency, and

declare those with high enough estimated frequency to be the heavy hitters.

By contrast, for p > 1 we are able to obtain a 2Ω(d) space lower bound, given

in the next section.

3.5.2 `p Heavy Hitters Lower Bound

Recall that the objective of (projected) `p heavy hitters is to find all those rows

in AS whose frequency is at least some fraction of the `p norm of the frequency

distribution of this projection. For the lower bound we need a randomly

sampled code as defined in Lemma 3.3.1. The lower bound argument follows

a similar outline to that in Section 3.3.3 and for the projected F0 problem.

However, the key difference now is that Bob’s query is on the complement of

the support of his test vector y (i.e., S = [d] \ supp(y)) rather than supp(y).

Akin to Theorem 3.4.1, we will create a reduction from the Index problem

in communication complexity, and use its communication lower bound to argue

a space lower bound for projected `p heavy hitters. The proof will generate an

instance of `p heavy hitters based on encoding a collection of codewords, and

consider in particular the status of the string corresponding to all zeroes. We

will consider two cases: when Bob’s query string is represented in Alice’s set

of codewords, then the all zeros string will be a heavy hitter (for a subset of

columns determined by the query); and when Bob’s string is not in the set,

then the all zeros string will not be a heavy hitter. We begin by setting up the

encoding of the input to the Index instance.

Theorem 3.5.2. Let φ ∈ (0, 1) be a parameter and fix p > 1. Any algorithm

which can obtain a constant factor approximation to the projected `p-heavy

hitters problem requires space 2Ω(d).
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Proof. Fix ε > 0. Let C ⊂ B(d, εd) be a code whose words have weight εd

and any two distinct words x,y have at most (ε2 + γ)d ones in common. By

Lemma 3.3.1 such a C exists and |C| = 2Ωγ(d).

Suppose Alice holds a subset T ⊂ C. Let a ∈ {0, 1}|C| be the characteristic

vector over all length-d binary strings for which ae(u) = 1 if and only if Alice

holds u ∈ T . Bob holds y ∈ C and wants to determine if Alice holds y ∈ T .

Ascertaining whether or not Alice holds y would be sufficient for Bob to solve

Index and incur the Ω(|C|) lower bound. We will study the frequency of the

vector 0S which is the all zero vector on columns S.

The input array, A, for the `p-heavy hitters problem is constructed as

follows.

1. Alice populates A with 2εd copies of the length-d all ones vector, 1d

2. Next, Alice takes Q = 2 and inserts into A the collection starQ(T ), which

is the expansion of her input strings in T to all child-words in binary.

That is, for every s ∈ T , Alice computes all binary strings x of length d

with supp(x) ⊆ supp(s) and includes these in A.

Case 1: y ∈ T . If y ∈ T , then we claim that 0S is a φ-`p heavy hitter for some

constant φ, i.e., fe(0S) ≥ φ‖f‖p. We will manipulate the equivalent condition

fpe(0S) ≥ φ
pFp. Since y ∈ T , the set star(y) is included in the table A as Alice

inserted star(s) for every s that she holds. Consider any child word of y, that

is, a w ∈ star(y). Since y is supported only on [d] \ S and supp(w) ⊆ supp(y),

every wi = 0 for i ∈ S. So 0S is observed once for every w ∈ star(y) and there

are |star(y)| = 2εd such w. Hence, 0S occurs at least 2εd times.

Now that we have a lower bound on the frequency of 0S , it remains to

upper bound the Fp value when y ∈ T so that we are assured 0S will be a

heavy hitter in this instance. The quantity we seek is the Fp value of all vectors

in AS , written Fp(A, S); which we decompose into the contribution from 0S

present due to y being in T , and two special cases from the block of 2εd all-ones

rows and ‘extra’ copies of 0S which are contributed by vectors y′ 6= y. We

claim that this Fp(A, S) value is at most |C|1+p2εd+(ε2+γ)dp + 3 · 2εpd.
First, let y′ ∈ C with y′ 6= y and consider prefixes z supported on S which

can be generated by possible child words from star(y′). Since our code requires

that |y′∩y| ≤ (ε2 +γ)d, y′ can have at most (ε2 +γ)d 1s located in S̄ = [d]\S,

and hence must have at least (ε−ε2−γ)d 1s located in S. Since |star(y′)| = 2εd,

the number of copies of z inserted is at most 2εd−(εd−ε2d−γd) = 2ε
2d+γd. This

occurs for every y′ ∈ C so the total number of occurrences of z is at most

|C|2(ε2+γ)d. The contribution to Fp for this scenario is then |C|p2(ε2+γ)dp.

Observe that each codeword y′ generates at most 2εd vectors under the star(y′)

operator, so we have an upper bound of |C|2εd such vectors generated, with a

total contribution of |C|1+p2(ε2p+ε+γp)d.
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Next, we focus on the two special vectors to count which have a high

contribution to the Fp value. Recall that Alice specifically included 1d into A

2εd times so the p-th powered frequency is exactly 2εpd for this term. From the

above argument, 0S also has frequency 2εd from star(y). But 0S is also created

at most 2(ε2+γ)d times from each y′ 6= y in T , giving an additional count of

at most |C|2(ε2+γ)d. Based on our choice of ε and γ, we can ensure that this

is asymptotically smaller than 2εd, and so the total contribution from these

two special vectors is at most 3 · 2εd. So in total we achieve that Fp is at most

|C|1+p2εd+(ε2+γ)dp + 3 · 2εpd, as claimed.

Then 0S meets the definition to be a φ-`p heavy hitter provided

2εpd > φp(|C|1+p2εd+(ε2+γ)pd + 3 · 2εpd).

Assuming p > 1, and choosing ε sufficiently smaller than (p − 1)/p and γ

sufficiently small, we have that

|C|1+p2εd+(ε2+γ)pd ≤ 2O(γ2d(1+p))+εd+ε(p−1)d+γpd ≤ 2εpd.

Hence, we require 2εpd > φpO(2εpd), i.e., 2εd > φO(2εd), which is satisfied for a

suitably small but constant φ.

Case 2: y /∈ T . On the other hand, suppose that y /∈ T . Then the claim is

that 0S is not a φ-`p-heavy hitter. Now the vector 0S does not occur with a

high frequency because star(y) is not included in A. However, certain child

words in star(T ) could also generate 0S when projected onto S and this is

the contribution we need to upper bound. Again, any codeword s ∈ T has

at least (ε − ε2 − γ)d 1s present on S. So for a particular s ∈ T , 0S can

occur 2ε
2d+γd times. Taken over all y′ ∈ C for which Alice includes in A, the

frequency of 0S in this case is at most |C|2ε2d+γd. Taking ε < 1/3, γ < ε/3 and

using |C| = 2γ
2d/ ln 2 (Lemma 3.3.1) we have fe(0S) ≤ 20.72εd. Meanwhile, there

are 2εd copies of the string 1d inserted into A meaning that Fp(A, S) ≥ 2εpd

and hence F
1/p
p is strictly greater than fe(0S). Hence, 0S is not a φ-`p heavy

hitter provided that fe(0S)/F
1/p
p = 2−0.28εd is strictly less than φ = 1/4, this is

satisfied for suitable ε and d.

Concluding the proof. Bob can use his test vector y and a query S with a

constant factor approximation algorithm A for the `p-heavy hitters problem and

distinguish between the two cases of Alice holding y or not based on whether

0S is reported. As a result, Bob can determine if y ∈ T and consequently solve

Index, thus incurring the Ω(|C|) = 2Ω(d) lower bound.

The instance A is initialised with 2εd rows of the vector 1d and the child words

starQ(T ). For any t ∈ starQ(T ), |starQ(t)| = 2εd so the size of the instance A is

(|T |+ 1)2εd × d.
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3.5.3 Fp Estimation

The space complexity of approximating the frequency moments Fp has been

widely studied since the pioneering work of Alon, Matias and Szegedy [AMS99a].

Here, we investigate their space complexity under projection. For p = 1, the

frequency is always the number n of rows in the original instance irrespective

of the column set S, so only one word of space is required. We therefore devote

attention to p 6= 1.

Our approach again follows the general method shown in Section 3.3.3.

The reduction to Index for Theorem 3.5.3 essentially reuses the argument from

Theorem 3.5.2 for p > 1. However, for p < 1, we encode the problem slightly

differently, closer to that in Theorem 3.4.1 as the projection column query

reverts to supp(y). Again, the reduction to Index relies on Bob determining

whether or not Alice holds y, which for Fp estimation amounts to Bob evaluating

Fp(A, S) and comparing to a threshold value. Our first case is showing that if

Bob’s test vector y is not in Alice’s set T , then the Fp value returned by an

algorithm is at most 2(1−α)εd. We defer the proof of this specific calculation

until Lemma 3.5.1 and take it as given for the proof of Theorem 3.5.3. On the

other hand, if Alice had y ∈ T , then we can show that the Fp value must be

at least 2εd to obtain the constant factor gap.

Theorem 3.5.3. Fix a real number p > 0 with p 6= 1. A constant factor

approximation to the projected Fp estimation problem requires space 2Ω(d).

Proof. For p > 1 we begin by noticing that in the proof for Theorem 3.5.2 one

can also monitor the Fp value of the input to the problem rather than simply

checking the heavy hitters. In particular, depending on whether or not Alice

holds Bob’s test word, y, the projected Fp changes by more than a constant.

Consequently, we invoke the same proof for Fp, p > 1 and obtain the same

2Ω(d) lower bound.

On the other hand, suppose that p < 1. We assume a code C ⊂ B(d, εd)

with the property that any distinct x,x′ ∈ C have |x ∩ x′| ≤ cd for some small

constant c > ε2 (see Lemma 3.3.1). Again, Alice holds a subset T ⊆ C and

inserts star(T ) into the table for the problem A. Throughout this proof we use

a binary alphabet so suppress the Q notation from starQ(·). Bob holds a test

vector y ∈ C and is tasked with determining whether or not Alice holds y ∈ T .

We distinguish between the cases when Alice holds y ∈ T or not as follows.

Bob uses y to determine the query column set S = supp(y) and will compare

against the returned frequency value from the algorithm.

Case 1: y 6∈ T . Consider some y′ ∈ C \ {y}. Since y and y′ are both

codewords, they can have a 1 coincident in at most cd locations. So if Alice

does not hold y then the codewords we need to consider are all binary words
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in the code which have at most cd 1s in common with y on S. We denote this

collection of words by M , i.e., the set of binary strings of length d that have at

most cd locations set to 1. There are r such vectors, where r is defined by:

r ,
cd∑
i=0

(
d

i

)
≤ cd ·

(
d

cd

)
= O(d)2Θ(cd).

The total count of all strings generated by Alice’s encoding is at most 2εd|C|:
each string in C generates 2εd subwords from the star(·) operation. We now

evaluate the `p-frequency of elements in the set M , denoted Fp(M). For p < 1,

the value Fp(M) is maximized when every element of M has the same number

of occurrences, |C|2εd/r. As there are at most r members of M , we obtain

Fp(M) ≤ |C|p2εdpr1−p. Recalling the bounds on |C| and r, this is:

2cdp+εdp+Θ((1−p)cd) ·O(d1−p). (3.7)

We can now choose c to be a small enough constant so that (3.7) is at most

2(1−α)εd for a constant α > 0. This is proved in Lemma 3.5.1, found in the

subsequent subsection.

Case 2: y ∈ T . Now consider the scenario when y ∈ T so that Alice has

inserted star(y) into the table A. Here, we can be sure that each of the 2εd

strings in star(y) appears at least once over the column set S, and so the Fp

value is at least 2εd1p = 2εd.

We observe that these two cases obtain the constant factor separation, as

required. Then, Bob can use his test vector y and a query S with a constant

factor approximation algorithm to the projected Fp-estimation problem and

distinguish between the two cases of Alice holding y or not. Thus, Bob can

determine if y ∈ T and consequently solve the Index problem, incurring the

Ω(|C|) = 2Ωc(d) lower bound for a c arbitrarily small.

Remark 3.5.1. For p > 1 we adopt the same instance as in Theorem 3.5.2

so the instance is of size (|T |+ 1)2εd × d. On the other hand, for 0 < p < 1,

only the words in starQ(T ) are required so A has size |T |2εd × d.

Upper Bounding Fp in Equation (3.7)

A key step in the proof of Theorem 3.5.3 is that in Equation (3.7), the expression

2cdp+εdp+Θ((1−p)cd) ·O(d1−p)

can be bounded by a manageable power of two. We formalise this in Lemma 3.5.1.
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Lemma 3.5.1. Under the same assumptions as in Theorem 3.5.3, there exists

a small constant c > 0 which bounds (3.7) by at most 2(1−α)εd for some α > 0.

Proof. Here we use base-2 logarithms and let 0 < c < 1 be a small constant

which we need to bound. Also, let 0 < p < 1 be a given constant. Observe that

the O(d1−p) term only contributes positively in the exponent term of (3.7) so

we can ignore it from the calculation. Write 2Θ(cd(1−p)) = 2cdα(1−p) for α > 0.

This follows from: (
d

cd

)
≤
(
ed

cd

)cd
≤ 2(2+log 1

c
)cd (3.8)

so let α = 2 + log 1
c . For clarity, we proceed by using the trivial identity

1− (1− ν) = ν and show that 1− ν > 0 for ν a function of c, p, d. We need to

ensure:

cpd+ εdp+ αcd(1− p) ≤ (1− α)εd. (3.9)

This amounts to showing that:

ν , cp/ε+ p+ αc(1− p)/ε ≤ (1− α)

Now, ν = p(c/ε+ 1− αc/ε) + αc/ε and we require ν < 1. We may enforce the

weaker property of p(c/ε+ 1− α/ε) < 1 because c > 0 and for c < 4 we also

have α > 0 (inspection on Equation (3.8)) so αc/ε > 0, and so can be omitted.

Solving for c we obtain c(1−α) < ε(1/p− 1). Recalling the definition of α this

becomes:

c(log c− 1) < ε(1/p− 1) (3.10)

from which positivity on c yields c log c < ε(1/p− 1). Hence, it is enough to

use c < ε(1/p− 1).

3.5.4 `p-Sampling

In the projected `p-sampling problem, the goal is to sample a row in AS

proportional to the p-th power of its number of occurrences. One approach to

the standard (non-projected) `p-sampling problem on a vector x is to subsample

and find the `p-heavy hitters [LNNT16]. Consequently, if one can find `p-heavy

hitters for a certain value of p, then one can perform `p-sampling in the same

amount of space, up to polylogarithmic factors. Interestingly, for projected

`p-sampling, this is not the case, and we show for every p 6= 1, there is a

2Ω(d) lower bound. This is despite the fact that we can estimate `p-frequencies

efficiently for 0 < p < 1, and hence find the heavy hitters (Section 3.5.1).

We again follow the now familiar framework of Section 3.3.3 and separate

the two cases of p > 1 and p < 1. For p > 1 it is possible to reuse the argument

for heavy hitters from Theorem 3.5.2 as was previously done in the projected

Fp estimation lower bound. Recall that Theorem 3.5.2 showed that 0S was
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a heavy hitter if Alice had y ∈ T and was not heavy if she did not hold y.

Similarly, the consequence of this is showing that 0S will be sampled ‘often’ if

Alice holds y, otherwise 0S is sampled rarely.

For p < 1 we follow a similar approach but rather than showing 0S is

sampled often, Bob will query an `p sampler and check if the returned strings

are ‘often’ in (some specially chosen subset of) star(y). If this is the case, then

Alice holds y. On the other hand, if Alice did not hold y, then the returned

strings from the `p sampler are almost never in the special set that Bob checks

against.

Theorem 3.5.4. Fix a real number p > 0 with p 6= 1, and let ε ∈ (0, 1/2). Let

S ⊆ [d] be a column query and i be a pattern observed on the projected data AS.

Any algorithm which returns a pattern i sampled from a distribution (p1, . . . , pn),

where pi ∈ (1± ε)
fp
e(i)

‖f(A,S)‖pp
+ ∆ together with a (1± ε′)-approximation to pi,

∆ = 1/ poly (nd) and ε′ > 0 is a sufficiently small constant, requires 2Ω(d) bits

of space.

Proof. Case 1: p > 1. The proof of Theorem 3.5.2 argues that the vector

0S is a constant factor `p-heavy hitter for any p > 1 if and only if Bob’s test

vector y is in Alice’s input set T , via a reduction from Index. That is, we

argue that there are constants C1 > C2 for which if y ∈ T , then fpe(0S) ≥ C1Fp,

while if y /∈ T , then fpe(0S) < C2Fp. Consequently, given an `p-sampler with

the guarantees as described in the theorem statement, then the (empirical)

probability of sampling the item 0S should allow us to distinguish the two cases.

This holds even tolerating the (1 + ε′)-approximation in sampling rate, for a

sufficiently small constant ε′. In particular, if y ∈ T , then we will indeed sample

0S with Ω(1) probability, which can be amplified by independent repetition;

whereas, if y /∈ T , we do not expect to sample 0S more than a handful of

times. Consequently, for p > 1, an `p-sampler can be used to solve the `p-heavy

hitters problem with arbitrarily large constant probability, and thus requires

2Ω(d) space.

Case 2: 0 < p < 1. We now turn to 0 < p < 1. In the proof of Theorem 3.5.3,

a reduction from Index is described where Alice holds the set T and Bob the

string y. Bob can generate the set star(y) of size 2εd which is all possible

binary strings supported on the column query S. From this, Bob constructs

the set M ′ =
{
z ∈ star(y) : | supp(z)| ≥ εd

2

}
. We observe that if y ∈ T then at

least half of the strings in star(y) are supported on at least εd/2 coordinates

which implies |M ′| ≥ 2εd−1. The total Fp in this case can be bounded by a

contribution of |M ′|1p + 2εd. The first term arises from the |M ′| strings in M ′

with a frequency of 1, while the second term is shown in Case 1 of Theorem 3.5.3.

Since |M ′| ≤ 2εd, we have that Fp ≤ 2εd+1 in this case. Consequently, the

correct probability of `p-sampling returning a string in M ′ is at least 1
4 for the
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“ideal” case of ε = 0,∆ = 0. Even allowing ε < 1
2 and ∆ = 1/poly(nd), this

probability is at least 1/10.

Otherwise, if y 6∈ T , we exploit that y′ 6= y can coincide in at most

cd = O(ε2d) coordinates and | supp(z)| ≥ εd/2 > cd for any z ∈M ′. Hence, no

z ∈M ′ can occur in star(y′) for another y′ ∈ C \ {y} on the column projection

S. In this case, there should be zero probability of sampling a string in M ′

(neglecting the trivial additive probability ∆).

To summarize, in the case that y ∈ T , by querying the projection S =

supp(y) then a constant fraction of the Fp-mass is on the set M ′, whereas

when y /∈ T , then there is zero Fp-mass on the set M ′. Since Bob knows M ′,

he can run an `p-sampler and check if the output is in the set M ′, and succeed

with constant probability. It follows that Bob can solve the Index problem

(amplifying success probability by independent repetitions if needed), and thus

again the space required is 2Ω(d).

Remark 3.5.2. For p > 1 we again adopt the same instance as in The-

orem 3.5.2 which has size (|T |+ 1)2εd × d. However, for 0 < p < 1, we require

the instance from Theorem 3.5.3 so A has size |T |2εd × d.

3.6 Projected Frequency Estimation via Set Round-

ing

Although our lower bounds rule out the possibility of computing constant factor

approximations to projected frequency problems in sub-exponential space, it is

still possible to compute non-trivial approximations using exponential space

but still better than näıvely enumerating all column subsets of [d]. We design a

class of algorithms that proceed by keeping appropriate sketch data structures

for a “net” of subsets. The net has the property that for any query S ⊂ [d]

there is a S′ ⊂ [d] stored in the net which is not too different from S. We can

then answer the query on S using the summary data structure computed for

columnset S′. To formalize this approach we need some further definitions,

the first of which conceptualizes the notion of a net over subsets. Secondly,

we define an α-neighbour of a set S which intuitively, is a set in the net that

differs from S in at most an αd fraction of the items.

Definition 3.6.1 (α-net of subsets). Let P ([d]) denote the power set of [d].

Fix a parameter α ∈ (0, 1/2). An α-net of P ([d]) is the set N = {U ∈ P ([d]) :

|U | ≤ d/2− αd or |U | ≥ d/2 + αd} which contains all subsets U ∈ P ([d])

whose size is at most d/2− αd or at least d/2 + αd.

Definition 3.6.2 (α-neighbour). Let S ∈ P ([d]) and N be an α-net of P ([d]).

We say that a set U is an α-neighbour of S if U ∈ N and the symmetric
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difference between S and U is at most αd.

Example 3.6.1 (α-net and α-neighbours). Let d = 6 and α = 1/6 so that the

power set P ([6]) is of size 64. A 1/6-net for P ([6]) has keeps all subsets of size

at most d/2− 1/6 = 2 and at least d/2 + 1/6 = 4 by Definition 3.6.1.

In Figure 3.3, the power set and net are both illustrated. The index at every

level represents the size of subsets from [6]. Hence, the net contains all subsets

stored at levels 0, 1, 2, 4, 5, 6. the size of the net is
∑2

i=0

(
6
i

)
+
∑6

i=4

(
6
i

)
= 44.

This is to be compared to |P ([d]) | = 26.

If the query is set S = {1, 2, 3} then S is not in the net N because it has size

3, hence we will look for 1/6-neighbours of S. A 1/6 neighbour is any set U ∈ N
that differs from S in at most 1 element. Then U1 = {1, 2} and U2 = {1, 2, 3, 4}
are in N and have only one element different from S so are 1

6 neighbours. On

the other hand, U3 = {1, 2, 4} which, although differing in only one element

from S, has size 3, so is not in N and thus cannot be a 1/6 neighbour.

0 : ∅

1 : {{1}, . . . , {6}}

2 : {{1, 2}, . . . , {5, 6}}

3 : {{1, 2, 3}, . . . , {4, 5, 6}}

4 : {{1, 2, 3, 4}, . . . }

5 : {{1, 2, 3, 4, 5}, . . . }

6 : [6]

Figure 3.3: All subsets of [6] except those of size 3 (indicated by the dashed
box) are included in the 1/6 net N . The index of the box indicates the size of
subsets that are stored in that level with the ellipses marking that all subsets
of that size are stored in the net. For example, both subsets {1, 2, 3, 4} and
{2, 3, 5, 6} are included at the size 4 level of the net. However, any subset of
[6] with size 3 is not included in the net.

Let H(t) = −t log2(t)−(1−t) log2(1−t) denote the binary entropy function

defined over t ∈ [0, 1]. We plot H over t ∈ [0, 1/2] in Figure 3.4. Since H is

symmetric about t = 1/2 and we will take t = 1/2− α for α ∈ (0, 1/2) it suffices

to consider only this domain.

Lemma 3.6.1. Let N be an α-net for P ([d]). Then |N | ≤ 2H(1/2−α)·d+1.

Proof. The total number of subsets whose size is at most d/2− αd is
∑

i≤αd
(
d
i

)
and

∑
i≤αd

(
d
i

)
≤ 2H(1/2−α)d [Gal14, Theorem 3.1]. By symmetry we obtain
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the same bound for the number of subsets of size at least d/2 + αd, yielding

the claimed total.

Understanding The Space Bound

0 0.25 0.5
0

0.5

1

t

H(t)

Figure 3.4: Binary entropy H(t)

Due to the binary entropy function,

Lemma 3.6.1 appears a little terse. How-

ever, for any t ∈ [0, 1/2], H(t) ∈ [0, 1],

thus for c = H(t), the bound on N from

Lemma 3.6.1 becomes 2cd+1. Since the

exhaustive method retains a sketch for

every one of the 2d subsets in P ([d]), it

is convenient to transform the bound so

that the two quantities are easily compar-

able. That is, we want c so that cd+1 < d

which is satisfied provided c < 1− 1/d and

as d grows, this condition only becomes

easier to satisfy. Choose such a c so that

cd+ 1 = γd < d. Now, our bound is effectively asking for a net N whose size is

2γd. Clearly, this grows exponentially (as seen in Figure 3.5a with |N | plotted

on a log scaled axis) but γ < 1 so 2γd is sublinear in 2d.

0 5 10 15 20 25

100

102

104

106

d

|N |

γ = 0.05
γ = 0.25
γ = 0.5
γ = 0.75
γ = 0.95

(a) The number of sets stored in a net of
size |N | = 2γd (log scale).

20 22 24 26 28 210
10−3

10−2

10−1

100

2d

|N |/2d

γ = 0.05
γ = 0.25
γ = 0.5
γ = 0.75
γ = 0.95

(b) Fraction of sketches stored by N vs
all 2d subsets of [d] (log-log scale).

Figure 3.5: Behaviour of an α-net N

We can understand the space saving offered by using the net through

measuring the fraction of sketches stored in N versus storing a single sketch for

every subset in P ([d]). That is, we measure |N |/2d = 2(γ−1)d. In Figure 3.5b we

plot straight lines of gradient −(1− γ) on a log-log scale to illustrate how large

the net is compared to 2d. Unsurprisingly, as γ increases towards 1, we keep
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a larger portion of P ([d]) so there is little saving in using the net. However,

when γ is small, there is a substantial saving in using the net rather than

storing a sketch for every member of P ([d]).

These illustrations are useful as they allow a practitioner to focus on the

net size as a parameter of γ rather than tinkering with H(1/2−α). For instance,

suppose that d = 10 and the user knew they could only store a sketch for

at most 1% of all possible subsets of [d] (i.e., roughly 10 subsets rather than

1024). Then Figure 3.5b can roughly inform the parameter choice for N as it

ilustrates a γ < 0.25 will suffice.

Figures 3.5a and 3.5b give cause for cautious optimism. Although the size

of the net is exponential in d, we can set this to be a small fraction of 2d so

that it is more manageable. However, it remains to understand how solving

problems on the net can affect the quality of estimation and this forms the

basis of the subsequent section.

3.6.1 From α-nets to Projections

Suppose that we are tasked with answering problem P = P (A, S) on a projec-

tion query S. We know that if S is known ahead of time then we can encode

the input data A ∈ [Q]n×d on projection S as a standard stream over the

alphabet [Q]|S|. The use of α-nets allows us to sketch some of the input and use

this to approximately answer a query. For a standard streaming problem, we

will say that an algorithm yields a β-approximation to the true solution z∗ if

the returned estimate z ∈ [z∗/β, βz∗]. A sketch obtaining such approximation

guarantees will be referred to as a β approximate sketch. We additionally need

the following notion of error due to the distortion incurred when answering

queries on elements of the α-net rather than the given query.

Definition 3.6.3 (Rounding distortion). Let P = P (A, S) be a projection

query for the problem P on input A ∈ [Q]n×d with projection S. Let N ⊂ P ([d])

be an α-net. The rounding distortion r(α, P ) is the worst-case determinstic

error incurred by solving P (A, S′) rather than P (A, S) for an α-neighbour

S′ ∈ N of C so that P (A, S)/r(α, P ) ≤ P (A, S′) ≤ r(α, P )P (A, S).

Definition 3.6.3 is easiest to conceptualize for the F0 problem when A ∈
{0, 1}n×d. Specifically, P = F0 and the task to solve is P = F0(A,S). For a

given query S, with an α-neighbour S′ in the net, the gap between the number

of distinct items observed on S′ at most doubles for each column in the set

difference between S and S′. Since S′ is an α-neighbour, we have the symemtric

difference |S′∆S| ≤ αd so the worst-case approximation factor in the number

of distinct items observed over S′ rather than S is 2αd.

Example 3.6.2 (Projected F0 by set rounding). Consider the input array

A ∈ {0, 1}8×6 as shown in (†). Assume we take a 1/6 net N for P ([6]). Suppose
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Algorithm 2: Projected frequency estimation by query rounding

Input: Data A ∈ {0, 1}n×d, parameter α ∈ (0, 1/2), frequency
estimation problem P , query S revealed after A

1 Function ProjectedFreq(A, α, S):
2 Generate an α-net N
3 For every U ∈ N evaluate a β approximate sketch to estimate

P (A, U)
4 Given a projection query S after observing A:
5 Obtain S′, an α-neighbour to S in N
6 return P (A, S′) to β relative error

the query set is S = {1, 2, 3}. The symbol ? ∈ {0, 1} is arbitrary and makes no

difference to this example as the query set is on the first three columns.

A =



1 2 3 4 5 6

0 0 0 0 ? ?

1 0 1 0 ? ?

1 1 0 0 ? ?

0 1 1 0 ? ?

0 0 0 1 ? ?

1 0 1 1 ? ?

1 1 0 1 ? ?

0 1 1 1 ? ?



[
A

u

]
=



1 2 3 4 5 6

0 0 0 0 ? ?

1 0 1 0 ? ?

1 1 0 0 ? ?

0 1 1 0 ? ?

0 0 0 1 ? ?

1 0 1 1 ? ?

1 1 0 1 ? ?

0 1 1 1 ? ?

1 1 1 1 ? ?



. (†)

For the projected F0 problem F0(A, S) = 4. Suppose that we take two sets

U1 = {2, 3}, U2, from the net N . Then F0(A, U1) = 4 while F0(A, U2) = 8,

hence we could always estimate 4 ≤ F̂0(A, S) ≤ 8.

On the other hand, if the input were B = (A>|u>)> as in (†). Then

F0(B, S) = 5 and F0(B, U2) = 9 both increase by only 1 compared to the

corresponding quantities over A. However, F0(B, U1) = 4 is unchanged so we

achieve 4 ≤ F̂0(A, S) ≤ 9. Although this would suggest that the bounds from

rounding to projections stored in the net are pessimistic, the example of A, S

and U1, U2 (rather than B) suggests that the worst-case rounding bounds can

be achieved and likely cannot be improved without further assumptions between

the features, for example, perhaps a näıve Bayesian model as suggested in

[KMVX18]. The worst case instance for achieving the distortion for projected

F0 is found by taking a full binary code of length d and ordering the columns

so that a query of size k < d can have its F0 grow or reduce by a factor of 2.

More generally, we can categorize the rounding distortion for other typical

queries, as demonstrated in the following lemma. Note that if the query is

contained in the α-net N then we will retain a sketch for that problem; hence
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the distortion is only incurred for queries not contained in the net.

Lemma 3.6.2. Fix α ∈ (0, 1/2), suppose A ∈ {0, 1}n×d and N be an α-net.

If S is a projection query for the following cases, the rounding distortion can

be bounded as:

1. P = F0(A, S) then r(α, F0) = 2αd

2. P = Fp(A, S), p > 1 then r(α, Fp) = 2αd(p−1)

3. P = Fp(A, S), p < 1 then r(α, Fp) = 2αd(1−p)

Proof. Item (1) is an immediate consequence of the discussion preceding Ex-

ample 3.6.2 so we focus on (2) and (3). Suppose p ≥ 1. Let fS = f(A, S)

denote the frequency vector associated to the projection query S over domain

[2|S|]. First, consider a single index j ∈ [2|S|] with (fS)j = x. Let S′ be an

α-neighbour for S in N , and without loss of generality, assume that |S| < |S′|.
The task is to estimate ‖fS‖pp = xp from ‖fS′‖pp, where fS′ = f(A, S′) is a

frequency vector over the domain [2|S
′|] which is a |S′ \ S| factor larger than

the domain for fS . However, observe that in fS′ , the value of x is spread across

the at most 2αd entries that agree with j on columns S. The contribution to

Fp from these entries is at most xp (if the mass of x is mapped to a single

entry). On the other hand, by Jensen’s inequality, the contribution is at

least 2αd(x/2αd)p = xp/2αd(p−1). Hence, considering all entries j, we obtain

‖fS‖pp/2αd(p−1) ≤ ‖fS′‖pp ≤ ‖fS‖pp. In the case |S| > |S′|, essentially the same

argument shows that ‖fS‖pp ≤ ‖fS′‖pp ≤ ‖fS‖pp2αd(p−1). Thus we obtain the

rounding distortion of 2αd(p−1). For p < 1, we proceed as above, except by

concavity, the ordering is reversed.

Observe that the distortion reduces to 1 (no distortion) as we approach

p = 1 from either side. This is intuitive, since the F1 problem is simply to

report the number of rows in the input, regardless of S, and so the problem

becomes “easier” as we approach p = 1.

With these properties in hand, we can give a “meta-algorithm” as described

in Algorithm 2. In Theorem 3.6.1 we can fully characterize the accuracy-space

tradeoff for Algorithm 2 as a function of α and d.

Theorem 3.6.1. Let A ∈ {0, 1}n×d be the input data and S ⊆ [d] be a

projection query. Suppose P = P (A, S) is the projected frequency problem,

α ∈ (0, 1/2) and r(α, P ) is the rounding distortion. With probability at least

1 − δ a β · r(α, P ) approximation can be obtained by keeping Õ(2H(1/2−α)d)

β-approximate sketches.

Proof. Let N be a α-net for P ([d]) and for every U ∈ N generate a sketch

with accuracy parameter β for the problem P on the projection defined by
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U ⊆ [d]. Either the projection S ∈ N , in which case we can report a β factor

approximation, or S /∈ N in which case we take an α-neighbour, S′ ∈ N and

return the estimate z for P (A, S′). The sketch ensures that the answer to

P (A, S′) is obtained with accuracy β, which by the rounding distortion is a

β · r(α, P ) approximation. To obtain this guarantee we build one sketch for

every U ∈ N , for a total of O(2H(1/2−α)d) sketches (via Lemma 3.6.1). By

setting the failure probabilty for each sketch as δ = 1/2αd and then taking a

union bound over the α-net we achieve probability at least 1− δ.

