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Abstract

In this thesis we will establish the stick-breaking representation of the convex minorant
and the extrema of an arbitrary Lévy process. Our self-contained elementary proof
is based on the analysis of piecewise linear convex functions and requires only very
basic properties of Lévy processes. We then use the stick-breaking representation
to create geometrically convergent simulation algorithm for the extrema of a Lévy
process whose increments can be sampled. For processes whose increments cannot
be sampled we develop a multilevel Monte Carlo algorithm using the stick-breaking
representation. In all cases, the algorithms present in this thesis outperform the

existing algorithms in the literature.



Chapter 1

Introduction

Consider a stochastic process S driven by a Lévy process X (e.g. with S = Sy+ X or
S = SpeX). Given a time horizon T' > 0 consider the vector X(S) = (S, S7,71(S))
consisting of the position St, the supremum St of S over the interval [0, T] and the
first time 77 (S) the process S attains the supremum S7. This vector is of interest
in applications, for instance, it appears in the buffer size in queuing theory [4,
79], insurance mathematics [65], mathematical finance [20, 80, 82| and in optimal
stopping [11, 12]. Except for specific cases, the law of St (let alone the vector
Xr(S)) is typically intractable and even its simulation is hard to achieve. In this
thesis we study this vector and, for simplicity, restrict our applications to the domain
of mathematical finance.

We start in Chapter 2 with a study on the convex minorant C’%( of X, the largest
convex function dominated by X on [0, 7]. We prove that the convex minorant C\ is
piecewise linear and establish in Theorem 2.1 a general stochastic representation in
terms of a stick-breaking process ¢ on [0, T| (see Figure 1.1 below) and the increments
of an independent Lévy process Y with the same law as X. The representation shows
that the C’% has the same law as the unique piecewise linear convex function with
infinitely many linear segments whose n-th linear segment (enumerated in some
order) has length ¢, and height &, = Y, , — Y, where L, =T — ZZ;II Uk (see
Figure 1.2 below).
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Figure 1.1: The figure illustrates the first n = 4 sticks of a stick-breaking process. The increments
of Y in (2.3) are taken over the intervals [Lg, Li—1] of length .



Observe that these linear segments indeed completely determine the piecewise
linear convex function since, in the graph of this function, the segments appear
chronologically by increasing slope. Strikingly, the proof of Theorem 2.1 requires
only elementary geometry and analysis, used to study the convergence of piecewise
linear functions, and the fact that Lévy processes have stationary increments and
right-continuous paths with left limits. In particular, this proof does not require
the introduction of fluctuation theory, local times, excursion theory or even the
Lévy-Khintchine formula.

Moreover, since the minimum of X and its temporal location can be obtained by
adding the heights and lengths of the linear segments of C’% with negative height,
we obtain a simple stochastic representation for the vector containing the state
X7, the infimum X4 and the first time the infimum is attained 7,(X) and, by a
time reversal argument, for the vector Y, (X). In fact, Theorem 2.1 can be used to
obtain novel and simple proofs of some of the classical and most prominent results in
fluctuation theory including Rogozin’s criterion and the Wiener—Hopf factorisation
(see Section §2.6 below).

Figure 1.2: A sample path of a Lévy process X on the interval [0,7], the graphs
of the convex minorant C%( and the time and space position of their infimum
(r7(X), X 7). The length £, and height &, of the chosen segment has the same
joint law as £, and &,.

In Chapter 3 we use the stick-breaking representation of the ¥ (X) to develop
the stick-breaking approximation (SBA) of this vector and SB-Alg, the corresponding
geometrically convergent simulation algorithm. The algorithm is valid for any Lévy
process whose marginals can be sampled exactly, comprising most of the Lévy

processes used in practical models. The geometrically fast convergence of SB-Alg



is a consequence of the fact that ¢, — 0 geometrically fast with Ef,, = 27T and
makes our algorithm outperform all other existing algorithms, which only converge
polynomially fast in the computational effort. We establish the geometrically fast
convergence of the SBA under several metrics. Finally, the corresponding Monte
Carlo and multilevel Monte Carlo algorithms are developed and analysed.

In Chapter 4 we consider Lévy processes whose marginals cannot be sampled,
requiring a Gaussian approximation for its small-jump component. Such processes
include empirically fit Lévy processes and other widely used models such as CGMY
processes. We use the stick-breaking representation of the vector Y, (X) to analyse
the distance between the vector Yr(X) and that of its Gaussian approximation
and obtain sharp rates of convergence under several metrics. The stick-breaking
representation is also used to develop SBG-Alg, a fast simulation algorithm for the
vector of the Gaussian approximation, which yields a novel multilevel Monte Carlo
algorithm for Y, (X). We analyse the complexity of this multilevel Monte Carlo
algorithm and show that it is typically orders of magnitude faster than existing
alternatives.

We stress here that Theorem 2.1 has more applications beyond those included
within the scope of this thesis. For instance, the author of this thesis has used
Theorem 2.1 to develop e-strong simulation algorithms of stable meanders [55], an
exact simulation algorithm of the extrema of stable processes [54] and Monte Carlo
algorithms for the extrema of tempered stable processes [57]. The author has also
used Theorem 2.1 to obtain new theoretical results, deriving results on the regularity
of the law of the supremum of a stable process [27] and describing the asymptotic

shape of the convex minorant of a Lévy process [9].

§1.1 Discussion on algorithms SB-Alg and SBG-Alg

The key role of X7(X) in applied probability, combined with its intractability when
X is not a jump diffusion (i.e., the linear combination of a compound Poisson process
and a Brownian motion with drift), has lead to numerous works on its approximation
over the last quarter of a century [7, 17, 21, 22, 30, 38, 39, 42, 43, 45, 49, 60, 70].
These approximations naturally yield Monte Carlo (MC) and Multilevel Monte Carlo
(MLMC) algorithms for xp(X). Without exception, the errors of these algorithms
achieve polynomial decay in the computational cost. These algorithms, like the
ones we will present in Chapters 3 and 4, are constructed under different sets of
assumptions, jointly covering almost all Lévy models used in applications.

The approximations of the vector X-(X) can be split into two classes, according



to two assumptions: approximations reliant on the ability to simulate (exactly)
the increments of the Lévy process X and approximations reliant on the ability to
simulate the jumps of X or, equivalently, the ability to simulate from the restrictions
of the Lévy measure of X to the subset R\ (—¢,¢) for any ¢ > 0. The former
assumption is generally stronger and it typically provides faster convergence rates

in the computational effort than the second assumption.

Approximations requiring the simulation of increments

Let us start with a brief discussion on the literature of approximations of X (X)
under the baseline assumption that the increments (equivalently, its transitions) of
X over intervals of length ¢ € [0,7] can be sampled exactly with an expected cost
that is bounded for t € [0, T]. The random walk approximation (RWA) approximates
Xr(X) with the corresponding vector of the skeleton (Xy7/y)keqo,.. 0y Of the Lévy
process X.

The RWA is a widely used method for approximating (X ) with computational
cost proportional to the discretisation parameter n. In the case of Brownian motion,
the asymptotic law of the error was studied in [7]. The papers [21, 22] (resp. [42, 43])
identified the dominant error term of the RWA for barrier and lookback options
under the exponential Lévy models when X is a Brownian motion with drift (resp.
jump diffusion). Based on Spitzer’s identity, [30] developed bounds on the decay
of the error in L' for general Lévy processes, extending the results of [42]. Ideas
from [60] were employed in [17] to obtain sharper bounds on the convergence of the
error of the RWA in LP for general Lévy processes and any p > 0. Such results are
useful for the analysis of MC and MLMC schemes based on the RWA, see [49] for
the case of certain parametric Lévy models. We discuss these contributions in more
detail in §3.1 as they are contrasted with the analogous results for the SBA.

Exploiting the the Wiener-Hopf factorisation, [70] introduced the Wiener-Hopf
approximation (WHA) of (X7, X7). The WHA is given by (Xg,,X¢, ), where
G, is the sum of n independent exponential random variables with mean 7'/n, so
that EG, = T with variance T%/n. Implementing the WHA requires the ability
to sample the increment and supremum of X at an independent exponential time,
which is only done approximately for a specific parametric class of Lévy processes
with exponential moments and arbitrary path variation [70]. The computational
cost of the WHA is proportional to n. The decay of the bias and the MLMC version
of the WHA were later studied in [45]. As observed in [49, §1], the WHA currently
cannot be directly applied to various parametric models used in practice possessing

increments that can be simulated exactly (e.g. the variance gamma process).



Approximations requiring the simulation of jumps

The Gaussian approximation (GA) introduced in [6] proposed approximating the
small-jump martingale containing the jumps of X whose size is smaller than x €
(0,1] with an independent Brownian motion with the same variance. The resulting
approximating process X ) is a diffusion with finitely many jumps, so the vector
X = (X () Y(H), 7r(X®))) may be sampled exactly. The paper [52], by the author
of the current thesis, was the first to present a complete complexity analysis for this
vector. In particular, sharp bounds on the bias and a multilevel simulation algorithm
were first introduced in [52]. The approach used there combines the GA and the SBA
to produce the SBGA (stick-breaking Gaussian approximation). A more detailed
description of the properties of this approximation will be provided in Chapter 4.

The jump-adapted Gaussian approximation (JAGA), introduced in [38, 39] to
approximate Lipschitz functions in the supremum norm of Lévy-driven stochastic
differential equations with Lipschitz coefficients, can be used to estimate the extrema
of Lévy processes. The algorithm is based on an approximation of the skeleton
{X4, }1_, where the time grid includes the times of the jumps of X whose magnitude
is larger than some cutoff level k and the small-jump component of X is approximated
by an additional Brownian motion. Typically, the cost and bias of the JAGA are
proportional to n + &2 and (n='/2 + n!/4k)\/logn, respectively, where 3 is the
Blumenthal-Getoor index, see (3.14) for its definition. The complexity of the MLMC
version of the JAGA for Lipschitz functions of (X7, X7) is compared with that of
the SBA in §3.2.4 of Chapter 3.

In contrast with Theorem 3.1 for the SBA, the laws of the errors of all the other
algorithms discussed in the present subsection are intractable. The error of the SBA
Xn in (3.1) decays geometrically in LP (see Theorem 3.3 below) as opposed to the
polynomial decay for the other algorithms (see §3.2.1 below). The error in LP of the
SBA applied to locally Lipschitz and barrier-type functions arising in applications
also decays geometrically (see Propositions 3.6 & 3.7 below). Such errors have not
been analysed for algorithms other than the RWA, which has polynomial decay (see
§3.2.2 for details) and the SBG (see details in Chapter 4). The rate of the decay
of the bias is directly linked to the computational complexity of MC and MLMC
estimates. Indeed, if the mean squared error is to be at most € > 0, the MC algorithm
based on the SBA has (near optimal) complexity of order O(e~2loge). The MLMC
scheme based on Algorithm 1. SB-Alg has (optimal) complexity of order O(e~?),
which is in general neither the case for the RWA [49] nor the WHA [45] (see details
in §3.2.4).



Chapter 2

Lévy processes: extrema and

convex minorants

Notation

In this thesis, standard knowledge and notation of probability theory (particularly
the first 20 chapters of the monograph [62]) is assumed. Some notation may vary
between chapters to avoid the use of overloaded notation. However, all such notation
is introduced and kept consistent within each chapter. Moreover, the following

notation is also fixed throughout: for any z,y € R, we denote
rAy = min{z,y}, 2Vy=max{z,y}, 27 =max{r,0}, and 2~ =max{-z,0}.

Given two functions f,g, we write f(z) = O(g(z)) (resp. f(z) = o(g(x));
J@) = O(g@)); f@) ~ g(x)) as & — a, if lmsup, ,, /(x)/g(z) < oo (resp.
f(x)/g(x) = 0; f(z) = O(g(x)) and g(x) = O(f(z)); f(z)/g(x) = 1), where a
is usually taken in the set {0, c0}.

For any cadlag function f : [0,00) — R (i.e. right-continuous with left-hand
limits), we denote by f, = sup{fs : s € [0,#]} its supremum over the interval [0, ]
and by 7;(f) = inf{s € [0,t] : f5 = f,} the first time the supremum f, is attained.

§2.1 Lévy processes

A Lévy process X = (X;)¢>0 is a stochastic process with independent and stationary
increments exhibiting cadlag paths, i.e., paths that are right-continuous with left-
hand limits. Simple examples of Lévy processes include Brownian motion, Poisson

process and compound Poisson process. Given independent Lévy process, any linear



combination is still a Lévy process. In particular, the linear combination of a
Brownian motion and a compound Poisson process is termed jump diffusion. We will
assume throughout a basic understanding of Lévy processes. The interested reader
is referred to the monograph [91] for a thorough treatment of these processes.

Under weak assumptions it is possible to simulate the entire path of a compound
Poisson process since it has only finitely many jumps. Moreover, since the law of
the extrema of a Brownian motion is very well understood, it is clear that many
properties of the extrema of jump diffusions can also be attained. In particular,
its exact simulation is possible. This, however, is generally not the case for Lévy
processes.

The main difficulty in studying Lévy processes arises when considering Lévy
processes with an infinite amount of jumps on any nonempty finite interval. This
property is only dependent on the Lévy measure v, which specifies the expected
number of jumps on any given measurable set. Moreovoer, for such processes, even
if it is possible to simulate its jumps, this is not enough to sample X7 exactly,
let alone its extrema. This thesis presents multiple approximations of the vector
Xr = (X1, X7, 77(X)) under different assumptions and analyse their computational
complexities and convergence speeds. These are typically described in terms of the

Blumenthal-Getoor index.

§2.2 Stick-breaking representation of convex minorants

The main goal of this chapter is to establish Theorem 2.1, which will trivially
imply (2.2). Theorem 2.1 gives a stick-breaking representation of the convex minorant
of a Lévy process, first established in [53, Thm 12] and, for Lévy processes with
diffuse marginals, in [87, Thm 1]. The representation provided by Theorem 2.1 can
be used to obtain short proofs of the Rogozin’s criterion for the regularity of X at its
starting point, Spitzer’s formula for the supremum of X, the Wiener-Hopf identities
and the continuity of the law of the triplet. All these results are easy corollaries
of Theorem 2.1 and basic properties of X. In particular, our approach circumvents
local times and excursion theory used in other probabilistic proofs of fluctuation
identities [13, 73] and the continuity of the law of the triplet [28] (see [53] for a
detailed account).

We will provide an simple proof of Theorem 2.1, relying entirely on elementary
geometrical arguments (given in §2.3) to control the convergence of the piecewise
linear convex functions of the approximating random walks to the convex function

whose law is equal to that of the convex minorant of an arbitrary Lévy process.



Considering the convex minorant as a whole, rather than face-by-face, was crucial
both in finding the correct formulation of Theorem 2.1, which generalises [87,
Thm 1], and a proof that circumvented local times, excursion theory and the
Skorokhod topology.

Given any cadlag function z : [0,7] — R, its convex minorant, denoted by
C7, is the largest convex function that is pointwise smaller than x. The goal of this
section is to prove our main result, Theorem 2.1, which (when applied to —X) clearly

yields (2.2) (see details in the paragraph following the statement of Theorem 2.1).

Theorem 2.1. Let X be a Lévy process and fir T > 0. Let ({n)nen be a uniform
stick-breaking process on [0,T] independent of Y L X. Then the convex minorant
CX of X has the same law (in the space of continuous functions on [0,T]) as the

piecewise linear convex function on [0,T] given by the formula

t— an min{(t — a,)" /n, 1}, where &, =Yy, , — Y, and

n=1

e n—1 (21)
an =Y 0(g je<entn) + D A =gty MEN.
k=1 k=1

In particular, the face of the piecewise linear function with horizontal length £, has

vertical height &, .

The maximality of C;X implies that C;X and —X have the same initial, final
and minimal values and that the times where they first reach their minima on [0, 7]
agree. Moreover, the minimum (resp. the first time of the minimum is attained) of
Cr X can be calculated by adding all the heights (resp. lengths) of the faces of C. X
with negative height. Since the location and value of the infimum of —X can be
used to recover the location and value of the supremum of X, Theorem 2.1 (applied

to —X) yields the following distributional equality:
d oo
Xr = (X0, X7, 70(X)) £ (60 &7 tal i, 50y)- (2.2)
n=1

By possibly extending the probability space, we may use [62, Thm 6.10] and
the fact that the Skorokhod space D0, T] of right-continuous functions on [0, 7]
with left-hand limits (see [14, p. 109]) is Polish under the Ji-topology [14, p. 112]
and thus a Borel space [62, Thm A1.2], to assume (under a coupling of (X,Y,?))



that the equality in (2.2) holds with probability 1:

o0

Xr = (X0, X1, 70(X)) =Y (€065 bnlie,501) ass. (2.3)

n=1

This coupling will be assumed throughout Chapters 3—4, as it is crucial in providing
both, the required tool to study X (X ) and a probability space where we may study
strong errors. Note that, in particular, the coupling satisfies Y7 = X7 a.s.

Overview of the proof of Theorem 2.1. Theorem 2.1 connects two worlds: (W1) X

and its convex minorant C:¥ on the interval [0,7] and (W2) a random piecewise
linear convex function. We first establish a convergence result within (W2) for a
sequence of piecewise linear convex functions, see §2.3. This crucial step in the
proof requires only elementary geometric manipulations of piecewise linear convex
functions. In §2.4, using [1, Thm 1], we establish a bridge between (W1) and
(W2) for random walks. We recall the 3214 path transformation [1] for random
walks and provide a short proof, based on the convergence results in §2.3, of the
connection between (W1) and (W2) for random walks with general increments,
see Theorem 2.6 below. In §2.5, we establish Theorem 2.1 by taking the limit of
the convex minorant of the random-walk skeleton of X in (W1) and, using the
convergence results of §2.3, the corresponding limit in (W2).

We stress that the proof of Theorem 2.1 given in this chapter is self-contained,
requiring only rudimentary real analysis and the fact that X has stationary and
independent increments and right-continuous paths with left limits. In particular,
we make no use of the Lévy measure, the Lévy-Khintchine formula for X or weak

convergence in the Ji-topology on the Skorokhod space.

§2.3 Convex minorants and piecewise linear functions

We denote [n] = {1,...,n} for n € N and adopt the convention [oo] = N. We say
that a function f : [0,7] — R is piecewise linear if there exists a set consisting of
N € N = NU{oo} pairwise disjoint non-degenerate subintervals {(ay,b,) : n € [N]}
of [0,T] such that EnNzl(bn — ap) = T and f is linear on each (ay,b,). The face
of f corresponding to the subinterval (ay,b,), has length I, = b, — a,, > 0, height
hn = f(bn) — f(an) € R and slope h,,/l,,. Note that, if f is continuous and of finite
variation -2 | £(b,) — f(an)| < 00, the following representation holds:

N
F@&) = £0)+ > hpmin{(t — an)"/ln, 1},  t€[0,T). (2.4)
n=1



The number N in representation (2.4) is not unique in general as any face may
be subdivided into two faces with the same slope. Moreover, for a fixed f and N,
the set of intervals {(an,b,) : n € [N]} need not be unique. Furthermore we stress
that the sequence of faces in (2.4) does not necessarily respect the chronological
order. Put differently, the sequence (a,)necn] need not be increasing. Throughout,

we use the convention > = 0 when n > m.

Lemma 2.2. Fiz T >0, N € N and let | = (1,)"_, be a sequence of positive lengths
with YN 1, =T.
(a) For any sequence of heights h = (hyp)N_; with Zle |hn| < 00, the function

N
Fiu(t) = Z by, min{(t — an) ™ /ln, 1}, te[0,T], where
n=1

N 1 (2.5)
an =Y e L fre<tnin} + O - Lngsio=tot}s 1€ [N,
k=1 k=1

is piecewise linear and conver with Fyp(0) = 0. Differently put, Fjj, is linear on
each interval (an,an + l,) with length 1, and height h,. Moreover, any piecewise
linear convex function started at zero whose faces have lengths | and heights h must
equal Iy p,.

(b) Suppose N < oo. Given two sequences of heights h = (hy,)N_; and h' = (h)N_;,

denote the corresponding functions in (2.5) by Fyp and Fj s with sequences (an)N_,
and (al,)N_; of the left endpoints of the intervals on which these functions are linear,

respectively. Define the function

N
Ginw(t) =Y hpmin{(t —a},)"/l,, 1}, t€[0,T].
n=1

Then, we have
max{|[Fyn — Fiplloos [ F1n — Gran oo}

N N 2.6
Smax{Z(hn—h;L)""Z(h’n_hn)-i-}’ (2.6)

n=1 n=1

where || flloo = supsejo. 11| f(t)| denotes the supremum norm.

The piecewise linear function G s need not be convex. However, it can be
easily compared (in all cases, including N = oco) with F} 5/, because the intervals of
linearity for Fj ;s and Gpp s coincide. The function Gy, will play a key bridging

role in the proof of Proposition 2.4 below.
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Proof of Lemma 2.2. (a) The lengths of the subintervals (an,an, + 1), n < N, of
[0,7] sum up to Egzl l, = T. By comparing the respective slopes in the definition
of ay, it follows that these intervals are pairwise disjoint. Moreover, Fjj is convex
on [0,7] and linear on every (an,a, + l,). Indeed, since a function is convex if
and only if it has a non-decreasing right-derivative a.e., Fj, is convex. Any other
piecewise linear convex function with the same faces must have the same derivative
as Fyp,. Furthermore, if such a function also starts at 0, it must equal Fj .

(b) A termwise comparison shows that

N N
= (b = h)t < Fyy — G <> (R, = ha) ™,
n=1 n=1

pointwise. Thus, it remains to show the inequality for || F] j, — Fj /|| o0, Which requires
two steps.

Step 1. First assume there exists m € [N] such that h], # hy,, and h, = hl,
for n € [N]\ {m}. By symmetry we may assume h!, > h,,. For all n € [N], define
the slopes s, = hy,/l, and s, = h,/l,. Thus s/, > s, and, if n # m, we have

$p = ),. Since

N n—1 N n—1
ap = Zlk : ]l{sk<sn} + Z U - ﬂ{sk:sn}v a;l = Zlk : l{s;c<s%} + Zlk : ]l{s;czs’n}a
k=1 k=1 k=1 k=1

the right-derivatives f; , and f; ;s of I j, and Fj j/, respectively, are piecewise constant
non-decreasing functions satisfying f; ,, < fi 5/ on [0, T]. Since Fj ;,(0) = 0 = F}4/(0),
we deduce that Fjj — Fyp > 0.

By construction, Fjp > Gppp pointwise (in fact, termwise) and |[|Fjp —
Gihwllo = b, — hpm. Put b, = an + 1, and b}, = al, + 1, for n € [N] and

: / !
note that, since s,, < s,,, we have a,, < a;,, and

Fin(t) = Giaw(t) = Fip(t), for t € [0, am],
Fin(t) = G (t) < Fiw(t) < Guaw(t) + (hy, — him), for ¢ € [b},,, T).

Thus, to establish (2.6) in this case, it suffices to prove that £/ (t) — Fip(t) <

hl, — hm ont € [am,b,].

By construction of aj,, the right-derivative f; ;s is smaller or equal to s;, =
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Figure 2.1: Comparison between Fj p, Fy p and Gy p -

hyp [l on (am, b,). Since Fy p(am) = Fip(am), for t € [am, by] we have

Fl,h’( Flh / fl h’ du — Sm(t_am)
< (sh, = sm)(t — am) < (80, — $m)lm = hl, — hup.

For t € [by, b;,,] we have t — I, € [am, al,| and thus Fj ,(t) — hy, = G(t — 1) =
Fyp(t — ). Hence

Fipw(t) = Fun(t) = Fu(t) = Fip(t = lm) — b
t t

= Jiw (w)du — hy, < / shodu — hpy = hl — by,
t—lm

t—lm

Thus, Fyp — Fip, < hl, — hy on [am, by,], proving (2.6) in this case.

Step 2. Consider the general case. For k € {0,..., N}, let ) = ( &k))nem
be given by A\t = hy, - Lgnagy + Ml - Linegy for n € [N]. Note that &' = h(©) and
h = hN). Since the sequences h®) and h*~1) only differ in the coordinate hl(ck) #*
h,(ckfl), the identity Fj s — Fip = Zi\f:l(Fl,h(k*U — F) p) and Step 1 imply (2.6),

completing the proof. O

Lemma 2.3. Let (Ng)ren be a sequence in N with a limit N, — Noo € N. For each
jeN, let (ljn)ne[n,] be positive numbers satisfying Zgil Lin =T, (hjn)neln,] Teal
numbers and C; the piecewise linear convexr function defined in (2.5) with lengths
(lj,n)je[[Nj]] and heights (hj,n)jeﬂNj]]- Suppose ly , = loon and by p — hoopn as k — 00
for alln € [Nx]. Then ||Coo — Cklloc = 0 as k — oc.

