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Abstract

Graphical models are a useful tool for encoding conditional independence
relations. A common goal is to select the graphical model that best describes the
conditional independence relationships between variables given observations of these
variables. Under the additional Gaussian assumption, conditional independence is
equivalent to zero entries in the inverse covariance matrix ⇥. Thus sparse estimation
of ⇥ in turn specifies a graphical model and the associated conditional independen-
cies. Popular frequentist methods for this often involve placing a penalty function
on ⇥ and maximising a penalised likelihood, whilst Bayesian methods require spec-
ification of a prior distribution on ⇥.

Conditional independence relations are invariant to non-zero scalar multipli-
cation of the variables, however in this thesis we show that essentially all current
penalised likelihood methods and many prior distributions are not invariant to such
transformations of the variables. In fact many methods are very sensitive to rescal-
ing of the variables which can, and often does, result in a vastly di↵erent selected
graphical model. To remedy this issue we introduce new classes of penalty func-
tions and prior distributions which are based on partial correlations. We show that
such penalty functions and prior distributions lead to scale invariant estimation and
posterior inference on ⇥.

We pay particular attention to two penalty functions in this class. The
partial correlation graphical LASSO places an L1 penalty on the partial correlations
whilst the spike and slab partial correlation graphical LASSO is a penalty function
based on a spike and slab prior formulation. The performance of these penalty
functions is compared to that of current popular penalty functions in simulated
and real world settings. We also investigate spike and slab priors in general for
Gaussian graphical models and point out that care must be taken when considering
the positive definiteness of ⇥. With this in mind we provide some theoretical results
based on Wigner matrices.

x



Chapter 1

Introduction

A graphical model is a statistical model associated to a graph in which the nodes of

the graph correspond to random variables of interest. The edges in the graph repre-

sent allowed conditional dependencies between the variables, or, more relevantly, the

lack of an edge in the graph represents some conditional independence relationship

between the associated variables. Informally, conditional independence means that

two variables are independent when given the value of some other variable(s). This

is a useful property to investigate in many applications, in particular due to the link

with causality. This is because di↵erent combinations of conditional independence

relationships directly determine whether or not some collections of variables can be

considered causes of others [Pearl, 2009]. Furthermore, conditional independence

between variables rules out a direct causal relationship between them. A graphical

model is a tool which is able to encode complex conditional independence relation-

ships between variables and provides a visual representation of these relationships

to aid interpretability even when there is a large number of such variables.

The study of graphical models can be split into two categories. First is

when the graphical model is given. This might be due to expert or application

specific knowledge and potential or known conditional independencies between the

variables. Any statistical analysis of the data can then take advantage of these as-

sumed relationships through, for example, the resulting factorisations in the joint

density function. The second category is graphical model selection when the graph-

ical model is not given and must be selected using data. This may be done, for

example, when one lacks specific knowledge of the relationships between variables

and better understanding of potential conditional independencies is desired.

When the variables are assumed to be jointly Gaussian, conditional indepen-

dence between the variables corresponds exactly to the zero entries in the inverse

1



covariance matrix, also called the precision matrix. In this case graphical model se-

lection is therefore closely related to sparse estimation of the precision matrix. Many

methods have been proposed for sparse precision matrix estimation and Gaussian

graphical model selection, and perhaps the most well known methods are based

on penalised likelihood estimation where a penalty function is added to the log-

likelihood. The most prominent penalised likelihood method is the graphical LASSO

(GLASSO) which places an L1 penalty on the entries of the precision matrix.

A key property of conditional independence relationships and therefore graph-

ical models is that they are invariant to rescaling of the variables. That is, if one

multiplies the variables element-wise by some vector with non-zero entries, the un-

derlying graphical model remains unchanged as do its associated causal relation-

ships. However, it will be shown in this thesis that essentially all current penalised

likelihood methods are not invariant to such rescalings, as well as many Bayesian

methods. This issue is well known by many applied researchers who appreciate

that when using GLASSO, rescaling of the variables can and often will result in the

selection of a vastly di↵erent graphical model.

In this thesis we address this issue by proposing a new framework for pe-

nalised likelihood and Bayesian methods in Gaussian graphical models which are

based on partial correlations. The main contributions of this thesis are:

(i) A novel penalised likelihood framework based on partial correlations that pro-

duce estimates and model selection that are invariant to scalar multiplication

of the variables. (Chapter 2)

(ii) An investigation of two specific forms of penalty function in this class and

their application to both simulated data - when the data generating process is

known - and real-world data. (Chapters 2 and 4)

(iii) A novel Bayesian framework for prior distributions based on partial corre-

lations that produce posterior inference that is invariant to rescaling of the

variables. (Chapter 3)

(iv) The application of certain appropriate spike and slab prior formulations within

this new Bayesian framework. (Chapters 4 and 5)

(v) Some new theory that relates to the positive definiteness of the precision matrix

under these spike and slab priors. (Chapter 5)

The content of Chapters 2 and 3 can also be found in Carter et al. [2021],

a paper which has been submitted to the Scandinavian Journal of Statistics and is

2



currently under review. Two further papers are planned from the content of this

thesis focusing on the performance of the non-convex penalty functions discussed in

Chapter 4 and on the theoretical results presented in Chapter 5.

One of the penalised likelihoods we investigate is based on setting an L1

penalty on the partial correlations and so is directly comparable to the GLASSO.

In our simulated results we will show that this new penalised likelihood generally

performs better than GLASSO in terms of both estimation and model selection, as

well as enjoying the advantage of scale invariance.

In this chapter we begin by introducing conditional independence, graphical

models and Gaussian graphical models. In depth discussion of these topics can be

found in, for example, Whittaker [1990], Lauritzen [1996] and Studeny [2006]. A

more recent and very comprehensive review of graphical models is Maathuis et al.

[2018]. The next sections will summarise some key topics in the literature. We will

then review current methods for Gaussian graphical model selection before outlining

the remainder of the thesis.

1.1 Conditional independence

We begin by formally defining conditional dependence and stating some specific

properties of the conditional independence relation. Since graphical models are

used to encode conditional independence relationships, it is important that the re-

sulting relationships satisfy these properties. The content of this section and more

information can be found in chapter 3 of Lauritzen [1996].

Definition 1. Let X,Y, Z be random variables with a joint distribution P. It is

said that X is conditionally independent of Y given Z under P and it is written

X ?? Y | Z [P] if for any measurable set A in the sample space of X there exists a

version of the conditional probability P(A | Y, Z) which is a function of Z alone.

We assume that the joint distribution P is fixed and omit this from the

notation. When the three variables admit a joint density f with respect to a product

measure µ then X ?? Y | Z if and only if

fX,Y |Z(x, y | z) = fX|Z(x | z)fY |Z(y | z)

holds almost surely with respect to P. That is, the conditional density of X,Y | Z
factorises into the two conditional densities of X | Z and Y | Z. In this way we see

that conditonal independence is equivalent to independence of the random variables

X | Z = z and Y | Z = z for all possible z.

3



The conditional independence relation has the following properties, where h

denotes an arbitrary measurable function on the sample space of X.

(C1) If X ?? Y | Z then Y ?? X | Z.

(C2) If X ?? Y | Z and U = h(X), then U ?? Y | Z.

(C3) If X ?? Y | Z and U = h(X), then X ?? Y | (Z,U).

(C4) If X ?? Y | Z and X ?? W | (Y, Z), then X ?? (W,Y ) | Z.

These properties can be seen as fundamental to the notion of conditional

independence as therefore should be adhered to in any conditional independence

model.

An additional property of conditional independence is that it is invariant

to non-zero scalar multiplication of the variables. Consider vectors a, b, c which

are of the same dimension as X,Y, Z respectively and that have non-zero entries.

Define the transformed random variables X 0 = aTX, Y 0 = bTY , Z 0 = cTZ, where

MT denotes the transpose of the matrix (or vector) M , and denote by P0 the joint

probability distribution of (X 0, Y 0, Z 0). Let A0 be a measurable set in the sample

space of X 0. Then A = {x : aTx 2 A0} is a measurable set in the sample space of X

and X 2 A if and only if X 0 2 A0. Hence, by properties of conditional probabilities,

P0(A0 | Y 0, Z 0) = P(A | bTY, cTZ)

= P(A | Y, Z)

It follows that X ?? Y | Z [P] if and only if X 0 ?? Y 0 | Z 0 [P0]

1.2 Graphical models

In this section we define a graph G and explain that a particular relation called

separation in the graph satisfies analogs of the properties (C1)-(C4). We then go

on to demonstrate how a graph can be used to represent conditional independence

relationships amongst a group of random variables in a graphical model. The content

of this section and more information can be found in chapters 2 and 3 of Lauritzen

[1996].

A graph is a pair G = (V,E) where V is called the vertex set and E is called

the edge set. The vertex set V can be any finite set and the elements of V are called

vertices or nodes. The edge set E is a subset of {(u, v) : u, v 2 V, u 6= v} and the

elements of E are called edges.

4



1 2

3 4

Figure 1.1: A visual representation of the undirected graph G with vertices V =
{1, 2, 3, 4} and edges E = {(1, 2), (1, 3), (1, 4), (3, 4)}

An edge (u, v) 2 E is called undirected if (v, u) 2 E also. If all of the edges

in E are undirected then G is called an undirected graph. For an undirected graph

the edge set can be simplified by omitting one of (u, v), (v, u). In this thesis we

focus on undirected graphs and so for the remainder of this chapter all graphs will

be assumed to be undirected.

A graph can be visually represented with the vertices displayed by dots and

an edge displayed by a line between the relevant dots. An example of such a visu-

alisation can be seen in Figure 1.1.

Two vertices are called adjacent if they have an edge joining them. A path

of length k from vertex u to vertex v is a sequence u = u0, u1, . . . , uk = v of distinct

vertices such that (ui�1, ui) 2 E or (ui, ui�1) 2 E for all i = 1, . . . , k. A path in

which u = v is called a cycle. A decomposable graph is a graph in which every cycle

of length greater or equal to 4 possesses a chord - two non-consecutive vertices that

are adjacent.

A subset C ⇢ V is called a (u, v)-separator if all paths from u to v intersect

C. For subsets A,B ⇢ V , C is said to separate A from B if C is a (u, v) separator

for all u 2 A and v 2 B. For example, in the graph of Figure 1.1 the vertex 1

separates 2 from {3, 4}.

Define the relation
G
? via separation such that A

G
? B | C if and only if

C separates A from B in G. It is fairly straight forward to show that
G
? satisfies

analogues of the properties (C1)-(C4) where W,X, Y, Z are replaced by subsets of

V and the function U is replaced by a subset of its argument. Hence separation in a

graph would be a suitable way to represent conditional independence relationships.

In a graphical model, the vertex set V of the graph G corresponds to the

indices of the set of random variables of interest. The edges in the graph represent

conditional dependencies between the variables, or more relevantly the lack of an

edge represents some conditional independence relationship between the variables.

These conditional independencies can be read from the graph via a Markov property

- a property that is related to separation.

5



Let X = (X(1), . . . , X(p)) be a vector of random variables and G = (V,E) an

undirected graph with vertex set V = {1, . . . , p}. Since G is undirected and V is a

subset of the natural numbers, we only allow E to contain edges of the form (i, j)

with i < j. The vertex i 2 V corresponds to the variable X(i). For a subset A ✓ V

we let X(A) = (X(i))i2A and X(�A) = (X(i))i/2A. A range of Markov properties

have been proposed for encoding conditional independence relationships on X via

G. Two common Markov properties are defined as follows.

Definition 2. A probability measure P for the random variabes X obeys the pair-

wise Markov property relative to G if for any pair of non-adjacent vertices i, j,

X(i) ?? X(j) | X(�{i,j}).

A probability measure P for the random variabes X obeys the global Markov

property relative to G if for any disjoint subsets A,B, S ⇢ V such that S separates

A from B in G,
X(A) ?? X(B) | X(S).

Generally, the global Markov property is a stronger property than the pair-

wise Markov property. However, if the distribution of the variables has a positive

and continuous density, as is the case for a multivariate Gaussian random vector

for example, then the two properties are equivalent [Pearl and Paz, 1987] (also see

Theorem 3.7 of Lauritzen [1996]).

Under the graphical model G the variables X are assumed to satisfy all

conditional independencies given by its Markov property. Note that this does not

restrict additional conditional independencies not specified by G from holding. Since

the global Markov property corresponds directly to separation in G, the resulting

assumed conditional independencies therefore satisfy each of (C1)-(C4).

1.3 Gaussian graphical models

The conditional independence relations given by a graphical model are often a too

general framework for data analysis of continuous random variables and so addi-

tional assumptions about the joint distribution of the variables are required. In

Gaussian graphical models the additional assumption is made that X has a multi-

variate Gaussian distribution. In this section we will show that a Gaussian graphical

model corresponds to zero entries in the precision matrix. We will then discuss how

to calculate the maximum likelihood estimate (MLE) of the precision matrix under

6



a specific graphical model. The content of this section and more details can be found

in chapter 2 of Whittaker [1990] and chapter 9 of Maathuis et al. [2018].

Let X = (X(1), ..., X(p)) ⇠ N(µ,⌃) be a p-dimensional multivariate Gaussian

random vector with unknown mean µ 2 Rp and p ⇥ p, symmetric, positive-definite

covariance ⌃ = (�ij)ii,jp. We denote the precision matrix by ⇥ = (✓ij)1i,jp =

⌃�1 which is also p⇥ p, symmetric and positive definite. For A,B ✓ {1, . . . , p} we

let µA, ⌃AB and ⇥AB denote the corresponding subvector and submatrices. The

probability density function of X is written as

fµ,⌃(x) = (2⇡)�p/2 (det (⌃))�1/2 exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆
,

where det(A) denotes the determinant of the matrix A, or equivalently in terms of

the precision matrix as

fµ,⌃(x) = (2⇡)�p/2 (det (⇥))1/2 exp

✓
�1

2
(x� µ)T⇥(x� µ)

◆
.

A key property of the Gaussian distribution is that it is closed under condi-

tioning (for a proof of this result see Proposition 9.1.1 of Maathuis et al. [2018]).

Proposition 1. Let A and B partition {1, . . . , p}. Then the conditional distribution

of X(A) given X(B) is also Gaussian with covariance matrix equal to ⇥�1

AA.

This proposition allows a key interpretation of the precision matrix ⇥. First

consider a singleton A = {1} and B = {2, . . . , p}. It follows that the conditional

distribution of X(1) | X(�{1}) is Gaussian with variance equal to ✓�1

11
. In other

words,

✓�1

11
= Var

⇣
X(1) | X(�1)

⌘
,

and so the diagonal entries of ⇥ are equal to the inverse partial variances.

Now consider a doubleton A = {1, 2} and B = {3, . . . , p}. Then the condi-

tional distribution of X(A) | X(B) is Gaussian with covariance matrix equal to

⇥�1

AA =
1

✓11✓22 � ✓2
12

 
✓22 �✓12

�✓12 ✓11

!
.

It follows that the partial covariance between X(1) and X(2) is equal to

cov
⇣
X(1), X(2) | X(�{1,2})

⌘
=

�✓12
✓11✓22 � ✓2

12

,
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and the partial correlation is equal to

corr
⇣
X(1), X(2) | X(�{1,2})

⌘
=

�✓12p
✓11✓22

.

Hence, the o↵-diagonal entries, when rescaled by the relevant diagonal entries, are

equal to the negative partial correlations.

Let G be a graph with vertex set V = {1, . . . , p}.

Definition 3. X is said to satisfy the Gaussian graphical model relative to G if

✓ij = 0 for all (i, j) /2 E

Under the Gaussian graphical model, the graph G describes the sparsity pat-

tern of the precision matrix ⇥, or equivalently specifies certain zero partial correla-

tions between the variables. We will show that X satisfies the Gaussian graphical

model relative to G if and only if it satisfies the global Markov property relative to

G.
A well known defining feature of jointly Gaussian random variables is that

independence is equivalent to uncorrelatedness. That is, if X(1), X(2) are jointly

Gaussian then X(1) ?? X(2) if and only if the correlation between X(1) and X(2)

is zero. This property along with Proposition 1 can be used to show a similar

equivalence between conditional independence and zero partial correlations.

Corollary 1. X(i) ?? X(j) | X(�{i,j}) if and only if ✓ij = 0.

This corollary follows because X(i) | X(�{i,j}) and X(j) | X(�{i,j}) are jointly

Gaussian random variables (with distribution only dependent on the conditioned

value of X(�{i,j}) through the mean parameter) with correlation given by �✓ijp
✓ii✓jj

.

It then immediately follows that satisfying the Gaussian graphical model

relative to G is equivalent to satisfying the pairwise Markov property relative to G.
Since the multivariate Gaussian distribution has a positive and continuous density,

this is therefore also equivalent to satisfying the global Markov property.

Now that we have defined the Gaussian graphical model, we turn to the

problem of calculating the MLE of ⇥ under a Gaussian graphical model given ob-

servations of X. Suppose we observe n independent samples (X1, . . . , Xn) of X

and denote their sample covariance by S = 1

n

Pn
i=1

(Xi � X̄)(Xi � X̄)T, where

X̄ = 1

n

Pn
i=1

Xi is the sample mean. The pair S and X̄ are su�cient statistics for a

Gaussian model. The log-likelihood as a function of (µ,⌃) can be written as

l(µ,⌃ | X̄, S) = �n

2
log (det (⌃))� n

2
tr
�
S⌃�1

�
� n

2
(X̄ � µ)T⌃�1(X̄ � µ) + c,

8



where tr(M) denoted the trace of a matrix M and c is a constant. As a function of

(µ,⇥) the log-likelihood is written as

l(µ,⇥ | X̄, S) =
n

2
log (det (⇥))� n

2
tr (S⇥)� n

2
(X̄ � µ)T⇥(X̄ � µ) + c.

Assuming that n > p, the MLE under the Gaussian graphical model with complete

graph G (i.e. no constraints on ⇥) is µ̂ = X̄ and ⌃̂ = S. For n  p the MLE does

not exist (i.e. the log-likelihood is unbounded) with probability 1. For a general G
calculation of the MLE is more complicated. First note that the Gaussian graphical

model does not put any constraints on µ and so we still have µ̂ = X̄. Denoting

the set of symmetric, positive definite p⇥ p matrices by S, the MLE problem then

reduces to

max
⌃2S

� log (det (⌃))� tr
�
S⌃�1

�

subject to
�
⌃�1

�
ij
= 0 for all (i, j) /2 E

or in terms of ⇥ to

max
⇥2S

log (det (⇥))� tr (S⇥) (1.1)

subject to ✓ij = 0 for all (i, j) /2 E

When considered in terms of ⇥, this can be shown to be a convex optimisation

problem. The dual problem to (1.1) can be shown to be

min
⌃2S

� log (det (⌃))� p (1.2)

subject to ⌃ij = Sij for all i = j or (i, j) 2 E

The MLE is not guaranteed to exist for all S and all G, namely because the objective

function may be unbounded on the feasible region. A su�cient condition for the

MLE to exist is n > p. Without placing additional assumptions on the form of

G, one cannot obtain a stronger su�cient condition - for example when G is the

complete graph, the MLE exists if and only if n > p. However, for certain graphs

G, the MLE may exist for smaller n. For more details of this see Section 9.5 of

Maathuis et al. [2018].

Assuming the MLE does exist, since this is a convex optimisation problem

it can be solved in polynomial time by an interior point method [Boyd and Van-

denberghe, 2004]. An even simpler approach, and one that is generally e↵ective, is

9



using a coordinate descent algorithm. To do this, begin with ⌃0 = S and iteratively

update each of the entries ⌃ij , i 6= j, (i, j) /2 E by maximising the log-likelihood

with all other entries fixed. Note that only the indices (i, j) /2 E need be considered

because the other entries for the MLE of ⌃ are given in (1.2). A similar coordinate

descent algorithm can be made for ⇥ beginning at ⇥0 = I the identity matrix.

1.4 Gaussian graphical model selection

Up to this point we have assumed that the graph G specifying the graphical model

is given. This might be the case when certain prior or expert knowledge informs

conditional independencies that are known to exist between the variables. However,

in many applications this will not be the case and instead one may wish to select

a graphical model given data. Under the assumption that X follows a Normal

distribution with precision matrix ⇥, the goal is therefore to identify the graph G
with edge set given by (i, j) 2 E () ✓ij = 0, based on data summarised by the

sample size n and sample covariance S. In this section we introduce some methods

for doing this.

A naive approach outlined by Whittaker [1990] is to initially estimate ⇥ by

S�1 (provided the inverse exists which occurs with probability 1 when n > p). From

S�1 the sample partial correlations can be obtained by scaling the matrix to have

unit diagonals. One may then choose a threshold c for which any sample partial

correlations in (�c, c) are set to be equal to 0. The graphical model is then selected

based on these zero entries.

Note that this procedure bases edge inclusion on the absolute value of the

sample partial correlations, rather than the o↵-diagonal entries of S�1. This will be a

key theme through the remainder of the thesis. However, this approach has a number

of problems. First, there is no obvious and unequivocal way to set the threshold

c. Second, the absolute value of the sample partial correlations does not necessarily

correspond to the likelihood of two variables being conditionally dependent. Third,

this ignores any dependence between the sample partial correlations - fixing one

partial correlation to be zero may change the MLE of another partial correlation.

Finally, the resulting estimate is not guaranteed to be positive definite.

There are various expedient tools that can mitigate some of these problems,

however these are ad hoc and any one di�cult to justify over another. For example,

we could consider the following stepwise backward-search algorithm (or similarly

a forward-search algorithm) which is similar to that suggested in Højsgaard et al.

[2012]. Let G0 be the complete graph and ⇥0 the MLE under the Gaussian graphical

10



model G0. Then define the graph G1 which is equal to G0 except with the edge asso-

ciated to the smallest estimated partial correlation in absolute value in ⇥0 removed.

Then let ⇥1 be the MLE under G1. This procedure can be continued until either

a desired level of sparsity is reached, or until the empty graph is reached. A single

graphical model from this sequence can then be selected by using some selection

criterion, for example the Bayesian information criterion. However, this procedure

can become computationally expensive for large p.

This stepwise procedure is similar to another class of methods called model

search algorithms. Model search algorithms compare some subset of all possible

graphical models and select between them using some criterion. A model search

algorithm is defined by its method for selecting this subset of models. Ideally one

may consider the set of all possible graphical models. However, this is generally

computationally infeasible for even moderate problem size. If there are p variables

then there are 1

2
p(p � 1) possible edges in a graphical model and 2

1
2p(p�1) possible

graphical models. Even for p = 5 this gives 1024 models to consider. Hence for

even moderately sized problems, any model search algorithm must not consider all

models, and therefore may potentially miss models that describe the data well.

1.4.1 Penalised likelihood

Many approaches to Gaussian graphical model selection instead focus on sparse es-

timation of ⇥ and then select the model that matches this sparse estimate. One

popular frequentist method for sparse estimation is the maximisation of a penalised

likelihood. Quite simply, this adds a penalty term to the log-likelihood function

which penalises non-zero parameters and therefore encourages sparsity in the esti-

mate. Penalised likelihood approaches are common in linear regression, the most

famous being the LASSO of Tibshirani [1996], and many of these approaches have

been adapted for application to Gaussian graphical models. These adaptations come

in two major forms.

The first form is when the penalty is applied directly to the precision matrix

⇥. Estimation of ⇥ then simply involves maximisation of a penalised likelihood of

the form

l(⇥ | S)� Pen(⇥)

where

l(⇥ | S) = n

2
(log (det (⇥))� tr (S⇥))

is the log-likelihood function for ⇥ after removing constants and Pen(⇥) is a penalty

function.
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Penalty functions are often chosen to be increasing in |✓ij | with a local min-

imum at ✓ij = 0. In this way, smaller estimates of the ✓ij are encouraged - this is

commonly referred to as regularisation of the ✓ij . Choosing a penalty function which

is non-di↵erentiable at ✓ij = 0 also allows the possibility of exact zero estimates.

The LASSO penalty assigns an L1 penalty to the coe�cients in a linear

regression. This has been adapted to the Gaussian graphical model setting in the

graphical LASSO (GLASSO) proposed and investigated by Yuan and Lin [2007],

Friedman et al. [2008] and Banerjee et al. [2008]. Under the GLASSO the penalty

function is of the form

Pen(⇥) = ⇢
X

i,j

|✓ij |

where ⇢ > 0 is called the penalty or regularisation parameter. The objective function

for the GLASSO is concave and therefore benefits from the advantages of convex

optimisation to allow estimates to be obtained very quickly and e�ciently. Further-

more, unlike the regular MLE for ⇥ which only exists when n > p, the penalised

likelihood estimate of GLASSO exists for any sample size n. It was also shown by

Yuan and Lin [2007] that the GLASSO estimate is equivalent to maximising the

log-likelihood under the constraint that the L1 norm of ⇥ is bounded by a certain

amount.

It was noted in linear regression that the LASSO tends to induce a significant

bias on large, non-zero regression coe�cients. This is due to the penalty increasing

linearly in |✓ij | and therefore inflicting a large penalty on large |✓ij | and, more

importantly, the gradient of the penalty being constant in |✓ij |. To reduce this bias,

non-convex penalty functions have been proposed. Two examples of these are the

smoothly clipped absolute deviation (SCAD) penalty, proposed by Fan and Li [2001]

and adapted to Gaussian graphical models by Fan et al. [2009] and the minimax

concave penalty (MCP) proposed by Zhang [2010].

The SCAD penalty is of the form

X

i,j

SCAD�,a(|✓ij |)

where

SCAD0
�,a(x) = �

✓
I(x  �) +

(a�� x)+
(a� 1)�

I(x > �)

◆

for x > 0. Here I denotes the indicator function and (x)+ denotes the maximum of

x and 0.

The MCP is of a similar form to the SCAD penalty replacing SCAD�,a with
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MCP�,a where

MCP0
�,a(x) =

⇣
�� x

a

⌘
I(x  a�).

The SCAD penalty has constant gradient equal to � around 0 before decreasing

linearly to 0. The derivative of the MCP instead decreases linearly to 0 straight away.

For both the SCAD penalty and the MCP we refer to � > 0 as the regularisation

parameter.

A second form of Gaussian graphical model selection using penalised likeli-

hoods occurs due to a direct connection to linear regression. By regressing a single

variable X(i) on the remaining variables X(�i), the resulting regression coe�cients

correspond to the entries in the ith row of ⇥ through �j = ��ii✓ij . This relationship

motivated the method of Meinshausen and Bühlmann [2006] which implemented

successive linear regressions on each of the coe�cients using the LASSO. The zero

regression coe�cients then informed the selected graphical model. For additional

information see, for example, Section 12.3.3 of Maathuis et al. [2018].

Theoretical results for model selection and so called ‘oracle’ properties exist

for both GLASSO and the method of Meinshausen and Bühlmann [2006] under

certain conditions on the true underlying ⇥, the sample size n and the problem

size p. If these conditions are satisfied, both methods are proven to return the true

underlying graphical model with a certain probability, for certain choices of the

regularisation parameter. Oracle properties relate to the distance between the true

and estimated ⇥ being bounded. Again, under certain conditions the GLASSO and

Meinshausen estimates satisfy oracle properties on the l1-norm, for certain choices of

the regularisation parameter. For more information on these properties see Section

12.3 and Section 14.1 of Maathuis et al. [2018].

Parameter selection is an important aspect of penalised likelihood methods.

For the SCAD penalty and the MCP default values of a = 3.7 and a = 2 have been

proposed, respectively. For the regularisation parameter is it common to calculate

penalised likelihood estimates for a sequence of parameters and then choose between

them via some selection criterion. Popular choices of selection criterion are cross

validation, the Bayesian information criterion (BIC) and the extended Bayesian

information criterion (EBIC). Additional details on the BIC will be given in Section

2.2, an overview of the BIC and cross validation can be found in Lian [2011] and

details on the EBIC in Foygel and Drton [2010]. The SCAD penalty has been

shown to achieve consistent model selection when parameter selection is via the

BIC [Lian, 2011; Gao et al., 2012]. When instead predictive power is desired over

model selection, cross validation o↵ers good performance - see Vujačić et al. [2015].
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1.4.2 Bayesian methods

A standard Bayesian procedure for model selection requires specification of prior

distributions on ⇥ given a graphical model, ⇡1(⇥ | G), and on the model space,

⇡2(G). The most common choice for model space prior is a discrete uniform prior,

assigning each possible graph equal prior probability. However, such a prior heavily

favours graphs of moderate size where the size of the graph refers to the number

of edges. For example, when p = 5 there are 1024 possible graphical models, but

only one graph with no edges and one complete graph with 10 edges. Hence each

of these have a 1

1024
probability under the uniform prior. On the other hand, there

are 252 graphs with 5 edges and so under the uniform prior this has probability of

approximately 1

4
.

One alternative is to set

⇡2(G) = ⌘size(G)(1� ⌘)m�size(G)

where m is the maximum size of G and ⌘ 2 (0, 1). This assumes that the inclusion

probability of any edge is constant and equal to ⌘ and allows for favouring of more

sparse graphs. Another option is to separately set a prior on the model size and on

the model given the model size. This allows for even more flexible prior specification.

The prior for the joint space (⇥,G) is given by ⇡(⇥,G) = ⇡1(⇥ | G)⇡2(G).
Given samples of X, which are summarised by the sample size n and the sample

covariance S, the resulting posterior density is equal to

⇡(⇥,G | n, S) / L(⇥ | S, n)⇡1(⇥ | G)⇡2(G)

where the likelihood function L depends on (⇥,G) only through ⇥. For model

selection, we are interested in the posterior density of G, which requires integrating

the full posterior with respect to ⇥ over the space of symmetric, positive definite

matrices. Thus we need to calculate

⇡(G | n, S) =
Z

S
⇡(⇥,G | n, S) d⇥

/ ⇡2(G)
Z

S
L(⇥ | S, n)⇡1(⇥ | G) d⇥ (1.3)

In an ideal world, this posterior probability would be calculated for all possible G.
If desired, one may then select a number of high posterior probability models to

give an idea of the conditional independencies that the data suggests. However, this

approach has two problems. First, calculation of these probabilities is not necessarily
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straight forward due to the integral. Second, as with the frequentist case, calculation

of the posterior probability for all G is often infeasible, even for moderate p. Hence,

some search algorithm is needed to traverse the model space and identify graphs

that are likely to have high posterior probability. One common tool for comparing

two models is the Bayes factor which gives the ratio of posterior probabilities for

two models.

One approach to this first issue is to choose prior densities ⇡1(⇥ | G) which
allow easy calculation of this integral. This may be done through the graphical

Wishart (G-Wishart) prior on ⇥, or equivalently a hyper-inverse Wishart prior on ⌃.

Introduced by Dawid and Lauritzen [1993], the hyper-inverse Wishart distribution is

conjugate for ⌃ under a Gaussian graphical model and satisfies the Gaussian graph-

ical model with probability 1. Although the hyper-inverse Wishart is only defined

for decomposable graphs, the G-Wishart can be generalised to non-decomposable

graphs. As long as the graph G is decomposable, the G-Wishart prior allows closed

form calculation of the integral in (1.3), and therefore the posterior probabilities

can be calculated up to a normalising constant. Hence Bayes factors can be calcu-

lated in closed form since the normalising constant cancels out. These Bayes factors

can then be used to explore the space of graphical models by using, for example,

a Metropolis-Hastings algorithm as in Madigan et al. [1995] or a reversible jump

algorithm as in Giudici and Green [1999] and Dobra et al. [2011].

One disadvantage of these types of algorithms is that they take a long time

to explore the whole model space since they only add or remove a single edge in each

iteration. The birth and death MCMC algorithm of Mohammadi and Wit [2015]

improved on this by allowing more general jumps through the model space. An even

greater improvement would be to remove the need for traversing the model space by

sampling directly from the posterior of ⇥ (which then implies the graphical model

through its sparsity pattern). Obtaining such samples, or constructing an MCMC

algorithm without conditioning on the model G is challenging, however, due to the

distribution being non-continuous with point masses at 0. Instead one may consider

a continuous relaxation of the prior on ⇥ to allow for easier posterior sampling.

Some methods for doing this will be introduced later in the thesis.

For more information on Bayesian methods for Gaussian graphical model

selection see Chapter 10 of Maathuis et al. [2018].

1.4.3 Other methods

Although in this thesis we focus on penalised likelihood and Bayesian methods for

Gaussian graphical model selection, many other methods have been proposed. One
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of the most prominent alternative methods is the constrained l1 minimisation for in-

verse matrix estimation (CLIME) method of Cai et al. [2011]. The CLIME method

solves an alternative constrained optimisation problem which instead minimises the

L1 norm of ⇥ under the constraint that the largest entry of S⇥ � I is bounded at

a chosen threshold. This optimisation problem is convex so allows e�cient compu-

tation. However, CLIME does not guarantee sparsity in the estimate of ⇥ and so

graphical model selection is conducted by thresholding the resulting estimate.

The sparse partial correlation estimation (SPACE) method of Peng et al.

[2009] expands on the nodewise regression method of Meinshausen and Bühlmann

[2006]. They instead focus on estimation of the partial correlations, rather than the

entries of ⇥, and conduct the regressions concurrently and dependently such that

the resulting regression coe�cients avoid certain logical fallacies that may occur in

the method of Meinshausen and Bühlmann [2006]. The SPACE method was shown

to work particularly well in the presence of hub variables - variables associated to

many edges in the graphical model.

Methods based on the score matching loss have been proposed by Forbes

and Lauritzen [2015] and Lin et al. [2016]. Instead of focusing on the log-likelihood

function, score matching methods instead aim to minimise some score function which

quantifies the accuracy of a predictive distribution given a realised value. These are

structurally similar to the SPACE method, benefit from convenient computation, are

robust to non-Gaussian data and tend to perform well in high dimensional settings.

1.5 Thesis outline

The remainder of the thesis is structured as follows. In Chapter 2 we introduce a

class of penalty functions, which the GLASSO penalty, SCAD penalty and MCP

all belong to, and point out a fundamental flaw with penalised likelihood estimates

based on such penalty functions - namely that scalar multiplication of the variables

results in di↵erent estimates of ⇥ and di↵erent graphical model selection. We also in-

troduce a new class of penalty functions based on partial correlations and show that

these benefit from estimates that are invariant to scalar multiplication. Particular

attention is paid to one novel penalised likelihood method - the partial correlation

GLASSO (PC-GLASSO) - which places an L1 penalty on the partial correlations,

and we propose a coordinate descent algorithm for calculation of the PC-GLASSO

estimates. This chapter concludes with applications on both simulated and real data

sets comparing the PC-GLASSO to the GLASSO. The real data sets investigated

involve gene expression measurements of colon cancer patients and S&P 500 index
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stock prices.

Chapter 3 introduces a similar framework based on partial correlations, but

this time for prior distributions. We prove a stronger result that the whole posterior

distribution is invariant to scalar multiplication of the variables under such priors.

These prior distributions are related to penalty functions and we introduce the

prior related to the PC-GLASSO. We then compare this PC-GLASSO prior to the

GLASSO prior of Wang [2012].

In Chapter 4 we use a spike and slab prior framework to inspire a new

penalty function on the partial correlations - the spike and slab PC-GLASSO (SS-

PC-GLASSO). This induces a non-convex penalty which, similarly to the SCAD

penalty and MCP, aims to reduce the bias on large partial correlations associated to

the L1 penalty of the PC-GLASSO. We compare this penalty to the SCAD penalty

and the MCP before proposing methods for parameter selection and computation.

The SS-PC-GLASSO is then compared to PC-GLASSO, SCAD and MCP in simu-

lated and real world examples.