Remark 3.6.1. By taking N = 2d we achieve the presentation claimed at the

start of this chapter. For α ∈ (0, 1/2), the space usage of our algorithm grows

as 2H(1/2−α). Taking c′ = H(1/2 − α) we obtain N c′ space, as claimed. For

the error, the overall approximation factor is βr(α, d) = β2αdq by Lemma 3.6.2

with q = |1 − p|. Thus, the worst-case approximation factor Theorem 3.6.1

achieves is N c = Nαq log2(β). Since β is the approximation factor from a

standard streaming problem, we can think of this being a small constant, say 2

or 4, for example. This results in c = α · constant|1− p| which is less than 1

provided α is chosen correctly.

Illustration of Bounds. First, observe that, irrespective of the problem

P , the number of sketches needed is sublinear in 2d. This is due to the fact

that the entropy H(1/2 − α) < 1 for α > 0, so the size of the net |N | < 2d.

For 0 ≤ p ≤ 2, we have β-approximate sketches with β = (1 + ε) whose size

is Õ(ε−2), which is constant for constant ε. For example, we obtain a 2αd

approximation (ignoring small constant factors) for F0 in space O(2H(1/2−α)d),

using for instance the (1+ε)-approximate sketch from [KNW10] which requires

O(ε−2 + log n′) bits for an input over domain {1, . . . , n′}. Since n′ ≤ 2d, and

setting ε = 1, we obtain the approximation in space O(d2H(1/2−α)d). This is

to be compared to the bounds in Section 3.4, where it is shown that (binary)

instances of the projected F0 problem require space 2Ω(d). These results show

that the constant hidden by the Ω() notation is less than 1.

In Figure 3.6 we illustrate the general behavior of the bounds for d = 20.

These plots differ from Figures 3.5a and 3.5b which only illustrates the space-

saving properties of the net. The subsequent plots relate the space benefit

to the approximation factor induced by the net. We plot the relative space

by 2H(1/2−α)/2d while varying α over (0, 1/2) (plotted in the top pane). This

shows the space reduction in using the α-net approach compared to näıvely

storing all 2d queries. The central pane shows how the approximation factor

2αd (on a log scale) varies with α. Although Theorem 3.6.1 shows that the

approximation factor is βr(α, d), we can think of the superfluous terms as

being small constants relative to 2αd so only plot this term for clarity. We plot

the space-approximation tradeoff in the bottom pane and the approximation
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Figure 3.6: Space-approximation tradeoff for d = 20 as α is varied from 0 to
1/2. Relative space is 2H(1/2−α)d/2d is the fraction of total subsets stored and
Approximation Factor is 2αd. As α approaches 0, the net stores increasingly
more subsets from P ([d]) so the relative space approaches 1 which also explains
why the approximation factor is smaller. When α approaches 1/2, many fewer
subsets from P ([d]) are stored so the relative space is small and approaches 0;
as fewer subsets are stored, the error induced by set rounding will be higher,
as illustrated.

factor is again plotted on a log10-scale. This plot suggests that if we reduce the

space by a factor of 10 (i.e., permit relative space 10−1) then the approximation

factor is on the order of 10s. Meanwhile, if we use relative space 10−3, then we

achieve a space-saving of a factor 1000 and the approximation remains on the

order of hundreds: this is substantial as the number of summaries kept for the

approximation is approximately 210 = 1024� 220 ≈ 106. One can see this by

observing 103 ≈ 210, so relative space 10−3 roughly corresponds to keeping 210

subsets out of all possible 220 sets in P ([20]).
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3.7 Concluding Remarks

We have introduced the topic of projected frequency estimation, with the aim of

abstracting a range of problems involving computing functions over projected

subspaces of data. Our main results show that these problems are generally

hard, in terms of the space requirements: in most cases, we require space which

is exponential in the dimensionality d of the input. However, interestingly, the

exact dependence is not as simple as 2d: we show that coarse approximations

can be obtained whose cost is substantially sublinear in 2d. Letting N = 2d,

our upper and lower bounds establish that the space complexity for a number of

problems here is polynomial in N , though substantially sublinear. And, in a few

special cases (`p frequency estimation for p ≤ 1), a sufficiently constant-sized

sample suffices for accurate approximation of projected frequencies. It remains

an intriguing open question to close the gaps between the upper and lower

bounds, and to find the exact form of the polynomial dependence on N for

these problems.

65



Chapter 4

Streaming Deterministic

Summaries in `p Norms

4.1 Introduction

Prior work on approximate linear algebra has led to efficient distributed and

streaming algorithms for problems such as approximate matrix multiplication,

low rank approximation, and regression. Primarily, these problems have

been studied in `2, the Euclidean norm, and rely on constructions outlined

in Section 2.2. In this chapter, we study other `p norms, which are more

robust for p < 2, and can be used to find outliers for p > 2. Unlike previous

algorithms for such norms, we give algorithms that are deterministic, work

simultaneously for every p ≥ 1, including p =∞, and (3) can be implemented

in both distributed and streaming environments. We apply our results to

`p-regression and entrywise `1-low rank approximation.

4.1.1 Background

Analysing large-scale, high volume data can be time-consuming and resource

intensive. Core data analysis, such as robust instances of regression, involve

convex optimization tasks over large matrices can be time-consuming and

resource intensive as they may not naturally distribute or parallelize. In

response to this, approximation algorithms have been proposed which follow

a “sketch and solve” paradigm: produce a reduced size representation of the

data, and solve a version of the problem on this summary [Woo14b]. It is then

argued that the solution on the reduced data provides an approximation to the

original problem on the original data. This paradigm is particularly attractive

when the summarization can be computed efficiently on partial views of the full

data, for example, when it can be computed incrementally as the data arrives

(streaming model) or assembled from summarizations of disjoint partitions of
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the data (distributed model) [Woo14b, ACH+12, FMS+06]. This template

has been instantiated for a number of fundamental tasks in large-scale linear

algebra such as matrix multiplication, low rank approximation, and regression.

Our understanding is well-established in the common case of the Euclidean

norm, i.e., when distances are measured under the Minkowski p-norm for p = 2.

Here, it suffices to choose a sketching matrix independent of the data—where

each entry is i.i.d. Gaussian, Rademacher, or more efficient variants that we

will introduce in Section 5.1.1. For other p values, less is known, but these are

often needed to handle limitations of the 2-norm. For instance, p = 1 is widely

used as it is robust with respect to the presence of outliers while p > 2 can be

used to detect outlying observations. In addition, is argued in [CCDS20] that

p = 3 is useful for topic modelling and the authors of this work obtain random

coresets in a computation model similar to ours.

We continue the study of algorithms for `p norms on streaming and dis-

tributed data. A particular novelty of our results is that unlike previous

distributed and streaming algorithms, they can all be implemented determ-

inistically, i.e., our algorithms make no random choices. While in a number

of settings randomised algorithms are highly beneficial, leading to massive

computational savings, there are other applications which require extremely

high reliability, for which one needs to obtain guaranteed performance across

a large number of inputs. If one were to use a randomised algorithm, then

it would need vanishingly small error probability; however, many celebrated

algorithms in numerical linear algebra succeed with only constant probability.

Another limitation of randomised algorithms was shown in [HW13]: if the

input to a randomised sketch depends on the output of a preceding algorithm

using the same sketch, then the randomised sketch can give an arbitrarily

bad answer. Hence, such methods cannot handle adaptively chosen inputs.

Thus, while randomised algorithms certainly have their place, the issues of high

reliability and adaptivity motivate the development of deterministic methods

for a number of other settings, for which algorithms are scarce.

Our techniques can be viewed as a conceptual generalization of Liberty’s

Frequent Directions (in the 2-norm) [Lib13], which progressively computes

an SVD on subsequent blocks of the input. This line of work [Lib13, GP14,

GLP16, GLPW16] is the notable exception in numerical linear algebra, as it

provides deterministic methods, although all such methods and their guarantees

are specific to the 2-norm. Our core algorithm is similar in nature, but we

require a very different technical analysis to argue that the basis transformation

computed preserves the shape in the target p-norm.

Our main application is to show how large-scale regression and low rank

approximation problems can be solved approximately and deterministically in

the sketch and solve paradigm. The core of the summary is to find a matrix
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whose rows describe well the data. Absent of any space constraints, we could

perhaps compute a basis for the input matrix, but on a data stream, this

will use too much working space. Therefore, we use local views of the data

and resort to summarising these local pieces which can then be combined in

some way to say something informative about the global dataset. The two

techniques we will use are to either exploit bases computed only over small

parts of the data, or finding rows with of the original matrix which have high

leverage score. In each of these two settings, the stored rows contain a lot of

information about the shape of the data. In the Euclidean norm, leverage

scores correspond directly to row norms of an orthonormal basis. This is less

straightforward for other `p norms, where the scores correspond to the row

norms of so-called `p-well-conditioned bases. Moreover, while leverage scores

are often used for sampling in randomised algorithms, we use them here in the

context of fully deterministic algorithms.

Our general technique for both of the two above setups is similar: we read

in a block of input, compute a local summary and either prune the summary,

or first merge it with another summary before pruning. Recall from Section 2.1

that we can relate the distributed summary model to the single-pass row arrival

model. Given this relationship between the streaming and distributed models,

our algorithms can be viewed as having data stored over multiple machines

who each send ‘important’ rows of their data to a central coordinator in order

to compute the approximation, or as a single-pass row arrival stream.

Our first exploration is that of subspace summaries ; roughly speaking, this

approach splits the input matrix into blocks which represent the leaves of a

binary tree and reduces each block to a representative basis. These bases are

then merged-and-reduced over the entire binary tree. For ease of understanding,

it is easiest to conceptualise this result through the lens of the distributed

summary model, although it can be implemented in a single pass. We apply

this technique to `p-regression and entrywise `1-low rank approximation.

Our second approach shows how a superset of rows with high leverage scores

can be found for arbitrary `p norms, based on only local information. This leads

to efficient algorithms which identify rows with high (local) leverage scores

within subsets of the data, and proceed hierarchically to collect a sufficient

set of rows. These rows then allow us to solve the `∞ regression problem:

essentially, we solve the regression problem corresponding to just the retained

input rows. In particular, we approximate the `∞-regression problem with

additive error in a stream. Note that the `∞ problem reduces to finding a ball

of minimum radius which covers the data, and global solutions are slow due

to the need to solve a linear program. Instead, we show that only a subset

of the data needs to be retained in the streaming model to compute accurate

approximations.
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4.1.2 Summary of Contributions

All our algorithms are deterministic polynomial time, and use significantly

sublinear memory or communication in streaming and distributed models,

respectively. We consider tall and thin n× d matrices A for overconstrained

regression so one should think of n � d. The overall space used is the

dimensionality of some summary matrix of size m× d. We will always inherit

dimensionality d from the original data and the task is to keep m, the number

of rows stored, as small as possible. Depending on the problem, we either store

the only summary, or perhaps a constant number of small summaries that are

then merged and reduced to achieve the claimed space bound.

Section 4.3.1 gives a method for computing an `p-subspace embedding of a

data matrix in polynomial time. The space is O(nγ)× d to obtain a summary

of size nγ × d which achieves dO(1/γ) distortion, for γ ∈ (0, 1) a small constant.

This result is then applied to `p-regression which is shown to have a poly (d)

approximation factor with the same amount of space.

Section 4.3.3 describes a deterministic algorithm which gives a poly (k)-

approximation to the optimal low rank approximation problem in entrywise

`1-norm. It runs in polynomial time for constant k. This method builds on

prior work by derandomising a subroutine from [SWZ17].

Section 4.4 presents an algorithm which returns rows of high ‘importance’ in

a data matrix with additive error. This follows by storing a polynomial number

(in d) of rows and using these to compute a well-conditioned basis. The key

insight here is that rows of high norm in the full well-conditioned basis cannot

have their norm decrease too much in a well-conditioned basis associated with

a subblock; in fact they remain large up to a multiplicative poly(d) factor.

Section 4.5 describes an algorithm for computing an additive-error solution

to the `∞-regression problem, and shows a corresponding lower bound, showing

that relative error solutions in this norm are not possible in sublinear space,

even for randomised algorithms.

Section 4.6 concludes with an empirical evaluation for the `∞ regression

problem.

4.1.3 Comparison to Related Work

There is a rich literature on algorithms for numerical linear algebra in general

p-norms; most of which are randomised with the notable exception of Frequent

Directions. The key contributions of our work for each of the problems

considered and its relation to prior work is as follows:

Subspace embedding, regression and `1-low rank approximation:

various approaches using row-sampling [CP15, DDH+08], and data oblivious

methods such as low-distortion embeddings can solve regression in time propor-

69



tional to the sparsity of the input matrix [CDMI+16, MM13, SWZ17, WZ13].

However, despite the attractive running times and error guarantees of these

works, they are all randomised and do not necessarily translate well to the

streaming model of computation, possibly requiring a second pass of the data

to perform the sampling or global data access to evaluate the sampling distri-

bution (see Section 2.2.1). Obtaining coresets in `p on a data stream has also

been studied in [CCDS20], but again, this approach is randomised and has

more restrictive conditions on p; they assume p ≥ 2, some of their algorithms

only work for integer p, and different guarantees are shown between even and

odd p. Our contribution here is a fully deterministic algorithm that works for

all p ≥ 1 in both streaming and distributed models. Randomised methods for

`1 low rank approximation have also been developed in [SWZ17] and our result

exploits a derandomised subroutine from this work to obtain a deterministic

result which applies in both models.

Finding high leverage rows: our algorithm is a single pass streaming

algorithm and uses small space. We show that the global property of `p-

leverage scores can be understood by considering only local statistics. Frequent

Directions is the only comparable result to ours and outputs a summary in

the `2-norm whose rows are not the datapoints but rather weighted linear

combinations of the rows. However, our method covers all p ≥ 1 and stores

the datapoints exactly. Theorem 4.4.1 is the key result and is later used to

prove Theorem 4.5.1 and approximate the `∞-regression problem.

4.2 Preliminaries and Notation

We consider the task of finding deterministic summaries for an input matrix

A ∈ Rn×d. These summaries are found by computing generalisations of

orthonormal bases from the Euclidean norm into arbitrary `p. Our summaries

are then used for the central tasks of low rank approximation, regression and

evaluating the `p-leverage scores of a matrix. We assume that n � d so

rank (A) ≤ d and the regression problems are overconstrained. Without loss

of generality we may assume that the columns of the input matrix are linearly

independent so that rank (A) = d.

Our focus is on the cases 1 ≤ p < 2 and p > 2 because the deterministic

p = 2 case is relatively straightforward. Indeed, for p = 2, A>A can be

maintained incrementally by adding the outer products of rows of A as they

are presented. This streaming approach allows x>A>Ax = ‖Ax‖22 to be

computed exactly for any vector x which results in an exact `2 subspace

embedding using O(d2) space and O(ndω−1) time (ω < 2.4 is the matrix

multiplication constant [Alm21]).

Throughout this chapter we rely heavily on the notion of a well-conditioned
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basis for the column space of an input matrix, in the context of the Minkowski

p-norm which is ‖M‖p = (
∑

i,j |Mij |p)1/p as defined in Definition 2.2.1. We

adopt the convention that when p = 1 we take the dual norm as q =∞.

Definition 4.2.1 (Well-conditioned basis [DDH+08]). Let X ∈ Rn×d have

rank d. For p ∈ [1,∞) let q = p
p−1 be its dual norm. An n× d matrix U is an

(α, β, p)-well-conditioned basis for X if the column span of U is equal to that

of X,

1. ‖U‖p ≤ α

2. For all z ∈ Rd, ‖z‖q ≤ β ‖Uz‖p

and α, β, dO(1) are independent of n.

Definition 4.2.1 may also be termed a global well-conditioned basis when

the matrix in question relates to the space spanned by all of the data present

in the input. That is, X = A. The reason for this distinction is that we will

often compute local well-conditioned bases from blocks of the input A. In this

case, we will take X = PA where P ∈ Rn×n acts as a row selection matrix:

Pii = 1 if and only if i is a row in the observed subset of input rows, all other

Pij = 0.

Theorem 4.2.1 ([DDH+08]). Let A be an n×d matrix of rank d, let p ∈ [1,∞)

and let q be its dual norm. There exists an (α, β, p)-well-conditioned basis U

for the column space of A such that:

1. if p < 2 then α = d
1
p

+ 1
2 and β = 1,

2. if p = 2 then α =
√
d and β = 1, and

3. if p > 2 then α = d
1
p

+ 1
2 and β = d

1
p
− 1

2 .

Moreover, U can be computed in deterministic time O(nd2 + nd5 log n) for

p 6= 2 and O(nd2) if p = 2.

We freely use the fact that a well-conditioned basis U = AR can be

efficiently computed for the given data matrix A. Details for the computation

can be found in [DDH+08] but roughly this is done by computing a change of

basis R such that U = AR is well-conditioned. Similarly, as R can be inverted

we have the relation that UR−1 = A. Both methods are used so we adopt the

convention that U = AR when writing a well-conditioned basis in terms of

the input and US = A for the input in terms of the basis.

Our algorithms in this chapter operate in the row arrival model (Defin-

ition 2.1.3) and the distributed summary model (Definition 2.1.4). In both

settings an algorithm receives as input the matrix A ∈ Rn×d. For a problem

71



P, the algorithm must keep a subset of the rows of A and/or some function of

the rows. Upon reading the full input, we use a black-box solver to compute

an approximate solution to P with only the subset of rows stored. In both

models we measure the following:

• Summary size: the number of rows retained in the summary. The overall

space is then SummarySize×d so it will suffice to bound only the number

of rows in the summary.

• Update time: the time taken to find the local summary on every batch-

update of rows.

• Query time: the time taken to compute an approximation to P using

the summary after observing the entire stream.

4.2.1 Convex Optimisation

For many of the problems we study, the optimal solution can be found by using

a deterministic convex optimisation solver. However, the time cost for these

algorithms can be polynomial in the input size. In Table 1.1 [Bub15], one can

see that there are many different methods for solving convex problems which

have benefits or downsides depending on the particular problem structure. We

are not concerned with which solve method is used, however, what is of concern

is that each of the deterministic methods requires multiple (sub)gradient steps.

There are two problems here: firstly, any gradient over the full data requires

O(nd) just to compute a matrix-vector product; secondly, and more pertinently

for our work, such a step requires full access to the data which is not possible

without a further pass if the data is streaming.

Given that we are interested in small space streaming algorithms, calling

a convex optimisation routine on the full input will not be possible, let alone

scalable. As a result, our algorithm design circumvents the need to use a

convex solver on large matrices by only calling the optimisation procedure on

small summaries of the data. This will enable us to return an estimate to the

orginal optimisation problem which is computed over a small summary of the

original input problem which we then argue is a reasonable approximation to

the original problem.

4.3 Obtaining & Applying `p Subspace Summaries

4.3.1 Relative Error `p Subspace Embeddings

The starting point of this section is to generalise the approach of Liberty’s

Frequent Directions algorithm, as introduced in Algorithm 1 Section 2.2.2,

to arbitrary `p. The error guarantee for Frequent Directions is a happy
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consequence of specific properties from the Euclidean norm. Such properties

do not necessarily apply in arbitrary `p, for instance, one difficulty is that we

cannot easily exploit the SVD of a matrix. This has substantial ramifications:

we cannot then write the residual term ‖A−Ak‖2F or write ‖A‖2F as sums over

the singular values of A. Both of these properties are crucial to the analysis of

Frequent Directions so we cannot follow the analysis directly. As a consequence,

our results here incur greater error than the corresponding results for Frequent

Directions as the only tool we have is an `p well-conditioned basis. Nevertheless,

we are able to obtain a sequence of local summaries that, when combined, do

not incur too much error and are thus good surrogates for reconstructing the

column space of A in `p.

Under the assumptions of the distributed summary model, we present

an algorithm which computes an `p-subspace embedding with multiplicative

relative-error to contrast the additive-error bound of Frequent Directions.

By extension, this applies to both the distributed and streaming models of

computation as described in Section 2.1. Two operations are needed for this

model of computation: the merge and reduce steps.

• For the merge step, successive matrices (which may themselves be sum-

maries, subsets of the input data, or both!) S are concatenated until a

space bound is met.

• To reduce the input at each level a summary is computed by taking an

input matrix X that may be a block of the raw input data (corresponding

to a leaf node) or some subsequent summaries of the input data (corres-

ponding to a node higher up the tree) and computing a well-conditioned

basis U so that X = US. In particular, the summary is now the matrix

S with U and B deleted.

A further reduce step takes as input this concatenated matrix and the process

is repeated. Before proceeding with our algorithm, let us first recall Defini-

tion 2.2.2 regarding a relative error `p-subspace embedding. This will be the

key tool that we exploit and it roughly amounts to finding a basis which doesn’t

distort matrix-vector products too much compared to that in the original data.

Definition 2.2.2. Let A ∈ Rn×d, p > 0 and c1, c2 ≥ 0 be constants. A matrix

T ∈ Rm×d is a (c1, c2) `p-subspace embedding for the column space of A if for

all x ∈ Rd:
c1 ‖Ax‖pp ≤ ‖Tx‖pp ≤ c2 ‖Ax‖pp .

Our goal in this section is to find a small space basis that approximately

reconstructs the column space of A. Of course, Theorem 4.2.1 ensures that

73



Algorithm 3: Streaming Deterministic `p Subspace Embedding

Input: A ∈ Rn×d, p > 0, γ < 1
Output: Approximate `p Subspace Embedding of A

1 Function `p-SubspaceEmbedding(A, p, γ)
2 Counters m, t← 1

3 Summaries P(t) ← EMPTY for all t
4 for m = 1 : n1−γ do
5 A[m] = US . U an `p wcb for A

6 if num. rows(P(t)) + d ≤ nγ then

7 P(t) ← [P(t); S]

8 else

9 P(t+1) ← S
10 t← t+ 1

11 Merge all P(t): T = [P(1); . . . ; P(·)]
12 Reduce T by splitting into blocks of nγ and repeating lines (2) -

(12) with T in place of A.
13 return T

such an embedding exists if we are able to pay the high time cost of Ω(nd2) by

using Theorem 4.2.1. However, naiv̈ely applying Theorem 4.2.1 would require

access to all of the data which contravenes our assumption that the input is

too large to hold in its entirety. Our task is to design a scalable alternative

that incurs small distortion while using only small space.

Illustrating the Algorithm

Before formalising the analysis, let us first consider our algorithmic approach.

Informally, our algorithm exploits a tree structure as follows: split input

A ∈ Rn×d into n1−γ blocks of size nγ , these form the leaves of the tree. For

each block, a well-conditioned basis is computed and the change of basis matrix

S ∈ Rd×d is stored and passed to the next level of the tree. This is repeated

until the concatenation of all the S matrices would exceed nγ . At this point,

the concatenated S matrices form the parent node of the leaves in the tree

and the process is repeated upon this node: this is the merge and reduce

step of the algorithm. At every iteration of the merge-and-reduce steps it can

be shown that a distortion of 1/d is introduced by using the summaries S.

However, this can be controlled across all of the O(1/γ) levels in the tree to

give a deterministic relative error `p subspace embedding which requires only

sublinear space and little communication.

The pseudocode for the first level of the tree structure of the deterministic

`p subspace embedding is given in Algorithm 3. We use the following notation:

m is a counter to index the block of input currently held, denoted A[m], and
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ranges from 1 to n1−γ for the first level of the tree. Similarly, t indexes the

current summary, P(t) which are all initialized to be an empty matrix. We use

the notation [X; Y] to denote the row-wise concatenation of two matrices X

and Y with equal column dimension.

Note that Algorithm 3 can be easily distributed as any block of sublinear

size can be given to a compute node and then a small-space summary of that

block is returned to continue the computation. In addition, the algorithm can

be performed using sublinear space in the streaming model because at any one

time a summary T of the input matrix whose size is at most nγ × d can be

computed and T is of size d× d. Upon reading A[1], a small space summary

P(1) is computed and stored with the algorithm proceeding to read in A[2].

Similarly, the summary P(2) is computed and if [P(1); P(2)] does not exceed

the storage bound, then the two summaries are merged (which in this context

is simple row-wise concatentation) and this process is repeated until at some

point the storage bound is met. Once the summary is large enough that it

meets the storage bound, it is then reduced by performing the well-conditioned

basis reduction (line (5)) and the reduced summary is stored with the algorithm

continuing to read and summarize input until a corresponding block in the

tree is obtained (or the blocks can be combined to terminate the algorithm).

Relative Error Embedding

Before presenting the main result, we show a simple bound on the distortion of

a vector under the action of a well-conditioned basis. This is a consequence of

the structural properties of well-conditioned bases as introduced in [DDH+08].

Lemma 4.3.1. Let x ∈ Rd be arbitrary and suppose that U is an `p well-

conditioned basis for the column span of an input matrix A with p > 1 and

p 6= 2. Then

‖x‖p ≤ ‖Ux‖p ≤ d ‖x‖p .

Proof. The main property we need is from [DDH+08]:

‖x‖2 ≤ ‖Ux‖p ≤
√
d ‖x‖2 . (4.1)

Now, we split into two cases (i) p < 2 and (ii) p > 2. For the first case we have

‖x‖2 < ‖x‖p so

‖Ux‖p ≤
√
d ‖x‖2

≤
√
d ‖x‖p .

For the lower bound, we use Hölder’s inequality to deduce that ‖x‖p /
√
d < ‖x‖2

so multiplying through by
√
d achieves the stated result. When p > 2 we apply
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a similar argument, using (4.1) for the lower bound and modifying Hölder’s

inequality to obtain:

‖x‖p ≤ ‖x‖2 ≤ ‖Ux‖p ≤
√
d ‖x‖2 ≤ d ‖x‖p .

We are now in a position to prove the correctness of Algorithm 3.

Theorem 4.3.1. Let A ∈ Rn×d, p 6= 2,∞ be fixed and fix a constant γ ∈
(0, 1). Then there exists a one-pass deterministic algorithm which constructs a

(1/dO(1/γ), 1) relative error `p-subspace embedding with O(nγd2 + nγd5 log nγ)

update time and O(nγd) space in the distributed summary model of computation.

Proof. Let A ∈ Rn×d and B ∈ Rnγ×d be an arbitrary block of input from

A. We compute an `p well-conditioned basis for B in time poly (nγd) by

Theorem 4.2.1; so let B = US for U ∈ Rnγ×d and S ∈ Rd×d a change of basis

matrix. Upon computing U and S, Algorithm 3 subsequently deletes U and

retains only S. We apply Lemma 4.3.1 on the vector Sx which readily achieves:

‖Sx‖p ≤ ‖USx‖p ≤ d ‖Sx‖p .

Recalling that B = US and by rearranging, we have thus found S satisfying:

‖Bx‖p
d

≤ ‖Sx‖p ≤ ‖Bx‖p .

In particular, ‖Sx‖p agrees with ‖Bx‖p up to a distortion factor of d and is a

(1/d, 1) `p-subspace embedding for the column space of B.

It remains to understand how this approach propagates over the entirety

of A. Algorithm 3 applies the merge and reduce framework. The matrix A

is seen a row at a time and nγ rows are stored which are used to construct a

tree. So at every level a subspace embedding with distortion d is constructed.

This error propagates through each of the O(1/γ) levels in the tree so the

overall distortion to construct the subspace embedding for A is dO(1/γ). The

space bound is similar; we need nγd storage per group so require O(1/γ)nγd

overall. The merge operation is the concatentation of successive change of basis

matrices S while the reduce operation is the compression of a larger block into

its representative basis matrix S.

4.3.2 Application: `p Regression

Subspace embeddings are useful as they roughly preserve the shape of the

data while being relatively cheap to compute compared to solving a large-scale

problem. While this is itself useful, their utility extends further and we show
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how to use the approach of Section 4.3.1 to approximate crucial numerical

linear algebra problems. The first application is to show how the subspace

embedding of Theorem 4.3.1 can be used to achieve a deterministic relative-error

approximate regression result. The proof proceeds similarly to Theorem 4.3.1

and relies upon analyzing the merge-and-reduce behaviour across all nodes of

the tree.

`p-Regression Problem: Given matrix A ∈ Rn×d and target vector

b ∈ Rn, find x? = argminx f(x) where f(x) = ‖Ax−b‖p. Solving `p regression

for p 6= 2 is expensive as it relies on convex programming so we will relax

the problem and settle for evaluating an estimate x̂ which approximates the

objective value or cost of the regression problem as f(x?) ≤ f(x̂) ≤ ∆f(x?) for

some ∆ > 1 which is to be understood through the method of approximation

that we select. Of course, by optimality of x? we are guaranteed that any

estimation x̂ satisfies f(x?) ≤ f(x̂), thus it suffices to focus on the upper bound

and this is the focus of the subsequent theorem.

Theorem 4.3.2. Let A ∈ Rn×d,b ∈ Rn, fix p 6= 2,∞ and a constant γ > 0.

The `p-regression problem can be solved deterministically in the streaming

and distributed models with a (d + 1)O(1/γ) = poly (d) relative error approx-

imation factor. The algorithm’s update time is poly (nγ(d+ 1)) and uses

O ((1/γ)nγ(d+ 1)) working space. The query time is poly (nγ) for the cost of

convex optimization.

Proof. The task is to minimise ‖Ax− b‖p. Let Z = [A,b] ∈ Rn×(d+1) and

compute a subspace embedding S for Z using Theorem 4.3.1. Note that S has

O ((1/γ)nγ) rows. Let ∆ = (d+ 1)O(1/γ), then for all y ∈ Rd+1 we have:

‖Zy‖p
∆

≤ ‖Sy‖p ≤ ‖Zy‖p . (4.2)

Since this condition holds for all y ∈ Rd+1 it must hold, in particular, for

vectors y′ = (x,−1)> where x ∈ Rd is arbitrary. However, observe that:

∥∥Zy′
∥∥
p

=

∥∥∥∥∥[A,b]

[
x

−1

]∥∥∥∥∥
p

= ‖Ax− b‖p . (4.3)

Denote the first d columns of S by S[1:d] and the last column by S[d+1].

Then

∥∥Sy′
∥∥
p

=

∥∥∥∥∥[S[1:d],S[d+1]]

[
x

−1

]∥∥∥∥∥
p

= ‖S[1:d]x− S[d+1]‖p. (4.4)

Now we have transformed the subspace embedding relationship into an

instance of regression. In particular, S[1:d] has only O ((1/γ)nγ) rows so is

a smaller instance than the original problem. We now focus on the task
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of finding minx∈Rd
∥∥S[1:d]x− S[d+1]

∥∥
p
. By using (4.2) with y′ and utilising

Equations (4.3) and (4.4) we have:

‖Ax− b‖p
∆

≤
∥∥S[1:d]x− S[d+1]

∥∥
p
≤ ‖Ax− b‖p . (4.5)

Convex optimisation can now be used to find minx∈Rd
∥∥S[1:d]x− S[d+1]

∥∥
p
.

Let x̂ = argminx∈Rd
∥∥S[1:d]x− S[d+1]

∥∥
p

which is output from the optimisation

and let x? = argminx∈Rd ‖Ax− b‖p be the optimal solution we would like to

estimate. By optimality of x̂ in the small-space instance we have:

∥∥S[1:d]x̂− S[d+1]

∥∥
p
≤
∥∥S[1:d]x

? − S[d+1]

∥∥
p
. (4.6)

However, combining Equation (4.6) with Equation (4.5) we see that:

‖Ax̂− b‖p
∆

≤
∥∥S[1:d]x̂− S[d+1]

∥∥
p

≤
∥∥S[1:d]x

? − S[d+1]

∥∥
p

≤ ‖Ax? − b‖p .

Therefore, the `p-regression problem has been approximated with ‖Ax̂− b‖p ≤
∆ ‖Ax? − b‖p and ∆ = poly (d+ 1). The overall time complexity is the time

taken to compute the subspace embedding, which is poly (nd) (poly (nγd)

update time repeated over at least n1−γ leaves in the computation tree) by

Theorem 4.3.1, and the time for the convex optimisation. However, the op-

timisation costs poly (O(1/γ)nγ) [BBV04] which is subsumed by the dominant

time cost for computing the embedding. Finally, the space cost is immediate

from computing the subspace embedding in Theorem 4.3.1.

4.3.3 Application: `1-Low Rank Approximation

One further application of our deterministic subspace embeddings is to approx-

imately solve the `1-Low Rank Approximation Problem. The `1 version of low

rank approximation is more robust than the standard Frobenius version in the

presence of outliers and is useful if Gaussianity assumptions on the data do

not apply. Unfortunately, it was shown in [GV18] that the solving `1-low rank

approximation exactly is NP-hard. The first provable (randomised) approxim-

ation algorithms for this problem were given in [SWZ17] which improved over

many prior heuristics. Our result is the first deterministic streaming algorithm

for approximations to this problem.

`1-Low Rank Approximation Problem: Given matrix A ∈ Rn×d,
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output a matrix T of rank k such that for constant k:

‖A−T‖1 ≤ poly (k) min
A′:rank(k)

∥∥A−A′
∥∥

1
. (4.7)

The key technique is similar to that of the previous section by using a tree

structure with merge-and-reduce operations. For input A ∈ Rn×d and constant

γ > 0 partition A into n1−γ groups of rows which form the leaves of the tree.

The tree is defined as previously with the same ‘merge’ operation, but the

‘reduce’ step to summarize the data exploits a derandomisation (subroutine

Algorithm 4) of [SWZ17] to compute an approximation to the optimal `1-low

rank approximation. Once this is computed, k of the rows in the summary are

kept for later merge steps.

This process is continued with the successive k rows from nγ rows being

‘merged’ or added to the matrix until it has nγ rows. The process is repeated

across all of the groups in the level and again on the successive levels on the

tree from which it can be shown that the error does not propagate too much

over the tree, thus giving the desired result.

