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Chapter 2 Lévy processes: extrema and convex minorants 6
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Abstract

In this thesis we will establish the stick-breaking representation of the convex minorant

and the extrema of an arbitrary Lévy process. Our self-contained elementary proof

is based on the analysis of piecewise linear convex functions and requires only very

basic properties of Lévy processes. We then use the stick-breaking representation

to create geometrically convergent simulation algorithm for the extrema of a Lévy

process whose increments can be sampled. For processes whose increments cannot

be sampled we develop a multilevel Monte Carlo algorithm using the stick-breaking

representation. In all cases, the algorithms present in this thesis outperform the

existing algorithms in the literature.
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Chapter 1

Introduction

Consider a stochastic process S driven by a Lévy process X (e.g. with S = S0+X or

S = S0eX). Given a time horizon T > 0 consider the vector χT (S) = (ST , ST , τT (S))

consisting of the position ST , the supremum ST of S over the interval [0, T ] and the

first time τT (S) the process S attains the supremum ST . This vector is of interest

in applications, for instance, it appears in the buffer size in queuing theory [4,

79], insurance mathematics [65], mathematical finance [20, 80, 82] and in optimal

stopping [11, 12]. Except for specific cases, the law of ST (let alone the vector

χT (S)) is typically intractable and even its simulation is hard to achieve. In this

thesis we study this vector and, for simplicity, restrict our applications to the domain

of mathematical finance.

We start in Chapter 2 with a study on the convex minorant CXT of X, the largest

convex function dominated by X on [0, T ]. We prove that the convex minorant CXT is

piecewise linear and establish in Theorem 2.1 a general stochastic representation in

terms of a stick-breaking process ` on [0, T ] (see Figure 1.1 below) and the increments

of an independent Lévy process Y with the same law as X. The representation shows

that the CXT has the same law as the unique piecewise linear convex function with

infinitely many linear segments whose n-th linear segment (enumerated in some

order) has length `n and height ξn = YLn−1 − YLn , where Ln = T −
∑n−1

k=1 `k (see

Figure 1.2 below).

0
L0 = TL1L2L3L4

`1`2`3`4

Figure 1.1: The figure illustrates the first n = 4 sticks of a stick-breaking process. The increments
of Y in (2.3) are taken over the intervals [Lk, Lk−1] of length `k.
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Observe that these linear segments indeed completely determine the piecewise

linear convex function since, in the graph of this function, the segments appear

chronologically by increasing slope. Strikingly, the proof of Theorem 2.1 requires

only elementary geometry and analysis, used to study the convergence of piecewise

linear functions, and the fact that Lévy processes have stationary increments and

right-continuous paths with left limits. In particular, this proof does not require

the introduction of fluctuation theory, local times, excursion theory or even the

Lévy-Khintchine formula.

Moreover, since the minimum of X and its temporal location can be obtained by

adding the heights and lengths of the linear segments of CXT with negative height,

we obtain a simple stochastic representation for the vector containing the state

XT , the infimum XT and the first time the infimum is attained τT (X) and, by a

time reversal argument, for the vector χT (X). In fact, Theorem 2.1 can be used to

obtain novel and simple proofs of some of the classical and most prominent results in

fluctuation theory including Rogozin’s criterion and the Wiener–Hopf factorisation

(see Section §2.6 below).

t 7→ Xt

t 7→ CXT (t)

(τT (X), XT )

(T,XT )
(0, 0)

˜̀
n

ξ̃n

Figure 1.2: A sample path of a Lévy process X on the interval [0, T ], the graphs
of the convex minorant CXT and the time and space position of their infimum
(τT (X), XT ). The length ˜̀

n and height ξ̃n of the chosen segment has the same
joint law as `n and ξn.

In Chapter 3 we use the stick-breaking representation of the χT (X) to develop

the stick-breaking approximation (SBA) of this vector and SB-Alg, the corresponding

geometrically convergent simulation algorithm. The algorithm is valid for any Lévy

process whose marginals can be sampled exactly, comprising most of the Lévy

processes used in practical models. The geometrically fast convergence of SB-Alg
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is a consequence of the fact that `n → 0 geometrically fast with E`n = 2−nT and

makes our algorithm outperform all other existing algorithms, which only converge

polynomially fast in the computational effort. We establish the geometrically fast

convergence of the SBA under several metrics. Finally, the corresponding Monte

Carlo and multilevel Monte Carlo algorithms are developed and analysed.

In Chapter 4 we consider Lévy processes whose marginals cannot be sampled,

requiring a Gaussian approximation for its small-jump component. Such processes

include empirically fit Lévy processes and other widely used models such as CGMY

processes. We use the stick-breaking representation of the vector χT (X) to analyse

the distance between the vector χT (X) and that of its Gaussian approximation

and obtain sharp rates of convergence under several metrics. The stick-breaking

representation is also used to develop SBG-Alg, a fast simulation algorithm for the

vector of the Gaussian approximation, which yields a novel multilevel Monte Carlo

algorithm for χT (X). We analyse the complexity of this multilevel Monte Carlo

algorithm and show that it is typically orders of magnitude faster than existing

alternatives.

We stress here that Theorem 2.1 has more applications beyond those included

within the scope of this thesis. For instance, the author of this thesis has used

Theorem 2.1 to develop ε-strong simulation algorithms of stable meanders [55], an

exact simulation algorithm of the extrema of stable processes [54] and Monte Carlo

algorithms for the extrema of tempered stable processes [57]. The author has also

used Theorem 2.1 to obtain new theoretical results, deriving results on the regularity

of the law of the supremum of a stable process [27] and describing the asymptotic

shape of the convex minorant of a Lévy process [9].

§1.1 Discussion on algorithms SB-Alg and SBG-Alg

The key role of χT (X) in applied probability, combined with its intractability when

X is not a jump diffusion (i.e., the linear combination of a compound Poisson process

and a Brownian motion with drift), has lead to numerous works on its approximation

over the last quarter of a century [7, 17, 21, 22, 30, 38, 39, 42, 43, 45, 49, 60, 70].

These approximations naturally yield Monte Carlo (MC) and Multilevel Monte Carlo

(MLMC) algorithms for χT (X). Without exception, the errors of these algorithms

achieve polynomial decay in the computational cost. These algorithms, like the

ones we will present in Chapters 3 and 4, are constructed under different sets of

assumptions, jointly covering almost all Lévy models used in applications.

The approximations of the vector χT (X) can be split into two classes, according
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to two assumptions: approximations reliant on the ability to simulate (exactly)

the increments of the Lévy process X and approximations reliant on the ability to

simulate the jumps of X or, equivalently, the ability to simulate from the restrictions

of the Lévy measure of X to the subset R \ (−ε, ε) for any ε > 0. The former

assumption is generally stronger and it typically provides faster convergence rates

in the computational effort than the second assumption.

Approximations requiring the simulation of increments

Let us start with a brief discussion on the literature of approximations of χT (X)

under the baseline assumption that the increments (equivalently, its transitions) of

X over intervals of length t ∈ [0, T ] can be sampled exactly with an expected cost

that is bounded for t ∈ [0, T ]. The random walk approximation (RWA) approximates

χT (X) with the corresponding vector of the skeleton (XkT/n)k∈{0,...,n} of the Lévy

process X.

The RWA is a widely used method for approximating χT (X) with computational

cost proportional to the discretisation parameter n. In the case of Brownian motion,

the asymptotic law of the error was studied in [7]. The papers [21, 22] (resp. [42, 43])

identified the dominant error term of the RWA for barrier and lookback options

under the exponential Lévy models when X is a Brownian motion with drift (resp.

jump diffusion). Based on Spitzer’s identity, [30] developed bounds on the decay

of the error in L1 for general Lévy processes, extending the results of [42]. Ideas

from [60] were employed in [17] to obtain sharper bounds on the convergence of the

error of the RWA in Lp for general Lévy processes and any p > 0. Such results are

useful for the analysis of MC and MLMC schemes based on the RWA, see [49] for

the case of certain parametric Lévy models. We discuss these contributions in more

detail in §3.1 as they are contrasted with the analogous results for the SBA.

Exploiting the the Wiener-Hopf factorisation, [70] introduced the Wiener-Hopf

approximation (WHA) of (XT , XT ). The WHA is given by (XGn , XGn), where

Gn is the sum of n independent exponential random variables with mean T/n, so

that EGn = T with variance T 2/n. Implementing the WHA requires the ability

to sample the increment and supremum of X at an independent exponential time,

which is only done approximately for a specific parametric class of Lévy processes

with exponential moments and arbitrary path variation [70]. The computational

cost of the WHA is proportional to n. The decay of the bias and the MLMC version

of the WHA were later studied in [45]. As observed in [49, §1], the WHA currently

cannot be directly applied to various parametric models used in practice possessing

increments that can be simulated exactly (e.g. the variance gamma process).
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Approximations requiring the simulation of jumps

The Gaussian approximation (GA) introduced in [6] proposed approximating the

small-jump martingale containing the jumps of X whose size is smaller than κ ∈
(0, 1] with an independent Brownian motion with the same variance. The resulting

approximating process X(κ) is a diffusion with finitely many jumps, so the vector

χ(κ) = (X(κ), X
(κ)
, τT (X(κ))) may be sampled exactly. The paper [52], by the author

of the current thesis, was the first to present a complete complexity analysis for this

vector. In particular, sharp bounds on the bias and a multilevel simulation algorithm

were first introduced in [52]. The approach used there combines the GA and the SBA

to produce the SBGA (stick-breaking Gaussian approximation). A more detailed

description of the properties of this approximation will be provided in Chapter 4.

The jump-adapted Gaussian approximation (JAGA), introduced in [38, 39] to

approximate Lipschitz functions in the supremum norm of Lévy-driven stochastic

differential equations with Lipschitz coefficients, can be used to estimate the extrema

of Lévy processes. The algorithm is based on an approximation of the skeleton

{Xtk}nk=1 where the time grid includes the times of the jumps of X whose magnitude

is larger than some cutoff level κ and the small-jump component ofX is approximated

by an additional Brownian motion. Typically, the cost and bias of the JAGA are

proportional to n + κ−β and (n−1/2 + n1/4κ)
√

log n, respectively, where β is the

Blumenthal-Getoor index, see (3.14) for its definition. The complexity of the MLMC

version of the JAGA for Lipschitz functions of (XT , XT ) is compared with that of

the SBA in §3.2.4 of Chapter 3.

In contrast with Theorem 3.1 for the SBA, the laws of the errors of all the other

algorithms discussed in the present subsection are intractable. The error of the SBA

χn in (3.1) decays geometrically in Lp (see Theorem 3.3 below) as opposed to the

polynomial decay for the other algorithms (see §3.2.1 below). The error in Lp of the

SBA applied to locally Lipschitz and barrier-type functions arising in applications

also decays geometrically (see Propositions 3.6 & 3.7 below). Such errors have not

been analysed for algorithms other than the RWA, which has polynomial decay (see

§3.2.2 for details) and the SBG (see details in Chapter 4). The rate of the decay

of the bias is directly linked to the computational complexity of MC and MLMC

estimates. Indeed, if the mean squared error is to be at most ε > 0, the MC algorithm

based on the SBA has (near optimal) complexity of order O(ε−2 log ε). The MLMC

scheme based on Algorithm 1. SB-Alg has (optimal) complexity of order O(ε−2),

which is in general neither the case for the RWA [49] nor the WHA [45] (see details

in §3.2.4).
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Chapter 2

Lévy processes: extrema and

convex minorants

Notation

In this thesis, standard knowledge and notation of probability theory (particularly

the first 20 chapters of the monograph [62]) is assumed. Some notation may vary

between chapters to avoid the use of overloaded notation. However, all such notation

is introduced and kept consistent within each chapter. Moreover, the following

notation is also fixed throughout: for any x, y ∈ R, we denote

x∧y = min{x, y}, x∨y = max{x, y}, x+ = max{x, 0}, and x− = max{−x, 0}.

Given two functions f, g, we write f(x) = O(g(x)) (resp. f(x) = o(g(x));

f(x) = Θ(g(x)); f(x) ∼ g(x)) as x → a, if lim supx→a f(x)/g(x) < ∞ (resp.

f(x)/g(x) → 0; f(x) = O(g(x)) and g(x) = O(f(x)); f(x)/g(x) → 1), where a

is usually taken in the set {0,∞}.
For any càdlàg function f : [0,∞) → R (i.e. right-continuous with left-hand

limits), we denote by f t = sup{fs : s ∈ [0, t]} its supremum over the interval [0, t]

and by τt(f) = inf{s ∈ [0, t] : fs = f t} the first time the supremum f t is attained.

§2.1 Lévy processes

A Lévy process X = (Xt)t≥0 is a stochastic process with independent and stationary

increments exhibiting càdlàg paths, i.e., paths that are right-continuous with left-

hand limits. Simple examples of Lévy processes include Brownian motion, Poisson

process and compound Poisson process. Given independent Lévy process, any linear
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combination is still a Lévy process. In particular, the linear combination of a

Brownian motion and a compound Poisson process is termed jump diffusion. We will

assume throughout a basic understanding of Lévy processes. The interested reader

is referred to the monograph [91] for a thorough treatment of these processes.

Under weak assumptions it is possible to simulate the entire path of a compound

Poisson process since it has only finitely many jumps. Moreover, since the law of

the extrema of a Brownian motion is very well understood, it is clear that many

properties of the extrema of jump diffusions can also be attained. In particular,

its exact simulation is possible. This, however, is generally not the case for Lévy

processes.

The main difficulty in studying Lévy processes arises when considering Lévy

processes with an infinite amount of jumps on any nonempty finite interval. This

property is only dependent on the Lévy measure ν, which specifies the expected

number of jumps on any given measurable set. Moreovoer, for such processes, even

if it is possible to simulate its jumps, this is not enough to sample XT exactly,

let alone its extrema. This thesis presents multiple approximations of the vector

χT = (XT , XT , τT (X)) under different assumptions and analyse their computational

complexities and convergence speeds. These are typically described in terms of the

Blumenthal–Getoor index.

§2.2 Stick-breaking representation of convex minorants

The main goal of this chapter is to establish Theorem 2.1, which will trivially

imply (2.2). Theorem 2.1 gives a stick-breaking representation of the convex minorant

of a Lévy process, first established in [53, Thm 12] and, for Lévy processes with

diffuse marginals, in [87, Thm 1]. The representation provided by Theorem 2.1 can

be used to obtain short proofs of the Rogozin’s criterion for the regularity of X at its

starting point, Spitzer’s formula for the supremum of X, the Wiener-Hopf identities

and the continuity of the law of the triplet. All these results are easy corollaries

of Theorem 2.1 and basic properties of X. In particular, our approach circumvents

local times and excursion theory used in other probabilistic proofs of fluctuation

identities [13, 73] and the continuity of the law of the triplet [28] (see [53] for a

detailed account).

We will provide an simple proof of Theorem 2.1, relying entirely on elementary

geometrical arguments (given in §2.3) to control the convergence of the piecewise

linear convex functions of the approximating random walks to the convex function

whose law is equal to that of the convex minorant of an arbitrary Lévy process.
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Considering the convex minorant as a whole, rather than face-by-face, was crucial

both in finding the correct formulation of Theorem 2.1, which generalises [87,

Thm 1], and a proof that circumvented local times, excursion theory and the

Skorokhod topology.

Given any càdlàg function x : [0, T ] → R, its convex minorant, denoted by

CxT , is the largest convex function that is pointwise smaller than x. The goal of this

section is to prove our main result, Theorem 2.1, which (when applied to −X) clearly

yields (2.2) (see details in the paragraph following the statement of Theorem 2.1).

Theorem 2.1. Let X be a Lévy process and fix T > 0. Let (`n)n∈N be a uniform

stick-breaking process on [0, T ] independent of Y
d
= X. Then the convex minorant

CXT of X has the same law (in the space of continuous functions on [0, T ]) as the

piecewise linear convex function on [0, T ] given by the formula

t 7→
∞∑
n=1

ξn min{(t− an)+/`n, 1}, where ξn = YLn−1 − YLn and

an =

∞∑
k=1

`k1{ξk/`k<ξn/`n} +

n−1∑
k=1

`k1{ξk/`k=ξn/`n}, n ∈ N.
(2.1)

In particular, the face of the piecewise linear function with horizontal length `n has

vertical height ξn.

The maximality of C−XT implies that C−XT and −X have the same initial, final

and minimal values and that the times where they first reach their minima on [0, T ]

agree. Moreover, the minimum (resp. the first time of the minimum is attained) of

C−XT can be calculated by adding all the heights (resp. lengths) of the faces of C−XT
with negative height. Since the location and value of the infimum of −X can be

used to recover the location and value of the supremum of X, Theorem 2.1 (applied

to −X) yields the following distributional equality:

χT = (XT , XT , τT (X))
d
=

∞∑
n=1

(
ξn, ξ

+
n , `n1{ξn>0}

)
. (2.2)

By possibly extending the probability space, we may use [62, Thm 6.10] and

the fact that the Skorokhod space D[0, T ] of right-continuous functions on [0, T ]

with left-hand limits (see [14, p. 109]) is Polish under the J1-topology [14, p. 112]

and thus a Borel space [62, Thm A1.2], to assume (under a coupling of (X,Y, `))
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that the equality in (2.2) holds with probability 1:

χT = (XT , XT , τT (X)) =

∞∑
n=1

(
ξn, ξ

+
n , `n1{ξn>0}

)
a.s. (2.3)

This coupling will be assumed throughout Chapters 3–4, as it is crucial in providing

both, the required tool to study χT (X) and a probability space where we may study

strong errors. Note that, in particular, the coupling satisfies YT = XT a.s.

Overview of the proof of Theorem 2.1. Theorem 2.1 connects two worlds: (W1) X

and its convex minorant CXT on the interval [0, T ] and (W2) a random piecewise

linear convex function. We first establish a convergence result within (W2) for a

sequence of piecewise linear convex functions, see §2.3. This crucial step in the

proof requires only elementary geometric manipulations of piecewise linear convex

functions. In §2.4, using [1, Thm 1], we establish a bridge between (W1) and

(W2) for random walks. We recall the 3214 path transformation [1] for random

walks and provide a short proof, based on the convergence results in §2.3, of the

connection between (W1) and (W2) for random walks with general increments,

see Theorem 2.6 below. In §2.5, we establish Theorem 2.1 by taking the limit of

the convex minorant of the random-walk skeleton of X in (W1) and, using the

convergence results of §2.3, the corresponding limit in (W2).

We stress that the proof of Theorem 2.1 given in this chapter is self-contained,

requiring only rudimentary real analysis and the fact that X has stationary and

independent increments and right-continuous paths with left limits. In particular,

we make no use of the Lévy measure, the Lévy-Khintchine formula for X or weak

convergence in the J1-topology on the Skorokhod space.

§2.3 Convex minorants and piecewise linear functions

We denote JnK = {1, . . . , n} for n ∈ N and adopt the convention J∞K = N. We say

that a function f : [0, T ] → R is piecewise linear if there exists a set consisting of

N ∈ N = N∪{∞} pairwise disjoint non-degenerate subintervals {(an, bn) : n ∈ JNK}
of [0, T ] such that

∑N
n=1(bn − an) = T and f is linear on each (an, bn). The face

of f corresponding to the subinterval (an, bn), has length ln = bn − an > 0, height

hn = f(bn)− f(an) ∈ R and slope hn/ln. Note that, if f is continuous and of finite

variation
∑N

n=1 |f(bn)− f(an)| <∞, the following representation holds:

f(t) = f(0) +

N∑
n=1

hn min{(t− an)+/ln, 1}, t ∈ [0, T ]. (2.4)
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The number N in representation (2.4) is not unique in general as any face may

be subdivided into two faces with the same slope. Moreover, for a fixed f and N ,

the set of intervals {(an, bn) : n ∈ JNK} need not be unique. Furthermore we stress

that the sequence of faces in (2.4) does not necessarily respect the chronological

order. Put differently, the sequence (an)n∈JNK need not be increasing. Throughout,

we use the convention
∑m

k=n = 0 when n > m.

Lemma 2.2. Fix T > 0, N ∈ N and let l = (ln)Nn=1 be a sequence of positive lengths

with
∑N

n=1 ln = T .

(a) For any sequence of heights h = (hn)Nn=1 with
∑N

n=1 |hn| <∞, the function

Fl,h(t) =
N∑
n=1

hn min{(t− an)+/ln, 1}, t ∈ [0, T ], where

an =

N∑
k=1

lk · 1{hk/lk<hn/ln} +
n−1∑
k=1

lk · 1{hk/lk=hn/ln}, n ∈ JNK,

(2.5)

is piecewise linear and convex with Fl,h(0) = 0. Differently put, Fl,h is linear on

each interval (an, an + ln) with length ln and height hn. Moreover, any piecewise

linear convex function started at zero whose faces have lengths l and heights h must

equal Fl,h.

(b) Suppose N <∞. Given two sequences of heights h = (hn)Nn=1 and h′ = (h′n)Nn=1,

denote the corresponding functions in (2.5) by Fl,h and Fl,h′ with sequences (an)Nn=1

and (a′n)Nn=1 of the left endpoints of the intervals on which these functions are linear,

respectively. Define the function

Gl,h,h′(t) =
N∑
n=1

hn min{(t− a′n)+/ln, 1}, t ∈ [0, T ].

Then, we have

max{‖Fl,h − Fl,h′‖∞, ‖Fl,h′ −Gl,h,h′‖∞}

≤ max

{ N∑
n=1

(hn − h′n)+,

N∑
n=1

(h′n − hn)+

}
,

(2.6)

where ‖f‖∞ = supt∈[0,T ] |f(t)| denotes the supremum norm.

The piecewise linear function Gl,h,h′ need not be convex. However, it can be

easily compared (in all cases, including N =∞) with Fl,h′ , because the intervals of

linearity for Fl,h′ and Gl,h,h′ coincide. The function Gl,h,h′ will play a key bridging

role in the proof of Proposition 2.4 below.
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Proof of Lemma 2.2. (a) The lengths of the subintervals (an, an + ln), n ≤ N , of

[0, T ] sum up to
∑N

n=1 ln = T . By comparing the respective slopes in the definition

of an, it follows that these intervals are pairwise disjoint. Moreover, Fl,h is convex

on [0, T ] and linear on every (an, an + ln). Indeed, since a function is convex if

and only if it has a non-decreasing right-derivative a.e., Fl,h is convex. Any other

piecewise linear convex function with the same faces must have the same derivative

as Fl,h. Furthermore, if such a function also starts at 0, it must equal Fl,h.

(b) A termwise comparison shows that

−
N∑
n=1

(hn − h′n)+ ≤ Fl,h′ −Gl,h,h′ ≤
N∑
n=1

(h′n − hn)+,

pointwise. Thus, it remains to show the inequality for ‖Fl,h−Fl,h′‖∞, which requires

two steps.

Step 1. First assume there exists m ∈ JNK such that h′m 6= hm and hn = h′n

for n ∈ JNK \ {m}. By symmetry we may assume h′m > hm. For all n ∈ JNK, define

the slopes sn = hn/ln and s′n = h′n/ln. Thus s′m > sm and, if n 6= m, we have

sn = s′n. Since

an =
N∑
k=1

lk · 1{sk<sn} +
n−1∑
k=1

lk · 1{sk=sn}, a′n =
N∑
k=1

lk · 1{s′k<s′n} +
n−1∑
k=1

lk · 1{s′k=s′n},

the right-derivatives fl,h and fl,h′ of Fl,h and Fl,h′ , respectively, are piecewise constant

non-decreasing functions satisfying fl,h ≤ fl,h′ on [0, T ]. Since Fl,h(0) = 0 = Fl,h′(0),

we deduce that Fl,h′ − Fl,h ≥ 0.

By construction, Fl,h′ ≥ Gl,h,h′ pointwise (in fact, termwise) and ‖Fl,h′ −
Gl,h,h′‖∞ = h′m − hm. Put bn = an + ln and b′n = a′n + ln for n ∈ JNK and

note that, since sm ≤ s′m, we have am ≤ a′m and

Fl,h(t) = Gl,h,h′(t) = Fl,h′(t), for t ∈ [0, am],

Fl,h(t) = Gl,h,h′(t) ≤ Fl,h′(t) ≤ Gl,h,h′(t) + (h′m − hm), for t ∈ [b′m, T ].

Thus, to establish (2.6) in this case, it suffices to prove that Fl,h′(t) − Fl,h(t) ≤
h′m − hm on t ∈ [am, b

′
m].

By construction of a′m, the right-derivative fl,h′ is smaller or equal to s′m =

11



Fl,h′

Gl,h,h′
Fl,h

Tam bm b′ma′m

lm
lm

Figure 2.1: Comparison between Fl,h, Fl,h′ and Gl,h,h′ .

h′m/lm on (am, b
′
m). Since Fl,h′(am) = Fl,h(am), for t ∈ [am, bm] we have

Fl,h′(t)− Fl,h(t) =

∫ t

am

fl,h′(u)du− sm(t− am)

≤ (s′m − sm)(t− am) ≤ (s′m − sm)lm = h′m − hm.

For t ∈ [bm, b
′
m] we have t− lm ∈ [am, a

′
m] and thus Fl,h(t)− hm = G(t− lm) =

Fl,h′(t− lm). Hence

Fl,h′(t)− Fl,h(t) = Fl,h′(t)− Fl,h′(t− lm)− hm

=

∫ t

t−lm
fl,h′(u)du− hm ≤

∫ t

t−lm
s′mdu− hm = h′m − hm.

Thus, Fl,h′ − Fl,h ≤ h′m − hm on [am, b
′
m], proving (2.6) in this case.

Step 2. Consider the general case. For k ∈ {0, . . . , N}, let h(k) = (h
(k)
n )n∈JNK

be given by h
(k)
n = hn · 1{n>k} + h′n · 1{n≤k} for n ∈ JNK. Note that h′ = h(0) and

h = h(N). Since the sequences h(k) and h(k−1) only differ in the coordinate h
(k)
k 6=

h
(k−1)
k , the identity Fl,h′ − Fl,h =

∑N
k=1(Fl,h(k−1) − Fl,h(k)) and Step 1 imply (2.6),

completing the proof.

Lemma 2.3. Let (Nk)k∈N be a sequence in N with a limit Nk → N∞ ∈ N. For each

j ∈ N, let (lj,n)n∈JNjK be positive numbers satisfying
∑Nj

n=1 lj,n = T , (hj,n)n∈JNjK real

numbers and Cj the piecewise linear convex function defined in (2.5) with lengths

(lj,n)j∈JNjK and heights (hj,n)j∈JNjK. Suppose lk,n → l∞,n and hk,n → h∞,n as k →∞
for all n ∈ JN∞K. Then ‖C∞ − Ck‖∞ → 0 as k →∞.

Proof. The convergence Nk → N∞ as k → ∞ implies Nk = N∞ = N for all

sufficiently large k. Thus, we assume without loss of generality that Nj = N for all
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j ∈ N. Define sj,n = hj,n/lj,n for j ∈ N and n ∈ JNK and note that sk,n → s∞,n

as k → ∞ for all n ∈ JNK. Thus, for all sufficiently large k, if the inequality

s∞,n < s∞,m holds, then sk,n < sk,m. Thus, we assume this property holds for all

k ∈ N. Moreover, we assume without loss of generality, by relabeling if necessary,

that s∞,1 ≤ · · · ≤ s∞,N .

We will next introduce a sequence of convex functions Fk satisfying the limits

‖C∞ − Fk‖∞ → 0 and ‖Fk − Ck‖∞ → 0 as k → ∞. These convex functions will

replace each “block” of faces of Ck with a given common limiting slope, with a single

face with the mean slope.

Let M ≤ N be the number of distinct slopes in {s∞,n : n ∈ JNK} and note that

s∞,i1 < · · · < s∞,iM , where we set

i1 = 1 and in+1 = min{m ∈ {in + 1, . . . , N} : s∞,m > s∞,in} for n ∈ JM − 1K.

Note that sk,m → s∞,in as k → ∞ for all m ∈ {in, . . . , in+1 − 1}. Define the

sums Lj,n =
∑in+1−1

m=in
lj,m and Hj,n =

∑in+1−1
m=in

hj,m for n ∈ JMK and j ∈ N, where

iM+1 = N + 1. Furthermore, for j ∈ N, let (aj,n)n∈JNK be the left endpoints of the

intervals in (2.5) on which Cj is linear. Note that C∞ admits the representation

C∞(t) =
M∑
n=1

H∞,n min{(t− a∞,in)+/L∞,n, 1} for t ∈ [0, T ],

and define the convex functions Fk(t) =
∑M

n=1Hk,n min{(t − ak,in)+/Lk,n, 1} for

k ∈ N. The limits lk,n → l∞,n and hk,n → h∞,n imply ak,in → a∞,in , Lk,n → L∞,n

and Hk,n → H∞,n as k → ∞ for n ∈ JMK. Thus, we have the pointwise (in fact,

termwise) convergence Fk → C∞. Since the functions are convex, the pointwise

convergence implies ‖C∞ − Fk‖∞ → 0 as k →∞.

To prove that ‖Fk − Ck‖∞ → 0 as k → ∞, note that for a, c ∈ R and b, d > 0

satisfying a/b ≤ c/d, we have a/b ≤ (a + c)/(b + d) ≤ c/d. Thus, Hk,n/Lk,n lies

between the smallest and largest values of Sk,n = {hk,in/lk,in , . . . , hk,in+1−1/lk,in+1−1}.
Since all the slopes in Sk,n converge to s∞,in , by the triangle inequality, we have

maxs∈Sk,n |Hk,n/Lk,n−s| ≤ maxs,s′∈Sk,n |s′−s| ≤ bk = 2 maxm∈JNK |sk,m−s∞,m| → 0

as k → ∞. Hence, the right-derivative of Fk is at most bk away from the right-

derivative of Ck, implying ‖Fk − Ck‖∞ ≤ bkT → 0 as k → ∞, completing the

proof.

Proposition 2.4. Let Nk and N∞ be N-valued random variables with Nk → N∞

a.s. as k → ∞. Let (lj,n)
Nj
n=1, j ∈ N, be random sequences of positive numbers
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satisfying
∑Nj

n=1 lj,n = T and (hj,n)
Nj
n=1, j ∈ N, sequences of random variables with∑Nj

n=1 |hj,n| < ∞ a.s. Let Cj be the piecewise linear convex function in (2.5) with

sequences of lengths (lj,n)
Nj
n=1 and heights (hj,n)

Nj
n=1 for j ∈ N. Suppose lk,n → l∞,n

a.s. and hk,n → h∞,n a.s. as k →∞ for all n < N∞ + 1 and

lim
M→∞

lim sup
k→∞

Emin

{
1,

Nk∑
n=M

|hk,n|
}

= 0. (2.7)

Then ‖C∞ − Ck‖∞
P→ 0 as k →∞.

Proof. On the event {N∞ < ∞}, by Lemma 2.3 we have ‖C∞ − Ck‖∞ → 0 a.s.

as k → ∞ (and (2.7) holds by our summing convention). Assume we are on the

event {N∞ = ∞}. For each M ∈ N and j ∈ N, let Cj,M be the piecewise linear

convex function in (2.5) with lengths (lj,n)
Nj
n=1 and heights (hj,n1{n<M})

Nj
n=1. Denote

a ∧ b = min{a, b} for any a, b ∈ R. For each j ∈ N, define

aj,n =

Nj∑
m=1

lj,m · 1{hj,m/lj,m<hj,n/lj,n} +
n−1∑
m=1

lj,m · 1{hj,m/lj,m=hj,n/lj,n}, n ∈ JNjK,

end the function Gj,M (t) =
∑Nj∧(M−1)

m=1 hj,n min{(t− aj,n)+/lj,n, 1}, t ∈ [0, T ]. Note

that Cj and Gj,M are linear on every interval (aj,n, aj,n + lj,n), n ∈ JNjK, but Cj,M

may have different intervals of linearity. Since 1 ∧ (x + y) ≤ 1 ∧ x + 1 ∧ y for all

x, y ≥ 0, the triangle inequality implies

1 ∧ ‖C∞ − Ck‖∞ ≤ A(I) +A(II) +A(III) +A(IV) +A(V), (2.8)

where A(I) = 1 ∧ ‖C∞ − G∞,M‖∞, A(II) = 1 ∧ ‖G∞,M − C∞,M‖∞, A(III) = 1 ∧
‖C∞,M − Ck,M‖∞, A(IV) = 1 ∧ ‖Ck,M − Gk,M‖∞ and A(V) = 1 ∧ ‖Gk,M − Ck‖∞.

As ζn
P→ 0 as n → ∞ if and only if E[1 ∧ |ζn|] → 0, it suffices to prove that the

expectation of each of the terms in (2.8) converges to 0 as we take lim supk→∞ and

then M →∞.

(I)&(V). By construction of Cj andGj,M we have ‖Cj−Gj,M‖∞ ≤
∑Nj

n=M |hj,n|
for all j ∈ N. Thus, we have ‖C∞ − G∞,M‖∞ → 0 a.s. and hence EA(I) =
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E[1 ∧ ‖C∞ −G∞,M‖∞]→ 0 as M →∞. Moreover, by assumption in (2.7),

lim sup
k→∞

EA(V) = lim sup
k→∞

E[1 ∧ ‖Ck −Gk,M‖∞]

≤ lim sup
k→∞

Emin

{
1,

Nk∑
n=M

|hk,n|
}
−−−−→
M→∞

0.

(III). For all j ∈ N, the faces of Cj,M corresponding to n ∈ JNjK \ JM − 1K are

horizontal. By convexity, we may assume they lie next to each other in the graph

of Cj,M . Merging all the lengths lj,n, n ∈ JNjK \ JM − 1K, yields a representation of

Cj,M with Nj ∧M faces. Fix M ∈ N. Lemma 2.3 yields ‖C∞,M −Ck,M‖∞ → 0 a.s.

and thus EA(III) = E[1 ∧ ‖C∞,M − Ck,M‖∞]→ 0 as k →∞.

(II)&(IV). The idea is to apply (2.6) in Lemma 2.2(b) to bound ‖Cj,M −
Gj,M‖∞, with Fl,h, Gl,h,h′ and Fl,h′ in Lemma 2.2(b) given by Cj,M , Gj,M and Fj,M ,

respectively. The piecewise linear convex function Fj,M , which shares the intervals

of linearity with those of Gj,M , is yet to be defined.

Note that Gj,M possesses a piecewise linear representation with at most 2M

faces. Indeed, Gj,M is linear on (aj,n, aj,n + ln), n ∈ JNj ∧ (M − 1)K, and the

complement (0, T ) \
⋃Nj∧(M−1)
n=1 [aj,n, aj,n + lj,n] is a disjoint union of Mj ≤ M + 1

open intervals, say (a′j,n, a
′
j,n + l′j,n), n ∈ JMjK. For each n ∈ JMjK, define the height

h′j,n =
∑

m∈Sj,n hj,m, where Sj,n = {m ∈ JNjK \ JM − 1K : aj,m ∈ (a′j,n, a
′
j,n + l′j,n)}.

Put differently, the height h′j,n equals the sum of all the heights of the faces of Cj

that lie above the interval [a′j,n, a
′
j,n + l′j,n]. For any j ∈ N and t ∈ [0, T ], define

Fj,M (t) =

Nj∧(M−1)∑
n=1

hj,n min{(t− aj,n)+/lj,n, 1}

+

Mj∑
n=1

h′j,n min{(t− a′j,n)+/l′j,n, 1}.

(2.9)

We will show that Fj,M is convex. It suffices to prove that the consecutive slopes

of Fj,M on adjacent intervals of linearity increase. If the consecutive intervals are

(aj,m, aj,m + lj,m) and (aj,n, aj,n + lj,n) (i.e. they come from the first sum in (2.9)),

then by construction the intervals must be adjacent with the same slopes in the

convex function Cj , implying the corresponding slopes satisfy the correct ordering.

Assume the consecutive intervals are (aj,m, aj,m+ lj,m) and (a′j,n, a
′
j,n+ l′j,n) (i.e. the

first interval comes from first sum and the second interval comes from the second

sum in (2.9)). Suppose aj,m = a′j,n + l′j,n and note that, for a, c ∈ R and b, d > 0

with a/b ≤ c/d we have a/b ≤ (a + c)/(b + d) ≤ c/d. Thus, by definition of h′j,n,
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we have h′j,n/l
′
j,n ≤ supi∈Sj,n hj,i/lj,i ≤ hj,m/lj,m, where the last inequality holds

because aj,m = a′j,n + l′j,n and Cj is convex. The case a′j,n = aj,m + lj,n is analogous

since the slope h′j,n/l
′
j,n is a mean of slopes at least as large as hj,m/lj,m, implying

the convexity of Fj,M .

Define the vectors

l = (lj,1, . . . , lj,Nj∧(M−1), l
′
j,1, . . . , l

′
j,Mj

),

h = (hj,1, . . . , hj,Nj∧(M−1), h
′
j,1, . . . , h

′
j,Mj

) and

h′ = (hj,1, . . . , hj,Nj∧(M−1), 0, . . . , 0).

Note that the corresponding functions Fl,h, Fl,h′ and Gl,h,h′ in (2.5) equal Fj,M ,

Cj,M and Gj,M , so (2.6) implies the inequality

‖Gj,M −Cj,M‖∞ ≤ ‖Gj,M −Fj,M‖∞+‖Fj,M −Cj,M‖∞ ≤ 2

Mj∑
m=1

|h′j,m| ≤ 2

Nj∑
n=M

|hj,n|.

Thus, ‖G∞,M −C∞,M‖∞ → 0 a.s. and hence EA(II) = E[1 ∧ ‖C∞ −G∞,M‖∞]→ 0

as M →∞. Moreover, by assumption in (2.7), we have

lim sup
k→∞

EA(IV) = lim sup
k→∞

E[1 ∧ ‖Gk,M − Ck,M‖∞]

≤ 2 lim sup
k→∞

Emin

{
1,

Nk∑
n=M

|hk,n|
}
−−−−→
M→∞

0.

§2.4 The convex minorant of random walks

Let a function f : [0, T ]→ R satisfy f(0) = 0. Given parameters 0 ≤ g ≤ u ≤ d ≤ T ,

the 3214 transformation, introduced in [1], is defined by

Θg,u,df(t) =



f(u+ t)− f(u), 0 ≤ t ≤ d− u,

f(d)− f(u) + f(g + t− (d− u))− f(g), d− u < t ≤ d− g,

f(d)− f(t− (d− g)), d− g < t ≤ d,

f(t), d < t.

The 3214 transformation reorders the segments of the graph of f as follows: the

segments (I) [0, g], (II) [g, u], (III) [u, d] and (IV) [d, T ] are moved to (III) [0, d− u],

(II) [d−u, d−g], (I) [d−g, d] and (IV) [d, T ], respectively (see also Figure 2.2 below).

This transformation possesses the following remarkable property when applied to

16



continuous piecewise linear functions with a given set of increments.

Proposition 2.5 ([1, Thm 1]). Fix n ∈ N and let x1, . . . , xn be real numbers, such

that no two subsets have the same mean. Let byc = max{m ∈ Z : m ≤ y}, y ∈ R,

and π : JnK→ JnK be a uniform random permutation. Define the polygonal random

walk R = (R(t))t∈[0,T ] by R(T ) =
∑n

k=1 xk and

R(t) =

bnt/T c∑
k=1

xπ(k) + (nt/T − bnt/T c)xπ(bnt/T c+1), t ∈ [0, T ). (2.10)

Let CRT denote the convex minorant of R and let W ∼ U(0, T ) be independent of R.

Let 0 = V0 < · · · < VN = T be the sequence of contact points between the piecewise

linear functions R and CRT and j ∈ JNK the unique index such that W ∈ (Vj−1, Vj ].