Chapter 5 more extensively explores the use of spike and slab priors for

Gaussian graphical models. A key observation is made related to the positive def-

initeness of ⇥ and the interpretability of the spike and slab prior. We present a

theorem, whose proof is based on the theory of Wigner matrices, to combat this

issue and provide a strategy for setting parameter values to ensure an interpretable

prior. We then discuss choices for spike and slab densities and strategies for posterior

inference.

We conclude the thesis in Chapter 6 with a discussion and some key points

for major future projects based on the work of this thesis.
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Chapter 2

Partial correlation graphical

LASSO

We begin this chapter with a motivating example demonstrating a potentially trou-

blesome feature in the GLASSO and other common penalty functions - a feature

which we will modify with a newly proposed class of penalty functions containing

our novel partial correlation graphical LASSO (PC-GLASSO) method for estimating

precision matrices for Gaussian graphical models.

Example The goal of this example is to estimate the precision matrix ⇥ associated

to a p-variate Gaussian random vector. We set p = 50 and generate n = 100

independent Gaussian draws with zero mean and covariance ⌃ = ⇥�1, where ⇥

follows the so-called star pattern, with ✓ii = 1 and ✓i1 = ✓1i = �1/
p
p for i =

2, . . . , p, and ✓ij = 0 otherwise.

⇥ =

0
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.

In this setup recovery of the graphical model is relatively straightforward using

GLASSO, see for example Yuan and Lin [2007]. Indeed, the top left panel in Fig-

ure 2.1 shows the regularisation path for the estimated partial correlations under

GLASSO. For a large range of values for the regularisation parameter ⇢ the truly

zero ✓ij ’s are completely separated from the non-zeroes.

However, suppose that a data scientist decides to first standardise the data to
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have unit sample variances before applying GLASSO, as is common practise and has

been recommended by, for example, Yuan and Lin [2007]. To standardise the data

one can replace the sample covariance matrix S by the sample correlation matrix

R = diag(S)�1/2Sdiag(S)�1/2

where diag(S) is the diagonal p ⇥ p matrix with diagonal entries equal to those of

S. The top right panel of Figure 2.1 shows the regularisation path for the estimated

partial correlations when GLASSO is applied to the standardised data. It is clear

here that the inference has su↵ered, and in particular the true graphical model is

not recovered for any ⇢.

Although not equivalent, it is useful to consider the standardised data as

being similar to a Gaussian sample with covariance matrix ⌃̃ = ⇥̃�1 given by

⇥̃ =

0
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We highlight two key di↵erences between ⇥,⌃ and ⇥̃, ⌃̃ which might explain the

changes in performance of GLASSO. First, the diagonal entries of ⇥̃ are not all

equal, unlike the diagonal entries of ⇥. Second, the entries of ⌃ related to an edge

are equal to 5
p
2 and the entries not related to an edge are equal to 1. Meanwhile in

⌃̃ the entries related to an edge are equal to 1

2

p
2 and those not related to an edge

are equal to 1

2
. The entries related to an edge are much larger, in both absolute

and relative terms, in ⌃ than in ⌃̃. We conjecture that a combination of these two

factors leads to the decreased performance, something that will be explained further

later in the chapter.

As a further example, we now multiply the samples related to the second

variable by 10 so that the sample is now from a Gaussian distribution with covariance

matrix ⌃̄ = ⇥̄�1 given by

⇥̄ =

0
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Now the second diagonal entry of ⇥̄ is much smaller than the others, and the entries

in the second row and column of ⌃̄ are inflated. In this case, as can be seen in the

bottom left panel of Figure 2.1, for many values of ⇢ the GLASSO estimate only

includes edges related to the second variable, even though this is far from the true

model. This suggests that GLASSO favours edges related to small diagonal entries

in ⇥ and large o↵-diagonal entries in ⌃.

These examples highlight two key issues with GLASSO. First, the estimates

obtained by GLASSO depend on the scale on which the variables are measured. In

other words, the estimate and model selected by GLASSO is not invariant to scalar

multiplication of the variables. This issue is not restricted to GLASSO but, as will be

shown later in the chapter, a↵ects essentially all common penalty functions. Second,

under certain scalings of the variables GLASSO can provide inferior and arguably

illogical estimates of the precision matrix. As was highlighted in the example, this

can occur even when the data has been standardised.

In order to combat these issues, we propose a new class of penalty func-

tions based on partial correlations and investigate one specific penalty function in

this class which we call partial correlation graphical LASSO (PCGLASSO). The

regularisation path for the above example can be found in Figure 2.1 along with

the Kullback-Leibler loss associated to estimates along the regularisation path for

PC-GLASSO, GLASSO, SCAD and MCP under data standardised by S. This

demonstrates PC-GLASSO’s improved performance in estimation of ⇥.

The rest of the chapter is organised as follows. Section 2.1 sets notation and

reviews popular classes of likelihood penalties which we refer to as regular penalty

functions. Section 2.2 introduces a new class of penalties on partial correlations,

and the PC-GLASSO as a particular case. Section 2.3 briefly specifies two forms

of standardising Gaussian data and Section 2.4 compares the GLASSO and PC-

GLASSO estimates in the p = 2 case. Section 2.5 shows that the PC-GLASSO, as

well as the logarithmic and L0 penalties are scale invariant, while regular penalty

functions are not. Section 2.6 informally discusses potential reasons for the poor

performance of GLASSO seen in the above example under certain scalings, while

Section 2.7 attempts to formalise these ideas with a notion of exchangeable inference.

Section 2.8 gives a brief discussion on the penalisation of the diagonal entries of

⇥ and Section 2.9 discusses computational issues for the PC-GLASSO and gives a

certain conditional convexity result. Section 2.10 shows examples on simulated, gene

expression and stock market datasets. We end the chapter with a short discussion.

We also note that content from this chapter and the subsequent chapter

appear in a paper written with David Rossell and available on arXiv [Carter et al.,
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Figure 2.1: Top: Partial correlation regularisation paths for GLASSO in the p = 50
star graph example on the original data (left), and standardised data (right). Esti-
mates of truly non-zero ✓ij are in black. Middle: Partial correlation regularisation
paths for GLASSO (left) when second variable has been multiplied by 10. Partial
correlations not related to the second variable are dashed. Partial correlation path
for PC-GLASSO (right). Bottom: KL loss over the regularisation paths for di↵erent
penalties applied to standardised data.
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2021] (submitted to Scandinavian Journal of Statistics). The PC-GLASSO method

and all results in Sections 2.5 and 2.7 are, to the best of our knowledge, novel.

2.1 Penalised likelihood in Gaussian graphical models

Let X = (X(1), ..., X(p)) ⇠ N(µ,⌃) be a p-dimensional multivariate Gaussian ran-

dom vector with unknown mean µ 2 Rp and p ⇥ p positive-definite covariance

⌃ = (�ij)ii,jp. Suppose we observe n independent samples (X1, . . . , Xn) of X

and denote their sample covariance by S = 1

n�1

Pn
i=1

(Xi � µ̂)(Xi � µ̂)T, where

µ̂ = 1

n

Pn
i=1

Xi is the sample mean. Our goal is to estimate the precision matrix

⇥ = (✓ij)1i,jp = ⌃�1.

A common assumption in Gaussian graphical models is that the data gener-

ating process is governed by a sparse undirected graph so that ⇥ is a sparse matrix

with many zero entries, and we have a particular interest in the location of its zero

entries. This is due to the equivalence between zero partial covariances and condi-

tional independencies in Gaussian graphical models. The most common frequentist

approach to sparse estimation is to maximise a penalised likelihood function of the

form l(⇥ | S)� Pen(⇥), where

l(⇥ | S) = n

2
[log(det(⇥))� tr(S⇥)� p log(2⇡)] , (2.1)

is the log-likelihood function, Pen(⇥) some penalty function and tr(A) the trace

of A. Most popular choices (discussed below) consider penalties that are additive

and monotone in |✓ij |, which we refer to as separable penalties, and in particular the

subclass of penalties di↵erentiable everywhere other than zero, which we refer to as

regular penalties.

Definition 4. A penalty function Pen(⇥) is separable if

Pen(⇥) =
X

ij

penij(✓ij),

where penii : (0,1) ! R and penij : R ! R are non-decreasing in ✓ii and |✓ij |
respectively for all i and i < j.

A separable penalty is regular if penii = penjj for all (i, j) and, for all i < j,

penij does not depend on (i, j), is symmetric about 0 and di↵erentiable away from

0.

Most popular penalty functions used for Gaussian graphical models are reg-

ular. The GLASSO is a prominent example using an L1 penalty to produce the
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point estimate

⇥⇢
GLASSO

(S) = argmax log(det(⇥))� tr(S⇥)� ⇢
pX

i=1

pX

j=1

|✓ij | (2.2)

for some given regularization parameter ⇢ � 0. This corresponds to the regular

penalty function with diagonal penalty penii(✓ii) =
n
2
⇢✓ii and o↵-diagonal penalty

penij(✓ij) = n⇢|✓ij |. Note that the penalty function here is multiplied by the sample

size n; this is so that the resulting maximisation problem doesn’t depend on n and

so that similar ranges of values for the parameter ⇢ are sensible regardless of n. See

Meinshausen and Bühlmann [2006] for an alternative that places L1 penalties on

the full conditional regression of each X(i) given X�(i), Banerjee et al. [2008] for

computational methods based on parameterising (2.2) in terms of ⌃ and Yuan and

Lin [2007] for a variation that omits the diagonal of ⇥ from the penalty. Other

popular regular penalties include the SCAD penalty [Fan and Li, 2001; Fan et al.,

2009] and the MCP penalty [Zhang, 2010; Wang et al., 2016], which were proposed

to reduce bias in the estimation of large entries in ⇥ relative to the L1 penalty.

Another notable regular penalty is the L0 penalty

Pen(⇥) = ⇢
X

i<j

I(✓ij 6= 0), (2.3)

where I is the indicator function.

The adaptive LASSO [Zhou et al., 2009; Fan et al., 2009] is an important ex-

ample of a non-regular penalty. It uses a weighted L1 penalty where weights depend

on the data via some initial estimate of ⇥, and hence does not satisfy Definition

4. However, as noted by Bühlmann and Meier [2008] and Candès et al. [2008],

the adaptive LASSO can be seen as a first-order approximation of the logarithmic

penalty where penij(✓ij) = ⇢ log(|✓ij |), which is regular. Both papers propose an

iterative version of adaptive LASSO that formally targets this logarithmic penalty.

2.2 Partial Correlation Graphical LASSO

We propose basing penalties on a reparameterisation of ⇥ in terms of the (negative)

partial correlations

�ij :=
✓ijp
✓ii✓jj

= �corr
⇣
X(i), X(j) | X�(ij)

⌘
.
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where X�(ij) denotes the vector X after removing X(i) and X(j).

The precision matrix can be decomposed as ⇥ = ✓
1
2�✓

1
2 , where ✓ = diag(⇥)

and � is the matrix with unit diagonal and o↵-diagonal entries �ij . The penalised

likelihood function then becomes

n

2

"
log(det(�)) +

X

i

log(✓ii)� tr(S✓
1
2�✓

1
2 )

#
� Pen(✓,�). (2.4)

We believe that partial correlations are a better measure of dependence than

the o↵-diagonals ✓ij , in that they are easier to interpret and invariant to scalar

multiplication of the variables. We now introduce a class of additive penalties in

this parameterisation, a corresponding prior class, and subsequently state our PC-

GLASSO as a particular case.

Definition 5. A penalty Pen is partial correlation separable (PC-separable) if it is

of the form

Pen(✓,�) =
X

i

penii(✓ii) +
X

i<j

penij(�ij),

where penii : (0,1) ! R and penij : [�1, 1] ! R are non-decreasing in ✓ii and |�ij |
respectively, for all i and i < j.

A PC-separable penalty function is symmetric if penii = penjj for all (i, j)

and, for all i < j, penij does not depend on (i, j) and is symmetric about 0.

Note that Definition 5 includes formulations that do not penalise the diagonal

entries, i.e. penii(✓ii) = 0. Note also that the L0 and logarithmic penalties are PC-

separable since ✓ij = 0 if and only if �ij = 0 and log(|✓ij |) = log(|�ij |)+ 1

2
log(✓ii)+

1

2
log(✓jj).

The PC-GLASSO can be considered the symmetric PC-separable counter-

part to the GLASSO applying the L1 norm to the partial correlations penij(�ij) =

n⇢|�ij |. On the diagonal entries a logarithmic penalty is applied penii(✓ii) =

2 log(✓ii) - the motivation for this will be discussed in Sections 2.5 and 2.8. The

penalised likelihood function, after removing constants, is given by

log(det(�)) +

✓
1� 4

n

◆X

i

log(✓ii)� tr
⇣
S✓

1
2�✓

1
2

⌘
� ⇢

X

i 6=j

|�ij |. (2.5)

An important consideration for the PC-GLASSO is the choice of regularisa-

tion parameter ⇢. As introduced in Section 1.4.1, one may consider a sequence of

parameters 0 = ⇢0 < ⇢1 < · · · < ⇢m and calculate the PC-GLASSO estimate for

each of these parameters ⇥̂⇢0 , ⇥̂⇢1 , . . . , ⇥̂⇢m . The regularistion parameter is then
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selected by choosing the estimate that maximises some chosen criterion. In Section

2.10 we use the Bayesian information criterion (BIC), which selects the parameter

minimising

BIC(⇥̂⇢i , S) = log(n)k
⇥̂⇢i

� 2l(⇥̂⇢i | S), (2.6)

where k
⇥̂⇢i

is the number of edges in the graphical model given by ⇥̂⇢i . This BIC

criterion was suggested in this context by Yuan and Lin [2007] and has also been

investigated by Lian [2011] and Gao et al. [2012].

There are some examples of penalty functions for Gaussian graphical models

based on partial correlations. Ha and Sun [2014] utilised a ridge penalty. The space

method of Peng et al. [2009], similarly to PC-GLASSO, uses an L1 penalty on the

partial correlations, but in combination with a function other than the log-likelihood.

Azose and Raftery [2018] introduced a separable prior on the marginal correlations.

They argued that a key benefit of their prior is the ability to specify beliefs about

correlations. A similar argument can be made for PC-separable priors, introduced

in Chapter 3, allowing one to specify prior beliefs on partial correlations.

2.3 Data standardisation

It is a common practise when using Gaussian data to standardise the data before

applying any statistical methods. In this section we will detail two ways in which

this might be done.

The most common form of standardisation ensures that the sample marginal

variances are all equal to 1, or equivalently that S has unit diagonal. We will refer

to this form of standardisation as standardising by S. Here the sample correlation

matrix

R = diag(S)�1/2 S diag(S)�1/2,

where diag(S) is the p ⇥ p diagonal matrix with diagonal entries equal to those of

S, is substituted for the matrix S. To estimate the original (unstandardised) ⇥,

one can simply rescale the estimate obtained when using R. That is, if ⇥̂ is an

estimator, then

diag(S)�1/2 ⇥̂(R) diag(S)�1/2 (2.7)

can be considered an estimate for ⇥.

One reason why standardising by S is common is because diag(S) is a good
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estimator for diag(⌃). In particular

(n� 1)S ⇠ Wp(⌃, n� 1),

where Wp denotes the p dimensional Wishart distribution, and so S is an unbiased

estimator for ⌃. Furthermore, the marginal distributions of the diagonal entries of

S satisfy
n� 1

�ii
Sii ⇠ X 2

n�1,

where X 2
n�1

denotes the chi-squared distribution with n � 1 degrees of freedom. It

follows that Sii is an unbiased estimator of �ii with mode at n�3

n�1
�ii and variance

2

n�1
�2
ii which does not depend on the dimension p. In particular, the probability

P (Sii 2 (0.5�ii, 1.5�ii))

is equal to 0.734 for n = 10 and 0.999 for n = 100.

It is a therefore a justifiable assumption, particularly for large n, that under

the standardised data the true underlying variances are all approximately equal to

1. In other words, the rescaled covariance matrix

diag(S)�1/2 ⌃ diag(S)�1/2

has approximately unit diagonal entries.

An alternative form of standardisation is to make the sample partial variances

all equal to 1, or equivalently to ensure that S�1 has unit diagonal. We refer to this

form of standardisation as standardising by S�1. This standardisation is achieved

by considering

R�1 = diag(S�1)1/2 S diag(S�1)1/2.

This time an estimate for the orginal ⇥ can be obtained via

diag(S�1)1/2 ⇥̂(R�1) diag(S
�1)1/2 (2.8)

Standardising by S�1 is a less popular form of standardisation, in part due to the

poor properties of S�1 as an estimator of ⇥. In particular,

1

n� 1
S�1 ⇠ W�1

p (⇥, n� 1)

where W�1
p denotes the p dimensional Inverse-Wishart distribution. Hence the
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expectation of S�1 is

E[S�1] =
n� 1

n� p� 2
⇥

and so is a biased estimator for ⇥. The marginal distributions of the diagonal entries

of S�1 satisfy
1

n� 1
(S�1)ii ⇠ IG

✓
1

2
(n� p� 2),

1

2
✓ii

◆

where IG denotes the inverse Gamma distribution. It follows that (S�1)ii is a biased

estimate of ✓ii with mean n�1

n�p�4
✓ii, mode n�1

n�p✓ii and variance 2(n�1)
2

(n�p�4)2(n�p�6)
✓2ii.

Note that both the bias and variance increase with the dimension p.

From this it follows that the diagonal entries of S�1 can be far from the

diagonal entries of ⇥, particularly when the dimension p is large. It is therefore

unreasonable to assume that under the standardised data the true underlying partial

variances are all approximately equal to 1. In particular, the diagonal entries of the

rescaled precision matrix

diag(S�1)�1/2 ⇥ diag(S�1)�1/2

may be highly dispersed and far from 1. In other words, while standardising in

terms of S�1 ensures that the sample partial variances are all equal to 1, this does

not imply that the true partial variances are approximately equal to 1, or even that

they are approximately equal to each other.

Furthermore, the situation gets worse in big data settings when p > n, where

S is not invertible. Instead, a generalised inverse, such as the Moore-Penrose inverse,

may be used. However, in this case the properties of the inverse as an estimate for

⇥ deteriorate further. More details on the Moore-Penrose inverse can be found in,

for example, Cook and Forzani [2011]. For these reasons we will primarily focus on

standardising by S for the remainder of this chapter.

As a final comment of this section, we note that standardisation of the data

is not as innocuous as it may first seem. In particular, to standardise the data one

must multiply by some function of the data. It follows that the distribution of the

standardised data is no longer Gaussian, and that the sample correlation matrix R

is not Wishart [Kollo and Ruul, 2003]. One may argue that it is therefore preferable

to work with unstandardised data where possible.
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2.4 A 2⇥ 2 comparison

Within linear regression settings it is common to gain insight into the shrinkage

a↵ects of a penalty function by considering the orthogonal design matrix case. In

this case the likelihood is separable in each of the regression coe�cients thus giving

a closed form solution, with the estimated regression coe�cients being independent

of one another. In the Gaussian graphical model setting of this thesis, one may

gain similar insights by considering the p = 2 case. In this section we compare

the GLASSO and PC-GLASSO estimates for this p = 2 case. We begin with

investigating GLASSO in the two cases where the data has been standardised by S

and by S�1. We then investigate PC-GLASSO for which the standardisation doesn’t

matter due to scale invariance, a property which will be introduced in Section 2.5.

2.4.1 GLASSO standardised by S

Consider the sample covariance matrix

S =

 
1 x

x 1

!
(2.9)

for x 2 [0, 1), which has inverse

S�1 =

 
1

1�x2
�x

1�x2

�x
1�x2

1

1�x2

!

which is the maximum likelihood estimate for the precision matrix. In this case the

GLasso objective function can be written as

log(✓11✓22 � ✓212)� ✓11 � ✓22 � 2x✓12 � 2⇢|✓12|�⇢✓11 � ⇢✓22

and it can easily be shown that the GLasso estimate is

✓12 =

8
<

:
0, 0  x < ⇢

�(x�⇢)
(1+⇢)2�(x�⇢)2 , x > ⇢

✓11 = ✓22 =

8
<

:

1

1+⇢ , 0  x < ⇢

1+⇢
(1+⇢)2�(x�⇢)2 , x > ⇢

Note that this is equal to the MLE when the diagonal entries of S are replaced by

1 + ⇢ and the o↵-diagonal by max{0, x � ⇢}. Hence the penalty can be thought of
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as shrinking the o↵-diagonal entry of S towards 0.

We first consider a fixed penalty parameter ⇢ = 0.1 and allow x to vary

between 0 and 1. Plots of the MLE vs the GLASSO estimate can be seen in Figure

2.2 for the partial correlations (left) and the diagonal entries (right). We see that

similar to a LASSO style shrinkage is applied to the partial correlations. A large

amount of shrinkage is applied to the diagonal entries, particularly for large x, with

the GLASSO estimate remaining less than 3 even as the MLE goes above 100.

Next we consider fixed x = 0.5 and allow the penalty ⇢ to vary between 0

and 1. In Figure 2.3 we see the GLASSO estimates plotted against the penalty

parameter for the partial correlations (left) and diagonal entries (right). Note that

GLASSO shrinks both the partial correlations and diagonal entries to zero at a

super-linear rate as the penalty parameter increases.

2.4.2 GLASSO standardised by S�1

We now consider the inverse sample covariance matrix

S�1 =

 
1 �x

�x 1

!
.

for x 2 [0, 1), which has inverse

S =

 
1

1�x2
x

1�x2

x
1�x2

1

1�x2

!
.

Once again, it can be shown that the GLASSO estimate is equivalent to replacing

the diagonal entries of S by 1

1�x2 + ⇢ and the o↵-diagonals by max{0, x
1�x2 � ⇢}.

We now compare the MLE to the GLASSO estimate when ⇢ = 0.1 is fixed

and x is allowed to vary between 0 and 1. In order to be comparable to the previous

example, we multiply the MLE and GLASSO estimates by 1

1�x2 . In the left panel

of Figure 2.4 we see that the partial correlations receive LASSO style shrinkage for

small values of x. However, as x increases, and the MLE becomes larger, the amount

of shrinkage is reduced. Meanwhile, the right panel of Figure 2.4 shows that the

diagonal entries receive far less shrinkage when the data is standardised by S�1, in

comparison to the results in Figure 2.2.

In Figure 2.5 we see that when x = 0.5 is fixed, the partial correlation

estimates and diagonal entry estimates are shrunk towards zero at a super-linear

rate. This is very similar to the results in Figure 2.3.
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Figure 2.2: 2⇥ 2 example, standardised by S. The GLASSO estimate with penalty
⇢ = 0.1 of the partial correlation (left) and ✓ii (right) compared with the MLE as
sample covariance x varies between 0 and 1. Dotted line is identity for reference.
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Figure 2.3: 2⇥ 2 example, standardised by S. The GLasso estimate with x = 0.5 of
the partial correlation (left) and ✓ii (right) for di↵erent penalty parameter values.
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2.4.3 PC-GLASSO

We now investigate the PC-GLASSO estimate in the p = 2 case. We will use the

standardised sample covariance matrix (2.9) as in Section 2.4.1, however the results

of Section 2.5 will show that the graphs produced in this section do not depend on

the standardisation.

The PC-GLASSO objective function can be written as:

log(1��2

12) +

✓
1� 4

n

◆
(log(✓11) + log(✓22))� ✓11 � ✓22 � 2x

p
✓11✓22�12 � 2⇢|�12|.

The solution for �12 can be shown to be equal to 0 if
�
1� 4

n

�
x < ⇢, and otherwise

30



Figure 2.4: 2⇥ 2 example, standardised by S�1. The GLasso estimate with penalty
⇢ = 0.1 of the partial correlation (left) and ✓ii (right) compared with the MLE
as sample partial covariance x varies between 0 and 1. Dotted line is identity for
reference.
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Figure 2.5: 2⇥ 2 example, standardised by S�1. The GLasso estimate with x = 0.5
of the partial correlation (left) and ✓ii (right) for di↵erent penalty parameter values.
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is the solution in (�1, 0) of the cubic:

⇢x�3

12 +

✓
4

n
x+ ⇢

◆
�2

12 + (1� ⇢x)�12 +

✓
1� 4

n

◆
x� ⇢ = 0.

The solution for the diagonal entries is:

✓11 = ✓22 =
1� 4

n

1 + x�12

.

Figure 2.6 compares the PC-GLASSO estimate to the MLE for fixed ⇢ = 0.1

as x varies between 0 and 1. Note that these look similar to those of Figure 2.4
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when GLASSO is performed on data standardised by S�1, although PC-GLASSO

applies slightly less shrinkage on both the partial correlations and diagonal entries.

In Figure 2.7 we see the PC-GLASSO estimates for di↵erent penalty param-

eters ⇢ and fixed x = 0.5. Unlike GLASSO, we see that these are shrink towards 0

at a sub-linear rate.

We argue that these results are preferable to GLASSO because they apply

less shrinkage to non-zero partial correlation estimates and to the diagonal entries,

whilst still providing zero estimates. The goal of the penalty function is to induce

sparsity in the estimated ⇥, but when a partial correlation is not shrunk to 0 it is

commonly thought of as preferable for the estimate to receive little shrinkage. This

is the goal of non-convex penalty functions which aim to reduce the bias in non-zero

estimates.

Furthermore, the results of PC-GLASSO do not depend on the standardisa-

tion. In this p = 2 example, GLASSO seems to provide better shrinkage when the

data is standardised by S�1. PC-GLASSO achieves even better shrinkage than this

regarless of standardisation, in particular when data has not been standardised or

the more common standardisation by S.

2.5 Scale invariance

A key property of graphical models is invariance to scalar multiplication. In the

Gaussian case, if we consider the transformation DX for some fixed diagonal p⇥ p

matrix D with non-zero entries, then DX is also Gaussian with precision matrix

⇥D = D�1⇥D�1. (2.10)

In particular, the zero entries of ⇥D are identical to those of ⇥.

We argue that it is desirable for an estimator of ⇥ to mirror the relationship

in (2.10) under scalar multiplication of the data, a property we call scale invariance.

We now show that, among regular penalty functions, only the L0 and logarithmic

penalties are scale invariant, whereas any PC-separable penalty with logarithmic di-

agonal penalty is scale invariant. We start by defining two notions of scale invariance

related to the point estimate and to the recovered graphical structure.

Definition 6. An estimator ⇥̂ is scale invariant if for any sample covariance matrix

S and any diagonal p⇥ p matrix D with non-zero diagonal entries,

⇥̂(DSD) = D�1⇥̂(S)D�1.
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Figure 2.6: 2 ⇥ 2 example, PC-GLASSO. The PC-GLASSO estimate with ⇢ = 0.1
of the partial correlation (left) and ✓ii (right) compared with the MLE as x varies
between 0 and 1. Dotted line is identity for reference.
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Figure 2.7: 2⇥2 example, PC-GLASSO. The PC-GLASSO estimate with x = 0.5 of
the partial correlation (top) and ✓ii (bottom) for di↵erent penalty parameter values.
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⇥̂ is selection scale invariant if ⇥̂(S) and ⇥̂(DSD) have identical zero entries for

any S and D.

Scale invariance ensures that the estimate under the scaled data corresponds

to that under the original data as in (2.10). In particular, the estimated partial

correlations are identical in ⇥̂(S) and ⇥̂(DSD). Meanwhile selection scale invariance

ensures that one recovers the same graphical structure under scalar multiplications.

It is clear that scale invariance implies selection scale invariance.

We now present results on the scale invariance of di↵erent penalties.

Proposition 2. Let ⇥̂ be an estimator based on a regular penalty, and suppose that

there exists a sample covariance matrix S such that ⇥̂(S) is not a diagonal matrix.
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Then ⇥̂ is scale invariant if and only if penij is either an L0 or logarithmic penalty,

and penii is either a constant or a logarithmic penalty.

Proof. Let S be some sample covariance matrix for which ⇥̂(S) is not diagonal and

D be some diagonal matrix with non-zero diagonal entries di, i = 1, . . . , p. Suppose

that ⇥̂ is scale invariant. Let ✓̂ij = ⇥̂(S)ij be some non-zero o↵-diagonal entry

of ⇥̂(S), and ✓̃ij = ⇥̂(DSD)ij be the corresponding entry in ⇥̂(DSD). By scale

invariance we must have ✓̃ij =
ˆ✓ij

didj
.

For these to maximise their corresponding penalised likelihoods, the deriva-

tives of the penalised likelihood function (2.1) with respect to ✓ij must be equal to

0 at ✓̂ij and ✓̃ij respectively (note that the derivative exists because Pen is regular

and ✓̂ij 6= 0, ✓̃ij 6= 0). Therefore

(⇥̂(S)�1)ij � 2sij �
4

n
pen0

ij(✓̂ij) = 0,

(⇥̂(DSD)�1)ij � 2didjsij �
4

n
pen0

ij(✓̃ij) = didj
⇣
(⇥̂(S)�1)ij � 2sij

⌘
� 4

n
pen0

ij

 
✓̂ij
didj

!

= 0,

where we used that, since ⇥̂ is scale invariant then ⇥̂(DSD) = D�1⇥̂(S)D�1 and

hence (⇥̂(DSD)�1)ij = (D⇥̂(S)�1D)ij = didj(⇥̂(S)�1)ij .

It follows that

pen0
ij

 
✓̂ij
didj

!
= didjpen

0
ij(✓̂ij). (2.11)

That is, for scale invariance to hold the penalty must satisfy pen0
ij

✓
ˆ✓ij
d

◆
= dpen0

ij(✓̂ij)

for any d 6= 0. The latter requirement can only hold in two scenarios. First, there

is the trivial scenario where pen0
ij(✓ij) = 0 for all ✓ij 6= 0, that is penij is an L0

penalty.

Second, if pen0
ij(✓̂ij) = k 6= 0, then pen0

ij

✓
ˆ✓ij
d

◆
= dk. Treating ✓̂ij , and

therefore also k, as fixed, we denote by x =
ˆ✓ij
d . Then we have pen0

ij (x) =
ˆ✓ijk
x . It

follows that penij(x) = ✓̂ijk log(|x|) + c for some constant c and x 6= 0, that is penij

is a logarithmic penalty.

This proves that for a regular penalty to be scale invariant it must have L0

or logarithmic penij . We now turn our attention to the diagonal penalty.
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Let S be some diagonal covariance matrix, and D some diagonal matrix as

before. Let ✓̂ii = ⇥̂(S)ii and ✓̃ii = ⇥̂(DSD)ii. By scale invariance we must have

✓̃ij =
ˆ✓ij
d2i
.

Since S is diagonal, it is easy to see that both ⇥̂(S) and ⇥̂(DSD) must also

be diagonal, and that ✓̂ii maximises the function:

log(✓ii)� Sii✓ii �
2

n
penii(✓ii),

while ✓̃ii maximises the same function but with Sii replaced by d2iSii. It follows that

the corresponding derivatives must both be equal to zero at ✓̂ii and ✓̃ii respectively

(Pen is regular so penii is di↵erentiable). Using this along with ✓̃ij =
ˆ✓ij
d2i

we obtain:

pen0
ii

 
✓̂ii
d2i

!
= d2i pen

0
ii

⇣
✓̂ii
⌘
.

As before, it follows that penii must be either constant or logarithmic. This

proves that for a regular penalty function to be scale invariant it must have either

constant or logarithmic penalty on the diagonal entries.

To complete the proof we must show that such penalty functions (L0 or

logarithmic o↵-diagonal penalty and constant or logarithmic diagonal penalty) are

always scale invariant. This follows from Proposition 3 since the L0 and logarithmic

penalties are also symmetric PC-separable.

It follows from Proposition 2 that the GLASSO, SCAD and MCP estimators

are not scale invariant. Further, as illustrated in Figure 2.1 and the upcoming

example these estimators are also not selection scale invariant. We conjecture that

lack of selection scale invariance holds more widely for regular penalty functions,

but settle with the counterexample for these three cases provided by Figure 2.1.

It should be noted that any penalised likelihood method can be made to be

scale invariant by first standardising the data and then rescaling the estimate via

(2.10). This is because the standardisation step removes the a↵ect of the scalar

multiplication - for example the sample correlation matrix R is invariant to scalar

multiplication of the variables.

We present an example to further illustrate how scaling can a↵ect the in-

ferred conditional independence structure. Suppose we observe the inverse sample
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covariance matrix

S�1 =

0

B@
1 0.5 0

0.5 1 0.25

0 0.25 1

1

CA

The left panel in Figure 2.8 shows the associated GLASSO estimates ⇥⇢
GLASSO

(S).

The right panel considers the situation where the data was given on a di↵erent scale,

specifically the sample covariance is DSD where D has diagonal entries 1, 1 and

10, and provides the estimates D⇥⇢
GLASSO

(DSD)D. The estimates set to zero, as

well as their relative magnitudes, di↵er significantly depending on the scale of the

data. We observed similar results for the SCAD and MCP penalties (not shown, for

brevity).
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Figure 2.8: Estimated o↵-diagonal entries ⇥⇢
GLASSO

(S) (left) and
D⇥⇢

GLASSO
(DSD)D (right) for regularisation parameter ⇢ 2 [0, 1].

As shown in Proposition 2, the only scale invariant regular penalties are the

L0 and logarithmic penalties, both of which are also PC-separable. In fact scale

invariance holds more widely in PC-separable penalties, from which it follows that

PC-GLASSO is scale invariant.

Proposition 3. Any estimator based on a symmetric PC-separable penalty with

penii(✓ii) = c log(|✓ii|) for some constant c � 0 is scale invariant.

Proof. Let S be a sample covariance matrix and D be a diagonal matrix with non-

zero entries di. Suppose that the estimate ⇥̂(S) decomposes as ✓̄1/2�̄✓̄1/2 and that

the estimate ⇥̂(DSD) decomposes as ✓̃1/2�̃✓̃1/2. To prove scale invariance we need

that �̄ = sign(D)�̃sign(D) and ✓̄ = D2✓̃.
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Since ⇥̂(S) maximises the penalised likelihood at S, ✓̄, �̄ must maximise

log(det(⇥)) +
X

i

✓✓
1� 2c

n

◆
log(✓ii)� sii✓ii

◆
�
X

i 6=j

✓
sij
p

✓ii✓jj�ij +
2

n
penij(�ij)

◆
,

(2.12)

and similarly, ✓̃, �̃ must maximise

log(det(⇥)) +
X

i

✓✓
1� 2c

n

◆
log(✓ii)� d2i sii✓ii

◆
�
X

i 6=j

✓
didjsij

p
✓ii✓jj�ij +

2

n
penij(�ij)

◆
.

(2.13)

By substituting ✓0ii = d2i ✓ii and �0
ij = sign(didj)�ij into (2.13), and noting that

penij is symmetric about 0, we get

log(det(⇥)) +
X

i

✓✓
1� 2c

n

◆�
log(✓0ii)� log(d2i )

�
� sii✓

0
ii

◆

�
X

i 6=j

✓
sij
q
✓0ii✓

0
jj�

0
ij +

2

n
penij(�

0
ij)

◆
. (2.14)

Since log(d2i ) is a constant, (2.14) is of the same form as (2.12) and they are

maximised at the same point. Hence we have that �̄ = sign(D)�̃sign(D) and

✓̄ = D2✓̃.

Proposition 3 states than any symmetric PC-separable is scale invariant,

provided that the penalty function on the diagonal entries is logarithmic. Note that

this also includes the case of no penalty on the diagonal entries by taking c = 0.

The logarithmic penalty on the diagonal entries will be discussed further is Section

2.8.