Proof. The convergence N, — Ny, as k — oo implies Ny = Ny = N for all
sufficiently large k. Thus, we assume without loss of generality that N; = N for all

12



j € N. Define Sjm = hjn/ljn for j € N and n € [N] and note that Sk — Soon
as k — oo for all n € [N]. Thus, for all sufficiently large k, if the inequality
Soo,n < Soo,m holds, then sj , < si,,. Thus, we assume this property holds for all
k € N. Moreover, we assume without loss of generality, by relabeling if necessary,
that s001 < -+ < 8500,N-

We will next introduce a sequence of convex functions Fj, satisfying the limits
|Coo — Filloc — 0 and ||F — Cklloc — 0 as k — oo. These convex functions will
replace each “block” of faces of C}, with a given common limiting slope, with a single
face with the mean slope.

Let M < N be the number of distinct slopes in {ss 5, : 7 € [IN]} and note that

Soc,iy < v < Sooiy s Where we set

i1=1 and dpy1 =min{m € {in+1,...,N}: Soom > Scc,in} for ne[M —1].

Note that sim,m — S, as k — oo for all m € {in,...,iny1 — 1}. Define the
sums Lj, = Zi;;;l ljm and Hj, = Z;’;;;l hjm for n € [M] and j € N, where

ive1 = N + 1. Furthermore, for j € N, let (ajn)nepny be the left endpoints of the

intervals in (2.5) on which Cj is linear. Note that C, admits the representation

M
Coo(t) =Y Hoomin{(t — too,)"/Loon, 1} for te[0,T],

n=1

and define the convex functions Fj(t) = Zf‘le Hy, , min{(t — ay, )" /Lkn, 1} for
k € N. The limits Iy, = loo,n and hyy — hoon IMPLly ag 4, — Gooyirs Lk — Loon
and Hy, — Hepn as k — oo for n € [M]. Thus, we have the pointwise (in fact,
termwise) convergence Fy, — Co. Since the functions are convex, the pointwise
convergence implies ||Coo — Filloo — 0 as k — oo.

To prove that ||Fj, — Ck|loc — 0 as k — oo, note that for a,c € R and b,d > 0
satisfying a/b < ¢/d, we have a/b < (a + ¢)/(b+ d) < ¢/d. Thus, Hy /Ly, lies
between the smallest and largest values of Sy, = { Pk, /lksins - - > Pheyingr—1/Ukyinsr—1}-
Since all the slopes in S}, converge to s« ;,, by the triangle inequality, we have
maxses, , [Hin/Likn—s| < maxg ges, ,, |8' =5 < bp = 2max,,e[n] [Skm —Soom| — 0
as k — oo. Hence, the right-derivative of Fj is at most by away from the right-
derivative of Cy, implying ||Fy — Cklloo < 0T — 0 as k — oo, completing the

proof. O

Proposition 2.4. Let Ni, and N be N-valued random variables with N — N

a.s. as k — oo. Let (lj,n)nNil, j € N, be random sequences of positive numbers
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satisfying ZnNi1 lim =T and (hjm)gil, j € N, sequences of random variables with
Zivil |hjn| < oo a.s. Let C; be the piecewise linear convex function in (2.5) with
sequences of lengths (ljm),]:]il and heights (hj,n)i:; for j € N. Suppose lyn — loon

a.s. and hyp — hoon a.5. as k — 0o for alln < Nog +1 and

Ng
lim limsup[Emin{l, Z |hk,n|} =0. (2.7)
n=M

M—=00 koo

Then ||Cso — Cklloo 50 as k — .

Proof. On the event { Ny < oo}, by Lemma 2.3 we have ||Csx — Cklloc — 0 a.s.
as k — oo (and (2.7) holds by our summing convention). Assume we are on the
event {No = oo}. For each M € N and j € N, let Cj s be the piecewise linear
convex function in (2.5) with lengths (ljm)i:fil and heights (hj,nll{n<M})nNi1- Denote
a Ab=min{a,b} for any a,b € R. For each j € N, define

N; n—1
Ujn = Z Ui = Ly Jt5m<hiyn flin} T Z i * L /1 m=hin/lin}> n € [Ny],
m=1 m=1
N;A(M—1)

end the function G p(t) = > hjnmin{(t — ajn)"/ljn, 1}, t € [0,T]. Note
that C; and G s are linear on every interval (a;n,ajn +ljn), n € [N;], but Cjm

m=1

may have different intervals of linearity. Since 1 A (z +y) < 1Az + 1Ay for all
z,y > 0, the triangle inequality implies

IN][Coo = Chlloo < Ay + Ay + Ay + Aavy + Ay, (2.8)

where Ay = 1A [|Coo — Gooptlloos Aary = 1A [|Goonr = Coontllosy Aqrry = 1A
[Coort = Critlloos Aavy = LA [[Crr — Giomlloo and Ayy = 1A [|Grpr — Ck | oo
As ¢, 5 0as n — oo if and only if E[1 A |(,|] — 0, it suffices to prove that the
expectation of each of the terms in (2.8) converges to 0 as we take limsup,,_, ., and
then M — oo.

(I)&(V). By construction of Cj and G ps we have ||C;—Gj a0 < ZSILM [Pl
for all j € N. Thus, we have |[Coo — Gooprllc — 0 as. and hence EAqy =
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E[1 A |Coo — Goo,M|loc] = 0 as M — oo. Moreover, by assumption in (2.7),

limsup EAvy = hm sup E[1A|Ckr — G il o)

k—o0

Ny
< limsupEmin{l, Z ]hkn|} FYE 0.
—00

k—o0 ne=M

(III). For all j € N, the faces of C; ys corresponding to n € [N;]\ [M — 1] are
horizontal. By convexity, we may assume they lie next to each other in the graph
of Cj p. Merging all the lengths 1 ,, n € [N;] \ [M — 1], yields a representation of
Cj,m with Nj A M faces. Fix M € N. Lemma 2.3 yields ||Coo s — Cr p1||oc — 0 a.s.
and thus EA iy = E[1 A [[Coopr — Ci it llec] — 0 as k — oo.

(IT)&(IV). The idea is to apply (2.6) in Lemma 2.2(b) to bound |Cjar —
GjM|loo, With F} p, Gy and Fppy in Lemma 2.2(b) given by Cj v, Gj v and Fj
respectively. The piecewise linear convex function F} s, which shares the intervals
of linearity with those of G 1, is yet to be defined.

Note that G possesses a piecewise linear representation with at most 2M
faces. Indeed, Gjar is linear on (ajn,ajn + ln), n € [N; A (M —1)], and the
complement (0,77) \ UN MM 1)[a‘m, ajn + 1] is a disjoint union of M; < M +1
open intervals, say (a} ,,a},, +1;,), n € [M;]. For each n € [M;], define the height
R, = > omes, n Pim Where Sin =A{m € [N;I\[M = 1] : ajm € (a},,a}, +1},)}
Put dlfferently, the height 1/; equals the sum of all the heights of the faces of Cj

7,n
that lie above the interval [a} ,,a’,, + 1} ,]. For any j € N and ¢ € [0, 7], define
NjA(M-1)
Fiu)= > hjnmin{(t —ajn)*/lin, 1}
=t (2.9)

—i—Zh pmin{(t —aj, )7/l 1}

We will show that F} js is convex. It suffices to prove that the consecutive slopes
of Fjpr on adjacent intervals of linearity increase. If the consecutive intervals are
(@jms @jm + Ujm) and (@, ajn +1jn) (i.e. they come from the first sum in (2.9)),
then by construction the intervals must be adjacent with the same slopes in the
convex function C, implying the corresponding slopes satisfy the correct ordering.
Assume the consecutive intervals are (a;m, ajm +1jm) and (@}, a},, +1; ) (i.e. the
first interval comes from first sum and the second interval comes from the second
sum in (2.9)). Suppose ajm = aj, + [}, and note that, for a,c € R and b,d > 0
with a/b < ¢/d we have a/b < (a4 ¢)/(b+ d) < ¢/d. Thus, by definition of h’;

jimo
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we have R}, /U5, < sup;eg,  hji/lji < hjm/ljm, where the last inequality holds

because ajm = a,, +1;, and Cj is convex. The case a’;,, = ajm +1;, is analogous

]n

since the slope h’ o/l ., is a mean of slopes at least as large as hjm/ljm, implying

jTL

the convexity of F M-

Define the vectors

1 1
l: (lj717"'7lj,Nj/\(M71)7lj,17"'7 ],M])7
I I
h=(hj1,.. '>hj,Nj/\(M—1)> AEER ->hj,Mj) and

h/ - (hj71, .. '7hj,Nj/\(M—1)70’ e ,O)

Note that the corresponding functions Fjp, Fjp and Gy in (2.5) equal Fjar,
Cj.m and Gjar, so (2.6) implies the inequality

M; j
1Gjnr = Ciatlloo < NGjar = Fjnrlloo+1Fjnr = Cinrlloo <2 1Pl <23 [hjinl.

m=1
Thus, [|Geo,pr — Coo M lloo — 0 a.s. and hence EA(rpy = E[1 A [[Coo — Goo a1 lloc] — 0

as M — oo. Moreover, by assumption in (2.7), we have

limsup EA vy = hmsupE[l AN Grm = Crr|| o)

k—o00

Ng,
< 2limsupEmin{1, Z |hk7n\} M—> 0. O
—00

k—o0 =M

§2.4 The convex minorant of random walks

Let a function f : [0,7] — R satisfy f(0) = 0. Given parameters 0 < g <u <d<T,
the 3214 transformation, introduced in [1], is defined by

flutt) = f(u), 0<t<d-—u,

0t — 4D T+ Jlg 4t =) = J(g), d-u<i<d—y
f(d) = f{t = (d—yg)), d—g<t<d,
f(t)7 d < t.

The 3214 transformation reorders the segments of the graph of f as follows: the
segments (I) [0, g, (II) [g,u], (III) [u,d] and (IV) [d,T] are moved to (III) [0, d — u],
(I1) [d—u,d—g], (I) [d—g,d] and (IV) [d, T], respectively (see also Figure 2.2 below).

This transformation possesses the following remarkable property when applied to
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continuous piecewise linear functions with a given set of increments.

Proposition 2.5 ([1, Thm 1}). Fizn € N and let x1,...,z, be real numbers, such
that no two subsets have the same mean. Let |y| = max{m € Z : m <y}, y € R,
and 7 : [n] — [n] be a uniform random permutation. Define the polygonal random
walk R = (R(t))eo by R(T) = Si_, o5 and

Lnt/T]

R(t)= Y @y + /T = |nt/T|) Tr(neyr)1),  tE€[0,T). (2.10)
k=1

Let Crﬁ denote the conver minorant of R and let W ~ U(0,T) be independent of R.
Let 0 =Vy < --- < Vy =T be the sequence of contact points between the piecewise
linear functions R and CE and j € [N] the unique index such that W € (V;_1, V}].
Define U = [Wn/T|T/n, G = Vj—1 and D = V. Then the 321} transform with
parameters (G,U, D) satisfies the identity in law

(U,R) L (D - G,0¢upR).

For completeness, we recall below a proof of Proposition 2.5 using a simple

argument from [2].

Theorem 2.6. Let x1,...,xz, be arbitrary real numbers and 7 : [n] — [n] a uniform
random permutation. Define R by (2.10) and let (Vi)ken be an iid sequence of
U(0,1) random variables independent of m. Define recursively Ly,o = T, Ly =
| L k1 Vin/T|T/n, by, = Ly k-1 — Lyng for k € N and let N < n be the largest
integer for which £, y > 0. Then the convex minorant C’ﬁ has the same law as the
piecewise linear convex function defined in (2.5) with sequences of lengths (£n 1)N_,
and heights (R(Lyk—1) — R(Lnx))N_,.

We stress that in Theorem 2.6, the reals x1, ..., x, may have multiple subsets
with the same mean. Our proof approximates a general sequence by one satisfying
the “no ties” assumption of Proposition 2.5 and applies a convergence result for
piecewise linear convex functions from §2.3. The proof of Theorem 2.6 in [1] sub-

samples the ties, resulting in a more involved statement of the theorem.

Proof of Theorem 2.6. First assume that no two subsets of the numbers z1,...,z,
have the same mean. Let 7w and (G, U, D) be as in Proposition 2.5. By Proposition 2.5,
the face decomposition of C’YE contains the face with length-height pair equal to
(D — G,CE(D) — CE(@)), which has the same law as (U, R(U)), and the faces
of a copy of Cﬁ_( D-G) independent of the first face. Indeed, this copy is in fact
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the convex minorant of O¢ypR on [T — (D — G),T] and we may apply the same
procedure to this copy. Iterating this procedure, we obtain a (finite) sequence of
lengths of the faces of Cﬁ, which has the same law as the sequence (Kk,n)szl, and
the corresponding heights, which have the same law as (R(Lg—1,) — R(Lkn))N_1,
completing the proof in this case.

To prove the general case, we recall that ||[CF — C¥|loc < ||z — ylloo for any
bounded functions z,y : [0,7] — R. Indeed, this follows from the fact that the
function CF—||z—y /||« is convex and CF— ||z —y||oc < 2—[|2—Yy||cc < y pointwise. For
any € > 0 consider real numbers z1 ¢, ..., T, such that no two subsets have the same
mean and Y, |z — 2| < e. Let Re be the corresponding random walk in (2.10)
(with the same permutation 7). Note that |CF — CF<| < [|[R — Reljoo <& — 0
as € — 0. Moreover, by the argument in the previous paragraph, C’IEE has the
same law as the piecewise linear convex function C. given by (2.5) with lengths
(bnr)Y_; and heights (Re(Lp—1) — Re(Lnk))_,. Let C be the piecewise linear
convex function given by (2.5) with lengths (En,k){gvﬂ and heights (R(Ly k—1) —
R(Ly))a. ;. Lemma 2.3 yields [|C — C:[oo — 0 a.s. as € — 0, implying C g CE
and completing the proof. d

The proof of Proposition 2.5 requires the following lemma.

Lemma 2.7. Let x1,...,x, be real numbers such that no two subsets have the same
mean. Then there is a unique k* € [n] such that Zle T (o i) mod n > %Z?:l x; for
all k € [n], i.e. the walk with increments T(j+41)modns - - - » T(k*+n) modn 15 above the

line connecting zero with the endpoint Y " | x;.

Proof. Define s = """ | x;j/n. If the walk k — Zle(:ri — ), k € [n], attained its
minimum at two times k1 < ks, then fik1+1 x;/(ke — k1) = s, contradicting the
assumption. It is easily seen that the £* in the statement of the lemma is the time

at which this walk attains its minimum on [n]. O

Proof of Proposition 2.5 ([2]). If a random element ¢ is uniformly distributed in
some finite set Z and if the map ¢ : Z — Z is injective (and thus bijective),
then ¢(() is also uniformly distributed on Z. Thus, since 7 and U are uniform and
independent, it is sufficient to show that the transformation (u, f) — (d—g¢,04 u.qf)
is injective.

Assume without loss of generality that T' = n. To prove the injectivity, it
suffices to describe the inverse transformation. Given d — ¢, and f = Og,uaf, note
that d—u is the unique time in Lemma 2.7 for the increments of f over the set [d—g],

see Figure 2.2. Consider the convex minorant of f on the interval [d — g,T] and
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Figure 2.2: The pictures show a path of a random walk R (solid) and its convex
minorant C¥ (dashed) on [0, T)] on the left and their 3214 transforms on the right.
The transform is associated to some w € (0,7) and the endpoints {g,d} of the
maximal face of ijf containing u.

note that d is the right end of the last face whose slope is less than f(d—g)/(d—g).
Thus we may identify d, v and g and then invert the 3214 transform to recover f.

This shows that (u, f) — (d — g,04.4.4f) is injective, completing the proof. O

§2.5 Proof of the stick-breaking representation

The proof of Theorem 2.1 is split into 3 steps.

Step 1. Let Cj, be the largest convex function on [0, T that is smaller than X
pointwise on the set Dy = {Tn/2" : n € {0,1,...,2*}}. Since Dy C Dy 1, we have
Ci(t) > Chya(t) for all ¢ € [0,T]. Moreover, the limit Cos = limy_,o0 Cj, is clearly
convex and smaller than X pointwise on the dense set (J,cy Dy in [0,7]. As X is
cadlag, Co is pointwise smaller than X on [0,7], implying Coo < C:X. Since C5¥
is convex and smaller than X on Dy, the maximality of 6k yields 6k > C’%( for all
k € N, implying Coo > C’%( and thus Co = C’%.

Step 2. Let Uy, Us,... be iid U(0,1) random variables independent of X. Let
Lo=T,L,=UyLy1, 4, =Ly1—Lyand &, = X, , — Xg, for n € N. For
each k € N, define Lyg = T, Ly, = |Lin_1Un2"/T| T/2%, by = Lin—1 — Lin
and &, = XL,WHl — XL,M for n € N. Let Ni be the largest natural number for
which f n, > 0, so that £, Ly, and &, are all zero for all n > Nj. For each
k €N, let C (resp. Cx) be the piecewise linear convex function given in (2.5) with
lengths (Ek,n)ﬁfil (resp. (£n)22,) and heights (fk,n)nNil (resp. (&n)o2;). Next we
show that ||C — Coo|oo % 0 as k — oco. Since X has cadlag paths with countably
many jumps, L, has a density for every n € N and Ly, — L, a.s. as k — oo, we
have &, — &, a.s. as k — oo for all n € N. Thus, by Proposition 2.4, it suffices to
prove that limps o0 limsupy_, o E[1 A Py 2] = 0, where Py = ZT]:EM 1€kl -

Theorem 2.6 implies that C}, 4 C~’k Let R; be the continuous piecewise linear
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function connecting the skeleton of X on Dy, with line segments. Since the minimum
and the final value of the convex minorant C:I;Lk =C}, agree with the corresponding
functionals of R}, the total variation Zivil |€kn| of Ck has the same distribution as
X1 —2mingep, X;. Moreover, by the independence and the definition of (Ly ,)nen,
it is easily seen that Py s = ZnNiMH 1€kn 4 Xpyn —2mingep, o,z ;) Xt- By the
inequality Ly ar < Lz, we have

X -2 min X, <X -2X <Xp.,—2X, .
Ly, v +€ D0, Lio a1] t > ALk v AL = “Lm A I
Since Ly — 0 as. as M — oo and X; — 2X, - 0 as. ast — 0, we have
X, — 2X;,, > 0as. as M — oo, implying

limsupE[1 A Py ] <E[LA (XL, — 2X 1, » 0.

k—o0 M—oo

Step 3. Recall that, by Theorem 2.6, we have C}, 4 C. Since |Ck—Coolloo Bo
and ||Cy — CXllo — 0 as. as k — oo, we conclude that Cs 4 C:X, implying
Theorem 2.1. O

§2.6 The fluctuation theory of Lévy processes

The power of the stick-breaking representation in Theorem 2.1 (or its corollary
in (2.2) for the vector X(X)), for any fixed time horizon T lies in the fact that (2.2)
essentially reduce the properties of the path functional Y1 (X) to the properties of the
marginals of X. We now illustrate this by deriving many of the classical highlights
of the fluctuation theory of Lévy processes from Theorem 2.1. Note first that, since
—log(¢,/T) is gamma distributed with density s+ s"te™*/(n — 1)! for s > 0, for
a measurable f :[0,7] — R4 we have

T
EZf(Zn):/ s Lf(s)ds. (2.11)
neN 0

In the definition of 74(X) (resp. 7,(X)), we take the first rather than last time
the maximum (resp. minimum) is attained. Our first corollary shows that this

choice makes little difference.

Corollary 2.8. A Lévy process X attains its maximum at a unique time a.s. if
and only if X is not a driftless compound Poisson process; then we have X, (X) 4

(Xi, Xo — Xy, t = 74(X)) for all t > 0.
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Proof. If X is a driftless compound Poisson process, it has piecewise constant paths,
making the time of the maximum not unique. Assume X is not a driftless compound
Poisson, then P(X; = 0) > 0 for at most countably many ¢ > 0. Indeed, either the
law of X, is diffuse or, by Doeblin’s lemma [62, Lem. 15.22], X is compound Poisson
with drift 4 # 0. In the latter case, P(X; = 0) > 0 if and only if —ut is in a
countable set generated by the atoms of the Lévy measure of X, implying the claim.

The time-reversal process X' = (X{)scpo,q, defined as X := X - — X,
s € [0,t], has the same law as (—Xs)scp, implying 7¢(X') < 7,(X). The gap
(t — T¢(X")) — Tt(X) > 0 between the time of the first and last maximum of X has
expectation equal to zero and is hence zero a.s. Indeed, since P(X; = 0) > 0 for at

most countably many ¢ > 0, Theorem 2.1 and (2.11) yield
t — E[r,(X)] — E[F(X)] = Ezgnﬂ{anflzan}
n=1

o0 t
=E) uP(Xy, =0|t,) = / P(X, = 0)ds = 0.
n=1 0

The identity in law follows from ¥, (X’) 4 X (—X). O

Corollary 2.9. For any Lévy process X, the following formulae hold for anyt > 0:
¢ o ¢

E[7(X)] = / P(Xs > 0)ds and E[X:] = / (Emax{Xs,0}/s)ds. (2.12)
0 0

Proof. Denote p(s) := P(Xs > 0) and take expectations in the third coordinate of
the SB-representation in (2.3). Fubini’s theorem and the formula in (2.11) imply

E7(X) = ZE[ﬁnp(fn)] = /0 p(s)ds for any ¢t > 0.
n=1

The proof of the formula for the supremum is analogous. O

Consider an exponential time horizon Ty ~ Exp(6) with parameter 6 € (0, c0)
(i.e. ETy) = 1/6), independent of the Lévy process X. Let £(¢) = (E%e))neN be a stick-
breaking process with a random time horizon Ty. The random measure » 2§ )
on (0, 00) is easily seen to be a Poisson point process (see Subsection §2.6.1 below).
By (2.11) its mean measure satisfies E) (545?) (A) = [, t~'e % dt for a measurable
set A (J, denotes the Dirac delta at the point z). Let F(t,dx) := P(X; € dx) denote

2

the law of X; for any ¢ > 0. Marking each point ¢;’ by a random real number
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sampled from the law F (E%G), -), by the Marking Theorem [64, p. 55], produces a

Poisson point process on (0,00) x R.

Proposition 2.10. Let the time horizon Ty ~ Exp(6) and the stick-breaking process
09 be independent of the Lévy process X . Define &(10) =X,0 =X, 0, where L®) =
n—1 n

(L,(f))keNU{o} is the remainder process associated to £). Then Zg := >7°° (5(609) £®)

18 a Poisson point process with mean measure
pg(dt, dz) ==t Le Y P(X, € dz)dt, (t,z) € (0,00) x R.

An immediate corollary of Theorem 2.1 and Proposition 2.10 characterises the

laws of the supremum and infimum of X on the exponential time horizon Tj.

Corollary 2.11. Let Ty ~ Exp(0) be independent of the Lévy process X. Then the
moment generating functions of X, and —Xr, are given by the following formulae

for any u > 0:

E[e—uYTg] = exp </ / (e—um _ 1)e_9tt_1IP’(Xt c dx)dt>, (2.13)
0 (0,00)
E[eugTe] = exp </ / (eux — l)e_ett_l]P)(Xt € d.%')dt) . (214)
0 (—00,0)

Proof. By Theorem 2.1, X7, 4 f(o 00)2 xZg(dt,dx), where Zpy is a Poisson point
process with mean measure pg. Campbell’s formula [64, p. 28] implies (2.13).
Applying (2.13) to —X yields (2.14). O

Recall that 0 is regular for the half-line (0, 00) if X visits (0, c0) almost surely
immediately after time 0, i.e. P(ﬂt>0 Usgt{XS >0}) =1.

Theorem 2.12 (Rogozin’s criterion). The starting point 0 of X is regular for (0, 00)
if and only if
1
/ t1P(X; > 0)dt = oo. (2.15)
0

Proof. Let the time horizon Tj ~ Exp(#) and random sequences /() and £ be
as in Proposition 2.10 above. As t — X, is non-decreasing a.s., 0 is not regular
for (0,00) if and only if P(X7, = 0) > 0. Since X7, L J 4 xZ6(dt,dx), where
A= (0,00) x (0,00), the event {X7, = 0} is equal to the event {Zy(A) = 0} that

the Poisson point process Zg = > o7 | 0 has no points in A. Thus, 0 is not

(e? D)
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regular for (0,00) if and only if
P (X7, =0)=P(Zp(A) =0) =exp ( —EZy(A))

= exp (—/ tile*OtP(Xt > O)dt) >0
0

for some positive 0, which is equivalent to (2.15). O
We can now characterise the behaviour of X as t — oo.

