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—— Abstract

For a satisfiable CNF formula ¢ and an integer ¢, a weak backdoor set to treewidth-t is a set of
variables such that there is an assignment to this set that reduces ¢ to a satisfiable formula that has
an incidence graph of treewidth at most ¢. A natural research program in the work on fixed-parameter
algorithms (FPT algorithms) for SAT is to delineate the tractability borders for the problem of
detecting a small weak backdoor set to treewidth-t formulas. In this line of research, Gaspers and
Szeider (ICALP 2012) showed that detecting a weak backdoor set of size at most k to treewidth-1 is
W/[2]-hard parameterized by k if the input is an arbitrary CNF formula. Fomin, Lokshtanov, Misra,
Ramanujan and Saurabh (SODA 2015), showed that if the input is d-CNF, then detecting a weak
backdoor set of size at most k to treewidth-t is fixed-parameter tractable (parameterized by k,t,d).

These two results indicate that sparsity of the input plays a role in determining the parameterized
complexity of detecting weak backdoor sets to treewidth-¢t.

In this work, we take a major step towards characterizing the precise impact of sparsity on the
parameterized complexity of this problem by obtaining algorithmic results for detecting small weak
backdoor sets to treewidth-¢ for input formulas whose incidence graphs belong to a nowhere-dense
graph class. Nowhere density provides a robust and well-understood notion of sparsity that is at the
heart of several advances on model checking and structural graph theory. Moreover, nowhere-dense
graph classes contain many well-studied graph classes such as bounded treewidth graphs, graphs that
exclude a fized (topological) minor and graphs of bounded expansion.

Our main contribution is an algorithm that, given a formula ¢ whose incidence graph belongs to

|9 either finds a satisfying

a fixed nowhere-dense graph class and an integer k, in time f(¢, k)|¢
assignment of ¢, or concludes correctly that ¢ has no weak backdoor set of size at most k to
treewidth-t.

To obtain this algorithm, we develop a strategy that only relies on the fact that nowhere-dense
graph classes are biclique-free. That is, for every nowhere-dense graph class, there is a p such that it
is contained in the class of graphs that exclude K, , as a subgraph. This is a significant feature of
our techniques since the class of biclique-free graphs also generalizes the class of graphs of bounded
degeneracy, which are incomparable with nowhere-dense graph classes. As a result, our algorithm
also generalizes the results of Fomin, Lokshtanov, Misra, Ramanujan and Saurabh (SODA 2015) for
the special case of d-CNF formulas as input when d is fixed. This is because the incidence graphs of

such formulas exclude Kg41,4+1 as a subgraph.
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Backdoor Sets on Nowhere Dense SAT

1 Introduction

A central concept in the design of fixed-parameter algorithms for SAT is the notion of
backdoor sets introduced by Williams et al. [41], which was also introduced under a different
name by Crama et al. [9]. These are sets of variables in the input formula whose instantiation
can lead to a dramatic simplification of the formula, moving the formula into a class where
SAT is easy to solve, such as Horn formulas. Backdoor sets provide a natural way to express
the deviation of a SAT instance from well-studied “islands of tractability” (i.e., tractable
cases of SAT) and allow us to study the question -“could we easily solve SAT instances that
do not necessarily fall neatly within a known tractable fragment, yet are ‘close’ to them?”

To formalize this idea, fix a class of CNF formulas, call it C, which is also called the
base class. Let ¢ be the input instance of SAT. If ¢ is satisfiable, then a nonempty subset
B of the variables in ¢ is a weak backdoor of ¢ to the class C (or a weak C-backdoor set) if
there exists an assignment 7 to the variables in B such that the reduced instance ¢[7] is a
satisfiable formula in the class C. We say that B is a strong backdoor of ¢ to the class C (or
strong C-backdoor set) if, for every assignment 7 to the variables in B, the reduced instance
¢[7] is in C. Clearly, if C is a class of formulas on which SAT can be efficiently solved and
one knows a weak/strong C-backdoor set of the input instance, then a straightforward way of
checking satisfiability and computing a satisfying assignment of the input instance involves
exploring all instantiations of the variables in the backdoor set and efficiently solving the
simplified instances.

Over the last two decades, there has been an active theoretical research program on SAT —
the design of algorithms for SAT by exploring the parameterized complezity of computing and
utilizing small backdoor sets to an efficiently-solvable class of CNF formulas. The study of the
parameterized complexity of the problem of finding small backdoor sets was formally initiated
by Nishimura et al. [33] and over the past decade and a half, there has been an extensive study
of backdoors for SAT in the realm of parameterized complexity (see [37, 39, 35, 26, 13, 21]
for a partial list). We refer to the survey of Gaspers and Szeider [25] for an overview of
many of these works. In recent years, the success brought to the parameterized complexity
of SAT by the study of backdoor detection has been replicated for CSP [2, 4, 20, 17, 18] and
Mixed-ILP [16]. We refer to the survey [22] for a more comprehensive picture of the state of
the art on backdoors to CSPs.

A basic part of this research program exploring the parameterized complexity of SAT is
to answer the question:

For which input formulas is the detection of small backdoors to the class of
bounded-treewidth formulas fixed-parameter tractable?

Bounded-treewidth formulas are CNF formulas whose incidence graphs have bounded
treewidth and it is well-known that SAT is efficiently solvable on these [10, 15, 38]. The
study of computing small backdoors to bounded-treewidth formulas from the parameterized
complexity perspective was initiated by Gaspers and Szeider in [23] and further studied in
[24, 26]. Gaspers and Szeider [23] gave an FPT-approximation algorithm for the problem of
computing a strong backdoor set to Acyclic formulas, which was later extended to bounded-
treewidth formulas [26]. Specifically, they gave an algorithm that runs in time f(k)|¢|©M),
for some computable function f, and either detects a strong backdoor in ¢ of size at most
2% to bounded-treewidth formulas or reports that there is no such strong backdoor of size
at most k. Since approximate backdoor sets are also sufficient to solve SAT, they were
able to conclude that SAT parameterized by the size of a smallest strong backdoor set to
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bounded-treewidth formulas is fixed-parameter tractable with no restrictions on the input.

On the other hand, the picture for weak backdoor sets is much less comprehensive and is the
main motivation behind our work.

State of the art for detecting weak backdoors

In [23], Gaspers and Szeider studied the problem of detecting a weak backdoor of size at
most k& to Acyclic formulas, i.e, formulas with incidence graphs of treewidth at most 1. They
showed that this problem is W[2]-hard in general but fixed-parameter tractable (FPT) on
d-CNF formulas for every fixed d. This implies that d-SAT parameterized by the size of
a smallest weak backdoor set to Acyclic formulas is fixed-parameter tractable. This result
was subsequently improved by Fomin et al. [13], who showed that d-SAT parameterized by
the size of a smallest weak backdoor set to bounded-treewidth formulas is fixed-parameter
tractable. The lack of progress in this direction since then, means that the state of the art
on detecting weak backdoors to bounded-treewidth formulas continues to experience a huge
gap between instances for which we know parameterized hardness results (i.e., general CNF
formulas) and instances for which we have FPT algorithms (i.e., d-CNF). Where exactly does
the tractability border lie? This brings us to the overarching goal of identifying maximal
classes of CNF formulas for which SAT is FPT when parameterized by the size of a smallest
weak backdoor set to the class of bounded-treewidth formulas.