2.6 Uneven penalisation

The previous section proved that regular penalty functions are not scale invariant

and we saw in the examples at the beginning of this chapter that this lack of invari-

ance, at least in the case of GLASSO, is not benign - rescaling the variables has a

significant e↵ect on both estimation of ⇥ and graphical model selection. In those

examples, GLASSO performed best when the data generating ✓ii were all equal to

1. In this section we will provide some informal insights into why this might be the

case more generally for both GLASSO and regular penalty functions. The follow-

ing section will then attempt to formalise these ideas in a logical criterion we call
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exchangeable inference.

After removing constants, a penalised likelihood function with a regular

penalty can be written as

n

2
(log(det(⇥))� tr(S⇥))� Pen(⇥)

which is proportional to

log(det(⇥))� tr(S⇥)� 2

n
Pen(⇥)

= log(det(⇥))�
X

i

✓
Sii✓ii �

2

n
penii(✓ii)

◆
�
X

i<j

✓
2Sij✓ij �

2

n
penij(✓ij)

◆
.

To better understand the penalised likelihood estimate, we will consider max-

imisation of this function ignoring the log determinant term. Although the log de-

terminant is important to the maximisation problem, it does complicate the issue

with the maximum not generally being analytically available. By not considering

the log determinant we obtain a proxy to the maximum which is more generally ana-

lytically available. Furthermore, the log determinant term tends to act a a regulator

for positive definiteness, with matrices close to the boundary of positive definiteness

having a large negative value but with the log determinant being relatively constant

on the interior of the space.

Ignoring the log determinant term, the value of ✓ij that maximises this func-

tion is determined solely by Sij . In particular, if, without loss of generality, we

suppose penij(0) = 0, then this function will be maximised at ✓ij = 0 if and only if
1

npenij(✓ij) > Sij✓ij for all ✓ij 6= 0. Clearly the penalised likelihood will therefore

generally select edges associated to larger Sij in absolute value.

However, the magnitude of Sij is strongly influenced by the scale of the

variables and not on the strength of dependence between them. This is because

Sij =
p
SiiSjjRij where Rij is the sample correlation. While |Rij |< 1 is bounded,

Sii, Sjj are unbounded. Hence the magnitude of Sij is mostly determined by the

sample variances. The penalised likelihood will therefore tend to select edges related

to high variance variables.

This seems to suggest that regular penalties might perform best when all

variables have equal variance (i.e. the diagonal entries of ⌃ are all equal). Although

this is an unreasonable assumption in any real data set, this can be approximately

achieved by standardising the data by S. However, as seen in the example at the

beginning of this chapter, the performance of GLASSO can be poor even when the
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data has been standardised by S.

An alternative viewpoint is to consider two equal partial correlations �ij =

�i0j0 but with diagonal entries ✓ii✓jj < ✓i0i0✓j0j0 so that ✓ij < ✓i0j0 . Hence under

a regular penalty penij(✓ij) < penij(✓i0j0). This seems to suggest that a regular

penalty would favour edges associated to small diagonal entries of ⇥ and so might

perform best when these are all equal. This was certainly the case in the example

at the beginning of this chapter.

Again, it is unreasonable to assume that the diagonal entries of ⇥ are equal

in any real data set. Furthermore, as discussed in Section 2.3, this assumption is

not necessarily reasonable even after standardising the data by S�1. Standardising

by S�1 was favoured by Yuan and Lin [2007] stating that this seems more natural

than standardising by S since we are estimating the precision matrix. They also

claim that there is little di↵erence in performance when standardising in either way,

although in our experience this is not the case in certain settings.

2.7 Exchangeable inference

In this section we attempt to formalise the arguments of the previous section provid-

ing a logical criterion, which we call exchangeable inference, which is only satisfied

for regular penalties when the data has been standardised.

The simplest situation of exchangeable inference occurs when the likelihood

function is exchangeable in two or more �ij ’s, for example when two rows in the

sample correlation matrix R = diag(S)�1/2Sdiag(S)�1/2 are equal (up to the nec-

essary index permutations). In such a situation the likelihood provides the same

information on these �ij ’s, hence it seems desirable to obtain the same inference

for all of them. If the log-likelihood is exchangeable in some parameters, then any

symmetric PC-separable penalty and prior trivially leads to exchangeable inference

on those parameters. Yet, as illustrated in our example below, regular penalties can

lead to significantly di↵erent inference (unless one standardises the data).

Example Consider a p = 4 setting where the data-generating truth follows a star

graph, featuring an edge between X(1) and each of X(2), X(3), X(4), and no other

edges. Specifically, suppose that truly ✓11 = ✓22 = ✓44 = 1, ✓33 = 4, ✓12 = ✓14 = �0.5

and ✓13 = �1, so that the data-generating partial correlations are �12 = �13 =

�14 = 0.5, and �ij = 0 for all remaining (i, j). Consider an ideal scenario where
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the sample covariance S matches the data-generating truth. That is,

S�1 =

0

BBBB@

1 �0.5 �1 �0.5

�0.5 1 0 0

�1 0 4 0

�0.5 0 0 1

1

CCCCA
; S =

0

BBBB@

4 2 1 2

2 2 0.5 1

1 0.5 0.5 0.5

2 1 0.5 2

1

CCCCA
;

R =

0

BBBB@

1 1/
p
2 1/

p
2 1/

p
2

1/
p
2 1 0.5 0.5

1/
p
2 0.5 1 0.5

1/
p
2 0.5 0.5 1

1

CCCCA

In this example, the likelihood is exchangeable in (�12,�13,�14), hence it seems

desirable that �̂12 = �̂13 = �̂14. The estimates for the remaining �ij should ideally

be close to 0, their true value.

The left panel of Figure 2.9 shows the GLASSO path for the partial corre-

lations. The estimate for �13 is fairly di↵erent than for �12 and �14, and so is

the range of ⇢’s for which they are set to 0. Note however that the estimates for

the remaining �ij ’s are close to 0. To address this issue, one may note that the

diagonal of S is not equal to 1. Indeed, if one standardises the data by S, so that

the sample covariance is equal to R, one obtains the center panel of Figure 2.9.

Now �̂12 = �̂13 = �̂14 for any regularisation parameter ⇢, as we argued is desir-

able. However, the estimates for truly zero parameters are somewhat magnified for

⇢ 2 [0.05, 0.35].

The PC-GLASSO estimates (on either the original or standardised data, due

to scale invariance) in the right panel of Figure 2.9 satisfy �̂12 = �̂13 = �̂14, and

the truly zero parameters are clearly distinguished.
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Figure 2.9: Partial correlation regularisation paths in p = 4 star graph example for
GLASSO on the original S (left), standardised S (center) and PC-GLASSO (right).

We now extend this idea by constructing a situation where, given some values
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of the remaining parameters, the log-likelihood is symmetric in two partial correla-

tions. Note that since the log-likelihood is concave, this implies that the two partial

correlations are equal in the MLE. We argue that any penalised likelihood should

match this symmetry so that inference on the two partial correlations is exchange-

able.

Suppose the value of an estimator ✓̂ = diag(⇥̂) and all the entries in �̂

are given, except for a pair of partial correlations (�k1k2 ,�k1k3), for some indexes

k1, k2, k3 2 {1, . . . , p}. Suppose that S, and the given elements in �̂ and ✓̂ satisfy

the following conditions:

(C1) Sk1k2 = cSk1k3 for some c > 0.

(C2) ✓̂�1/2
k2

= c✓̂�1/2
k3

for the same c > 0.

(C3) �̂k2j = �̂k3j for all j 62 {k1, k2, k3}.

Proposition 4. Under conditions (C1)-(C3) the likelihood function is symmetric

in (�k1k2 ,�k1k3).

Proof. Without loss of generality suppose that the variable indexes are k1 = 1,

k2 = 2 and k3 = 3. The MLE maximises the function

log(det(⇥))� tr(S⇥) = log(det(✓1/2�✓1/2))� tr(S✓1/2�✓1/2).

Consider this as a function h(�12,�13) that only depends on (�12,�13), given a

value of the remaining parameters ✓̂ and �̂ij for (i, j) 62 {(1, 2), (1, 3)} satisfying

(C1)-(C3).

We shall show that the two terms log det(⇥) and tr(S⇥) are symmetric in

(�12,�13), when (C1)-(C3) hold. Using straightforward algebra gives that

tr(S⇥) = tr(S✓1/2�✓1/2) = 2s12✓
1/2
11

✓1/2
22

�12 + 2s13✓
1/2
11

✓1/2
13

�13 + c

where c does not depend on (�12,�13). Plugging in ✓̂ and �̂ij into this expresion

and using (C1) gives that is it equal to

2✓̂1/2
11

s12✓̂
1/2
22

(�12 +�13) + c, (2.15)

which is symmetric in (�12,�13).
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Consider now det(⇥). Using basic properties of the matrix determinant,

det(⇥) = det(�)
pY

j=1

✓jj = |�11 ��2:p,1�
�1

2:p,2:p�1,2:p||�2:p,2:p|
pY

j=1

✓jj ,

where �i:j,k:l is the submatrix obtained by taking rows i, i + 1, . . . , j and columns

k, k + 1, . . . , l from �. Since ✓̂, �̂2:p,2:p, and �̂1j for j � 4 are given, it su�ces to

show that

(�12,�13, �̂14, . . . , �̂1p)�̂
�1

2:p,2:p(�12,�13, �̂14, . . . , �̂1p)
T (2.16)

is symmetric in (�12,�13). To ease notation let A = �̂�1

2:p,2:p. Note that under

Condition (C3),

�̂2:p,2:p =

0

B@
1 �̂23 �̂24 . . . �̂2p

�̂23 1 �̂24 . . . �̂2p

. . . �̂2p �̂2p �̂4p . . . 1

1

CA

and hence

�̂�1

2:p,2:p = A =

0

BBBB@

a11 a12 a13 . . . a1p�1

a12 a11 a13 . . . a1p�1

a13 a23 a33 . . . a3p�1

. . . a1p�1 a2p�1 a3p�1 . . . ap�1p�3

1

CCCCA
.

That is, the first two rows in A are equal, up to permuting the first two elements in

each row. Therefore, (2.16) is equal to

a11�
2

12 + a11�
2

13 +
p�1X

j=3

ajj�̂
2

j+1j+1 + 2a12�12�13 + 2
p�1X

j=3

a1j�12�̂1j+1

+2
p�1X

j=3

a1j�13�̂1j+1 + 2
pX

j=3

pX

k=j+1

ajk�̂j+1k+1

= a11(�
2

12 +�2

13) + 2a12�12�13 + 2(�12 +�13)
p�1X

j=3

a1j�̂1j+1 + c0,

where c0 does not depend on (�12,�13), which is a symmetric function in (�12,�13),

as we wished to prove.
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Corollary 2. Under conditions (C1)-(C3) any penalised likelihood with a symmetric

PC-separable penalty is symmetric in (�k1k2 ,�k1k3).

Proof. The proof follows immediately from the proof of Proposition 4, noting that

Pen(✓,�) =
P

i penii(✓ii) +
P

i 6=j pen(�ij) is symmetric in (�12,�13).

Corollary 3. Under conditions (C1)-(C3) a penalised likelihood with a regular

penalty, other than the L0 or logarithmic, is symmetric in (�k1k2 ,�k1k3) if and

only if ✓̂k2k2 = ✓̂k3k3.

Proof. From Proposition 4 the penalised likelihood is symmetric if and only if

penk1k2

✓q
✓̂k1k1 ✓̂k2k2�k1k2

◆
+ penk1k3

✓q
✓̂k1k1 ✓̂k3k3�k1k3

◆

is symmetric. Since Pen is regular, this only happens when ✓̂k2k2 = ✓̂k3k3 or when

penij is either L0 or logarithmic.

From Corollary 3, in order for a regular penalised likelihood to match the

symmetry of the likelihood, it must estimate the appropriate diagonal entries to be

equal. This will not be the case for most real data sets where there will likely be a

large di↵erence in the true values of the diagonal entries. This is another reason for

standardising the data - under either standardisation and (C1)-(C3), the condition

✓̂k2k2 = ✓̂k3k3 can be shown hold for the MLE.

2.8 Diagonal penalty

An important aspect of any separable or PC-separable penalty function on ⇥ is the

penalty on the diagonal entries penii. Good estimation of the diagonal entries is

vital for both estimation of the partial correlations and graphical model selection

due to their role as the inverse partial variances. The partial variance measures the

variance in a variable after conditioning on the remaining variables. Hence, if one

holds the marginal variance fixed, a large estimated partial variance implies weak

dependence on the remaining variables, while a small partial variance implies strong

dependence. From this it can be seen that underestimation of the diagonal entries

may encourage a more sparse graph and vice versa.

The penalty on the diagonal entries is an aspect that is often overlooked in

the study of regular penalties. A common approach is to simply use a function
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of the same form as the o↵-diagonal penalty. However, this approach seems sub-

optimal due to the di↵ering objectives of the penalties. The aim of the penalty

on the o↵-diagonal entries is to induce sparsity in order to obtain a more simple

graphical model. On the other hand, the aim of the penalty on the diagonals is

simply to improve estimation. The linear penalty of GLASSO penii(✓ii) = ⇢✓ii will

cause more shrinkage of the diagonal entries as the parameter ⇢ increases. The non-

convex SCAD and MCP penalties apply more shrinkage to small diagonal entries

than large ones. This will be seen in practise in the real data examples of Section

2.10.

An alternative approach used by Yuan and Lin [2007] is to simply not penalise

the diagonals penii(✓ii) = 0. While, in our opinion, this is preferable to the previous

approach, it may still be improved upon. One reason we believe this is that S�1 is

a biased estimate of ⇥ with

E[(S�1)ii] =
n

n� p� 1
✓ii

and so some shrinkage is preferable.

In PCGLASSO we have opted for a logarithmic penalty, in part due to the

property of scale invariance as detailed in Section 2.5. It is interesting to note

why the logarithmic penalty is needed to obtain scale invariance. The derivative of

c log(ax) with respect to x is equal to c
x which does not depend on a. This means

that the same shrinkage is applied to the diagonal entry after scalar multiplication

- a property which only holds for the logarithmic (or zero) penalty.

Amongst the logarithmic penalty we have opted for a coe�cient of 2. This

is because amongst penalty functions of the form c log(x) for constant c � 0 on

the precision, choosing c = 2 asymptotically minimises the mean squared error of

the estimate of the precision in the univariate p = 1 case (detailed below). This is

relevant in higher p > 1 dimensions since it relates to the diagonal entry estimate

when all partial correlations are estimated to be equal to 0. That is, suppose we

fix the estimates of all partial correlations to be equal to 0, �̂ij = 0, and estimate

the diagonal entries of ⇥ via penalised likelihood with a regular or PC-separable

penalty. Then the estimates for the diagonal entries are equal to the estimates

obtained by considering the p 1-dimensional problems. This gives some justification

for the choice of c = 2, although it is an open question whether another choice may

be optimal for p > 1.

Suppose we have n observations of X ⇠ N(µ, ✓�1) with sample variance s.
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Note that

(n� 1)✓s ⇠ �2

n�1,

and so

((n� 1)✓s)�1 ⇠ Inv � �2

n�1.

From this we get that

E[s�1] =
n� 1

n� 3
✓,

Var(s�1) =
2(n� 1)2

(n� 3)2(n� 5)
✓2.

Consider estimating ✓ via a penalised likelihood of the form

l(✓ | s)� c log(✓).

This can easily be shown to be maximised at

✓̂ =

✓
1� 2c

n

◆
s�1.

It follows that

E[✓̂] =
✓
1� 2c

n

◆✓
n� 1

n� 3

◆
✓,

Var(✓̂) =
2(1� 2c

n )
2(n� 1)2

(n� 3)2(n� 5)
✓2,

and so

MSE(✓̂) = Var(✓̂) +
⇣
E[✓̂]� ✓

⌘2

= ✓2
 
2(1� 2c

n )
2(n� 1)2

(n� 3)2(n� 5)
+

✓✓
1� 2c

n

◆✓
n� 1

n� 3

◆
� 1

◆2
!

It can be shown that this function is minimised at c = 2n
n�1

. Letting n ! 1
we therefore get that the MSE is asymptotically minimised amongst logarithmic

penalties by taking c = 2.

2.9 Computation

An important feature of GLASSO is its defining of a convex problem that signifi-

cantly facilitates fast computation and its theoretical study. For example, Friedman

et al. [2008] related GLASSO to a sequence of LASSO problems, see also Sustik and
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Calderhead [2012] for improved algorithms. Computation for non-convex penalties

such as SCAD and MCP poses a harder challenge, but the Local Linear Approxi-

mation of Zou and Li [2008] greatly facilitates this task, see also Fan et al. [2009].

The PC-GLASSO optimisation problem is non-convex. However it is conditionally

convex given ✓ = diag(⇥) so its geometry is still fairly simple and amenable to fast

computation.

Proposition 5. The penalised likelihood function (2.5) is concave in �, for any

fixed value of ✓.

Proof. For a fixed ✓, optimisation of the penalised likelihood function (2.5) is equiv-

alent to optimisation of the following function

log(det(�))�
X

i 6=j

Sij

p
✓ii✓jj�ij � ⇢

X

i 6=j

|�ij |.

The log-determinant function is known to be concave over the space of positive

definite matrices. For fixed ✓ the second term is simply a sum of linear functions.

The third term is simply a sum of clearly concave functions. Hence the objective

function is a sum of concave functions and is therefore concave.

Proposition 5 opens the possibility to consider block-optimization algorithms,

where ✓̂ and �̂ are updated sequentially, to facilitate computation. In our examples,

we took an even simpler strategy and used a coordinate descent algorithm. Despite

its conceptual simplicity, the algorithm nevertheless requires the careful updating of

each parameter to ensure positive definiteness of �̂. Details of the coordiante descent

algorithm are given below. We have found on our test examples and simulations in

this chapter that the algorithm typically converges in a few iterations. However, for

higher dimensions the convergence may be significantly slower.

2.9.1 Coordinate descent algorithm

We now present the coordinate descent algorithm we used to calculate PC-GLASSO

estimates in the simulated examples later in this chapter. Our aim is to find the

values of ⇥ that maximise the objective function (2.5) for a sequence of penalty

parameters 0 = ⇢0 < ⇢1 < · · · < ⇢k, i.e. the regularisation path. Algorithm 1, for

which the coordinate descent algorithm 2 is embedded, specifies that the previous

estimate related to ⇢i�1 is used as a starting point for the coordinate descent for

⇢i. This ensures that the coordinate descent is initialised at a point close to the
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maximum and aids convergence. For ⇢0 = 0 the algorithm is initialised at S�1, or

at (S + ↵I)�1 where I is the identity matrix if n < p. Theoretically, the matrix

S + ↵I is guaranteed to be invertible and positive definite for any ↵. Of course

computationally the matrix may not be invertible if ↵ is too small, and so in practise

it should be chosen to be a small value for which computation of the inverse is still

possible in the chosen programming language. An alternative option is

We also standardise the data by S, before returning the estimates to the

original scale via (2.10). This has no e↵ect on the estimated values due to the scale

invariance of PC-GLASSO, however it helps with the numerics of the coordinate

descent.

Algorithm 2 is a standard blockwise coordinate descent algorithm which ran-

domly cycles through the entries of � and maximises the objective function with

respect to �ij ,�ji, ✓ii, ✓jj while holding all other entries fixed. Once the algo-

rithm has cycled through each of the entries of � exactly once, a stopping rule

is tested. The stopping rule we choose is based on the increase in the value of

the objective function brought about by the updates. If the increase in the objec-

tive function is less than a particular threshold then the algorithm is terminated

and the current estimate is returned. Note that the threshold here is scaled by

q = max

⇢
2|{�(0)

ij 6=0:i<j}|
p(p�1)

, 2

p(p�1)

�
, the proportion of non-zero entries in the previous

estimate �(0). This is because once an entry is shrunk to zero, it is likely that

it will remain zero in future estimates. Therefore, the number of entries that are

actively being updated is proportional to q. If only a small number of entries are

being actively updated then one would expect the increase in the objective function

to be smaller. Hence, scaling the threshold by q helps to prevent the algorithm from

terminating too early in situations where the current estimate is sparse.

Although no guarantees are made about the convergence of Algorithm 2,

results in Patrascu and Necoara [2015] and Wright [2015] suggest that convergence

towards a local maximum is guaranteed and give reasonable assurance of conver-

gence towards the global maximum. Their results focus on a coordinate descent

algorithm that cycles randomly through the indices with replacement and so are not

directly applicable to Algorithm 2. However, we prefer cycling through the indices

without replacement since this provides a more simple and clear stopping rule for

the algorithm. Algorithm 2 assesses the convergence after updating each entry of

� exactly once, so that the stopping rule at the end of each iteration is made on

the same grounds. For an algorithm which selects indices with replacement it is less

clear when to enact the stopping rule.

We also choose to randomise the order in which indices are cycled through
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at each iteration of the algorithm, rather than keeping a fixed randomisation over

the iterations. This is to ensure that the maximisation is not driven by the ordering

and help to avoid local maxima. A potential consequence of this would be the

coordinate descent making large jumps between maxima leading to a non-smooth

regularisation path. However, in our experience this is not generally the case with

the regularisation path looking smooth, for example in Figure 2.1.

As a final note about Algorithm 2, Step 2 maximising (2.5) with respect to

�ij , ✓ii, ✓jj whilst all other variables are held fixed is non-trivial due to the non-

smoothness of the objective function. Details of this maximisation problem, as well

as an explanation of how the output of Algorithm 2 is guaranteed to be positive def-

inite, provided that the starting point is positive definite, can be found in Appendix

A.

Algorithm 1: PC-GLASSO regularisation path
Input : Sample covariance S, sequence of regularisation parameters

0 = ⇢0 < ⇢1 < · · · < ⇢k and optimisation convergence
threshold ✏.

Output: Sequence of estimates ⇥0, . . . ,⇥k corresponding to ⇢0, . . . , ⇢k.

1. Standardise the sample covariance S̃ = diag(S)�1/2Sdiag(S)�1/2.

2. Run Algorithm 2 on S̃ for ⇢ = 0, with starting point ⇥(0)

0
= S̃�1 (or

⇥(0)

0
= (S̃ + ↵I)�1 for some ↵ > 0 if n < p), and threshold ✏ to obtain an

estimate ⇥̃0.

3. For i = 1, . . . , k, run Algorithm 2 on S̃ for penalty parameter ⇢ = ⇢i, with

starting point ⇥(0)

i = ⇥̃(i�1), and threshold ✏ to obtain an estimate ⇥̃i.

4. Return the sequence of estimates ⇥i = diag(S)�1/2⇥̃idiag(S)�1/2 for
i = 0, 1, . . . , k.

2.10 Applications

In this section we will assess the performance of PC-GLASSO against other penalised

likelihood methods in four simulation settings and two real data examples. In the

simulation settings we will compare PC-GLASSO to only GLASSO, since they are

directly comparable in the sense of using the same L1 penalty structure. Results

for the SCAD and MCP non-convex penalties for these simulation settings will

be reported in Chapter 4 where we apply non-convex penalties. In the real-data

settings we will compare PC-GLASSO with each of GLASSO, SCAD and MCP.
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Algorithm 2: Blockwise coordinate descent
Input : Sample covariance S with unit diagonal, penalty parameter ⇢,

start point ⇥(0) and optimisation convergence threshold ✏.
Output: A matrix ⇥ providing a local maximum of (2.5) for penalty ⇢.

1. Let ⇥(1) = ⇥(0) and decompose ⇥(1) to get ✓(1) and �(1).

2. Cycling randomly without replacement through the set of indices
{(i, j) : i < j; i, j 2 {1, . . . , p}}, let �ij , ✓ii, ✓jj maximise

f(�, ✓) = log(det(�)) +

✓
1� 4

n

◆X

i

log(✓ii)� tr
⇣
S✓1/2�✓1/2

⌘
� ⇢k�k1,

subject to

�k1k2 = �(1)

k1k2
, for all (k1, k2) 6= (i, j),

✓ii, ✓jj � 0,

✓kk = ✓(1)kk , for all k 6= i, j,

and update �(1)

ij = �ij , �
(1)

ji = �ji, ✓
(1)

ii = ✓ii, ✓
(1)

jj = ✓jj .

3. Let q = max

⇢
2|{�(0)

ij 6=0:i<j}|
p(p�1)

, 2

p(p�1)

�
be the proportion of non-zero

o↵-diagonal entries.

4. If f(�(1), ✓(1))� f(�(0), ✓(0)) < q✏, set � = �(1), ✓ = ✓(1) and return
⇥ = ✓1/2�✓1/2. Otherwise, set �(0) = �(1), ✓(0) = ✓(1) and return to Step 2.

SCAD and MCP have an additional regularization parameter, which we set to the

default proposed in Fan and Li [2001] and Zhang [2010] respectively. GLASSO was

implemented using the R package glasso and SCAD and MCP using the package

GGMncv (see Williams [2020]).

2.10.1 Simulations

We considered four simulation scenarios with Gaussian data, truly zero mean and

precision matrix ⇥ with unit diagonal and o↵-diagonal entries as follows.

Scenario 1: The star graph - ✓ij =

8
<

:
� 1p

p , i = 1 or j = 1

0, otherwise

Scenario 2: The hub graph - Partition variables into 4 groups of equal size, with

each group associated to a ‘hub’ variable i. For any j 6= i in the same

group as i we set ✓ij = ✓ji =
�2p
p and otherwise ✓ij = 0.
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Scenario 3: The AR2 model - ✓ij =

8
>>><

>>>:

1

2
, j = i� 1, i+ 1

1

4
, j = i� 2, i+ 2

0, otherwise

Scenario 4: A random graph - randomly select 3

2
p of the ✓ij and set their values

to be uniform on [�1,�0.4] [ [0.4, 1], and the remaining ✓ij = 0.

Calculate the sum of absolute values of o↵-diagonal entries for each

column. Divide each o↵-diagonal entry by 1.1 times the corresponding

column sum and average this rescaled matrix with its transpose to

obtain a symmetric, positive definite matrix.

For each scenario we tested the following six methods.

M1. PC-GLASSO

M2. PC-GLASSO, but with zero diagonal penalty

M3. GLASSO on data standardised by S

M4. GLASSO on data standardised by S�1

M5. GLASSO with no diagonal penalty on data standardised by S

M6. GLASSO with no diagonal penalty on data standardised by S�1

For the remainder of this section we will often refer to these methods by their

numbers. Method M2 is included to provide a direct comparison with methods M5

and M6 i.e. to examine the a↵ect of placing the L1 penalty on partial correlations

rather than directly on the precision matrix. Comparing M1 with M2 then assesses

the a↵ect of the logarithmic penalty on the diagonal entries. For each method, a

regularisation path is obtained for a large sequence of parameter values and a single

estimate is selected via the BIC in (2.6).

For each setting a dimension size of p = 20 was used, sample sizes n 2
{30, 100} were considered and 100 independent simulations were performed. To

assess estimation accuracy the Kullback–Leibler (KL) loss

KL(⇥, ⇥̂) = � log(det(⇥̂)) + tr(⇥̂⇥�1) + log(det(⇥))� p

was used. To assess model selection accuracy the Matthews correlation coe�cient

(MCC) was used

MCC =
TP⇥ TN� FP⇥ FNp

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,
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where TP, TN, FP and FN stand for the number of true positives, true negatives,

false positives and false negatives (respectively) and measure the ability to recover

the true edges in the graph corresponding to ⇥. The MCC combines specificity and

sensitivity into a single assessment and ranges between �1 and 1, where 1 indicates

perfect model selection. More information on the MCC including justification for

it’s use over other measures can be found in, for example, Chicco and Jurman [2020].

The results are summarised in Figure 2.10 showing the mean KL loss and

MCC over the 100 simulations. Figure 2.11 shows the proportion of the 100 sim-

ulations in which each edge was selected for methods M1 and M3. More detailed

results, including Frobenius norm (F-norm), sensitivity and specificity, and standard

errors of the various metrics over the 100 simulations are in Tables 2.1-2.4 with the

best score in each category given in bold. The F-norm sums the Euclidean distances

between each of the entries of the estimate and the true ⇥

||⇥� ⇥̂||F=
sX

i,j

(✓ij � ✓̂ij)2.

This provides an alternative measure of estimation accuracy to the KL loss. Unlike

the KL loss, it considers all entries of ⇥ equally and independently which is why we

prefer the KL loss which takes into account the fact that ⇥ is a Gaussian precision

matrix and utilises a similar form to the log-likelihood function. Sensitivity and

specificity are defined as

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN+ FP
,

and are commonly used to assess model selection.

We begin by comparing the four GLASSO methods. In both the Star and

Hub settings, methods M5 and M6 outperformed M3 and M4 respectively and so

not penalising the diagonal entries seems to be preferable, as anticipated by Section

2.8. In the AR2 and Random settings the results are less clear cut, however not

penalising the diagonal tended to o↵er fairly large improvements in terms of estima-

tion. Methods M4 and M6 also outperformed M3 and M5 respectively in the Star

and Hub settings, showing that standardising by S�1 rather than by S is important

in these cases. A possible reason for this is the large range in node degrees in these

examples - i.e. some nodes have many edges while some have few edges. In these

cases, standardisation by S can result in additional penalisation of the true edges,

for the reasons set out in Section 2.6. Again, this di↵erence is less clear cut in the
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AR2 and Random settings.

We now assess the impact of penalising partial correlations rather than ✓ij

by comparing method M2 with methods M5 and M6. Method M2 achieves a higher

MCC than both M5 and M6 across all simulation settings, other than the n = 100

random graph. M2 also has the lowest KL loss in all n = 100 settings, although

M6 o↵ers slight improvements in KL loss in the n = 30 settings. This demonstrates

that penalising partial correlations can lead to improvements in model selection, as

well as leading to faster convergence towards the true ⇥ for fixed p as n grows, when

selecting the regularisation parameter by BIC.

Now to investigate the a↵ect of the logarithmic penalty on the diagonal en-

tries, we compare methods M1 and M2. Method M1 tends to provide improvements

in estimation for n = 30, but a negligible di↵erence for n = 100 and in model selec-

tion. This shows that the logarithmic penalty on the diagonal entries can provide

improvements in estimation for small sample sizes in comparison to no penalty.

Overall, PC-GLASSO o↵ers significant improvements over GLASSO in terms

of both estimation and model selection in both the Star and Hub settings. This

demonstrates that penalising partial correlations is particularly beneficial when there

is a large range of node degrees in the true underlying graph. There are also large

improvements in estimation for small n = 30 sample sizes in the AR2 and Random

graph settings, while model selection and estimation in the n = 100 case are very

similar in performance throughout all methods in these settings. This demonstrates

that when there is a small range in node degrees, PC-GLASSO still performs at

least as well as GLASSO, and can also o↵er improvements for small sample sizes.

Figure 2.11, showing the proportion of the 100 simulations in which each

edge was selected, also illustrates that PCGLASSO generally selected sparser models

than GLASSO (M3), particularly in the Star and Hub scenarios. This is a useful

property in itself since more sparse graphs are generally preferable for interpretation

and explanation.

Parameter selection via the EBIC in PC-GLASSO was also investigated

within these simulation settings. Although in certain cases this did o↵er minor

improvements in model selection measured by the MCC, in all scenarios the estima-

tion accuracy, measured by both the F-Norm and KL loss, was significantly worse

than when selecting the parameter via the BIC. For brevity we have omitted the

results from this section.
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Figure 2.10: Kullback-Leibler loss (left) and MCC (right) in the four simulation
settings
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Figure 2.11: Proportion of simulations in which each edge was selected
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2.10.2 Gene expression data

We now assess the predictive performance of PC-GLASSO in comparison to GLASSO

(both with and without a diagonal penalty), SCAD and MCP in the gene expression

data of Calon et al. [2012]. The data contains 262 observations of p = 173 genes

related to colon cancer progression. We took n = 200 of the samples as training

data, left the remaining 62 observations as test data, and assessed the predictive

accuracy of each method by evaluating the log-likelihood on the test data. For each

method this was performed for a long sequence of regularisation parameters chosen

such that the null model (i.e. all partial correlations estimated to be 0) is selected

for the largest regularisation parameter. SCAD and MCP have an additional reg-

ularization parameter, which we set to the default proposed in Fan and Li [2001]

and Zhang [2010] respectively. For all methods, other than PC-GLASSO, we also

standardise the data by either S or by S�1, before rescaling estimates back to the

original scale via (2.10).

Figure 2.12 plots the model size vs. test sample log-likelihood achieved by

estimates in the regularisation path, and indicates the models chosen by the BIC

and EBIC. We have restricted the view to model sizes less than 2000 since these

contain all models chosen by BIC. The left panel compares PC-GLASSO to the

other methods on data standardised by S. The right panel compares to the other

methods on data standardised by S�1.

First considering the left panel of Figure 2.12, PC-GLASSO clearly per-

forms better than any other method when data is standardised by S. PC-GLASSO

achieves a higher out of sample log-likelihood for model sizes smaller than 1900 in

comparison to GLASSO with no diagonal penalty, and a higher log-likelihood score

for all model sizes smaller than 2000 in comparison to the other methods. Further-

more, considering the estimates chosen by BIC and EBIC, PC-GLASSO achieves

the highest log-likelihood score in both cases, even with a smaller model size than

GLASSO in the case of BIC.

Now considering the right panel of Figure 2.12. It is clear that the other

methods perform better when the data is standardised by S�1. This may be due

to a large range in node degrees, as in the Star graph example. Even so, PC-

GLASSO still achieves the highest log-likelihood for all model sizes less than 1500,

and has the highest log-likelihood at the BIC and EBIC estimates with a smaller or

comparable model size to the remaining methods. This demonstrates the promise

of PC-GLASSO - it shows that the method can achieve better prediction than the

remaining methods with a simpler model.

One interesting thing to note in this example is the relatively poor perfor-
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mance of the non-concave SCAD and MCP penalties. When data is standardised by

S they both achieve significantly lower log-likelihood than GLASSO for both large

and very small model sizes, while when data is standardised by S�1 they perform

almost identically to GLASSO - the method that they were designed to improve

upon. We conjecture that the reason for this poor performance is the diagonal

penalty. Both methods use a non-convex diagonal penalty of the same form as the

o↵-diagonal penalty. As discussed in Section 2.8, setting diagonal penalties in such a

way is not optimal. In this case, one e↵ect is that small diagonal entries receive large

penalisation and shrinkage, whilst large diagonal entries receive small penalisation

and shrinkage. This may explain the poor performance when data is standardised

by S.

SCAD and MCP also tend to have poor performance when the sample size n

is small relative to the dimension p, as in the case in this gene expression example.

One reason for this might be that when the sample size is small, it is less clear

from the data which of the entries of ⇥ are large. Hence the non-convex penalty,

designed to reduce bias in the estimation of large entries of ⇥, is less e↵ective. Such

a phenomenon will be demonstrated again in the applications of Chapter 4.

When data is standardised by S�1, all of GLASSO, SCAD and MCP perform

significantly worse than GLASSO with no diagonal penalty. The reason for this

may be that the diagonal penalty in these methods uses the same regularisation

parameter as the o↵-diagonal penalties. In order to obtain sparsity in the estimate,

one must use a large regularisation parameter. However, this will cause a larger

penalisation of the diagonal entries, shrinking them far from their true value and

result in decreased predictive performance.