A Useful Subroutine

Our algorithm for low rank approximation will operate in a similar fashion

as the subspace embedding algorithm from Section 4.3.1. In the same vein,

we will need a subroutine that operates on smaller blocks at every level of

the computation tree whose error we can bound. To this end, we introduce

Algorithm 4 which is a derandomised version of an algorithm [SWZ17] which

returns a low rank approximation to an input matrix. The derandomisation

follows from generating and testing all possible combinations of the necessary

matrices.

Lemma 4.3.2. On an input of size N×D, Algorithm 4 runs in time poly (ND).

Proof. Every matrix which is generated in Algorithm 4 has a number of nonzero

entries bounded by O(kpolylog(k)). We can test all of the matrices (line 6)

in time proportional to the dimension of the matrix (N or D) with exponent

O(kpolylog(k)) resulting in time poly (ND) overall, since k is constant.

We need one further lemma which describes the approximation error induced

by using well-conditioned bases to decompose a matrix.

Lemma 4.3.3. Let M ∈ RN×D have rank ρ and suppose U ∈ RN×ρ is a

well-conditioned basis for M. Let M = US for a change of basis S ∈ Rρ×D.

Then for all x ∈ RD:

‖Sx‖1
poly (D)

≤ ‖Mx‖1 ≤ poly (D) ‖Sx‖1 .
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Algorithm 4: Derandomised `1 low rank approximation of [SWZ17]

Input: A ∈ Rn×d, p > 0, γ < 1
Output: `1 Low Rank Approximation of A

1 Function L1kRankApproximation(A, n, d, k)
2 r = O(k log k),m = O(r log r), t1 = O(r log r), t2 = O(m logm)

3 Generate all diagonal R ∈ Rd×d with only r 1s
4 Compute all possible sampling and rescaling matrices

D,T1 ∈ Rn×n corresponding to Lewis Weights of AR whose
entries are powers of 2 between 1 and 1/nd. There are m and t1
nonzero entries on the diagonal, respectively.

5 Compute all sampling and rescaling matrices T>2 ∈ Rd×d according

to the Lewis weights of (DA)> with t2 nonzero entries, powers of
2 between 1 and 1/nd on the diagonal.

6 Evaluate ‖T1ARXYDAT2 −T1AT2‖1 for all choices of above
matrices.

7 return ARX,YDA that minimise line 6

Proof. For the left-hand side we can just calculate:

‖Sx‖1 ≤ D · ‖Sx‖∞
≤ D · poly (D) ‖USx‖1
= poly (D) · ‖Mx‖1 .

The second inequality follows from Definition 4.2.1, property 2 of the

well-conditioned basis U meanwhile the claimed result follows from observing:

‖Mx‖1 = ‖USx‖1 ≤ ‖U‖1 ‖Sx‖∞
= poly(D) ‖Sx‖1 .

The Main Algorithm

We are now in a position to present our main algorithm which returns a

(global) approximate solution to the `1 low rank approximation problem. This

contrasts Algorithm 4 which will be used to find approximate local solutions

that are collated to form the global solution. Correctness of this algorithm is

established in Theorem 4.3.3. It is enough to show that for every level, the low

rank approximation of each group is polynomially bounded by k in error. The

result follows by reasoning how this error grows as we progress through the

tree. Denote the jth block of A by A[j]. In Algorithm 5 we illustrate the first

level of the tree, as was done for Algorithm 3.
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Algorithm 5: Deterministic `1 low rank approximation on a stream

Input: A ∈ Rn×d, k, γ < 1
Output: Estimated `1 low rank approximation for A

1 Function L1kRankApproximation(A, k, γ)
2 Counters m, t← 1

3 Summaries P(t) ← EMPTY for all t
4 for m = 1 : n1−γ do
5 W,V> = L1kRankApproximation(A) . Algorithm 4

6 B←WV> . nb. B is output in factored form from
Algorithm 4

7 Set W = US for well-conditioned basis U

8 if num. rows(P(t)) + d ≤ nγ then

9 P(t+1) ← [P(t); SV>] . Merge step

10 else

11 P(t+1) ← SV>

12 t← t+ 1

13 Merge all P(t): T = [P(1); . . . ; P(·)]
14 Reduce T by splitting into blocks of nγ and repeating lines (2) -

(12) with T in place of A.
15 Set P to be matrix of final k rows
16 Solve minQ ‖QP−A‖1
17 return QP

Theorem 4.3.3. Let A ∈ Rn×d be the given data matrix and k be the (constant)

target rank. Let γ > 0 be an arbitrary (small) constant. Algorithm 5 is a

deterministic distributed & streaming algorithm which outputs a solution to the

`1-Low Rank Approximation Problem with relative error poly (k), update time

poly (n, d), space bounded by nγpoly(d), and query time poly (n, d).

Proof. For every level in the tree we can take a group of rows, C, and perform

Algorithm 4. For every C used as input to Algorithm 4, a k-rank matrix B of

dimensions nγ × d is returned. In particular, B has the following property:

‖C−B‖1 ≤ poly (k) min
B′:rank(B′)=k

∥∥C−B′
∥∥

1
.

Now factor B using a k rank decomposition. That is, set B = WV> where W

has k columns and V> has k rows. Further decompose W as W = US for a

well-conditioned basis U. Note that W is nγ × k (and of rank k) by the rank

decomposition so U is also nγ × k and S is k × k. The dimensions of these

matrices ensure that individually they do not exceed the space budget from

the theorem.

Apply Lemma 4.3.3 with W and k. Then we have for every x ∈ Rk that

‖Sx‖1 = poly (k) ‖Wx‖1. Since U is nγ by k and k < poly (d), U remains
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within the required space bound when we use it for the calculation. Now delete

U and store SV>. Note that each SV> is a matrix of k directions in Rd. Pass

SV> to the next level of the tree.

Merge the SV> for each group until we have a matrix of nγ rows. Repeat

the process over all O(1/γ) levels in the tree. We require nγd storage for every

group so as we merge and pass SV> down the levels this combines to total

space of O((1/γ)nγ poly (d)). This part of the algorithm is a repeated use of

Algorithm 4 which is poly (nγd) by Lemma 4.3.2 and some further lower time

cost manipulations. Repeating these steps over the entire tree gives poly (nd)

as the overall time complexity.

When this is done over all levels we will again have k directions in Rd. Let

P be the matrix with these directions as rows. Then we claim that P can be

used to construct our approximate `1 low rank approximation.

Claim 4.3.1. Let P be as described above. Then there exists QP which is an

`1 low rank approximation for A:

min
Q
‖QP−A‖1 ≤ poly (k)

∥∥A−A′
∥∥

1
.

Proof. Each use of Algorithm 4 admits a poly (k) approximation at every

level of the tree. Every time the well-conditioned basis U is constructed

and then ignored we admit a further poly (k) error due to Definition 4.2.1,

Property 1. The distortion is blown up by a factor of poly (k) every time we use

Lemma 4.3.3 which is at every level in the tree. Hence, the total contribution

of using Algorithm 4 is poly
(
kO(1/γ)

)
= poly (k) for constant γ.

Claim 4.3.1 proves the approximation factor is poly (k) as required. By

Lemma 4.3.2 we know that Algorithm 4 is poly (nγd) time. The most costly

steps in Algorithm 5 are invocations of Algorithm 4 so combining this over the

entire tree the overall time cost is poly (nd) as claimed, proving the theorem.

4.4 Leverage Score Summaries in `p-Norm

Thus far, we have primarily been interested in using the change of basis

matrices to construct a summary of input A. Notably, this will return rows

in the necessary subspace that approximately reconstruct the column space

of A. An alternative approach is to directly sample observations of the data

rather than rows in the subspace. A benefit of this approach is that if the

rows have semantic meaning, these relationships are not tampered with in the

summarisation phase. Secondly, if data is sparse, then maintaining the rows of

A directly preserves sparsity. In order to maintain such summaries, we will
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need a slightly different approach although the well-conditioned basis remains

our key tool.

Throughout this section we will repeatedly need the notion of `p-leverage

scores in different contexts as we are concerned with finding rows of high

leverage from a matrix with respect to various p-norms. These are `p analogues

of the `2-leverage scores from Definition 2.2.2 which arise as a consequence

of the `p-well conditioned bases that were introduced in Section 4.2. We

conclude the section with an algorithm that returns rows of high leverage up

to polynomial additive error. Before introducing these we will give a general

definition to highlight the differences between the scores that are computed.

Definition 4.4.1. Let A ∈ Rn×d be the input matrix and suppose that only

a subset I ⊆ [n] of the rows are stored. Let P ∈ Rn×n be a row selector

matrix with Pii = 1 if and only if row i ∈ I, otherwise Pij = 0. Suppose

that R is a change of basis matrix such that PAR is a well-conditioned basis

for the column space of PA. The `p-leverage scores of PA are defined as

wi(PA) = ‖eTi PAR‖pp.

This definition is deliberately general so that we can make the following

distinction between global and local leverage scores.

Definition 4.4.2 (Global `p-Leverage Scores). Suppose that I = [n] so P = In

in Definition 4.4.1. Then the leverage scores wi(A) are called the global

`p-leverage scores.

Definition 4.4.3 (Local `p-Leverage Scores). Suppose that I ⊂ [n] so P 6= In

in Definition 4.4.1 and PA = B is a block subset of the input A. Then the

leverage scores wi(B) are called the local `p-leverage scores of A (with respect

to B).

In the prose, we might abuse notation and refer to B = PA ∈ Rn×d as the

summary even though it is defined over n rows. Note that we easily recover

the ‘stored’ summary by removing the rows of all zeros, which we will also

refer to as B ∈ Rm×d. This is fairly straightforward through compressing P

into its implied representation over {0, 1}m×n by again removing any rows that

are entirely zero. On the other hand, we will be precise which formulation is

being used in the mathematics.

Clearly, the matrix R in Definitions 4.4.2 and 4.4.3 may change considerably

under the row selection induced by P. Note that wi depends both on A and

the choice of R, but we suppress this dependence in our notation. Next we

present some basic facts about the `p leverage scores.

Our first result has a similar flavour to many other results that use leverage

scores in that we bound the total sum of all scores [CMM17, CMP16, CP15].

The purpose of this result is to understand the how many rows can have
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‘large’ contribution to the sum of all leverage scores, and thus are important in

composing this sum.

Lemma 4.4.1. Let A ∈ Rn×d and R be a change of basis so that AR is an

(α, β, p) well conditioned basis. Let (wi)
n
i=1 be the global `p-leverage scores for

A and let τ ∈ (0, 1). Then:

1. there are at most poly (d) /τ rows i of A that have wi ≥ τ‖AR‖pp

2. Let x ∈ Rd be arbitrary. If a row i contributes at least a τ fraction to

‖ARx‖pp , then τ ≤ wiβ.

Proof. Part 1. Definition 4.2.1 states that
∑

iwi =
∑

i

∥∥e>i AR
∥∥p
p
≤ αp.

Theorem 4.2.1 shows α = poly (d). Define I = {i ∈ [n] : wi > τ‖AR‖pp} to

be the index set of all rows whose `p leverage exceeds a τ fraction of ‖AR‖pp,
then: αp ≥

∑
iwi ≥

∑
i∈I wi ≥ |I| · τ‖AR‖pp. Hence, |I| ≤ αp/(τ‖AR‖pp)

so |I| ≤ poly (d) /τ meaning there are at most poly (d) /τ rows i for which

wi ≥ τ‖AR‖pp.
Part 2. Definition 4.2.1 and Hölder’s inequality show that for any vector

x we have |(ARx)i|p ≤ β‖e>i AR‖pp · ‖ARx‖pp. Then

τ ≤ |e>i ARx|p/‖ARx‖pp
≤ βwi.

From this we deduce that if a row contributes at least a τ fraction of ‖ARx‖pp
then τ ≤ wiβ. That is, τ ≤ wi for p ∈ [1, 2] and τ ≤ d1/2wi for p ∈ (2,∞) by

using Theorem 4.2.1.

4.4.1 Relating Local and Global Leverage Scores

Before delving into this section, it will be helpful to consider the following

example. In Section 4.2, we saw that A>A is an exact subspace embedding for

A costing O(d2) space. Thus, this example is not intended to be formalised

but will help communicate the ideas of our subsequent approach.

A Brief Aside on `2

Suppose that we are presented A ∈ Rn×d in the row-arrival model and tasked

with finding all rows whose `2 leverage exceeds the threshold τ . If we take a

block B of whose rows are a strict subset of those from A, then we are guar-

anteed that under the Löwner ordering1 over symmetric positive semidefinite

matrices, B>B � A>A.

1To be formally introduced in Section 2.2.2, Fact 6.2.1. The notation B>B � A>A means
x>Bx ≤ x>Ax for all vectors x.
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Assuming for now that B is full rank, we may then deduce that(
A>A

)−1
�
(
B>B

)−1
. (4.8)

In `2, one nice formulation of the leverage scores of A is that for a row

Ai ∈ R1×d, its leverage score is wi = Ai

(
A>A

)−1
A>i . By writing the SVD of

A, it can be shown that this is analagous to our definition of `p leverage over the

`2 well-conditioned basis U for A. Another nice consequence of Equation (4.8)

is that it preserves the ordering of matrix-vector products, for all u ∈ Rd:

u>
(
A>A

)−1
u � u>

(
B>B

)−1
u. (4.9)

Applying (4.9) with u = A>i we have the relation wi ≤ ŵi between global lever-

age scores wi computed over
(
A>A

)−1
and local leverage scores ŵi computed

with respect to
(
B>B

)−1
. This shows that local leverage scores in `2 are lower

bounded by the true global leverage scores, the latter being expensive to obtain

as O(nd2) time for computing A>A. Similarly, it also shows that initialising

B>B = 0d×d and updating by the outer products of rows, the leverage scores

of an individual row will always decrease as new rows are observed.

Consequently, we could buffer m rows of A at a time and update A>A by

outer products at every stage which would allow us to compute local leverage

scores with respect to the matrix seen thus far. Because the leverage scores in

`2 are non-increasing as new rows are added, we could prune out rows from the

stored set whose leverage is too small following each batch update. Eventually,

we would retain a set of rows that have leverage exceeding the threshold τ

before the final buffer. Upon receiving the final block of rows, we would have

exactly computed A>A which would mean that any further leverage scores

computed are global leverage scores. Therefore, we have gradually pruned

out all small leverage score rows earlier on and are only left with those that

exceeded the threshold throughout the stream. Notice that this is entirely

a consequence of the observation that `2 leverage scores computed on local

bases (or partial sums of outer products
∑n

i=1 A>i Ai) are upper bounds on

their global leverage score. Thus, once a local leverage score drops below the

threshold τ , that row’s contribution will remain less than the τ threshold as

subsequent rows are added.

Of course, having argued that A>A is an exact subspace embedding in `2,

one perhaps would not want to perform the above algorithm, but it indeed

provides insight into the approach we would like to take. Unfortunately, in

`p the same niceties of `2 are not present; specifically, we show that local `p

leverage scores need not be upper bounds on global `p leverage scores. This

is because leverage scores are calculated from a well-conditioned basis for a
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matrix which need not be a well-conditioned basis for a block. Thus, the above

line of argument will not work exactly, but it will serve as our starting point.

Returning to `p

Our key theorem, Theorem 4.4.1, formalises exactly this behaviour; that there

is an approach to finding rows whose leverage exceeds a threshold globally by

repeatedly finding rows of high local leverage. Let B = PA ∈ Rn×d be a subset

of the rows of A, clearly ‖B‖pp ≤ ‖A‖
p
p so∥∥e>i A

∥∥p
p

‖A‖pp
≤

∥∥e>i A
∥∥p
p

‖B‖pp
. (4.10)

That is, relative `p row norms of a submatrix are at least as large as the full

relative `p norms. However, it is not guaranteed that this ordering holds for

leverage scores, i.e., when A and B are replaced by a well-conditioned basis

UA and UB for each. In spite of this, we are able to show that local `p leverage

scores restricted to a coordinate subspace of a matrix basis do not decrease too

much when compared to leverage scores in the original space. Consider row i

of A with local leverage score ŵi and global leverage score wi. Then we show

that ŵi ≥ wi/poly (d) (which contrasts the behaviour were we in `2 that would

state ŵi ≥ wi). The proof relies heavily on properties of the well-conditioned

basis and is presented in the following lemma 4.4.2.

Lemma 4.4.2. Let wi = wi(A) denote the ith global leverage score of A ∈
Rn×d. Let PA denote an arbitrary (strict) subset of the rows from A which

contains row i and denote the local leverage scores of A with respect to PA by

ŵi = wi(PA). Then wi/poly (d) ≤ ŵi and, in particular, wi/(dα
pβ) ≤ ŵi.

Proof. Let U = AR be a well-conditioned basis for col (A). Recall that

wi =
∥∥e>i AR

∥∥p
p
. Then for some coordinate j we must have |e>i ARej |p ≥ wi/d.

Taking x = ej we see that:

|(ARx)i|p ≥
wi
d
. (4.11)

However, Lemma 4.4.1 implies:

‖ARx‖pp ≤ ‖AR‖pp ≤ α
p ≤ poly(d). (4.12)

Hence, we have shown there exists y = ARx ∈ col (A) such that |yi|p ≥ wi/d
from Equation (4.11). Additionally, Equation (4.12) shows that ‖y‖pp ≤ αp,
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thus:

|yi|p

‖y‖pp
≥ |yi|

p

αp

≥ wi
dαp

≥ wi
poly (d)

.

Crucially,

wi ≤
|yi|pdαp

‖y‖pp
. (4.13)

Next we focus on the case when a strict subset of rows from A have been

stored in some index set J ⊂ [n] which is represented by a row-selector matrix

Pij = 1 if j = i and j ∈ J but otherwise Pij = 0. Then B = PA ∈ Rn×d whose

rows are either exactly those from A or the all zeros row. Define ŷ = BRx so

that ŷj′ = yj′ if j′ ∈ J , otherwise ŷj′ = 0. Thus, ‖ŷ‖pp ≤ ‖y‖
p
p and:

wi ≤
|yi|pdαp

‖ŷ‖pp
. (4.14)

Now, for i ∈ J (i.e. those stored in B) |ŷi|p = |yi|p. So, for such indices, using

Equations (4.13) and (4.14)

wi ≤
|ŷi|pdαp

‖ŷ‖pp
. (4.15)

Although ŷ is simply the restriction of y to the coordinates of P, it is not

guaranteed that the change of basis matrix R makes PAR well-conditioned,

as it does for U = AR. We will thus use the change of basis R̂ so that

(PA)R̂ is well-conditioned. Then the local leverage scores for i ∈ J are

(again using the shorthand B = PA): ŵi =
∥∥∥e>i BR̂

∥∥∥p
p
. We now claim that

|ŷi|p/ ‖ŷ‖pp ≤ poly (d) ŵi. Indeed,

|ŷi|p = |(BR̂x̂)i|p

≤
∥∥∥e>i BR̂

∥∥∥p
p
‖x̂‖pq by Hölder’s inequality

≤ ŵiβ‖BR̂x̂‖pp by Definition 4.2.1, property 2 on BR̂

≤ βŵi ‖ŷ‖pp .

Finally, recalling Equation (4.15) we achieve:

wi
dαp
≤ |ŷi|

p

‖ŷ‖pp
≤ βŵi.

The above relation proves the latter claim of the lemma statement whereby
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the general poly (d) is immediate from Theorem 4.2.1 which states β is at most

poly (d), thus proving the result.

Although Lemma 4.4.2 shows that local leverage scores can potentially

drop in arbitrary `p norm we will provide an algorithm that finds all rows

exceeding a global threshold by altering the local threshold. That is, to find

all wi > τ globally we find all local leverage scores exceeding an adjusted

threshold ŵi > τ/poly (d) to obtain a superset of all rows which exceed the

global threshold. The price to pay for this is a poly (d) increase in space cost

which, importantly, remains sublinear in n. Hence, we can gradually prune

out rows of small leverage and keep only the most important rows of a matrix.

This is formalised in the following lemma:

Lemma 4.4.3. All global leverage scores exceeding threshold τ can be found

by computing local leverage scores and increasing the space by a poly (d) factor.

Proof. Lemma 4.4.1 shows that the space necessary to find all leverage scores

exceeding τ in index set I is |I| ≤ poly (d) /τ . We focus next on finding a

superset of I by considering only local leverage scores which is made possible

by Lemma 4.4.2. For the stored rows J used to construct P in Lemma 4.4.2 we

have wi/dα
pβ ≤ ŵi. Hence, any wi > τ results in ŵi > τ/dαpβ for the local

thresholding. To keep all such wi > τ , we must store all ŵi > τ/dαpβ = τ̂ .

Arguing similarly as in Lemma 4.4.1 it can be shown that for J = {k : ŵk > τ̂}
we have αp ≥ τ̂ |J | so that |J | ≤ dα2pβ/τ . Equivalently, |J | ≤ dβαp · |I|
which proves the claim as Theorem 4.2.1 states that all of the parameters are

poly (d).

By combining Lemmas 4.4.2 and 4.4.3 we can now present the main result for

this section, Theorem 4.4.1. This theorem is proved by arguing the correctness

of Algorithm 6 which reads A once only, row by row, and so operates in the

row-arrival streaming model of computation as follows. Let A′ be the submatrix

of A induced by the b block of poly (d) /τ rows. Upon storing A′, we compute

U, a local well-conditioned basis for A′ and the local leverage scores with

respect to U, ŵi(U) are calculated. Now, the local and global leverage scores

can be related by Lemma 4.4.2 as wi/ poly (d) ≤ ŵi so we can decide which

rows to keep using an adjusted threshold. Any i for which the local leverage

exceeds the adjusted threshold is kept in the sample and all other rows are

deleted. The sample cannot be too large by properties of the well-conditioned

basis and leverage scores so these kept rows can be appended to the next block

which is read in before computing another well-conditioned basis and repeating

in the same fashion. Our implementation is given in Algorithm 6.
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Algorithm 6: Deterministically finding rows of high leverage on a
stream

Input: A ∈ Rn×d, τ ∈ (0, 1)
Output: Rows of high leverage

1 Function HighLeverageRows(X, τ)
2 b← poly (d) /τ
3 A′ ← first b rows of A
4 U← wcb (A′)
5 B← LeverageScoreCheck(U,A′, τ/poly (d))
6 while rows of A unseen do
7 A′ ← next b rows of A
8 U← wcb ([A′; B])
9 B← LeverageScoreCheck(U, [A′; B], τ/poly (d))

10 return B

11 Function LeverageScoreCheck(X,W, τ)
12 nb. X = wcb (W) and τ ∈ (0, 1) is a threshold
13 N ← Number of rows in X
14 Y ← 0
15 for i = 1 : N do
16 if wi(X) > τ then
17 Yi ←Wi

18 return Nonzero rows of Y

Theorem 4.4.1. Let A ∈ Rn×d and τ > 0 be a fixed constant. There is a

single-pass streaming algorithm which returns a summary B ∈ Rb×d with b ≤
poly (d) /τ . Moreover, the summary B can be updated in time O(bd2+bd5 log b).

Proof. The algorithm initially reads in b = poly (d) /τ rows of A and inserts

these to matrix A′. A well-conditioned basis U for A′ is then computed using

Theorem 4.2.1 which incurs the associated O(bd2 + bd5 log b) time cost. The

matrix U and A′ are passed to subroutine LeverageScoreCheck along with

the adjusted local threshold τ ′ = τ/ poly (d) whereby if a row i in U has local

leverage exceeding τ ′ then row i of A′ is kept. There are at most poly (d) /τ

of these rows by Lemma 4.4.3. So on the first call to LeverageScoreCheck a

matrix B is returned with rows whose `p local leverage satisfies ŵi ≥ wi/ poly (d)

(where wi is the global leverage score and ŵi is the associated local leverage

score) and only those exceeding τ/ poly (d) are kept.

The algorithm proceeds by repeating this process on A′ (the next set of

b rows from A) appended to the summary B containing high leverage rows

from A already found from the previous block. Proceeding inductively, we

see that when LeverageScoreCheck is called with matrix [A′; B] then a well-

conditioned basis U is computed. Again [A′; B]i is kept if and only if the local

leverage score from U, ŵi(U) > τ . This results in the improved summary B
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which contains high leverage rows from both the prior summary B and the

newly appended rows A′. Repeating over all blocks B in A, only the rows of

high leverage are kept. Any row of leverage smaller than τ/poly(d) is ignored

so this is the additive error incurred. At any given time, the space usage is

bounded above by 2 poly (d) /τ needed to store the new rows A′ and the prior

summary B. The update time is that required to obtain a well-conditioned

basis on a matrix of size at most

4.5 Application: `∞-Regression

Here we present a method for solving `∞-regression in a streaming fashion.

Given input A and a target vector b, it is possible to achieve additive approx-

imation error of the form ε‖b‖p for arbitrarily large p. This contrasts with both

Theorems 4.3.1 and 4.3.2 which achieve a relative error poly (d) approximation.

Both of these theorems require that p is constant and not equal to the∞-norm.

This restriction is due to a lower bound for `∞- regression showing that it

cannot be approximated with relative error in sublinear space. The key to

proving Theorem 4.5.1 below is using Theorem 4.4.1 to find high leverage rows

and arguing that these are sufficient to give the claimed error guarantee.

The `∞-regression problem, sometimes known as the Chebyshev Approx-

imation Problem [BBV04], has been previously studied in the overdetermined

case and can naturally be applied to curve-fitting under this norm. Solving `∞-

regression requires solving a large linear program [Spo76, BBV04]. If the errors

are known to be distributed uniformly across an interval then `∞-regression

estimator is the maximum-likelihood parameter choice [Han78]. The same work

argues that such uniform distributions on the errors often arise as round-off

errors in industrial applications whereby the error is controlled or is small relat-

ive to the signal. There are further applications such as using `∞-regression to

remove outliers prior to `2 regression in order to make the problem more robust

[SSH+14]. By applying `∞ regression on subsets of the data an approximation

to the Least Median of Squares (another robust form of regression) can be

found. We now define the problem and proceed to show that it is possible to

compute an approximate solution with additive error in `p-norm for arbitrarily

large p. The implementation is given in Algorithm 7 with correctness being

established in Theorem 4.5.1.

Approximate `∞-Regression problem: Given data A ∈ Rn×d, target

vector b ∈ Rn, and error parameter ε > 0, compute an additive ε‖b‖p error

solution to:

min
x∈Rd

‖Ax− b‖∞ = min
x∈Rd

[
max
i
|(Ax)i − bi|

]
.

An ε additive error solution means that we find an estimate x̂ which
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Algorithm 7: Deterministic Approximate `∞ Regression

Input: A ∈ Rn×d,b ∈ Rn, p ≥ 1, τ ∈ (0, 1)
Output: Smaller instance for the regression problem

1 Function Approx`∞Regression(A,b, p, τ)
2 Use Algorithm 6 to obtain all rows Ai of leverage exceeding

τ/ poly (d)
3 if Ai has large leverage score then
4 store the pair (Ai,bi)
5 else if Ai has leverage less than τ/ poly (d) and |bi| ≥ τ‖b‖p then
6 store the pair (01×d,bi)
7 Concatenate all stored Ai and 01×d into summary A′

8 Concatenate all stored bi into new target vector b′

9 Solve f̂ = minx′∈Rd ‖A′x′ − b′‖∞
10 return f̂

satisfies, compared to the optimal solution x?:

‖Ax? − b‖∞ ≤ ‖Ax̂− b‖∞ ≤ ‖Ax? − b‖∞ + ε‖b‖p.

Theorem 4.5.1. Let A ∈ Rn×d,b ∈ Rn and fix constants p ≥ 1, ε > 0 with

p 6=∞. There exists a one-pass deterministic streaming algorithm which solves

the `∞-regression problem up to an additive ε ‖b‖p error in dO(p)/εO(1) space,

O(md5 +md2 logm) update time and Tsolve(m, d) query time to solve a linear

program on an m× d input matrix.

Proof. Algorithm 7 proceeds by finding all rows whose global leverage score

exceeds a τ threshold. This is executed on the stream by Algorithm 6 which,

by Lemma 4.4.3 incurs the associated poly (d) /τ space cost. On these rows of

high leverage, the pair (Ai,bi) is maintained exactly. Additionally, Algorithm 7

retains the pair (01×d,bi) if the leverage score is below the threshold but the

target value is large. Since there can be at most 1/τ such bi, this extra space

is subsumed by the cost to obtain the summary of high leverage rows. Let

A′ denote the concatenated rows of A and copies of 01×d if necessary, and

similarly for b′ as in lines 7 and 8 of Algorithm 7. The pair (A′,b′) is then

our reduced instance to the `∞ regression problem of poly (d) /τ rows.

Let R ∈ Rd×d be a change of basis matrix so that AR is an `p well-

conditioned basis. Note that R is not computed in Algorithm 7 but is used for

convenience in our proof. Secondly, note that R makes A well-conditioned, not

necessarily the summary matrix A′. We will now focus on the task of solving

minz ‖A′Rz− b′‖∞.

Observe that any solution z must have ‖z‖p ≤ poly (d) ‖b‖p as otherwise
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z = 0d×1 is a better solution. This can be seen through:

∥∥A′R0d×1 − b′
∥∥
∞ =

∥∥b′∥∥∞
= ‖b‖∞
≥ τ ‖b‖p

Now we evaluate how the summary contributes to the `∞ objective value.

First focus on the rows with leverage score exceeding the τ/ poly (d) threshold.

Such rows are stored exactly so we clearly have:

|(A′Rz)i − bi| = |(ARz)i − bi|

and there is no change in the cost on this row between the original and

small-instance regression problems.

On the other hand, suppose that Ai has leverage less than the τ/ poly (d)

threshold. Then:

|〈(AR)i, z〉| ≤ ‖(AR)i‖∞‖z‖1
≤ ‖(AR)i‖p‖z‖1
≤ ‖(AR)i‖p · d‖z‖p

≤ τ

poly (d)
· d · poly (d) ‖b‖p

≤ ε‖b‖p.

The first and third inequalities are due to Hölder’s inequality, while the final

one follows by the assumption on ‖z‖p. By an appropriate choice of the poly (d)

factors scaling τ and choosing ε accordingly we see that |〈(AR)i, z〉| ≤ ε ‖b‖p
which obtains the ε guarantee. On such coordinates the `∞ cost is |bi|± ε ‖b‖p
so by replacing the row with one which is all zero we still pay |bi| which is

within the τ ‖b‖p had we included the row.

Let I denote the set of indices from (A,b) which define the reduced instance

(A′,b′). What we have shown is that if i ∈ I and Ai has high leverage, then

the contribution to the `∞ cost is no different in the reduced problem compared

to the full problem. On the other hand, if i ∈ I but Ai had small leverage, then

the contribution to the `∞ cost is |bi|. However, on such rows, the optimal

cost is at most |bi|+ ε ‖b‖p so we remain within the claimed additve error on

this row. Thus, taking the maximum over all i ∈ I, we either recover the cost

exactly, or have an upper bound of the optimal cost plus ε ‖b‖p, as claimed.

The desired space bound is achieved through the relation between threshold τ ,

the poly (d) factors, and ε.
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Comments on Theorem 4.5.1: Linear Programming Time Cost

Running time analyses from the linear programming community tend to focus

on the iteration count of a solver which may differ from worst-case run time

analysis. Secondly, there are a variety of algorithms for linear programming

that exploit structure in different ways to provide the most efficient solutions.

Nevertheless, there are some observations we can make that highlight how

reducing the linear program for `∞ regression from n to m constraints to yield

efficiency gains. Standard interior point methods on an instance A ∈ Rn×d and

b ∈ Rn require T iterations for an overall complexity of O(
√
dT ) [BBV04, LS14].

An extensive discussion comparing various methods for solving linear programs

is given in [LS14] but we focus on the general picture in which the authors

establish the theoretical best running time to Õ(
√

rank (A)T ), where the Õ

notation hides lower order poly (log(·)) terms. They argue that for both their

method and the interior point methods, the cost of an iteration is at least

O(nd) so really this time complexity is O(nd1.5T ) by recalling that nnz (A) ≥ n
and rank (A) = d. It is additionally argued in [LS14] that prior to their

contribution, when n = Ω̃(d) the previous best running time was O(n1.5dT ).

Despite this relatively recent breakthrough, current practical implementations

are typically based upon Karmarkar’s interior barrier point method (requiring

O(dT ) iterations) [Gurobi] or a variant with lower iteration count of O(
√
dT )

[Ren88]. For our approach, we assume access to a black box solver that with

query time Tsolve(m, d) being the time taken to solve the linear program on

a reduced instance size of m × d. When n is large and many iterations are

needed, the reduction to only m constraints can have a substantial benefit

on the running time for the solve step. An example of this can be seen in

Figure 4.4: the salient point being that a method keeping m′ > m constraints

has higher time cost to solve the linear program.

Relative Error Lower Bound

Also, observe that Theorem 4.5.1 requires p <∞. This restriction is necessary

to forbid relative error with respect to the infinity norm. Indeed, p can be

an arbitrarily large constant, but for p = ∞ we can look for rows above an

ε/ poly (d) threshold in the case when A is an all-ones column n-vector (so

an n × 1 matrix). Then ‖Ax‖∞ = ‖x‖∞ since x is a scalar. Also, A is a

well-conditioned basis for its own column span but the number of rows of

leverage exceeding ε/ poly (d) = ε is n for a small constant ε. This intuition

allows us to prove the following theorem.

Theorem 4.5.2. Any algorithm which outputs an ε ‖b‖∞ relative error solu-

tion to the `∞-regression problem requires min
{
n, 2Ω(d)

}
space.
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Proof. Let C ⊂ {0, 1}d be a set of 2Ω(d) strings in {0, 1}d with each coordinate

in a string uniformly sampled randomly from {0, 1}. Let z, z′ ∈ C and fix a

constant 0 < c < 1. By a Chernoff bound (see e.g. Lemma 3.3.1) it follows

that there are at least cd coordinates in [d] for which zi = 0 and z′i = 1 with

probability 1− 2−Ω(d). This implies for appropriate constants in the Ω(·), by a

union bound, all pairs of strings z, z′ ∈ C have this property. Hence, such a C
exists and we will fix this for the proof.