Theorem 2.13 (Rogozin). Possibly degenerate variables X oo = sup;>o Xt and
X =inf;>0 Xy satisfy

Efe~“X>~] = exp ( /D h /( ) (e —1)t7'P(X, € dx)dt), (2.16)
E[e"¥~] = exp (/OOO /(0070) (e —1)t7'P(X; € dx)dt), (2.17)

for any u > 0. Define the integrals
I, = / tIP(X >0 At & o= / t7IP(X; < 0)dt.
1 1

Then the following statements hold for any non-constant Lévy process X :
(a) if Iy < oo, then X is non-degenerate (X oo < 00 a.s.) infinitely divisible and
limy 00 Xt = —00;
(b) if I < oo, then X is non-degenerate (X ., > —oo a.s.) infinitely divisible and
limy o0 Xy = 00;

(c) if I+ = I_ = oo, then limsup,_,,, X; = —liminf; ,o X; = oco.

Proof. Let Ty ~ Exp(1) be independent of X and note 77 /6 ~ Exp(#) for any 6 > 0.
Since X7, /6 — X oo as 0 — 0 a.s., the corresponding Laplace transforms converge
pointwise. Thus the monotone convergence theorem applied to the right-hand sides
of (2.13)—(2.14) implies (2.16)—(2.17). Identity (2.16) (resp. (2.17)) implies that
I, < oo (resp. I_ < 00) if and only if Eexp(—uXs) > 0 (resp. Eexp(uX ) > 0)
for all w > 0. This implies part (c) and all but the limits in parts (a) & (b). The
limits in (a) & (b) follow from identities (2.16)—(2.17), the strong Markov property,
the Borel-Cantelli lemma and simple manipulations, see [91, p. 365] for details. [

Another easy corollary of Theorem 2.1 is the Wiener-Hopf factorisation.
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Theorem 2.14 (Wiener-Hopf factorisation). Let the time horizon Ty ~ Exp(6) be
independent of X. The random vectors (71,(X), X1,) and (Ty —7r1,(X), X1, — X71,)

are independent, infinitely divisible with Fourier-Laplace transforms given by

- < —6,0)
U (u,v) := B [e¥Tre (X)TvX7y] — _#+(=6,0) ) 2.18
o (wr0) =l I o 215)
— u(Ty—T —v -X @7(—9, O)
U, (u,—v) := E[e (To=TT, (X)) —v(Xr, XTe)] = 7@7@ o) (2.19)

for any u,v € C with Ru, Rv < 0. Here p is defined as follows: set Ay := (0,00),
A_ = (—00,0],

¢+ (a,b) = exp < /0 h /A . (et — et U= =Ip( X, € dx)dt) : (2.20)

for any a,b € C such that the integrals in (2.20) exist, including the cases where
Ra < 0, Rb < 0. The characteristic exponent ¥ of X; (i.e. Eexp(vX;) = exp ¥(v)
for v e C with Rv = 0) satisfies

0/(6 —u—T(v) =T/ (u,v)¥, (u,v), u,v € C with Rv =Ru=0. (2.21)

Proof. Let f(e), 5(9) and =y = ZZO:I 0

Theorem 2.1 gives

(09 £©) be as in Proposition 2.10. Applying

(TTQ(X),XTg)i/B (t,x)Zg(dt,dz) and

(Ty — 71, (X), Xz, — Xz) 2 / (t, )25 (dt, da),

where By := (0,00) x Ay. Moreover, since the joint law of (7r,(X), Xr,) and
(Ty — 71,(X), X1, — X1,) equals that of the two integrals in the display above, the
vectors are independent because By N B_ = (). By Proposition 2.10, the mean
measure of =y equals pg(dt,dz) = t~le %P(X; € dz)dt. Hence

—0t
\Ilg:(uﬂ;) = exp </ (eut+vm — 1)LP(X,5 S dl‘)dt)
(0,00)x A+ t

for all u,v € C with Ru,Rv < 0, by Campbell’s Theorem [64, p. 28]. This
representation of \I/;t(u,v) and (2.20) imply (2.18)—(2.19). The independence and
the formula Eexp(uTy + vX1,) = 0/(0 —u — ¥(v)) imply identity (2.21). O

The question of the absolute continuity of the law of X, (X) = (X, X, 7¢(X))
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was the main topic in [28], investigated using excursion theory. Again, Theorem 2.1

provides an easy approach.

Theorem 2.15. If 0 is regular for both half-lines (0,00) and (—o00,0) and Xy is

absolutely continuous for each t > 0, then the law of X, is absolutely continuous.

Proof. The assumption on the regularity of zero for both half-lines implies that,
with probability one, two increments in the first coordinate in the series in (2.3)
have opposite signs, implying P(X; < X;) = 1 and P(0 < 74(X) < t) = 1. Condition
on such an event occurring at indices m # n and note that the law of (£, £,,) is
absolutely continuous for any n # m. Recall that, given the stick-breaking process
£, the increment of X is by assumption absolutely continuous. A random vector A
is absolutely continuous and independent of B, then A + B has a density, implying
the result. O

The proof of Theorem 2.15 is based on analogous arguments in [87], where the
authors used a version of Theorem 2.1 for diffuse Lévy processes (their [87, Thm 1])
to establish a result similar to Theorem 2.15. The key difference lies in the fact that
the proof of [87, Thm 1] uses in an essential way the following result of Rogozin,

whose proof requires fluctuation theory.

Theorem 2.16 (Rogozin). If a Lévy process X has paths of infinite variation, then

limsup X;/t = —liminf X/t =00 a.s.
£10 10

A circular argument would arise if one attempted to developing fluctuation
theory for Lévy processes with diffuse transition laws using [87, Thm 1], because
of its reliance on Theorem 2.16. In contrast, Theorem 2.1, applicable to all Lévy
processes, has an elementary proof that does not use fluctuation theory. In fact,
Theorem 2.1 implies Theorem 2.16. Indeed, limsup, g X/t = oo if and only if
the right-derivative at 0 of the concave majorant of X over [0,7p] is infinite. By
Theorem 2.1 and Proposition 2.10, this is equivalent to Zg({(¢,z) € (0,00) X R :
x/t > b}) = oo a.s. for all b € R, which holds if and only if fol t'P(X; > bt)dt = oo
for all b € R.

We conclude this section with an application of Theorem 2.1, implying a novel

factorisation identity.

Corollary 2.17. Given b € R, define Xt(b) = Xy — bt, ?gb) =T¢(X®) and Zt(b) =
Yib) + b?gb) and let Ty ~ Exp(f) be independent of X. Then, for real numbers

ay > --- > ap, the random wvectors (Féf;l),Zj(f;l)), (F%”l) - ?%i),Zj(g”l) - Z%i)),
(Ty — ?%”), Zgn) —X7,),i=1,...,n—1, are independent.
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Proof. Since X does not jump at time T} a.s., the Lévy process X (@ and its concave
majorant on [0, Ty], given by ¢ — —C:FGX(@) (t) = —C’EGX (t)+at, share their final value,

suprema, and time of suprema. Let Zp =Y 7,4 be a Poisson process on

(e 67)
A = (0,00) X R with mean measure py. Applying Theorem 2.1 and Proposition 2.10

to the concave majorant of X on [0, Ty], we obtain

(To, X1, 7oy, (287 = 7)ict)

d _
= /A (t, 2, (Lztsayticpn] (Liz/t>ai}®)icn) Eo(dt, dz).

Thus, by writing the vectors in the statement of the corollary as integrals with
respect to Z¢p on the disjoint sets {(t,x) € A:z/t > a1}, {(t,x) € A: a1 > x/t >
ast, ..., {(t,x) € A:apn—1 > x/t > an} and {(t,z) € A: z/t < ay}, we obtain their

independence. O

§2.6.1 Sticks on exponential intervals are a Poisson point processes

For n > 2, the Dirichlet law on the simplex {(z1,...,2,) € (0,1]" : >0 2, = 1}
with parameters 6; > 0 has a density proportional to (x1,...,2,) — [[i~; l‘?i_l.
D is a Dirichlet random measure on (0,1] if for any 0 = ¢p < t1 < ... < t, =
1, the random vector (D((to,t1]),..., D((tn—1,tn])) follows the Dirichlet law with
parameters (t;—t;_1). Let (Up)nen and (V;,)nen be independent iid U(0, 1) sequences,
independent of a Dirichlet random measure Dy on (0,1]. Elementary calculations
imply that D; = (1—V1)dy, + ViDo 4 Dy and hence D,, = (1 —V,)oy, + Vi Dp—1 4

Dy for all n € N. Since D,, converges to D, = > _n¥ndy, in total variation,

neN
where £, = (1 — V;,) [[iZ1 Vi is a uniform stick-breaking process on [0, 1], we have
Do £ De. Moreover, by construction we have ZneN(fﬁf’) /Ty)ou, 4 Dy, where
(ﬂ%e))neN is a stick-breaking process with an independent time horizon Ty ~ Exp(6).
Let G be a gamma subordinator (i.e. G; has density proportional to s
st71e0%). The jump of G at t > 0, AG; = Gy — limgy G, is zero for all but
countably many ¢, making D’ = >_te(0,1] ((AGt)/G1) b; a Dirichlet random measure
n (0, 1], independent of G; ~ Exp(f). Indeed, for any 0 =ty < t1 < ... < t, =1,

the Jacobian change-of-variable formula shows that the vector
(D/((t07 tl])7 ceey D/((tn—17 tn])u Gl) = ((th - Gto)/G17 ceey (th - th_l)/G17 Gl)

has the desired law. Thus (D', Gy) L (ZneN(&e)/Tg)éUn,Tg), implying that the law
of the Poisson point process Zte(o,l] 1ag,>00AqG, coincides with that of the random

measure », oy 6,).-
n
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Chapter 3

The stick-breaking

approximation

§3.1 Construction of the stick-breaking approximation

Based on the stick-breaking representation of the vector y in (2.3), we define the
SBA YoB as follows:

n

Xno = Z(ﬁka&jvﬁkﬂ{fpo}) + (Y2, Y7, Lulty,, >0)- (3.1)
k=1

Since the residual sum ) 2 . & equals Yz, for any n € N, the first component
of YEB coincides with that of x, while, as we shall see in Theorem 3.1 below, YL+n
and L1y, -0y reduce the errors of the corresponding partial sums in (3.1). The
coupling (X,Y, ¢) makes it possible to compare X and X>° on the same probability
space and analyse the strong error ¥ — X5F.

Denote the distribution of X; by F(t,x) = P(X; < z), z € R, for ¢t > 0. The
following algorithm simulates exactly from the law of the SBA }5P:

Algorithm 1. SB-Alg

Require: n € N, fixed time horizon T' > 0

1: Set Lo =T, Ay = (0,0,0)

2: fork=1,...,ndo
3 Sample U, ~ U(0,1) and put ¢ = UxLg—1 and Ly = L1 — Ui,
4: Sample & ~ F(ly,-) and put Xy = Xeo1 + (&, & lelige>0p)
5
6

: end for
: Sample ¢, ~ F(Ly,-) and return X, + (,, 5, Lo, >03)
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SB-Alg clearly outputs a random vector with the same law as X5>° in (3.1),
using a total of n + 1 sampling steps. Theorem 3.1 and §3.2 below show that Y>O
in (3.1) is an increasingly accurate approximation of y as n grows. Intuitively this
is because the sum in the definition of X>P consists of the first n terms in (2.3)
taken in a size-biased order with respect to (¢,,)nen, making the remainder very
small. It will become clear from Theorem 3.1 that the last step in SB-Alg reduces
the error further. The computational cost of the algorithm is proportional to n if
we can sample any increment of X in constant time. We stress that SB-Alg is not
a version of the random walk approximation on a randomised grid as it does not
require the computation of either max or arg max of a discretisation of X. Instead,
the approximation for the supremum and its time are obtained by summing non-
negative numbers, making SB-Alg numerically very stable. The convergence analysis

of SB-Alg relies on the following result, which describes explicitly the law of its error.

Theorem 3.1. Assume the Lévy process X is not compound Poisson with drift and
let (X,Y,0) be the coupling satisfying (2.3). For any n € N, define the vector of
errors of the SBA by

Y= = (0,A58,655) = (0,An = V7 00 — Lal(y, >o0y),  where

= - " (3.2)
Ap=Xp=Y & and  Gu=mr— lbligso
k=1 k=1
Then, conditionally on Ly,
(Y1, A, dn) < (YLn,?Ln, TLy (Y)), and hence (33

(ASB65B) £ (Vy, — Y, 7, (Y) — Lulgy, s0y)-

Moreover, the inequalities 0 < A%El <ASB <A, 0<6, <L, and |68 < L,
hold a.s.

Non-asymptotic (i.e. for fixed n) explicit descriptions of the law of the error,
such as (3.3) in Theorem 3.1, are not common among the simulation algorithms for
the supremum and related functionals of the path. Since L,, and Y are independent,
the representation in (3.3) is easy to work with and provides a cornerstone for
the results of §3.2. Note that, by Theorem 3.1, the sequences (ASB),en, (Ap)nen
and (0, )nen are nonincreasing almost surely and converge to 0. Furthermore, the
following observations based on Theorem 3.1 motivate the final step in SB-Alg (i.e.
the inclusion of the last summand in the definition in (3.1)): (I) the tail of the error
APB may be strictly lighter than that of A, (as X; — X;" = min{X;, X; — X;} and

28



X, - X < SUpsefo4(—Xs) for all t > 0 [13, Prop. VL3]); (II) for a large class of
Lévy processes, 058 is asymptotically centred at 0, i.e. E[65B/L,] — 0 as n — oo,
while E[6,,/Ly] converges to a strictly positive constant (see Proposition 3.9 below
for details). Theorem 3.1 is proved in §3.4.1.

Since EL,, = T2™™ and L, is independent of Y, the convergence of SB-Alg is
geometric (see also §3.2). Moreover, the error (ASB §5B) satisfies the following weak
limit.

Corollary 3.2. If the weak limit X;/a(t) 4 7 (ast — 0) holds for some (necessarily)
a-stable process Z and a positive function a, which is necessarily 1/a-regularly
varying at zero, then

( Y, An 5”) LA (Zl,Zl,Tl(Z)) as N — o0. (3.4)

The assumption in Corollary 3.2 essentially amounts to both tails of the Lévy
measure of X being regularly varying at zero with index —1/a (see [60, Thm 2]).
This is a rather weak requirement, typically satisfied by Lévy based models in
applied probability, which allows an arbitrary modification of the Lévy measure away
from zero (see discussion in [60, Sec. 4]). Moreover, the index « is given by (3.30)
and the function a(t) is typically of the form a(t) = Cot!/® for some constant Cy > 0.
The scaling in the limit (3.4) is stochastic; however, since EL,, = T27", the rate of
decay of the error is clearly geometric. Corollary 3.2 is proved in §3.4.1 by applying

Theorem 3.1 to the small-time weak limit of X.

Connections with the literature

In contrast with Theorem 3.1 for the SBA, the laws of the errors of all the other
algorithms discussed in Chapter 2 are intractable. The error of the SBA X3P in (3.1)
decays geometrically in law in Corollary 3.2. Analogous weak limits have not been
studied for other approximations except for the RWA, where the convergence is
polynomial, see [17, 60]. Similarly, the error of the SBA X5P in (3.1) also converges
geometrically in LP (see Theorem 3.3 below) as opposed to the polynomial decay
for the other algorithms (see §3.2.1 below). The error in LP of the SBA applied
to locally Lipschitz and barrier-type functions arising in applications also decays
geometrically (see Propositions 3.6 & 3.7 below). Such errors have not been analysed
for algorithms other than the RWA, which has polynomial decay (see §3.2.2 for
details).

The rate of the decay of the error in L! for these functions is crucial, since
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this error bounds the bias and is directly linked to the computational complexity
of MC and MLMC estimates. Indeed, if the mean squared error is to be at most
e > 0, the MC algorithm based on the SBA has (near optimal) complexity of order
O(e2loge). The MLMC scheme based on SB-Alg has (optimal) complexity of order
O(e72), which is in general neither the case for the RWA [49] nor the WHA [45] (see
details in §3.2.4).

The remainder of this chapter is organised as follows. We develop the theory
for the SBA as a Monte Carlo algorithm in §3.2. Each result is compared with its
analogue (if it exists) for the approximations mentioned in Chapter 2 above. In §3.3
we provide numerical examples illustrating the performance of SB-Alg. The proofs

of the results in §3.2 are presented in §3.4.

§3.2 SBA Monte Carlo: theory and applications

The present section describes the geometric convergence of SB-Alg and analyses the
Monte Carlo estimation of the functions of interest in applied probability. In §3.2.1
we establish the geometric decay of the error in LP. In §3.2.2 we show that the
error in LP (and hence the bias) of SB-Alg applied to the aforementioned functions
also decays geometrically. In §3.2.3 we study the error of the MC estimator based
on SB-Alg for the expected value of those functions via a central limit theorem
and provide the corresponding asymptotic and non-asymptotic confidence intervals.
§3.2.4 gives the computational complexity of the MC and MLMC estimators based
on SB-Alg.

§3.2.1 Geometric decay in L? of the error of the SBA

In the present subsection we study the decay in LP of the error (ASB §5B) of the

n ' n

SBA %5B given in (3.2). Let (02, v,b) be the generating triplet of X associated with

n

the cutoff function z +— Ty,<1) (see [91, Ch. 2, Def. 8.2]). The existence of the
moments of X7 and X7, necessary for the following result, can be characterised [91,

Thm 25.3] in terms of the integrals
If = / 2Pv(dz), P = / |z[Pv(dz), p > 0. (3.5)
[1,00) (—o0,—1]

Theorem 3.3. The following results hold for any p > 1.
(a) The inequality max{E[|058[P],E[65]} < TP(1+p)~™ holds for any n € N.
(b) If min{I%, I’} < oo (resp. I < o), then E[(ASB)P] (resp. E[AD)]) is bounded
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above by O(n,™) as n — oo, where n, lies in the interval [3/2,2] for any Lévy
process X. Both np, defined in (3.31), and the constants in O(n,") are explicit in
the characteristics (o2,v,b) of X (see (3.33)).

By Theorem 3.1, the error ASB is bounded above by the supremum of the Lévy
process over the stochastic interval [0, L,] with average length equal to EL,, = T27".
The key step in the proof of Theorem 3.3, given in Lemma 3.12 below, consists of
controlling the expectation of the supremum of X over short time intervals (see §3.4.2
below for details).

Since n2 = 2 (see definition in (3.31) below), an application of Theorem 3.3(b)
for p € {1,2} yields EASB = O((3/2)™") and E[(ASB)®] = O(27™). These two
moments are used in the analysis of the MLMC estimator based on SB-Alg (see §3.2.4
below). A further application of Theorem 3.3 yields a geometric bound on the LP-
Wasserstein distance W, (L(X), L(X30)) between the laws £(X) and L(X>P) of the
corresponding random vectors (see (3.34) below for the definition of the Wasserstein
distance and §3.4.2 for the proof of Corollary 3.4).

Corollary 3.4. If I' NI? < oo for some p > 1, then Wy(L(X), L(X30)) = (’)(np_n/p)
as n — oo. As in Theorem 3.3(b) above, m, lies in the interval [3/2,2] and the

n/p)

constant in O(n, '), gwen in Equation (3.35), is explicit.

Comparison

The algorithm based on the RWA with time-step 7'/n outputs a vector X}}W, which
1y Xt of X on the grid

and first time argmax;c(o7/n,.., 7} Xt this maximum is attained on the grid. The

is comprised of the final state X7, maximum max;c (o r/n,...,
L' bounds on the error ARV = X7 — max;c(o,1/n,... 7} Xt of the RWA have a long
history. Using the weak limit of the error of the RWA, the L' bound EARW =
O(n~1/2) is established for the Brownian motion with drift in [7, 22]. The same
bound holds when the jumps of X have finite activity (i.e. ¥(R) < co and o # 0) [42].
The approach of [42], based on Spitzer’s identity, was extended in [30, Thm 5.2.1]
to the case without a Brownian component. If X has paths of finite variation, these
bounds were further improved via a different methodology in [17]. In particular,
by [17, Thm 4.1], we have: EARW = O(n~1/2) if X has a Brownian component (i.e.
o #0), EARW = O(n=!) if X has paths of finite variation (i.e. f(fl,l) |z|v(dz) < oo
and ¢ = 0) and EARW = O(n®=1/8) otherwise, for any small § > 0 and 3 € [1,2]
defined in (3.14) below.

Bounds for E[(Agw)p], p > 0, analysed in [17, 42], are as follows. By [17,
Thm 4.1], for a € [0,2] given in (3.30) below, the decay is O(n~!) for p > a and
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O(nd~P/) for 0 < p < o and any small § > 0 (we may take § = 0 if either & = 1 and
X is of finite variation or o = 2). If X is spectrally negative (i.e. v((0,00)) = 0) and
has jumps of finite variation (i.e. f(—l,O) |z|v(dz) < o00), then for p > 1 the decay
is of order O(nP) (resp. O(n"P/2logPn)) if o = 0 (resp. o # 0) [42, Lem. 6.5].
Interestingly, as noted in [17, Rem. 4.4], if X has jumps of both signs, then for any
p > 0, the error of the RWA satisfies liminf,, nE[(Af}W)p] > 0. Put differently,
the error cannot be of order o(n1).

Intuitively, the error committed by the RWA is due to the skeleton missing the
fluctuations of the process over the interval of length 1/n where the process attained
its supremum. Since these fluctuations can be substantial in the presence of high
jump activity and heavy tails, the decay of the resulting error is polynomial in n.
In contrast, the error of the SBA is by Theorem 3.3(b) bounded by O(n,™) with
np € [3/2,2], as it commits the same error as the RWA but over the interval [0, L]
with average length of 7'/2". Numerical results show that the biases of the RWA
and the SBA over 2" and n steps, respectively, are comparable (Figure 3.1 below).

Recall that the WHA, applicable to a parametric class of Lévy processes [70],
is given by (Xg, , X, ), where G, is an independent gamma random variable with
mean EG,, = T and variance T2 /n. Since X,y — X, is stochastically dominated by
X, and Xivs — X5 4 X4, the LP norm of the error is linked to both, the small time
behaviour of t — (X, X;) and the deviations of G, from T. Therefore, the moments
of the errors depend on those of |G,, — T'| and satisfy E[| X7 — Xg, |P] = O(n~1/9)
and E[|[ X1 — X¢, [P] = O(n~Y9) for p € {1,2}, where ¢ = 4 if p = 1 and X is of
infinite variation and ¢ = 2 otherwise [45, Prop. 4.5]. These bounds are based on
a martingale decomposition of the Lévy process X (see [45, Lem. 4.4]), while our
analogous results use the Lévy-Itdo decomposition, see Lemma 3.12.

Intuitively, the error in the WHA is due to the censored fluctuations of X over a
stochastic interval of length |G,, — T'|. This is analogous to the error of the SBA over
a stochastic interval of length L,,. However, since E[|G,, —T|] is asymptotically equal
to T+/2/(nm) (by the central limit theorem and [14, Thm 5.4]) and E[L,] = T27",
the speed of convergence is polynomial in the WHA and geometric in the SBA.

The first two moments of the error of the JAGA with cost n were analysed
in [38, 39], resulting in the bound O(n~™{L/B+} 4 p1/4=1/8+/logn) if X has no
Brownian component (i.e. ¢ = 0) and Q(n!/4=mi0{3/41/8+}, /logn) otherwise, where
B+, given in (3.15), is slightly larger than the Blumenthal-Getoor index § € [0, 2]
in (3.14). Intuitively, this error is the result of missing the fluctuations of X between
consecutive points on the random grid and the error incurred from approximating

the small-jump component with an additional Brownian motion.
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§3.2.2 SBA for certain functions: geometric decay of the strong

error

Throughout the chapter we consider a measurable function g : R x Ry x [0,7] — R
satisfying E|g(X)| < oo, where Ry = [0,00). We focus our attention on the classes
of functions that arise in application areas such as financial mathematics [35, 92],
risk theory [5, 93] and insurance [37]. More specifically, we study the following
three classes of functions: (I) Lipschitz in Proposition 3.5, (II) locally Lipschitz
in Proposition 3.6 and (III) barrier-type in Proposition 3.7. These results are a
consequence of the representation of the law of the error in Theorem 3.1, bounds
from Theorem 3.3 and a tail estimate (without integrability assumptions) for the
error A, in Lemma 3.18.