Define U = dWn/T eT/n, G = Vj−1 and D = Vj. Then the 3214 transform with

parameters (G,U,D) satisfies the identity in law

(U,R)
d
= (D −G,ΘG,U,DR).

For completeness, we recall below a proof of Proposition 2.5 using a simple

argument from [2].

Theorem 2.6. Let x1, . . . , xn be arbitrary real numbers and π : JnK→ JnK a uniform

random permutation. Define R by (2.10) and let (Vk)k∈N be an iid sequence of

U(0, 1) random variables independent of π. Define recursively Ln,0 = T , Ln,k =

bLn,k−1Vkn/T cT/n, `n,k = Ln,k−1 − Ln,k for k ∈ N and let N ≤ n be the largest

integer for which `n,N > 0. Then the convex minorant CRT has the same law as the

piecewise linear convex function defined in (2.5) with sequences of lengths (`n,k)
N
k=1

and heights (R(Ln,k−1)−R(Ln,k))
N
k=1.

We stress that in Theorem 2.6, the reals x1, . . . , xn may have multiple subsets

with the same mean. Our proof approximates a general sequence by one satisfying

the “no ties” assumption of Proposition 2.5 and applies a convergence result for

piecewise linear convex functions from §2.3. The proof of Theorem 2.6 in [1] sub-

samples the ties, resulting in a more involved statement of the theorem.

Proof of Theorem 2.6. First assume that no two subsets of the numbers x1, . . . , xn

have the same mean. Let π and (G,U,D) be as in Proposition 2.5. By Proposition 2.5,

the face decomposition of CRT contains the face with length-height pair equal to

(D − G,CRT (D) − CRT (G)), which has the same law as (U,R(U)), and the faces

of a copy of CRT−(D−G) independent of the first face. Indeed, this copy is in fact
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the convex minorant of ΘG,U,DR on [T − (D − G), T ] and we may apply the same

procedure to this copy. Iterating this procedure, we obtain a (finite) sequence of

lengths of the faces of CRT , which has the same law as the sequence (`k,n)Nk=1, and

the corresponding heights, which have the same law as (R(Lk−1,n) − R(Lk,n))Nk=1,

completing the proof in this case.

To prove the general case, we recall that ‖CxT − CyT ‖∞ ≤ ‖x − y‖∞ for any

bounded functions x, y : [0, T ] → R. Indeed, this follows from the fact that the

function CxT−‖x−y‖∞ is convex and CxT−‖x−y‖∞ ≤ x−‖x−y‖∞ ≤ y pointwise. For

any ε > 0 consider real numbers x1,ε, . . . , xn,ε such that no two subsets have the same

mean and
∑n

k=1 |xk−xk,ε| ≤ ε. Let Rε be the corresponding random walk in (2.10)

(with the same permutation π). Note that ‖CRT − C
Rε
T ‖∞ ≤ ‖R − Rε‖∞ ≤ ε → 0

as ε → 0. Moreover, by the argument in the previous paragraph, CRεT has the

same law as the piecewise linear convex function Cε given by (2.5) with lengths

(`n,k)
N
k=1 and heights (Rε(Ln,k−1) − Rε(Ln,k))

N
k=1. Let C be the piecewise linear

convex function given by (2.5) with lengths (`n,k)
N
k=1 and heights (R(Ln,k−1) −

R(Ln,k))
N
k=1. Lemma 2.3 yields ‖C − Cε‖∞ → 0 a.s. as ε → 0, implying C

d
= CRT

and completing the proof.

The proof of Proposition 2.5 requires the following lemma.

Lemma 2.7. Let x1, . . . , xn be real numbers such that no two subsets have the same

mean. Then there is a unique k∗ ∈ JnK such that
∑k

i=1 x(k∗+i) modn ≥ k
n

∑n
i=1 xi for

all k ∈ JnK, i.e. the walk with increments x(k∗+1) modn, . . . , x(k∗+n) modn is above the

line connecting zero with the endpoint
∑n

i=1 xi.

Proof. Define s =
∑n

i=1 xi/n. If the walk k 7→
∑k

i=1(xi − s), k ∈ JnK, attained its

minimum at two times k1 < k2, then
∑k2

i=k1+1 xi/(k2 − k1) = s, contradicting the

assumption. It is easily seen that the k∗ in the statement of the lemma is the time

at which this walk attains its minimum on JnK.

Proof of Proposition 2.5 ([2]). If a random element ζ is uniformly distributed in

some finite set Z and if the map ϕ : Z → Z is injective (and thus bijective),

then ϕ(ζ) is also uniformly distributed on Z. Thus, since π and U are uniform and

independent, it is sufficient to show that the transformation (u, f) 7→ (d−g,Θg,u,df)

is injective.

Assume without loss of generality that T = n. To prove the injectivity, it

suffices to describe the inverse transformation. Given d − g, and f̃ = Θg,u,df , note

that d−u is the unique time in Lemma 2.7 for the increments of f̃ over the set Jd− gK,
see Figure 2.2. Consider the convex minorant of f̃ on the interval [d − g, T ] and
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Tg u d Td− u d− g d

Figure 2.2: The pictures show a path of a random walk R (solid) and its convex
minorant CRT (dashed) on [0, T ] on the left and their 3214 transforms on the right.
The transform is associated to some u ∈ (0, T ) and the endpoints {g, d} of the
maximal face of CRT containing u.

note that d is the right end of the last face whose slope is less than f̃(d− g)/(d− g).

Thus we may identify d, u and g and then invert the 3214 transform to recover f .

This shows that (u, f) 7→ (d− g,Θg,u,df) is injective, completing the proof.

§2.5 Proof of the stick-breaking representation

The proof of Theorem 2.1 is split into 3 steps.

Step 1. Let C̃k be the largest convex function on [0, T ] that is smaller than X

pointwise on the set Dk = {Tn/2k : n ∈ {0, 1, . . . , 2k}}. Since Dk ⊂ Dk+1, we have

C̃k(t) ≥ C̃k+1(t) for all t ∈ [0, T ]. Moreover, the limit C̃∞ = limk→∞ C̃k is clearly

convex and smaller than X pointwise on the dense set
⋃
k∈NDk in [0, T ]. As X is

càdlàg, C̃∞ is pointwise smaller than X on [0, T ], implying C̃∞ ≤ CXT . Since CXT
is convex and smaller than X on Dk, the maximality of C̃k yields C̃k ≥ CXT for all

k ∈ N, implying C̃∞ ≥ CXT and thus C̃∞ = CXT .

Step 2. Let U1, U2, . . . be iid U(0, 1) random variables independent of X. Let

L0 = T , Ln = UnLn−1, `n = Ln−1 − Ln and ξn = XLn−1 − XLn for n ∈ N. For

each k ∈ N, define Lk,0 = T , Lk,n =
⌊
Lk,n−1Un2k/T

⌋
T/2k, `k,n = Lk,n−1 − Lk,n

and ξk,n = XLk,n−1
− XLk,n for n ∈ N. Let Nk be the largest natural number for

which `k,Nk > 0, so that `k,n, Lk,n and ξk,n are all zero for all n > Nk. For each

k ∈ N, let Ck (resp. C∞) be the piecewise linear convex function given in (2.5) with

lengths (`k,n)Nkn=1 (resp. (`n)∞n=1) and heights (ξk,n)Nkn=1 (resp. (ξn)∞n=1). Next we

show that ‖Ck − C∞‖∞
P→ 0 as k → ∞. Since X has càdlàg paths with countably

many jumps, Ln has a density for every n ∈ N and Lk,n → Ln a.s. as k → ∞, we

have ξk,n → ξn a.s. as k →∞ for all n ∈ N. Thus, by Proposition 2.4, it suffices to

prove that limM→∞ lim supk→∞ E[1 ∧ Pk,M ] = 0, where Pk,M =
∑Nk

n=M |ξkm,n|.
Theorem 2.6 implies that Ck

d
= C̃k. Let Rk be the continuous piecewise linear
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function connecting the skeleton of X on Dk with line segments. Since the minimum

and the final value of the convex minorant CRkT = C̃k agree with the corresponding

functionals of Rk, the total variation
∑Nk

n=1 |ξk,n| of Ck has the same distribution as

XT − 2 mint∈Dk Xt. Moreover, by the independence and the definition of (Lk,n)n∈N,

it is easily seen that Pk,M =
∑Nk

n=M+1 |ξk,n|
d
= XLk,M −2 mint∈Dk∩[0,Lk,M ]Xt. By the

inequality Lk,M ≤ LM , we have

XLk,M − 2 min
t∈Dk∩[0,Lk,M ]

Xt ≤ XLk,M − 2XLk,M
≤ XLM − 2XLM

.

Since LM → 0 a.s. as M → ∞ and Xt − 2Xt → 0 a.s. as t → 0, we have

XLM − 2XLM
→ 0 a.s. as M →∞, implying

lim sup
k→∞

E[1 ∧ Pk,M ] ≤ E[1 ∧ (XLM − 2XLM
)] −−−−→

M→∞
0.

Step 3. Recall that, by Theorem 2.6, we have Ck
d
= C̃k. Since ‖Ck−C∞‖∞

P→ 0

and ‖C̃k − CXT ‖∞ → 0 a.s. as k → ∞, we conclude that C∞
d
= CXT , implying

Theorem 2.1.

§2.6 The fluctuation theory of Lévy processes

The power of the stick-breaking representation in Theorem 2.1 (or its corollary

in (2.2) for the vector χT (X)), for any fixed time horizon T lies in the fact that (2.2)

essentially reduce the properties of the path functional χT (X) to the properties of the

marginals of X. We now illustrate this by deriving many of the classical highlights

of the fluctuation theory of Lévy processes from Theorem 2.1. Note first that, since

− log(`n/T ) is gamma distributed with density s 7→ sn−1e−s/(n− 1)! for s > 0, for

a measurable f : [0, T ]→ R+ we have

E
∑
n∈N

f(`n) =

∫ T

0
s−1f(s)ds. (2.11)

In the definition of τ t(X) (resp. τ t(X)), we take the first rather than last time

the maximum (resp. minimum) is attained. Our first corollary shows that this

choice makes little difference.

Corollary 2.8. A Lévy process X attains its maximum at a unique time a.s. if

and only if X is not a driftless compound Poisson process; then we have χt(X)
d
=

(Xt, Xt −Xt, t− τ t(X)) for all t > 0.

20



Proof. If X is a driftless compound Poisson process, it has piecewise constant paths,

making the time of the maximum not unique. Assume X is not a driftless compound

Poisson, then P(Xt = 0) > 0 for at most countably many t > 0. Indeed, either the

law of Xt is diffuse or, by Doeblin’s lemma [62, Lem. 15.22], X is compound Poisson

with drift µ 6= 0. In the latter case, P(Xt = 0) > 0 if and only if −µt is in a

countable set generated by the atoms of the Lévy measure of X, implying the claim.

The time-reversal process X ′ = (X ′s)s∈[0,t], defined as X ′s := X(t−s)− − Xt,

s ∈ [0, t], has the same law as (−Xs)s∈[0,t], implying τ t(X
′)

d
= τ t(X). The gap

(t− τ t(X ′))− τ t(X) ≥ 0 between the time of the first and last maximum of X has

expectation equal to zero and is hence zero a.s. Indeed, since P(Xt = 0) > 0 for at

most countably many t > 0, Theorem 2.1 and (2.11) yield

t− E[τ t(X)]− E[τ t(X)] = E
∞∑
n=1

`n1{XLn−1
=XLn}

= E
∞∑
n=1

`nP(X`n = 0|`n) =

∫ t

0
P(Xs = 0)ds = 0.

The identity in law follows from χt(X
′)

d
= χt(−X).

Corollary 2.9. For any Lévy process X, the following formulae hold for any t > 0:

E[τ t(X)] =

∫ t

0
P(Xs > 0)ds and E[Xt] =

∫ t

0
(Emax{Xs, 0}/s)ds. (2.12)

Proof. Denote ρ(s) := P(Xs > 0) and take expectations in the third coordinate of

the SB-representation in (2.3). Fubini’s theorem and the formula in (2.11) imply

Eτ t(X) =

∞∑
n=1

E[`nρ(`n)] =

∫ t

0
ρ(s)ds for any t > 0.

The proof of the formula for the supremum is analogous.

Consider an exponential time horizon Tθ ∼ Exp(θ) with parameter θ ∈ (0,∞)

(i.e. ETθ = 1/θ), independent of the Lévy process X. Let `(θ) = (`
(θ)
n )n∈N be a stick-

breaking process with a random time horizon Tθ. The random measure
∑∞

n=1 δ`(θ)n
on (0,∞) is easily seen to be a Poisson point process (see Subsection §2.6.1 below).

By (2.11) its mean measure satisfies E
∑

n∈N δ`(θ)n
(A) =

∫
A t
−1e−θtdt for a measurable

set A (δz denotes the Dirac delta at the point z). Let F (t,dx) := P(Xt ∈ dx) denote

the law of Xt for any t > 0. Marking each point `
(θ)
n by a random real number
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sampled from the law F (`
(θ)
n , ·), by the Marking Theorem [64, p. 55], produces a

Poisson point process on (0,∞)× R.

Proposition 2.10. Let the time horizon Tθ ∼ Exp(θ) and the stick-breaking process

`(θ) be independent of the Lévy process X. Define ξ
(θ)
n := X

L
(θ)
n−1

−X
L
(θ)
n

, where L(θ) =

(L
(θ)
k )k∈N∪{0} is the remainder process associated to `(θ). Then Ξθ :=

∑∞
n=1 δ(`

(θ)
n ,ξ

(θ)
n )

is a Poisson point process with mean measure

µθ(dt,dx) := t−1e−θtP(Xt ∈ dx)dt, (t, x) ∈ (0,∞)× R.

An immediate corollary of Theorem 2.1 and Proposition 2.10 characterises the

laws of the supremum and infimum of X on the exponential time horizon Tθ.

Corollary 2.11. Let Tθ ∼ Exp(θ) be independent of the Lévy process X. Then the

moment generating functions of XTθ and −XTθ
are given by the following formulae

for any u ≥ 0:

E
[
e−uXTθ

]
= exp

(∫ ∞
0

∫
(0,∞)

(
e−ux − 1

)
e−θtt−1P(Xt ∈ dx)dt

)
, (2.13)

E
[
e
uXTθ

]
= exp

(∫ ∞
0

∫
(−∞,0)

(
eux − 1

)
e−θtt−1P(Xt ∈ dx)dt

)
. (2.14)

Proof. By Theorem 2.1, XTθ
d
=
∫

(0,∞)2 xΞθ(dt,dx), where Ξθ is a Poisson point

process with mean measure µθ. Campbell’s formula [64, p. 28] implies (2.13).

Applying (2.13) to −X yields (2.14).

Recall that 0 is regular for the half-line (0,∞) if X visits (0,∞) almost surely

immediately after time 0, i.e. P(
⋂
t>0

⋃
s≤t{Xs > 0}) = 1.

Theorem 2.12 (Rogozin’s criterion). The starting point 0 of X is regular for (0,∞)

if and only if ∫ 1

0
t−1P(Xt > 0)dt =∞. (2.15)

Proof. Let the time horizon Tθ ∼ Exp(θ) and random sequences `(θ) and ξ(θ) be

as in Proposition 2.10 above. As t 7→ Xt is non-decreasing a.s., 0 is not regular

for (0,∞) if and only if P(XTθ = 0) > 0. Since XTθ
d
=
∫
A xΞθ(dt,dx), where

A := (0,∞) × (0,∞), the event {XTθ = 0} is equal to the event {Ξθ(A) = 0} that

the Poisson point process Ξθ =
∑∞

n=1 δ(`
(θ)
n ,ξ

(θ)
n )

has no points in A. Thus, 0 is not
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regular for (0,∞) if and only if

P
(
XTθ = 0

)
= P

(
Ξθ (A) = 0

)
= exp

(
− EΞθ (A)

)
= exp

(
−
∫ ∞

0
t−1e−θtP(Xt > 0)dt

)
> 0

for some positive θ, which is equivalent to (2.15).

We can now characterise the behaviour of X as t→∞.

Theorem 2.13 (Rogozin). Possibly degenerate variables X∞ := supt≥0Xt and

X∞ := inft≥0Xt satisfy

E
[
e−uX∞

]
= exp

(∫ ∞
0

∫
(0,∞)

(
e−ux − 1

)
t−1P(Xt ∈ dx)dt

)
, (2.16)

E
[
euX∞

]
= exp

(∫ ∞
0

∫
(−∞,0)

(
eux − 1

)
t−1P(Xt ∈ dx)dt

)
, (2.17)

for any u ≥ 0. Define the integrals

I+ :=

∫ ∞
1

t−1P(Xt > 0)dt & I− :=

∫ ∞
1

t−1P(Xt < 0)dt.

Then the following statements hold for any non-constant Lévy process X:

(a) if I+ < ∞, then X∞ is non-degenerate (X∞ < ∞ a.s.) infinitely divisible and

limt→∞Xt = −∞;

(b) if I− <∞, then X∞ is non-degenerate (X∞ > −∞ a.s.) infinitely divisible and

limt→∞Xt =∞;

(c) if I+ = I− =∞, then lim supt→∞Xt = − lim inft→∞Xt =∞.

Proof. Let T1 ∼ Exp(1) be independent of X and note T1/θ ∼ Exp(θ) for any θ > 0.

Since XT1/θ → X∞ as θ → 0 a.s., the corresponding Laplace transforms converge

pointwise. Thus the monotone convergence theorem applied to the right-hand sides

of (2.13)–(2.14) implies (2.16)–(2.17). Identity (2.16) (resp. (2.17)) implies that

I+ < ∞ (resp. I− < ∞) if and only if E exp(−uX∞) > 0 (resp. E exp(uX∞) > 0)

for all u ≥ 0. This implies part (c) and all but the limits in parts (a) & (b). The

limits in (a) & (b) follow from identities (2.16)–(2.17), the strong Markov property,

the Borel–Cantelli lemma and simple manipulations, see [91, p. 365] for details.

Another easy corollary of Theorem 2.1 is the Wiener-Hopf factorisation.
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Theorem 2.14 (Wiener-Hopf factorisation). Let the time horizon Tθ ∼ Exp(θ) be

independent of X. The random vectors (τTθ(X), XTθ) and (Tθ−τTθ(X), XTθ−XTθ)

are independent, infinitely divisible with Fourier-Laplace transforms given by

Ψ+
θ (u, v) := E

[
euτTθ (X)+vXTθ

]
=

ϕ+(−θ, 0)

ϕ+(u− θ, v)
, (2.18)

Ψ−θ (u,−v) := E
[
eu(Tθ−τTθ (X))−v(XTθ−XTθ

)
]

=
ϕ−(−θ, 0)

ϕ−(u− θ, v)
, (2.19)

for any u, v ∈ C with <u,<v ≤ 0. Here ϕ± is defined as follows: set A+ := (0,∞),

A− := (−∞, 0],

ϕ±(a, b) := exp

(∫ ∞
0

∫
A±

(
e−t − eat+b|x|

)
t−1P(Xt ∈ dx)dt

)
, (2.20)

for any a, b ∈ C such that the integrals in (2.20) exist, including the cases where

<a < 0, <b ≤ 0. The characteristic exponent Ψ of X1 (i.e. E exp(vX1) = exp Ψ(v)

for v ∈ C with <v = 0) satisfies

θ/(θ − u−Ψ(v)) = Ψ+
θ (u, v)Ψ−θ (u, v), u, v ∈ C with <v = <u = 0. (2.21)

Proof. Let `(θ), ξ(θ) and Ξθ =
∑∞

n=1 δ(`
(θ)
n ,ξ

(θ)
n )

be as in Proposition 2.10. Applying

Theorem 2.1 gives

(τTθ(X), XTθ)
d
=

∫
B+

(t, x)Ξθ(dt,dx) and

(Tθ − τTθ(X), XTθ −XTθ)
d
=

∫
B−

(t, x)Ξθ(dt,dx),

where B± := (0,∞) × A±. Moreover, since the joint law of (τTθ(X), XTθ) and

(Tθ − τTθ(X), XTθ −XTθ) equals that of the two integrals in the display above, the

vectors are independent because B+ ∩ B− = ∅. By Proposition 2.10, the mean

measure of Ξθ equals µθ(dt,dx) = t−1e−θtP(Xt ∈ dx)dt. Hence

Ψ±θ (u, v) = exp

(∫
(0,∞)×A±

(
eut+vx − 1

)e−θt

t
P(Xt ∈ dx)dt

)
for all u, v ∈ C with <u,<v ≤ 0, by Campbell’s Theorem [64, p. 28]. This

representation of Ψ±θ (u, v) and (2.20) imply (2.18)–(2.19). The independence and

the formula E exp(uTθ + vXTθ) = θ/(θ − u−Ψ(v)) imply identity (2.21).

The question of the absolute continuity of the law of χt(X) = (Xt, Xt, τ t(X))
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was the main topic in [28], investigated using excursion theory. Again, Theorem 2.1

provides an easy approach.

Theorem 2.15. If 0 is regular for both half-lines (0,∞) and (−∞, 0) and Xt is

absolutely continuous for each t > 0, then the law of χt is absolutely continuous.

Proof. The assumption on the regularity of zero for both half-lines implies that,

with probability one, two increments in the first coordinate in the series in (2.3)

have opposite signs, implying P(Xt < Xt) = 1 and P(0 < τ t(X) < t) = 1. Condition

on such an event occurring at indices m 6= n and note that the law of (`n, `m) is

absolutely continuous for any n 6= m. Recall that, given the stick-breaking process

`, the increment of X is by assumption absolutely continuous. A random vector A

is absolutely continuous and independent of B, then A+B has a density, implying

the result.

The proof of Theorem 2.15 is based on analogous arguments in [87], where the

authors used a version of Theorem 2.1 for diffuse Lévy processes (their [87, Thm 1])

to establish a result similar to Theorem 2.15. The key difference lies in the fact that

the proof of [87, Thm 1] uses in an essential way the following result of Rogozin,

whose proof requires fluctuation theory.

Theorem 2.16 (Rogozin). If a Lévy process X has paths of infinite variation, then

lim sup
t↓0

Xt/t = − lim inf
t↓0

Xt/t =∞ a.s.

A circular argument would arise if one attempted to developing fluctuation

theory for Lévy processes with diffuse transition laws using [87, Thm 1], because

of its reliance on Theorem 2.16. In contrast, Theorem 2.1, applicable to all Lévy

processes, has an elementary proof that does not use fluctuation theory. In fact,

Theorem 2.1 implies Theorem 2.16. Indeed, lim supt↓0Xt/t = ∞ if and only if

the right-derivative at 0 of the concave majorant of X over [0, Tθ] is infinite. By

Theorem 2.1 and Proposition 2.10, this is equivalent to Ξθ({(t, x) ∈ (0,∞) × R :

x/t > b}) =∞ a.s. for all b ∈ R, which holds if and only if
∫ 1

0 t
−1P(Xt > bt)dt =∞

for all b ∈ R.

We conclude this section with an application of Theorem 2.1, implying a novel

factorisation identity.

Corollary 2.17. Given b ∈ R, define X
(b)
t := Xt − bt, τ (b)

t := τ t(X
(b)) and Z

(b)
t :=

X
(b)
t + bτ

(b)
t and let Tθ ∼ Exp(θ) be independent of X. Then, for real numbers

a1 > · · · > an, the random vectors (τ
(a1)
Tθ

, Z
(a1)
Tθ

), (τ
(ai+1)
Tθ

− τ (ai)
Tθ

, Z
(ai+1)
Tθ

− Z(ai)
Tθ

),

(Tθ − τ
(an)
Tθ

, Z
(an)
Tθ
−XTθ), i = 1, . . . , n− 1, are independent.
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Proof. Since X does not jump at time Tθ a.s., the Lévy process X(a) and its concave

majorant on [0, Tθ], given by t 7→ −C−X(a)

Tθ
(t) = −C−XTθ (t)+at, share their final value,

suprema, and time of suprema. Let Ξθ :=
∑∞

n=1 δ(`
(θ)
n ,ξ

(θ)
n )

be a Poisson process on

A := (0,∞)×R with mean measure µθ. Applying Theorem 2.1 and Proposition 2.10

to the concave majorant of X on [0, Tθ], we obtain

(
Tθ, XTθ , (τ

(ai)
t )i∈JnK, (Z

(ai)
t − τ (ai)

t )i∈JnK
)

d
=

∫
A

(
t, x, (1{x/t>ai}t)i∈JnK, (1{x/t>ai}x)i∈JnK

)
Ξθ(dt,dx).

Thus, by writing the vectors in the statement of the corollary as integrals with

respect to Ξθ on the disjoint sets {(t, x) ∈ A : x/t > a1}, {(t, x) ∈ A : a1 ≥ x/t >

a2}, . . . , {(t, x) ∈ A : an−1 ≥ x/t > an} and {(t, x) ∈ A : x/t ≤ an}, we obtain their

independence.

§2.6.1 Sticks on exponential intervals are a Poisson point processes

For n ≥ 2, the Dirichlet law on the simplex {(x1, . . . , xn) ∈ (0, 1]n :
∑n

i=1 xi = 1}
with parameters θi > 0 has a density proportional to (x1, . . . , xn) 7→

∏n
i=1 x

θi−1
i .

D is a Dirichlet random measure on (0, 1] if for any 0 = t0 < t1 < . . . < tn =

1, the random vector (D((t0, t1]), . . . , D((tn−1, tn])) follows the Dirichlet law with

parameters (ti−ti−1). Let (Un)n∈N and (Vn)n∈N be independent iid U(0, 1) sequences,

independent of a Dirichlet random measure D0 on (0, 1]. Elementary calculations

imply that D1 = (1−V1)δU1 +V1D0
d
= D0 and hence Dn = (1−Vn)δUn +VnDn−1

d
=

D0 for all n ∈ N. Since Dn converges to D∞ =
∑

n∈N `nδUn in total variation,

where `n = (1 − Vn)
∏n−1
k=1 Vk is a uniform stick-breaking process on [0, 1], we have

D0
d
= D∞. Moreover, by construction we have

∑
n∈N(`

(θ)
n /Tθ)δUn

d
= D∞, where

(`
(θ)
n )n∈N is a stick-breaking process with an independent time horizon Tθ ∼ Exp(θ).

Let G be a gamma subordinator (i.e. Gt has density proportional to s 7→
st−1e−θs). The jump of G at t > 0, ∆Gt = Gt − lims↑tGs, is zero for all but

countably many t, making D′ =
∑

t∈(0,1] ((∆Gt)/G1) δt a Dirichlet random measure

on (0, 1], independent of G1 ∼ Exp(θ). Indeed, for any 0 = t0 < t1 < . . . < tn = 1,

the Jacobian change-of-variable formula shows that the vector

(
D′((t0, t1]), . . . , D′((tn−1, tn]), G1

)
= ((Gt1 −Gt0)/G1, . . . , (Gtn −Gtn−1)/G1, G1)

has the desired law. Thus (D′, G1)
d
= (
∑

n∈N(`
(θ)
n /Tθ)δUn , Tθ), implying that the law

of the Poisson point process
∑

t∈(0,1] 1∆Gt>0δ∆Gt coincides with that of the random

measure
∑

n∈N δ`(θ)n
.
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Chapter 3

The stick-breaking

approximation

§3.1 Construction of the stick-breaking approximation

Based on the stick-breaking representation of the vector χ in (2.3), we define the

SBA χSB
n as follows:

χSB
n =

n∑
k=1

(ξk, ξ
+
k , `k1{ξk>0}) + (YLn , Y

+
Ln
, Ln1{YLn>0}). (3.1)

Since the residual sum
∑∞

k=n+1 ξk equals YLn for any n ∈ N, the first component

of χSB
n coincides with that of χ, while, as we shall see in Theorem 3.1 below, Y +

Ln

and Ln1{YLn>0} reduce the errors of the corresponding partial sums in (3.1). The

coupling (X,Y, `) makes it possible to compare χ and χSB
n on the same probability

space and analyse the strong error χ− χSB
n .

Denote the distribution of Xt by F (t, x) = P(Xt ≤ x), x ∈ R, for t > 0. The

following algorithm simulates exactly from the law of the SBA χSB
n :

Algorithm 1. SB-Alg

Require: n ∈ N, fixed time horizon T > 0
1: Set L0 = T , X0 = (0, 0, 0)
2: for k = 1, . . . , n do
3: Sample Uk ∼ U(0, 1) and put `k = UkLk−1 and Lk = Lk−1 − `k
4: Sample ξk ∼ F (`k, ·) and put Xk = Xk−1 + (ξk, ξ

+
k , `k1{ξk>0})

5: end for
6: Sample ςn ∼ F (Ln, ·) and return Xn + (ςn, ς

+
n , Ln1{ςn>0})
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SB-Alg clearly outputs a random vector with the same law as χSB
n in (3.1),

using a total of n + 1 sampling steps. Theorem 3.1 and §3.2 below show that χSB
n

in (3.1) is an increasingly accurate approximation of χ as n grows. Intuitively this

is because the sum in the definition of χSB
n consists of the first n terms in (2.3)

taken in a size-biased order with respect to (`n)n∈N, making the remainder very

small. It will become clear from Theorem 3.1 that the last step in SB-Alg reduces

the error further. The computational cost of the algorithm is proportional to n if

we can sample any increment of X in constant time. We stress that SB-Alg is not

a version of the random walk approximation on a randomised grid as it does not

require the computation of either max or arg max of a discretisation of X. Instead,

the approximation for the supremum and its time are obtained by summing non-

negative numbers, making SB-Alg numerically very stable. The convergence analysis

of SB-Alg relies on the following result, which describes explicitly the law of its error.

Theorem 3.1. Assume the Lévy process X is not compound Poisson with drift and

let (X,Y, `) be the coupling satisfying (2.3). For any n ∈ N, define the vector of

errors of the SBA by

χ− χSB
n =

(
0,∆SB

n , δSB
n

)
=
(
0,∆n − Y +

Ln
, δn − Ln1{YLn>0}

)
, where

∆n = XT −
n∑
k=1

ξ+
k and δn = τT −

n∑
k=1

`k1{ξk>0}.
(3.2)

Then, conditionally on Ln,

(YLn ,∆n, δn)
d
=
(
YLn , Y Ln , τLn

(
Y
))
, and hence(

∆SB
n , δSB

n

) d
=
(
Y Ln − Y +

Ln
, τLn(Y )− Ln1{YLn>0}

)
.

(3.3)

Moreover, the inequalities 0 ≤ ∆SB
n+1 ≤ ∆SB

n ≤ ∆n, 0 ≤ δn ≤ Ln and |δSB
n | ≤ Ln

hold a.s.

Non-asymptotic (i.e. for fixed n) explicit descriptions of the law of the error,

such as (3.3) in Theorem 3.1, are not common among the simulation algorithms for

the supremum and related functionals of the path. Since Ln and Y are independent,

the representation in (3.3) is easy to work with and provides a cornerstone for

the results of §3.2. Note that, by Theorem 3.1, the sequences (∆SB
n )n∈N, (∆n)n∈N

and (δn)n∈N are nonincreasing almost surely and converge to 0. Furthermore, the

following observations based on Theorem 3.1 motivate the final step in SB-Alg (i.e.

the inclusion of the last summand in the definition in (3.1)): (I) the tail of the error

∆SB
n may be strictly lighter than that of ∆n (as Xt −X+

t = min{Xt, Xt −Xt} and
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Xt − Xt
d
= sups∈[0,t](−Xs) for all t > 0 [13, Prop. VI.3]); (II) for a large class of

Lévy processes, δSB
n is asymptotically centred at 0, i.e. E[δSB

n /Ln] → 0 as n → ∞,

while E[δn/Ln] converges to a strictly positive constant (see Proposition 3.9 below

for details). Theorem 3.1 is proved in §3.4.1.

Since ELn = T2−n and Ln is independent of Y , the convergence of SB-Alg is

geometric (see also §3.2). Moreover, the error (∆SB
n , δSB

n ) satisfies the following weak

limit.

Corollary 3.2. If the weak limit Xt/a(t)
d→ Z1 (as t→ 0) holds for some (necessarily)

α-stable process Z and a positive function a, which is necessarily 1/α-regularly

varying at zero, then(
YLn
a(Ln)

,
∆n

a(Ln)
,
δn
Ln

)
d→
(
Z1, Z1, τ1(Z)

)
as n→∞. (3.4)

The assumption in Corollary 3.2 essentially amounts to both tails of the Lévy

measure of X being regularly varying at zero with index −1/α (see [60, Thm 2]).

This is a rather weak requirement, typically satisfied by Lévy based models in

applied probability, which allows an arbitrary modification of the Lévy measure away

from zero (see discussion in [60, Sec. 4]). Moreover, the index α is given by (3.30)

and the function a(t) is typically of the form a(t) = C0t
1/α for some constant C0 > 0.

The scaling in the limit (3.4) is stochastic; however, since ELn = T2−n, the rate of

decay of the error is clearly geometric. Corollary 3.2 is proved in §3.4.1 by applying

Theorem 3.1 to the small-time weak limit of X.

Connections with the literature

In contrast with Theorem 3.1 for the SBA, the laws of the errors of all the other

algorithms discussed in Chapter 2 are intractable. The error of the SBA χSB
n in (3.1)

decays geometrically in law in Corollary 3.2. Analogous weak limits have not been

studied for other approximations except for the RWA, where the convergence is

polynomial, see [17, 60]. Similarly, the error of the SBA χSB
n in (3.1) also converges

geometrically in Lp (see Theorem 3.3 below) as opposed to the polynomial decay

for the other algorithms (see §3.2.1 below). The error in Lp of the SBA applied

to locally Lipschitz and barrier-type functions arising in applications also decays

geometrically (see Propositions 3.6 & 3.7 below). Such errors have not been analysed

for algorithms other than the RWA, which has polynomial decay (see §3.2.2 for

details).

The rate of the decay of the error in L1 for these functions is crucial, since
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this error bounds the bias and is directly linked to the computational complexity

of MC and MLMC estimates. Indeed, if the mean squared error is to be at most

ε > 0, the MC algorithm based on the SBA has (near optimal) complexity of order

O(ε−2 log ε). The MLMC scheme based on SB-Alg has (optimal) complexity of order

O(ε−2), which is in general neither the case for the RWA [49] nor the WHA [45] (see

details in §3.2.4).

The remainder of this chapter is organised as follows. We develop the theory

for the SBA as a Monte Carlo algorithm in §3.2. Each result is compared with its

analogue (if it exists) for the approximations mentioned in Chapter 2 above. In §3.3

we provide numerical examples illustrating the performance of SB-Alg. The proofs

of the results in §3.2 are presented in §3.4.

§3.2 SBA Monte Carlo: theory and applications

The present section describes the geometric convergence of SB-Alg and analyses the

Monte Carlo estimation of the functions of interest in applied probability. In §3.2.1

we establish the geometric decay of the error in Lp. In §3.2.2 we show that the

error in Lp (and hence the bias) of SB-Alg applied to the aforementioned functions

also decays geometrically. In §3.2.3 we study the error of the MC estimator based

on SB-Alg for the expected value of those functions via a central limit theorem

and provide the corresponding asymptotic and non-asymptotic confidence intervals.

§3.2.4 gives the computational complexity of the MC and MLMC estimators based

on SB-Alg.

§3.2.1 Geometric decay in Lp of the error of the SBA

In the present subsection we study the decay in Lp of the error (∆SB
n , δSB

n ) of the

SBA χSB
n given in (3.2). Let (σ2, ν, b) be the generating triplet of X associated with

the cutoff function x 7→ 1{|x|<1} (see [91, Ch. 2, Def. 8.2]). The existence of the

moments of XT and XT , necessary for the following result, can be characterised [91,

Thm 25.3] in terms of the integrals

Ip+ =

∫
[1,∞)

xpν(dx), Ip− =

∫
(−∞,−1]

|x|pν(dx), p ≥ 0. (3.5)

Theorem 3.3. The following results hold for any p ≥ 1.

(a) The inequality max{E
[
|δSB
n |p

]
,E[δpn]} ≤ T p(1 + p)−n holds for any n ∈ N.

(b) If min{Ip+, I
p
−} < ∞ (resp. Ip+ < ∞), then E[(∆SB

n )p] (resp. E[∆p
n]) is bounded
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above by O(η−np ) as n → ∞, where ηp lies in the interval [3/2, 2] for any Lévy

process X. Both ηp, defined in (3.31), and the constants in O(η−np ) are explicit in

the characteristics (σ2, ν, b) of X (see (3.33)).

By Theorem 3.1, the error ∆SB
n is bounded above by the supremum of the Lévy

process over the stochastic interval [0, Ln] with average length equal to ELn = T2−n.

The key step in the proof of Theorem 3.3, given in Lemma 3.12 below, consists of

controlling the expectation of the supremum ofX over short time intervals (see §3.4.2

below for details).

Since η2 = 2 (see definition in (3.31) below), an application of Theorem 3.3(b)

for p ∈ {1, 2} yields E∆SB
n = O((3/2)−n) and E

[(
∆SB
n

)2]
= O(2−n). These two

moments are used in the analysis of the MLMC estimator based on SB-Alg (see §3.2.4

below). A further application of Theorem 3.3 yields a geometric bound on the Lp-

Wasserstein distance Wp(L(χ),L(χSB
n )) between the laws L(χ) and L(χSB

n ) of the

corresponding random vectors (see (3.34) below for the definition of the Wasserstein

distance and §3.4.2 for the proof of Corollary 3.4).

Corollary 3.4. If Ip+∧I
p
− <∞ for some p ≥ 1, then Wp(L(χ),L(χSB

n )) = O(η
−n/p
p )

as n → ∞. As in Theorem 3.3(b) above, ηp lies in the interval [3/2, 2] and the

constant in O(η
−n/p
p ), given in Equation (3.35), is explicit.

Comparison

The algorithm based on the RWA with time-step T/n outputs a vector χRW
n , which

is comprised of the final state XT , maximum maxt∈{0,T/n,...,T}Xt of X on the grid

and first time arg maxt∈{0,T/n,...,T}Xt this maximum is attained on the grid. The

L1 bounds on the error ∆RW
n = XT −maxt∈{0,T/n,...,T}Xt of the RWA have a long

history. Using the weak limit of the error of the RWA, the L1 bound E∆RW
n =

O(n−1/2) is established for the Brownian motion with drift in [7, 22]. The same

bound holds when the jumps ofX have finite activity (i.e. ν(R) <∞ and σ 6= 0) [42].

The approach of [42], based on Spitzer’s identity, was extended in [30, Thm 5.2.1]

to the case without a Brownian component. If X has paths of finite variation, these

bounds were further improved via a different methodology in [17]. In particular,

by [17, Thm 4.1], we have: E∆RW
n = O(n−1/2) if X has a Brownian component (i.e.

σ 6= 0), E∆RW
n = O(n−1) if X has paths of finite variation (i.e.

∫
(−1,1) |x|ν(dx) <∞

and σ = 0) and E∆RW
n = O(nδ−1/β) otherwise, for any small δ > 0 and β ∈ [1, 2]

defined in (3.14) below.

Bounds for E
[(

∆RW
n

)p]
, p > 0, analysed in [17, 42], are as follows. By [17,

Thm 4.1], for α ∈ [0, 2] given in (3.30) below, the decay is O(n−1) for p > α and
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O(nδ−p/α) for 0 < p ≤ α and any small δ > 0 (we may take δ = 0 if either α = 1 and

X is of finite variation or α = 2). If X is spectrally negative (i.e. ν((0,∞)) = 0) and

has jumps of finite variation (i.e.
∫

(−1,0) |x|ν(dx) < ∞), then for p > 1 the decay

is of order O(n−p) (resp. O(n−p/2 logp n)) if σ = 0 (resp. σ 6= 0) [42, Lem. 6.5].

