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Abstract

This thesis consists of three essays on commodity and foreign exchange deriva-

tives. Chapter 2 proposes a comprehensive option pricing model to capture stylized

features in the energy commodity market. We use the Brent crude oil as a showcase

and show that its implied volatility exhibits seasonal pattern and the skewness of its re-

turn distributions is time-varying. The option pricing model we proposed in this paper

is able to capture these stylized features. The estimation results show that the model

pricing performance for the crude oil options is significantly improved by capturing the

time-varying skewness of return distributions, while there is no significant improvement

by capturing the seasonal pattern in volatility.

Chapter 3 investigates the impact of speculative trading on the commodity futures

risk premium. We focus on speculators’ spread positions, and study the asset pricing

implications of spreading pressure on the cross-section of commodity futures returns.

In an era of financialization of commodity markets, a long-short portfolio based on the

spreading pressure signal carries a significant risk premium. We show that spreading

pressure reflects speculators’ expectations about the change in the shape of the futures

term structure, which is linked to commodity index investment. The spreading pressure

factor can be explained by economic fundamentals and frictions introduced by financial

traders.

Chapter 4 starts with risk-neutral probabilities of the Brexit referendum us-

ing data from both the options and prediction markets. We then provide a risk-

xi



corrected measure of these probabilities using both non-parametric and parametric meth-

ods. While former correction marginally changes the risk-neutral probability, the per-

formance of the latter depends on relative wealth calibration and risk preferences. We

estimate subjective Brexit probabilities from past opinion polls and also provide daily

estimates of voting intention to leave from BES survey. By comparing the subjective

probabilities with our risk-corrected measures, our results show that both FX option

and prediction market participants reveal moderate risk seeking preferences before the

Brexit referendum.
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Chapter 1

Introduction

This thesis consists of three essays on commodity and foreign exchange derivatives.

Chapter two proposes a comprehensive option pricing model to capture stylized features

in the energy commodity market. Chapter three investigates the impact of speculative

trading on the commodity futures risk premium. Chapter four studies information on

extreme political events contained in the financial and prediction markets.

In chapter two, we propose a comprehensive option pricing model to capture

stylized features in the energy commodity market. Doran and Ronn (2005, 2008) and

Back et al. (2013) show that the seasonal pattern in volatility is an important stylized

feature for energy commodities. Fernandez-Perez et al. (2018) and Chatrath et al. (2015)

document that skewness in commodity return distributions is volatile to some extent.

To improve the option pricing model performance in the commodity market, it is crucial

to capture the seasonal pattern in volatility (Back et al., 2013), model the volatility as

a stochastic process (Schwartz, 1997; Duffie et al., 1999; Anderson, 1985; Larsson and

Nossman, 2011) and fit the time-varying behaviour of implied volatility curves (Carr and

Wu, 2007).

We use Brent crude oil options as an example to conduct empirical analysis. We

find that the Brent crude oil exhibits seasonal pattern in option implied volatility and

1



time-varying skewness of return distributions. Inspired by the empirical evidence, we

propose a comprehensive option pricing model to capture these two stylized features in

the energy commodity market. We employ a sine function to capture the seasonal pattern

in volatility and use two separate jumps and two independent activity rates to generate

time-varying skewness of return distributions for both short and long horizons. Then we

test whether and how much the option pricing model performance is improved by each

generalization. The empirical results show that the option model pricing performance

is significantly improved by capturing the time-varying skewness of return distributions

in the crude oil market, but is less affected by capturing seasonality in volatility. This

is because the crude oil is closer to financial assets than other commodities, thus, the

seasonal pattern in volatility is not as strong as other commodities (such as natural gas).

Our option pricing model can be widely applied to price other commodity options, since

these two stylized features are not unique to the crude oil market.

In chapter three, we investigate the impact of speculators’ trading activities on the

time-varying commodity futures risk premium. In particular, we focus on speculators’

spread trade positions, and study their asset pricing implications for the cross-section

of commodity futures returns. Commodity spread trades are intra-commodity investing

strategies that involve simultaneously buying and selling the same amount of futures

contracts with different maturities within a single commodity. The financialization of

the commodity markets from around 2005 has prompted the exponential growth of such

strategies (Tang and Xiong, 2012; Singleton, 2014). Speculators take intra-commodity

spread positions in order to obtain risk exposures to the change in the shape (slope or

curvature, or both) of commodity futures term structures. Hence, the extent to which

speculators enter spread trade positions (spreading pressure) may reflect the information

on the commodity futures term structure and futures returns.

First, we find spreading pressure predicts futures excess returns negatively and

significantly even after controlling for important determinants, including basis-momentum,

2



hedging pressure, and changes in speculators’ trading positions. Our Fama-MacBeth

cross-sectional regression results show that weekly excess returns decrease by about 1.78

percentage points when smoothed spreading pressure increases by 1 percentage point.1

Second, our spreading pressure long-short portfolio generates excess returns of as high as

22.52% (with a Sharpe ratio of 0.94) per annum, and it yields higher cumulative returns

than other pricing portfolios including basis, momentum, and basis-momentum (Figure

3.6) since 2005.

Third, we show that spreading pressure is a priced factor (spreading pressure

factor) in the cross-section of commodity futures returns, especially after 2005. The

estimated price of risk on the spreading pressure factor is 20.95% per annum, and our

single-factor model provides a better cross-sectional fit than the extant two- or three-

factor models, which feature R2 of as high as 66.81%. Interestingly, the pricing power

of spreading pressure comes mainly from money managers, including CTAs and hedge

funds. Lastly, spreading pressure reflects the expected slopes and curvatures of the

commodity futures term structure. The spreading pressure factor is explained by Asian

emerging market returns (Tang and Xiong, 2012; Henderson et al., 2015) and by inno-

vations in real economic uncertainty (Bloom, 2009; Ludvigson et al., 2019). It is not

captured by liquidity, volatility, inventory, or financial intermediary risk.

In chapter four, we study information on extreme political events contained in

the financial and prediction markets. Odds from prediction markets can be employed

as probabilities of an extreme event (Belke et al., 2018). In the financial market, the

extreme political event may change the return of any asset due to an expectation of a

discrete shift in the return distribution (Rogoff, 1977, 1980; Lewis, 2016), thus, probabil-

ities of an extreme event can be inferred from the option market (Borochin and Golec,

2016; Carvalho and Guimaraes, 2018; Kostakis et al., 2020; Langer and Lemoine, 2020).

1We refer to the twelve-month average of spreading pressure as smoothed spreading pressure. We use
a one-year time window to smooth out the effect of seasonality and the maturity of futures contracts on
our measure. Kang et al. (2020) use a similar approach to compute their measure of hedging pressure.
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However, the event probabilities implied in both the options and prediction markets

are risk-neutral probabilities, and it is affected by agents’ perception and participants’

risk preference. Better estimates of physical probabilities are essential to understanding

how well the financial market anticipate event probabilities. Therefore, we construct

subjective physical probability proxy of extreme political events by considering a set of

political opinion polls. We also use both parametric and non-parametric method to do

the risk-correction for the risk-neutral probabilities implied in both markets.

Empirically, we focus on a particular binary political event: the European Union

(EU) withdrawal referendum held by the United Kingdom (UK) on the 23rd of June

2016 (Brexit). If UK leave EU, agents would thus be expecting that the sterling (British

pound or GBP) value to the other currencies, especially to the United States dollar

(USD), would be negatively impacted. Therefore, we investigate the risk-neutral density

(RND) extracted from British Pound options. We find that RNDs from short maturities

options are bimodal distributed one week before the referendum and risk-neutral tail

risk of GBP/USD deviates from its normal level since the beginning of 2016. Therefore,

it is reasonable to suppose that agents attached a probability that a discrete change in

the economic fundamentals that govern the dynamics of the GBP exchange rate would

occur. This is the typical description of a “Peso Problem”.

We extract risk-neutral probabilities from the option market using both model-

based and model-free methods. Different from Kostakis et al. (2020) and Borochin and

Golec (2016), we find that cheap out-of-the-money options carry more information about

the probabilities of the ‘Brexit’ outcome. On average, the options market reveals a higher

“Leave” risk-neutral probability by comparison to the betting market, but both market

participants seem to closely track opinion poll results when assessing event probabilities.

While subjective probabilities extracted from polls rationalize the Brexit surprise, voting

intentions estimated from surveys which are determined by persistent characteristics

(age, education, income), political views and the risk preferences of the voters, are likely

4



to be a better guide for physical probabilities. We construct risk-neutral Arrow-Debrew

prices from both markets and filter out risk-corrected probabilities from market prices

using both a non-parametric (Ross Recovery Theorem) and a parametric (calibrating

the stochastic discount factor) approach. Only parametric recovery is likely to have

an impact on the level of Brexit probability estimates, albeit under strict parametric

assumption. However, we argue that markets could have signalled higher Brexit outcome

once we allow for speculative trading triggered by such binary political events in both

prediction and option markets. Arguably, reliance on risk-neutral probabilities from

both markets were misleading as an indicator for “Leave” outcome.
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Chapter 2

Empirical Performance of

Alternative Pricing Models of

Energy Options

2.1 Introduction

Following the financialazation of the commodity market in 2004 and the poor perfor-

mance of stocks and Treasuries during the financial crisis, commodities have become an

asset class favoured by investors. According to the Futures Industry Association (FIA)

Annual Volume Survey in 2015, the total number of commodity futures and options con-

tracts rose from less than 1 billion in 2005 to 4.6 billion in 2015, becoming the asset class

with the second highest number of contracts in the futures and options market. This

is much more higher than the FX futures and options contracts with the third largest

trading volume (2.78 billion), and more than half of the largest trading volume of stock

index contracts (8.34 billion). Thus, it is critical to find an appropriate model to price

commodity options.

To find an appropriate model to price commodity options, understanding the dy-
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namic of volatility and time-varying behaviour of implied volatility curves are important.

Brooks and Prokopczuk (2013) illustrate that it is inappropriate to treat different types

of commodities as a single asset class, since the volatility behaviours are different across

market segments, but are similar to commodities in the same market segment. Thus,

we limit our attention to a single sector, the energy sector, since it is the most liquid

and the largest sector in the commodity market. Specifically, due to the increase in

index investors after the financialazation of the commodity market, the liquidity of the

components in the commodity indices (e.g. the S&P Goldman Sachs Commodity Index

(S&P GSCI) and the Dow Jones-UBS Commodity Index (DJ-UBSCI)) has increased

significantly. As the component with the highest proportion of commodity indices, the

energy sector became the most liquid segment. Besides, according to the 2015 FIA An-

nual Volume Survey, the energy sector has the highest number of traded futures and

options contracts in the commodity market, 1.6 billion. Lastly, crude oil and the other

commodities in the energy sector are widely used in many economic areas, and are the

most important fuels in the modern economy. The valuation studies on crude oil and

the other energy commodities derivatives provide insights into risk management for rel-

evant energy companies and have a crucial impact on the economy. Based on the above

reasons, this paper focuses on the energy sector and uses crude oil options as an example

to conduct empirical analysis.

Energy commodity returns are not normally distributed. Brooks and Prokopczuk

(2013) analyse the first four moments of crude oil, gasoline and S&P 500 index returns.

It shows that the average returns of these two energy commodities are lower than the

S&P 500 index, but the corresponding volatilities are higher, which is consistent with the

findings of Regnier (2007). Energy commodity returns distributions are more negatively

skewed and less leptokurtic than the S&P 500 index. Alexander (2004) also shows that

the natural gas returns distribution has same stylized features. Therefore, the energy

commodity returns are not normally distributed and are slightly different from financial

7



assets.

Different from traditional financial assets, the seasonal pattern in price and

volatility has been observed in commodity market. Seasonality in the price level af-

fects the drift term in the spot return process, while it does not affect the futures price,

since futures price is a martingale without the drift term under the risk-neutral measure.

Commodity options are typically written on futures, thus, seasonality in price level is

not important for commodity option pricing (Back et al., 2013). Doran and Ronn (2005,

2008) and Back et al. (2013) show that the seasonal pattern in volatility is an impor-

tant stylized feature for energy commodities. Looking into realized volatility in the oil

market, Doran and Ronn (2008) and Geman and Ohana (2009) document that the oil

volatilities are consistent across months and a seasonal pattern is not found, since the oil

market is a world market. Doran and Ronn (2005) focus on the options implied volatility

and find seasonal pattern in the crude oil volatility, but this seasonal pattern is relatively

weaker than the one in the natural gas market. To study the seasonal pattern in the

Brent crude oil volatility in the recent years, we examine both realized volatility and

options implied volatility. We find that the implied volatility in the crude oil market has

a seasonal pattern, while the seasonal pattern in realized volatility is relatively weak.

The variation in the skewness of return distributions can be observed in the

financial markets, for example, the currency market (Carr and Wu, 2007; Bakshi et al.,

2008) and the stock market (Harvey and Siddique, 1999). In commodity market, the

evidence for the time-varying skewness in return distributions is not that straightforward.

Chatrath et al. (2015) show that, in the crude oil market, the forecasting of realized

volatility can be improved by incorporating the risk-neutral skewness. Fernandez-Perez

et al. (2018) construct a skewness factor by using historical returns skewness and find

that it is a pricing factor in the commodity market. In some extent, these literature

confirms that the skewness of commodity return distributions is volatile. To investigate

the variation in crude oil return distributions directly, we follow the method proposed
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by Carr and Wu (2007) and use the risk reversal to measure the skewness. We find that

the crude oil return skewness is very volatile and the sign also changes over time.

To improve the option pricing model performance in the commodity market, it is

crucial to capture the seasonal pattern in volatility and time-varying skewness in return

distributions. Back et al. (2013) find that the pricing performance of the commodity

option pricing model can be greatly improved with seasonal components in the volatility,

under an assumption that volatility is not stochastic. However, Schwartz (1997), Duffie

et al. (1999), Anderson (1985) and Larsson and Nossman (2011) show that stochastic

volatility is an important feature in oil and energy price process, which follows a mean-

reversion process (Wickham, 1996; Abosedra and Laopodis, 1996; Pindyck, 2004; Trolle

and Schwartz, 2009). Different from the literature, we propose an option pricing model

with seasonal components in the volatility under an assumption of stochastic volatility.

Apart from this, previous studies focus on improving the performance of commodity

option pricing models by fitting the average behaviour of implied volatility, but keep

salient to the time-varying skewness of implied volatility curve. Inspired by the currency

option pricing model proposed by Carr and Wu (2007) and Bakshi et al. (2008), we use

two independent up and down jumps through two Lèvy processes in the commodity spot

return process to generate time-varying skewness.

The contributions and findings of this paper are in two aspects. Theoretically,

we contribute to the literature on commodity option pricing models by proposing a new

comprehensive option pricing model to adapt to the empirical characteristics of energy

commodity, the time-varying skewness in return distributions and seasonal pattern in

volatility. This model could be widely applied to the other options and can be easily

restricted to capture one of the empirical characteristics only. Empirically, we first show

that the skewness in commodity return distributions is very volatile while the kurtosis

is persistent. We also examine whether and how much each generalization improves the

option pricing model performance and find that capturing time-varying skewness can
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improve the option pricing model performance significantly in the crude oil market.

2.2 The Behaviour of Commodity Returns

2.2.1 Data Description

Crude oil is one of the most important products in the commodity market. It accounts for

the largest proportion of popular commodity indices (e.g. the S&P Goldman Sachs Com-

modity Index (S&P GSCI) and the Dow Jones-UBS Commodity Index (DJ-UBSCI)).

As the most liquid and highly traded market, crude oil options have a wide range of

strike prices and a rich set of maturities. Similar as most of exchange-listed commodity

options, ICE-listed crude oil options are American-style and written on futures. Thus,

we collect settlement prices of ICE Brent Crude American-style Option Contracts and

ICE Brent Crude Futures Contracts from Blomberg. The sample period we used in this

paper is between 15 May, 2013 and 17 May, 2017. We use weekly data in the empirical

test and we take weekly data on each Wednesday. Thus, our data contains 210 weekly

observations. In order to test whether stylized facts of crude oil return are unique in the

commodity market, we also examine stylized facts of natural gas return. Therefore, we

collect the weekly settlement prices of NYMEX Henry Hub Natural Gas Option Con-

tracts and NYMEX Henry Hub Natural Gas Futures Contracts between 15 May, 2013

and 17 May, 2017.

We use the following procedures to sort the data. First of all, for the liquidity

concern, we discard deep out-of-the-money (OTM) options, that is, options with mon-

eyness less than 0.9 or with moneyness greater than 1.1. The moneyness of an option is

defined as the strike price divided by the corresponding underlying futures price. Sec-

ond, we discard options either with long maturities or very short maturities because

they are less liquid than the rest of the options. Specifically, we retain options with

maturity up to six months and keep two more options expiring in the nearest March,
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June, September, or December. We set options with very short maturities as options

that expires within 14 days. Third, we discard in-the-money (ITM) options, that is,

call options with moneyness less than one and put options with moneyness greater than

one. Due to the options observed in our sample are American-style, and our pricing

model is for European-style options, we convert the observed American options prices

into European options prices. Using at-the-money (ATM) and OTM options in this step

can minimize the impact of the early exercise premiums.

Figure 2.1 shows the one-month implied volatilities of ATM Brent crude oil op-

tions. By the third quarter of 2014, the implied volatility is around 20%. In the fourth

quarter of 2014, the implied volatility soars to around 50%. Since then, the implied

volatility remains at a relatively high level. According to the U.S. Energy Information

Administration (EIA), Brent crude oil prices experienced a 50% sharp drop in the fourth

quarter of 2014 due to global crude oil production exceeding demand. Since then, crude

oil price has fluctuated around this level until the end of our sample period. The regime

switch in crude oil prices has caused changes in implied volatility to a certain extent.

2.2.2 Seasonality in Volatility

Demand or/and supply uncertainty for most commodities (e.g. energy commodities,

agriculture commodities) is highly affected by climate change (Anderson, 1985), which

leads to the uncertainty of commodity returns often showing seasonal patterns. To test

the seasonal pattern in volatility, we use both realized volatility and implied volatility

(Back et al., 2013).

The realized volatility is calculated from the price of the front-month futures

contract. We use the return of the front-month futures contract as the daily spot return.

The monthly realized volatility is measured by the annualized standard deviation of the

daily spot returns during the month. To test the seasonal pattern, we calculate the

average realized volatilities grouped by month and fit the data by using a sine function.
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Figure 2.2a shows the average realized volatility in the Brent crude oil market. As we

can see, the range of averaged realized volatility is from 16% to 38% and we can observe

a very weak seasonal pattern.

The implied volatility from the option market reflects the investors’ belief as to the

futures volatility of the underlying return. The implied volatility from the Brent crude

oil options is obtained with the Barone-Adesi and Whaley (BAW) American commodity

futures options pricing model (Barone-Adesi and Whaley, 1987). We focus on the ATM

options and group implied volatilities by the corresponding maturity months. Figure 2.2b

displays the maturity month average implied volatilities from Brent crude oil options and

a fitted curve based on a sine function. Compared with the realized volatility, we can

observe a stronger seasonal pattern in the implied volatility.

2.2.3 Time-varying Skewness of the Return Distribution

Implied volatility curve reflects the market’s expectations of underlying return distri-

bution. It usually exabits smile or smirk shape, which indicates that the underlying

returns are not normally distributed under the risk-neutral measure. To examine the

implied volatility curve from the Brent crude oil options, we interpolate implied volatil-

ity curve for six fixed horizons, one-, two-, three-, six- and twelve- months. We focus

on the implied volatilities with seven fixed moneyness levels, 90%, 95%, 97.5%, 100%,

102.5%, 105% and 110%. Following Doran and Ronn (2005), Wayne et al. (2010) and

Ederington and Guan (2002), to avoid noise from individual options, we calculate im-

plied volatility for a target moneyness level by taking the average of implied volatilities

from three options with same maturity and the moneyness levels closest to the target.

Figure 2.2c shows the average implied volatility curve from Brent crude oil op-

tions over three horizons, one-month, three-month and one-year. To display the average

implied curves clearly in this figure, we lift up one year implied volatility curve by 2%.

The average implied volatility curve for one-month horizon shows a ‘smile’ shape, and the
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average implied volatility curve for three-month and one-year horizons exhibit ‘smirk’

shapes. Thus, crude oil return distributions are negative skewed, which indicate the

average return distributions for different horizons have fat left tails during our sample

period.

To investigate the time-series variation of Brent crude oil return distributions, we

use time-series risk reversals (RR) and butterfly spreads (BF) to measure the skewness

and excess kurtosis of the return distributions, respectively. The 5% risk reversal (RR5)

is the implied volatilises difference between a call option with 105% moneyness and a

put option with 95% moneyness,

RR5 = IV (105%)− IV (95%) , (2.1)

where IV (105%) and IV (95%) represent implied volatility at 105% moneyness level and

at 95% moneyness level, respectively. The 5% butterfly spread measures the curvature

of implied volatility curve between 95% and 105% moneyness. We calculate it as the

difference between the average of implied volatilities at 95% and 105% moneyness levels

and implied volatility of at-the-money options,

BF5 =
IV (95%) + IV (105%)

2
− IV (100%) , (2.2)

where IV (100%) is the implied volatility of at-the-money options.

Figure 2.2d shows the three-month 5% risk reversal (RR5) and 5% butterfly

spread (5BF) calculated from Brent crude oil options. According to this figure, the 5%

risk reversal is very volatile (fluctuates between -5% to 1%) and 5% butterfly spread is

relatively persistent from May 2013 to May 2017. Specifically, the 5% risk reversal is

negative most of the time, except in July 2014. This indicates the skewness of crude oil

returns is time-varying and is mainly negative in our sample period.

Table 2.1 shows the average, standard deviation and weekly autocorrelation of
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5% risk reversals and 5% butterfly spreads for five horizons, one-, two-, three-, six- and

twelve- months. First of all, in average, the risk reversal is negative from one month

to one year horizons. Thus, the out-of-money put options is more expensive than the

out-of-money call options in average in our sample period. Moreover, the standard

deviation of butterfly spreads is significantly lower than risk reversals. So, in the option

pricing model, capturing the time-varying skewness of the crude oil return distribution

is more crucial than the time-varying kurtosis. Lastly, both risk reversals and butterfly

spreads are strongly serial correlated, and the correlations increase with maturities. This

indicates short term contracts and long term contracts are dominated by volatility factors

with low persistent and high persistent, respectively. Therefore, we model the long-run

mean level of the volatility as a stochastic process.

Figure 2.A-1 shows that the seasonal pattern in volatility and time-varying skew-

ness of return distributions can be observed in the natural gas market as well. Hence,

these stylized features are not limited in the crude oil market. Option pricing models

that can capture these two features can potentially be applied to the other commodity

options.

2.3 Theoretical Model

Standard pricing models of commodity derivatives (e.g. Gibson and Schwartz, 1990;

Schwartz, 1997) usually specify a process for commodity spot return and spot cost of

carry, respectively. In this paper, we follow Trolle and Schwartz (2009) to specify a

process for the forward cost of carry instead of the spot cost of carry. Thus, this section

is organized as follows. Firstly, we describe the specification of the commodity spot

return process. Then, we specify the forward cost of carry process. After that, we

derive the commodity futures price process. Lastly, we show the pricing formula for the

commodity futures options.
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2.3.1 Commodity Spot Price

We start the model with the specification for the commodity spot return process (Trolle

and Schwartz, 2009). Define S(t) as the commodity spot price at time t, where the

instantaneous spot cost of carry is δ(t). Assuming that the spot log-return of the com-

modity follows a time-changed Lèvy process under the risk-neutral measure Q,

st = ln
S(t)

S(0)
=

∫ t

0
δ(u)du+ (LRTt − ξ

RT Rt ) + (LLTt − ξ
LT Lt ), (2.3)

where LRt and LLt are two Lèvy processes, which can capture the right and left skewness

of the commodity return distributions, respectively. ξR and ξL are known functions

used to ensure exponentials of two Lèvy components, LRTt−ξ
RT Rt and LLTt−ξ

LT Lt , to be

martingales under the risk-neutral measure Q, respectively. Two independent stochastic

time changes T Rt and T Lt used in Lèvy components can generate independent stochastic

volatility (Carr and Wu, 2007).

According to the specification of the commodity spot return process in equation

2.3, this model can generate average implied volatility smiles/smirks at different ma-

turities, and time-varying skewness of the commodity return distributions. First, two

Lèvy components can generate non-normally distributed commodity spot returns in the

short-term, and stochastic time changes slow down the long-term convergence speed of

the return distribution to the normal distribution. So the average shape of the implied

volatility curve from both short-term and long-term options can be captured. Besides,

two independent stochastic time changes can generate different weights for two Lèvy

components over time. When the weight on the right skewed Lèvy component (LRt ) is

lower than the left skewed one (LLt ), the return distribution is left skewed and a neg-

ative risk reversal is generated, and vice versa. Due to the variation of the two Lèvy

components’ relative weight over time, the sign and the magnitude of the skewness of

the return distributions are also time-varying.
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Two Lèvy components in equation 2.3 can be decomposed as the following equa-

tions:

LRt = JRt + σSe
ξ(t)WQ

R1(T Rt ), LLt = JLt + σSe
ξ(t)WQ

L1(T Lt ), (2.4)

where WQ
R1 and WQ

L1 are two independent Brownian Motions and JRt and JLt are two

pure jump components. For simplicity, we assume that the unconditional returns are

relative symmetric distributed. Thus, we set the volatility parameter σS and the deter-

ministic function ξ(t) capturing the seasonal pattern in volatility as the same for two

Lèvy components. Following Back et al. (2013), we specify ξ(t) as

ξ(t) = θ sin(2π(t+ ζ). (2.5)

Following Carr and Wu (2007), the density functions πR(x) and πL(x) for two

jumps components JRt and JLt are defined as the following:

πR(x) =


λe
−υJ|x| | x |−α−1, x > 0

0, x < 0

and πL(x) =


0, x > 0

λe
−υJ|x| | x |−α−1, x < 0

. (2.6)

This means that the right skewed and left skewed jump components only allow up and

down jumps, respectively. For parsimony, we set same parameters ((λ, υJ) ∈ R+ andα ∈

(−∞, 2]) in the density function of up and down jumps. Similar to the CGMY model

(Carr et al., 2002), λ measures the overall level of activity, υJ captures the arrival

frequency of large jumps relative to small ones, and α controls the jump variation, or

activity. The jump process could exhibits finite activity (α < 0), infinite activity with

finite variation (0 ≤ α < 1), or infinite variation (1 ≤ α ≤ 2). The magnitude of α is

not restricted in this paper.

The activity rates of two Lèvy components (υR1 and υL1 ) are defined as the first-
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order differential of stochastic time changes,

υR1 (t) =
∂T Rt
∂t

, υL1 (t) =
∂T Lt
∂t

. (2.7)

We model two activity rates as mean-reversion processes with two stochastic mean levels,

dυj1(t) = κ1(υj2(t)− υj1(t))dt+ συ1

√
υj1(t)dWQ

j3(t), (2.8)

and the long-run mean of υj1(t) is

dυj2(t) = (η − κ2υ
j
2(t))dt+ συ2

√
υj2(t)dWQ

j4(t), (2.9)

where j = R, L, and WQ
j3(t) and WQ

j4(t) are independent Brownian Motions.

We define ρR1 (ρL1) as the correlation between the Brownian motions WQ
R1(t)

and WQ
L1(t) (WQ

R3(t) and WQ
L3(t)), which is

ρj1dt = E(dWQ
j1(t)dWQ

j3(t)), (2.10)

where j = R, L. We restrict ρR1 and ρL1 to be positive and negative, respectively (Carr

and Wu, 2007). This restriction ensures that the two Lèvy processes (LRt and LLt ) capture

the time-varying skewness of commodity spot return distributions at both short and long

horizons. Specifically, two pure jump Lèvy components (JRt , J
L
t ) generate positive and

negative skewness at short horizons, respectively. At long horizons, we generate the

positive and negative skewness via two correlations ρR1 and ρL1, respectively.

Let J̄R(dt, dx) and J̄L(dt, dx) denote two jump measures of positive and negative

jumps size x(·) on R+ ×R. Define νR(dx) and νL(dx) as Lèvy measures of positive and
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negative jumps and dt as the Lebesgue measure on [0, t]. Then we define

JR(dt, dx) =


J̄R(dt, dx)− νR(dx)dt if 0 < x < R

J̄R(dt, dx) if x ≥ R
(2.11)

and

JL(dt, dx) =


J̄L(dt, dx)− νL(dx)dt if −R < x < 0

J̄L(dt, dx) if x ≤ −R
(2.12)

for some R ∈ [0,∞).

According to the Ito’s Lemma for Ito-Lèvy process, the stochastic differential

equation (SDE) of the commodity spot return process is

dS(t)

S(t)
= δ(t)dt+

∫ +∞

0
(ex − 1)JR(dt, dx) + σSe

ξ(t)
√
υR(t)dWQ

R1(t)

+

∫ 0

−∞
(ex − 1)JL(dt, dx) + σSe

ξ(t)
√
υL(t)dWQ

L1(t).

(2.13)

2.3.2 Forward Cost of Carry

We define y(t, T ) as the instantaneous forward cost of carry from time t to T and t ≤ T ,

thus, y(t, t) = δ(t). Assume that the forward cost of carry of the commodity depends on

the same volatility factors as the spot return, υR(t) and υL(t). Therefore, the dynamic

process of the forward cost of carry can be written as

dy(t, T ) = µy(t, T )dt+ σy(t, T )eξ(t)
√
υR(t)dWQ

R2(t) + σy(t, T )eξ(t)
√
υL(t)dWQ

L2(t).

(2.14)

For parsimony, we set the volatility parameter σy(t, T ) of the forward cost of carry

as the same for two independent Brownian motions WQ
R2(t) and WQ

L2(t). We allow the

independent Brownian motions (WQ
R2(t),WQ

L2(t)) in the forward cost of carry process and

(WQ
R1(t),WQ

L1(t)) in the spot return process to be correlated, and donate correlations as
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(ρR, ρL). Thus,

ρjdt = E(dWQ
j1(t)dWQ

j2(t)), j = R,L. (2.15)

Similarly, we denote (ρR2, ρL2) as the correlations between the Brownian motions

(WQ
R2(t),WQ

L2(t)) in the forward cost of carry process and (WQ
R3(t),WQ

L3(t)) in the activity

rate process,

ρj2dt = E(dWQ
j2(t)dWQ

j3(t)), j = R,L. (2.16)

2.3.3 Commodity Future Price

Define F (t, T ) as the commodity futures price at time t expiring at time T . Then, the

futures price is

F (t, T ) = S(t) exp(

∫ T

t
y(t, u)du). (2.17)

Under the condition of no arbitrage, the futures price is a martingale under the risk-

neutral measure Q. So the drift term of the futures return process should be equal to

zero. Thus, the process of the futures price is

dF (t, T )

F (t, T )
=
√
υR(t)eξ(t)

[
σSdW

Q
R1(t) +

(∫ T

t
σy(t, u)du

)
dWQ

R2(t)

]
+
√
υL(t)eξ(t)

[
σSdW

Q
L1(t) +

(∫ T

t
σy(t, u)du

)
dWQ

L2(t)

]
+

∫ +∞

0
(ex − 1)JR(dt, dx) +

∫ 0

−∞
(ex − 1)JL(dt, dx),

see Appendix 2.B. According to this equation, the futures price depends on two volatility

factors, υR(t) and υL(t). These two volatility factors are driven by WQ
R3(t), WQ

R4(t),

WQ
L3(t) and WQ

L4(t), which are not shown in the above equation. Hence, trading on

the futures contracts cannot completely hedge instantaneous volatility risk. Since we

assume that (WQ
R4(t),WQ

L4(t)) are completely uncorrelated with (WQ
R1(t),WQ

L1(t)) and

(WQ
R2(t),WQ

L2(t)), the long-term mean volatility risk is completely unhedgable by trading

on futures contracts.
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Since the volatility of the long-term forward cost of carry should be less than

the short-term forward cost of carry, following Trolle and Schwartz (2009), we specify

σy(t, T ) as

σy(t, T ) = αe−γ(T−t), (2.18)

We denote σ∆
Y as the integral of σy(t, T ), which is

σ∆
Y =

∫ T

t
σy(t, u)du =

∫ T

t
αe−γ(u−t)du =

α

γ
− α

γ
e−γ(T−t), (2.19)

where ∆ is a set of parameters (t, T ).