Our work

Since the incidence graphs of d-CNF formulas only have linearly-many edges in the number
of clauses, a natural step towards the overarching goal outlined above is to first understand
the effect that the “sparsity” of the input incidence graph has on the tractability of the
problem. In particular, could one show that as long as the input has bounded degeneracy
or is nowhere dense [32], then SAT is FPT parameterized by the size of a smallest weak
backdoor set to bounded-treewidth formulas? Nowhere density yields a robust notion of a
maximal sparse graph class and nowhere-dense graph classes have been at the heart of major
developments in graph theory and model checking [31, 27, 29] in the last decade. Therefore,
one could reasonably hope to harness the techniques developed in these efforts, towards our
purpose. Starting from this point, in this paper, we obtain tractability results that take us
simultaneously beyond the class of nowhere-dense graphs and graphs of bounded degeneracy.
Towards this, we initiate the study of weak backdoor detection on biclique-free formulas.
More precisely, we consider Ky 4-free formulas, which are CNF formulas where no set of d
clauses contain literals from d variables in their common intersection. In graph-theoretic
terms, the incidence graphs of K, 4-free formulas exclude the complete bipartite graph Kg 4
as a subgraph. Ky 4-free graphs are very wide class of sparse graphs and include many
well-studied graph classes such as bounded treewidth graphs, graphs that exclude a fixed minor,
graphs of bounded expansion, nowhere-dense graphs and graphs of bounded degeneracy. That
is, for any of the classes — bounded treewidth graphs, graphs that exclude a fixed minor,
graphs of bounded expansion, nowhere-dense graphs and graphs of bounded degeneracy,
there is a p such that the class is contained in the class of K, ,-free graphs (see Figure 1 for
an illustration of the inclusion relation between these classes).

1.1  Our results

In order to present our results in the most general terms possible, we consider weak backdoor
sets not just to bounded treewidth formulas, but what we call F-minor-free formulas. Let
F be a finite set of graphs. For a CNF formula ¢, a set S of variables is called a weak
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Figure 1 Inclusion relation between the class of biclique-free graphs considered in this paper
and well-studied graph classes in the literature (figure based on [40]). If there in arrow of the form
A — B, then class A is a subclass of B.

—/

F-minor-free backdoor set of ¢ if it is a weak backdoor set of ¢ into the class of CNF formulas
whose incidence graphs exclude every graph in F as a minor. Notice that a weak backdoor
set of a formula into treewidth-¢ formulas is also a weak F-minor-free backdoor set for some
F — take F to be precisely the set of forbidden minors for graphs of treewidth at most .
Note that the size of F depends only on t. The reason for studying the problem in this
more general setting is that it allows us to also obtain an additional result from the proof
techniques used for our main result. Moreover, due to the extensive work in parameterized
complexity on connections between vertex-deletion problems to bounded treewidth graphs
and vertex-deletion problems to minor-free graphs, there is a rich collection of powerful
algorithmic techniques that we are able to draw from (see, for example, [14, 19, 13]).

We now state our central result formally and discuss our corollaries and further context.

» Theorem 1. For every d € N, there is a computable function fq and an algorithm Ay that
satisfies the following:
1. Ay takes as input a Kqq4-free formula ¢, a family F of graphs containing at least one

planar graph, and an integer k.

2. Ag runs in time fq(F, k) - |¢|O@.
3. Ay either outputs a weak F-minor-free-backdoor set of ¢ of size at most k, or concludes

correctly that ¢ has no weak F-minor-free-backdoor set of size at most k.

Let us first make a few remarks regarding the time-complexity of the algorithm described
in the above statement. First of all, in the running time of the above algorithm, the exponent
in the term |¢|9(9) is independent of k and F. Secondly, as our main goal is to obtain a
fixed-parameter tractability classification result, and as we have proved our result in such
general terms, we have not attempted to optimize the function f;. Indeed, due to the
standard step of invoking Courcelle’s theorem as a subroutine when the input treewidth
is already bounded (see, for example, [23, 26]) one should not expect this algorithm to be
practical as presented. However, our result is an important proof of concept demonstrating
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fixed-parameter tractability for such a general class of inputs. We believe that optimizing
the function fy is a more meaningful research question for specific subclasses of Kg 4-free
formulas, e.g., formulas with incidence graphs that exclude a fixed graph as a minor.

We now describe the main consequences of our result. As discussed, it is well-known that
satisfiability of a ¢-tw formula (i.e., a CNF formula whose incidence graph has treewidth at
most t) can be tested in linear time for every fixed ¢ and moreover, a satisfying assignment
can be computed in the same time. Therefore, we can combine Theorem 1 with the fact
that graphs of treewidth at most ¢ have a finite and computable set of forbidden minors that
include the (¢ + 1) x (¢ 4+ 1)-grid, which is a planar graph. This leads us to the first FPT
algorithm for SAT on K 4-free formulas (for fixed d) parameterized by ¢ + whb;(¢). Here,
wb,(¢) denotes the size of a smallest weak t-tw-backdoor set of ¢. The formal statement
follows.

» Theorem 2. For every d € N, there is a computable function fq and an algorithm that,
given t € N, a Ky 4-free formula ¢ and an integer k, runs in time fq(t, k)69 and either
finds a satisfying assignment of ¢, or concludes correctly that ¢ has no weak t-tw-backdoor
set of size at most k.

An immediate corollary of the above theorem is that d-SAT is FPT parameterized by
t + wb¢(¢) for every fixed d. To obtain this, notice that a d-CNF formula is K441 441-free.

A further consequence of the techniques used to prove Theorem 1 is in the case of weak
backdoor sets to nested formulas. These form a subclass of K3 3-free formulas and are
known to have treewidth at most 3 (see preliminaries for the formal definition of nested
formulas). However, this is not a precise characterization of these formulas, so we need a
minor modification in the proof of Theorem 1 to obtain the following result.

» Theorem 3. For every d € N, there is a computable function fq and an algorithm that,
given t €N, a K4 4-free formula ¢ and an integer k, runs in time f4(t,k)|¢|°D and either
finds a satisfying assignment of ¢, or concludes correctly that ¢ has no weak backdoor set of
size at most k to the class of nested formulas.

Hardness results for strong and weak backdoor detection

To complement our algorithmic results, we also show new hardness results that strengthen
existing results. Towards this, we present a polynomial-time algorithm that, given a SET
COVER instance I = (U, S), numbers d,d’ > 2 and a non-negative number k, outputs a CNF
formula ¢ such that if I has a set cover of size k, then ¢ has a strong/weak backdoor set of
size k to the class of empty formulas, which are formulas with no clauses. Conversely, if ¢
has a strong/weak backdoor set of size k to any subclass of Iy 4/-free formulas, then I has a
set cover of size k. This algorithm is effectively a reduction that implies that for any class C
that is a superclass of empty formulas and a subclass of Ky 4-free formulas for some d € N,
the problem of detecting a strong/weak backdoor to C of size at most k is at least as hard as
solving SET COVER parameterized by the solution size (i.e., it is W[2]-hard).

In particular, notice that for every ¢ > 0, there exists a d > 2 such that t-tw-CNF is a
subclass of K 4-free formulas. Moreover, nested formulas are subclasses of K3 3-free formulas.
Hence, we obtain the following consequences.