We will reduce the `∞ regression problem to that of Index (see Defini-

tion 2.4.1). Alice holds a subset T ⊂ C and denote |T | = n − 1 so that

T = {w1,w2, . . . ,wn−1}. Alice’s bit string is a vector a ∈ {0, 1}|C| which has

ai = 1 if and only if the string i ∈ C is in her held set T . Of course, this

requires an enumeration or index scheme between the set of indices and strings,

but since the canonical mapping will suffice, this is not problematic. Bob

holds a test vector y ∈ C and is tasked with determining whether y ∈ T or

y ∈ C \ T . The vector that Bob will actually use to make a query will be

ȳ = −y and this is appended to the input as shown below. Let J = supp(y)

and Jc = [d] \ supp(y).

The test instance is the following (A,b) pair:

A =



w1

w2

...

wn−1

ȳ


∈ Rn×d and b =



1

1
...

1

1


∈ Rn.

Note that the input matrix A is hidden from Bob as otherwise he could easily

scan through the matrix and check if any of the rows are equal to the vector

he holds, thus determining whether Alice holds y.

We will use the function

g(u) =

∣∣∣∣∣∣
d∑
j=1

ujxj − 1

∣∣∣∣∣∣
which evaluates the `∞ cost of a vector (string) u when x is fixed and b = 1n×1

is given. There are two cases to consider (i) Bob’s test vector y ∈ T and (ii)

y ∈ C \ T .

Case (i). Suppose first that y ∈ T so that both y and ȳ are present in A.

This is because Alice will have inserted y into the table as she holds y ∈ T ,
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and Bob inserted ȳ by our construction. Then:

g(y) =

∣∣∣∣∣∣
∑
j∈J

xj − 1

∣∣∣∣∣∣ and g(ȳ) =

∣∣∣∣∣∣1 +
∑
j∈J

xj

∣∣∣∣∣∣ .
Note that this implies the optimal cost for `∞ regression is at least 1 because∑

j∈J xj is either at least 0, in which case g(ȳ) ≥ 1 or
∑

j∈J xj < 0 resulting in

g(y) ≥ 1. Any remaining rows wi of A do not matter because either g(wi) < 1,

in which case they are overruled by the max operation for the `∞ norm, or

g(wi) > 1 and we will only need g(wi) ≥ 1 anyway, which is satisfied by g(y)

or g(ȳ).

Case (ii). Now suppose that y ∈ C \ T so that Alice does not hold y and

thus it is not present on the input matrix A. In this case, we can lower bound

the `∞ cost over A. Recall that Jc is the set of indices where Bob’s vector

y = 0. For i ∈ Jc set xi = 1/d and otherwise set xi = −c/2d. We will evaluate

the cost of fixing such an x for the function g over all input rows of A.

First consider

g(ȳ) =

∣∣∣∣∣∣
∑
j∈J

ȳjxj − 1

∣∣∣∣∣∣
≤
∣∣∣∣(−1)

(
−c
2d

)
cd− 1

∣∣∣∣
≤
∣∣1− c2/2

∣∣ .
That is, the `∞ cost of Bob’s input ȳ is at most

∣∣1− c2/2
∣∣. On the other hand,

for the remaining rows of A we have the vectors wi which, by the construction

of C have at least cd indices with wij = 0 and yj = 1. Hence, the `∞ cost on

such rows is:

g(wi) =

∣∣∣∣∣∣
∑
j∈[d]

wijxj − 1

∣∣∣∣∣∣
≤ |1− c/2| .

This follows since |Jc| ≥ cd so∑
j∈[d]

wijxj ≥ cd(1/d)− (d− cd)(c/2d)

≥ c− c/2

≥ c/2.

Finally, since c < 1 we have |1− c/2| ≤
∣∣1− c2/2

∣∣ so the upper bound on
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the `∞ cost is given by g(ȳ). As the `∞ cost in Case (ii) is a constant factor

less than the `∞ cost from Case (i), Bob can query a constant factor relative

error approximation algorithm for the `∞ regression problem and determine

whether his test vector y ∈ T or not. Consequently, Bob can solve Index: from

the enumeration he knows the index of y ∈ C and thus can return ay = 1 if

Alice holds y ∈ T or return 0 otherwise. Therefore, Bob must incur Ω(|C|)
communication, which by [KNR99] results in Ω(|C|) space for a streaming

algorithm. Since |C| = min(n, 2Ω(d)), this is the space bound we claimed.

4.6 Experiments

To validate our approach, we evaluate the use of high `p-leverage rows in order

to approximate `∞-regression2, focusing particularly on the cases using `1 and

`2 well-conditioned bases. It is straightforward to model `∞-regression as a

linear program in the offline setting. We use this to measure the accuracy of

our algorithm. The implementation is carried out in the single pass streaming

model with a fixed space constraint, m, and threshold, αp/m for both condi-

tioning methods to ensure the number of rows kept in the summary did not

exceed m. Recall from Remark 2.1.2 that the single-pass row-arrival streaming

implementation is equivalent to the distributed summary model with only one

participant applying merge-and-reduce, so this experiment can also be seen as

a distributed computation with the merge step being the appending of new

rows and the reduce step being the thresholding in the new well-conditioned

basis.

Methods. We analyse two instantiations of Algorithm 7 based on how

we find a well-conditioned basis and repeat over 5 independent trials with

random permutations of the data. Recall from Definition 4.2.1 that an (α, β, p)

well-conditioned basis satisfies ‖U‖p ≤ α and for all z ∈ Rd, ‖z‖q ≤ β ‖Uz‖p
with α and β small polynomials in d. The methods are as follows:

SPC3: We use an algorithm of [YMM13] to compute an `1-wcb. This

method is randomised as it employs the Sparse Cauchy Transform3 and is only

an `1-well-conditioned basis with constant probability We also implemented a

check condition which showed that almost always, roughly 99% of the time,

the randomised construction SPC3 would return a (d2.5, 1, 1)-well-conditioned

2Code available at https://github.com/c-dickens/stream-summaries-high-lev-rows
3The Sparse Cauchy Transform is a sparsified version of the Cauchy Transform which is a

matrix of rescaled Cauchy random variables. The dense version was first shown to provide
an `1 subspace embedding in [SW11] with O(d log d) rows and distortion O(d log d). This
was shown to have the optimal embedding dimension in [WW19]. To obtain the sparse
version of [YMM13], we take a rescaled diagonal random Cauchy matrix and premultiply by
a CountSketch.
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basis. Thus, we bypassed this check in our experiment to ensure quick update

times.

Orth: In addition, we also used an orthonormal basis using the QR decom-

position which is an `2-wcb. This method is fully deterministic and outputs a

(
√
d, 1, 2)-well- conditioned basis.

Sample: A sample of the data is chosen uniformly at random and the

retained summary has size exactly m.

Identity: No conditioning is performed. For a block B of the input, the

surrogate scores wi(B) = ‖e>i B‖22/‖B‖2F are used to determine which rows to

keep. As the sum of these wi(B) is 1, we keep all rows which have wi(B) > 2/m.

Since no more than m/2 of the rows can satisfy wi(B) > 2/m, the size of the

stored subset of rows can be controlled and cannot grow too large.

Remark 4.6.1. The Identity method keeps only the rows with high norm

which contrasts our conditioning approach: if most of the mass of the block

is concentrated on a few rows then these will appear heavy locally despite

the possibility that they may correspond to previously seen or unimportant

directions. In particular, if these heavy rows significantly outweigh the weight of

some sparse directions in the data it is likely that the sparse directions will not

be found at all. For instance, consider data X ∈ Rn×d which is then augmented

by appending the identity (and zeros) so that these are the only vectors in the

new directions. That is, set

X′ =

[
X 0n×k

0k×d Ik×k

]

and then permute the rows of X′. The appended sparse vectors from [0k×d, Ik×k]

will have leverage of 1 as they are orthogonal to all other rows in X′. Hence,

they will be detected by the well-conditioned basis methods. However there is

no guarantee that the Identity method will identify these directions if the

entries in X significantly outweigh those in Ik×k. In addition, there is also no

guarantee that using uniform sampling will identify these points, particularly

when k is small compared to n and d. So while choosing to do no conditioning

seems attractive, this example shows that doing so may not give any meaningful

guarantees and hence we prefer the approach from Section 4.4. We compare

only to these baselines as we are not aware of any other competing methods in

the small memory regime for the `∞-regression problem.

Datasets. We tested the methods on a subset of the US Census Data

containing 5 million rows and 11 columns4 and YearPredictionMSD5 which has

roughly 500, 000 rows and 90 columns (although we downsample to a fixed set

4http://www.census.gov/census2000/PUMS5.html
5https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
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Figure 4.1: Error vs Space Constraint, which is the budget or largest number of
rows that can be stored, not the summary size. Total input size is 5, 000, 000×11
for U.S. Census Data and approximately 50, 000× 90 for YearPredictionsMSD.

of 50, 000 observations so that the linear program for `∞ regression is tractable)

For the census dataset, space constraints between 50,000 and 500,000 rows

were tested which represents a range of 1− 10% of all available rows. For the

YearPredictionsMSD data space budgets were tested between 2,500 and 15,000

representing 5− 30% of the rows due to downsampling. The general behaviour

is roughly the same for both datasets. We vary the space constraint which is a

budget on the total number of rows that can be stored, it is not necessarily

the size of the summary, and is always less than the input size. The summary

size is always upper bounded by the space constraint and varies depending on

how the threshold is set.

Results on approximation error compared to storage. Let f(x) =

‖Ax− b‖∞ and denote the minimal value of the full regression obtained by

the globally optimal solution x? as f∗ = f(x?). Let the solution x̂ denote that

found on the reduced instance after finding high leverage rows and write its

associated objective value as f̂ = f(x̂). Hence, the approximation error is

measured as f̂/f∗−1 (note that f̂ ≥ f∗). An error closer to 0 demonstrates that

f̂ is roughly the same as f∗ so the optimal value is well-approximated. Figures

4.1a and 4.1b show that on both datasets the Identity method consistently

performs poorly while Sample achieves comparable accuracy to the conditioning

methods. Despite the simplicity of uniform sampling to keep a summary, the

succeeding sections discuss the increased time and space costs of using such a

sample and show that doing so is not favourable. Thus, neither of the baseline

methods output a summary which can be used to approximate the regression

problem both accurately and quickly, hence justifying our use of leverage scores.

Our conditioning methods perform particularly well in the US Census Data

data (Figure 4.1a) with Orth appearing to give the most accurate summary and

SPC3 performing comparably well but with slightly more fluctuation: similar

behaviour is observed in the YearPredictionMSD (Figure 4.1b) data too. The
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Figure 4.2: Maximum Summary Size vs Space Constraint

conditioning methods are also seen to be robust to the storage constraint, give

accurate performance across both datasets using significantly less storage than

sampling, and give a better estimate in general than doing no conditioning.

Results on Space Complexity. Recall that the space constraint is m

rows and throughout the stream, after a local computation, the merge step

concatenates more rows to the existing summary until the bound m is met,

prior to computing the next reduction. During the initialization of the block

A′ by Algorithm 6, the number of stored rows is exactly m. However, we

measure the maximum number of rows kept in a summary after every reduction

step to understand how large the returned summary can grow. As seen in

Figures 4.2a and 4.2b, Identity keeps the smallest summary but there is

no reason to expect it has kept the most important rows. In contrast, if m

is the bound on the summary size, then uniform sampling always returns

a summary of size exactly m. However, we see that this is not optimal as

both conditioning methods can return a set of rows which are pruned at every

iteration to roughly half the size and contains only the most important rows

in that block. Both conditioning methods exhibit similar behavior and are

bounded between both Sample and Identity methods. Therefore, both of the

conditioning methods respect the theoretical bound and, crucially, return a

summary which is sublinear in the space constraint and hence a significantly

smaller fraction of the input size.

Results on Time Complexity. There are three time costs measured

which we will separate for ease of analysis. The first is the update time which

measures how long it takes to find the local basis and prune out unimportant

rows. Secondly, we measure the query time which is simply the time taken

to call the black-box linear program solver on the reduced instance (A′,b′).

Finally, we evaluate the total time for computation which is a useful measure

to understand how the (potentially significant) time cost for summarisation
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Figure 4.3: Update time for local basis

compares to solving the instance without summarisation. This should be

roughly the sum of the query time and a multiple of update times depending

on how many local summaries are computed.

1. Results on Time Complexity: Update Time The first is the

update time taken to compute the local well-conditioned basis which is theor-

etically O(md2 +md5 logm) by Theorem 4.2.1. However, the two bases that

we test are an orthonormal basis, computable in time O(md2) and the SPC3

transform which takes time O(nnz (B) logm) for a block B with m rows and

nnz (B) non-zero entries. Figure 4.3a demonstrates that SPC3 is faster than

Orth on this data in practice but this is a small absolute difference. On the

other hand, Figure 4.3b shows a more dramatic separation between between

the two methods which is likely due to the quadratic dependence on d for Orth

compared to the linear dependence on d (through the nnz (B) term) for SPC3.

2. Results on Time Complexity: Query Time The query times for

Census and Years data are presented in Figures 4.4a and 4.4b. We see that

the time taken to solve the reduced instance is proportional to the summary

size in all settings but the conditioning methods perform noticeably better

due to the smaller summary size that is returned as discussed in the previous

section. However, the disparity between Sample and the conditioning methods

becomes significant as the space constraint grows. This is due to the increased

size summary retained by sampling, further justifying our approach of pruning

rows at every stage. While Identity appears to have fast query time, this

is due to the summary being smaller (cf. Figures 4.2a and 4.2b). Unlike the

update time, there is little difference between the behaviours exhibited on both

datasets.

3. Results on Time Complexity: Total Time Both the update and

query times have an impact on the total time. Although Figures 4.5a and 4.5b

show noticeable differences in the time taken to obtain the basis, these time

discrepancies becomes negligible over the entirety of the stream as seen in
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Figure 4.4: Query time to solve optimisation
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Figure 4.5: Total time cost

Figures 4.5a and 4.5b. Although it may seem that for smaller summaries more

local bases need to be computed and this time could prohibitively increase

over the stream, Figure 4.5a demonstrates that even using small blocks does

not cause the overall time (to process the stream and produce an approximate

query) to increase too much. Hence, an approximation can be obtained which

is highly accurate, and in total time faster than the brute force solver.

Experimental Summary. While it might seem attractive not to perform

any conditioning on the matrix and just pick heavy rows, our experiments

show that this strategy is not effective in practice, and delivers poor accuracy.

Although a simple sample of randomly chosen rows can be easily maintained,

this appears less useful due to the increased time costs associated with larger

summaries when conditioning methods output a similar estimate in less time

over the entire stream. As the `∞-regression problems depend only on a few

rows of the data there are cases when uniform sampling can perform well: if

many of the critical rows look similar then there is a chance that uniform

sampling will select some examples. In this case, the leverage of the important

direction is divided across the repetitions, and so it is harder to ensure that

desired direction is identified. Despite this potential drawback we have shown
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that both Orth and SPC3 can be used to find accurate summaries which perform

robustly across each of the measures we have tested. It appears that SPC3

performs comparably to Orth; both are relatively quick to compute and admit

accurate summaries in similar space. In particular, both conditioning methods

return summaries which are a fraction of the space budget and hence highly

sublinear in the input size, which give accurate approximations and are robust

to the concatenation of new rows. All of these factors make the conditioning

method fast in practice to both find the important rows in the data and then

compute the reduced regression problem with high accuracy.

Due to the problems in constructing summaries which can be used to

solve regression quickly and accurately when using random sampling or no

transformation, our methods are shown to be efficient and accurate alternatives.

Our approach is vindicated both theoretically and practically: this is most clear

in the U.S. Census dataset where small error can be achieved using a summary

roughly 2% the size of the data. This also results in an overall speedup as

solving the optimization on the reduced set is much faster than solving on the

full problem. Such significant savings show that this general approach can be

useful in large-scale applications.

4.7 Discussion

In this chapter we have presented the first algorithms for obtaining deterministic

summaries in arbitrary `p for for subspace embedding, low rank approximation

and finding high leverage rows. Additionally, we were able to give applications

of the summaries and used them to approximate `p regression, including `∞

regression. Our results apply simultaneously in the streaming model and the

distributed summary model so these algorithms are flexible enough for different

modern computing environments.

Although these are the strengths of our methods, there are noticeable

weaknesses. Unsurprisingly, the generality of our approach is both a blessing

and a curse: we cover all p but may miss special structure that is more

specific to certain p norms. One example where this has been seen is in

[LWW20] in which the authors show dichotomies in the hardness of obtaining

a (random) sketch for even p ≥ 2 and odd p ≥ 1. Another weakness of our

results is that for `p leverage scores, we are not able to convert this into

a statement about the quality of the summary in comparison to the input

matrix A. Part of the difficulty here is that we cannot exploit the SVD as

has been done in [PKB14b, McC18] which is the typical approach for making

quality-of-approximation arguments in `2.

Small-space summaries based on weighted samples of the input A have also

been constructed using so-called Lewis weights which more coherently map
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between `p and `2. It is possible that these could give better approximation

guarantees than our results, yet the problem is that computing Lewis weights

seems to require multiple accesses to the input matrix. Although there are

fast algorithms for evaluating Lewis weights if all of the data is accessible,

doing this in a memory-constrained or strict data availability model is not

immediately clear and remains open for investigation.

Although we have applied Algorithm 6 to the `∞ regression problem, this is

less widely-used compared to robust versions of regression such as `1 regression.

Due to the similarities in our approaches, one might think that we can naturally

use the same idea for `1 regression. However, the probem here seems to come

from the crucial distinction between `1 and `∞: in `∞ we take the maximum

function over all of the stored rows, arguing that the approximation on these

rows is good. Since we only need one such row to attain the maximum, the

error from any of the dropped rows is small. For `1, we take the sum over all

of the stored rows. Again, this can be related back to the objective function to

argue that the cost of these rows is approximately preserved, however, if I is

the stored set of rows which has size poly (d), there are then n − |I| = O(n)

rows not in the summary. Hence, to argue that the cost is well-preserved for the

entire instance would incur O(n) error terms, meaning that we would have to

choose ε = O(1/n). From a different perspective, in the proof of Theorem 4.5.1

we used an appropriate choice of polynomial factors so that ε = τ poly (d).

Setting ε = O(1/n) is equivalent to asking for τ = O(1/n) and thus returning

a summary which is not sublinear in n as we desired.
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Chapter 5

Iterative Sketching for Least

Squares Problems

Thus far, our concern has been with finding different data summaries depending

on the type of task one might have in mind for some later analysis. Chapter 3

was concerned with how to find summaries for a variety of data analysis tasks

when the features being queried are not known in advance. Similarly, in

Chapter 4, the task was roughly to find a subset (or coreset) of the input

whose distances were approximately preserved under various `p norms. By

contrast, this chapter is mostly concerned with how one might use established

summarisation techniques to better scale a particular part of the Machine

Learning (ML) pipeline. In particular, we focus on the task of training a

regression model using sketches. We focus solely on least-squares problems

which are ubiquitous in ML.

Chapter Outline and Contributions

The theme of this chapter is to study sparse sketches for training regression

models.

• Section 5.1 details the key techniques and ideas that are necessary for

this chapter.

• Section 5.2 shows a hardness result. Namely, that the CountSketch

suffers from the same deficiency as optimal dense sketches for estimating

regression weights in a “one-shot” sketching model.

• Section 5.3 shows that CountSketch can be used in the the IHS model

for fast training of regression models to high-accuracy.

• Section 5.4 provides preliminary empirical evidence to support the

scalability of our approach, suggesting that the Iterative Hessian Sketch
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with sparse sketches should be considered alongside other “optimal”

sketches.

5.1 Introduction

We focus on “standard” least-squares setup, assuming the setup for overcon-

strained (n� d) least squares with a full-rank dataset A ∈ Rn×d and target

vector y ∈ Rn. The loss (or objective) function is f(x) = 1/2 ‖Ax− y‖22 and

the task is to minimise f(x) over some set K that may be the entire domain

K = Rd or a closed convex cone in Rd. Within this special family of convex

constrained least squares problems are popular methods tools such as Ordinary

Least Squares (OLS) and penalised regression: K = {x : ‖x‖p ≤ t, p = 1, 2}
as well as Elastic Net Regression with K = {x : ‖x‖1 ≤ t1, ‖x‖2 ≤ t2} and

Support Vector Machines. A typical subroutine in solving these problems is

to obtain singular vectors of A or to construct matrix A>A for the normal

equations. However, this can be costly, needing O(nd2) time and O(d2) space

to generate and store A>A.

For certain problems within this general framework one can convert the

constrained problem to an unconstrained, but penalised, problem through the

use of a regularisation term. Such examples are the commonly used ridge

regression [HK70], lasso [Tib11] and elastic net regression [ZH05]. For the sake

of clarity, we are interested in computational issues that arise by using such

models, rather than exploring which models are suited for certain applications.

There are various approaches which exploit sketching for regression that can

be interpreted as analogues of the standard optimisation routines introduced

in Section 2.3. Each method has its merits and drawbacks depending on the

exact goals needing to be satisfied. We will study two settings for sketched

regression. The first is a one-shot model for which we provide a result showing

suboptimal recovery of the weights. The second shows how we will use sketches

in an iterative scheme to solve least squares problems. This result will apply

in the multi-round optimisation model of computation (Definition 2.1.5) which

permits us to view the data and compute simple functions (such as inner

products or gradients), but does not permit expensive matrix computations.

The sketches will be used to approximate these difficult parts of the process

so that the entire iterative scheme can be efficiently implemented. Before

detailing how the optimisation is performed with sketches, we first introduce

the structural quantity which underpins the randomised approaches.
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5.1.1 Constructing `2 Subspace Embeddings

The key tool that we use is a (1 ± ε) subspace embedding for `2 which asks

for all directions to be preserved up to small error. The following definition is

restated from Section 2.2.1.

Definition 2.2.1. [`2 Subspace Embedding] Let A ∈ Rn×d. A matrix S ∈
Rm×n is a (1 ± ε) subspace embedding for the column space of A if for all

x ∈ Rd:
‖SAx‖22 = (1± ε) ‖Ax‖22 .

We note that Definition 2.2.1 has various equivalent formulations that will

each in turn be useful. The subspace embedding property is often proved by

showing:

max
x∈Rd

∣∣∣‖SAx‖22 − ‖Ax‖22
∣∣∣ < ε ‖Ax‖22 . (5.1)

Taking x to be the right singular vectors of A, the subspace embedding

condition is also equivalent to the following singular value characterisation:

(1− ε)σ2
i (A) ≤ σ2

i (SA) ≤ (1 + ε)σ2
i (A). (5.2)

Alternatively, if we write A = UΣV> then we can restrict attention to unit

vectors z such that

max
z∈Rd:‖z‖2=1

∣∣∣‖SUz‖22 − ‖z‖
2
2

∣∣∣ < ε.

Since U has orthonormal columns the subspace embedding condition is now

equivalent to the following spectral norm condition in (5.3)∥∥∥U>S>SU− Id

∥∥∥
2
< ε. (5.3)

Different random projections can be used to obtain subspace embeddings;

if the distribution is decided ahead of seeing the data, these are referred to as

oblivious subspace embeddings as they can be sampled prior to observing the

data. Oblivious sketches have the following parameters we must understand:

1. Projection dimension m - how large must we set m to satisfy Defini-

tion 2.2.1?

2. Sketch time Tsketch - how long does it take to compute the linear trans-

formation SA?

We define the following common random linear projections S : Rn → Rm

which map large n-vectors (e.g., the columns of A) down to more manageable

m-vectors with m independent of n. These properties are summarised in

Table 5.1.
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Method Projection Dimension: m Sketch Time: Tsketch

Gaussian d+ log(1/δ)/ε2 O(nd2)
SRHT (d+ log(1/εδ) log(d/δ)/ε2 O(nd log d)
SJLT d log(d/δ)/ε2 s nnz (A)
CountSketch (d2 + d)/ε2δ nnz (A)

Table 5.1: Time and space costs to obtain oblivious subspace embeddings. All
sketches except the CountSketch achieve the optimal embedding dimension of
O(dε−2 log(d/δ)).

Gaussian Sketch. Sample a standard Gaussian matrix G whose entries

are iid normal Gij
iid∼ N (0, 1) and define the Gaussian sketch as S = G/

√
m.

The Gaussian sketch requires explicit dense matrix-matrix multiplication so

requires time O(mnd) to obtain SA. We set m = O((d+ log(1/δ))/ε2) for a

subspace embedding so that Tsketch = Õ(nd2). This often renders the Gaussian

sketch as computationally time consuming as solving the original problem, for

instance, OLS needing O(nd2) time.

Subsampled Randomised Hadamard Transform (SRHT) [AC06].

Assume that n is a power of 2. Define S as the following decomposition of three

matrices: D with Dii
iid∼ {±1} with probabilty 1/2; H = H(n) is the recursively

defined Hadamard transform of size n as defined below, and P is a matrix which

samples m rows uniformly at random. Finally, set the sketch S = 1/
√
nmPHD.

Note that the requirement of n being a power of 2 is purely for convenience

to best exploit the Hadamard and Fast Fourier Transform. If this is not the

case we can either pad the input with zeros, or use less restrictive forms of the

Fourier transform such as the Discrete Cosine Transform or Discrete Hartley

Transform [AMT10]. These transforms exist for all n but could increase the

sample size in P by a factor of 2 [AMT10].

We use the notion that the size n Hadamard matrix is

H(n) =
1√
2

(
H(n−1) H(n−1)

H(n−1) −H(n−1)

)
.

Using H(0) = 1 means H(1) = 1√
2

(
1 1

1 −1

)
and so on. The sketch will then

use H = H(n). Because of the recursive nature of H, it can be applied to a

vector in Rn in O(n log n) time; indeed we apply it to the vector Dx which

takes O(n) time to obtain as D is a diagonal matrix. Finally, P performs

simple uniform sampling of m from n items so needs only O(m) time. Overall,

to obtain a subspace embedding, we must take m = O(d log(d/δ)/ε2) and

applying S to A takes O(nd log n) which is almost linear in the input size.
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CountSketch. Initialise S = 0m×n. Let h : [n]→ [m] be a pairwise independ-

ent hash function and σ : [n] → {±1} be a 4-wise independent random sign

function for every row. The hash functions h and σ are independently chosen.

We can think of h as choosing a single bucket from [m] for every row index in

[n] and allocating a random sign to that row index. In this setting the sketch is

the matrix S = RD with the columns R being randomly chosen canonical basis

vectors and Dii
iid∼ {±1}. The time to obtain SA is Tsketch = O(nnz (A)) which

can be a huge saving if the data is very sparse; for instance when nnz (A)� nd.

Since S need only be implicitly defined by the hash functions h, σ, CountSketch

can be applied as the data is observed so is suited to common sparse data

structures.

Remarks on CountSketch. The CountSketch was first shown to satisfy

Definition 2.2.1 in [CW13], albeit with a super-quadratic dependence on d.

It was later shown in [NN13, MM13] that the embedding dimension could

be improved to m = O(d2/ε2δ) which is the construction that we use; note

that [MM13, Theorem 1] explicitly obtain m = (d2 + d)/ε2δ. This is to be

compared with m = Õ(d log(d/δ)/ε2) of other random projection methods.

From a worst-case perspective the CountSketch is suboptimal. The projection

dimension m has quadratic dependence on d unlike the optimal embedding

dimesion of O(d log d) which is nearly-linear. The reciprocal linear dependence

on the failure probability δ is also exponentially worse than the log(1/δ) of all

other methods.

Very recent work [LLW21] has shown that if a sketching algorithm is told

whether a row of A is “important” for composing its column space then the

embedding dimension can be improved to the standard m = O(d log(d/δ)/ε2).

The idea is that these important rows have high leverage score, and are

“perfectly hashed” to avoid collisions. The analysis then follows that of [KN14]

to analyse the sketch and obtain the stated embedding dimension. Although

such sketches perform better, this result needs oracle knowledge of whether a

row is high leverage so more investigation is needed to understand the wider

practicality of this new approach.

Note that in the data stream literature, the CountSketch refers to a matrix

with more than one nonzero in every column which is used to answer queries

for frequency statistics [TZ12, CCFC02]. A median operation is used to answer

such queries with high probability which does not translate to an embedding.

Consequently, we will exclusively use CountSketch to refer to the matrix S above

with exactly one nonzero in every column. Although this may appear pedantic,

it allows for distinction with the following family of random projections.
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Sparse Johnson-Lindenstrauss Transform (SJLT) [KN14].

The Sparse Johnson-Lindenstrauss Transform of [KN14] can be seen as a

generalisation of the CountSketch with s nonzeros per column rather than only

1. Conditions were given in [CJN18] that a distribution of sparse matrices

must satisfy to achieve the subspace embedding guarantee with asymptotically

optimal projection dimension m. Two simple constructions of the s-sparse

SJLT S are to first generate a matrix S′ by either:

1. Concatenating s independently sampled CountSketch matrices of size

m/s× n; or

2. Sampling exactly s nonzeros per column at random without replacement.

The sketch we use is then S = S′/
√
s to ensure that S>S is an isometry in

expectation.

A benefit of the SJLT is that unlike the CountSketch, the optimal embedding

dimension of m = O(d log(d/δ)/ε2) can be obtained. However, the extra

nonzeros incur an increase in the sketch time by a factor of s to Tsketch =

O(s nnz (A)). Note that we must take s = Ω(1/ε) nonzeros to achieve a 1± ε
subspace embedding. Thus there is a non-negligible tradeoff in the accuracy

and the time taken to apply the sketch, in practice we see that this is mild but

noticeable.

Table 5.1 summarises the sketch properties for subspace embeddings. For

simplicity we have omitted small poly logarithmic factors that obtain the

“exact” asymptotically optimal construction, but for the purpose of comparison

with CountSketch, the bounds presented suffice.

5.1.2 The Sketch-and-Solve Model

The sketch-and-solve approach is the sketching analogue of a direct solve for

minimising a least squares function f(x). These algorithms operate in a “one-

shot” setting when the data is viewed only once. We can operate in either of

the entrywise or row-arrival models from Section 2.1.4.

The main idea is to first sample a subspace embedding S ∈ Rm×n. The

matrix S embeds the large data (and possibly the target vector) into a more

manageable size so that a direct solve is tractable. Recall that optimising over

f(x) usually requires an expensive operation. For ordinary least squares, we

saw in Section 2.3.1 that the setup time to generate A>A has a large cost of

O(nd2). However, the sketch dimension should be chosen so that m� n and

these expensive operations are cheap. One can view this as trying to speed up

the slow part of the pipeline, the setup time cost, and then use a black box

solver which only needs poly (d/ε) time.
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There are two typical approaches, the classical sketch and the Hessian

sketch. For simplicity, we assume that the problem is unconstrained (i.e.

K = Rd) to avoid nuances regarding the cost of projecting onto a set. Both of

the subsequent methods still operate if constraints on the solution are required

[Woo14b]. For unconstrained least squares problems, the property that we

need of the random projection S is that it is a 1± ε subspace embedding for

the column space of A. We will use m to denote the ‘small’ sketch dimension

and the size of m should be thought of as being between Õ(d) and Õ(d2) for

CountSketch; thus the poly (d) solve time behaves as O(d3) but could be up to

O(d4) if the worst-case bound for CountSketch is used.

Classical Sketch [Sar06]. In the classical sketching setting, S is applied

to both data and target vector so that SA and Sy are generated. The sketched

objective function is then:

fS(x) =
1

2
‖(SA)x− Sy‖22 .

Specifically, we will optimise in the ‘sketch space’ described by SA and Sy to

obtain some xC = argminK fS(x). For least squares problems one can view

this as solving the following d× d linear system

A>S>SAxC = A>S>Sy. (5.4)

If constraints are present then xC can be projected onto the constraint set. Any

direct solver can be used to solve (5.4) in O(md2) time by evaluating the SVD

of SA in comparison to method (1) of the direct solvers from Section 2.3.1.

Typically, these approaches provide guarantees on the loss function so that

f(xC) = (1± ε)f(x?)

which should be understood as the xC approximately preserving the or-

ginal objective function. One way of seeing this is that
∥∥S(AxC − y)

∥∥2

2
≤

‖S(Ax? − y)‖22 by the optimality of xC in the sketched problem. By the sub-

space embedding property, the right hand side is at most (1 + ε) ‖Ax? − y‖22
and after exploiting normal equations and orthogonality, these ideas can be

extended to show:

f(x?) ≤ f(xC) ≤ (1 + ε)f(x?) (5.5)∥∥A(xC − x?)
∥∥2

2
≤ ε2f(x?) (5.6)

The details can be found in [Woo14b, Theorems 21,23].1

1Note that their ε is our ε2 as they use a different error parameterisation with a sketch
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Hessian Sketch [PW15]. An alternative approach is the Hessian sketching

method for least squares problems. These methods apply the transform S only

to the data A and leave the vector A>y intact. One can see this from the

following quadratic programming formulation of least squares regression:

min
x∈Rd

f(x) = min
x∈Rd

1

2
x>A>Ax− x>A>y.

In this quadratic, we recognise the degree-2 term is the same operator as the

covariance matrix which is the quantity we estimate under subspace embeddings

(Section 5.1.1). Thus, Hessian sketch seeks to only sketch the quadratic term,

leaving the linear term x>A>y intact, yielding the following solution:

xH = argmin
x∈Rd

1

2
x>A>S>SAx− x>A>y.