Interestingly, as noted in [17, Rem. 4.4], if X has jumps of both signs, then for any

p > 0, the error of the RWA satisfies lim infn→∞ nE
[(

∆RW
n

)p]
> 0. Put differently,

the error cannot be of order o(n−1).

Intuitively, the error committed by the RWA is due to the skeleton missing the

fluctuations of the process over the interval of length 1/n where the process attained

its supremum. Since these fluctuations can be substantial in the presence of high

jump activity and heavy tails, the decay of the resulting error is polynomial in n.

In contrast, the error of the SBA is by Theorem 3.3(b) bounded by O(η−np ) with

ηp ∈ [3/2, 2], as it commits the same error as the RWA but over the interval [0, Ln]

with average length of T/2n. Numerical results show that the biases of the RWA

and the SBA over 2n and n steps, respectively, are comparable (Figure 3.1 below).

Recall that the WHA, applicable to a parametric class of Lévy processes [70],

is given by (XGn , XGn), where Gn is an independent gamma random variable with

mean EGn = T and variance T 2/n. Since Xs+t−Xs is stochastically dominated by

Xt and Xt+s −Xs
d
= Xt, the Lp norm of the error is linked to both, the small time

behaviour of t 7→ (Xt, Xt) and the deviations of Gn from T . Therefore, the moments

of the errors depend on those of |Gn − T | and satisfy E[|XT −XGn |p] = O(n−1/q)

and E[|XT − XGn |p] = O(n−1/q) for p ∈ {1, 2}, where q = 4 if p = 1 and X is of

infinite variation and q = 2 otherwise [45, Prop. 4.5]. These bounds are based on

a martingale decomposition of the Lévy process X (see [45, Lem. 4.4]), while our

analogous results use the Lévy-Itô decomposition, see Lemma 3.12.

Intuitively, the error in the WHA is due to the censored fluctuations of X over a

stochastic interval of length |Gn−T |. This is analogous to the error of the SBA over

a stochastic interval of length Ln. However, since E[|Gn−T |] is asymptotically equal

to T
√

2/(nπ) (by the central limit theorem and [14, Thm 5.4]) and E[Ln] = T2−n,

the speed of convergence is polynomial in the WHA and geometric in the SBA.

The first two moments of the error of the JAGA with cost n were analysed

in [38, 39], resulting in the bound O(n−min{1,1/β+} + n1/4−1/β+
√

log n) if X has no

Brownian component (i.e. σ = 0) and O(n1/4−min{3/4,1/β+}√log n) otherwise, where

β+, given in (3.15), is slightly larger than the Blumenthal-Getoor index β ∈ [0, 2]

in (3.14). Intuitively, this error is the result of missing the fluctuations of X between

consecutive points on the random grid and the error incurred from approximating

the small-jump component with an additional Brownian motion.
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§3.2.2 SBA for certain functions: geometric decay of the strong

error

Throughout the chapter we consider a measurable function g : R×R+× [0, T ]→ R
satisfying E|g(χ)| < ∞, where R+ = [0,∞). We focus our attention on the classes

of functions that arise in application areas such as financial mathematics [35, 92],

risk theory [5, 93] and insurance [37]. More specifically, we study the following

three classes of functions: (I) Lipschitz in Proposition 3.5, (II) locally Lipschitz

in Proposition 3.6 and (III) barrier-type in Proposition 3.7. These results are a

consequence of the representation of the law of the error in Theorem 3.1, bounds

from Theorem 3.3 and a tail estimate (without integrability assumptions) for the

error ∆n in Lemma 3.18.

Lipschitz functions of χ arise in applications, for example, in the pricing of

hindsight [22, 42, 49, 95] and perpetual American [82] puts under exponential Lévy

models. Indeed, for fixed S0,K0 > 0, these two examples require computing the

expectations of (K0 − S0eXT−XT )+ and eXT−XT , both of which are bounded and

Lipschitz in (XT , XT ) since XT ≥ XT . The next result, proved in §3.4.3 below,

shows that the convergence of SB-Alg is also geometric for these functions.

Proposition 3.5. Assume |g(x, y, t)−g(x, y′, t′)| ≤ K(|y−y′|+|t−t′|) for some K >

0 and all x ∈ R, y, y′ ∈ R+, t, t′ ∈ [0, T ]. Suppose p ≥ 1 satisfies ‖g‖∞∧Ip+∧I
p
− <∞,

where ‖g‖∞ = sup{|g(x, y, t)| : (x, y, t) ∈ R × R+ × [0, T ]}, and let ηp ∈ [3/2, 2] be

as in (3.31). Then we have

E[|g(χ)− g(χSB
n )|p] = O(η−np ) as n→∞.

Moreover, the constant in O(η−np ), given in Equation (3.38) below, is explicit in K,

‖g‖∞ and the characteristics (σ2, ν, b) of the Lévy process X.

The pricing of lookback puts, hindsight calls [22, 42, 49] and perpetual American

calls [82] involve expectations of continuous functions of χ, such as (S0eXT −K0)+

and eXT , which are only locally Lipschitz. By Proposition 3.6, under appropriate

assumptions on large positive jumps, the error of SB-Alg decays geometrically for

such functions.

Proposition 3.6. Assume that |g(x, y, t)−g(x, y′, t′)| ≤ K(|y−y′|+|t−t′|)emax{y,y′}

for some K > 0 and all (x, y, y′, t, t′) ∈ R×R2
+× [0, T ]2. Let p ≥ 1 and q > 1 satisfy∫

[1,∞) epqxν(dx) <∞ and let ηpq′ ∈ [3/2, 2] be as in (3.31), where q′ = (1− 1/q)−1.

Then we have

E[|g(χ)− g(χSB
n )|p] = O

(
η
−n/q′
pq′

)
as n→∞.
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Moreover, the constant in O
(
η
−n/q′
pq′

)
, given in Equation (3.40) below, is explicit in

p, q,K and the characteristics (σ2, ν, b) of the Lévy process X.

In order to obtain the smallest value η
−1/q′

pq′ in Proposition 3.6, one needs to

take the largest possible q allowed by the assumptions (see Remark 3.19 below for

details). Hence, the rate of decay is determined by the exponential moments of

the Lévy measure ν|[1,∞). In the context of financial mathematics, it is natural

to assume that the returns in the exponential Lévy model have finite variance, i.e.

Ee2Xt <∞. This is equivalent to
∫

[1,∞) e2xν(dx) <∞ [91, Thm 25.3], implying for

example q = 2 (for p = 1) with the bound O(2−n/2).The proof of Proposition 3.6 is

in §3.4.3. A numerical example is in §3.3.1.

Barrier-type functions of χ, which are discontinuous in the trajectory of the

Lévy process, arise in the pricing of contingent convertibles [37], the evaluation of

ruin probabilities [65] and as payoffs of barrier options [21, 22, 95]. By Theorem 3.1,

the error ∆SB
n in (3.2) of the second coordinate XT −∆SB

n of the SBA χSB
n satisfies

0 ≤ ∆SB
n ↘ 0 a.s. as n → ∞. Hence, the limit P(XT − ∆SB

n ≤ x) ↘ P(XT ≤ x)

as n → ∞ holds for any fixed x > 0. The rate of convergence in this limit is both

crucial for the control of the bias of barrier-type functions and intimately linked to

the quality of the right-continuity of the distribution function x 7→ P(XT ≤ x) of

XT . We will thus need the following assumption.

Assumption (H). Given M,K, γ > 0, the inequality P(M < XT ≤M + x) ≤ Kxγ

holds for all x ≥ 0.

Proposition 3.7. Define g(χ) = h(XT )1{XT≤M}, where h : R→ R is bounded and

measurable and M > 0. Let Assumption (H) hold for M and some K, γ > 0. Fix

any p, q ≥ 1 and let ηq ∈ [3/2, 2] be as in (3.31). Then we have

E[|g(χ)− g(χSB
n )|p] = O

(
η−nγ/(γ+q)
q

)
, as n→∞.

Moreover, the constant in O
(
η
−nγ/(γ+q)
q

)
, given in Equation (3.41) below, is explicit

in K, γ, p, q, ‖h‖∞ and the characteristics (σ2, ν, b) of the Lévy process X.

The proof of Proposition 3.7 is in §3.4.3 below. Minimising η
−γ/(γ+q)
q as a

function of q is not trivial (see Remark 3.20 below for the optimal choice of q). In

the special case when γ = 1 (i.e. the distribution function of XT is Lipschitz from

the right at M) we have: (a) if X has paths of finite variation, then the optimal

choice q = 1 gives η1 = 2 and the bound O(2−n/2); (b) if σ 6= 0, then the optimal

choice q = 2 yields the bound O(2−n/3).
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The rate of decay in Proposition 3.7 is essentially controlled by the rate of

convergence in the Kolmogorov distance of XT − ∆SB
n to XT . In general, as

mentioned above, XT−∆SB
n is known to converge to XT weakly. As the Kolmogorov

distance does not metrise the topology of weak convergence (cf. [85, Ex. 1.8.32, p.43]),

we require an additional assumption, such as (H), to obtain a rate in Proposition 3.7.

Assumption (H) holds for a wide class of Lévy processes. By the Lebesgue

differentiation theorem [33, Thm 6.3.3], the function x 7→ P(XT ≤ x) is differentiable

a.e. and Assumption (H) holds for γ = 1 and Lebesgue almost every M . If the

density of XT exists and is bounded around M , then x 7→ P(XT ≤ x) is locally

Lipschitz at M , again satisfying Assumption (H) with γ = 1. This is the case if the

density of XT is continuous at M , which holds for stable processes or if σ 6= 0 [29],

and, more generally, if X converges weakly under the zooming-in procedure and

α > 1 in (3.30), see [17, Lem. 5.7]. Moreover, by [29, Prop. 2] and [13, Sec. VI.4,

Thm 19], the density of XT is continuous at M if the ascending ladder height process

of X has positive drift (e.g. if X is spectrally negative of infinite variation) or if X

is in a certain class of subordinated Brownian motions [72, Prop. 4.5]. However, the

continuity of the density of XT is known to fail if X is of bounded variation with no

negative jumps and has a Lévy measure with atoms [71, Lem. 2.4]. Furthermore,

for any γ ∈ (0, 1), the function x 7→ P(XT ≤ x) may be continuous at M but not

locally γ-Hölder continuous even if the Lévy measure has no atoms, demonstrating

again the necessity of an condition such as Assumption (H) in Proposition 3.7.

We stress that, even if the density is locally bounded at M , it appears to be

very difficult to give bounds (based on the Lévy characteristics) on the value it takes

at M . This means that, unlike in the case of a (locally)-Lipschitz function g(χ), in

the context of barrier options we cannot provide non-asymptotic confidence intervals

based on Proposition 3.7, cf. §3.2.3 below.

Comparison

The results in [17, 38, 39, 42, 45], discussed in §3.2.1 above, yield bounds in Lp on

the error of a Lipschitz function of (XT , XT ). The orders of decay are the same as

those reported in §3.2.1 above for the respective approximations. The error of the

time of the supremum τT , geometrically convergent for the SBA by Theorem 3.3(a)

and Proposition 3.5, appears not to have been studied for the other algorithms.

In the case of locally Lipschitz functions, only the decay of the error in L1 for
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the RWA seems to have been analysed. Define for any q > 0 the integral

Eq+ =

∫
[1,∞)

eqxν(dx). (3.6)

If X has finite activity (i.e. ν(R) < ∞), then the bias equals O(n−1/2) if σ 6= 0

and Eq+ <∞ for some q > 2 [42, Prop. 5.1] and o(n−(q−1)/q) if σ = 0 and Eq+ <∞
for some q > 1 [42, Rem. 5.3]. In the case σ = 0 and ν(R) = ∞, for any q > 1

satisfying Eq+ < ∞ and any arbitrarily small δ > 0, the bias decays as follows:

O((n/ log n)δ−(q−1)/q) if the process is of finite variation (i.e. I1
0 <∞), O(nδ−(q−1)/q)

if
∫

(−1,1) |x| log |x|ν(dx) < ∞ and O(nδ−(q−1)/(2q)) otherwise [42, Thm 6.2]. If the

Lévy process X is spectrally negative with jumps of finite variation (i.e. ν(R+) = 0

and
∫

(−1,0) |x|ν(dx) <∞) and if Eq+ <∞ for some q > 1, the error decays as O(n−1)

(resp. O(n−1/2 log n)) if σ = 0 (resp. σ 6= 0) [42, Prop. 6.4].

Discontinuous payoffs under variance gamma (VG), normal inverse Gaussian

(NIG) and spectrally negative α-stable (with α > 1) processes are considered in [49].

Under the assumption that the density of the supremum is bounded around the

barrier level in all three models, the errors in Lp of the RWA decay as O(nδ−1),

O(nδ−1/2) and O(nδ−1/α) for arbitrarily small δ > 0, respectively [49, Prop. 5.5]. In

the case ν(R) < ∞ and σ 6= 0, the error decays as O(1/
√
n), see [43, Prop. 2.2 &

Rem. 2.3]. This result was first established in [21] for Brownian motion with drift.

As noted in [17, Sec. 5.3], if X has a jointly continuous density (t, x) 7→
∂
∂xP(Xt ≤ x) bounded for (t, x) away from the origin (0, 0) (e.g. if Orey’s condition

holds for γ > 1 [91, Prop. 28.3] or σ > 0, see also the paragraphs following

Proposition 3.7), ν(R) = ∞ and α ≥ 1 (defined in (3.30)), then the error in Lp

of the RWA for a barrier option decays as O(nδ−1/α) for any small δ > 0. Moreover,

by [17, Lem. 5.8], lim infn→∞ nP(XT > x ≥ maxk∈{1,...,n}XkT/n) > 0 if X has jumps

of both signs. Put differently, the error in Lp of the RWA for a general barrier option

cannot be of order o(n−1). As far as the author knows, such results for the WHA [70]

are currently unavailable.

§3.2.3 The central limit theorem (CLT) and the confidence intervals

(CIs)

Let (χSB
n,i)i∈{1,...,N} be the output produced by N ∈ N independent runs of SB-

Alg using n steps. The Monte Carlo estimator
∑N

i=1 g(χSB
n,i)/N of Eg(χ), where

g : R × R+ × [0, T ] → R is a measurable function of interest in applied probability
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(e.g. in one of the classes from §3.2.2 above), has an error

∆g
n,N =

1

N

N∑
i=1

g(χSB
n,i)− Eg(χ). (3.7)

The aim is to understand the rate of convergence of the error in (3.7) as the number

of samples N tends to infinity.

Theorem 3.8 (CLT). If P(χ ∈ Dg) = 0, where Dg is the discontinuity set of g,

and

(a) there is a measurable function G : R× R+ × [0, T ]→ R+ such that:

(i) |g(x, y, t)| ≤ G(x, y, t) for all (x, y, t) ∈ R× R+ × [0, T ],

(ii) for all x ∈ R, (y, t) 7→ G(x, y, t) is non-decreasing in both coordinates,

(iii) E[G(XT , XT , T )2] <∞,

(b) Eg(χ) = Eg(χSB
n ) + o(η−ng ) for some ηg > 1.

Denote V[g(χ)] = E[(g(χ) − E[g(χ)])2] and set nN = dlogN/ log(η2
g)e for every

N ∈ N, where we denote dxe = inf{n ∈ N : n ≥ x} for x ∈ R. Then the following

weak convergence holds

√
N∆g

nN ,N
d→ N(0,V[g(χ)]), as N →∞. (3.8)

Theorem 3.8 is not an iid CLT since the bias of the MC estimator forces the

increase in the number of steps taken by SB-Alg as the number of samples N →
∞. Its proof (see §3.4.4 below) establishes Lindeberg’s condition and then applies

the CLT for triangular arrays. The condition P(χ ∈ Dg) = 0 is satisfied if e.g.

the Lebesgue measure of Dg is zero and 0 is regular for X for both half-lines [28,

Thm 3]. This assumption is important as it allows us to construct asymptotic

confidence intervals for barrier options using the limit in (3.8). Assumption (a)

ensures the convergence of V[g(χSB
n )] to V[g(χ)] and might seem restrictive at first

sight. However, the function G is very easy to identify (see Remark 3.21 below)

in the contexts of Propositions 3.5, 3.6 and 3.7, where Assumption (b) also clearly

holds.

Since |∆g
n,N | ≤ |Eg(χ) − Eg(χSB

n )| + |∆g
n,N − E∆g

n,N |, we may construct a

confidence interval for the MC estimator
∑N

i=1 g(χSB
n,i)/N at level 1 − ε ∈ (0, 1)

using the implication:

|Eg(χ)− Eg(χSB
n )| < r1,

P(|∆g
n,N − E∆g

n,N | < r2) ≥ 1− ε,

}
=⇒ P(|∆g

n,N | < r1 + r2) ≥ 1− ε. (3.9)
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In (3.9), r1 may be chosen as a function of the number n of steps in SB-Alg

in various ways depending on the properties of g (see Propositions 3.5 and 3.6

of §3.2.2). Note that this requires the explicit dependence of the constant on the

model characteristics.

Having fixed n, pick r2 in (3.9) as a function of ε either via concentration

inequalities (not relying on Theorem 3.8) or the CLT in Theorem 3.8:

(i) Non-asymptotic CI: since we have P
(
|∆g

n,N − E∆g
n,N | > r

)
≤ V[g(χSB

n )]/(r2N)

by Chebyshev’s inequality, we only need to bound the variance V[g(χSB
n )] (e.g. by

the function G in Remark 3.21).

(ii) Asymptotic CI: since ∆g
n,N −E∆g

n,N = N−1
∑N

i=1 g(χin)−Eg(χSB
n ), we may use

the CLT for fixed n in Remark 3.22 (as in (i), we bound V[g(χSB
n )] by elementary

methods).

In the case we do not have access to the constants in the bound on the bias

in (3.9) in terms of the model parameters (e.g. barrier options in Proposition 3.7),

we apply the CLT result in Theorem 3.8 to the estimator ∆g
nN ,N

directly, to obtain

an asymptotic CI. See §3.3.2 below for the numerical examples of asymptotic and

non-asymptotic CIs.

§3.2.4 Computational complexity of SB-Alg and the MLMC

Suppose the expected computational cost of drawing a sample from the distribution

F (t, ·) in SB-Alg is bounded above by a constant that does not depend on t ∈ [0, T ].

Then the expected computational cost of a single draw from the law of χSB
n via SB-

Alg is bounded by O(n). The CLT in Theorem 3.8 (applicable to (locally) Lipschitz

and barrier-type functions, cf. §3.2.3 above) implies that the L2-norm of the error

in (3.7) of the MC estimator can be made smaller than ε, i.e. E[(∆g
n,N )2] ≤ ε2, at a

computational cost of O(ε−2 log ε) as ε→ 0. The cost of the Monte Carlo estimator

based on SB-Alg is thus only a log-factor away from the optimal Monte Carlo cost

O(ε−2), arising when exact simulation with finite expected running time is possible.

The main aim of MLMC, introduced in [48, 59], is to reduce the computational

cost of an MC algorithm for a given level of accuracy. We will apply a general MLMC

result [32, Thm 1], stated in Theorem 3.23 for ease of reference. Let P = g(χ) and

Pn = g(χSB
n ), n ∈ N, for any function g that satisfies the assumptions of Theorem 3.8

(see also Remark 3.21 below). Note that the expected computational cost of a single

draw in Theorem 3.23 is allowed to grow geometrically in n. Since in the context

of the present section sampling Pn has a cost of O(n), we may choose an arbitrarily

small rate q3 > 0 in Theorem 3.23.

A key component of any MLMC scheme is the coupling (Pn, Pn+1). In the case
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of SB-Alg (and the notation therein), this consists of using the same sequence of

sticks (λk)k∈{1,...,n} and increments (ξk)k∈{1,...,n} in the consecutive levels and setting

ςn = ξn+1 + ςn+1. Since

V[Pn+1 − Pn] ≤ E[(Pn+1 − Pn)2] ≤ 2(E[(Pn+1 − P )2] + E[(P − Pn)2]), (3.10)

Assumption (b) in Theorem 3.23 follows easily from the bound E[(P − Pn)2] =

O(2−nq2) for all functions g of interest (see Propositions 3.5, 3.6 and 3.7 above

for the corresponding q2 > 0). These observations imply that the computational

complexity of the MLMC estimator in (3.47) is bounded above by O(ε−2) (take

q3 = q2/2 for all choices of g in the propositions above). The implementation of

the MLMC estimator based on SB-Alg for a barrier-type function g under the NIG

model numerically confirms this bound, see §3.3.3 below.

Comparison

The computational complexity of MC and MLMC procedures based on the SB-

Alg is given by O(ε−2| log ε|) and O(ε−2), respectively, for a function g(χ), which

is Lipschitz, locally Lipschitz or barrier-type. This makes SB-Alg robust, as its

performance does not depend on the structure of the problem. In particular, minor

changes in model parameters will not result in major differences in the computational

complexity. We compare this to the extant MC and MLMC algorithms in the

literature.

Lipschitz function g. We first review results for Lipschitz functions of (XT , XT ).

For the RWA, α as in (3.30) below and a small δ > 0 (δ = 0 if α ∈ {1, 2}),
[17, Thm 4.1] implies that the cost of an MC estimator is O(ε−2−max{1,α+δ}).

In particular, if σ 6= 0, the complexity of the RWA is O(ε−4) (see also [30, 42,

49]). Their MLMC counterparts, derived following the procedure of [49], together

with the bounds in [17, Thm 4.1] and (3.10), have a complexity of O(ε−2 log2(ε)).

Moreover, if the process is spectrally negative without a Brownian component and

either an infinite variation stable process [49, Prop. 5.5] or of finite variation [42,

Lem. 6.5], then the MLMC estimator for a Lipschitz function of (XT , XT ) has

optimal cost O(ε−2). For the WHA, the MC (resp. MLMC) estimator for a

Lipschitz function of (XT , XT ) has a complexity of O(ε−4) (resp. O(ε−3)) if the

process is of finite variation and of O(ε−6) (resp. O(ε−4)) otherwise [45, Thm 4.6].

For the JAGA, the complexity of the MC estimator is O(ε−2−max{2,4β+/(4−β+)})

if σ 6= 0 and O(ε−2 max{ε−max{1,β+}, ε−4β+/(4−β+) log(1/ε)2β+/(4−β+)}) otherwise

(see (3.15) for the definition of β+ ∈ (0, 2]). The complexity of the corresponding
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MLMC estimator is O(ε−2 log(1/ε)3·1{σ 6=0}) if β+ < 1, O(ε−2| log ε|2+1{σ 6=0}) if

β+ = 1, O(ε−2−4(1−1/β+)| log ε|2−2/β+) if β+ ∈ (1, 4/3] and σ 6= 0, and of order

O(ε−2−8(β+−1)/(4−β+)| log ε|4(β+−1)/(4−β+)) otherwise. In the worst case β+ = 2, the

MLMC complexity for the JAGA is O(ε−6).

Locally Lipschitz function g. In the case of locally Lipschitz functions, only

the MC analysis of the RWA appears to be available in the literature. The error

in this case is at best O(ε−3), attained only when the Lévy process is spectrally

negative with jumps of finite variation and no Brownian component (i.e. ν(R+) = 0,∫
(−1,0) |x|ν(dx) < ∞ and σ = 0) and the inequality Eq+ < ∞ holds for some q > 1,

see [42, Prop. 6.4] (recall the definition of Eq+ in (3.6) above). If X has a Brownian

component (i.e. σ 6= 0), then the cost is either O(ε−4) if ν(R) <∞ and Eq+ <∞ for

some q > 2 [42, Prop. 6.4] or O(ε−4 log2(ε)) if X is spectrally negative with jumps

of finite variation and Eq+ < ∞ for some q > 1 [42, Prop. 5.1]. If σ = 0 and X

has infinite activity, then for any arbitrarily small δ > 0, the condition Eq+ < ∞
(for some q > 1) implies an MC complexity of O(ε−2−2q/(q−1)−δ). In the last case,

the decay may be improved to O(ε−2−q/(q−1)−δ| log(ε)|) (resp. O(ε−2−q/(q−1)−δ)) if∫
(−1,1) |x|ν(dx) <∞ (resp.

∫
(−1,1) |x| log |x|ν(dx) <∞) [42, Thm 6.2].

Barrier-type function g. To the best of the author’s knowledge, there are no

non-parametric MLMC results in the literature for barrier options under the RWA.

Recently the MLMC for the RWA under VG, NIG and spectrally negative α-stable

(with α > 1) processes has been shown in [49] to have the computational cost of

O(ε−2−δ), O(ε−3−δ) and O(ε−1−α−δ) for small δ > 0, respectively. We are not aware

of any results for WHA, introduced in [70], for barrier options.

§3.3 Numerical examples

The implementation of SB-Alg above can be found in the repository [50] together

with a simple algorithm for the simulation of the increments of the VG, NIG and

weakly stable processes. This implementation was used in §3.3.1 below.

§3.3.1 Numerical comparison: SBA and RWA

Let X = (Xt)t≥0 be given by Xt = BZt + bt, where Z is a subordinator with Lévy

measure νZ(dx) = 1{x>0}γx
−α−1e−λxdx (α ∈ [0, 1), γ, λ > 0) and drift σZ ≥ 0,

B is a standard Brownian motion and b ∈ R. The Lévy measure of X equals

ν(dx)/dx = γ√
2π
|x|−2α−1

∫∞
0 s−α−3/2e−λsx

2−s−1/2ds by [91, Thm 30.1], implying

that the Blumenthal-Getoor index of X is β = 2α ∈ [0, 2), and its Brownian
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Figure 3.1: We take α = 0.75, γ = 0.1, λ = 4, σZ = 0.05, b = −0.05 and S0 = 2,
K0 = 3, M = 5, T = 1 and N = 107. The value Eg(χ) is obtained by running SB-
Alg for n = 100 steps and using N = 108 samples. The RWA is approximately
(2n/n)-times slower than the SBA for the same amount of bias, making it infeasible
for n > 15 as at least 60000 < 2n steps are needed in the time interval [0, 1].

component equals σ2 = σ2
Z . Moreover, the increment Xt can be simulated in

constant expected computational time for any t > 0.

We consider the estimator
∑N

i=1 g(χin)/N , where (χin)i∈{1,...,N} areN iid samples

produced by running the SB-Alg over n steps. We compare the results with the

output of the RWA, based on a time step of size T/2n and the same number N of

iid samples. The function g(χ) corresponds to either a lookback put or an up-and-

out call under the exponential Lévy model S = S0 exp(X). Figure 3.1 shows that

the accuracy of the two algorithms is comparable as suggested by Propositions 3.6

and 3.7 above (note Eq± <∞ if and only if q2 < 2, since E
[
eqXt

]
= ebtE

[
eq

2Zt/2
]
).

§3.3.2 Asymptotic and non-asymptotic CIs

Let X be a Normal Inverse Gaussian process (NIG) with parameters (b, κ, σ, θ), i.e.

with characteristic function E
[
eiuXt

]
= exp(t(b+ 1/κ)− (t/κ)

√
1− 2iuθκ+ κσ2u2),

whose Lévy measure is given by

ν(dx)

dx
=

C

|x|
eAxK1(B|x|), with A =

θ

σ2
, B =

√
θ2 + σ2/κ

σ2
, C =

√
θ2 + 2σ2/κ

2πσκ3/2
,

where K1 is the modified Bessel function of the second kind, which satisfies

K1(x) =
1

x
+O(1), as x→ 0, and K1(x) = e−x

√
π

2|x|
(1+O(1/|x|)), as x→∞.

We simulate the increments of the NIG process by [35, Alg. 6.12]. Figure 3.2 presents

confidence intervals at level 1− ε = 99% for the prices of hindsight put and barrier
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Figure 3.2: The pictures show the point estimation and CIs for the hindsight put
(left) and the up-and-out call (right) under the NIG model. NIG parameters: σ = 1,
θ = 0.1, κ = 0.1 and b = −0.05. Option parameters: S0 = 2, K0 = 3, M = 8 and
T = 1. The number of samples in the plot on the left equals N = 107. The
confidence level of 1− ε = 99% applies to both plots.

up-and-out call under the NIG model S = S0 exp(X).

The non-asymptotic CI for the hindsight put is constructed via Chebyshev’s

inequality as discussed in §3.2.3 above. In particular, note that the payoff of the

hindsight put g : (x, y, t) 7→ (K0−S0ey)+ is non-increasing in y and does not depend

on x and t. Since XT dominates the second coordinate XT −∆SB
n of the SBA χSB

n

in (3.1), we apply Eg(χSB
n ) ≥ Eg(χ) and find

0 ≤ Eg(χSB
n )− Eg(χ) < r1,

P(|∆g
n,N − E∆g

n,N | < r2) ≥ 1− ε

}
=⇒ P(−r1 − r2 < ∆g

n,N < r2) ≥ 1− ε,

where ∆g
n,N is defined in (3.7), reducing the upper bound of the CI to the error r2,

which depends on the bound on g and the number of samples N but not on n.

As explained in §3.2.3 above, if explicit constants in the bounds on the bias are

not available in terms of the model parameters, as is the case with an up-and-out call

option (see Proposition 3.7 above and remarks following it), we resort to the CLT in

Theorem 3.8 above. The plot on the right in Figure 3.2 depicts the asymptotic CI for

an up-and-out call as a function of log2N , where N is the number of samples used

to estimate Eg(χ) and the asymptotic variance in (3.8) of Theorem 3.8 is estimated

using the sample.

§3.3.3 MLMC for a barrier payoff under NIG

We apply the MLMC algorithm for the SBA to the up-and-out call option in [49,

§6.3] (with payoff g(χ) = (ST −K0)+
1{ST≤M}, where ST = S0 exp(XT )) under the
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NIG model. The top left (resp. right) plot in Figure 3.3 graphs the estimated and

theoretically predicted mean (resp. variance) of the difference of two consecutive

levels (as a function of n).

It is common practice in MLMC to estimate the bias and level variances (rather

than use the theoretical bounds such as those in Theorem 3.23) first and then

compute the numbers of samples (Nk)k∈{1,...,n} at each level by solving a simple

optimisation problem. This often improves the overall performance of the algorithm

but requires an initial computational investment. The fact that (Nk)k∈{1,...,n} are

based on estimates gives rise to some oscillation in their behaviour and, consequently,

in that of the computational cost. However, as expected from (3.45), the bottom left

plot in Figure 3.3 shows that (Nk)k∈{1,...,n} constitute approximately straight lines

for various levels of accuracy. The bottom right plot in Figure 3.3 shows that the

computational complexity is approximately constant, as expected from the analysis

in §3.2.4 above. Moreover, the difference in the complexity between the MC and

MLMC is numerically seen to be small. This is not surprising since, as explained

in §3.2.4 above, the two differ by a log-factor. The analogous figure for the MLMC

based on the RWA for identical model parameters and option is given in [49, Fig. 7].

The computational complexity of MLMC in Figure 3.3 is greater than that

of the MC (for ε > 1/8000) due to the size of the leading constant. Overall, the

performance of both MC and MLMC in this examples is good, with the actual decay

rates of the bias and level variances being better than the theoretical bounds by a

factor of 2.

§3.4 Proofs and technical results of Chapter 3

§3.4.1 The law of the error and the proof of Theorem 3.1

In the present subsection we will prove Theorem 3.1. We also state and prove

Proposition 3.9, which explains why the error δSB
n of the SBA χSB

n is typically smaller

than δn.

Proof of Theorem 3.1. By the a.s. equality in (2.3), and the definition in (3.2), we

obtain

(YLn ,∆n, δn) =

∞∑
k=n+1

(
ξk, ξ

+
k , `k1{ξk>0}

)
.

In particular, we have δn ≤
∑∞

k=n+1 `k = Ln and thus |δSB
n | ≤ Ln.

We next apply (2.2) to conclude that the tail sum in the display above has the

required law. Note first that, given Ln, (`n+k)k∈N is a stick-breaking process on
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Figure 3.3: The pictures show the level bias decay, level variance decay, samples per
level and complexities of MC and MLMC implementations for the up-and-out call
g(χ) = e−rT (ST −K)+

1{ST<M} and the NIG process. NIG parameters: σ = 0.1836,

θ = −0.1313, κ = 1.2819 and b = 0.1571 (see [49, Sec. 3] and the reference therein).
Option parameters: S0 = 100, K0 = 100, M = 115, T = 1 and r = 0.05. The
bounds in the top two graphs are based on Proposition 3.7 (with γ = q = 1)
and synchronous coupling. See §3.2.4 for the computational complexity of MC and
MLMC in the bottom right.
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the interval [0, Ln]. Thus, since Y and ` are independent, the law of the sequence

((`n+k, YLk+n−1
− YLk+n))k∈N, given Ln, is the same law as that of the right-hand

side of (2.2) applied to the interval [0, Ln]. Put differently, by (2.2), this sequence

has the same law as the sequence of the faces of the concave majorant of the Lévy

process Y over the interval [0, Ln] in size-biased order. Hence, identity (4.2) applied

to the interval [0, Ln] (instead of [0, T ]), together with the independence of Y and

`, yields the first equality in law in (3.3):

(YLn , Y Ln , τLn(Y ))
d
=

∞∑
k=n+1

(
ξk, ξ

+
k , `k1{ξk>0}

)
.

The second distributional identity in (3.3) follows from the definition of (∆SB
n , δSB

n )

as a measurable transformation of (YLn ,∆n, δn).

For any n ∈ N, the second identity in (3.3) implies 0 ≤ ∆SB
n . The definition of

∆n in (3.2) and the inequality Y +
Ln
≤ ξ+

n+1 + Y +
Ln+1

yield:

∆SB
n+1 = ∆n+1 − Y +

Ln+1
= ∆n − ξ+

n+1 − Y
+
Ln+1

≤ ∆n − Y +
Ln

= ∆SB
n ≤ ∆n,

completing the proof.

Proposition 3.9. Denote ρt = P(Xt > 0) for t > 0. The following statements hold.

(a) For any t > 0, we have Eτt(X) =
∫ t

0 ρsds.

(b) If t−1
∫ t

0 ρsds− ρt → 0 as t↘ 0, then E[δSB
n /Ln]→ 0 as n→∞.

(c) If ρt → ρ0 ∈ [0, 1] as t↘ 0, then (b) holds and E[δn/Ln]→ ρ0 as n→∞.

(d) If ρt = ρ0 ∈ [0, 1] for all t ∈ (0, T ], then E[δSB
n |Ln] = E[δn|Ln]− Lnρ0 = 0 a.s.

Remark 3.10. (i) Note that τT ∈ [τT − δn, τT − δn + Ln] and, given Ln, SBA χSB
n

chooses randomly the endpoints of the interval via a Bernoulli random variable with

mean P(YLn > 0|Ln).

(ii) The assumption in (d) holds if e.g. X is a subordinated stable or a symmetric

Lévy process. Moreover, it implies that the third coordinate in χSB
n is unbiased, since

the expectation of its error vanishes: E[δSB
n ] = 0. In contrast, E[δn] = ρ0T/2

n.

(iii) The bias of the third coordinate of χSB
n , conditional on Ln = t, is equal to∫ t

0 ρsds−tρt by (3.12) below. This quantity is generally well behaved as t→ 0. More

specifically, we have t−1
∫ t

0 ρsds − ρt → 0 as t ↘ 0 (thus satisfying the assumption

in (b)) if t 7→ ρt is slowly varying at 0 [16, Prop. 1.5.8].

(iv) Note that the assumption in (c) implies that of (b). This assumption, known as

Spitzer’s condition [13, Thm VI.3.14], is satisfied if for example X converges weakly

under the zooming-in procedure [17, Sec. 2.2].
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The result is mostly a consequence of the following formula, valid for any

uniform stick-breaking ` on [0, T ] and positive, measurable function f :

E
∞∑
n=1

f(`n) = E
∞∑
n=1

f(Ln) =

∫ T

0

f(t)

t
dt. (3.11)

The formula in (3.11) follows from the fact that `n
d
= Ln have the same law as

exp(−Gn) for a gamma random variable Gn with unit scale and shape n.

Proof. Denote ρ(t) = ρt for all t > 0.

(a) Apply (3.3) to the interval [0, t] and use (3.11) to obtain part (a):

Eτt(X) =

∞∑
n=1

E
[
`n1{ξn>0}

]
=

∞∑
n=1

E
[
`nρ`n

]
=

∫ T

0
ρtdt.

(b) By Theorem 3.1, conditional on Ln, we have δSB
n

d
= τLn(Y ) − Ln1{YLn>0}.

Hence, by (a),

E[δSB
n |Ln] =

∫ Ln

0
ρsds− LnρLn . (3.12)

Since Ln → 0 as n → ∞, the assumption in (b) and (3.12) give E[δSB
n |Ln]/Ln → 0

a.s. as n→∞. Using Jensen’s inequality and the inequality |δSB
n /Ln| ≤ 1 we deduce

that |E[δSB
n |Ln]/Ln| ≤ E[|δSB

n |/Ln|Ln] ≤ 1. Hence, the dominated convergence

theorem [62, Thm 1.21] gives E[δSB
n /Ln] = E[E[δSB

n |Ln]/Ln]→ 0 as n→∞.

(c) Since the assumption implies that of (b), the conclusion of (b) holds.

Moreover, by (b),

lim
n→∞

E[δn/Ln|Ln] = lim
n→∞

E
[
δSB
n /Ln + 1{YLn>0}

∣∣Ln] = lim
n→∞

ρLn = ρ0 a.s.

The dominated convergence theorem, applied as in the proof of (b), gives the result.

(d) Since ρ(t) = ρ0 for all t ∈ [0, T ], the right-hand side in (3.12) equals 0 a.s.,

as claimed. Similarly, we have E[δn|Ln] = E[δSB
n + Ln1{YLn>0}|Ln] = Lnρ0 a.s.

Corollary 3.2. We assume the existence of a function a on the positive reals, such

that (Xtδ/a(δ))t≥0 converges weakly to some process (Zt)t≥0 as δ ↘ 0 in the sense

of finite-dimensional distributions. It is known that the limiting process is then

self-similar [16, Thm 8.5.2] and thus α-stable and the function a is regularly varying

with index 1/α ∈ [2,∞). Moreover, the convergence extends to the Skorokhod

space D[0,∞) [61, Cor. VII.3.6]. (For a detailed description of a and the limit

criteria see [60, Thm 2].)

46



Note that Zδ = (Ytδ/a(δ))t∈[0,1] converges to Z = (Zt)t∈[0,1] in D[0, 1] and that

τ1(Zδ) = τδ(Z)/δ. It is well known that the supremum mapping x 7→ supt∈[0,1] xt

and the projection x 7→ x1 are continuous a.s. with respect to the law of Y . Next,

since the time of the maximum of a stable process (Zt ∨ Zt−)t∈[0,1] is a.s. unique,

then τ1 is a.s. continuous with respect to the law of Z (see e.g. [62, Lem. 14.12]).

Thus, as δ ↘ 0, this yields

χδ = (Yδ/a(δ), Y δ/a(δ), τδ(Y )/δ) = (Zδ1 , Z
δ
1, τ1(Zδ))

d→ (Z1, Z1, τ1(Z)) = χ0.

By the equality in law given in (3.3), we obtain

(YLn/a(Ln),∆n/a(Ln), δn/Ln)
d
= (YLn/a(Ln), Y Ln/a(Ln), τLn(Y )/Ln). (3.13)

Hence, the result will follow if we prove that χLn
d→ χ0. Recall that the weak

convergence is equivalent to Ef(χδ) → Ef(χ0) as δ ↘ 0 for every bounded and

continuous f . Since ` and Y are independent and Ln → 0 a.s., conditional on the

sequence (Ln)n∈N we get E[f(χLn)|Ln]→ Ef(χ0). The sequence of random variables

(E[f(χLn)|Ln])n∈N is bounded (since f is) and converges to Ef(χ0) a.s. Hence, by

the dominated convergence theorem, it converges in L1, implying χLn
d→ χ0. Hence,

the weak limit holds for the left-hand side of (3.13), which yields Corollary 3.2.