Lipschitz functions of X arise in applications, for example, in the pricing of
hindsight [22, 42, 49, 95] and perpetual American [82] puts under exponential Lévy
models. Indeed, for fixed Sy, Ky > 0, these two examples require computing the
expectations of (Ko — SpeX™~X7)* and eX7=XT_ both of which are bounded and
Lipschitz in (X7, X7) since X7 > Xp. The next result, proved in §3.4.3 below,

shows that the convergence of SB-Alg is also geometric for these functions.

Proposition 3.5. Assume |g(z,y,t)—g(x,y',t")| < K(ly—y'|+[t—t'|) for some K >
0andallz € R, y,y € Ry, t,t' € [0,T]. Supposep > 1 satisfies ||g|lcc NILAIY < o0,
where ||g|loc = sup{|g(z,y,t)| : (z,y,t) € R xRy x [0,T]}, and let n, € [3/2,2] be
as in (3.31). Then we have

Ellg(x) — 90 )P] = O(m, ™) asn — oo.

Moreover, the constant in O(n,™), given in Equation (3.38) below, is explicit in K,

gl and the characteristics (02,v,b) of the Lévy process X.

The pricing of lookback puts, hindsight calls [22, 42, 49] and perpetual American
calls [82] involve expectations of continuous functions of X, such as (SoeYT — Ko)*
and eYT, which are only locally Lipschitz. By Proposition 3.6, under appropriate
assumptions on large positive jumps, the error of SB-Alg decays geometrically for

such functions.

Proposition 3.6. Assume that |g(z,y,t)—g(x, v, V)| < K(ly—y'|+|t—t/|)emaxivy’}
for some K >0 and all (z,y,y',t,t') € RxR2 x [0,T]?. Letp > 1 and q > 1 satisfy
f[l 00) Py (dz) < oo and let nyy € [3/2,2] be as in (3.31), where ¢ = (1 —1/q)~ !,

Then we have
Ellg(x) — 9(xn )] = (9(7);;/[1 ) asn— oo.
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Moreover, the constant in O(n_n/q/), given in Equation (3.40) below, is explicit in

pq’
p,q, K and the characteristics (02,v,b) of the Lévy process X.

/4 in Proposition 3.6, one needs to

In order to obtain the smallest value 77;;
take the largest possible ¢ allowed by the assumptions (see Remark 3.19 below for
details). Hence, the rate of decay is determined by the exponential moments of
the Lévy measure 1/\[1700). In the context of financial mathematics, it is natural
to assume that the returns in the exponential Lévy model have finite variance, i.e.
Ee?Xt < co. This is equivalent to f[l,oo) e??y(dz) < oo [91, Thm 25.3], implying for
example ¢ = 2 (for p = 1) with the bound ©(2~™"/2).The proof of Proposition 3.6 is
in §3.4.3. A numerical example is in §3.3.1.

Barrier-type functions of %, which are discontinuous in the trajectory of the
Lévy process, arise in the pricing of contingent convertibles [37], the evaluation of
ruin probabilities [65] and as payoffs of barrier options [21, 22, 95]. By Theorem 3.1,
the error ASB in (3.2) of the second coordinate X7 — ASP of the SBA X3P satisfies
0 < ASB N, 0as. asn — oo. Hence, the limit P(X7 — ASB < 2) \, P(X7 < )
as n — oo holds for any fixed x > 0. The rate of convergence in this limit is both
crucial for the control of the bias of barrier-type functions and intimately linked to
the quality of the right-continuity of the distribution function x — P(X7 < x) of

X 7. We will thus need the following assumption.

Assumption (H). Given M, K,~ > 0, the inequality P(M < X7 < M + 1) < Kx7
holds for all x > 0.

Proposition 3.7. Define g(X) = h(XT)ﬂ{YTgM}r where h : R — R is bounded and
measurable and M > 0. Let Assumption (H) hold for M and some K,~v > 0. Fiz
any p,q > 1 and let ng € [3/2,2] be as in (3.31). Then we have

Ellg(x) — 9(")I] = O(n;m/(qu)), as n — oo.

Moreover, the constant in (’)(77(1_"7/(7+Q)), given in Equation (3.41) below, is explicit

in K, v, p, q, |h|lec and the characteristics (c2,v,b) of the Lévy process X .

The proof of Proposition 3.7 is in §3.4.3 below. Minimising 7, (AR

function of ¢ is not trivial (see Remark 3.20 below for the optimal choice of ¢). In
the special case when v = 1 (i.e. the distribution function of X is Lipschitz from
the right at M) we have: (a) if X has paths of finite variation, then the optimal
choice ¢ = 1 gives 71 = 2 and the bound O(27™/2); (b) if o # 0, then the optimal
choice ¢ = 2 yields the bound O(27"/3).
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The rate of decay in Proposition 3.7 is essentially controlled by the rate of
convergence in the Kolmogorov distance of X7 — ASE to Xp. In general, as
mentioned above, X7 —ASP is known to converge to X weakly. As the Kolmogorov
distance does not metrise the topology of weak convergence (cf. [85, Ex. 1.8.32, p.43)),
we require an additional assumption, such as (H), to obtain a rate in Proposition 3.7.

Assumption (H) holds for a wide class of Lévy processes. By the Lebesgue
differentiation theorem [33, Thm 6.3.3], the function z — P(X1 < x) is differentiable
a.e. and Assumption (H) holds for 4 = 1 and Lebesgue almost every M. If the
density of Xp exists and is bounded around M, then z — P(X1 < z) is locally
Lipschitz at M, again satisfying Assumption (H) with v = 1. This is the case if the
density of X7 is continuous at M, which holds for stable processes or if o # 0 [29],
and, more generally, if X converges weakly under the zooming-in procedure and
a > 1 in (3.30), see [17, Lem. 5.7]. Moreover, by [29, Prop. 2] and [13, Sec. V1.4,
Thm 19], the density of X is continuous at M if the ascending ladder height process
of X has positive drift (e.g. if X is spectrally negative of infinite variation) or if X
is in a certain class of subordinated Brownian motions [72, Prop. 4.5]. However, the
continuity of the density of X is known to fail if X is of bounded variation with no
negative jumps and has a Lévy measure with atoms [71, Lem. 2.4]. Furthermore,
for any v € (0,1), the function x — P(X7 < ) may be continuous at M but not
locally y-Holder continuous even if the Lévy measure has no atoms, demonstrating
again the necessity of an condition such as Assumption (H) in Proposition 3.7.

We stress that, even if the density is locally bounded at M, it appears to be
very difficult to give bounds (based on the Lévy characteristics) on the value it takes
at M. This means that, unlike in the case of a (locally)-Lipschitz function g(¥), in
the context of barrier options we cannot provide non-asymptotic confidence intervals
based on Proposition 3.7, cf. §3.2.3 below.

Comparison

The results in [17, 38, 39, 42, 45], discussed in §3.2.1 above, yield bounds in L? on
the error of a Lipschitz function of (X7, X7). The orders of decay are the same as
those reported in §3.2.1 above for the respective approximations. The error of the
time of the supremum 77, geometrically convergent for the SBA by Theorem 3.3(a)
and Proposition 3.5, appears not to have been studied for the other algorithms.

In the case of locally Lipschitz functions, only the decay of the error in L' for
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the RWA seems to have been analysed. Define for any g > 0 the integral
EY :/ e (dx). (3.6)
[1,00)

If X has finite activity (i.e. v(R) < oo), then the bias equals O(n~'/?) if o # 0
and E{ < oo for some ¢ > 2 [42, Prop. 5.1] and o(n~4=1/9) if ¢ = 0 and F{ < oo
for some ¢ > 1 [42, Rem. 5.3]. In the case 0 = 0 and v(R) = oo, for any ¢ > 1
satisfying Ei < oo and any arbitrarily small § > 0, the bias decays as follows:
O((n/logn)®~(a=1)/49) if the process is of finite variation (i.e. I < 00), O(nd~(4-1)/9)
if f(il,l) |z| log |z|v(dz) < oo and O(n’~(@~D/(29)) otherwise [42, Thm 6.2]. If the
Lévy process X is spectrally negative with jumps of finite variation (i.e. ¥(Ry) =0
and f(fl,O) |z|v(dz) < oo) and if E¥ < oo for some ¢ > 1, the error decays as O(n™')
(resp. O(n~Y2logn)) if o = 0 (resp. o # 0) [42, Prop. 6.4].

Discontinuous payoffs under variance gamma (VG), normal inverse Gaussian
(NIG) and spectrally negative a-stable (with oz > 1) processes are considered in [49].
Under the assumption that the density of the supremum is bounded around the
barrier level in all three models, the errors in LP of the RWA decay as O(n~1),
O(n9~Y2) and O(n9~Y/®) for arbitrarily small § > 0, respectively [49, Prop. 5.5]. In
the case ¥(R) < oo and o # 0, the error decays as O(1/4y/n), see [43, Prop. 2.2 &
Rem. 2.3]. This result was first established in [21] for Brownian motion with drift.

As noted in [17, Sec. 5.3], if X has a jointly continuous density (t,x) —
a%]P’(Xt < z) bounded for (¢, z) away from the origin (0,0) (e.g. if Orey’s condition
holds for v > 1 [91, Prop. 28.3] or o > 0, see also the paragraphs following
Proposition 3.7), ¥(R) = oo and o > 1 (defined in (3.30)), then the error in LP
of the RWA for a barrier option decays as O(n®~1/®) for any small § > 0. Moreover,
by [17, Lem. 5.8}, liminf,, oo nP(X7 > > maxyeq1,. 3 Xpryn) > 0if X has jumps
of both signs. Put differently, the error in LP of the RWA for a general barrier option
cannot be of order o(n~1). As far as the author knows, such results for the WHA [70]

are currently unavailable.

§3.2.3 The central limit theorem (CLT) and the confidence intervals
(CIs)

Let (yﬁ%)ie{lmm be the output produced by N € N independent runs of SB-
Alg using n steps. The Monte Carlo estimator Zf\i 1 g(zsﬁ) /N of Eg(X), where

g:R xRy x[0,7] — R is a measurable function of interest in applied probability
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(e.g. in one of the classes from §3.2.2 above), has an error
1 N
Ay =7 2 9(%ns) —Eg(X). (3.7)
i=1

The aim is to understand the rate of convergence of the error in (3.7) as the number

of samples N tends to infinity.
Theorem 3.8 (CLT). If P(\Y € Dy) = 0, where Dy is the discontinuity set of g,

and
(a) there is a measurable function G : R x Ry x [0,T] — Ry such that:

(i) lg(z,y,t)| < G(x,y,t) for all (x,y,t) € R x Ry x (0,77,
(ii) for all x € R, (y,t) — G(z,y,t) is non-decreasing in both coordinates,
(iii) E[G(Xr, X7, T)?] < oo,

(b) Eg(X) = Eg(X;°) +o(n, ™) for some 1y > 1.
Denote Vig(X)] = El(9(X) — Elg(x)])?] and set ny = [log N/ log(i)] for every
N € N, where we denote [x] = inf{n € N :n >z} for x € R. Then the following

weak convergence holds
d _
VNAL v B NO. VgD, as N = oo, (3.8)

Theorem 3.8 is not an iid CLT since the bias of the MC estimator forces the
increase in the number of steps taken by SB-Alg as the number of samples N —
oo. Its proof (see §3.4.4 below) establishes Lindeberg’s condition and then applies
the CLT for triangular arrays. The condition P(x¥ € Dy) = 0 is satisfied if e.g.
the Lebesgue measure of Dy is zero and 0 is regular for X for both half-lines [28,
Thm 3]. This assumption is important as it allows us to construct asymptotic
confidence intervals for barrier options using the limit in (3.8). Assumption (a)
ensures the convergence of V[g(x>P)] to V[g(x)] and might seem restrictive at first
sight. However, the function G is very easy to identify (see Remark 3.21 below)
in the contexts of Propositions 3.5, 3.6 and 3.7, where Assumption (b) also clearly
holds.

Since [A? y| < [Eg(X) — Eg(iP)| + |AY v — EAY |, we may construct a
confidence interval for the MC estimator S g(yﬁﬁ) /N at level 1 — € € (0,1)

using the implication:

Eg(¥) — Eg(5E)| < r1,

- P(’Ag ‘ <7r —i—?"g) >1—e (3.9)
P(|AY  — EAY | <r2)21—6,} mN
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In (3.9), 71 may be chosen as a function of the number n of steps in SB-Alg
in various ways depending on the properties of g (see Propositions 3.5 and 3.6
of §3.2.2). Note that this requires the explicit dependence of the constant on the
model characteristics.

Having fixed n, pick 72 in (3.9) as a function of € either via concentration
inequalities (not relying on Theorem 3.8) or the CLT in Theorem 3.8:
(i) Non-asymptotic CI: since we have P(JAY \ — EAY | > r) < V[g(x3P)]/(r°N)
by Chebyshev’s inequality, we only need to bound the variance V[g(x>P)] (e.g. by
the function G in Remark 3.21).
(ii) Asymptotic CI: since A%,N — IEA%N =N"1 Ef\il g(xX%) — Eg(x3B), we may use
the CLT for fixed n in Remark 3.22 (as in (i), we bound V[g(X>?)] by elementary
methods).

In the case we do not have access to the constants in the bound on the bias
in (3.9) in terms of the model parameters (e.g. barrier options in Proposition 3.7),
we apply the CLT result in Theorem 3.8 to the estimator AZM y directly, to obtain
an asymptotic CI. See §3.3.2 below for the numerical examples of asymptotic and

non-asymptotic Cls.

§3.2.4 Computational complexity of SB-Alg and the MLMC

Suppose the expected computational cost of drawing a sample from the distribution
F(t,-) in SB-Alg is bounded above by a constant that does not depend on ¢ € [0, 7.
Then the expected computational cost of a single draw from the law of X5° via SB-
Alg is bounded by O(n). The CLT in Theorem 3.8 (applicable to (locally) Lipschitz
and barrier-type functions, cf. §3.2.3 above) implies that the L2-norm of the error
in (3.7) of the MC estimator can be made smaller than e, i.e. E[(A%N)ﬂ <é ata
computational cost of O(¢ ?loge) as € — 0. The cost of the Monte Carlo estimator
based on SB-Alg is thus only a log-factor away from the optimal Monte Carlo cost
O(e72), arising when exact simulation with finite expected running time is possible.

The main aim of MLMC, introduced in [48, 59], is to reduce the computational
cost of an MC algorithm for a given level of accuracy. We will apply a general MLMC
result [32, Thm 1], stated in Theorem 3.23 for ease of reference. Let P = g(x) and
P, = g(Xx>B), n € N, for any function g that satisfies the assumptions of Theorem 3.8
(see also Remark 3.21 below). Note that the expected computational cost of a single
draw in Theorem 3.23 is allowed to grow geometrically in n. Since in the context
of the present section sampling P, has a cost of O(n), we may choose an arbitrarily
small rate g3 > 0 in Theorem 3.23.

A key component of any MLMC scheme is the coupling (P, P,+1). In the case
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of SB-Alg (and the notation therein), this consists of using the same sequence of
sticks (Ak)req1,...,ny and increments (&x)xeq1,...,n) in the consecutive levels and setting

Sn = §n+1 + Sn+1- Since
V[Par1 — Pa] < El(Papt — Po)?] < 2(E[(Puys — PP +E[(P— P2, (3.10)

Assumption (b) in Theorem 3.23 follows easily from the bound E[(P — P,)?] =
O(27"2) for all functions g of interest (see Propositions 3.5, 3.6 and 3.7 above
for the corresponding go > 0). These observations imply that the computational
complexity of the MLMC estimator in (3.47) is bounded above by O(¢~2) (take
g3 = q2/2 for all choices of g in the propositions above). The implementation of
the MLMC estimator based on SB-Alg for a barrier-type function g under the NIG

model numerically confirms this bound, see §3.3.3 below.

Comparison

The computational complexity of MC and MLMC procedures based on the SB-
Alg is given by O(e2|loge|) and O(e~2), respectively, for a function g(X), which
is Lipschitz, locally Lipschitz or barrier-type. This makes SB-Alg robust, as its
performance does not depend on the structure of the problem. In particular, minor
changes in model parameters will not result in major differences in the computational
complexity. We compare this to the extant MC and MLMC algorithms in the
literature.

Lipschitz function g. We first review results for Lipschitz functions of (X7, X ).
For the RWA, « as in (3.30) below and a small 6 > 0 (§ = 0 if a € {1,2}),
[17, Thm 4.1] implies that the cost of an MC estimator is O(e=2-max{la+d})
In particular, if ¢ # 0, the complexity of the RWA is O(¢™*) (see also [30, 42,
49]). Their MLMC counterparts, derived following the procedure of [49], together
with the bounds in [17, Thm 4.1] and (3.10), have a complexity of O(e=2log?(e)).

Moreover, if the process is spectrally negative without a Brownian component and

either an infinite variation stable process [49, Prop. 5.5] or of finite variation [42,
Lem. 6.5], then the MLMC estimator for a Lipschitz function of (X7, X7) has
optimal cost O(e~2). For the WHA, the MC (resp. MLMC) estimator for a
Lipschitz function of (X7, Xr) has a complexity of O(e™®) (resp. O(e~3)) if the
process is of finite variation and of O(e7%) (resp. O(e~*)) otherwise [45, Thm 4.6].
For the JAGA, the complexity of the MC estimator is O(e—2-max{2:48+/(4=51)})
if 0 # 0 and O(e 2 max{e ™@{LA+} =48+/(4=F1) Jog(1/€)?P+/(4=B+) 1) otherwise
(see (3.15) for the definition of B4 € (0,2]). The complexity of the corresponding
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MLMC estimator is O(e 2log(1/e)>Ho#0h) if B, < 1, O(e 2|loge[>F1Ho#0}) if
By = 1, O(e2740=1/B) | log e|>~2/B+) if B, € (1,4/3] and o # 0, and of order
O (e~ 2788+ =1D/(4=81) | Jog €| 4B+ —1)/(4=F+)) otherwise. In the worst case Sy = 2, the
MLMC complexity for the JAGA is O(e~%).

Locally Lipschitz function g. In the case of locally Lipschitz functions, only

the MC analysis of the RWA appears to be available in the literature. The error
in this case is at best O(e?), attained only when the Lévy process is spectrally
negative with jumps of finite variation and no Brownian component (i.e. v(R;) =0,
f(—LO) |z|v(dz) < co and o = 0) and the inequality E{ < co holds for some ¢ > 1,
see [42, Prop. 6.4] (recall the definition of EY in (3.6) above). If X has a Brownian
component (i.e. o # 0), then the cost is either O(e~?) if ¥(R) < oo and EY < oo for
some ¢ > 2 [42, Prop. 6.4] or O(e~*log?(€)) if X is spectrally negative with jumps
of finite variation and EY < oo for some ¢ > 1 [42, Prop. 5.1]. If 0 = 0 and X
has infinite activity, then for any arbitrarily small § > 0, the condition Ef < oo
(for some ¢ > 1) implies an MC complexity of O(e~272¢/(¢=1)=9) In the last case,
the decay may be improved to O(e~279/(@=D=9|log(e)|) (resp. O(e~279/(a=1)=9)) if
f(—Ll) |zlv(dz) < oo (resp. f(—l,l) |z|log |z|v(dz) < oo) [42, Thm 6.2].

Barrier-type function g. To the best of the author’s knowledge, there are no

non-parametric MLMC results in the literature for barrier options under the RWA.
Recently the MLMC for the RWA under VG, NIG and spectrally negative a-stable
(with a > 1) processes has been shown in [49] to have the computational cost of
O(e%79), O(e737%) and O(¢~1727?) for small § > 0, respectively. We are not aware

of any results for WHA | introduced in [70], for barrier options.

§3.3 Numerical examples

The implementation of SB-Alg above can be found in the repository [50] together
with a simple algorithm for the simulation of the increments of the VG, NIG and

weakly stable processes. This implementation was used in §3.3.1 below.

§3.3.1 Numerical comparison: SBA and RWA

Let X = (X¢)¢>0 be given by X; = By, + bt, where Z is a subordinator with Lévy
measure vz (dz) = ]1{I>0}'yac*a*1e*’\xd:r ( € [0,1), v,A > 0) and drift oz > 0,
B is a standard Brownian motion and b € R. The Lévy measure of X equals
v(dr)/dz = \/%\xfhfl I §7078/2e= 52" =s"/2¢ by (91, Thm 30.1], implying
that the Blumenthal-Getoor index of X is f = 2a € [0,2), and its Brownian
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Lookback put: g(x) = St — St

Up-and-out call: g(x) = (St — K0)+]1{§T§M}

1.6 | et 0.43 1 [ RWA with time step T/2"
/'..‘...: -—- SBA after n steps
0421 Eg(X)
P RWA with time step T'/2™ : N .
L5 - SBA after n steps L
' — Eg(x) 0.41 | T
10 15 20 10 15
n n

Figure 3.1: We take a = 0.75, v = 0.1, A =4, 0z = 0.05, b = —0.05 and Sy = 2,
Koy=3,M=5T=1and N =107. The value Eg(Y) is obtained by running SB-
Alg for n = 100 steps and using N = 108 samples. The RWA is approximately
(2™ /n)-times slower than the SBA for the same amount of bias, making it infeasible
for n > 15 as at least 60000 < 2" steps are needed in the time interval [0, 1].

component equals 02 = O’%.

Moreover, the increment X; can be simulated in
constant expected computational time for any ¢ > 0.

We consider the estimator Zf\il g(x%)/N, where (y};)ie{l,wN} are N iid samples
produced by running the SB-Alg over n steps. We compare the results with the
output of the RWA, based on a time step of size T/2" and the same number N of
iid samples. The function g(%) corresponds to either a lookback put or an up-and-
out call under the exponential Lévy model S = Spexp(X). Figure 3.1 shows that
the accuracy of the two algorithms is comparable as suggested by Propositions 3.6

and 3.7 above (note E{ < oo if and only if ¢> < 2, since E[eqxt] = eth[eQQZt/z] ).

§3.3.2 Asymptotic and non-asymptotic Cls

Let X be a Normal Inverse Gaussian process (NIG) with parameters (b, x, 0, 0), i.e.
with characteristic function E[e"*t] = exp(t(b+1/k) — (t/k)V1 — 2iufk + ko?u?),

whose Lévy measure is given by

02 1 o2 02 1 952
Adr) _ C nepe (Blal), with A= 2 po YELT/E o VOH2k
dz || o? o? 2moK3/2

where K is the modified Bessel function of the second kind, which satisfies

™

o] (14+0(1/]z|)), as x — cc.

1
Ki(z) = ;+O(1), asz — 0, and Ki(z)=e"

We simulate the increments of the NIG process by [35, Alg. 6.12]. Figure 3.2 presents

confidence intervals at level 1 — e = 99% for the prices of hindsight put and barrier
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- Asymptotic CI: g(%) = (S — Ko)t1,=
Non-asymptotic CI: g(x) = (Ko — S1)* Symptotie 9(x) = (Sr 0) {Sr<M}

P T3 - - AZN,N'FEQ(Y)

04 e . 1 .......... Upper bound
“'MM%‘“W“- ---------- Lower bound

0'2 e b ‘ . E 7)

47 -+ - AZ’N + Eg(i) 05 T+ g(X

g Upper bound A ¥—#< wwwwww
ol __________ Lower bound ” v ................
i l—  E® ‘ ;
5 10 15 5} 10 15 20
n logy, N

Figure 3.2: The pictures show the point estimation and CIs for the hindsight put
(left) and the up-and-out call (right) under the NIG model. NIG parameters: o = 1,
0 =0.1, K = 0.1 and b = —0.05. Option parameters: Sy = 2, Ky =3, M = 8 and
T = 1. The number of samples in the plot on the left equals N = 107. The
confidence level of 1 — e = 99% applies to both plots.

up-and-out call under the NIG model S = Sy exp(X).

The non-asymptotic CI for the hindsight put is constructed via Chebyshev’s
inequality as discussed in §3.2.3 above. In particular, note that the payoff of the
hindsight put g : (x,y,t) — (Ko—Spe?)" is non-increasing in y and does not depend
on z and t. Since X7 dominates the second coordinate X — ATSZB of the SBA Y%B
in (3.1), we apply Eg(x>P) > Eg(X) and find

0 <Eg(x5P) — Eg(x) < r1,

:>P(—T1—T2<Ag <7’2)21—6,
P(A% N —EAS | <73) 21— } ”’N

where A% ~ is defined in (3.7), reducing the upper bound of the CI to the error ro,
which depends on the bound on g and the number of samples N but not on n.

As explained in §3.2.3 above, if explicit constants in the bounds on the bias are
not available in terms of the model parameters, as is the case with an up-and-out call
option (see Proposition 3.7 above and remarks following it), we resort to the CLT in
Theorem 3.8 above. The plot on the right in Figure 3.2 depicts the asymptotic CI for
an up-and-out call as a function of logy IV, where N is the number of samples used
to estimate Eg(Y) and the asymptotic variance in (3.8) of Theorem 3.8 is estimated

using the sample.