According to equation 2.18 and the Ito’s lemma, the dynamics of the log futures

price lnF (t, T ) is

d lnF (t, T ) =

∫ +∞

0
xJR(dt, dx) +

∫ 0

−∞
xJL(dt, dx)

+
√
υR(t)eξ(t)

[
σSdW

Q
R1(t) + σ∆

Y dW
Q
R2(t)

]
− ξFR(t)dt

+
√
υL(t)eξ(t)

[
σSdW

Q
L1(t) + σ∆

Y dW
Q
L2(t)

]
− ξFL(t)dt,

(2.20)

where

ξFR(t) =

∫
0<x<R

(ex − 1− x) νR(dx) +
1

2
e2ξ(t)υR(t)

[
(σS)2 + (σ∆

Y )2 + 2ρRσSσ
∆
Y

]
,

ξFL(t) =

∫
−R<x<0

(ex − 1− x) νL(dx) +
1

2
e2ξ(t)υL(t)

[
(σS)2 + (σ∆

Y )2 + 2ρLσSσ
∆
Y

]
,

(2.21)

Then we define two Lèvy processes LFRt and LFLt in the futures price process as

LFRt = JRt + σSe
ξ(t)WQ

R1(T Rt ) + σ∆
Y e

ξ(t)WQ
R2(T Rt ),

LFLt = JLt + σSe
ξ(t)WQ

L1(T Lt ) + σ∆
Y e

ξ(t)WQ
L2(T Lt ),

(2.22)
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then, we can rewrite the futures return process within the Lèvy framework

f(t, T ) = ln
F (t, T )

F (0, T )
= (LFRT Rt

− ξFRT Rt ) + (LFLT Lt
− ξFLT Lt ). (2.23)

2.3.4 Commodity Future Option Price

Define the generalized Fourier transform of the commodity futures return f(t, T ) as the

following

φf (u) ≡ EQ
(
eiuf(t,T )

)
= EQ

[
e
iu(LFR

TRt
−ξFRT Rt )+iu(LFL

T Lt
−ξFLT Lt )

]
,

(2.24)

where u ∈ D ⊂ C, D is a subset of the complex domain C where the exponent is

well-defined.

Carr and Wu (2004) shows that the generalized Fourier transform of time-changed

Lèvy processes is equivalent to the Laplace transform of the random time change under

a complex valued measure M. The complex valued measure M is

dM
dQ
≡ exp

[
iu(LFRt − ξFRT Rt ) + iu(LFLt − ξFLT Lt ) + ψFRT Rt + ψFLT Lt

]
, (2.25)

where ψ ≡
[
ψFR, ψFL

]T
is the vector of the characteristic exponents of the concavity

adjusted right and left skewed Lèvy components in the futures price process, respectively.

Then, the generalized Fourier transform under the risk-neutral measure Q in equation

2.24 can be written as a Laplace transform of Tt under M:

φf (u) = EM
(
e−ψ

T Tt
)
≡ L M

T (ψ) , (2.26)

where the stochastic time change vector Tt ≡
[
T Rt , T Lt

]
is the vector of two separate

stochastic time changes applied to the right and left Lèvy components, respectively.
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The solution of L M
T (ψ) depends on the characteristic exponents ψ and the stochastic

time vector Tt .

According to the Lèvy-Khintchine Theorem, the characteristic exponents of a

Lèvy component Lt is given by:

ψ (u) ≡ 1

t
lnE

[
eiuLt

]
= −iuµ+

1

2
u2σ2 +

∫
R0

(
1− eiux + iux1|x|<1

)
π (x) dx,

(2.27)

where µ is the drift of Lt, σ
2 is the variance of the diffusion process of Lt, and the Lèvy

density π (x) is the arrival rate of jumps with size x.

The Lèvy components in futures return process have two parts, diffusion compo-

nents and Lèvy jump components. According to the equation 2.27, the characteristic ex-

ponent for the concavity adjusted diffusion components is 1
2

(
u2 + iu

)
e2ξ(t)[(σS)2+(σ∆

Y )2+

2ρjσSσ
∆
Y ]. According to Carr and Wu (2007), the characteristic exponent of the concav-

ity adjusted right skewed jump component with a free α is

λΓ (−α)

[(
1

υJ

)α
−
(

1

υJ
− iu

)α]
− iuλΓ (−α)

[(
1

υJ

)α
−
(

1

υJ
− 1

)α]
, (2.28)

and the characteristic exponent of the concavity adjusted left skewed jump component

with a free α is

λΓ (−α)

[(
1

υJ

)α
−
(

1

υJ
+ iu

)α]
− iuλΓ (−α)

[(
1

υJ

)α
−
(

1

υJ
+ 1

)α]
. (2.29)

To derive the Laplace transform of the stochastic time vector Tt under the com-

plex measurement M, we change the activity rate process (υR1 , υ
L
1 ) from risk-neutral

measure Q to M by using Girsanov’s Theorem. The diffusion coefficients of υR1 and υL1

remain the same as σiυ1

√
υi1(t), and the drift terms should be adjusted. The stochastic

long-run mean υR2 and υL2 of two activity rates remain the same. Then the dynamics
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under measurement M,

dυj1(t) =
(
κυj2(t)− κMj υ

j
1(t)
)
dt+ συ1

√
υj1(t)dWQ

j3(t)

dυj2(t) =
(
η − κ2υ

j
2(t)
)
dt+ συ2

√
υj2(t)dWQ

j4(t),

(2.30)

where κMj = κ+iuσSσ
j
υ1ρj1e

ξ(t) +iuσ∆
Y σ

j
υ1ρj2e

ξ(t). Writing the above process as a matrix

form V (t) ≡
[
υR1 (t), υL1 (t), υR2 (t), υL2 (t)

]T
, then

dV (t) =
(
a− κMV V (t)

)
dt+

√∑
V (t)dWQ

V (t), (2.31)

where

a =



0

0

η

η


, κMV =



κMR 0 −κ 0

0 κML 0 −κ

0 0 κ2 0

0 0 0 κ2


,
∑

=



(
σRυ1

)2(
σLυ1

)2(
σRυ2

)2(
σLυ2

)2


.

The drift term and variance of diffusion term are affine in the activity rates and the long-

run mean activity rates under complex measure M. The generalized Fourier transform

of the futures return is exponential affine in the current level of the activity rates,V (t),

L M
T (ψ) = exp

(
−b (t)T V0 − c (t)

)
, (2.32)

where

b′ (t) = bV −
(
κMV

)T
b (t)− 1

2

∑⊙
b (t)

⊙
b (t) ,

c′ (t) = b (t)T a,

(2.33)

with bV ≡
[
ψFR, ψFL, 0, 0

]T
, b(0) = 0 and c(0) = 0. The Hadamard product

⊙
is

an element-by-element product operation. The coefficients b (t) and c (t) can be solved

numerically starting at b(0) and c(0).

Then, we define the payoff of a commodity futures option at option expiry date
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To as ∏
To,Tf

(k; a, b, c) =
(
a+ bef(To,Tf)

)
1f(To,Tf)≤cTk, (2.34)

where f (To, Tf ) = ln
F(To,Tf)
F(0,Tf)

and F (To, Tf ) is the time-To price for a futrue contract

expiring on date Tf . Specifically, the terminal payoff of a European call option is∏call

To,Tf

(
−ln K

F (0,T ) ;−K,F (0, T ) ,−1
)

and the terminal payoff of a European put option

is
∏put

To,Tf

(
ln K
F (0,T ) ;K,−F (0, T ) , 1

)
Define G (t, To, Tf ,K) as the time-t price of a futures option contract with payoff

of equation 2.34 and the strike price K. To and Tf are expiry dates of the option contract

and its underlying futures contract, respectively. Then,

G (k; t, To, Tf ) = EQ
t

[
e−

∫ To
t r(s)ds

∏
To,Tf

(k; a, b, c)

]
, (2.35)

Assume that the interest rate r(t) and the futures price F (To, Tf ) are uncorrelated, then

G (k; t, To, Tf ) = e−
∫ To
t r(s)dsEQ

[∏
To,Tf

(k; a, b, c)

]
. (2.36)

Define G (z; t, To, Tf ) as the generalized Fourier transform of G (t, To, Tf ,K),

where z ∈ C ⊆ C. To apply fast Fourier inversion on the transform (FFT) to com-

pute the Fourier coefficient G (k; t, To, Tf ), we treat G (k; t, To, Tf ) as the probability

density in G (z; t, To, Tf ),

G (z; t, To, Tf ) ≡
∫ ∞
−∞

eizkG (k; t, To, Tf ) dk

= e−
∫ To
t r(s)ds

∫ ∞
−∞

eizkEQ
[∏

To,Tf
(k; a, b, c)

]
dk.

(2.37)

According to Carr and Wu (2004), the generalized Fourier transform of the futures option
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price G (k; t, To, Tf ) is

G (z; t, To, Tf ) =
i

z

(
aφf(To,Tf)(zc) + bφf(To,Tf)(zc− i)

)
, (2.38)

where its admissible domain Im z is (0,∞), and

G (z; t, To, Tf ) =
i

z

(
aφf(To,Tf)(−zc) + bφf(To,Tf)(−zc− i)

)
, (2.39)

where its admissible domain Im z is (−∞, 0).

Given z = zr + izi, zr and zi are the real and imaginary part of z, respectively.

The price of the futures option G (k; t, To, Tf ) with well-defined payoff function can be

obtained via the Fourier inversion formula,

G (k; t, To, Tf ) ≡ 1

2π

∫ izi+∞

izi−∞
e−izkG (z; t, To, Tf ) dz

=
ezik

π

∫ ∞
0

e−izrkG (zr + izi; t, To, Tf ) dzr.

The discretization of the integral in equation 2.40 is approximately equal to

G (k; t, To, Tf ) ≈ G∗ (k) =
ezik

π

N−1∑
n=0

e−izr(n)kG (zr (n) + izi; t, To, Tf )4zr, (2.40)

where zr (n) are the nodes of zr and 4zr are the distance between nodes.

Following the setting in Carr and Madan (1999), we set zr (n) = dzn, kj =

−kL+dkj and dzdj = 2π
N for j = 0, . . . , N −1. According to the FFT, the futures option

price is

G∗ (kj) =
N−1∑
n=0

e−jn
2π
N
ifn, (2.41)

with

fn =
1

π
ezikj+ikLdznG (dzn+ izi; t, To, Tf ) dz, (2.42)
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where dz and dk are the spacing for integration and the log of moneyness k, respectively.

The range of the log of moneyness is between -kL and dkN − kL. To ensure the middle

point of kj is the at-the-money option (k = 0), we set kL = dkN
2 .

2.4 Estimation Procedure

2.4.1 Specification of the market price of risk

The cross-sectional dynamic of commodity futures options implied volatilities can be

captured well under the risk-neutral measure Q. To capture the time-series variation

of implied volatilities, we specify the process of activity rates under the real probability

measureP. Assume that the market price of risk on activity rates is γ
(
υjn(t)

)
for j = R,L

and n = 1, 2:

γ
(
υjn(t)

)
= γn

√
υjn(t), (2.43)

The dynamics of activity rates under P are

dυj1(t) = (κ1υ
j
2(t)− κP1υ

j
1(t))dt+ συ1

√
υj1(t)dWQ

j3(t),

dυj2(t) = (η − κP2υ
j
2(t))dt+ συ2

√
υj2(t)dWQ

j4 (t) ,

(2.44)

where κP1 = κ1 − συ1γ1 and κP2 = κ2 − συ2γ2.

2.4.2 Kalman Filter and Maximum Likelihood Estimation

To estimate parameters in the analytic solution of option price, we cast the model into

a state-space model and do the estimation by using the Kalman filter and Maximum

Likelihood. In the state-space model, both activity rates and long-run mean of activity

rates are unobservable variables. The discretization of activity rates under statistical
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measure P can be written as

V j
1 (t) = (1− ϕ1j)κ

P
1V

j
2 (t) + ϕ1jV

j
1 (t− 1) + συ1

√
V j

1 (t− 1)∆tεj1(t),

V j
2 (t) = (1− ϕ2j)κ

P
2η + ϕ2jV

j
2 (t− 1) + συ2

√
V j

2 (t− 1)∆tεj2(t),

(2.45)

where j = R,L, ϕ1j = exp
(
−κ
(
υj1

)
∆t
)

and ϕ2j = exp
(
−κ
(
υj2

)
∆t
)

. ϕ1j and ϕ2j are

the auto-correlation coefficients of each activity rates between the time interval ∆t. The

vector of error terms
[
εR1 (t), εL1 (t), εR2 (t), εL2 (t)

]
is an i.i.d. four-variate standard normal

innovation.

Assume that the option pricing error is additive and normally distributed, the

measurement equation under the risk-neutral measure is

O (Vt)

Vt
=
Ô (Vt)

Vt
+ ut, ut ∼ iidN (0,Ω) , (2.46)

where O (Vt) is the actual options prices, Ô (Vt) is the estimated options prices, Vt is

the corresponding Black (1976) Vegas (Vt = ∂O(Vt)
∂σ |σ=σ̂t), ut is the measurement errors

with zero mean and Ω covariance matrix following the normal distribution.

We do not fit the options prices or implied volatilities directly in the measurement

equation due to the following reasons. The options prices are unstable in moneyness,

time to maturity and time-series dimensions. Fitting the options prices may cause the

pricing error (ut) mainly affected by expensive options (i.e. in-the-money and long-term

options). Implied volatility is more stable in the above three dimensions because it

intuitively weights options prices based on moneyness and expiration time. However, it

is difficult to fit the implied volatility directly, because the use of numerical inversion

to convert the estimated options prices into the implied volatilities increases the error

and complexity of the estimation. Instead of fitting implied volatility directly, we follow

Carr and Wu (2007), Bakshi et al. (2008) and Trolle (2014) to fit options prices scaled

by the corresponding Black (1976) Vegas, since O(Vt)
Vt −

Ô(Vt)
Vt ≈ σt − σ̂t.
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We use Kalman filter to update state variables. When the state vector is linearly

correlated to the transition equation and the measurement equation, the general Kalman

filter is appreciate. However, our measurement equation is nonlinear. One possible way

to address the non-linearity is to use the Extended Kalman Filter, but it can only

accurately capture the posterior mean and covariance of the first-order options prices.

To handle the high-order nonlinearity in our model, we use the unscented Kalman filter

(Wan and Van Der Merwe, 2000), which can accurately capture the third-order posterior

distribution.

Define yt+1 as the actual options prices scaled by Vega at time-t+ 1, ȳt+1 as the

time-(t+1) estimated options prices scaled by Vega and ¯Pyyt+1 as the covariance matrix

from measurement equation. And we can obtain these values from unscented Kalman

filter. Assume that pricing errors are normally distributed, then the log-likelihood value

(Carr and Wu, 2007) at at time-t+ 1 is

lt+1 = −1

2
log | ¯Pyyt+1 | −

1

2
(yt+1 − ȳt+1)T

(
¯Pyyt+1

)−1 (yt+1 − ȳt+1) . (2.47)

Then, we can get a set of model parameters Θ from

Θ = arg max
Θ

T∑
t=1

lt (Θ) . (2.48)

2.4.3 Model Specifications

The benchmark model in this paper is the option pricing model proposed by Trolle and

Schwartz (2009). This model sets that both volatility and its long-run mean level are

stochastic, but excluding seasonal components and jumps used to capture time-varying

skewness. According to this specification, we restrict θ = ζ = 0 and λ = υJ = αJ = 0.

We also restrict that one activity rate only in the system and set ρL = ρ1L = ρ2L = 0,

ρ = ρR, ρ1 = ρ1R and ρ2 = ρ2R. So the set of parameters in this model is Θ =
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{ρ, ρ1, ρ2, σS , σ1, σ2, κ1, κ2, α, γ, η, κ
P
1 , κ

P
2}. To test whether and what extent the pricing

performance can be improved by capturing the time-varying skewness of the return

distribution and/or seasonality in volatility, we specify three other models.

In the second model specification (SSV), we capture the time-varying skewness of

the return distribution. This model includes two lèvy components with two jumps and

two activity rates, but excludes seasonal components by setting θ = ζ = 0. The param-

eters in this model are Θ = {ρR, ρ1R, ρ2R, ρL, ρ1L, ρ2L, σS , σ1, σ2, κ1, κ2, α, γ, η, κ
P
1 , κ

P
2 , λ,

υJ , αJ}.

The third model specification (SV-S) is to capture seasonality in volatility. Dif-

ferent from the benchmark model, we relax the restrictions on θ and ζ. The parameters

we have in this model are Θ = {ρ, ρ1, ρ2, σS , σ1, σ2, κ1, κ2, α, γ, η, κ
P
1 , κ

P
2 , θ, ζ}.

The last model specification (SSV-S) is the comprehensive model can capture the

time-varying skewness of the return distribution and seasonality in volatility. The param-

eters are Θ = {ρR, ρ1R, ρ2R, ρL, ρ1L, ρ2L, σS , σ1, σ2, κ1, κ2, α, γ, η, κ
P
1 , κ

P
2 , λ, υJ , αJ , θ, ζ}.

2.5 Empirical Results

2.5.1 Data

To evaluate the pricing performance of the four model specifications , we use the Brent

crude oil data described in Section 2.2.1 to estimate parameters. As we discussed before,

the Brent crude oil options in our sample are American-style, but the option pricing

model in this paper are for European-style options. Thus, we convert the observed

American options prices to European options prices by following Broadie et al. (2007)

and Trolle and Schwartz (2009). First, we use the Barone-Adesi and Whaley (BAW)

American commodity futures options pricing model (Barone-Adesi and Whaley, 1987)

to obtain the BAW implied volatilities from American options prices. Then, we take the

BAW implied volatility into Black formula (Black, 1976) to calculate the corresponding
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European option price.

We estimate model parameters by using in-sample data from 15 May, 2013 to

04 May, 2016 (156 weekly observations) and use data between 11 May, 2016 and 17

May, 2017 for out-of-sample tests (54 weekly observations). The average daily number

of option contracts is approximately 116.

2.5.2 Parameter Estimation and Pricing Performance

Table 2.2 displays estimated parameters by using in-sample data under four model speci-

fications, the benchmark model, SSV specification to capture the time-varying skewness,

SV-S specification to capture the seasonality in volatility and SSV-S specification to cap-

ture both time-varying skewness and seasonality in volatility.

The correlations among Brownian motions under the benchmark model and SV-S

specification denote as ρ, ρ1 and ρ2. Under SSV and SSV-S specifications, the correlation

parameters are ρR, ρ1R, ρ2R, ρL, ρ1L and ρ2L. Under the benchmark model and SV-S

specification, correlations between the innovations in spot return and the innovations

in the forward cost of carry (ρ) is negative. It implies that the volatility is positively

related to the backwardation magnitude (Routledge et al., 2000; Trolle and Schwartz,

2009). Since the ρL is more negative than ρR under SSV and SSV-S specifications, the

backwardation magnitude is largely affected by the downside risk, for example, downside

risk is high when the crude oil is in surplus and lack of demand. Under SSV and SSV-S

specifications, the right skewed Lèvy components in the spot return is positively related

to its volatility factor (ρ1R), while the left skewed Lèvy components is negatively related

to its volatility factor (ρ1L). This two correlations with different signs ensure that the

model generates the time-varying skewness of long-term expiring contracts. According

to the magnitude of ρ1 and ρ2 (or (ρ1R, ρ1L) and (ρ2R, ρ2L)), the activity rates are more

correlated with spot price, rather than the forward cost of carry.

Based on the model set up, both volatility factor v1 and v2 are mean-reverting
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processes. According to the estimated reversion coefficient of two volatility factors in Ta-

ble 2.2, volatility factor v1 has a higher mean reverting speed than v2 under risk-neutral

and real probability measures across four model specifications, since κ1 is higher than κ2

under the risk-neutral measure and κP1 is higher than κP2 under the real probability mea-

sure. So, v1 is much more less persistent than v2. Volatility factor v1 mainly captures the

transitory shocks, while its long run mean v2 captures the persistent shocks. However,

the risk premiums of two volatility factors are different. Under all model specifications,

κ1 is greater than κP1 , while κ2 is less than κP2 . Thus, the market price of risk on volatility

factor v1 is positive, but the market price of the volatility factor v2 is negative. This

shows that investors in the crude oil market are averse to both high persistent risk and

high variation in the persistent risk.

The level and variance of jumps are captured by λ and υJ . According to the

estimated value of these two parameters, the level and variance of jumps do not change

much even after capturing seasonality in volatility. αJ is between zero and one under

the SSV and SSV-S specifications. This means that the jumps in the crude oil market

have infinite activity and finite variance. Thus, the number of jumps in our sample

period is infinite, but the tails of the jump distribution are relatively “thin enough”,

both the upper and the lower part can converge to a finite value. Parameters to control

seasonality in volatility (θ and ζ) are significant before and after controlling the time-

varying skewness.

Table 2.3 shows the pricing performance of our four model specification. We

measure the pricing performance by using the mean absolute errors (MAE) and the

log likelihood values. Compared with the benchmark model, in term of MAE, the SV-

S specification has a poor in-sample and out-of-sample performance. After capturing

the time-varying skewness of crude oil return distributions, both in-sample and out-of-

sample mean absolute errors and log likelihood values indicate SSV and SSV-S models

have better performance than the benchmark model. In term of MAE, the difference in
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pricing performance between SSV and SSV-S specifications is insignificant.

Figure 2.3 shows the the pricing errors (MAE) in moneyness dimension by using

full sample data. According to Carr and Wu (2007), if the shape of implied volatility

curve is well captured by the option pricing model, the pricing errors (MAE) in the

moneyness dimensions should not display significant structural pattern. Compared with

SSV (Figure 2.3b) and SSV-S (Figure 2.3d) model specifications, the pricing errors of

the benchmark (Figure 2.3a) and SV-S (Figure 2.3c) models have significant structural

patterns along the moneyness across one-month, three-month and one-year maturities

and especially in the short horizon. Thus, the option pricing model that captures time-

varying skewness can account for the shape of implied volatility curve.

Therefore, we conclude that capturing time-varying skewness of crude oil return

distributions can improve the pricing performance significantly, but capturing seasonal

pattern in volatility cannot. This may be because the crude oil market is a world market,

and the seasonal pattern in volatility is not as strong as some other commodities, for

example, soybeans, natural gas, heating oil and etc.

2.5.3 The Activity Rate Dynamics and Stochastic Skewness

According to the analysis in the previous section, the pricing performance of the option

pricing model in the Brent crude oil market is related to whether the model can capture

the time-vary skewness of return distributions, but not the seasonal pattern in volatility.

Therefore, in this section, we focus our investigation on the benchmark model and SSV

specification.

The activity rates are updated by using the unscented Kalman filter. Figure 2.4

shows time-series activity rates v1 under the benchmark model and SSV specification.

Under the benchmark model, the overall fluctuation of the time-series activity rate in

Figure 2.4a has a similar pattern to the ATM implied volatility in the figure 2.1. This

means that the stochastic volatility is well captured by the benchmark model. According
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to Figure 2.4b, the activity rate of the left skewed Lèvy component is mostly higher than

that of the right skewed Lèvy component, especially after the fourth quarter of 2014.

This indicates the market demand of out-of-the-money put options is much more higher

than the demand of out-of-the-money call options. It is not surprising since Brent crude

oil price drops more than a half during the fourth quarter of 2014 and fluctuate around

this level since then. It is also consistent with the story from the implied volatility ‘smirk’

in Figure 2.2c, that is, during our sample period, OTM put options are more expensive

than OTM call options in average. However, according to the central tendency of activity

rates in Figure 2.5b, the long-term demands of OTM call and OTM put options are more

balanced than the short-term.

Figure 2.6 shows the actual and model implied three-month 5% risk reversals.

The model implied risk reversals are generated by using the benchmark model and the

SSV specification. Compared with the actual risk reversal, the estimated risk reversal

under the benchmark model in Figure 2.6a is more persistent. In contrast, we observe

estimated risk reversals under the SSV specification in Figure 2.6b is more volatile. The

estimated risk reversals are very close to actual risk reversals before the fourth quarter

of 2014, which is the period with relatively low implied volatility. During the period

of high implied volatility, estimated risk reversals deviate from actual risk reversals.

Thus, following Carr and Wu (2007), we also plot the 5% risk reversals scaled by the

ATM implied volatility with same maturity. Figure 2.6d shows that the scaled 5% risk

reversals generated by SSV-model is close to the scaled actual level.

2.6 Conclusion

In this paper, we propose a comprehensive option pricing model to capture stylized

features in the energy commodity market, one is the seasonal pattern in volatility, and

the other is time-varying skewness of return distributions. Empirically, we use the Brent
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crude oil futures and options data to test the pricing performance of the comprehensive

model and investigate how much the pricing performance changes by capturing each

stylized feature.

Our results show that the Brent crude oil market exhibits seasonal pattern in

volatility and time-varying skewness of return distributions. The comprehensive option

pricing model we proposed in this paper is enable to capture these two stylized features

in the commodity market. We employ a sine function to capture the seasonal pattern

in volatility and use two separate jumps and two independent activity rates to generate

time-varying skewness of return distributions for both short and long horizons. We

use Brent crude oil options to test whether and how much the option pricing model

performance is improved by each generalization. The empirical results show that the

option model pricing performance is significantly improved by capturing the time-varying

skewness of return distributions in the crude oil market, but is less affected by capturing

seasonality in volatility. This is because the crude oil market is a world market, and

crude oil is closer to financial assets than other commodities, thus, the seasonal pattern

in volatility is not as strong as other commodities (such as natural gas). Our option

pricing model can be used to price other commodity options, since these two stylized

features are not unique to the crude oil market.
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Table 2.1: Summary Statistics of Risk Reversals and Butterfly Spreads

This table presents the average, standard deviation and weekly autocorrelation of 5% risk rever-
sals and 5% butterfly spreads for five horizons, one-, two-, three-, six- and twelve- month. The
5% risk reversal (RR5) is the implied volatilises difference between a call option with 105% mon-
eyness and a put option with 95% moneyness. The 5% butterfly spread is the difference between
the average of implied volatilities at 95% and 105% moneyness levels and implied volatility of
at-the-money option. The sample period is between 15 May, 2013 and 17 May, 2017.

RR5 BF5
Maturity Mean Std Auto Mean Std Auto
1 Month -2.41 1.28 0.84 0.60 0.43 0.94
2 Months -2.14 0.89 0.89 0.30 0.22 0.95
3 Months -1.99 0.73 0.92 0.20 0.14 0.96
6 Months -1.76 0.57 0.93 0.11 0.07 0.96
12 Months -1.47 0.48 0.94 0.05 0.04 0.91
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Table 2.2: Parameter Estimation

This table presents the in-sample estimated parameters by using the benchmark model, SSV
specification, SV-S specification and SSVS specification, respectively. The sample period is from
15 May, 2013 to 04 May, 2016 (156 weekly observations).

Parameters Benchmark SSV SV-S SSV-S

ρ ρR -0.3669
(-0.0097)

-0.2639
(-0.0106)

-0.2999
(-0.0100)

-0.1732
(-0.0023)

ρ1 ρ1R -0.7864
(-0.0098)

0.3355
(0.0092)

-0.9300
(-0.0093)

0.3608
(0.0091)

ρ2 ρ2R -0.6204
(-0.0101)

-0.0622
(-0.0100)

-0.5694
(-0.0020)

-0.0606
(-0.0101)

ρL ρL - -0.6949
(-0.0099)

- -0.7240
(-0.0021)

ρ1L ρ1L - -0.5197
(-0.0099)

- -0.5273
(-0.0089)

ρ2L ρ2L - -0.0707
(-0.0101)

- -0.1567
(-0.0084)

σS σS 0.2567
(0.0087)

0.1073
(0.0098)

0.2157
(0.0071)

0.1079
(0.0038)

σ1 σ1 1.265
(0.0129)

1.3137
(0.0100)

1.5847
(0.0978)

1.3800
(0.0054)

σ2 σ2 1.2848
(0.0095)

1.2154
(0.0100)

1.6583
(0.0112)

1.2668
(0.0193)

κ1 κ1 19.2988
(0.0100)

9.8020
(0.0102)

19.7706
(0.0089)

9.7419
(0.0095)

κ2 κ2 1.3091
(0.0108)

0.4544
(0.0097)

0.6087
(0.0087)

0.4615
(0.0043)

α α 0.3815
(0.0095)

0.2435
(0.0095)

0.1601
(0.0093)

0.2645
(0.0067)

γ γ 1.8794
(0.0099)

1.3411
(0.0101)

1.1141
(0.0089)

1.3409
(0.0091)

η η 0.9098
(0.0110)

0.3504
(0.0100)

0.8116
(0.0079)

0.3518
(0.0103)

κP
1 κP

1 8.5987
(0.0100)

4.4797
0.0112

2.0438
(0.0088)

4.4722
(0.0034)

κP
2 κP

2 1.9021
(0.0126)

1.0906
(0.0099)

1.3819
(0.0032)

1.1716
(0.0056)

λ λ - 0.3933
(0.0099)

- 0.4025
(0.0078)

υJ υJ - 0.1051
(0.0100)

- 0.1077
(0.0063)

αJ αJ - 0.8072
(0.0123)

- 0.7627
(0.0098)

θ θ - - 0.2169
(0.0270)

0.1178
(0.0376)

ζ ζ - - 0.4033
(0.0108)

0.5342
(0.0068)
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Table 2.3: Pricing Performance

This table presents the log likelihood values (L (Θ)) and the mean absolute errors (MAE) of
the benchmark model, SSV specification, SV-S specification and SSVS specification, respectively.
The last rows in each panel (MAE Difference with Benchmark) report the MAE difference be-
tween benchmark model and the other model specifications, SSV specification, SV-S specification
and SSVS specification, and present the t-statistics in parentheses. In-sample data is from 15
May, 2013 to 04 May, 2016 (156 weekly observations) and out-of-sample data is between 11 May,
2016 and 17 May, 2017 (54 weekly observations).

Benchmark SSV SV-S SSV-S
In-sample performance

L (Θ) -275896.83 -255634.20 -265240.95 -242715.03
MAE(%) 2.40 2.27 2.46 2.27

MAE Difference with Benchmark
-0.13 0.06 -0.13

(-4.68) (2.46) (-4.61)
Out-of-sample performance

L (Θ) -101435.52 -97132.01 -98799.54 -855147.10
MAE(%) 2.90 2.83 3.15 2.82

MAE Difference with Benchmark
-0.07 0.25 -0.08

(-2.62) (5.59) (-2.73)
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Figure 2.1: Implied volatility of One-month ATM Option

This figure shows the one-month implied volatilities of at-the-money Brent crude oil options
between 15 May, 2013 and 17 May, 2017. The sample is weekly frequency.
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Figure 2.2: Dynamic Behaviour of the Crude Oil Return

This figure shows the seasonal pattern in volatility, average implied volatility curves, risk reversals
and butterfly spreads in the Brent crude oil market. Figure 2.2a and 2.2b display the seasonal
pattern in the realized volatility and the option-implied volatility, respectively. Figure 2.2c shows
the average implied volatility curve from Brent crude oil options over three horizons, one-month
(1M), three-month (3M) and one-year (1Y, curve raised up by 2%). Figure 2.2d shows three-
month 5% risk reversals (RR5) and three-month 5% butterfly spreads (5BF) calculated from
Brent crude oil options. The sample period is between15 May, 2013 and 17 May, 2017.

(a) Seasonality Pattern of Realized Volatility (b) Seasonality Pattern of Implied Volatility

(c) Average Implied Volatility Curve
(d) Time-varying Risk Reversals and Butterfly
Spreads

39



Figure 2.3: MAE in the Moneyness and Maturity Demotion

This figure presents the the mean absolute pricing errors (MAE) in moneyness dimension for
one-month (1M), three-month (3M) and twelve-month (1Y) horizons in full sample. Figure 2.3a,
2.3b, 2.3c and 2.3d are MAEs of the benchmark model, SSV specification, SV-S specification and
SSVS specification, respectively. The sample period is between15 May, 2013 and 17 May, 2017.

(a) Benchmark Model (b) SSV Specification

(c) SV-S Specification (d) SSV-S Specification
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Figure 2.4: Dynamics of Estimated Activity Rate

This figure presents time-series activity rates v1 under the benchmark model and SSV specifi-
cation in full sample. The activity rates are updated by the unscented Kalman filter. Figure
2.4a displays the activity rate in the benchmark model. Figure 2.4b displays the activity rate
of the right skewed Lèvy component (black line) and the activity rate of the left skewed Lèvy
component (red line) under SSV specification. The sample period is between15 May, 2013 and
17 May, 2017.

(a) Benchmark Model (b) SSV Specification
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Figure 2.5: Dynamics of Long-Run Mean of Activity Rate

This figure presents the activity rates’ long-run average, v2, under the benchmark model and SSV
specification in full sample. The long-run mean of activity rates are updated by the unscented
Kalman filter. Figure 2.5a displays the long-run mean of activity rate in the benchmark model.
Figure 2.5b displays the long-run mean of the activity rate of the right skewed Lèvy component
(black line) and the long-run mean of the activity rate of the left skewed Lèvy component (red
line) under SSV specification. The sample period is between15 May, 2013 and 17 May, 2017.

(a) Benchmark Model (b) SSV Specification
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Figure 2.6: Actual and Estimated Risk Reversal

This figure presents the actual and model implied three-month 5% risk reversals under the
benchmark model and SSV specification. Figure 2.6a and Figure 2.6b display model implied
three-month 5% risk reversals (red line) under the benchmark model and the SSV specification,
respectively. The black line is the actual three-month 5% risk reversals, Figure 2.6c and Figure
2.6d display model implied three-month 5% risk reversals scaled by 3-month ATM model implied
volatility (red line) under the benchmark model and the SSV specification, respectively. The
black line is the actual three-month 5% risk reversals scaled by 3-month ATM actual implied
volatility. The sample period is between15 May, 2013 and 17 May, 2017.