2.10.3 Stock market data

We now perform the same analysis on the stock market data in the R package huge,

investigated in the graphical model context by Banerjee and Ghosal [2015]. The

data contains daily closing stock prices of companies in the S&P 500 index between

1st January 2003 and 1st January 2008. We consider de-trended stock-market log-

returns, to study the dependence structure after accounting for the overall mean

market behavior. Specifically, let Yjt be the closing price of company j at time t,

X̃jt = log
⇣
Yj,t+1

Yjt

⌘
the log-returns, and Xjt = X̃jt�X̄t the de-trended returns, where

X̄t =
Pp

j=1
X̃jt. We randomly selected p = 30 companies and, to avoid issues with

stock market data exhibiting thicker tails than the assumed Gaussian model, we

removed outlying observations more than 5 sample standard deviations away from

the mean in any of the p variables. There remained 1,121 observations of which we
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Figure 2.12: Model size vs predictive ability in the gene expression data. Left shows
methods on data standardised by S, right shows methods on data standardised by
S�1. Estimates selected via BIC and EBIC with � = 0.5 are shown by dots and
squares respectively.

randomly selected 1,000 for the training and 121 for the test data.

One consideration to make about this stock market data is the appropriate-

ness of the assumed Gaussian model. We have already noted that this data displays

thicker tails than the Gaussian model and have removed outlying observations to

reduce this a↵ect. An important aspect of methods for Gaussian graphical model is

robustness to non-Gaussian settings since this assumption will be violated to some

degree in most real data settings. A potentially more troublesome aspect is that

the dependencies between stock market prices may not remain constant over time -

that is the observations may not be identically distributed. We have attempted to

mitigate this by taking test data randomly over time.

The results are shown in Figure 2.13, again on data standardised by S in

the left panel and standardised by S�1 in the right. This time there is less of a

di↵erence between the five methods, and also less of a di↵erence between the two

standardisations. In both standardisations PC-GLASSO achieves a slightly higher

log-likelihood for all model sizes smaller than 200. The BIC and EBIC estimates

are also more sparse than the GLASSO estimates, although with a slight trade o↵

in predictive ability. SCAD and MCP perform better in this example, selecting

the simplest model with the BIC estimates with no loss in predictive ability. One

reason for this may be the relatively large sample size in this example. However,

their predictive ability is worse for larger model sizes.
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Figure 2.13: Model size vs predictive ability in the stock market data. Left shows
methods on data standardised by S, right shows methods on data standardised by
S�1. Estimates selected via BIC and EBIC with � = 0.5 are shown by dots and
squares respectively.

2.11 Discussion

Penalised likelihood methods based on regular penalty functions are a staple of

Gaussian graphical model selection and precision matrix estimation. They provide

a conceptually easy strategy to obtain sparse estimates of ⇥ and, particularly in

the case of GLASSO, fairly e�cient computation, even for moderately large di-

mensions. However, in this paper we demonstrated that estimates obtained from

regular penalties depend on the scale of the variables. This gives a situation where

a simple change of units (measuring a distance in miles rather than kilometers) can

result in di↵erent graphical model selection. Further, we introduced a notion of

exchangeability motivating the need for standardising the data when using regular

penalties.

Standardising the data is not innocuous. First, even when the original vari-

ables follow a Gaussian distribution, that is no longer the case once the variables

have been standardised. They then exhibit thicker tails [Kollo and Ruul, 2003].

Second, from a more applied viewpoint, as demonstrated in several of our examples,

applying regular penalties to scaled data can adversely a↵ect inference. Through

simulation experiments we were able to demonstrate that this e↵ect was particularly

detrimental in examples when the true underlying graph has a large range in node

degrees, as in the Star graph setting.

To combat these issues we have made two key recommendations in this sec-

tion which should be applied to all penalised likelihood methods in Gaussian graphi-

cal models. First, the penalty should be a function of the partial correlations rather
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than the o↵-diagonal entries of the precision matrix. Second, the penalty on the

the diagonal entries of the precision matrix should either be logarithmic or not pe-

nalised at all. We have shown that all penalised likelihood methods that follow these

two suggestions satisfy scale invariance and so, for example, will result in the same

inference regardless of the units of measurement or standardisation.

We also investigated one such penalty function, the PC-GLASSO, which sets

an L1 penalty on the partial correlations. This is a direct parallel to the regular

GLASSO penalty which sets an L1 penalty on ⇥. First we demonstrated that

the PC-GLASSO provides a preferable shrinkage of the partial correlations and

diagonal entries in the p = 2 case. We then showed through simulated examples that

PC-GLASSO can lead to significant improvements in both estimation and model

selection over GLASSO in certain settings, and also o↵ers improved estimation in

all small sample settings that we explored.

A current limitation of our work lies in the computational e�ciency of our

coordinate descent algorithm. While the e�ciency of this algorithm is reasonable

in lower dimensions, the computations become impractical for larger p. However,

the conditional convexity of the PC-GLASSO problem opens interesting strategies

for future improvements. For example, one may alternately update the estimated

diagonal entries ✓̂ and partial correlations �̂, keeping the other fixed. For fixed ✓̂,

widely studied computational methods for regular penalties may be employed to

maximise the penalised likelihood for �. With such a computational method, the

speed of PC-GLASSO may be competitive with GLASSO and could also be applied

to large scale problems.

Further interesting future work is to investigate the theoretical properties of

PC-GLASSO, for example model selection consistency, which holds for GLASSO

only under certain nontrivial conditions [Ravikumar et al., 2009]. The wider set

of PC-separable penalties also warrant further exploration, most obviously PC-

separable versions of the SCAD and MCP penalties. Beyond the Gaussian case,

penalisation of partial correlations also seems natural for partial correlation graphs

in elliptical and transelliptical distributions, see Rossell and Zwiernik [2020].
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n = 30 FNorm KL MCC Sensitivity Specificity
M1 1.42 (0.35) 1.69 (0.58) 0.978 (0.043) 0.999 (0.008) 0.995 (0.010)
M2 1.81 (0.58) 2.05 (0.78) 0.966 (0.061) 0.998 (0.009) 0.992 (0.015)
M3 2.68 (0.73) 3.55 (1.19) 0.231 (0.063) 0.903 (0.066) 0.477 (0.075)
M4 1.93 (0.29) 2.57 (0.56) 0.569 (0.141) 0.988 (0.027) 0.810 (0.107)
M5 2.59 (0.36) 3.36 (1.42) 0.270 (0.044) 0.866 (0.105) 0.578 (0.057)
M6 1.49 (0.28) 2.01 (0.69) 0.789 (0.127) 0.996 (0.016) 0.934 (0.054)

n = 100 FNorm KL MCC Sensitivity Specificity
M1 0.70 (0.11) 0.46 (0.12) 0.993 (0.017) 1 (0) 0.999 (0.004)
M2 0.73 (0.13) 0.48 (0.13) 0.993 (0.018) 1 (0) 0.998 (0.004)
M3 1.73 (0.08) 1.33 (0.13) 0.264 (0.021) 0.996 (0.014) 0.433 (0.041)
M4 1.30 (0.14) 1.07 (0.24) 0.679 (0.103) 1 (0) 0.887 (0.056)
M5 1.66 (0.09) 1.20 (0.13) 0.304 (0.019) 0.996 (0.014) 0.508 (0.031)
M6 0.84 (0.12) 0.62 (0.16) 0.907 (0.060) 1 (0) 0.978 (0.016)

Table 2.1: Star results

n = 30 FNorm KL MCC Sensitivity Specificity
M1 1.85 (0.29) 2.83 (0.74) 0.696 (0.081) 0.988 (0.043) 0.917 (0.034)
M2 2.18 (0.49) 3.25 (0.92) 0.714 (0.089) 0.986 (0.045) 0.924 (0.034)
M3 2.51 (0.28) 3.71 (0.70) 0.371 (0.066) 0.999 (0.009) 0.644 (0.095)
M4 2.33 (0.26) 3.52 (0.65) 0.438 (0.081) 0.998 (0.012) 0.726 (0.089)
M5 2.26 (0.21) 3.11 (0.64) 0.469 (0.071) 0.998 (0.012) 0.763 (0.066)
M6 2.00 (0.23) 2.95 (0.66) 0.560 (0.077) 0.996 (0.018) 0.839 (0.054)

n = 100 FNorm KL MCC Sensitivity Specificity
M1 0.91 (0.15) 0.70 (0.20) 0.858 (0.069) 1 (0) 0.969 (0.019)
M2 0.89 (0.15) 0.70 (0.21) 0.878 (0.063) 1 (0) 0.974 (0.016)
M3 1.84 (0.19) 1.37 (0.20) 0.371 (0.038) 1 (0) 0.650 (0.054)
M4 1.65 (0.23) 1.26 (0.27) 0.449 (0.058) 1 (0) 0.743 (0.057)
M5 1.63 (0.19) 1.11 (0.22) 0.483 (0.054) 1 (0) 0.778 (0.048)
M6 1.40 (0.20) 1.01 (0.24) 0.631 (0.074) 1 (0) 0.882 (0.038)

Table 2.2: Hub results
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n = 30 FNorm KL MCC Sensitivity Specificity
M1 3.64 (0.31) 5.26 (0.62) 0.283 (0.093) 0.301 (0.194) 0.922 (0.077)
M2 3.42 (0.34) 5.84 (0.97) 0.296 (0.080) 0.371 (0.168) 0.891 (0.080)
M3 4.27 (0.17) 6.63 (0.71) 0.258 (0.113) 0.162 (0.135) 0.978 (0.041)
M4 4.08 (0.28) 6.05 (0.75) 0.268 (0.083) 0.297 (0.149) 0.913 (0.084)
M5 3.83 (0.15) 5.77 (0.55) 0.219 (0.128) 0.126 (0.140) 0.984 (0.032)
M6 3.77 (0.16) 5.66 (0.56) 0.212 (0.104) 0.148 (0.137) 0.970 (0.042)

n = 100 FNorm KL MCC Sensitivity Specificity
M1 2.30 (0.33) 2.00 (0.38) 0.530 (0.052) 0.855 (0.094) 0.774 (0.069)
M2 2.18 (0.34) 2.03 (0.41) 0.537 (0.055) 0.851 (0.100) 0.783 (0.068)
M3 2.70 (0.45) 2.10 (0.52) 0.462 (0.062) 0.903 (0.090) 0.663 (0.112)
M4 2.72 (0.44) 2.15 (0.52) 0.468 (0.061) 0.893 (0.090) 0.678 (0.112)
M5 2.72 (0.36) 2.22 (0.49) 0.520 (0.057) 0.818 (0.122) 0.785 (0.092)
M6 2.68 (0.34) 2.18 (0.45) 0.526 (0.053) 0.835 (0.098) 0.781 (0.079)

Table 2.3: AR2 results

n = 30 FNorm KL MCC Sensitivity Specificity
M1 2.30 (0.25) 3.07 (0.51) 0.336 (0.091) 0.310 (0.153) 0.951 (0.041)
M2 2.40 (0.41) 3.40 (0.67) 0.337 (0.080) 0.339 (0.143) 0.939 (0.044)
M3 2.84 (0.19) 4.32 (0.63) 0.355 (0.085) 0.264 (0.136) 0.969 (0.048)
M4 2.66 (0.22) 3.82 (0.61) 0.312 (0.079) 0.367 (0.134) 0.915 (0.063)
M5 2.38 (0.18) 3.49 (0.61) 0.311 (0.118) 0.205 (0.158) 0.978 (0.040)
M6 2.31 (0.20) 3.33 (0.62) 0.278 (0.105) 0.224 (0.148) 0.964 (0.038)

n = 100 FNorm KL MCC Sensitivity Specificity
M1 1.43 (0.16) 1.23 (0.25) 0.572 (0.059) 0.614 (0.110) 0.941 (0.029)
M2 1.36 (0.14) 1.23 (0.25) 0.571 (0.061) 0.612 (0.112) 0.941 (0.030)
M3 1.93 (0.22) 1.64 (0.37) 0.526 (0.070) 0.724 (0.102) 0.871 (0.065)
M4 1.86 (0.20) 1.54 (0.31) 0.514 (0.066) 0.706 (0.100) 0.876 (0.049)
M5 1.62 (0.15) 1.37 (0.27) 0.581 (0.061) 0.641 (0.102) 0.941 (0.030)
M6 1.57 (0.16) 1.32 (0.28) 0.559 (0.062) 0.613 (0.115) 0.936 (0.031)

Table 2.4: Random graph results
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Chapter 3

Bayesian partial correlation

graphical LASSO

There is a well known equivalence between penalised likelihood estimates and the

maximum a-posteriori (MAP) estimate under certain prior distributions. Let ⇡(⇥)

be a prior density on the precision matrix ⇥ and S be a sample covariance matrix

associated to observations of a Gaussian graphical model, as in Chapter 2. Then

the posterior density can be written as

⇡(⇥ | S) / L(⇥ | S)⇡(⇥),

where L is the Gaussian likelihood function for the precision matrix ⇥. The MAP

estimate is the value of ⇥ which maximises the posterior density, or equivalently its

logarithm

log (L(⇥ | S)⇡(⇥)) = l(⇥ | S) + log (⇡(⇥)) ,

where l is the log-likelihood. Notice that this is of the same form as the penalised

likelihood function

l(⇥ | S)� Pen(⇥).

Hence the MAP estimate under the prior ⇡ is equal to the penalised likelihood

estimate under the penalty function Pen(⇥) = � log (⇡(⇥)) .

Note that prior densities are restricted to integrate to 1 (or have unbounded

integral if the prior is improper) and must be equal to 0 on matrices that are not

positive definite and symmetric. So more generally the penalised likelihood estimate

under the penalty function Pen(⇥) is equal to the MAP estimate under the prior

density

⇡(⇥) / exp (�Pen(⇥)) I(⇥ 2 S)
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where S is the set of symmetric, positive definite matrices.

This equivalence is useful in a number of ways. Primarily, it provides a

Bayesian framework for penalised likelihood methods allowing full posterior analysis.

Unlike the penalised likelihood, which only provides a point estimate for ⇥, the

posterior distribution quantifies posterior uncertainty in the values of ⇥. This was

utilised by Wang [2012] and Khondker et al. [2013] for the Bayesian parallel of the

GLASSO penalty function. However, posterior analysis is often more challenging

due to the form of the posterior density. In particular, for many prior distributions,

the posterior marginals do not have a closed form. Posterior inference therefore

often requires a sampling scheme, which can be computationally expensive for large

dimension size p. Furthermore, if the prior distribution is continuous, then the

event {✓ij = 0} will have zero posterior probability. The posterior distribution will

therefore have no direct way to assign edge inclusion probabilities, or to conduct

graphical model selection. One may compare Bayes factors associated to di↵erent

graphical models [Consonni et al., 2018], however for large p an exhaustive search

is not computationally feasible.

Beyond posterior inference, the Bayesian parallel to penalised likelihoods

can be useful in other ways. For example, the prior distribution gives an alternative

interpretation to the penalty function which can provide additional insight into the

dynamics of the penalised likelihood. The prior distribution associated to GLASSO

was explored by Wang [2012] showing that, for example, the marginal densities of

the partial correlations become more concentrated around 0 for larger dimension

size p due to the positive definiteness truncation in the prior.

The Bayesian interpretation can also provide inspiration for new penalty

functions. When, for computational reasons, full posterior analysis is avoided in

favour of simply finding a MAP estimate, the Bayesian method can be equivalently

seen as a penalised likelihood. However, the prior distribution provides a di↵erent

framework for interpretation that can lead to new ideas for penalty functions. For

example, Banerjee and Ghosal [2015] and Gan et al. [2018] both proposed methods

which involve finding the MAP estimate associated to a spike and slab prior distri-

bution. Marlin et al. [2009] and Marlin and Murphy [2009] also utilised the prior

interpretation to perform inference on block structured precision matrices.

In this chapter we explore prior distributions associated to regular and PC-

separable penalty functions, paying particular attention to the GLASSO and PC-

GLASSO. We do not provide any concrete means of posterior inference in the case of

PC-GLASSO, instead focusing on the interpretative aspect of the prior distribution.

The remainder of the chapter is organised as follows. In Section 3.1 we
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introduce the class of prior distributions related to regular penalty functions with

the GLASSO prior as a particular case. In Section 3.2 we introduce the class of prior

distributions related to PC-separable penalty functions with the PC-GLASSO prior

as a specific case. In Section 3.3 we show that certain PC-separable priors satisfy

an extended Bayesian form of scale invariance. In Section 3.4 we review current

research into the GLASSO prior and in Section 3.5 compare to the PC-GLASSO

prior.

3.1 Separable prior distributions

Consider the same Gaussian graphical model set up as in Chapter 2 described in

Section 2.1. We define a class of prior distributions on ⇥, called seperable priors in

which the elements of ⇥ are independent, up to positive definiteness and symmetry.

We then define a subclass of priors, called regular priors which imposes symmetry

and di↵erentiability constraints.

Definition 7. A prior distribution with (possibly improper) density ⇡(⇥) is sepa-

rable if

⇡(⇥) /
Y

ij

⇡ij(✓ij)I(⇥ 2 S) (3.1)

where ⇡ii : (0,1) ! [0,1) and ⇡ij : R ! [0,1) are non-increasing in ✓ii and |✓ij |
respectively for all i and i < j.

A separable prior distribution is regular if ⇡ii = ⇡jj for all (i, j) and for all

i < j, ⇡ij does not depend on (i, j), is symmetric about 0 and di↵erentiable away

from 0.

Although not strictly necessary, it is useful to require that that ⇡ij be (pos-

sibly improper) density functions. In this way the ⇡ij represent the marginal prior

densities before truncation onto the space of positive definite matrices and the pro-

portionality in (3.1) comes only from this truncation. From now on we will assume

that such ⇡ij are density functions, as well as in the later Definition 8.

Regular priors are often a reasonable choice for representing prior beliefs in a

simple manner. They have identical marginals on each of the ✓ij and each of the ✓ii

which represents a symmetry in the prior knowledge about each edge in the graph

- that is, the a priori knowledge of each edge in the graph is identical for all edges.

The separable form of the prior also allows a simple framework to set prior beliefs

on the magnitude of the ✓ij .
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Note that although a separable prior density is written as the product of

functions only depending on single entries of ⇥, these do not correspond to the

marginal densities and the entries of ⇥ are not independent under this prior due to

the truncation onto the space of symmetric, positive definite matrices.

Proposition 6. If the penalty function Pen is separable (regular), then the prior

density ⇡(⇥) / exp (�Pen(⇥)) I(⇥ 2 S) is separable (regular).

If the prior density ⇡(⇥) /
Q

ij ⇡ij(✓ij)I(⇥ 2 S) is separable (regular), then

the penalty function Pen(⇥) = � log
⇣Q

ij ⇡ij(✓ij)
⌘
is separable (regular).

Proof. Let Pen be a separable penalty function and ⇡(⇥) / exp (�Pen(⇥)) I(⇥ 2
S). Then

⇡(⇥) / exp

0

@�
X

ij

penij(✓ij)

1

A I(⇥ 2 S)

=
Y

ij

exp (�penij(✓ij)) I(⇥ 2 S)

=
Y

ij

⇡ij(✓ij)I(⇥ 2 S)

where ⇡ij(✓ij) = exp (�penij(✓ij)). Hence ⇡(⇥) is of the form (3.1), ⇡ij has range

[0,1) for all (i, j) and, because penij(✓ij) is non-decreasing in |✓ij |, ⇡ij(✓ij) is non-
increasing in |✓ij |. Therefore ⇡ is separable.

If Pen is also regular, it easily follows that ⇡ii = ⇡jj for all (i, j) and that

⇡ij does not depend on (i, j) for all i < j, is symmetric about 0 and di↵erentiable

away from 0. Hence ⇡ is also regular.

Now suppose that ⇡(⇥) /
Q

ij ⇡ij(✓ij)I(⇥ 2 S) is a separable (regular)

prior density and let Pen(⇥) = � log
⇣Q

ij ⇡ij(✓ij)
⌘
. Then

Pen(⇥) = �
X

ij

log (⇡ij(✓ij))

=
X

ij

penij(✓ij)

where penij(✓ij) = � log (⇡ij(✓ij)). It easily follows that Pen is a separable (regular)

penalty function.

Proposition 6 shows that every regular penalty function corresponds to a

regular prior distribution and vice versa. Note that any two regular penalties that
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are proportional to one another correspond to the same regular prior. The statement

of Proposition 6 was written in this form, rather than an if and only if statement,

because penalty functions are not restricted to positive definite matrices. The if and

only if statement can be obtained by simply making this restriction in the definition

of the penalty function.

In this chapter we will primarily focus on the regular prior distribution cor-

responding to the GLASSO penalty function. Recall that the GLASSO penalty has

diagonal penalty penii(✓ii) = n
2
⇢✓ii and o↵-diagonal penalty penij(✓ij) = n⇢|✓ij |.

The corresponding prior, which we refer to as the GLASSO prior, with parameter

� = n⇢ therefore has density

⇡G(⇥|�) / exp

0

@�1

2
�
X

i

✓ii � �
X

i<j

|✓ij |

1

A I(⇥ 2 S)

=
Y

i

exp

✓
�1

2
�✓ii

◆Y

i<j

exp (��|✓ij |) I(⇥ 2 S)

/
Y

i

Exp(✓ii;�/2)
Y

i<j

Laplace(✓ij ; 0,�
�1)I(⇥ 2 S)

where Exp(✓ii;�/2) denotes the density of an exponential distribution with rate

parameter �/2 and Laplace(✓ij ; 0,��1) denotes the density of a Laplace distribution

with location 0 and scale ��1.

Note that while the GLASSO prior density can be written as the product of

exponential and Laplace densities, the positive definite truncation means that the

marginal densities do not have these forms. This will be explored further in Sections

3.4 and 3.5.

An additional interesting regular prior distribution is used in the graphical

horseshoe introduced by Li et al. [2019]. In the graphical horseshoe, ⇡ii(✓ii) / 1 is

an improper uniform and ⇡ij(✓ij) = N(✓ij ; 0,�2

ij⌧
2)C+(�ij ; 0, 1) where C+(x; 0, 1) /

(1 + x2)�1 is the half-Cauchy density. Conditional on the hyperparameter ⌧ , this

results in a regular prior distribution. In the graphical horseshoe, ⌧ is also given a

half-Cauchy hyper prior. The combination of the Normal distribution with variance

parameter determined by two half-Cauchy distributions results in a distribution

which is highly peaked close to 0 but with slowly decaying tails.

Since in a regular prior distribution the prior is continuous, direct graphical

model selection is not possible because under the posterior distribution ✓ij 6= 0

almost surely. One option is to only consider the MAP estimation which, for certain

choices of regular priors, can lead to sparse estimation. In the Bayesian GLASSO
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and graphical horseshoe, instead the posterior mean estimate is considered which is

not sparse. In the graphical horseshoe model selection is conducted by considering

posterior credible intervals and checking if these contain 0. Model selection in the

Bayesian GLASSO will be discussed in Section 3.4.

3.2 Partial correlation separable prior distributions

We now propose an alternative class of prior distributions which are instead sepa-

rable in the partial correlations.

Definition 8. A prior distribution with (possibly improper) density ⇡(✓,�) is (sym-

metric) PC-separable if

⇡(✓,�) /
Y

i

⇡ii(✓ii)
Y

i<j

⇡ij(�ij)I(� 2 S1), (3.2)

where ⇡ii : (0,1) ! [0,1) and ⇡ij : [�1, 1] ! [0,1) are non-increasing in ✓ii and

|�ij | respectively for all i and i < j and S1 denotes the set of symmetric, positive

definite matrices with unit diagonal.

A PC-separable prior distribution is symmetric if ⇡ii = ⇡jj for all (i, j) and

for all i < j, penij does not depend on (i, j) and is symmetric about 0.

Symmetric PC-separable priors benefit from the same simple interpretation

as regular priors - under a symmetric PC-separable prior the a priori knowledge of

each edge is identical and the separable form allows simple setting of prior beliefs

on the magnitude of the partial correlations.

Note that in a PC-separable prior, the truncation only restricts � to be

positive definite. However, this ensures that ⇥ is positive definite because ⇥ =

✓1/2�✓1/2 and ✓ is a diagonal matrix with strictly positive entries. Therefore ⇥ is

positive definite if and only if � is positive definite.

Although a PC-separable prior density is written as the product of functions

of individual entries of �, these do not correspond to the marginal densities and

the partial correlations are not independent under the prior due to the truncation

onto the space of symmetric, positive definite matrices with unit diagonal. However,

there is no truncation on the diagonal entries, and so the marginal density of ✓ii

is given by ⇡ii and the diagonal entries are independent of one another and of the

partial correlations under a PC-separable prior.

Proposition 7. If the penalty function Pen is (symmetric) PC-separable, then the

prior density ⇡(✓,�) / exp (�Pen(✓,�)) I(� 2 S1) is (symmetric) PC-separable.
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If the prior density ⇡(✓,�) /
Q

i ⇡ii(✓ii)
Q

i<j ⇡ij(�ij)I(� 2 S1) is (symmet-

ric) PC-separable, then the penalty function Pen(✓,�) = � log
⇣Q

i ⇡ii(✓ii)
Q

i<j ⇡ij(�ij)
⌘

is (symmetric) PC-separable.

Proof. The result follows easily (and in a similar manner to that of Proposition 6)

by noting the following.

If Pen is a PC-separable penalty function, then ⇡(✓,�) / exp (�Pen(✓,�)) I(� 2
S1) can be written as

⇡(✓,�) / exp

0

@�
X

i

penii(✓ii)�
X

i<j

penij(�ij)

1

A I(� 2 S1)

=
Y

i

exp (�penii(✓ii))
Y

i<j

exp (�penij(�ij)) I(� 2 S1)

=
Y

i

⇡ii(✓ii)
Y

i<j

⇡ij(�ij)I(� 2 S1)

where ⇡ii(✓ii) = exp (�penii(✓ii)) and ⇡ij(�ij) = exp (�penij(�ij)).

Conversely, if ⇡(✓,�) /
Q

i ⇡ii(✓ii)
Q

i<j ⇡ij(�ij)I(� 2 S1) is a PC-separable

prior density, then

Pen(✓,�) = � log

0

@
Y

i

⇡ii(✓ii)
Y

i<j

⇡ij(�ij)

1

A

= �
X

i

log(⇡ii(✓ii))�
X

i<j

log(⇡ij(�ij))

=
X

i

penii(✓ii) +
X

i<j

penij(�ij)

where penii(✓ii) = � log(⇡ii(✓ii)) and penij(�ij) = � log(⇡ij(�ij)).

In this chapter the PC-seperable prior we will primarily focus on is that relat-

ing to the PC-GLASSO penalty, however a PC-separable prior was also proposed by

Wong and Carter [2003]. Recall that the PC-GLASSO penalty has diagonal penalty

penii(✓ii) = 2 log(✓ii) and partial correlation penalty penij(�ij) = n⇢|�ij |. The

corresponding prior, which we refer to as the PC-GLASSO prior, with parameter
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� = n⇢ therefore has density

⇡PC(✓,�|�) / exp

0

@
X

i

log(✓�2

ii )� �
X

i<j

|�ij |

1

A I(� 2 S1)

=
Y

i

✓�2

ii

Y

i<j

exp (��|�ij |) I(� 2 S1)

/
Y

i

✓�2

ii

Y

i<j

Laplace(�ij ; 0,�
�1)I(� 2 S1)

Although the prior density is written in terms of a Laplace density on the par-

tial correlations, the truncation I(� 2 S1) means that the marginal densities are

not Laplace. In particular, the truncation ensures that the partial correlations are

in (�1, 1). However, the marginal densities on the diagonal entries are given by

⇡PC(✓ii) / ✓�2

ii . It can easily be shown that this implies an improper uniform

distribution on the partial variances ✓�1

ii , which gives a nice interpretation of this

prior.

The PC-GLASSO prior is improper due to the improper marginals on the

diagonal entries. However, a regular version can be obtained by restricting ✓ii > ✏

for any ✏ > 0. It is unclear whether the posterior distribution corresponding to the

PC-GLASSO prior is in general proper, however it is for a certain subset of sample

covariance matrices S (see below). In this chapter we focus on the interpretation of

the PC-GLASSO prior to better understand the corresponding penalised likelihood,

as opposed to conducting inference based on the posterior. As such, having a proper

posterior is not vital to the content of this chapter.

Proposition 8. For any sample size n � 4 and sample covariance matrix S satisfy-

ing Sii >
P

j 6=i|Sij | for all i, the posterior distribution associated to the PC-GLASSO

prior is proper.

69



Proof. The posterior density is written as

⇡PC(✓,�|�, S) / ⇡PC(✓,�|�)L(✓,�|S)

/
Y

i

✓�2

ii

Y

i<j

exp (��|�ij |)

⇥
Y

i

✓n/2ii det(�)n/2 exp

0

@�n

2

X

i,j

Sij

p
✓ii✓jj�ij

1

A I(� 2 S1)

= det(�)n/2
Y

i

⇣
✓

n
2�2

ii exp
⇣
�n

2
Sii✓ii

⌘⌘

⇥
Y

i<j

exp
⇣
��|�ij |�nSij

p
✓ii✓jj�ij

⌘
I(� 2 S1)

We must show that this function integrates to a finite value. First note that

det(�)n/2  1 since log(det(�))  tr(� � I), exp(��|�ij |)  1 since � > 0,

and exp(�nSij
p
✓ii✓jj�ij) < exp(n|Sij |

p
✓ii✓jj)  exp(n

2
|Sij |(✓ii + ✓jj)) because

�1 < �ij < 1 and
p
✓ii✓jj  1

2
(✓ii + ✓jj). Hence

Z

S1

Z

Rp
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det(�)n/2
Y

i

⇣
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n
2�2

ii exp
⇣
�n

2
Sii✓ii

⌘⌘Y

i<j

exp
⇣
��|�ij |�nSij

p
✓ii✓jj�ij

⌘
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
Z

S1

Z

Rp
+

Y

i

⇣
✓

n
2�2

ii exp
⇣
�n

2
Sii✓ii

⌘⌘Y
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exp
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2
|Sij |(✓ii + ✓jj)

⌘
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=

Z

S1

Z
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+
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i

⇣
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2�2

ii exp
⇣
�n
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Sii✓ii
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exp
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j 6=i

|Sij |✓ii

1

A d✓ d�

=

Z

S1

Z

Rp
+

Y

i

✓
n
2�2

ii exp

0

@�n

2

0

@Sii �
X

j 6=i

|Sij |

1

A ✓ii

1

A d✓ d�

=

Z

S1

0

@
Y

i

Z

R+

✓
n
2�2

ii exp

0

@�n

2

0

@Sii �
X

j 6=i

|Sij |

1

A ✓ii

1

A d✓ii

1

A d�

Since the function being integrated does not depend on � and S1 is a bounded set,

if the inner integral is finite then the whole integral is also finite. Also, whenever
n
2
� 2 � 0 and Sii >

P
j 6=i|Sij |, then

R
R+

✓
n
2�2

ii exp
⇣
�n

2

⇣
Sii �

P
j 6=i|Sij |

⌘
✓ii
⌘
d✓ii is

finite. It follows that the whole integral is finite.

We have shown that under a certain condition on the sample covariance ma-

trix, the PC-GLASSO posterior distribution is guaranteed to be proper. However,

this does not imply that the posterior is improper when this condition does not
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hold. It may in fact be the case that posterior is proper for any sample covariance

as long as n � 4. To see why this may be the case, consider why the PC-GLASSO

prior is improper - the ✓�2

ii term tends to infinity as ✓ii goes to 0. However, in the

posterior this is not the case because of the ✓n/2ii term in the likelihood. It may be

possible to prove that this is the case, however it is complicated by the interaction

term
p
✓ii✓jj , the determinant term and the fact that integration is over the space

of positive definite matrices.

3.3 Scale invariance

The scale invariance results of Section 2.5 directly apply to the MAP estimate under

regular and PC-separable prior distributions. In particular, the MAP estimate under

regular prior distributions is not scale invariant. However, the MAP estimate under

symmetric PC-separable priors with ⇡ii(✓ii) / ✓�c
ii , c � 0 is scale invariant. That is,

if ⇥̃ = ⇥̂(DSD) is the posterior mode under the scaled sample covariance, then the

mode under the original sample covariance is ⇥̂(S) = D⇥̃D. Hence, the maxima of

the two posterior densities are ⇡
⇣
⇥̃ | DSD

⌘
and ⇡

⇣
D⇥̃D | S

⌘
.

In fact a stronger property holds for the entire posterior distribution, that

PC-separable priors lead to scale-invariant posterior inference, as defined below.

Definition 9. Let ⇡(⇥) be a prior density, S a sample covariance and D a diag-

onal matrix with non-zero diagonal. Let the posterior density associated to S be

⇡(⇥ | S) / L(⇥ | S)⇡(⇥), and that associated to DSD be ⇡(⇥ | DSD) / L(⇥ |
DSD)⇡(⇥) where L is the Gaussian likelihood function.

The prior ⇡(⇥) leads to scale-invariant posterior inference if for any (S,D)

P⇡ (⇥ 2 A | DSD) = P⇡ (⇥ 2 AD | S) (3.3)

for all measurable sets A where AD = {⇥ : D�1⇥D�1 2 A}.

In particular, (3.3) implies that the two posterior distributions on the partial

correlations � are equal up to appropriate sign changes i.e. when D has all positive

entries, ⇡(� | S) = ⇡(� | DSD) (since � associated to ⇥ is equal to that associated

to D⇥D).

Proposition 9. Any symmetric PC-separable prior distribution with ⇡ii(✓ii) / ✓�c
ii

for some constant c � 0 leads to scale-invariant posterior inference, provided the

posterior distributions exist.
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Proof. Let ⇡ be a prior density as given in Proposition 9, S be some sample co-

variance and D some diagonal matrix with non-zero entries. Writing L(⇥ | S) as

the likelihood function, ⇥ = ✓1/2�✓1/2 and treating D as a constant, the posteriors

given S and DSD are

⇡(D⇥D | S) / L(D⇥D | S)⇡(D⇥D)

/ det(�)n/2
Y

i

(d2i ✓ii)
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2
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didjSij

p
✓ii✓jj�ij

1
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⇥
Y

ij

⇡ij(�ij)I(� 2 S1) (3.4)

⇡(⇥ | DSD) / L(⇥ | DSD)⇡(⇥)
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ii exp
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@�n

2
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i,j

didjSij

p
✓ii✓jj�ij

1

A

⇥
Y

i

(✓ii)
�c
Y

ij

⇡ij(�ij)I(� 2 S1)

= det(�)n/2
Y

i

✓
n
2�c
ii exp

0

@�n

2

X

i,j

didjSij

p
✓ii✓jj�ij

1

A

⇥
Y

ij

⇡ij(�ij)I(� 2 S1) (3.5)

For any measurable set A and AD = {⇥ : D�1⇥D�1 2 A} the probabilities

in Definition 9 can be written as

P⇡ (⇥ 2 A | DSD) =

Z

A
⇡ (⇥ | DSD) d⇥

=

R
A L(⇥ | DSD)⇡(⇥) d⇥R
S L(⇥ | DSD)⇡(⇥) d⇥
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and, noting that ⇥ 2 A () D⇥D 2 AD,

P⇡ (⇥ 2 AD | S) =
Z

AD

⇡ (⇥ | S) d⇥

=

Z

A
⇡ (D⇥D | S) d⇥

=

R
A L(D⇥D | S)⇡(D⇥D) d⇥R
S L(D⇥D | S)⇡(D⇥D) d⇥

The result follows by noting that expression (3.4) can be obtained by multi-

plying (3.5) by the constant
Q

i(d
2
i )

n
2�c.

We note that the proof of Proposition 9 does not depend on ⇡ij(�ij) being

non-increasing or ⇡ij being the same for all i 6= j. Hence the result extends to any

prior of the form (3.2) for which ⇡ii(✓ii) / ✓�c
ii for all i and ⇡ij(�ij) is symmetric

for all i 6= j. The symmetry condition for ⇡ij is required for negative scalar multi-

plications - i.e. when D includes negative entries - so that ⇡ij(��ij) = ⇡ij(�ij). If

we only consider positive scalar multiplications - D with all positive entries - then

the symmetry condition can also be relaxed.