§3.3.3 MLMC for a barrier payoff under NIG

We apply the MLMC algorithm for the SBA to the up-and-out call option in [49,
§6.3] (with payoff g(X) = (St — KO)+]1{§T§M}7 where S = Sy exp(Xr)) under the
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NIG model. The top left (resp. right) plot in Figure 3.3 graphs the estimated and
theoretically predicted mean (resp. variance) of the difference of two consecutive
levels (as a function of n).

It is common practice in MLMC to estimate the bias and level variances (rather
than use the theoretical bounds such as those in Theorem 3.23) first and then
compute the numbers of samples (Nk)ke{l,...,n} at each level by solving a simple
optimisation problem. This often improves the overall performance of the algorithm
but requires an initial computational investment. The fact that (Ng)reqi,...n} are
based on estimates gives rise to some oscillation in their behaviour and, consequently,
in that of the computational cost. However, as expected from (3.45), the bottom left
plot in Figure 3.3 shows that (Ny) kefl,..n} constitute approximately straight lines
for various levels of accuracy. The bottom right plot in Figure 3.3 shows that the
computational complexity is approximately constant, as expected from the analysis
in §3.2.4 above. Moreover, the difference in the complexity between the MC and
MLMC is numerically seen to be small. This is not surprising since, as explained
in §3.2.4 above, the two differ by a log-factor. The analogous figure for the MLMC
based on the RWA for identical model parameters and option is given in [49, Fig. 7].

The computational complexity of MLMC in Figure 3.3 is greater than that
of the MC (for € > 1/8000) due to the size of the leading constant. Overall, the
performance of both MC and MLMC in this examples is good, with the actual decay
rates of the bias and level variances being better than the theoretical bounds by a

factor of 2.

§3.4 Proofs and technical results of Chapter 3

§3.4.1 The law of the error and the proof of Theorem 3.1

In the present subsection we will prove Theorem 3.1. We also state and prove
Proposition 3.9, which explains why the error 652 of the SBA Y58 is typically smaller
than d,.

Proof of Theorem 3.1. By the a.s. equality in (2.3), and the definition in (3.2), we

obtain
o

(YLn7An75n) = Z (§k7£:7€k1{§k>0})
k=n+1

In particular, we have 6, < >°2° . € = L, and thus |65°| < Ly,.
We next apply (2.2) to conclude that the tail sum in the display above has the
required law. Note first that, given L, (f,1r)ren 18 a stick-breaking process on
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Bias decay log, |EP, — EP,_4] Variance decay log, V[P, — P,,_1]
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20
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10 * ‘ ‘ ‘
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Figure 3.3: The pictures show the level bias decay, level variance decay, samples per
level and complexities of MC and MLMC implementations for the up-and-out call
g(x) = e " (S — K)+1{§T<M} and the NIG process. NIG parameters: o = 0.1836,
0 = —0.1313, k = 1.2819 and b = 0.1571 (see [49, Sec. 3] and the reference therein).
Option parameters: Sy = 100, Ko = 100, M = 115, T =1 and r = 0.05. The
bounds in the top two graphs are based on Proposition 3.7 (with v = ¢ = 1)
and synchronous coupling. See §3.2.4 for the computational complexity of MC and
MLMC in the bottom right.
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the interval [0, L,]. Thus, since Y and ¢ are independent, the law of the sequence
((ng> YLy — Y1,0) Jken, given Ly, is the same law as that of the right-hand
side of (2.2) applied to the interval [0, L,,]. Put differently, by (2.2), this sequence
has the same law as the sequence of the faces of the concave majorant of the Lévy
process Y over the interval [0, L,,] in size-biased order. Hence, identity (4.2) applied
to the interval [0, L,,] (instead of [0,77]), together with the independence of Y and
¢, yields the first equality in law in (3.3):

o0

(Y, Vi, 70, (V) £ Z (&, &F  tr e, >01)-
k=n+1

The second distributional identity in (3.3) follows from the definition of (ASB, §58)
as a measurable transformation of (Yz,, Ay, dp).

For any n € N, the second identity in (3.3) implies 0 < ASB. The definition of
A, in (3.2) and the inequality Y]j; < 57T+1 + YLJ;H yield:

SB _ +
An+1 — An_l,_]_ - YLn+1

— + + + _ ASB
=An—Eh Y <A Y = A <A,

completing the proof. O

Proposition 3.9. Denote py = P(X; > 0) fort > 0. The following statements hold.
(a) For any t > 0, we have Ery(X) = f(f psds.

(b) Ift! fg psds — py — 0 as t \, 0, then E[65B/L,] — 0 as n — oo.

(c) If pt = po € [0,1] as t \, 0, then (b) holds and E[b,,/Ly] — po as n — oco.

(d) If ps = po € [0,1] for all t € (0,T), then E[05B|L,] = E[6p|Ln] — Lnpo =0 a.s.

Remark 3.10. (i) Note that 70 € [T7r — 0n, 77 — O0n + Ly and, given L,,, SBA ESLB
chooses randomly the endpoints of the interval via a Bernoulli random variable with
mean P(Yr, > 0|Ly).

(ii) The assumption in (d) holds if e.g. X is a subordinated stable or a symmetric
Lévy process. Moreover, it implies that the third coordinate in X,%B 1s unbiased, since
the expectation of its error vanishes: E[65°] = 0. In contrast, E[5,] = poT/2".

(iii) The bias of the third coordinate of X,SlB, conditional on L, = t, is equal to
fg psds—tps by (3.12) below. This quantity is generally well behaved ast — 0. More
specifically, we have t~! fg psds — pr — 0 as t 0 (thus satisfying the assumption
in (b)) if t — py is slowly varying at 0 [16, Prop. 1.5.8].

(iv) Note that the assumption in (c) implies that of (b). This assumption, known as
Spitzer’s condition [13, Thm VI.8.14], is satisfied if for example X converges weakly

under the zooming-in procedure [17, Sec. 2.2].

45



The result is mostly a consequence of the following formula, valid for any

uniform stick-breaking ¢ on [0,7] and positive, measurable function f:
- - T
EY f(tn) =E>  f(Ly) = /0 ot (3.11)
n=1 n=1

The formula in (3.11) follows from the fact that ¢, 2 L, have the same law as

exp(—Gp,) for a gamma random variable G,, with unit scale and shape n.

Proof. Denote p(t) = p; for all t > 0.
(a) Apply (3.3) to the interval [0, ¢] and use (3.11) to obtain part (a):

n=1

o0 o0 T
Er(X) = E[lalie,»0) = > E[lnpe,] :/0 prdt.
n=1

(b) By Theorem 3.1, conditional on L,, we have 05° g 7L, (Y) = Lnlgy, >oy-

Hence, by (a),
L,
E[(SEB’Ln] = / psds — LnPLn- (3.12)
0

Since L, — 0 as n — oo, the assumption in (b) and (3.12) give E[055|L,]/L, — 0
a.s. asn — oo. Using Jensen’s inequality and the inequality [058 /L, | < 1 we deduce
that |E[65B|L,]/L,| < E[|65B|/L,|L,] < 1. Hence, the dominated convergence
theorem [62, Thm 1.21] gives E[05B/L,] = E[E[05B|L,]/L,] — 0 as n — oo.

(c) Since the assumption implies that of (b), the conclusion of (b) holds.
Moreover, by (b),

lim E[dn/Ln|Ln] = lim_ E[65°/Ln + iy, 0| Ln] = lim pr, =po as.

The dominated convergence theorem, applied as in the proof of (b), gives the result.
(d) Since p(t) = po for all t € [0,T], the right-hand side in (3.12) equals 0 a.s.,
as claimed. Similarly, we have E[0,|L,] = E[6B + Lnlgy;, >0y|Ln] = Lnpo a.s. U

Corollary 3.2. We assume the existence of a function a on the positive reals, such
that (Xi5/a(9))i>0 converges weakly to some process (Z;)¢>0 as d \ 0 in the sense
of finite-dimensional distributions. It is known that the limiting process is then
self-similar [16, Thm 8.5.2] and thus a-stable and the function a is regularly varying
with index 1/a € [2,00). Moreover, the convergence extends to the Skorokhod
space D[0,00) [61, Cor. VIL.3.6]. (For a detailed description of a and the limit
criteria see [60, Thm 2].)
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Note that Z° = (Yis/a(9))iejo,) converges to Z = (Zt)iepp,1) in D[0, 1] and that
11(Z%) = 75(Z) /6. Tt is well known that the supremum mapping z — SUPyeo,1] Tt
and the projection x — 1 are continuous a.s. with respect to the law of Y. Next,
since the time of the maximum of a stable process (Z; V th)te[[),l] is a.s. unique,
then 71 is a.s. continuous with respect to the law of Z (see e.g. [62, Lem. 14.12]).
Thus, as 6 N\ 0, this yields

X° = (Ys/a(0), Ys/a(0), 75(Y)/0) = (20, 21, 71(2%)) > (21, Z1.71(2)) = X".
By the equality in law given in (3.3), we obtain
(Vi /a(Ln), A /a(Ln), 60/ Ln) = (Yi, /a(Ln), Y 1, /a(Ln), 71, (Y)/Ln).  (3.13)

Hence, the result will follow if we prove that = A x?. Recall that the weak
convergence is equivalent to Ef(¥?) — Ef(x°) as 6 \, 0 for every bounded and
continuous f. Since ¢ and Y are independent and L,, — 0 a.s., conditional on the
sequence (Ly )nen we get E[f (x"")|L,] — Ef(X"). The sequence of random variables
(E[f(x¢*")|Ln])nen is bounded (since f is) and converges to Ef(x") a.s. Hence, by
the dominated convergence theorem, it converges in L', implying y*» LA x". Hence,
the weak limit holds for the left-hand side of (3.13), which yields Corollary 3.2. [

§3.4.2 Convergence in L? and the proof of Theorem 3.3

Recall that (02, v, b) is the generating triplet of X associated with the cutoff function
T+ Ljg<1 (see [91, Ch. 2, Def. 8.2]). The moments of the Lévy measure v at infinity
are linked with the moments of X;" and X, for any ¢ > 0 as follows. By dominating
X path-wise with a Lévy process Z equal to X with its jumps in (—oo, —1] removed
and applying [91, Thm 25.3] to Z, we find that, for any p > 0, the conditions
I < oo and €f < oo (see (3.5) and (3.6) for definition) imply E [(X; )?] < co and
Eexp(pX;") < oo, respectively, for all ¢ > 0. Similarly, by applying [91, Thm 25.18]
to Z we obtain that I, < co and €%, < oo imply E[X}] < oo and Eexp(pX;) < oo,
respectively.
Let 8 be the Blumenthal-Getoor indez [18], defined as

B=inf{p>0:1I] <o}, where I = / |z[Pv(dz), for any p >0, (3.14)
(7171)

and note that B € [0,2] since I3 < oo. Moreover, I§ < oo if and only if the

jumps of X have finite variation, in which case we may define the natural drift
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bp=b— f(il 1y zv(dz). Note that I? < oo for any p > 3 but I can be either finite
or infinite. If Ig = oo we must have 5 < 2 and can thus pick 0 € (0,2 —3), satisfying
8+ 6 < 1 whenever 5 < 1, and define

Be =B+ L upp—oy € 15:2] (3.15)

Note that 5, is either equal to 8 or arbitrarily close to it. In either case we have
B+ >0 and Ig* < o0.
The main aim of the present subsection is to prove Propositions 3.5, 3.6 & 3.7

and Theorem 3.3. With this in mind, we first establish three lemmas and a corollary.

Lemma 3.11. The Lévy measure v of X satisfies the following for all k € (0,1]:

v(k) = v(R\ (—k, k) < kP IDT + (1),

72 = / z2y(dz) < K27’8+Ig+. (3.16)
(7"@7”)
Moreover the following inequalities hold:
/( 1,—]Uls,1) wlPr(de) < &"FPTR forp eR, (3.17)
/( | |zPr(dz) < /ip*mIéaJr, forp> B4. (3.18)

Proof. Multiplying the integrands by (I) (|z|/x)5+, (IT) (k/|2])>= P+, (IIT) (2| /k)5+ P
if p < By or |2+ 7P otherwise and (IV) (x/|x|)P~%+, respectively, and extending the
integration set to (—1,1) yields the bounds. O

Recall the definition in (3.5) of I and I” for p > 0. Denote [z] = inf{m €
Z:m >z} for any z € R. Recall that the Stirling numbers of the second kind {’}'}
arise in the formula for the moments of a Poisson random variable H with mean

w > 0: for any m € N we have

E[H™) = f: {ZL}M’C where {TZ} - ;g(—ni (i’) (k—i)™.  (3.19)

k=1

In particular, we have {Tg} = 0 for all m € N. Throughout, we will use the following

inequality

m p m
(Z a:z> < mP-D7 Zx?, where m € N, z1,...,2;, > 0and p > 0. (3.20)
k=1 k=1
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This inequality follows easily from the subadditivity « — a? when p < 1 and Jensen’s
inequality when p > 1.

Lemma 3.12. For allt € [0,T] and p > 0, the condition I} < oo implies

E[XY] < mb (t) = 4P7D7(Cp 1 t?/5+ 4 Cpat?/? + Cp3t? 4 Cp t™n1P/841) 1 (3.21)
where the constants {Cy i}, are given by

Cp1 = o(p—1)* o—p/B+ (I§+)P L 7p/By (2PTP/2 (Ing)P/? A pp<ay

+2(%/(p = D exp (TI;* = p) - Loy ).

p+ 1\ 27/ B |
IJIPF( 5 )\/7?’ Cpz =2 1t (b+]1{16:00}+bar]1{18<00})177 (3.22)

N [p] ] .

Cpa =T (1L 41) Z{ 5 }Tk—l (1 + (1, 00)))"

k=1

where I' = f(o 1 zP+v(dx) and T'(-) is the Gamma function. Moreover,

(b + I}t + 24/ I, By =2,
E[X,] < \al\f (0T + It +2(VO' + C) (TP, By (1,2),  (3.23)
(bJr + f )LV d:c)) By <1,

where C' = Tféa*.

Remark 3.13. (i) The formula in (3.23) essentially follows from [30, Lem. 5.2.2
6 Eq. (5.2)] for B+ € (1,2] and from [}2, Prop. 3.4] for B+ < 1. A new proof
of (3.23) given below is based on the methodology used to establish a more general
inequality in (3.21). Moreover, the dominant powers of t in both bounds (3.21)
and (3.23) coincide in the case p = 1 with slightly better constants in (3.23). The
estimate in (3.21) works for all p > 0 and is for the reasons of clarity applied in the
proofs that follow even in the case p = 1.

(i1) Note that Cpo =0 if 0 =0 and, if X is spectrally negative, we have Cp4 = 0.
(i) The constants in (3.22) are well defined even if the assumption IV < oo fails.

The inequality in (3.21) holds trivially in this case since Cp 4 = 00

Recall that the Lévy-Ité decomposition [91, Thms 19.2 & 19.3] of the Lévy
process X with generating triplet (02,v,b) at a level x € (0,1] is given by X; =
bet + 0B, + J™ 4+ J2F for all t > 0, where b, = b — f(_l \(—r ) TV(dz) and
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U = (J)s0 (resp. J2% = (JP");0) is Lévy with triplet (0, ¥|(—1,x),0) (resp.
(0, ¥|g\(=k,x), b — i) - Tecall that we are using the cutoff function x — 1;<;) and
B = (B¢)t>0 is a standard Brownian motion. Moreover, the processes B, JLr | gk
are independent, J* is an L?-bounded martingale with the magnitude of jumps at
most x and J?* is a compound Poisson process with intensity 7, (see (3.16) above)
and no drift.

Proof. By the discussion above we have X; < b/t + |o|B; +jt1’n +jt2’n. Then (3.20)

implies
E[XT] < 4007 (6507 + o PEBY) + E[(T))) + E[(7)]), (3.24)

where B 4 |B;| and so E[B;] = tp/2F(%)2p/2/\/% [62, Prop. 13.13], which yields

Cp2 in all cases. By Lemma 3.11 we have

b+ f L lolo(de) B+ s I I <o (e By < 1)

bt <
bt + /11_5+Ig+, I} =00 (ie By>1).

Hence, by (3.20), we obtain

(B < (5P Ig + Ly —opb™ + Loy by)” (3.25)
—1)t _ :

< 2=V (gr=pB+ ([P 41 (1=oc} (01 4 Lip oy (7).
7?’5 is dominated by the sum of the positive jumps of J** over the interval [0, ].
This sum has the same law as ZkN;l Ry, for iid random variables (Ry)gen with
law v/|( 00)/V([K,00)) and an independent Poisson random variable N; with mean
tv(][k,00)). Note that since Ny is a non-negative integer, then Nt(p*l)ﬂrl < Ntm.
Hence, the independence between (Rjy)ren and Nj, the inequality (Ypt, Ry)? <
NP=UT SN RP (which follows from (3.20)) and (3.19) yield

E[(J;")"] < E[(é}zkﬂ <E [Nt“’—”* i Rg] < E[RVE[N,"]

k=1
- (L ety) (G Deteconr),

Denote I' = f(o 1 zP+v(dx). The first inequality in (3.16) and the bound in (3.17)
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of Lemma 3.11 applied to v|() and the facts k < 1 and t < T yield

[p]

E[(7:")] < t<ﬁ + /[5,1) xp”(dx)> ; {EW} (521 + (1, oo)))k_1 (3.26)

[p] _
<tr~ B+ (12 4 1) kzl { [gj} (m*ml’ + Tw([1, oo)))k b

Assume p < 2. Jensen’s inequality applied to the function z — x2/7 and Doob’s

martingale inequality [62, Prop. 7.6] applied to J* yield
—1.k —1,k\ 27p/2 ® 2 _
B[(7:")) <EB[(7;")°)" < B[22 =2 @)y /2, (3.27)

where 7, denotes the positive square root of 2. Hence (3.24) for p = 1, the first

inequality in (3.26) and the estimate in (3.27) give

EX, < (b: + /M wv(dz) + Ii)t + (|0\\/§—i— 20(@) Vi. (328

If 54 = 2, then taking x = 1 in (3.28) yields the first formula in (3.23). If g4 <1
then I} < oco. Letting k — 0 in (3.28) we obtain the third formula in (3.23).
Set x = (t/T)"/%+ and apply Lemma 3.11 to get t72 < t2/5+T1_2/5+106+. Hence
tf[&l) zv(dr) < t1/5+T1_1/5+Ig+, and (3.25) & (3.28) yield the second formula
in (3.23), completing the proof of (3.23). To prove (3.21) for general p € (0, 2], we
again set © = (t/T)"/P+ and use the inequalities ¢ < T and (3.25)(3.27) as before.
More specifically, (I) (3.25), (II) (3.26) and (III) (3.25) & (3.27) establish the values
of (I) Cp3, (II) Cp4 and (III) Cp 1, respectively. This concludes the proof for the
case p < 2.

Assume p > 2. The only bound from the case p < 2 above that does not apply
in this case is the one on E[(ji ")P]. Doob’s martingale inequality and the bound
lz|P < (p/e)Pel®! for all 2 € R yield

E[(77)] < (25) BIP)

- <pﬁ—pl)pE[(“_1|Jt1’”|)p] < (%)pE[emu}’“I]

Note E[e”_l“]tm‘] < E[e"‘_l‘]tm + ef”_ljtm] = etn(r71) 4 oW(=r71) where 1, is
the Lévy-Khintchine exponent of J;™, i.e. th.(u) = f(fw@) (" — 1 — uz)v(dz) for
u € R. Using the elementary bound e® — 1 — 2 < 22 for all |z| < 1 and (3.16), we
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find that 9, (u) < u?52%(k) < u2/€2_5+lg+ for |u| < k=1, By setting k = (t/T)"/%+,

we obtain

2 2
E[(77)"] < 2<M)pem—ﬂ+1{f+ — op/Brp/B+ <P7>pew{f+ . (3.29)
p—1 p—1
As before we obtain (3.21) as follows: (I) (3.25), (II) (3.26) and (III) (3.25) & (3.29)
establish the values of (I) Cp 3, (II) Cp 4 and (III) Cp 1, respectively, which completes
the proof. O

Recall that 3, I and ;. are defined in (3.14) and (3.15) above. To describe the
dominant power (as ¢ | 0) in the preceding results, define o € [3,2] and a4 € |84, 2]
by

1, I} <ooandby#0
and

a=2-1 o#0 +1 o=0
to70) tr=0) B, otherwise, (3.30)

ar =a+ (B = B) - Lia=p}-
Note that the index a agrees with the one in [17, Eq. (2.5)] and a4 > 0. Define
Mp =1+ 1psay + aﬁ “Tgp<ay € (1,2], for any p>0, (3.31)
+
and note that n, > 3/2 for p > 1.

Remark 3.14. (i) In Theorem 3.3 and Propositions 3.5, 3.6 and 3.7 we assumed
that p > 1 for reasons of clarity. This is not a necessary assumption and the proofs
can be made to work with minor modifications for any p > 0. However, since n, — 1
as p — 0, the convergence may become arbitrarily slow asp — 0 (to be expected since
2P =1 asp— 0 for any x > 0).

(11) The constants Cpo and Cp3 in Lemma 3.12 above satisfy the following: (a) if
o < 2, then 0 = 0 and hence Cpo = 0; (b) if a < 1, then I} < 0o and by = 0 and
hence Cp 3 = 0.

Corollary 3.15. Pick p > 0, let {Cp;}L | be as in Lemma 3.12 and define the
constants Cp(X) and Cp(X) as follows:

P _ P _p
ConaT+ + +Cpa+ Cp,STp at
Cp(X) = PGS Lc, 4Tmin{1,i}_£7
P _
Cp’1T6+ ' + Cp72Tg_1 + Cp73TP*1 + CP747 p>a,

C3(X) = Co(X) - Lgp coey + Cpl~X) - Lo oy,

p <«

(3.32)
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Then, if If— < oo (resp. min{I¥ I”} < 00), the inequality
BIXY) < (X! (resp. BI(X, — X;')P) < G000,

holds for all t € [0,T].
Proof. Since X; — X; = min{X,, X; — X;} is stochastically dominated by both X,

and (—X),, then it suffices to prove the result for X;. (It is critical here, as seen
in the definition of C;(X) in (3.32), that the definition of « is the same for X and
—X.) Since t4t" < t4T" for t € [0,T] and r > 0, then it suffices to show that the
exponent of ¢ in each term of (3.21) is at least n, — 1. By Remark 3.14(ii), this
is trivially the case when p < a < a4 < 2. Recall that a4 is arbitrarily close (or
equal) to o. Hence, in the case p > «, we may assume that p > a4 > G4 and use
Remark 3.14(ii) to obtain the result and conclude the proof. O

Remark 3.16. If X is spectrally negative (i.e. v(Ry) = 0), then Cpq = 0 and
therefore B[X7] = O/ ma{Let}y g5 ¢ N\, 0, implying the rate in [{2, Lem. 6.5],
which is the best in the literature to date for the spectrally negative case. In certain
specific cases, Lemma 3.12 implies a rate better than the one stated in Corollary 3.15.
For example, if f <1 (thus 4+ < 1), 0 =0, Iﬁ < oo and the natural drift satisfies
bo < 0 (thus a = 1), then by Lemma 3.12 we have E[X}] = O(t?/P+) if p < B, which
is sharper than the bound E[X}] = O(t?) implied by Corollary 3.15. Analogous
improvements can be stated for X; — X;7, when either (I} < 0o &by < 0) or
(I” < 0o & by > 0). For the sake of presentation, throughout the chapter we work
with bounds in Corollary 3.15.

Lemma 3.17. Let X, A, and ASB be as in Theorem 3.1. If E[X}] < Ct? (resp.
E[(X; — X;")P] < Ct) for some C,q,p >0 and all t € [0,T), then

B[AL) < OTY(1+0)  (resp. B[(AS)"] < OTY(1 4 a)™) for alln € N.

Proof. By assumption and (3.3) in Theorem 3.1, we have E[A}|L,] = E[Y7, |L,] <
CL{ and thus E[A}L] < E[CLE] = CTY(1 + q)~". The result for ASP is analogously

proven. ]

Proof of Theorem 3.3. (a) By Theorem 3.1, the errors d,, and |05°| are both bounded
by L. Since E[L})] = TP(1 + p)™, the claim follows.

(b) By Corollary 3.15, we may apply Lemma 3.17 to obtain part (b) of the theorem.
Indeed,

E[AL] < Cp(X)T™ 'n, ™ (resp. E[(AZP)F] < Cp(X)T™ ™), (3.33)
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where C(X) (resp. Cp(X)) is as in (3.32) in Corollary 3.15. O

For p > 1, let || - ||, denote the p-norm on R?. The LP-Wasserstein distance

between distributions j, and p, on R? is defined as

Wylptasiny) = _inf Ef|X = VI, (334

where the infimum is taken over all couplings of (X,)), such that X and ) follow

the laws p, and p,, respectively.