(a) Benchmark Model (b) SSV Specification

(c) Benchmark Model (Scaled RR) (d) SSV Specification (Scaled RR)
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Appendix 2.A Dynamic Behaviour of the Natural Gas Re-

turn

Figure 2.A-1: Dynamic Behaviour of the Natural Gas Return

This figure shows the seasonal pattern in volatility, average implied volatility curves, risk reversals
and butterfly spreads in the Henry Hub natural gas market. Figure 2.A-1a and 2.A-1b display the
seasonal pattern in the realized volatility and the option-implied volatility, respectively. Figure
2.A-1c shows the average implied volatility curve from Henry Hub natural gas options over three
horizons, one-month (1M), three-month (3M) and one-year (1Y, curve raised up by 2%). Figure
2.A-1d shows three-month 5% risk reversals (RR5) and three-month 5% butterfly spreads (5BF)
calculated from Henry Hub natural gas options. The sample period is between15 May, 2013 and
17 May, 2017.

(a) Seasonality Pattern of Realized Volatility (b) Seasonality Pattern of Implied Volatility

(c) Average Implied Volatility Curve
(d) Time-varying Risk Reversals and Butterfly
Spreads
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Appendix 2.B Commodity Future Price

We define Y (t, T ) =
∫ T
t y(t, u)du. Then,

dF (t, T ) = Y (t, T )dS(t)+F (t, T )dY (t, T )+
1

2
F (t, T )(dY (t, T ))2 +Y (t, T )dS(t)dY (t, T ),

(2.49)

which could be written as

dF (t, T )

F (t, T )
=
dS(t)

S(t)
+ dY (t, T ) +

1

2
(dY (t, T ))2 +

dS(t)

S(t)
dY (t, T ). (2.50)

Specifically,

dY (t, T ) =

[
−δ(t) +

∫ T

t
(µy(t, u)) du

]
dt

+

(∫ T

t
σy(t, u)du

)
eξ(t)

[√
υR(t)dWQ

R2(t) +
√
υL(t)dWQ

L2(t)

]
,

(dY (t, T ))2 =

(∫ T

t
σy(t, u)du

)2

e2ξ(t)
[
υR(t) + υL(t)

]
dt, (2.51)

dS(t)

S(t)
dY (t, T ) = σSe

2ξ(t)

(∫ T

t
σy(t, u)du

)[
υR(t)ρR + υL(t)ρL

]
dt. (2.52)

Therefore,
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dF (t, T )

F (t, T )
=

[∫ T

t
µy(t, u)du

]
dt+

1

2

(∫ T

t
σy(t, u)du

)2

e2ξ(t)
[
υR(t) + υL(t)

]
dt

+ σSe
2ξ(t)

(∫ T

t
σy(t, u)du

)[
υR(t)ρR + υL(t)ρL

]
dt

+
√
υR(t)eξ(t)

[
σSdW

Q
R1(t) +

(∫ T

t
σy(t, u)du

)
dWQ

R2(t)

]
+
√
υL(t)eξ(t)

[
σSe

ξ(t)dWQ
L1(t) +

(∫ T

t
σy(t, u)du

)
dWQ

L2(t)

]
+

∫ +∞

0
(ex − 1)JR(dt, dx) +

∫ 0

−∞
(ex − 1)JL(dt, dx).

The process of drift of the forward cost of carry is

µy(t, T ) =υR(t)σy(t, T )e2ξ(t)

[
σSρR +

∫ T

t
σy(t, u)du

]
(2.53)

υL(t)σy(t, T )e2ξ(t)

[
σSρL +

∫ T

t
σy(t, u)du

]
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Chapter 3

Speculator Spreading Pressure

and the Commodity Futures Risk

Premium

3.1 Introduction

According to the Futures Industry Association (FIA) annual survey, the trading vol-

ume of global commodity futures increased markedly in recent years, from 2.19 billion

contracts in 2009 to 5.74 billion in 2018. This dramatic increase, and the subsequent

sharp decrease in commodity prices over the 2008/2009 crisis, has triggered heated de-

bates about whether and how speculators’ trading activity impacts commodity price

swings. Some studies have found no impact. Rather, they posit that speculators’ activ-

ities moderate prices, bringing them closer to fundamentals (e.g., Brunetti et al., 2016).

Others argue that the financialization of commodity markets has enabled uninformed

speculators, particularly with the influx of index traders, to affect commodity prices and

volatilities by bringing about increased financial investment in the market (Basak and

Pavlova, 2016; Brogaard et al., 2019).
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In a recent theoretical paper, Goldstein and Yang (2019) reconcile both sides of

this argument. They show that financial traders can bring both noise and information

to the market, while the overall effect of financialization can be time-varying. Building

upon the latter standpoint, we aim here to investigate the impact of speculators’ trading

activities on the time-varying commodity futures risk premium. In particular, we focus

on speculators’ spread trade positions, and study their asset pricing implications for the

cross-section of commodity futures returns.

Commodity spread trades are intra-commodity investing strategies that involve

simultaneously buying and selling the same amount of futures contracts with different

maturities within a single commodity. Intra-commodity spread trading strategies include

calendar spread (e.g., rolling activity (Mou, 2011) or speculative trades such as curve

momentum (Paschke et al., 2020) and butterfly spread positions. They have gained in

popularity among speculators in commodity futures markets due to their lower barri-

ers/costs to entry (i.e., no short-selling constraint, lower margin requirement to obtain

high leverage).1 The financialization of the commodity markets from around 2005 has

prompted the exponential growth of such strategies (Tang and Xiong, 2012; Singleton,

2014). Speculators take intra-commodity spread positions in order to obtain risk expo-

sures to the change in the shape (slope or curvature, or both) of commodity futures term

structures.2 Hence, the extent to which speculators enter spread trade positions (spread-

ing pressure) may reflect the information on the commodity futures term structure and

futures returns.

We use data from the Commodity Futures Trading Commission (CFTC) on

traders’ weekly positions, and daily prices of futures contracts from Bloomberg for

twenty-six commodities from 1992 to 2018. We find four main results for the rela-

tionship between spreading pressure and excess returns in commodity futures markets.

1In a recent paper, Robe and Roberts (2019) document substantial spread activity in the agricultural
commodity futures market.

2For instance, the calendar spread entails the risk of both slope and curvature changes of futures
curves; the butterfly spread is only related to risk of changes in curvature.
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Because there was a structural break in the commodity market due to financialization

and a surge in index investment, significant changes in futures risk premia have occurred

since 2005 (Buyuksahin et al., 2008; Hamilton and Wu, 2014; Tang and Xiong, 2012; van

Huellen, 2020). Therefore, we report our results separately: for our full sample, and for

two subsamples (pre- and post-2005).

First, spreading pressure predicts futures excess returns negatively and signif-

icantly even after controlling for important determinants, including basis-momentum,

hedging pressure, and changes in speculators’ trading positions. Our Fama-MacBeth

cross-sectional regression results show that weekly excess returns decrease by about 1.78

percentage points when smoothed spreading pressure increases by 1 percentage point.3

Second, our spreading pressure long-short portfolio generates excess returns of as high as

22.52% (with a Sharpe ratio of 0.94) per annum, and it yields higher cumulative returns

than other pricing portfolios including basis, momentum, and basis-momentum (Figure

3.6) since 2005.

Third, we show that spreading pressure is a priced factor (spreading pressure

factor) in the cross-section of commodity futures returns, especially after 2005. The

estimated price of risk on the spreading pressure factor is 20.95% per annum, and our

single-factor model provides a better cross-sectional fit than the extant two- or three-

factor models, which feature R2 of as high as 66.81%. Interestingly, the pricing power

of spreading pressure comes mainly from money managers, including CTAs and hedge

funds. Lastly, spreading pressure reflects the expected slopes and curvatures of the

commodity futures term structure. The spreading pressure factor is explained by Asian

emerging market returns (Tang and Xiong, 2012; Henderson et al., 2015) and by inno-

vations in real economic uncertainty (Bloom, 2009; Ludvigson et al., 2019). It is not

captured by liquidity, volatility, inventory, or financial intermediary risk.

3We refer to the twelve-month average of spreading pressure as smoothed spreading pressure. We use
a one-year time window to smooth out the effect of seasonality and the maturity of futures contracts on
our measure. Kang et al. (2020) use a similar approach to compute their measure of hedging pressure.
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We note several hints that our results may be linked to frictions that are in-

troduced via commodity index investment. For example, our results are stronger in the

post-2005 period, after commodity financialization, especially the short leg (high spread-

ing pressure) of our trading strategy.4 The spreading pressure predicts the shape of the

futures curve, especially in certain states, i.e., positive slope and negative curvature

(concave futures curve), when index pressure is likely to prevail (Van Huellen, 2020).

Moreover, data from the disaggregated Commitment of Traders (DCOT) report suggest

that pricing results come mainly from positions of managed money investors, although

we cannot isolate the index positions in those reports. On the other hand, quarterly in-

dex investment reports from the CFTC (over a shorter sample, 2007Q4-2015Q3) indicate

a positive relation between changes in spread and index investment positions. Finally,

we find that the short (long) leg of our trading strategy predominantly includes index

(non-index) commodities. However, a strategy that shorts only index commodities does

not exhibit a similar performance.

Our results can be interpreted within the framework of models of commodity fi-

nancialization (Basak and Pavlova, 2016; Brunetti and Reiffen, 2014; Sockin and Xiong,

2015; Goldstein and Yang, 2019). Models based on symmetric information and unin-

formed trading (e.g., Basak and Pavlova, 2016; Brunetti and Reiffen, 2014) imply that

the entry of uninformed speculators (e.g., index traders) who do not trade based on

economic fundamentals results in higher valuations (and lower expected returns) for in-

dex commodities. Models based on asymmetric information (Sockin and Xiong, 2015;

Goldstein and Yang, 2019), on the other hand, highlight the dual role of financial traders

who bring both information (via speculative trades) and noise (via hedge-based trades)

to the market. They can potentially distort price signals for commodity users and pro-

ducers (Brogaard et al., 2019). Goldstein and Yang (2019) also show that informational

4After mid-2004, (Buyuksahin et al., 2008) document structural changes in the trading of commodity
futures across maturities and cointegration relation of commodity futures prices across maturities due
to increased calendar spread positions.
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friction is time-varying. Thus, in a market with few financial traders (e.g., during the

early days of commodity financialization), a positive information effect dominates until

the mass reaches a certain threshold.

Our cross-sectional strategy that invests in low spreading pressure commodities

and shorts commodities with high spreading pressure delivers a high trading perfor-

mance. The profitability of such a strategy stems from the fact that the long leg of the

portfolio is immune to these informational frictions. It is driven primarily by funda-

mentals such as global economic growth expectations, and it is highly exposed to shocks

in real economic uncertainty. The short leg is exposed to such informational frictions

through financial investors, especially after the influx of index traders. The performance

of this strategy is superior to alternative strategies suggested in the literature (e.g.,

momentum, basis-momentum), and only declines during the early days of commodity

financialization when shorting index commodities was not profitable.

The extant literature on commodity futures factor pricing has proposed a num-

ber of risk factors. Szymanowska et al. (2014), Yang (2013) and Bakshi et al. (2019)

introduce a carry factor based on a term structure signal called Basis. They find that

low-basis commodity futures carry higher carry factor risk premiums than their high-

basis counterparts. Gorton et al. (2013) and Bakshi et al. (2019) show that the risk

premium on a momentum factor is significant, while Fernandez-Perez et al. (2018) find

that commodity futures with a negative skewness have significantly higher returns than

positive skewness ones. Boons and Prado (2019) introduce a so-called basis-momentum

factor based on the slope and curvature of the futures term structure. Research has

also explored other pricing factors, such as value (Asness et al., 2013), volatility (Bakshi

et al., 2019), liquidity (Marshall et al., 2012), and inflation (Hong and Yogo, 2012).

The spreading pressure factor we propose here differs from the aforementioned

studies in that it is based on the positions of market participants rather than on futures

prices. Regarding traders’ position-based risk factors in commodity markets, hedging
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pressure has been extensively studied in the literature (Bessembinder, 1992; Basu and

Miffre, 2013; Dewally et al., 2013). Commodity futures with high shorting demand from

hedgers tend to have larger risk premiums on a hedging pressure factor than futures with

lower shorting demand. Our paper is closely related to Boons and Prado (2019), in that

both studies examine the pricing of a large cross-section of commodity futures with a

parsimonious factor model, where the risk factor reflects the information on commodity

futures curves.

This paper contributes to the aforementioned literature of commodity futures

pricing in several key aspects. First, we document the predictability of spreading pressure

on commodity futures excess returns. Second, we propose a novel pricing factor, and we

describe the superiority of a parsimonious single-factor model over multifactor models.

Third, we establish a link between speculators’ spread positions and the commodity

futures risk premium. We also contribute to the literature on the role of speculators and

index investors in particular, and financial intermediation in general in the commodity

futures markets. Finally, this paper is one of the first studies to explore the economic

determinants and information contents of spreading pressure.

3.2 Data and Summary Statistics

3.2.1 Commodity Futures Returns

We obtain daily prices for individual commodity futures contracts from Bloomberg. Our

sample period is October 6, 1992 through December 30, 2018. Our analysis focuses on

twenty-six commodity futures contracts with different maturities covering five major

sectors: 1) energy (heating oil, natural gas, RBOB/unleaded gasoline, and WTI crude

oil), 2) grains (corn, oats, rough rice, soybean oil, soybean meal, soybeans, and wheat),

3) meats (feeder cattle, lean hogs, live cattle, and frozen pork belly),5 4) metals (high-

5Frozen pork belly futures were delisted on July 15, 2011.
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grade copper, palladium, platinum, silver, and gold), and 5) soft (cocoa, coffee, cotton,

lumber, orange juice, and sugar).

To match the weekly frequency of the CFTC’s trader positions data, we calculate

weekly (Tuesday to Tuesday) excess returns on fully collateralized futures positions (e.g.,

Gorton et al., 2013; Koijen et al., 2018; Bakshi et al., 2019; Boons and Prado, 2019)

R
(n)
t+1 =

F
(n)
t+1

F
(n)
t

− 1, n > 1 (3.1)

where F
(n)
t is the n-th nearby futures contract, i.e., the contract with the n-th shortest

maturity, at the end of week t among all available contracts. Our return calculations

mainly use the prices of front month contracts (i.e., first or second nearby contracts

depending on calendar dates) in order to ensure sufficient liquidity.6

Table 3.1 shows the summary statistics for annualized excess returns of front

month contracts of the twenty-six commodities for the full sample of 1,369 weeks (Oc-

tober 6, 1992-December 30, 2018), and the two subperiods of pre- and post-January 4,

2005 (639 and 730 weeks, respectively). Twenty-one (twenty) of the twenty-six com-

modities’ front month contracts have Sharpe ratios lower than 0.25 in the full sample

period (post-2005 period). This implies that investing in a single commodity futures

contract may not have an attractive risk-return profile. Futures returns seem to be se-

rially uncorrelated, as the magnitude of first-order autocorrelations is shown to be very

low for most commodities. It is also notable that corn has the highest open interest

before 2005, and WTI crude oil is the most liquid futures contract since 2005.

6A first nearby contract is defined as the shortest-maturity contract whose first notice day comes after
the end of the week in order to avoid a case where the contract is required to take a physical delivery of
underlying commodities (Bakshi et al., 2019). In such a case, the definition of front months would also
depend on the calendar date on which the week ends. More specifically, for weeks that end prior to the
seventh calendar day of the month, we would use a first nearby contract; for weeks that end on or after
the seventh calendar day, we would use a second nearby contract (Kang et al., 2020).
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3.2.2 Trader Positions

Commodity futures position data by different types of traders come from the Com-

modity Futures Trading Commission (CFTC). CFTC releases weekly COT reports that

contain the aggregate long and short positions of three types of traders: commercial,

non-commercial, and non-reportable. It also reports the spread trades positions for non-

commercial investors. Following the standard in the literature, we view commercials as

hedgers, non-commercials as speculators, and non-reportables as small speculators. The

data capture traders’ weekly positions from Tuesday to Tuesday, and they are published

on Friday of the same week. The CFTC has published DCOT data since 2006, from

which we can break down trader positions even further, splitting non-commercials into

money managers and other reportables.7

Following the COT report, we capture the size of traders’ positions and their

trading behavior based on five measurements: 1) percentage of the total market held

by the different trader types, 2) hedging pressure (HP), 3) spreading pressure (SP),

4) net trading (Q) by hedgers and speculators, and 5) the propensity to trade (PT) by

speculators with long or short positions only, and speculators with spread positions only.

We calculate each measure separately for each type (i.e., hedgers, speculators, and small

speculators). For speculators, we distinguish their spreads positions further as either

long- or short-only positions.

Next, we define the sector-level measure of market shares by trader type as the

open interest-weighted average of percentage market shares at the commodity level.

These are calculated as total positions (both long and short), divided by open interest,

7Money managers are traders who engage in managing and conducting organized futures trading on
behalf of clients. The category includes commodity trading advisers (CTAs), commodity pool operators
(CPOs), and unregistered funds identified by the CFTC. Other reportables are non-commercials other
than money managers.
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as follows:

percentagemarket held by trader i at t =
Longi,t + Shorti,t

2×Open Interestt
(3.2)

Figure 3.1 reports the evolution of relative positions by futures trader type over time

for each commodity sector (energy, metals, soft, grains, and meats). Several interesting

patterns emerge. First, it is commonly observed across sectors that speculators’ total

positions (i.e., those with and without spread trades) began gradually increasing in

early 2000. The increase in speculator positions coincides with the decrease in hedger

positions in a certain sector (or, energy). Second, speculators’ positions on spread trades

are largest in the energy sector, exceeding even those of directional speculators. Third,

speculator positions in the energy sector experienced exponential growth since 2005, the

period coinciding with the era of financialization of the commodity markets.

Fourth, speculators’ spread positions in the metals sector show an interesting

pattern around the 2008/2009 crisis, increasing markedly before the crisis, and dropping

significantly afterward. Fifth, contrary to the notion that traders opt for a spread

position when a commodity market is highly uncertain (Boons and Prado, 2019), we

do not find a significant increase in spread positions during the crisis for any sector.

Lastly, we find no significant correlation in trade positions between spread and directional

speculators.

We construct a series of trader position variables for each trader type (e.g.,

hedgers, spread speculators, directional speculators, etc.). We define our main vari-

able, spreading pressure (SP ) of commodity i, as speculators’ spread positions divided

by open interest:

SPi,t =
Spreadspeculators,i,t
Open Interesti,t

(3.3)

Next, we construct control variables that include hedging pressure, net trading, and

trade propensity as follows. We use hedging pressure of commodity i to capture hedging
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demand, defined as hedgers’ net short positions divided by open interest:

HPi,t =
Shorthedger,i,t − Longhedger,i,t

Open Interesti,t
(3.4)

where net trading (Q) is defined as the change in traders’ net long positions divided by

open interest:

Qi,t =
NetLongi,t −NetLongi,t−1

Open Interestt−1
(3.5)

A limitation of this measure is that speculators’ net trading only reflects changes in

trade positions for directional speculators (i.e., long-only or short-only), not for spread

speculators, since their NetLong is always zero. As in Kang et al. (2020), we also

construct the measure of propensity to trade (PT ), defined as the sum of absolute

changes in long and short positions between t− 1 and t, divided by total long and short

positions at t− 1:

PTi,t =
abs(Longi,t − Longi,t−1) + abs(Shorti,t − Shorti,t−1)

Longi,t−1 + Shorti,t−1
(3.6)

Figure 3.2 shows the evolution of spreading pressure over time for six selected

commodities: three high-SP commodities (natural gas, WTI crude oil, and lean hogs)

and three low-SP ones (platinum, palladium, and oats). It also provides a further break-

down of speculator spread positions since 2006 into money managers and others. It

appears to show a structural break around 2005 in level of spreading pressure, but only

for high-SP commodities. Specifically, the mean of spreading pressure for natural gas,

WTI crude oil, and lean hogs experienced a dramatic jump in value after 2005, but we do

not observe the same trend for platinum, palladium, and oats. It is important to note,

however, that all three commodities in the high-SP group are also constituents of popular

commodity indexes (S&P GSCI Index and Dow Jones-UBS Commodity Index), while
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their lower-SP counterparts are all non-index commodities.8 These observations imply

that speculators’ spread positions may be related to the financialization of commodity

markets, or, more accurately, to the presence of rapidly growing index investments in

the markets since 2005 (Tang and Xiong, 2012; Singleton, 2014).

To look more closely at the behavior of spreading pressure within the calendar

year, we plot the weekly average of spreading pressure for two commodities (palladium

and WTI crude oil) in Figure 3.3 for the pre-and post-2005 periods. The figure clearly

shows there is a maturity effect on the level of spreading pressure, especially post-2005.

Pre-2005, we note that the spreading pressure for palladium only tended to reach the

peak when the date got closer to maturity (the first notice day or last trading day,

whichever comes first), before subsequently plummeting to its lowest level after maturity.

Post-2005, however, this pattern is seen for WTI crude oil as well, and it becomes even

stronger for palladium. This implies that spread trades mainly involve front month

rather than longer-maturity contracts.

Table 3.2 reports the summary statistics of traders’ position variables (spreading

pressure, hedging pressure, net trading, and propensity to trade) across the twenty-six

commodities. There are a number of important observations. For spreading pressure,

the energy sector has the largest value at the commodity level, and the mean of spreading

pressures has increased significantly since 2005 for both market levels (9.41% for the full

sample, 6.06% for pre-2005, and 12.39% for post-2005) and commodity levels (e.g., 7.05%

vs. 33.84% for natural gas, and 6.82% vs. 27.22% for WTI crude oil). Regarding hedging

pressure, the average is positive for all commodities except natural gas, feeder cattle,

and frozen pork belly, and metals (meats) has the highest (lowest) hedging pressure at

the sector level. The means of absolute net trading changes for hedgers and speculators

are 3.45% and 3.08%, respectively. As for propensity to trade, spread speculators exhibit

8According to CFTC index investment reports, there is a significant increase in managed money
flows to platinum, along with an increase in index investment. Not surprisingly, this coincides with the
diminishing role of platinum in the low-SP group (see Online Appendix, Figure 3.A-4).
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a higher propensity to trade than directional speculators.

3.3 Spreading Pressure and Futures Excess Return

3.3.1 Trader Positions and Futures Excess Return

In this section, we investigate whether spreading pressure exhibits predictive power for

futures excess returns by employing a cross-sectional regression across the twenty-six

commodities. To gain a sense of the relationship, we first simply examine a cross-

sectional fit between average returns and average spreading pressure for the full sample

period (Figure 3.4) and the post-2005 period (Figure 3.5). To compare as precisely as

possible, we also provide a cross-sectional fit for the other trader categories (hedgers,

directional speculators, and small directional speculators).

The results show that excess returns are negatively related only with spreading

pressure. The relation is positive for all other categories regardless of which sample

we use. Compared with hedging pressure and speculating pressure, spreading pressure

has the largest magnitude of slopes and exhibits relatively high explanatory power (R2=

34.97%), especially since 2005. The positive relation between excess returns and hedging

pressure is consistent with the normal backwardation theory, where hedgers hold a net

short position, and an increase in short demand will discount futures prices in order to

find counterparties. For the same reason, the theory suggests that speculators’ net long

positions is positively related to returns, because speculators are the counterparties of

hedgers, which is confirmed in our results.

To test the return predictability of trade positions more formally, we next conduct

a Fama-MacBeth cross-sectional regression by trader type, as follows:

Ri,t+1 = b0 + bjPressurej,t + εi,t+1 (3.7)
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where Ri,t+1 is weekly excess returns on the front month contract of commodity i at week

t+1, and Pressurej,t is trader position variables at week t by different trader categories

j, as defined earlier (i.e., hedging pressure, spreading pressure, speculating pressure,

and pressure from small speculators). Table 3.3 confirms that spreading pressure has

significant predictive power over next week’s futures returns; trade positions by the other

three categories lack this predictive ability for the full sample period and for the two

subsamples (pre-and post-2005).

3.3.2 Does Spreading Pressure Predict Excess Returns?

We construct spreading pressure portfolios weekly by sorting commodities based on

spreading pressure, and calculating their post-ranking returns. To remove any season-

ality and maturity effects, we use smoothed spreading pressure (i.e., past the fifty-two-

week average) as a trading signal. Portfolios Low3 (High3) represent the portfolio of

the three lowest (highest) spreading pressure commodities; portfolios Mid include the

remaining twenty commodities. For comparison, we also construct portfolios based on

basis-momentum as a benchmark, which has been shown to perform better than other

trading signals, such as carry (basis) and momentum (Boons and Prado, 2019).9

Table 3.4 reports the summary statistics of spreading pressure portfolios and a

long-short portfolio strategy. We observe that long-short spreading pressure portfolios

yield large returns and high Sharpe ratios for the full sample and both subsamples,

but they are largest for the post-2005 period (22.52% and 0.94 for excess returns and

9Basis-momentum denotes the difference between momentum signals from front-month and second-
month futures strategies:

BMt =

t∏
s=t−52

(
1 +R

(1)
long,s

)
−

t∏
s=t−52

(
1 +R

(2)
long,s

)
The literature shows that Carry (Ct) and Momentum (Mt) are:

Ct =
lnF 2

t − lnF 1
t

T2 − T1
, Mt =

t∏
s=t−52

(
1 +R

(1)
long,s

)
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Sharpe ratios, respectively). Compared with basis-momentum portfolios, the perfor-

mance of spreading pressure long-short portfolios is superior in terms of both excess

returns (22.52% vs. 18.66%) and Sharpe ratios (0.94 vs. 0.76) since 2005.10

Figure 3.6 shows cumulative excess returns of carry (basis), momentum, and

basis-momentum portfolios, along with spreading pressure portfolios. We observe that

the spreading pressure portfolio performs the second-best behind the basis-momentum

portfolio in the full sample, but is the best alternative since 2005. We also notice that the

performance of the spreading pressure portfolio is particularly weak in the early days

(2001-2005) of commodity financialization. We will further explore the time-varying

performance of this strategy in a later section.

To examine the predictability of spreading pressure more fully after controlling

for other factors, we follow Kang et al. (2020) to conduct Fama-MacBeth cross-sectional

predictive regressions as follows:

Ri,t+k = b0 + bSPSP i,t + bBMBMi,t + bhQQ
h
i,t + bsQQ

s
i,t + εi,t+1 (3.8)

where SP i,t is the smoothed (fifty-two-week average) spreading pressure of commodity

i at week t, BMi,t is basis-momentum, Qhi,t is the change in hedgers’ net positions,

and Qsi,t is the change in speculators’ net positions. Basis-momentum is documented

to predict commodity futures excess returns with stronger predictive power than more

well-known trading signals such as carry or momentum (Boons and Prado, 2019). Also,

the change in hedgers’ (speculators’) net positions is shown to predict excess returns

positively (negatively) (Kang et al., 2020) .

10The results of long-short strategies are robust to the number of commodities used to construct the
portfolios, and remain largely unchanged after accounting for sector-fixed effects. For example, the
patterns in portfolio returns remain similar when we take into account for transaction costs (Online
Appendix, Table 3.A-1), when we change the number of commodities in each leg of the long-short
strategies from three to four (Online Appendix, Table 3.A-2), when we scale the spreading pressure by
its fifty-two week standard deviation (Online Appendix, Table 3.A-3), or when we construct within-
sector long-short portfolios (Online Appendix, Table 3.A-4). Spreading pressure portfolios can generate
positive excess returns for all sectors except Metals, and especially high returns for Energy (30.4%).
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Panel A in Table 3.5 shows that commodities with higher spreading pressure in

week t tend to have significantly lower excess returns in week t + 1 (coefficient = -1.78

and t-statistics = -3.00) for the full sample period (Model 1). The significance of the

predictability of spreading pressure remains unchanged even after controlling for other

well-known factors, i.e., BMi,t, Q
h
i,t, and/or Qsi,t (Models 5 to 8). Comparing the results

for the two subsamples (pre-2005 in Panel B, and post-2005 in Panel C), we note that

predictive power is stronger in later periods. In addition, spreading pressure exhibits the

highest explanatory power on futures returns (R2 = 6.8%) among the four predictors

since 2005.11

3.3.3 Is Spreading Pressure a Priced Factor?

In this section, we investigate whether spreading pressure is a priced commodity factor

by employing time series and cross-sectional tests. We construct a spreading pressure

portfolio by going long Low3 and shorting High3 spreading pressure portfolios. In a

similar vein, we construct other pricing factors, such as basis-momentum (Boons and

Prado, 2019), and three factors from Bakshi et al. (2019), a carry, a momentum, and the

equal-weighted average excess return on all commodities as a commodity market factor.

Before conducting the formal test, we first glance at the correlations among com-

modity pricing factors. Table 3.6, Panel A, shows that the magnitude of correlations

between the spreading pressure factor and other well-known factors is not large (with cor-

relation coefficients lower than 0.30). Table 3.6, Panel B, presents correlations between

the spreading pressure factor and average market returns for five commodity sectors

(energy, grain, meats, metals, and soft). The correlations are fairly low, suggesting that

the spreading pressure factor has its own variation, and does not depend on a particular

commodity sector.

11As a robustness test, we vary the number of weeks ahead to longer than one week in order to gauge
whether spreading pressure can have long-term predictive power. Table 3.A-5 in the Online Appendix
shows that spreading pressure can also predict excess returns significantly and negatively for two, three,
and four weeks ahead.
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Next, we employ a time series test by regressing our spreading pressure factor on

other pricing factors to determine whether it generates a significant alpha (i.e., intercept).

The idea is that, if the spreading pressure factor is not captured by existing factors, we

should observe a significant time series alpha (Barillas and Shanken, 2017, 2018):

RSP = α+
K∑
i=1

βiFi,t + εt (3.9)

where K is the number of factors, and Fi,t is factor i at time t.

Table 3.7 shows multivariate regressions of the spreading pressure factor on a set

of commodity factors proposed by Boons and Prado (2019) and Bakshi et al. (2019).

The intercepts of the time series regressions are highly significant, and their economic

magnitudes are large for all pricing models, especially for the post-2005 period. Specifi-

cally, abnormal returns on the spreading pressure factor-mimicking portfolio are 19.83%

(20.01%) using Boons and Prado (2019) (Bakshi et al. (2019)) as a benchmark model.

The Newey-West t-statistics of abnormal returns are as high as 2.96 (3.21). The GRS

test shows we can reject the null hypothesis that the abnormal returns of our spreading

portfolios (Low3, Mid, and High3) are jointly equal to zero.12 Note that the time series

test results suggest that the spreading pressure factor is not captured by the extant

commodity factor models, and can improve mean-variance efficiency when added to the

benchmark models.

Next, we turn to a cross-sectional test to gauge whether the spreading pressure

factor is priced into the cross-section of commodity futures returns. We also compare it

with the extant commodity factor pricing models. As a portfolio-level test, we use test

assets that are comprised of seventeen portfolios constructed by univariate-sorting com-

modity futures, with three each on carry, momentum, basis-momentum, and spreading

12Table 3.A-6 in the Online Appendix confirms that our spreading pressure portfolios cannot be
explained by the alternative three-factor (Szymanowska et al., 2014) model, nearby returns of the basis
long-short portfolio, the spreading returns of the high-basis portfolio, or the spreading returns of the
low-basis portfolio.
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pressure, and five on sector. We also conduct a model comparison for the six candidate

models nested in:

Rt,i = γt,0 + λt,SPβt,SP + λt,BMβt,BM + λt,Cβt,C + λt,Mβt,M + λt,Avgβt,Avg + εt,i (3.10)

where λ is factor risk premia, and we estimate βt as a fixed parameter using the entire

sample.

The first model specification is λt,BM = λt,C = λt,M = λt,Avg = 0, which means

spreading pressure is the only factor in this model. The second specification is λt,C =

λt,M = λt,Avg = 0, i.e., a two-factor model with spreading pressure and basis-momentum.

The third specification is λt,SP = λt,C = λt,M = 0, which is a two-factor model with

basis-momentum and average commodity market factor (Boons and Prado, 2019). The

fourth specification is λt,SP = λt,BM = 0, i.e., a three-factor model in Bakshi et al.

(2019), with carry, momentum, and average commodity market factor. The fifth and

sixth specifications are used to test whether spreading pressure remains priced in after

accounting for both the Boons and Prado (2019) and Bakshi et al. (2019) models, which

are with λt,C = λt,M = λt,Avg = 0 and λt,BM = 0, respectively.