3.4 Bayesian graphical LASSO review

The GLASSO prior distribution has primarily been explored by Wang [2012] and

Khondker et al. [2013]. In this section we will briefly review their work.

A major contribution of the work of Wang [2012] was exploring properties

of the GLASSO prior. Through sampling they displayed the marginal densities,

after truncation onto the space of positive definite matrices. In particular they

showed that for parameter � = 3, the marginal densities are more concentrated

around 0 than the Laplace density with scale parameter ��1. More importantly,

they showed that for fixed penalty parameter � = 3, the marginal densities of

the partial correlations become more concentrated around 0 as the dimension p

increases. They also claim that the marginal distribution on the partial correlations

does not depend on the parameter � - something we verify in Section 3.5. They also

explore a hierarchical representation and show that this representation does indeed

correspond to the GLASSO prior.

Another important aspect explored by Wang [2012] is the di↵erence between

the posterior mean and MAP estimate. This was done by comparing the two esti-

mates in a specific real data set with p = 11, n = 10 with the mean being calculated
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from a Monte Carlo sample. It was shown that the mean and mode can vary signif-

icantly in both the diagonal and o↵-diagonal entries, particularly for small �. The

mode in some cases was even outside of the 95% credible interval centered around

the mean. It was also pointed out that this credible interval reduces in width as the

parameter � is increased showing a reduction in estimation uncertainty - something

that is not reflected by a point estimate.

Both Wang [2012] and Khondker et al. [2013] go on to propose Monte Carlo

sampling schemes for the GLASSO posterior. Wang [2012] proposed a block Gibbs

sampler, while Khondker et al. [2013] preferred a random walk Metropolis-Hastings.

They also proposed two di↵erent methods for graphical model selection from the

obtained posterior samples. Khondker et al. [2013] fixed certain elements of ⇥ to

be zero based on credible intervals. Wang [2012] instead approximated the proba-

bility P(✓ij = 0) under a discrete and continuous mixture prior by comparing the

GLASSO posterior mean of ✓ij to the posterior mean under some reference prior. If

the mean under GLASSO is less than half that under the reference then the edge is

not included. As a reference prior Wang [2012] used a conjugate Wishart prior, pre-

sumably for computational e�ciency and easy computation of the posterior mean.

However, in our opinion a more sensible reference prior would be another GLASSO

prior, but with parameter value � = 0. Indeed, it is admitted by Wang [2012] that

this approach is ‘ad-hoc and lacks the formal Bayesian interpretation.’

Wang [2012] went on to propose an extension to the GLASSO prior, in a way

akin to the adaptive LASSO, which allows di↵erent variance parameters on each ✓ij .

3.5 GLASSO and PC-GLASSO prior comparison

In this section we compare the GLASSO and PC-GLASSO prior densities. In par-

ticular, we investigate the a↵ect of the parameter � and the dimension p on the

marginal densities of the diagonals and partial correlations. Recall that the respec-

tive prior densities are given by

⇡G(⇥) /
Y

i

Exp(✓ii;�/2)
Y

i<j

Laplace(✓ij ; 0,�
�1)I(⇥ 2 S),

and

⇡PC(✓,�) /
Y

i

✓�2

ii

Y

i<j

Laplace(�ij ; 0,�
�1)I(� 2 S1).

We obtained samples from these prior densities using rejection sampling - we sam-

ple from the distribution without positive definite truncation, which only requires

74



sampling of independent exponential and Laplace values, and reject the sample if

the resulting matrix is not positive definite.

We begin by briefly discussing the a↵ect of increasing the dimension p. As

mentioned in Section 3.4, this has already been explored for the GLASSO prior by

Wang [2012]. They found that the marginal on both the o↵-diagonals and the partial

correlations becomes more concentrated around 0 as the dimension p increases, and

that the marginal on the diagonal entries has larger mean and variance as p increases.

These e↵ects of dimension are an obvious side-e↵ect of the truncation onto the space

of positive definite matrices, which becomes more restrictive as the dimension p

grows.

We found a similar phenomenon with the PC-GLASSO prior; as the dimen-

sion p increases, the marginal on the partial correlations becomes more concentrated

around 0. However, in this case the marginal on the diagonal entries does not depend

on p because the truncation is on the partial correlation matrix �.

Now we investigate the a↵ect of the parameter � on the marginal distribu-

tions. To do this we generated samples from both prior distributions for fixed p = 5

and � = 1, 2 and 4. Figure 3.1 plots the marginal densities of �12 and ✓11. The top

left panel verifies the claim of Wang [2012] that the GLASSO prior ⇡G(�ij) does

not depend on �, whereas the bottom panel shows that ⇡G(✓ii) is shrunk towards

0 as � increases. In contrast, the PC-GLASSO prior (top-right panel) on partial

correlations ⇡PG(�ij) concentrates around zero as � grows. The marginals on the

diagonal entries are given by ⇡PG(✓ii) / ✓�2

ii regardless of �.

This demonstrates a fundamental di↵erence in how GLASSO and PCGLASSO

induce sparsity in the ✓ij = �ij
p
✓ii✓jj . PCGLASSO achieves sparsity through

regularisation of the partial correlations, while GLASSO does so by shrinking the

diagonal ✓ii.

3.6 Discussion

In this chapter we have explored two classes of separable priors which assume inde-

pendence of the parameters before truncation onto the space of positive definite ma-

trices. In regular priors the entries of ⇥ are separable, while for PC-separable priors

the independence is instead placed on the partial correlations. The MAP estimate

under such priors is equal to the penalised likelihood estimate under certain regular

and PC-separable penalty functions. As such, the results of the previous chapter

prove that the MAP estimate under a regular prior does not satisfy scale invariance,

while the MAP estimate a symmetric PC-separable prior with ⇡ii(✓ii) / ✓�c
ii does
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Figure 3.1: Marginal prior densities for the partial correlations under GLASSO prior
(top left) and PC-GLASSO prior (top right) and for the diagonal entries under the
GLASSO prior (bottom).
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satisfy scale invariance. In this chapter we showed that such PC-separable priors

in fact satisfy a stronger property of invariance such that any form of posterior

inference is invariant to scalar multiplication of the variables.

In this chapter we also proposed a specific PC-separable prior - the PC-

GLASSO prior - and compared this to the GLASSO prior. We demonstrated that

there are fundamental di↵erences between the two priors and therefore how the

corresponding MAP estimates achieve shrinkage and sparsity in the ✓ij . In the

PC-GLASSO prior, as the parameter � is increased the marginal on the partial cor-

relations becomes more concentrated around 0, while the marginal on the diagonal

entries remains fixed. In the GLASSO prior the opposite is true - the marginal on

the partial correlations does not depend on �, but the marginal on the diagonal en-

tries is shrunk towards 0. In our opinion shrinkage of the partial correlations makes

more sense for graphical model selection. The existence of an edge in a graphical

model is based on the (partial) dependence between two variables, which can be

measured by the partial correlations. The diagonal entries instead relate to the

partial variances and are therefore a measure of spread in the data. Within the

continuous separable framework, the belief that the underlying graphical model is

sparse is therefore best encoded by concentrating the marginal distribution on the

partial correlations more tightly around 0.

A related issue is that of prior interpretability. As mentioned earlier in this

chapter, separable priors allow great flexibility and simplicity in encoding prior

beliefs. For regular priors this involves assigning a distribution to each entry of ⇥

through ⇡ij . Although these don’t exactly correspond to the marginals due to the

positive definiteness constraint, prior beliefs may be easily set on the ✓ij in this way.

However, ✓ij is not a good measure of dependence since it is not scale invariant. Thus

a large ✓ij could reflect either strong dependence between the variables or that they

have small partial variance. This is not an ideal situation for setting prior beliefs

where one would instead like each parameter to correspond to a single property of the

distribution. In this sense, PC-separable priors are advantageous in terms of prior

interpretability - one may set prior beliefs on the strength of dependence between

variables through ⇡ij(�ij) and on the spread of each variable through ⇡ii(✓ii).
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Chapter 4

Spike and slab partial

correlation graphical LASSO

In the previous chapter it was mentioned that prior distributions may be used to

inspire new penalty functions, and in this chapter we will do exactly that. Spike

and slab priors, introduced by Mitchell and Beauchamp [1988] and George and

McCulloch [1993], are commonly used in model selection situations where that is

some prior probability of a parameter being 0.

Spike and slab distributions for Gaussian graphical models will be more rig-

orously defined in the next chapter. However, as an introduction, a general spike

and slab prior on a parameter � is a mixture of the form

⇡(�) / ⌘⇡1(�) + (1� ⌘)⇡0(�),

where ⌘ 2 (0, 1), ⇡1 is the slab density and ⇡0 the spike density. The extra parameter

⌘ can be considered the probability of some indicator variable � being equal to 1,

P(� = 1) = ⌘, P(� = 0) = 1� ⌘. The spike and slab density can then be rewritten

as

⇡(� | �) / �⇡1(�) + (1� �)⇡0(�).

The indicator � can be related to the parameter � being equal to 0. Most obviously,

one might take � = I(� 6= 0) so that ⌘ is the prior probability of � 6= 0. In this

case ⇡0 must be a Dirac mass at 0, while ⇡1 is the prior density of � conditional on

� 6= 0. Such a formulation was used by Banerjee and Ghosal [2015] in the Gaussian

graphical model context. While this is an attractive formulation because parameter

selection can be directly related to the posterior distribution of �, it does come with

some di�culties. This is because, the prior distribution (and also the posterior) is
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not continuous which can make posterior inference and sampling challenging.

A common adaptation to allow easier computation is to let ⇡0 be a continuous

density which is highly concentrated around 0. When this is the case, the indicator

variable can be interpreted as � = 1�I(� ⇡ 0). Although this formulation no longer

allows inference on the event {� = 0} because the corresponding posterior will always
set zero probability to the event, it does come with some positives. First, the prior

(and posterior) is now continuous which allows easier computation and posterior

inference. Second, it may be argued that inference on this new � = 1� I(� ⇡ 0) is

beneficial for model selection. If a parameter is known to be suitably close to 0, one

may chose to not include this parameter in the model to achieve greater parsimony.

This spike and slab prior framework is completely flexible in the choice of

⇡1 and ⇡0 and so they may be chosen to reflect prior beliefs on the parameter.

However, when, as we will be doing, a spike and slab prior is used to inspire a

penalty function, it is important that ⇡(�) have a local maximum at 0 and be non-

di↵erentiable at 0. This is to ensure that the penalised likelihood is able to achieve

exact zero estimates. A popular choice for the spike and slab densities is the Laplace

which were used in the spike and slab LASSO of Ročková and George [2018] and the

Bayesian Regularization for Graphical Models With Unequal Shrinkage (BAGUS)

method of Gan et al. [2018]. For consistency of nomenclature, BAGUS will also be

referred to as spike and slab graphical LASSO (SS-GLASSO).

We will begin this chapter by reviewing the work of Gan et al. [2018] on the

SS-GLASSO, which utilises a regular prior distribution. We will then propose a

new spike and slab method named the spike and slab partial correlation graphical

LASSO (SS-PC-GLASSO) which, in fitting with the previous chapters, is based on

a PC-separable prior. The corresponding penalty functions obtained from a Laplace

spike and slab prior will be compared to other popular penalty functions before a

computational method and parameter selection strategy are proposed. The chapter

will conclude with some simulation settings and real data applications.

4.1 Spike and slab graphical LASSO

Gan et al. [2018] introduced the following Laplace spike and slab prior on the pre-

cision matrix of a Gaussian graphical model

⇡(⇥) /
Y

i

⇡ii(✓ii)
Y

i<j

⇡ij(✓ij)I(⇥ 2 S),
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⇡ii(✓ii) = ⌧ exp(�⌧✓ii)I(✓ii > 0)

= Exp(✓ii; ⌧),

⇡ij(✓ij) = ⌘
�1

2
exp (��1|✓ij |) + (1� ⌘)

�0

2
exp (��0|✓ij |)

= ⌘ Laplace(✓ij ; 0,�
�1

1
) + (1� ⌘) Laplace(✓ij ; 0,�

�1

0
)

with ⌘ 2 (0, 1) and �1 < �0 such that the variance of the slab is greater than

that of the spike. We refer to this prior as the spike and slab graphical LASSO

(SS-GLASSO) prior. It is easy to verify that this is a regular prior distribution

with independent priors placed on each entry of ⇥ before truncating onto the space

of positive definite matrices. The prior utilises a spike and slab structure with a

Laplace density for both the spike and the slab. The spike density has smaller

variance than the slab to ensure that it is more concentrated around 0. The extra

parameter ⌘ denotes the prior probability of ✓ij coming from the slab rather than

the spike and can be interpreted as ⌘ = 1 � P(✓ij ⇡ 0). Note that in this set up

the same ⌘ is used for all ✓ij as well as the same spike and slab densities. This

reflects the prior belief that all ✓ij are equally likely to be from the slab and that all

the dependence relationships between pairs of variables are a priori exchangeable.

Because of this symmetry, it is therefore more appropriate to think of ⌘ as the prior

expected proportion of edges that are from the slab. Similarly to the GLASSO prior,

the density ⇡ii on the diagonal entries is Exponential, although in contrast to the

GLASSO prior, the parameter ⌧ is di↵erent to the parameters of the o↵-diagonal

entries.

Gan et al. [2018] actually make a further truncation onto ||⇥||2 B for some

B > 0 where ||·||2 is the spectral norm. They went on to show that if B <
p
2n/�0,

then within the region ||⇥||2 B the posterior distribution will be strictly concave

and therefore have a unique maximum. This allows the use of an EM algorithm

to find the MAP estimate, which Gan et al. [2018] proposed. This truncation was

justified because having a large ||⇥||2 relates to a situation where there are large

correlations between the variables - a situation ‘in which most methods fail’ and in

conflict with the assumption of a sparse graphical model. However, this argument

ignores the importance of the diagonal entries of ⇥ - a large spectral norm could

occur from large ✓ii, not only large correlations between the variables. This gives

a further reason, as well as the arguments in Chapter 2, for why standardising the

data is vital when implementing the method of Gan et al. [2018].

Gan et al. [2018] only consider the MAP estimate related to the SS-GLASSO
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prior and so this is equivalent to a penalised likelihood method. This penalty func-

tion will be explored further and compared to other non-convex penalties in Section

4.3. However, Gan et al. [2018] utilise the prior interpretation for graphical model

selection purposes by considering the additional indicator variables �ij which indi-

cate whether ✓ij comes from the spike or the slab. Posterior inference on the �ij can

then be thought of as graphical model selection. However, in lieu of a full Bayesian

analysis, Gan et al. [2018] approximate the posterior edge inclusion probabilities by

conditioning on the MAP estimate for ⇥ and include an edge in the model i↵ this ap-

proximated probability is greater than 0.5. These edge inclusion probabilities seem

rather contrived - they are simply a monotone transformation of the estimated |✓ij |
- and do not take into account any posterior uncertainty or dependence between the

�ij . Furthermore, the Laplace priors ensure that exact zero entries are possible, and

in fact common, in the MAP estimate meaning that this extra step is not required

for model selection - one can simply consider the zero entries in the MAP.

A further important contribution of Gan et al. [2018] were estimation ac-

curacy and selection consistency results for the MAP estimate of the SS-GLASSO

prior. Furthermore, these results were shown to extend to certain non-Gaussian

distributions satisfying some exponential or polynomial tail condition.

4.2 Spike and slab partial correlation graphical LASSO

As recommended in the previous chapter, we suggest an adaptation of the SS-

GLASSO prior which is instead PC-separable and leads to scale invariant posterior

inference. This will be of a similar form to the PC-GLASSO prior, however with

the Laplace prior on the partial correlations replaced by a Laplace spike and slab.

This results in the following spike and slab partial correlation graphical LASSO

(SS-PC-GLASSO) prior on the partial correlation matrix � and diagonal entries ✓:

⇡(✓,�) /
Y

i

⇡ii(✓ii)
Y

i<j

⇡ij(�ij)I(� 2 S1),

⇡ii(✓ii) = ✓�2

ii ,

⇡ij(�ij) = ⌘
�1

2(1� exp(��1))
exp (��1|�ij |) + (1� ⌘)

�0

2(1� exp(��0))
exp (��0|�ij |)

= ⌘ TruncLaplace(�ij ; 0,�
�1

1
) + (1� ⌘) TruncLaplace(�ij ; 0,�

�1

0
) (4.1)
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with ⌘ 2 (0, 1), �0 > �1 and where TruncLaplace denotes the density of a Laplace

distribution truncated onto (�1, 1).

The SS-PC-GLASSO prior specifies independent diagonal entries ✓ii with

density ✓�2

ii . This ensures, from Proposition 9, that the SS-PC-GLASSO prior leads

to scale invariant posterior inference. The partial correlations are treated as indepen-

dent before truncation onto the space of positive definite matrices and have Laplace

spike and slab densities prior to this truncation. It is easy to verify that ⇡ij(�ij) is

decreasing in |�ij | and so the SS-PC-GLASSO prior is symmetric PC-separable.

One important thing to note about the SS-PC-GLASSO prior setup is that

the spike and slab densities are truncated Laplace densities between �1 and 1. In

any spike and slab prior, it is important that the spike and slab densities are proper

density functions that integrate to 1. This is because, without this restriction, ⌘ will

no longer be equal to the prior probability of coming from the slab. For example, in

the SS-PC-GLASSO prior, suppose we instead use non-truncated Laplace densities

⇡ij(�ij) = ⌘ Laplace(�ij ; 0,�
�1

1
) + (1� ⌘) Laplace(�ij ; 0,�

�1

0
).

Here, when considering the restriction �ij 2 (�1, 1), it is clear that this density will

be dominated by the spike. In particular, the prior probability of �ij coming from

the slab is now equal to

⌘(1� exp(��1))

⌘(1� exp(��1)) + (1� ⌘)(1� exp(��0))

which is smaller than ⌘, and is close to 0 when �0 ⌧ �1. To avoid this issue, one

must ensure that the spike and slab densities integrate to 1 after the �ij 2 (�1, 1)

restriction, as is the case in (4.1).

This discussion has so far ignored the further truncation of both the SS-

GLASSO prior and SS-PC-GLASSO prior onto the space of positive definite matri-

ces. The e↵ect of this truncation will be explored further in the Chapter 5.

When combined with the likelihood function, after observing a sample co-
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variance matrix S from n observations, the resulting posterior density is

⇡(✓,� | S) / ⇡(✓,�)L(✓,� | S)

/
Y

i

✓�2
ii

Y

i<j

✓
⌘
�1

c1
exp (��1|�ij |) + (1� ⌘)

�0

c0
exp (��0|�ij |)

◆

⇥ det(�)
n
2

Y

i

⇣
✓

n
2
ii

⌘
exp

0

@�n

2

0

@
X

i

Sii✓ii + 2
X

i<j

Sij

p
✓ii✓jj�ij

1

A

1

A I(� 2 S1)

= det(�)
n
2

Y

i

⇣
✓

n�4
2

ii exp
⇣
�n

2
Sii✓ii

⌘⌘

⇥
Y

i<j

⇣
exp

⇣
�nSij

p
✓ii✓jj�ij

⌘

⇥
✓
⌘
�1

c1
exp (��1|�ij |) + (1� ⌘)

�0

c0
exp (��0|�ij |)

◆◆
I(� 2 S1)

= det(�)
n
2

Y

i

⇣
✓

n�4
2

ii exp
⇣
�n

2
Sii✓ii

⌘⌘

⇥
Y

i<j

✓✓
⌘
�1

c1
exp

⇣
�nSij

p
✓ii✓jj�ij � �1|�ij |

⌘

+(1� ⌘)
�0

c0
exp

⇣
�nSij

p
✓ii✓jj�ij � �0|�ij |

⌘◆◆
I(� 2 S1) (4.2)

where ci = 2(1 � exp(��i)). This posterior density will be referred to in the

computational algorithm of Section 4.4.

4.3 Laplace spike and slab penalty functions

Recall from the previous chapter that the MAP estimate under a prior ⇡(⇥) corre-

sponds to a penalised likelihood estimate with penalty function Pen(⇥) = � log(⇡(⇥)).

In this section we will investigate the penalty function corresponding to the SS-PC-

GLASSO prior and compare this to other popular non-convex penalties.

All prior distributions and penalty functions we discuss in this section will

be symmetric PC-separable. As such, a prior density can be written as

⇡(✓,�) /
Y

i

⇡D(✓ii)
Y

i<j

⇡PC(�ij)I(� 2 S1),

and a penalty function as

Pen(✓,�) =
X

i

penD(✓ii)
X

i<j

penPC(�ij).

The correspondence Pen(✓,�) = � log(⇡(✓,�)) is therefore obtained by taking
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penD(✓ii) = � log(⇡D(✓ii)) and penPC(�ij) = � log(⇡PC(�ij)).

As discussed in Sections 2.5 and 3.3, in order for the penalty function or

prior distribution to be scale invariant the diagonal penalty must be of the form

penD(✓ii) = c log(✓ii) which corresponds to ⇡D(✓ii) = ✓�c
ii for some c � 0. This is

the case for both PC-GLASSO and SS-PC-GLASSO with the choice of c = 2. We

recommend that any symmetric PC-separable penalty function or prior distribution

have such a diagonal penalty or prior in order to obtain scale invariance.

We now focus on the penalty function on the partial correlations. Two

common penalty functions which we will compare to are the L0 penalty

penPC(�ij) = ⇢ I(�ij 6= 0),

and the L1 penalty

penPC(�ij) = ⇢|�ij |,

both pictured in Figure 4.1. The L0 penalty applies the same penalty to all non-zero

partial correlations. It is considered by some to be the gold standard for model se-

lection via penalised likelihoods because the penalty is a function of only the model

size and not the specific value of the parameters [Dicker et al., 2013]. However, the

discontinuity in the penalty functions means that it is not computationally feasi-

ble when the model size is even moderately large and can lead to unstable model

selection with small changes in the data potentially resulting in large changes to

the selected model [Breiman, 1996]. On the other hand, the L1 penalty, as used in

LASSO style methods including the PC-GLASSO, benefits from fast computation

due to the convexity of the resulting maximisation problem. However this is often

associated with bias in the estimation of large parameter values. This is because

the derivative of the L1 penalty is constant away from 0 and so all parameter values

are shrunk towards zero even if the data strongly suggests that one is non-zero.

Non-convex penalties can therefore be seen as ways of improving on the problems

associated with the L0 and L1 penalties - they can be seen as continuous approxi-

mations of the L0 penalty aiding computation or as refinements of the L1 penalty

which reduce the penalty on large parameter values.

The SS-PC-GLASSO prior has

⇡PC(�ij) = ⌘
�1

2(1� exp(��1))
exp (��1|�ij |) + (1� ⌘)

�0

2(1� exp(��0))
exp (��0|�ij |)

:= ⇡SS(�ij),
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which corresponds to the penalty function

penPC(�ij) = � log

✓
⌘

�1

2(1� exp(��1))
exp (��1|�ij |) + (1� ⌘)

�0

2(1� exp(��0))
exp (��0|�ij |)

◆

:= penSS(�ij).

One may also wish to consider a version of the SS-PC-GLASSO prior distribution

where we set �1 = 0, in which the slab component would correspond to a uniform

density between �1 and 1. If this is the case then the first term in ⇡SS(�ij) and

the corresponding term in penSS(�ij) should be replaced by their limit as �1 ! 0,

which is ⌘/2.

To better understand the e↵ect of changing parameter values in this penalty

function, Figure 4.1 shows plots of penSS for ⌘ = 0.1 and di↵erent values for �0,�1.

Note that the penalty functions have been standardised so that either penSS(0) = 0

or penSS(1) = 0 to aid comparison. In the middle left panel we see it plotted for

fixed �0 = 10 and �1 2 {0, 2, 5, 10}. We see that for �0 = �1, penSS is equal to the

L1 penalty. As �1 is reduced, the penalty on large partial correlations is reduced,

whilst close to zero the penalty remains close to the L1 penalty.

In the bottom left panel of Figure 4.1 we see penSS plotted for fixed �1 = 0

and �0 2 {1, 5, 10, 20}. For small �0 the penalty is close to the L1 penalty. As �0

is increased, the penalty becomes more non-convex and flatter in the extremities.

For large �0 the penalty begins to resemble a continuous approximation of the L0

penalty.

More insight into a penalty function can be gained by looking at its derivative.

The derivative of the SS-PC-GLASSO penalty is

pen0
SS(�ij) =

sign(�ij)
⇣
⌘ �2

1
2(1�exp(��1))

exp (��1|�ij |) + (1� ⌘) �2
0

2(1�exp(��0))
exp (��0|�ij |)

⌘

⌘ �1
2(1�exp(��1))

exp (��1|�ij |) + (1� ⌘) �0
2(1�exp(��0))

exp (��0|�ij |)

Again, if �1 = 0 then the derivative is equal to its limit as �1 ! 0 which is equal to

pen0
SS(�ij) =

sign(�ij)(1� ⌘)
�2
0

2(1�exp(��0))
exp (��0|�ij |)

⌘
2
+ (1� ⌘) �0

2(1�exp(��0))
exp (��0|�ij |)

The derivative is often more informative about the dynamics of a penalty function.

If the derivative is small or 0 at the MLE then the penalised likelihood estimate

will tend to be close to the MLE. If the derivative is large at the MLE then more

shrinkage towards 0 can be expected. pen0
SS
(�ij) is plotted in the middle and bottom

right panels of Figure 4.1.

For fixed �0 the derivative has a constant value of �0, like the L1 penalty,
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when �1 = �0. As �1 is decreased, the derivative close to zero is still approximately

equal to �0, but the derivative decrases with �ij even reaching close to 0 for �1 = 0.

For fixed �1 = 0, the derivative close to zero is always approximately equal to

�0. For small �0 the derivative remains approximately constant. As �0 is increased,

the derivative goes towards 0 for large �ij values. For su�ciently large �0 the

derivative is approximately equal to 0 for all |�ij | above a certain threshold. Note

that as the parameter �0 increases, the amount of penalisation on large partial

correlations increases, but the range of partial correlations for which the penalty

function is flat also increases.

A key property of penSS(�ij) is that it is non-convex. Non-convex penalties

have been widely used as a way to reduce the bias in the estimation of large parame-

ter values when using the L1 penalty. We now compare the SS-PC-GLASSO to two

popular non-convex penalties - the Smoothly Clipped Absolute Deviation (SCAD)

penalty and the Minimax Concave Penalty (MCP) - on the partial correlations.

The SCAD penalty, proposed by Fan and Li [2001], is symmetric and on

[0, 1) is equal to

penPC(�ij) =

8
>>><

>>>:

��ij , 0  �ij  �
2a��ij��

2
ij��2

2(a�1)
, � < �ij  a�

1

2
�2(a+ 1), a� < �ij

:= penSCAD(�ij),

which has derivative

pen0
SCAD(�ij) =

8
>>><

>>>:

�, 0  �ij  �
a���ij

(a�1)
, � < �ij  a�

0, a� < �ij

and the related prior density has

⇡PC(�ij) /

8
>>>><

>>>>:

exp(���ij), 0  �ij  �

exp

✓
�2a��ij+�

2
ij+�2

2(a�1)

◆
, � < �ij  a�

exp(�1

2
�2(a+ 1)), a� < �ij

:= ⇡SCAD(�ij).

The SCAD penalty contains two parameters - the regularisation parameter � and an
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additional parameter a - and is a quadratic spline function with knots at � and a�.

Fan and Li [2001] suggested a default value of a = 3.7 for the additional parameter.

The related prior density ⇡SCAD demonstrates a number of prior beliefs. First, if a

partial correlation is small, i.e. |�ij | �, then it is likely to be very small. On the

other hand, if a partial correlation is large, i.e. |�ij |> a�, then the prior is uniform.

In between � and a� the prior is simply a log linear interpolation to ensure continuity

between the three components. This gives some interpretation to the parameters a

and �. The parameter � corresponds to the threshold of partial correlations that

are a priori negligible. Meanwhile a� corresponds to the threshold for which any

larger partial correlations are significant enough for us to want the data to speak

for itself.

The MCP penalty, proposed by Zhang [2010], is also symmetric and on [0, 1)

is equal to

penPC(�ij) =

8
<

:
��ij �

�
2
ij

2a , 0  �ij  a�

1

2
a�2, a� < �ij

:= penMCP(�ij),

which has derivative

pen0
MCP(�ij) =

8
<

:
�� �ij

a , 0  �ij  a�

0, a� < �ij

and the related prior density has

⇡PC(�ij) /

8
><

>:

exp

✓
���ij +

�
2
ij

2a

◆
, 0  �ij  a�

exp
�
1

2
a�2
�
, a� < �ij

:= ⇡MCP(�ij).

Like the SCAD penalty, the MCP penalty contains two parameters - the regularisa-

tion parameter � and an additional parameter a - and is a quadratic spline function,

but with only a single knot at a�. A common default value for the additional pa-

rameter is a = 2. The MCP prior has a similar interpretation to the SCAD prior

with any partial correlations larger than a� being uniform and any smaller than a�

likely to be very small.

Plots of the SCAD and MCP penalties and their derivatives can be found in

Figure 4.2 for their recommended default value of a and a range of � values. Both

87



penalty functions seem to act in a similar way with small � values resulting in more

non-convexity in the function whilst for larger � values the penalties more closely

resemble the L1 penalty.

The di↵erence between SCAD and MCP can more easily be seen in their

derivatives. Both have piecewise linear derivatives but while the SCAD derivative

is constant around 0, the MCP derivative is decreasing around 0. Although not

pictured here, changing the additional parameter a has the e↵ect of changing the

gradient of the decreasing part of the derivative. This results in a change in the

amount of non-convexity in the penalty functions with small a resulting in penalty

functions that are closer to the L0 penalty and large a giving penalty functions closer

to the L1 penalty. This is much the same as the e↵ect of changing �1 for fixed �0

in the SS-PC-GLASSO. Plots of the SCAD and MCP penalites for di↵erent a can

be found in Williams [2020].

Comparison of the SS-PC-GLASSO penalty to the SCAD and MCP shows

some interesting di↵erences. If the parameter ⌘ is treated as fixed in the SS-PC-

GLASSO, then all penalty functions have two parameters. Changing �1 in the SS-

PC-GLASSO has a similar e↵ect to changing the additional parameter a in SCAD

and MCP. Meanwhile, �0 is more similar to the regularisation parameter � of SCAD

and MCP in that it a↵ects the magnitude of the penalty. However, while SCAD

and MCP more closely resemble the L1 penalty as � increases, the SS-PC-GLASSO

penalty more closely resembles the L0 penalty as �1 increases.

It should be noted that both SCAD and MCP were originally proposed for

linear regression and then applied to Gaussian graphical model selection as a regular

penalty function. As such they are ordinarily defined over the whole real line rather

than just on the interval (�1, 1). Due to this restriction, some of the non-convex

properties of these penalties are lost and perhaps alternative default values for the

additional parameter a should be considered. For the applications later in this

section we consider the regular versions of SCAD and MCP applied on the o↵-

diagonal entries ✓ij .

4.4 Parameter selection and computation

Parameter selection for the SS-PC-GLASSO is more complicated than for PC-

GLASSO because it contains three parameters - �0,�1, ⌘ - rather than a single

parameter. In this section we will propose some strategies for the appropriate se-

lection of these parameters as well as a computational method based on these for

obtaining a point estimate for ⇥.
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Figure 4.1: Penalty functions (left) and their derivatives (right) (except for top
figure which are both penalty functions)
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SCAD with fixed a = 3.7
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Figure 4.2: Penalty functions (left) and their derivatives (right)
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First we consider the parameter ⌘. Recall that ⌘ can be interpreted as the

prior probability of a partial correlation coming from the slab rather than the spike.

Because this probability is the same for all partial correlations within this prior

framework, it is useful to think of ⌘ as the prior expected proportion of partial

correlations that come from the slab, or the prior expected proportion of edges

present in the graphical model. A larger value of ⌘ encourages larger graphical

models and larger estimated �ij , while smaller values of ⌘ encourage more sparse

models and apply more shrinkage to the �ij .

Rather than attempting to tune this parameter, it seems more appropriate to

set ⌘ based on prior beliefs of the sparsity of the model, or based on the desired level

of sparsity in the estimate. Gan et al. [2018] simply fix ⌘ = 0.5 indicating that an

edge is equally likely to be present or not. However, we prefer a more conservative

approach which encompasses the prior belief that the underlying graphical model is

sparse. A common definition of sparsity in a graphical model is that the number of

edges is of order p. In fitting with this we propose setting

⌘ =
p

1

2
p(p� 1)

=
2

p� 1
.

noting that the maximum number of edges in the model is 1

2
p(p� 1).

Next we consider the setting of the spike and slab parameters �0 and �1.

In the PC-GLASSO we proposed setting the single regularisation parameter ⇢ via

the BIC. In this case we were able to consider a large set of values for ⇢, which

was computationally feasible in Algorithm 1 because the estimate for the previous

value of ⇢ was used as a starting point for the next value of ⇢. However, in the SS-

PC-GLASSO this is not so straightforward as there are two parameters to consider.

Suppose we wished to consider �0 2 {�(1)

0
, . . . ,�(K0)

0
} and �1 2 {�(1)

1
, . . . ,�(K1)

1
}.

This will require computation of K0K1 estimates. This clearly limits the number of

parameters it is feasible to consider, especially when computation is further compli-

cated by the non-convexity of the problem. Regardless, Gan et al. [2018] adopted

such an approach, calculating estimates for 16 di↵erent combinations of �0,�1 and

selecting the estimate via the BIC.

We propose a di↵erent approach in which the SS-PC-GLASSO can be con-

sidered a refinement of the PC-GLASSO noting that the two are equivalent when

�0 = �1 by considering the reparameterisation of the PC-GLASSO with � = n⇢.

We begin by selecting the PC-GLASSO parameter � via the BIC and fixing this to
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be the value of the spike parameter �0. We then consider a sequence of decreasing

slab parameters �0 = �(0)

1
> �(1)

1
> · · · > �(k)

1
= 0 and again select this param-

eter via the BIC. This approach, partly inspired by that of Ročková and George

[2018], is described in Algorithm 3. The e↵ect of decreasing �1 in such a way was

seen in Figure 4.1 and can be considered as decreasing the penalty on large partial

correlations, in comparison to the L1 penalty.

In step 3 of Algorithm 3 the spike parameter is chosen by selecting the PC-

GLASSO parameter via the BIC. However, the refinement brought about by the

slab component of the SS-PC-GLASSO tends to increase the number of edges in the

model since it reduces the penalty on large entries. As such, it may be beneficial to

select a spike parameter that produces a more sparse model under the PC-GLASSO.

This can be achieved, for example, by replacing the BIC in step 3 with the EBIC.

In our simulated examples we will consider both the BIC and the EBIC with the

additional hyperparameter in the EBIC equal to 0.5 as suggested by Foygel and

Drton [2010].