Proof of Corollary 3.4. Recall that Y—x>° = (0, ASB,658) (cf. Theorem 3.1 above).

n rvn

By Theorem 3.3(a), Equation (3.33) and the inequality 1+p > 2 > n, (since p > 1),

we have

Ellx = Xn 5] = EIARPP + [63°P) < Cp(X)T™ 'y, ™ + TP(1+p) "
< (CpX)Tw =1 4 TP ™.

Since for any coupling of (X, X5°) we have W,(L(X), L(X3F)) < E[|lx — Xo2|b]'/>,
the LP-Wasserstein distance is bounded by C'n, n/p , where the constant takes the
form

C' = (Cx(X)T= ! + TP)MP, (3.35)

concluding the proof. O

§3.4.3 Proofs of Propositions 3.5, 3.6 and 3.7

The following result about the tail probabilities of A,, (defined in Theorem 3.1) is
key in the proofs below.

Lemma 3.18. Fix p > 0 and T > 0. Let Cy(Z) be the constant in (3.32) of
Corollary 3.15 for the Lévy process Z = X — J>1, where J*>! is the compound
Poisson process in the Lévy-Ité decomposition of X (see the paragraph preceding the
proof of Lemma 3.12). Using the notation v(1) = v(R\ (—1,1)), for any r,p > 0,

we have

P(A, > 1) SO()T27" 4+ 1 PCy(Z) T ', (3.36)
E[min{A,, r}?] < rPO(1)T27" + Cp(2)T" ', " (3.37)

Proof. Since P(A, > 7) = P(min{A,,r}? > r?) < E[min{A,, r}?]/r? by Markov’s
inequality, we only need to prove (3.37).
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Let Y be as in Theorem 3.1. Pick any ¢ > 0. Let A be the event on which J?!
does not have a jump on the interval [0,¢]. Then P(A) = e 7(V* < 1—-7(1)t and thus
P(A°) <7(1)t. By Corollary 3.15 applied to Z we have E[?f] < Cp(Z)t L. Since
X = Z; a.s. on the event A we get min{X;,r}? < rP-1 e —|—Zf 1a <Py —|—Zf,
implying

E [min{Xy,r}?] < rPo(1)t + Cp(Z)tm 1,

This inequality, Theorem 3.1, E[L,,] = 727" and the equality X dy imply (3.37):
Efmin{Ay, r}¥] = E[E[min{Yy,,r}|Ln]] < E[PP(1)Ln + Cp(Z) L) 0

Proof of Proposition 3.5. Assume first ||g|lcoc < 00. Since min{a+b, c} < min{a, c}+

b for all a,b,c > 0, we have
l9(z,y,t) — g(z,y', )| < min{K|y — /|, |12g/lc } + K[t —7'|.

Recall that the output of SB-Alg is a copy of X>F. Since, by Theorem 3.1, we a.s.
have 0 < AEB < A, and \5213] < Ly, by (3.20) and (3.37) we obtain

Ellg(x) — 9(x3P)|P] < 27~V (E[K? min{A,, |29]l0/ K }?] + KPE[LE])
< 2=Vl g| B (1) T2 " + KP(Cp(Z) T L™ + TP(1 +p) ™),

where Z = X — J*»!. Now assume that min{Iﬁ,Iﬁ} < 00. Then, again by
Theorems 3.1 & 3.3 and Equation (3.33), we obtain

Ellg(x) — g(:2)|P] < 2077 KP(E[AP] + E[L2)])
< 20D gP(CH (X)W i+ TP(1 4+ p) ).

Since i, <2 < 1+p for p > 1, this yields the result: E[|g(x) —g(X5")[] < C'n,™ for

P 3 P Mp—1 P
o — gt [PMEFOT + KA, gl <00
KP(Cp(X)Tw1 +1T7), 19]lo0 = oo
The proof is thus complete. O

Proposition 3.6. Recall that the second component of YEB (resp. X) equals YT—AEB
(resp. X7). Recall from Theorem 3.1 that [§58] < L,. Since 0 < ASB < A, the
locally Lipschitz property of g implies:

9(%) — 9(BP)| < K(A, + Ly)e™T.
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From the definition of ¢ we get 1/¢' + 1/g = 1. Thus Hélder’s inequality gives:

1

E[lg(0) — 9(SP)] < KPE[(An + L) [7E [ 0] (3.39)

where the second expectation on the right-hand side of (3.39) is finite by assumption
¢! < 0o and the argument in the first paragraph of §3.4.2 above.

We now estimate both expectations on the right-hand side of (3.39). Note
that I < oo for all r > 0 as e} < co. By (3.20), we have E[(A, + Ln)pq/}
2(pq/_1)+E[Aﬁq/ + Lﬁq/]. Hence Theorem 3.3, (3.33) and the inequality (z + y)/¢
M4 4y for z,y > 0 imply

IA A

E[(An + Ln)pq/]l/q’ < o(p—1/d')* (Cpq/(X)T"Pq’_ln,;;? I qu/<1 -|—pq/)7n) 1/q'
< 2(p—1/q’)+ (Cpq,(X)l/q'T(npqlfl)/q’n;;/l/q/ + Tp(l _{_pq/)—n/q’)‘

It remains to obtain an explicit bound for the expectation E[exp(pgX7)]. Let
U(u) = logE[e*X1] for u > 0 and note that (exp(pX; — t¥(p)))i>0 is a positive
martingale. Moreover, we have ¢ = supycp r)(pXt — ¥ (p)t) > pX1—T¥(p)". Thus,
Doob’s martingale inequality yields

E[equT] < eqT\I’(p)ﬂE[eqC] < < q )qeqT‘I’(p)ﬁE[equT—qT‘I’(p)]
< =\y=1
- (L)qeqﬂ—w»um(m),
q—1

Therefore, using (3.39) and the inequalities Tt <2<1+4pq (aspq > 1), we

obtain the bound E[|g(Y) — g(X3P)[?] < C”n;;/q , where

—1/g")*+
O = (Cop (XYM T DI Tp)Wleﬂ—wp)ﬁﬂT/quq), (3.40)
-

and the constant Cpy (X) is defined in (3.32) and ¥(u) = log E[e"¥1]. O

Remark 3.19. The rate n;;/q’ in the bound of Proposition 3.6 is smallest (as
a function of q) for the largest q satisfying the exponential moment condition in
Proposition 3.6. Indeed, let v = pq' and note that, since p is fived, minimising
77;;/61/ in q 1s equivalent to maximising nrl/r in r. By (3.31), the function r nrl/r
is decreasing and hence takes its mazimal value at the smallest possible r (i.e. largest

possible q).

Proposition 3.7. Recall from Theorem 3.1 that 0 < ATSLB < A,. Let ¢, =14 n/(v+a)
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and note

A (X0)[P

E WHYT—AEBSQJ - ]lYTgxl <P(Xp - A%B <z < Xy)

< (YT_AHS‘/E<YT)
(YT—An§$<YT—€n)
+P(Xr - A, << Xr<z+e)

<Ple, < Ap)+Plx < X7 <2+ ¢6).

P
P

By (3.36) in Lemma 3.18 we have
Ple, < Ay) < T(N)T27" +6,9C,(Z) T " = D(1)T27" + Cy(Z)TMe g 7/ (44,

The assumed Hélder continuity of the distribution function of X7 in Assumption (H)
implies that P(z < X1 < 2 + ¢,) < Ke,. Given the formula for Cy(Z) in (3.32),

the explicit constant
C' = |hlE(F()T + Cy(Z)T™ ! + K), (3.41)

satisfies E[|g(x) — g(ygB)’p] < C/nq—m/(wﬂ)' .

/(v+9)

Remark 3.20. Minimising the rate 17[1_7 as a function of q in Proposition 3.7

is somewhat involved. On the interval (ay,00), the rate ¢ — 77,1_7/(7+q) = 277/ (v+a)
is strictly increasing, so the optimal q always lies in (0, a]. On the interval (0, oy
(r) = ng/(VH) on the interval

(0,1], where r = i € (0,1] and f:z—log(l+z)/(1+ O%:U) Since

the problem is equivalent to mazimising the map r — ef

0l
Yy ap \2d a+_1
—(14+ —z) — = — (log(1 -1
(1 The) ) = S logl 4 0) — 1),

the critical point of f, obtained by solving for s = log(1+x)—1 in se® = efl(i —1),
is given by ro = W™ (v/ar—1)+1 _ 1, where W is the Lambert W function, defined
as the inverse of x — xe®. Since f is increasing on [0, 1¢] and decreasing on (rp, 00),

then r = min{rg, 1} mazimises f| 1), implying that the optimal q equals

q = o4 min {1,(31/‘/(871(7/0‘*_1))+1 — 1}.
In particular, the choice ¢ = ay is optimal if and only if v/ay > 2log(2) — 1 =
0.38629.. . ., and leads to the bound O(2~"/(+e+/7)) . Hence, if v = 1, the best bound

in Proposition 3.7 is O(2-"/(1e+)),
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§3.4.4 The proof of the central limit theorem

Proof of Theorem 3.8. Recall ny = [log N/ log(ngﬂ and note that 1 > \/Nng_"N >
179_1. Hence Assumption (b) yields

VNEAY =0  as N — oc. (3.42)

The coupling in (2.3), used in Theorem 3.1, implies that for all n € N the
following relations between the vectors ¥ and the SBA X5P in (3.1) hold a.s.:
Yr = Xp, X7 — ASB < X7 and 70 — 658 < T. Hence parts (i) and (i) of
Assumption (a) imply that g(x5P) and g(x>P)? are dominated by ¢ = G(X7, X7, T)
and (2, respectively. Since ¢ and (? are integrable by assumption, the dominated

convergence theorem yields, as n — oo,

Vi)l = Elg(0”)?] = [Eg(0D)) — Elg(0)%] — [Eg(0))* = Vg0 (3.43)

Recall that (ﬂ)ze{l Ny is the output produced by N independent runs of SB-

Alg using n steps. Define the normalised centred random variables

Giv = (9(Xoy) —Eg(Xoy)) /VNVI[g(X)],  wherei€ {1,...,N}.

Hence (3.43) implies - | ECZ = V[g(x)] " (1/N) LN, VIg(Xi, )] — Las N — oo.

Moreover, we have

N

D G =+VN/V[gX)AS y+o(l)  as N — oo,

=1

where o(1) is a deterministic sequence, proportional to the one in (3.42). Hence,
(3.8) holds if and only if SN, ¢;v % N(0,1) as N — co.

To conclude the proof, we shall use Lindeberg’s CLT [62, Thm 5.12], for which
it remains to prove that Lindeberg’s condition holds, i.e. Zfil E[CiZ,Nﬂ{Ci,N>7'}] —0
as N — oo for all » > 0. By the coupling from the second paragraph of this proof,
we find |g(y§3)| < |G for all i € {1,..., N} and n € N, where ((;)ieq1,..,n} are iid
with the law equal to G(Xp, X7, T). Crucially, ; does not depend on the number of
steps ny in the SB-Alg. Moreover, note that iid random variables & = (|(;| + E|{])
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satisfy E€Z < oo and [(; x| < &/+/NV[g(x)] for any i € {1,..., N}. Hence we find

N N
1
Vg1 DBl L won) < D B [ Ligsravigmon]
=1 =1

= E [ 14e,>rvvign}) = 0
as N — oo, implying Lindeberg’s condition and the theorem. O

Remark 3.21. Identifying the appropriate G in Theorem 3.8 is usually simple. For

instance, the following choices of G can be made in the contexts of interest.

(a) Let g be Lipschitz (as in Proposition 3.5). Then we can take

(i) Gy, t) = lglluos f lglluo < o0:
(i) Gla,y,t) = g(z,y, )| + 2K (y +1), if I2 < oc.

(b) Let g be locally Lipschitz with the Lipschitz constant exponentially increasing

as in Proposition 3.6. Then we can take
(i) G(z,y,t) = Ke¥, if g(x,y,t) < Ke¥ and E2 < oo (lookback and hindsight
options fall in this category);
(i) G(z,y,t) = |g(z,y,t)| + 2K (y + t)e¥ ifEiq < oo for some ¢ > 1.

(¢) If g is a barrier option (as in Proposition 3.7), then take G(x,y,t) = |9 -

Remark 3.22. If we are prepared to centre, it is possible to apply the standard iid
CLT to the estimator based on SB-Alg. Indeed, for fized n, assuming V[P,| < oo
where P, = g(x58), the classical CLT yields

N
S (P -EP) A N(0,1)  as N - .
=1

1
NV[P]

In contrast, the gist of Theorem 8.8 is that one need not centre the sample with a

function of n, which itself depends on the sample.

§3.5 MC and MLMC estimators

§3.5.1 Monte Carlo estimator

Consider random variables P, Py, Py, ... in L?. Let {P{})ien be independent with
P} 2 p, for k,i € N. Suppose |EP — EPy| < B(k) for all £k € N and assume C(n)
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bounds the expected computational cost of simulating a single value of P,. Pick
arbitrary e > 0 and define m = inf{k € N: B(k) < ¢/v2}, N = [2V[P,,]/€?]. Then

the Monte Carlo estimator

N

. 1 . .

P= ¥ E P! of EP is L*-accurate at level ¢, ie. E[(P — EP)2]1/2 <€,
i=1

since E[(P — EP)?] = V[P] + (EP,, — EP)? and V[P] < €2/2 (by the definition
of N), while (EP,, — EP)? < ¢2/2 (by the definition of m). Thus, if the bound
B(m) on the bias is asymptotically sharp, the formulae for m, N € N above result
in the computational complexity given by Cnc(e) = NC(m) = [2V[P,]/e*]| C(m).
Although in practice one does not have access to the variance V[P,], it is typically

close to V[P] (which often has an a priori bound) or can be estimated via simulation.

§3.5.2 Multilevel Monte Carlo estimator

This section is based on [48, 59]. Let P, Pi, P,,... be square integrable random
variables and set Py = 0. Let {Di}keNu{o},z‘eN be independent random variables
satisfying Di < D! and E[Di] = E[Pyy — Py) for any k € NU{0} and i € N. For
k € NU{0}, assume that the bias and level variance satisfy B(k) > |EP — EPy| and
V (k) > V[D}] for some functions k + B(k) and k + V (k), respectively, and let
C(k) bound the expected computational complexity of simulating a single value of
Dj. For m € NU{0} and any Ny, ..., N, € N, the MLMC estimator

k=0 =1

i
satisfies E[(P — EP)?] = V[P] 4+ (EP,, — EP)?, since EP = EP,,. Thus, for any
€ > 0, the inequality E[(ﬁ — IEP)Z] < €2 holds if the number of levels in P equals

m =inf{k e NU{0}: B(k) < ¢/V2} (3.44)

and the variance is bounded by V[P] = 37" VIDL/Ny, < S0 V (k) /Ny, < €2/2.
Since the computational complexity of P, Cyr,(€) = S jq C(k)Ni, is linear in the
number of samples Ny on each level k, we only require that the variance V[P] be of
the same order as €2/2 = >_;"  V(k)/Ng. Then, by the Cauchy-Schwartz inequality,
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we have

Cr ()2 = (kzicw)zvk) (Y0 (3 vemvm)

k k=0

The lower bound does not depend on Ny, ..., N, and is attained if and only if

Nip = |22 /ZE:; Z VOV ()| for ke {0,...,n}, (3.45)

j=0
ensuring that the expected cost is a multiple of
m 2
Cuw(€) = 2¢ 2 ( > MC(k)V(k)) . (3.46)
k=0
Moreover, if B, V and C are asymptotically sharp, the formulae in (3.45), up
to constants, minimise the expected computational complexity. Consequently, the
computational complexity analysis of the MLMC estimator is reduced to the analysis

of the behaviour of >, \/C(j)V(j) as € L 0. This analysis yields the following

result.

n € N we have (a) |EP — EP,| < 127", (b) V[Py41 — Py] < 227", (c) the
expected computational cost C(n) of constructing a single sample of (P, Po—1) is
bounded by c32™3. Then for every € > 0 there exist n, Ny, ..., N, € N such that the
MLMC estimator

Theorem 3.23. Assume that for some q1 > (g2 N q3)/2 > 0, c1,¢2,¢c3 > 0 and all

n Ny,
. 1 . N
P = E A E Di s L*-accurate at level e, E[(P - ]EP)Q] < €, (3.47)
k
k=1 i=1

and the computational complexity is of order

O(e7?) if g2 > g3,
Cumr(e) = § O(e 2log?e) if @2 = g3,
O(e 2 @=)/0) i gy < g3.

The number of levels equals n = [logy(v2c1e™1) /q1] and the number of samples at
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level k € {1,...,n} is

[2coe—22-(a2+a3)k/2 /(1 — 9= (42-03)/2)] if g2 > g3,
Nk — (20267277‘27(13]61 Zf q2 = g3,
[2epe22n(as—0)/2=(@24a3)k/2 /(1 — 9= (a3=2)/2)]  jf gy < g3.

§3.6 Regularity of the density of the supremum

Let us briefly discuss the necessity of Assumption (H) in Proposition 3.7. Recall
2 = f(_lm) 2?v(dz) for k € (0,1) and note that X in the example below has smooth
transition densities by [91, Prop. 28.3].

Example. For any v € (0,1) there exists a Lévy process X with an absolutely
continuous Lévy measure v such that lim inf, ;o u®~ 252 > 0 holds for some « € (0, 1)

and Assumption (H) fails for v at countably many M > 0.

Proof. The essence of the proof is to construct any such M as a singularity of
the density of v. For simplicity and to make things explicit, we shall prove it
for a single and fixed M > 0. To that end, let S be an a-stable process with
positivity parameter p = P(S; > 0) € (0,1) satisfying ap + a + p < 7. Let Z be an
independent Lévy process with finite Lévy measure vz given by vz ((—oo, z]\{0}) =
min{1, (max{x, M} — M)} and put X = S + Z. Hereafter consider only small
enough € > 0, namely, € < min{(7//2)"/* min{M,1}/2}. The goal is to bound from
below the probability P(X1 € [M, M +3¢)). To do this, we consider the event where
Z jumps exactly once, S is small, S < M at the time of that jump and S does not
increase too much after the jump.

Since the density of 57 is positive, continuous and bounded, it follows from the
scaling property that there is some constant K7 > 0 (not depending on €) such that
for all ¢t < €%,

P(S; € [0,€),5; < M) =P(S; € [0,t7 /%), 5, <t~ VM) > K.

From [15, Thm 4A], we also know that P(S; < €) > K2¢*” for some constant Ko > 0
and all t > T — €*/2. Now, Z7 € [M, M + ¢) has probability e~ Te” since it can
only happen if Z had a single jump on [0,7], whose time U is then conditionally
distributed U(0,T). For fixed t € (0,T) let Sy = Supgefo,r—f St+s — St and note that
the Markov property gives

P(S’t S A, (St,gt) € B x C) = P(?T_t S A)P((St,gt) € B x C),
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for all measurable A, B,C C R. Hence, multiplying by the density of U at ¢,

integrating and using the independence of (U, Z) and S, we obtain

P(X1 € [M, M + 3¢))
>P(Zr € [M,M +¢),Sy € [0,¢),Sy < M, X7 € [M, M + 3¢))

dt

T
> eTTep/ P(S; <e€,5 €[0,€),S: < M|Zp € [M,M +¢),U =t) T
0

@

>e el / P(S7_; < €)P(S; € [0,€), 8 < M)dt > ™ T K1 Kpe® Tt
0

This implies that z — P(X7 < z) is not locally y-Hélder continuous at M. O
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Chapter 4

The stick-breaking (zaussian

approximation

§4.1 The Gaussian approximation of the extrema of a

Lévy process

Lévy processes are increasingly popular for the modeling of the market prices of
risky assets. They naturally address the shortcoming of the diffusion models by
allowing large (often heavy-tailed) sudden movements of the asset price observed in
the markets [36, 68, 92]. For risk management, it is therefore crucial to quantify the
probabilities of rare and/or extreme events in Lévy models. Of particular interest
in this context are the distributions of the drawdown (the current decline from a
historical peak) and its duration (the elapsed time since the historical peak), see
e.g. [10, 26, 74, 96, 98]. Together with the hedges for barrier options [8, 49, 69, 94]
and ruin probabilities in insurance [65, 75, 81], the expected drawdown and its
duration constitute risk measures dependent on the random vector X.

Among the approximate simulation algorithms of X = (X7, X1,77(X)), the
SBA presented in Chapter 3 is the fastest in terms of its computational complexity,
as it samples from the law of Y7 with a geometrically decaying bias. However, the
drawback is that it is only valid for Lévy process whose increments can be sampled.
Such a requirement does not hold for large classes of widely used Lévy processes,
including the general CGMY (aka KoBoL) model [25]. Moreover, nonparametric
estimation of Lévy processes typically yields Lévy measures whose transitions cannot
be sampled [23, 31, 34, 83, 88|, again making a direct application SBA infeasible.

If the increments of X cannot be sampled, a general approach is to use the

Gaussian approximation [6], which substitutes the small-jump component of the
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Lévy process by a Brownian motion. Thus, the Gaussian approximation process
is a jump diffusion and the exact sample of the random vector (consisting of the
state of the process, the supremum and the time the supremum is attained) can
be obtained by applying [40, Alg. MAXLOCATION] between the consecutive jumps.
However, little is known about how close these quantities are to the vector Xr
that is being approximated in either Wasserstein or Kolmogorov distances. Indeed,
bounds on the distances between the marginal of the Gaussian approximation and
X7 have been considered in [41] and recently improved in [24, 76]. A Wasserstein
bound on the supremum is given in [41] but so far no improvement analogous to the
marginal case has been established. Moreover, to the best of our knowledge, there
are no corresponding results either for the joint law of (X7, X) or the time 77(X).
Furthermore, as explained in §4.4.1 below, the exact simulation algorithm for the
supremum and the time of the supremum of a Gaussian approximation based on [40,
Alg. MAXLOCATION] is unsuitable for the multilevel Monte Carlo estimation.

The main objective of the present chapter is to provide an operational framework
for Lévy processes, which allows us to settle the issues raised in the previous
paragraph, develop a general simulation algorithm for (X7, X7, 77(X)) and analyse
the computational complexity of its Monte Carlo (MC) and multilevel Monte Carlo
(MLMC) estimators.

The main results of this chapter can be grouped up in two. (I) We establish
bounds on the Wasserstein and Kolmogorov distances between the vector Y and
its Gaussian approximation Ygi{) = (X;”),Ygf),?T(X(“))), where X is a jump
diffusion equal to the Lévy process X with all the jumps smaller than « € (0,1]
substituted by a Brownian motion (see definition (4.5) below), and Ygf ) (resp.
7r(X*)) is the supremum of X ) (resp. the time X () attains the supremum)
over the time interval [0,7]. (IT) We introduce a simple and fast algorithm, SBG-
Alg, which samples exactly the vector of interest for the Gaussian approximation
of any Lévy process X, develop an MLMC estimator based on SBG-Alg (see [51]
for an implementation in Julia) and analyse its complexity for discontinuous and
locally Lipschitz payoffs arising in applications. We now briefly discuss each of the
two groups of results.

(I) In Theorem 4.3 (see also Corollary 4.4) we bound the Wasserstein distance
between Y and X(TH ) (as k tends to 0) under weak assumptions, typically satisfied by
the models used in applications. The proof of Theorem 4.3 has two main ingredients.
First, in §4.6.2 below, we construct a novel SBG coupling between X and ng ), based
on the SB representation of Y in (4.1) and the minimal transport coupling between

the increments of X and its approximation X (%), The second ingredient consists of
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new bounds on the Wasserstein and Kolmogorov distances, given in Theorems 4.1

)

and 4.2 respectively, between the laws of X; and Xt(n for any t > 0.

Theorem 4.3 is our main tool for controlling the distance between X and ng ),
The SBG coupling underlying it cannot be simulated, but it provides a bound on the
bias of SBG-Alg. Dominating the bias of the time 77(X), which is a non-Lipschitz
functional of the path of X, requires (by SB representations (4.1)) the bound in
Theorem 4.2 on the Kolmogorov distance between the marginals. Applications
related to the duration of drawdown and the risk-management of barrier options
require bounding the bias of certain discontinuous functions of Y. In §4.3.2 we
develop such bounds. Their proofs are based on Theorem 4.3 and Lemma 4.18
of §4.6.3, which essentially converts Wasserstein distance into Kolmogorov distance
for sufficiently regular distributions. We give explicit general sufficient conditions
on the characteristic triplet of the Lévy process X (see Proposition 4.12 below),
which guarantee the applicability of the results of §4.3.2 to models typically used
in practice. Moreover, we obtain bounds on the Kolmogorov distance between the
components of (X, 77(X)) and (75'1{ ),?T(X (%)) (see Corollary 4.11 below), which
we hope are of independent interest.