§3.4.2 Convergence in Lp and the proof of Theorem 3.3

Recall that (σ2, ν, b) is the generating triplet of X associated with the cutoff function

x 7→ 1|x|<1 (see [91, Ch. 2, Def. 8.2]). The moments of the Lévy measure ν at infinity

are linked with the moments of X+
t and Xt for any t > 0 as follows. By dominating

X path-wise with a Lévy process Z equal to X with its jumps in (−∞,−1] removed

and applying [91, Thm 25.3] to Z, we find that, for any p > 0, the conditions

Ip+ <∞ and ep+ <∞ (see (3.5) and (3.6) for definition) imply E
[
(X+

t )p
]
<∞ and

E exp(pX+
t ) <∞, respectively, for all t > 0. Similarly, by applying [91, Thm 25.18]

to Z we obtain that Ip+ <∞ and ep+ <∞ imply E[X
p
t ] <∞ and E exp(pXt) <∞,

respectively.

Let β be the Blumenthal-Getoor index [18], defined as

β = inf{p > 0 : Ip0 <∞}, where Ip0 =

∫
(−1,1)

|x|pν(dx), for any p ≥ 0, (3.14)

and note that β ∈ [0, 2] since I2
0 < ∞. Moreover, I1

0 < ∞ if and only if the

jumps of X have finite variation, in which case we may define the natural drift
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b0 = b−
∫

(−1,1) xν(dx). Note that Ip0 <∞ for any p > β but Iβ0 can be either finite

or infinite. If Iβ0 =∞ we must have β < 2 and can thus pick δ ∈ (0, 2−β), satisfying

β + δ < 1 whenever β < 1, and define

β+ = β + δ · 1{Iβ0 =∞}∪{β=0} ∈ [β, 2]. (3.15)

Note that β+ is either equal to β or arbitrarily close to it. In either case we have

β+ > 0 and I
β+
0 <∞.

The main aim of the present subsection is to prove Propositions 3.5, 3.6 & 3.7

and Theorem 3.3. With this in mind, we first establish three lemmas and a corollary.

Lemma 3.11. The Lévy measure ν of X satisfies the following for all κ ∈ (0, 1]:

ν(κ) = ν(R \ (−κ, κ)) ≤ κ−β+Iβ+0 + ν(1),

σ2
κ =

∫
(−κ,κ)

x2ν(dx) ≤ κ2−β+I
β+
0 .

(3.16)

Moreover the following inequalities hold:∫
(−1,−κ]∪[κ,1)

|x|pν(dx) ≤ κ−(β+−p)+I
β+
0 , for p ∈ R, (3.17)∫

(−κ,κ)
|x|pν(dx) ≤ κp−β+I

β+
0 , for p ≥ β+. (3.18)

Proof. Multiplying the integrands by (I) (|x|/κ)β+ , (II) (κ/|x|)2−β+ , (III) (|x|/κ)β+−p

if p ≤ β+ or |x|β+−p otherwise and (IV) (κ/|x|)p−β+ , respectively, and extending the

integration set to (−1, 1) yields the bounds.

Recall the definition in (3.5) of Ip+ and Ip− for p ≥ 0. Denote dxe = inf{m ∈
Z : m ≥ x} for any x ∈ R. Recall that the Stirling numbers of the second kind

{
m
k

}
arise in the formula for the moments of a Poisson random variable H with mean

µ ≥ 0: for any m ∈ N we have

E [Hm] =

m∑
k=1

{
m

k

}
µk, where

{
m

k

}
=

1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)m. (3.19)

In particular, we have
{
m
0

}
= 0 for all m ∈ N. Throughout, we will use the following

inequality(
m∑
k=1

xi

)p
≤ m(p−1)+

m∑
k=1

xpi , where m ∈ N, x1, . . . , xm ≥ 0 and p ≥ 0. (3.20)
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This inequality follows easily from the subadditivity x 7→ xp when p < 1 and Jensen’s

inequality when p ≥ 1.

Lemma 3.12. For all t ∈ [0, T ] and p > 0, the condition Ip+ <∞ implies

E[X
p
t ] ≤ m

p
X(t) = 4(p−1)+

(
Cp,1t

p/β+ + Cp,2t
p/2 + Cp,3t

p + Cp,4t
min{1,p/β+}), (3.21)

where the constants {Cp,i}4i=1 are given by

Cp,1 = 2(p−1)+T p−p/β+
(
I
β+
0

)p
+ T−p/β+

(
2pT p/2

(
I
β+
0

)p/2 · 1{p≤2}

+ 2(p2/(p− 1))p exp
(
TI

β+
0 − p

)
· 1{p>2}

)
,

Cp,2 = |σ|pΓ
(p+ 1

2

)2p/2√
π
, Cp,3 = 2(p−1)+

(
b+1{I10=∞} + b+0 1{I10<∞}

)p
,

Cp,4 = T (1−p/β+)+
(
Ip+ + I ′

) dpe∑
k=1

{
dpe
k

}
T k−1

(
I ′ + ν([1,∞))

)k−1
,

(3.22)

where I ′ =
∫

(0,1) x
β+ν(dx) and Γ(·) is the Gamma function. Moreover,

E[Xt] ≤ |σ|
√

2t

π
+


(b+ + I1

+)t+ 2
√
I2

0 t, β+ = 2,

(b+ + I1
+)t+ 2

(√
C ′ + C ′

)
(t/T )1/β+ , β+ ∈ (1, 2),(

b+0 +
∫

(0,∞) xν(dx)
)
t, β+ ≤ 1,

(3.23)

where C ′ = TI
β+
0 .

Remark 3.13. (i) The formula in (3.23) essentially follows from [30, Lem. 5.2.2

& Eq. (5.2)] for β+ ∈ (1, 2] and from [42, Prop. 3.4] for β+ ≤ 1. A new proof

of (3.23) given below is based on the methodology used to establish a more general

inequality in (3.21). Moreover, the dominant powers of t in both bounds (3.21)

and (3.23) coincide in the case p = 1 with slightly better constants in (3.23). The

estimate in (3.21) works for all p > 0 and is for the reasons of clarity applied in the

proofs that follow even in the case p = 1.

(ii) Note that Cp,2 = 0 if σ = 0 and, if X is spectrally negative, we have Cp,4 = 0.

(iii) The constants in (3.22) are well defined even if the assumption Ip+ < ∞ fails.

The inequality in (3.21) holds trivially in this case since Cp,4 =∞.

Recall that the Lévy-Itô decomposition [91, Thms 19.2 & 19.3] of the Lévy

process X with generating triplet (σ2, ν, b) at a level κ ∈ (0, 1] is given by Xt =

bκt + σBt + J1,κ
t + J2,κ

t for all t ≥ 0, where bκ = b −
∫

(−1,1)\(−κ,κ) xν(dx) and
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J1,κ = (J1,κ
t )t≥0 (resp. J2,κ = (J2,κ

t )t≥0) is Lévy with triplet (0, ν|(−κ,κ), 0) (resp.

(0, ν|R\(−κ,κ), b − bκ) - recall that we are using the cutoff function x 7→ 1|x|≤1) and

B = (Bt)t≥0 is a standard Brownian motion. Moreover, the processes B, J1,κ, J2,κ

are independent, J1,κ is an L2-bounded martingale with the magnitude of jumps at

most κ and J2,κ is a compound Poisson process with intensity νκ (see (3.16) above)

and no drift.

Proof. By the discussion above we have Xt ≤ b+κ t+ |σ|Bt+J
1,κ
t +J

2,κ
t . Then (3.20)

implies

E
[
X
p
t

]
≤ 4(p−1)+

(
(b+κ )ptp + |σ|pE

[
B
p
t

]
+ E

[(
J

1,κ
t

)p]
+ E

[(
J

2,κ
t

)p]
), (3.24)

where Bt
d
= |Bt| and so E

[
Bt

]
= tp/2Γ

(p+1
2

)
2p/2/

√
π [62, Prop. 13.13], which yields

Cp,2 in all cases. By Lemma 3.11 we have

b+κ ≤

b+0 +
∫

(−κ,κ) |x|ν(dx) ≤ b+0 + κ1−β+I
β+
0 , I1

0 <∞ (i.e. β+ ≤ 1)

b+ + κ1−β+I
β+
0 , I1

0 =∞ (i.e. β+ > 1).

Hence, by (3.20), we obtain

(b+κ )p ≤
(
κ1−β+I

β+
0 + 1{I10=∞}b

+ + 1{I10<∞}b
+
0

)p
≤ 2(p−1)+

(
κp−pβ+

(
I
β+
0

)p
+ 1{I10=∞}(b

+)p + 1{I10<∞}(b
+
0 )p
)
.

(3.25)

J
2,κ
t is dominated by the sum of the positive jumps of J2,κ over the interval [0, t].

This sum has the same law as
∑Nt

k=1Rk for iid random variables (Rk)k∈N with

law ν|[κ,∞)/ν([κ,∞)) and an independent Poisson random variable Nt with mean

tν([κ,∞)). Note that since Nt is a non-negative integer, then N
(p−1)++1
t ≤ N

dpe
t .

Hence, the independence between (Rk)k∈N and Nt, the inequality (
∑Nt

k=1Rk)
p ≤

N
(p−1)+

t

∑Nt
k=1R

p
k (which follows from (3.20)) and (3.19) yield

E
[(
J

2,κ
t

)p] ≤ E
[( Nt∑

k=1

Rk

)p]
≤ E

[
N

(p−1)+

t

Nt∑
k=1

Rpk

]
≤ E[Rp1]E

[
N
dpe
t

]
=

(∫
[κ,∞)

xp
ν(dx)

ν([κ,∞))

)( dpe∑
k=1

{
dpe
k

}
(tν([κ,∞)))k

)
.

Denote I ′ =
∫

(0,1) x
β+ν(dx). The first inequality in (3.16) and the bound in (3.17)
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of Lemma 3.11 applied to ν|(0,∞) and the facts κ ≤ 1 and t ≤ T yield

E
[(
J

2,κ
t

)p] ≤ t(Ip+ +

∫
[κ,1)

xpν(dx)

) dpe∑
k=1

{
dpe
k

}(
tκ−β+I ′ + tν([1,∞))

)k−1

≤ tκ−(β+−p)+ (Ip+ + I ′
) dpe∑
k=1

{
dpe
k

}(
tκ−β+I ′ + Tν([1,∞))

)k−1
.

(3.26)

Assume p ≤ 2. Jensen’s inequality applied to the function x 7→ x2/p and Doob’s

martingale inequality [62, Prop. 7.6] applied to J1,κ yield

E
[(
J

1,κ
t

)p] ≤ E
[(
J

1,κ
t

)2]p/2 ≤ 2pE
[
(J1,κ
t )2

]p/2
= 2p (σ(κ))p tp/2, (3.27)

where σκ denotes the positive square root of σ2
κ. Hence (3.24) for p = 1, the first

inequality in (3.26) and the estimate in (3.27) give

EXt ≤
(
b+κ +

∫
[κ,1)

xν(dx) + I1
+

)
t+

(
|σ|
√

2

π
+ 2σ(κ)

)√
t. (3.28)

If β+ = 2, then taking κ = 1 in (3.28) yields the first formula in (3.23). If β+ ≤ 1

then I1
0 < ∞. Letting κ → 0 in (3.28) we obtain the third formula in (3.23).

Set κ = (t/T )1/β+ and apply Lemma 3.11 to get tσ2
κ ≤ t2/β+T 1−2/β+I

β+
0 . Hence

t
∫

[κ,1) xν(dx) ≤ t1/β+T 1−1/β+I
β+
0 , and (3.25) & (3.28) yield the second formula

in (3.23), completing the proof of (3.23). To prove (3.21) for general p ∈ (0, 2], we

again set κ = (t/T )1/β+ and use the inequalities t ≤ T and (3.25)–(3.27) as before.

More specifically, (I) (3.25), (II) (3.26) and (III) (3.25) & (3.27) establish the values

of (I) Cp,3, (II) Cp,4 and (III) Cp,1, respectively. This concludes the proof for the

case p ≤ 2.

Assume p > 2. The only bound from the case p ≤ 2 above that does not apply

in this case is the one on E[(J
1,κ
t )p]. Doob’s martingale inequality and the bound

|x|p ≤ (p/e)pe|x| for all x ∈ R yield

E
[(
J

1,κ
t

)p] ≤ ( p

p− 1

)p
E
[
|J1,κ
t |p

]
=
( κp

p− 1

)p
E
[
(κ−1|J1,κ

t |)p
]
≤
(κp2/e

p− 1

)p
E
[
eκ
−1|J1,κ

t |
]
.

Note E
[
eκ
−1|J1,κ

t |
]
≤ E

[
eκ
−1J1,κ

t + e−κ
−1J1,κ

t
]

= etψκ(κ−1) + etψκ(−κ−1), where ψκ is

the Lévy-Khintchine exponent of J1,κ
1 , i.e. ψκ(u) =

∫
(−κ,κ)(e

ux − 1 − ux)ν(dx) for

u ∈ R. Using the elementary bound ex − 1 − x ≤ x2 for all |x| ≤ 1 and (3.16), we
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find that ψκ(u) ≤ u2σ2(κ) ≤ u2κ2−β+I
β+
0 for |u| ≤ κ−1. By setting κ = (t/T )1/β+ ,

we obtain

E
[(
J

1,κ
t

)p] ≤ 2
(κp2/e

p− 1

)p
etκ
−β+I

β+
0 = 2tp/β+T−p/β+

( p2

p− 1

)p
eTI

β+
0 −p. (3.29)

As before we obtain (3.21) as follows: (I) (3.25), (II) (3.26) and (III) (3.25) & (3.29)

establish the values of (I) Cp,3, (II) Cp,4 and (III) Cp,1, respectively, which completes

the proof.

Recall that β, I1
0 and β+ are defined in (3.14) and (3.15) above. To describe the

dominant power (as t ↓ 0) in the preceding results, define α ∈ [β, 2] and α+ ∈ [β+, 2]

by

α = 2 · 1{σ 6=0} + 1{σ=0}

1, I1
0 <∞ and b0 6= 0

β, otherwise,
and

α+ = α+ (β+ − β) · 1{α=β}.

(3.30)

Note that the index α agrees with the one in [17, Eq. (2.5)] and α+ > 0. Define

ηp = 1 + 1{p>α} +
p

α+
· 1{p≤α} ∈ (1, 2], for any p > 0, (3.31)

and note that ηp ≥ 3/2 for p ≥ 1.

Remark 3.14. (i) In Theorem 3.3 and Propositions 3.5, 3.6 and 3.7 we assumed

that p ≥ 1 for reasons of clarity. This is not a necessary assumption and the proofs

can be made to work with minor modifications for any p > 0. However, since ηp → 1

as p→ 0, the convergence may become arbitrarily slow as p→ 0 (to be expected since

xp → 1 as p→ 0 for any x > 0).

(ii) The constants Cp,2 and Cp,3 in Lemma 3.12 above satisfy the following: (a) if

α < 2, then σ = 0 and hence Cp,2 = 0; (b) if α < 1, then I1
0 < ∞ and b0 = 0 and

hence Cp,3 = 0.

Corollary 3.15. Pick p > 0, let {Cp,i}4i=1 be as in Lemma 3.12 and define the

constants Cp(X) and C∗p(X) as follows:

Cp(X) = 4(p−1)+ ·


Cp,1T

p
β+
− p
α+ + Cp,2 + Cp,3T

p− p
α+

+ Cp,4T
min{1, p

β+
}− p

α+ ,
p ≤ α,

Cp,1T
p
β+
−1

+ Cp,2T
p
2
−1 + Cp,3T

p−1 + Cp,4, p > α,

C∗p(X) = Cp(X) · 1{Ip+<∞} + Cp(−X) · 1{Ip+=∞}.

(3.32)
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Then, if Ip+ <∞ (resp. min{Ip+, I
p
−} <∞), the inequality

E[X
p
t ] ≤ Cp(X)tηp−1 (resp. E[(Xt −X+

t )p] ≤ C∗p(X)tηp−1).

holds for all t ∈ [0, T ].

Proof. Since Xt −X+
t = min{Xt, Xt −Xt} is stochastically dominated by both Xt

and (−X)t, then it suffices to prove the result for Xt. (It is critical here, as seen

in the definition of C∗p(X) in (3.32), that the definition of α is the same for X and

−X.) Since tq+r ≤ tqT r for t ∈ [0, T ] and r ≥ 0, then it suffices to show that the

exponent of t in each term of (3.21) is at least ηp − 1. By Remark 3.14(ii), this

is trivially the case when p ≤ α ≤ α+ ≤ 2. Recall that α+ is arbitrarily close (or

equal) to α. Hence, in the case p > α, we may assume that p > α+ ≥ β+ and use

Remark 3.14(ii) to obtain the result and conclude the proof.

Remark 3.16. If X is spectrally negative (i.e. ν(R+) = 0), then Cp,4 = 0 and

therefore E[X
p
t ] = O(tp/max{1,α+}) as t ↘ 0, implying the rate in [42, Lem. 6.5],

which is the best in the literature to date for the spectrally negative case. In certain

specific cases, Lemma 3.12 implies a rate better than the one stated in Corollary 3.15.

For example, if β < 1 (thus β+ < 1), σ = 0, Ip+ <∞ and the natural drift satisfies

b0 < 0 (thus α = 1), then by Lemma 3.12 we have E[X
p
t ] = O(tp/β+) if p ≤ β, which

is sharper than the bound E[X
p
t ] = O(tp) implied by Corollary 3.15. Analogous

improvements can be stated for Xt − X+
t , when either (Ip+ < ∞ & b0 < 0) or

(Ip− < ∞ & b0 > 0). For the sake of presentation, throughout the chapter we work

with bounds in Corollary 3.15.

Lemma 3.17. Let X, ∆n and ∆SB
n be as in Theorem 3.1. If E[X

p
t ] ≤ Ctq (resp.

E[(Xt −X+
t )p] ≤ Ctq) for some C, q, p > 0 and all t ∈ [0, T ], then

E
[
∆p
n

]
≤ CT q(1 + q)−n (resp. E

[(
∆SB
n

)p] ≤ CT q(1 + q)−n) for all n ∈ N.

Proof. By assumption and (3.3) in Theorem 3.1, we have E[∆p
n|Ln] = E[Y

p
Ln |Ln] ≤

CLqn and thus E[∆p
n] ≤ E[CLqn] = CT q(1 + q)−n. The result for ∆SB

n is analogously

proven.

Proof of Theorem 3.3. (a) By Theorem 3.1, the errors δn and |δSB
n | are both bounded

by Ln. Since E[Lpn] = T p(1 + p)n, the claim follows.

(b) By Corollary 3.15, we may apply Lemma 3.17 to obtain part (b) of the theorem.

Indeed,

E[∆p
n] ≤ Cp(X)T ηp−1η−np

(
resp. E

[(
∆SB
n

)p] ≤ C∗p(X)T ηp−1η−np
)
, (3.33)
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where Cp(X) (resp. C∗p(X)) is as in (3.32) in Corollary 3.15.

For p ≥ 1, let ‖ · ‖p denote the p-norm on Rd. The Lp-Wasserstein distance

between distributions µx and µy on Rd is defined as

Wp(µx, µy) = inf
X∼µx,Y∼µy

E[‖X − Y‖pp]1/p, (3.34)

where the infimum is taken over all couplings of (X ,Y), such that X and Y follow

the laws µx and µy, respectively.

Proof of Corollary 3.4. Recall that χ−χSB
n = (0,∆SB

n , δSB
n ) (cf. Theorem 3.1 above).

By Theorem 3.3(a), Equation (3.33) and the inequality 1+p ≥ 2 ≥ ηp (since p ≥ 1),

we have

E[‖χ− χSB
n ‖pp] = E[|∆SB

n |p + |δSB
n |p] ≤ C∗p(X)T ηp−1η−np + T p(1 + p)−n

≤ (C∗p(X)T ηp−1 + T p)η−np .

Since for any coupling of (χ, χSB
n ) we have Wp(L(χ),L(χSB

n )) ≤ E[‖χ − χSB
n ‖

p
p]1/p,

the Lp-Wasserstein distance is bounded by C ′η
−n/p
p , where the constant takes the

form

C ′ = (C∗p(X)T ηp−1 + T p)1/p, (3.35)

concluding the proof.

§3.4.3 Proofs of Propositions 3.5, 3.6 and 3.7

The following result about the tail probabilities of ∆n (defined in Theorem 3.1) is

key in the proofs below.

Lemma 3.18. Fix p > 0 and T > 0. Let Cp(Z) be the constant in (3.32) of

Corollary 3.15 for the Lévy process Z = X − J2,1, where J2,1 is the compound

Poisson process in the Lévy-Itô decomposition of X (see the paragraph preceding the

proof of Lemma 3.12). Using the notation ν(1) = ν(R \ (−1, 1)), for any r, p > 0,

we have

P
(
∆n ≥ r

)
≤ ν(1)T2−n + r−pCp(Z)T ηp−1η−np , (3.36)

E
[

min{∆n, r}p
]
≤ rpν(1)T2−n + Cp(Z)T ηp−1η−np . (3.37)

Proof. Since P
(
∆n ≥ r

)
= P

(
min{∆n, r}p ≥ rp

)
≤ E

[
min{∆n, r}p

]
/rp by Markov’s

inequality, we only need to prove (3.37).
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Let Y be as in Theorem 3.1. Pick any t > 0. Let A be the event on which J2,1

does not have a jump on the interval [0, t]. Then P(A) = e−ν(1)t ≤ 1−ν(1)t and thus

P (Ac) ≤ ν(1)t. By Corollary 3.15 applied to Z we have E
[
Z
p
t

]
≤ Cp(Z)tηp−1. Since

Xt = Zt a.s. on the event A we get min{Xt, r}p ≤ rp ·1Ac +Z
p
t ·1A ≤ rp ·1Ac +Z

p
t ,

implying

E
[
min{Xt, r}p

]
≤ rpν(1)t+ Cp(Z)tηp−1.

This inequality, Theorem 3.1, E[Ln] = T2−n and the equality X
d
= Y imply (3.37):

E[min{∆n, r}p] = E[E
[

min{Y Ln , r}p|Ln
]
] ≤ E[rpν(1)Ln + Cp(Z)L

ηp−1
n ].

Proof of Proposition 3.5. Assume first ‖g‖∞ <∞. Since min{a+b, c} ≤ min{a, c}+
b for all a, b, c ≥ 0, we have

|g(x, y, t)− g(x, y′, t′)| ≤ min{K|y − y′|, ‖2g‖∞}+K|t− t′|.

Recall that the output of SB-Alg is a copy of χSB
n . Since, by Theorem 3.1, we a.s.

have 0 ≤ ∆SB
n ≤ ∆n and |δSB

n | ≤ Ln, by (3.20) and (3.37) we obtain

E[|g(χ)− g(χSB
n )|p] ≤ 2(p−1)+

(
E[Kp min{∆n, ‖2g‖∞/K}p] +KpE[Lpn]

)
≤ 2(p−1)+ [‖g‖p∞ν(1)T21−n +Kp(Cp(Z)T ηp−1η−np + T p(1 + p)−n)],

where Z = X − J2,1. Now assume that min{Ip+, I
p
−} < ∞. Then, again by

Theorems 3.1 & 3.3 and Equation (3.33), we obtain

E[|g(χ)− g(χSB
n )|p] ≤ 2(p−1)+Kp(E[∆p

n] + E[Lpn])

≤ 2(p−1)+Kp(C∗p(X)T ηp−1η−np + T p(1 + p)−n).

Since ηp ≤ 2 ≤ 1 + p for p ≥ 1, this yields the result: E[|g(χ)− g(χSB
n )|] ≤ C ′η−np for

C ′ = 2(p−1)+

2‖g‖p∞ν(1)T +Kp(Cp(Z)T ηp−1 + T p), ‖g‖∞ <∞,

Kp(C∗p(X)T ηp−1 + T p), ‖g‖∞ =∞.
(3.38)

The proof is thus complete.

Proposition 3.6. Recall that the second component of χSB
n (resp. χ) equalsXT−∆SB

n

(resp. XT ). Recall from Theorem 3.1 that |δSB
n | ≤ Ln. Since 0 ≤ ∆SB

n ≤ ∆n, the

locally Lipschitz property of g implies:

|g(χ)− g(χSB
n )| ≤ K(∆n + Ln)eXT .
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From the definition of q′ we get 1/q′ + 1/q = 1. Thus Hölder’s inequality gives:

E
[
|g(χ)− g(χSB

n )|p
]
≤ KpE

[(
∆n + Ln

)pq′] 1
q′ E
[
epqXT

] 1
q
, (3.39)

where the second expectation on the right-hand side of (3.39) is finite by assumption

epq+ <∞ and the argument in the first paragraph of §3.4.2 above.

We now estimate both expectations on the right-hand side of (3.39). Note

that Ir+ < ∞ for all r > 0 as epq+ < ∞. By (3.20), we have E
[(

∆n + Ln
)pq′] ≤

2(pq′−1)+E
[
∆pq′
n +Lpq

′
n

]
. Hence Theorem 3.3, (3.33) and the inequality (x+ y)1/q′ ≤

x1/q′ + y1/q′ for x, y ≥ 0 imply

E
[(

∆n + Ln
)pq′]1/q′ ≤ 2(p−1/q′)+

(
Cpq′(X)T ηpq′−1η−npq′ + T pq

′
(1 + pq′)−n

)1/q′
≤ 2(p−1/q′)+

(
Cpq′(X)1/q′T (ηpq′−1)/q′η

−n/q′
pq′ + T p(1 + pq′)−n/q

′)
.

It remains to obtain an explicit bound for the expectation E[exp(pqXT )]. Let

Ψ(u) = logE[euX1 ] for u ≥ 0 and note that (exp(pXt − tΨ(p)))t≥0 is a positive

martingale. Moreover, we have ζ = supt∈[0,T ](pXt−Ψ(p)t) ≥ pXT −TΨ(p)+. Thus,

Doob’s martingale inequality yields

E
[
epqXT

]
≤ eqTΨ(p)+E

[
eqζ
]
≤
( q

q − 1

)q
eqTΨ(p)+E

[
epqXT−qTΨ(p)

]
=
( q

q − 1

)q
eqT (−Ψ(p))++TΨ(pq).

Therefore, using (3.39) and the inequalities ηpq′ ≤ 2 ≤ 1 + pq′ (as pq′ ≥ 1), we

obtain the bound E
[
|g(χ)− g(χSB

n )|p
]
≤ C ′η−n/q

′

pq′ , where

C ′ =
(
Cpq′(X)1/q′T (ηpq′−1)/q′ + T p

)2(p−1/q′)+Kpq

q − 1
eT (−Ψ(p))++(T/q)Ψ(pq), (3.40)

and the constant Cpq′(X) is defined in (3.32) and Ψ(u) = logE[euX1 ].

Remark 3.19. The rate η
−1/q′

pq′ in the bound of Proposition 3.6 is smallest (as

a function of q) for the largest q satisfying the exponential moment condition in

Proposition 3.6. Indeed, let r = pq′ and note that, since p is fixed, minimising

η
−1/q′

pq′ in q is equivalent to maximising η
1/r
r in r. By (3.31), the function r 7→ η

1/r
r

is decreasing and hence takes its maximal value at the smallest possible r (i.e. largest

possible q).

Proposition 3.7. Recall from Theorem 3.1 that 0 ≤ ∆SB
n ≤ ∆n. Let εn = η

−n/(γ+q)
q
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and note

E
[
|h(Xt)|p

‖h‖p∞
∣∣1XT−∆SB

n ≤x
− 1XT≤x

∣∣p] ≤ P(XT −∆SB
n ≤ x < XT )

≤ P(XT −∆n ≤ x < XT )

= P(XT −∆n ≤ x < XT − εn)

+ P(XT −∆n ≤ x < XT ≤ x+ εn)

≤ P(εn < ∆n) + P(x < XT ≤ x+ εn).

By (3.36) in Lemma 3.18 we have

P(εn < ∆n) ≤ ν(1)T2−n+ε−qn Cq(Z)T ηq−1η−nq = ν(1)T2−n+Cq(Z)T ηq−1η−nγ/(γ+q)
q .

The assumed Hölder continuity of the distribution function of XT in Assumption (H)

implies that P(x < XT ≤ x + εn) ≤ Kεγn. Given the formula for Cq(Z) in (3.32),

the explicit constant

C ′ = ‖h‖p∞(ν(1)T + Cq(Z)T ηq−1 +K), (3.41)

satisfies E[|g(χ)− g(χSB
n )|p] ≤ C ′η−nγ/(γ+q)

q .

Remark 3.20. Minimising the rate η
−γ/(γ+q)
q as a function of q in Proposition 3.7

is somewhat involved. On the interval (α+,∞), the rate q 7→ η
−γ/(γ+q)
q = 2−γ/(γ+q)

is strictly increasing, so the optimal q always lies in (0, α+]. On the interval (0, α+]

the problem is equivalent to maximising the map r 7→ ef(r) = η
γ/(γ+q)
q on the interval

(0, 1], where r = q
α+
∈ (0, 1] and f : x 7→ log(1 + x)/

(
1 + α+

γ x
)
. Since

γ

α+

(
1 +

α+

γ
x
)2 d

dx
f(x) =

γ
α+
− 1

1 + x
− (log(1 + x)− 1),

the critical point of f , obtained by solving for s = log(1+x)−1 in ses = e−1( γ
α+
−1),

is given by r0 = eW (e−1(γ/α+−1))+1−1, where W is the Lambert W function, defined

as the inverse of x 7→ xex. Since f is increasing on [0, r0] and decreasing on (r0,∞),

then r = min{r0, 1} maximises f |(0,1], implying that the optimal q equals

q = α+ min
{

1, eW (e−1(γ/α+−1))+1 − 1
}
.

In particular, the choice q = α+ is optimal if and only if γ/α+ ≥ 2 log(2) − 1 =

0.38629 . . ., and leads to the bound O(2−n/(1+α+/γ)). Hence, if γ = 1, the best bound

in Proposition 3.7 is O(2−n/(1+α+)).
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§3.4.4 The proof of the central limit theorem

Proof of Theorem 3.8. Recall nN = dlogN/ log(η2
g)e and note that 1 ≥

√
Nη−nNg ≥

η−1
g . Hence Assumption (b) yields

√
NE∆g

nN ,N
→ 0 as N →∞. (3.42)

The coupling in (2.3), used in Theorem 3.1, implies that for all n ∈ N the

following relations between the vectors χ and the SBA χSB
n in (3.1) hold a.s.:

YT = XT , XT − ∆SB
n ≤ XT and τT − δSB

n ≤ T . Hence parts (i) and (ii) of

Assumption (a) imply that g(χSB
n ) and g(χSB

n )2 are dominated by ζ = G(XT , XT , T )

and ζ2, respectively. Since ζ and ζ2 are integrable by assumption, the dominated

convergence theorem yields, as n→∞,

V[g(χSB
n )] = E[g(χSB

n )2]− [Eg(χSB
n )]2 → E[g(χ)2]− [Eg(χ)]2 = V[g(χ)]. (3.43)

Recall that (χin)i∈{1,...,N} is the output produced by N independent runs of SB-

Alg using n steps. Define the normalised centred random variables

ζi,N =
(
g
(
χinN

)
− Eg

(
χinN

))
/
√
NV[g(χ)], where i ∈ {1, . . . , N}.

Hence (3.43) implies
∑N

i=1 Eζ2
i,N = V[g(χ)]−1(1/N)

∑N
i=1 V[g(χinN )]→ 1 as N →∞.

Moreover, we have

N∑
i=1

ζi,N =
√
N/V[g(χ)]∆g

nN ,N
+ o(1) as N →∞,

where o(1) is a deterministic sequence, proportional to the one in (3.42). Hence,

(3.8) holds if and only if
∑N

i=1 ζi,N
d→ N(0, 1) as N →∞.

To conclude the proof, we shall use Lindeberg’s CLT [62, Thm 5.12], for which

it remains to prove that Lindeberg’s condition holds, i.e.
∑N

i=1 E[ζ2
i,N1{ζi,N>r}]→ 0

as N →∞ for all r > 0. By the coupling from the second paragraph of this proof,

we find |g(χSB
n,i)| ≤ |ζi| for all i ∈ {1, . . . , N} and n ∈ N, where (ζi)i∈{1,...,N} are iid

with the law equal to G(XT , XT , T ). Crucially, ζi does not depend on the number of

steps nN in the SB-Alg. Moreover, note that iid random variables ξi = (|ζi|+E|ζi|)
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satisfy Eξ2
i <∞ and |ζi,N | ≤ ξi/

√
NV[g(χ)] for any i ∈ {1, . . . , N}. Hence we find

V[g(χ)]
N∑
i=1

E[ζ2
i,N1{ζi,N>r}] ≤

N∑
i=1

1

N
E
[
ξ2
i 1{ξi>rNV(g(χ))}

]
= E

[
ξ2

11{ξ1>rNV(g(χ))}
]
→ 0

as N →∞, implying Lindeberg’s condition and the theorem.

Remark 3.21. Identifying the appropriate G in Theorem 3.8 is usually simple. For

instance, the following choices of G can be made in the contexts of interest.

(a) Let g be Lipschitz (as in Proposition 3.5). Then we can take

(i) G(x, y, t) = ‖g‖∞, if ‖g‖∞ <∞;

(ii) G(x, y, t) = |g(x, y, t)|+ 2K(y + t), if I2
+ <∞.

(b) Let g be locally Lipschitz with the Lipschitz constant exponentially increasing

as in Proposition 3.6. Then we can take

(i) G(x, y, t) = Key, if g(x, y, t) ≤ Key and E2
+ <∞ (lookback and hindsight

options fall in this category);

(ii) G(x, y, t) = |g(x, y, t)|+ 2K(y + t)ey if E2q
+ <∞ for some q > 1.

(c) If g is a barrier option (as in Proposition 3.7), then take G(x, y, t) = ‖g‖∞.

Remark 3.22. If we are prepared to centre, it is possible to apply the standard iid

CLT to the estimator based on SB-Alg. Indeed, for fixed n, assuming V[Pn] < ∞
where Pn = g(χSB

n ), the classical CLT yields

1√
NV[Pn]

N∑
i=1

(P in − EPn)
d→ N(0, 1) as N →∞.

In contrast, the gist of Theorem 3.8 is that one need not centre the sample with a

function of n, which itself depends on the sample.

§3.5 MC and MLMC estimators

§3.5.1 Monte Carlo estimator

Consider random variables P, P1, P2, . . . in L2. Let {P ik}k,i∈N be independent with

P ik
d
= Pk for k, i ∈ N. Suppose |EP − EPk| ≤ B(k) for all k ∈ N and assume C(n)
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bounds the expected computational cost of simulating a single value of Pn. Pick

arbitrary ε > 0 and define m = inf{k ∈ N : B(k) < ε/
√

2}, N =
⌈
2V[Pm]/ε2

⌉
. Then

the Monte Carlo estimator

P̂ =
1

N

N∑
i=1

P im of EP is L2-accurate at level ε, i.e. E
[
(P̂ − EP )2

]1/2
< ε,

since E[(P̂ − EP )2] = V[P̂ ] + (EPm − EP )2 and V[P̂ ] < ε2/2 (by the definition

of N), while (EPm − EP )2 < ε2/2 (by the definition of m). Thus, if the bound

B(m) on the bias is asymptotically sharp, the formulae for m,N ∈ N above result

in the computational complexity given by CMC(ε) = NC(m) =
⌈
2V[Pm]/ε2

⌉
C(m).

Although in practice one does not have access to the variance V[Pm], it is typically

close to V[P ] (which often has an a priori bound) or can be estimated via simulation.

§3.5.2 Multilevel Monte Carlo estimator

This section is based on [48, 59]. Let P, P1, P2, . . . be square integrable random

variables and set P0 = 0. Let {Di
k}k∈N∪{0},i∈N be independent random variables

satisfying Di
k
d
= D1

k and E[Di
k] = E[Pk+1 − Pk] for any k ∈ N ∪ {0} and i ∈ N. For

k ∈ N∪{0}, assume that the bias and level variance satisfy B(k) ≥ |EP −EPk| and

V (k) ≥ V[D1
k] for some functions k 7→ B(k) and k 7→ V (k), respectively, and let

C(k) bound the expected computational complexity of simulating a single value of

D1
k. For m ∈ N ∪ {0} and any N0, . . . , Nm ∈ N, the MLMC estimator

P̂ =

m∑
k=0

1

Nk

Nk∑
i=1

Di
k

satisfies E[(P̂ − EP )2] = V[P̂ ] + (EPm − EP )2, since EP̂ = EPm. Thus, for any

ε > 0, the inequality E
[
(P̂ − EP )2

]
< ε2 holds if the number of levels in P̂ equals

m = inf{k ∈ N ∪ {0} : B(k) < ε/
√

2} (3.44)

and the variance is bounded by V[P̂ ] =
∑m

k=0 V[D1
k]/Nk ≤

∑m
k=0 V (k)/Nk ≤ ε2/2.

Since the computational complexity of P̂ , CML(ε) =
∑m

k=0C(k)Nk, is linear in the

number of samples Nk on each level k, we only require that the variance V[P̂ ] be of

the same order as ε2/2 =
∑m

k=0 V (k)/Nk. Then, by the Cauchy-Schwartz inequality,
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we have

CML(ε)ε2/2 =

( m∑
k=1

C(k)Nk

)( m∑
k=0

V (k)

Nk

)
≥
( m∑
k=0

√
C(k)V (k)

)2

.

The lower bound does not depend on N0, . . . , Nm and is attained if and only if

Nk =

2ε−2

√
V (k)

C(k)

m∑
j=0

√
C(j)V (j)

 for k ∈ {0, . . . , n}, (3.45)

ensuring that the expected cost is a multiple of

CML(ε) = 2ε−2

( m∑
k=0

√
C(k)V (k)

)2

. (3.46)

Moreover, if B, V and C are asymptotically sharp, the formulae in (3.45), up

to constants, minimise the expected computational complexity. Consequently, the

computational complexity analysis of the MLMC estimator is reduced to the analysis

of the behaviour of
∑m

j=0

√
C(j)V (j) as ε ↓ 0. This analysis yields the following

result.

Theorem 3.23. Assume that for some q1 ≥ (q2 ∧ q3)/2 > 0, c1, c2, c3 > 0 and all

n ∈ N we have (a) |EP − EPn| ≤ c12−nq1, (b) V[Pn+1 − Pn] ≤ c22−nq2, (c) the

expected computational cost C(n) of constructing a single sample of (Pn, Pn−1) is

bounded by c32nq3. Then for every ε > 0 there exist n,N1, . . . , Nn ∈ N such that the

MLMC estimator

P̂ =
n∑
k=1

1

Nk

Nk∑
i=1

Di
k is L2-accurate at level ε, E

[
(P̂ − EP )2

]
< ε2, (3.47)

and the computational complexity is of order

CML(ε) =


O(ε−2) if q2 > q3,

O(ε−2 log2 ε) if q2 = q3,

O(ε−2−(q3−q2)/q1) if q2 < q3.

The number of levels equals n = dlog2(
√

2c1ε
−1)/q1e and the number of samples at
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level k ∈ {1, . . . , n} is

Nk =


d2c2ε

−22−(q2+q3)k/2/(1− 2−(q2−q3)/2)e if q2 > q3,

d2c2ε
−2n2−q3ke if q2 = q3,

d2c2ε
−22n(q3−q2)/2−(q2+q3)k/2/(1− 2−(q3−q2)/2)e if q2 < q3.