Table 3.8 reports our cross-sectional asset pricing test with portfolio-level results,

where we present the estimates of annualized risk premia on each pricing factor under

different model specifications. The t-statistics are based on standard errors calculated

as per Shanken (1992) and Kan et al. (2013).13

The estimation results in Model (1) show that risk premia on the spreading pres-

sure factor are significant in the full sample and the post-2005 sample, but insignificant

in the pre-2005 sample. Model (2) shows that spreading pressure is still a priced factor

even after controlling for basis-momentum, while Model (3) has slightly better regression

13Shanken (1992) standard error corrects for the presence of errors in in the first-stage betas, and
the Kan et al. (2013) standard error additionally corrects for conditional heteroskedasticity and model
misspecification.
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results (high R2) for the pre-2005 period. Model (4) shows that the risk premia on the

carry factor are significant in the post-2005 subsample, but the momentum factor’s risk

premia are significant pre-2005. In the post-2005 sample, Models (5) and (6) show that

the spreading pressure factor remains significantly priced after adding it to each of the

two benchmark models. Lastly, we find that a single-factor model, Model (1), provides

a good cross-sectional fit, with R2 of 66.81%.14

To summarize, both time series and cross-sectional tests suggest that the spread-

ing pressure factor reflects a unique dimension of the risk in the commodity futures

market. We find it is in fact priced into the cross-section of commodity futures returns,

at both the portfolio and individual commodity levels (Lewellen et al., 2010). Our sub-

sample tests confirm that the pricing effect of spreading pressure has strengthened since

2005, which is in line with the evidence of a structural break in commodity risk premia

during the era of financialization of commodity markets (Hamilton and Wu, 2014; Tang

and Xiong, 2012).

3.4 Unraveling Spreading Pressure

3.4.1 Commodity Futures Term Structure

A number of researchers have explored the slope and curvature of the futures term

structure based on observable economic fundamentals. They show that its shape can

depend on the behavior of different types of market participants. Karstanje et al. (2015)

link the slope of futures curves to hedging pressure, housing (construction growth), and

14The cross-sectional test results are robust to our choice of test assets. In contrast to Table 3.8, whose
results are based on nearby returns of seventeen different portfolios, Table 3.A-7 in the Online Appendix
gives results with the number of test assets doubling up to thirty-four by using spreading returns and
nearby returns. The thirty-four commodity-sorted portfolios include these returns for seventeen con-
structed portfolios, i.e., twelve sorted on spreading pressure, basis momentum, and basis-momentum
(High3, Mid, and Low3 portfolios sorted on each signal), and five sector portfolios (Energy, Grains,
Meats, Metals, and Softs). The spreading return is defined as the difference between the equal-weighted
average return of the first- and second-nearby contracts. Online Appendix Table 3.A-8 reports results
of the cross-sectional asset pricing test using the twenty-six individual (as opposed to portfolio-level)
commodities as test assets.
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inventories, and find that curvature is positively related to interest rates and business

inventories (new order growth), and negatively related to industrial production. Focusing

on the oil futures market, Heidorn et al. (2015) find that only fundamental investors

(producers, merchants, processors, and users) influence the level of the futures term

structure, and financial traders (swap dealers and money managers) affect the slope and

curvature.

More recently, Van Huellen (2020) relates the shape of term structures to in-

dex investment, and shows that index pressure can drive futures curves to become

upward-sloping and concave, while hedging pressure induces downward-sloping and con-

vex curves. However, when index traders’ long positions exceed hedgers’ short positions,

the term structure of commodity futures can exhibit wave-like shapes. In a similar vein,

we explore in this section the relationship between spreading pressure and commodity

futures curves.

Following the literature, we define the slope and curvature of commodity futures

curves as basis and the difference between basis, as follows:

slopet =
lnF 3

t − lnF 1
t

T3 − T1
(3.11)

curvaturet =
lnF 3

t − lnF 2
t

T3 − T2
− lnF 2

t − lnF 1
t

T2 − T1
(3.12)

where Fnt is the price of the n-th nearby contract with time-to-maturity Tn at week t.

Positive (negative) slopes denote the futures curve is upward (downward), and positive

(negative) curvatures indicate a convex (concave) futures curve.

Speculators tend to enter spread positions to bet on the change in futures term

structure. For example, calendar spread is a bet on the slope, while butterfly spread

is more of a bet on the curvature. As such, it is conceivable that spreading pressure

contains information such as speculators’ expectations about relative changes in futures

prices for contracts of differing maturities. Likewise, hedging pressure reflects hedgers’
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demands for price insurance. Their high demands on short positions may limit specula-

tors’ construction of spread positions.

We investigate whether spreading pressure contains information about traders’

expectations about the shape of the commodity futures curve. To this end, we conduct

a predictive pooled regression of the one-week-ahead slope and curvature of the futures

term structure on current spreading pressure with time and commodity fixed effects:

{Slopet+1, Curvaturet+1} = αt+1 + βSPSPt + βHPHPt + εi,t+1. (3.13)

As control variables, we use hedging pressure and time to the earliest maturity date,

which are also related to the shape of the commodity futures term structure. In addition,

our analysis is based on data from four states with different futures curve shapes.

Table 3.9, reports the regression results after controlling for time fixed effects and

commodity fixed effects for the post-2005 sample.15 We first note that the most likely

state in the data is an upward-sloping concave curve (48.15% of the time). The last row

of the table shows that the spreading pressure predicts a steeper curve, regardless of the

state. The only state for which it cannot significantly predict the curve’s slope is when

the futures curve is downward and convex (or when hedging pressure dominates). On

the other hand, the spreading pressure can only significantly predict the curvature of

the term structure when the futures curve is concave (when index pressure prevails, in

line with evidence in Van Huellen (2020)).

3.4.2 Spreading Pressure by Trader Category

Our previous empirical tests are all based on weekly COT data from the CFTC that

begin from the earliest available date, October 6, 1992. The CFTC also publishes the

DCOT report (disaggregated COT), with more detailed trader categories beginning from

15In Online Appendix Table 3.A-9, we repeat the analysis in the pre-2005 sample.
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June 13, 2006. Although the DCOT sample period is relatively short, we can still obtain

further insights into spreading pressure by analyzing the spread positions held by more

detailed trader types.

DCOT data break down trader positions into two subcategories: 1) produc-

ers/merchants/ processors/users, and 2) swap dealers for commercials, as well as two ad-

ditional subcategories of 1) money managers and 2) other reportables for non-commercials.

The non-reportables from the DCOT report remain the same as those in the COT re-

port, which contains data on spread positions held by swap dealers, money managers,

and other reportables. The spread positions held by commercials in the COT report are

equal to the sum of those held by money managers and other reportables. So we con-

struct an alternative proxy for the spreading pressure factor by using DCOT data, and

investigating the determinants of commodity futures risk premia on spreading pressure

from total speculators. As an intermediary in the commodity futures market defined

by the CFTC, swap dealers’ spreading pressure is of interest to us. We aim to analyze

whether information carried by swap dealers’ spreading pressure differs from that of

non-commercials.

Similarly to the construction of our original spreading pressure factor, we con-

struct a spreading pressure factor from the managed money category (other reportables

or swap dealers) by buying three commodities with the lowest spreading pressure and

shorting three commodities with the highest spreading pressure.16 We then conduct

cross-sectional tests for six asset pricing factor models, nested in:

Rt,i =γt,0 + λt,SPβt,SP + λManagedMoney

SP
βt,SP ManagedMoney

+ λOtherReportable
SP

βt,SP OtherReportable + λSwapDealer
SP

βt,SP SwapDealers + εt,i

(3.14)

The specifications of Models (1) to (4) are single-factor models that use spreading pres-

16Detailed results of long-short strategies on spreading pressure by trader category are reported in
Online Appendix Table 3.A-10.
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sure from the overall commercial, managed money, other reportables, or swap dealer cat-

egories as pricing factors, respectively. Model (5) is the two-factor model with spreading

pressure from the managed money and other reportables categories. We include Model

(5) to investigate which non-commercial traders’ activities contribute most heavily to the

risk premia of the spreading pressure from overall non-commercials. The Model (6) two-

factor model, with spreading pressure from overall speculators and swap dealers, tests

whether spreading pressure from intermediaries carries different types of information

with respect to speculators’ spreading pressure.

Table 3.10 shows that spreading pressure from overall non-commercials, managed

money, other reportables, and swap dealers is all priced by using a single-factor model

(Models (1)-(4)). The single-factor model by using spreading pressure from managed

money exhibits the highest R2, 62.36%, which is not significantly different than that

using overall spreading pressure (Model (1)). Model (2) with spreading pressure from

other reportables has the lowest R2. Model (5) shows that the risk premia on spreading

pressure from other reportables is insignificant after adding spreading pressure from

money managers. This suggests that the risk premia of spreading pressure are mainly

caused by spreading pressure from managed money.

Kang et al. (2020) also document that money managers’ positions tend to be more

speculative. So the risk premia on spreading pressure come mainly from spread position

movements with a speculative purpose. However, we cannot determine whether this is

informed speculation or uninformed (liquidity) trading by commodity index investors.

We will explore this point in more detail in the next section. Model (6) shows that the

spreading pressure from swap dealers does not carry any additional useful information

for commodity futures excess returns beyond that of non-commercials.
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3.4.3 Spreading Pressure Factor over Time

Prior literature documents structural changes in the commodity futures market due

to commodity financialization and an influx of index traders around 2004-2005 (e.g.,

Buyuksahin et al., 2008; Hamilton and Wu, 2014), speculative trades leading to the oil

price boom and bust between 2003 and 2008 (Kilian and Murphy, 2014), the positive

informational effect of financial traders in the early days of commodity financialization

(Goldstein and Yang, 2019), and the rise of electronic trading platforms for commodity

futures markets in the last quarter of 2006 (Raman et al., 2017). We first test how

these events affect the spreading pressure (SP) factor return, and the returns of the long

(low spreading pressure) and short (high spreading pressure) legs of the SP portfolio. In

particular, we run the regression of spreading pressure (and its long and short legs) on

different time dummy variables:

Ri,t = α+ βjIj + γiRi,t−1 + εt (3.15)

where Ri,t includes returns of spreading pressure (Ri,t), returns of the spreading pressure

long leg (RLong,t), and returns of the spreading pressure short leg (RShort,t). The time

dummy used in Model (1) is It≥2005, which equals 1 when the time is post-2005. Similarly,

the time dummy variables used in Models (2) and (3) are I2001≤t≤2005 and I2003≤t≤2008

respectively. In Model (4), we use two time dummies, It≥2005 and I2006Sep≤t≤2006Dec.

We include the lag of return Ri,t−1 as a control variable.

Table 3.11 reveals some key observations about the time series properties of

spreading pressure portfolio returns. While the SP factor return is not significantly

higher during the post-2005 period, the superior performance of such a strategy in the

recent sample comes from the short leg of the portfolio. In other words, it is significantly

more profitable to short high spreading pressure commodities in the post-2005 period.

This observation confirms the importance of financialization plays to the SP portfolio
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returns.

Interestingly, the SP factor returns dropped significantly in the earlier days (2001-

2005) due to positive (negative) returns for holding (shorting) high spreading pressure

commodities. Returns to the long leg (low spreading pressure) of the portfolio are not

affected by either time dummy. We can rationalize this evidence with the Goldstein and

Yang (2019) model, which predicts a positive informational effect, that is, signalling via

speculation-based trades dominates the noise generated via hedge-based trades. How-

ever, this effect only prevails in the short leg of the SP portfolio, since the long leg is

immune to the frictions caused by commodity financialization.17 In fact, an investor

who put money into the SP portfolio in 1993 would have earned more by exiting the

commodity markets (and, say, keeping the money in T-bills) during the early days of

financialization (2001-2005), and then returning in 2005. Reinvesting in the SP portfolio

at that time would have earned the highest Sharpe ratio (0.90) over the entire sample

period.

The third specification in Table 3.11 shows that the so-called “bubble view,”

or “Masters Hypothesis,” is not behind the SP portfolio’s profitability (Masters, 2008;

Cheng and Xiong, 2014). In other words, the speculative activity in the commodity

futures market that led to the oil price boom and bust (2003 and 2008) does not explain

the returns to the SP factor, or to either legs of the portfolio. Finally, Raman et al. (2017)

argue that an important dimension of commodity financialization is the rise of electronic

futures markets in the last quarter of 2006. When we include an electronification dummy

along with the 2005 dummy in the final specification, we see that the SP factor return is

significantly larger in this period due to the lower returns in the short leg of the portfolio.

17In Online Appendix Figure 3.A-1, we show that the information inefficiency of the short leg of the
SP portfolio increased substantially post-2005. We observe no such increase in the long leg of the SP
portfolio.
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3.4.4 Spreading Pressure Factor and Asset Returns

Another important prediction of the commodity financialization models is the increased

correlation of commodity returns with other asset classes, especially equity markets

(e.g., Cheng and Xiong, 2014; Basak and Pavlova, 2016). We next test for a correlation

between SP factors, including both legs of the portfolio with other asset classes. We

focus on U.S. market returns (S&P 500), MSCI Emerging Markets Asia index returns,

as well as U.S. Dollar Index Futures Contracts returns and JP Morgan Treasury Bond

Index returns. Following the literature (Tang and Xiong, 2012; Henderson et al., 2015),

we also control for the growth rate of the Baltic Dry Index, the change in the ten-year

break-even inflation rate, and the lagged return variables. In particular, we regress the

SP factor (as well as its long and short legs separately) on asset returns and control

variables:

Ri,t = α+ βkR
a
k,t + γjCj,t + εt (3.16)

In Table 3.12, we note that the only variable that explains the spreading pressure

factor (and both of its legs) is MSCI Emerging Markets Asia index returns. They

exhibit a stronger effect on the long leg of the SP portfolio, suggesting that economic

fundamentals, such as global economic growth expectations, particularly in Asia, play

an important role in explaining SP portfolio returns. Both S&P 500 and the USD index

returns correlate with individual components of the SP portfolio, but the effect cancels

itself out in the long-short strategy without an overall effect on the SP factor.

3.4.5 Spreading Pressure Factor and Economic Uncertainty

There is a solid literature on the impact of uncertainty shocks on economic activity

and business cycles (Bloom, 2009; Ludvigson et al., 2019), and growing interest in the

implications for commodity markets (Watugala, 2019). Cheng et al. (2015) investigate

how changes in the CBOE Volatility Index (VIX), an implied volatility measure based on
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S&P 500 index options, affected the trading activity of commodity market participants

around the global financial crisis. Ludvigson et al. (2019) highlight the importance of

distinguishing financial or macroeconomic uncertainty from real economic uncertainty.

The latter is related to shocks to production, and constructed with seventy-three real

activity variables. Negative shocks to production increase real economic uncertainty,

which indicates a bad economic state. Arguably, this is a better measure of uncertainty

for commodity markets.

In this section, we aim to examine whether commodities in the long and short

legs, as well as the spreading pressure factor, are sensitive to uncertainty shocks.18 In

order to test the exposure to uncertainty shocks, we regress the SP factor (and its long

and short legs) on changes in different uncertainty measures (∆Uncertaintyt). We use

the VIX, macroeconomic, financial, and real economic uncertainty (Ludvigson, Ma, and

Ng, 2019), and control the past returns:

Ri,t = α+ βk,Uncertainty∆Uncertaintyk,t + γjCj,t + εt (3.17)

Table 3.13 shows that both the VIX and financial uncertainty shocks reduce the returns

of both legs of the strategy. Hence, there is no effect on the spreading pressure factor,

as it is only significantly and negatively related to changes in real economic uncertainty.

Specifically, the return from the long leg with low spreading pressure commodities is

significantly exposed to real economic uncertainty shocks (coefficient = -19.34 and t-

statistics = -3.28). But the short leg (high spreading pressure commodities) return is

immune to such shocks. This could also be considered evidence for market segmentation

in the commodity futures market, where the return dynamics of each leg of the strategy

are driven by different trading motives (Goldstein et al., 2014). The long leg is more

sensitive to fundamental and real economic uncertainty shocks that are relevant for

18We collect these data from Sydney C. Ludvigson’s website.
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hedgers, while the short leg suffers from the informational frictions from commodity

financialization.

Next, to conduct a commodity-level analysis, we also regress the excess return of

each commodity i on changes in real economic uncertainty. We then sort each commodity

according to its turnover in the long and short legs, respectively. Figure 3.7 shows that

commodities in the long (short) leg of the SP portfolio have strong (weak) exposure

to changes in real economic uncertainty. These appear to be related to their portfolio

turnover. However, we note that there are only a few commodities in the investment

opportunity set of the long (i.e., low spreading pressure) leg of the strategy. We also

observe that most commodities in the long portfolio are not part of a major index such

as the S&P GSCI Index or the Bloomberg Commodity Index, DJ-UBSCI (at least for

most of the sample), while we only short index commodities. This suggests at least

some link between spread positions and commodity index investment. We confirm this

conjecture in Table 3.14, where we collect data from CFTC quarterly index investment

reports (over a shorter period, 2007Q4-2015Q3). These data indicate a positive relation

between changes in spread positions and index investment positions, which is driven

mainly by the spread positions of managed money investors.

Our cross-sectional strategy investing in some non-index commodities (low spread-

ing pressure) and shorting some index commodities (high spreading pressure) delivers

positive returns and high Sharpe ratios in the recent sample. However, note that our

spreading pressure strategy is not a mere manifestation of index effects. Cumulative

excess returns generated by the SP portfolio are higher than those obtained by sim-

ply going long all non-index commodities and short all their index counterparts (Figure

3.A-2).
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3.4.6 Something Else in Disguise?

In the previous section, we show how commodities in the long and short legs of the

spreading pressure strategy differ in terms of index participation and exposure to eco-

nomic fundamentals via frictions introduced through financial investors. But are they

also different in terms of exposure to risk factors such as volatility, liquidity, inventory,

or financial intermediary risk? For example, we may expect index commodities to be

more liquid thanks to liquidity provisions by index traders (Brunetti and Reiffen, 2014;

Tang and Xiong, 2012). That relation is actually more complex because of the dual roles

of financial investors (Cheng and Xiong, 2014). Or index participation could potentially

increase commodity volatility (Tang and Xiong, 2012; Basak and Pavlova, 2016).19 One

could argue that the priced spreading pressure factor compensates for other commodity

market risks such as inventory (Gorton et al., 2013) or financial intermediary risk (He

et al., 2017).

To test the role of these alternative risk channels, we repeat our cross-sectional

asset pricing test in Table 3.15 by constructing volatility, liquidity, inventory, and finan-

cial intermediary risk factors. Volatility factors are the innovations in aggregate and

average commodity market variances (∆varmkt,t and ∆varavg,t), and the liquidity mea-

sure is innovations in the aggregate Amihud measure (∆liquidityAMI). We construct

aggregate commodity market variance (varmkt,t) as the sum of daily squared returns

of equal-weighted commodity portfolio in week t. Average commodity market variance

(varavg,t) is the equally-weighted average of the sum of the daily squared return of all

commodities in week t. We compute commodity i’s Amihud measure as the annual

average of daily
|Rn,d|
V oln,d

by using dollar volume V oln,d for both front- and second-month

contracts (n = 1, 2) at day d. The aggregate Amihud measure is the mean of the median

of front- and second-month Amihud illiquidity over all commodities (Boons and Prado,

19Figure 3.A-3 shows no significant difference in volatility. The short leg of the spreading pressure
portfolio appears slightly more volatile than the long leg. In contrast, we observe a great deal of difference
in liquidity between the two portfolio legs, i.e., the long leg is much more illiquid than the short leg.
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2019).

Following Gorton et al. (2013), we collect inventory data from the National Agri-

cultural Statistics Service of the U.S. Department of Agriculture (NASS-USDA), the

Energy Information Administration (EIA), etc. We then calculate the normalized in-

ventory level for each commodity at time t as the ratio of the inventory level at time t to

its past twelve-month moving average from t− 1 to t− 12. We construct the inventory

risk factor as the return of the long-short portfolio constructed by going long three com-

modities with the lowest normalized inventory levels, and short three commodities with

the highest normalized inventory levels. Following He et al. (2017), we also construct

the intermediary capital risk factor on a weekly basis, computed as the AR(1) inno-

vations to the intermediary capital ratio (i.e., shocks to the equity capital ratio of the

primary dealer counterparties of the New York Federal Reserve), scaled by the lagged

intermediary capital ratio.20

The results of accounting for the alternative risk factors are in Table 3.15. It

shows that, while volatility and liquidity factors are priced in a two-factor model with

a market average factor, this is not the case for inventory or financial intermediary risk

factors. More importantly, none of these factors survive when we augment the model

with our SP factor. These results suggest that the signal extracted from spread positions

is not driven solely by volatility, liquidity, inventory, or intermediary risk factors.

3.5 Conclusion

In this paper, we find that speculators’ intra-commodity spread trades carry important

information about commodity futures risk premiums, especially during the era of finan-

cialization of the commodity markets. In contrast, speculators’ directional betting via

either long- or short-only trades do not offer comparable information content. Spec-

20These data come from Zhiguo He’s website.
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ulators’ spreading pressure, defined as spread trade positions scaled by open interest,

negatively predicts commodity futures returns. Moreover, a long-short portfolio based

on spreading pressure is priced in the cross-section of commodity futures returns, while

a single-factor model with our spreading pressure factor exhibits a better fit than the

extant multifactor models. The estimated price of risk on the spreading pressure factor

is 20.95% per annum, and it generates R2 as high as 66.81%.

Our spreading pressure factor is constructed by purchasing commodities with

low spreading pressure, typically non-index commodities, and shorting those with high

spreading pressure (index commodities). The profitability of the long leg of this strategy

stems from the fact that commodities in the long portfolio do not suffer from frictions in-

troduced by financial traders, e.g., noise generated by hedge-based index traders. Their

returns are driven by economic fundamentals such as growth in emerging (Asia) markets,

and reflect a compensation for exposure to real economic uncertainty shocks. Shorting

commodities with high spreading pressure is profitable precisely because they suffer from

the negative effects of commodity financialization, except for during earlier years, when

speculative trades brought commodity futures prices closer to fundamentals. To coun-

teract these effects, we would recommend a more detailed reporting of spread positions

across a larger cross-section of commodity futures. This key source of risk in the modern

commodity futures market is ultimately too big to be dismissed.
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Table 3.3: Trader Positions and Futures Returns by Trader Type

This table reports the average slope coefficients and R2s from weekly Fama-MacBeth cross-sectional
regressions of commodity-level excess returns on one week-lagged trader positions (pressure) for each of
four trader categories: hedgers (commercials), spread speculators (non-commercials with spread positions
only), non-spread speculators (non-commercials with long or short, but not both, positions only), and
small speculators (non-reportables). Pressure from hedgers refers to hedging pressure, measured by
hedgers’ net short positions scaled by total open interest; pressure from speculators with spread positions
only is spreading pressure, defined as speculators’ spread positions scaled by total open interest; and
pressure from the other two categories, large speculators with long or short positions only and small
speculators, is calculated as traders’ net long positions scaled by total open interest, respectively. Newey-
West t-statistics with four lags are in parentheses. Panel A presents results for the full sample from
October 6, 1992 through December 26, 2018. Panels B and C show subsample results for October 6,
1992 through January 4, 2005, and January 4, 2005 through December 26, 2018, respectively.

Model Hedgers Speculators (spread) Speculators (non-spread) Small Speculators

Panel A: Full Sample

Pressurei,t -0.07 -0.94 -0.09 0.03

(-0.59) (-1.95) (-0.60) (0.14)

R2 5.44% 5.75% 5.29% 4.43%

Panel B: Pre-2005

Pressurei,t -0.21 -0.38 -0.23 -0.12

(-1.19) (-0.42) (-1.07) (-0.41)

R2 4.78% 4.85% 4.48% 4.35%

Panel C: Post-2005

Pressurei,t 0.04 -1.39 0.03 0.16

(0.24) (-3.00) (0.17) (0.41)

R2 5.97% 6.48% 5.94% 4.49%
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Table 3.4: Spreading Pressure Portfolio

This table presents the summary statistics of commodity futures weekly portfolio returns, where
portfolios are constructed by sorting commodity futures on the fifty-two week average of spreading
pressure or basis-momentum. Basis-momentum is calculated following Boons and Prado (2019) as∏t
s=t−11

(
1 +R

(0)
long,s

)
−
∏t
s=t−11

(
1 +R

(1)
long,s

)
. Low3 (High3 ) consists of commodity futures ranked in

the bottom (top) three for spreading pressure or basis-momentum, and the rest of twenty commodities
constitute the portfolio called Mid. Low3-High3 represents a long-short portfolio strategy of buying Low3
and shorting High3. Portfolios’ excess returns are calculated as equal-weighted average excess returns
of portfolio constituents. Panel A presents results for the full sample from October 6, 1992 through
December 26, 2018. Panels B and C show subsample results for October 6, 1992 through January 4,
2005, and for January 4, 2005 through December 26, 2018, respectively.

Panel A: Full Sample

Spreading Pressure Basis-Momentum

Low3 Mid High3 Low3-High3 Low3 Mid High3 High3-Low3

Mean 10.57 2.08 -6.37 16.94 -7.56 1.70 14.10 21.66

Std. Dev. 20.90 12.34 20.22 23.87 20.90 13.06 19.98 25.78

Sharpe ratio 0.51 0.17 -0.31 0.71 -0.36 0.13 0.71 0.84

Skewness -0.13 -0.10 -0.03 0.00 0.10 -0.06 -0.09 -0.05

Kurtosis 5.15 5.00 4.02 3.90 3.82 5.36 4.33 3.47

Panel B: Pre-2005

Spreading Pressure Basis-Momentum

Low3 Mid High3 Low3-High3 Low3 Mid High3 High3-Low3

Mean 13.05 2.82 3.05 10.00 -6.65 3.42 18.74 25.39

Std. Dev. 18.90 10.47 16.39 23.87 20.14 10.17 21.21 27.10

Sharpe ratio 0.69 0.27 0.19 0.42 -0.33 0.34 0.88 0.94

Skewness -0.09 0.05 0.10 0.14 0.14 0.06 -0.06 -0.13

Kurtosis 4.09 3.25 3.66 4.13 3.24 3.06 4.06 3.44

Panel C: Post-2005

Spreading Pressure Basis-Momentum

Low3 Mid High3 Low3-High3 Low3 Mid High3 High3-Low3

Mean 8.58 1.49 -13.93 22.52 -8.30 0.32 10.36 18.66

Std. Dev. 22.39 13.66 22.79 23.85 21.50 14.99 18.94 24.68

Sharpe ratio 0.38 0.11 -0.61 0.94 -0.39 0.02 0.55 0.76

Skewness -0.14 -0.14 0.00 -0.11 0.08 -0.07 -0.15 0.03

Kurtosis 5.39 5.10 3.68 3.75 4.15 5.05 4.56 3.46
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Table 3.5: Fama-MacBeth Cross-Sectional Regressions

This table presents the average coefficients from running Fama-MacBeth cross-sectional regressions of
futures excess returns on the lagged (fifty-two week average) spreading pressure (SP ). Included as
control variables are basis-momentum (BM), hedgers’ net position changes (Qh), and/or speculators’
net position changes (Qs):

Ri,t+k = b0 + bSPSP i,t + bBMBMi,t + bhQQ
h
i,t + bsQQ

s
i,t + εi,t+1

Newey-West t-statistics with four lags and average R2 are reported for each model specification. Panel
A presents results for the full sample from October 6, 1992 through December 26, 2018. Panels B and
C show subsample results for October 6, 1992 through January 4, 2005, and January 4, 2005 through
December 26, 2018, respectively.

Model (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Full Sample

bSP -1.78 -1.69 -1.97 -1.96 -1.91

(-3.00) (-2.89) (-3.17) (-3.13) (-3.00)

bBM 1.56 1.47 1.65

(3.17) (3.02) (3.09)

bhQ 3.02 3.32 2.59

(5.21) (5.55) (1.58)

bsQ -3.50 -3.66 -0.87

(-5.77) (-5.80) (-0.51)

R2 5.94% 6.95% 4.89% 4.66% 12.63% 10.83% 10.61% 21.66%

Panel B: Pre-2005

bSP -2.20 -2.09 -2.49 -2.43 -2.45

(-1.89) (-1.83) (-2.04) (-1.97) (-1.96)

bBM 2.04 1.87 2.05

(2.76) (2.48) (2.57)

bhQ 2.76 3.05 4.81

(4.60) (4.91) (3.20)

bsQ -2.44 -2.70 1.86

(-3.59) (-3.79) (1.06)

R2 4.88% 7.59% 4.75% 4.35% 12.19% 9.52% 9.16% 21.02%

Panel C: Post-2005

bSP -1.45 -1.37 -1.56 -1.59 -1.47

(-2.80) (-2.65) (-2.84) (-2.92) (-2.68)

bBM 1.17 1.15 1.33

(1.79) (1.81) (1.85)

bhQ 3.22 3.53 0.80

(3.49) (3.70) (0.30)

bsQ -4.35 -4.43 -3.07

(-4.63) (-4.53) (-1.11)

R2 6.80% 6.43% 5.00% 4.91% 12.99% 11.89% 11.78% 22.17 %
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Table 3.6: Spreading Pressure Factor

This table presents the summary statistics of spreading pressure factor, i.e., the excess return of long-
short spreading pressure portfolios (RSP ). Panel A reports the correlation between the spreading pressure
factor and other well-known commodity futures risk factors such basis-momentum (RBM ), carry (RC)
, momentum (RM ) and the market factor (RAvg). Panel B shows the correlation between spreading
pressure portfolios and each of four commodity futures sector portfolios (energy, grain, meats, metals,
and soft). Low3 (High3) consists of commodity futures ranked in the bottom (top) three for spreading
pressure, and the remaining twenty commodities constitute the portfolio called Mid. Low3-High3 rep-
resents a long-short portfolio strategy of buying Low3 and shorting High3. Portfolios’ excess returns
are calculated as equal-weighted average excess returns of portfolio constituents. The full sample spans
October 6, 1992 through December 26, 2018; pre-2005 (post-2005) is from October 6, 1992 through
January 4, 2005 (January 4, 2005 through December 26, 2018).

Panel A. Commodity Futures Risk Factor Correlations

RAvg RSP RBM RC

(1) Full Sample

RSP -0.01

RBM -0.03 0.13

RC 0.05 0.18 0.19

RM 0.04 0.16 0.19 0.43

(2) Pre-2005

RSP -0.01

RBM 0.03 0.12

RC 0.09 0.08 0.24

RM 0.10 0.05 0.32 0.45

(3) Post-2005

RSP -0.00

RBM -0.07 0.15

RC 0.03 0.26 0.14

RM 0.00 0.25 0.05 0.41

Panel B: Spreading Pressure Factor and Commodity Sector Return Correlations

Energy Grain Meats Metal Soft

(1) Full Sample

Low3 0.28 0.44 0.06 0.71 0.48

Mid 0.64 0.73 0.31 0.60 0.67

High3 0.62 0.51 0.20 0.37 0.29

Low3-High3 -0.28 -0.04 -0.12 0.30 0.17

(2) Pre-2005

Low3 0.11 0.19 0.01 0.65 0.36

Mid 0.63 0.60 0.39 0.37 0.53

High3 0.26 0.57 0.24 0.15 0.14

Low3-High3 -0.10 -0.24 -0.16 0.41 0.19

(3) Post-2005

Low3 0.40 0.57 0.10 0.73 0.55

Mid 0.66 0.80 0.26 0.70 0.74

High3 0.85 0.48 0.19 0.47 0.37

Low3-High3 -0.43 0.08 -0.09 0.24 0.16
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Table 3.7: Pricing Model Comparison: Spanning Regressions and GRS Tests

This table presents the results of spanning regressions and GRS tests by regressing spreading pressure
factors on commodity futures risk factors proposed by the extant pricing models. Panel A reports
the regression coefficients on two factors (basis-momentum and the average commodity market factor)
from Boons and Prado (2019), and Panel B reports three factors (carry, momentum, and the average
commodity market factor) from Bakshi et al. (2019). Newey-West t-statistics with one lag are calculated,
and F-statistics and the p-value of the joint GRS test are also provided in the last two rows. We report
the results for the full sample from October 6, 1992 through December 26, 2018, and the two subsamples
(pre- and post-2005).

Full Sample Pre-2005 Post-2005

Panel A. Boons and Prado (2019)

α 14.30 7.55 19.83

(2.87) (1.02) (2.96)

βBM 0.12 0.10 0.14

(4.00) (2.43) (3.32)

βAvg 0.00 -0.04 0.01

(-0.06) (-0.38) (0.19)

R2 1.75% 1.37% 2.2%

GRS-F 3.43 0.68 3.63

p-val 0.02 0.57 0.01

Panel B. Bakshi et al. (2019)

α 15.56 10.05 20.01

(3.26) (1.38) (3.21)

βAvg -0.03 -0.05 -0.01

(-0.53) (-0.50) (-0.18)

βC 0.12 0.06 0.17

(3.62) (1.27) (3.72)

βM 0.08 0.02 0.15

(2.65) (0.42) (3.57)

R2 3.99% 0.71% 9.36%

GRS-F 3.96 1.08 3.98

p-val 0.01 0.36 0.01
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Table 3.8: Asset Pricing Tests with Spreading Pressure Factor

This table presents the estimated risk premium on commodity futures risk factors by running Fama-
MacBeth cross-sectional asset pricing tests. Six different model specifications are considered, and are
nested in Rt,i = γt,0 + λt,SPβt,SP + λt,BMβt,BM + λt,Cβt,C + λt,Mβt,M + λt,Avgβt,Avg + εt,i. We use
seventeen commodity futures portfolios as test assets, broken down as carry (3), momentum (3), basis-
momentum (3), spreading pressure (3), and commodity sector (5). Model (1) is a single-factor model
that contains the spreading pressure factor only, Model (2) adds the basis-momentum factor, Model (3)
is the Boons and Prado (2019) model, and Model (4) is the Bakshi et al. (2019) model. Models (5) and
(6) add the spreading pressure factor to Models (3) and (4), respectively. We report two versions of the
t-statistics, following Shanken (1992) (in parentheses) and Kan et al. (2013) (in square brackets). OLS
R2 and GLS R2 (in parentheses) are in the last column. Panel A presents results for the full sample
from October 6, 1992 through December 26, 2018. Panels B and C show subsample results for October
6, 1992 through January 4, 2005, and January 4, 2005 through December 26, 2018, respectively.