(IT) Our main simulation algorithm for this chapter, SBG-Alg, samples jointly
coupled Gaussian approximations of X, at distinct approximation levels. The

coupling in SBG-Alg exploits the following simple observations:
(

e Any Gaussian approximation qu ) has an SB representation in (4.2), where
the law of Y in (4.2) must equal that of X%,

e For any two Gaussian approximations, the stick-breaking process in (4.2) can
be shared.

e The increments in (4.2) over the shared sticks can be coupled using the

definition of the Gaussian approximation X (*) in (4.5).

We analyse the computational complexity of the MLMC estimator based on
SBG-Alg for a variety of payoff functions arising in applications. Figure 4.1 shows
the leading power of the resulting MC and MLMC complexities, summarised in
Tables 4.2 and 4.3 below (see Theorem 4.29 for full details), for locally Lipschitz
and discontinuous payoffs used in practice. To the best of our knowledge, neither
locally Lipschitz nor discontinuous payoffs had been previously considered in the
context of MLMC estimation under Gaussian approximation.

A key component of the analysis of the complexity of an MLMC estimator is the
rate of decay of level variances (see §3.5.2 for details). In the case of SBG-Alg, the
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rate of decay is given in Theorem 4.22 below for locally Lipschitz and discontinuous
payoffs of interest. Moreover, the proof of Theorem 4.22 shows that the decay of
the level variances for Lipschitz payoffs under SBG-Alg is asymptotically equal to
that of Algorithm 2, which samples jointly the increments at two distinct levels
only. Furthermore, an improved coupling in Algorithm 2 for the increments of the
Gaussian approximations (cf. the last bullet on the list above) would reduce the
computational complexity the MLMC estimator for all payoffs considered in this
chapter (including the discontinuous ones). To the best of our knowledge, SBG-Alg
is the first exact simulation algorithm for coupled Gaussian approximations of Y
with vanishing level variances when X has a Gaussian component, see also §4.4.1.

In §4.5, using the code in repository [51], we test our theoretical findings against
numerical results. We run SBG-Alg for models in the tempered stable and Watanabe
classes. The former is a widely used class of processes whose increments cannot be
sampled for all parameter values and the latter is a well-known class of processes
with infinite activity but singular continuous increments. In both cases we find a
reasonable agreement between the theoretical prediction and the estimated decays
of the bias and level variance, see Figures 4.3 & 4.4 below.

In the context of MC estimation, a direct simulation algorithm based on [40,
Alg. MAXLOCATION] (Algorithm 3 below) can be used instead of SBG-Alg. In §4.5.2
we compare numerically its cost with that of SBG-Alg. In the examples we considered,
the speedup of SBG-Alg over Algorithm 3 is about 50, see Figure 4.5, remaining

significant even for processes with small jump activity, see Figure 4.6.

Comparison with the literature

As we have explained before, approximations of the pair (X7, X7) abound. They
include the random walk approximation, a Wiener-Hopf based approximation [45,
70], the jump-adapted Gaussian (JAG) approximation [38, 39] and, more recently,
the SB approximation [56]. The SB approximation converges the fastest as its bias
decays geometrically in its computational cost. However, the JAG approximation
is the only method known to us that does not require the ability to simulate the
increments of the Lévy process X. Indeed, the JAG approximation simulates all
jumps above a cutoff level, together with their jump times, and then samples
the transitions of the Brownian motion from the Gaussian approximation on a
random grid containing all the jump times. In contrast, in the present chapter
we approximate X = (X7, X7, 77(X)) with an ezact sample from the law of the
Gaussian approximation yg’f) = (X;H),ig,f),?T(X(”))).

The JAG approximation has been analysed for Lipschitz payoffs of the pair
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(A) Functions of (X7, X7): case 0 # 0 (B) Functions of (X7, X7): case 0 =0
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(C) Functions of Xp: case 0 # 0 (D) Functions of X7: case 0 =0
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— BT,
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Figure 4.1: Dashed (resp. solid) line plots the power of € ! in the computational complexity of
an MC (resp. MLMC) estimator, as a function of the BG index 3 defined in (4.6), for discontinuous
functions in BT; (4.19) and BT2 (4.21), locally Lipschitz payoffs as well as Lipschitz functions of
77 (X). The cases are split according to whether X is with (o # 0) or without (o = 0) a Gaussian
component. The pictures are based on Tables 4.2 and 4.3 under assumptions typically satisfied in
applications, see §4.4.2 below for details.

(X7, X7) in [38, 39]. The discontinuous and locally Lipschitz payoffs arising in
applications, considered in this chapter (see Figure 4.1), have to the best of our
knowledge not been analysed for the JAG approximation. Nor have the payoffs
involving the time 77(X) the supremum is attained. Within the class of Lipschitz
payoffs of (X7, Xr), the complexities of the MC and MLMC estimators based on
SBG-Alg are asymptotically dominated by the complexities of the estimators based
on the JAG approximation, see Figure 4.2. In fact, SBG-Alg with discontinuous
payoffs outperforms the JAG approximation with Lipschitz payoffs by up to an order
of magnitude in computational complexity, cf. Figure 4.1(A) & (B) and Figure 4.2.

In order to understand where the differences in Figure 4.2 come from, in
Table 4.1 we summarise the bias and level variance for SBG-Alg and the JAG
approximation as a function of the cutoff level x in the Gaussian approximation
(cf. (4.5) below).

Table 4.1 shows that both bias and level variance decay no slower (and typically
faster) for SBG-Alg than for the JAG approximation. The large improvement in
computational complexity of the MC estimator in Figure 4.2 is due to the faster
decay of the bias under SBG-Alg. Put differently, the SBG coupling constructed
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(A) X with Gaussian component (o # 0) (B) X without Gaussian component (o =0

—o— SBG
—— JAG

N W =~ Ot O

0 0.5 1 1.5 2

Figure 4.2: Dashed (resp. solid) lines represent the power of ¢! in the computational complexity
of the MC (resp. MLMC) estimator for the expectation of a Lipschitz functional f(Xr, X 1), plotted
as a function of the BG index f defined in (4.6). The SBG plots are based on Tables 4.2 and 4.3
below. The JAG plots are based on [38, Cor. 3.2] for the MC cost, and [38, Cor. 1.2] if 8 > 1
(resp. [39, Cor. 1] if 8 < 1) for the MLMC cost.

Gaussian comp. | Approx. Bias Level variance
. JAG max{r' =A% P2} 1og"?(1/k) | max{k>*?, kP log(1/K)}
With (o # 0) SBG x37Plog(1/k) k2P
. _ JAG max{x'~#/*1log"*(1/r), K"} max{x>~# k?}
Without (o = 0) SBC klog(1/k) 25

Table 4.1: The rates (as k — 0) of decay of bias and level variance for Lipschitz payoffs of
(X7, Xr1) under the JAG approximation are based on [38, Cor. 3.2] and [39, Thm 2], respectively.
The rates on the bias and level variance for the SBG-Alg are given in Theorems 4.3 & 4.22 below.

in this chapter controls the Wasserstein distance much better than the KMT-based
coupling in [38]. For the BG index 5 > 1, the improvement in the computational
complexity of the MLMC estimator is mostly due to an faster bias decay. For 5 < 1,
Figure 4.2(A) suggests that the computational complexity of the MLMC estimator
under both algorithms is optimal. However, in this case, Table 4.1 and the equality
in (3.46) imply that the MLMC estimator based on the JAG approximation has
a computational complexity proportional to e 2log®(1/¢) while that of SBG-Alg is

proportional to e 2.

This improvement is due solely to the faster decay of level
variance under SBG-Alg. The numerical experiments in §4.5.1 suggest that our
bounds for Lipschitz and locally Lipschitz functions are sharp, see graphs (A) & (C)
in Figures 4.3 & 4.4.

To the best of our knowledge, in the literature there are no directly comparable
results to either Theorem 4.3 or Proposition 4.9. Partial results in the direction of
Theorem 4.3 are given in [24, 41, 76]. We will now briefly comment on these results.

).

Distance between the marginals X; and Xt(H : Theorem 4.1 below, a key step in
the proof of Theorem 4.3, improves the bounds in [76, Thm 9] on the Wasserstein
distance. Theorem 4.2 below, a further key ingredient in the proof of Theorem 4.3,

bounds the Kolmogorov distance with better rates than those of [41, Prop. 10 (part
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1)] (as k — 0). Papers [24, 76] obtain bounds on the total variation distance between
X; and Xt('i), dominating the Kolmogorov distance. However, Theorem 4.2 again
yields faster decay. For more details about these comparisons see §4.3.1 below.
Distance between the suprema X and Y,SH): the rate of the bound in [41, Thm 2]
on the Wasserstein distance is worse than that implied by the bound in Corollary 4.4
below on the Wasserstein distance between (X, X;) and (Xt(ﬁ), Ygﬁ)). Proposition 4.6
below bounds the bias of locally Lipschitz functions, generalising [41, Prop. 9] and
providing a faster decay rate. Proposition 4.7 and Corollary 4.11(a) below cover
a class of discontinuous payoffs, including the up-and-in digital option considered
in [41, Prop. 10 (part 3)], and provide a faster rate of decay as k — 0 if either X
has a Gaussian component or the BG index § > 2/3.

The remainder of the chapter is organised as follows. In §4.2 we recall the SB
representation (see (4.1)—(4.2)) for the infima of Lévy processes and the Gaussian
approximation (see (4.5)) developed in [53] and [6], respectively. §4.3 presents
bounds on Wasserstein and Kolmogorov distances between Yr and its Gaussian
approximation Xg? ) and the biases of certain payoffs arising in applications. §4.3
also provides simple sufficient conditions, in terms of the Lévy triplet, under which
these bounds hold. §4.4 constructs our main algorithm, SBG-Alg, and presents the
computational complexity of the corresponding MC and MLMC estimators for all
payoffs considered in this chapter. In §4.5 we illustrate numerically these results for
a widely used class of Lévy models. The proofs and the technical results are found
in §4.6. §3.5.1 gives a brief account of the complexity analysis of MC and MLMC
(introduced in [48, 59]) estimators.

§4.2 The stick-breaking representation and the Gaussian

approximation

We begin by restating (2.3) for the infimum of X on [0,7], which is at the core
of the bounds and algorithms developed in this chapter. Given a Lévy process X
and a time horizon ¢ > 0, there exists a coupling (X,Y), where Y 4 x , and a
uniform stick-breaking process ¢ = (¢,)pen on [0,t] (i.e. Ly = t, L, = L,—1U,,
lp = Ly — Ly—1 for n € N, where (Up,)nen is an iid sequence following the uniform
law U,, ~ U(0,1)), such that a.s.

o0

X, =Y (Geomin{&, 0}, b T <0p), & =Yi,, — VI, (4.1)
k=1
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Since, given Ly, (¢x)r>n is a stick-breaking process on [0, L,], for any n € N, (4.1)
implies
n
X, = (Vi Yo7, (V) + Y (€ min{&e, 0}, 6 - 1ig,<0y)- (4.2)
k=1
We stress that (4.1) and (4.2) reduce the analysis of the path-functional y, to
that of the increments of X, since the “error term” (Yz,,Y .7, (Y)) in (4.2) is
typically exponentially small in n. More generally, for another Lévy process X',
the vectors y, and (X}, X}, 7,(X’)) will be close if the increments of Y and Y over
the intervals [Ly, Ly_1] are close: apply (4.2) with a single stick-breaking process
£, independent of both Lévy processes Y 2 X and V' £ X , respectively. This
observation constitutes a key step in the construction of the coupling used in the
proof of Theorem 4.3 below, which in turn plays a crucial role in controlling the
bias (see the subsequent results of §4.3) of our main simulation algorithm SBG-Alg
described in §4.4 below. SBG-Alg is based on (4.2) with X’ being the Gaussian
approximation of a general Lévy process X introduced in [6] and recalled briefly
next.
Recall the Lévy-Khintchine formula [91, Thm 8.1]: for u € R,

%logE[ei“Xt] = jub — %u202 + / ("™ —1—iuz - 1y py(2))v(dz), (4.3)
R\{0}
where the Lévy measure v satisfies fR\ (0} min{z?,1}v(dz) < oo and o > 0 specifies
the volatility of the Brownian component of X. Note that the ‘drift’ b € R depends
on the cutoff function x +— ]1(7171)(30). Thus the Lévy triplet (o2, v,b), with respect
to the cutoff function z + 1(_; 1)(x), determines the law of X. All the Lévy triplets
in the present chapter use this cutoff function.
The Lévy-1to decomposition at level k € (0,1] (see [91, Thms 19.2 & 19.3]) is
given by
Xy =bgt+ 0B+ J+ P, >0, (4.4)

where b, = b — f(71,1)\(75,n) zv(dz), B = (By)t>0 is a standard Brownian motion
and the processes J1* = (J!");50 and J2F = (JP");>q are Lévy with triplets
(0,](—k,k),0) and (0, v[g\(—x,x), b — by), Tespectively. The processes B, Jhr e
in (4.4) are independent, J* is an L2-bounded martingale with jumps of magnitude
less than x and J?* is a driftless (i.e. piecewise constant) compound Poisson process
with intensity 7(x) = v(R\ (=#, x)) and jump distribution v|g\(—x x)/7(%).

In applications, the main problem lies in the user’s inability to simulate the

increments of JL* in (4.4), i.e. the small jumps of the Lévy process X. Instead of
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ignoring this component for a small value of k, the Gaussian approximation [6]
Xt('{) = bt + /T2 + 02W; + JP®, where 72 = f(_n ) 2?v(dx), k€ (0,1], (4.5)

substitutes the martingale o B+ J* in (4.4) with a Brownian motion with variance
2 +02. In (4.5), the standard Brownian motion W = (W});>¢ is independent of J*.
Let 7, denote the non-negative square root of 2. The Gaussian approzvimation of

X at level «, given by the Lévy process X (%) = (Xt(n))

>0, is natural in the following
sense: the weak convergence o, 1J!"* 4w (in the Skorokhod space d[0,00)) as
k — 0 holds if and only if Tin(ks, k1 /0x — 1 for every K > 0 (see [6]). This
condition holds if &,/k — oo and the two conditions are equivalent if v has no
atoms in a neighbourhood of zero [6, Prop. 2.2].

Since J%* has an average of U(x)t jumps on [0,t], the expected complexity of
simulating the increment Xt('{) is a constant multiple of 1 + (k)¢ (see Algorithm 2
below). Moreover, the user need only be able to sample from the normalised tails of
v, which can typically be achieved in multiple ways (see e.g. [90]). The behaviour
of 7(k) and 7 as k | 0, key in the analysis of the MC/MLMC complexity, can be
described in terms of the Blumenthal-Getoor (BG) index [18] 3, defined as

B =inf{p>0:1I] <o}, where I = / |z[Pv(dz) for p > 0.  (4.6)
(=1,)\{0}
Note that 8 € [0,2], since Ig < 00 by the definition of the Lévy measure v.
Furthermore, I(} < oo if and only if the paths of J* have finite variation. Moreover,
IY < oo for any p > S, but Ig can be either finite or infinite. If ¢ € [0, 2] satisfies
I < oo, the following inequalities hold for all x € (0, 1] (see Lemma 3.11):

72 < Igk*™1  and  D(k) <D(1)+ I9 (4.7)

Finally we stress that the dependence between W in (4.5) and oB + JL*<
in (4.4) has not been specified. This coupling will vary greatly, depending on the
circumstance (e.g. the analysis of the Wasserstein distance between functionals
of X and X in §4.3 or the minimisation of level variances in MLMC in §4.4).
Thus, unless otherwise stated, no explicit dependence between o B + J* and W is

assumed.
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§4.3 Distance between the extrema and its Gaussian

approximation

In this section we present bounds on the distance between the laws of the vectors x o
defined in §4.2 above, and its Gaussian approximation Xg“) = (Xt(”),gg”), 7, (X ®)),
based on the Lévy process X*®) in (4.5). Our bounds on the Wasserstein distance
(see Theorem 4.3 and Corollary 4.4 in §4.3.1) are based on a coupling constructed
in §4.6.2 below, which in turn draws on the coupling in (4.1). Theorem 4.3 is then
applied to control the bias of certain discontinuous and non-Lipschitz functions of x .
arising in applications (§4.3.2 below) as well as the Kolmogorov distances between

the components of (X,,7,(X)) and (&g“),zt(X("))) (see §4.3.3 below).

§4.3.1 Bounds on the Wasserstein and Kolmogorov distances

In order to study the Wasserstein distance between y, and XEH) via (4.1)-(4.2), we
have to quantify the Wasserstein and Kolmogorov distances between the increments
X5 and X §”) for any time s > 0. With this in mind, we start with Theorems 4.1
and 4.2, which play a key role in the proofs of the main results of the subsection,

Theorem 4.3 and Corollary 4.4 below, and are of independent interest.

Theorem 4.1. There exist universal constants K1 = 1/2 and K, > 0, p € (1,2],

independent of (02, v,b), such that for anyt > 0 and k € (0,1] there exists a coupling
(Xt,Xt(K)) satisfying

EHXt — Xt(”)ml/zv < min {\/%EH,Kpmgoi/p},
where @, =0, /\/ T2+ 02, forall pell,2].

Theorem 4.1 bounds the LP-Wasserstein distance (see (4.17) below for definition)
between X; and Xt('i). The inequality in (4.8) sharpens the bound E[[Xt—Xt(H) |P]t/P <
min{v/2tG,, Kpx} in [76, Thm 9]: the factor cpi/p € [0,1] tends to zero (with k — 0)

as a constant multiple of Ei/ P if the Brownian component is present (i.e. o > 0)

(4.8)

and is equal to 1 when o = 0. The bound in (4.8) cannot be improved in general in
the sense that there exists a Lévy processes for which, up to constants, the reverse
inequality holds (see [76, Rem. 3] and [47, Sec. 4]).

The proof of Theorem 4.1, given in §4.6.1 below, decomposes the increment
Mt(ﬁ) of the Lévy martingale M®) = oB + J%* into a sum of m iid copies of
M7,
the context of a central limit theorem (CLT) as m — oco. The small-time moment

and applies a Berry-Essen-type bound for the Wasserstein distance [89] in

asymptotics of M t(fr)n in [46] imply that Mt(m) is much closer to the Gaussian limit in
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the CLT if the Brownian component is present than if ¢ = 0. This explains a vastly
superior rate in (4.8) in the case o2 > 0.

Bounds on the Kolmogorov distance may require the following generalisation
of Orey’s condition, which makes the distribution of X; sufficiently regular (see [91,
Prop. 28.3]).

Assumption (O-0). For some ¢ € (0,2] we have inf,¢ (1 w272 + 0?) > 0.

Theorem 4.2. (a) There exists a constant Cpg, € (0, %), such that for any k € (0,1],
t > 0 we have:

sup [P(X; < z) — IF’(Xt(N) <z)| < Ce(k/Tx)@2 V. (4.9)
Tz€R
(b) Let Assumption (O-0) hold. Then for every T > 0 there exists a constant C' > 0,
depending only on (T, 9,0,v), such that for any k € (0,1] and t € (0,T] we have:

su& ‘P(Xt < :L') — IP’(Xt(H) < x)| < (Ct_1/5 min {\/iﬁ,{, mgpn})z/g. (4.10)
z€

The proof of Theorem 4.2 is in §4.6.1 below. Part (a) follows the same strategy
as the proof of Theorem 4.1, applying the Berry-Esseen theorem (instead of [89,
Thm 4.1]) to bound the Kolmogorov distance. For the same reason as in (4.8), the
rate in (4.9) is far better if 02 > 0. Proof of Theorem 4.2(b) bounds the density of
X using results in [86] and applies (4.8).

Note that no assumption is made on the Lévy process X in Theorem 4.2(a).
In particular, Assumption (O-9) is not required in part (a); however, if (O-6) is not
satisfied, implying in particular that o = 0, it is possible for the bound in (4.9) not
to vanish as K — 0 even if the Lévy process has infinite activity, i.e. v(R\{0}) = oc.
In fact, if 0 = 0, the bound in (4.9) vanishes (as kK — 0) if and only if 7, /k — o0,
which is also a necessary and sufficient condition for the weak limit &, 1.J1* 4w
to hold whenever v has no atoms in a neighbourhood of 0 (see [6, Prop. 2.2]).

If X has a Brownian component (i.e. o # 0), the bound on the total variation
distance between the laws of X; and Xt(”) established in [76, Prop. 8] implies the

following upper bound on the Kolmogorov distance:

sup |P(X; < x) — IP’(Xt(H) < z)| < min{V8t5,, k}/V2rot.
z€R

This inequality is both generalised and sharpened (as £ — 0) by the bound in (4.9).
Further improvements to the bound on the total variation were made in [24], but the

implied rates for the Kolmogorov distance are worse than the ones in Theorem 4.2

74



and require model restrictions when o = 0 (beyond those of Theorem 4.2(b)) that
can be hard to verify (see [24, Subsec. 2.1.1]).

We stress that the dependence in ¢ in the bounds of Theorem 4.2 is explicit.
This is crucial in the proof of Theorem 4.3 as we need to apply (4.9)—(4.10) over
intervals of small random lengths. A related result [41, Prop. 10] contains similar
bounds, which are non-explicit in ¢ and suboptimal in k.

If Assumption (O-6) is satisfied, the parameter § in part (b) of Theorem 4.2
should be taken as large as possible to get the sharpest inequality in (4.10). If o # 0
(equivalently § = 2), the bound in part (a) has a faster decay in x than the bound
in part (b). If 0 = 0 (equivalently 0 < § < 2), it is possible for the bound in part (a)
to be sharper than the one in part (b) or vice versa. Indeed, it is easy to construct
a Lévy measure v such that § € (0,2) in Theorem 4.2(b) satisfies lim, o u’ =252 =
inf e, u’~2g2 = 1. Then the bound in (4.9) is a multiple of t1/2k%/2 as ¢,k — 0,
while the one in (4.10) behaves as t~2/(39) £2/3 min{1, t'/35=9/3}. Hence one bound
may be sharper than the other depending on the value of §, as ¢ and/or k tend to
zero. In fact, we will use the bound in part (b) only when the maximal ¢ satisfying
the assumption of Theorem 4.2(b) is smaller than 4/3, bounding the activity of the
Lévy measure around 0 away from maximal possible activity.

Denote 7 = max{x,0} for x € R. The next result quantifies the Wasserstein

distance between the laws of the vectors X, and Xg”).

Theorem 4.3. For any k € (0,1] and t > 0, there exists a coupling between X and
X®) on the interval [0,t] such that the following inequalities hold for p € {1,2}:

E[max{‘Xt—Xt(H)L’Xt—igﬁ)’}p]l/p§Mp(/£,t), where (4.11)
p1(k,t) ;= min {2\/276,{, mgpi} (1 +log™ (2\/27(5,4//-@)@;2)),
pa(k,t) = V2 (k. t) (4.12)

+ min {\/ﬂﬁm KQH(,O,{}\/l +2log™ (K;l\/ﬂ(ﬁ,{/ﬁ)cpgl),
with g, = 0x/\/02 + 0% and Ky as in Theorem 4.1. Furthermore, we have
E|r,(X) — 7, (X")| < pifi (5, t) = Vi(r/T,) g} (4.13)

Moreover, if Assumption (O-0) holds, then for every T > 0 there exists a constant
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C > 0, dependent only on (T,9,0,v), such that for allt € [0,T] and k € (0,1],

E|r,(X) — It(X(“))\ < ui(k,t), where ¢, =Crkp, and (4.14)
6 =205 (1 _ i —116-3 2
(1 1) = t/\i/),,ig—l—t X (1 ingln{l,t 1/),{} ), 6 €(0,2]\ {5}, (4.15)
(tApE) (1 +1logh (tyn ?)), §=2.

The coupling in Theorem 4.3 satisfying the above inequalities will be hereafter
referred to as the SBG coupling (X, X®)). The SBG coupling is constructed in the
proof of Theorem 4.3 (found in in §4.6.2 below) in terms of the distribution functions
of the marginals X, and X () (for s > 0) and the coupling used in (4.1), see [56]
for the latter. The key idea is to couple X, and XEH) so that they share the stick-
breaking process in their respective SB representations (4.1), while the increments
of the associated Lévy processes over each interval [L,,, L,_1] are coupled so that
they minimise appropriate Wasserstein distances. This coupling produces a bound
on the distance between X, and X(H) that depends only on the distances between
the marginals of X, and X (H), s > 0, so that Theorems 4.1 and 4.2 above can be
applied. We stress that the bound in (4.11) cannot be obtained from Doob’s L?-
maximal inequality (see, e.g. [62, Prop. 7.16]) and Theorem 4.1: if the processes X
and X (%) are coupled in such a way that X; — Xt(n) satisfies the inequality in (4.8),
the difference process (X, — X gﬁ)) sefo,¢] need not be a martingale.