§3.6 Regularity of the density of the supremum

Let us briefly discuss the necessity of Assumption (H) in Proposition 3.7. Recall

σ2
κ =

∫
(−κ,κ) x

2ν(dx) for κ ∈ (0, 1) and note that X in the example below has smooth

transition densities by [91, Prop. 28.3].

Example. For any γ ∈ (0, 1) there exists a Lévy process X with an absolutely

continuous Lévy measure ν such that lim infu↓0 u
α−2σ2

u > 0 holds for some α ∈ (0, 1)

and Assumption (H) fails for γ at countably many M > 0.

Proof. The essence of the proof is to construct any such M as a singularity of

the density of ν. For simplicity and to make things explicit, we shall prove it

for a single and fixed M > 0. To that end, let S be an α-stable process with

positivity parameter ρ = P(S1 > 0) ∈ (0, 1) satisfying αρ+ α+ ρ < γ. Let Z be an

independent Lévy process with finite Lévy measure νZ given by νZ((−∞, x]\{0}) =

min{1, (max{x,M} − M)ρ} and put X = S + Z. Hereafter consider only small

enough ε > 0, namely, ε < min{(T/2)1/α,min{M, 1}/2}. The goal is to bound from

below the probability P(XT ∈ [M,M+3ε)). To do this, we consider the event where

Z jumps exactly once, S is small, S ≤M at the time of that jump and S does not

increase too much after the jump.

Since the density of S1 is positive, continuous and bounded, it follows from the

scaling property that there is some constant K1 > 0 (not depending on ε) such that

for all t ≤ εα,

P(St ∈ [0, ε), St ≤M) = P(S1 ∈ [0, t−1/αε), S1 ≤ t−1/αM) ≥ K1.

From [15, Thm 4A], we also know that P(St ≤ ε) ≥ K2ε
αρ for some constant K2 > 0

and all t > T − εα/2. Now, ZT ∈ [M,M + ε) has probability e−TTερ since it can

only happen if Z had a single jump on [0, T ], whose time U is then conditionally

distributed U(0, T ). For fixed t ∈ (0, T ) let Ŝt = sups∈[0,T−t] St+s−St and note that

the Markov property gives

P(Ŝt ∈ A, (St, St) ∈ B × C) = P(ST−t ∈ A)P((St, St) ∈ B × C),
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for all measurable A,B,C ⊂ R. Hence, multiplying by the density of U at t,

integrating and using the independence of (U,Z) and S, we obtain

P(XT ∈ [M,M + 3ε))

≥ P(ZT ∈ [M,M + ε), SU ∈ [0, ε), SU ≤M,XT ∈ [M,M + 3ε))

≥ e−TTερ
∫ T

0
P
(
Ŝt ≤ ε, St ∈ [0, ε), St ≤M

∣∣ZT ∈ [M,M + ε), U = t
)dt
T

≥ e−T ερ
∫ εα

0
P(ST−t ≤ ε)P(St ∈ [0, ε), St ≤M)dt ≥ e−TK1K2ε

αρ+α+ρ.

This implies that x 7→ P(XT ≤ x) is not locally γ-Hölder continuous at M .
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Chapter 4

The stick-breaking Gaussian

approximation

§4.1 The Gaussian approximation of the extrema of a

Lévy process

Lévy processes are increasingly popular for the modeling of the market prices of

risky assets. They naturally address the shortcoming of the diffusion models by

allowing large (often heavy-tailed) sudden movements of the asset price observed in

the markets [36, 68, 92]. For risk management, it is therefore crucial to quantify the

probabilities of rare and/or extreme events in Lévy models. Of particular interest

in this context are the distributions of the drawdown (the current decline from a

historical peak) and its duration (the elapsed time since the historical peak), see

e.g. [10, 26, 74, 96, 98]. Together with the hedges for barrier options [8, 49, 69, 94]

and ruin probabilities in insurance [65, 75, 81], the expected drawdown and its

duration constitute risk measures dependent on the random vector X.

Among the approximate simulation algorithms of χT = (XT , XT , τT (X)), the

SBA presented in Chapter 3 is the fastest in terms of its computational complexity,

as it samples from the law of χT with a geometrically decaying bias. However, the

drawback is that it is only valid for Lévy process whose increments can be sampled.

Such a requirement does not hold for large classes of widely used Lévy processes,

including the general CGMY (aka KoBoL) model [25]. Moreover, nonparametric

estimation of Lévy processes typically yields Lévy measures whose transitions cannot

be sampled [23, 31, 34, 83, 88], again making a direct application SBA infeasible.

If the increments of X cannot be sampled, a general approach is to use the

Gaussian approximation [6], which substitutes the small-jump component of the
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Lévy process by a Brownian motion. Thus, the Gaussian approximation process

is a jump diffusion and the exact sample of the random vector (consisting of the

state of the process, the supremum and the time the supremum is attained) can

be obtained by applying [40, Alg. MAXLOCATION] between the consecutive jumps.

However, little is known about how close these quantities are to the vector χT

that is being approximated in either Wasserstein or Kolmogorov distances. Indeed,

bounds on the distances between the marginal of the Gaussian approximation and

XT have been considered in [41] and recently improved in [24, 76]. A Wasserstein

bound on the supremum is given in [41] but so far no improvement analogous to the

marginal case has been established. Moreover, to the best of our knowledge, there

are no corresponding results either for the joint law of (XT , XT ) or the time τT (X).

Furthermore, as explained in §4.4.1 below, the exact simulation algorithm for the

supremum and the time of the supremum of a Gaussian approximation based on [40,

Alg. MAXLOCATION] is unsuitable for the multilevel Monte Carlo estimation.

The main objective of the present chapter is to provide an operational framework

for Lévy processes, which allows us to settle the issues raised in the previous

paragraph, develop a general simulation algorithm for (XT , XT , τT (X)) and analyse

the computational complexity of its Monte Carlo (MC) and multilevel Monte Carlo

(MLMC) estimators.

The main results of this chapter can be grouped up in two. (I) We establish

bounds on the Wasserstein and Kolmogorov distances between the vector χT and

its Gaussian approximation χ
(κ)
T = (X

(κ)
T , X

(κ)
T , τT (X(κ))), where X(κ) is a jump

diffusion equal to the Lévy process X with all the jumps smaller than κ ∈ (0, 1]

substituted by a Brownian motion (see definition (4.5) below), and X
(κ)
T (resp.

τT (X(κ))) is the supremum of X(κ) (resp. the time X(κ) attains the supremum)

over the time interval [0, T ]. (II) We introduce a simple and fast algorithm, SBG-

Alg, which samples exactly the vector of interest for the Gaussian approximation

of any Lévy process X, develop an MLMC estimator based on SBG-Alg (see [51]

for an implementation in Julia) and analyse its complexity for discontinuous and

locally Lipschitz payoffs arising in applications. We now briefly discuss each of the

two groups of results.

(I) In Theorem 4.3 (see also Corollary 4.4) we bound the Wasserstein distance

between χT and χ
(κ)
T (as κ tends to 0) under weak assumptions, typically satisfied by

the models used in applications. The proof of Theorem 4.3 has two main ingredients.

First, in §4.6.2 below, we construct a novel SBG coupling between χT and χ
(κ)
T , based

on the SB representation of χT in (4.1) and the minimal transport coupling between

the increments of X and its approximation X(κ). The second ingredient consists of
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new bounds on the Wasserstein and Kolmogorov distances, given in Theorems 4.1

and 4.2 respectively, between the laws of Xt and X
(κ)
t for any t > 0.

Theorem 4.3 is our main tool for controlling the distance between χT and χ
(κ)
T .

The SBG coupling underlying it cannot be simulated, but it provides a bound on the

bias of SBG-Alg. Dominating the bias of the time τT (X), which is a non-Lipschitz

functional of the path of X, requires (by SB representations (4.1)) the bound in

Theorem 4.2 on the Kolmogorov distance between the marginals. Applications

related to the duration of drawdown and the risk-management of barrier options

require bounding the bias of certain discontinuous functions of χT . In §4.3.2 we

develop such bounds. Their proofs are based on Theorem 4.3 and Lemma 4.18

of §4.6.3, which essentially converts Wasserstein distance into Kolmogorov distance

for sufficiently regular distributions. We give explicit general sufficient conditions

on the characteristic triplet of the Lévy process X (see Proposition 4.12 below),

which guarantee the applicability of the results of §4.3.2 to models typically used

in practice. Moreover, we obtain bounds on the Kolmogorov distance between the

components of (XT , τT (X)) and (X
(κ)
T , τT (X(κ))) (see Corollary 4.11 below), which

we hope are of independent interest.

(II) Our main simulation algorithm for this chapter, SBG-Alg, samples jointly

coupled Gaussian approximations of χT at distinct approximation levels. The

coupling in SBG-Alg exploits the following simple observations:

• Any Gaussian approximation χ
(κ)
T has an SB representation in (4.2), where

the law of Y in (4.2) must equal that of X(κ).

• For any two Gaussian approximations, the stick-breaking process in (4.2) can

be shared.

• The increments in (4.2) over the shared sticks can be coupled using the

definition of the Gaussian approximation X(κ) in (4.5).

We analyse the computational complexity of the MLMC estimator based on

SBG-Alg for a variety of payoff functions arising in applications. Figure 4.1 shows

the leading power of the resulting MC and MLMC complexities, summarised in

Tables 4.2 and 4.3 below (see Theorem 4.29 for full details), for locally Lipschitz

and discontinuous payoffs used in practice. To the best of our knowledge, neither

locally Lipschitz nor discontinuous payoffs had been previously considered in the

context of MLMC estimation under Gaussian approximation.

A key component of the analysis of the complexity of an MLMC estimator is the

rate of decay of level variances (see §3.5.2 for details). In the case of SBG-Alg, the
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rate of decay is given in Theorem 4.22 below for locally Lipschitz and discontinuous

payoffs of interest. Moreover, the proof of Theorem 4.22 shows that the decay of

the level variances for Lipschitz payoffs under SBG-Alg is asymptotically equal to

that of Algorithm 2, which samples jointly the increments at two distinct levels

only. Furthermore, an improved coupling in Algorithm 2 for the increments of the

Gaussian approximations (cf. the last bullet on the list above) would reduce the

computational complexity the MLMC estimator for all payoffs considered in this

chapter (including the discontinuous ones). To the best of our knowledge, SBG-Alg

is the first exact simulation algorithm for coupled Gaussian approximations of χT

with vanishing level variances when X has a Gaussian component, see also §4.4.1.

In §4.5, using the code in repository [51], we test our theoretical findings against

numerical results. We run SBG-Alg for models in the tempered stable and Watanabe

classes. The former is a widely used class of processes whose increments cannot be

sampled for all parameter values and the latter is a well-known class of processes

with infinite activity but singular continuous increments. In both cases we find a

reasonable agreement between the theoretical prediction and the estimated decays

of the bias and level variance, see Figures 4.3 & 4.4 below.

In the context of MC estimation, a direct simulation algorithm based on [40,

Alg. MAXLOCATION] (Algorithm 3 below) can be used instead of SBG-Alg. In §4.5.2

we compare numerically its cost with that of SBG-Alg. In the examples we considered,

the speedup of SBG-Alg over Algorithm 3 is about 50, see Figure 4.5, remaining

significant even for processes with small jump activity, see Figure 4.6.

Comparison with the literature

As we have explained before, approximations of the pair (XT , XT ) abound. They

include the random walk approximation, a Wiener-Hopf based approximation [45,

70], the jump-adapted Gaussian (JAG) approximation [38, 39] and, more recently,

the SB approximation [56]. The SB approximation converges the fastest as its bias

decays geometrically in its computational cost. However, the JAG approximation

is the only method known to us that does not require the ability to simulate the

increments of the Lévy process X. Indeed, the JAG approximation simulates all

jumps above a cutoff level, together with their jump times, and then samples

the transitions of the Brownian motion from the Gaussian approximation on a

random grid containing all the jump times. In contrast, in the present chapter

we approximate χT = (XT , XT , τT (X)) with an exact sample from the law of the

Gaussian approximation χ
(κ)
T = (X

(κ)
T , X

(κ)
T , τT (X(κ))).

The JAG approximation has been analysed for Lipschitz payoffs of the pair
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Figure 4.1: Dashed (resp. solid) line plots the power of ε−1 in the computational complexity of
an MC (resp. MLMC) estimator, as a function of the BG index β defined in (4.6), for discontinuous
functions in BT1 (4.19) and BT2 (4.21), locally Lipschitz payoffs as well as Lipschitz functions of
τT (X). The cases are split according to whether X is with (σ 6= 0) or without (σ = 0) a Gaussian
component. The pictures are based on Tables 4.2 and 4.3 under assumptions typically satisfied in
applications, see §4.4.2 below for details.

(XT , XT ) in [38, 39]. The discontinuous and locally Lipschitz payoffs arising in

applications, considered in this chapter (see Figure 4.1), have to the best of our

knowledge not been analysed for the JAG approximation. Nor have the payoffs

involving the time τT (X) the supremum is attained. Within the class of Lipschitz

payoffs of (XT , XT ), the complexities of the MC and MLMC estimators based on

SBG-Alg are asymptotically dominated by the complexities of the estimators based

on the JAG approximation, see Figure 4.2. In fact, SBG-Alg with discontinuous

payoffs outperforms the JAG approximation with Lipschitz payoffs by up to an order

of magnitude in computational complexity, cf. Figure 4.1(A) & (B) and Figure 4.2.

In order to understand where the differences in Figure 4.2 come from, in

Table 4.1 we summarise the bias and level variance for SBG-Alg and the JAG

approximation as a function of the cutoff level κ in the Gaussian approximation

(cf. (4.5) below).

Table 4.1 shows that both bias and level variance decay no slower (and typically

faster) for SBG-Alg than for the JAG approximation. The large improvement in

computational complexity of the MC estimator in Figure 4.2 is due to the faster

decay of the bias under SBG-Alg. Put differently, the SBG coupling constructed
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Figure 4.2: Dashed (resp. solid) lines represent the power of ε−1 in the computational complexity
of the MC (resp. MLMC) estimator for the expectation of a Lipschitz functional f(XT , XT ), plotted
as a function of the BG index β defined in (4.6). The SBG plots are based on Tables 4.2 and 4.3
below. The JAG plots are based on [38, Cor. 3.2] for the MC cost, and [38, Cor. 1.2] if β ≥ 1
(resp. [39, Cor. 1] if β < 1) for the MLMC cost.

Gaussian comp. Approx. Bias Level variance

With (σ 6= 0)
JAG max{κ1−β/4, κβ/2} log1/2(1/κ) max{κ2−β , κβ log(1/κ)}
SBG κ3−β log(1/κ) κ2−β

Without (σ = 0)
JAG max{κ1−β/4 log1/2(1/κ), κβ} max{κ2−β , κ2β}
SBG κ log(1/κ) κ2−β

Table 4.1: The rates (as κ → 0) of decay of bias and level variance for Lipschitz payoffs of
(XT , XT ) under the JAG approximation are based on [38, Cor. 3.2] and [39, Thm 2], respectively.
The rates on the bias and level variance for the SBG-Alg are given in Theorems 4.3 & 4.22 below.

in this chapter controls the Wasserstein distance much better than the KMT-based

coupling in [38]. For the BG index β > 1, the improvement in the computational

complexity of the MLMC estimator is mostly due to an faster bias decay. For β < 1,

Figure 4.2(A) suggests that the computational complexity of the MLMC estimator

under both algorithms is optimal. However, in this case, Table 4.1 and the equality

in (3.46) imply that the MLMC estimator based on the JAG approximation has

a computational complexity proportional to ε−2 log3(1/ε) while that of SBG-Alg is

proportional to ε−2. This improvement is due solely to the faster decay of level

variance under SBG-Alg. The numerical experiments in §4.5.1 suggest that our

bounds for Lipschitz and locally Lipschitz functions are sharp, see graphs (A) & (C)

in Figures 4.3 & 4.4.

To the best of our knowledge, in the literature there are no directly comparable

results to either Theorem 4.3 or Proposition 4.9. Partial results in the direction of

Theorem 4.3 are given in [24, 41, 76]. We will now briefly comment on these results.

Distance between the marginals Xt and X
(κ)
t : Theorem 4.1 below, a key step in

the proof of Theorem 4.3, improves the bounds in [76, Thm 9] on the Wasserstein

distance. Theorem 4.2 below, a further key ingredient in the proof of Theorem 4.3,

bounds the Kolmogorov distance with better rates than those of [41, Prop. 10 (part
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1)] (as κ→ 0). Papers [24, 76] obtain bounds on the total variation distance between

Xt and X
(κ)
t , dominating the Kolmogorov distance. However, Theorem 4.2 again

yields faster decay. For more details about these comparisons see §4.3.1 below.

Distance between the suprema Xt and X
(κ)
t : the rate of the bound in [41, Thm 2]

on the Wasserstein distance is worse than that implied by the bound in Corollary 4.4

below on the Wasserstein distance between (Xt, Xt) and (X
(κ)
t , X

(κ)
t ). Proposition 4.6

below bounds the bias of locally Lipschitz functions, generalising [41, Prop. 9] and

providing a faster decay rate. Proposition 4.7 and Corollary 4.11(a) below cover

a class of discontinuous payoffs, including the up-and-in digital option considered

in [41, Prop. 10 (part 3)], and provide a faster rate of decay as κ → 0 if either X

has a Gaussian component or the BG index β > 2/3.

The remainder of the chapter is organised as follows. In §4.2 we recall the SB

representation (see (4.1)–(4.2)) for the infima of Lévy processes and the Gaussian

approximation (see (4.5)) developed in [53] and [6], respectively. §4.3 presents

bounds on Wasserstein and Kolmogorov distances between χT and its Gaussian

approximation χ
(κ)
T and the biases of certain payoffs arising in applications. §4.3

also provides simple sufficient conditions, in terms of the Lévy triplet, under which

these bounds hold. §4.4 constructs our main algorithm, SBG-Alg, and presents the

computational complexity of the corresponding MC and MLMC estimators for all

payoffs considered in this chapter. In §4.5 we illustrate numerically these results for

a widely used class of Lévy models. The proofs and the technical results are found

in §4.6. §3.5.1 gives a brief account of the complexity analysis of MC and MLMC

(introduced in [48, 59]) estimators.

§4.2 The stick-breaking representation and the Gaussian

approximation

We begin by restating (2.3) for the infimum of X on [0, T ], which is at the core

of the bounds and algorithms developed in this chapter. Given a Lévy process X

and a time horizon t > 0, there exists a coupling (X,Y ), where Y
d
= X, and a

uniform stick-breaking process ` = (`n)n∈N on [0, t] (i.e. L0 = t, Ln = Ln−1Un,

`n = Ln − Ln−1 for n ∈ N, where (Un)n∈N is an iid sequence following the uniform

law Un ∼ U(0, 1)), such that a.s.

χ
t

=

∞∑
k=1

(
ξk,min{ξk, 0}, `k · 1{ξk≤0}

)
, ξk = YLk−1

− YLk . (4.1)
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Since, given Ln, (`k)k>n is a stick-breaking process on [0, Ln], for any n ∈ N, (4.1)

implies

χ
t

d
= (YLn , Y Ln , τLn(Y )) +

n∑
k=1

(
ξk,min{ξk, 0}, `k · 1{ξk≤0}

)
. (4.2)

We stress that (4.1) and (4.2) reduce the analysis of the path-functional χ
t

to

that of the increments of X, since the “error term” (YLn , Y Ln , τLn(Y )) in (4.2) is

typically exponentially small in n. More generally, for another Lévy process X ′,

the vectors χ
t

and (X ′t, X
′
t, τ t(X

′)) will be close if the increments of Y and Y ′ over

the intervals [Lk, Lk−1] are close: apply (4.2) with a single stick-breaking process

`, independent of both Lévy processes Y
d
= X and Y ′

d
= X ′, respectively. This

observation constitutes a key step in the construction of the coupling used in the

proof of Theorem 4.3 below, which in turn plays a crucial role in controlling the

bias (see the subsequent results of §4.3) of our main simulation algorithm SBG-Alg

described in §4.4 below. SBG-Alg is based on (4.2) with X ′ being the Gaussian

approximation of a general Lévy process X introduced in [6] and recalled briefly

next.

Recall the Lévy-Khintchine formula [91, Thm 8.1]: for u ∈ R,

1

t
logE

[
eiuXt

]
= iub− 1

2
u2σ2 +

∫
R\{0}

(
eiux − 1− iux · 1(−1,1)(x)

)
ν(dx), (4.3)

where the Lévy measure ν satisfies
∫
R\{0}min{x2, 1}ν(dx) <∞ and σ ≥ 0 specifies

the volatility of the Brownian component of X. Note that the ‘drift’ b ∈ R depends

on the cutoff function x 7→ 1(−1,1)(x). Thus the Lévy triplet (σ2, ν, b), with respect

to the cutoff function x 7→ 1(−1,1)(x), determines the law of X. All the Lévy triplets

in the present chapter use this cutoff function.

The Lévy-Itô decomposition at level κ ∈ (0, 1] (see [91, Thms 19.2 & 19.3]) is

given by

Xt = bκt+ σBt + J1,κ
t + J2,κ

t , t ≥ 0, (4.4)

where bκ = b −
∫

(−1,1)\(−κ,κ) xν(dx), B = (Bt)t≥0 is a standard Brownian motion

and the processes J1,κ = (J1,κ
t )t≥0 and J2,κ = (J2,κ

t )t≥0 are Lévy with triplets

(0, ν|(−κ,κ), 0) and (0, ν|R\(−κ,κ), b − bκ), respectively. The processes B, J1,κ, J2,κ

in (4.4) are independent, J1,κ is an L2-bounded martingale with jumps of magnitude

less than κ and J2,κ is a driftless (i.e. piecewise constant) compound Poisson process

with intensity ν(κ) = ν(R \ (−κ, κ)) and jump distribution ν|R\(−κ,κ)/ν(κ).

In applications, the main problem lies in the user’s inability to simulate the

increments of J1,κ in (4.4), i.e. the small jumps of the Lévy process X. Instead of
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ignoring this component for a small value of κ, the Gaussian approximation [6]

X
(κ)
t = bκt+

√
σ2
κ + σ2Wt + J2,κ

t , where σ2
κ =

∫
(−κ,κ) x

2ν(dx), κ ∈ (0, 1], (4.5)

substitutes the martingale σB+J1,κ in (4.4) with a Brownian motion with variance

σ2
κ+σ2. In (4.5), the standard Brownian motionW = (Wt)t≥0 is independent of J2,κ.

Let σκ denote the non-negative square root of σ2
κ. The Gaussian approximation of

X at level κ, given by the Lévy process X(κ) = (X
(κ)
t )t≥0, is natural in the following

sense: the weak convergence σ−1
κ J1,κ d→ W (in the Skorokhod space d[0,∞)) as

κ → 0 holds if and only if σmin{Kσκ,κ}/σκ → 1 for every K > 0 (see [6]). This

condition holds if σκ/κ → ∞ and the two conditions are equivalent if ν has no

atoms in a neighbourhood of zero [6, Prop. 2.2].

Since J2,κ has an average of ν(κ)t jumps on [0, t], the expected complexity of

simulating the increment X
(κ)
t is a constant multiple of 1 + ν(κ)t (see Algorithm 2

below). Moreover, the user need only be able to sample from the normalised tails of

ν, which can typically be achieved in multiple ways (see e.g. [90]). The behaviour

of ν(κ) and σκ as κ ↓ 0, key in the analysis of the MC/MLMC complexity, can be

described in terms of the Blumenthal-Getoor (BG) index [18] β, defined as

β = inf{p > 0 : Ip0 <∞}, where Ip0 =

∫
(−1,1)\{0}

|x|pν(dx) for p ≥ 0. (4.6)

Note that β ∈ [0, 2], since I2
0 < ∞ by the definition of the Lévy measure ν.

Furthermore, I1
0 <∞ if and only if the paths of J1,κ have finite variation. Moreover,

Ip0 < ∞ for any p > β, but Iβ0 can be either finite or infinite. If q ∈ [0, 2] satisfies

Iq0 <∞, the following inequalities hold for all κ ∈ (0, 1] (see Lemma 3.11):

σ2
κ ≤ I

q
0κ

2−q and ν(κ) ≤ ν(1) + Iq0κ
−q. (4.7)

Finally we stress that the dependence between W in (4.5) and σB + J1,κ

in (4.4) has not been specified. This coupling will vary greatly, depending on the

circumstance (e.g. the analysis of the Wasserstein distance between functionals

of X and X(κ) in §4.3 or the minimisation of level variances in MLMC in §4.4).

Thus, unless otherwise stated, no explicit dependence between σB + J1,κ and W is

assumed.
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§4.3 Distance between the extrema and its Gaussian

approximation

In this section we present bounds on the distance between the laws of the vectors χ
t
,

defined in §4.2 above, and its Gaussian approximation χ(κ)
t

= (X
(κ)
t , X

(κ)
t , τ t(X

(κ))),

based on the Lévy process X(κ) in (4.5). Our bounds on the Wasserstein distance

(see Theorem 4.3 and Corollary 4.4 in §4.3.1) are based on a coupling constructed

in §4.6.2 below, which in turn draws on the coupling in (4.1). Theorem 4.3 is then

applied to control the bias of certain discontinuous and non-Lipschitz functions of χ
t

arising in applications (§4.3.2 below) as well as the Kolmogorov distances between

the components of (Xt, τ t(X)) and (X
(κ)
t , τ t(X

(κ))) (see §4.3.3 below).

§4.3.1 Bounds on the Wasserstein and Kolmogorov distances

In order to study the Wasserstein distance between χ
t

and χ(κ)
t

via (4.1)–(4.2), we

have to quantify the Wasserstein and Kolmogorov distances between the increments

Xs and X
(κ)
s for any time s > 0. With this in mind, we start with Theorems 4.1

and 4.2, which play a key role in the proofs of the main results of the subsection,

Theorem 4.3 and Corollary 4.4 below, and are of independent interest.

Theorem 4.1. There exist universal constants K1 = 1/2 and Kp > 0, p ∈ (1, 2],

independent of (σ2, ν, b), such that for any t > 0 and κ ∈ (0, 1] there exists a coupling

(Xt, X
(κ)
t ) satisfying

E
[∣∣Xt −X(κ)

t

∣∣p]1/p ≤ min
{√

2tσκ,Kpκϕ
2/p
κ

}
,

where ϕκ = σκ/
√
σ2
κ + σ2, for all p ∈ [1, 2].

(4.8)

Theorem 4.1 bounds the Lp-Wasserstein distance (see (4.17) below for definition)

betweenXt andX
(κ)
t . The inequality in (4.8) sharpens the bound E[|Xt−X(κ)

t |p]1/p ≤
min{

√
2tσκ,Kpκ} in [76, Thm 9]: the factor ϕ

2/p
κ ∈ [0, 1] tends to zero (with κ→ 0)

as a constant multiple of σ
2/p
κ if the Brownian component is present (i.e. σ > 0)

and is equal to 1 when σ = 0. The bound in (4.8) cannot be improved in general in

the sense that there exists a Lévy processes for which, up to constants, the reverse

inequality holds (see [76, Rem. 3] and [47, Sec. 4]).

The proof of Theorem 4.1, given in §4.6.1 below, decomposes the increment

M
(κ)
t of the Lévy martingale M (κ) = σB + J1,κ into a sum of m iid copies of

M
(κ)
t/m and applies a Berry-Essen-type bound for the Wasserstein distance [89] in

the context of a central limit theorem (CLT) as m → ∞. The small-time moment

asymptotics of M
(κ)
t/m in [46] imply that M

(κ)
t is much closer to the Gaussian limit in
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the CLT if the Brownian component is present than if σ = 0. This explains a vastly

superior rate in (4.8) in the case σ2 > 0.

Bounds on the Kolmogorov distance may require the following generalisation

of Orey’s condition, which makes the distribution of Xt sufficiently regular (see [91,

Prop. 28.3]).

Assumption (O-δ). For some δ ∈ (0, 2] we have infu∈(0,1] u
δ−2(σ2

u + σ2) > 0.

Theorem 4.2. (a) There exists a constant CBE ∈ (0, 1
2), such that for any κ ∈ (0, 1],

t > 0 we have:

sup
x∈R

∣∣P(Xt ≤ x
)
− P

(
X

(κ)
t ≤ x

)∣∣ ≤ CBE(κ/σκ)ϕ3
κ/
√
t. (4.9)

(b) Let Assumption (O-δ) hold. Then for every T > 0 there exists a constant C > 0,

depending only on (T, δ, σ, ν), such that for any κ ∈ (0, 1] and t ∈ (0, T ] we have:

sup
x∈R

∣∣P(Xt ≤ x
)
− P

(
X

(κ)
t ≤ x

)∣∣ ≤ (Ct−1/δ min
{√

tσκ, κϕκ
})2/3

. (4.10)

The proof of Theorem 4.2 is in §4.6.1 below. Part (a) follows the same strategy

as the proof of Theorem 4.1, applying the Berry-Esseen theorem (instead of [89,

Thm 4.1]) to bound the Kolmogorov distance. For the same reason as in (4.8), the

rate in (4.9) is far better if σ2 > 0. Proof of Theorem 4.2(b) bounds the density of

Xt using results in [86] and applies (4.8).

Note that no assumption is made on the Lévy process X in Theorem 4.2(a).

In particular, Assumption (O-δ) is not required in part (a); however, if (O-δ) is not

satisfied, implying in particular that σ = 0, it is possible for the bound in (4.9) not

to vanish as κ→ 0 even if the Lévy process has infinite activity, i.e. ν(R\{0}) =∞.

In fact, if σ = 0, the bound in (4.9) vanishes (as κ → 0) if and only if σκ/κ → ∞,

which is also a necessary and sufficient condition for the weak limit σ−1
κ J1,κ d→ W

to hold whenever ν has no atoms in a neighbourhood of 0 (see [6, Prop. 2.2]).

If X has a Brownian component (i.e. σ 6= 0), the bound on the total variation

distance between the laws of Xt and X
(κ)
t established in [76, Prop. 8] implies the

following upper bound on the Kolmogorov distance:

sup
x∈R
|P(Xt ≤ x)− P(X

(κ)
t ≤ x)| ≤ min{

√
8tσκ, κ}/

√
2πσ2t.

This inequality is both generalised and sharpened (as κ→ 0) by the bound in (4.9).

Further improvements to the bound on the total variation were made in [24], but the

implied rates for the Kolmogorov distance are worse than the ones in Theorem 4.2
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and require model restrictions when σ = 0 (beyond those of Theorem 4.2(b)) that

can be hard to verify (see [24, Subsec. 2.1.1]).

We stress that the dependence in t in the bounds of Theorem 4.2 is explicit.

This is crucial in the proof of Theorem 4.3 as we need to apply (4.9)–(4.10) over

intervals of small random lengths. A related result [41, Prop. 10] contains similar

bounds, which are non-explicit in t and suboptimal in κ.

If Assumption (O-δ) is satisfied, the parameter δ in part (b) of Theorem 4.2

should be taken as large as possible to get the sharpest inequality in (4.10). If σ 6= 0

(equivalently δ = 2), the bound in part (a) has a faster decay in κ than the bound

in part (b). If σ = 0 (equivalently 0 < δ < 2), it is possible for the bound in part (a)

to be sharper than the one in part (b) or vice versa. Indeed, it is easy to construct

a Lévy measure ν such that δ ∈ (0, 2) in Theorem 4.2(b) satisfies limu↓0 u
δ−2σ2

u =

infu∈(0,1] u
δ−2σ2

u = 1. Then the bound in (4.9) is a multiple of t−1/2κδ/2 as t, κ→ 0,

while the one in (4.10) behaves as t−2/(3δ)κ2/3 min{1, t1/3κ−δ/3}. Hence one bound

may be sharper than the other depending on the value of δ, as t and/or κ tend to

zero. In fact, we will use the bound in part (b) only when the maximal δ satisfying

the assumption of Theorem 4.2(b) is smaller than 4/3, bounding the activity of the

Lévy measure around 0 away from maximal possible activity.

Denote x+ = max{x, 0} for x ∈ R. The next result quantifies the Wasserstein

distance between the laws of the vectors χ
t

and χ(κ)
t

.

Theorem 4.3. For any κ ∈ (0, 1] and t > 0, there exists a coupling between X and

X(κ) on the interval [0, t] such that the following inequalities hold for p ∈ {1, 2}:

E
[

max
{∣∣Xt −X(κ)

t

∣∣, ∣∣Xt −X
(κ)
t

∣∣}p]1/p ≤ µp(κ, t), where (4.11)

µ1(κ, t) := min
{

2
√

2tσκ, κϕ
2
κ

}(
1 + log+

(
2
√

2t(σκ/κ)ϕ−2
κ

))
,

µ2(κ, t) =
√

2µ1(κ, t)

+ min
{√

2tσκ,K2κϕκ
}√

1 + 2 log+
(
K−1

2

√
2t(σκ/κ)ϕ−1

κ

)
,

(4.12)

with ϕκ = σκ/
√
σ2
κ + σ2 and K2 as in Theorem 4.1. Furthermore, we have

E
∣∣τ t(X)− τ t(X(κ))

∣∣ ≤ µτ0(κ, t) =
√
t(κ/σκ)ϕ3

κ. (4.13)

Moreover, if Assumption (O-δ) holds, then for every T > 0 there exists a constant
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C > 0, dependent only on (T, δ, σ, ν), such that for all t ∈ [0, T ] and κ ∈ (0, 1],

E|τ t(X)− τ t(X(κ))| ≤ µτδ (κ, t), where ψκ = Cκϕκ and (4.14)

µτδ (κ, t)=

t ∧ ψδκ + t1−
2
3δψ

2
3
κ

(
1−min

{
1, t−

1
δψκ

}δ− 2
3
)
, δ ∈ (0, 2] \ {2

3},(
t ∧ ψ

2
3
κ

)(
1 + log+

(
tψ
− 2

3
κ

))
, δ = 2

3 .
(4.15)

The coupling in Theorem 4.3 satisfying the above inequalities will be hereafter

referred to as the SBG coupling (X,X(κ)). The SBG coupling is constructed in the

proof of Theorem 4.3 (found in in §4.6.2 below) in terms of the distribution functions

of the marginals Xs and X
(κ)
s (for s > 0) and the coupling used in (4.1), see [56]

for the latter. The key idea is to couple χ
t

and χ(κ)
t

so that they share the stick-

breaking process in their respective SB representations (4.1), while the increments

of the associated Lévy processes over each interval [Ln, Ln−1] are coupled so that

they minimise appropriate Wasserstein distances. This coupling produces a bound

on the distance between χ
t

and χ(κ)
t

that depends only on the distances between

the marginals of Xs and X
(κ)
s , s > 0, so that Theorems 4.1 and 4.2 above can be

applied. We stress that the bound in (4.11) cannot be obtained from Doob’s L2-

maximal inequality (see, e.g. [62, Prop. 7.16]) and Theorem 4.1: if the processes X

and X(κ) are coupled in such a way that Xt −X(κ)
t satisfies the inequality in (4.8),

the difference process (Xs −X(κ)
s )s∈[0,t] need not be a martingale.

Inequality (4.11) holds without assumptions on X and is at most a logarithmic

factor worse than the marginal inequality (4.8) for p ∈ {1, 2}, with the upper

bound satisfying µp(κ, t) ≤ 2κ log(1/κ) for all sufficiently small κ. Moreover, by

Jensen’s inequality, for all 1 < p < 2 the SBA coupling satisfies the following

inequality: E[max{|Xt − X
(κ)
t |, |Xt − X

(κ)
t |}p]1/p ≤ µ2(κ, t). In the absence of a

Brownian component (i.e. σ = 0) we have ϕκ = 1, making the upper bound µ2(κ, t)

proportional to µ1(κ, t) as κ → 0. If σ > 0, then µ1(κ, t) ≤ 2κσ2
κ log(1/(κσκ))/σ2

for all small κ and, typically, µ2(κ, t) is proportional to κσκ
√

log(1/(κσκ)) as κ→ 0,

which dominates µ1(κ, t).

The bound in (4.13) holds without assumptions on X, while (4.14) requires

Assumption (O-δ) and is sharper the larger the value of δ ∈ (0, 2], satisfying (O-δ),

is. Note that, if σ 6= 0, (O-δ) holds with δ = 2. If σ = 0 and δ satisfies (O-δ), we

must have β ≥ δ, where β is the Blumenthal–Getoor (BG) index defined in (4.6)

above. In fact, models typically used in applications either have σ 6= 0 or (O-δ)

holds with δ = β (however, it is possible for (O-δ) to hold for some δ < β but not

δ = β, cf. [91, p. 362]).

If σ > 0, the inequality in (4.13) is sharper than (4.14), i.e. µτ0(t, κ) ≤ µτ2(t, κ)
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for all small κ > 0. However, if σ = 0 and δ ∈ (0, 2) satisfies (O-δ), then

typically µτ0(κ, t) is proportional to κδ/2, while µτδ (κ, t) is asymptotically proportional

to κmin{2/3,δ}(1 + log(1/κ)1{2/3}(δ)) as κ → 0, implying that (4.14) is sharper

than (4.13) for δ < 4/3. The following quantity is the smallest of the upper bounds

in (4.13) and (4.14):

µτ∗(κ, t) = min
{
µτ0(κ, t), inf

{
µτδ (κ, t) : δ ∈ (0, 2] satisfies Assumption (O-δ)

}}
.

Under Assumption (O-δ), for some constant ct > 0 and all κ ∈ (0, 1], we have

µτ∗(κ, t) ≤ ctκmax{δ/2,min{2/3,δ}}(1 + log(1/κ) · 1{2/3}(δ)). (4.16)

For any a ∈ Rd, let |a| =
∑d

i=1 |ai| denote its `1-norm. Recall that for p ≥ 1,

the Lp-Wasserstein distance [99, Def. 6.1] between the laws of random vectors ξ and

ζ in Rd can be defined as

Wp(ξ, ζ) = inf
{
E
[
|ξ′ − ζ ′|p

]1/p
: ξ′

d
= ξ, ζ ′

d
= ζ
}
. (4.17)

Theorem 4.3 implies a bound on the Lp-Wasserstein distance between the vectors

χ
t

and χ(κ)
t

, extending the bound on the distance between the laws of the marginals

Xt and X
(κ)
t in [76, Thm 9].

Corollary 4.4. Fix κ ∈ (0, 1] and t > 0. Then we have

Wp((Xt, Xt), (X
(κ)
t , X

(κ)
t )) ≤ 2(1{p=1}µ1(κ, t) + 1{1<p≤2}µ2(κ, t)), p ∈ [1, 2],

Wp(τ t(X), τ t(X
(κ))) ≤ t1−1/pµτ∗(κ, t)

1/p, p ≥ 1.

Moreover, for p ∈ [1, 2], we have

Wp(χt, χ
(κ)
t

) ≤ 22−1/p(1{p=1}µ1(κ, t) + 1{1<p≤2}µ2(κ, t)) + (2t)1−1/pµτ∗(κ, t)
1/p.

Given the bounds in Corollary 4.4 and Theorem 4.2, it is natural to inquire

about the convergence in Kolmogorov distance of the components of (X
(κ)
t , τ t(X

(κ)))

to (Xt, τ t(X)) as κ→ 0. This question is addressed by Corollary 4.11 of §4.3.3.

The famous Kómlos-Major-Tusnády (KMT) coupling is used in [38, Thm 6.1]

to bound the L2-Wasserstein distance between the paths of X and X(κ) on [0, t] in

the supremum norm, implying a bound on W2((Xt, Xt), (X
(κ)
t , X

(κ)
t )) proportional

to κ log(1/κ) as κ → 0, cf. [38, Cor. 6.2]. If σ > 0, µ2(κ, t) in (4.11) is bounded

by a multiple of κσκ log(1/(κσκ)) for small κ and is thus smaller than a multiple
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of κ2−q/2 for any q ∈ (β, 2) (where β is the BG index defined in (4.6) above). As

mentioned above, µ2(κ, t) is bounded by a multiple of κ log(1/κ) for small κ in the

case σ = 0. Unlike the SBG coupling, which underpins Theorem 4.3, the KMT

coupling does not imply a bound on the distance between the times of the infima

τ t(X) and τ t(X
(κ)) as these are not Lipschitz functionals of the trajectories with

respect to the supremum norm.