Hence, we have the augmented normal equations:

A>S>SAxH = A>y. (5.7)

The Hessian Sketch method obtains a bound

∥∥A(xH − x?)
∥∥

2
≤ ε

1− ε
‖Ax?‖2 (5.8)

which is argued through first-order optimality conditions [PW16]. This ap-

proach forms the basis of an iterative scheme that we will introduce in Sec-

tion 5.1.3.

Computational Considerations

Asymptotically, the time and space cost of classical and Hessian sketching is no

different. Both require storing the sketch SA of size m× d which takes time

Tsketch depending on the family from which S is sampled. The solve time of

O(md2) is Õ(d3) for all sketches except the CountSketch as m = O(d log(d/δ)ε2).

If the CountSketch is used with a worst-case projection dimension of m = O(d2),

the solve time theoretically could be O(d4). Overall, the time to approximate

regression to ε accuracy for all sketches in the sketch-and-solve model is

Tsketch + poly
(
d/ε2

)
.

Although this can be substantially faster than the O(nd2 + d3) direct

solver methods when S is appropriately chosen, we have an inverse quadratic

relationship between the sketch dimension m and the accuracy ε. This is fine

if ε is a small constant, say [10−3, 1/2]. However, suppose that we require

accuracy on the order of say ε ≈ 10−4. Such ε would incur m = O(108) rows in

size of O(1/ε) for a subspace embedding, which is the same as our O(1/ε2).
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the sketch. Clearly, this is not appropriate as the projection dimension should

be small in comparison to n for scalability while retaining competitive accuracy

to an exact solver.

5.1.3 Iterative Sketching Framework

As discussed in Section 5.1.2, it may be the case that significantly higher

accuracy is needed, for example, on the order of 10−8 rather than 10−3. To

achieve such a guarantee, we relax the requirement of a single-pass algorithm in

favour of an algorithm that can revisit the data. These are the so-called iterative

approaches which use cheap estimates of solution vectors that aggregate to a

high accuracy estimate of the optimal solution vector.

For the least squares objective, the approach follows a similar approach as

for gradient descent and the approximate Newton Method from Section 2.3. We

operate in the multi-round optimisation model from Definition 2.1.5. We intro-

duce an approximation Ĥ = A>S>SA to the Hessian H = A>A. Informally,

for OLS if we have

x(t+1) = x(t) − Ĥ−1∇f(x(t))∥∥∥x(t+1) − x?
∥∥∥

2
≤
∥∥∥Id − Ĥ−1A>A

∥∥∥
2

∥∥∥x(t) − x?
∥∥∥

2

...

≤
∥∥∥Id − Ĥ−1A>A

∥∥∥t+1

2
‖x?‖2 .

The error at every step can be controlled through matrix similarity on Id −
Ĥ−1A>A by pre and post multiplying by Ĥ1/2, Ĥ−1/2, respectively. Hence,∥∥∥Id − Ĥ−1A>A

∥∥∥
2

=
∥∥∥Id − Ĥ−1/2A>AĤ−1/2

∥∥∥
2

(5.9)

≤ ε

1− ε
. (5.10)

The inequality follows from the extremal values of the Rayleigh quotient:2

λmin(Ĥ−1/2A>AĤ−1/2) = min
u

u>Ĥ−1/2A>AĤ−1/2u

u>u

λmax(Ĥ−1/2A>AĤ−1/2) = max
u

u>Ĥ−1/2A>AĤ−1/2u

u>u
.

2If M ∈ Rd×d is a real symmetric matrix then the Rayleigh quotient is R(M,x) =
x>Mx/x>x. The quotient is maximised (respectively, minimised) when x is the top (bottom)
unit-length eigenvector v1 (vd) of M and achieves R(M,v1) = λ1(M) (or R(M,vd) =
λd(M)). Applying this to the real symmetric matrix M = A>A shows that σ2

min(A) ≤
maxxR(M,x) ≤ σ2

max(A). The bounds are attained at by using the bottom and top unit
length singular vectors, respectively.
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For a unit vector u we can apply the change of variables z = Ĥ−1/2u to obtain

u>Ĥ−1/2A>AĤ−1/2u =
z>Hz

z>Ĥz

and z>Ĥz = (1± ε)z>Hz due to the subspace embedding. Thus;

λmin(Ĥ−1/2A>AĤ−1/2) ≥ 1

1 + ε

λmax(Ĥ−1/2A>AĤ−1/2) ≤ 1

1− ε

Ensuring Equation (5.9) is less than 1, is equivalent to:

|1− λmax(Ĥ−1/2A>AĤ−1/2)| < 1

⇐⇒
∣∣∣∣1− 1

1− ε

∣∣∣∣ < 1

⇐⇒
∣∣∣∣ ε

1− ε

∣∣∣∣ < 1

which occurs provided ε ≤ 1/2, that is, we obtain no worse than a 1/2-subspace

embedding.

To achieve error of ε? after T iterations set ρ = ε/1− ε, then

T =
log(1/ε?)

log(1/ρ)
(5.11)

iterations are required. In comparison to gradient descent over strongly convex

functions, we saw in (2.10), Section 2.3.2, that the number of iterations needed

was

TGD = O

(
log(1/ε?)

log(1/E)

)
.

However, as E = 1 − σ2
min(A)/σ2

max(A), we see that 1/ log(1/E) is large when

the ratio σ2
min(A)/σ2

max(A) is small.3 On the other hand, we can control the

denominator log(1/ρ) of (5.11) as it is a direct consequence of an ε-subspace

embedding. Hence, we may think of T as being a small constant number of

steps that each require O(d3) time. Again, this should be contrasted with

gradient descent which may need a very large number of steps that each require

O(d) space and O(nd) update time.

Approximate Newton method moves the difficulty of the optimisation

problem onto estimating the spectrum of the input data. Nevertheless, there

is a O(d2) discrepancy between the two iteration time costs. Therefore, a

tradeoff must be made for which computing and applying Ĥ−1 is efficient, but

retains enough spectral information about A so that Ĥ−1∇f(x) roughly acts

3This is known as an ill-conditioned matrix, when the largest singular value is much larger
than the smallest singular value.
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like H−1∇f(x) to ensure the number of steps completed is small.

5.1.4 Comparison of Sketch-and-solve and Iterative Sketching

Frameworks

Thus far we have been informal about how the two methods compare. We do so

by studying how the approximate weights found using sketches compare to the

“best” weights that could be found with no computational constraints. For such

a task, the sketch-and-solve model appears attractive: it permits single-pass

algorithms on either entrywise or row-arrival matrix streams with useful bounds

on how the returned estimates compare to the optimal weights. However, the

sketch-and-solve approximation bounds Equations (5.4) and (5.8) only provide

weak constant factor guarantees on the behaviour of estimated weights. The

Iterative Hessian Sketch framework is motivated by this weaknesses of the

sketch-and-solve model.

If x? are the optimal weights for some optimisation problem then we want

the estimate weights x̂ to behave roughly as x?. For regression tasks, this means

understanding the prediction inner product 〈Ai, x̂〉 for a query data point Ai

and asking how 〈Ai, x̂ − x?〉 behaves. Over a collection of training points

1 ≤ i ≤ n, this inner product can be summed to obtain the predictive semi-

norm ‖z‖2A = 1/n ‖Az‖22 where the vector of interest will often be z = x̂− x?.

Pilanci and Wainwright formalised the weakness of the sketch-and-solve model

through the following argument and some of these results will guide our later

commentary. We use a linear model

y = Ax† + ω (5.12)

with A ∈ Rn×d and noise ω ∼ N
(
0n×1, σ

2In
)

so that y ∼ N
(
Ax†, σ2In

)
.

The model weights x† are not observed in practice. Then for any estimator x′,

the expected solution error is the quantity:

Eω

∥∥∥x′ − x†
∥∥∥2

A
.

Under this setup [PW16] demonstrates that an optimal estimator x′ = x?

has expected solution error Eω

∥∥x? − x†
∥∥2

A
= O(σ2/n), characterised in the

following proposition.

Proposition 5.1.1 ([PW16]). Let K be an arbitrary convex constraint set and

A,y be given by the linear model (5.12). If x? = argminx∈K
1
2 ‖Ax− y‖22 ,

then
∥∥x? − x†

∥∥2

A
= O(∆K/n) for a problem-dependent parameter ∆K ≤ σ2d.

A special case is ordinary least squares which has ∆K = σ2d

However, the same is not true of one-shot sketches. In the same work,
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[PW16] also shows that any estimated weights x̂ returned solely on the inform-

ation (SA,Sy) can obtain E
∥∥x̂− x†

∥∥2

A
= O(σ2d/n), but only if the projection

dimension m = Ω(n). Given that we want to use sketches to reduce the burden

on n, this is problematic. The key result is the following theorem.

Theorem 5.1.1 ([PW16, Theorem 1]). Let A,y be the data and targets for a

linear model (5.12) and let K be an arbitrary convex constraint set. Suppose

that S ∈ Rm×n is a random projection satisfying the spectral norm bound∥∥∥∥ES

[
S>
(
SS>

)−1
S

]∥∥∥∥
op

≤ ηm

n
. (5.13)

Then any weights

x̂ = argmin
x∈K

1

2
‖S(Ax− y)‖22

have

sup
x†∈K

ES,ω

∥∥∥x̂− x†
∥∥∥2

A
= Ω(1/m)

A consequence of this result is that for sketched weights x̂ to achieve

comparable performance to optimal weights x?, we need m to grow linearly

with n. This can be seen through

c

m
≤ ES,ω

∥∥∥x̂− x†
∥∥∥2

A
≤ c′

n

where the lower bound follows from Theorem 5.1.1 and the upper bound is the

desired accuracy from Proposition 5.1.1. Consequently, m = Ω(n).

In summary, optimal weights for regression problems have their predictive

performance improving as 1/n [PW16]. Ideally, we would like our sketched

weights to nearly match the predictive power of an optimal estimator. However,

Theorem 5.1.1 shows this cannot be done using one sketch in with m = o(n).

We will show that the condition (5.13) is achieved by the CountSketch in

Section 5.2. Following this, we will show how the subspace embedding can be

used in an iterative sketching setup to achieve the reciprocal error rate with

only small sketches. The price to pay for this is that we have to adopt the

multi-round optimisation model, rather than a single-pass matrix stream.

5.2 CountSketch in the Sketch-and-Solve Model

We motivate the usage of CountSketch in an iterative model by first showing a

negative result. Our result shows that the error when using CountSketch in

the sketch-and-solve model is always lower bounded by a suboptimal constant.

This is to be contrasted with the optimal estimator x? approaching x† as n

increases. The main result, Theorem 5.2.1, involves understanding certain

115



spectral properties of compositions of CountSketch matrices. Following this

negative result, we show sufficient conditions under which the CountSketch

can be easily ‘plugged into’ an iterative model to achieve high-accuracy in the

subsequent section.

It is sufficient to show that a CountSketch matrix S has the spectral property

from Theorem 5.1.1. We can then instantiate the proof of Theorem 5.1.1 from

[PW16] with our result for the CountSketch. Our main contribution is the

following theorem that demonstrates the necessary spectral property.

Theorem 5.2.1. Let S ∈ {0,±1}m×n be a CountSketch matrix with no all-zero

rows. Then ∥∥∥∥E [S> (SS>
)−1

S

]∥∥∥∥
op

≤ ηm

n
. (5.14)

It transpires that due to the simple combinatorial structure of the CountS-

ketch we can analyse the quantity (5.14) fairly easily. The main idea is to analyse

the CountSketch as a random linear transform S = PD with P ∈ {0, 1}m×n the

matrix that distributes the n rows of a length n input matrix into m buckets.

Meanwhile, D ∈ {0,±1}n×n is a diagonal matrix which is determined by the

random sign function used in the CountSketch definition (i.e., for every row we

assign a ±1 with equal probability). Note that the restriction on all-zero rows

is a convenient simplification since the proofs involve a matrix inverse which is

not guaranteed to exist if a sketch has a row entirely zero. However, this is not

a limitation as we can simply consider the sketch with an all-zero row removed

(corresponding to buckets that have no input elements mapped to them). For a

fixed row i, the probability that bucket j is not selected is Sij = 0 is 1− 1/m, so

the probability that Si∗ = 01×n is entirely zero is (1− 1/m)n which approaches

0 quickly as n becomes large. Before proving Theorem 5.2.1, we need some

supporting lemmas to aid the analysis which are simple consequences of the

structure of S.

5.2.1 Structural Properties of CountSketch

Lemma 5.2.1. Let S be a CountSketch matrix and let Ni denote the number

of nonzeros in the row Si. Then SS> is a diagonal matrix with (SS>)ii = Ni

and hence distinct rows of S are orthogonal. Secondly, E(SS>) = n/mIm.

Proof. The entries of the matrix SS> are given by the inner products between

pairs of rows of S. Hence we consider the inner products 〈Si,Sj〉. By construc-

tion, S has exactly one non-zero entry in each columns; thus for i 6= j and a

column index 1 ≤ k ≤ n we must have SikSjk = 0 meaning that 〈Si,Sj〉 = 0

which establishes orthogonality between the rows. Meanwhile, the diagonal

entries are given by ‖Si‖22 =
∑n

j=1 S2
ij which is 1 if and only if Sij is nonzero

so this counts the number of nonzeros Ni in Si.
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We can extend this analysis similarly by taking the expectation E(〈Si,Sj〉) =∑n
k=1 SikSjk. By the orthogonal property it suffices to check the case i = j as

otherwise 〈Si,Sj〉 = 0. Hence, we have a sum of n random entries which have

S2
ik = 1 with probability 1/m (coming from the two events Sik = ±1 each with

probability 1/m). Finally, by linearity of expectation E(〈Si,Si〉) = n/m.

The above arguments are made to understand the behaviour over pairs of

rows, we can make a similar argument for the columns of a CountSketch.

Lemma 5.2.2. Let S be a CountSketch matrix. Then E(S>S) = In.

Proof. Observe that (S>S)ij is the matrix whose entries are inner products

between columns of the sketch matrix S. Recalling the construction of S, we see

that column i of S is a signed canonical vector so Si = ±eh(i). Thus, 〈Si,Sj〉
is zero if h(i) 6= h(j) as eh(i), eh(j) have disjoint support. Otherwise, when

h(i) 6= h(j), it suffices to consider the single product Sh(i),i · Sh(j),j which is 1

when the two entries have the same sign allocated, or −1 if they have opposite

signs. These two events have equal probability so are zero in expectation. In

summary, E(S>S)ij = 1 if i = j and is zero otherwise.

5.2.2 Spectral Properties of CountSketch

Recall that we must show for a constant η independent of m and n the bound

from (5.14) ∥∥∥∥E [S> (SS>
)−1

S

]∥∥∥∥
op

≤ ηm

n
.

We start with a lemma on the behaviour of Bernoulli random variables which

supports the analysis.

Lemma 5.2.3. Let Xi be independently identically distributed Bernoulli ran-

dom variables with parameter p and X =
∑n

i=0Xi. Then:

E
(

1

1 +X

)
=

1− (1− p)n+1

(n+ 1)p
.

Proof. Observe that X is a sum of Bernoulli random variables so shares the

Binomial probability mass function, hence:

E
(

1

1 +X

)
=

n∑
k=0

1

1 + k

(
n

k

)
pk(1− p)n−k

=
1

n+ 1

n∑
k=0

(
n+ 1

k + 1

)
pk(1− p)n−k

=
1

p(n+ 1)

n∑
k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k.
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The second equality follows from the identity (k + 1)
(
n+1
k+1

)
= (n + 1)

(
n
k

)
.

Then apply a change of variables N = n + 1, j = k + 1 to recognise that∑N
j=1

(
N
j

)
pj(1− p)N−j is a sum over the entire Binomial distribution except

the first term,
(
N
0

)
p0(1− p)N which establishes the claim.

We are finally in a position to prove Theorem 5.2.1. The main idea here is

to use our knowledge of the structure of the CountSketch matrices to reduce the

matrix S>
(
SS>

)−1
S instead to a scaled variant of S>S. Subsequently, we can

show that the only necessary entries (in expectation) are a sum of independent

Bernoullis which will allow us to use Lemma 5.2.3.

Proof of Theorem 5.2.1. We analyse the matrix E
[
S>
(
SS>

)−1
S
]

and show

that it is a diagonal matrix whose entries are a constant multiple of m/n.

First we deal with the terms SS> which, by Lemma 5.2.1 is a diagonal matrix

whose entries are Ni, the number of nonzeros in row Si. Hence, we write

D = SS> with entries Dii = Ni and off-diagonal entries all zero. By the

assumption that Dii > 0,D−1 exists such that D−1
ii = 1/Ni; hence write

S>
(
SS>

)−1
S = S>D−1S. Next, we may distribute the entries of D−1 as

S>D−1/2D−1/2S which is well- defined as D−1 is both diagonal and positive.

Finally, set S̄ = D−1/2S which is simply S but scaled by its row norms as:

S̄ij =
Sij√
Ni

(5.15)

This expresses our matrix of interest as a matrix S̄>S̄ which is the collection

of scaled inner products between the columns of S. In particular, for every

column S̄j , the unique nonzero entry is located at S̄h(j),j and takes value Sh(j),j .

Since S̄ has the same sparsity structure as S and its entries are just rescaled

versions of those in S, we know from Lemma 5.2.2 that in expectation the

only entries we need consider are those on the diagonal of S̄>S̄. Then the

inner product to consider is 〈S̄i, S̄i〉, which is exactly the column norm of S̄i.

Equation (5.15) means that (S̄>S̄)ii = 1/Nh(i) and Lemma 5.2.3 can be used

to bound 1/Nh(i) in expectation as it is a sum of Bernoulli random variables.

Indeed, Nh(i) =
∑n

j=1 1(S2
h(i),j) where 1(S2

h(i),j) is an indicator variable for

the presence of a nonzero at location Sh(i),j . More concretely 1(S2
h(i),j) = 1

when j is hashed to the same bucket as i. No row of S is identically zero so

certainly S2
h(i),i = 1 and for any j 6= i then 1(Sh(i),j) = 1 with probability

1/m; for a given column, non-zero rows are chosen uniformly at random in the

CountSketch construction. This is exactly when h(j) = h(i) so:

Nh(i) =
n∑
j=1

S2
h(i),j = 1 +

n∑
j 6=i

h(j)=h(i)

S2
h(i),j . (5.16)
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Hence, we may write Nh(i) = 1 + X and invoke Lemma 5.2.3 with p = 1/m

and n− 1 trials (due to the n− 1 columns j 6= i) to obtain:

E
(

1

1 +X

)
=

1− (1− 1/m)n

n/m

≤ 1

n/m
=
m

n
.

Thus, we have shown that E
[
S̄>S̄

]
ij
≤ m/n if i = j and is zero otherwise,

hence,
∥∥∥E [S̄>S̄

]
ij

∥∥∥
op
≤ m/n and (5.14) is met with η = 1, independent of n

and m, as required.

With this in hand we have the following corollary.

Corollary 5.2.1. Let S ∈ Rm×n be a CountSketch subspace embedding. Sup-

pose that the regression problem y = Ax†+ω is defined as in (5.12). Then the

classical sketch-and-solve technique with S has expected error lower bounded as:

ES,ω

∥∥∥x̂− x†
∥∥∥2

A
= Ω(1/m). (5.17)

Proof. This is simply the combination of Theorem 5.1.1 and Theorem 5.2.1.

In summary, having established Theorem 5.2.1 we have shown that in order

for a sketch-and-solve algorithm with CountSketch to obtain error comparable

to the optimal estimator requires m to grow linearly with n. At its heart, this

is due to the algorithm’s ε-error depending on ε−2 for the projection dimension.

Next, we will study an algorithm that achieves ε? � ε error and whose running

time depends on log(1/ε?). However, we must sacrifice the requirement of only

visiting the data once to achieve such a guarantee.

5.3 CountSketch in the IHS model

Next we present the second technical contribution of this chapter. This section

shows how CountSketch can be used within the Iterative Hessian Sketch (IHS)

framework. Iterative Hessian Sketch is motivated by the the sketch-and-solve

weights x̂ being suboptimal estimators of the model weights x†, as presented in

the preceding section. We now make two changes as we adopt the multi-round

optimisation model:

(i) Multiple passes over the data are permitted;

(ii) An independent sketch is generated for every pass.

Our contribution here is to show that subspace embeddings (Section 5.1.1) are

sufficient for convergence under the IHS scheme.
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Algorithm 8: Iterative Hessian Sketch (IHS)

Input: Data A ∈ Rn×d, targets y ∈ Rn, sketch size m, number of
iterations T ≥ 1, random projection method Sketch from
Table 5.1

Output: Weights x̂ ∈ Rd
1 SA = Sketch(A)

2 z = A>y

3 x(0) = 0d
4 for i = 1 : T do

5 Solve (SA)>(SA)z = −∇f(x(t))

6 x(i+1) = x(i) + z

7 end

8 x̂ = x(T )

Recall that the optimal weights are x? and the estimate weights are x̂. By

the triangle inequality, we have

‖x† − x̂‖A ≤ ‖x† − x?‖A + ‖x? − x̂‖A.

The first term ‖x† − x?‖A is problem dependent “model error”. The second

term ‖x?− x̂‖A is often that which we seek to minimise in a numerical scheme,

the “optimisation error”. We can think of candidate weights x̂ being a good

approximation for x? if the optimisation error is small.

Let z? = ‖x† − x?‖A. Thus, if we want ‖x† − x̂‖A = (1 + c)z? then we

must find ‖x? − x̂‖A = cz?. The Iterative Hessian Sketch was designed so that

‖x† − x̂‖A behaves as O(z?) by substantially reducing the error ‖x? − x̂‖A in

comparison to the sketch-and-solve methods.

Algorithm 8 is an implementation of the Iterative Hessian Sketch (IHS).

For simplicity, we have presented it in the unconstrained setting; if convex

constraints K are necessary, then we must project z onto the convex constraint

set (z ← ΠK(z)) before updating the iterates. Line 5 is presented as a

linear solve which is a more efficient way of performing the Newton update

x(i+1) = x(i) − Ĥ−1∇f(x(i)) to avoid computing the inverse explicitly. Based

upon this equivalence, Line 6 is used to additively correct the iterates.

We will analyse the CountSketch in the Iterative Hessian Sketch (IHS)

model. To define the variational quantities under iterative sketching, we need

the following definition which is a set of ‘residual’ vectors over which the sketch

acts.

Definition 5.3.1. Let K be a closed convex constraint set and let x? be the

solution to the least squares problem over K. The tangent cone over K is

K = {v ∈ Rd : v = tA(x− x?), t ≥ 0,x ∈ K} (5.18)
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For an estimate x̂, the error vector ê = A(x̂− x?) ∈ K. Let Sn−1 be the

set of n-dimensional vectors of unit Euclidean norm. After applying a suitable

random projection S, the quantities we must analyse are:

Z1 = inf
v∈K∩Sn−1

‖Su‖22 (5.19)

Z2 = sup
v∈K∩Sn−1

|〈Sv,Su〉 − 〈v,u〉| . (5.20)

In (5.20), u is an arbitrary unit norm vector. We will show that Z1 and Z2

are approximately preserved under the action of a CountSketch.

Lemma 5.3.1 (Subspace embedding implies IHS). Let S be a CountSketch

matrix with m = O(d2/ε2δ) that is a 1± ε subspace embedding for A. Then S

has Z1 ≥ 1− ε and Z2 ≤ ε/2.

Proof. The subspace embedding property holds for all vectors in the column

span of A, in particular for unit vectors in K ∩ Sn−1 ⊂ col (A). Therefore,

Z1 ≥ 1−ε is an immediate consequence of S being a a 1±ε subspace embedding

for A. On the other hand, if we use the standard relation

〈u,v〉 =
1

4

(
‖u + v‖22 − ‖u− v‖22

)
then it is straightforward to show that for unit vectors u,v ∈ col (A):

〈Su,Sv〉 =
1

4

(
‖S(u + v)‖22 − ‖S(u− v)‖22

)
≤ 1

4

(
(1 + ε) ‖u + v‖22 − (1− ε) ‖u− v‖22

)
= 〈u,v〉+

ε

4

(
‖u + v‖22 − ‖u− v‖22

)
= 〈u,v〉+ ε〈u,v〉.

Hence, 〈Su,Sv〉 ≤ 〈u,v〉+ ε by applying the Cauchy-Schwarz inequality on

〈u,v〉 as u,v are unit vectors. The same argument applies for the lower bound

which establishes establish Z2 ≤ ε. After rescaling this satisfies the claim.

We need one final lemma to support our final theorem.

Lemma 5.3.2 ([PW16, Theorem 2]). Let x? be the solution to a convex

constrained least squares problem. Conditioned on Z1 ≥ 1− εsk and Z2 ≤ εsk
for every iteration 1 ≤ i ≤ T , the solution x̂ = x(T ) satisfies:

‖x̂− x?‖A ≤

(
T∏
i=1

Z2

Z1

)
‖x?‖A .

Theorem 5.3.1. Let x? be the solution to a least squares problem over convex

constraint set K. Let S be a 1± εsk subspace embedding for the column space of
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A for εsk < 1/2. Conditioned on S achieving a subspace embedding for every

iteration 1 ≤ i ≤ T , the IHS method with CountSketch returns an estimate with

‖x̂− x?‖A ≤ εTsk ‖x?‖A. The number of iterations is T = Θ(log 1/ε?) for an

error of ε? ‖x?‖A and every iteration can be performed in time proprtional to

O(nnz (A)) + poly (d/ε).

Proof. The error bound is an immediate consequence of Lemma 5.3.1 across

every iteration. We can then invoke Lemma 5.3.2 and since εsk < 1/2 we have

Z2

Z1
≤ ε

2(1− ε)
≤ ε.

Thus the ε? = εT error is immediate. The running time is that needed to

obtain an embedding, perform inner products and, and a direct solve at a cost

of Tsolve, hence we obtain O(nnz (A) + Tsolve) log(1/ε?)). The worst-case solve

time is Tsolve = poly (d/ε) which varies depending on the constraint set K.

Comparison of Theorem 5.3.1 to [PW16]. The repeated need of a direct

solver costing Tsolve could appear unattractive. Importantly, this cost is over a

smaller instance of size m× d, not an n× d matrix. Hence, Tsolve should be

thought of as being small in comparison to Tsketch.

In [PW16], it is shown that the IHS algorithm with (sub)Gaussian sketches

and the SRHT uses a projection dimension of m < d which is proportional to

the so-called Gaussian width WK of the constraint set K. This Gaussian width

measures the complexity of the problem and is proportional to d when the

problem is unconstrained. More structured problems can have much smaller

Gaussian width. For example, sparse least squares hasWK grow logarithmically

in d [PW16]. The work of [BDN15] shows that the SJLT also preserves norms

on convex constraint sets in m = Õ(W2
K) projections modulo some poly (log)

factors. However, the same property is not known for the CountSketch.

More precisely, when using the optimal sketches in IHS, it is proven that

we may sample only m = Õ(W2
K) projections which can be much smaller or

independent of d. Hence, a quadratic program solver could solve the dual

program over a m × d instance, which in the worst case may be cubic in

m, not d. Thus, the major polynomial time cost in Tsolve is the poly (m)

contribution, which is significantly less than O(d3) for a linear solve. However,

as the worst-case guarantee of the CountSketch subspace embedding is that

O(d2) projections are used at every round. Then the solve step could need

time O(d4) to generate A>S>SA. Our contribution shows that the iterates

can be performed quickly but we do not have any guarantees for an improved

embedding dimension.
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It would be useful to have a better understanding of how well the CountS-

ketch estimates norms of vectors on a convex constraint set K $ Rd. Although

[BDN15, LLW21] show that under certain assumptions, the CountSketch can

have the optimal projection dimension of m = Õ(d log(d/δ)/ε2), they give no

theoretical analysis of IHS when fewer than d rows are used in the sketch.

Showing that CountSketch preserved vector norms on the constraint set K
using fewer than d directions would go some way to explaining the empirical

performance observed when using CountSketch for LASSO [CD19] and other

convex constrained programs [LLW21].

Term Symbol Notes

Model weights x† Idealised weights for theoretical model.
Not observed in practice.

Optimal weights x? The weights that minimise the training loss,
found by an idealised solver.

Estimate weights x̂ Any weights found when using a sketch
to approximate x?.

Table 5.2: Recap of the different weights used for measuring errors in regression.

5.4 Experiments

A recap of the different weights that we study is given in Table 5.2. Recall

that the iterative method is motivated by the weakness of the sketch-and-solve

weights x̂ in comparison to the optimal weights x?. This gives rise to two

notions of error that we can test empirically:

1. Model coefficient error :
∥∥x̂− x†

∥∥
A

measures how well the sketched

weights x̂ describe the process y = Ax† + ω. If data were continually

generated according to this process and this norm is small, then we would

expect x̂ to continue to be a good proxy for x†.

2. Optimal coefficient error : ‖x̂− x?‖A measures the distance from estimate

weights x̂ to the optimal weights x? which minimise the training loss.

We can only test the former on synthetic data, while the latter can be tested on

both real and synthetic data. Our experiments take place in the multi-round

optimisation model (Definition 2.1.5) with one party holding the weights. After

every iteration, the weights are updated. The sketch-and-solve experiments

can be thought of as completing only one round in this model.

Remark 5.4.1. We implement the SVD in most of our experiments for com-

parison. This is idealised and in large-scale settings would not be practical.

Firstly, the time is O(nd2) to obtain either the SVD or A>A before a solver is
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called. Distributed or multipass map-reduce implementations for the SVD for

matrices with n� d often combine ‘local’ copies of the covariance matrix A>A

based upon the data that a party holds [BGD13, Sch20].4 These implement-

ations might be more suitable for a comparison with IHS in the multi-round

optimisation model. We leave a rigorous comparison to more sophisticated

implementations of SVD for future work.

In light of Remark 5.4.1, we often find that the IHS is slower than an exact

SVD of an n× d matrix in our implementation. There are a few reasons for

this: firstly, a call to SVD in NumPy calls C++ code. If the data is already

loaded into memory, this can be fast but is not representative of a large-scale

comparison. Secondly, the iterates of IHS from Algorithm 8 are implemented

by solving a linear system through an SVD of an m × d matrix. Thus, we

have a call to SVD for every iteration which aggregates. However, the SVD in

Algorithm 8 is over small m× d matrices, so for larger instances, this would

be small in comparison to an SVD over the entire n× d dataset. Also, we are

interested in time comparisons between the sketches and the models, rather

than optimising solely to beat the SVD time.

This disparity is not problematic for our comparison as an SVD would

be difficult to compute even if one were allowed many passes over the data

whereas the IHS only needs a pass for (i) sketching and (ii) inner products.

Another implementation detail that would improve the time performance of

sparse sketches in IHS is to use sparse inner product methods. We only exploit

sparsity for the sketching step, whereas it would also cause a speedup in the

gradient update. Hence, we claim that the IHS would be scalable even in

settings when the SVD would not be and defer exploring exactly when this

occurs until future work.

5.4.1 Synthetic Experiments

We provide a baseline comparison using the synthetic examples as presented

in [PW16] on Ordinary Least Squares (OLS) problems. The aim here is to

verify whether the CountSketch and Sparse Johnson-Lindenstrauss Transform

(SJLT) perform comparably to the dense sketches (Gaussian and Subsampled

Randomised Hadamard Transform (SRHT)) that were proposed in the original

Iterative Hessian Sketch (IHS) framework. The central questions that we

address are:

1. The CountSketch may need O(d) more rows to obtain a subspace em-

bedding compared to all other sketches we consider. Does this result in

substantially weaker error performance on some simple test cases?

4This idea can be compared with Algorithm 3 except the (numerically) exact SVD is
returned, not an approximate `p subspace embedding.
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2. If we fix a projection dimension, say m = γd, then one would expect

the CountSketch to obtain weaker approximation than the other sketches

we consider. Consequently, we may expect less progress to be made per

iteration using the CountSketch than using other methods. Do we pay

for this by needing substantially many more iterations to converge?

All of the synthetic experiments use a data matrix A ∈ Rn×d which is

chosen with Aij ∼ N (0, 1). A ground truth vector describing the model

x† ∈ Rd is chosen with every x†i ∼ N (0, 1) and then x† is normalised to unit

length. Finally, random Gaussian noise ωi ∼ N (0, 1) is added to generate the

target vector y = Ax† + ω. The three different sets of weights that we study

are given in Table 5.2.

Model error compared to data size (Figure 5.1).

The first experiment seeks to understand how the error responds as n increases.

This is motivated by Proposition 5.1.1 which shows the optimal estimator for

OLS: ∥∥∥x† − x?
∥∥∥2

A
=
σ2d

n
. (5.21)

For sketch-and-solve, Corollary 5.2.1 shows that ‖x̂−x†‖A ≥ σ2dc/m . In fact,

for the problem setup we will use described below, we expect ‖x̂−x†‖A ≥ c′/7.

This states that the error between the model weights and the sketch-and-solve

weights is lower bounded by a constant. For IHS we can make the model error

much smaller. By the triangle inequality and Theorem 5.3.1 we should expect

the IHS method with CountSketch after T iterations to achieve:∥∥∥x† − x̂
∥∥∥
A
≤ εTsk ‖x?‖A +

σ2d

n
. (5.22)

The optimisation error term εTsk ‖x?‖A approaches zero when n increases. Also,

there is always a problem-specific residual
∥∥x† − x?

∥∥
A

that is not recoverable

even in the case of using optimal weights x?. This residual has diminishing

effect as n increases as per (5.21).

Data A ∈ Rn×d is generated for a fixed value of d = 10 and

n ∈ {100× 2i for i ∈ {1, 2, . . . , 10}}.