» Theorem 4. For every t > 0, family F that contains a planar graph but does not contain
an independent set, and for each class C € {t-tw formulas, nested formulas, F-minor-
free formulas}, the problem of detecting a strong/weak backdoor set to C of size at most k is
W [2]-hard parameterized by k.
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Table 1 Our results for weak backdoor detection in relation to the state of the art. Each row
corresponds to a base class into which we are finding a backdoor set. Each column corresponds to a
possible class of inputs.

Input: d-CNF Input: Kg 4-free CNF Input: CNF

Acyclic FPT [23] FPT (Theorem 2) W{2]-hard [23]
Nested FPT FPT (Theorem 3) W[2]-hard (Theorem 4)
tw-t (for every t) FPT [13] FPT (Theorem 2) W[2]-hard (Theorem 4)
Planar-F minor-free FPT FPT (Theorem 1) W/2]-hard (Theorem 4)

This theorem strengthens the hardness result of Gaspsers and Szeider [23] and shows
that not only is it W[2]-hard to detect small weak backdoor sets (with no restriction on the
input) to Acyclic formulas, but also to treewidth-t formulas for every fixed ¢.

2 Preliminaries

CNF Formulas

We consider propositional formulas in conjunctive normal form (CNF). In our algorithms
to compute weak backdoor sets to bounded-treewidth formulas, we do not assume that the
clauses exclude a pair of complementary literals. However, when the goal is to solve SAT, it
can be assumed without loss of generality that the input formula does not contain a clause
with a pair of complementary literals. For a CNF formula ¢, we use var(¢) and cla(¢) to refer
to the sets of variables and clauses in ¢, respectively. We say that a variable z is positive
(negative) in a clause C if z € C (T € C), and we write var(C) for the set of variables that
are positive or negative in C, while we use lit(C') to denote the set of literals in C. For a set
C of clauses, we use var(C) to denote (Ji o var(C) and call this set the set of variables of
C. Given a CNF formula ¢ and a truth assignment 7, ¢[7] denotes the truth assignment
reduct of ¢ under 7, which is the CNF formula obtained from ¢ by first removing all clauses
that are satisfied by 7 and second removing from the remaining clauses all literals x, T with
x € var(7). The assigned variables are also removed.

Incidence graphs

The incidence graph of a CNF formula ¢, inc(¢), is the bipartite graph whose vertices are
the variables and clauses of ¢, and where vertices corresponding to a variable x and a clause
C' are adjacent if and only if « € var(C). Further, an edge between a vertex corresponding
to x € var(¢) and C € cla(¢) has the polarity (or label) + if x € lit(C) and T ¢ lit(C) and
is labeled — if T € lit(C) and z ¢ lit(C). If 2,Z € lit(C), then this edge is labeled b. For
an incidence graph G, we abuse notation and use var(G) to refer to the vertices of G that
correspond to variables in ¢(G), and cla(G) to refer to the vertices of G that correspond to
clauses in ¢ (G). Also, for a vertex subset Y C V(G), we continue to use the notations var(Y")
and cla(Y’) to refer to the sets var(G) NY and cla(G) NY, respectively. We say that a graph
is K g4 q-free if it does not contain Ky 4 as a subgraph. Notice that the Ky 4-free incidence
graphs correspond to CNF formulas where no set of d clauses contain literals from d distinct
variables in their common intersection.
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Nested formulas

A CNF formula ¢ is nested [28] precisely if the graph inc(univ(¢)) is planar, where univ(¢) is
obtained from ¢ by adding any universal clause ¢* containing a literal from each variable
of ¢. Moreover, inc(¢) has treewidth at most 3 if ¢ is nested. Hence, one can determine
satisfiability of nested formulas in polynomial time. Nested formulas are a subclass of planar
CNF formulas and so, are also a subclass of K3 3-free formulas.

Treewidth

Let G be a graph. A tree decomposition of G is a pair (T, X = {X;}sev (1)) where T is
a tree and X is a collection of subsets of V(G) such that: (i) Ve = (u,v) € E(G), there
isteV(T) : {u,v} C Xy, and (ii) Vv € V(G), T[{t | v € X;}] is a non-empty connected
subtree of T'. We call the vertices of T nodes and the sets in X bags of the tree decomposition
(T, X). The width of (T, X) is equal to max{|X:|—1 |t € V(T')} and the trecwidth of G is the
minimum width over all tree decompositions of G. A nice tree decomposition is a pair (T, X)
where (T, X) is a tree decomposition such that 7" is a rooted tree and the following conditions
are satisfied: (i) Every node of the tree T' has at most two children; (ii) if a node ¢ has two
children ¢, and ta, then X; = X;, = X,; and (iii) if a node ¢ has one child ¢, then either
| X:| = | X¢,| + 1 and X;, C Xy (in this case we call ¢1 an introduce node) or | X;| = | X, | — 1
and X; C X, (in this case we call ¢ a forget node). It is possible to transform a given tree
decomposition (T, X') into a nice tree decomposition (77, X’) in time O(|V| + |E|) [3]. A set
X CV(Q) is a treewidth-t modulator for a graph G if the treewidth of G — X is at most t.

Boundaried graphs

A t-boundaried graph is a triple (G, B, {¢) where G is a graph, B C V(G) of size ¢ with each
vertex v € B having a unique label {5 (v) € {1,...,t}. We refer to B as the boundary of G.
We often refer to a ¢t-boundaried graph simply as G with the function 9(G) returning the
boundary of G and the function /¢ denoting the labeling function on the boundary. In other

cases, it will be useful to mention the boundary explicitly, in which case we will use (G, B).

When the size of the boundary is irrelevant to the discussion, we simply use “boundaried
graph” instead of “t-boundaried graph”.

Let G = (X,C,E) be a boundaried incidence graph with boundary 9(G) =
{b1,...,bja(c)}, where 9(G) C (X UC) and b; = £5"(i). We use J(G) to denote the
|0(G)|-length binary word given as: ¥(G)[i] = 0 if b; € X and J(G)[i] = 1 otherwise.

» Definition 5 (Boundary types and mergeability). We say that two boundaried incidence graphs
Gy = (X1,C1, E1) and Gy = (X3, C4, E) have the same boundary type if 9(G1) = ¥(G2).
If G1 and G4 have the same boundary type, then we say that G1 and Go are mergeable if for
every ui, v1 € 0(G1) and ug, vo € O(G2) such that ba, (u1) = La, (u2) and b, (v1) = £a, (v2),
at most one out of (u1,v1) and (ug,vs) is an edge in Gy and Go respectively.

Gluing operation and compatibility of boundaried graphs

A pair of boundaried incidence graphs G; and G5 that are mergeable can be “glued” together
along their boundaries to obtain a new incidence graph, which we denote by G; & G3. The
gluing operation takes the disjoint union of G; and G5 and identifies the vertices of 9(G1)
and 9(G2) with the same label. If there are vertices uq, v1 € 9(G1) and ug, vo € I(G2) such
that £q, (u1) = g, (u2) and £g, (v1) = £g,(v2) then G has vertices u formed by unifying uy
and us and v formed by unifying v; and vs. That is, u; and us are merged to form the
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supernode v and v; and vy are merged to form the supernode v. The new vertices u and v
are adjacent if (u1,v1) € E(G1) or (ug,v2) € E(G2). The polarities of the edges in G; and
G- are inherited in G; @ G in the natural way.