Algorithm 4 describes a coordinate descent algorithm which is used within

Algorithm 3. Unlike the previous coordinate descent Algorithm 2, due to the addi-

tional complexity of the objective function we update the partial correlations and

diagonal entries separately. This algorithm also requires solving two one-dimensional

maximisation problems. The first is to maximise the posterior density with respect

to a partial correlation �ij with all other partial correlations and diagonal entries

held fixed. The maximum can easily be found numerically, since �ij can only take

values on a bounded interval. The next problem is to maximise the posterior with

respect to a diagonal entry ✓ii with all other diagonal entries and partial correlations

held fixed. The solution to this can easily be shown to be equal to

✓ii =

0

@ 2
�
1� 4

n

�

c+
q

c2 + 4
�
1� 4

n

�
Sii

1

A
2

where

c =
X

j 6=i

Sii

p
✓ii�ij

A potential alternative approach would be to fix the slab parameter �1 = 0

so that the slab component is uniform. The spike parameter can then be selected via

the BIC in an approach similar to that in Algorithm 1. In the previous section we

saw that such an approach would result in a continuous penalty function that closely

resembles the L0 penalty as �0 increases. Such an approach would be more directly
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comparable to the SCAD and MCP penalty functions on the partial correlations.

However, the spike and slab interpretation allows the additional parameter to be

set in an easily interpretable and principled manner. Both the SCAD and MCP

penalties involve an additional parameter with default values for these parameters

proposed by Fan and Li [2001] and Zhang [2010] respectively, however without

the interpretability that the SS-PC-GLASSO provides. For example, the default

parameter value in SCAD was chosen to approximately minimise the Bayes risk

under quadratic loss in the linear regression setting, with Bayes risks being computed

via numerical integration.

Algorithm 3: SS-PC-GLASSO
Input : Sample covariance S, edge probability parameter ⌘, sequence

of parameters �(1)

0
< · · · < �(k)

0
and optimisation convergence

threshold ✏.
Output: The MAP estimate ⇥̂ for a SS-PC-GLASSO prior, with spike

parameter �0 2 {�(1)

0
, . . . ,�(k)

0
} and slab parameter �1 chosen

via BIC

1. Standardise the sample covariance S̃ = diag(S)�1/2Sdiag(S)�1/2.

2. Run the PC-GLASSO Algorithm 1 with sample covariance S̃, optimisation

convergence threshold ✏ and regularisation parameters ⇢i = n�(i)
0
,

i = 1, . . . , k, to obtain a sequence of estimates ⇥̃1, . . . , ⇥̃k.

3. Select the estimate from ⇥̃1, . . . , ⇥̃k that minimises the BIC, say ⇥̃j , and set

⇥̃j,0 = ⇥̃j and �0 = �(j)
0

.

4. Set 0 = �(k)
1

< · · · < �(1)

1
< �0 such that the �(i)

1
are evenly spaced in [0,�0).

5. For i = 1, . . . , k, run Algorithm 4 with parameters ⌘,�0,�
(i)
1
, optimisation

convergence threshold ✏ and starting point ⇥̃j,i�1 to obtain the estimate ⇥̃j,i.

6. Select the estimate from ⇥̃j,0, . . . , ⇥̃j,k that minimises the BIC, say ⇥̃j,i, and
set ⇥̃ = ⇥̃j,i.

7. Return the estimate ⇥̂ = diag(S)�1/2⇥̃diag(S)�1/2.

4.5 Applications

We now return to the simulated and real data examples of Section 2.10 to investi-

gate the performance of SS-PC-GLASSO in comparison to PC-GLASSO and other

non-convex methods based on regular penalty functions - SCAD, MCP and the
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Algorithm 4: SS-PC-GLASSO coordinate descent
Input : Sample covariance S with unit diagonal, parameters ⌘,�0,�1,

start point ⇥(0) and optimisation convergence threshold ✏.
Output: A matrix ⇥ providing a local maximum of the

SS-PC-GLASSO posterior density with parameters ⌘,�0,�1.

1. Let ⇥(1) = ⇥(0) and decompose ⇥(1) to get ✓(1) and �(1).

2. Cycling randomly without replacement through the set of indices
{(i, j) : i < j; i, j 2 {1, . . . , p}}, do the following:

(a) Let �ij maximise the posterior density (4.2) subject to �k1k2 = �(1)

k1k2
,

for all (k1, k2) 6= (i, j) and ✓kk = ✓(1)kk , for all k, and update �(1)

ij = �ij .

(b) Let ✓ii maximise the posterior density (4.2) subject to �k1k2 = �(1)

k1k2
,

for all (k1, k2) and ✓kk = ✓(1)kk , for all k 6= i, and update ✓(1)ii = ✓ii.

(c) Let ✓jj maximise the posterior density (4.2) subject to �k1k2 = �(1)

k1k2
,

for all (k1, k2) and ✓kk = ✓(1)kk , for all k 6= j, and update ✓(1)jj = ✓jj .

3. Let q = max

⇢
2|{�(0)

ij 6=0:i<j}|
p(p�1)

, 2

p(p�1)

�
be the proportion of non-zero

o↵-diagonal entries.

4. If ⇡(�(1), ✓(1) | S)/⇡(�(0), ✓(0) | S) < exp(q✏), set � = �(1), ✓ = ✓(1) and
return ⇥ = ✓1/2�✓1/2. Otherwise, set �(0) = �(1), ✓(0) = ✓(1) and return to
Step 2.

SS-GLASSO. Two forms of SS-PC-GLASSO are implemented: that in Algorithm

3, and Algorithm 3 with the spike parameter selected in step 3 by the EBIC with

parameter 0.5 rather than the BIC. The additional regularisation parameters in

SCAD and MCP are set to the default values proposed by Fan and Li [2001] and

Zhang [2010] respectively and were implemented using the package GGMncv (see

Williams [2020]). The BAGUS method which uses a SS-GLASSO prior is imple-

mented using code available online associated to Gan et al. [2018].

4.5.1 Simulations

We consider the same simulated data sets as in Section 2.10 in four di↵erent sim-

ulation scenarios: the star graph, hub graph, AR2 model and random graph. The

methods considered in this section are:

M1. PC-GLASSO
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M2. SS-PC-GLASSO with spike parameter selected by the BIC

M3. SS-PC-GLASSO with spike parameter selected by the EBIC with pa-

rameter value 0.5

M4. SCAD penalty on data standardised by S

M5. SCAD penalty on data standardised by S�1

M6. MCP penalty on data standardised by S

M7. MCP penalty on data standardised by S�1

M8. BAGUS on data standardised by S

M9. BAGUS on data standardised by S�1

For the SCAD and MCP penalties, estimates are obtained for a long sequence

of potential values for the main regularisation parameter. A single estimate is then

selected using the BIC.

The results are displayed in Tables 4.1-4.4. We begin by comparing PC-

GLASSO to SS-PC-GLASSO. In the star graph, the refinements of SS-PC-GLASSO

actually result in a worse estimate than PC-GLASSO in terms of both estimation

and model selection. However, this is a setting in which PC-GLASSO performs re-

markably well achieving almost perfect model selection even for n = 30 and achieving

significantly better estimation than other methods tested. In the other three set-

tings, however, SS-PC-GLASSO does o↵er improvements over PC-GLASSO with

either M2 or M3 achieving a better KL loss or MCC in all settings, and often both.

These improvements are most notable in the n = 100 settings with both M2 and

M3 o↵ering large reductions in KL loss when compared to M1.

Between the two SS-PC-GLASSO methods, M3 has better MCC than M2 in

all but one of the settings due to its increased specificity. This is to be expected,

because use of the EBIC will generally result in a more sparse model and therefore

less false positive edges. M3 also has better KL loss than M2 in the star and hub

settings, however, M2 generally has better KL loss in the AR2 and random settings.

From these results, one may choose to use either M2 or M3 based on whether a high

sensitivity or specificity is desired in the particular context. If true edge detection

is important then M2 should be preferred. If a more simple model and true non-

edge detection is important then M3 should be pre↵ered. However, based on these

results we suggest the default method for SS-PC-GLASSO should select the spike

parameter via the EBIC as in M3.
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Both SCAD and MCP performed poorly in all the n = 30 settings, particu-

larly in terms of estimation when data is standardised by S. This, along with SS-

PC-GLASSO also o↵ering little advantage over PC-GLASSO in the n = 30 settings,

gives more evidence for the observation in Section 2.10 that non-convex penalties

tend to perform poorly when the sample size n is small. Their performance is much

improved in the n = 100 settings, with better estimation and model selection than

PC-GLASSO in all settings other than the star setting when data is standardised

by S. However, this improved performance still generally doesn’t match that of

SS-PC-GLASSO, which has better estimation in all settings and better model se-

lection in the star and random graphs. This shows that SS-PC-GLASSO improves

PC-GLASSO to match or better other non-convex penalties in large sample size

settings, whilst maintaining high performance in small sample size settings, unlike

SCAD and MCP.

We now compare the SS-PC-GLASSO to the regular SS-GLASSO, or, as it is

called in Gan et al. [2018], Bayesian Regularization for Graphical Models With Un-

equal Shrinkage (BAGUS). In Gan et al. [2018] BAGUS had very good performance

in a number of simulation settings in comparison to GLASSO and other competing

methods for Gaussian graphical model selection. However, in each simulation set-

ting data was non-standardised and the true underlying ⇥ had unit diagonal - as

discussed in Chapter 2, an idealised scenario for regular penalty functions. Here we

have instead standardised the data before applying BAGUS considering both stan-

dardisation by S and by S�1. It should also be noted that BAGUS benefits from

remarkably fast computation by an EM algorithm with comparable computation

to the other non-convex SCAD and MCP methods and not too far from GLASSO,

although BAGUS does only consider a small number of potential parameter val-

ues. This gives a promising indication that fast computation methods may also be

possible for PC-GLASSO and SS-PC-GLASSO.

We also remark that BAGUS is not directly comparable to SS-PC-GLASSO

due to the di↵erent methods of parameter selection. While SS-PC-GLASSO fixes

the spike parameter �0 by that selected in PC-GLASSO and considers a range of

slab parameters �1, BAGUS instead considers a grid of parameter values �0 = ⌧�1 2
(n log(p))1/2 ⇤ {0.05, 0.25, 0.5, 2.5} and �1 2 �0 ⇤ {0.1, 0.2, 1/3, 2/3} with the param-

eters being selected by the BIC. This grid of parameter values was chosen through

theoretical results. It is not immediately obvious how these di↵erent strategies

might a↵ect the results or if a di↵erent strategy may result in improved perfor-

mance. BAGUS also fixes ⌘ = 0.5 which generally means that it will select less

sparse models. This can aid model selection in certain settings by giving increased
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specificity, but worse selection in others due to decreased sensitivity.

The performance of BAGUS can be highly dependent on the choice of stan-

dardisation of the data. For example, in the Star setting the performance of BAGUS

is good when data is standardised by S�1 but poor under the more common S stan-

dardisation. In the AR2 and Random graph settings we see the opposite with model

selection being much improved when data is standardised by S.

In Tables 4.1-4.4 we see that the performance of PC-GLASSO and SS-PC-

GLASSO is mixed when comparing to BAGUS. In the Star and Hub settings, the

partial correlation based methods tended to have the best results for small n = 30,

whilst BAGUS had better performance for n = 100. In the AR2 setting this trend

was reversed while in the Random graph setting BAGUS had better estimation

and SS-PC-GLASSO had better model selection. In summary, the results of this

simulation are not enough to conclude if basing spike and slab priors on partial

correlations gives improved performance. Future research in this area may consider

identical methods for parameter selection and identical diagonal penalties in order

to draw stronger conclusions.

One additional point to consider is sensitivity of SS-PC-GLASSO on the

choice of the parameter ⌘. It was pointed out in Ročková and George [2018] that

spike and slab methods can be highly sensitive to this choice. Sensitivity to this

choice would be reflected in a large number of false positive edges when ⌘ is larger

than the true proportion of edges in the model, and a large number of false negatives

when ⌘ is smaller than this proportion. In the simulated examples we used ⌘ =
2

p�1
⇡ 0.105, while the true proportion of edges in the star, hub, AR2 and random

models are 0.1, 0.084, 0.195 and 0.147 respectively. Hence ⌘ is slightly larger than the

true proportion in the star and hub settings, but smaller than the true proportion in

the AR2 and random settings. In the star and hub settings SS-PC-GLASSO does not

have unusually high numbers of false positives, reflected by the specificity generally

being high in comparison to other methods. In the AR2 and random settings,

when �0 is selected by the BIC, SS-PC-GLASSO actually has large sensitivity in

comparison to other methods demonstrating that there is not a large number of

false negatives. Hence it seems that, when the �0,�1 parameters are selected as

in SS-PC-GLASSO, the method may not be too sensitive the choice of ⌘. Instead,

model selection seems to be driven more by the selection of �0.

4.5.2 Gene expression data

Returning to the gene expression application of Section 2.10.2, we investigate how

the SS-PC-GLASSO and BAGUS estimates perform in comparison to the PC-
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GLASSO, SCAD and MCP in terms of out-of-sample prediction in comparison to

model size. The results of this are displayed in Figure 4.3. In this figure the model

size vs out-of-sample log-likelihood is plotted for the entire regularisation path for

PC-GLASSO, SCAD and MCP, with estimates selected by the BIC displayed by

a circle and estimates selected by the EBIC by a square. BAGUS only returns a

single estimate rather than a regularisation path and so this estimate is simply dis-

played by a triangle. Two versions of SS-PC-GLASSO have been considered - that

of Algorithm 3 and that of Algorithm 3 with the BIC replaced by the EBIC when

selecting the spike parameter �0. As such these can be considered refinements of

the PC-GLASSO estimates selected by the BIC and EBIC respectively. Model size

vs log-likelihood has been plotted for both SS-PC-GLASSO methods for the range

of �1 values and the estimate selected by the BIC displayed by a circle.

In this example, the SS-PC-GLASSO does not o↵er improvements over the

PC-GLASSO estimate chosen by the BIC. In this case the SS-PC-GLASSO re-

turns a slightly smaller model, but with worse predictive performance - worse than

the equivalent model size under the PC-GLASSO. However, when starting at the

PC-GLASSO estimate chosen by the EBIC, the SS-PC-GLASSO o↵ers significant

improvement. Specifically, the SS-PC-GLASSO has slightly larger model size, but

a large increase in the out of sample log-likelihood. This log-likelihood is notably

larger than the log-likelihood of the PC-GLASSO estimate of the same size.

The BAGUS estimate on data standardised by S performs very well with

a similar model size to the BIC PC-GLASSO estimate but slightly higher log-

likelihood. When data is standardised by S�1, however, BAGUS selects a very

large model with 6321 edges, significantly larger than any other method. Further-

more, this large model isn’t accompanied by a large improvement in log-likelihood

meaning this large model is hard to justify. One possible reason for this large model

selection is that the parameter values chosen by BAGUS are not suitable for this

example.

As discussed in Section 2.10.2, SCAD and MCP perform worse than PC-

GLASSO and SS-PC-GLASSO both when data is standardised by S and by S�1.

4.5.3 Stock market data

We now revisit the stock market example of Section 2.10.3. Results are displayed

in Figure 4.4. We see that the SS-PC-GLASSO improves upon the PC-GLASSO

in both cases where �0 is selected by the BIC and EBIC. When selecting the PC-

GLASSO parameter via the BIC, the SS-PC-GLASSO improves on this estimate by

giving a more sparse estimate with comparable out of sample log-likelihood. When
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Figure 4.3: Model size vs predictive ability in the gene expression data. Left shows
methods on data standardised by S, right shows methods on data standardised by
S�1. Estimates selected via BIC and EBIC with � = 0.5 are shown by dots and
squares respectively. Triangle indicates BAGUS estimate.

selecting the PC-GLASSO parameter via the EBIC, the SS-PC-GLASSO refinement

gives an estimate which is of a similar model size but with far greater predictive

ability. Furthermore, both SS-PC-GLASSO estimates have better predictive perfor-

mance compared to the SCAD and MCP estimates of the same model size.

The BAGUS estimate, both when data is standardised by S and by S�1, has

a larger model size than other methods with parameters selected by BIC. It also has

a similar predictive ability to the PC-GLASSO of the same model size.
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Figure 4.4: Model size vs predictive ability in the stock market data. Left shows
methods on data standardised by S, right shows methods on data standardised by
S�1. Estimates selected via BIC and EBIC with � = 0.5 are shown by dots and
squares respectively. Triangle indicates BAGUS estimate.
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n = 30 FNorm KL MCC Sensitivity Specificity
M1 1.42 (0.35) 1.69 (0.58) 0.978 (0.043) 0.999 (0.008) 0.995 (0.010)
M2 2.25 (0.65) 2.60 (0.80) 0.874 (0.074) 0.965 (0.040) 0.974 (0.018)
M3 2.07 (0.63) 2.38 (0.77) 0.914 (0.056) 0.971 (0.038) 0.985 (0.011)
M4 8.07 (3.78) 10.87 (4.76) 0.344 (0.136) 0.738 (0.143) 0.764 (0.079)
M5 2.12 (0.99) 2.78 (1.76) 0.527 (0.155) 0.982 (0.037) 0.774 (0.128)
M6 8.58 (4.11) 11.60 (5.17) 0.335 (0.126) 0.737 (0.138) 0.756 (0.079)
M7 2.17 (0.89) 2.71 (1.20) 0.526 (0.148) 0.972 (0.047) 0.783 (0.115)
M8 2.66 (0.59) 4.24 (0.86) 0.259 (0.072) 0.559 (0.098) 0.803 (0.039)
M9 1.59 (0.35) 1.91 (0.58) 0.673 (0.112) 0.994 (0.017) 0.884 (0.063)

n = 100 FNorm KL MCC Sensitivity Specificity
M1 0.70 (0.11) 0.46 (0.12) 0.993 (0.017) 1 (0) 0.999 (0.004)
M2 0.87 (0.18) 0.55 (0.16) 0.959 (0.029) 0.999 (0.007) 0.991 (0.006)
M3 0.85 (0.15) 0.53 (0.13) 0.966 (0.021) 0.999 (0.007) 0.993 (0.004)
M4 1.33 (0.38) 1.01 (0.38) 0.739 (0.135) 0.958 (0.046) 0.926 (0.049)
M5 0.89 (0.13) 0.60 (0.15) 0.734 (0.087) 1 (0) 0.916 (0.038)
M6 1.39 (0.40) 1.09 (0.41) 0.737 (0.128) 0.952 (0.050) 0.928 (0.043)
M7 0.84 (0.13) 0.59 (0.15) 0.837 (0.075) 1 (0) 0.956 (0.025)
M8 1.09 (0.32) 0.80 (0.32) 0.802 (0.139) 0.923 (0.064) 0.959 (0.033)
M9 0.66 (0.10) 0.42 (0.11) 1 (0.003) 1 (0) 1 (0.001)

Table 4.1: Star results

n = 30 FNorm KL MCC Sensitivity Specificity
M1 1.85 (0.29) 2.83 (0.74) 0.696 (0.081) 0.988 (0.043) 0.917 (0.034)
M2 1.96 (0.49) 2.56 (0.82) 0.640 (0.081) 0.968 (0.046) 0.898 (0.035
M3 1.72 (0.37) 2.13 (0.68) 0.779 (0.059) 0.968 (0.054) 0.953 (0.016)
M4 7.80 (4.43) 11.55 (6.33) 0.339 (0.110) 0.830 (0.108) 0.715 (0.115)
M5 2.60 (1.37) 4.04 (2.18) 0.401 (0.098) 0.997 (0.014) 0.675 (0.129)
M6 8.22 (4.68) 12.30 (6.64) 0.329 (0.111) 0.821 (0.112) 0.707 (0.125)
M7 2.54 (1.68) 3.87 (2.69) 0.420 (0.092) 0.994 (0.022) 0.704 (0.115)
M8 1.89 (0.30) 2.44 (0.59) 0.702 (0.067) 0.952 (0.049) 0.930 (0.022)
M9 1.84 (0.23) 2.66 (0.60) 0.533 (0.068) 0.994 (0.023) 0.821 (0.051)

n = 100 FNorm KL MCC Sensitivity Specificity
M1 0.91 (0.15) 0.70 (0.20) 0.858 (0.069) 1 (0) 0.969 (0.019)
M2 0.82 (0.15) 0.53 (0.17) 0.820 (0.059) 1 (0) 0.959 (0.017)
M3 0.80 (0.14) 0.49 (0.15) 0.877 (0.046) 1 (0) 0.975 (0.011)
M4 0.91 (0.21) 0.55 (0.20) 0.918 (0.062) 0.998 (0.012) 0.984 (0.014)
M5 1.05 (0.16) 0.74 (0.15) 0.523 (0.045) 1 (0) 0.814 (0.037)
M6 0.91 (0.22) 0.55 (0.22) 0.920 (0.066) 0.997 (0.014) 0.984 (0.015)
M7 1.05 (0.15) 0.70 (0.16) 0.691 (0.065) 1 (0) 0.912 (0.030)
M8 0.75 (0.13) 0.43 (0.11) 0.787 (0.068) 1 (0) 0.948 (0.028)
M9 0.76 (0.13) 0.41 (0.11) 0.934 (0.041) 1 (0) 0.987 (0.009)

Table 4.2: Hub results
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n = 30 FNorm KL MCC Sensitivity Specificity
M1 3.64 (0.31) 5.26 (0.62) 0.283 (0.093) 0.301 (0.194) 0.922 (0.077)
M2 3.30 (0.54) 5.63 (1.09) 0.315 (0.070) 0.496 (0.177) 0.830 (0.089)
M3 3.49 (0.26) 5.66 (0.67) 0.289 (0.070) 0.239 (0.075) 0.957 (0.027)
M4 5.98 (4.47) 9.17 (5.56) 0.290 (0.105) 0.444 (0.162) 0.837 (0.114)
M5 4.24 (1.38) 6.46 (2.45) 0.266 (0.085) 0.347 (0.219) 0.869 (0.169)
M6 6.09 (4.61) 9.48 (5.87) 0.270 (0.105) 0.432 (0.159) 0.832 (0.110)
M7 4.15 (2.29) 6.11 (3.33) 0.285 (0.085) 0.451 (0.224) 0.818 (0.175)
M8 3.41 (0.14) 4.68 (0.48) 0.330 (0.066) 0.494 (0.059) 0.848 (0.029)
M9 3.33 (0.17) 4.86 (0.64) 0.297 (0.066) 0.514 (0.120) 0.808 (0.064)

n = 100 FNorm KL MCC Sensitivity Specificity
M1 2.30 (0.33) 2.00 (0.38) 0.530 (0.052) 0.855 (0.094) 0.774 (0.069)
M2 1.40 (0.19) 1.21 (0.27) 0.573 (0.062) 0.968 (0.036) 0.736 (0.060)
M3 1.54 (0.24) 1.29 (0.32) 0.728 (0.071) 0.868 (0.070) 0.913 (0.027)
M4 1.60 (0.23) 1.33 (0.29) 0.767 (0.065) 0.908 (0.059) 0.918 (0.039)
M5 1.86 (0.37) 1.45 (0.29) 0.535 (0.049) 0.939 (0.054) 0.720 (0.065)
M6 1.60 (0.23) 1.37 (0.31) 0.785 (0.065) 0.895 (0.062) 0.932 (0.035)
M7 1.77 (0.34) 1.37 (0.31) 0.635 (0.059) 0.929 (0.060) 0.817 (0.053)
M8 2.22 (0.19) 1.74 (0.24) 0.632 (0.078) 0.856 (0.063) 0.857 (0.055)
M9 2.16 (0.29) 1.74 (0.54) 0.449 (0.043) 0.907 (0.163) 0.635 (0.117)

Table 4.3: AR2 results

n = 30 FNorm KL MCC Sensitivity Specificity
M1 2.30 (0.25) 3.07 (0.51) 0.336 (0.091) 0.310 (0.153) 0.951 (0.041)
M2 2.59 (0.57) 3.47 (0.88) 0.319 (0.072) 0.420 (0.134) 0.895 (0.052)
M3 2.40 (0.39) 3.27 (0.66) 0.342 (0.080) 0.253 (0.079) 0.974 (0.016)
M4 4.87 (4.31) 6.56 (4.81) 0.206 (0.094) 0.318 (0.113) 0.876 (0.078)
M5 2.70 (0.62) 3.89 (0.99) 0.310 (0.080) 0.373 (0.141) 0.908 (0.080)
M6 5.12 (3.83) 6.98 (4.47) 0.194 (0.092) 0.320 (0.112) 0.868 (0.078)
M7 2.46 (0.27) 3.31 (0.57) 0.316 (0.072) 0.427 (0.143) 0.886 (0.075)
M8 2.08 (0.21) 2.65 (0.46) 0.335 (0.074) 0.509 (0.080) 0.862 (0.029)
M9 2.20 (0.29) 2.97 (0.58) 0.308 (0.084) 0.423 (0.116) 0.886 (0.056)

n = 100 FNorm KL MCC Sensitivity Specificity
M1 1.43 (0.16) 1.23 (0.25) 0.572 (0.059) 0.614 (0.110) 0.941 (0.029)
M2 1.27 (0.15) 0.99 (0.19) 0.570 (0.070) 0.665 (0.088) 0.924 (0.030)
M3 1.28 (0.14) 1.03 (0.20) 0.623 (0.073) 0.559 (0.075) 0.975 (0.013)
M4 1.32 (0.15) 1.08 (0.23) 0.598 (0.070) 0.610 (0.105) 0.952 (0.029)
M5 1.37 (0.15) 1.05 (0.19) 0.527 (0.066) 0.701 (0.085) 0.887 (0.036)
M6 1.32 (0.14) 1.09 (0.22) 0.594 (0.070) 0.587 (0.110) 0.957 (0.027)
M7 1.35 (0.16) 1.08 (0.23) 0.580 (0.067) 0.627 (0.100) 0.940 (0.030)
M8 1.23 (0.12) 0.91 (0.16) 0.534 (0.066) 0.740 (0.069) 0.875 (0.030)
M9 1.28 (0.13) 1.01 (0.21) 0.400 (0.059) 0.795 (0.161) 0.718 (0.095)

Table 4.4: Random graph results
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Chapter 5

Spike and slab priors for

Gaussian graphical models

In the previous chapter we introduced a new prior distribution, the SS-PC-GLASSO

prior, on the precision matrix ⇥ which is based on a Laplace spike and slab setup on

the partial correlations. Because we only considered the MAP estimate, we were able

to interpret the prior distribution solely through its related penalty function and the

amount of penalisation it placed on non-zero partial correlations. However, when

conducting a full posterior analysis using the SS-PC-GLASSO prior, or indeed any

separable or PC-separable prior distribution, greater care must be taken to ensure

that the beliefs encoded by the prior distribution are as intended.

As a general example of this, consider a p ⇥ p symmetric matrix A with

entries aij and the prior density ⇡̃ defined as

⇡̃(A) =
Y

ij

⇡ij(aij)

where ⇡ij , i, j = 1, . . . , p are some density functions. The prior beliefs encoded by

⇡̃ are very simple to interpret - under ⇡̃ the entries of A are mutually independent

with marginal distributions specified by the ⇡ij .

Now consider the prior density ⇡̃+ on A defined as

⇡̃+(A) / ⇡̃(A)I(A 2 S)

=
Y

ij

⇡ij(aij)I(A 2 S).

The density of ⇡̃+ is exactly the same as ⇡̃ except truncated onto the space of

positive definite matrices. Under certain additional assumptions on the forms of
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the ⇡ij , ⇡̃+ can be recognised as a separable prior density from Definition 7. A

simple interpretation of ⇡̃+ may be identical to that of ⇡̃ - that the entries of A

are independent with marginals given by the ⇡ij - with the additional note that it

also assumes A to be positive definite. However, it is possible that this is far from

the truth. First, under ⇡ the entries of A are no longer independent. This can be

seen most easily by the restriction aij <
p
aiiajj which is a necessary condition of

positive definiteness. Second, the marginal densities of ⇡ are no longer given by

the ⇡ij and could in fact be quite di↵erent. For example, Wang [2012] plotted the

marginal distributions for the GLASSO prior which were far from the Exponential

and Laplace densities given in the prior setup.

The e↵ect of the truncation can be informally quantified by P⇡̃(A 2 S) - the
probability that A is positive definite under ⇡̃. If P⇡̃(A 2 S) ⇡ 1 then the truncation

will have little a↵ect on ⇡̃+. However, if P⇡̃(A 2 S) ⇡ 0, then ⇡̃+ truncates ⇡̃ onto a

space of infinitesimally small probability and so the resulting prior is vastly di↵erent

to ⇡̃.

Such changes to the marginal distributions can be particularly troublesome

when using a spike and slab prior where the spike and slab are used to represent the

presence or lack of an edge in the graphical model. The spike and slab framework

allows a simple way to encode prior beliefs on the graphical model. However changes

to the marginal distributions through the positive definiteness truncation can lead

to unintended changes to the prior on the model space. Such an unintended change

will be demonstrated in an example later in the section.

Within this chapter we will investigate the e↵ect of the positive definite

truncation on spike and slab priors for the precision matrix ⇥. We begin in Section

5.1 by defining classes of spike and slab prior distributions on ⇥ both before and

after positive definite truncation. In Section 5.2 we define similar classes of prior

distributions but instead based on partial correlations. In Section 5.3 we propose

a theorem, based on the theory of Wigner matrices, which determines whether the

above probability P⇡̃(A 2 S) converges to 1 or to 0 as p ! 1. Examples of how this

result works in practise is demonstrated on the SS-GLASSO and SS-PC-GLASSO

priors introduced in the previous chapter. In Section 5.4 we propose a number

of potential choices for spike and slab densities, including a non-local spike and

slab, and discuss their respective merits. In Section 5.5 we discuss strategies for

performing posterior inference on the model space � and finish in Section 5.6 with

a discussion.
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5.1 Regular spike and slab priors

In this section we introduce a class of spike and slab priors based on the o↵-diagonal

entries of ⇥. This class of priors will contain the SS-GLASSO prior introduced in

the previous chapter and is related to the classes of separable and regular priors

introduced in Chapter 3. In order to investigate the e↵ect of the truncation onto

the space of positive definite matrices on spike and slab priors, we will begin by

defining a class of priors for general symmetric matrices which do not restrict ⇥ to

be positive definite. We then proceed to define a new class of priors by truncating

these onto the space of positive definite matrices. To define this class of priors we

introduce the random variable � = {�ij : 1  i < j  p} where each �ij 2 {0, 1} is

an indicator variable.

Definition 10. A prior distribution on (⇥, �) with density function ⇡̃(⇥, �) =

⇡̃(⇥|�)⇡̃(�) is called a separable spike and slab (separable-SS) prior if ⇡̃(�) is any

p.m.f. with support on {0, 1}|�| and ⇡̃(⇥|�) can be decomposed as

⇡̃(⇥|�) =
Y

i

⇡D(✓ii)
Y

i<j

(⇡1(✓ij)I(�ij = 1) + ⇡0(✓ij)I(�ij = 0)) I(✓ij = ✓ji), (5.1)

where ⇡D is any density on R+, ⇡0,⇡1 are densities on R with mean 0 and Var⇡0(✓ij) <

Var⇡1(✓ij) and I denotes the indicator function.

If further

⇡̃(�) =
Y

i<j

⌘�ij (1� ⌘)1��ij ,

for some ⌘ 2 (0, 1), then the prior distribution is called a regular spike and slab

(regular-SS) prior.

For the remainder of this chapter we will use ⇡̃ to denote a general separable-

SS prior density and let ⇡D,⇡0,⇡1 be densities whose role is as given in (5.1).

A separable-SS prior first sets some distribution on the collection of indicator

variables �. Then, conditional on �, ⇥ has independent entries, up to symmetry.

The diagonal entries each have marginal density ⇡D and ✓ij has marginal density

⇡1 if �ij = 1 or ⇡0 if �ij = 0. A regular-SS prior simply adds the condition that

the entries of � are independent and identically distributed with probability ⌘ of

�ij = 1.

The indicator variables �ij determine if ✓ij is marginally distributed according

to the spike ⇡0 or the slab ⇡1. Setting the spike density ⇡0 to be a point mass at

0 and the slab density ⇡1 to be any continuous density leads to the interpretation

�ij = I(✓ij 6= 0). In this case estimation of � is exactly equivalent to graphical model
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selection. However, this point mass tends to cause computational di�culties when

calculating the posterior distribution. For this reason, a continuous relaxation of

✓ij = 0 is often utilised by allowing ⇡0 to be a continuous density with small variance,

in particular with smaller variance than ⇡1, see, for example, Ročková and George

[2018], Scheipl et al. [2012]. This leads to the interpretation �ij = 1 � I(✓ij ⇡ 0).

Although no longer strictly equivalent, inference on � can be thought of as a proxy

for graphical model selection, a practise which is common within spike and slab

methods, for example by George and McCulloch [1997]. For this reason we will treat

estimation of � and graphical model selection interchangeably for the remainder of

the chapter.

If we let ⌘ij = P⇡̃(�ij = 1) then the marginal density of ✓ij under ⇡̃ can be

written as

⇡̃(✓ij) = ⌘ij⇡1(✓ij) + (1� ⌘ij)⇡0(✓ij).

Although conditionally independent given �, the entries of ⇥ are not generally

marginally independent under ⇡̃. This is because of potential dependence between

the �ij within ⇡̃(�). If in ⇡̃(�) the entries of � are independent, as is the case for

regular-SS priors, then the entries of ⇥ are also marginally independent under ⇡̃.

Under a regular-SS prior the marginal density on ⇥ can be written as

⇡̃(⇥) =
Y

i

⇡D(✓ii)
Y

i<j

(⌘⇡1(✓ij) + (1� ⌘)⇡0(✓ij)) I(✓ij = ✓ji).

A separable-SS prior will generally have non-zero probability of ⇥ not being

positive definite and is therefore not appropriate when ⇥ is a precision matrix. A

simple solution to this, as utilised by Wang [2012] and Gan et al. [2018], is to simply

truncate such a prior onto the space of positive definite matrices.

Definition 11. A prior distribution with density function ⇡̃+(⇥, �) is called a pos-

itive definite separable spike and slab (separable-SS+) prior if the density can be

written as

⇡̃+(⇥, �) / ⇡̃(⇥, �)I(⇥ 2 S),

where ⇡̃ is a separable-SS prior and S is the set of symmetric positive definite

matrices.

If ⇡̃ is also a regular-SS prior then we call ⇡̃+ a positive definite regular spike

and slab (regular-SS+) prior.

For the remainder of the chapter we use ⇡̃+ to denote the separable-SS+

prior obtained by truncating ⇡̃ onto S and we say that ⇡̃+ and ⇡̃ are associated.
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If it is further assumed that ⇡D is non-increasing and that both ⇡0 and ⇡1

are non-increasing in |✓ij | then ⇡̃+(⇥|�) is a separable prior density as defined in

Definition 7. If ⇡̃+ is also a regular-SS+ prior and ⇡0, ⇡1 are continuous densities

and symmetric about 0 then the marginal ⇡̃+(⇥) is a regular prior distribution. The

SS-GLASSO prior introduced by Gan et al. [2018] and in the previous chapter is

one example of a regular-SS+ prior which satisfies each of these conditions.

As discussed in the introduction to this chapter, ⇡̃+ can di↵er greatly from

⇡̃ by an amount related to the probability P⇡̃(⇥ 2 S). In particular, the simple

interpretation of ⇡̃ may no longer be valid for ⇡̃+. Proposition 10 is a trivial obser-

vation making this notion precise. We will consider in a later section strategies for

ensuring that this probability is close to 1.

Proposition 10. Let ⇡̃+ be a separable-SS+ prior and ⇡̃ be the associated separable-

SS prior. Then

• The marginal distributions on � under ⇡̃+ and ⇡̃ are related by

⇡̃+(�) / ⇡̃(�)P⇡̃(⇥ 2 S|�).

• The conditional distributions of ⇥ given � under ⇡̃+ and ⇡̃ are related by

⇡̃+(⇥|�) = ⇡̃(⇥|�)I(⇥ 2 S)
P⇡̃(⇥ 2 S|�) .