Panel A: Full Sample

Model γ0 λSP λBM λC λM λAvg R2

(1) 2.55 16.32 38.57%

(1.00) (2.99) (27.87%)

[0.86] [2.91]

(2) 2.71 12.90 21.34 75.83%

(1.06) (2.41) (4.01) (59.23%)

[0.92] [2.38] [3.87]

(3) -0.61 24.25 2.81 63.33%

(-0.14) (4.37) (0.56) (39.69%)

[-0.15] [4.28] [0.55]

(4) 2.52 6.58 17.65 -0.43 36.15%

(0.58) (1.23) (2.96) (-0.09) (13.02 %)

[0.56] [1.17] [3.09] [-0.08]

(5) -2.13 13.73 21.49 4.49 79.28%

(-0.49) (2.59) (4.03) (0.91) (59.90%)

[-0.56] [2.51] [3.97] [0.88]

(6) -0.33 14.71 4.86 16.15 2.65 57.19%

(-0.08) (2.78) (0.92) (2.72) (0.54) (37.44%)

[-0.07] [2.77] [0.85] [2.99] [0.48]
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Table 3.8 - Continued

Panel B: Pre-2005

Model γ0 λSP λBM λC λM λAvg R2

(1) 4.77 11.55 10.28%

(1.51) (1.49) (6.71%)

[1.64] [1.32]

(2) 4.26 8.00 24.37 47.74%

(1.35) (1.05) (2.74) (37.31%)

[1.38] [0.99] [3.04]

(3) -2.64 24.50 6.85 51.36%

(-0.37) (2.75) (0.89) (34.35%)

[-0.48] [3.08] [1.09]

(4) -0.2 0.49 26.75 4.30 48.94%

(-0.03) (0.06) (2.81) (0.55) (28.43%)

[-0.03] [0.06] [3.34] [0.61]

(5) -4.1 10.17 23.22 8.21 55.93%

(-0.57) (1.35) (2.64) (1.06) (38.20%)

[-0.69] [1.19] [2.98] [1.25]

(6) -3.2 11.65 -0.77 26.12 7.15 58.28%

(-0.44) (1.54) (-0.09) (2.74) (0.92) (35.20%)

[-0.43] [1.48] [-0.09] [3.23] [0.93]

Panel C: Post-2005

Model γ0 λSP λBM λC λM λAvg R2

(1) 0.92 20.95 66.81%

(0.24) (2.88) (33.01%)

[0.22] [2.80]

(2) 1.51 18.85 17.61 84.36%

(0.40) (2.62) (2.61) (47.39%)

[0.33] [2.51] [2.26]

(3) 0.25 23.33 0.19 47.87%

(0.05) (3.30) (0.03) (23.33%)

[0.05] [2.77] [0.03]

(4) 3.31 14.17 12.04 -3.02 33.91%

(0.66) (1.98) (1.54) (-0.49) (5.26%)

[0.65] [1.93] [1.49] [-0.45]

(5) -1.16 19.23 18.16 2.11 85.35%

(-0.23) (2.68) (2.72) (0.34) (49.36%)

[-0.25] [2.53] [2.35] [0.29]

(6) 0.98 20.02 9.74 7.29 -0.13 68.20%

(0.20) (2.87) (1.40) (0.97) (-0.02) (34.12%)

[0.20] [2.67] [1.40] [1.03] [-0.02]

85



Table 3.9: Spreading Pressure and the Term Structure of Futures Prices

This table reports the predictive regression of the one week-ahead slope and curvature of the commodity
futures term structure on spreading pressure and hedging pressure:

{Slopet+1, Curvaturet+1} = αt+1 + βSPSPt + βHPHPt + εi,t+1.

We define the slope of futures curves as slopet =
lnF3

t −lnF1
t

T3−T1
, and the curvature as curvaturet =

lnF3
t −lnF2

t
T3−T2

− lnF2
t −lnF1

t
T2−T1

. We report the results for four subgroups as well as for the whole. Group
indicates the sub-sample depending on the shape of the term structure at time t, i.e., 1) positive slope,
positive curvature, 2) positive slope, negative curvature, 3) negative slope, positive curvature, and 4)
negative slope, negative curvature. Percentage (Mean of SP) is the proportion of the sample (average
spreading pressure) for each group. The regression controls for both time- and commodity-fixed effects,
as well as for time to earliest maturity date for each commodity at each point in time. t-statistics based
on standard errors clustered at the time dimension are in parentheses. The sample period is January 4,
2005 through December 26, 2018.

Slopet+1,i × 100 Curvt+1,i × 100

Group Percentage Mean of

SP

SPt,i HPt,i R2 SPt,i HPt,i R2

(1) +Slope, +Curv 24.72% 12.98% 0.99 -0.07 48.43% 0.08 -0.07 15.49%

(9.31) (-3.07) (0.41) (-1.87)

(2) +Slope,−Curv 48.15% 12.72% 0.17 -0.18 32.04% -0.13 -0.05 22.65%

(2.62) (-11.47) (-1.82) (-2.54)

(3) −Slope, +Curv 10.49% 11.38% -0.06 -0.25 42.28% 0.06 -0.19 43.82%

(-0.66) (-7.4) (0.39) (-3.64)

(4) −Slope, −Curv 16.64% 11.96% -0.31 -0.04 42.42% -0.57 -0.17 36.11%

(-2.62) (-0.83) (-3.05) (-2.25)

(5) All states 100% 12.54% 0.17 -0.31 19.71% 0.08 -0.07 6.65%

(2.27) (-20.08) (0.90) (-3.86)
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Table 3.10: Asset Pricing Test with Disaggregated Spreading Pressure Factors

This table reports the results of cross-sectional asset pricing tests with different versions of spreading
pressure factors depending on disaggregated spread trader categories from the DCOT report (i.e., money
manager, swap dealer, and other reportable):

Rt,i = γt,0 + λt,SPβt,SP + λManagedMoney

SP
βt,SP ManagedMoney + λOtherReportable

SP
βt,SP OtherReportable

+λSwapDealer
SP

βt,SP SwapDealers + εt,i

We use seventeen portfolios as test assets, constructed by sorting on carry (3), momentum (3), basis-
momentum (3), spreading pressure (3), and sector (5). λt,SP is the estimated risk premium on the
spreading pressure factor based on spreading pressure from overall speculators (i.e., money managers
and others), λManagedMoney

SP
and λOtherReportable

SP
are based on sub-categories of speculator, i.e., money

managers and others, respectively, and λSwapDealer
SP

is based on financial intermediaries, i.e., swap dealers.
Two versions of t-statistics are reported following Shanken (1992) (in parentheses) and Kan et al. (2013)
(in square brackets). The sample period is June 13, 2006 through December 26, 2018.

Model γ0 λSP λManagedMoney

SP
λOtherReportable
SP

λSwapDealers
SP

R2

(1) -0.94 18.97 64.84%

(-0.21) (2.38)

[-0.21] [2.44]

(2) 0.34 22.32 62.36%

(0.08) (2.29)

[0.07] [2.50]

(3) -3.53 20.74 49.08%

(-0.78) (2.15)

[-0.65] [2.21]

(4) 2.60 21.32 50.19%

(0.62) (2.05)

[0.56] [2.22]

(5) -0.59 20.81 13.96 63.61%

(-0.15) (1.98) (1.35)

[-0.15] [1.97] [1.25]

(6) -0.01 18.15 14.25 66.06%

(-0.00) (2.31) (1.29)

[-0.00] [2.44] [1.27]
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Table 3.11: Spreading Pressure Factor over Time

This table presents the regression of spreading pressure (and its long and short legs) on different time
dummy variables,

Ri,t = α+ βjIj + γiRi,t−1 + εt

where Ri,t includes the return of spreading pressure (Ri,t), return of spreading pressure long leg (RLong,t),
and the return of spreading pressure short leg (RShort,t). The time dummy used in Model (1) is It≥2005,
which equals to one when the time is after 2005. Similarly, the time dummy variables used in Model (2)
and (3) are I2001≤t≤2005 and I2003≤t≤2008 respectively. In Model (4), we use two time dummies, It≥2005

and I2006Sep≤t≤2006Dec. We include the lag of return Ri,t−1 as a control variable. t-statistics are in
parentheses. The sample period is October 5, 1993 through December 26, 2018.

Model Variable RSP,t RLong,t RShort,t

(1) α 0.18 0.25 0.06

(1.33) (2.06) (0.49)

βt≥2005 0.22 -0.09 -0.32

(1.18) -(0.54) -(2.08)

(2) α 0.42 0.24 -0.21

(4.10) (2.66) -(2.43)

β2001≤t≤2005 -0.59 -0.20 0.44

-(2.59) (-0.98) (2.26)

(3) α 0.31 0.24 -0.09

(2.99) (2.62) -(1.04)

β2003≤t≤2008 -0.05 -0.18 -0.13

-(0.24) -(0.93) -(0.70)

(4) α 0.18 0.25 0.06

(1.33) (2.06) (0.5 )

βt≥2005 0.18 -0.09 -0.29

(0.97) -(0.58) -(1.86)

β2006Sep≤t≤2006Dec 1.65 0.28 -1.52

(2.04) (0.40) -(2.21)
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Table 3.12: Spreading Pressure Factor and Asset Returns

This table presents the relationship between the spreading pressure factor and the returns of MSCI
Emerging Markets Asia Index, S&P 500, U.S. Dollar Index Futures Contracts, and JP Morgan Treasury
Bond Index. We regress the spreading pressure factor (as well as its long and short legs separately) on
normalized returns of indices (Rak,t), Ri,t = α + βkR

a
k,t + γjCj,t + εt, where Rak is the return of MSCI

Emerging Markets Asia Index (Panel A), S&P 500 (Panel B), U.S. Dollar Index Futures Contracts (Panel
C) and JP Morgan Treasury Bond Index (Panel D). The control variables (Cj,t) in this regression are
the growth rate of the Baltic Dry Index, the change in the ten-year breakeven inflation rate and the lag
of the spreading pressure return, long or short leg return. We report βi, its t-statistics and the R2 of the
above regression. The sample period is January 4, 2005 through December 26, 2018 (weekly frequency).

β t-stat R2(%)

Panel A: MSCI Emerging Markets Asia Index Return

Spreading Pressure Factor 12.04 3.18 2.58

Long, low spreading pressure commodities 32.62 8.95 24.83

Short, high spreading pressure commodities 20.19 4.71 16.51

Panel B: S&P 500 Return

Spreading Pressure Factor 3.95 1.14 1.19

Long, low spreading pressure commodities 23.06 5.78 18.23

Short, high spreading pressure commodities 18.75 3.78 15.79

Panel C: U.S. Dollar Index Future Contracts Return

Spreading Pressure Factor -5.03 -1.51 1.33

Long, low spreading pressure commodities -29.29 -7.85 23.45

Short, high spreading pressure commodities -24.23 -8.39 19.39

Panel D: JP Morgan Treasury Bond Index Return

Spreading Pressure Factor 2.81 0.71 1.11

Long, low spreading pressure commodities -0.82 -0.20 11.88

Short, high spreading pressure commodities -4.35 -1.00 11.91
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Table 3.13: Spreading Pressure Factor and Economic Uncertainty

This table presents the relationship between the spreading pressure factor and shocks to different mea-
sures of uncertainty, namely the VIX index, and macroeconomic, financial, and real economic uncertainty.
We regress the spreading pressure factor (and its long and short legs separately) on normalized changes
in uncertainty measures (∆Uncertaintyt), RSP,t = α + βi,Uncertainty∆Uncertaintyi,t + +γjCj,t + εt.
The control variable (Cj,t) used in this regression is the lag of the spreading pressure return, long or
short leg return. We report βUncertainty, its t-statistics and R2 of the above regression. The sample
period is January 4, 2005 through December 26, 2018 (monthly frequency).

β t-stat R2(%)

Panel A: Real Economic Uncertainty

Spreading Pressure Factor -19.34 -3.28 5.08

Long, low spreading pressure commodities -24.07 -1.88 7.48

Short, high spreading pressure commodities -1.83 -0.20 0.35

Panel B: VIX

Spreading Pressure Factor -7.45 -1.23 0.96

Long, low spreading pressure commodities -29.42 -3.56 11.53

Short, high spreading pressure commodities -21.66 -3.67 6.70

Panel C: Financial Uncertainty

Spreading Pressure Factor -12.02 -1.85 2.10

Long, low spreading pressure commodities -24.74 -2.74 7.81

Short, high spreading pressure commodities -9.05 -1.67 1.40

Panel D: Macro Uncertainty

Spreading Pressure Factor -13.02 -1.67 2.44

Long, low spreading pressure commodities -29.40 -2.54 10.60

Short, high spreading pressure commodities -10.88 -1.40 1.89
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Table 3.14: Spread Positions and Index Investment

This table presents pooled regressions for two models with time and commodity fixed effects, nested in

∆SpreadPositioni,t = αt + µi + βIndexPosition∆IndexPositioni,t + εi,t

where IndexPositioni,t includes {LongIndexPositioni,t, NetIndexPositioni,t}, αt and µi are used to
control time and commodity fixed effects. LongIndexPositioni,t is total long position held by in-
dex investors, and NetIndexPositioni,t is net long position held by index investors. ∆Positioni,t =
Positioni,t/Positioni,t−1 − 1. Panel A shows the results for non-commercials’ spread positions. Panels
B and C show results for spread positions held by money managers and other reportables, respectively.
In Panel D, we show swap dealers’ spread positions. The sample period is December, 2007 through
September, 2015 (quarterly frequency). Non-commercials spread positions are collected from weekly
COT reports, while spread position data at a trader category level come from DCOT reports. The panel
shows commodity investment data for twenty commodities, excluding frozen pork belly, lumber, rough
rice, oats, orange juice, and palladium.

Model βLongIndexPosition βNetIndexPosition R2

Panel A: Spread Positions (non-commercials) and Index Positions

(1) 0.19 16.79%

(2.15)

(2) 0.18 16.81%

(2.15)

Panel B: Spread Positions (managed money) and Index Positions

(3) 0.23 14.21%

(2.80)

(4) 0.20 14.11%

(2.39)

Panel C: Spread Positions (other reportables) and Index Positions

(5) 0.21 16.79%

(1.30)

(6) 0.23 16.81%

(1.53)

Panel D: Spread Positions (swap dealers) and Index Positions

(7) 0.46 11.33%

(0.38)

(8) -1.55 11.87%

(-1.34)
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Table 3.15: Cross-Sectional Asset Pricing Tests for Alternative Risk Channels

This table presents cross-sectional tests for whether volatility, liquidity, intermediary capital or inventory
risks are priced in the commodity market:

Rt,i = γt,0 + λt,SPβt,SP + λmktt,varβ
mkt
t,var + λavgt,varβ

avg
t,var + λAMI

t,liquidityβ
AMI
t,liquidity

+λHKMt,ICRβ
HKM
t,ICR + λGHRt,INV β

GHR
t,INV + λt,Avgβt,Avg + εt,i

Volatility factors are the innovations in aggregate and average commodity market variance (∆varmkt,t
and ∆varavg,t ). We construct aggregate commodity market variance (varmkt,t) as the sum of daily
squared returns of equal-weighted commodity portfolio in week t. Average commodity market variance
(varavg,t) is the equally-weighted average of the sum of the daily squared returns of all commodities
in week t (Boons and Prado, 2019). The liquidity measure is the innovations in the aggregate Amihud
measure (∆liquidityAMI). We compute commodity i’s Amihud measure as the annual average of daily
|Rn,d|
V oln,d

by using dollar volume V oln,d for both front- and second-month contract (n = 1, 2) at day d. The

aggregate Amihud measure is the mean of the median of front- and second-month Amihud illiquidity
over all commodities (Boons and Prado, 2019). The intermediary capital risk factor (ICR) is the AR(1)
innovations to the intermediary capital ratio scaled by the lagged intermediary capital ratio from He et al.
(2017). Inventory risk factor (INV) is the return of the long-short portfolio constructed by going long
the three commodities with the lowest normalized inventory levels, and shorting the three commodities
with the highest normalized inventory levels. Normalized inventory level at time t is the ratio of the level
at time t to its past twelve-month moving average from t− 1 to t− 12, which is defined by Gorton et al.
(2013). We use seventeen portfolios sorted on carry (3), momentum (3), basis-momentum (3), spreading
pressure (3), and sector portfolios (5). Models (1) to (5) are two-factor models contain the market factor
and one of either the volatility or the liquidity factors. Models (6) to (10) add the spreading pressure
factor. t-statistics of the estimated prices of risk (λ) are in parentheses below each estimate, which are
calculated following Shanken (1992) (in parentheses) and Kan et al. (2013) (in square brackets). The
sample period is January 4, 2005 through December 26, 2018.
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Table 3.15 - Continued

Model γ0 λSP λmktvar λavgvar λAMI
liquidity λHKMICR λGHRINV λAvg R2

(1) -3.06 -1.22 3.52 36.46%

(-0.49) (-1.86) (0.49)

[-0.47] [-1.87] [0.42]

(2) -4.57 -2.15 5.21 40.97%

(-0.68) (-1.95) (0.68)

[-0.63] [-1.78] [0.56]

(3) -5.80 -0.02 6.61 44.44%

(-0.67) (-1.86) (0.71)

[-0.70] [-2.24] [0.64]

(4) 2.87 18.42 -2.54 2.32%

(0.52) (0.41) (-0.38)

[0.25] [0.13] [-0.19]

(5) 3.96 21.81 -3.89 5.25%

(0.79) (0.78) (-0.62)

[0.75] [0.49] [-0.58]

(6) 2.29 22.24 0.32 -1.36 67.78%

(0.40) (3.18) (0.46) (-0.20)

[0.41] [2.81] [0.43] [-0.18]

(7) 0.91 21.05 0.00 -0.01 66.82%

(0.15) (3.07) (-0.00) (-0.00)

[0.14] [2.78] [-0.00] [-0.00]

(8) -3.23 18.71 -0.01 4.29 73.70%

(-0.50) (2.59) (-1.30) (0.58)

[-0.44] [2.47] [-0.96] [0.50]

(9) -3.80 23.86 76.11 4.69 75.18%

(-0.69) (3.30) (1.76) (0.71)

[-0.65] [3.14] [1.40] [0.67]

(10) 0.73 21.26 -16.52 0.30 68.52%

(0.15) (2.96) (-0.60) (0.05)

[0.14] [2.81] [-0.51] [0.04]
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Figure 3.1: Commodity Futures Positions by Traders Type

This figure presents the market share for each of four categories (commercials, non-commercials with- or
without spread positions, and non-reportables for each of five commodity sectors; energy, metals, soft,
grains, and meats. The market share of trader type i is calculated as

Longi,t+Shorti,t
2×Open Interestt . The sample period

is October 6, 1992 through December 26, 2018.

(a) Energy (b) Metals

(c) Softs (d) Grains

(e) Meats
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Figure 3.2: Spreading Pressure Over Time

This figure presents the time-series of spreading pressure by aggregated non-commercials (black line)
and disaggregated commercials, i.e., money managers (dark blue area) and other reportables (light blue
area). It reports six selected commodities, with three of high spreading pressure (natural gas, WTI
crude oil, and lean hogs), and three of low spreading pressure (palladium, platinum, and oats). The
sample period is October 6, 1992 through December 26, 2018, for aggregated pressure, and June 13,
2006 through December 26, 2018, for disaggregated pressure.

(a) Natural Gas (d) Platinum

(b) WTI Crude Oil (e) Palladium

(c) Lean Hogs (f) Oats
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Figure 3.3: Spreading Pressure by Week

This figure presents the weekly average spreading pressure from non-commercials (black line) of palladium
and WTI crude oil from October 6, 1992 through January 4, 2005 (left-hand side) and from January 4,
2005 through December 26, 2018 (right-hand side). The red dashed vertical line indicates the week of
contract maturity, i.e., the first notice day or the last trading day, whichever comes first.

(a) Palladium (Pre-2005) (b) Palladium (Post-2005)

(c) WTI Crude Oil (Pre-2005) (d) WTI Crude Oil (Post-2005)
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Figure 3.4: Trader Positions and Futures Excess Returns: Full-Sample

The figure presents scatter plots of average excess returns of commodity futures over trader position
variables (or pressure) and fitted lines by cross-sectional regressions for each of four trader categories
over the twenty-six sample commodities. The sample period is October 6, 1992 through December 26,
2018.

(a) Commercials (b) Non-Commercials with Spreading Positions

(c) Non-Commercials without Spreading Positions (d) Non-Reportables
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Figure 3.5: Trader Positions and Futures Excess Returns: Post-2005

This figure presents scatter-plots of average excess returns of commodity futures over traders position
variables (or, pressure) and fitted lines by cross-sectional regressions for each of four trader categories
over the twenty-six sample commodities. The sample period is January 4, 2005 throughs December 26,
2018.

(a) Commercials (b) Non-Commercials with Spreading Positions

(c) Non-Commercials without Spreading Positions (d) Non-Reportables
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Figure 3.6: Cumulative Excess Returns of Commodity Pricing Portfolios

This figure presents the cumulative excess returns for commodity futures pricing portfolios; a long-short
portfolio based on carry (basis), momentum, basis-momentum, or spreading pressure, along with an
average commodity market factor. The sample period is October 6, 1992 through December 26, 2018
(for full sample at the top) and January 4, 2005 through December 26, 2018 (post-2005 at the bottom).

(a) Full Sample

(b) Post-2005
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Figure 3.7: Commodity Sensitivity to Real Economic Uncertainty

This figure shows sensitivities of twenty-sixs commodities on real economic uncertainty shocks,
and commodity turnover in spreading pressure portfolio long (top) and short (bottom) legs,
respectively (monthly data from January 4, 2005 through December 26, 2018). We denote
∆RealUncertaintyt as normalized changes in real economic uncertainty, and we run the regression
Rci,t = βi,RealUncertainty∆RealUncertaintyt + εi,t. The coefficient βi,RealUncertainty (multiplied by -1 in
the top panel) is a measurement of the sensitivity of commodity i on real economic uncertainty shocks.
The left-side y-axis (blue) is the commodity turnover in spreading pressure portfolio long/short legs.
Commodities that appear in either leg are in red on the x-axis. The right-side y-axis (orange) is the
sensitivities of twenty-six commodities on real economic uncertainty shocks. Commodities with * on
the x-axis are components of the S&P GSCI Index, and commodities with ** are components of the
Bloomberg Commodity Index (DJ-UBSCI) but not components of the S&P GSCI Index.
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Appendix 3.A Tables

Table 3.A-1: Spreading Position Portfolio: Transaction Cost

This table presents the summary statistics of commodity futures weekly portfolio returns after accounting
for transaction costs, where portfolios are constructed by sorting commodity futures on the fifty-two week
average of spreading pressure or basis-momentum. Basis-momentum is calculated following Boons and

Prado (2019) as
∏t
s=t−11

(
1 +R

(0)
long,s

)
−
∏t
s=t−11

(
1 +R

(1)
long,s

)
. Low3 (High3 ) consists of commodity

futures ranked in the bottom (top) three for spreading pressure or basis-momentum, and the rest of
twenty commodities constitute the portfolio called Mid. Low3-High3 represents a long-short portfolio
strategy of buying Low3 and shorting High3. Following Paschke et al. (2020), we set the (round-trip)
transaction cost of each commodity’s contract as 0.033%. Portfolios’ excess returns are calculated as
equal-weighted average excess returns after accounting for transaction costs of portfolio constituents.
Panel A presents results for the full sample from October 6, 1992 through December 26, 2018. Panels
B and C show subsample results for October 6, 1992 through January 4, 2005, and for January 4, 2005
through December 26, 2018, respectively.

Panel A: Full Sample

Spreading Pressure Basis-Momentum

Low3 Mid High3 Low3-High3 Low3 Mid High3 High3-Low3

Mean 10.04 -2.53 -7.29 15.48 -8.74 -3.89 12.83 19.22

Std. Dev. 20.90 12.35 20.20 23.87 20.89 13.04 19.99 25.79

Sharpe 0.48 -0.20 -0.36 0.65 -0.42 -0.30 0.64 0.75

Skewness -0.13 -0.09 -0.03 -0.01 0.10 -0.07 -0.09 -0.05

Kurtosis 5.15 4.86 4.02 3.90 3.82 5.23 4.34 3.48

Panel B: Pre-2005

Spreading Pressure Basis-Momentum

Low3 Mid High3 Low3-High3 Low3 Mid High3 High3-Low3

Mean 12.48 -2.00 2.25 8.63 -7.93 -2.29 17.46 22.83

Std. Dev. 18.91 10.56 16.39 23.88 20.14 10.26 21.22 27.11

Sharpe 0.66 -0.19 0.14 0.36 -0.39 -0.22 0.82 0.84

Skewness -0.09 0.08 0.10 0.14 0.14 0.08 -0.07 -0.13

Kurtosis 4.10 3.23 3.68 4.13 3.24 2.97 4.06 3.45

Panel C: Post-2005

Spreading Pressure Basis-Momentum

Low3 Mid High3 Low3-High3 Low3 Mid High3 High3-Low3

Mean 8.09 -2.95 -14.96 21.00 -9.39 -5.18 9.10 16.31

Std. Dev. 22.37 13.62 22.77 23.84 21.49 14.92 18.93 24.68

Sharpe 0.36 -0.22 -0.66 0.88 -0.44 -0.35 0.48 0.66

Skewness -0.14 -0.15 0.00 -0.12 0.08 -0.09 -0.15 0.03

Skewness 5.39 4.99 3.68 3.74 4.15 4.98 4.57 3.46
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Table 3.A-2: Spreading Pressure Portfolio (four commodities in each leg)

This table presents the summary statistics of commodity futures weekly portfolios returns, where
we construct the portfolios by sorting commodity futures on the fifty-two week average of spread-
ing pressure or basis-momentum. Basis-momentum is calculated following Boons and Prado (2019)

as
∏t
s=t−11

(
1 +R

(0)
long,s

)
−
∏t
s=t−11

(
1 +R

(1)
long,s

)
. Low4 (High4 ) consists of commodity futures ranked

in the bottom (top) four for spreading pressure or basis-momentum, and the remaining eighteen com-
modities constitute the portfolio called Mid. Low4-High4 represents a long-short portfolio strategy of
buying Low4 and shorting High4. Portfolios’ excess returns are calculated as equal-weighted average
excess returns of portfolio constituents. Panel A presents results for the full sample from October 6,
1992 through December 26, 2018. Panels B and C show the sub-sample results from October 6, 1992
through January 4, 2005, and from January 4, 2005 through December 26, 2018, respectively.

Panel A: Full Sample

Spreading Pressure Basis-Momentum

Low4 Mid High4 Low4-High4 Low4 Mid High4 High4-Low4

Mean 8.87 1.82 -3.54 12.41 -5.29 1.22 13.11 18.41

Std. Dev. 18.47 12.53 18.37 20.5 19.09 13.26 18.09 22.34

Sharpe 0.48 0.15 -0.19 0.61 -0.28 0.09 0.73 0.82

Skewness -0.14 -0.1 0.13 0.01 0.12 0.07 -0.13 -0.05

Kurtosis 4.81 4.98 4.38 3.79 4.14 5.68 4.14 3.57

Panel B: Sub-sample (pre-2005)

Spreading Pressure Basis-Momentum

Low4 Mid High4 Low4-High4 Low4 Mid High4 High4-Low4

Mean 10.95 2.55 3.73 7.22 -3.57 2.49 18.49 22.06

Std. Dev. 16.2 10.86 14.95 20.49 17.93 10.28 18.55 23.27

Sharpe 0.68 0.24 0.25 0.35 -0.2 0.24 1 0.95

Skewness -0.13 0.09 0.13 0.08 0.22 0.13 -0.07 -0.23

Kurtosis 3.4 3.39 3.68 3.59 4.18 3.14 3.75 3.57

Panel C: Sub-sample (post-2005)

Spreading Pressure Basis-Momentum

Low4 Mid High4 Low4-High4 Low4 Mid High4 High4-Low4

Mean 7.2 1.24 -9.39 16.59 -6.68 0.2 8.8 15.47

Std. Dev. 20.12 13.73 20.7 20.5 19.98 15.24 17.7 21.58

Sharpe 0.36 0.09 -0.45 0.81 -0.33 0.01 0.5 0.72

Skewness -0.13 -0.16 0.18 -0.05 0.07 0.06 -0.2 0.12

Skewness 5.01 5.16 4.12 3.97 4.04 5.35 4.5 3.56
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Table 3.A-3: Spreading Position Portfolio

This table presents the summary statistics of commodity futures weekly portfolios returns, where we
construct the portfolios by sorting commodity futures on the scaled spreading position, which is the fifty-
two week average of speculators’ spreading pressure scaled by its fifty-two week standard deviation. Low3
(High3 ) consists of commodity futures ranked in the bottom (top) three for scaled spreading position,
and the remaining twenty commodities constitute the portfolio called Mid. Low3-High3 represents a
long-short portfolio strategy of buying Low3 and shorting High3. Portfolio excess returns are calculated
as equal-weighted average excess returns of portfolio constituents. Panel A presents results for the full
sample from October 6, 1992 through December 26, 2018. Panels B and C show the sub-sample results
from October 6, 1992 through January 4, 2005, and from January 4, 2005 through December 26, 2018,
respectively.

Panel A: Full Sample

Low3 Mid High3 Low3-High3

Mean 9.44 1.83 -3.69 13.13

Std. Dev. 20.62 12.15 21.43 24.41

Sharpe 0.46 0.15 -0.17 0.54

Skewness 0 -0.13 0.07 0.09

Kurtosis 5.39 4.96 4.58 3.68

Panel B: Sub-sample (pre-2005)

Low3 Mid High3 Low3-High3

Mean 10.82 2.94 3.83 6.99

Std. Dev. 19.3 9.91 17.1 23.78

Sharpe 0.56 0.3 0.22 0.29

Skewness 0.3 0.03 -0.12 0.27

Kurtosis 4.39 3.11 3.91 3.99

Panel C: Sub-sample (post-2005)

Low3 Mid High3 Low3-High3

Mean 8.34 0.94 -9.73 18.07

Std. Dev. 21.64 13.69 24.34 24.89

Sharpe 0.39 0.07 -0.4 0.73

Skewness -0.17 -0.17 0.17 -0.05

Skewness 5.79 4.86 4.22 3.5
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Table 3.A-4: Spreading Pressure Portfolio within Each Sector

This table presents the summary statistics of commodity futures weekly portfolios returns, where we
construct the portfolios by sorting the commodity futures on the fifty-two week average of spreading
pressure within five sectors: energy, grains, meats, metals, and soft. Low1 (High1 ) consists of commodity
futures ranked in the bottom (top) for spreading pressure in each sector, and the remaining commodities
in each sector constitute the portfolio called Mid. Low1-High1 represents a long-short portfolio strategy
of buying Low1 and shorting High1. Portfolio excess returns are calculated as equal-weighted average
excess returns of portfolio constituents. The sample period is from January 4, 2005 through December
26, 2018

Energy Sector Grain Sector

Low1 Mid High1 Low1-High1 Low1 Mid High1 Low1-High1

Mean 3.04 -2.09 -27.35 30.40 2.06 2.30 -3.36 5.42

Std. Dev. 33.76 29.34 42.63 41.49 33.40 20.17 30.19 34.87

Sharpe 0.09 -0.07 -0.64 0.73 0.06 0.11 -0.11 0.16

Skewness 0.25 0.19 0.26 -0.13 0.51 0.03 0.46 0.66

Kurtosis 5.75 5.28 3.84 4.42 7.60 4.13 4.65 7.55

Meat Sector Metal Sector

Low1 Mid High1 Low1-High1 Low1 Mid High1 Low1-High1

Mean 2.06 -4.00 -1.97 4.02 10.31 5.98 14.60 -4.29

Std. Dev. 19.75 17.18 23.22 25.01 24.72 21.04 29.74 23.91

Sharpe 0.10 -0.23 -0.08 0.16 0.42 0.28 0.49 -0.18

Skewness -0.07 -0.23 -0.08 0.09 -0.39 -0.49 0.04 -0.17

Kurtosis 5.09 4.55 3.35 3.66 5.50 5.38 6.66 4.67

Soft Sector

Low1 Mid High1 Low1-High1

Mean 9.07 -1.29 -8.00 17.07

Std. Dev. 34.08 18.45 29.50 40.51

Sharpe 0.27 -0.07 -0.27 0.42

Skewness 0.40 0.14 0.20 0.14

Skewness 4.48 4.05 3.91 3.18
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Table 3.A-5: Fama-MacBeth Cross-Sectional Predictive Regressions

This table presents the average coefficients by running Fama-MacBeth cross-sectional regressions of
futures excess returns on the two-week (Panel A), three-week (Panel B), four-week (Panel C) lagged
(fifty-two week average) spreading pressure (SP ). Included as control variables are basis-momentum
(BM), hedgers’ net position changes (Qh) and/or speculators’ net position changes (Qs):

Ri,t+k = b0 + bSPSP i,t + bBMBMi,t + bhQQ
h
i,t + bsQQ

s
i,t + εi,t+1

Newey-West t-statistics with four lags and average R2s are reported for each model specification. The
sample period used in this table is between January 4, 2005 and December 26, 2018.