» Definition 6 (d-compatibility of boundaried graphs). Let Gy and G2 be two t-boundaried
K q-free incidence graphs. We say that G1 and G2 are d-compatible if they are mergeable
and further, G1 @ G is also a K4 4-free graph.

Minors and nowhere-dense graph classes

Given an edge e = (z,y) of a graph G, the graph G/e is obtained from G by contracting the
edge e, that is, the endpoints x and y are replaced by a new vertex vy, which is adjacent to
the original neighbors of z and y (except x and y). A graph H obtained by a sequence of
edge-contractions is said to be a contraction of G. We denote it by H <. G. A graph H is
a minor of a graph G if H is the contraction of some subgraph of G and we denote it by
H <,, G. We say that a graph G is H-minor-free when it does not contain H as a minor.
We also say that a graph class G is H-minor-free (or, excludes H as a minor) when all its
members are H-minor-free. It is well-known [36] that if H <,, G then tw(H) < tw(G).

The notion of shallow minors is required to define nowhere-dense graph classes. The
radius of a connected graph G is the minimum over all vertices v of G of the maximum
distance between v and another vertex. For non-negative integer r, a graph H is a shallow
minor at depth r of a graph G if there exists a subgraph X of G whose connected components
have radius at most 7, such that H is a simple graph obtained from G by contracting each
component of X into a single vertex and then taking a subgraph.

We now recall the notion of nowhere-dense graph classes. Although the only property
of a nowhere-dense graph class we require is that they are biclique-free, we give the formal
definition here for the sake of completeness.

» Definition 7. A class C of graphs is nowhere dense if there is a function f: N — N such
that for every r > 0, Ky () is not a shallow minor at depth r of the graph G, for every G € C.

» Proposition 8. (see Fact 1, [40]) Let C be a nowhere-dense class of graphs and let f be
the corresponding function as described in the above definition. Then, there is a number t
depending only on f such that for any G € C, G does not contain K;: as a subgraph.

Unbreakability

Roughly speaking, a graph is unbreakable if it is not possible to “break” it into two large
parts by removing only a small number of vertices. We now give the formal definition. A pair
(X,Y) where X UY = V(G) is a separation if there is no edge with one endpoint in X \' YV
and the other in Y\ X. The order of (X,Y) is | X NY|. If there exists a separation (X,Y) of
order at most ¢ such that | X \ Y| > s and |V \ X| > s, called an (s, ¢)-witnessing separation,
then G is (s, ¢)-breakable. Otherwise, G is (s, c)-unbreakable. The following lemma states
that it is possible to determine (approximately) whether a graph is unbreakable or not using
a fixed-parameter algorithm, and lemmas similar to it can be found in [5, 30].

» Proposition 9 ([30]). There exists an algorithm that, given s,c € N and a graph G, runs

in time 200¢(51¢) . n3logn and either returns an (2

3¢5 c)-witnessing separation or correctly

concludes that G is (s, c)-unbreakable.

» Observation 10. Let t,6,7* € N, where t < 27*. Let (G, Z) be a t-boundaried graph and
let (X,Y) be a (8, 7%)-witnessing separation. Then, one of the pairs (G[X], (X NY)U(ZNX))
or (GIY],( X NY)U(ZNY)) is a t'-boundaried graph, where t' < 27*.
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By repeatedly invoking the above observation, one can “zoom in” to a separation of small
order in the graph such that one of the sides is large and induces an unbreakable subgraph.

» Lemma 11. Let 6,0*,7* € N be such that * =27 - 5. Let (X,Y) be a separation of order
at most 27 in a graph G such that | X| > §. There is an algorithm that, given G, X,Y, runs
in time 200770 . nOW) and returns a separation ()?,17) of order at most 2t* in G such that
|X| > 6 and G[X] is (6%, 7*)-unbreakable.

» Remark 12. Roughly speaking, the notions of boundaried incidence graphs, mergeability,
and d-compatibility allows us to split our original input (formula’s) incidence graph along a
small balanced separator (of size at most some t) and treat the two sides of the separator
as t-boundaried d-compatible graphs and focus our attention on one of these two graphs in
order to make further progress. The notion of unbreakability plus Lemma 11 gives us a kind
of “base case” where we are able to stop splitting our instance along such small separators
and use the additional structure imposed by unbreakability to make progress.

3 Algorithm for Weak Planar-F-minor-free-Backdoor Detection

In this section, we discuss the proof of Theorem 1. We begin with the following definitions
and assumptions.
Recall that d is fixed, i.e., it is a constant for us.
We assume that k > d. Otherwise, we could simply guess (and verify) a weak-backdoor
set of size at most & in time |$|©(4). Here, k is the integer taken as input by the algorithm
A described in Theorem 1.
We assume that F is a family of graphs containing at least one planar graph and use n
to denote a computable upper bound on the treewidth of F-minor-free graphs.
Define 7(k,d) = k%, 7/(n, k,d) = 7(k,d) + 21 + 2.
We pick d(n, k,d) to be a large enough function of 7/(n, k, d) to be decided later.
Set &' (n, k,d) = 27 kD . 5(n k. d).
Let A(n, k,d) = 8 (n, k,d) + 27/ (n, k, d).
For ease of readability, we omit the arguments of these functions when they are clear
from the context, e.g., we replace A(n, k,d) with A.

3.1 Overview of our algorithm

We first briefly describe the ideas used by Fomin et al. [13] in their randomized FPT algorithm
to detect weak n-tw-backdoor sets when the input formula is d-CNF. We then outline the
similarities and main differences with our algorithm.

Algorithm of Fomin et al [13]

Let G be the input incidence graph. Say that a set X C V(G) is an n-modulator if
tw(G — X) < n. Fomin et al. observed that if X is a set of variables that form a weak

n-tw-backdoor, then the set N(X) of their neighbors in the incidence graph is an n-modulator.

Note that |N(X)| could be arbitrarily large compared to | X|. They then give a preprocessing
procedure that ensures that for every n-tw-backdoor set X, the set N(X) is incident to a
large fraction of the edges in G. Therefore, if one picks an edge uniformly at random, then
the clause endpoint of the edge belongs to N(X) with constant probability. Further, since
the clauses are of constant size d, we have that a randomly chosen variable from the clause
belongs to X with a constant probability, some f(d,n). The algorithm then simply branches
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on the chosen variable x in the usual way — in one branch, the formula is simplified by setting
z to 1 and recurse, and in the other branch, x is set to 0 and the residual instance is recursed
upon.

The main obstacle in our setting is that simply obtaining a clause in N (X) is not good
enough since clauses can be arbitrarily large. This motivates us to look for a “domination
core” within the incidence graph. That is, if we find sufficiently many clause vertices in
N(X), then it is possible to identify a small subset of variables that intersect X. However,
being able to locate the required number of clause vertices in N(X) is far from obvious even
though we have access to the preprocessing rule of Fomin et al. For instance, each time we
locate a vertex in N(X) and remove it, the preprocessing rule could kick in again and even
remove vertices of X. A similar issue arises in the recent work of Choudhary et al. [6] for
FEEDBACK VERTEX SET on linear hypergraphs (whose incidence graphs are K o-free). As
a result, they needed to design problem specific preprocessing rules that heavily utilize the
fact that they are dealing with deletion to graphs of treewidth 1. Moreover, their approach
only works when the input incidence graph is K3 »-free and extending it to our far more
general setting appears to be a challenging task.