Proof. First we show the result for the marginal distribution of �

⇡̃+(�) =

Z
⇡̃+(⇥, �) d⇥

/
Z

⇡̃(⇥, �)I(⇥ 2 S) d⇥

= ⇡̃(�)

Z
⇡̃(⇥|�)I(⇥ 2 S) d⇥

= ⇡̃(�)P(⇥ 2 S|�)
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Now we show the result on the conditional distribution of ⇥ given �

⇡̃+(⇥|�) = ⇡̃+(⇥, �)

⇡̃+(�)

/ ⇡̃(⇥, �)I(⇥ 2 S)
⇡̃(�)P⇡̃(⇥ 2 S|�)

/ ⇡̃(⇥|�)⇡̃(�)I(⇥ 2 S)
⇡̃(�)P⇡̃(⇥ 2 S|�)

=
⇡̃(⇥|�)I(⇥ 2 S)
P⇡̃(⇥ 2 S|�)

We further note that under ⇡̃+ the entries of ⇥ are no longer conditionally

independent given � and that in general

⇡̃+(✓ij |�) 6= ⇡̃+(✓ij |�ij),

meaning that ✓ij depends on the whole of � and not just on �ij .

An implication of Proposition 10 is that the marginal distribution on the

model structure ⇡̃+(�) di↵ers from that in ⇡̃(�) by a factor given by the probability

P⇡̃(⇥ 2 S|�). These probabilities are generally di�cult to calculate directly and so

it is not straightforward to understand what prior beliefs ⇡̃+(�) imply on the model

sparsity. Since

P⇡̃(⇥ 2 S) =
X

�

⇡̃(�)P⇡̃(⇥ 2 S|�),

it is clear that this probability gives a measure of how close ⇡̃+ is to ⇡̃ overall. Thus,

if one wishes to continue using the simple interpretation of ⇡̃ to interpret ⇡̃+, or

embed meaningful prior beliefs, then this probability need be close to 1.

5.2 Partial correlation spike and slab priors

In this section we adapt separable spike and slab priors to instead be separable in the

partial correlations. For this we once again use the parameterisation of ⇥ in terms

of the diagonal entries ✓ and partial correlations �. Recall that ✓ is the diagonal

matrix with diagonal entries equal to the diagonal of ⇥ and � is the positive definite

symmetric matrix with unit diagonal entries and o↵ diagonal entries �ij =
✓ijp
✓ii✓jj

.

Also recall that ⇥ is positive definite if and only if � is positive definite.
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Definition 12. A prior ⇡(�, ✓, �) = ⇡(�|�)⇡(✓)⇡(�) is a partial correlation sepa-

rable spike and slab (PC-separable-SS) prior if ⇡(�) is any p.m.f. with support on

{0, 1}|�|,
⇡(✓) =

Y

i

⇡D(✓ii)

where ⇡D is any density on R+, and ⇡(�|�) can be decomposed as

⇡(�|�) =
Y

i<j

✓
1

c1
⇡1(�ij)I(�ij = 1) +

1

c0
⇡0(�ij)I(�ij = 0)

◆
I(�2

ij  1)I(�ij = �ji),

(5.2)

where ⇡0,⇡1 are densities on R with mean 0 and Var⇡0(�ij) < Var⇡1(�ij), and

c0 =

Z
1

�1

⇡0(x) dx,

c1 =

Z
1

�1

⇡1(x) dx.

If further

⇡(�) =
Y

i<j

⌘�ij (1� ⌘)1��ij ,

for some ⌘ 2 (0, 1), then the prior distribution is called a partial correlation regular

spike and slab (PC-regular-SS) prior.

For the remainder of this chapter we will use ⇡ to denote a general PC-

separable-SS prior and ⇡D,⇡0,⇡1 to denote densities satisfying (5.2). Whether

⇡D,⇡0,⇡1 refer to the separable-SS prior ⇡̃ or the PC-separable-SS prior ⇡ will

be clear from the context.

Under a PC-separable-SS prior the diagonal entries ✓ii are independent and

identically distributed and, conditional on �, the partial correlations �ij are in-

dependent. The marginal distribution of �ij conditional on � only depends on �

through �ij . If �ij = 0 then the marginal density of �ij is the spike density

⇡(�ij |�ij = 0) =
1

c0
⇡0(�ij)I(�2

ij  1)

and if �ij = 1 it is the slab density

⇡(�ij |�ij = 1) =
1

c1
⇡1(�ij)I(�2

ij  1).

Notice that the spike and slab densities are both truncated between �1 and 1 with
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c0 and c1 being the respective normalising constants. This is because �ij  1 is

a necessary condition for � to be positive definite and so truncating the densities

in such a way increases the probability of � being positive definite under ⇡. One

could equivalently restrict ⇡0 and ⇡1 to be only defined on [�1, 1]. However, the

formulation in Definition 12 allows ⇡0 and ⇡1 to have the same form as in Definition

10 which aids comparison between separable-SS and PC-separable-SS priors.

Definition 13. A prior distribution with density function ⇡+(�, ✓, �) is called a pos-

itive definite partial correlation separable spike and slab (PC-separable-SS+) prior

if the density can be written as

⇡+(�, ✓, �) / ⇡(�, ✓, �)I(� 2 S1), (5.3)

where ⇡ is a PC-separable-SS prior and S1 is the set of symmetric positive definite

matrices with unit diagonal.

If ⇡ is also a PC-regular-SS prior then we call ⇡+ a positive definite partial

correlation regular spike and slab (PC-regular-SS+) prior.

From now on we will use ⇡+ to denote the PC-separable-SS+ prior obtained

by truncating ⇡ onto � 2 S1.

An important di↵erence between PC-separable-SS+ priors and separable-

SS+ priors is that under the PC-separable-SS+ prior ⇡+ the diagonal entries ✓ii

remain independent of each other, � and �. This is because the truncation in (5.3)

only involves the partial correlation matrix � and not the whole of ⇥.

If it is further assumed that ⇡D is non-increasing and that both ⇡0 and ⇡1 are

non-increasing in |�ij | on (�1, 1) then ⇡+(✓,�|�) is a PC-separable prior density

as defined in Definition 8. If ⇡+ is also a PC-regular-SS+ prior and ⇡0, ⇡1 are

symmetric about 0 then the marginal ⇡+(✓,�) is a regular prior distribution. The

SS-PC-GLASSO prior introduced in Section 4.2 is one example of a PC-regular-SS+

prior which satisfies each of these conditions.

When these additional conditions are met, the result of Proposition 9 applies

and so any such PC-regular-SS+ prior with ⇡D(✓ii) / ✓�c
ii leads to scale invariant

posterior inference. This is in contrast to regular-SS+ priors which do not, in

general, lead to scale invariant posterior inference. Note also that the proof of

Proposition 9 does not rely on the prior density being non-increasing in |�ij |. Thus
scale invariant posterior inference still holds for PC-regular-SS+ priors even when

⇡0,⇡1 are not non-increasing.

Corollary 4. Any PC-regular-SS+ prior with ⇡D(✓ii) / ✓�c
ii for some c � 0 and

⇡0,⇡1 symmetric around 0 leads to scale invariant posterior inference.
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An analogous result to Proposition 10 also holds for PC-separable-SS+ priors

but with ⇥ 2 S being replaced by � 2 S1. We state the result but omit the proof

as it is directly analogous to the proof of Proposition 10.

Proposition 11. Let ⇡+ be a separable-SS+ prior and ⇡ be the associated separable-

SS prior. Then

• The marginal distributions on � under ⇡+ and ⇡ are related by

⇡+(�) / ⇡(�)P⇡(� 2 S1|�).

• The conditional distributions of � given � under ⇡+ and ⇡ are related by

⇡+(�|�) = ⇡(�|�)I(� 2 S1)

P⇡(� 2 S1|�)
.

Like for separable-SS+ priors, the probability P⇡(� 2 S1) provides a measure

of how far ⇡+ is from ⇡. If this probability is close to 1 then ⇡+(�) ⇡ ⇡(�) and

there is only weak dependence between the �ij under ⇡+ with marginal densities

similar to those in ⇡. However, if the probability is close to 0 then ⇡+(�) can be far

from ⇡(�) and the �ij can be highly dependent under ⇡+ with marginals far from

those in ⇡.

5.3 Positive definiteness

As discussed in the previous sections, one potential issue with these spike and slab

prior frameworks is the truncation onto the space of positive definite matrices. While

separable-SS and PC-separable-SS priors are easily interpretable and give a clear

framework for setting prior beliefs on the graphical model space through �, they

are not suitable for a precision matrix ⇥ because they do not impose positive defi-

niteness. Instead, we may choose to truncate these priors onto the space of positive

definite matrices in order to obtain a separable-SS+ or PC-separable-SS+ prior. In

Propositions 10 and 11 we demonstrated some of the e↵ects the truncation has on

the distribution. In particular, the prior on the model space was shown to change

by a factor related to the probability P⇡̃(⇥ 2 S) for a separable-SS+ prior and

P⇡(� 2 S1) for a PC-separable-SS+ prior. In this section we study these proba-

bilities in the specific case of regular-SS+ and PC-regular-SS+ priors. Our main

contribution will be devising an approach that ensures that the probability of pos-

itive definiteness under such priors tends to 1 as the dimension p tends to infinity.
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This result can inform parameter selection in spike and slab priors in a Bayesian

analysis when the number of variables p becomes increasingly large. For smaller p

it is usually computationally feasible (and advisable) to use a sampling method to

check that the probability of positive definitness is suitably close to 1.

5.3.1 Wigner matrices

The positive definiteness results later in the section rely on the theory of Wigner

matrices, which we now briefly review. For more information on the topic of Wigner

matrices, see, for example, Anderson et al. [2009].

A Wigner matrix is a type of p⇥ p symmetric random matrix with indepen-

dent entries. The diagonal entries and the o↵-diagonal entries are each identically

distributed with finite absolute moments and depend on the matrix dimension p,

converging to 0 in probability as p ! 1. More formally, a Wigner matrix is defined

as follows.

Definition 14. Let {Yi}1i and {Zij}1i<j be two independent families of inde-

pendent identically distributed, zero mean, real-valued random variables, such that

E
h
Z2

ij

i
= 1 and for all integers k � 1, rk := max{E

⇥
|Zij |k

⇤
,E
⇥
|Yi|k

⇤
} < 1.

The symmetric p⇥ p matrix Ap = (aij)1i,jp with diagonal entries aii =
Yip
p

and o↵-diagonal entries aij = aji =
Zijp
p is called a Wigner matrix.

Much of the theory surrounding Wigner matrices revolves around the distri-

bution of their eigenvalues. A key theorem is that as the matrix dimension p ! 1,

the empirical measure of the eigenvalues converges weakly in probability to the so

called standard semi-circle distribution which has density function

f(x) =
1

2⇡

p
4� x2I(|x| 2).

From this it seems clear that the minimal eigenvalue will converge to 2 as p !
1. However, this property does not in fact hold generally, instead requiring some

additional conditions. These are detailed in the following theorem.

Theorem 1. Let Ap be a p ⇥ p Wigner matrix satisfying rk  kCk for some con-

stant C and all positive integers k. Then the smallest eigenvalue of A converges in

probability to �2 as p ! 1.

This theorem is adapted from a theorem in Anderson et al. [2009] showing

that the largest eigenvalue converges in probability to 2. The result in Theorem

1 is easily proved using either the symmetry of the semi-circle distribution or by
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simply considering �A which remains a Wigner matrix. A su�cient condition for

the additional requirement rk  kCk is that |Yi| and |Zij | posses a finite exponential

moment, or that their moment generating functions exist.

5.3.2 Positive definiteness under regular-SS priors

By relating ⇥ under a regular-SS prior ⇡̃ to a Wigner matrix and using the fact

that ⇥ is positive definite if and only if all of it’s eigenvalues are positive, we use the

result of Theorem 1 to calculate the probability P⇡̃(⇥ 2 S) as p ! 1 for sequences

of regular-SS priors.

Proposition 12. Let ⇡̃(p), p � 1 be a sequence of regular-SS priors on (⇥p, �p),

where ⇥p is a symmetric p⇥ p matrix, with

⇡̃(p)(�p) =
Y

i<j

⌘
�ij
p (1� ⌘p)

1��ij ,

⇡̃(p)(⇥p|�p) =
Y

i

⇡(p)
D

(✓ii)
Y

i<j

⇣
⇡(p)
1

(✓ij)I(�ij = 1) + ⇡(p)
0

(✓ij)I(�ij = 0)
⌘
.

Let µ(p)
D

=
R
x⇡(p)

D
(x) dx be the mean associated with ⇡(p)

D
and

�(p)
0

=
R
x2⇡(p)

0
(x) dx, �(p)

1
=
R
x2⇡(p)

1
(x) dx be the variances associated with ⇡(p)

0
,⇡(p)

1

respectively, and let �(p) = ⌘p�
(p)
1

+ (1� ⌘p)�
(p)
0

, which is assumed to be finite. Fur-

ther, assume that the moment generating functions associated to ⇡(p)
D

, ⇡(p)
0

and ⇡(p)
1

exist for all p.

(i) If limp!1
µ
(p)
Dp
p�(p)

< 2 then limp!1 P⇡̃(p)(⇥p 2 S) = 0.

(ii) If limp!1
µ
(p)
Dp
p�(p)

> 2 then limp!1 P⇡̃(p)(⇥p 2 S) = 1.

Proof. The matrix ⇥p is positive definite if and only if its minimum eigenvalue,

which we denote l0(⇥p), is greater than 0.

Under the regular-SS prior ⇡̃(p), the marginal distribution on ⇥p is

⇡̃(⇥p) =
Y

i

⇡D(✓ii)
Y

i<j

(⌘⇡1(✓ij) + (1� ⌘)⇡0(✓ij)) .

Notice that under this density, the entries of ⇥p are independent, up to symmetry,

the diagonal entries are identically distributed with density ⇡D and the o↵-diagonals

✓ij are identically distributed with density ⌘⇡1(✓ij) + (1� ⌘)⇡0(✓ij).
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Next consider the matrix ⇥̃p = 1p
p�(p)

⇣
⇥p � µ(p)

D
Ip
⌘
, where Ip denotes the

p ⇥ p identity matrix. Notice that ⇥̃p is a Wigner matrix under ⇡̃(p) since
p
p⇥̃p

has independent, zero mean entries and unit variance o↵-diagonal entries. The

additional condition giving a bound for the absolute moments in Theorem 1 is also

satisfied due to the existence of the moment generating functions for ⇡(p)
D

, ⇡(p)
0

and

⇡(p)
1

. Also notice that the minimum eigenvalue of ⇥̃p, l0(⇥̃p), is related to l0(⇥p)

through

l0(⇥̃p) =
1p
p�(p)

⇣
l0(⇥p)� µ(p)

D

⌘
.

Hence l0(⇥p) > 0 if and only if

l0(⇥̃p) >
�µ(p)

Dp
p�(p)

.

Since ⇥̃p is a Wigner matrix under ⇡̃(p), and the other conditions of The-

orem 1 are met, l0(⇥̃p) converges in probability to -2. It easily follows that if

limp!1
�µ

(p)
Dp

p�(p)
> �2 then P⇡̃(p)

✓
l0(⇥̃p) >

�µ
(p)
Dp

p�(p)

◆
! 0 as p ! 1 and hence

P⇡̃(p)(⇥p 2 S) ! 0.

Similarly, if limp!1
�µ

(p)
Dp

p�(p)
< �2 then P⇡̃(p)(⇥p 2 S) ! 1 as p ! 1.

Proposition 12 highlights that the limiting probability of positive definiteness

under a sequence of separable-SS priors depends on a simple ratio involving the mean

of the diagonal entries, the variance of the o↵-diagonal entries and the dimension p.

Intuitively, the first needs to be su�ciently large relative to the latter. In particular,

if
p
p�(p) � µ(p)

D
then positive definite matrices receive vanishing probability. So

if, for example, we allow µ(p)
D

to remain constant in p, then we require the standard

deviation of the o↵-diagonal entries to be decreasing at a rate quicker than 1p
p in

order for the probability of positive definiteness to not vanish.

Of course, Proposition 12 only gives a limiting result and is therefore only

relevant for large p. For small p it is therefore still important to check the probability

of positive definiteness, for example through sampling. We have found in practise

that if
µ
(p)
Dp
p�(p)

is suitably large then the probability of positive definiteness tends to

be close to 1 for finite p.

We now present an example demonstrating the result of Proposition 12 with

the SS-GLASSO prior.
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Example Recall that the SS-GLASSO prior is a regular-SS+ prior with

⇡D(✓ii) = Exp(✓ii; ⌧),

⇡0(✓ij) = Laplace(✓ij ; 0,�
�1

0
),

⇡1(✓ij) = Laplace(✓ij ; 0,�
�1

1
).

Hence, under the associated regular-SS prior, the mean of the diagonal entries is

⌧�1 and the variance of the o↵-diagonal entries is 2⌘��2

1
+ 2(1� ⌘)��2

0
.

In the BAGUS method of Gan et al. [2018], a SS-GLASSO prior was used

with the following choice of parameter values

⌘ = 0.5

⌧ = ��1

0
= c0

s
1

n log(p)

��1

1
= c1�

�1

0

where c0 2 {0.4, 2, 4, 20} and c1 2 {1.5, 3, 5, 10}. Note that these prior parameters

depend on the data via n. Under the associated regular-SS prior, these choices lead

to:
µ(p)
Dp
p�(p)

=
n log(p)

c
p
p

where c = c2
0

p
(1 + c2

1
). From Prop 1, if

p
p

log(p) � n (as is the case in high-dimensional

settings), then the probability that ⇥ is positive definite tends to 0 as p ! 1.

We took 1000 samples from the regular-SS prior ⇡̃ for p = 1, . . . , 100, fixed

n = 100 and various values of c0, c1 and found the proportion that were positive

definite. These proportions can be found in Figure 5.1 for the two lowest values

of c0 and all values of c1 considered in Gan et al. [2018]. (Note that larger values

of c1 result in a larger variance on the o↵-diagonals and therefore lower probability

of positive definiteness). As predicted by Proposition 12, the proportions tend to

decrease with p.

To investigate the a↵ects of Proposition 10 on the related regular-SS+ prior

⇡̃+, we consider the marginal distribution on � in the case where p = 10, n = 100,

c0 = 4, c1 = 10, under which P⇡̃(⇥ 2 S) is close to 0. Under ⇡̃(�), the distribution

of the number of edges, |�|, is binomial with probability 1

2
. However, in Figure

5.2 we see that the distribution of the number of edges under ⇡̃+(�), obtained via

importance sampling, is significantly shifted to the left. This means that the regular-

SS+ prior induces more sparsity than specified by the regular-SS prior in a way that
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Figure 5.1: The proportion of positive definite samples for c0 = 2 (left) and c0 = 0.4
(right). c1 = 10 (thin black), c1 = 5 (thin grey), c1 = 3 (thick black), c1 = 1.5 (thick
grey).
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is not easy to control. This therefore restricts the ability to set plausible prior beliefs

about the topology of the graph which will drive model selection. Furthermore, this

di↵erence is likely to extenuate further when the dimension p increases and the

probability P(⇥ 2 S) converges to 0.

5.3.3 Positive definiteness under PC-regular-SS priors

We now present an analogous result for positive definiteness under PC-regular-SS

priors.

Proposition 13. Let ⇡(p), p � 1 be a sequence of PC-regular-SS priors on (✓p,�p, �p),

where ✓p is a p⇥ p diagonal matrix and �p is a symmetric p⇥ p matrix, with

⇡(p)(�p) =
Y

i<j

⌘
�ij
p (1� ⌘p)

1��ij ,

⇡(p)(✓p,�p|�p) =
Y

i

⇡(p)
D (✓ii)

Y

i<j

 
1

c(p)1

⇡(p)
1 (�ij)I(�ij = 1) +

1

c(p)0

⇡(p)
0 (�ij)I(�ij = 0)

!
I(�2

ij  1).

Let �(p)
0

= 1

c
(p)
0

R
1

�1
x2⇡(p)

0
(x) dx, �(p)

1
= 1

c
(p)
1

R
1

�1
x2⇡(p)

1
(x) dx be the variances associ-

ated with the spike and the slab densities respectively, and let �(p) = ⌘p�
(p)
1

+ (1 �
⌘p)�

(p)
0

, which is assumed to be finite.

(i) If limp!1
1p
p�(p)

< 2 then P⇡(p)(�p 2 S1) ! 0 as p ! 1.
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Figure 5.2: The distribution of the number of edges under the regular-SS prior
(grey) and regular-SS+ prior (black).
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(ii) If limp!1
1p
p�(p)

> 2 then P⇡(p)(�p 2 S1) ! 1 as p ! 1.

Proof. This proof is very similar to that of Proposition 12. The matrix�p is positive

definite if and only if its minimum eigenvalue, which we denote l0(�p), is greater

than 0.

Under the PC-regular-SS prior ⇡(p), the marginal distribution on �p is

⇡̃(�p) =
Y

i<j

✓
⌘

c1
⇡1(�ij) +

(1� ⌘)

c0
⇡0(�ij)

◆
I(�2

ij  1).

Notice that under this density, the entries of �p are independent, up to symme-

try, the diagonal entries are equal to 1 and the o↵-diagonals �ij are identically

distributed with density
⇣

⌘
c1
⇡1(�ij) +

(1�⌘)
c0

⇡0(�ij)
⌘
I(�2

ij  1).

Consider the matrix �̃p = 1p
p�(p)

(�p � Ip), where Ip denotes the p ⇥ p

identity matrix. Notice that �̃p is a Wigner matrix under ⇡(p) since
p
p�̃p has

independent, zero mean entries and unit variance o↵-diagonal entries. Also notice

that the minimum eigenvalue of �̃p, l0(�̃p), is related to l0(�p) through

l0(�̃p) =
1p
p�(p)

(l0(�p)� 1) .
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Hence l0(�p) > 0 if and only if

l0(�̃p) >
�1p
p�(p)

.

Since �̃p is a Wigner matrix under ⇡(p), and the other conditions of The-

orem 1 are met (due to the entries of � all being in [�1, 1] under ⇡(p), l0(�̃p)

converges in probability to -2. It easily follows that if limp!1
�1p
p�(p)

> �2 then

P⇡(p)

✓
l0(�̃p) >

�1p
p�(p)

◆
! 0 as p ! 1 and hence P⇡(p)(�p 2 S1) ! 0.

Similarly, if limp!1
�1p
p�(p)

< �2 then P⇡(p)(�p 2 S1) ! 1 as p ! 1.

Notice two key di↵erences between Propositions 12 and 13. First the limits

in Proposition 13 do not depend on the diagonal entry density ⇡D. This is because

the condition � 2 S1 does not depend on the diagonal entries ✓ and under a PC-

regular-SS prior, the diagonal entries ✓ and � are independent. This is important

as it allows ⇡D to be any density without impacting the probability of positive

definiteness.

Second, the restriction of the moment generating functions existing in Propo-

sition 12 is no longer present in Proposition 13. This is because the values of �ij

are restricted to be in [�1, 1]. Hence, under ⇡ all absolute moments of �ij must be

less than or equal to 1. This means that the higher order moment conditions for a

Wigner matrix and in Theorem 1 are satisfied for any choice of ⇡0 and ⇡1.

We again turn to an example using the SS-PC-GLASSO prior to demonstrate

the result of Proposition 13.

Example Recall that the SS-PC-GLASSO prior is a PC-regular-SS+ prior with

⇡0(✓ij) = Laplace(✓ij ; 0,�
�1

0
),

⇡1(✓ij) = Laplace(✓ij ; 0,�
�1

1
).

We consider the PC-regular-SS prior, ⇡, associated to this. Recall that these den-

sities are truncated between �1 and 1 which has the e↵ect of subtracting a certain

amount from the spike and slab variances. Letting ci = 1 � exp(��i), i = 0, 1, the
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variances associated to the spike, �0, and slab, �1, are

�i =
1

ci

Z
1

�1

x2Laplace(x; 0,��1

i ) dx

= 2��2

i � �i + 2

�i(exp(�i)� 1)
(5.4)

with the variance on the partial correlations being � = ⌘�1 + (1 � ⌘)�0. From

Proposition 13, this is the key quantity for determining if the probability of positive

definiteness converges to 1 or 0.

We now consider a strategy for setting the parameters ⌘,�0,�1, apply Propo-

sition 13 to them and investigate the probability of positive definiteness for finite

p using sampling. Recall that it was suggested in Section 4.4 to set �1 = 0. By

setting �1 = 0 the truncated Laplace density on the partial correlations becomes a

uniform density with variance �1 = 1

3
. To make calculations easier we consider a

limiting case where we allow �0 ! 1 so that the spike becomes a point mass at 0

with �0 = 0. Hence the variance on the partial correlations becomes � = ⌘
3
and the

result of Proposition 13 depends on the limit of
q

3

p ⌘ .

If ⌘ is a constant that does not depend on p then clearly
q

3

p ⌘ ! 0 as p ! 1
and Proposition 13 predicts that the probability of positive definiteness will converge

to 0.

In Section 4.4 we proposed allowing ⌘ to decrease linearly with p, for example

by letting ⌘ = m
p�1

. Here, m can be interpreted as the prior expectation of the mean

number of edges connected to each vertex. In this case
q

3

p ⌘ !
p
3/m and so the

probability of positive definiteness converges to 0 when m > 3

4
and to 1 when m < 3

4
.

If ⌘ is allowed to converge to 0 at a rate quicker than 1

p , for example ⌘ = 1

p2 ,

then
q

3

p ⌘ ! 1 as p ! 1 and the probability of positive definiteness will converge

to 1.

To investigate the probability of positive definiteness in these cases for finite

p, we sampled from ⇡ 1000 times for each p = 1, . . . , 200 and recorded the proportion

of positive definite samples. The results are shown in Figure 5.3. We see that, as

expected, the proportion of positive definite samples goes to 0 very quickly in the

fixed ⌘ = 0.5 case and for ⌘ = 2

p�1
. In the case of ⌘ = 3

4(p�1)
, for which the

limiting probability of positive definiteness is not determined by Proposition 13, the

proportion of positive definite samples is close to 0 for all p > 100. This would

suggest that in this borderline case the probability of positive definiteness does

still converge to 0. In the case of ⌘ = 1

10(p�1)
, the proportion of positive definite
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samples remains high for all p, although away from 1 and generally decreasing with

p. However, Proposition 13 predicts that the probability will converge to 1 in this

case and so it might be expected that this proportion would eventually increase

again for larger p. In the ⌘ = 1

p2 case the observed proportion of positive definite

samples is close to 1 for all p.

Figure 5.3: The proportion of positive definite samples for ⌘ = 0.5 (thin black), 2

p�1

(thin grey), 3

4(p�1)
(thick black), 1

10(p�1)
(thick grey), 1

p2 (dashed).
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This example shows that in order to maintain a high probability of positive

definiteness under a PC-regular-SS prior with a uniform slab density, the prior on

� must impose a high level of sparsity. If a prior with less sparsity is desired then

one must use a slab density with smaller and shrinking variance as p ! 1.

5.4 Choice of densities

In this section we consider some candidates for the spike and slab densities ⇡0,⇡1

and the diagonal density ⇡D. First, however, we consider the prior on the model

space ⇡(�).

Under regular-SS and PC-regular-SS priors the prior on the model space

has the specific form ⇡(�) =
Q

i<j ⌘
�ij (1 � ⌘)1��ij . That is, the entries of � are

independent, identically distributed Bernoulli random variables with parameter ⌘.
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This is a suitable prior when one has prior knowledge of the level of sparsity in

the graphical model, but no additional prior information about the structure of the

model. In the absence of such additional prior knowledge, we suggest using this

⇡(�).

For the the diagonal entries we suggest using a density of the form ⇡D(✓ii) /
✓�c
ii for some c � 0 when dealing with PC-separable-SS priors. This is to ensure

scale invariant posterior inference as detailed in Corollary 4.

We now suggest three di↵erent possibilities for the spike and slab densities

and apply Propositions 12 and 13 to give strategies for setting the parameters to

ensure positive definiteness in the limit as p ! 1 under regular-SS and PC-regular-

SS priors. First is the Laplace densities of the SS-GLASSO and SS-PC-GLASSO

where

⇡i(x) = Laplace(x; 0,��1

i ).

The Laplace is a common choice for spike and slab priors because it is non-

di↵erentiable at 0 and therefore the MAP estimate has exact zero entries, as detailed

in Chapter 4. Furthermore, in the limits as �1 ! 0 and �0 ! 1, the slab becomes

a uniform density and the spike becomes a point mass at zero, both of which are

conceptually quite appealing. In particular, a point mass spike and di↵use heavy-

tailed slab are often considered the Bayesian ideal [Castillo and Van Der Vaart,

2012]. The Laplace therefore has the interpretation of being a continuous relaxation

of these.

To apply the results of Propositions 12 and 13 we need the variances of

the spike and slab densities. In the regular-SS case these variances are �i =
R1
�1 x2⇡i(x) dx = 2��2

i . In the PC-regular-SS case these variances are given in

(5.4).

Corollary 5. Let ⇡̃L and ⇡̃L be regular-SS and PC-regular-SS priors with Laplace

spike and slabs.

(i) Under ⇡̃L, if ⌘�
�2

1
+ (1� ⌘)��2

0
⌧ µ2

D
8p , then limp!1 P⇡̃L(⇥p 2 S) = 1.

(ii) Under ⇡L, if

⌘

✓
2��2

1
� �1 + 2

�1(exp(�1)� 1)

◆
+ (1� ⌘)

✓
2��2

0
� �0 + 2

�0(exp(�0)� 1)

◆
⌧ 1

4p
,

then limp!1 P⇡L(�p 2 S1) = 1.

Here we use the notation f(x) ⌧ g(x) to denote f(x)
g(x) ! 0 as x ! 1.
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From Corollary 5, the variance on the partial correlations must shrink to 0

at a rate faster than 1

4p in order for a Laplace PC-regular-SS prior to guarantee

positive definiteness as p ! 1.

Since in this chapter we consider the whole posterior distribution, sparsity of

the MAP estimate is not required and so we may consider spike and slab densities

which are di↵erentiable at 0. The most obvious choice is the Normal density with

variance �i

⇡i(x) = N(x; 0,�i).

The advantage of the Normal spike and slab is that its simple form aids computation

and sampling from the posterior - see, for example, George and McCulloch [1997].

The Normal spike and slab has been applied to Gaussian graphical models by Wang

[2015]. The spike and slab variances in the PC-regular-SS case are given by

�i =
1

ci

Z
1

�1

x2⇡i(x) dx

= �i �
2
p
�i�

⇣
1p
�i

⌘

2�
⇣

1p
�i

⌘
� 1

where ci =
R
1

�1
⇡i(x) dx and � and � are the pdf and cdf of the standard Normal

distribution.

Corollary 6. Let ⇡̃N and ⇡̃N be regular-SS and PC-regular-SS priors with Normal

spike and slabs.

(i) Under ⇡̃N, if ⌘�1 + (1� ⌘)�0 ⌧
µ2
D
4p , then limp!1 P⇡̃N(⇥p 2 S) = 1.

(ii) Under ⇡N, if

⌘

0

@�1 �
2
p
�1�

⇣
1p
�1

⌘

2�
⇣

1p
�1

⌘
� 1

1

A+ (1� ⌘)

0

@�0 �
2
p
�0�

⇣
1p
�0

⌘

2�
⇣

1p
�0

⌘
� 1

1

A⌧ 1

4p
,

where � and � are the pdf and cdf of the standard Normal distribution, then

limp!1 P⇡N(�p 2 S1) = 1.

An interesting alternative to these two choices is to use a non-local density

for the slab. In this context, a non-local density is one which is equal to zero at

zero, and as such has the attractive property that it assigns zero probability to an

edge being present when we condition on the partial correlation being zero. One

simple choice for non-local density, introduced by Johnson and Rossell [2010] and
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shown to have useful properties for Bayesian model selection [Johnson and Rossell,

2012], is the moment (MOM) density:

⇡1(x) = MOM(x; 0,�1)

=
x2

�1

N(⇢; 0,�1).

The MOM density has variance 3�1. When applied to the partial correlations,

and therefore truncated onto (�1, 1), the variance is equal to

�i =
1

ci

Z
1

�1

x2⇡i(x) dx

= 3�1 �
2p
�1
�
⇣

1p
�1

⌘

2�
⇣

1p
�1

⌘
� 2p

�1
�
⇣

1p
�1

⌘
� 1

where ci =
R
1

�1
⇡i(x) dx and � and � still denote the pdf and cdf of the standard

Normal distribution.

The MOM slab can be used in conjunction with a Normal spike

⇡0(⇢) = N(⇢; 0,�0).

We refer to a MOM slab with a Normal spike as simply the MOM spike and slab.

A non-local slab has previously been used in linear regression [Shi et al.,

2019], generalised linear models [Bar et al., 2020], and factor regression [Avalos-

Pacheco et al., 2020]. For an in depth view of a MOM spike and slab in action, see

Avalos Pacheco [2018]. However, to our knowledge non-local priors are yet to be

applied to Gaussian graphical models.

Corollary 7. Let ⇡̃M and ⇡̃M be regular-SS and PC-regular-SS priors with MOM

spike and slab.

(i) Under ⇡̃N, if ⌘�1 + (1� ⌘)�0 ⌧
µ2
D
4p , then limp!1 P⇡̃N(⇥p 2 S) = 1.

(ii) Under ⇡M, if

⌘

0

@3�1 �
2p
�1
�
⇣

1p
�1

⌘

2�
⇣

1p
�1

⌘
� 2p

�1
�
⇣

1p
�1

⌘
� 1

1

A+(1�⌘)

0

@�0 �
2
p
�0�

⇣
1p
�0

⌘

2�
⇣

1p
�0

⌘
� 1

1

A⌧ 1

4p
,

then limp!1 P⇡L(�p 2 S1) = 1.

122



The MOM density is compared with the Normal and Laplaces densities in

Figure 5.4. Notice the key feature of the MOM density that it is equal to zero at

zero. The density then continuously increases away from zero before reaching two

symmetric local maxima. Importantly these local maxima are away from zero and

the location of the maxima is controlled by the parameter �1 - larger choices of �1

lead to these maxima being further from 0. This seems like a good choice for slab

density because the slab represents the prior density of the truly non-zero partial

correlations. Recall that under a PC-regular-SS prior �ij |�ij = 1 follows the slab

density ⇡1. Also recall the interpretation that �ij = 1 � I(�ij ⇡ 0). It follows

that when �ij = 1 then �ij 6= 0, something which the MOM density embodies

but the Normal and Laplace priors do not. Furthermore, the presence of an edge

in a graphical model does not distinguish between positive and negative partial

correlations. The MOM density embodies this through symmetry around zero - it

encodes that the partial correlation is non-zero but says nothing of its sign.

Figure 5.4: The MOM, Normal and Laplace densities truncated onto (�1, 1) with
variance equal to 0.2.
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The full spike and slab densities for the Laplace spike and slab, Normal spike

and slab and MOM spike and slab are shown in Figure 5.5. The Laplace and Normal

spike and slabs look similar to the usual Laplace and Normal densities, however with

thicker tails. The MOM spike and slab density is quite di↵erent to the other two

with the global maximum still at 0 but also with two local maxima - one above zero
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and one below zero.