Model (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Return(t+ 2)

bSP -1.46 -1.34 -1.43 -1.38 -1.33

(-2.81) (-2.59) (-2.69) (-2.59) (-2.49)

bBM 1.03 1.09 1.28

(1.57) (1.71) (1.89)

bhQ 2.47 2.14 0.57

(2.61) (2.20) (0.20)

bsQ -3.27 -2.91 -1.60

(-3.19) (-2.77) (-0.54)

R2 6.81% 6.42% 5.39% 5.34% 12.96% 12.16% 12.16% 22.84%

Panel B: Return(t+ 3)

bSP -1.42 -1.3 -1.28 -1.34 -1.2

(-2.74) (-2.55) (-2.41) (-2.52) (-2.25)

bBM 0.96 1.00 1.10

(1.44) (1.56) (1.67)

bhQ 2.32 1.75 0.91

(2.31) (1.72) (0.35)

bsQ -1.94 -1.28 -0.62

(-1.76) (-1.12) (-0.22)

R2 6.81% 6.47% 5.25% 5.11% 12.98% 11.9% 11.82% 22.03%

Panel C: Return(t+ 4)

bSP -1.41 -1.24 -1.55 -1.56 -1.4

(-2.73) (-2.42) (-2.93) (-2.97) (-2.68)

bBM 0.92 0.93 0.95

(1.35) (1.43) (1.35)

bhQ 3.18 2.91 5.43

(2.97) (2.72) (2.07)

bsQ -3.17 -2.94 3.12

(-2.75) (-2.54) (1.05)

R2 6.82% 6.47% 5.32% 5.28% 12.98% 12.06% 12.02% 22.41%
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Table 3.A-6: Spreading Pressure Factor versus the Szymanowska et al. (2014)
Model: Spanning Regressions and GRS Tests

This table presents a regression test to investigate whether the spreading pressure factor provides a
significant intercept by using Szymanowska et al. (2014) three-factor model. This model has three
factors constructed from a sort on the basis, the nearby return for the High3-minus-Low3 basis portfolio
(RBasis), the spreading return of the High3 portfolio (RSprBasishigh

), and the spreading return of the Low3

portfolio (RSprBasislow
). t-statistics are calculated using Newey-West standard errors with a lag length of

1. This test uses the full sample from January 2, 1986 through June 30, 2018 and the two sub-samples
(pre-2005 and post-2005)

Full Sample Pre-2005 Post-2005

α 15.52 8.81 20.36

(3.19) (1.19) (3.19)

βBasis 0.17 0.10 0.23

(4.88) (1.86) (4.97)

βSprBasislow
-0.24 -0.22 -0.18

(-1.71) (-1.09) (-0.92)

βSprBasishigh
-0.04 0.10 -0.21

(-0.31) (0.55) (-1.09)

R2 3.55% 1.00% 7.13%

GRS-F 3.71 1.54 3.85

p-val 0.01 0.20 0.01

106



Table 3.A-7: Cross-Sectional Asset Pricing Tests in Portfolio Level (nearby
and spreading returns)

This table presents the estimated risk premium on commodity futures risk factors by running Fama-
MacBeth cross-sectional asset pricing tests. Six different model specifications are considered, and are
nested in Rt,i = γt,0+λt,SPβt,SP+λt,BMβt,BM+λt,Cβt,C+λt,Mβt,M+λt,Avgβt,Avg+εt,i. We regresse the
average returns of thirty-four commodity-sorted portfolios on their risk exposures. The portfolios include
the nearby and spreading returns of twelve portfolios sorted on spreading pressure, basis momentum and
basis-momentum (the High3, Mid, and Low3 portfolios sorted on each signal) and five sector portfolios
(energy, grains, meats, metals and softs). Model (1) is a single-factor model that contains the spreading
pressure factor only, Model (2) adds the basis-momentum factor, Model (3) is the Boons and Prado
(2019) model, and Model (4) is the Bakshi et al. (2019) model. Models (5) and (6) add the spreading
pressure factor to Models (3) and (4), respectively. Two versions of the t-statistics are reported following
Shanken (1992) (in parentheses) and Kan et al. (2013) (in square brackets). OLS R2 and GLS R2 (in
parentheses) are in the last column. Panel A presents results for the full sample from October 6, 1992
through December 26, 2018. Panels B and C show the subsample results for October 6, 1992 through
January 4, 2005, and for January 4, 2005 through December 26, 2018, respectively.

Model γ0 λSP λBM λC λM λAvg R2

Panel A: Full Sample

(1) 1.11 15.81 29.66%

(0.72) (2.87) (11.58%)

[0.65] [2.78]

(2) 1.19 12.52 20.35 57.80%

(0.77) (2.32) (3.81) (24.62%)

[0.69] [2.27] [3.51]

(3) -1.09 23.80 3.27 61.67%

(-2.13) (4.28) 1.27 (17.44%)

[-1.90] [4.18] 1.04

(4) -0.87 5.27 17.33 2.79 37.01%

(-1.72) (0.99) (2.90) (1.09) (6.22%)

[-1.58] [0.94] [3.01] [0.92]

(5) -1.16 13.64 21.03 3.58 74.92%

(-2.26) (2.56) (3.94) (1.40) (25.84%)

[-2.03] [2.52] [3.86] [1.11]

(6) -1.04 15.04 3.67 15.66 3.35 56.68%

(-2.06) (2.82) (0.69) (2.64) (1.32) (16.42%)

[-1.88] [2.87] [0.64] [2.88] [1.08]
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Table 3.A-7 - Continued

Model γ0 λSP λBM λC λM λAvg R2

Panel B: Pre-2005

(1) 2.60 12.13 8.74%

(1.31) (1.57) (2.95%)

[1.39] [1.37]

(2) 2.24 8.67 24.17 37.90%

(1.13) (1.13) (2.70) (16.42%)

[1.18] [1.06] [2.94]

(3) -1.23 23.60 5.60 55.09%

(-1.42) (2.64) (1.72) (17.87%)

[-1.67] [2.97] [1.76]

(4) -1.09 -1.16 26.06 5.16 54.05%

(-1.35) (-0.14) (2.73) (1.63) (15.24%)

[-1.38] [-0.14] [3.03] [1.73]

(5) -1.32 9.97 22.52 5.74 58.61%

-1.55 1.32 2.54 1.77 (19.59%)

[-1.84] [1.24] [2.85] [1.79]

(6) -1.28 11.60 -1.66 25.63 5.44 61.80%

(-1.62) (1.51) (-0.20) (2.69) (1.72) (18.26%)

[-1.71] [1.55] [-0.20] [3.01] [1.80]

Panel C: Post-2005

(1) 0.01 20.26 58.06%

(0.00) (2.74) (15.99%)

[0.00] [2.66]

(2) 0.34 18.21 16.33 72.05%

(0.16) (2.50) (2.28) (22.95%)

[0.13] [2.41] [1.91]

(3) -1.16 23.52 1.54 46.24%

(-1.76) (3.32) (0.40) (10.58%)

[-1.51] [2.78] [0.31]

(4) -0.89 13.72 12.01 0.96 28.65%

(-1.35) (1.91) (1.54) (0.25) (2.25%)

[-1.25] [1.85] [1.49] [0.22]

(5) -1.25 19.04 18.23 2.19 80.18%

(-1.90) (2.65) (2.73) (0.57) (23.25%)

[-1.60] [2.54] [2.36] [0.44]

(6) -1.13 20.38 9.01 6.94 1.90 63.02%

(-1.71) (2.93) (1.30) (0.92) (0.49) (16.18%)

[-1.52] [2.72] [1.28] [0.97] [0.42]
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Table 3.A-8: Cross-Sectional Asset Pricing Tests with Different Model Speci-
fications in the Commodity Level

This table presents cross-sectional tests for five asset pricing factor models in the commodity level, nested
in Rt+1,i = γt,0 + λt,SPβt,SP + λt,BMβt,BM + λt,Cβt,C + λt,Mβt,M + λt,Avgβt,Avg + εt,i. β is estimated
over a one-year rolling window of weekly returns. Model (1) is a single-factor model that contains the
spreading pressure factor only, Model (2) adds the basis-momentum factor, Model (3) is the Boons and
Prado (2019) model, and Model (4) is the Bakshi et al. (2019) model. Models (5) and (6) add the
spreading pressure factor to Models (3) and (4), respectively. t-statistics are reported following Fama
and MacBeth (1973) (in parentheses), and we also present the cross-sectional R2. Panel A presents
results for the full sample from October 6, 1992 through December 26, 2018. Panels B and C show
the subsample results for October 6, 1992 through January 4, 2005, and for January 4, 2005 through
December 26, 2018.

Model γ0 λSP λBM λC λM λAvg R2

Panel A: Full Sample

(1) 2.08 10.38 6.67%

(0.84) (2.13)

(2) 2.38 11.55 2.65 27.30%

(0.98) (2.37) (0.43)

(3) -1.49 5.88 3.65 31.96%

(-0.60) (0.97) (1.22)

(4) 1.30 15.65 0.64 0.86 38.29%

(0.50) (2.00) (0.09) (0.29)

(5) -1.84 12.59 5.72 4.01 34.20%

(-0.73) (2.59) (0.93) (1.33)

(6) 0.80 14.35 11.41 -5.09 1.36 37.42%

(0.30) (2.94) (1.45) (-0.74) (0.45)

(7) -1.67 14.73 11.50 7.57 -3.68 3.83 45.30%

(-0.61) (3.00) (1.78) (0.94) (-0.53) (1.20)
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Table 3.A-8 - Continued

Model γ0 λSP λBM λC λM λAvg R2

Panel B: Pre-2005

(1) 4.10 3.49 1.00%

(1.33) (0.45)

(2) 4.13 5.71 4.00 1.08%

(1.33) (0.74) (0.38)

(3) -0.77 7.83 5.09 23.84%

(-0.22) (0.77) (1.33)

(4) 2.46 14.31 -10.22 1.86 24.78%

(0.72) (1.12) (-0.93) (0.50)

(5) -0.91 5.95 5.20 5.25 30.10%

(-0.26) (0.77) (0.51) (1.36)

(6) 1.69 4.50 10.35 -16.40 2.66 27.38%

(0.49) (0.57) (0.81) (-1.53) (0.70)

(7) -1.14 5.95 11.28 3.04 -11.92 5.49 27.83%

(-0.31) (0.76) (1.04) (0.23) (-1.09) (1.34)

Panel C: Post-2005

(1) -0.81 17.67 56.87%

(-0.21) (2.78)

(2) -0.25 17.58 3.55 63.91%

(-0.07) (2.71) (0.46)

(3) -3.23 5.91 2.47 43.89%

(-0.88) (0.78) (0.54)

(4) -1.42 19.39 5.74 0.66 77.20%

(-0.36) (1.90) (0.64) (0.14)

(5) -3.83 18.99 7.40 3.10 68.43%

(-1.04) (2.94) (0.94) (0.67)

(6) -1.90 23.16 14.87 -0.31 1.13 75.96%

(-0.49) (3.62) (1.43) (-0.03) (0.24)

(7) -4.08 22.51 13.09 13.83 -0.37 3.32 80.78%

(-1.01) (3.47) (1.60) (1.32) (-0.04) (0.68)
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Table 3.A-9: Spreading Pressure and the Term Structure of Futures Prices

This table reports the predictive regression of the one week-ahead slope and curvature of the commodity
futures term structure on spreading pressure and hedging pressure:

{Slopet+1, Curvaturet+1} = αt+1 + βSPSPt + βHPHPt + εi,t+1.

We define the slope of the futures curves as slopet =
lnF3

t −lnF1
t

T3−T1
, and the curvature as curvaturet =

lnF3
t −lnF2

t
T3−T2

− lnF2
t −lnF1

t
T2−T1

. We report the results for four subgroups as well as the whole group. Group
indicates the sub-sample depending on the shape of the term structure at time t, i.e., 1) positive slope,
positive curvature, 2) positive slope, negative curvature, 3) negative slope, positive curvature, and 4)
negative slope, negative curvature. Percentage (Mean of SP) denotes the proportion of the sample
(average spreading pressure) for each group. The regression controls for both time- and commodity-
fixed effects, as well as for time to earliest maturity date, for each commodity at each point in time.
t-statistics, based on standard errors clustered at the time dimension, are in parentheses. The sample
period is October 6, 1992 through January 4, 2005.

Slopet+1,i × 100 Curvt+1,i × 100

Group Percentage Mean of

SP

SPt,i HPt,i R2 SPt,i HPt,i R2

(1) +Slope, +Curv 22.49% 6.39% 0.17 -0.05 46.22% 0.03 -0.05 18.43%

(0.98) (-2.42) (0.12) (-0.95)

(2) +Slope,−Curv 40.32% 6.73% 0.04 -0.09 25.33% -0.70 -0.11 26.18%

(0.34) (-4.90) (-4.42) (-4.80)

(3) −Slope, +Curv 17.29% 5.56% 0.80 -0.10 28.66% 0.10 -0.04 30.21%

(3.48) (-2.16) (0.35) (-0.93)

(4) −Slope, −Curv 19.89% 5.78% -0.95 -0.07 38.53% -0.93 -0.13 26.22%

(-2.66) (-1.45) (-2.02) (-1.87)

(5) All 100% 6.27% 0.24 -0.13 14.17% -0.67 -0.08 6.81%

(1.96) (-7.60) (-4.44) (-4.17)
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Table 3.A-10: Commodity Portfolios Sorted on Spreading Pressure at the
Trader Category Level (DCOT report)

This table presents the summary statistics of commodity futures weekly portfolio returns, where we
construct the portfolios by sorting commodity futures on the fifty-two week average of spreading pressure
from money managers, other reportables, swap dealers, and all non-commercials. Low3 (High3 ) consists
of commodity futures ranked in the bottom (top) three for spreading pressure or basis-momentum, and
the remaining twenty commodities constitute the portfolio called Mid. Low3-High3 represents a long-
short portfolio strategy of buying Low3 and shorting High3. Portfolios’ excess returns are calculated
as equal-weighted average excess returns of portfolio constituents. The sample period is June 13, 2006
through December 26, 2018.

Spreading Pressure (Money Managers) Spreading Pressure (Other Reportable)

Low3 Mid High3 Low3-High3 Low3 Mid High3 High3-Low3

Mean 0.55 0 -7.74 8.29 4.75 -0.47 -8.93 13.68

Std. Dev. 22.51 14.35 24.3 24.75 22.98 15.14 19.09 24.01

Sharpe 0.02 0 -0.32 0.34 0.21 -0.03 -0.47 0.57

Skewness -0.12 -0.2 0.23 -0.02 -0.19 -0.05 -0.05 -0.1

Kurtosis 5.05 4.8 4.27 3.59 5.31 5.55 3.43 4.11

Spreading Pressure (Swap Dealers) Spreading Pressure

Low4 Mid High4 Low4-High4 Low4 Mid High4 High4-Low4

Mean 4.59 -0.32 -9.71 14.3 6.07 0.14 -14.1 20.17

Std. Dev. 20.14 14.61 25.65 25.9 23.54 14.19 22.89 23.79

Sharpe 0.23 -0.02 -0.38 0.55 0.26 0.01 -0.62 0.85

Skewness 0.08 -0.1 0.11 0.09 -0.12 -0.1 -0.01 -0.1

Kurtosis 3.36 4.67 5.25 3.54 5.16 5.06 3.77 3.93
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Appendix 3.B Figures

Figure 3.A-1: Information Efficiency of Both Legs of Spreading Pressure Port-
folios

This figure presents the price delay measure (inefficiency) for the long (low spreading pressure) and short
(high spreading pressure) legs of the spreading pressure portfolio around 2005 (between 2001 and 2008).
Following Hou and Moskowitz (2005) and Brogaard et al. (2019), we compute the ratio of R2 from a
regression of weekly portfolio returns on four lags of portfolio returns of each leg. The pre-2005 series is
normalized to 1, and the post-2005 series is relative to the pre-2005 period.
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Figure 3.A-2: Cumulative Excess Returns of Commodity Pricing Portfolios

This figure presents cumulative exess returns for commodity futures pricing portfolios: a long-short port-
folio based on basis-momentum, or spreading pressure, the short leg of the spreading pressure portfolio,
a portfolio by shorting natural gas and WTI crude oil, and a portfolio constructed by going long on
off-index commodities and shorting index commodities. The sample period is January 4, 2005 through
December 26, 2018.
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Figure 3.A-3: Volatility and Liquidity of Both Legs of Spreading Pressure
Portfolios

This figure presents volatility and illiquidity for the long and short legs of the spreading pressure portfolio.
Volatility of a portfolio is measured by equally weighted average of sum of squared daily returns of each
commodity in each week. Illiquidity of a portfolio is the equally weighted average of Amihud measure
(scaled by a billion) of each commodity in the portfolio. The sample period is January 4, 2005 through
December 26, 2018.

(a) Volatility

(b) Liquidity
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Figure 3.A-4: Spreading Pressure and Commodity Turnover

This figure presents commodity annualized turnover and the annual average of spreading pressure from all
speculators, for managed money only, and for other reportable only. The figure includes two commodities,
natural gas and platinum. The sample period is 1993 through 2018.

(a) Natural Gas

(b) Platinum
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Chapter 4

Risk-Corrected Probabilities of

Binary Events

4.1 Introduction

Knowledge of the ex ante physical probabilities of future infrequent but extreme events

is crucial to asset pricing. These events may significantly affect asset prices, for instance,

states of the world with large negative payoffs can distort prices even when their proba-

bilities are very small. Under the “rare disasters” view, the change of event-related asset

return is due to the event risk, which carries a significant risk premia (Barro, 2009; Farhi

and Gabaix, 2015; Seo and Wachter, 2019). However, under the “peso problem” view,

the return change of any asset is due to an expectation of a discrete shift in the return

distribution (Rogoff, 1977, 1980; Lewis, 2016). Specifically, before the event outcomes’

occurrence, financial market participants may speculate the potential outcomes via the

event-related assets. The speculative activities and market participants’ belief of future

outcome have impacts on the shape of forward-looking return distributions. The degree

of which the prices absorb the impact of the event before the event’s actual occurrence

depends on the extent market participants anticipate the event’s actual outcome.
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Building upon the latter standpoint, our work aims at retrieving, from market

prices (options and prediction markets) and past opinion polls, a proxy for physical

probability of a particular binary political event: the European Union (EU) withdrawal

referendum held by the United Kingdom (UK) on the 23 June 2016 (Brexit). This

event represented the possibility of a significant change in the country’s international

trade and immigration policy. The UK would cease to participate in that free trade

area, becoming a more closed economy, at least in the short run. Agents would thus

be expecting that the sterling (British pound or GBP) value to the other currencies,

especially to the United States dollar (USD) would be negatively impacted. Figure 4.1a

shows that there was a sharp depreciation of the GBP to the USD on the day after the

referendum. On the same day, the change in out-of-the-money put option prices was

also extreme relative to normal daily changes in option prices (Figure 4.1b). Does this

suggest that the Brexit probability was negligible or substantially underestimated in the

foreign exchange (FX) spot and option markets?

To answer this question, we first investigate the risk-neutral density (RND) ex-

tracted from British Pound options. We find that RNDs from short maturities options

have a bimodal distribution one week before the referendum, in line with the evidence

provided by Kostakis et al. (2020), and risk-neutral tail risk of GBP/USD deviates from

its normal level since the beginning of 2016. Therefore, it is reasonable to suppose

that agents attached a probability that a discrete change in the economic fundamentals

that govern the dynamics of the GBP exchange rate would occur, which is the typical

description of a “Peso Problem”.

Under the risk-neutral assumption, several proxies of the Brexit probability were

created in the financial market, including prediction and option markets. The recip-

rocal of odds from prediction markets are common as probabilities of event outcomes

under risk neutrality (for example, Belke et al. (2018) and Hanke et al. (2018)). More

recently, Kostakis et al. (2020) estimate Brexit probabilities from the British Pounds
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options market, following the model-based methodology of Borochin and Golec (2016).

They argue that option markets provide a good alternative to prediction markets for

event probability extraction, since only some major events are considered in prediction

markets. Following the literature, we also extract daily risk-neutral Brexit probabilities

from both prediction and option markets, but different from Kostakis et al. (2020), we

use both model-based (Borochin and Golec, 2016) and model-free (Langer and Lemoine,

2020) methods to obtain option-implied probabilities. We find that cheap out-of-the-

money options carry more information about the probability of the ‘Brexit’ outcome.

On average, the options market reveals a higher “Leave” probability by comparison to

the prediction market. However, the question remains whether the attached probability

implied in the financial markets is close to the physical probability of the peso event?

In this case, better estimates of physical probabilities are essential to understand-

ing how well the financial markets anticipate the probability of binary political events

such as Brexit, even though estimation of the physical probability of any event is very

challenging. Sayers (2016) claims that internet polls were the closest to the Brexit phys-

ical probabilities. The underlying reasoning is that intention to vote leave was around

50% during most of the sample period, such that the actual result was within the margin

of error. While Cesar et al. (2017) document a correlation between telephone and inter-

net polls, they also show that the voting intention (constructed using 23 million tweeter

hashtags) is not higher than 71%. Assuming that polls are independent referendum

experiments and the market participants form a belief about the referendum outcome

by learning from available polls’ outcomes, we construct subjective physical probability

proxy by considering a set of telephone and internet polls. On one hand, we find that

past political opinion poll results capture well how market participants learn about the

“Leave” probability. On the other hand, our findings also reveal that the probability

estimates under risk neutrality from both option and prediction markets fail to match

the likelihood of a Brexit outcome suggested by political opinion polls data.
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The limitations of the risk-neutral Brexit probabilities extracted from predic-

tion and options markets may cause it to deviate from the subjective probabilities from

polls. One limitation is that state prices reflect agents’ perception of wealth in both

states of the world: with and without Brexit. Another limitation is that participants

in both of these markets may have different attitudes towards risk. To eliminate these

limitations, our paper thus provides both non-parametric (using the Ross-Recovery the-

orem - Ross (2015)) and parametric corrections (calibrating stochastic discount factors)

of the risk-neutral probabilities obtained from these two markets. We argue that this

risk correction is important in bringing probabilities closer to their perceived (subjec-

tive) physical measure estimated from past polls. To minimize the distance between

risk-corrected probabilities and subjective probabilities, under the assumption that the

agents in both markets have same expectation on the relative wealth between these two

states, the average agent in prediction markets has always a stronger risk preference than

the average agent in option markets. Specifically, average agents in both markets are

risk seeking if they expect lower wealth in the ”Leave” state compared to the ”Remain”

state.

Although polls reveal the proportion of “remain” and “leave” votes, there are

still the crucial indecisive poll participants. Therefore, extracting physical probabilities

of the future state of the world from polls could be more informative by attributing

a probability that the indecisive will vote either in favor or against Brexit. This can

only be reasonably done if the disaggregated Survey data is available, in addition to at

least some personal characteristics of the respondents.1 In this paper, we use the British

Election Study (BES) survey data with individual-level information as an example and

obtain the intention to vote “leave” as 51.07%. Daily estimates from the Survey data

suggest that the survey-based estimates are less sensitive to the new information about

the event compared to prediction and financial markets. Or put differently, the markets

1Venturi et al. (2021), for instance, attribute a probability, by estimating a Probit model, that the
indecisive deputy would vote in favor of the impeachment of the Brazilian President in 2016.
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react to news (e.g., Murder of MP Cox on 16 June 2016) about a binary event outcome,

while the voting intention is primarily driven by persistent characteristics (e.g., age,

income, education, views about immigration and risk preferences) of the voters.

The remainder of the paper is organized as follows. Section 4.2 shows the method-

ology employed to retrieve risk neutral probabilities from the option markets and the

theory underlying the correction for risk. Section 4.3 explains the data we used in this

paper. Section 4.4 recovers risk-neutral probabilities for the Brexit referendum, prob-

abilities with risk-correction, subjective probabilities calculated from opinion polls and

voting intention estimated from the BES Survey data. In the last section, we present

our concluding remarks.

4.2 Methodology

4.2.1 Option-Implied Risk-Neutral Distributions

The risk-neutral probability distribution of financial assets contains information about

investors’ beliefs about the future performance of the underlying asset, and reflects

investors’ attitudes towards risk. Benefiting from options with a wide range of strike

prices, we can use option prices to derive the risk-neutral probability distribution of the

underlying asset.

To extract the risk-neutral probability distribution (RND) of the underlying asset

prices, we follow the non-parametric method proposed by Figlewski (2009). This model-

free method with flexible extreme value tails allows for some non-standard features in

approximated RNDs, like fat tails, bimodality and so on. It is particularly useful in a

binary world, like the Brexit period. We believe that this method is sufficient to infer

a well-performing RND function from European options. However, the options we use

in this paper are currency options listed on the Chicago Mercantile Exchange (CME),

which are American options prior to 2017. Therefore, to make our data fit into this
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non-parametric methodology, we convert American option prices into European option

prices in the RND extraction steps. The steps about how to extract a well-behaved RND

is in Appendix Appendix 4.A.

4.2.2 Forward-Looking Tail Risk

Apart from analysing the moments from RNDs we are also interested in exploring the

information from option-implied measures of tail risk (Ait-Sahalia and Lo, 2000; Leiss

and Nax, 2018). Tail risk measures under the risk-neutral probability capture the in-

vestors’ forward-looking assessment of the likelihood of the adverse market state, the

probability of the ‘tail event’ occurring, and the evolution of their belief over time.

In order to capture changes in market expectations, we focus on changes in the

quantiles of RNDs (Bevilacqua et al., 2021). We denote the α% quantiles of the RND

extracted from prices of contracts expiring on time To as Π←t,To and define it as

Π←t,To(x) := R∗ where Π←t,To(R
∗) := Prob(Rt,To ≤ R∗) = α, (4.1)

where Rt,To = ln
STo
St

and St is the FX spot rate at time t (GBP/USD in our case). This

measure is similar as option-implied Value-at-Risk (VaR) and the difference is these two

measures have the opposite sign.

However, we cannot extract the RND of FX spot rate directly, since CME monthly

currency options are written on the nearest futures contracts with March-quarterly matu-

rity.2 Thus, we make adjustment for the difference between the option and its underlying

future expiry days (Cincibuch, 2004; Huchede and Wang, 2020). The price of a CME

call option at time t is C(t,K, Tf , To), with strike price K, maturity To and underlying

future contract that expires at Tf . The time t price of a CME future with maturity Tf

2For example, an option expiring on January is written on a future expiring on the nearest March.
Even for an option expiring in March, the difference between the option expiry day and the underlying
future expiry day is about two weeks.
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is Ft,Tf . The aim of this transform is to an option written on a future that also expires

on the option expiry day, which is equivalent to an option on spot. We denote the US

and UK interest rates as rUSTo,Tf and rUKTo,Tf , respectively. According to the no-arbitrage

relationship,

FTo,Tf = FTo,Toe
(rUSTo,Tf

−rUKTo,Tf )(Tf−To)
. (4.2)

Then, we can rewrite the call option price as

C(t,K, Tf , To) = e−rt(To−t)Et[max(FTo,Tf −K, 0)],

= e−rt(To−t)Et[max(FTo,Toe
(rUSTo,Tf

−rUKTo,Tf )(Tf−To) −K, 0)],

= e
(rUSTo,Tf

−rUKTo,Tf )(Tf−To)
e−rt(To−t)Et[max(FTo,To − K̄, 0)],

= e
(rUSTo,Tf

−rUKTo,Tf )(Tf−To)
e−rt(To−t)Et[max(STo − K̄, 0)],

= e
(rUSTo,Tf

−rUKTo,Tf )(Tf−To)
C(t, K̄, To),

(4.3)

where

K̄ = Ke
−(rUSTo,Tf

−rUKTo,Tf )(Tf−To)
. (4.4)

Similarly, we can convert the put price from the option on the future to an option

on the spot. Then, we can extract RNDs of FX spot rates from spot option prices and

calculate market expectations in different horizons.

4.2.3 Option-Implied Risk-Neutral Event Probability

4.2.3.1 Model-Based Estimation

To analyze the evolution of the uncertainty about Brexit outcome, we infer a time-

series of pre-Brexit probabilities by following the methodology of Borochin and Golec

(2016). This methodology uses options to estimate risk-neutral probabilities and to

identify state-contingent underlying asset prices and volatilities. Following the same

framework, our world is binary with two limiting future states: one in which the UK
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leaves the European Union (“Leave” state) and the other in which the UK remains in

the European Union (“Remain” state). Then, using the information from futures and

options markets, we estimate five latent variables, which correspond to the futures prices

and volatilities in each state of the world and the risk-neutral probability in one of the

states.

Consider that the USD price of one unit of a GBP in a future contract at time

t is given by FLt,Tf in the “Leave” state, and FRt,Tf in the “Remain” state, where Tf is

the maturity of the future contract and t is a time point before the Brexit referendum,

which was held on 23 June, 2016. In the absence of arbitrage, the future price observed

at time t must be the probability weighted average of the future price in the “Leave”

state and the future price in the “Remain” state:

Ft,Tf = pLt × FLt,Tf + (1− pLt )× FRt,Tf , (4.5)

where pLt is the time t risk-neutral probability that the UK leaves the European Union

(“Leave” probability).

Consider a set of options on GBPUSD futures contracts with the expiry day To,

where To is a time point after the Brexit referendum. In the absence of arbitrage, the

European options price observed at time t (O(Ft,Tf ,K, σt, To)) should be the probability

weighted average of the theoretical option price in the “Leave” state (Ô(FLt,Tf ,K, σ
L
t , To))

and the theoretical option price in the “Remain” state (Ô(FRt,Tf ,K, σ
R
t , To)):

O(Ft,Tf ,K, σt, To) = pLt × Ô(FLt,Tf ,K, σ
L
t , To) + (1− pLt )× Ô(FRt,Tf ,K, σ

R
t , To), (4.6)

where K is the strike price, σLt and σRt are return volatilities in the “Leave” state and

“Remain” state, respectively.

We use the Black model (Black, 1976) to calculate theoretical prices for European

futures options. Since the option contracts in our sample are American-style, to fit our
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data into equation (4.6), we convert the American option prices into European option

prices by following the same steps in Appendix Appendix 4.A. First, we obtain the

implied volatility from the American option price by using Barone-Adesi-Whaley (BAW)

American futures option pricing model (Barone-Adesi and Whaley, 1987). Then, we use

the BAW implied volatility in the Black model (Black, 1976) to calculate the price of

the corresponding European option.

According to equation (4.5) and (4.6), our aim now is to estimate the five parame-

ters at each point in time t, Θt =
{
pLt , F

L
t,Tf

, FRt,Tf , σ
L
t , σ

R
t

}
. We proceed by constructing

a system that includes a GBPUSD future contract and N traded options that are written

on this future contract with a single expiry day To and a wide range of strike prices Ki,

where i = 1, 2, ..., N .

We believe that both call and put options could bring information to the system.

Borochin and Golec (2016) set N = 8 and select eight call options only to estimate these

latent parameters from the system. They argue that put option price is less reliable

to be incorporated in the system since the trade of stock put options is usually less

frequent than stock call options. Note that a call on GBP/USD is a put on USD/GBP

vice versa, this is not necessarily true for currency options. When we look at the open

positions of options, the open interest of call options is significantly lower than the put

options in our sample period, which guarantees the reliability and information content

of put option prices. Also, the probability of Brexit may significantly reduce the British

Pound’s future price, so using put options in the system to recover the Brexit outcome

probability is very useful (Langer and Lemoine, 2020). Due to the reasons mentioned

above, our system incorporates both put and call options with positive open interest.

Different from Borochin and Golec (2016)’s method with ATM options only, we

use all observed (deep) out-of-the-money (OTM) and at-the-money (ATM) options. We

believe that options with different strike prices could bring additional information to the

system, for example, cheap out-of-the-money options might carry important information

125



about tail risk (Kelly and Jiang, 2014). Following Borochin and Golec (2016), we use

options with short maturity (maturity date is still after the event day), since their prices

are more sensitive to changes in underlying asset price.

We denote observed asset prices in the left-hand side of equations (4.5) and (4.6)

as Mt, and theoretical asset price in the right-hand side as M̂t. The non-linear least

squares estimation of Θt involves numerically solving of a optimization problem with

objective function

Θt = arg min
Θt

N+1∑
i=1

ωt,i{Mt,Ki − M̂t,Ki (Θt)}
2
, (4.7)

and constraints

s.t.


0 < FLt,Tf 6 Ft,Tf 6 FRt,Tf ,

σRt , σ
L
t > 0,

0 < pLt < 1,

(4.8)

where ωt,i is the weight on observation i at time t. Our baseline specification sets ωt,i as a

constant value 1 across i, a standard approach used in the literature. However, cheap out-

of-the-money options might carry important information about potential extreme events,

so, different from Kostakis et al. (2020), we also estimate the system by assigning a large

weight to error terms for cheap options. Specifically, our second and third specifications

set ω2
t,i = 1

Mt,Ki
and ω3

t,i = 1
M2
t,Ki

, respectively (Carvalho and Guimaraes, 2018).