The number of iterations is T = 1+log(n) and the sketch size for all projections

in the IHS framework is m = 7d. Ten independent random trials were performed

with the mean being reported. We instantiate only the CountSketch in the

IHS to avoid cluttering the plots. For the sketch-and-solve method, we tested

the Gaussian, SRHT, SJLT, and CountSketch. The sketch-and-solve methods

are instantiated using m′ = Tm projections which is the sum of sketch sizes
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Figure 5.1: Error to model weights x† under an optimal solver, classical sketch,
or IHS.

used in the IHS framework. We will investigate these sketches in the IHS

framework in subsequent experiments. Additionally, we obtain an “idealised

estimate” found by performing no sketching and returning the OLS solution.

This is equivalent to one round of IHS with S = Id which is simply one step

of the exact Newton method (see Section 2.3.2 and table 2.2). Hence, it is

sufficient to obtain an SVD of A and return x̂ = VΣ−1U>y. Our measure of

performance is the error to model weights x† under the semi-norm
∥∥x† − x̂

∥∥
A

for estimate weights x̂, returned under sketch-and-solve or IHS methods.

Consistent with the theory, the sketch-and-solve model with any sketch

is significantly weaker than the optimal weights, and the IHS method with

CountSketch. Although the CountSketch yields a weaker embedding guarantee

than the other random projections, there is little noticeable change in the error

performance in the sketch-and-solve model and its average error performance

appears to plateau out at roughly the same constant of 0.1 as when other

sketches are used. The SRHT appears preferable for smaller instances, but

these differences become less noticeable as n increases. All methods show mild

descent, but this begins to flatten at an error that is suboptimal compared to

the reciprocal decay of the optimal weights.

In contrast, using CountSketch in the IHS model sees the error decay

reciprocally in n (as per (5.22)) and tracks the behaviour of the optimal

estimator almost indistinguishably. The number of iterations increases only

very slowly with n so the cause of this can be attributed to refining a small
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Figure 5.2: IHS optimal coefficient error between the sketched weights x̂ and
the optimal weights x? over iterations.

number of rough estimates that move closer towards x? which can take better

advantage of the increased evidence made available from the model. Overall,

this means that the estimate returned after the IHS procedure will be much

more representative for prediction than simply using the sketch-and-solve

estimators. We conclude that if one operates in the multi-round optimisation

model (Definition 2.1.5) then taking more randomised steps with a small sketch

is preferable to a one-shot algorithm with only one large sketch.

Optimal Coefficient Error vs Number of Iterations (Figures 5.2

and 5.3)

We next study the convergence properties of IHS by varying the sketch size and

the number of iterations completed. The test instance is again OLS regression

with data generated as before but with n = 6000, d = 200 and sketch sizes

m = γd for γ = 5, 10. The IHS method using a Gaussian, SRHT, SJLT,

CountSketch was run for T = 20 iterations. We measure

(i) the coefficient error to optimal weights x?, evaluated as ‖x̂− x?‖A in

Figure 5.2 and

(ii) model error
∥∥x̂− x†

∥∥
A

in Figure 5.3.

Results are averaged over ten trials.

In Figure 5.2, all methods converge towards the optimal solution. Conver-

gence is faster when the sketch size is larger as the sketch parameters Z1 (5.19)

and Z2 (5.20) are more accurate. At both m = 5d, 10d, the SRHT appears
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to be the best sketch as its error can be slightly lower than the competing

methods due to a larger per-step error reduction. At the larger sketch size the

SRHT can be between one half or one full order of magnitude more accurate

than other sketches after a given number of steps. For the smallest sketch

sizes, the Gaussian sketch seems least competitive, however, for the larger

sketch of size m = 10d, the worst-performing sketch is the CountSketch. This

is interesting as it suggests that for a higher dimensionality problem, we begin

to see slight degradation in the quality of the estimates returned from IHS

with CountSketch, yet this difference is very small in absolute terms. The

performance of the SJLT is comparable to other methods.

2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

Iterations

lo
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∥ ∥ x̂−
x
†∥ ∥ A

CountSketch5 CountSketch10 SRHT5
SRHT10 SJLT5 SJLT10
Gaussian5 Gaussian10 Optimal

Figure 5.3: IHS error to model weights vs iterations. The model error from
the optimal weights given data A is denoted: Optimal ≈

∥∥x? − x†
∥∥
A

.

Next, we return again to the model error, illustrated in Figure 5.3. The

horizontal line plotted for the optimal weights x? is determined by the problem

dimensionality. Recall that
∥∥x? − x†

∥∥
A
≈
√
σ2d/n which in this setup is√

σ2d/n =
√

2/60. Then we plot log10

(∥∥x? − x†
∥∥
A

)
which roughly has an

optimum value of log10

√
2/60 ≈ −0.73.

All sketch methods have error converging to the optimum and this is

achieved more quickly for larger sketch sizes. This behaviour should be con-

trasted with Figure 5.1 in which the sketch-and-solve does not decay to x†.

Figure 5.2 shows the distance between estimates x̂ and optimal weights x? be-

comes vanishingly small as the number of iterations increases. However, we see

in Figure 5.3 that after only a small number of iterations all methods descend

towards the statistically optimal model error of
∥∥x? − x†

∥∥
A

, irrespective of the
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sketch method chosen. We find that the SRHT again seems the best method as

it decays to a statistically optimal result in mildly fewer iterations than all other

random projections at both m = 5d and m = 10d. For smaller sketches, we do

see slightly worse performance for the CountSketch but this difference becomes

negligible once 2-3 more iterations are completed. Indeed, after 6 iterations,

the average performance of CountSketch at m = 5d becomes comparable to

the SJLT and Gaussian sketch. Nonetheless, the difference to Figure 5.1 is

stark; if extra steps can be made, then they should be taken. Moreoever,

the number of extra steps (or passes over the data/rounds of communication)

necessary to obtain weights that represent the model decreases as the sketch

size is increased. Thus, in practice, a tradeoff should be made between the

sketch size and the acceptable number of gradient steps completed.

5.4.2 Real Dataset and Error-Time Performance

Taken in the round, Figure 5.1, Figures 5.2 and 5.3 suggest that in this

example, the CountSketch outperforms its worst-case guarantees. Through

the iterative scheme, the CountSketch is competitive with more theoretically

robust sparse and dense embeddings. Nonetheless, the main win from using

the sparse embeddings, CountSketch and SJLT, is that we can run the IHS in

time proportional to the number of nonzeros in the data; we will explore this

subsequently on a real dataset.

We take the California Housing [PVG+11] dataset and, for reproducib-

ility, followed the open-source implementation for data preprocessing [Gér]

which included some light data cleaning and feature engineering. Finally,

we used a random train-test split into Atrain,ytrain and Atest,ytest of size

ntrain = 16512, ntest = 4128 and d = 16. We refer to this as the “raw” dataset

which is 75% dense, that is nnz (Atrain) /dntrain = 0.75.

Experimental Setup

We train an OLS regression model on Atrain,ytrain using the a classical sketch-

and-solve with CountSketch and the IHS model with all sketch methods Count-

Sketch, SJLT, SRHT, and Gaussian. Ten trials were performed each using

an independent random permutation of the training data. The optimal coef-

ficient error ‖x̂− x?‖A between estimate weights x̂ and optimal weights x?

is measured. The mean performance over all trials is reported. For IHS, the

projection dimension is chosen as m = 5d to illustrate the tradeoffs of perform-

ance, it is not necessarily chosen to be an optimal sketch size. The classical

sketch-and-solve method is employed by sampling m′ = Tm projections for a

CountSketch. In addition, the SJLT is initialised with 10 nonzeros per column.

The optimal OLS weights x? for regression are obtained via the SVD,
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acknowledging the caveats made in Remark 5.4.1. We additionally measure the

wall-clock time taken to execute the 10 iterations and will record error against

both number of iterations and the wall-clock time. First, we will investigate the

“raw” training data, followed by various levels of “sparsified” data by randomly

zeroing out entries to test whether the sparse transforms offer a noticeable

improvement over dense sketches in wall-clock time.

Experiment 1: Raw data, error compared to iterations and time

(Figure 5.4).

In this experiment we find that there is little discernible difference when we

compare error as a function of iterations for each of the different sketch methods

in the IHS model. Thus, we compare how the error decreases as a function of

time which is evaluated as log2 of time in seconds to execute the 10 iterations

of IHS. Base 2 logarithms are chosen solely for ease of comparison with some

later plots in Figure 5.5 to better illustrate the differences.

In Figure 5.4 we see that sketch-and-solve is faster than an exact SVD

solver (the marker is to the left of the SVD time on the wall-clock time plot)

yet the solution error is poor, roughly 10−2. It is fast but is not a good estimate.

On the other hand, all of the sketch methods used in the IHS model descend

to an estimate roughly 4 orders of magnitude more accurate than the classical

sketch-and-solve weights after ten iterations. There is negligible difference

between the random projections on the error-vs-iterations profile that becomes

clear when we look at error against wall-clock time.

We see clear separation between the sketching methods in IHS in wall-clock

time. The Gaussian sketch is slowest, completing 10 iterations in 1 second

on average. In line with the theory, we see that the SRHT is faster than

the Gaussian to complete the iterations, needing a little over 2−3 seconds to

terminate. This includes time necessary to pad Atrain with zeros so that it is

viable size for the Hadamard Transform which we found had little practical

impact but could be non-negligible for arbitrary n [AMT10]. Interestingly, the

sparse sketches are faster than the SRHT even though this data is relatively

dense, having roughly 75% nonzeros. The SJLT is almost a factor of 2 faster

than the SRHT to complete and similarly, the CountSketch is a factor of 2 faster

than the SJLT. Note that this is slightly better than the theory as we would

expect the SJLT to use s = 10 times longer to sketch as there are more nonzeros

per column. It is worth cautioning that using more nonzeros (increasing s)

for SJLT would be a concern for larger-scale implementations as generating

the random variables or hash functions can be an expensive overhead. Moving

forward, it will be worth noting that in this case, with density of 75%, the

CountSketch performed 2 full steps of IHS in at most the time of an SVD call;
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Figure 5.4: Error profile for IHS on California Housing dataset

when we alter the sparsity of the data, this will be a useful litmus test to

establish the speed of the algorithm. Simply put, in about 2−5 seconds, the

CountSketch achieves error less than 10−6 meanwhile the SJLT is the nearest

competitor, being over two orders of magnitude worse in the same time.

Experiment 2: Sparsified data, error compared to time (Figure 5.5).

Next we consider the same experimental setup as above but we will randomly

sparsify the data. The aim of this is to check that speed of the IHS with

sparse embeddings remains superior to the dense sketches as the number of

nonzeros in the data decreases. We will take Atrain and randomly set some of

the Aij = 0 to achieve data densities of 12.5%, 25%, 50%. Below 12.5% density,

we found that the fidelity of the OLS solution is compromised so only study

data in this range. Again we repeat the experiment for 10 iterations and 10

independent trials. Each trial uses a fresh sparsification of the data.

The results are presented in Figure 5.5. Note that the curves for SRHT

and Gaussian are unaltered at all densities. This is to be expected as these

methods should not have their time dependent on the density of data. For

sparse sketches on the other hand, there is a gentle time increase with the

density of the data as expected from the theory; albeit the increase is less

than a factor of 2 overall when the density increases from 12.5% to 50%. This

is best viewed by scanning Figure 5.5 from top (density = 12.5%) to bottom

(density = 50%). Note that the curves are translated mildly to the right

(increased time) for denser data. As the data density increases, we see that

fewer iterations can be completed in time less than the exact SVD solver. This

is shown by the number of markers plotted on the curve prior to the SVD line:

5 for 12.5%, 4 for 25%, 3 for 50% when using the CountSketch.

By inspecting the time to execute 10 steps when no change is made to the
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Figure 5.6: Mean sketch time on different density data for sparse sketches (left)
and mean sketch time over all 4 densities for dense sketches (right). Note the
different y axis scale in each pane. The black dashed line in the right-hand
pane is added for comparison. It plots the largest average sparse sketch time,
namely SJLT on density of 75%.

density (Figure 5.4) the CountSketch is roughly a factor of 2−2.5/2−5 = 22.5

(approximately a factor of 10) faster than the “optimal” dense method SRHT to

complete 10 iterations. However, when we sparsify the data, this speedup can be

increased to roughly 2−2.5/2−6 = 23.5, as shown in the bottom pane of Figure 5.5.

The SJLT can be seen as a compromise between the “suboptimal” CountSketch

and the optimal dense sketches in that it permits a time improvement over

the dense sketches whilst maintaining sparsity in the sketch. It also exhibits

the same properties as the CountSketch mentioned above so is also a sparse

alternative to the SRHT.

Experiment 2a: Explaining the improved time profile Figure 5.6.

The improved error-time profile of the sparse sketches can be attributed to the

much reduced Tsketch in comparison to dense sketches. In Figure 5.6 we have

plotted the mean sketch time of all of the sketches over all sparsfied versions

of the dataset. For clarity, the sparse sketches are plotted in the left hand

pane, separate to the dense sketches which are roughly order of magnitude

slower and plotted in the right hand pane. This plot clearly shows that the

sparse sketches have their runtime increase proportionally with the density of

the data as the four bars have their height increasing linearly. Interestingly,

there appears to be a sharper increase between 50% − 75% density. As the

dense sketches SRHT and Gaussian do not have their runtime dependent on

the density of the data, we simply report the mean time over all 40 sketches

(e.g. 4 datasets and 10 iterations for each IHS).
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By evaluating

xSpeedup =
slow time

fast time

we can easily see that the CountSketch is at least a factor 10 faster than SRHT

in the “raw” data setting of 75% density (approximately 2× 10−2/2× 10−3),

but when the data is substantially sparser, this can be closer to a factor 20

speedup (approximately 2× 10−2/1× 10−3). Similarly, the SJLT is between

a factor 3 and 8 faster than the SRHT. In summary, both sparse sketches

are at least an order of magnitude faster than the Gaussian sketch, with the

CountSketch being at least an order of magnitude faster than the SRHT. We

observe an expected constant factor scaling between the CountSketch and the

SJLT.

These results are to be compared with Figures 5.4 and 5.5 in which at

12.5% density we observed a wall clock time speedup of roughly 23.5 ≈ 11. The

discrepancy in the sketch time speedup factor compared to wall clock time

speedup is because the iterative updates coincidentally take time approximately

equal to that of a single CountSketch. Thus, the wall clock time for sparse

sketches is quite sensitive to the inner product update time, but this is essentially

negligible in comparison to the cost of 10 dense sketches. It is possible that

this could be alleviated by a gradient update that better exploits data sparsity.

Concretely, the total sketching time when using an SRHT is roughly 10×
1.75 × 10−2 secs. = 0.175 secs. meanwhile the total time to complete all ten

iterations of IHS roughly 0.1768 ≈ 2−2.5 seconds; the absolute difference of

these two numbers is 0.0018 secs. to perform all ten updates, about 1% of the

total wall clock time. On the other hand, sketching the sparsest data 10 times

with a CountSketch takes roughly 7.5× 10−3 secs. overall. However, the time

to complete all ten iterations of the IHS in this case is 2−6 = 0.015 secs., i.e.

roughly twice the cost of the overall time to sketch. This is illustrated by the

shortest bar in the leftmost pane of Figure 5.7. Overall, we see that updates

account for roughly half of the wall clock time for IHS with CountSketch versus

about 1% of the wall clock time for IHS with SRHT. This relationship is

illustrated in Figure 5.7 where we see that the updates can take a significant

fraction of the total time for sparse sketches, for instance almost half of the

total time at a density of 12.5% when using CountSketch, but are negligible

compared to the cost of all dense sketches.

Experiment 3: Sparsified data, test error compared to time (Equa-

tion (5.23)).

We additionally present some supplementary results regarding the test error

of the IHS model with different sketches. Although we do not have theory to

support this experiment, it is useful to consider how one might deploy such an
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Figure 5.7: Mean total sketch time (thin lines) and total update/gradient step
time (thick dashed lines) marked on different density data for sparse sketches
(left) and mean sketch time over all 4 densities for dense sketches (right). Note
the different y axis scale in each pane.

iterative method in comparison to sketch-and-solve. We measure the test error

approximation ratio

Test error approximation ratio =
‖Atestx̂− ytest‖2
‖Atestx? − ytest‖2

(5.23)

which is the ratio of testing errors when using the optimal weights x? or the

estimated weights x̂. When x̂ better approximates x? the approximation ratio

approaches 1. Indeed, the classical sketch-and-solve method with CountSketch

is fast, but has test error off by a factor of 2, meanwhile when using the IHS,

we see that, in general, test performance is improved as more iterations are

completed. Our approach of using the CountSketch in IHS is vindicated as

it obtains better test performance against time, consistent with Figures 5.4

and 5.5.

5.5 Conclusion

We have investigated sparse sketches for scalable regression when the aim is to

provide high-accuracy guarantees on the estimated weights x̂ compared to the

optimal weights x?. This was motivated by a weakness of the sketch-and-solve

method for prediction after the regression model is fit, as evidenced for the

CountSketch in Section 5.2. When comparing the Iterative Hessian Sketch

(IHS) method with all random projections, we saw little difference in terms of

error when using the optimal sketches (Gaussian,SRHT,SJLT) which suggested

that on the examples tested, the CountSketch outperformed its worst-case
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Figure 5.8: Test error approximation factor when using IHS

guarantees. When we studied the error performance over time, we saw that the

CountSketch yielded comparably accurate estimates to the optimal sketches in a

fraction of the time. Future investigation should study whether any guarantees

can be given using a projection dimension dependent on the Gaussian width of

the constraint set, rather than needing a full-subspace embedding.
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Chapter 6

Sketched Ridge Regression

The results of Chapter 5 are flexible and apply to arbitrary convex constrained

least squares problems. In this chapter we change direction and focus solely

on the widely-used variant of least squares known as Ridge Regression (RR).

Iterative Hessian Sketch (IHS) can be applied to ridge regression as it is a

regularised version of unconstrained regression. In contrast to the prior chapter

which focused on random projections, we have the following differences:

1. The sketching technique we study is the deterministic Frequent Directions

(FD) algorithm and thus our iterative scheme is entirely deterministic.

2. This algorithm operates only in the row-arrival version of the multi-round

optimisation model as defined in Definition 2.1.5.

3. Motivated by low-rank representations of large-scale data, the Frequent

Directions (FD) summary keeps fewer than d directions in contrast to

the randomised methods which keep at least d projections. FD has a

different guarantee than the subspace embeddings from Section 5.1.1, yet

we are still able to prove convergence.

4. We use a single sketch for all iterations rather than a new sketch for

every iteration. Hence, once the sketch is found, a pass over the data is

only needed for inner product queries, unlike the previous chapter which

needs to sketch and take inner products for every iteration.

These changes are motivated by the previous chapter which found that obtaining

the sketches was the most time-consuming part of the IHS. Thus, rather than

finding a random sketch that is fast and can directly slot in for slower sketches,

we will find a sketch that is more accurate but takes longer to obtain. Our

results will show that investing more time in the sketching part of the algorithm

is beneficial as we can use a single sketch for all iterates.1

1Single random sketch approaches are discussed in Section 6.1.1: Multi-Round Optimisa-
tion Model.
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Chapter Outline

The main contribution of this chapter is a deterministic approximate Newton

method for ridge regression. We use FD as a preconditioner so the working

space is O(md) space for m < d. These iterations are highly efficient, taking

only linear time rather than polynomial which results in a highly scalable

(nearly) linear time algorithm to achieve convergence. Our method is simple

to analyse and implement. We follow the outline given below.

• Section 6.1 formalises the problem and highlights the similarities and

differences from the previous chapter.

• Section 6.2 introduces the key tools that we need to establish our theory.

• Sections 6.3 and 6.4 provide proofs of correctness for our algorithm.

This is followed by time and space complexity analysis in section 6.5.

• Sections 6.6 and 6.7 presents an empirical investigation comparing

our approach to the methods established in the previous chapter.

6.1 Introduction

Our focus is Ridge Regression (RR) which has become a key tool in data

analysis. RR is as expensive as Ordinary Least Squares (OLS) to solve at

large-scale and in high dimensions. Ridge regression is most useful in the case

when d is relatively large as the regularisation term suppresses the magnitude

of the returned weights along some of the d components. This is beneficial as

if A has many small singular directions, then A>A could be close to singular.

Such behaviour can cause numerical instability in evaluating
(
A>A

)−1
which

is the key quantity for solving OLS as some of the components in the solution

weights can be arbitrarily inflated. Another interpretation of ridge regression

is to bias the solution weights in order to decrease the variance of predictions

on unseen test data.

Recall that for input data A ∈ Rn×d and γ > 0, ridge regression asks us to

find the weights:

x? = argmin
x∈Rd

f(x) (6.1)

f(x) =
1

2
‖Ax− y‖22 +

γ

2
‖x‖22 .

Solving (6.1) when n > d by the SVD (or other related decompositions) requires

O(nd2) time and O(d2) space to evaluate

x? =
(
A>A + γId

)−1
A>y. (6.2)
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We also have:

∇f(x) =
(
A>A + γId

)
x−A>y (6.3)

∇2f(x) = A>A + γId. (6.4)

Because ∇2f(x) is constant with respect to x we will henceforth take H =

A>A + γId so that computing ∇2f(x) for any x amounts to only needing

H. Again, recall that we need not materialise H, merely to understand its

action on vectors from Rd. We will assume that n > d and the input data has

rank (A) = d so that x? is uniquely defined.

The task is to find, or estimate x? = argminx f(x). The notion of ap-

proximation we adopt is under the Euclidean norm: for an estimate x̂ how

small can the solution error ‖x̂ − x?‖2 be made? We will repeatedly use

that for H = A>A + γId, ∇f(x) = H(x− x?) (Lemma 6.3.1) which trivially

follows from expanding the gradient term and invoking the normal equations

Hx? = A>y.

A crucial quantity in both solving and approximating RR is the Hessian2

matrix Hγ = A>A + γId. Obtaining Hγ costs O(nd2) time and O(d2) space

due to A>A. A large enough γ > 0 will bound all singular values of A away

from 0, so the input matrix is always full-rank. Thus, RR can be solved

using the same direct methods as OLS from Section 2.3.1. The same nuances

regarding the maintainence of Hγ by rank-one updates in O(d2) space and

O(nd2) time from Section 2.3.1 apply. In contrast, our iterative result obtains

‖x̂−x?‖2 ≤ ε?‖x?‖2 using a sketch with error parameter ε < 1 and has running

time O(log(1/ε?)nd/ε).

6.1.1 Related Work: Ridge Regression with Random Sketches

Sketch-and-solve Model

The sketch-and-solve analogues of the estimate weights are the ‘classical’

estimator

xC =
(
A>S>SA + γId

)−1
A>S>Sy (6.5)

or the Hessian sketch estimator

xH =
(
A>S>SA + γId

)−1
A>y. (6.6)

Both of these definitions are simply the ridge regression analogues of the

estimators defined in Equations 5.4 and 5.7. However, näıvely applying the

subspace embedding guarantees of Table 5.1 would require a projection di-

2Due to the fact it is the matrix of second derivatives of f(x) in (6.1) matrix. It is
composed of the data covariance A>A and a regularisation term γId.

139



mension m = Õ(dpoly log(d)) meaning that the space usage grows as Õ(d2)

for one-shot sketching. Thus, there is no asymptotic space benefit compared

to the brute-force outer product solver. Additionally, the quadratic space

dependence on d is problematic for high-dimensional data; this is a typical

use-case of ridge regression, unlike least-squares regression which is not suited

to large d. Although xC and xH can be computed quickly, they inherit the

coarseness of approximation that we observed of sketch-and-solve methods in

the previous chapter. Prior work using randomised sketch-and-solve methods

focus on estimating the objective function f(x) in small space. The space

bounds grow proportional to the statistical dimension of the problem which

can be significantly less than d [ACW17].

Definition 6.1.1 (Statistical Dimension). Let A ∈ Rn×d have rank d and sin-

gular values {σi}i=1:d. Suppose that γ > 0 is a ridge regression hyperparameter,

then the statistical dimension of A is

sdγ(A) =
d∑
i=1

σ2
i

σ2
i + γ

(6.7)

Increasing γ reduces the effect of more σ2
i so the problem becomes easier

as fewer directions are needed to describe the data when composed with the

diagonal term γId.

Multi-Round Optimisation Model

To combat the weak coarse bounds of one-shot algorithms, some prior work has

adopted multipass algorithms with running time growing as O(log(1/ε?)) rather

than poly (1/ε?) for ε? � ε. These algorithms are randomised approximate

Newton methods and can be thought of as being similar to the IHS of the

previous section [PW16, LP19, CYD18, ZMJ+13, WLM+17, PW17]. These

algorithms can give strong relative error guarantees such as ‖x̂− x?‖? ≤
ε? ‖x?‖? for ? ∈ {A, 2}. However, they need O(d) projections, resulting in a

summary of O(d) × d which is the same space footprint as sketch-and-solve

methods. Additionally, there is an O(d3) cost for SVD or related solver steps.

Such behaviour was seen in the prior section for the CountSketch but it remains

true of other random projections. Occasionally, this can be improved by keeping

summaries with m < d rows, but where this is possible, often a fresh sketch is

required for every iteration [PW16, CYD18]. Each of these issues could hinder

multi-shot iterative sketching for large-scale application.

Rather than using a fresh sketch for every iteration, some works have

studied Iterative Hessian Sketch (or related approaches [WLM+17]) using only

a single sketch [LP19]. One benefit of this approach is that it can be faster:

only one of the passes is needed to obtain a sketch. However, if only one
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sketch is used then either extra parameters need to be updated to make better

gradient steps or a step size needs to be tuned for optimum performance.

Unless parameters are correctly tuned, in practice, one may need to use a

larger sketch size in this setting than if a fresh sketch is used for every iteration

[WLM+17] which could increase the per-step solve time. Hence, we do not

regard this as a direct replacement for the multi-sketch version of IHS.

6.1.2 Related Work: FD and Ridge Regression

Frequent Directions

As described in Section 2.3.2, obtaining the SVD of Hγ would yield an optimal

preconditioner for RR. However, needing O(nd2) time, this is not a scalable

approach. Hence, it would be ideal to perform an online or streaming variant

of SVD keeping only the informative parts of the spectrum. Liberty introduced

Frequent Directions (FD) (Algorithm 1) for exactly this problem; to find a

matrix summary B ∈ Rm×d that well approximates the information one would

obtain from performing an SVD of A [Lib13].

Here, m � n and m � d so B can be used as a proxy for A with many

fewer rows. Choosing m = dk + 1/εe, which is slightly larger than a rank

parameter k, can yield an accuracy guarantee whose error bound decays with

‖A−Ak‖F . That is, the error term decays with the proportion of space not

represented in the top k components [GLP16]. Given that ridge regression is

useful when d is large, and large data can often be approximately low-rank

[UT19], FD is a natural candidate sketch for approximating ridge regression.

Further discussion surrounding Frequent Directions is given in Section 2.2.2.

As Hγ = A>A + γId is a fundamental operator in RR, one would hope

that FD can be used as the sketch here, rather than random projection. The

empirical findings of [GLP16] show that FD is much more accurate in estimating

A>A than random projections so we have cause for optimism. Nonetheless,

it is only relatively recent work of [SP21] that shows how FD can be used for

ridge regression. However, it remains the case that despite being a high-quality

sketch, FD is under-exploited in regression tasks. Our motivation is to better

understand how FD can be used in ridge regression. Prior work has failed to

address whether Frequent Directions can be used as a preconditioner for ridge

regression to yield highly accurate estimates with low time and space overhead?

Recall that the Frequent Directions guarantee of Theorem 2.2.1 is the

following. Let ∆k = ‖A−Ak‖2F and α = 1/m− k, if we use standard Frequent

Directions then α′ = α, however if using Robust Frequent Directions, α′ = α/2.

‖Ax‖22 − α
′∆k ‖x‖22 ≤

∥∥B̄x
∥∥2

2
≤ ‖Ax‖22 (6.8)
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where B̄ = B if the ‘standard’ Frequent Directions algorithm is used, or

B̄ = (B>B + δId)
1/2 if Robust Frequent Directions is used. Recall that δ is

adaptively chosen regularisation applied to every direction.

FD for Ridge Regression

As mentioned in the previous section, using random projections in the sketch-

and-solve model is typically used to find bounds on the objective function.

In contrast, recent work of [SP21] returns an estimate x̂ which satisfies a

coarse bound ‖x̂− x?‖2 ≤ ε ‖x?‖2 in O(d/ε) space. This is the first streaming

o(d2) space algorithm with a guarantee on ‖x̂− x?‖2. Let m = O(1/ε) < d

be the number of rows in (and the rank of) B = sketch(A). If the interplay

between the regularisation γ and the approximation error from FD are correctly

balanced, then x? can be reasonably approximated up to ε relative error. The

FD sketch is used by setting Ĥ = B>B + γId to approximate Hγ . It is also

shown that the action Ĥ−1 can be evaluated in O(md) space. Algebraically,

x̂ = Ĥ−1A>y using m = O(‖A−Ak‖2F /γε), which is a deterministic analogue

of the Hessian Sketch weights xH from (6.6).

In comparison to randomised methods, the number of rows in the sketch

grows according to O(1/ε) for ε accuracy. Although this improves upon the

O(1/ε2) rows needed for randomised sketches, it is still problematic if ε is very

small, say 10−8 or less. This is common if our estimate weights are required to

accurately describe the ‘true’ optimal weights as seen in the previous chapter.

This deficiency motivates our study of FD in the multi-round optimisation

model for an approximate Newton method.

6.1.3 Contributions

Before presenting our contributions, we first highlight shortcomings of previous

methods.

1. Section 5.4 showed that the most expensive part of an iterative method

was the sketching step.

2. Established iterative methods using randomised sketches need a fresh

sketch for every iteration (Section 6.1.1).

3. If only one sketch is used then we need to tune step size parameters or

use a Gaussian sketch and this is not suitable at large-scale.

4. Only coarse approximation guarantees have been established in using an

FD sketch.

Taken together, these four points motivate our contribution. Rather than

generating a fresh sketch for every step, we seek to only find one sketch.
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Although this could be an expensive upfront cost, if it is accurate enough

then there could be a deferred time benefit in how many gradient steps are

needed. Note that we do not measure the cost of revisiting the data, which

could be expensive. The prior work presented above fails to address these

criteria simultaneously.

We will devise an iterative scheme for which the coefficient error3 ‖x̂− x?‖2
can be made exponentially small. The iterations will use a preconditioner that

uses only O(md) space for m < d which is found by combining the Frequent

Directions (FD) algorithm (Algorithm 1) with the regularisation term. FD

returns B = UΣV> such that B>B = VΣ2V> is approximately A>A. The

structure of our approximate Hessian matrix B>B + γId permits small-space

inversion as we can consider the rank m space spanned by the sketch separate

to the remainder of the space. Consequently, inversion will only cost O(m) time

as the orthogonal matrices are self-inverse, so the only inverse that needs to be

taken is over Σ2 + γIm, this is much more scalable. Hence the approximate

inverse can be applied to a vector in O(md) time in comparison to O(d2) space

and O(d3) inversion cost if O(d) projections are used. Note that even though

FD uses the SVD, since the sketch dimension m < d, the time for an SVD is

quadratic in the sketch dimension m, not the feature dimension. Our technical

contribution leverages properties of the FD sketch to control the quantity∥∥∥Id − Ĥ−1H
∥∥∥

2
.

Our work is the first to give high-accuracy guarantees on the returned

solution vector. Although we are not the first to study FD in regression tasks,

prior work has different motivations and presents complementary results to

ours. For example, [Hua18] propose using FD for adversarial online learning

through an approximate Newton method. However, their application (and

hence guarantees) are much different from ours; no bounds on the solution

estimation ‖x̂− x?‖2 are provided.

1. We present a simple but novel analysis of Frequent Directions (FD) in an

iterative scheme for small-space and scalable sketched ridge regression.

Our approach obtains a strong relative-error approximation guarantee

to the optimal weights x?. After T iterations the estimate x̂ achieves,

‖x̂− x?‖2 ≤ εT ‖x?‖2. Our approach is entirely deterministic. The single-

pass approximation of weights using FD was given by [SP21] but this

does not obtain the exponentially decaying error over multiple rounds.

Hence our estimates are significantly more accurate, although, we need

O(log(1/εT )) gradient steps whereas their bound operates in a one-shot

model.

2. We obtain an O(md) sketch with m � d which “preconditions” the

3The switch from A-norm to Euclidean norm is deliberate.
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gradient descent so that convergence is rapid. As our summary is retained

in factored form, iterates are evaluated in linear time, roughly O(md),

which is substantially more scalable than the polynomial iteration time

complexities of [PW16, CYD18] or the typical O(d2) of preconditioned

gradient methods with randomised sketches [Woo14b, Section 2.6].

3. We vindicate our approach with empirical evidence, showing that despite

our sketch being more expensive to obtain, it yields estimates that

converge more quickly in number of iterations and wall-clock time.

6.2 Structural Properties of Ĥ

Rather than computing the exact Hessian matrix Hγ , we estimate it using the

FD sketch B. The estimated Hessian Ĥ = B>B+γId will be our approximation

to Hγ . Although our iterates in Algorithm 9 are written using Ĥ−1, this is

never computed explicitly and we only need its behaviour as an operator. We

defer discussing computation issues surrounding Ĥ−1 until Section 6.5. Before

giving the details of the iterative scheme, there are a few structural results

that describe the behaviour of Ĥ. To introduce these results, we first need to

understand order properties of symmetric positive definite matrices, known as

the Löwner Order.