Figure 5.5: The MOM, Normal and Laplace spike and slab densities truncated onto
(�1, 1) with ⌘ = 0.5 spike variance equal to 0.01 and slab variance equal to 0.2.
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In Figure 5.6 we see the associated penalty functions for the three spike

and slab priors. The Laplace spike and slab penalty has been discussed in the

previous chapter. The Normal spike and slab has a penalty function which has zero

derivative at 0 - hence it does not produce zero estimates in the MAP estimate and

is not suitable when sparsity in the MAP estimate is desired. The MOM spike and

slab has a penalty function very di↵erent to those previously discussed because it

is not non-decreasing on R+. This is not standard for penalty functions since large

parameter values (in absolute value) are usually penalised more than smaller values.

This along with the zero derivative at 0 means that this should not be considered

for a penalty function. However, it would still be interesting to investigate how the

MAP estimate behaves under the MOM spike and slab in comparison to the Laplace

spike and slab.

To summarise, when only considering the MAP estimate or taking a penalised

likelihood approach, the Laplace spike and slab, as used in the SS-PC-GLASSO

seems the most appropriate of these three choices. However, when considering the

whole posterior distribution the Normal spike and slab has provided easier computa-

tion when used in other contexts and the MOM spike and slab o↵ers a conceptually

appealing choice.
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Figure 5.6: The associated penalty functions to the MOM, Normal and Laplace
spike and slabs with ⌘ = 0.5 spike variance equal to 0.01 and slab variance equal to
0.2.
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5.5 Posterior inference

In this section we consider strategies for posterior inference. The primary strategy

we suggest will be based on posterior sampling of ⇥. Whilst we don’t go as far

as proposing a specific algorithm for obtaining such samples, we suggest how such

samples may be used to make posterior inference on the model space �. We also

highlight additional considerations that should be made when setting the parameters

for the spike and slab densities, particularly in the case of the MOM spike and slab,

in light of this strategy.

First we review strategies for posterior inference proposed by others in similar

settings. In the spike and slab LASSO in the linear regression setting, Ročková and

George [2018] simply found the MAP estimate associated to their Laplace spike and

slab (which they treat as a penalty function), and estimate the linear model by

the zero coe�cient estimates. George and McCulloch [1997], who used the Normal

spike and slab in the linear regression setting, proposed a Gibbs sampler which

sequentially sampled the regression coe�cients, error variance and model indicators

�. The sampled � were shown to converge in distribution to the posterior on the

model space.

In the Gaussian graphical model setting, Banerjee and Ghosal [2015], who
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proposed a point mass spike and Laplace slab prior, utilised a Laplace approximation

in order to obtain approximate posterior model probabilities. Wang [2015] iteratively

sampled from the posterior of ⇥ given � and � given ⇥ under a Normal spike and

slab prior.

In the BAGUS method of Gan et al. [2018], in which a regular-SS+ prior

with Laplace spike and slab denoted by ⇡̃+ was used, the main strategy for posterior

inference was simply finding the MAP estimate ⇥̂ under the marginal posterior

density ⇡̃+(⇥ | X) via an EM algorithm. Inference on the model space is then

conducted by conditioning on the MAP estimate ⇡̃+(� | ⇥̂, X). It was shown that

conditional on ⇥̂, � is independent of the data X under ⇡̃+, and further that the

entries of � are independent and �ij only depends on ⇥̂ through ✓̂ij . That is,

⇡̃+(� | ⇥̂, X) =
Y

i<j

⇡̃+(�ij | ✓̂ij). (5.5)

In light of this, posterior inference on �, conditional on ⇥ = ⇥̂ being equal to the

MAP estimate, is equivalent to finding the probabilities

p̂ij = P⇡̃+(�ij = 1 | ✓̂ij)

=
⌘⇡1(✓̂ij)

⌘⇡1(✓̂ij) + (1� ⌘)⇡0(✓̂ij)
(5.6)

Gan et al. [2018] consider p̂ij as an approximation for the posterior probability

pij = P⇡̃+(�ij = 1 | X). A single estimate for � is then obtained by checking if pij

is above or below 0.5, that is �̂ij = I(p̂ij > 0.5).

While this strategy has its advantages in that it is computationally expedient

and returns a single estimated ⇥ and graphical model, the reliance of the MAP

estimate of ⇥ ignores any posterior uncertainty. Furthermore, there is no guarantee

that the estimated �̂ is even equal to the MAP estimate of � maximising ⇡̃+(� | X).

However, the properties of the posterior distribution of � conditional on ⇥ presented

here will be important in our strategy for posterior inference.

Consider a regular-SS+ prior ⇡̃+(⇥, �) and suppose we can obtain samples

⇥(1), . . . ,⇥(K) from the marginal posterior ⇡̃+(⇥ | X) / ⇡̃+(⇥)L(⇥ | X). From here

one can easily obtain posterior samples of � via (5.5) and (5.6). In particular, for

k = 1, . . . ,K, we sample �(k) from ⇡̃+(� | ⇥(k), X) under which � has independent
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entries with �ij = 1 with probability

P⇡̃+

⇣
�ij = 1 | ✓(k)ij

⌘
=

⌘⇡1
⇣
✓(k)ij

⌘

⌘⇡1
⇣
✓(k)ij

⌘
+ (1� ⌘)⇡0

⇣
✓(k)ij

⌘ .

The samples �(1), . . . , �(K) can then be used to estimate posterior properties on � -

for example the MAP model and edge existence probabilities.

For a PC-regular-SS+ prior ⇡+ a similar strategy can be used with poste-

rior samples (✓(1),�(1)), . . . , (✓(K),�(K)). This time posterior samples for � can be

obtained by sampling the entries of � independently with �ij = 1 with probability

P⇡+

⇣
�ij = 1 | �(k)

ij

⌘
=

⌘
c1
⇡1
⇣
�(k)

ij

⌘

⌘
c1
⇡1
⇣
�(k)

ij

⌘
+ (1�⌘)

c0
⇡0
⇣
�(k)

ij

⌘ .

Although we don’t propose a method for obtaining such samples of ⇥ or

(✓,�) there is reason to believe this to be possible. In the Normal spike and slab,

Gibbs sampling has been successfully utilised in the linear regression setting [George

and McCulloch, 1993, 1997] and for Gaussian graphical models [Wang, 2015]. The

Laplace spike and slab is not too much of a departure from the Bayesian GLASSO

prior, for which block Gibbs sampler and random walk Metropolis-Hastings algo-

rithms have been proposed by Wang [2012] and Khondker et al. [2013] respectively.

For the MOM spike and slab a Gibbs sampler has been utilised by Shi et al. [2019]

for linear regression.

One consideration that this method highlights is that the probabilities

P⇡̃+

⇣
�ij = 1 | ✓(k)ij

⌘
, in the case of regular-SS+ priors, and P⇡+

⇣
�ij = 1 | �(k)

ij

⌘
, in

the case of PC-regular-SS+ priors, should be increasing in |✓ij | and |�ij | respectively.
That is, conditioning on a larger ✓ij or partial correlation in absolute value results

in a higher probability of the edge being present. While such a property clearly

holds for the Normal and Laplace spike and slabs, it is not so clear for the MOM

spike and slab.

Proposition 14. Let ⇡̃+ be a regular-SS+ prior with MOM spike and slab. Then

P⇡̃+ (�ij = 1 | ✓ij) is increasing in |✓ij | if and only if �1 � �0.

Let ⇡+ be a PC-regular-SS+ prior with MOM spike and slab. Then

P⇡+ (�ij = 1 | �ij) is increasing in |�ij | if and only if �1 � �0
2�0+1

.
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Proof. Under ⇡̃+,

P⇡̃+ (�ij = 1 | ✓ij) =
⌘⇡1 (✓ij)

⌘⇡1 (✓ij) + (1� ⌘)⇡0 (✓ij)
(5.7)

where

⇡1(✓ij) = MOM(✓ij ; 0,�1)

=
✓2ij

�3/2
1

p
2⇡

exp

 
�

✓2ij
2�1

!

and

⇡0(✓ij) = N(✓ij ; 0,�0)

=
1

�1/2
1

p
2⇡

exp

 
�

✓2ij
2�0

!

Plugging these into (5.7) and taking the derivative with respect to ✓ij gives

�1/2
1

⌘(⌘ � 1) exp

✓
✓2ij(�0+�1)

2�0�1

◆
((�0 � �1)✓2ij � 2�0�1)✓ij

�1/2
0

✓
�3/2
1

(⌘ � 1) exp

✓
✓2ij
2�1

◆
� �1/2

0
⌘✓2ij exp

✓
✓2ij
2�0

◆◆

Since the probability (5.7) is continuous in ✓ij , P⇡̃+ (�ij = 1 | ✓ij) is increasing in |✓ij |
if and only if this derivative is positive for ✓ij > 0 and negative for ✓ij < 0. Notice

that the denominator is positive and in the numerator �1/2
1

⌘(⌘�1) exp

✓
✓2ij(�0+�1)

2�0�1

◆

is negative. Hence we only require that ((�0��1)✓2ij�2�0�1)✓ij < 0 when ✓ij > 0 and

((�0��1)✓2ij�2�0�1)✓ij > 0 when ✓ij < 0, or more simply that (�0��1)✓2ij�2�0�1 <

0 for all ✓ij . This clearly holds if and only if �1 � �0.

For the PC-regular-SS+ prior ⇡+ we have that

P⇡+ (�ij = 1 | �ij) =
⌘
c1
⇡1 (�ij)

⌘
c1
⇡1 (�ij) +

(1�⌘)
c0

⇡0 (�ij)
.

where ci =
R
1

�1
⇡i(x) dx are positive constants in �ij . Again, P⇡+ (�ij = 1 | �ij) is

increasing in |�ij | if and only if its derivative is positive when �ij > 0 and negative

when �ij < 0. The constants c0, c1 have little e↵ect on the derivative and the

result is a similar condition that (�0 � �1)�2

ij � 2�0�1 < 0 for all �ij . Noting that

�ij 2 (�1, 1), this holds if and only if �1 � �0
2�0+1
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Note that the conditions on �0,�1 in Proposition 14 do not necessarily follow

from Var⇡1(✓ij) > Var⇡0(✓ij) since Var⇡1(✓ij) = 3�1 and Var⇡0(✓ij) = �0. In the

regular-SS+ case the condition �1 � �0 is strictly stronger. In the PC-regular-SS+

case the condition �1 � �0
2�0+1

is stronger whenever �0 < 1, which would be the case

for any sensible choice of spike prior.

5.6 Discussion

In this section we have introduced a general framework for spike and slab priors

for Gaussian graphical models. A key benefit of this framework is its flexibility in

being able to encode prior beliefs, both on the model space through ⇡(�) and on the

magnitude of the non-zero partial correlations through ⇡1. However, this benefit may

be lost when the truncation onto the space of positive definite matrices is applied,

with the truncation altering the prior marginals on � and the partial correlations in

a way that is tricky to calculate or anticipate. In Propositions 12 and 13 we devised

a strategy for removing this negative e↵ect as the problem dimension p ! 1.

An important point for further research is in devising methods for default

parameter selection. One approach was proposed by George and McCulloch [1997]

based on a threshold of practical relevance. This is a threshold K for which any

partial correlation |�ij |< K, the modeller would prefer to not include the edge (i, j)

in the graphical model, for example in the interest of parsimony. One may include

this threshold in parameter setting by allowing, for example, ⇡1(x) < ⇡0(x) ()
|x|< K. Further research should involve incorporating the results of Propositions

12 and 13 into such parameter setting.

On the topic of parameter selection, we have generally suggested in this

chapter the use of regular-SS+ and PC-regular-SS+ priors with a fixed value for the

parameter ⌘, which is set based on prior knowledge of the sparsity of the graphical

model. However, in the context of linear regression, Ročková and George [2018]

found that the performance of such priors for model selection, particularly when

model selection is based on the MAP estimate, is highly sensitive to the specification

of ⌘. Instead they suggest a fully Bayesian approach treating ⌘ as unknown. Such

an extension would fit into the PC-separable-SS+ framework where ⇡(�) is allowed

to take any form and would be an important consideration for future research.

For PC-regular-SS+ priors we have suggested the diagonal density ⇡D(✓ii) /
✓�c
ii for some c � 0. While this choice leads to scale invariant posterior inference for
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certain PC-regular-SS+ priors, it should be noted that the resulting prior distribu-

tion is improper. However, in a similar way to the Baysian PC-GLASSO as detailed

in Section 3.2, there are reasonable assurances that the posterior distribution will

be proper provided that n > 2c. This is because the ✓n/2ii term in the likelihood

combines with ✓�c
ii so that it no longer goes to infinity as ✓ii ! 0. Confirming that

the posterior is proper in such a case is another area for future research.

The most important area for further research though, is in the derivation of

suitable algorithms for posterior inference. Most simply this might involve using a

maximisation algorithm, like the coordinate descent Algorithm 3, to find the MAP

estimate under spike and slab priors. However, ultimately a method for posterior

sampling of ⇥, most likely a Gibbs sampler, will be required to conduct a full

posterior analysis and assess the benefits of the di↵erent choices for spike and slab

prior. Of particular interest is the performance of the MOM spike and slab which

has been used to great success in other applications but is novel when applied to

Gaussian graphical models.
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Chapter 6

Discussion

In this thesis we have demonstrated that essentially all current penalised likelihood

methods and prior distributions for Gaussian graphical model selection have a fun-

damental flaw in that they are not invariant to scalar multiplication of the variables.

That is, multiplying the data X by some non-zero diagonal matrix D, for example

by changing the unit of measurement for some of the variables, leads to unexpected

changes in the estimation of the precision matrix ⇥ and potentially vastly di↵erent

graphical model selection. This is a problem because the fundamental conditional

independence structure embodied in a graphical model and depicted by it is invariant

to such scale transformations.

This problem can be mitigated somewhat by the standardisation of the data,

for example by requiring that the data has unit sample variances. The data is

invariant to scalar multiplications after standardisation and therefore all methods

are also trivially scale invariant. However, data standardisation is rarely suggested,

let alone a requirement, in most penalised likelihood and Bayesian methods. It would

be quite understandable for an unwitting data scientist without expert knowledge in

the area to apply a method such as GLASSO on unstandardised data. In this case

the outcome of GLASSO would be highly sensitive to the scale on which variables are

measured with variables that happen to have large estimated partial variance likely

to have more edges. Furthermore, data standardisation is itself not an innocuous

operation. For example, if we believe the non-standardised data to be Gaussian - as

we have assumed in many of the examples in this thesis - then the standardised data

will not be Gaussian. So these two models are fundamentally di↵erent from each

other. This is practically as well as methodologically significant. For example we

have shown how standardised models perform very poorly for some data generating

processes.
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A key observation as to why standard methods are not scale invariant is

that they are based on the o↵-diagonal entries of ⇥. These o↵-diagonal entries,

✓ij , are themselves not invariant to scalar multiplication and are a poor measure of

dependence between the two associated variables Xi, Xj . In particular, ✓ij could be

large due to a strong dependence between Xi and Xj or because Xi, Xj have small

partial variance. Without additional information it is impossible to distinguish these

two cases.

From this observation we proposed novel classes of penalty functions and

prior distributions that were instead based on partial correlations. Given a suitable

penalty or prior on the diagonal entries of ⇥, these methods were shown to be

scale invariant and therefore return the same graphical model regardless of scale

or standardisation. Furthermore, in the case of PC-GLASSO, these methods were

shown to perform better in practise when compared to their equivalents based on

the o↵-diagonal entries in both simulated and real data settings.

In each of the previous chapters we suggested potential areas for further

research based directly on the content of that chapter and to advance our knowledge

of those methods based on partial correlations. To finish this thesis we now present a

number of potential areas for future research that are linked to the areas previously

discussed, although not directly and with much larger scope.

6.1 Linear models

Although in this thesis we have focused on Gaussian graphical models, it is pos-

sible that a similar phenomenon may occur in linear models where the regression

coe�cients also are not invariant to scalar multiplication. To see this we consider

the case which is most similar to a Gaussian graphical model where the response

variable Y and covariates X are jointly Gaussian with zero mean and covariance

matrix ⌃ = ⇥�1. We decompose ⌃ into

⌃ =

 
⌃Y ⌃XY

⌃T

XY ⌃X

!

where ⌃Y = �11, ⌃XY is equal to the first row of ⌃ without �11 and ⌃X = ⇥�1

X is

equal to the covariance matrix on the X margin. Then the distribution of Y given

X is also Gaussian with mean ⌃XY ⇥XX and variance ⌃Y � ⌃XY ⇥X⌃T

XY . This

relates to the linear model

Y = XT� + ✏
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where � = ⌃XY ⇥X and ✏ ⇠ N(0,⌃Y � ⌃XY ⇥X⌃T

XY ). Using the fact that ⌃⇥ = I,

it can be shown that the entries of � are equal to �i = �⌃Y ✓1i. This shows the close

relation to Gaussian graphical model selection in this case, where estimation of the

regression coe�cients is equal to estimation of the first row of ⇥, and sparsity in �

is the same as sparcity in this first row of ⇥.

Direct penalisation of the regression coe�cients, as in the LASSO and many

other penalised likelihood methods, is therefore analogous to penalisation of the

o↵-diagonal entries of ⇥ in Gaussian graphical models. The same arguments as

have been presented in this thesis can be applied here to show that estimation and

model selection under LASSO and similar methods do not satisfy scale invariance

under scalar multiplications of the covariates X. By applying the partial correlation

framework to such linear models one might instead choose to penalise quantities

such as ✓1i/
p
✓ii.

Of course, this simple example only considers the case where (Y,X) are

jointly Gaussian, a special case of the linear model. A significant piece of future

work would be to extend such an approach to linear models in general that are

robust to scalar multiplication of the covariates. A first step here might be to adapt

the LASSO in such a way by applying the L1 penalty to something other than the

regression coe�cients directly.

6.2 Positive dependence

Numerous attempts have been made to combine conditional independence relation-

ships with positive (or negative) dependence relationships within a graphical model.

Various definitions have been proposed for positive dependence. However the fun-

damental concept of positive dependence between two variables X1, X2 is that ob-

serving a ‘large’ value of X1 leads to higher probability of X2 being ‘large’.

More formally, some proposed positive dependence definitions are the fol-

lowing: X1 and X2 are positively correlated if cov(X1, X2) > 0; X1 and X2 are

associated if cov(f(X1, X2), g(X1, X2)) � 0 for all non-decreasing functions f and

g such that E|f(X1, X2)|, E|g(X1, X2)| and E|f(X1, X2)g(X1, X2)| all exist; X1 and

X2 are multivariate totally positive of order 2 (MTP2) if their joint density function

f satisfies f(x)f(y)  f(x^ y)f(x_ y) for all x, y, where x^ y and x_ y denote the

element-wise minimum and maximum.

Notice that these definitions are all symmetric in the sense that X1 and X2

are positively dependent if and only if X2 and X1 are positively dependent. One

non-symmetric definition is the following: X1 is stochastically increasing with X2 if
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FX1|X2=x2
(x1)  FX1|X2=x0

2
(x1) for all x1 and all x2 > x0

2
, where FX1|X2=x2

denotes

the cdf of X1 given X2 = x2.

One early attempt to combine graphical models with positive dependence

was in qualitative probabilistic networks (QPNs), introduced by Wellman [1990].

Wellman argued that graphical models that assign strictly numeric representations

to the distributions of the variables in the model are inappropriately precise for

many applications where less strict qualitative constraints may be more realistic.

This was achieved by connecting each edge to a sign which determines if the two

relevant variables are positively, negatively or otherwise dependent. However, many

of the results and dynamics of QPNs in both Wellman [1990] and subsequent papers

on QPNs rely on the incorrect assertion that X1 stochastically increasing with X2 is

equivalent to X1 and X2 MTP2. This is clearly not the case as MTP2 is a symmetric

property but stochastically increasing is not.

A more recent and successful attempt to combine positive dependence and

graphical models was by Fallat et al. [2017] who studied graphical models under

the assumption that all variables are MTP2. In a similar vein, Slawski and Hein

[2015] and Lauritzen et al. [2017] both investigated the maximum likelihood estimate

of a Gaussian precision matrix ⇥ under the MTP2 constraint. It was shown that

the MTP2 restriction served as an implicit regulariser and lead to sparsity in the

estimate.

A multivariate Gaussian random vector X is MTP2 if and only if its preci-

sion matrix ⇥ is an M-matrix - i.e. it has positive diagonal entries and non-positive

o↵-diagonals. Equivalently, all partial correlations must be non-negative. This as-

sumption could easily be incorporated into the spike and slab framework of Chapter

5 by simply truncating the slab density on the negative partial correlations ⇡1(�ij)

between �1 and 0. In this way, the spike density will still represent the (approx-

imately) zero partial correlations, and the slab density will represent the non-zero

and positive partial correlations. The MOM density seems a particularly appropri-

ate choice for this.

Further extensions of a similar theme are possible for the spike and slab

framework. For example, a slab density that is non-symmetric about zero and with

P⇡1(�ij < 0) > 1

2
could be used when a-priori it is expected that most partial

correlations are positive. Again, the MOM density is particularly appropriate in

this case because the density can simply be re-weighted above and below zero with

continuity being maintained. Alternatively, if one wishes to know the sign of the

non-zero partial correlations, as well as the graphical model, the spike and slab

framework could be adapted to include three levels with �ij 2 {0, 1, 2}. The variable
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�ij now indicates if�ij is zero (� = 0), positive (� = 1) or negative (� = 2). The slab

can then be spilt into two densities with ⇡1 truncated on (�1, 0) and ⇡2 truncated

on (0, 1).

6.3 No Simpson’s paradox assumption

A necessary condition of MTP2 for a Gaussian random vector is that the covariance

matrix ⌃ has all positive entries. Hence, under the MTP2 condition, all correlations

and partial correlations have the same same. MTP2 is, however, a very strong as-

sumption which is often unrealistic especially for large dimension p. In some cases

it may be possible to multiply certain variables by �1 to obtain an MTP2 distri-

bution, but in many more cases this is not possible. A strictly weaker assumption

that may be of interest is to maintain the condition that all correlations and partial

correlations be of the same sign, but relax the condition that all partial correlations

are positive. That is, for all i, j, whenever both �ij and ✓ij are non-zero, they are of

opposite signs. We call this the no Simpson’s paradox condition since it means that

the sign of dependence is maintained under conditioning on other variables. This as-

sumption is particularly relevant for representing certain types of causal hypotheses

and choosing a class of models constrained by these hypotheses. It is often explicitly

or implicitly assumed that for a causal relationship to be genuine its directionality

would be consistent regardless of conditioning.

The no Simpson’s paradox condition corresponds to the set of precision ma-

trices ⇥ = ⌃�1 such that for all i, j either ✓ij = 0 or sign(✓ij) = �sign(�ij). A first

step might be to investigate the maximum likelihood estimate under this restric-

tion, as Slawski and Hein [2015] and Lauritzen et al. [2017] did under the MTP2

restriction. However, the space of no Simpson’s paradox precision matrices is rather

more complicated than MTP2 matrices. A way to approximate (and simplify) the

condition is to substitute the covariance matrix ⌃ by the sample covariance S and

restrict ⇥ to have opposite signs to S, which we call the sample no Simpson’s para-

dox condition. In this way the signs of ⇥ are fixed (given the data) and maximum

likelihood estimation under this constraint is more straight forward.

The sample no Simpson’s paradox condition actually links to the PC-GLASSO

and the convexity of the associated maximisation problem. Recall that in Section

2.9 we noted that the PC-GLASSO penalised likelihood is non-concave, meaning

that it does not benefit from the computational advantages of GLASSO. The reason

for this non-concavity were terms of the form �Sij�ij
p
✓ii✓jj . When Sij and �ij

are of the same sign, this term is non-concave in ✓ii and ✓jj . However, making the
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sample no Simpson’s paradox restriction actually results in the penalised likelihood

being concave. Hence under this restriction PC-GLASSO could reap the benefits of

convex optimisation.

6.4 Conclusion

The project that eventually came to provide the majority of the content for this

thesis began with the aim of applying non-local spike and slab priors to Gaussian

graphical models. This idea was a direct extension of the spike and slab priors used

in Gaussian graphical models by Gan et al. [2018] incorporating the non-local density

that has been used in, for example Avalos-Pacheco et al. [2020]. Although a modest

aim, the vision for this project was to eventually extend the model to incorporate

more nuanced prior beliefs, such as positive dependence, and to incorporate ideas

of causality. However, when beginning this project we came to find that the use

of spike and slab priors for Gaussian graphical models contains some unique issues

which, to our knowledge, have not so far been addressed in the literature.

The first of these issues was the truncation onto the space of positive definite

matrices that is required when placing a prior on the precision matrix ⇥. As demon-

strated in Chapter 5, this truncation particularly e↵ects spike and slab priors due

to its impact on the prior edge inclusion probability potentially leading to the prior

placing higher probability on more sparse graphs than intended. This issue is also

unique to the Gaussian graphical model setting since other settings, for example

linear regression, do not require such a truncation of the prior distribution. The

identification of this issue led to the theoretical results based on Wigner matrices in

Section 5.3.

The second issue was discovered when applying the BAGUS method of Gan

et al. [2018] to data generated using a precision matrix ⇥ with non-unit diagonal in

the star graph setting. We found that the estimates provided by BAGUS and the

performance of its model selection were highly dependent on the diagonal entries of

⇥ - i.e. the method is not scale invariant. This led to the decision to place the spike

and slab priors on the partial correlations rather than directly to ⇥.

We eventually found that this issue of non-scale invariance was actually a

more general issue common to essentially all penalised likelihood methods and prior

distributions used for Gaussian graphical model selection. In particular, non-scale

invariance e↵ects the well known and popular GLASSO method - something we later

found is much maligned by academics familiar with Gaussian graphical models but

which is not generally discussed in the literature. This naturally gave the idea of
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adapting the GLASSO in the same way as the spike and slab priors by placing the

L1 penalty on the partial correlations. After discovering that this idea, to the best

of our knowledge, has not already been investigated, this quickly became the focus

of the thesis.

The result has been classes of partial correlation based penalised likelihoods

and prior distributions which are invariant to scalar multiplication of the variables -

a property which is fundamental to conditional independence and graphical models.

The PC-GLASSO is one specific example from this class of penalised likelihoods

which is a directly analogous to GLASSO but achieves scale invariance and from

our applications is shown to o↵er improvements over GLASSO. We hope that this

thesis have served to demonstrate the benefits of partial correlation based methods

for Gaussian graphical model selection and precision matrix estimation and that

this will lead to further research and improvements in their use.
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Appendix A

Maximisation problem in

Algorithm 2

Step 2 of Algorithm 2, requires the maximisation of (2.5) with respect to �ij , ✓ii, ✓jj

whilst all other variables are held fixed. In this appendix we give details of how

this maximum may be found as well as demonstrating that the updating a positive

definite matrix as in Step 2 of Algorithm 2 retains positive definiteness. To ease

notation let x = �ij , y1 =
p
✓ii and y2 =

p
✓jj . The objective function is

f(x, y1, y2) = log(ax2 + bx+ c) + 2cn(log(y1) + log(y2))

� y21 � y22 � 2c12xy1y2 � 2c1y1 � 2c2y2 � 2⇢|x|,

where

cn = 1� 4

n
,

c12 = Sij ,

c1 =
X

k 6=i,j

Sik�ik

p
✓kk,

c2 =
X

k 6=i,j

Sjk�jk

p
✓kk.

The log(ax2 + bx + c) term comes from the log det(�), since the determinant of a

symmetric matrix is quadratic in the o↵-diagonal entries. The coe�cients (a, b, c) do

not have a simple closed-form, as they depend on the matrix determinant, but they

can be easily obtained by evaluating the determinant of � for three di↵erent values

of �ij (faster methods for computing these determinants are possible since they only

involve changing a single entry) and solving the resulting system of equations. The
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range of values that x is can take given by

(l, u) := {x : ax2 + bx+ c > 0} \ (�1, 1).

Any value of x in this set ensures positive definiteness of �. This is because � is

positive definite if and only if all its leading principal minors are positive. WLOG,

letting �ij be in the bottom row of �, if the previous estimate is positive definite

then the first p� 1 leading principal minors are positive. The condition ax2 + bx+

c > 0 ensures that the final leading principal minor, det(�), is also positive. The

maximisation problem can then be expressed as

max
x,y1,y2

f(x, y1, y2)

s.t. x 2 (l, u)

y1, y2 > 0

(A.1)

We denote the partial derivatives of f by

fx(x, y1, y2) =
2ax+ b

ax2 + bx+ c
� 2c12y1y2 � 2⇢sign(x), x 6= 0,

fy1(x, y1, y2) = 2cny
�1

1
� 2y1 � 2c12xy2 � 2c1,

fy2(x, y1, y2) = 2cny
�1

2
� 2y2 � 2c12xy1 � 2c2,

To solve this problem we consider separately the cases c > 0 and c  0.

Case c > 0.

We begin by looking at the case c > 0, which implies that 0 2 (l, u). We split the

problem into three sections, finding local maxima in x = 0, x 2 (0, u), x 2 (l, 0)

separately and then selecting from these the global maximum.

Optimization for x = 0.

Let x = 0. By setting fy1(x, y1, y2) = 0 and fy2(x, y1, y2) = 0 we get that the

optimal values of (y1, y2) are

y1 =
1

2

✓q
c2
1
+ 4cn � c1

◆
,

y2 =
1

2

✓q
c2
2
+ 4cn � c2

◆
.
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Optimization over x > 0.

Let x 2 (0, u). Setting fy1(x, y1, y2) = 0 gives

x =
cny

�1

1
� y1 � c1
c12y2

, (A.2)

and setting fy2(x, y1, y2) = 0 along with (A.2) gives

y2 =
1

2

✓
�c2 ±

q
c2
2
+ 4(y2

1
+ c1y1)

◆
. (A.3)

Using (A.2)-(A.3) one can write fx(x, y1, y2) in terms of only y1 and solve fx(x, y1, y2) =

0 numerically to obtain the stationary points. The range of y1 values to search in

the numerical solving of fx(x, y1, y2) = 0 can be found by considering the constraints

x 2 (0, u), y1, y2 > 0 as well as (A.2) and (A.3).

The constraint x < u results in some condition on the following quartic which

we refer to as q(y1)

✓
1� 1

u2c2
12

◆
y41 +

✓
c1 �

2c1
u2c2

12

+
c2
uc12

◆
y31 +

✓
2cn
u2c2

12

� c2
1

u2c2
12

+
c1c2
uc12

◆
y21

+

✓
2c1cn
u2c2

12

� c2cn
uc12

◆
y1 �

c2n
u2c2

12

(A.4)

We first summarize the range of y1 values that needs to be considered, de-

pending on the values of (c12, c2), and subsequently outline their derivation. If the

positive root is taken in (A.3) for y2 then the following constraints are required

1. y1 <
1

2

⇣
�c1 +

p
c2
1
+ 4cn

⌘
, if c12 > 0

2. y1 >
1

2

⇣
�c1 +

p
c2
1
+ 4cn

⌘
, if c12 < 0

3. y1 � 1

2

⇣
�c1 +

p
c2
1
� c2

2

⌘
or y1  1

2

⇣
�c1 �

p
c2
1
� c2

2

⌘

4. y1 > �c1, if c2 > 0

5. If c12 > 0, either y1 >
1

2

✓
1

2
uc12c2 � c1 +

q�
c1 � 1

2
uc12c2

�2
+ 4cn

◆
or

q(y1) > 0

6. If c12 < 0, either y1 <
1

2

✓
1

2
uc12c2 � c1 +

q�
c1 � 1

2
uc12c2

�2
+ 4cn

◆
or

q(y1) < 0
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The negative root in (A.3) must only be considered if c2 < 0 and y1 < �c1

(also implying that c1 < 0 and, from constraint 1, c12 > 0). In this case the

inequalities in constraints 5 and 6 must be reversed.

We outline how to obtain the above constraints. The constraint x > 0 along

with (A.2) implies that

sign(y21 + c1y1 � cn) = �sign(c12).

Hence, if c12 > 0 then the range of values to consider can be restricted to

y1 <
1

2

✓
�c1 +

q
c2
1
+ 4cn

◆
,

giving constraint 1, while if c12 < 0 then the inequality is reversed giving constraint

2. Note that if c12 = 0 then the optimisation problem is simpler and so the details

of this case are omitted.

For y2 to take a real value in (A.3) we must have 4y2
1
+4c1y1 + c2

2
� 0 which

implies that either

y1 �
1

2

✓q
c2
1
� c2

2
� c1

◆
,

or

y1 
1

2

✓
�
q
c2
1
� c2

2
� c1

◆
.

giving constraint 3.

Combining the constraint y2 > 0 with (A.3), if c2 > 0 then we need y1 � �c1

in order for there to be a solution for y2, giving constraint 4. On the other hand, if

c2 < 0 and 0 < y1 < �c1 then there are two solutions for y2 and one must consider

both the positive and negative roots in (A.3). For all other situations one must only

consider the positive root.

Now combining the constraint x < u with (A.2) and (A.3), one obtains the

inequality
2

uc12

�
cny

�1

1
� y1 � c1

�
+ c2 <

q
c2
2
+ 4(y2

1
+ c1y1)

from which constraints 5 and 6 follow.

Combining each of these constraints give the range of possible values for y1

to numerically search for a stationary point. Once y1 is found, (A.3) and (A.2) give

the corresponding (x, y2). Note that it is possible that there be no stationary points

within x > 0.
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Optimization over x < 0.

Finding stationary points in the interval x 2 (l, 0) is analogous to the case where

x 2 (0, u), but with some sign changes and so the details are omitted.

Case c  0.

Consider the case where c  0. Then it is easy to see that when b > 0 then

(l, u) ✓ (0, 1), while if b < 0 then (l, u) ✓ (�1, 0). Again, solving this is very similar

to the previous case, however one must pay closer attention to the range of values

y1 may take. In particular, when b > 0, (A.2) must still hold at stationary points,

but one must restrict this in (l, u) rather than (0, u). This results in two quartic

constraints on y1. Again the details are omitted.

142



Bibliography

Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. An Introduction

to Random Matrices. An Introduction to Random Matrices, 2009. doi:

10.1017/cbo9780511801334.

Alejandra Avalos Pacheco. Factor regression for dimensionality reduction and data

integration techniques with applications to cancer data. PhD thesis, University

ofWarwick, 2018.

Alejandra Avalos-Pacheco, David Rossell, and Richard S. Savage. Heterogeneous

Large Datasets Integration Using Bayesian Factor Regression. Bayesian Analysis,

-1(-1):1–34, 2020. ISSN 1931-6690. doi: 10.1214/20-ba1240.

Jonathan J. Azose and Adrian E. Raftery. Estimating large correlation matrices for

international migration. The Annals of Applied Statistics, 12(2):940–970, 2018.

doi: 10.1214/18-AOAS1175.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre D’Aspremont. Model Selec-

tion Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian

or Binary Data. Journal of Machine Learning Research, 9:485–516, 2008. ISSN

02552930.

Sayantan Banerjee and Subhashis Ghosal. Bayesian structure learn-

ing in graphical models. Journal of Multivariate Analysis, 136:147–

162, 2015. ISSN 10957243. doi: 10.1016/j.jmva.2015.01.015. URL

http://dx.doi.org/10.1016/j.jmva.2015.01.015.

Haim Y. Bar, James G. Booth, and Martin T. Wells. A Scalable Empirical Bayes

Approach to Variable Selection in Generalized Linear Models. Journal of Com-

putational and Graphical Statistics, 29(3):535–546, 2020. ISSN 15372715. doi:

10.1080/10618600.2019.1706542.

143



Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-

sity press, 2004.

Leo Breiman. Heuristics of instability and stabilization in model selection. Annals of

Statistics, 24(6):2350–2383, 1996. ISSN 00905364. doi: 10.1214/aos/1032181158.
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