4.2.3.2 Model-Free Estimation

Model-based estimation of option-implied probabilities provides valuable insights about

the time-varying event probabilities. However, this method requires an option pricing

model that is able to reconcile observed and theoretical option prices. The strict assump-

tions of the underlying return process in option pricing models are commonly violated
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in the real world, e.g., the implied volatility smiles and smirks. In order to estimate the

probability of an event using a model-free methodology, we follow Langer and Lemoine

(2020). Following the same notation in the previous section, we re-write equation (4.6)

as
O(Ft,Tf ,K, To)

Ō(FLt,Tf ,K, To)
= pLt + (1− pLt )

Ō(FRt,Tf ,K, To)

Ō(FLt,Tf ,K, To)
, p̄L (4.9)

The ratio of the observed option price and the counterfactual option price in the

“Leave” state (labelled as p̄L) is equal to the risk-neutral probability of the “Leave”

outcome in addition to a bias term, which depends on the unobserved counterfactual

option prices in the “Leave” and ‘Remain’ states. Since option prices are non-negative,

p̄L must be higher than pL. Thus, p̄L is the upper bound of the actual risk-neutral

probability of “Leave” outcome. In order to recover p̄L, we reduce the bias term

by choosing options with maximum price difference in “Leave” and ‘Remain’ states

(Ō(FLt,Tf ,K, To) − Ō(FRt,Tf ,K, To)). We know that the GBP/USD spot/future rate is

lower in the “Leave” state than the ‘Remain’ state. Thus, put option price is higher in

the “Leave” state than the ‘Remain’ state, while call option price is the opposite. So,

employing put options to recover the upper bound of the actual “Leave” probability can

minimize the bias and tight the upper bound.

Assume that time t − 1 is one day before the event day and t is the event day

that outcome L is realized. Since the interval between t − 1 and t is small enough, we

can re-write equation (4.9) as

P (Ft−1,Tf ,K, To)

P (FLt,Tf ,K, To)
= pLt−1 + (1− pLt−1)

P̄ (FRt,Tf ,K, To)

P (FLt,Tf ,K, To)
, (4.10)

where P (FLt,Tf ,K, To) is the observed put option price in the “Leave” state after the

Brexit outcome release.

Empirically, we can estimate p̄L in each strike price K from the following regres-

sion,
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ln
P (Ft−1,Tf ,K, To)

P (FLt,Tf ,K, To)
= αK + βKEventt + θKXt + εKt. (4.11)

where Eventt is a dummy variable to indicate the information releasing day and Xt

is a set of control variables, including time-to-maturity and its squared term, dummy

variables to control for the days before and after the event, and dummy variables to

control for a three-day window around the releasing day of the event outcome. Then we

can recover p̄LK as

p̄LK = eβ̂K , (4.12)

where β̂K is the estimated βK in equation (4.11). Our estimated p̄LK is a set of probabil-

ities across a dense set of strike prices. In order to fit the estimated probabilities across

strike prices using a spline, we adopt the following regression

ln
P (Ft−1,Tf ,K, To)

P (FLt,Tf ,K, To)
= β0Eventt +

J∑
j=1

βj min(µj−1 −K,µj − µj−1)Eventt + θXt + εt,

(4.13)

where µj are knots that evenly divide strike prices into J groups. We set J = 20, which

means that twenty knots are used in this regression. Then we can recover p̄L(µi) as

p̄L(µi) = exp(β̂0 +

20∑
j=1

β̂j min(µj−1 − µi, µj − µj−1)). (4.14)

4.2.4 Correcting Risk-neutral Probabilities using Stochastic Discount

Factors

In addition to the primitive security prices and risk-neutral probabilities that will be

obtained in the options market, we will also use data from prediction markets. The

latter is much simpler to analyse than the more complex derivative asset markets. The

reason is that betting odds from prediction markets provide straightforward (public)

Arrow-Debrew primitive prices. The shortcoming, however, is that these prices are
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available (or traded) only for certain states of nature, notably those that raise public

interest such as the Brexit referendum.

As suggested by macro-finance theory, there is a mapping between prices of state-

contingent securities and their respective probabilities. Knowledge of Von Neumann-

Morgenstern utility functions is key to unlock state or event physical probabilities that

are embedded in these primitive prices. We employ two approaches to tackle this prob-

lem. The first one is based on Ross (2015)’s recovery theorem. The second assumes

functional forms for investors’ preferences and calibrates the model’s crucial parameters.

Ross (2015) relies on a set of crucial assumptions regarding the structure of the

economic environment that delivers a “non-parametric” recovery of these probabilities.

The exact meaning of “non-parametric” is that the recovery is obtained without imposing

any structure on the functional form of the utility function. Also, there is no need to

perform any a priori parameterisation of the stochastic discount factor that describes

the relevant economic system. In fact, the recovery does not require any knowledge of

the underlying consumption, income, wealth or endowment processes that are crucial to

saving decisions.

But all of this comes at a cost. Maybe the most contentious one is the assumption

that both state prices and transition probability functions are time-homogenous. The

theorem also considers transition independent pricing kernels, no-arbitrage and a finite

state space under complete markets. A comprehensive review is provided by Carr and

Yu (2012) and applications can be found in Martin and Ross (2019) and Schneider and

Trojani (2019), for instance. For a criticism, see Borovic̆ka et al. (2016). We do not

take a stand on the relative merit of each approach neither discuss their advantages and

shortcomings in detail. However, we will point out some crucial differences between the

risk correction approaches while presenting the methods and results.
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4.2.4.1 General Recovery

The general set up of the model is given below. Consider the following Arrow-Debreu

(AD) state price matrix

At =:



A11,t A12,t . . . A1n,t

A21,t A22,t . . . A2n,t

...
...

...
...

An1,t An2,t . . . Ann,t


, (4.15)

where Aij,t is the price in state i of the AD primitive security that pays off one unit

of the domestic currency if and only if state j materialises; p(i, j) as the probability of

occurrence of state j given the initial state i. Hence, f(i, j) can be understood as a

frequency or a mass function for discrete states, as in Carr and Yu (2012), for instance,

or a density function for continuous states as in Ross (2015). There is a finite number

of states of nature, n, in which the economy could make a transition from t to t + 1:

i ∈ {1, 2 . . . , n}, ∀t and t = 1, 2, . . . , T , where T is the end of the sample period.

4.2.4.1.1 AD primal prices Starting from state i ∈ {1, 2, . . . , n} at time t, write

the following general Euler equation for a representative utility optimizer, solving it for

the corresponding primitive price

Aij,t = β
u′(ij, t+ 1)

u′(i, t)
p(ij, t), (4.16)

where we consider a period utility function that is additively separable between time

and states, twice continuously differentiable and follows the Inada conditions. For a risk

averse agent, the function will be strictly concave; β ∈ (0, 1) is a subjective time-discount

factor. Note that β u
′(ij,t+1)
u′(i,t) are pricing kernels.

The details about how to obtain the AD state price matrix from the betting and

option markets is shown in Appendix Appendix 4.B.
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4.2.4.2 Non-parametric Recovery

Define the inverse marginal utilities as v(i, t) =: 1
u′(i,t) and v(ij, t) =: 1

u′(ij,t) . Assume

that pricing kernels are transition independent, i.e. that u′(ij, t + 1) = u′(j, t), ∀i, ∀j

and ∀t such that (4.16) can be simply rewritten as:

Aij,t = β
v(i, t)

v(ij, t)
p(ij, t) =

v(i, t)

v(j, t)
p(ij, t). (4.17)

One can stack all equations for each i, j and t in matrices, which allow us to

write the system in the following compact way

At
(n×n)

= β Dt
(n×n)

Pt
(n×n)

Dt
−1

(n×n)
, (4.18)

where

Dt =:



v11,t 0 . . . 0

0 v22,t . . . 0

...
...

...
...

0 0 . . . vnn,t


and Pt =:



p11,t p12,t . . . p1n,t

p21,t p22,t . . . p2n,t

...
...

...
...

pn1,t pn2,t . . . pnn,t


. (4.19)

Assume that all other hypothesis put forward by Ross (2015), which were made

clearly explicit in Martin and Ross (2019), are valid. Entries of At are all non-negative

(due to non-arbitrage) and the matrix is irreducible (due to complete markets). Perron-

Frobenius theorem then ensures that At has a unique largest (in absolute value) real

eigenvalue and that all elements in the corresponding eigenvector are strictly positive.

Let us consider that φ is the eigenvalue and Zt the eigenvector such that

AtZt = φZt, (4.20)
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where

Zt =: Dte, (4.21)

and

e =:

[
1 1 · · · 1(n)

]>
. (4.22)

The theorem guarantees that the solution is unique up to a scalar (φ). The decomposition

in (4.20) thus gives φ and, by Gaussian elimination, Zt. In Appendix Appendix 4.C, we

show how to obtain Pt with a simple example.

4.2.4.3 Parametric Recovery

The second approach is parametric where we need to make assumptions on the functional

form of utility and risk preferences in equation 4.16 in order to obtain physical probability

from AD prices. For example, we can define utility over wealth, and we have two

representative agents with power utility functions given by

uo(Wi) =
W 1−γo
i

1− γo
, up(Wi) =

W 1−γp
i

1− γp
, (4.23)

where o and p stand for the agent in the option and prediction market, respectively. It

follows, for instance, that γo (γp) is the constant relative risk aversion coefficient for the

agent in the option (prediction) market; Wi is the level of wealth in state i. Notice that

we are implicitly assuming that both markets are segmented. We will later show how

the range of risk aversion parameter and changes in wealth for these states of nature,

that is, remain vs. leave, affect the risk correction under parametric recovery.

132



4.3 Data Description

4.3.1 Exchange-listed British Pound Futures and Options

We obtain daily settlement prices and intraday trade and quote prices for American-style

British pound monthly futures options. We also collect the data on the underlying assets

of these options, GBP futures contracts. All these options and futures contracts are listed

on the Chicago Mercantile Exchange (CME). Specifically, the CME GBP option is an

option written on a future contract based on 62,500 GBPs, which is quoted in USD and

cents per British pound increment. The expiration date of the monthly option is the two

Fridays before the third Wednesday of each month. The expiry dates of CME British

pound futures are available in quarterly frequency, that is, every Monday before the third

Wednesday of March, June, September, and December. The underlying future contract

of an option is the nearest future contract in March, also in a quarterly frequency. The

sample period used in this paper runs from January 2, 2014, to August 30, 2016. To

investigate whether there is a significant difference in the British pound RNDs before

and after the Brexit referendum, which was held on June 23, 2016, we mainly focus on

the period between May 3, 2016, and July 29, 2016. All futures and options data is

obtained from Thomson Reuters Tick History (TRTH).

4.3.2 Betting Odds from Prediction Markets

Many researchers use information from the prediction market to extract underlying

probabilities. This is because the odds of the event reflects investors’ beliefs in the

probability of its outcome (Roberts, 1990; Herron, 2000; Snowberg et al., 2007, 2011;

Croxson and James Reade, 2014; Meng, 2017; Auld and Linton, 2019). As the largest

betting exchange with high liquidity, Betfair’s information can be a valuable source of

recovering the probability of the outcome of a particular event. The odds (payouts) of

bets (binary contracts) are driven by the supply and demand of buy and sell contracts.
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There were two contracts listed on the Betfair website for consumers to bet on

the outcome of the Brexit referendum: one with a payout in the Leave state and another

with a payout in the Remain state. The normalized price of the bet is 1
odds , which is

the cost of winning $1 if the consumer bets in the right direction. To avoid arbitrage

opportunities, the sum of the normalized prices of two contracts betting on Brexit should

be close to 1. Many authors use this price as a synonym of the market-implied probability

of the event outcome (Snowberg and Wolfers (2010)). In order to analyse the implied

probability of Brexit in the prediction market, we collect the 5-minute odds of these two

contracts from May 3, 2016 until June 24, 2016. Then we calculate the market-implied

probability of “Leave” outcome as

pLp,t =
1

LeaveOddst
, (4.24)

Figure 4.2a shows daily “Leave” probabilities implied in the prediction market

under risk neutrality. The prediction market consistently points to ”Remain” as the

most likely outcome. Specifically, the daily “Leave” probabilities is around 20% to 30%

between the mid of May and the end of May, 2016. It reaches the highest point on 14

June, 2016, however, it is still lower than 50%. On the night of the referendum, the

‘Leave’ probability implied in the betting market decreases to 16.66%.

4.3.3 Political Opinion Polls

Political opinion polls are an important source of information on the expected outcome

of a future binary political event. The option and prediction markets reveal the proba-

bilities of future event’s outcome, while polls reflect voters’ voting intentions. We collect

political opinion polls data between 10 January, 2016 and 23 June, 2016. In this pe-

riod, 13 market search companies (including BMG Research, ComRes, GQR, ICM, Ipsos

MORI, NATCEN, ORB, Opinium, Panelbase, Populus, Survation, TNS and YouGov)
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published 128 polling results on whether the UK should be in or out of the EU.

Figure 4.2b shows that opinion polls from decided respondents favoured “Remain”

majority of the time, 55% of 128 polls, though voting intentions to “Leave” that fluctuate

around 50% from the opinion polls reflect the uncertainty around the Brexit outcome.

In fact, several polls clustered around 14 June 2016 indicated a “Leave” outcome. In

line with the polls’ results, the betting market also consistently pointed to Remain as

the most likely outcome (Figure 4.2a). However, the spike in leave probability around 14

June 2016 indicate that betting market participants take into consideration news about

polling results when assessing the likelihood of Brexit outcome.

4.3.4 Survey Data

The British Election Study (BES) conducts a wide range of surveys for major political

events in the UK, including the Brexit referendum. Respondents answer a wide range

of questions designed to capture their risk preferences, demographic and socio-economic

characteristics (e.g., gender, age, income), views on economy and politics, attitudes

toward immigration, party identification and so on. This allows us to investigate the

“Leave” voters’ motivations at the micro-level, and estimate the voting intentions to

“Leave” of indecisive voters.

We use the individual level data from waves 8 of the 2014–2017 BES Internet

panel. This survey is conducted between 6/May/2016 and 22/June/2016 and covers

33,501 individuals. For the question “If you do vote in the referendum on Britain’s

membership of the European Union, how do you think you will vote?”, 15,215 respondents

(45.42%) answer “Stay in the EU”, 15,793 respondents (47.14%) answer “Leave the

EU”, 475 respondents (1.42%) answer “I would not vote” and 2,018 respondents (6.02%)

answer “Don’t know”. The latter group is of a particular interest since a large fraction

of such voters are likely to determine the final Brexit outcome.

In order to investigate the “Leave” voters’ motivations, we select a series of
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explanatory variables, including risk preferences, personal annual gross income as well

as the variables used in earlier studies (e.g., Goodwin and Milazzo (2017)). The details

of these variables and corresponding BES questions are listed in Table 4.1. To keep

sufficient number of observations, we use the median value of the explanatory variable

to replace the “Don’t Know” answers.3

4.3.5 Additional Data

In addition to the data from financial market, polls and survey, we also collect data

for RND extraction and market fear measurement. In particular, we collect GBP/USD

spot exchange rate between January 2, 2014 to August 30, 2016 from Bloomberg. For

risk free rates, we use US and UK LIBOR rates obtained from Federal Reserve Bank

of St. Louis website. In order to match futures and options maturities, we interpolate

interest rates for specific horizons. Then we use the interpolated interest rate for further

analysis.

To study the trading behavior of different type of traders in the CME British

pounds derivative market, we obtain the publicly data from the Commodity Futures

Trading Commission (CFTC). The weekly Commitment of Trader (COT) Reports con-

tains the aggregate long and short positions for three types of traders: commercials,

non-commercials and non-reportable, and spread positions for non-commercials. Fol-

lowing the literature, we view commercials as hedgers, non-commercials as speculators

and non-reportable as small speculators.

3Our main results are not sensitive to this assumption, results of alternative specifications are available
upon request.
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4.4 Empirical Results

4.4.1 Implied Volatility and Risk-Neutral Density

To extract information about investors’ beliefs on the performance of GBP/USD ex-

change rates and investors’ attitudes towards risk before and after the Brexit referen-

dum, we extract RNDs of GBP/USD futures from CME British pound monthly futures

options.

Figure 4.3 display implied volatilities and RNDs inferred from CME British pound

monthly futures options expiring on 8 July, 2016, which is the earliest expiry day after

the referendum date. Specifically, Figure 4.3a and Figure 4.3c show implied volatility

surface and its corresponding RND surface during June 2016. We select six specific days

to plot their implied volatility curves and their corresponding RNDs in Figure 4.3b and

Figure 4.3d, including 6-, 4-, 2-weeks before the referendum, the referendum day and

1-day and 1-week after the referendum.

Implied volatility surface of options expiring on 8 July, 2016 in Figure 4.3a shows

the implied volatility change across a wide range of strike prices during June 2016. For

a specific day before/at the referendum, the implied volatility decreases as the strike

price increases, that is, the implied volatility curve of British Pound options exhibits a

well-known ‘smirk’ shape. Fig. 4.3b shows that implied volatility curves in the shape

of ‘smirk’ can be observed in the market at least from 12 May, 2016. It indicates that

OTM puts are more expensive than ATM options and OTM calls. This option price

differences across strike prices are driven by demand differences. That means, to avoid

the possibility of a crash or tail risk, investors in British Pound option market have high

demand of OTM puts before the Brexit outcome releases, and this demand become even

higher as the outcome releasing day approaches. After the outcome released, the implied

volatility curve gradually returns to the normal ‘smile’ shape.

Based on the fitted implied volatilities, we approximate the RND of GBP/USD
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futures and append it into left and right tails. The RND surface in Figure 4.3c displays

the RND movement from the beginning of June until the end of June in 2016. As we

have seen, when the time approaches the referendum day, RND shows a more pronounced

bimodal distribution, with a major mode towards the high price region and a minor mode

towards the low price region. This suggests that a sharp rise or fall should be expected

relative to the current level of GBP/USD futures once the Brexit outcome is realized.

Taking the RND on the referendum day as an example, the red line in Figure 4.3d,

we find that the major mode is 1.525 and the minor mode is 1.335, which represent

the most likely GBP/USD futures prices if the Brexit outcome is ‘Remain’ or “Leave”,

respectively. After the Brexit outcome is realized, the market reaches a consensus and

RND of GBP/USD futures go back to normal unimodal distributions.

After investigating the time-variation of RNDs during May and June in 2016 by

using options expiring on 8 July, 2016, we examine the term structure of RNDs before

and after the Brexit outcome is realized. In Figure 4.4, we display RNDs for all available

horizons on the referendum day (Figure 4.4a) and the first day that after the result of

the Brexit referendum (Figure 4.4b). On 23 June, 2016, the RND extracted from options

expiring on 8 July, 2016 shows the strongest bimodal distribution. The RNDs extracted

from options expiring in the following three months are slightly bimodally distributed.

While RNDs for long horizons are more likely unimodally distributed. This implies

that investor’s expectations about short-term changes in the GBP/USD exchange rate

are more divergent than their long-term forecasts. Similar to the pattern unveiled for

changes in the RND that we observed from the option that expires on 8 July, 2016,

RNDs from options that expire later also return to a normal unimodal distributions on

the 24 June, 2016, as the result of the referendum is certain.
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4.4.2 The Dynamic Behavior of the British Pound’s Risk-Neutral Dis-

tribution

To study the dynamic behavior of the British Pound’s RND, we extract risk-neutral

moments from the RND of British Pound futures prices. Movements of risk-neutral

moments can provide information about the daily changes in investors’ expectations of

the futures underlying prices and its associated uncertainty. Specifically, we focus on

the risk-neutral second-, third- and fourth- moments, and the bi-modality coefficient

measured by risk-neutral skewness and kurtosis. The time t bimodality coefficient (BC)

of a RND from a contract expiring at To is

BC =
Skewness2 + 1

ExcessKurtosis+ 3(n−1)2

(n−2)(n−3)

, (4.25)

where n is the sample size. The range of BC is from 0 to 1. BC > 5
9 indicates

that the distribution maybe bimodal or multimodal.

Figure 4.5 presents the annualized risk-neutral volatility, the risk-neutral skew-

ness, the risk-neutral excess kurtosis and the bimodality coefficient from RNDs for five

different horizons between 2 May, 2016 and 29 July, 2016. Since the prices of the

GBP/USD futures expiring before the referendum day are not affected by the “Brexit”

outcome, the risk-neutral moments of RNDs from an option that expires before the ref-

erendum are at normal levels, and RNDs have normal unimodal distribution. To further

analyze the behavior of RNDs extracted from options expiring after the referendum, we

use information in RNDs obtained from this option as a reference for normal levels.

The risk-neutral volatility (Figure 4.5a) represents the market’s uncertainty around

the expected value of GBP/USD futures. Risk-neutral volatilities obtained from options

expiring within three-month after the referendum are higher than a normal level. Start-

ing in early June 2016, risk-neutral volatilities from options expiring after the referendum

increase significantly until the Brexit outcome is realized, especially for volatilities from
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short maturity options. This means that the uncertainty of Brexit has a larger impact

on the short-term value of the GBP/USD exchange rate than its long-term value. After

the announcement on June 24, 2016, the risk-neutral volatility from options expiring

in July and August drop back to their level in May within the next few days, but the

risk-neutral volatility from longer maturity options take more time to recover to May

levels. The change in risk-neutral volatility indicates the resolution of the uncertainty

caused by the referendum. We can also use this change to infer how much information

is provided by the announcement of the result. According to the empirical evidence pre-

sented above, agents use this information to settle short-term uncertainty, rather than

long-term uncertainty. This finding is not surprising, since the procedures on how to

leave the EU and the potential economic agreements between the EU and the UK would

still be uncertain.

The risk-neutral skewness (Figure 4.5b) is a measure of asymmetry. Before the

Brexit referendum, the risk-neutral skewness from options expiring after the referendum

is more negative than the normal level, which indicates that RNDs have fat left tails.

Specifically, risk-neutral skewness from options with short maturities is more negative

than skewness from long maturities options. This is induced by the risk of “Leave”.

As the “Leave” result would represent a negative shock to GBP/USD exchange rate,

especially in the short-horizon, the risk of “Leave” is shown as fat left tails in RNDs. As

the day of the Brexit referendum approaches, risk-neutral skewness become even more

negative, reflecting the market expectations of a negative shock (Hasler and Jeanneret,

2020). These unusual fat left tails that appeared a few days before the referendum are

more likely to be prompted by bi-modally distributed RNDs. As the state of the world

“Leave” is realized and the risk-neutral skewness goes back to a normal level, which is

close to zero, RNDs return to normal symmetric distributions.

The risk-neutral excess kurtosis (Figure 4.5c) measures market expectations of

extreme changes in the GBP/USD exchange rate. The higher the excess kurtosis, the
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higher the probability concentrated in the tails of RNDs before the Brexit referendum.

Similar to the third moment, the excess kurtosis also goes back to a normal level after

the referendum.

Last, we examine the bi-modality coefficient (Figure 4.5d) calculated from the

risk-neutral skewness and excess kurtosis. The time-varying BC indicates that bimodal

RNDs from short maturity options can be observed within three days before the refer-

endum, while RNDs from December contracts are consistently uni-modally distributed.

After the referendum, the BC falls back to a normal level, which means that RNDs also

return to normally unimodal distributions. Hence, regime switches of the moments of

RNDs and changes of their shapes after the referendum are likely reflecting the fact that

the outcome was not entirely unexpected.

4.4.3 The Tail Risk

To investigate the tail risk in the exchange rate, we calculate risk-neutral 10% quantiles

of the GBP/USD spot rate return according to the definition in equation (4.1).

Figure 4.6a shows the term structure of tail risk of the GBP/USD exchange rate

from January 2014 to August 2016. Apart from Brexit, this sample period covers two

additional important events in the UK, namely the Scottish independence referendum

on 18th of September, 2014 and the UK general election on the 7th of May, 2015. Since

the available maturity for the options is up to one year in our sample and the trading

in long maturity contracts is relatively thin, we calculate risk-neutral 10% quantiles for

1-month, 3-month and 6-month horizons. The stark declines in 10% quantiles before the

event indicate that the uncertainty of the event outcome has triggered an increase in tail

risk. Compared with the other two events, the tail risk caused by Brexit is much larger

across all three horizons. In addition, for both the Scottish independence referendum and

the United Kingdom general election, we can observe 10% quantiles steeply rises to the

level of the no-event period on the day of the announcement of the results. The Brexit
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referendum is different: the tail risk returns to normal levels more than 1-month after

the binary event. This evidence suggests that the impact of the Brexit referendum on the

level of tail risk is significantly different from the Scottish independence referendum and

the 2015 United Kingdom’s general election, at least for the GBP/USD foreign exchange

market.

In Figure 4.6b provides a closer look at the period around the Brexit referendum,

and shows that the tail risk deviates from its normal level since the beginning of 2016,

especially after April 2016. It reflects the investors’ forward-looking assessment of a

higher likelihood of the “Leave” outcome. Using the sample period between 3 May, 2016

and 23 June, 2016, the correlation between the “Leave” probability implied in Betfair

and the tail risk measure for 1-month, 3-month and 6-month horizons are -0.5123, -

0.6024 and -0.6092, respectively. This result lends support to the view that the more

likely the adverse state is, i.e. the “Leave” state, the higher is the degree of tail risk.

Moreover, the tail risk is highest on 14 June, 2016, on the day when several poll results

suggesting “Leave” outcome were released.

4.4.4 Option-Implied Event Probability: Model-Based Estimation

Information extracted from RNDs suggests that the CME British Pound option market

contains investors’ expectations for the Brexit result. To infer the investors’ expected

probability of the “Leave” outcome in the option market, we used the model-based

methodology presented in section 4.2.3. This approach also allowed us to identify the

implied futures prices and volatilities in “Leave” and ‘Remain’ states, respectively.

Figure 4.7 presents the daily option-implied probability of “Leave” using three

different model specifications, together with the corresponding implied probability in the

betting market. The option-implied probabilities from different model specifications are

highly correlated (correlation greater than 0.85), but have different magnitudes, espe-

cially before 14 June, 2016. Compared with our baseline model, model specification II
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and III attribute a large weight on cheap options, since cheap OTM options likely to carry

important information about speculation related to tail events. These specifications re-

duce the level of estimated option-implied “Leave” probabilities (closer to risk-neutral

probabilities from betting market), especially before the 14 June 2016. Apart from that,

we find that daily “Leave” probabilities in the option market and the betting market

mainly move together during this period. The correlation between probabilities from the

betting market and option-implied probabilities under the three different specifications

are 0.44, 0.42, and 0.47, respectively. In the betting market, the “Leave” probability

reaches its highest on 14 June, 2016, which is consistent with the “Leave” probability

from the poll of opinion polls (Wu et al., 2021). However, under model specification I

and II, “Leave” probability from the option market reaches its highest on 16 June 2016.

If we switch to the model specification III, the “Leave” probabilities on 14 and 16 June,

2016 are almost in the same magnitude. This suggests that the reaction of the option

market to the murder of the pro-Remain MP Jo Cox on 16 June, 2016 is stronger than

the betting market. Overall, the average probability of a “Leave” outcome provided by

the options market (35.98%, 32.89% and 29.25% under the three model specifications,

respectively) is higher than that of the betting market (27.43%).

We also plot the futures prices and their corresponding volatilities in the “Re-

main” and “Leave” states estimated under the different model specifications in Figure

4.8. The futures prices in these two states seem to move together in May 2016, and

then start to diverge. This maybe indicate that investors in the CME British pound

option market starts to pay more attention to Brexit news in June. In addition, the

futures prices in the ‘Leave‘ state reach the lowest value on 13 June, 2016 under model

specifications II and III, and on 14 June, 2016 under model specification I. This pattern

matches the pattern of tail risk. Tail risk for 1-month horizon reaches its peak on 13

June, 2016 and for 3- and 6-month horizons peaked on 14 June, 2016. Moreover, the

futures volatilities in two states show that the volatilities in the “Remain” state are
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much lower than ”Remain” state.

4.4.5 Option-Implied Probability: Model-Free Method

Option-implied probability of the Brexit outcome varies across different model specifica-

tions. To evaluate the time-varying “Leave” probability estimated from the model-based

method, we extract a upper bound for the “Leave” probability by using the model-free

method demonstrated in Section 4.2.3.2. For this regression, we use all available put

option data between 2 May, 2016 and 29 July, 2016. We indicate event date as 24 June,

2016, since it is the date that the Brexit outcome was released.

Figure 4.9 shows estimated “Leave” probability upper bounds. The red circles

represent the estimated probability by using strike-price-by-strike-price regressions in

equation (4.11). The black line is the fitted spline with 20 knots by using the regression

specified in equation (4.13). The vertical black dashed line represents the GBP/USD

exchange rate on the day of the event, so the left side of the line are strike prices of

OTM put options. The minimum probability on the fitted spline line is 33.69%, which

is our preferred estimate of the “Leave” probability’s upper bound. Ideally, the tightest

bound should occur on a strike price of an OTM option. However, OTM put options

usually carry a crash risk premium. Even if the realized Brexit outcome is “Leave”, OTM

put option prices may retain most of its value. Then the bias term in equation (4.11)

does not converge to zero. The probability estimated from OTM put options provide

a relatively loose bound. In our results, the minimum probability, 33.69%, occurs on

the right side of the vertical line. This means that 33.69% from in-the-money (ITM)

put options is not the tightest bound for the “Leave” probability. But it is sufficient for

us to rule out the model specification I from our model-based estimation, because the

average probability estimated from this specification is higher than the upper bound.

The average probability from model specification II is very close to the upper bound,

but our estimated upper bound is a relatively loose upper bound, so we believe that the
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estimation of the model specification III is likely to be more accurate.

4.4.6 Learning from the Opinion Polls

We use the ”Leave” voting intention from political opinion polls to extract a proxy of

subjective ”Leave” probability. First, we convert the voting intention into a binary Brexit

outcome. If the voting intention to ”Leave” is higher than ”Remain” from the political

opinion poll i at day t, we consider the outcome as ”Leave”, and vice versa. We use value

1 to indicate ”Leave” outcome, and 0 to indicate ”Remain” outcome, which is labelled

as 1Li,t. Second, we assume that different polls independent observations, and if there

are several polls on a day, we assign the average of all available polls’ outcomes at day

t as the outcome at day t, 1
K

∑K
i=1 1Li,t, where K is the number of available polls at day

t. However, the probability of the ”Leave” outcome from individuals perspective is not

only based on the polls’ outcome on a single day, the past polls results also contribute to

individuals’ belief formation on the ”Leave” outcome. Thus, in the third step, we allow

for a learning mechanism from the past N days polls’ results, and the weight for day-j

information is ωj,t,N , where t−N + 1 ≤ j ≤ t, then the subjective probability of ”Leave”

outcome from polls is

pLpoll,t =

∑t
j=t−N+1 ωj,t,N

1
K

∑K
i=1 1Li,j∑

,mt
j=t−Nωj,N

, (4.26)

We consider 18 (2x3x3) different learning mechanisms, varying the estimation window,

weights for past observations and number of past days. First, we consider both expanding

(N is increasing) and rolling window (N is constant) estimation. Second, we use three

different weight functions, since individuals may process past information differently.

The first function is the equal-weighted average of past polls outcomes ωj,t,N = 1
N , which

assumes individuals gives equal importance to all past opinion polls. The second function

is the liner decay weight function ωj,t,N = N−(j−t)
N , which assume that individuals treat
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the past information less important than the new information. The last weight function

is the exponential decay weight function ωj,t,N = (N−(j−t)
N )3, which gives even lower

weight to the past information compared to the linear decay function. Finally, we use

three different window lengths, 30, 60 and 90 days, respectively. For the expending

window method, window lengths means the number of days that we start the probability

calculation before the beginning day of our sample.

Table 4.3 shows the correlations between the daily change of subjected probabil-

ities estimated from past opinion polls and the daily change of risk-neutral probabilities

from option and prediction markets. We note that the subjective probabilities using the

linear decay function with a 90-day rolling window best describes the learning mech-

anism of both option and prediction market participants, which we exhibit in Figure

4.10. The correlations between daily changes in Leave probabilities from polls and op-

tion (prediction) markets, is 0.3 (0.43). Using 18 different methods to calculate subjec-

tive probability, the average correlations between the subjective and option (prediction)

market-implied risk-neutral probabilities is 0.21 (0.33). This indicates that the option

and prediction markets incorporate the information from polls to a large extent.

4.4.7 Correcting the Risk-neutral Probability

Because the referendum is a binary event, we assume that the Arrow-Debreu (AD) state

price matrix, At shown in equation (4.15), is 2×2. State two represents the UK leaving

the EU in the referendum (leave), whereas the current (remain) state is one. We make

two other assumptions to complete the second row of At in the non-parametric recovery.

They are not necessary for the parametric risk-adjustment. The first assumption is of

“high uncertainty” state 2 as embedded in the following prices: A21 = A22 = 0.5. The

second corresponds to an (almost) absorbing state 2: A21 = 0.01 and A22 = 0.99.