Remark 4.5. The bounds on E|τ t(X)−τ t(X(κ))| in Theorem 4.3 and Corollary 4.4,

based on the SB representation in (4.1), require the control on the expected difference

between the signs of the components of (Xs, X
(κ)
s ) as either s or κ tend to zero. This

is achieved via the minimal transport coupling (see (4.25) and Lemma 4.15 below)

and a general bound in Theorem 4.2 on the Kolmogorov distance. However, further

improvements seem possible in the finite variation case if the natural drift (i.e.

the drift of X when small jumps are not compensated) is nonzero. Intuitively, the

sign of the natural drift determines the sign of both components of (Xs, X
(κ)
s ) with

overwhelming likelihood as s→ 0. This suggestion is left for future research.

§4.3.2 Bounds on the bias

The main tool used to study and bound the bias of various Lipschitz, non-Lipschitz

and discontinuous functions of χ
t

is the SBG coupling underpinning Theorem 4.3.

The Lipschitz case is a direct consequence: for any d ∈ N, let LipK(Rd) denote

the space of real-valued Lipschitz functions on Rd (under `1-norm given above

display (4.17)) with Lipschitz constant K ≥ 0 and note that the triangle inequality

and Theorem 4.3 imply the following bounds on the bias∣∣Ef(XT , XT )− Ef
(
X

(κ)
T , X

(κ)
T

)∣∣ ≤ 2Kµ1(κ, T ) and∣∣Eg(τT )− Eg
(
τT (X(κ))

)∣∣ ≤ K ′µτ∗(κ, T )
(4.18)

for any time horizon T > 0 and f ∈ LipK(R2), such that E|f(XT , XT )| < ∞, and

g ∈ LipK′(R). Since in applications, the process X is often used to model log-returns

of a risky asset (S0eXt)t≥0, it is natural to study the bias of a Monte Carlo estimator

of a locally Lipschitz function f ∈ locLipK(R2), satisfying |f(x, y) − f(x′, y′)| ≤
K
(∣∣ex−ex

′∣∣+∣∣ey−ey
′∣∣) for any x, x′, y, y′ ∈ R (equivalently (x, y) 7→ f(log x, log y) is

in LipK((0,∞)2)). Such payoffs arise in risk management (e.g. absolute drawdown)

and in the pricing of hindsight call, perpetual American call and lookback put

options.

Proposition 4.6. Let f ∈ locLipK(R2) and assume
∫

[1,∞) e2xν(dx) < ∞, where

ν is the Lévy measure of X. For any T > 0 and κ ∈ (0, 1] and µ2(κ, T ) defined
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in (4.12), the SBG coupling satisfies

E
∣∣f(XT , XT )− f

(
X

(κ)
T , X

(κ)
T

)∣∣ ≤ 4KE[e2XT ]1/2(1 + eσ
2
κT )µ2(κ, T ).

The assumption
∫

[1,∞) e2xν(dx) < ∞ is equivalent to E[e2XT ] < ∞ (see [91,

Thm 25.3]), which is a natural requirement as the asset price model (S0eXt)t≥0 ought

to have finite variance. Moreover, via the Lévy-Khintchine formula, an explicit

bound on the expectation E[e2XT ] (and hence the constant in the inequality of

Proposition 4.6) in terms of the Lévy triplet of X can be obtained. If one instead

considers f(XT , XT ) (a function on the supremum XT ), the proof of Proposition 4.6

in §4.6.3 below can be used to establish that E
∣∣f(XT , XT ) − f

(
X

(κ)
T , X

(κ)
T

)∣∣ is

bounded by 4K(E[e2XT ] + E[e2X
(κ)
T ])1/2µ2(κ, T ), where both expectations E[e2XT ]

and E[e2X
(κ)
T ] are finite under our assumption

∫
[1,∞) e2xν(dx) < ∞ and bounded

explicitly in terms of the Lévy triplet of X, see the proof of Proposition 3.6. Thus,

by Proposition 4.6, the bias for f ∈ locLipK(R2) is at most a multiple of κ log(1/κ),

as is the case for f ∈ LipK(R2) by (4.18), cf. discussion after Theorem 4.3.

In financial markets, the class of barrier-type functions arises naturally: for

K,M ≥ 0, y < 0 let

BT1(y,K,M) = {f : f(x, z) = h(x)1[y,∞)(z), h ∈ LipK(R), 0 ≤ h ≤M}. (4.19)

Note that the indicator function 1[y,∞) lies in BT1(y, 0, 1) and satisfies the identity

E[1[y,∞)(XT )] = P(XT ≥ y). Moreover, a down-and-out put option payoff x 7→
max{ek−ex, 0}1[y,∞)(x), for constants y < 0 < k, is in BT1(y, ek, ek−ey). Bounding

the bias of the estimators for functions in BT1(y,K,M) requires the following

regularity of the distribution ofXT at y (analogous to Assumption (H) in Chapter 3).

Assumption (H). Given C, γ > 0 and y < 0, we have P(y < XT ≤ y + x) ≤ Cxγ

for all x > 0.

Proposition 4.7. Let f ∈ BT1(y,K,M) for some K,M ≥ 0 and y < 0. If y and

some C, γ > 0 satisfy Assumption (H), then for any T > 0 and κ ∈ (0, 1], the SBG

coupling satisfies

E
∣∣f(XT , XT )− f

(
X

(κ)
T , X

(κ)
T

)∣∣
≤ Kµ1(κ, T ) +M ′min{µ1(κ, T )γ/(1+γ), µ2(κ, T )2γ/(2+γ)},

(4.20)

where M ′ = M max{(1 + 1/γ)(2Cγ)1/(1+γ), (1 + 2/γ)(Cγ)2/(2+γ)}.
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Remark 4.8. Since µ1(κ, T ) → 0 and µ2(κ, T ) → 0 as κ → 0 and γ/(1 + γ) <

2γ/(2 + γ) for all γ > 0, the bound in (4.20) is typically dominated by a multiple

of µ1(κ, T )γ/(1+γ), if σ 6= 0 and β < 2 − γ (recall the definition of the BG index β

in (4.6)), or µ2(κ, T )2γ/(1+γ), otherwise. By Hölder’s inequality, f in (4.20) need

not be bounded if appropriate moments of X exist.

The proof of Proposition 4.7 is in §4.6.3 below. Assumption (H) with γ = 1

requires the distribution function of XT to be locally Lipschitz at y. By the Lebesgue

differentiation theorem [33, Thm 6.3.3], any distribution function is differentiable

Lebesgue-a.e., implying that Assumption (H) holds for γ = 1 and a.e. y < 0.

However, there exist Lévy processes satisfying Assumption (H) for countably many

levels y with γ < 1, but not with γ = 1, see [56, App. B]. Proposition 4.12 below

provides simple sufficient conditions, in terms of the Lévy triplet of X, for (H) to

hold with γ = 1 for all y < 0. In particular, this is the case if σ 6= 0.

The next class arises in the analysis of the duration of drawdown: for K,M ≥ 0,

s ∈ (0, T ) define the set:

BT2(s,K,M)

= {f : f(x, z, t) = h(x, z)1(s,T ](t), h ∈ LipK(R2), 0 ≤ h ≤M}.
(4.21)

The biases of these functions include |P(τT (X) > s)−P(τT (X(κ)) > s)|. Analogous

to Proposition 4.7, we require the following regularity from the distribution function

of τT (X).

Assumption (Hτ). Given C, γ > 0 and s ∈ (0, T ), the following inequality holds,

|P(τT (X) ≤ s)− P(τT (X) ≤ s+ t)| ≤ C|t|γ , for all t ∈ R.

Proposition 4.9. Let Assumption (Hτ) hold for some s ∈ (0, T ) and C, γ > 0. Let

f ∈ BT2(s,K,M) for some K,M ≥ 0. Then for all κ ∈ (0, 1] the SBG coupling

satisfies

E
∣∣f(χ

T
)−f

(
χ(κ)
T

)∣∣ ≤ 2Kµ1(κ, T )+M(2Cγ)1/(1+γ)(1+1/γ)µτ∗(κ, T )γ/(1+γ). (4.22)

Remark 4.10. As in Remark 4.8, the bound in (4.22) is asymptotically proportional

to µτ∗(κ, T )γ/(1+γ) as κ → 0. Inequality (4.22) can be generalised to unbounded

function f if appropriate moments of X exist.

If X is not a compound Poisson process, then Assumption (Hτ) holds with

γ = 1 for all s ∈ (0, T ), since, by Lemma 4.20 in §4.6.3 below, τT (X) has a locally
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bounded density, making the distribution function of τT (X) locally Lipschitz on

(0, T ). Assumption (Hτ) is satisfied if either ν(R\{0}) =∞ or σ 6= 0. In particular,

Assumption (O-δ) implies (Hτ). The proof of Proposition 4.9 is in §4.6.3 below.

§4.3.3 Convergence in the Kolmogorov distance

As a consequence of Proposition 4.7 (resp. 4.9), if Assumption (H) (resp. (Hτ))

holds uniformly, then X
(κ)
T (resp. τT (X(κ))) converges to XT (resp. τT (X)) in

Kolmogorov distance as κ→ 0.

Corollary 4.11. (a) Suppose C, γ > 0 satisfy (H) for all y < 0. Then for any

κ ∈ (0, 1] we have

sup
x∈R

∣∣P(XT ≤ x)− P
(
X

(κ)
T ≤ x

)∣∣ ≤M ′min{µ1(κ, T )
γ

1+γ , µ2(κ, T )
2γ
2+γ }, (4.23)

where M ′ = max{(1 + 1/γ)(2Cγ)1/(1+γ), (1 + 2/γ)(Cγ)2/(2+γ)}.
(b) Suppose C, γ > 0 satisfy (Hτ) for all s ∈ [0, T ]. Then for any κ ∈ (0, 1] we have

sup
x∈R

∣∣P(τT (X) ≤ x)− P
(
τT (X(κ)) ≤ x

)∣∣ ≤ (2Cγ)
1

1+γ (1 + 1
γ )µτ∗(κ, T )

γ
1+γ . (4.24)

Proposition 4.12 gives sufficient conditions (in terms of the Lévy triplet (σ2, ν, b)

of X) for Assumptions (H) and (Hτ) to hold for all y < 0 and s ∈ [0, T ], respectively.

Recall that a function f(x) is said to be regularly varying with index r as x→ 0 if

limx→0 f(λx)/f(x) = λr for every λ > 0 (see [16, p. 18]).

Proposition 4.12. Let ν+(x) = ν([x,∞)) and ν−(x) = ν((−∞,−x]) for x > 0 and

let β be the BG index of X defined in (4.6) above. Suppose that either (I) σ > 0 or

(II) the Lévy measure ν satisfies the following conditions: ν+(x) is regularly varying

with index −β as x→ 0 and

• β = 2 and lim infx→0 ν+(x)/ν−(x) > 0,

• β ∈ (1, 2) and limx→0 ν+(x)/ν−(x) ∈ (0,∞] or

• β ∈ (0, 1), b =
∫

(−1,1) xν(dx) and limx→0 ν+(x)/ν−(x) ∈ (0,∞).

Then there exists constants γ > 0 and C such that Assumption (Hτ) holds with γ,C

for all s ∈ [0, T ]. Either (I) or (II) with β > 1 imply that (H) holds with γ = 1 and

some constant CI for all y in a compact I ⊂ (−∞, 0).

Note that Proposition 4.12 holds if the roles of ν+ and ν− are interchanged,

i.e ν−(x) is regularly varying and the limit conditions are satisfied by the quotients

ν−(x)/ν+(x). The assumptions of Proposition 4.12 are satisfied by most models

used in practice, including tempered stable and most subordinated Brownian motion
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processes. Excluded are Lévy processes without a Brownian component and with

barely any jump activity (i.e. BG index β = 0, which includes compound Poisson

and variance gamma processes), where the Gaussian approximation X(κ) is not

useful.

Proposition 4.12 is a consequence of a more general result, Proposition 4.21

below, stating that Assumptions (Hτ) and (H) hold uniformly and locally uniformly,

respectively, if over short time horizons, X is “attracted to” an α-stable process with

non-monotone paths, see §4.6.3 below for details. In this case ρ = limt→0 P(Xt > 0)

exists in (0, 1) and γ in the conclusion of Proposition 4.12, satisfying (Hτ) on

[0, T ], can be arbitrarily chosen in the interval (0,min{ρ, 1 − ρ}). In contrast

to (Hτ), a simple sufficient condition for the uniform version of (H), required in

Corollary 4.11(a), remains elusive beyond special cases such as stable or tempered

stable processes with γ in the interval (0, α(1−ρ)), where α is the stability parameter

and ρ is as above.

§4.4 Simulation and the computational complexity of

MC and MLMC

This section describes an MC and MLMC methods for the simulation of the vector

χ
(κ)
T = (X

(κ)
T , X

(κ)
T , τT (X(κ))) (SBG-Alg in §4.4.1) and analyses the computational

complexities for various locally Lipschitz and discontinuous functions of χ
(κ)
T (§4.4.2).

The numerical performance of SBG-Alg, which is based on the SB representation

in (4.1)-(4.2) of χ
(κ)
T , is far superior to that of the “obvious” algorithm for jump

diffusions (see Algorithm 3 below), particularly when the jump intensity is large

(cf. §4.4.1 and §4.4.1). Moreover, SBG-Alg is designed with MLMC in mind, which

turns out not to be feasible in general for the “obvious” algorithm (see §4.4.1).

§4.4.1 Simulation of the extrema

The main aim of the subsection is to develop a simulation algorithm for the pair of

vectors (χ
(κ)
T , χ

(κ′)
T ) at levels κ, κ′ ∈ (0, 1] over a time horizon [0, T ], such that the

L2-distance between χ
(κ)
T and χ

(κ′)
T tends to zero as κ, κ′ → 0. SBG-Alg below, based

on the SB representation in (4.2), achieves this aim: it applies Algorithm 2 for the

increments over the stick-breaking lengths that arise in (4.2) and Algorithm 3 for the

“error term” over the time horizon [0, Ln]. By Theorem 4.22 below the L2-distance

for the coupling given in SBG-Alg decays to zero, ensuring the feasibility of MLMC

(see Theorem 4.29 for the computational complexity of MLMC).
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Increments in the SB representation

A simulation algorithm for a coupling
(
X

(κ1)
t , X

(κ2)
t

)
of Gaussian approximations

(at levels 1 ≥ κ1 > κ2 > 0) of Xt at an arbitrary time t > 0 is based on the

following observation: the compound Poisson processes J2,κ1 and J2,κ2 in the Lévy-

Itô decomposition in (4.4) can be simulated jointly, as the jumps of J2,κ1 are precisely

those of J2,κ2 with modulus of at least κ1. By choosing the same Brownian motion

W in representation (4.5) of X
(κ1)
t and X

(κ2)
t , we obtain the coupling

(
X

(κ1)
t , X

(κ2)
t

)
with law Πκ1,κ2

t given in Algorithm 2.

Algorithm 2. Simulation of the law Πκ1,κ2
t

Require: Cutoff levels 1 ≥ κ1 > κ2 > 0 and time horizon t > 0.
1: Compute bκi and σ2

κi for i ∈ {1, 2} and ν(κ2)
2: Sample Wt ∼ N(0, t), Nt ∼ Poi(ν(κ2)t) and λk ∼ ν(· \ (−κ2, κ2))/ν(κ2) for
k ∈ {1, . . . , Nt}

3: Put J2,κi
t =

∑Nt
k=1 λk · 1{|λk| ≥ κi} for i ∈ {1, 2}

4: return
(
Z

(κ1)
t , Z

(κ2)
t

)
, where Z

(κi)
t = bκit+

√
σ2 + σ2

κiWt + J2,κi
t for i ∈ {1, 2}

Since Z
(κi)
t

d
= X

(κi)
t , i ∈ {1, 2}, Proposition 4.23(a) below implies that the

coupling Πκ1,κ2
t provides a bound on the L2-Wasserstein distanceW2

(
X

(κ1)
t , X

(κ2)
t

)
≤

(2t(σ2
κ1 − σ2

κ2))1/2. This bound is suboptimal as the variables J2,κ2
t − J2,κ1

t and

(σ2
κ2 −σ

2
κ1)1/2Wt in Algorithm 2 are independent. The minimal transport coupling,

with L2-distance equal to W2

(
X

(κ1)
t , X

(κ2)
t

)
, is not accessible from the perspective

of simulation. Since the law Poi(ν(κ2)t) of the variable Nt in line 2 of Algorithm 2 is

Poisson with mean ν(κ2)t, the expected number of steps of Algorithm 2 is bounded

by a constant multiple of 1 + ν(κ2)t, which is in turn bounded by a negative power

of κ2 by (4.7). Since the computational complexity of sampling the law of X
(κ2)
t is

of the same order as that of the law Πκ1,κ2
t , in the complexity analysis of SBG-Alg

below, we may apply Algorithm 2 with Π1,κ
t to sample X

(κ)
t for any κ ∈ (0, 1].

“Error term” in the SB representation

Algorithm 3 samples from the law Πκ1,κ2
t of a coupling (χ(κ1)

t
, χ(κ2)

t
) for levels 0 <

κ2 < κ1 ≤ 1 and any (typically very small) t > 0. In particular, it requires the

sampler [40, Alg. MAXLOCATION] for the law Φt(v, µ) of (B∗t , B
∗
t , τt(B

∗)) where

(B∗s )s≥0 = (vBs + µs)s≥0 is a Brownian motion with drift µ ∈ R and volatility

v > 0.

Algorithm 3 samples the jump times and sizes of the compound Poisson process

J2,κ2 on the interval (0, t) and prunes the jumps to get J2,κ1 . Then it samples
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Algorithm 3. Simulation of the law Πκ1,κ2
t

Require: Cutoff levels 1 ≥ κ1 > κ2 > 0 and time horizon t > 0.

1: Compute bκi , σ
2
κi and υκi =

√
σ2 + σ2

κi for i ∈ {1, 2} and ν(κ2), see (4.4)–(4.5)

2: Sample Nt ∼ Poi(ν(κ2)t) and Uk ∼ U(0, t) for k ∈ {1, . . . , Nt + 1}
3: Set s =

∑Nt+1
i=1 logUk and let tk = s−1

∑k
i=1 logUi for k ∈ {0, . . . , Nt + 1}

4: Set (Z
(κ1)
0 , Z

(κ1)
0 , τ

(κ1)
0 , Z

(κ2)
0 , Z

(κ2)
0 , τ

(κ2)
0 ) = (0, 0, 0, 0, 0, 0)

5: for k ∈ {1, . . . , Nt + 1} do
6: Sample λk ∼ ν(· \ (−κ2, κ2))/ν(κ2) if k ≤ Nt and otherwise put λk = 0
7: Let δk = tk−tk−1 and sample (∆1

k,i,∆
2
k,i,∆

3
k,i) ∼ Φδk(υκi , bκi) independently

for i ∈ {1, 2}
8: for i ∈ {1, 2} do

9: if Z
(κi)
tk−1

> Z
(κi)
tk−1

+ ∆2
k,i then

10: Set (Z
(κi)
tk

, Z
(κi)
tk

, τ
(κi)
tk

) = (Z
(κi)
tk−1

+ ∆1
k,i + λk · 1{|λk|≥κi}, Z

(κi)
tk−1

+

∆2
k,i, tk−1 + ∆3

k,i)
11: else
12: Set (Z

(κi)
tk

, Z
(κi)
tk

, τ
(κi)
tk

) = (Z
(κi)
tk−1

+ ∆1
k,i + λk · 1{|λk|≥κi}, Z

(κi)
tk−1

, τ
(κi)
tk−1

)
13: end if
14: end for
15: end for
16: return (ζ(κ1), ζ(κ2)), where ζ(κi) = (Z

(κi)
t , Z

(κi)
t , τ

(κi)
t ) for i ∈ {1, 2}

the increment, infimum and the time the infimum is attained for the Brownian

motion with drift on each interval between the jumps of J2,κ2 and assembles the pair

(ζ(κ1), ζ(κ2)), clearly satisfying ζ(κi) d
= χ(κi)

t
, i ∈ {1, 2}. As [40, Alg. MAXLOCATION]

samples the law Φt(v, µ) with uniformly bounded expected runtime over the choice

of parameters µ, v and t, the computational cost of sampling the pair of vectors

(χ(κ1)
t

, χ(κ2)
t

) using Algorithm 3 is proportional to to the cost of sampling X
(κ)
t via

Algorithm 2.

In principle, Algorithm 3 is an exact algorithm for the simulation of a coupling

(χ(κ1)
t

, χ(κ2)
t

). However, it cannot be applied within an MLMC simulation scheme

for a function of χ
(κ)
T at a fixed time horizon T (the next paragraph explains why).

SBG-Alg below circumvents this issue via the SB representation in (4.2), which also

makes SBG-Alg paralellizable and thus much faster in practice even in the context

of MC simulation (see the discussion after Corollary 4.26 below).

To the best of our knowledge, there is no simulation algorithm for the increment,

the infima and the times the infima are attained of a Brownian motion under different

drifts, i.e. of the vector

(
Bt, B

(c1)
t , τ t(B

(c1)), B
(c2)
t , τ t(B

(c2))
)
, where (B(c)

s )s≥0 = (Bs+cs)s≥0 and c1 6= c2.
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Thus, in line 7 of Algorithm 3, we are forced to take independent samples from

Φδk(υκ1 , bκ1) and Φδk(υκ2 , bκ2) at each step k. In particular, the coupling of the

marginals X
(κ1)
t and X

(κ2)
t of Πκ1,κ2

t , given in line 16 of Algorithm 3, amounts to

taking two independent Brownian motions in the respective representations in (4.5)

of X
(κ1)
t and X

(κ2)
t . Thus, unlike the coupling defined in Algorithm 2, here, by

Proposition 4.23(b) below, the squared L2-distance satisfies E[(X
(κ1)
t − X(κ2)

t )2] ≥
2tσ2 for all levels 1 ≥ κ1 > κ2 > 0, where σ2 is the Gaussian component ofX. Hence,

for a fixed time horizon, the coupling Πκ1,κ2
t of χ(κ1)

t
and χ(κ2)

t
is not sufficiently

strong for an MLMC scheme to be feasible if X has a Gaussian component, because

the level variances do not decay to zero. However, by Proposition 4.23(b), the L2-

distance between ζ(κ1) and ζ(κ2) constructed in Algorithm 3 does tend to zero with

t → 0. Thus, SBG-Alg below, which applies Algorithm 3 over the time interval

[0, Ln] (recall ELn = T/2n from SB representation (4.2)), circumvents this issue.

The SBG sampler

For a time horizon T , we can now define the coupling Πκ1,κ2
n,T of the vectors χ

(κ1)
T

and χ
(κ2)
T via the following algorithm.

Algorithm 4. SBG-Alg

Require: Cutoffs 1 ≥ κ1 > κ2 > 0, number of sticks n ≥ 0, time horizon T > 0.
1: Set L0 = T , sample Uk ∼ U(0, 1), put `k = Lk−1Uk and Lk = Lk−1 − `k for
k ∈ {1, . . . , n}

2: Sample
(
ξk,1, ξk,2

)
∼ Πκ1,κ2

`k
for k ∈ {1, . . . , n} and

(
ξ

1
, ξ

2
) ∼ Πκ1,κ2

Ln
. Algs 2&3

3: Put χ
(κi)
n,T = ξ

i
+
∑n

k=1

(
ξk,i,min{ξk,i, 0}, `k · 1{ξk,i≤0}

)
for i ∈ {1, 2}

4: return
(
χ

(κ1)
n,T , χ

(κ2)
n,T

)
By SB representation (4.2), the law Πκ1,κ2

n,T is indeed a coupling of the vectors

χ
(κ1)
T and χ

(κ2)
T for any n ∈ N ∪ {0}. Note that if n equals zero, the set {1, . . . , n}

in lines 1 and 2 of the algorithm is empty and the laws Πκ1,κ2
0,T and Πκ1,κ2

T coincide,

implying that SBG-Alg may be viewed as a generalisation of Algorithm 3. The

main advantage of SBG-Alg over Algorithm 3 is that it samples n increments of the

Gaussian approximation over the interval [Ln, T ] using the fast Algorithm 2, with

the “error term” contribution ξ
i

being geometrically small.

The computational complexity of SBG-Alg and Algorithms 2 & 3 is simple to

analyse. Assume throughout that all elementary mathematical operations (addition,

multiplication, exponentiation, etc.), as well as the evaluation of ν(κ) and σ2
κ for all

κ ∈ (0, 1] have constant computational cost. Moreover, assume that the simulation

of any of the following random variables has constant expected cost: standard
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normal N(0, 1), uniform U(0, 1), Poisson random variable (independently of its

mean) and any jump with distribution ν|R\(−κ,κ)/ν(κ) (independently of the cutoff

level κ ∈ (0, 1]). Recall that [40, Alg. MAXLOCATION] samples the law Φt(v, µ)

with uniformly bounded expected cost for all values of the parameters µ ∈ R, v > 0

and t > 0. The next statement follows directly from the algorithms.

Corollary 4.13. Under assumptions above, there exists a positive constant C1 (resp.

C2; C3), independent of κ1, κ2 ∈ (0, 1], n ∈ N and time horizon t > 0, such that the

expected computational complexity of Algorithm 2 (resp. Algorithm 3; SBG-Alg) is

bounded by C1(1 + ν(κ2)t) (resp. C2(1 + ν(κ2)t); C3(n+ ν(κ2)t)).

Up to a multiplicative constant, Algorithms 2 and 3 have the same expected

computational cost. However, Algorithm 3 requires not only additional simulation

of jump times of X(κ2) and a sample from Φt(v, µ) using [40, Alg. MAXLOCATION]

between any two consecutive jumps, but also a sequential computation of the output

(the “for-loop” in lines 5-15) due to the condition in line 9 of Algorithm 3. This

makes it hard to parallelise Algorithm 3. SBG-Alg avoids this issue by using the fast

Algorithm 2 over the stick lengths in SB representation (4.2) and calling Algorithm 3

only over the short time interval [0, Ln], during which very few (if any) jumps ofX(κ2)

occur. Moreover, SBG-Alg consists of several conditionally independent evaluations

of Algorithm 2, which is paralellizable, leading to additional numerical benefits

(see §4.5.2 below).

§4.4.2 Complexity of the MC/MLMC estimator based on SBG-Alg

This subsection gives an overview of the bounds on the computational complexity

of the MC and MLMC estimators defined respectively in (4.52) and (4.53) of §4.6.5

below. Corollary 4.26 (for MC) and Theorem 4.29 (for MLMC) in §4.6.5 give the

full analysis.

Assume (O-δ) holds with some δ ∈ (0, 2] throughout the subsection. As

discussed in §4.3.1 above, we take δ as large as possible. In particular, if σ 6= 0

then δ = 2. Let q ∈ (0, 2] be as in (4.7) and thus q ≥ δ if σ = 0. We take q as

small as possible. For processes used in practice with σ = 0, we may typically take

δ = q = β, where β is the BG index defined in (4.6). Assumption (Hτ), required for

the analysis of the class BT2 in (4.21) of discontinuous functions of τT (X), holds

with γ = 1 as (O-δ) is satisfied (see the discussion following Proposition 4.9 above).

When analysing the class of discontinuous functions BT1 in (4.19), assume (H)

holds throughout with some γ > 0.
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Monte Carlo.

An MC estimator is L2-accurate at level ε > 0, if its bias is smaller than ε/
√

2

and the number N of independent samples is proportional to ε−2, see §3.5.1. The

following table contains a summary of the values κ, as a function of ε, such that the

bias of the estimator in (4.52) is at most ε/
√

2, and the associated Monte Carlo cost

CMC(ε) (up to a constant) for various classes of functions of χ
T

analysed in §4.3.2

(see also Corollary 4.26 below for full details).

Family of functions f Case κ ε2 · CMC(ε)

Lip in (XT , XT ) σ 6= 0 −1/(3− q) q/(3− q)
locLip in (XT , XT ) σ 6= 0 −2/(4− q) 2q/(4− q)

Lip ∪ locLip in (XT , XT ) σ = 0 ε q

BT1 defined in (4.19)
σ 6= 0 −min{ 3

4−q ,
2

3−q } min{ 3q
4−q ,

2q
3−q }

σ = 0 − 1
2 −

1
γ q( 12 + 1

γ )

Lip in τT (X)

σ 6= 0 −1/(3− q) q/(3− q)
δ ∈ (0, 2) \ { 23} −min{ 2δ ,max{ 32 ,

1
δ }} qmin{ 2δ ,max{ 32 ,

1
δ }}

δ = 2
3 −3/2 3q/2

BT2 defined in (4.21)

σ 6= 0 −2/(3− q) 2q/(3− q)
δ ∈ (0, 2) \ { 23} −min{ 4δ ,max{3, 2δ }} qmin{ 4δ ,max{3, 2δ }}

δ = 2
3 −3 3q

Table 4.2: The table presents the power of ε−1 in the asymptotic behaviour of the level κ and
the complexity CMC(ε) as ε→ 0 for the MC estimator in (4.52).

The number of sticks n ∈ N ∪ {0} in SBG-Alg does not affect the law of

χ
(κ)
T . It only impacts the MC estimator in (4.52) through numerical stability and

the reduction of simulation cost. It is hard to determine the optimal choice for

n. Clearly, the choice n = 0 (i.e. Algorithm 3) is not a good one as discussed

in §4.4.1 above. A balance needs to be struck between (i) having a vanishingly

small number of jumps in the time interval [0, Ln], so that Algorithm 3 behaves

in a numerically stable way, and (ii) not having too many sticks so that line 2

of SBG-Alg does not execute redundant computation of many geometrically small

increments of X(κ), which are not detected in the final output. A good rule of thumb

is n = n0 +
⌈
log2(1 + ν(κ)T )

⌉
, where dxe = inf{j ∈ Z : j ≥ x}, x ∈ R, and the initial

value n0 is chosen so that some sticks are present if for large κ the total expected

number of jumps ν(κ)T is small (e.g. n0 = 5 works well in §4.5.2 for jump diffusions

with low activity, see Figures 4.6 and 4.5), ensuring that the expected number of

jumps in [0, Ln] vanishes as ε (and hence κ) tends to zero.
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Multilevel Monte Carlo.

The MLMC estimator in (4.53) is based on the coupling in SBG-Alg for consecutive

levels of a geometrically decaying sequence (κj)j∈N and an increasing sequence of the

numbers of sticks (nj)j∈N. Table 4.3 summarises the resulting MLMC complexity

up to logarithmic factors, with full results available in Theorem 4.29 below.

There are two key ingredients in the proof of Theorem 4.29: (I) the bounds in

Theorem 4.22 on the L2-distance (i.e. the level variance, see §3.5.2) between the

functions of the marginals of the coupling Π
κj ,κj+1

nj ,T
constructed by SBG-Alg; (II) the

bounds on the bias of various functions in §4.3 above. The number of levels m in

the MLMC estimator in (4.53) is chosen to ensure that its bias, equal to the bias

of χ
(κm)
T at the top cutoff level κm, is bounded by ε/

√
2. Thus, the value of m can

be expressed in terms of ε using Table 4.2 and the explicit formula for the cutoff

κj , given in the caption of Table 4.3. The formula for κj at level j in the MLMC

estimator in (4.53) is established in the proof of Theorem 4.29 by minimising the

multiplicative constant in the computational complexity CML(ε) over all possible

rates of the geometric decay of the sequence (κj)j∈N.

We stress that the analysis of the level variances for the various payoff functions

of the coupling Π
κj ,κj+1

nj ,T
in Theorem 4.22 is carried out directly for locally Lipschitz

payoffs, see Propositions 4.23. However, in the case of the discontinuous payoffs

in BT1 (see (4.19)) and BT2 (see (4.21)), the analysis requires a certain regularity

(uniformly in the cutoff levels) of the coupling (χ
(κj)
T , χ

(κj+1)
T ). This leads to a

construction of a further coupling (χ
(κj)
T , χ

(κj+1)
T , χ

T
) where the components of the

pair (χ
(κj)
T , χ

(κj+1)
T ) can be compared to the limiting object χ

T
, which can be shown

to possess the necessary regularity (see Proposition 4.25 below for details).

§4.5 Numerical examples

In this section we study numerically the performance of SBG-Alg. All the results

are based on the code available in repository [51]. In §4.5.1 we apply SBG-Alg to

two families of Lévy models (tempered stable and Watanabe processes) and verify

numerically the decay of the bias (established in §4.3.2 above) and level variance

(see Theorem 4.22 below) of the Gaussian approximations. In §4.5.2 we study

numerically the cost reduction of SBG-Alg, when compared to Algorithm 3, for the

simulation of the vector χ
(κ)
T .
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Family of functions f Case a The power of ε−1 in ε2 · CML(ε)

Lip in (XT , XT ) σ 6= 0 2(q − 1) 2(q − 1)+/(3− q)
locLip in (XT , XT ) σ 6= 0 2(q − 1) 4(q − 1)+/(4− q)

Lip ∪ locLip in (XT , XT ) σ = 0 2(q − 1) 2(q − 1)+

BT1 defined in (4.19)
σ 6= 0 2(2q − 1)/3 (2q − 1)+ min{ 2

4−q ,
4

9−3q
}

σ = 0 2(q(1 + γ)− γ)/(2 + γ) (q(1 + 1/γ)− 1)+

Lip in τT (X)

σ 6= 0 5
4
q − 1

2
( 5
4
q − 1

2
)+

σ = 0 q − (1− q
2

) min{ 1
2
, 2δ
2−δ }

(2q − (2− q) min{1, 4δ/(2− δ)})+

max{δ,min{4/3, 2δ}}

BT2 defined in (4.21)
σ 6= 0 9

8
q − 1

4
( 9
4
q − 1

2
)+

σ = 0 q − (1− q
2

) min{ 1
4
, δ
2−δ }

(2q − (2− q) min{ 1
2
, 2δ/(2− δ)})+

max{δ/2,min{2/3, δ}}

Table 4.3: The table presents the power of ε−1 in ε2 · CML(ε) as ε → 0, neglecting only the
logarithmic factors (see Theorem 4.29 below for the complete result). Parameter a in the table
determines the decreasing sequence of cutoff levels (κj)j∈N as follows: κj = (1 + |a|/q)−2(j−1)/|a| if
a 6= 0 and κj = exp(−(2/q)(j − 1)) otherwise. The corresponding increasing number of sticks nj
in the definition of the law Π

κj ,κj+1

nj ,T
can be taken to grow asymptotically as log2(1 + ν(κj)T ) for

large j, see Theorem 4.29.

§4.5.1 Numerical performance of SBG-Alg for tempered stable and

Watanabe processes

To illustrate numerically our results, we consider two classes of exponential Lévy

models S = S0eX . The first is the tempered stable class, containing the CGMY

(or KoBoL) model, a widely used process for modeling risky assets in financial

mathematics (see e.g. [36] and the references therein), which satisfies the regularity

assumptions from §4.3.2 above. The second is the Watanabe class, which has diffuse

but singular transition laws [91, Thm 27.19], making it a good candidate to stress

test our results.

We numerically study the decay of the bias and level variance of the MLMC

estimator in (4.53) for the prices of a lookback put E[ST − ST ] and up-and-out

call E[(ST − K)+
1{ST≤M}] as well as the values of the ulcer index (UI), given

by 100E[(ST /ST − 1)2]1/2 [44, 77], and a modified ulcer index (MUI), given by

100E[(ST /ST − 1)2
1{τT (S)<T/2}]

1/2. The first three quantities are commonplace in

applications, see [36, 44]. The MUI refines the UI by incorporating the information

on the drawdown duration, weights trends more heavily than short-time fluctuations.

In §4.5.1 and §4.5.1 we use N = 105 independent samples to estimate the means

and variances of the variables D1
j in (4.53) (with χ

(κj)
T substituted by χ

(κj)
T ), where

κj = e−r(j−1) and nj =
⌈
max{j, log2(1 + ν(κj+1))}

⌉
, j ∈ N, discussed in §4.6.5.

Tempered stable.

The characteristic triplet (σ2, ν, b) of the tempered stable Lévy process X is given

by σ = 0, drift b ∈ R and Lévy measure ν(dx) = |x|−1−αsgn(x)csgn(x)e
−λsgn(x)|x|dx,
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where α± ∈ [0, 2), c± ≥ 0 and λ± > 0, cf. (4.3). Exact simulation of increments is

currently out of reach if either α+ > 1 or α− > 1 (see e.g. [58]) and requires the

Gaussian approximation.
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(B) (ST −K)+1{ST ≤M}
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(D) (ST /ST − 1)21{τT (S) < T/2}

Figure 4.3: Gaussian approximation of a tempered stable process: log-log plot of the bias and
level variance for various payoffs as a function of log κj . Circle (◦) and plus (+) correspond to
log |E[D1

j ]| and logV[D1
j ], respectively, where D1

j is given in (4.53) with κj = exp(−r(j − 1)) for
r = 1/2. The dashed lines in all the graphs plot the rates of the theoretical bounds in §4.3.2 (blue
for the bias) and Theorem 4.22 (red for level variances). In plots (A)–(D) the initial value of the
risky asset is normalised to S0 = 1 and the time horizon is set to T = 1/6. In plot (B) we set K = 1
and M = 1.2. The model parameters are given in Table 4.4 below.

Parameter set b α+ α− c+ c− λ+ λ− Graphs

1 0 .66 .66 .1305 .0615 6.5022 3.0888 (A) and (B)

2 .1274 1.0781 1.0781 .41077 .41077 49.663 59.078 (C) and (D)

Table 4.4: The parameters used for Figure 4.3. The first set of parameters
corresponds to the risk-neutral calibration to vanilla options on the USD/JPY
exchange rate, see [3, Table 3]. The second set is the maximum likelihood estimate
based on the real-world S&P stock prices, see [63, Table 1].

In Figure 4.3, our bounds are close to the exhibited numerical behaviour for

continuous payoff functions. However, in the discontinuous case, χ
(κj)
T appears to be

much closer to χT (resp. χ
(κj+1)
T ), than predicted by Propositions 4.7 & 4.9 (resp.

Theorem 4.22(b)&(d)).
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Watanabe model.

The characteristic triplet (σ, ν, b) of the Watanabe process is given by σ = 0, the

Lévy measure ν equals
∑

n∈N c+δa−n+c−δ−a−n , where a ∈ N\{1} and δx is the Dirac

measure at x, and the drift b ∈ R is arbitrary. The increments of the Watanabe

process are diffuse but have no density (see [91, Thm 27.19]). Since the process

has very little jump activity, the bound in Proposition 4.9 (see also (4.13)) is non-

vanishing and the bounds in Theorem 4.22(c) & (d) are not applicable, meaning

that we have no theoretical control on the approximation of τT (S). This is not

surprising as such acute lack of jump activity makes the Gaussian approximation

unsuitable (cf. [6, Prop. 2.2]).