A symmetric positive definite (s.p.d.) matrix X ∈ Rd×d is symmetric and

has all eigenvalues strictly bounded away zero on the positive side, written

X � 0. Positive definite means that u>Xu > 0 for all u nonzero. Applied to

covariance matrices of full rank, for example X = A>A this is equivalent to

‖Au‖22 > 0 for all u 6= 0d×1. The strictness of each of the above inequalities

can be relaxed to allow equality if we permit symmetric positive semi definite

matrices (spsd) For any two sp(s)d matrices we write X � Y if and only if

Y −X � 0d×d.

Some useful facts on the Löwner ordering are given below (see [Har],[DK06,

Appendix A]):

Fact 6.2.1. Let X,Y,Z be arbtitrary symmetric positive definite matrices.

The ordering takes place over the cone of s.p.d matrices where we write X � Y

iff 0 � X−Y.

1. If X � Y then ZXZ> � ZYZ>. In fact, this is an if and only if when

Z is of full rank.

2. Let λmin and λmax be the smallest and largest eigenvalues of X. Then

λminId � X � λmaxId.

3. If X � Y then Y−1 � X−1
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Under the Löwner ordering we recognise that Theorem 2.2.1 and Equa-

tion (6.8) are equivalent to the following relation which is the starting point of

our analysis.

A>A− α′∆kId � B>B � A>A (6.9)

6.2.1 Exploiting the Löwner Order for Ĥ

The Löwner properties from Fact 6.2.1 allow us to establish the following

spectral bounds between the approximate and true Hessians:

Lemma 6.2.1. Let A ∈ Rn×d, γ > 0 and Ha = A>A+aId. If γ′ = γ−s > 0,

then γ′/γHγ � Hγ′ � Hγ .

Proof. This proof builds upon the following simple scalar bound: if x ≥ 0 and

let t > s > 0, then

t− s
t

(x+ t) ≤ x+ t− s < x+ t.

The upper bound follows trivially since t− s < t. For the lower bound,

t− s
t

(x+ t) =
t− s
t

x+ (t− s)

≤ x+ (t− s)

since t−s
t < 1 and x ≥ 0. We apply this result to every entry on the diagonal

matrix Σ containing the squared singular values of A which yields:

γ′

γ
(σ2
i + γ) ≤ σ2

i + γ′ ≤ σ2
i + γ

so by applying Fact 6.2.1(1) above with Z = V

γ′

γ

(
VΣ2V> + γId

)
� VΣ2V> + γ′Id � VΣ2V> + γId.

Since VΣ2V> = A>A, we obtain γ′/γHγ � Hγ′ � Hγ as required.

We can combine the above result with the FD guarantee to obtain the

following corollary. This will be useful for later spectral analysis of the sketched

Hessian Ĥ.

Corollary 6.2.1. Let Hγ = A>A+γId and Ĥγ = B>B+γId. Then γ′/γHγ �
Ĥγ � Hγ and H−1

γ � Ĥ−1
γ � γ/γ′H−1

γ .

Proof. Let γ′ = γ − α′∆k > 0. After adding γId to all terms in (6.9) we have:

A>A + γ′Id � B>B + γId � A>A + γId.
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Algorithm 9: Iterative Frequent Directions Ridge Regression

Input: Data A ∈ Rn×d, targets y ∈ Rn, regularisation γ > 0, sketch
size m, num. iterations T ≥ 1, Method Sk ∈ {FD,RFD}

Output: Weights x̂ ∈ Rd
1 B, δ = Sk (A) . δ = 0 if Sk = FD is nonzero otherwise

2 Ĥ = B>B + (γ + δ)Id
3 x(0) = 0d
4 for t = 1 : T do

5 x(t+1) = x(t) − Ĥ−1
[
A>

(
Ax(t) − y

)
+ γx(t)

]
6 end

7 x̂ = x(t)

Applying this relation to the result of Lemma 6.2.1 obtains:

γ′

γ

(
A>A + γId

)
� A>A + γ′Id � B>B + γId � A>A + γId (6.10)

Finally, we can use the inverse rule Fact 6.2.1(3) above to obtain:(
A>A + γId

)−1
�
(
B>B + γId

)−1
� γ

γ′

(
A>A + γId

)−1
. (6.11)

6.3 Iterative Methods using Frequent Directions for

Ridge Regression

Much like in the Iterative Hessian Sketch models from Section 5.3, we will

refine an initial estimate of the weights to better approximate x?. This is done

via iterative gradient steps at the cost of further passes over the data. We will

argue that these gradient steps exploit second-order information yet are still

cheap to compute. Thus, our proposal (Algorithm 9) is an approximate Newton-

type algorithm that exploits scalable approximation to the Hessian Hγ . Our

approach is reminiscent of other iterative sketching algorithms [PW16, CYD18].

In common with them is that our summary B has o(d) rows, a substantial

saving over explicitly using the d× d size Hessian matrix, or the full subspace

embedding from Section 5.3. The structure of the sketched approximation Ĥ

avoids the O(d3) time cost for inversion due to the trick of [SP21] or Woodbury’s

Identity and their work can also be considered as one iteration of Algorithm 9.

To prove correctness of Algorithm 9 we closely follow typical proofs for gradi-

ent descent-type algorithms. We use Lemma 6.3.1 to express ∇f(x) = Hγ(x−
x?). Then we are able to analyse the sequence of iterates relative to their dis-

tance from x?. Crucially, we obtain x(t+1) − x? =
(
Id − Ĥ−1Hγ

) (
x(t) − x?

)
.
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Lemma 6.3.1. ∇f(x) = H(x− x?)

Proof. Follows directly from the normal equations Hx? = A>y:

∇f(x) = A> (Ax− y) + γx

=
(
A>A + γId

)
x−A>y

=
(
A>A + γId

)
(x− x?)

= H (x− x?)

where the penultimate equation is due to the normal equations:(
A>A + γId

)
x? = A>y.

A strength of our work is in the simplicity of its analysis as the main

result, Theorem 6.3.1, will follow a standard gradient descent-type proof. We

build upon Corollary 6.2.1 which argues that approximate Hessian has similar

spectral behaviour to the true Hessian. First, we represent the current iterate

x(t+1) as a function of the previous iterate’s distance from the optimal solution.

Lemma 6.3.2. The sequence of iterates {x(t+1)}i≥0 follows:

x(t+1) − x? =
(
Id − Ĥ−1H

)(
x(t) − x?

)
. (6.12)

Proof. Applying Lemma 6.3.1 to the iterates as defined in Algorithm 9, Line 5,

we obtain:

x(t+1) − x? = x(t) − x? − Ĥ−1H
(
x(t) − x?

)
which yields the claim after factorisation.

Taking the norm of both sides of Equation 6.12 and invoking submultiplic-

ativity we have
∥∥x(t+1) − x?

∥∥
2
≤
∥∥∥Id − Ĥ−1H

∥∥∥
2

∥∥x(t) − x?
∥∥

2
. The first 2-norm

is the spectral norm over matrices, while the second 2-norm is the Euclidean

norm over vectors. Hence, to show
∥∥x(t+1) − x?

∥∥
2
≤
∥∥x(t) − x?

∥∥
2

it suffices

to show
∥∥∥Id − Ĥ−1H

∥∥∥
2
< 1. Showing this amounts to manipulating the FD

guarantee of Theorem 2.2.1 alongside properties of the Löwner ordering given in

Fact 6.2.1. The starting point is to analyse the spectrum of Id−Ĥ−1Hγ . By mat-

rix similarity we instead analyse Id − Ĥ−1/2HγĤ
−1/2 but specifically need the

extremal eigenvalues of the auxiliary matrix E = Ĥ−1/2
(
A>A + γId

)
Ĥ−1/2.

Crucially, we show that all λi(E) ∈ [1, 1/1− q] where q = ‖A−Ak‖2F/(m− k)γ.

This implies that the largest distortion |1− λi(E)| occurs at |1− 1
1−q |.

Lemma 6.3.3. If 2α∆k < γ, then
∥∥∥Id − Ĥ−1H

∥∥∥
2
< 1
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Proof. Since Ĥ is positive definite it has a positive definite square root

R = Ĥ1/2. We pre and post multiply to obtain R(Id − Ĥ−1H)R−1 = Id −
Ĥ−1/2HĤ−1/2. Since Id− Ĥ−1H is similar to Id−E with E = Ĥ−1/2HĤ−1/2,

they share the same eigenvalues. Hence we must show ‖Id −E‖2 is no greater

than 1, specifically maxu |1 − u>Eu| < 1. Since E is spsd, we may use the

Rayleigh quotient characterisation of eigenvalues (cf. Section 5.1.3) and analyse

u>Eu. To do so, we need a few properties of the FD sketch. Let α = 1/m− k

and ∆k = ‖A−Ak‖2F . In Corollary 6.2.1 we showed that

A>A + (γ − α∆k)Id � B>B + γId � A>A + γId. (6.13)

Provided that γ > α∆kId, all of the above terms are strictly lower bounded

by 0d×d. This is equivalent to saying that all eigenvalues are positive, hence

the matrices are full rank and inverses are well-defined. Denote γ′ = γ − α∆k.

Corollary 6.2.1 shows that γ′/γ
(
A>A + γId

)
� A>A+γ′Id. Let q = α∆k/γ > 0

so that γ′/γ = 1− q. Invoking (6.13) we obtain the ordering:

(1− q)
(
A>A + γId

)
� B>B + γId � A>A + γId.

Now use Fact 6.2.1(1) on all three terms in the above ordering with Z = Ĥ−1/2,

noting that Z>HγZ = E. Again, since all of the matrices in question are

symmetric positive definite, they have unique symmetric positive definite

square roots so we are free to apply the Löwner multiplication order.

(1− q)Ĥ−1/2
(
A>A + γId

)
Ĥ−1/2 � Id

� Ĥ−1/2
(
A>A + γId

)
Ĥ−1/2. (6.14)

The above equation also implies that Ĥ−1/2
(
A>A + γId

)
Ĥ−1/2 � 1

1−q Id.

Hence, we also have

Id � Ĥ−1/2
(
A>A + γId

)
Ĥ−1/2 � 1

1− q
Id. (6.15)

The Löwner ordering also ensures that λmin(M)I �M � λmax(M)I. Hence,

we have shown that

λi(Ĥ
−1/2

(
A>A + γId

)
Ĥ−1/2) ∈

[
1,

1

1− q

]
. (6.16)

Finally, it remains to ensure that maxu |1− u>Eu| < 1. Since all λi(E) ≥ 1,

the largest displacement occurs at λmax(E). Therefore, q must be set so that∣∣∣1− 1
1−q

∣∣∣ < 1 that is,
q

1− q
< 1 (6.17)
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which occurs provided q ∈ (0, 1/2) and is thus satisfied by the assumption

2α∆k < γ as q = α∆k/γ.

Remark 6.3.1. We claim that the assumption on γ in Lemma 6.3.3 is valid.

Since m − k ≥ 1 the assumption asks that γ is some fraction of the tail or

residual of the mass. As ridge regression is intended to apply in the high-

dimensional setting with much redundancy in the feature space, it is typical to

assume that the regularisation exceeds the tail in such a fashion.

Recall that for convergence we required ‖Id−Ĥ−1H‖2 < 1 which is satisfied

provided |1− 1
1−q | < 1. Hence, we need q < 1/2 which is true by the assumption

of Lemma 6.3.3. The preceding result can be used iteratively. In summary, the

following theorem establishes that choosing γ > 2α∆k ensures the distance

from x(t+1) to x? is at most an α∆k/γ factor smaller than that of x(t) to x?.

The convergence theorem we present follows by combining all of the pieces we

have established above.

Theorem 6.3.1. Let b ∈ (0, 1/2) and suppose that α∆k = bγ. Running t+ 1

steps of Algorithm 9 with Frequent Directions satisfies

∥∥∥x(t+1) − x?
∥∥∥

2
≤
(

b

1− b

)t+1

‖x?‖2 (6.18)

Proof. Let β = q/1− q as in Equation (6.17) and γ′ = γ − α∆k. Hence, β =

α∆k/γ
′. Assuming that α∆k = bγ so γ′ = (1−b)γ means β = b/1− b. Since b <

1/2 we have α∆k < γ/2 hence Lemma 6.3.3 establishes that
∥∥∥Id − Ĥ−1H

∥∥∥
2
≤ β.

Thus;
∥∥x(t+1) − x?

∥∥
2
≤ β

∥∥x(t) − x?
∥∥

2
. By induction, we can iterate this

argument to obtain
∥∥x(t+1) − x?

∥∥
2
≤ βt+1 ‖x?‖2 which follows by recalling

that x(0) = 0d.

Theorem 6.3.1 demonstrates that convergence is governed by an interplay

between the regularisation parameter and the tail of mass. Let β = b
1−b so

that β = α∆k/(γ − α∆k). When β is smaller, descent is faster. Hence, we can

understand the tradeoff between regularisation and sketch accuracy necessary

for convergence. Decreasing β can be achieved by increasing γ or by reducing

α∆k. The former regularises the data more (less importance is placed on the

observed data) while the latter is equivalent to choosing a greater sketch size.

For example, taking b = 1/4, Theorem 6.3.1 yields γ = 4α∆k so β = 1/3 &

the error decreases by (at worst) a factor of 3 each iteration.

Remark 6.3.2. Although ‖A−Ak‖2F may not be known (or cannot be estim-

ated) in advance, setting k = 0 amounts to taking b = ‖A‖2F/mγ, but this may

be too pessimistic in practice: ‖A‖2F can be maintained in small space while

observing the stream.
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6.4 Improving Convergence with Robust Frequent

Directions

While the assumption of 2α∆k < γ in Theorem 6.3.1 is valid, it would be

preferable to weaken this constraint. Indeed, this is possible due to the improved

sketch quality of Robust Frequent Directions. Theorem 6.4.1 weakens the

assumption of 2α∆k < γ to ask for α∆k < γ, while simultaneously improving

the rate of convergence from b/1− b to b/2− b. Recalling the previous example

of taking b = 1/4, this is an improvement from β = 1/3 by Theorem 6.3.1 to

β = 1/7.

We can slot the robust variant of FD into the iterative framework. The

proofs follow on as before with a mild adjusting of the constants. Again,

the key technical detail is, for Ĥδ,γ = B>B + (δ + γ)Id, establishing that

‖Id − Ĥδ,γH‖2 < 1. The improvement in using RFD is that we can weaken

the hypothesis necessary for the result.

Lemma 6.4.1. If α∆k < γ, then
∥∥∥Id − Ĥ−1

δ,γH
∥∥∥

2
< 1

This proof follows the same outline as for Lemma 6.3.3 except we can

leverage the improved RFD guarantee.

Proof. We follow the proof of Lemma 6.3.3 almost exactly but with the fol-

lowing modifications. In Equation (6.13) we use the improved RFD guarantee

(Theorem 2.2.1) which tightens (6.9) to

A>A +

(
γ − α∆k

2

)
Id � B>B + γId � A>A + γId.

Then take γ′ = γ − α∆k/2 and q = α∆k/2γ. Hence, γ′/γ = 1− q as before. As

in (6.17), we require q/(1 − q) < 1 so q < 1/2. By assumption α∆k < γ as

q = α∆k/γ so q < 1/2 is satisfied.

Due to the theory established for Theorem 6.3.1, we can essentially repeat

the proof, adjusting for the necessary constants which arise due to using the

RFD sketch B>B + δId instead of B>B.

Theorem 6.4.1. Let b ∈ (0, 1) and suppose that α∆k = bγ. Algorithm 9 with

Robust Frequent Directions satisfies
∥∥x(t+1) − x?

∥∥
2
≤
(

b
2−b

)t+1
‖x?‖2.

Proof. Same proof as Theorem 6.3.1 except noting that the choice of q is
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different due to Lemma 6.4.1, then β = q/1− q reduces to β = b/2− b

β =
q

1− q

=
α∆k/2γ

(2γ − α∆k)/2γ

=
α∆k

2γ − α∆k

=
b

2− b
.

6.5 Time and Space analysis of Algorithm 9

We recall the following notions that should help understand the computational

benefit of using Algorithm 9. The gradient ∇f(x) ∈ Rd and can be computed

in O(nd) time. This is done by applying A>A + γId through matrix-vector

products, evaluated from right to left to avoid the matrix-matrix multiplication.

Since we operate in the multi-round optimisation model (Definition 2.1.5),

we can think of the gradient steps as simple passes through the dataset.

Alternatively, in the distributed setting this may be thought of as many

parties sending the coordinator their local part of the gradient vector which

are centrally summed to obtain the full gradient. Algorithm 9 complements

both of these perceptions. In the single-party setting we think of a user as

passing over the data once to sketch the data and any other passes are for

gradient evaluations. In the multi-party setting, one round is taken for all

parties to communicate local O(md) sized sketches of their data. Thanks to

the mergeability of FD, the coordinator can merge the sketches to obtain one

global sketch. Any further rounds of communication only require the parties

to send local gradients as is the case for gradient descent.

If the iterations x(t+1) = x(t)−Ĥ−1∇f(x(t)) are performed näıvely, then we

will use space O(d2), which is no better than a brute force solve, and need time

O(nd+d2) per update step. The following lemma shows that the iterations can

be performed in time O((n+m)d) time while using only O(md) space. Since

m� d, n this can be a huge saving, meaning that we get to use approximate

second-order information for almost the same cost as evaluating a gradient.

The idea follows by recalling that FD maintains B = UΣV> in factored form,

so we can cleverly distribute these orthonormal bases and diagonal matrices

out of the inverse after applying the Woodbury matrix identity. Each of these

matrices has size U ∈ Rm×m,Σ ∈ Rm×m and V ∈ Rd×m. This approach

means we never exceed space O(md) for m < d and any matrix inverses are

either over diagonal or orthogonal matrices. This was originally observed by
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[SP21] and we combine their result with the iterations to obtain the necessary

time/space guarantees of our algorithm.

Lemma 6.5.1.(
B>B + γId

)−1
=

1

γ
Id −

1

γ
B>(BB> + γIm)−1B

Proof. First note that

(
B>B + γId

)−1
=

1

γ

(
B>B

γ
+ Id

)−1

. (6.19)

We apply the Woodbury matrix identity

(I + UV)−1 = I −U (I + VU)−1 V

to
(
B>B
γ + Id

)−1
with U = B>/γ and V = B. This achieves

Id −
1

γ
B>(

1

γ
BB> + Im)−1B.

Bringing the 1/γ term into the inverse term yields

Id −B>(BB> + γIm)−1B

which after premultiplying by the 1/γ factor from (6.19) achieves the claim.

Lemma 6.5.2. The iteration x(t+1) = x(t)− Ĥ−1∇f(x(t)) can be implemented

in O((m+ n)d) time and O(md) space.

Proof. Let B = UΣV> be the m× d FD sketch of A ∈ Rn×d. The same proof

holds for RFD except we have to account for the extra regularisation parameter

δ that is applied to each of the directions in the sketch (see Algorithm 1). This

is easily accounted for by resetting γ ← γ + δ.

Note that U ∈ Rm×m and V> ∈ Rm×d have orthonormal columns. Then

we apply Lemma 6.5.1 on Ĥ−1 to obtain:

Ĥ−1 =
1

γ
Id −

1

γ
B>(BB> + γIm)−1B

after which using the SVD B = UΣV> results in

Ĥ−1 =
1

γ
Id −

1

γ
V>ΣU>(UΣ2U> + γIm)−1UΣV>.

Orthonormality of U then gives

Ĥ−1 =
1

γ
Id −

1

γ
V>(Σ2 + γIm)−1Σ2V>
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where the two factors of Σ have been consolidated to the right of the inverse

term as diagonal matrices commute. This allows us to use (Σ2 + γIm)−1Σ2 =

Im − γ(Σ2 + γIm)−1. Consequently,

Ĥ−1 =
1

γ
(Id −VV>) + V(Σ2 + γIm)−1V>.

First, obtaining (Σ2 + γIm)−1 is O(m) time so it can be evaluated once

and stored at an extra O(m) space cost which is negligible compared to

everything else we store. The matrix-vector product V>u is O(md) time

for every u. Hence, V
[
(Σ2 + γIm)−1(V>u)

]
takes O(md) time. Similarly,

evaluating 1/γ(Id − VV>)u can be separated so that it only costs O(md).

Obtaining the gradient vectors ∇f(x(t)) always costs O(nd) time. However,

the above argument shows that applying Ĥ−1 to vectors costs only O((n+m)d)

time to apply to gradients rather than the näıve O(d2) time.

Remark 6.5.1. Although the proof of Lemma 6.5.2 is simple, the key property

we exploit from FD is that it is stored in factored form. This means that the

Woodbury identity manipulation essentially comes for free. The same property

is not true of randomised linear transforms which store B = SA explicitly and

then need to evaluate an SVD at a cost of O(mdmin(m, d)) before decomposing

as for the above result.

The above analysis leads us to the following theorem:

Theorem 6.5.1. Let A ∈ Rn×d,y ∈ Rn denote the input to the ridge regression

problem with a hyperparameter γ > 0. If the frequent directions sketch satisfies

the requirements of Theorem 6.3.1 or Theorem 6.4.1, then the running time of

Algorithm 9 for T iterations is O(Tnd/ε).

Proof. This immediately follows from the assumption on the sketch size from

Theorems 6.3.1 and 6.4.1 which, for a constant ε needs a sketch size m = O(1/ε).

Hence the sketch time for Algorithm 1 is O(nd/ε) which we only need once.

Lemma 6.5.2 demontrates that one iteration costs O((n+ 1/ε)d) and we need

T such iterations to achieve a relative error ‖x̂− x?‖2 ≤ εT ‖x?‖2. Combining

these two costs achieves the stated claim.

This is nearly linear time because the T/ε constant is small in comparison

to n and d. As ε is chosen to be a small but non-negligible constant (e.g., 1/2)

the term 1/ε is not too large. Although the number of iterations that we choose

to perform is dependent on the desired accuracy of εT , one can show that if

we need a solution of accuracy εT = ε?, then T grows slowly as O(log(1/ε?)).

This would result in a running time of O(ε−1 log(1/ε?)nd) for ε? accuracy by

using an ε-accurate (R)FD sketch of size m = O(1/ε)× d.
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6.6 Synthetic Data: Error & Sketch Size

Our aim in this experiment is to understand how the regularisation γ and

sketch size interact in accordance with Theorems 6.3.1 and 6.4.1. We test the

pessimistic setting when nothing is known a priori about the data spectrum.

This corresponds to setting k = 0 in the FD bounds so Theorem 2.2.1 gives

an error of α∆k = ‖A‖2F/m. For such k, Theorem 6.3.1 ensures convergence

provided that 2‖A‖2F/m < γ. This understanding is necessary as the best k

may not known in advance, so a user needs to understand how to set the

regularisation γ for good model performance. Similarly, it is more likely that

a user has a fixed space budget and wants to understand the range of γ for

which their sketch yields a good model, rather than fixing a γ and then solving

for the optimal projection dimension.
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Figure 6.1: Relative error ‖x̂− x?‖2 / ‖x?‖2 plotted on a log scale against the
number of iterations for various choices of γ = 2a‖A‖2F /m with a ∈ {−1, 0, 1, 2}.
Left hand plot has R = 0.1d and right hand plot has R = 0.5d. Frequent
Directions is plotted in dashed lines and Robust Frequent Directions is in solid
lines. Note the different scales on left and right hand plots.

6.6.1 Experimental Setup

We repeat the following process over 10 independent draws of random synthetic

data with the mean results being reported. We report the Euclidean error

between the estimated weights x̂ after the iterations are completed and the

optimal weights x?, measured as ‖x̂− x?‖2 / ‖x?‖2. We generate a synthetic

dataset (as described below) with n = 215 and d = 212 with an effective rank

of R = rd to ensure that most of the signal is captured on roughly the top

r% of the directions and the remaining (1 − r)% being noise. To simulate

approximately low-rank data, we choose r = 0.1 to enforce redundancy in the
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feature space so that a summary with fewer than d rows can be maintained.

For higher rank data, we also test r = 0.5 to see how the methods compare

when there is less redundancy in the feature space. Algorithm 9 is implemented

with both FD and RFD used as the sketch with a projection dimension of

m = 300. We then fix a γa = 2a‖A‖2F /m for a ∈ {−1, 0, 1, 2} and perform 5

iterations using Section 6.5 for efficient updates in the gradient step.

This experiment is vital in order to verify our theory. One might ask

how the accuracy behaves as the sketch dimension m varies. As γ and m

are inversely related in Theorems 6.3.1 and 6.4.1, varying γ for a fixed m is

equivalent to varying m for a fixed γ.

Ridge Regression Synthetic Data

We adopt the synthetic dataset found in Section 4 [SP21]. The effective

dimension R = br · d + 0.5c is chosen for r ∈ {0.1, 0.5}. This is used to

set the number of nonzero indices in the ground truth vector x0 and the

number of standard deviations for the multivariate normal distribution used

in generating A. The first R components of x0 are sampled from a standard

normal distribution and the remainder are 0; x0 is then normalised to unit

length. The samples (rows) Ai are generated by a normal distribution with

standard deviation exp(−(i− 1)2/R2) for i = 1 : n. Finally, we rotate A by a

discrete cosine transform. We sample noise a noise vector ε with εi ∼ N
(
0, 22

)
and set y = Ax0 + ε.

6.6.2 R = 0.1d

The results for R = 0.1d are reported in the left-hand pane of Figure 6.1. In

accordance with Theorems 6.3.1 and 6.4.1 we observe convergence when γ is

sufficiently large. Recall that from Theorem 6.3.1, convergence is governed

by the parameter β = α∆k/γ − α∆k which in our experimental setup has k = 0

so α = 1/m and ∆k = ‖A‖2F . Hence, β = ‖A‖2F/mγ − ‖A‖2F so increasing γ has

the effect of reducing β. This explains why performance improves for larger

γ. Thus, for a fixed projection dimension m, we expect faster convergence

when γ is increased and this behavior is borne out in the plots. Denote

γa = 2a ‖A‖2F /m. Our theory for FD could be a little weak as we observe

convergence (albeit slow for small γa) across all γa, even if it lies outside of the

hypothesis range of Theorem 6.3.1.

When RFD is used, the general trends exhibit the same properties in that

as γa increases, convergence speed is improved. For all a ≥ 0, convergence is

reported in line with the theory as Theorem 6.4.1 only ensures convergence

provided that ‖A‖2F/m < γ and clearly γ−1 < ‖A‖2F/m. Additionally, and as

expected from the theory, we see constant factor improvement in the accuracy
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Sketch Method a
−1 0 1 2

FD 4.97× 10−3 1.76× 10−4 7.32× 10−6 3.52× 10−7

RFD 7.12× 10−4 1.79× 10−5 4.82× 10−7 1.53× 10−8

Error Ratio
FD/RFD 6.97 9.86 15.2 23.0

Table 6.1: Relative error (‖x̂− x?‖2 / ‖x?‖2) comparison of iFDRR after 5
iterations on synthetic data with effective rank R = 0.1d using Frequent
Directions (FD) and Robust Frequent Directions (RFD). The error when using
FD is consistently larger by a factor of roughly 7 to 23. The parameter a is
used for regularisation γa = 2a ‖A‖2F /m.

‖x̂− x?‖2/‖x?‖2. This is difficult to see on the plots as they are plotted on a

log10 scale, but inspecting the raw errors after 5 iterations we see that FD is

consistently more than a factor of 5 less accurate than RFD for R = 0.1d, as

described in Table 6.1. This disparity increases as a increases, reaching roughly

23 at a = 2.

6.6.3 R = 0.5d

In the right-hand pane of Figure 6.1 the effective rank R is increased from

0.1d to 0.5d and a mild change in behaviour is elicited. The error profile is

still consistent with our theory as we observe convergence, but it is noticeably

slower. For γ2, a weaker relative error on the order of 10−5 after 5 iterations is

obtained, compared to error of 10−8 when R = 0.1d. In general, each of the

iterates is at least a factor of 10 less accurate at this effective dimension. This

discrepancy can be put down to the sketch being less accurate as a smaller

proportion of the directions are well-approximated, so not as much progress

is made in each step. As before, we see a constant factor improvement in

using RFD, but it is much milder than in the case R = 0.1d, as FD remains

consistently only a factor of 1.5 less accurate than when RFD is used. The

results are presented in Table 6.2.

6.6.4 Conclusions

We verified Theorems 6.3.1 and 6.4.1 showing that convergence is improved

when either of γ or m is increased. The theory might be a little pessimistic as

we observed convergence when the regularisation was outside of the hypothesis

range of Theorem 6.3.1. Otherwise, expected behaviour was reported.
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Sketch Method a
−1 0 1 2

FD 1.11× 10−1 3.69× 10−3 1.20× 10−4 3.83× 10−6

RFD 7.08× 10−2 2.32× 10−3 7.49× 10−5 2.38× 10−6

Error Ratio
FD/RFD 1.57 1.60 1.60 1.60

Table 6.2: Relative error (‖x̂− x?‖2 / ‖x?‖2) comparison of iFDRR after 5
iterations on synthetic data with effective rank R = 0.5d using Frequent
Directions (FD) and Robust Frequent Directions (RFD). The error when using
FD is consistently larger by a factor of roughly 1.5 ∼ 1.6. The parameter a is
used for regularisation γa = 2a ‖A‖2F /m.

6.7 Real Data Experiments

We now explore how the results of Theorems 6.3.1 and 6.4.1 manifest on real

data. Additionally, we implement the Iterative Hessian Sketch (IHS) of the

previous section and a variant of IHS using only one sketch. The latter is to

investigate a compromise between our algorithm, iFDRR Algorithm 9, which

uses only one deterministic sketch, and the standard IHS algorithm which uses

a new sketch for every iteration.

6.7.1 Experimental Setup

We illustrate results on two datasets (CoverType [AN07] & w8a [CL11]) over 5

independent trials. Each trial is completed with a uniformly randomly chosen

subset of n = 20, 000 data points. On the CoverType dataset, there are 54

columns over which we generate polynomial features of size
(
d+2

2

)
≈ 1540. We

use the RBF sampler to approximate the Gaussian kernel with 2500 features

for the w8a dataset with a variance parameter of 10−4. This setup is to

demonstrate that the method behaves similarly on different feature maps

rather than arguing in favour of either feature map. Indeed, this is to be

expected as we have made no assumptions over the feature space.

For all of these experiments, we take A to be the featurised dataset,

γ = ‖A‖2F/m and m = 300. Note that this is more optimistic than the set

of permissible γ when using FD Theorem 6.3.1, but is acceptable for RFD

(Theorem 6.4.1). Nonetheless, we find that using this value of γ does not

inhibit the performance of Algorithm 9 with FD.

Competing Methods

We use 3 methods to approximate Hγ :

1. Deterministic: our proposal of using Algorithm 9 with (R)FD;
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2. Iterative (Single) Hessian sketch [LP19]: generates a single random sketch

to perform all of the iterations from line 5 of Algorithm 9;

3. Iterative (Multi) Hessian sketch [PW16]: generates a fresh random sketch

to perform all of the iterations from line 5 of Algorithm 9.

The multiple sketch version of Iterative Hessian Sketch is the same as

introduced in Section 5.3; we implement it with the CountSketch and SRHT.

Additionally, we also test this setting with the SJLT which, recall from Sec-

tion 5.1.1 provides a compromise between the sparsity of the CountSketch and

the optimal embedding dimension of the SRHT. We will refer to all methods

tested in this regime as IHS:sketch where sketch is a random projection. The

SJLT is implemented with 5 nonzeros per column to show a clear tradeoff

between the aforementioned sketches rather than being chosen optimally. Not-

withstanding computational issues, iterates from the IHS method with a fresh

sketch are of the form

x(t+1) = x(t) − (Ĥ(t))−1∇f(x(t)).

The primary interst of this experimental section is to validate the perform-

ance of the (robust) Frequent Directions algorithms in the iterative setting.

Recall that at a high level, Algorithm 9 first sketches the data and secondly

performs all iterations using a single sketch. Therefore, we perform the same

process but with a CountSketch and an SRHT. All of these methods are ‘single

shot’ iterative methods as we only use one sketch: Theorems 6.3.1 and 6.4.1

govern convergence for the (R)FD methods, but the picture isn’t as clear for

single-shot iterative scheme and is included only for comparison. It can be

shown that for a Gaussian sketch, if one tunes the step size correctly then a

single sketch can be used [LP19], however, we would prefer to avoid parameter

tuning, as discussed when introducing gradient descent in Section 2.3.2. Hence,

we only use unit-step size for the randomised, single-sketch version of IHS.

Moreover, [LP19] only includes analysis for the unscalable Gaussian sketch.

Nevertheless, as FD only has meaningful guarantees when m < d, we will

test all methods at the same projection dimension of m. As this setup is useful

when data is approximately low rank, we still expect the randomised methods

to perform well if m is sufficiently large. This could be formalised by analysing

the results of [PW16, CYD18] with the stable rank (and related statistical

dimension Definition 6.1.1) results of [CNW16]. However, such guarantees are

implicit in those works so we will assume that using these randomised methods

may converge if the sketch size and/or regularisation is appropriately set. In

contrast to the previous experiments of Section 5.4 we will always maintain the

same sketch dimension to ensure a straight comparison between deterministic
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and randomised sketches in the same framework at the same dimension.

Experimental Summary

In summary, we test CountSketch, SJLT, SRHT in the standard multiple sketch

version of IHS. In the single sketch version of IHS (akin to our Algorithm 9) we

use random projections CountSketch, SRHT and deterministic methods Robust

Frequent Directions (RFD) and Frequent Directions (FD). All methods use

a projection dimension of m = 300. The deterministic methods use T = 15

iterations and the randomised methods use T = 45 iterations, irrespective of

the single/multiple version of IHS employed. Experiments were run 5 times

with the mean results being reported in the plots.