Our approach

To overcome the obstacle described above, we take a different route and use the notion of
unbreakability [5] to argue that if we “zoom into” a subgraph that is large enough, has high
treewidth, is separated from the rest of the graph by a small boundary and is unbreakable,
then it is possible to identify sufficiently many vertices from N(X) and a domination core
can be extracted from this [34, 11, 12]. This is the main technical contribution of the paper
and we believe that this approach can find further applications.

Our algorithm relies on Lemma 11 and Lemmas 13-16. Out of these, the next three
lemmas correspond to the three main cases that we will encounter in our algorithm. In the
following three lemmas, let G* denote the input incidence graph, let G and H be K q4-free
t-boundaried d-compatible incidence graphs (¢t < 27') with the same boundary type such
that G* = G @ H. Moreover, suppose that |0(G)| < 27" and G is (¢’, 7')-unbreakable. Recall
that 9(G) and O(H) denote the boundaries of G and H respectively. Moreover, we use n to
denote the number of vertices in the incidence graph under consideration.

The first lemma states that if G has sufficiently high tree-width, then it is possible to
compute a small family of clause-sets, each containing few clauses, such that if G* contains
a small variable set S* such that deleting its neighborhood reduces the treewidth of G
significantly, then in at least one of these clause-sets, every clause contains a variable of S*.
In graph-theoretic terms, it shows that one can compute a small family of small clause-vertex
sets, such that in at least one of these small clause-vertex sets, every vertex is adjacent to S*.

» Lemma 13 (Case 1: High treewidth piece). Suppose tw(G) > A. Let S* C var(G*) be such
that |S*| < k and tw(G* — Ng+[S*]) < n. There is an algorithm that, given G*, G and H as
input, runs in time (8")°@InOW " and outputs a family 2 of subsets of cla(G*) of size T
each, with the following properties.

1. |2| = (8)°U™) | and

2. there exists Q € 2 such that each clause in Q contains a variable from S*.

The following lemma is used to handle a situation similar to that above, with the only
difference being that the treewidth of G is not too high. On the other hand, it is also high
enough to ensure that any weak F-minor-free-backdoor set of G* intersects G in at least one
vertex. The proof of this lemma uses Arnborg et al’s extension [1] of Courcelle’s Theorem and
the fact that the existence of a small weak F-minor-free-backdoor set is CMSO-expressible
(see, for example, [23]). We refer the reader to [7, 1, 8] for a detailed introduction to CMSO.

/)n



D. Lokshtanov, F. Panolan, and M. S. Ramanujan

» Lemma 14 (Case 2: Moderately-high treewidth piece). Suppose that n < tw(G — 9(G)) < A.

We can compute a set S C var(G) in time g(n, k,d) - n®1) for some computable function g,

such that the following hold.

1. S has size at most g(n, k,d), and

2. S has a non-empty intersection with a weak F-minor-free-backdoor set of size at most k
for G® H (if one exists).

The next lemma shows that if G has low-treewidth but has a large number of vertices,
then one can obtain a strictly smaller, equivalent instance by closely following the graph-
replacement arguments used by Fomin et al. [13], which in turn was inspired by ideas used
in [19] for kernelization.

» Lemma 15 (Case 3: Low treewidth piece). Suppose that |V(G)| > § and tw(G — 9(G)) < 7.

Then, there is a K4 q-free incidence graph G’ such that the following hold.

1 [V(&)| < [V(GH).

2. For every v < k, ¥(G*) has a weak F-minor-free-backdoor set S of size at most v if and
only if Y(G") has a weak F-minor-free-backdoor set S' of size at most .

3. Given G*,G and H, one can obtain G’ in time G(F,k,d) - n®Y) for some computable
function g.

Having stated the three central lemmas that we will be using, we next demonstrate
an immediate application of Lemma 13, following which we give the proof of Theorem 1
assuming the correctness of the three central lemmas.

Recall that Lemma 13 provides us a family of subsets of cla(G*) such that there is one
subset where each clause contains a variable from S. In the following lemma we explain
how to get a variable in S from such a family. The proof the lemma uses the concept of
domination core, which is used in the study of parameterized complexity of dominating set
on Ky 4-free graphs [34, 11, 12]. Recall that k > d.

» Lemma 16 (Domination core). There is an algorithm that, given a set Zg C cla(¢) of T
clauses of a Kgqq-free formula ¢, each of whose variable set intersects some fized variable
set S Cvar(¢) of size at most k, runs in polynomial time and outputs a set Zy of at most d
variables that intersects S.

Proof. Let Zg = Zc. We define vy, ...,v, € var(¢) and Cy,...,C. C Z¢ as follows. For
every i € [r], we select v; to be the lexicographically first variable disjoint from the previously
selected variables, that occurs most frequently among the clauses in the set Zé?l. We
set Z& 1= Nine(ey(vi) N Z5'. We now observe that for every i € [d], either S intersects
{v1,...,v;} or |Z&| > | Z& 1| /k. This is because S has size at most k and every clause in Z¢
contains a variable of S. In particular, we have that either S intersects Zy = {v1,...,v4} or
it must be the case that |Z4| > k (since |Z%| > k9*1), implying the existence of a K44 in
inc(¢), which is a contradiction. This completes the proof of the lemma. <

We are now ready to complete the proof of Theorem 1 assuming Lemmas 11-16. We
restate it here for the reader’s convenience.

» Theorem 1. For every d € N, there is a computable function fq and an algorithm Ay that

satisfies the following:

1. Ay takes as input a Kq q4-free formula ¢, a family F of graphs containing at least one
planar graph, and an integer k.

2. Aqg runs in time fq(F, k) - |¢|C@.

3. Ay either outputs a weak F-minor-free-backdoor set of ¢ of size at most k, or concludes
correctly that ¢ has no weak F-minor-free-backdoor set of size at most k.
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Proof. We focus on solving the decision version of the problem. This is because, if the input
is a yes-instance, then a weak F-minor-free backdoor set of size at most k& can be computed
using self-reducibility. Let I = (¢, F, k) denote the input instance and let G be the incidence
graph of ¢. Suppose that G has treewidth at most A. Then, one can use Courcelle’s theorem
to solve the problem (see, for example, [23, 26]). Hence, we may assume that G has treewidth
> A. In particular, |V(G)| > A. Now, using Proposition 9, we either conclude that G is
(&', 7")-unbreakable or we compute a (4, 7')-witnessing separation.

In the first case, we define 9(G) = () and H to be an edgeless graph with (H) = (). We
then invoke Lemma 13 to compute a set 2 of size 6’047 comprising sets of 7 clauses each
such that for some Q € 2, each clause in Q contains a variable in some fixed weak backdoor
set S* (if one exists). Recall that inc(@) — Ninc(4)[S*] has treewidth at most 7, satisfying
the premise of Lemma 13. We then invoke Lemma 16 on every Q € 2 to compute a set
Zy of at most d - 3°™) variables that intersects S*. For every z € Zy and o € {0,1}, we
recursively solve the problem on the instance I, o = (¢[z = o],k —1). We conclude that I is
a yes-instance if and only if there is an « € Zy and « € {0, 1} such that I, , is a yes-instance.