−30 −20 −10 0
−60

−40

−20

0

log κj

(A) ST − ST with b = 0

−30 −20 −10 0

−15

−10

−5

0

log κj

(B) (ST /ST − 1)21{τT (S)<T/2} with b = 0

−30 −20 −10 0
−60

−40

−20

0

log κj

(C) ST − ST with b = −.5

−30 −20 −10 0

−60

−40

−20

0

log κj

(D) (ST /ST − 1)21{τT (S)<T/2} with b = −.5

Figure 4.4: Gaussian approximation of a Watanabe process: log-log plot of the bias and level
variance for various payoffs as a function of log κj . Circle (◦) and plus (+) correspond to log |E[D1

j ]|
and logV[D1

j ], respectively, where D1
j is given in (4.53) with κj = exp(−r(j − 1)) for r = 1. The

dashed lines in graphs (A) & (C) plot the rates of the theoretical bounds in §4.3.2 (blue for the
bias) and Theorem 4.22 (red for level variances). In plots (A)–(D) the initial value of the risky
asset is normalised to S0 = 1 and the time horizon is set to T = 1. The model parameters are given
by a = 2, c+ = c− = 1.

The pictures in Figure 4.4 (A) & (C) suggest that our bounds on the bias and

level variance in §4.3.2 and Theorem 4.22 are robust for continuous payoff functions

even if the underlying Lévy process has no transition densities. There are no dashed

lines in Figure 4.4 (B) & (D) as there are no results for discontinuous functions of

τT (S) in this case. In fact, Figure 4.4(B) suggests that the decay rate of the bias

and level variance for functions of τT (S) can be arbitrarily slow if the process does

not have sufficient activity. Figure 4.4(D), however, suggests that this decay is still
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fast if the underlying finite variation process X has a nonzero natural drift (see also

Remark 4.5).

§4.5.2 The cost reduction of SBG-Alg over Algorithm 3

Recall that Algorithm 3 and SBG-Alg both draw exact samples of a Gaussian

approximation χ
(κ)
T . However, in practice, SBG-Alg may be many times faster

than Algorithm 3: Figure 4.5 plots the speedup factor in the case of a tempered

stable process, defined in §4.5.1 above, as a function of κ. In conclusion, one should

use SBG-Alg instead of Algorithm 3 for the MC estimator in (4.52) (recall that

Algorithm 3 is not suitable for the MLMC estimator, as discussed in §4.4.1).

10−4 10−3 10−2 10−1

10
20
30
40
50
60

κ

α± = 1.2

n = 5 n = 10 n = 15 n = 20

10−4 10−3 10−2 10−1

10
20
30
40
50
60

κ

α± = 1.4

n = 5 n = 10 n = 15 n = 20

Figure 4.5: The pictures show the ratio of the cost of Algorithm 3 over the cost of SBG-Alg
(both in seconds) for the Gaussian approximations of a tempered stable process as a function of the
cutoff level κ. The parameters used are λ± = 5, c± = 2. The number of sticks n in SBG-Alg varies
between 5 and 20. The ratio for n = 20 is 57.8 (resp. 61.7) in the case α± = 1.2 (resp. α± = 1.4)
for κ = 2−16 (resp. κ = 2−14).

If the Lévy process X is a jump diffusion, i.e. ν(R \ {0}) < ∞, we may apply

Algorithms 2 & 3 and SBG-Alg with κ1 = κ2 = 0. In that case SBG-Alg still

outperforms Algorithm 3 by a constant factor, with computational benefits being

more pronounced when the total expected number of jumps λ = ν(R \ {0})T is

large. The cost reduction is most drastic when λ is large, but the improvement is

already significant for λ = 2.

§4.5.3 Estimating the Greeks: Delta and Gamma for barrier options

via Monte Carlo

A fundamental problem in mathematical finance is to compute the sensitivity of

the price of a derivative security to the various underlying parameters in order to

construct appropriate hedging strategies. These sensitivities are known as the Greeks

and are in practice given by the partial derivatives of the option price e−rTE[P ]

(where r is the discount rate over the time horizon T and P is a random payoff).
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Figure 4.6: The pictures show, for multiple number of sticks n, the ratio of the cost of Algorithm 3
over the cost of SBG-Alg (both in seconds) for jump diffusions as a function of the mean number of
jumps λ = ν(R \ {0})T . The ratio for n = 15 is 11.8 (resp. 10.8) in Merton’s (resp. Kou’s) model
when λ = 10.

The most common of the Greeks are Delta and Gamma, given by the first and

second derivatives of the price e−rTE[P ] with respect to the spot S0.

If the risk-neutral dynamics of the risky asset is described by an exponential

Lévy model S = S0eX , SBG-Alg provides a simple procedure for the Monte Carlo

estimation of Delta and Gamma for any payoff P = g(χT ) (recall that f ′(x) and

f ′′(x) of a function f(x) are approximated by (f(x+h)−f(x−h))/(2h) and (f(x+

h)−2f(x)+f(x−h))/h2, respectively, for a small h > 0). This approach, widely used

in practice, requires the evaluation of e−rTE[g(χT )] by SBG-Alg on a grid of current

spot prices S0, where the simulated stick-breaking sequence and the corresponding

increments of X(κ) can be reused over the grid points of S0.

In order to test numerically the performance of SBG-Alg in this context, we

compute Delta and Gamma of an up-and-out digital option with barrier M and

payoff g(χT ) = 1{ST ≤ M} = 1{XT ≤ log(M/S0)} under an exponential Lévy

model with numerically accassible Delta and Gamma. Let X be an α-stable process

of infinite variation without positive jumps. Then XT has the same law as XT

conditioned to be positive and Delta and Gamma are thus equal to the first and

second derivatives of s 7→ e−rTP(XT ≤ log(M/s))/P(XT > 0), which can be

numerically evaluated via definite integrals and power series [97, Ch. 4].

The parameters were chosen as follows: X has unit scale (in Zolotarev’s (C)

parametrisation) and α = 1.5, while the market data is r = 0.05, T = 1, M = 1 and

S0 ∈ [1/2, 1). The cutoff is set at κ = 0.1 and the grid spacing at h = 0.01. We used

n = 20 sticks and N = 107 samples. This resulted in a total simulation time 1 of

1 minute. The estimation of Delta and Gamma is accurate and numerically stable

1We used an HP Pavilion laptop 15-cw0xxx containing an AMD Ryzen 5 2500U with Radeon
Vega Mobile and 12 GB of RAM
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(see Figure 4.7). Surprisingly the error in Delta remains bounded all the way to the

barrier M .
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(A) Delta (estimation)
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(B) Delta (relative error)
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Figure 4.7: Monte Carlo estimation of Delta and Gamma for the up-and-out digital option with
payoff 1{ST ≤M}. Dotted lines with (◦) correspond to the output based on SBG-Alg. Subfigures
(A) and (C) contain a solid line corresponding to the true values of Delta and Gamma.

§4.6 Proofs and technical results of Chapter 4

In the remainder of the chapter we use the notation τ t = τ t(X), τ
(κ)
t = τ t(X

(κ)) for

all t > 0.

§4.6.1 Proof of Theorems 4.1 and 4.2

In this subsection we establish bounds on the Wasserstein and Kolmogorov distances

between the increment Xt and its Gaussian approximation X
(κ)
t in (4.5).

Proof of Theorem 4.1. Recall the Lévy-Itô decomposition of X at level κ in (4.4)

and the martingale M (κ) = σB + J1,κ. Set Z = X − M (κ) and note X(κ) =

Z +
√
σ2
κ + σ2W , where W is a standard Brownian motion in (4.5), independent

of Z. Hence any coupling (Wt,M
(κ)
t ) yields a coupling of (Xt, X

(κ)
t ) satisfying

E[|Xt − X(κ)
t |p] = E[|M (κ)

t −
√
σ2
κ + σ2Wt|p]. Setting W = B, which amounts to

the independence coupling (W,J1,κ), and applying Jensen’s inequality for p ∈ [1, 2]
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yields

E[|Xt −X(κ)
t |p]2/p ≤ E

[∣∣J1,κ
t −

(√
σ2
κ + σ2 − σ

)
Wt

∣∣2]
= E[||J1,κ

t |2] +
(√

σ2
κ + σ2 − σ

)2
t ≤ 2tσ2

κ.

For m ∈ N we have M
(κ)
t

d
=
∑m

i=1 ξi, where ξ1, . . . , ξm are iid with ξ1
d
= M

(κ)
t/m.

Hence [84, Thm 16] and [89, Thm 4.1] imply the existence of universal constants

Kp, p ∈ [1, 2], with K1 = 1/2, satisfying

Wp
p

(
M

(κ)
t ,

√
σ2
κ + σ2Wt

)
≤ Kp

p
[t(σ2

κ+σ2)]p/2E[|ξ1|p+2]

mp/2E[ξ21 ](p+2)/2 = Kp
p

(m/t)E[|M(κ)
t/m
|p+2]

σ2
κ+σ2 , m ∈ N.

According to [46, Thm 1.1], the limit as m→∞ of the right-hand side of the display

above equals Kp
p

∫
(−κ,κ) |x|

p+2ν(dx)/(σ2
κ +σ2) ≤ Kp

pκpϕ2
κ, implying the claim in the

theorem.

Proof of Theorem 4.2. (a) Define dκ = supx∈R |P(M
(κ)
t ≤ x)−P(

√
σ2
κ + σ2Wt ≤ x)|

and note that

|P(Xt ≤ x)−P(X
(κ)
t ≤ x)| =

∣∣E[P(M
(κ)
t ≤ x−Zt|Zt)−P

(√
σ2
κ + σ2Wt ≤ x−Zt

∣∣Zt)]∣∣
is bounded by dκ, where the processes Z and M (κ) are as in the proof of Theorem 4.1.

Since M (κ) is a Lévy process, for any m ∈ N we have M
(κ)
t

d
=
∑m

i=1 ξi, where

ξ1, . . . , ξm are iid with ξ1
d
= M

(κ)
t/m. By the Berry-Esseen inequality [66, Thm 1],

there exists a constant CBE ∈ (0, 1
2) such that

dκ ≤
CBEE[|ξ1|3]
√
mE[ξ2

1 ]3/2
=

CBEt

m
√
m
·

(m/t)E[|M (κ)
t/m|

3]

(t/m)3/2(σ2
κ + σ2)3/2

= CBE

(m/t)E[|M (κ)
t/m|

3]
√
t(σ2

κ + σ2)3/2
, m ∈ N.

According to [46, Thm 1.1], the limit as m → ∞ of the right-hand side of the

display above equals CBE

∫
(−κ,κ) |x|

3ν(dx)/(
√
t(σ2

κ + σ2)3/2) ≤ CBE(κ/σκ)ϕ3
κ/
√
t,

implying (a).

(b) By [86, Thm 3.1(a)], Xt has a smooth density ft and, given T > 0,

the constant C ′ = sup(t,x)∈(0,T ]×R t
1/δft(x) is finite. Applying (4.8) and (4.33) in

Lemma 4.18 with p = 2 gives (4.10).

§4.6.2 Proof of Theorem 4.3

We recall an elementary result for stick-breaking processes.
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Lemma 4.14. Let ($n)n∈N be a stick-breaking process on [0, 1] based on the law

U(0, 1). For any measurable function φ ≥ 0, we have

∑
n∈N

E[φ($n)] =

∫ 1

0

φ(x)

x
dx.

In particular, for any a1, a2 > 0 and b1 < b2 with b2 > 0, we have∑
n∈N

E[min{a1$
b1
n , a2$

b2
n }]

=

a2
b2

min
{

1, a1a2

}b2/(b2−b1)
+ a1

b1

(
1−min

{
1, a1a2

}b1/(b2−b1))
, b1 6= 0,

b−1
2 min{a2, a1}

(
1 + log+

(
a2
a1

))
, b1 = 0.

Proof. The law of − log$n is gamma with shape n and scale 1. Applying Fubini’s

theorem, implies

∑
n∈N

E[φ($n)] =
∑
n∈N

∫ ∞
0

xn−1

(n− 1)!
e−xφ(e−x)dx =

∫ ∞
0

φ(e−x)dx =

∫ 1

0

φ(x)

x
dx.

The formula for φ(x) = min{a1x
b1 , a2x

b2} follows by a direct calculation.

The Lp-Wasserstein distance, defined in above (4.17), satisfies Wp
p (ξ, ξ∗) =∫ 1

0 |F
−1(u)−F−1

∗ (u)|pdu, where F−1 (resp. F−1
∗ ) is the right inverse of the distribution

function F (resp. F∗) of the real-valued random variable ξ (resp. ξ∗) (see [19,

Thm 2.10]). Thus the comonotonic (or minimal transport) coupling, defined by

(ξ, ξ∗) = (F−1(U), F−1
∗ (U)) for some U ∼ U(0, 1), (4.25)

attains the infimum in definition (4.17).

Lemma 4.15. If the random variables ξ and ξ∗ are comonotonically coupled, then

E[|1{ξ ≤ x} − 1{ξ∗ ≤ x}|] = |E[1{ξ ≤ x} − 1{ξ∗ ≤ x}]| for any x ∈ R.

Proof. Suppose (ξ, ξ∗) = (F−1(U), F−1
∗ (U)) for some U ∼ U(0, 1), where F and F∗

are the distribution functions of ξ and ξ∗. Suppose y = F (x) ≤ F∗(x) =: y∗. Since

F−1 and F−1
∗ are monotonic functions, it follows that 1{ξ ≤ x}−1{ξ∗ ≤ x} ≤ 0 a.s.

since this difference equals −1 or 0 according to U ∈ (y, y∗] or U ∈ (0, 1) \ (y, y∗],

respectively. If y ≥ y∗, we have 1{ξ ≤ x} − 1{ξ∗ ≤ x} ≥ 0 a.s. In either case, the

result follows.
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For any t > 0, let Gκt denote the joint law of the comonotonic coupling of Xt

and X
(κ)
t defined in (4.25). Note that a coupling (Xt, X

(κ)
t ) with law Gκt satisfies

the inequality in Theorem 4.1. The following lemma is crucial in the proof of

Theorem 4.3.

Lemma 4.16. Let ` = (`n)n∈N be a stick-breaking process on [0, t] and (ξn, ξ
(κ)
n ),

n ∈ N, a sequence of random vectors that, conditional on `, are independent and

satisfy (ξn, ξ
(κ)
n ) ∼ Gκ`n for all n ∈ N. Then for any p ∈ [1, 2] and x ∈ R we have

E
[( ∞∑

n=1

|ξn − ξ(κ)
n |
)p]1/p

≤ µp(κ, t) and

E
[ ∞∑
n=1

`n
∣∣1{ξn ≤ x} − 1{ξ(κ)

n ≤ x}
∣∣] ≤ µτ0(κ, t),

(4.26)

where µp and µτ0 are as in (4.12) and (4.13), respectively. Moreover, if (O-δ) holds,

then for every T > 0 there exists a constant C > 0, dependent only on (T, δ, σ, ν),

such that for all t ∈ [0, T ], κ ∈ (0, 1] and x ∈ R we have

E
[ ∞∑
n=1

`n
∣∣1{ξn ≤ x} − 1{ξ(κ)

n ≤ x}
∣∣] ≤ µτδ (κ, t), (4.27)

where µτδ is defined in (4.15).

Proof. Note that µp(κ, t) = µ2(κ, t) for all p ∈ (1, 2]. Hence, by Jensen’s inequality,

in (4.26) we need only consider p ∈ {1, 2}. Pick n ∈ N and set κp = Kp
pκpϕ2

κ,

p ∈ {1, 2}, where Kp and ϕκ are as in the statement of Theorem 4.1. Condition on

`n and apply the bound in (4.8) to obtain

E[|ξ(κ)
n − ξn|p|`n] ≤ min

{
2p/2σpκ`

p/2
n , κp

}
, p ∈ {1, 2}. (4.28)

An application of (4.28) and Lemma 4.14 yield the first inequality in (4.26) for

p = 1:

∞∑
n=1

E
[∣∣ξn − ξ(κ)

n

∣∣] ≤ ∞∑
n=1

E[min
{√

2`nσκ, κ1

}
]

= 2 min
{√

2tσκ, κ1

}(
1 + log+

(√
2tσκ/κ1

))
.

Consider the case p = 2. A simple expansion yields

E
[( ∞∑

n=1

∣∣ξn− ξ(κ)
n

∣∣)2]
=
∞∑
n=1

E
[(
ξn− ξ(κ)

n

)2]
+ 2

∞∑
n=1

∞∑
m=n+1

E
[∣∣ξn− ξ(κ)

n

∣∣∣∣ξm− ξ(κ)
m

∣∣].
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We proceed to bound the two sums. The inequality in (4.28) for p = 2 and

Lemma 4.14 imply

∞∑
n=1

E
[(
ξn − ξ(κ)

n

)2] ≤ ∞∑
n=1

E
[

min
{

2σ2
κ`n, κ2

}]
= min

{
2tσ2

κ, κ2

}(
1 + 2 log+

(√
2tσκ/

√
κ2

))
.

Define the σ-algebra Fn = σ(`1, . . . , `n) and use the conditional independence to

obtain

E
[∣∣ξn − ξ(κ)

n

∣∣∣∣ξm − ξ(κ)
m

∣∣∣∣Fm] ≤ min{
√

2`nσκ, κ1}min{
√

2`mσκ, κ1}, n < m.

Note that (`m/Ln)∞m=n+1 is a stick-breaking process on [0, 1] independent of Fn.

Use the tower property and apply (4.8) and Lemma 4.14 to get

∞∑
m=n+1

E
[∣∣ξn − ξ(κ)

n

∣∣∣∣ξm − ξ(κ)
m

∣∣∣∣Fn]
≤ min{

√
2`nσκ, κ1}

∞∑
m=n+1

E
[

min
{√

2`mσκ, κ1

}∣∣Fn]
= 2 min

{√
2`nσκ, κ1

}
min

{√
2Lnσκ, κ1

}(
1 + log+

(√
2Lnσκ
κ1

))
≤ 2 min

{
2Ln−1σ

2
κ, κ

2
1

}(
1 + log+

(√
2tσκ/κ1

))
,

where max{Ln, `n} ≤ Ln−1 ≤ t is used in the last step. Since `n
d
= Ln, n ∈ N,

Lemma 4.14 yields

2
∞∑
n=1

∞∑
m=n+1

E
[∣∣ξn − ξ(κ)

n

∣∣∣∣ξm − ξ(κ)
m

∣∣]
≤ 4

∞∑
n=1

E
[
min

{
2Ln−1σ

2
κ, κ

2
1

}] (
1 + log+

(√
2tσκ/κ1

))
= 2µ1(κ, t)2.

Putting everything together yields the first inequality in (4.26) for p = 2.

Next we prove the second inequality in (4.26). By Lemma 4.15, we have

E[|1{ξn ≤ x} − 1{ξ(κ)
n ≤ x}||`n] =

∣∣P(X`n ≤ x|`n)− P
(
X

(κ)
`n
≤ x

∣∣`n)∣∣. (4.29)

Applying (4.9) in Theorem 4.2(a) implies `n
∣∣P(X`n ≤ x|`n) − P

(
X

(κ)
`n
≤ x

∣∣`n)∣∣ ≤
1
2(κ/σκ)ϕ3

κ`
1/2
n . By Fubini’s theorem, conditioning each summand on `n, applying
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equality (4.29) and Lemma 4.14, we have

E
[∑
n∈N

`n
∣∣1{ξn ≤ x} − 1{ξ(κ)

n ≤ x}
∣∣] ≤ 1

2

√
t(κ/σκ)ϕ3

κ

∑
n∈N

E
[
(`n/t)

1/2
]

= µτ0(κ, t).

Let δ ∈ (0, 2] satisfy infu∈(0,1] u
δ−2(σ2

u + σ2) > 0. By (4.10) in Theorem 4.2(b),

we see that `n
∣∣P(X`n ≤ x|`n)− P

(
X

(κ)
`n
≤ x

∣∣`n)∣∣ ≤ ψ2/3
κ `

1−2/(3δ)
n , where ψκ = Cκϕκ

as defined in (4.14). Moreover, we have `n
∣∣P(X`n ≤ x|`n) − P

(
X

(κ)
`n
≤ x

∣∣`n)∣∣ ≤ `n.

Hence by (4.29) and Lemma 4.14, we obtain

∞∑
n=1

E
[
`n
∣∣1{ξn ≤ x} − 1{ξ(κ)

n ≤ x}
∣∣] ≤ ∞∑

n=1

E
[

min
{
`n, ψ

2/3
κ `1−2/(3δ)

n

}]
=

t ∧ ψδκ + 3δ
3δ−2ψ

2/3
κ t1−

2
3δ
(
1−min

{
1, t−1/δψκ

}δ−2/3)
, δ ∈ (0, 2] \ {2

3},

(t ∧ ψ2/3
κ )(1 + log+(tψ

−2/3
κ )), δ = 2

3 .

Proof of Theorem 4.3. Let ` = (`n)n∈N and (ξn, ξ
(κ)
n ), n ∈ N, be as in Lemma 4.16.

Define the vector

(
ζ1, ζ2, ζ3, ζ

(κ)
1 , ζ

(κ)
2 , ζ

(κ)
3

)
=
∞∑
n=1

(
ξn, ξn ∧ 0, `n1{ξn≤0}, ξ

(κ)
n , ξ(κ)

n ∧ 0, `n1{ξ(κ)n ≤0}

)
.

By (4.1) and (4.25), we have (ζ1, ζ2, ζ3)
d
= χ

t
and (ζ

(κ)
1 , ζ

(κ)
2 , ζ

(κ)
3 )

d
= χ(κ)

t
. Hence,

it suffices to show that these vectors satisfy (4.11), (4.13) and (4.14). Since x 7→
min{x, 0} is in Lip1(R), the inequalities

max
{∣∣ζ1 − ζ(κ)

1

∣∣, ∣∣ζ2 − ζ(κ)
2

∣∣} ≤ ∞∑
n=1

∣∣ξn − ξ(κ)
n

∣∣ and

∣∣ζ3 − ζ(κ)
3

∣∣ ≤ ∞∑
n=1

`n
∣∣1{ξn ≤ 0} − 1{ξ(κ)

n ≤ 0}
∣∣

follow from the triangle inequality. The theorem follows from Lemma 4.16.

Remark 4.17. Let Ct and C
(κ)
t denote the convex minorants of X and X(κ) on

[0, t], respectively. Couple X and X(κ) in such a way that the stick-breaking processes

describing the lengths of the faces of their convex minorants (see [87, Thm 1] and [56,

Sec. 4.1]) coincide. (The Skorokhod space D[0, t] and the space of sequences on R
are both Borel spaces by [62, Thms A1.1, A1.2 & A2.2], so the existence of such

a coupling is guaranteed by [62, Thm 6.10].) Geometric arguments (see [53, §3]),

show that the sequences of heights of the faces of the convex minorants, denoted by
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(ξn)n∈N and (ξ
(κ)
n )n∈N, satisfy

sup
s∈[0,t]

∣∣Ct(s)− C(κ)
t (s)

∣∣ ≤ ∞∑
n=1

∣∣ξn − ξ(κ)
n

∣∣ and

∣∣τ t − τ (κ)
t

∣∣ ≤ ∞∑
n=1

`n
∣∣1{ξn ≤ 0} − 1{ξ(κ)

n ≤ 0}
∣∣.

Hence, if (ξn, ξ
(κ)
n ), n ∈ N, are coupled as in Lemma 4.16, the inequalities in (4.26)

and (4.27) yield the same bounds as in Theorem 4.3 but in a stronger metric (namely,

the distance between the convex minorants in the supremum norm), while retaining

the control on the time of the infimum.

§4.6.3 The proofs of Propositions 4.6, 4.7, 4.9 and 4.12

The Lévy-Khintchine formula for Xt in (4.3), the definition of X
(κ)
t in (4.5) and the

inequality ez ≥ 1 + z (for all z ∈ R) imply

t−1 logE
[
euX

(κ)
t
]

= bu+ (σ2 + σ2
κ)
u2

2
+

∫
R\(−κ,κ)

(eux − 1− ux1(−1,1)(x))ν(dx)

≤ σ2
κu

2/2 + t−1 logE
[
euXt

]
for any u ∈ R, t > 0 and κ ∈ (0, 1].

(4.30)

Thus E[exp(uX
(κ)
t )] ≤ E[exp(uXt)] exp(σ2

κu
2t/2) and, in particular, the Gaussian

approximation X(κ) has as many exponential moments as the Lévy process X.

Proof of Proposition 4.6. By [99, Thm 6.16], there exists a coupling between (ξ, ζ)
d
=

(XT , XT ) and (ξ′, ζ ′)
d
= (X

(κ)
T , X

(κ)
T ), such that

E[(|ξ − ξ′|+ |ζ − ζ ′|)2]1/2 =W2((XT , XT ), (X
(κ)
T , X

(κ)
T )).

The identity eb − ea =
∫ b
a ezdz implies that, for x ≥ y and x′ ≥ y′, we have

|f(x, y)−f(x′, y′)| ≤ K(|ex−ex
′ |+|ey−ey

′ |) ≤ K(|x−x′|+|y−y′|)emax{x,x′}. (4.31)

Apply this inequality, the Cauchy-Schwartz inequality, the elementary inequalities,

which hold for all a, b ≥ 0, (a+ b)2 ≤ 2(a2 + b2) and (a+ b)1/2 ≤ a1/2 + b1/2 and the
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bound in (4.30) to obtain

E|f(ξ, ζ)− f(ξ′, ζ ′)| ≤ KE[(|ξ − ξ′|+ |ζ − ζ ′|)2]1/2E[(eξ + eξ
′
)2]1/2

≤ 21/2KW2((XT , XT ), (X
(κ)
T , X

(κ)
T ))E[e2ξ + e2ξ′ ]1/2

≤ 2KW2((XT , XT ), (X
(κ)
T , X

(κ)
T ))E[e2XT ]1/2(1 + eσ

2
κT ).

Applying Corollary 4.4 gives the desired inequality, concluding the proof of the

proposition.

We now introduce a tool that uses the Lp-distance E[|ζ − ζ ′|p]1/p between

random variables ζ and ζ ′ to bound the L1-distance E|1[y,∞)(ζ)−1[y,∞)(ζ
′)| between

the indicators.

Lemma 4.18. Let (ξ, ζ) and (ξ′, ζ ′) be random vectors in Rn × R. Fix y ∈ R and

let h ∈ LipK(Rn) satisfy 0 ≤ h ≤ M for some constants K,M ≥ 0. Then for any

p, r > 0, the difference H = h(ξ)1[y,∞)(ζ)− h(ξ′)1[y,∞)(ζ
′) satisfies

E|H| ≤ KE‖ξ − ξ′‖+MP(|ζ − y| ≤ r) +Mr−pE[|ζ − ζ ′|p]. (4.32)

In particular, if |P(ζ ≤ y)− P(ζ ≤ y + r)| ≤ C|r|γ for some C, γ > 0 and all r ∈ R,

E|H| ≤ KE‖ξ − ξ′‖+M(2Cγ/p)
p

p+γ (1 + p/γ)E[|ζ − ζ ′|p]
γ
p+γ . (4.33)

Remark 4.19. An analogous bound to the one in (4.32) holds for the indicator

1(−∞,y]. Moreover, it follows from the proof below that the boundedness of the

function h assumed in Lemma 4.18 may be replaced with a moment assumption

ξ, ξ′ ∈ Lq for some q > 1. In such a case, Hölder’s inequality could be invoked to

obtain an analogue to (4.34) below. Similar arguments may be used to simultaneously

handle multiple indicators.

Proof of Lemma 4.18. Applying the assumed local γ-Hölder continuous property of

the distribution function of ζ to (4.32) and optimising over r > 0 yields (4.33).

Thus, it remains to establish (4.32).

Elementary set manipulation yields

|1{y≤ζ} − 1{y≤ζ′}| = |1{ζ′<y≤ζ} − 1{ζ<y≤ζ′}|

≤ 1{|ζ−ζ′|>r,ζ′<y≤ζ} + 1{|ζ−ζ′|≤r,ζ′<y≤ζ} + 1{|ζ−ζ′|>r,ζ<y≤ζ′} + 1{|ζ−ζ′|≤r,ζ<y≤ζ′}

≤ 1{|ζ−ζ′|>r} + 1{|ζ−y|≤r}.
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Hence, the triangle inequality and the Lipschitz property gives

|h(ξ)1[y,∞)(ζ)− h(ξ′)1[y,∞)(ζ
′)|

≤ |h(ξ)||1[y,∞)(ζ)− 1[y,∞)(ζ
′)|+ |h(ξ)− h(ξ′)|1[y,∞)(ζ

′)

≤M(1{|ζ−y|≤r} + 1{|ζ−ζ′|>r}) +K‖ξ − ξ′‖.

(4.34)

Taking expectations and using Markov’s inequality P(|ζ − ζ ′| > r) ≤ r−pE[|ζ − ζ ′|p]
yields (4.32).

Proof of Proposition 4.7. Theorem 4.3 and (4.33) in Lemma 4.18 (with C and γ

given in Assumption (H) and p = 2) applied to (XT , XT ) and (X
(κ)
T , X

(κ)
T ) under

the SBG coupling give the claim.

Proof of Proposition 4.9. Analogous to the proof of Proposition 4.7, Theorem 4.3

and (4.33) in Lemma 4.18 (with C and γ given in Assumption (Hτ) and p = 1),

give the result.

Lemma 4.20. Suppose X is not a compound Poisson process. Then the law of τT

is absolutely continuous on (0, T ) and its density is locally bounded on (0, T ).

Proof. If X or −X is a subordinator then τT is a.s. 0 or T , respectively. In

either case, the result follows immediately. Suppose now that neither X nor −X
is a subordinator. Denote by n(ζ > ·) (resp. n(ζ > ·)) the intensity measures of

the lengths ζ of the excursions away from 0 of the Markov process X − X (resp.

X − X). Then, by Theorem 5 in [28] with F ≡ K ≡ 1, the law of τT can only

have atoms at 0 or T , is absolutely continuous on (0, T ) and its density is given by

s 7→ n(ζ > s)n(ζ > T − s), s ∈ (0, T ). The maps s 7→ n(ζ > s) and s 7→ n(ζ > s)

are non-increasing, so the density is bounded on any compact subset of (0, T ),

completing the proof.

In preparation for the next result, we introduce the following assumption.

Assumption (S-α). There exists some function a : (0,∞) → (0,∞) such that

Xt/a(t) converges in distribution to an α-stable law as t→ 0.

Proposition 4.21. Let Assumption (S-α) hold for some α ∈ (0, 2].

(a) If α > 1, then Assumption (H) holds uniformly on compact subsets of (−∞, 0)

with γ = 1.

(b) Suppose ρ = limt→0 P(Xt > 0) ∈ (0, 1). Then for any γ ∈ (0,min{ρ, 1 − ρ}),
there exists some constant C > 0 such that Assumption (Hτ) holds for all s ∈ [0, T ].
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Note that ρ is well defined under Assumption (S-α) and that Xt/a(t) can only

have a nonzero weak limit as t→ 0 if the limit is α-stable. Moreover, in that case,

a is necessarily regularly varying at 0 with index 1/α and α is given in terms of the

Lévy triplet (σ2, ν, b) of X:

α =


2, σ 6= 0,

1, β ∈ (0, 1) and b 6=
∫

(−1,1) xν(dx),

β, otherwise,

where β is the BG index in (4.6). In fact, the assumptions of Proposition 4.12 imply

Assumption (S-α) by [17, Prop. 2.3], so Proposition 4.21 generalises Proposition 4.12.

We refer the reader to [60, Sec. 3 & 4] for conditions that are equivalent to (S-α).

Assumption (S-α) allows for the cases ρ = 0 or ρ = 1 when α ≤ 1, correspond

to the stable limit being a.s. negative or a.s. positive, respectively. In these cases,

the distribution of τT (X) may have an atom at 0 or T , while the law of τT (X(κ)) is

absolutely continuous, making the convergence in Kolmogorov distance impossible.

This is the reason for excluding ρ ∈ {0, 1} in Proposition 4.21.

Proof of Proposition 4.21. By [17, Lem. 5.7], under the assumptions in part (a) of

the proposition, XT has a continuous density on (−∞, 0), implying the conclusion

in (a).

Since ρ = limt→0 P(Xt > 0) ∈ (0, 1), 0 is regular for both half-lines by Rogozin’s

criterion [91, Thm 47.2]. [28, Thm 6] then asserts that the law of τT is absolutely

continuous with density given by s 7→ n(ζ > s)n(ζ > T − s), s ∈ (0, T ). The maps

s 7→ n(ζ > s) and s 7→ n(ζ > s) are non-increasing and, by [17, Prop. 3.5], regularly

varying with indices ρ− 1 and −ρ, respectively. Thus for any γ ∈ (0,min{ρ, 1− ρ})
there exists some C > 0 such that n(ζ > s)n(ζ > T − s) ≤ Csγ−1(T − s)γ−1 for all

s ∈ (0, T ). Thus, for any s, t ∈ [0, T/2] with t ≥ s, we have

P(τT ≤ t)− P(τT ≤ s) ≤
∫ t

s
Cuγ−1(T − u)γ−1du ≤ C

∫ t

s
uγ−1(T/2)γ−1du

≤ Cγ−1(T/2)γ−1(tγ − sγ) ≤ Cγ−1(T/2)γ−1(t− s)γ .

since the map x 7→ xγ is concave. A similar bound holds for s, t ∈ [T/2, T ].
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Moreover, when s ∈ [0, T/2] and t ∈ [T/2, T ] we have

P(τT ≤ t)− P(τT ≤ s) ≤ P(τT ≤ t)− P(τT ≤ T/2) + P(τT ≤ T/2)− P(τT ≤ s)

≤ Cγ−1(T/2)γ−1[(T/2− s)γ + (t− T/2)γ ]

≤ Cγ−1(T/2)2γ−2(t− s)γ .

This gives part (b) of the proposition.

§4.6.4 Level variances under SBG-Alg

In the present subsection we establish bounds on the level variances under the

coupling Πκ1,κ2
n,T (constructed in SBG-Alg) for Lipschitz, locally Lipschitz and even

discontinuous payoff functions (see BT1 in (4.19) and BT2 in (4.21)) of χ
T

.

Theorem 4.22. Fix T > 0, n ∈ N and 1 ≥ κ1 > κ2 > 0. Denote the vector

(Z
(κi)
n,T , Z

(κi)
n,T , τ

(κi)
n,T ) = χ

(κi)
n,T , i ∈ {1, 2}, where the vector

(
χ

(κ1)
n,T , χ

(κ2)
n,T

)
, constructed in

SBG-Alg, follows the law Πκ1,κ2
n,T .

(a) For any Lipschitz function f ∈ LipK(R2), K > 0, we have

E
[(
f
(
Z

(κ2)
n,T , Z

(κ2)
n,T

)
− f

(
Z

(κ1)
n,T , Z

(κ1)
n,T

))2] ≤ K2T
(
27σ22−n + 40σ2

κ1

)
. (4.35)

For f ∈ locLipK(R2), defined in §4.3.2 above, if
∫

[1,∞) e4xν(dx) < ∞ then there

exists a constant C > 0 independent of (n, κ1, κ2) such that

E
[(
f
(
Z

(κ2)
n,T , Z

(κ2)
n,T

)
− f

(
Z

(κ1)
n,T , Z

(κ1)
n,T

))2] ≤ C((2
3

)n/2
1{σ 6=0} + σ2

κ1 + σκ1κ1

)
. (4.36)

(b) Suppose Assumption (H) is satisfied by some y < 0 and C, γ > 0. Then for any

f ∈ BT1(y,K,M), K,M ≥ 0, there exists some K ′ > 0 independent of (n, κ1, κ2)

such that

E
[(
f
(
Z

(κ2)
n,T , Z

(κ2)
n,T

)
− f

(
Z

(κ1)
n,T , Z

(κ1)
n,T

))2] ≤ K ′(σ22−n + σ2
κ1

) γ
2+γ . (4.37)

(c) If δ ∈ (0, 2] satisfies Assumption (O-δ), then there exists some C > 0 such that

for any K > 0, f ∈ LipK(R), n ∈ N, κ1 > κ2 and p ∈ {1, 2}, we have

E
[∣∣f(τ (κ1)

n,T

)
− f

(
τ

(κ2)
n,T

)∣∣p]
2KpT p

≤ 2−n + Cσ
min{ 2δ

2−δ ,
1
2
}

κ1

(
1 + | log κ1|1{δ= 2

5
}
)
. (4.38)

(d) Fix s ∈ (0, T ) and let Assumption (O-δ) hold for some δ ∈ (0, 2], then for any

f ∈ BT2(s,K,M), K,M ≥ 0, there exists a constant C > 0 such that for any n ∈ N,
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p ∈ {1, 2} and κ1 > κ2, we have

E
[∣∣f(χ(κ1)

n,T

)
− f

(
χ(κ2)
n,T

)∣∣p] ≤ C[2−n2 + σ
min{ δ

2−δ ,
1
4
}

κ1

(
1 +

√
| log κ1|1{δ= 2

5
}
)]
. (4.39)

The synchronous coupling of the large jumps of the Gaussian approximations,

implicit in SBG-Alg, ensures that no moment assumption on the large jumps of X

is necessary for (4.35) to hold. For locally Lipschitz payoffs, however, the function

may magnify the distance when a large jump occurs. This leads to the moment

assumption
∫

[1,∞) e4xν(dx) <∞ for f ∈ locLipK(R2).

The proof of Theorem 4.22 requires bounds on certain moments of the differences

of the components of the output of Algorithms 2 & 3 and SBG-Alg, given in

Proposition 4.23.

Proposition 4.23. For any 1 ≥ κ1 > κ2 > 0, t > 0 and n ∈ N, the following

statements hold.

(a) The pair
(
Z

(κ1)
t , Z

(κ2)
t

)
∼ Πκ1,κ2

t , constructed in Algorithm 2, satisfies

E
[(
Z

(κ1)
t − Z(κ2)

t

)2] ≤ 2(σ2
κ1 − σ

2
κ2)t,

E
[(
Z

(κ1)
t − Z(κ2)

t

)4] ≤ 12(σ2
κ1 − σ

2
κ2)2t2 + (σ2

κ1 − σ
2
κ2)κ2

1t.

Moreover, we have E[(Z
(κ1)
t − Z(κ2)

t )2p] ≤ 4E[(Z
(κ1)
t − Z(κ2)

t )2p], for any p ∈ {1, 2}.
(b) The vector

(
Z

(κ1)
t , Z

(κ1)
t , τ

(κ1)
t , Z

(κ2)
t , Z

(κ2)
t , τ

(κ2)
t

)
∼ Πκ1,κ2

t in Algorithm 3 satisfies

the following inequalities

E
[(
Z

(κ1)
t − Z(κ2)

t

)2]
= 2(σ2 + σ2

κ1)t,

E
[(
Z

(κ1)
t − Z(κ2)

t

)4] ≤ 12(σ2 + σ2
κ1)2t2 + (σ2

κ1 − σ
2
κ2)κ2

1t.