Computational Issues Regarding Updates

As we will be interested in the time that all of these methods take, we need

to establish how best to separate the build and update costs. Recall that a

sketch B ∈ Rm×d of the data A ∈ Rn×d is evaluated. If the sketch method

is either of robust or standard Frequent Directions, then B is stored in its

SVD form. Otherwise, if the sketch method is a random projection then

B = SA. Algebraically, we estimate the Hessian H = A>A + γId through an

approximation of the covariance matrix A>A by B>B, albeit the latter is not

materialised explicitly. Recall that the iterations for all methods are of the

form:

x(t+1) = x(t) − Ĥ−1
∗ ∇f(x(t))

which can be implemented more stably by the two updates:

Ĥ∗z = −∇f(x(t)) (6.20)

x(t+1) = z + x(t). (6.21)

Note that because we will project to m < d directions, (6.20) can be efficiently

solved by the same method of Section 6.5 if the sketch is (R)FD or a random

projection. For single-sketch methods, we evaluate a single approximation

Ĥ∗ = Ĥ while for multi-sketch IHS, we need Ĥ∗ = H(t) for every iteration t.

Thus, there is a slightly different time cost to measure in each setting.

1. Single sketch

(a) Obtain the sketch B and compute its SVD.

(b) Use the SVD of B for every iterative update/solve from (6.20) as in

Section 6.5.

2. Multi sketch
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Figure 6.2: Total sketch build time: CoverType. Black dashes indicate multiple
rounds of sketching, rather than just one.

(a) Obtain the sketch B

(b) For every iteration, evaluate the SVD of B and use it to solve (6.20).

We can clearly see a distinction that needs to be treated carefully. The SVD is

computed for every iteration of multi-sketch IHS at a cost of O(m2d) per update.

This could aggregate substantially as O(Tm2d) for T steps and adversely affect

the wall-clock time. Although the sketching time of FD can be larger than

the sparse methods, it has a linear iteration time (Lemma 6.5.2), rather than

quadratic in m. Thus we need to understand the tradeoff between an expensive

initial sketch with cheap linear iterations versus sketches that are fast to obtain

but can have iteration times growing with O(m2d).

6.7.2 Experiment 1: Sketch Build Time. Figures 6.2 and 6.3

We measure how long it takes to build or initialise the sketches used for the

iterative update (6.20). In the single sketch models, this is the time to build

one sketch S and perform an SVD of that sketch. Note that the SVD is free for

(R)FD as it is stored in factored form, whereas for the randomised methods it

must be computed after the sketching operation. Since m < d, the SVD costs

O(m2d). The time costs to build a sketch of size m are O(ndm) for (R)FD,

O(nd log n + m2d) for the SRHT and O(nnz (A) + m2d) for a CountSketch.

Thus the build time for the IHS methods should be T times the cost of building

one random sketch (without the SVD cost).

In Figure 6.2 we present the findings of the CoverType dataset. In summary,

we find that the CountSketch random projection is fastest, taking about 0.2

seconds to return a single sketch and its SVD. Next fastest is the single

SRHT method needing roughly 1.2 seconds. We find that obtaining T = 45
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Figure 6.3: Total sketch build time: w8a. Black dashes indicate multiple
rounds of sketching, rather than just one.

CountSketches S(t)A took about 5 seconds. This is faster than evaluating

a single deterministic sketch of FD or RFD type, both needing on average

roughly 12 seconds. On the other hand, the IHS:SJLT and IHS:SRHT were

slowest, needing about 20 and 50 seconds to obtain all 45 sketches on average.

From this perspective, our introduction of CountSketch into the (multi-shot)

IHS model from Section 5.3 again appears vindicated, assuming there is no

significant drop in accuracy.

We find a similar conclusion for the w8a presented in Figure 6.3. Namely,

the single random projections are fastest, followed by the IHS:CountSketch.

Next are both deterministic methods which take longer than IHS:CountSketch

but less time than IHS:SJLT. Both multi sketch methods take a constant factor

longer than their single sketch counterparts, as expected. In all settings we

see that the (R)FD methods take a strong constant factor longer than the

single-sketch randomised methods to sketch the data. In particular, the time

cost is one the order of tens of seconds for (R)FD rather than the random

projections which takes on the order of seconds. The time difference between

deterministic methods and the multi-sketch models is less severe and these

methods take roughly comparable time, with the exception of IHS:SRHT which

is comfortably the slowest.

6.7.3 Experiment 2: Update Time. Figures 6.4 and 6.5

We report the times taken to evaluate the update step in our algorithm Line 5,

x(t) = x(t)− Ĥ−1∇f(x(t)) using all of the methods. When using a single sketch

our expectation from Lemma 6.5.2 and Theorem 6.5.1 is that the iteration time

cost using iFDRR with either (R)FD or the two random sketches should scale

approximately linearly in the input parameters O(ndm) as per Lemma 6.5.1.
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Figure 6.4: Update time: CoverType. Note the different y axis scales.

Since the FD sketch is stored in factored form, we do not perform any expensive

matrix operations after obtaining the sketch. The inverse is easily computed

and hence the updates can be performed in close to linear time. On the other

hand, the updates when using the multiple sketch IHS needs a new SVD after

obtaining the sketch so the time for the updates should scale as O(m2d+ndm).

Figures 6.4 and 6.5 do not include the sketching time, only the time take to

evaluate (6.20) efficiently and then the update (6.21).

Note that even on this small-scale data we can see separation between the

single sketch methods and the multi sketch methods as shown in Figure 6.4.

The single sketches take on average about 0.06 seconds on average, which is

irrespective of the sketch employed, as expected. Meanwhile, the multiple

sketch framework takes about 0.4 seconds, again almost independent of the

type of sketch used. Thus, one can see that due to needing a fresh sketch at

every stage, the increased cost of needing an SVD at every iteration could

become prohibitive. This behaviour is consistent on the w8a dataset as shown

in Figure 6.5 in that we see the expected separation between single and multi

sketch frameworks. In both datasets, there appears to be roughly a factor 6

more time needed per iteration to evaluate the update x(t+1) from x(t) which is

explained by the extra SVD step when using a fresh sketch for every iteration.

6.7.4 Experiment 3: Error vs iterations and time. Figures 6.6

and 6.7

Recall that T = 15 iterations were executed using the deterministic sketches

of FD and RFD whilst T = 45 iterations were completed for all randomised

methods. The reason for this is clearly illustrated in Figures 6.6 and 6.7 where
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there is clear separation between the deterministic sketches and the randomised

counterparts.

Experiment 3a: Error vs iterations (left hand panes of Figures 6.6

and 6.7)

In both plots, the first point to take away is that both randomised single sketch

methods diverge at a sketch dimension of m = 300. Thus, although the speed

of using a single random sketch is attractive, it is not accurate compared to

all other methods. We see that the accuracy of the deterministic methods is

very good; a strong relative error of 10−13 is achieved in at most 15 iterations

for both CoverType and w8a. This is roughly 7 orders of magnitude more

accurate than all multi sketch randomised approaches after 15 iterations for

CoverType and almost 10 orders of magnitude more accurate on the w8a. The

multi-sketch setups converge very slowly towards the optimum in comparison

to the deterministic methods, as illustrated by the flatter gradient of their

error profiles. Consistent with Section 6.6 and Theorems 6.3.1 and 6.4.1, the

performance of RFD is slightly better than using FD, but this difference is

marginal compared to the advantage of using the deterministic sketches over

any of the randomised methods. Nonetheless, the deterministic methods use

roughly 3 times fewer iterations to approach high accuracy compared to the

multi sketch IHS methods.

Experiment 3b: Error vs time (right hand panes of Figures 6.6

and 6.7)

The real win of using FD and RFD is presented in the error-time profiles.

From Figures 6.2 and 6.3 we saw that the build time of FD and RFD was

substantially higher than the randomised single-sketch methods, however they

had poor accuracy. On the other hand, the build time for a single deterministic

sketch was comparable (or better) than that to obtain T random sketches for

IHS:sketch. Coupled with the improved update times of Figures 6.4 and 6.5,

we need to understand whether the extra time invested in generating the sketch

was worthwhile when comparing error versus time.

The time required for convergence of FD is a factor of at least 2 less

than IHS:SJLT &, IHS:SRHT on both CoverType and w8a. Although the

deterministic methods are slightly slower than IHS:CountSketch, they remain

within a factor of 1.5 of the overall time taken for IHS:CountSketch to achieve

the same accuracy: roughly 9 vs. 12 seconds on CoverType and 12 vs 17 on

w8a. This is done using a fraction of iterations as seen in the previous analysis.

The error profile using (R)FD can be attributed to a much more accurate

sketch: as seen in Figures 6.6 and 6.7, on both datasets, essentially all of the
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time cost has been invested in obtaining a high quality deterministic sketch.

This is represented by the nearly horizontal grey and black lines with no

markers, indicating that no steps have been taken. However, once the sketch

is obtained, descent to the optimal solution is rapid both in time because of

the fast updates seen in Experiment 2, but also because only a small number

of steps after sketching are necessary, indicated by the near vertical lines.

The same property is not true of the randomised methods which obtain a

weaker sketch more quickly, but they make far less progress per step. In

comparison, the shallow initial gradient of all IHS approaches only steepens

after many iterations. Despite the speed of IHS:CountSketch, it needs nearly

three times many iteration rounds to achieve the same accuracy in only a

marginal time improvement over (R)FD. In large-scale systems, the extra

cost of communication and distribution could further inflate the cost of extra

iteration rounds.

These error-iteration-time plots are consistent with our theory in that

faster convergence is observed by using RFD vs. using FD. We find that

the per-iteration error decrease is uniformly better when using deterministic

sketches compared to using randomised sketches. From this perspective, the

deterministic methods look favourable as they achieve high accuracy in a small

number of iterations and are less than a factor of 2 slower than the fastest IHS

method.

6.7.5 Summary

The main point to takeaway from our experiments is that performance is

dependent upon the compromises that users have to make in their computing

architecture. Given an unconstrained computation model, one would always

use an SVD, but in the realistic setting when a user is heavily constrained

by space or time, this is not possible. When adding communication/number

of iteration rounds into the constraint space, the picture becomes even less

clear as the user needs to minimise across all three of these parameters while

retaining good performance.

Viewing our results in the context of these three criteria, we can see that

both FD and RFD are performant and scalable sketches that return highly

accurate weight estimates in a timely fashion. While such a sketch is expensive

to build, it is extremely accurate for estimating the optimal weights, so only a

small number of gradient steps are necessary. The expense of the Newton step

has instead been shifted onto efficiently estimating the action of Ĥ−1. The

small number of gradient steps shows that if this were in a distributed setting,

then only a small number of communication rounds would be necessary. This

is not true of the randomised methods which generate cheaper but less effective
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sketches and need significantly more communication/gradient steps or need

a new sketch every round so have a higher iteration complexity. The weaker

estimation of randomised sketches can result in needing three times as many

rounds of communication to achieve comparable accuracy.

6.8 Conclusion

We studied higher dimensional ridge regression problems and saw that evalu-

ating a new sketch for every iteration could be prohibitively expensive. We

adapted the IHS approach for use with a single sketch. This work is the first

analysis of Frequent Directions with Newton update model to estimate the

regression weights in the multi-round optimisation model. We have shown that

despite (approximate) Newton updates typically being expensive, the special

structure of Frequent Directions enables an efficient algorithm. The Frequent

Directions sketch takes substantially longer to generate than a random projec-

tion of the data but this does not inhibit overall performance. Using the robust

variant of Frequent Directions can enhance performance both in practice and

in theory. Our experimental section vindicated this approach as the sketch is

significantly more accurate than the competing randomised methods. Descent

towards x? is faster in terms of number of iterations by a factor of at least 3

when using (R)FD. Consequently, our approach is competitive with the fastest

method IHS:CountSketch, while using many fewer rounds of iterations. This

firmly places iFDRR as a scalable Newton Method which should be considered

for use in large n and large d regimes.
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Figure 6.5: Update time: w8a. Note the different y axis scales.
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Chapter 7

Discussion and Conclusion

7.1 Results Summary

The central theme of this thesis has been to study how one can find and use

summaries of large tabular datasets. Tabular datasets may represent arbitrary

arrays as used in chapter 3, or matrices over Rn×d for linear algebraic problems

as in chapters 4 - 6. These summaries are small space representations of the

data that estimate certain characteristics of interest. In approaching this task,

we have seen results split into three categories regarding the efficacy of such

summaries. We briefly highlight these unifying themes and then discuss some

future directions in which to take the work.

1. Scalability: each chapter has been motivated by “exact” or “optimal”

analysis being too expensive in either space usage or running time. This

necessitated finding small space summaries that can be obtained efficiently,

considering both time and space usage.

2. Accuracy: each of the summaries we have developed or used has an

associated guarantee on how well it estimates a property of interest.

3. Hardness: not all problems admit summaries that can be efficiently

obtained and have a guarantee of 1 ± ε relative error in small space.

In chapters 3-5, we have shown that finding (or using) small space

summaries that achieve overly optimistic error guarantees would result in

expensive space consumption. Such results typically forced us to adapt the

algorithmic guarantee that we sought or the type of computational model

to study. In Chapters 3 and 4, these hardness reductions were shown

via communication complexity by instantiating a clever hard instance

over matrices derived from combintorial codes. However, in Chapter 5,

we showed a spectral property of the CountSketch and appealed to an

information theory argument of [PW16].
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Chapter 3

In Chapter 3 the tabular data was an n× d binary array over which we wanted

to estimate frequency-based problems restricted to only a subset of columns.

The difficulty in this chapter was that the query set of columns was revealed

after the data observation phase. An exact solution might calculate frequency

statistics for each of the 2d subsets of [d]. Realising the large length 2d frequency

vector is not scalable.

Our starting point for this work was to show that many of these projected

frequency estimation problems are hard to estimate using small space. Re-

turning an estimate within constant factors of the correct answer was shown

to require exponential space of 2Ω(d). On the other hand, we relaxed our

accuracy requirement from an error guarantee within constant factors to one

within some small exponential factors related to the input dimensionality, the

summary size, and the specific frequency estimation problem. The algorithmic

idea that we used was to maintain a “net” of summaries for a much smaller

set of column queries than the exponentially large set of all possible column

queries; specifically, maintain N ⊂ P ([d]) with |N | < |P ([d]) |. Although these

guarantees still use space exponential in d, we showed that the net N can be

smaller than maintaining a sketch for every possible query column subset and

thus is more scalable. How much smaller the N is than P ([d]) is controlled

through a parameter that also governs the error bounds in our estimation, thus

admitting a space-approximation tradeoff.

Chapter 4

We investigated how to find deterministic summaries in arbitrary `p for p ≥ 1.

To obtain such a summary, one approach would be to compute a “global”

well-conditioned basis U ∈ Rn×d for the input. The summary would contain

all rows with high-leverage in U. However, this is not scalable as finding U

costs O(nd5) time and U cannot be stored in full for large n.

Rather than computing a single, large, well-conditioned basis, we proposed

evaluating a sequence of “local” well-conditioned bases from which we pruned

the important high-leverage rows of data. The pruned set of rows were

repeatedly merged to collate the locally important information and then reduced

to ensure the space usage remained bounded by poly (d). This algorithm is

a more scalable approach as it operates on a data stream and uses space

independent of the input size. We used the summary of high-leverage rows to

obtain an additive-error guarantee for approximate `∞ regression. On the other

hand, we also showed a negative result through a hard instance using a similar

but simpler construction to those from Chapter 3. Specifically, improving the

additive error guarantee to relative error is difficult, needing a summary to
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grow with the size of the input, rather than having size independent of the

data’s size.

Chapter 5

In this chapter we separated analyses of the so-called “sketch-and-solve” and

“Iterative Hessian Sketch” (IHS) frameworks for solving regression using sparse

random projections such as the Sparse Johnson-Lindenstrauss Transform (SJLT)

and CountSketch. Exact solutions require an SVD of the input matrix A ∈ Rn×d

so have a O(nd2) time cost which is not scalable. We showed spectral and

structural properties of the CountSketch to invoke an argument of Pilanci

and Wainwright [PW16] showing that estimating the optimal weights in a

single-pass yields high-error.

Nonetheless, we adopted the multi-round optimisation model, which is still

typically seen in machine learning, by compromising the need of a single-pass

algorithm for a multi-pass algorithm. In this setting, we showed that both

the CountSketch and SJLT can return weights between 2-20 times much more

quickly than dense random projections.

Chapter 6

For the particular case of ridge regression, we showed that Frequent Directions

(FD) can be used in the multi-round optimisation model. FD has an increased

time overhead compared to sparse projections but this deficiency should not

immediately rule out its use. We gave high-quality error guarantees and used

only a single sketch rather than a new one for each iteration. The examples

we tested suggest that the larger time investment to obtain FD is worthwhile.

Our approach used one third of the iteration rounds (or passes) and has no

significant change in overall wall clock running time for the same accuracy.

Thus, the iterative sketching with a FD can be considered a scalable and

accurate method for returning regression weights.

7.2 Future Work

There are various directions in which future work could build upon the ideas

of this thesis. These vary depending on the type of results we have given, as

well as the computation models that we have studied.

Chapter 3

A good starting point for building upon this section would be to modify the

computation model to allow for more positive results. We have assumed that

the input array is read once and never seen again. Perhaps this could be
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relaxed to reading the entire data once, and then accessing a small portion

of the data once more. The aim here would be to build a summary during

the initial observation and then use the information garnered during the next

phase to return a more accurate estimate to the query. Characterising this

requires care; if one can read the entire dataset again, this resembles a two-pass

streaming model which would be trivial if the columns are revealed after the

initial phase. Hence, the extra portion of data to be read should be considered

a quantity to be minimised.

An alternative direction would be the study of linear algebraic functions

over column projections. Here, perhaps more easily than for projected fre-

quency analysis, interactions between pairs of columns can be better understood

through the covariance matrix structure e>j A>Aei = 〈Aej ,Aei〉. This rela-

tionship might permit a useful starting point. For instance, for any S ⊆ [d], the

covariance matrix on A restricted to S, denoted AS , is X = AS>AS . If A>A

is stored in O(d2) space, then it is possible to represent X through all pairs of

inner products e>j A>Aei for i, j ∈ S. On the other hand, while applications

for projected frequency analysis were quite natural, coming up with useful

applications of projected linear algebraic problems is less clear. For example,

what would be the purpose of a projected subspace embedding or projected

leverage scores?

Chapter 4

A shortcoming of our approach in Chapter 4 is that we can find the rows

of high leverage but we cannot use this to reason about a form of subspace

embedding. This hinders the applicability of the high-leverage row summary

beyond `∞-regression. Future work could study whether this summary can be

used to find an ‘additive’ subspace embedding in a similar fashion to Frequent

Directions. Specifically, for a summary B ∈ Rm×d of input A ∈ Rn×d can the

summary be used to find:

‖Ax‖p − t ‖x‖p ≤ ‖Bx‖p ≤ ‖Ax‖p

for a constant t that depends on the leverage score threshold and the size of

the sketch.

Such a result might need a better understanding of the so-called “Lewis

weights” of [CP15]. These weights resemble `p leverage scores of an augmented

input WA through a reweighting matrix W. Although [CP15] achieve an

input sparsity time algorithm for `p subspace embeddings, finding the correct

W requires log n accesses to the dataset. Hence, although their algorithm is

input sparsity time, it is not single-pass. Future study should investigate if

these weights can be approximated on streaming data.
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Chapter 5

Recall that the Gaussian Width of a convex set K is denoted WK. Preserving

inner product and norms up to ε-error on K with dense Gaussian and Sub-

sampled Randomised Hadamard Transform (SRHT) random projections can

be done using m = Õ(W2
K/ε

2) projections [PW15, PW16]. However, no such

result is known for the CountSketch. Due to [BDN15], the same property is

known for Sparse Johnson-Lindenstrauss Transform, modulo some extra log

factors in the Õ(·) term. This contribution is highly non-trivial and relies on the

use of s = Ω(1/ε) nonzeros per column to ensure that rows with high-leverage

do not often collide. Given the empirical advantages we saw when using the

CountSketch for least squares problems and convex constrained variants in

[CD19, LLW21], it would be helpful to better understand this behaviour. If the

largest leverage score is at most 1/d, then [BDN15] showed that the projection

dimension for a CountSketch can be chosen as O(d log d/ε2) provided that K is

a linear subspace. This property is exploited in [LLW21] for iterative sketching.

However, they use a “learned” CountSketch, which is slightly different from

the “standard” CountSketch we have studied and no results are given relating

the projection dimension to the Gaussian width of the constraint set.

Another direction would be to study “weak embeddings”. We found a

subspace embedding that preserves all d directions for every iteration. Can

anything be said about solution estimation if only a 1 − α fraction of the

directions are preserved in every iteration?

Chapter 6

Further work on better exploiting Frequent Directions for fast and small space

iterative solvers could be promising. In our experiments, we have shown that

our algorithm can outperform randomised variants, achieving convergence in

better wall clock time and fewer iterations/passes/rounds of communication.

Although the sketch is expensive to obtain it is accurate enough to enable

rapid descent to the optimum once the gradient steps begin to take place.

There are two clear practical weaknesses to our results: the first is that ridge

regression, while a useful foundational tool is not a modern machine learning so

has been superceded in practice by those such as kernel ridge regression. Our

approach may work in this setting but would not be the most scalable solution

as an explicit feature map would need to be applied to every sample. Future

work should consider which problems would benefit from such approximate-

Newton methods with Frequent Directions. A good starting point might be `2

penalised logistic regression due to its similarity to ridge regression, followed

by generalised linear models as in [PW17]. The second weakness is that our

result gives a bound on the solution error ‖x̂−x?‖2 in contrast to the quantity
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‖x̂− x?‖A of Iterative Hessian Sketch. We cannot obtain this guarantee as

we do not have relative error control of inner products as in (5.20) under the

transform u 7→ Au. More precisely, random projections achieve

|〈SAu,SAv〉 −Au,Av〉| ≤ ε ‖Au‖2 ‖Av‖2

while a comparable statement using the non-linear Frequent Directions sketch

is not known.

Although we argued that the multi-pass computation model is widely used

in machine learning, single-pass algorithms certainly have their place. With

this in mind, one could try to extend the results of [SP21] to matrix ridge

regression using deterministic sketches such as the Co-Occurring Directions of

[MMG17]. Whereas FD seeks only to estimate A>A, Co-Occurring directions

uses the same idea but replaces the SVD of A with QR decompositions of A

and a matrix M to estimate1 A>M. By applying this idea to ridge regression,

it might be possible to return the deterministic sketches BA,BY of the data

A and target variables Y, resulting in a matrix ridge regression estimate of

X̂ =
(
BA
>BA + γId

)−1
B>ABY.

This is to be compared with the ridge estimate of [SP21] using B = FD(A):

x̂ =
(
B>B + γId

)−1
A>y.

If this is possible, then it would be interesting to understand whether the

following analogy is true for statistical guarantees (such as bias and variance

[WGM17]):

Ridge regression with co-occurring directions

behaves as “classical sketch-and-solve”

in the same way that [SP21, Lemma 3] showed that

Ridge regression with Frequent Directions

behaves as “Hessian sketch-and-solve.”

Another interesting direction would be to investigate whether approximate

gradient steps can be taken with every batch update used for the FD sketch

rather than needing to traverse the entire data once again. This is somewhat

reminiscent of the experimental setup of [SP21], but is also close to a stochastic

gradient-type approach that is common in machine learning. The hope here

would be that we sacrifice on extremely high precision in estimating the optimal

1when M = A, the guarantee of [MMG17] is equivalent to the Frequent Directions
guarantee.
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weights for something that is more accurate than a single pass sketch-and-solve

approach, but does not need repeated access to the data as our model has

assumed.
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torization. In Hal Daumé III and Aarti Singh, editors, Proceed-

ings of the 37th International Conference on Machine Learning,

volume 119 of Proceedings of Machine Learning Research, pages

1855–1865, Virtual, 13–18 Jul 2020. PMLR.

[CCFC02] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Find-

ing frequent items in data streams. In International Colloquium

on Automata, Languages, and Programming, pages 693–703.

Springer, 2002.

[CD19] Graham Cormode and Charlie Dickens. Iterative hessian sketch in

input sparsity time. In NeurIPS Workshop: Beyond First-Order

Optimization Methods in Machine Learning, 2019.

[CDMI+16] Kenneth L Clarkson, Petros Drineas, Malik Magdon-Ismail, Mi-

chael W Mahoney, Xiangrui Meng, and David P Woodruff. The

fast cauchy transform and faster robust linear regression. SIAM

Journal on Computing, 45(3):763–810, 2016.

[CDP+19] Pern Hui Chia, Damien Desfontaines, Irippuge Milinda Perera,

Daniel Simmons-Marengo, Chao Li, Wei-Yen Day, Qiushi Wang,

177



and Miguel Guevara. Khyperloglog: Estimating Reidentifiability

and Joinability of Large Data at Scale. In IEEE Symposium on

Security and Privacy (SP), pages 867–881, 2019.

[CDW18] Graham Cormode, Charlie Dickens, and David P. Woodruff.

Leveraging well-conditioned bases: Streaming and distributed

summaries in Minkowski p-norms. In International Conference

on Machine Learning, 2018.

[CDW21] Graham Cormode, Charlie Dickens, and David P. Woodruff.

Subspace exploration: Bounds on projected frequency estimation.

In ACM Principles of Database Systems (PODS). ACM, 2021.

[CH+86] Samprit Chatterjee, Ali S Hadi, et al. Influential observations,

high leverage points, and outliers in linear regression. Statistical

science, 1(3):379–393, 1986.

[CJN18] Michael B. Cohen, T.S. Jayram, and Jelani Nelson. Simple

Analyses of the Sparse Johnson-Lindenstrauss Transform. In

Raimund Seidel, editor, 1st Symposium on Simplicity in Al-

gorithms (SOSA 2018), volume 61 of OpenAccess Series in In-

formatics (OASIcs), pages 15:1–15:9, Dagstuhl, Germany, 2018.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CL98] Lorrie Faith Cranor and Brian A LaMacchia. Spam! Commu-

nications of the ACM, 41(8):74–83, 1998.

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for

support vector machines. ACM Transactions on Intelligent Sys-

tems and Technology, 2:27:1–27:27, 2011. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher

Musco, Richard Peng, and Aaron Sidford. Uniform sampling for

matrix approximation. In Proceedings of the 2015 Conference

on Innovations in Theoretical Computer Science, pages 181–190,

2015.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and

Clifford Stein. Introduction to algorithms. MIT press, 2009.

[CM05] Graham Cormode and Shan Muthukrishnan. An improved data

stream summary: the count-min sketch and its applications.

Journal of Algorithms, 55(1):58–75, 2005.

178

http://www.csie.ntu.edu.tw/~cjlin/libsvm


[CMM17] Michael B Cohen, Cameron Musco, and Christopher Musco.

Input sparsity time low-rank approximation via ridge leverage

score sampling. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 1758–

1777. SIAM, 2017.

[CMP16] Michael B. Cohen, Cameron Musco, and Jakub Pachocki. On-

line Row Sampling. In Klaus Jansen, Claire Mathieu, José
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[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter

Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:

Machine learning in python. the Journal of machine Learning

research, 12:2825–2830, 2011.

[PW15] Mert Pilanci and Martin J Wainwright. Randomized sketches of

convex programs with sharp guarantees. IEEE Transactions on

Information Theory, 61(9):5096–5115, 2015.

[PW16] Mert Pilanci and Martin J Wainwright. Iterative hessian sketch:

Fast and accurate solution approximation for constrained least-

squares. The Journal of Machine Learning Research, 17(1):1842–

1879, 2016.

[PW17] Mert Pilanci and Martin J Wainwright. Newton sketch: A

near linear-time optimization algorithm with linear-quadratic

convergence. SIAM Journal on Optimization, 27(1):205–245,

2017.

[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s

method, for linear programming. Mathematical programming,

40(1-3):59–93, 1988.

186



[Sar06] Tamas Sarlos. Improved approximation algorithms for large

matrices via random projections. In 2006 47th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’06),

pages 143–152. IEEE, 2006.

[Sch20] Drew Schmidt. A survey of singular value decomposition methods

for distributed tall/skinny data. In 2020 IEEE/ACM 11th Work-

shop on Latest Advances in Scalable Algorithms for Large-Scale

Systems (ScalA), pages 27–34. IEEE, 2020.

[SKIW17] Uthayasankar Sivarajah, Muhammad Mustafa Kamal, Zahir

Irani, and Vishanth Weerakkody. Critical analysis of big data

challenges and analytical methods. Journal of Business Research,

70:263–286, 2017.

[SP21] Benwei Shi and Jeff Phillips. A deterministic streaming sketch

for ridge regression. In Arindam Banerjee and Kenji Fukumizu,

editors, Proceedings of The 24th International Conference on

Artificial Intelligence and Statistics, volume 130 of Proceedings of

Machine Learning Research, pages 586–594. PMLR, 13–15 Apr

2021.

[Spo76] VA Sposito. Minimizing the maximum absolute deviation. ACM

SIGMAP Bulletin, (20):51–53, 1976.

[SRD+18] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger,

and Kristof Van Laerhoven. Introducing wesad, a multimodal

dataset for wearable stress and affect detection. In Proceedings of

the 20th ACM international conference on multimodal interaction,

pages 400–408, 2018.

[SSH+14] Fumin Shen, Chunhua Shen, Rhys Hill, Anton van den Hengel,

and Zhenmin Tang. Fast approximate l∞ minimization: speeding

up robust regression. Computational Statistics & Data Analysis,

77:25–37, 2014.

[Sub] Sublinear.info. Open problem 94. https://sublinear.info/

index.php?title=Open Problems:94.

[SW11] Christian Sohler and David P. Woodruff. Subspace embeddings

for the l1-norm with applications. In Proceedings of the Forty-

Third Annual ACM Symposium on Theory of Computing, STOC

’11, page 755–764, New York, NY, USA, 2011. Association for

Computing Machinery.

187

https://sublinear.info/index.php?title=Open_Problems:94
https://sublinear.info/index.php?title=Open_Problems:94


[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank

approximation with entrywise l1-norm error. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of

Computing, pages 688–701, 2017.

[Tea17] Differential Privacy Team. CLearning with Privacy

at Scale. https://machinelearning.apple.com/research/

learning-with-privacy-at-scale, December 2017. [Online;

accessed 11-May-2021].

[Tib11] Robert Tibshirani. Regression shrinkage and selection via the

lasso: a retrospective. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 73(3):273–282, 2011.

[Tur17] Chintan Turakhia. Engineering More Reliable Transportation

with Machine Learning and AI at Uber. https://eng.uber.com/

machine-learning/, 10th November 2017. [Online; accessed

11-May-2021].

[TW12] Srikanta Tirthapura and David P. Woodruff. A General Method

for Estimating Correlated Aggregates over a Data Stream. In

IEEE 28th International Conference on Data Engineering (ICDE

2012), Washington, DC, USA (Arlington, Virginia), 1-5 April,

2012, pages 162–173, 2012.

[TYUC19] Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan

Cevher. Streaming low-rank matrix approximation with an

application to scientific simulation. SIAM Journal on Scientific

Computing, 41(4):A2430–A2463, 2019.

[TZ12] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent

hashing with applications to linear probing and second moment

estimation. SIAM Journal on Computing, 41(2):293–331, 2012.

[UT19] Madeleine Udell and Alex Townsend. Why are big data matrices

approximately low rank? SIAM Journal on Mathematics of Data

Science, 1(1):144–160, 2019.

[Vu18] Hoa Vu. Data Stream Algorithms for Large Graphs and High

Dimensional Data. PhD thesis, U. Massachusetts at Amherst,

2018.

[VW81] Paul F Velleman and Roy E Welsch. Efficient computing of

regression diagnostics. The American Statistician, 35(4):234–242,

1981.

188

https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://eng.uber.com/machine-learning/
https://eng.uber.com/machine-learning/


[WBW+11] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,

and Serge Belongie. The caltech-ucsd birds-200-2011 dataset.

2011.

[WGM17] Shusen Wang, Alex Gittens, and Michael W Mahoney. Sketched

ridge regression: Optimization perspective, statistical perspective,

and model averaging. The Journal of Machine Learning Research,

18(1):8039–8088, 2017.

[WLM+17] Jialei Wang, Jason Lee, Mehrdad Mahdavi, Mladen Kolar, and

Nati Srebro. Sketching meets random projection in the dual: A

provable recovery algorithm for big and high-dimensional data.

In Artificial Intelligence and Statistics, pages 1150–1158. PMLR,

2017.

[Woo04] David Woodruff. Optimal space lower bounds for all frequency

moments. In Proceedings of the Fifteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’04, page 167–175,

USA, 2004. Society for Industrial and Applied Mathematics.

[Woo14a] David Woodruff. Low rank approximation lower bounds in row-

update streams. In Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems, volume 27. Curran Associates,

Inc., 2014.

[Woo14b] David Woodruff. Sketching as a tool for numerical linear algebra.

Foundations and Trends in Theoretical Computer Science, 10(1-

2):1–157, 2014.

[WS01] Christopher Williams and Matthias Seeger. Using the nyström

method to speed up kernel machines. In T. Leen, T. Dietterich,

and V. Tresp, editors, Advances in Neural Information Processing

Systems, volume 13. MIT Press, 2001.

[WW19] Ruosong Wang and David P Woodruff. Tight bounds for lp

oblivious subspace embeddings. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1825–1843. SIAM, 2019.

[WZ13] David Woodruff and Qin Zhang. Subspace embeddings and `p-

regression using exponential random variables. In Conference on

Learning Theory, pages 546–567, 2013.

189



[YCRM17] Jiyan Yang, Yin-Lam Chow, Christopher Ré, and Michael W
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