Now, consider the second case, i.e., the case where we compute a (§,7')-witnessing
separation (X,Y’) for G. Notice that this separation satisfies the premises of Lemma 11 (by
taking the same §, taking 6* be ¢’ and 7* to be /). Hence, we execute the algorithm of
this lemma to compute a separation (X, Y) of order at most 27’ in G such that |X| > 6 and
G[N] (¢, 7')-unbreakable. Let G = G[X] and let H = G[Y]. At this point, we have that
V(@) >4, |0(G)| < 27’ and G is (&', 7')-unbreakable.

Consider the following three cases depending on whether the “piece” G- 8(@) has high
treewidth or moderately-high treewidth or low treewidth. In each case, we will either strictly
reduce the size of the instance or compute a bounded set of variables upon which to branch.

Case 1: tw(G — 8(G)) > A. We invoke Lemma 13 with G := G and H := H to compute
2 and then Lemma 16 on the sets in 2 as described above. This gives us a set Zy of at
most d - §C@™) variables that intersects a weak F-minor-free-backdoor set S* of ¢ of
size at most k. Now, for every « € Zy and « € {0,1}, we recursively solve the problem
on the instance I; o = (¢[z = o, F,k —1). We conclude that I is a yes-instance if and
only if there is an & € Zy and a € {0, 1} such that I, , is a yes-instance.

Case 2: n < tw(G — 8(G)) < A. We invoke Lemma 14 with G := G and H := H to
compute a set S C var(G) of size at most g(n, k, d) that has a non-empty intersection with
a weak F-minor-free-backdoor set of G of size at most k (if one exists). For every z € S
and a € {0, 1}, we recursively solve the problem on the instance I, o = (¢[x = ], F, k—1).
We conclude that I is a yes-instance if and only if there is an z € S and « € {0, 1} such
that I, o is a yes-instance.

Case 3: tw(G — 8(G)) < n. We invoke Lemma 15 with G := G and H := H to compute
an equivalent instance (¢', F, k) such that |¢'| < |¢| and recurse on (¢, F, k).

This completes the description of our algorithm. Each step of the algorithm has running
time x(n,d, k) for some computable function x and at the end of each, we either make
2d - ') recursive calls with a strictly smaller budget k or strictly reduce the size of the
instance. Hence, the running time follows. The correctness is derived from that of the three
main lemmas (Lemmas 13, 14, 15) and the domination core lemma (Lemma 16). <

It remains to prove the three main lemmas. Lemma 13 captures the new technical insight
at the heart of this work, and so we focus on that lemma in this extended abstract. We also
give a proof sketch of Lemma 14 and as the proof of Lemma 15 closely mirrors the algorithm
of Fomin et al. [13], we omit the details of this lemma in this extended abstract.
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3.2 Handling unbreakable boundaried instances
Protrusions

For a graph G and S C V(G), we define d¢(.5) as the set of vertices in S that have a neighbor
in V(G)\ S. For aset S C V(G) the neighborhood of S is Ng(S) = 0g(V(G)\ S). When it is
clear from the context, we omit the subscripts. An r-protrusion in a graph G isaset X CV
such that |0(X)| < r and tw(G[X]) < r. The size of a protrusion is the number of vertices in
it. An a-cover in G is a set S such that 0 o d(v)) > a3, v (g d(v) = 2a|E(G)|. Here,
d(v) denotes the degree of the vertex v.

We begin with the following lemma that states that if a graph does not have large
r-protrusions and there is a set Z of vertices whose deletion results in a graph of constant
treewidth, then a constant fraction of the edge-set is incident on Z.

» Lemma 17. Let r =2n+2, and o = m. Let J be a graph and Z C V(J) such that

tw(J — Z) <n. If J has no r-protrusion of size at least r', then Z is an % -cover of J.

ey

Lemma 17 can be inferred directly from the proof of Lemma 3 in [14], although it does
not state concrete values for the various parameters involved in the statement. The following
lemma provides a procedure to extract, from a given Ky 4-free incidence graph with no large
protrusions, a small set of clauses such that at least one of the clauses in this set contains a
backdoor variable.

» Lemma 18 (Protrusion-free instances). Let J be a Kg4-free incidence graph and let
k., € N. Let S C var(J) be a non-empty inclusion-wise minimal set such that |S| < k and
tw(J — N[S]) <n. Moreover, suppose that J has no (2n + 2)-protrusion of size at least r'.
There is an algorithm that, given J, runs in polynomial time, and outputs a subset D of
cla(J) such that |D| = (k-n-7")°D  and there exists a clause C € D that contains a variable
from S.

Proof. Since J is an incidence graph, S is a variable set, and tw(J — N[S]) < 7, it follows
that tw(J — N(S)) < n. Invoking Lemma 17 with Z = N(S), we infer that N(S) is an

o _cover of J, where o = Let a = &5, g = 55, and h = Hltol(a —ig). Let

1

T’ 18(n+1)2"
X =var(J) and C = cla(J). ﬁg]gl\)zve define a weight function w on C as follows. For every
Cel wlC) = %, where m is the number of edges in J and d(C') denotes the degree of
the vertex C' in J. Extending the weight function to sets in the natural way, we conclude
that w(C) = > ncc w(C) = 1 by definition. It will be useful to keep in mind that picking
an edge of J uniformly at random and picking the clause-vertex that appears as one of the
endpoints of this edge corresponds to picking a vertex C' € C with probability w(C).

Next, we identify sufficiently small sets Y C X and D’ C C and prove that either SNY # ()
or Nj(S)ND' # (. The sets D’ and Y are defined as follows: D’ is the set of vertices in C
whose weight is greater than g and Y is the set of vertices in X such that it has no neighbor
in D’, and the sum of weights on its neighbors is at least a.. Formally,

D'={ycClw(y) > g}
Y ={zeX\ND)|wN())>a}

Notice that for every x € Y, |[N(z) \ D’| > 2d. This is because w(N(z)) > o = 2gd and
every clause in C \ D’ has weight at most g.

> Claim 19. Either N(S)ND' # 0 or SNY # 0.

We next claim that the sets D’ and Y are sufficiently small for our purposes.
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> Claim 20. |D'| < 36(n+1)%d -k -7" and if N(S)ND’ = (), then |Y| < d- (36k-r'(n+1)%).

Given the above two claims, the algorithm is straightforward. We first construct D’ and
Y. If |[Y| < d-(36k-7'(n+ 1)%)¢, then we output a set D which is the union of D’ and a
set of clauses comprising one arbitrary neighbor of each vertex in Y. Otherwise, we simply
output D = D’. From Claim 20, it follows that the size of D is bounded by (k-7 - /)@,
Moreover, from both claims above, we conclude that some clause in D contains a variable
in S. Since computing D’ and Y can be done in polynomial time, this algorithm runs in
polynomial time as required. This completes the proof of the lemma. |

In the following, let G and H be K, 4-free t-boundaried d-compatible incidence graphs
(t < 27') with the same boundary type, |0(G)| < 27" and G is (¢, 7')-unbreakable. Recall
that O(G) and (H) denote the boundaries of G and H respectively. Throughout this section,
we denote by G*, the graph G & H.

» Lemma 13 (Case 1: High treewidth piece). Suppose tw(G) > A. Let S* C var(G*) be such
that |S*| < k and tw(G* — Ng+[S*]) <n. There is an algorithm that, given G*, G and H as
input, Truns in time (6’)0(‘”/)710(1), and outputs a family 2 of subsets of cla(G*) of size T
each, with the following properties.