Moreover, we have E[(Z
(κ1)
t − Z(κ2)

t )2p] ≤ 4E[(Z
(κ1)
t − Z(κ2)

t )2p], for any p ∈ {1, 2}.
(c) The coupling

(
χ(κ1)
n,t

, χ(κ2)
n,t

)
∼ Πκ1,κ2

n,t , constructed in SBG-Alg, with components

χ(κi)
n,t

= (Z
(κi)
n,t , Z

(κi)
n,t , τ

(κi)
n,t ), i ∈ {1, 2}, satisfies the following inequalities:

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)2] ≤ 2(σ22−n + σ2
κ1)t, (4.40)

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)4] ≤ (25σ4
κ1 + 24σ43−n)t2 + σ2

κ1κ
2
1t, (4.41)

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)2] ≤ (2 + 3π)(σ2 + σ2
κ1)2−nt+ (2 + 5π)σ2

κ1t, (4.42)

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)4] ≤ 2 · 103
[
(σ2 + σκ1)23−n + σ4

κ1

]
t2 (4.43)

+ 2πσ
5
2
κ1κ

3
2
1 t

5
4 + 4σ2

κ1κ
2
1t.
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Remark 4.24. (i) By Proposition 4.23, the L2-norms of the differences Z
(κ1)
n,t −Z

(κ2)
n,t

and Z
(κ1)
n,t −Z

(κ2)
n,t of the components of (χ(κ1)

n,t
, χ(κ2)

n,t
), constructed in SBG-Alg, decay

at the same rate as the L2-norm of Z
(κ1)
t −Z(κ2)

t , constructed in Algorithm 2. Indeed,

assume that κ1 = cκ2 for some c > 1, κ2 → 0 and, for some c′, r > 0 and all x > 0,

we have ν(x) = ν(R \ (−x, x)) ≥ c′x−r. Then, for n =
⌈
log2(1 + ν(κ2))

⌉
we have

2−n ≤ σ2
κ1 for all sufficiently small κ1, implying the claim by Proposition 4.23(a)

& (c). Moreover, by Corollary 4.13, the corresponding expected computational

complexities of Algorithm 2 and SBG-Alg are proportional as κ2 → 0. Furthermore,

since the decay of the bias of SBG-Alg is, by Theorem 4.3, at most a logarithmic

factor away from that of Algorithm 2, the MLMC estimator based on Algorithm 2

for Ef(Xt) has the same computational complexity (up to logarithmic factors) as

the MLMC estimator for Ef(Xt, Xt) based on SBG-Alg (see Table 4.3 above for the

complexity of the latter).

(ii) The proof of Proposition 4.23 implies that an improvement in Algorithm 2 (i.e.

a simulation procedure for a coupling with a smaller L2-norm of Z
(κ1)
t −Z(κ2)

t ) would

result in an improvement in SBG-Alg for the simulation of a coupling (χ(κ1)
t

, χ(κ2)
t

).

Interestingly, this holds in spite of the fact that SBG-Alg calls Algorithm 3 whose

coupling Πκ1,κ2
t is inefficient in terms of the L2-distance but is applied over the short

interval [0, Ln].

(iii) A nontrivial bound on the moments of the difference τ
(κ1)
t − τ (κ2)

t under the

coupling of Algorithm 3, which would complete the statement in Proposition 4.23(b),

appears to be out of reach. By the SB representation in (4.2), such a bound is

not necessary for our purposes. The corresponding bound on the moments of the

difference τ
(κ1)
n,t −τ

(κ2)
n,t , constructed in SBG-Alg, follows from Proposition 4.25 below,

see (4.49).

(iv) The bounds on the fourth moments in (4.41) and (4.43) are required to control

the level variances of the MLMC estimator in the case of locally Lipschitz payoff

functions and are applied in the proof of Theorem 4.22(a).

Proof of Proposition 4.23. (a) The difference Z
(κ1)
t −Z(κ2)

t equals, by (4.5), a sum of

two independent martingales: ((σ2
κ1 + σ2)1/2− (σ2

κ2 + σ2)1/2)Wt and J2,κ1
t − J2,κ2

t +

(bκ1 − bκ2)t. Thus, we obtain the identity

E
[(
Z

(κ1)
t − Z(κ2)

t

)2]
=
[(√

σ2 + σ2
κ1 −

√
σ2 + σ2

κ2

)2
+ σ2

κ1 − σ
2
κ2

]
t.

The first inequality follows since 0 < (σ2 + σ2
κ1)1/2− (σ2 + σ2

κ2)1/2 ≤ (σ2
κ1 − σ

2
κ2)1/2.

Since Z
(κ1)
t − Z(κ2)

t is a Lévy process, differentiating its Lévy-Khintchine formula
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in (4.3) yields the identity

E
[(
Z

(κ1)
t − Z(κ2)

t

)4]
= 3
[(√

σ2 + σ2
κ1 −

√
σ2 + σ2

κ2

)2
+ σ2

κ1 − σ
2
κ2

]2
t2

+ t

∫
(−κ1,κ1)\(−κ2,κ2)

x4ν(dx),

which implies the second inequality. Since |Z(κ1)
t −Z(κ2)

t | ≤ sups∈[0,t] |Z
(κ1)
s −Z(κ2)

s |,
Doob’s maximal martingale inequality [62, Prop. 7.16] applied to the martingale

(Z
(κ1)
s − Z(κ2)

s )s∈[0,t] yields

E
[∣∣Z(κ1)

t − Z(κ2)
t

∣∣p] ≤ (1− 1/p
)−pE[∣∣Z(κ1)

t − Z(κ2)
t

∣∣p], p > 1.

The corresponding inequalities follow because (p/(p− 1))p ≤ 4 for p ∈ {2, 4}.
(b) Analogous to part (a), the difference Z

(κ1)
t −Z(κ2)

t constructed in Algorithm 3

is a sum of two independent martingales: (σ2
κ1 + σ2)1/2Bt − (σ2

κ2 + σ2)1/2Wt and

J2,κ1
t − J2,κ2

t + (bκ1 − bκ2)t, where B and W are independent standard Brownian

motions. Thus the statements follow as in part (a).

(c) Let (ξ1,k, ξ2,k) ∼ Πκ1,κ2
`k

, k ∈ {1, . . . , n}, and (ζ
1
, ζ

2
) ∼ Πκ1,κ2

Ln
be independent

draws as in line 2 of SBG-Alg above. Denote by (ξi,n+1, ξi,n+1
) the first two

coordinates of ζ
i
, i ∈ {1, 2}. Since the variables {ξ1,k− ξ2,k}n+1

k=1 have zero mean and

are uncorrelated, by conditioning on {`k}nk=1 and Ln and applying parts (a) and (b)

we obtain

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)2]
= V

[
Z

(κ1)
n,t − Z

(κ2)
n,t

]
= V

[
ξ1,n+1 − ξ2,n+1

]
+

n∑
k=1

V
[
ξ1,k − ξ2,k

]
≤ 2(σ2 + σ2

κ1)E[Ln] + 2σ2
κ1

n∑
k=1

E[`k]

= 2(σ2 + σ2
κ1)2−nt+ 2σ2

κ1(1− 2−n)t.

implying (4.40). Similarly, by conditioning on {`k}nk=1 and Ln, we deduce that the

expectations of

(ξ1,k1−ξ2,k1)3(ξ1,k2−ξ2,k2), (ξ1,k1−ξ2,k1)2
3∏
i=2

(ξ1,ki−ξ2,ki), and

4∏
i=1

(ξ1,ki−ξ2,ki),
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vanish for any distinct k1, k2, k3, k4 ∈ {1, . . . , n+ 1}. Thus, by expanding, we obtain

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)4]
=

n+1∑
k=1

E
[(
ξ1,k − ξ2,k

)4]
+ 6

n∑
m=1

n+1∑
k=m+1

E
[(
ξ1,m − ξ2,m

)2(
ξ1,k − ξ2,k

)2]
.

The summands in the first sum are easily bounded by parts (a) and (b). To bound

the summands of the second sum, condition on {`k}nk=1 and Ln and apply parts (a)

and (b):

E
[(
ξ1,k − ξ2,k

)2(
ξ1,m − ξ2,m

)2] ≤
4σ4

κ1E[`m`k], m < k ≤ n,

4(σ2 + σ2
κ1)σ2

κ1E[`mLn], m < k = n+ 1.

Inequality (4.41) follows since E[`m`k] = 3−m2m−k−1t2, E[`kLn] = 3−k2k−n−1t2 for

m < k ≤ n and σ22−nσ2
κ ≤ σ23−n/2σ2

κ ≤ (σ43−n + σ4
κ)/2.

The representation in line 3 of SBG-Alg and the elementary inequality: for all

a, b ∈ R, |min{a, 0} −min{b, 0}| ≤ |a− b|, imply

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)2] ≤ E
[(
ξ

1,n+1
− ξ

2,n+1

)2
+

n∑
k=1

(
ξ1,k − ξ2,k

)2]

+ 2E
n∑
k=1

∣∣ξ
1,n+1

− ξ
2,n+1

∣∣∣∣ξ1,k − ξ2,k

∣∣
+ E

n−1∑
m=1

n∑
k=m+1

∣∣ξ1,m − ξ2,m

∣∣∣∣ξ1,k − ξ2,k

∣∣.
(4.44)

The first term on the right-hand side of this inequality is easily bounded via the

inequalities in parts (a) and (b). To bound the second term, condition on {`k}nk=1

and Ln, apply the Cauchy-Schwarz inequality, denote υ =
√
σ2 + σ2

κ1 and observe

that for m < k ≤ n we get

E
[∣∣ξ

1,n+1
− ξ

2,n+1

∣∣∣∣ξ1,k − ξ2,k

∣∣] ≤ E
[√

16(σ2 + σ2
κ1)σ2

κ1`kLn

]
= πυσκ1

(
2
3

)n(3
4

)k
t,

E
[∣∣ξ1,m − ξ2,m

∣∣∣∣ξ1,k − ξ2,k

∣∣] ≤ E
[√

4σ4
κ1`m`k

]
= πσ2

κ1

(
1
2

)m+1(2
3

)k−m
t,

where the equalities follow from the definition of the stick-breaking process. By (4.44)
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we have

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)2] ≤ υ221−nt+ 2σ2
κ1t

∞∑
k=1

2−k + 2πυσκ1
(

2
3

)n
t
∞∑
k=1

(
3
4

)k
+ πσ2

κ1t
∞∑
m=1

∞∑
k=1

2−m
(

2
3

)k
,

so (4.42) follows from the inequalities v(2/3)nσκ ≤ υ2−n/2σκ ≤ (υ22−n + σ2
κ)/2.

As before, |min{a, 0} −min{b, 0}| ≤ |a− b| for a, b ∈ R, yields the inequality

E
[(
Z

(κ1)
n,t − Z

(κ2)
n,t

)4] ≤ E
[(∣∣ξ

1,n+1
− ξ

2,n+1

∣∣+

n∑
k=1

∣∣ξ1,k − ξ2,k

∣∣)4]
. (4.45)

By Jensen’s inequality, E[|ϑ|3] ≤ E[ϑ4]3/4 and E[ϑ] ≤
√

E[ϑ2] for any random

variable ϑ. Hence, we may bound the first and third conditional moments of

|ξ1,k − ξ2,k| and |ξ
1,n+1

− ξ
2,n+1

| given {`k}nk=1 and Ln. Thus, by expanding (4.45),

conditioning on {`k}nk=1 and Ln, and using elementary estimates as in all the

previously developed bounds, we obtain (4.43).

In order to control the level variances of the MLMC estimator in (4.53) for

discontinuous payoffs of χ
t

and functions of τ t, we would need to apply Lemma 4.18

to the components of
(
χ(κ1)
n,t

, χ(κ2)
n,t

)
constructed in SBG-Alg. In particular, the

assumption in Lemma 4.18 requires a control on the constants in the locally Lipschitz

property of the distribution functions of the various components of
(
χ(κ1)
n,t

, χ(κ2)
n,t

)
in terms of the cutoff levels κ1 and κ2. As such a uniform bound in the cutoff

level appears to be out of reach, we establish Proposition 4.25, which allows us to

compare the sampled quantities χ(κ1)
n,t

and χ(κ2)
n,t

with their limit χ
t

(as κ1, κ2 → 0).

Since, under mild assumptions, the distribution functions of the components of the

limit χ
t

possess the necessary regularity and do not depend on the cutoff level, the

application of Lemma 4.18 in the proof of Theorem 4.22 becomes feasible using

Proposition 4.25.

Proposition 4.25. There is a coupling between χ
t

= (Xt, Xt, τ t) and
(
χ(κ1)
n,t

, χ(κ2)
n,t

)
∼

Πκ1,κ2
n,t such that for any i ∈ {1, 2} and p ≥ 1, the vector (Z

(κi)
n,t , Z

(κi)
n,t , τ

(κi)
n,t ) = χ(κi)

n,t

satisfies

E
[(
Xt − Z(κi)

n,t

)2] ≤ (4σ22−n · 1{1}(i) + 2σ2
κi)t, (4.46)

E
[(
Xt − Z

(κi)
n,t

)2] ≤ (48σ22−n · 1{1}(i) + 42σ2
κi)t. (4.47)
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Moreover, if δ ∈ (0, 2] satisfies Assumption (O-δ), we have

E
[∣∣τ t − τ (κi)

n,t

∣∣p] ≤ 2−ntp + tp−1θ(t, κi), (4.48)

where, given T ≥ t, there exists a constant C > 0 dependent only on (T, σ2, ν, b)

such that for all κ ∈ (0, 1], the function θ(t, κ) is defined as

θ(t, κ) =


(1 ∧

√
Cσκ)t, δ = 2,

t ∧ (Cσκ)
2δ
2−δ + 4δ

5δ−2

√
Cσκ

(
t
5δ−2
4δ − t

5δ−2
4δ ∧ (Cσκ)

5δ−2
4−2δ

)
, δ ∈ (0, 2) \ {2

5},

t ∧
√
Cσκ +

√
Cσκ log+

(
t/
√
Cσκ

)
, δ = 2

5 .

As a simple consequence of (4.48) (with p = 1) in Proposition 4.25 and the

inequality |τ (κ1)
n,t − τ

(κ2)
n,t | ≤ t, we deduce that the coupling in SBG-Alg satisfies

E
[∣∣τ (κ1)

n,t − τ
(κ2)
n,t

∣∣p] ≤ 21−ntp + 2tp−1θ(t, κ1), for any p ≥ 1. (4.49)

The bounds in (4.46) and (4.47) of Proposition 4.25 imply the inequalities in (4.40)

and (4.42) of Proposition 4.23(c) with slightly worse constants.

Proof. The proof and construction of the random variables is analogous to that of

Proposition 4.23(c), where, for i ∈ {1, 2}, we compare the increment Z
(κi)
s defined

in Algorithm 2 with the Lévy-Itô decomposition Xs = bs + σWs + J1,κi
s + J2,κi

s

(W is as in Algorithm 2, independent of J1,κi and J2,κi) over the time horizons

s ∈ {`1, . . . , `n−1}. Similarly, we compare the pair of vectors (χ(κ1)
s

, χ(κ2)
s

) output by

Algorithm 3 with χ
s

for s = Ln, where we assume that the (standardised) Brownian

component of X equals that of χ(κ2)
s

(and is thus independent of the one in χ(κ1)
s

)

and all jumps in J2,κ2 are synchronously coupled.

Denote the first and fourth components of the vector (χ(κ1)
s

, χ(κ2)
s

) by Z
(κ1)
s and

Z
(κ2)
s , respectively. Hence, it is enough to obtain the analogous bounds and identities

to those presented in parts (a) and (b) for the expectations E[(Xt−Z(κi)
t )2], i ∈ {1, 2}

under both couplings: Πκ1,κ2
t and Πκ1,κ2

t . Such bounds may be obtained using the

proofs of parts (a) and (b), resulting in the following: for i ∈ {1, 2}, we have

E
[(
Xt − Z(κi)

t

)2]
=
[(√

σ2 + σ2
κi − σ

)2
+ σ2

κi

]
t ≤ 2σ2

κit, under Πκ1,κ2
t , (4.50)

E
[(
Xt − Z(κi)

t

)2]
= 2(σ2 · 1{1}(i) + σ2

κ1)t, under Πκ1,κ2
t .

Thus Doob’s martingale inequality and elementary inequalities give (4.46) and (4.47).

By the construction of the law Πκ1,κ2
n,t in SBG-Alg, there exist random variables
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(ξ′k)
n
k=1 such that for k ∈ {1, . . . , n}, conditional on `k = s and independently of

{`j}j 6=k, the distributional equality (ξ′k, ξ1,k, ξ2,k)
d
= (Xs, Z

(κ1)
s , Z

(κ2)
s ) holds, where

(Z
(κ1)
t , Z

(κ2)
t ) ∼ Πκ1,κ2

t and W in Algorithm 2 equals the Brownian component of X

in (4.4). Note that by (4.2) we have

∣∣τ t − τ (κi)
n,t

∣∣ ≤ Ln +
n∑
k=1

`k
∣∣1{ξ′k < 0} − 1{ξi,k < 0}

∣∣, for i ∈ {1, 2}. (4.51)

Let δ ∈ (0, 2] be as in the statement of the proposition. By [86, Thm 3.1(a)], as

in the proof of Theorem 4.3, we know that the density ft of Xt exists, is smooth and,

given T > 0, the constant C ′ = 23/2 sup(s,x)∈(0,T ]×R s
1/δfs(x) is finite. Thus, (4.33)

in Lemma 4.18 (with constants γ = 1 & C = 2−3/2`
−1/δ
k C ′ and M = 1, K = 0 &

p = 1) gives

E
[∣∣1{ξ′k < 0} − 1{ξi,k < 0}

∣∣∣∣`k] ≤ min
{

1, 2−1/4
√
C ′`
− 1

2δ
k E

[
|ξ′k − ξi,k|

∣∣`k]1/2}
≤ min

{
1, 2−1/4

√
C ′`
− 1

2δ
k (2σ2

κi`k)
1/4
}
,

for any i ∈ {1, 2} and k ∈ {1, . . . , n}, where the second inequality follows from

Jensen’s inequality and (4.50). Hence, elementary inequalities, together with (4.51)

and Lemma 4.14 imply the following: for i ∈ {1, 2},

E|τ t − τ
(κi)
n,t | ≤ ELn +

n∑
k=1

E
[
`k
∣∣1{ξ′k < 0} − 1{ξi,k < 0}

∣∣]
≤ 2−nt+

∞∑
k=1

E
[

min
{√

C ′σκi`
5
4
− 1

2δ
k , `k

}]
≤ 2−nt+ θ(t, κi).

For p > 1, the result follows from the case p = 1 and the inequality |τ t − τ
(κi)
n,t |p ≤

tp−1|τ t − τ
(κi)
n,t |.

Proof of Theorem 4.22. (a) Proposition 4.23(c) and elementary inequalities yield

the bound in (4.35), so it remains to consider the case f ∈ locLipK(R2). As in

the proof of Proposition 4.6, by the inequality in (4.31) and the Cauchy-Schwarz

inequality, we have

E
[(
f(Z

(κ1)
n,T , Z

(κ1)
n,T )− f(Z

(κ2)
n,T , Z

(κ2)
n,T )

)2]2 ≤ K ′E[(|Z(κ1)
n,T − Z

(κ2)
n,T |+ |Z

(κ1)
n,T − Z

(κ2)
n,T |)

4
]
,

where K ′ = K4E[(exp(Z
(κ1)
n,T ) + exp(Z

(κ2)
n,T ))4] ≤ 8E[exp(4X

(κ1)
T ) + exp(4X

(κ2)
T )

]
.

Applying (4.30), we get E[exp(4X
(κi)
T )] ≤ E[exp(4XT )] exp(4Tσ2

κi) and σ2
κi ≤ σ2

1,
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i ∈ {1, 2}, where E[exp(4XT )] is finite since
∫

[1,∞) e4xν(dx) < ∞. The concavity of

x 7→
√
x and Inequalities (4.41) & (4.43) Proposition 4.23(c) imply the existence of

a constant C > 0 satisfying√
E
[
(|Z(κ1)

n,T − Z
(κ2)
n,T |+ |Z

(κ1)
n,T − Z

(κ2)
n,T |)4

]
≤ C(2/3)n/2 + 11Tσ2

κ1 +
√

2πT 5/8σ5/4
κ1 κ

3/4
1 +

√
5Tσκ1κ1.

Inequality (4.36) then follows from the fact that σ
1/4
κ1 κ

3/4
1 ≤ max{σκ1 , κ1} ≤ σκ1+κ1.

(b) Let (χ
T
, χ

(κ1)
n,T , χ

(κ2)
n,T ) be coupled as in Proposition 4.25 with the notation

χ
T

= (XT , XT , τT ) and χ
(κi)
n,T = (Z

(κi)
n,T , Z

(κi)
n,T , τ

(κi)
n,T ), i ∈ {1, 2}. The triangle inequality

and the inequalities 0 ≤ f ≤M give

E
[(
f
(
Z

(κ1)
n,T , Z

(κ1)
n,T

)
− f

(
Z

(κ2)
n,T , Z

(κ2)
n,T

))2] ≤ME
∣∣f(Z(κ1)

n,T , Z
(κ1)
n,T

)
− f

(
Z

(κ2)
n,T , Z

(κ2)
n,T

)∣∣
≤M

2∑
i=1

E
∣∣f(Z(κi)

n,T , Z
(κi)
n,T

)
− f

(
XT , XT

)∣∣.
Apply (4.33) in Lemma 4.18 with C and γ from Assumption (H) to (XT , XT ) and(
Z

(κi)
n,T , Z

(κi)
n,T

)
to get

E
∣∣f(XT , XT )− f

(
Z

(κi)
n,T , Z

(κi)
n,T

)∣∣
≤ KE

[∣∣Z(κi)
n,T −XT

∣∣]+M(1 + 2/γ)(C2γ2E
[∣∣Z(κ1)

n,T −XT

∣∣2]γ)
1

2+γ

≤ K
√
T (4σ22−n · 1{1}(i) + 2σ2

κi) +K ′′(σ22−n · 1{1}(i) + σ2
κi)

γ
2+γ ,

for any i ∈ {1, 2}, where K ′′ = M(1 + 2/γ)(48C2γ2T γ)1/(2+γ). In the second

inequality we used the bounds (4.46) & (4.47) in Proposition 4.25. Since σκ1 ≥ σκ2 ,

the result follows.

(c) Recall that the inequality in (4.49) follows from (4.48) of Proposition 4.25.

The inequality in (4.38) in the proposition is a direct consequence of the Lipschitz

property and (4.49).

(d) The proof follows along the same lines as in part (b): we apply (4.33)

in Lemma 4.18 with C and γ from Assumption (Hτ) and bounds (4.46)–(4.48) in

Proposition 4.25.

§4.6.5 MC and MLMC estimators

In the present subsection we address the application of our previous results to

estimate the expectation E[f(χ
T

)] for various real-valued functions f satisfying
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E[f(χ
T

)2] < ∞. By definition, an estimator Υ of E[f(χ
T

)] has L2-accuracy of

level ε > 0 if E[(Υ − Ef(χ
T

))2] < ε2. We assume in this subsection that X has

jumps of infinite activity, i.e. ν(R \ {0}) =∞. If the jumps of X are finite activity,

both Algorithm 3 and SBG-Alg are exact with the latter outperforming the former

in practice by a constant factor, which is a function of the total number of jumps

Tν(R \ {0}) <∞, see §4.5.2 for a numerical example.

MC estimator

Pick κ ∈ (0, 1] and let the sequence χκ,i
T

, i ∈ N, be iid with the same distribution

as χ
(κ)
T simulated by SBG-Alg with n ∈ N ∪ {0} sticks. Note that the choice of n

does not affect the asymptotic behaviour as ε↘ 0 of the computational complexity

CMC(ε). The MC estimator based on N ∈ N independent samples is given by

ΥMC =
1

N

N∑
i=1

f
(
χκ,i
T

)
. (4.52)

The requirements on the bias and variance of the estimator ΥMC (see §3.5.1),

together with Theorem 4.3 and the bounds in (4.18) as well as Propositions 4.6,

4.7 & 4.9, imply Corollary 4.26. By expressing κ in terms of ε via Corollary 4.26

and (4.12), (4.15)–(4.16), the formulae for the expected computational complexity

CMC(ε) in Table 4.2 (of §4.4.2 above) follow.

Corollary 4.26. For any ε ∈ (0, 1), define κ as in (a)–(d) below and set N =⌈
2ε−2V

[
f
(
χ

(κ)
T

)]⌉
as in §3.5.1. Then the MC estimator ΥMC of E[f(χ

T
)] has L2-

accuracy of level ε and expected computational cost CMC(ε) bounded by a constant

multiple of (1 + ν(κ)T )N .

(a) For any K > 0, g ∈ LipK(R2) (resp. g ∈ locLipK(R2)) and f : (x, z, t) 7→
g(x, z), set

κ = sup{κ′ ∈ (0, 1] : 2µ1(κ′, T ) < ε/
√

2}

(resp. κ = sup{κ′ ∈ (0, 1] : 8K2µ2(κ′, T )(1 + exp(2Tσ2
κ′))E[exp(2XT )] < ε2/2}).

(b) Pick y < 0 and let Assumption (H) hold for some C, γ > 0. Suppose f : R3 → R
is given by f(x, z, t) = h(x)1[y,∞)(z) where h ∈ LipK(R) and 0 ≤ h ≤ M for some

K,M > 0. Then

κ = sup{κ′ ∈ (0, 1] : M(Cγ)2/(2+γ)(1 + 2/γ)µ2(κ′, T )2γ/(2+γ) +Kµ1(κ′, T ) < ε/
√

2}.

(c) Let δ ∈ (0, 2] satisfy Assumption (O-δ). Let f : (x, z, t) 7→ g(t), where g ∈
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LipK(R), K > 0, then

κ = sup{κ′ ∈ (0, 1] : Kµτ∗(κ
′, T ) < ε/

√
2}.

(d) Fix s ∈ (0, T ) and let δ ∈ (0, 2] satisfy Assumption (O-δ). Then there exists a

constant C > 0 such that for f ∈ BT2(s,K,M), K,M > 0, we have

κ = sup{κ′ ∈ (0, 1] : C
√
Kµτ∗(κ

′, T ) < ε/
√

2}.

MLMC estimator

Let (κj)j∈N (resp. (nj)j∈N∪{0}) be a decreasing (resp. increasing) sequence in (0, 1]

(resp. N) such that limj→∞ κj = 0. Let χ0,i d
= χ

(κ1)
T and (χj,i

1
, χj,i

2
) ∼ Π

κj ,κj+1

nj ,T
,

i, j ∈ N, be independent draws constructed by SBG-Alg. Then, for the parameters

m,N0, . . . , Nm ∈ N, the MLMC estimator takes the form

ΥML =

m∑
j=0

1

Nj

Nj∑
i=1

Di
j , where Di

j =

f
(
χj,i

2

)
− f

(
χj,i

1

)
, j ≥ 1,

f
(
χ0,i
)
, j = 0.

(4.53)

The bias of the MLMC estimator is equal to that of the MC estimator in (4.52)

with κ = κm. Given the sequences (nj)j∈N∪{0} and (κj)j∈N, which determine the

simulation algorithms used in estimator (4.53), §3.5.2 derives the asymptotically

optimal (as ε ↘ 0) values for the integers m and (Nj)
m
j=0 minimising the expected

computational complexity of (4.53) under the constraint that the L2-accuracy of

ΥML is of level ε. The key quantities are the bounds B(j), V (j) and C(j) on

the bias, level variance and the computational complexity of SBG-Alg at level

j (i.e. run with parameters κj and nj). The number of levels m in (4.53) is

determined by the bound on the bias B(j), while the number of samples Nj used

at level j is given by the bounds on the complexity and level variances, see the

formulae in (3.44)–(3.45). Proposition 4.27, which is a consequence of Theorem 4.3

and Propositions 4.6, 4.7 & 4.9 (for bias), Theorem 4.22 (for level variance) and

Corollary 4.13 (for complexity), summarises the relevant bounds B(j), V (j) and

C(j) established in this chapter (suppressing the unknown constants as we are only

interested in the asymptotic behaviour as ε↘ 0).

Proposition 4.27. Given sequences (κj)j∈N and (nj)j∈N∪{0} as above, set C(j) =

nj + ν(κj+1)T . The following choices of functions B and V ensure that, for any

ε > 0, the MLMC estimator ΥML, with integers m and {Nj}mj=0 given by (3.44)-

(3.45), has L2-accuracy of level ε with complexity asymptotically proportional to
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CML(ε) = 2ε−2
(∑m

j=0

√
C(j)V (j)

)2
.

(a) If K > 0, g ∈ LipK(R2) (resp. g ∈ locLipK(R2)) and f : (x, z, t) 7→ g(x, z), then

for any j ∈ N,

B(j) = µ1(κj , T ) and V (j) = σ22−nj + σ2
κj ,

(resp. B(j) = µ2(κj , T ) and V (j) = (2/3)nj/2 · 1R\{0}(σ) + σ2
κj + σκjκj).

(b) Pick y < 0 and let Assumption (H) hold for some C, γ > 0. If f ∈ BT1(y,K,M),

K,M > 0, then for any j ∈ N,

B(j) = min{µ1(κj , T )γ/(1+γ), µ2(κj , T )2γ/(2+γ)} and

V (j) = σ2γ/(2+γ)2−njγ/(2+γ) + σ2γ/(2+γ)
κj .

(c) Let Assumption (O-δ) hold for some δ ∈ (0, 2] and f : (x, z, t) 7→ g(t) for some

g ∈ LipK(R), K > 0, then for any j ∈ N,

B(j) = µτ∗(κj , T ) and V (j) = 2−nj + σmin{1/2,2δ/(2−δ)}
κj (1 + | log κj | · 1{δ= 2

5
}).

(d) Let f ∈ BT2(s,K,M) for some s ∈ (0, T ) and K,M ≥ 0. If δ ∈ (0, 2] satisfies

Assumption (O-δ), then for any j ∈ N,

B(j) =
√
µτ∗(κj , T ) and V (j) = 2−nj/2 +σ

min{1/4,δ/(2−δ)}
κj

(
1+
√
| log κj | ·1{δ= 2

5
}
)
.

Remark 4.28. By (4.12) and (3.45) we note that κm in Proposition 4.27(a) is

bounded by (and typically proportional to) C0ε/| log ε|. Moreover, if κm = e−r(m−1)

for some r > 0, then the constant C0 does not depend on the rate r. A similar

statement holds for (b), (c) and (d), see Table 4.2 above.

It remains to choose the parameters (nj)j∈N∪{0} and (κj)j∈N for the estimator

in (4.53). Since we require the bias to vanish geometrically fast, we set κj = e−r(j−1)

for j ∈ N and some r > 0. The value of the rate r in Theorem 4.29 below is

obtained by minimising the multiplicative constant in the complexity CML(ε). Note

that nj does not affect the bias (nor the bound B(j)) of ΥML. By Proposition 4.27,

nj may be as small as a multiple of log(1/σ2
κj ) without affecting the asymptotic

behaviour of the level variances V (j) and as large as ν(κj+1) without increasing the

asymptotic behaviour of the cost of each level C(j). Moreover, to ensure that the

term σ22−nj in the level variances (see Theorem 4.22 above) decays geometrically,

it suffices to let nj grow at least linearly in j. In short, there is large interval

within which we may choose nj without it having any effect on the asymptotic
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performance of the MLMC estimation (see Theorem 4.29 below). The choice nj =

n0 +
⌈
max{j, log2(1 + ν(κj+1)T )}

⌉
, for j ∈ N, in the numerical examples of §4.5 fall

within this interval (recall dxe = inf{j ∈ Z : j ≥ x} for x ∈ R).

Theorem 4.29. Suppose q ∈ (0, 2] and c > 0 satisfy ν(κ) ≤ cκ−q and σ2
κ ≤ cκ2−q

for all κ ∈ (0, 1]. Pick r > 0, set κj = e−r(j−1) and assume that max{j, log2/3(σ4
κj )} ≤

nj ≤ Cν(κj+1) for some C > 0 and all sufficiently large j ∈ N. Then, in cases

(a)–(d) below, there exists a constant Cr > 0 such that, for all ε ∈ (0, 1), the

MLMC estimator ΥML defined in (4.53), with parameters given by (3.44)-(3.45),

is L2-accurate at level ε with the stated expected computational complexity CML(ε).

Moreover, Cr is minimal for r = (2/|a|) log(1 + |a|/q) · 1R\{0}(a) + (2/q) · 1{0}(a),

with a ∈ R given explicitly in each case (a)–(d).

(a) Let g ∈ LipK(R2) ∪ locLipK(R2) for K > 0 and f : (x, z, t) 7→ g(x, z). Define

a = 2(q− 1) and b = 1{σ=0}+1{σ 6=0}(1{g∈LipK(R2)} · 1
3−q +1{g/∈LipK(R2)} · 2

4−q ), then

CML(ε) ≤ Cr

ε2+a+b

(
1 + log2 ε ·1{1}(q) + | log ε|(a/2)(1+1{g∈LipK(R2)}) ·1(1,2](q)

)
. (4.54)

(b) Let f : (x, z, t) 7→ g(x, z) where g ∈ BT1(y,K,M) for some y < 0 and K,M ≥ 0,

such that (H) is satisfied by y and some C, γ > 0. Define a = 2 q(1+γ)−γ
2+γ ∈ (− 2γ

2+γ , 2]

and b = (1/2 + 1/γ)(1{σ=0} + 1{σ 6=0,q<1} · 4
9−3q + 1{σ 6=0,q≥1} · 2

4−q ), then

CML(ε) ≤ Cr

ε2+a+b

(
1 + log2 ε · 1{q= γ

1+γ
} + | log ε|a · 1( γ

1+γ
,1)(q)

+ | log ε|a/2 · 1[1,2](q)
)
,

(4.55)

(c) Let f : (x, z, t) 7→ g(t) where g ∈ LipK(R), K > 0, and let (O-δ) hold for some

δ ∈ (0, 2]. Define a = q − (1− q
2) min{1

2 ,
2δ

2−δ} and b = min{2
δ ,max{3

2 ,
1
δ}}, then

CML(ε) ≤ Cr

ε2+a+b


1 + log2 ε · 1{q=δ∈(0, 2

5
)}∪{δ=2,q= 2

5
}, δ ∈ (0, 2] \ {2

5 ,
2
3},

| log ε| · 1(2/5,2](q) + | log ε|3 · 1{q= 2
5
}, δ = 2

5 ,

| log ε|a, δ = 2
3 .

(4.56)

(d) Fix s ∈ (0, T ) and let δ ∈ (0, 2] satisfy (O-δ). Define a = q−(1− q2
2 ) min{1

4 ,
δ

2−δ}
and b = min{4

δ ,max{3, 2
δ}}, then for any K,M ≥ 0 and f ∈ BT2(s,K,M), we have

CML(ε) ≤ Cr

ε2+a+b

1 + log2 ε · 1{q= 2
9
}, δ = 2,

1 +
√
| log ε| · 1{δ= 2

5
} + | log ε|

a
2 · 1{δ= 2

3
}, δ ∈ (0, 2).

(4.57)
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Remark 4.30. For most models either β = δ or σ > 0, implying a+b ∈ [0, 2] in

parts (a) and (c), a+b ∈ [0, 2(1/2 + 1/γ)] in part (b) (with γ typically equal to 1)

and a+b ∈ [0, 4] in part (d).

Proof of Theorem 4.29. Note that κ1 = 1 by definition independently or r > 0,

thus making both the variance V[Di
0] and the cost of sampling of Di

0 independent of

r. We may thus ignore the 0-th term in the bound ε−2(
∑m

j=0

√
V (j)C(j))2 on the

complexity CML(ε) derived in §3.5.2. Since m is given by (3.44), by Table 4.2 and

Remark 4.28, the function m : (0, 1) 7→ (0,∞) given by

m(ε) =

(b| log ε|+ c log | log ε|)/r, in (a) & (b) and, if δ = 2
3 , in (c) & (d),

b| log ε|/r in (c) & (d) if δ 6= 2
3 ,

where c =

1, in (a) & (c),

1/2, in (b) & (d),

satisfies m ≤ m(ε) + C ′/r for all ε ∈ (0, 1) and r > 0, where the constant C ′ > 0 is

independent of r > 0. Thus, we need only study the growth rate of

φ(ε) =

dm(ε)e∑
j=1

√
C(j)V (j) =

dm(ε)e∑
j=1

√
(nj + ν(κj+1)T )V (j), as ε→ 0,

because CML(ε) is bounded by a constant multiple of ε−2φ(ε)2. In the cases where

V (j) contains a term of the form e−snj for some s > 0 (only possible if σ 6= 0), the

product nje
−snj ≤ e−snj/2 vanishes geometrically fast since nj ≥ j for all large j.

Thus, the corresponding component in φ(ε) is bounded as ε → 0 and may thus be

ignored. By Proposition 4.27, in all cases we may assume that V (j) is bounded by

a multiple of a power of σ2
κj and C(j) is dominated by a multiple of ν(κj+1).

Since ν(κ) ≤ cκ−q and σ2
κ ≤ cκ2−q for κ ∈ (0, 1], Proposition 4.27 implies

φ(ε) ≤ K∗



∑dm(ε)e
j=1

√
κ−qj+1κ

2−q
j , in (a),∑dm(ε)e

j=1

√
κ−qj+1κ

(2−q)γ/(2+γ)
j , in (b),∑dm(ε)e

j=1

√
κ−qj+1κ

(2−q) min{1/2,2δ/(2−δ)}
j (1 + | log κj |1{2/5}(δ)), in (c),∑dm(ε)e

j=1

√
κ−qj+1κ

(2−q) min{1/4,δ/(2−δ)}
j (1 +

√
| log κj |1{2/5}(δ)), in (d),

for some constant K∗ > 0 independent of r and all ε ∈ (0, 1), where in part (a) we

used the fact that σκκ ≤
√
cκ2−q/2 for all κ ∈ (0, 1].
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(a) Recall that κj = e−r(j−1) and κj+1 = e−r(j−1)−r, implying

κ−qj+1κ
2−q
j = erqear(j−1), for all j ∈ N, where a = 2(q − 1), (4.58)

Suppose a < 0, implying q ∈ (0, 1). By (4.58), the sequence (κ−qj+1κ
2−q
j )j∈N

decays geometrically fast. This implies that limε↓0 φ(ε) < ∞ and gives the desired

result. Moreover, the leading constant Cr, as a function of r, is proportional to

erq/(1 − ear/2)2 as ε ↓ 0. Since a 6= 0 for q ∈ (0, 1), the minimal value of Cr is

attained when r = (2/|a|) log(1 + |a|/q).
Suppose a = 0, implying q = 1. By (4.58) and the definition of m(ε), φ(ε) ≤

K∗e
r/2(b| log ε| + log | log ε|)/r, giving the desired result. As before, the leading

constant Cr, as a function of r is proportional to er/r2 as ε → 0, attaining its

minimum at r = 2.

Suppose a > 0, implying q ∈ (1, 2]. By (4.58) and the definition of m(ε), it

similarly follows that

φ(ε)2 ≤ K2
∗e
rq

(ear/2 − 1)2
ea(b| log ε|+log | log ε|) =

K2
∗e
rq

(ear/2 − 1)2
ε−ab| log ε|a.

The corresponding result follows easily, where the leading constant Cr, as a function

of r, is proportional to erq/(ear/2 − 1)2 as ε ↓ 0 and attains its minimum at r =

(2/a) log(1 + a/q), concluding the proof of (a).

(b) As before, we have

κ−qj+1κ
(2−q)γ/(2+γ)
j = erqear(j−1), for all j ∈ N, where a = 2

q(1 + γ)− γ
2 + γ

. (4.59)

Suppose a < 0, implying q < γ/(1 + γ). Then limε↓0 φ(ε) < ∞ by (4.59),

implying the claim. Moreover, r = (2/|a|) log(1 + |a|/q) minimises Cr as in part (a).

Suppose a = 0, implying q = γ/(1 + γ). Then we have the bound φ(ε)2 ≤
K2
∗r
−2erq(b| log ε| + log | log ε|/2)2, and r = 2/q = 2 + 2/γ minimises the leading

constant.

Suppose a > 0, implying q > γ/(1 + γ). By (4.59), we have

φ(ε)2 ≤ K2
∗e
rq

(ear/2 − 1)2
ea(b| log ε|+log | log ε|/2) =

K2
∗e
rq

(ear/2 − 1)2
ε−ab| log ε|a/2,

and the leading constant is minimal for r = (2/a) log(1 + a/q).

In parts (c) and (d), note that a < 0 if and only if δ = 2 (i.e. σ 6= 0). Analogous

arguments as in (a) and (b), complete the proof of the theorem.
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prints, art. arXiv:1810.11039, Mar 2020. URL https://arxiv.org/abs/2011.

06618.
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