For the parametric recovery, we experiment with several plausible values of the

deep parameters assuming standard power utility. Start with β = 0.99, which is a
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standard value in the RBC/DSGE literature for annual data and that is also consistent

with our previous findings using the recovery theorem. We need to make an assumption

about relative wealth change between the remain and leave states. According to a poll

conducted by Ipsos Mori before referendum in 2016 (The Guardian, 2016), 25% of the

voters except a decline in their living standards due to Brexit, while 14% of voters

believe in an improvement in living standards, with 51% expecting no change. Hence,

in our baseline setting, we assume that there will be a 10% decline in aggregate wealth

if we move from “Remain” to “Leave” state and also analyze the impact of more drastic

wealth changes. In our parametric risk correction, we consider both risk-averse and risk

loving preferences with a constant relative risk aversion γ ranging from -6 and to 6.

Non-parametric recovery. Figure 4.11 presents the results using the non-

parametric approach, which are shown in Figure 4.11a for the prediction and in Figure

4.11b for the option markets. While the non-parametric recovery is fairly general with-

out imposing much structure, it generates only a very small upward correction of the

leave probabilities. Notice that the ”uncertain” case presents a smaller difference in the

corrected probabilities than the ”absorbing” case, however, the differences are minor.

Thus, we next move to the parametric correction to check whether the level of leave

probability could be larger under additional parametric assumptions to pin down the

stochastic discount factor (SDF).

Parametric correction. Figure 4.12 shows risk-corrected leave probabilities

from both markets under different parametric assumptions for risk preferences and rel-

ative wealth changes from remain to leave state. In the upper panels, we assume the

wealth in “Leave” state is 10% (WL) lower than the “Remain” state (WR), which means

WL

WR
= 0.90, we calibrate risk-corrected probabilities with a set of relative risk aversion

coefficients, γ = {−6,−4,−2, 0, 2, 4, 6}, where positive γ represents risk averse and neg-

ative γ represents risk loving behaviour. Results for prediction and option markets are

displayed in Figure 4.12a and 4.12b, respectively. As can be seen, the assumption of risk
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averse agents decreases the probabilities of the leave state. A possible explanation is that

primitive prices already reflect higher relative demand for that worse - by assumption -

state of nature. On the other hand, the assumption of risk loving agents increase leave

probabilities.

Speculative Markets? Is it plausible to assume that market participants on aggre-

gate are risk-seeking? While it is conceivable that the prediction markets are populated

by risk-seeking agents, derivative markets are often used both for hedging (by risk-averse

agents) and speculative (by risk-seeking agents) purposes, especially around rare events

(Bond and Dow, 2021). Whether one trading motive dominates the other remains to be

an empirical question.

First, we note in Figure 4.13a, the trading activity in the option market proxied by

the put-call ratio, is closely linked to the uncertainty of opinion poll results about Brexit

outcome. The latter is measured by the standard deviation of the expected ”Leave”

outcome under the assumption of binomial distribution. Both the uncertainty and the

put-call ratio jump on 9 June, 2016. Clearly, relative high demand for put contracts on

GBP could originate both from bearish speculative bets on the British pound and/or

hedging needs to protect against a large drop in GBP (Hanke et al., 2018).

Figure 4.13b shows speculative versus hedging behaviour in the CME British

pounds derivatives markets around the Brexit event. We measure the speculative versus

hedging behaviour as total CME British pounds futures’ and options’ positions held

by speculators (non-commercial traders) relative to the total positions held by hedgers

(commercial traders). To eliminate potential maturity effects, we scaled it by the values

in the previous year. We notice that relative speculative activity is abnormally high

around mid-June (7 June and 14 June) which coincides with poll results suggesting

a leave outcome together with heightened uncertainty, and higher leave probabilities

estimated both from prediction and option markets. The level of relative speculative

position is lower in the last week before the referendum after the murder of the pro-
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remain MP Jo Cox and Bank of England’s warning about the potential catastrophic

implications of Brexit outcome.

Relative Wealth. We next assume mild risk seeking behaviour in both prediction

and option markets (γ = −2), we obtain the risk-adjusted probabilities by using a wide

range of relative wealth in “Remain” and “Leave” states, WL

WR
= {0.75, 0.90, 0.95, 1.00,

1.05, 1.10, 1.25}. The figures 4.12c and 4.12d show the results for prediction and option

markets, respectively. We see that only a large wealth decline (about 25%) from “Re-

main” to “Leave” state brings the risk-corrected leave probabilities closer to the physical

probabilities estimated from the BES survey.

4.4.7.1 Risk-Corrected versus Subjective Probabilities

Using the subjective probabilities inferred from past opinion polls as the benchmark, we

search for the corresponding relative risk reversion coefficient that minimizes the distance

between risk-corrected probabilities and subjective probabilities. Assume β = 0.99 and

the relative wealth WL

WR = 0.90, we can calibrate relative risk reversion coefficient, γi∗, as

γi∗ ≡ arg min
γ

T∑
t=1

(π̃it − π̂t)2, (4.27)

where i = {p, o}, p and o represent prediction and option markets, respectively. T is

the sample size, π̃it is the risk-corrected probability by using by date from option or

prediction markets, and π̂t is the physical probabilities inferred from BES survey.

Figure 4.14 shows the risk-corrected probabilities by using data from both pre-

diction and betting markets. The resulting risk aversion coefficient equals -1.83 in the

prediction market (γp∗ = −5.47), and equals -1.01 in the option market (γo∗ = −4.11).

Hence, by assuming that wealth in the ”Leave” state would be 10% lower than the

”Remain” state (baseline setting) and that risk-corrected probabilities are the closest

to agent’s perception of the physical probabilities, we find that the average agent in
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both prediction and option markets are mildly risk seeking, with stronger risk seeking

preferences in prediction markets as one would expect.

Then, we relax the assumption about the relative wealth in the ”Leave” and ”Re-

main” state, which was WL

WR = 0.90 and allow the relative wealth to be in a wider range,

between 0.5 and 1.5, which means the wealth in the ”Leave” state could be maximum

50% lower or higher than the ”Remain” state. Then we calibrate the corresponding

relative risk reversion coefficients by minimizing the squared difference between risk-

corrected probabilities and subjective probabilities.

Figure 4.15 shows the corresponding relative risk reversion coefficients in both

prediction and option markets with respect to the relative wealth. If the agents on

average expect lower wealth in the ”Leave” state than the ”Remain” state (W
L

WR <

1), the average agent in both prediction and option markets are risk loving as in the

baseline case. Expectation of a mild decrease in wealth in the ”Leave” state can only be

rationalized by extreme risk-seeking behavior. If we assume that the agents on average

expect a higher wealth in the ”Leave” state than the ”Remain” state (W
L

WR > 1), then

average agent in both markets is risk averse. However, symmetrically, the average risk

aversion is low only if the agents on average expect a large increase in wealth moving

to the ”Leave” state which is empirically less plausible given the survey results before

the Brexit referendum and Bank of England warnings.4 The average agent in prediction

markets has always a stronger risk preference than the average agent in option markets.

4.4.8 What Do We Learn from the Individual-level Survey Data?

To obtain the voting intention to “Leave” from individual-level BES survey data, we

conduct Probit models to understand “Leave” voters underlying motivations to change

the status quo. The Models (1) specification is using risk preferences as the only ex-

4One could argue that the Brexiteers were very optimistic about their wealth improvement post-
Brexit, however, the BES survey results suggest that leave voters are more risk-seeking compared to
remain voters.
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planatory variable. Then we add voters’ demographic characteristics, like gender and

income, in Model (2). After that, we add voters’ political views as additional variables

in Model (3). Furthermore, we add voters immigration attitudes in Model (4). Last, we

use all potential explanatory variables in the regression as Model (5).

Table 4.2 shows that Risk Taking Preference is one of the key motivation of re-

spondents’ “Leave” votes. Specifically, voters with higher risk taking preferences would

like to vote for “Leave”, which is consistent across different model specifications sug-

gesting that controlling for other factors, risk seeking attitude is one of the important

drivers of “Leave” votes. The most comprehensive Model (5) shows that being Male,

having lower income, having left school early, belonging to elderly group also increase

the likelihood of “Leave” vote. Voters with more concerns about immigration and more

pessimism about economy prefer to vote “Leave”. Party Identification also plays an

important role for voters’ choice.

In the bottom part of this table, we show both the share of leave voters and

estimated intention to “Leave”. The vote intention of “Leave” based on “Leave” and

“Remain” respondents is 50.93%. By employing the estimated coefficients and indecisive

respondents’ individual characteristics, we obtain “Leave” probably implied for indecisive

voters, which is higher than the probability of “Leave” vote implied for “Leave” and

“Remain” voters under specification (4) and (5). According to model (5), the total

intention to “Leave” is 51.07% including indecisive respondents. Hence, taking into

account the indecisive voters (about 6% of the sample) suggests even a higher likelihood

of Brexit outcome.

We also provide daily estimates of intention to leave using the most comprehensive

model (5). Figure 4.16 shows that the intention to “Leave” is more persistent than the

polling results. Arguably, one could extract a better proxy of physical Brexit probability

based on survey estimates of voting intentions. However, these survey results were not

available to market participants before the Brexit referendum. Ex-post we learn that

151



individual characteristics that are persistent over time are a better leading indicator for

the Brexit outcome.

4.5 Concluding Remarks

We find that risk-neutral density distributions extracted from British Pound options

with short maturities are bimodally distributed one week before the Brexit referendum.

The changes of the risk-neutral tail risk in GBPs are highly correlated with changes of

“Leave” probabilities from the betting market. This empirical evidence shows that the

GBP options market incorporates investors’ beliefs about a potential Brexit outcome.

We estimate the risk-neutral probabilities of the Brexit referendum from the options

market by using both model-based and model-free methods. The risk-neutral probabil-

ity from the option market on average is higher than the probability from the betting

market in the month before the Brexit referendum, but both market participants seem

to closely track opinion poll results when assessing event probabilities. While subjective

probabilities extracted from polls rationalize the Brexit surprise, voting intentions esti-

mated from surveys which are determined by persistent characteristics (age, education,

income), political views and the risk preferences of the voters, are likely to be a better

guide for physical probabilities.

We construct risk-neutral Arrow-Debrew prices from both markets and filter out

risk-corrected probabilities from market prices using both a non-parametric (Ross Re-

covery Theorem) and a parametric (calibrating the stochastic discount factor) approach.

Only parametric recovery is likely to have an impact on the level of Brexit probability

estimates, albeit under strict parametric assumption. However, we argue that markets

could have signalled higher Brexit outcome once we allow for speculative trading trig-

gered by such binary political events in both prediction and option markets. Arguably,

reliance on risk-neutral probabilities from both markets were misleading as an indicator
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for “Leave” outcome.
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Figure 4.1: GBP/USD Exchange Rate and Put Option Price

This figure presents the GBP/USD spot exchange rate and the CME British Pound put options price

change around the Brexit referendum. Figure 4.1a displays the GBP/USD spot exchange rate between

May and July, 2016. Figure 4.1b displays price changes of the CME British Pound put options on the

event day and also non-event days.

(a) GBP/USD Exchange Rate (b) Put Option Price Changes
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Figure 4.2: Prediction Markets versus Political Opinion Polls

This figure presents the implied probability of “Leave” obtained from prediction market and the
percentage of Leave voters in several polls. Figure 4.2a shows the “Leave” probability recovered
from predication market by using Betfair “Leave” odds between 3 May, 2016 and the 23 June,
2016. Figure 4.2b shows the voting intentions of “Leave’ from thirteen market research companies
(see legend below for dots, triangles and squares, n=128) between 10 January, 2016 and the 23
June, 2016. The voting intentions of “Leave’ are measured as “Leave” percentage of decided
respondents from political opinion polls.

(a) Leave Probabilities from Prediction Market

(b) Voting Intention from Political Opinion Polls
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Figure 4.3: IVs and RNDs Inferred from British Pound Options expiring on
8 July, 2016

This figure presents fitted implied volatilities (Figure 4.3a and Figure 4.3b) and risk-neutral
density distributions of GBP/USD futures (Figure 4.3c and Figure 4.3d) inferred from CME
British Pound monthly futures options expiring on 8 July, 2016. Figure 4.3a and Figure 4.3c
display the fitted implied volatility surface and RND surface of GBP/USD futures between 1
June, 2016 and 30 June 2016 across a wide range of strike prices. The red lines in these two
figures indicates the Brexit referendum day (23 June, 2016). Figure 4.3b and Figure 4.3d are
the fitted implied volatility curves and the corresponding RNDs of the six specific days, 6-, 4-,
2-weeks before the Brexit referendum (12 May, 2016, 26 May ,2016 and 09 June, 2016), the
Brexit referendum day (23 June, 2016) and 1-day and 1-week after the Brexit referendum (24
June, 2016 and 30 June, 2016). In these two figures, black, red and blue lines represent the dates
before, at and after the Brexit referendum, respectively.

(a) Implied Volatility Surface (b) Implied Volatility in Different Days

(c) Risk-Neutral Density Surface (d) Risk-Neutral Densities in Different Days
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Figure 4.4: RNDs Inferred from British Pound Options on 23 and 24 June,
2016

This figure presents risk-neutral density distributions of GBP/USD futures inferred from British
Pound options across all available maturities on 23 June, 2016 (Figure 4.4a) and 24 June, 2016
(Figure 4.4b). Red lines are RNDs extracted from options expiring on 8 July, 2016. Black/gray
lines are RNDs extracted from options expiring after 8 July, 2016, between 5 August, 2016 and
9 July, 2017.

(a) Risk-Neutral Densities on 23 June, 2016

(b) Risk-Neutral Densities on 24 June, 2016
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Figure 4.5: Information in RNDs Inferred from British Pound Options

This figure presents presents the annualized risk-neutral volatility (Figure 4.5a), the risk-neutral
skewness (Figure 4.5b), the risk-neutral excess kurtosis (Figure 4.5c) and the Bimodality Coef-
ficient (Figure 4.5d) of British Pound futures prices between 2 May, 2016 and 29 July, 2016. In
this figure, we focus on RNDs from options with five different maturities, one maturity is before
the Brexit referendum (3 June, 2016, blue line), three within the next following three months
after the Brexit referendum (8 July, 2016 (red line), 5 August, 2016 (black line) and 9 September,
2016 (dark gray line)) and one six-month after the Brexit referendum (9 December, 2016, light
gray line). The vertical line shows the day of the Brexit referendum on 23 June, 2016.
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Figure 4.6: British Pound Risk-Neutral 10% Quantiles

This figure presents the British Pound Risk-Neutral 10% Quantiles for three horizons. The black,
blue and red lines correspond to the variation of 10% quantile for the one-month, three-month
and six-month horizons, respectively. Figure 4.6a display the 10% quantiles during the period
between 2013 and 2016. Three vertical lines indicates Scottish independence referendum on 18
September 2014, United Kingdom general election on 7 May, 2015 and Brexit referendum on 23
June, 2016. In Fugure 4.6b, we zoom into the Brexit period.The vertical line shows the day of
the Brexit referendum on 23 June, 2016.

(a) Period from 2013 to 2016 (b) Brexit Period

162



Figure 4.7: Risk-Neutral Brexit Probabilities Implied by Option and Predic-
tion Markets

This figure presents the risk-neutral Brexit probabilities implied by option and prediction mar-
kets. The red line is the probability of Leave implied in the prediction market (Betfair) and the
other three lines are risk-neutral probabilities of Leave implied in option market. Specifically,
solid black, dash blue and dotted blue lines represent risk-neutral probabilities estimated from
three different model specifications by setting ωt,i = 1, ωt,i = 1

Mt,Ki
and ωt,i = 1

M2
t,Ki

, respec-

tively. The sample period used in this figure is from 3 May, 2016 to 23 June, 2016. The vertical
lines show 14 and 16 June, 2016.
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Figure 4.8: State Prices and Volatility of GBP Futures

This figure presents British Pound futures prices (Figure 4.8a) and corresponding volatilities
(Figure 4.8b) in “Leave” and ‘Remain’ states. Blue line in Figure 4.8a is the actual British
Pound futures price. Black and red lines in Figure 4.8a and Figure 4.8b represent British pound
futures prices and corresponding volatilities in “Leave” and “Remain” state, receptively. Solid,
dashed and dotted lines show state variables estimated from three different model specifications
by setting ωt,i = 1, ωt,i = 1

Mt,Ki
and ωt,i = 1

M2
t,Ki

, respectively. The vertical lines show 14 and

16 June, 2016. The sample period used in this figure is from May 3, 2016 to June 23, 2016.

(a) Option Implied State Prices

(b) Option Implied State Volatility
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Figure 4.9: Leave Probabilities Recovered from the Model-free Method

This figure presents estimates of the “Leave” probability using a model-free method. Red circles
represent the upper bounds of the estimated probability using the corresponding strike prices
only. The black solid line is the fitted spline with 20 knots. The minimum of the spline is our
preferred upper bound for the “Leave” probability. The sample period used in this estimation
runs from the 2 May, 2016 and the 29 July, 2016.The dashed vertical line is the USD/GBP spot
rate on the day of Brexit referendum, 23 June, 2016.
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Figure 4.10: Leave Probabilities from the Political Opinion Polls

This figure presents the implied probability of “Leave” obtained from polls data (blue line),
Betfair odds (red line) and option market (black line). The vertical lines show 14 June, 2016
and 16 June, 2016. The sample period is between 6 May, 2016 and 22 June, 2016.
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Figure 4.11: Risk-Corrected Leave Probability (Non-Parametric)

This figure presents the probabilities recovered using Ross (2015). Figure 4.11a and Figure 4.11b
shows the non-corrected (risk-neutral) and risk-corrected probabilities in prediction markets and op-
tion markets, respectively. Red solid line is the non-corrected probabilities. Black dashed line is the
risk-corrected probabilities corresponding to an (almost) absorbing state 2, where the Arrow-Debreu
prices are A21 = 0.01 and A22 = 0.99. Black dotted line is the risk-corrected probabilities corresponding
to “high uncertainty” state 2, where the Arrow-Debreu prices are A21 = 0.5 and A22 = 0.5. The sample
period is between 3 May, 2016 and 23 June, 2016.

(a) Prediction Markets (b) Option Markets
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Figure 4.12: Risk-Corrected Leave Probability (Parametric)

This figure presents the probabilities recovered using the parametric approach. Figure 4.12a and 4.12c
show the risk-corrected probabilities in prediction markets, and Figure 4.12b and 4.12d show the risk-
corrected probabilities in option markets. In Figure 4.12a and 4.12b, assume the relative wealth in “Re-

main” and “Leave” states, W
L

WR
, is 0.90, we display the probabilities corrected using different value for the

constant relative risk aversion coefficient (γ = −6,−4,−2, 0, 2, 4, 6). In Figure 4.12c and 4.12d, assume
the constant relative risk aversion coefficient, γ, is -2, we display the probabilities corrected using different

value for the relative wealth in “Remain” and “Leave” states (W
L

WR
= 0.75, 0.90, 0.95, 1.00, 1.05, 1.10, 1.25),

where WR is the wealth of the representative agent in the remain state and WL the corresponding wealth
in the leave state. The sample period is between 3 May, 2016 and 23 June, 2016.

(a) Prediction Markets (γ) (b) Option Markets (γ)

(c) Prediction Markets (Relative Wealth) (d) Option Markets (Relative Wealth)
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Figure 4.13: Trading Behaviors on Derivative Markets

This figure presents the trading behaviors on CME British pounds derivative markets. Figure 4.13a
shows the put–call ratio (left axis) and the uncertainty of opinion polls outcomes (right axis). Put–call
ratio is calculated from the open interest of CME British pounds options expiring on 8 July, 2016.
The uncertainty of opinion polls outcomes is defined as the standard deviation of the expected ”Leave”

outcome under the assumption of binomial distribution, which is

√
pL
poll,t

(1−ppoll,t)L

n
, and n is window

length used for subjective ”Leave” probability (ppoll,t) calculation. Figure 4.13b presents the total CME
British pounds futures’ and options’ positions held by speculators (non-commercial) relative to the total
positions held by hedgers (commercial), scaled by the values in the past period. The sample period in
Figure 4.13a is between 3 May, 2016 and 23 June, 2016. The sample period in Figure 4.13b is between
3 May, 2016 and 28 June, 2016. The data is sampled weekly (Tuesday-to-Tuesday).

(a) Put Call Ratio and Polls Uncertainty (b) Speculative vs. Hedging Activity
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Figure 4.14: Risk-Corrected versus Subjective Probabilities

This figure presents the subjective probabilities extracted from opinion polls and risk-corrected
probabilities by using data from the betting and option markets. Probabilities are corrected

using the following parameterisation: (1) β = 0.99, (2) WL

WR = 0.90 where WR is the level of
wealth of the representative agent in the remain state and WL the corresponding level of wealth
in the leave state, (3)relative risk reversion coefficient, γp∗ and γo∗, where p and o represent

prediction and option markets respectively. Specifically, γi∗ ≡ arg minγ
∑T
t=1(π̃it − π̂t)2, where

i = p, o, T is the sample size, π̃it is the risk-corrected probability by using date from option or
prediction markets, and π̂t is the subjective probabilities inferred from opinion polls; this gives
γp∗ = −1.83 and γo∗ = −1.01.The sample period is between 6 May, 2016 and 22 June, 2016.
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Figure 4.15: Relative Risk Aversion Coefficient and Relative Wealth

This figure presents the relative risk aversion coefficient used to minimize the distance between
the risk-corrected probabilities and the physical probability from the BES data, with respect to

different level of wealth in the ”Leave” and ”Remain” states. We use β = 0.99 and WL

WR between
0.5 and 1.5, where WR is the level of wealth of the representative agent in the ”Remain” state
and WL the corresponding level of wealth in the ”Leave” state. The red and black solid lines are
the relative risk aversion coefficients for prediction and option markets, respectively. The dashed
blue line represents the baseline case used in Figure 4.14. The sample period is between 6 May,
2016 and 22 June, 2016.
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Figure 4.16: Voting Intention from the BES Survey

This figure presents the voting intention of ”Leave” from the BES Survey (blue line, right y-axis)
and implied probability of “Leave” obtained from Betfair odds (red line, left y-axis) and option
market (black line, left y-axis). The vertical lines show 14 June, 2016 and 16 June, 2016. The
sample period is between 6 May, 2016 and 22 June, 2016.
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Appendix 4.A RNDs Extraction

First, we only use options with less noise and more informative prices for the RND

extraction. Our selection is mainly based on options’ trading volume and the open

interest. Specifically, due to the thin trading volume of in-the-money (ITM) options

and deep-out-of-the-money (deep OTM) options, we exclude them from our sample. We

classify options with a price equal to $ 0.001 per pound and a price change less than $

0.001 per pound increment as deep OTM. In addition, we discard options with zero open

interest. Thus, we only use out-of-the-money (OTM) and at-the-money (ATM) options

with positive open interest for the RND extraction.

Second, we covert option prices from price-strike space to volatility-strike space.

Since options in our sample are American-style options written on futures, we use the

Barone-Adesi-Whaley (BAW) American futures option pricing model (Barone-Adesi and

Whaley, 1987) to obtain the implied volatility, which can eliminate the early exer-

cise premium in the American option. Cincibuch (2004) studies the difference between

the implied volatilities of CME American-style Japanese Yen futures options and OTC

European-style Japanese Yen options. They find that there is no significant difference

between BAW implied volatilities from American options and Black–Scholes (BS) im-

plied volatilities from European options. Therefore, we use BAW implied volatilities

to infer implied volatilities of European options and follow the standard procedure for

extracting RND from European options.

Third, we smooth implied volatility curves. Previous studies adopt various meth-

ods to smooth implied volatility curves, for example, quadratic polynomial (Shimko,

1993) and cubic splines (Bates, 1991; Jiang and Tian, 2005; Monteiro et al., 2008). Due

to the nature of the quadratic polynomial, the quadratic spline is not continuous in

the second derivative. A standard cubic spline can avoid this issue, but it must pass

the original data points, which brings noise from market microstructure frictions. To
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avoid these issues, we fit the implied volatility curve by using a fourth-degree polyno-

mial spline (Figlewski, 2009), which minimizes the sum of squared differences between

the observed implied volatility curve and the fitted spline. Hence, implied volatilities

can be interpolated as a dense set of fitted splines.

Fourth, we convert interpolated implied volatilities back to option prices. Because

of the insignificant difference between BAW implied volatility and implied volatility from

its corresponding European option, we use the interpolated BAW implied volatility in

the Black model (Black, 1976) to calculate the price of the corresponding European

option.

In the fifth step, we approximate the middle part of the RND by using interpo-

lated European futures options prices. The middle part of RND at time t is between the

second lowest and the second highest observed strike prices at time t. Let Ft,Tf denote

the price of a future contract with maturity Tf at time t. Assume that To is an option’s

expiry date, then the time-To payoff of an European call option written on a future con-

tract, with strike price K, is written max(FTo,Tf −K, 0). We denote C(t,K, Tf , To) as

the observed call option price at time t, with strike price K, maturity To and underlying

future contract that expires at Tf . With the assumption of no arbitrage, the option price

at time t is equal to the present value of the risk-neutral expected payoff at To,

C(t,K, Tf , To) = e−rt(To−t)Et[max(FTo,Tf −K, 0)]

= e−rt(To−t)
∫ ∞
K

(FTo,Tf −K)πt(FTo,Tf ) dFTo,Tf ,
(4.28)

where rt is the risk-free interest rate at time t, πt(FTo,Tf ) is the risk-neutral probability

density function of the underlying future price. Following the standard approach of

Breeden and Litzenberger (1978),
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∂C(t,K, Tf , To)

∂K
= e−rt(To−t)[

∫ K

0
πt(FTo,Tf ) dFTo,Tf − 1]. (4.29)

Thus, the risk-neutral cumulative function of the underlying future price at time

t is

Πt(K) = Probt(FTo,Tf ≤ K) =

∫ K

0
πt(FTo,Tf ) dFTo,Tf = 1 + ert(To−t)

∂C(t,K, Tf , To)

∂K
.

(4.30)

Taking the derivative with respect to K in equation (4.30), the risk-neutral prob-

ability density function is

πt(K) = ert(To−t)
∂2C(t,K, Tf , To)

∂K2
. (4.31)

Taking finite differences, we approximate the option-implied risk-neutral cumu-

lative density function (CDF)

Πt(K) ≈ 1 + ert(To−t)
1

4
[C(t,K +

4
2
, Tf , To)− C(t,K − 4

2
, Tf , To)] |4→0, (4.32)

and risk-neutral probability density function (PDF), which is also known as RND,

πt(K) ≈ ert(To−t)
1

42
[C(t,K +4, Tf , To) +C(t,K −4, Tf , To)− 2C(t,K, Tf , To)] |4→0 .

(4.33)

Similar as the steps we extract RND from a set of call option prices, we can

obtain the risk-neutral CDF from put option prices as the following,
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Πt(K) ≈ ert(To−t)
1

4
[P (t,K +

4
2
, Tf , To)− P (t,K − 4

2
, Tf , To)] |4→0, (4.34)

and its corresponding risk-neutral probability density function (PDF)

πt(K) ≈ ert(To−t)
1

42
[P (t,K +4, Tf , To) + P (t,K −4, Tf , To)− 2P (t,K, Tf , To)] |4→0 .

(4.35)

Then, πt(K) is the middle part of the RND. Finally, we append the RND into the

left and right tails by fitting the generalized extreme value (GEV) distribution, which

is a natural candidate to model the tails of an unknown distribution. GEV distribution

has three parameters and its CDF is

ΠGEV (z) = e−(1+ξz)
− 1
ξ
, z =

Ft,T1 − µ
σ

, (4.36)

where ξ, µ and σ are used to control shape, location and scale of the tail distribution.

ξ > 0 indicates a fat tail from the Frechet distribution, ξ = 0 determines a normal tail

with the Gumbel distribution, and ξ < 0 means finite tails from the Weibull distribution.

We define the strike price at α-quantile of the RND as K (α), which is equivalent to

ΠGEV (K (α)) = α. ΠGEV (z)’s corresponding PDF can be written as πGEV (z). To

estimate three parameters in GEV distribution, we set up three constraints for the right

tail as the following:

ΠGEV (K(α1R)) = α1R,

πGEV (K(α1R)) = π(K(α1R)),

πGEV (K(α2R)) = π(K(α2R)),

(4.37)
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where π(K(α)) is the empirical RND function we estimated in the last step. The con-

straints used for left tail estimation are

ΠGEV (−K(α1L)) = 1− α1L,

πGEV (−K(α1L)) = π(K(α1L)),

πGEV (−K(α2L)) = π(K(α2L)).

(4.38)

Specifically, we set α1 and α2 as 5% and 2% for the left tail, and 92% and 95%

for the right tail.
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Appendix 4.B AD Prices for Risk Recovery

AD Prices from Betting Odds Consider the first observation in our sample. The

timestamp is 25/02/2016 16:28:00. Odds are 3.2 for leave and 1.5 for remain. The

corresponding Arrow-Debrew prices for these states of nature are 1
3.2£ and 1

1.5£. This

means that we can write

At =

 1
1.5

1
3.2

A21,t A22,t

 . (4.39)

We will use two assumptions to complete the second row of At. The first as-

sumption is of “high uncertainty” as embedded in the following AD prices

At =

 1
1.5

1
3.2

0.5 0.5

 , (4.40)

and second, an (almost) absorbing state 2

At =

 1
1.5

1
3.2

0 1

 . (4.41)

Note that, under risk neutrality and no discounting, the Arrow-Debrew pricing

matrix is equivalent to the frequency matrix, i.e. At = Pt.

AD Prices from FX Derivatives The option price as well as the forward price in

the left hand side of the system of equations (4.5) is expressed in USD. In other words,

those contracts refer to the dollar price of a future pound (whatever state of nature,

i.e leave or remain, realises). Hence, pLt refers to the probability that the GBP will

reach a certain dollar value in each and respective state of nature. In order to calculate

primitive or state prices we need the domestic (GBP) price of a future unit of domestic

currency (GBP) in each state of nature. Let us maintain the hypothesis that there are
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only two states: leave or remain. The time t GBP price of the AD securities are given

by AR∗t and AL∗t whereas the time t USD price of the AD securities are written as ARt

and ALt , for the remain and leave states, respectively. Calculating the asset return from

the perspective of a US resident and assuming no-arbitrage results

1

ARt +ALt︸ ︷︷ ︸
USD Tf return of investing one USD at t

=

S−1
t︸︷︷︸

one USD in GBP

AR∗t +AL∗t︸ ︷︷ ︸
GBP Tf return of investing one USD at t

×Ft,Tf

︸ ︷︷ ︸
USD Tf return of investing one USD at t

, (4.42)

or

AR∗t +AL∗t =
(
ARt +ALt

) Ft,Tf
St

. (4.43)

Note also that ARt + ALt = 1
1+it

and AR∗t + AL∗t = 1
1+i∗t

, where it is the risk-free

interest rate on a US bond which matures at Tf ; the asterisk refers to the one in the UK

economy. This gives

Ft,Tf = (1 + it)St
(
AR∗t +AL∗t

)
. (4.44)

Using the notation in the first section, recall that Ft,Tf is the USD price at time

t of one unit of a future time, Tf , GBP. An agent that buys Ft,Tf will receive one GBP

at Tf for certain, i.e. irrespective of the state of nature. It follows that
Ft,Tf
St

is the GBP

price at time t of one unit of a future GBP. This transformation is equivalent to the

price of a risk free asset which can be divided into two primitive (theoretical) sterling

prices, at t. The first is given by
(
1− pLt

)
×

FLt,Tf
St

which can be seen as an asset that will

pay one unit of GBP if (and only if) the leave state of nature realises, i.e., if pLt = 0.

The second is pLt ×
FRt,Tf
St

which has an analogous interpretation, however, for the remain
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case. Given that St is the dollar price of a spot GBP and Ft is the dollar price of a

future GBP, one can write (4.44) as

pLt F
L
t,Tf

+ (1− pLt )FRt,Tf = (1 + it)St
(
AL∗t +AR∗t

)
, (4.45)

or

AL∗t +AR∗t = pLt
FLt,Tf

St(1 + it)︸ ︷︷ ︸
which equals AL∗t by arbitrage

+ (1− pLt )
FRt,Tf

St(1 + it)︸ ︷︷ ︸
which equals AR∗t by arbitrage

. (4.46)
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Appendix 4.C An Example for Non-parametric Recovery

Consider the symmetric case of AD prices in the betting market, in other words,

At =

 1
1.5

1
3.2

1
3.2

1
1.5

 . (4.47)

Eigenvalues are φ1 = 0.9791667 and φ2 = 0.3541667; the corresponding eigen-

vectors are Z1,t = (0.7071068 , 0.7071068)> and Z2,t = (−0.7071068 , 0.7071068)>. PF

theorem guarantees that for square non-negative matrices, φ1 is the highest in absolute

value and all entries of the corresponding eigenvector are positive. This allow us to

assume that φ1 = β and

Dt =

0.7071068 0

0 0.7071068

 , (4.48)

which finally gives

Pt =

0.6808511 0.3191489

0.3191489 0.6808511

 , (4.49)
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