1. |2| = (8)°U™) | and

2. there exists Q € 2 such that each clause in Q contains a variable from S*.

Proof. First we prove the following claim that will allow us to invoke Lemma 18 on certain
subraphs of G.

> Claim 21.  For every set R C V(G) of size at most 7, G — R does not contain a
(21 + 2)-protrusion of size at least §’ + 2n + 2

Proof. For the sake of contradiction, suppose there exists R C V(@) of size at most 7 and
A C V(G — R) such that G[4] is a (2n + 2)-protrusion of size at least ¢’ + 2n + 2. That is,
10c_r(A)] < 2n+2and |A| > §'+2n+2. Set X = AURand Y = RU(V(G)\(A\da_r(A)))
and observe that (X,Y") is a separation in G of order at most |R|+|0¢c_r(A)| < 74+2n+2 = 7/,
and | X\Y| = |A\0g-r(A)| > §’. We now claim that |Y\X| = |V(G)\(AUR)| > ¢’. Suppose
to the contrary that |V(G)\ (AUR)| < ¢’. Then, tw(G) < tw(G[A])+|V(G)\ (AUR)|+|R| <
2n+2+ 6 + 7 < A, which is a contradiction to the premise of the lemma. <

We next define a recursive procedure FindClauses. The input to FindClauses is GG, a set
R C cla(G) and an integer g € {1,...,7} such that |R| 4+ ¢ = 7. The output is a family 2’ of
subsets of cla(G) \ R of size q each, such that |2'| < (k-5 -8 )¢%4, for some constant ¢ > 0.
The following are the steps of the procedure FindClauses(G, R, q).

1: First we apply Lemma 18 where J = G — R and ' = ¢’ + 2n + 2 (the above claim
guarantees that the premise of this lemma is satisfied by this choice of J and r’). Let D
be the output of the algorithm of Lemma 18.

2: If ¢ = 1, then we output {{C} | C € D} and stop.

3: If ¢ > 1, then for each C' € D, we recursively call the procedure FindClauses with input
G, RU{C} and g — 1 to obtain a set 2¢. Let 2, = {QU{C} | Q € Z2¢}. We return
2' = Uecep Z¢ and stop.

Let ¢ be a constant such that the output of Lemma 18 (i.e., D) has cardinality bounded
by (k-n-r")¢? It can be proved that | 2’| < (k-7 -6 )¢%9 by induction on q.
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As the number of nodes in the recurrence tree is bounded by |-2’| and the algorithm
in Lemma 18 runs in polynomial time, the running time of the procedure FindClauses is
bounded by |2’ - n®M),

Before moving to the description of the main algorithm of this lemma, we develop some
additional notation. For every Z C 9(G), let Z' = cla(Z)U{c € cla(G) | Fv € c¢: v € var(Z)}
and let Z” be the subset of Z’ comprising the (lexicographically) first min{r, |Z’|} elements.
In other words, if Z’ has at least 7 elements, then we truncate it to size 7 and obtain Z”
and otherwise, Z" = 7.

We are now ready to describe our main algorithm. We begin by setting 2 := (). We then
compute Z" for every Z C 9(G) and for every Z” such that |Z"| = 7, we set £ = 2U{Z"}.
For every Z" such that |Z”| < 7, we set 2, < FindClauses(G, Z",7 — |Z"]) and we set
2=2uU{{QtuZ"|Q e 2,,}. When we have completed iterating over all Z C 9(G) and
updating 2, we return it.

The correctness of the algorithm results from the following claim.

> Claim 22. There exists Q € 2 such that each clause in Q contains a variable from S™.

It remains to argue the size bound on the output family and the running time of the
algorithm. Since ¢ < 7 in every call to FindClauses and we have at most 2/9(G)| < 27" such
calls it follows that the cardinality of the output family is bounded by (k-7 - §)¢47 . 227
which is upper bounded by ()7
the running time of FindClauses, the running time of this algorithm is (§/)°@™)R0M <

0. By the same reasoning and from the upper bound on

3.3 Handling boundaried instances with moderately high treewidth

» Definition 23 (Label-wise isomorphism). Let Gy and G be two graphs, and let t be a fized
positive integer. For i € {1,2}, let fa, be a function that associates with every vertex of
V(G;) some subset of [t]. The image of a vertex v € G; under fg, is called the label of that
verter. We say that that G is label-wise isomorphic to Ga, and denote it by G1 = G, if
there is a map h : V(G1) — V(G2) such that (a) h is one to one and onto; (b) (u,v) € E(G)
if and only if (h(u), h(v)) € E(G2) and (¢) fa,(v) = fa,(h(v)). We call h a label-preserving
isomorphism.

Notice that the first two conditions of Definition 23 simply indicate that G; and G5 are
isomorphic. Now, let G be a t-boundaried graph with ¢ distinguished vertices, uniquely
labeled from 1 to t. Given such a t-boundaried graph G, we define a canonical labeling
function pg : V(G) — 2[4, The function pug maps every distinguished vertex v with label
¢ € [t] to the set {¢}, that is ug(v) = {¢}, and for all vertices v € V(G) \ 9(G) we have that
ua(v) = 0.

Next we define a notion of labeled edge contraction. Let H be a graph together with a
function fg : V(H) — 2 and (u,v) € E(H). Furthermore, let H' be the graph obtained
from H by identifying the vertices u and v into wy,, removing all the parallel edges and
removing all the loops. Then by labeled edge contraction of an edge (u,v) of a graph H, we
mean obtaining a graph H’ with the label function fz : V(H') — 2. For x € V(H')NV (H)
we have that fr/(z) = fu(z) and for wy, we define fr/ (wy,) = fu(u) U fr(v). Now we
introduce a notion of labeled minors of a t-boundaried graph. Let H be a graph together
with a function f : V(H) — 21 and G be a t-boundaried graph with canonical labeling
function pug. A graph H is called a labeled minor of G, if we can obtain a labeled isomorphic
copy of H from G by performing edge deletion and labeled edge contraction. The h-folio of
a t-boundaried graph G is the set My (G) of all t-labeled minors of G on at most h vertices.
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» Lemma 14 (Case 2: Moderately-high treewidth piece). Suppose that n < tw(G — 9(G)) < A.

We can compute a set S C var(G) in time g(n, k,d) - n®1) for some computable function g,

such that the following hold.

1. S has size at most g(n, k,d), and

2. S has a non-empty intersection with a weak F-minor-free-backdoor set of size at most k
for G® H (if one exists).

Proof. Fix a weak F-minor-free-backdoor set S* in G*. Since G — 9(G) has treewidth at
least 1 + 1, it must be the case that S* intersects V(G). We ensure that the variables in
O(G) are added to the returned set S and so, we may assume henceforth that S* is disjoint
from J(G).

Let ST = S*NV(G). Let 7% : §* — {0, 1} be a partial assignment such that the incidence
graph of ¢[7*] is F-minor free and let 7 : var(¢) — {0, 1} be a satisfying assignment for ¢
that extends 7*. Let 77 denote the restriction of 7* to S}. Let Z;; C 9(G) denote those
clauses in 9(G) that are satisfied by 7* and hence do not appear in ¢[7*]. Let Zsutert C O(G)
denote those clauses on the boundary that survive in ¢[7*] and have at least one neighbor
disjoint from V(G) that satisfies it according to 7. Consider the #-boundaried graph G
obtained from G by restricting the vertex set to those vertices that survive in inc(¢[7*]).
Notice that the boundary of G’ is precisely 9(G) \ Zi. Finally, consider the h-folio My (GY)
where h is an upper bound on the largest graph in F. The labels of the graphs in M, (G})
correspond to the vertices in I(G) \ Zgi.

Now, let S5 C var(G) \ 9(G), 73 : S5 — {0,1} and 7 : var(G) — {0,1} such that the
following hold:

193] < 511,

7 extends 73, T coincides with 7 on var(9(G)) and 7 satisfies all clauses in cla(G) \

(Zsatext U Zrinn),

My (G}) = Mp(GY) where GY is the graph obtained from G by deleting Z;;; and then

restricting the vertex set to those vertices that survive after instantiating the vertices in

S5 with 73.

> Claim 24. S = (8*\ ST) U S3 is also a weak backdoor set of ¢ of size at most k to
F-minor-free formulas.

In order to compute the required set S, it is sufficient to iterate over all r € [k] (guessing
|ST|), assignments to the variables in 9(G) (guessing 7 on the variables in the boundary), all
possible (pairs) of disjoint subsets of cla(0(G)) (guessing Zsatert and Zy;y;) and all possible
t’-labeled minors on at most h vertices (guessing M, (G1)) and decide whether there exists a
set S5 that satisfies the properties listed above and if yes, compute one. Finally, we return
the union of all such sets. Notice that the number of such iterations is bounded by a function
of n, k,d and hence the returned set has size at most g(n, k, d) for some computable function
g. Moreover, a set of the required kind in each iteration can be computed using Courcelle’s
theorem (see [23, 26] for MSO sentences capturing weak backdoors and minor exclusion). <

4 Hardness results for Backdoor Detection

Recall that an empty formula is a CNF formula with no clauses. Such formulas are trivially
satisfiable.

» Lemma 25. Let d,d’ > 2 be two positive integers. There is a polynomial-time algorithm
that takes as input d,d’, an instance (U, S, k) of SET COVER and outputs a CNF formula ¢
with the following properties:



D. Lokshtanov, F. Panolan, and M. S. Ramanujan

1. If (U,S,k) is a yes-instance of SET COVER, then ¢ has a strong/weak backdoor set of

size at most k to the class of empty formulas.
2. If ¢ has strong/weak backdoor set of size at most k to any subclass of Kq q -free formulas,

then (U, S, k) is a yes-instance of SET COVER.

Proof. Let (U, S, k) be the given instance of SET COVER. Now, we construct a CNF formula
¢ as follows. For each element x € U, we have a set of d’(k + 1) variables {x; ; | i € [d'],j €
[k +1]}. For each S € S, we have a set of d variables {ys; | i € [d]}. Thus,

var(¢) ={w;; |z € Ujie[d],j € k+1]}U{ysi| S €S,icld}.

Next, we explain the construction of the set of clauses of ¢. For each element x € U, let
S; be the family of sets in S that contain z. For each x € U, we make d'(k + 1) 4+ 1 clauses
as follows.

Cx = {ys,iays,i | S € 83’,'77’ € [d]}7 and
for all i € [d/] and j € [k + 1]7 Taj(l,j) = C,U {xi’j,fi’j}.

This completes the construction of ¢. It is easy to verify that the construction can be done
in polynomial time.

Next we prove the correctness of the algorithm. Consider the first statement. Let P be a
solution for (U, S, k) of SET COVER. We claim that Z = {ys1 | S € P} is a strong backdoor
set as well as a weak backdoor set of ¢ of size at most k to the class of empty formulas.
Since P is a set cover, we have that for any = € U, C, contains a variable from Z, which
appears both positively and negatively in C,. Thus, for any assignment for the variables in
Z, C, is satisfied for all z € U. This also implies that for any = € U,i € [d'], and j € [k + 1],
T.(i,7) is satisfied because C, C T,(7,7). In other words, every clause is satisfied by every
assignment to Z. This shows that Z is a strong backdoor set of ¢ of size at most k to the
class of empty formulas. Since each such sub-formula is trivially satisfiable, we also conclude

that every assignment to the variables in Z can be extended to a satisfying assignment of ¢.

This implies that Z is also a weak backdoor set of ¢ of size at most k to the class of empty
formulas.

We now prove the second statement. Let Z be a strong or weak C-backdoor set of size at
most k for the CNF formula ¢, where C is a subclass of Ky 4-free formulas. Let,

P ={S eS| there exists j € [d] such that ys ; € Z}.

We prove that P is indeed a solution for the SET COVER instance (U, S, k). Since |Z| < k,
we have that |P| < k. For the sake of contradiction assume that P is not a set cover

of (U,S). Then, there exists an element # € U that does not belong to any set in P.

This implies that none of the variables in C} is present in Z. Consider the set of clauses
T ={T.(i,j) | i € [d],j € [k+1]}. C, is a subset of every clause in 7. Moreover, the clauses
in {T,(¢,7)\Cy | i € [d'],j € [k+1]} have pairwise disjoint variable sets. Since var(C,)NZ = ()
and |Z| < k, there exists j € [k + 1] such that the clauses T, (1, j),...T:(d’,j) do not contain
a variable from Z. Let @ be an arbitrary set in S containing x. Notice that yo.1,...,¥0,d ¢ Z
because of our assumption that x is not covered by P. As yg1,---,Yq, € var(Cy), we have
that yg1,...,y0,a € var(Ty(4,)) for all ¢ € [d']. That is, the subgraph of inc(¢) induced on
Yoi,--->YQ.a and Ty(1,7),...,Tx(d’, j) forms a K4 4. Moreover this subgraph remains in

the incidence graph of the formula obtained by simplifying ¢ based on any assignment to Z.
This is a contradiction to the assumption that Z is a strong/weak C-free backdoor set for ¢.

This completes the proof of the second statement. <

Lemma 25 implies Theorem 4 as argued in Section 1.
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5 Conclusion

We have shown the fixed-parameter tractability of SAT parameterized by the size of a
smallest weak backdoor to bounded-treewidth formulas, when the input belongs to the class
of formulas whose incidence graphs are Kg 4-free. This implies the same result when the
incidence graph of the input formula excludes a fixed (topological) minor or is from a class
of bounded expansion or even from a nowhere-dense graph class. Thus, our main result
advances our understanding of the parameterized complexity of SAT well beyond previously
studied sparse inputs. In fact, we have shown that all nowhere-dense input formulas are
tractable in this setting and moreover, by extending our result to biclique-free formulas, we
have also identified natural classes of tractable formulas incomparable with nowhere-dense
classes, i.e., formulas of bounded degeneracy.

We also reiterate that our main objective was to obtain a classification result and so, we
have not attempted to optimize the running time and relied on invocations to Courcelle’s
theorem where it is standard in the literature on backdoor set detection. However, given the
single-exponential (in k) running time of the algorithms in [13] that significantly improved
upon similarly large exponential factors in [23, 26], it is not unreasonable to expect targeted
research in this direction to yield similar speed-ups. A promising starting point towards this
could be to consider subclasses of biclique-free graphs (e.g., graphs of bounded expansion)
and identify those input classes where such a single-exponential dependence on k can be
achieved.
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