Inequality (4.11) holds without assumptions on X and is at most a logarithmic
factor worse than the marginal inequality (4.8) for p € {1,2}, with the upper
bound satisfying p,(k,t) < 2klog(1/k) for all sufficiently small k. Moreover, by
Jensen’s inequality, for all 1 < p < 2 the SBA coupling satisfies the following
inequality: E[max{|X; — Xt(n)|, | X, — X§K)|}p]1/p < p2(k,t). In the absence of a
Brownian component (i.e. o = 0) we have ¢,, = 1, making the upper bound ua(x, t)
proportional to uy(k,t) as k — 0. If o > 0, then pi(k,t) < 2k52log(1/(ko,))/0?
for all small k and, typically, pa(k, t) is proportional to ko, /log(1/(kT,)) as k — 0,
which dominates p1(k,t).

The bound in (4.13) holds without assumptions on X, while (4.14) requires
Assumption (O-9) and is sharper the larger the value of 6 € (0, 2], satisfying (O-9),
is. Note that, if o # 0, (O-9) holds with 6 = 2. If 0 = 0 and ¢ satisfies (O-9), we
must have § > §, where [ is the Blumenthal-Getoor (BG) index defined in (4.6)
above. In fact, models typically used in applications either have o # 0 or (O-9)
holds with 6 = 8 (however, it is possible for (O-0) to hold for some 6 < /5 but not
§ = B, cf. [91, p. 362]).

If o > 0, the inequality in (4.13) is sharper than (4.14), i.e. pj(t, k) < pi(t, k)
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for all small x > 0. However, if ¢ = 0 and 0 € (0,2) satisfies (O-§), then
typically i (k, ) is proportional to x%/2, while u} (x, t) is asymptotically proportional
to rmin{2/3.0k(1 4 log(1/k)1{2/33(0)) as & — 0, implying that (4.14) is sharper
than (4.13) for 6 < 4/3. The following quantity is the smallest of the upper bounds
in (4.13) and (4.14):

i (k,t) = min {pf(k, t),inf {uf(k,t) : § € (0,2] satisfies Assumption (O-0)} }.
Under Assumption (O-4), for some constant ¢; > 0 and all x € (0, 1], we have
(R, ) < 2N 4 log(1/k) - Ly (0)). (4.6)

For any a € R?, let |a| = Zle la;| denote its £'-norm. Recall that for p > 1,
the LP-Wasserstein distance [99, Def. 6.1] between the laws of random vectors ¢ and
¢ in R can be defined as

Wh(€,¢) = inf {E[|¢' = ¢']P] "7 ¢ L, L ¢). (4.17)

Theorem 4.3 implies a bound on the LP-Wasserstein distance between the vectors
X, and Xin)v extending the bound on the distance between the laws of the marginals

X, and X* in [76, Thm 9].

Corollary 4.4. Fiz x € (0,1] and t > 0. Then we have

Wp((Xt’Xt% (Xt(ﬁ)7il(tn))) < 2(]1{17:1}:“1("{)15) + ]1{1<p§2}/‘2(’{at))a pe [17 Q]a
Wp(zt(X)vzt(X(n))) S tl_l/p/’/lzk—(’{'a t)l/p’ p Z 1.

Moreover, for p € [1,2], we have
Wo(x, Xx\™) < 2272 (Lgmqy i (5, 1) + Lcpeaptin(s, 1) + (26) HPpl (s, 1) 1/7,

Given the bounds in Corollary 4.4 and Theorem 4.2, it is natural to inquire
about the convergence in Kolmogorov distance of the components of (X EH) LT, (X ®)))
to (X, 7,(X)) as k — 0. This question is addressed by Corollary 4.11 of §4.3.3.

The famous Kémlos-Major-Tusnady (KMT) coupling is used in [38, Thm 6.1]
to bound the L2-Wasserstein distance between the paths of X and X*) on [0, in
the supremum norm, implying a bound on Wy ((X3, X,), (Xt(“),gﬁ”’)) proportional
to klog(1/k) as k — 0, cf. [38, Cor. 6.2]. If o0 > 0, ua(k,t) in (4.11) is bounded

by a multiple of k&, log(1/(ka,)) for small £ and is thus smaller than a multiple
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of K279/ for any q € (f,2) (where 3 is the BG index defined in (4.6) above). As
mentioned above, us(k,t) is bounded by a multiple of xlog(1/k) for small k in the
case ¢ = 0. Unlike the SBG coupling, which underpins Theorem 4.3, the KMT
coupling does not imply a bound on the distance between the times of the infima
7,(X) and 7,(X®) as these are not Lipschitz functionals of the trajectories with

respect to the supremum norm.

Remark 4.5. The bounds on E|r,(X)—7,(X*))| in Theorem 4.3 and Corollary 4.4,
based on the SB representation in (4.1), require the control on the expected difference
between the signs of the components of (X, XS(H)) as either s or k tend to zero. This
is achieved via the minimal transport coupling (see (4.25) and Lemma 4.15 below)
and a general bound in Theorem 4.2 on the Kolmogorov distance. However, further
improvements seem possible in the finite variation case if the natural drift (i.e.
the drift of X when small jumps are not compensated) is nonzero. Intuitively, the
sign of the natural drift determines the sign of both components of (Xs, XS(K)) with

overwhelming likelihood as s — 0. This suggestion is left for future research.

§4.3.2 Bounds on the bias

The main tool used to study and bound the bias of various Lipschitz, non-Lipschitz
and discontinuous functions of X, 1s the SBG coupling underpinning Theorem 4.3.
The Lipschitz case is a direct consequence: for any d € N, let Lipy (R?) denote
the space of real-valued Lipschitz functions on R? (under ¢'-norm given above
display (4.17)) with Lipschitz constant K > 0 and note that the triangle inequality
and Theorem 4.3 imply the following bounds on the bias

IEf(Xr, X7) —Ef (X7, XU < 2Kpi (s, T)  and

(4.18)
|Eg(rr) — EQ(IT(X(H)))‘ <K'y} (k,T)

for any time horizon 7' > 0 and f € Lipy (R?), such that E|f(Xr, X ;)| < oo, and
g € Lipg/(R). Since in applications, the process X is often used to model log-returns
of a risky asset (SgeXf)tZO, it is natural to study the bias of a Monte Carlo estimator
of a locally Lipschitz function f € locLipy (R?), satisfying |f(z,y) — f(2/,y')| <
K(‘e“—exl ‘ + |ey—ey/ D for any x,2',y,y' € R (equivalently (z,y) — f(logx,logy) is
in Lipx ((0,00)?)). Such payoffs arise in risk management (e.g. absolute drawdown)
and in the pricing of hindsight call, perpetual American call and lookback put

options.

Proposition 4.6. Let f € locLipy(R?) and assume f[l o) e*y(dz) < oo, where
v is the Lévy measure of X. For any T > 0 and k € (0,1] and po(k,T) defined
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in (4.12), the SBG coupling satisfies
E|f (X7, X7) — f(X3, XU | < AKE[XX7]Y2(1 + ™2 ) (k, T).

The assumption f[lm) e?*y(dr) < oo is equivalent to E[e?XT] < oo (see [91,
Thm 25.3]), which is a natural requirement as the asset price model (SpeXt);>( ought
to have finite variance. Moreover, via the Lévy-Khintchine formula, an explicit
bound on the expectation E[e?>XT] (and hence the constant in the inequality of
Proposition 4.6) in terms of the Lévy triplet of X can be obtained. If one instead
considers f(Xr, X7) (a function on the supremum X ), the proof of Proposition 4.6
in §4.6.3 below can be used to establish that E‘f(XT,YT) - f(X:(FH),Ygf))‘ is
bounded by 4K (E[e*X7] + E[eQXﬁfn )])1/ 215(k, T), where both expectations E[e2XT]
and I[?J[eQY;f | are finite under our assumption f[lm) e**y(dr) < oo and bounded
explicitly in terms of the Lévy triplet of X, see the proof of Proposition 3.6. Thus,
by Proposition 4.6, the bias for f € locLip (R?) is at most a multiple of xlog(1/k),
as is the case for f € Lipy (R?) by (4.18), cf. discussion after Theorem 4.3.

In financial markets, the class of barrier-type functions arises naturally: for
K,M >0,y <0let

BT1(y, K, M) ={f : f(z,2) = h(x)1} o) (2), h € Lipg(R), 0 < h < M}. (4.19)

Note that the indicator function 1y, ) lies in BT (y,0,1) and satisfies the identity
E[1y,00)(X7)] = P(X7 > y). Moreover, a down-and-out put option payoff z +
max{e® —e?, 0}1y,00) (), for constants y < 0 < k, is in BT (y, ek, eF —e¥). Bounding
the bias of the estimators for functions in BT;(y, K, M) requires the following

regularity of the distribution of X, at y (analogous to Assumption (H ) in Chapter 3).

Assumption (H). Given C,y > 0 and y < 0, we have P(y < Xy <y +z) < Cz"
for all x > 0.

Proposition 4.7. Let f € BT(y, K, M) for some K,M >0 and y < 0. Ify and
some C,~v > 0 satisfy Assumption (H ), then for any T > 0 and k € (0, 1], the SBG

coupling satisfies

E|f(Xr, X1) — F(X5, x5

(4.20)
< Kpy(k,T) + M min{y (r, ) O o (s, )2 40},

where M' = M max{(1 + 1/7)(2Cy)"Y 047, (1 4 2/7)(Cy)*/ 7}
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Remark 4.8. Since pui(k,T) — 0 and p2(k,T) — 0 as k — 0 and v/(1 + ) <
2v/(2 + ) for all v > 0, the bound in (4.20) is typically dominated by a multiple
of p1(r, T)Y/ N if 0 %0 and B < 2 —~ (recall the definition of the BG index 3
in (4.6)), or ua(k, T)2/ 4V | otherwise. By Héolder’s inequality, f in (4.20) need

not be bounded if appropriate moments of X exist.

The proof of Proposition 4.7 is in §4.6.3 below. Assumption (H) with v =1
requires the distribution function of X to be locally Lipschitz at y. By the Lebesgue
differentiation theorem [33, Thm 6.3.3], any distribution function is differentiable
Lebesgue-a.e., implying that Assumption (H) holds for v = 1 and a.e. y < 0.
However, there exist Lévy processes satisfying Assumption (H) for countably many
levels y with v < 1, but not with v = 1, see [56, App. B|. Proposition 4.12 below
provides simple sufficient conditions, in terms of the Lévy triplet of X, for (H) to
hold with v =1 for all y < 0. In particular, this is the case if o # 0.

The next class arises in the analysis of the duration of drawdown: for K, M > 0,
s € (0,7T) define the set:

BT,(s, K, M)

(4.21)
={f : f(@,2,t) = h(z,2)1s7(t), h € Lipg(R*), 0 < h < M}.

The biases of these functions include [P(7,(X) > s) — P(77(X*)) > s)|. Analogous
to Proposition 4.7, we require the following regularity from the distribution function
of 74(X).

Assumption (Hr). Given C,v >0 and s € (0,T), the following inequality holds,

P(rp(X) < 5) = P(zp(X) < s+8)| <CH[", for allt €R.

Proposition 4.9. Let Assumption (Ht) hold for some s € (0,T) and C,~v > 0. Let
f € BTy(s, K, M) for some K,M > 0. Then for all k € (0,1] the SBG coupling

satisfies
E|f(x,) — F ()] < 2K pa(k, T) + M2CH) YD (141 /7))l (5, T) ). (4.22)

Remark 4.10. As in Remark 4.8, the bound in (4.22) is asymptotically proportional
to pl(k, 7)Y/ as k — 0. Inequality (4.22) can be generalised to unbounded

function f if appropriate moments of X exist.

If X is not a compound Poisson process, then Assumption (H7) holds with
v =1 for all s € (0,T), since, by Lemma 4.20 in §4.6.3 below, 7,(X) has a locally
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bounded density, making the distribution function of 7,(X) locally Lipschitz on
(0,T). Assumption (HT) is satisfied if either v(R\{0}) = oo or o # 0. In particular,
Assumption (O-0) implies (H7). The proof of Proposition 4.9 is in §4.6.3 below.

§4.3.3 Convergence in the Kolmogorov distance

As a consequence of Proposition 4.7 (resp. 4.9), if Assumption (H) (resp. (HT))

(r)

holds uniformly, then X} (resp. 7;(X"))) converges to X (resp. 7,(X)) in

Kolmogorov distance as k — 0.

Corollary 4.11. (a) Suppose C,~v > 0 satisfy (H) for all y < 0. Then for any
k € (0,1] we have

sup |[P(Xp < 2) — P(XYY < 2)| < M min{pua (k, )77, po(s, T) 757}, (4.23)
zeR

where M’ = max{(1 + 1/7)(2C7)"/ ) (1 4 2/7)(Cy)/ @1},

(b) Suppose C,~v > 0 satisfy (Ht) for all s € [0,T]. Then for any k € (0,1] we have

sup [P(r(X) < @) — P(rp(X ) < 2)| < (209) 7 (1 + L)ul(e, ). (4.24)
z€R
Proposition 4.12 gives sufficient conditions (in terms of the Lévy triplet (o2, v, b)
of X) for Assumptions (H) and (H7) to hold for all y < 0 and s € [0, T, respectively.
Recall that a function f(x) is said to be regularly varying with index r as x — 0 if
lim, o f(Ax)/f(x) = A" for every A > 0 (see [16, p. 18]).

Proposition 4.12. Let vy (z) = v([z,00)) and v_(x) = v((—o0, —z]) for x > 0 and
let 5 be the BG index of X defined in (4.6) above. Suppose that either (1) o >0 or
(II) the Lévy measure v satisfies the following conditions: U (x) is reqularly varying
with index —F as x — 0 and

e 5 =2 and liminf, 074 (z)/T_(z) > 0,

e 5 € (1,2) and limy 074 (x)/T_(x) € (0,00] or

e 3e(0,1),b= f(—l,l) zv(dz) and lim,_0 vy (z)/7_(x) € (0,00).

Then there ezists constants v > 0 and C such that Assumption (HT) holds with v, C
for all s € [0,T]. Either (1) or (II) with 8 > 1 imply that (H ) holds with v =1 and

some constant Ct for all y in a compact I C (—o0,0).

Note that Proposition 4.12 holds if the roles of 7, and 7_ are interchanged,
i.e 7_(x) is regularly varying and the limit conditions are satisfied by the quotients
U_(z)/v4+(x). The assumptions of Proposition 4.12 are satisfied by most models

used in practice, including tempered stable and most subordinated Brownian motion
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processes. Excluded are Lévy processes without a Brownian component and with
barely any jump activity (i.e. BG index 8 = 0, which includes compound Poisson
and variance gamma processes), where the Gaussian approximation X (5) is not
useful.

Proposition 4.12 is a consequence of a more general result, Proposition 4.21
below, stating that Assumptions (H7) and (H ) hold uniformly and locally uniformly,
respectively, if over short time horizons, X is “attracted to” an a-stable process with
non-monotone paths, see §4.6.3 below for details. In this case p = lim;_,o P(X; > 0)
exists in (0,1) and + in the conclusion of Proposition 4.12, satisfying (H7) on
[0,T], can be arbitrarily chosen in the interval (0,min{p,1 — p}). In contrast
to (HT), a simple sufficient condition for the uniform version of (H), required in
Corollary 4.11(a), remains elusive beyond special cases such as stable or tempered
stable processes with «y in the interval (0, a(1—p)), where « is the stability parameter

and p is as above.

§4.4 Simulation and the computational complexity of
MC and MLMC

This section describes an MC and MLMC methods for the simulation of the vector
ng) = (Xq(f),lgf),zT(X(“))) (SBG-Alg in §4.4.1) and analyses the computational
complexities for various locally Lipschitz and discontinuous functions of ng ) (§4.4.2).
The numerical performance of SBG-Alg, which is based on the SB representation
in (4.1)-(4.2) of JE,T ), is far superior to that of the “obvious” algorithm for jump
diffusions (see Algorithm 3 below), particularly when the jump intensity is large
(cf. §4.4.1 and §4.4.1). Moreover, SBG-Alg is designed with MLMC in mind, which

turns out not to be feasible in general for the “obvious” algorithm (see §4.4.1).

§4.4.1 Simulation of the extrema

The main aim of the subsection is to develop a simulation algorithm for the pair of

vectors (ng”), g’fl)) at levels k, k" € (0,1] over a time horizon [0, 7], such that the

L?-distance between ng ) and Xgi ) tends to zero as k, k" — 0. SBG-Alg below, based
on the SB representation in (4.2), achieves this aim: it applies Algorithm 2 for the
increments over the stick-breaking lengths that arise in (4.2) and Algorithm 3 for the
“error term” over the time horizon [0, L,,]. By Theorem 4.22 below the L2-distance
for the coupling given in SBG-Alg decays to zero, ensuring the feasibility of MLMC

(see Theorem 4.29 for the computational complexity of MLMC).
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Increments in the SB representation

A simulation algorithm for a coupling (Xt(m),Xt(@)) of Gaussian approximations

(at levels 1 > k1 > ko > 0) of X; at an arbitrary time ¢ > 0 is based on the
following observation: the compound Poisson processes J2"1 and J%*2 in the Lévy-
It6 decomposition in (4.4) can be simulated jointly, as the jumps of J?*! are precisely
those of J>*2 with modulus of at least 1. By choosing the same Brownian motion
W in representation (4.5) of Xt("“) and Xt('”), we obtain the coupling (Xt(M), Xt(HQ))

with law II;"" given in Algorithm 2.

Algorithm 2. Simulation of the law Hfl’@

Require: Cutoff levels 1 > k1 > ko > 0 and time horizon ¢ > 0.
1: Compute by, and 72, for i € {1,2} and U(k2)
2: Sample W; ~ N(0,t), Ny ~ Poi(v(ka)t) and A\ ~ v(-\ (—ke,k2))/V(k2) for
ke{l,...,N¢}
30 Put JP =S A - 1{| M| > ki) for i € {1,2}

4: return (Zt(m), Zt('”))7 where Zt('”) = byt + (/02 + T2 W, + JP™ for i € {1,2}

Since Zt('”) 4 Xt('m, i € {1,2}, Proposition 4.23(a) below implies that the
coupling I1;"*2 provides a bound on the L?-Wasserstein distance W (Xt(M),Xt(m)) <

(2t(e2, — 32,))"/2. This bound is suboptimal as the variables JER2 2R and

2 —=2
Ko O-ml

(T )1/ 2W; in Algorithm 2 are independent. The minimal transport coupling,

with L?-distance equal to Ws (Xt(m), Xt(@)), is not accessible from the perspective

of simulation. Since the law Poi(7(k2)t) of the variable Ny in line 2 of Algorithm 2 is

Poisson with mean 7(k2)t, the expected number of steps of Algorithm 2 is bounded

by a constant multiple of 1 + 7(k2)t, which is in turn bounded by a negative power

of kg by (4.7). Since the computational complexity of sampling the law of Xt(m) is
K1,Kk2

of the same order as that of the law II;""™?, in the complexity analysis of SBG-Alg
below, we may apply Algorithm 2 with Htl’“ to sample Xt('{) for any x € (0, 1].

“Error term” in the SB representation

K2

Algorithm 3 samples from the law II7"" of a coupling (Xl(t””l), Xg"“?)) for levels 0 <
ke < k1 < 1 and any (typically very small) ¢ > 0. In particular, it requires the
sampler [40, Alg. MAXLOCATION] for the law ®.(v,u) of (B;, By, 7(B*)) where
(B¥)s>0 = (vBs + ps)s>0 is a Brownian motion with drift 4 € R and volatility
v > 0.

Algorithm 3 samples the jump times and sizes of the compound Poisson process

J2%2 on the interval (0,t) and prunes the jumps to get J?®'. Then it samples
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Algorithm 3. Simulation of the law II}""?
Require: Cutoff levels 1 > k1 > ko > 0 and time horizon ¢ > 0.

1: Compute by, o2, and vy, = /02 + 52, for i € {1,2} and U(ky), see (4.4)—(4.5)

2: Sample Ny ~ Poi(v(k2)t) and Uy ~ U(0,t) for k € {1,..., Ny + 1}

3: Set s = Zf\gfl log Uy, and let t;, = s~ 1 Zle logU; for k € {0,..., Ny + 1}

1 Set (3™, 25 ) 782 287 52y = (0,0,0,0,0,0)

5. for ke {1,...,N; + 1} do

6: Sample A\, ~ v (- \ (—ka, k2))/P(k2) if & < N; and otherwise put A\ =0

7: Let 6 = tx, —tr—1 and sample (A} ;, AZ . A3 ) ~ By, (v, by, ) independently
for i € {1,2} R

8: for i € {1,2} do

9 if Z\") > Z\") 1 A2 then

10: Set (Z(M) ZIE:Z)’ gk )) = (Zt(k )1 + A i Ak ]l{lAk\ZHi}’Zgzjﬂ +
AR tr-1 +AF)

11: else

Set (24", 25y Tiy) = (240, + AL+ e Laygze 20y 1)

13: end if

14: end for

15: end for

16: return (g(“l),((’”)), where g(’”) = (Zt(“i),gg“i),zg”i)) for i € {1,2}

the increment, infimum and the time the infimum is attained for the Brownian
motion with drift on each interval between the jumps of J>*2 and assembles the pair
(g(’“),g(’”)), clearly satisfying g(”i) < Xg”i), i €{1,2}. As[40, Alg. MAXLOCATION]
samples the law ®;(v, ) with uniformly bounded expected runtime over the choice
of parameters u, v and t, the computational cost of sampling the pair of vectors
(Kgﬁl), Xl(t’”)) using Algorithm 3 is proportional to to the cost of sampling Xt(n) via
Algorithm 2

In principle, Algorithm 3 is an exact algorithm for the simulation of a coupling
(&EM)? XEM))' However, it cannot be applied within an MLMC simulation scheme
for a function of Ké’j ) at a fixed time horizon T (the next paragraph explains why).
SBG-Alg below circumvents this issue via the SB representation in (4.2), which also
makes SBG-Alg paralellizable and thus much faster in practice even in the context
of MC simulation (see the discussion after Corollary 4.26 below).

To the best of our knowledge, there is no simulation algorithm for the increment,
the infima and the times the infima are attained of a Brownian motion under different
drifts, i.e. of the vector
(B, B, 7,(B)), B 7,(B(2))), where (B{))s50 = (Bs+cs)s>0 and ¢1 # ca.

S
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Thus, in line 7 of Algorithm 3, we are forced to take independent samples from
s, (Ui, by ) and Ps, (U, biy) at each step k. In particular, the coupling of the
marginals X" and X" of I/, given in line 16 of Algorithm 3, amounts to
taking two independent Brownian motions in the respective representations in (4.5)
of Xt(m) and Xt(m). Thus, unlike the coupling defined in Algorithm 2, here, by
Proposition 4.23(b) below, the squared L?-distance satisfies E[(Xt(ﬁﬂ - Xt(m))2} >
2to? for all levels 1 > k1 > ko > 0, where o2 is the Gaussian component of X. Hence,
for a fixed time horizon, the coupling II;"" of Xg’fl) and Xi’ﬂ) is not sufficiently
strong for an MLMC scheme to be feasible if X has a Gaussian component, because
the level variances do not decay to zero. However, by Proposition 4.23(b), the L2-
distance between ¢ (51) and ¢ (52) constructed in Algorithm 3 does tend to zero with
t — 0. Thus, SBG-Alg below, which applies Algorithm 3 over the time interval

[0, L,] (recall EL,, = T/2™ from SB representation (4.2)), circumvents this issue.

The SBG sampler

(k1)

? of the vectors xp

For a time horizon T, we can now define the coupling II"""

and Xg,f 2) Via the following algorithm.

Algorithm 4. SBG-Alg

Require: Cutoffs 1 > k1 > k9 > 0, number of sticks n > 0, time horizon T" > 0.
1: Set Lo = T, sample Uy ~ U(0,1), put ¢y = Lx_1Uy and Ly = Lg_1 — ¢y, for
ke{l,...,n}
2: Sample (&1, Ek2) ~ HZ:’”Q for k € {1,...,n} and (§1,§2) ~II7V™ > Algs 2&3
3: Put XS{T) =&+ 2y (Eramin{&r, 0}, £ - Lyg,  <oy) for i € {1,2}

4: return (ng%) ) Xff%))

By SB representation (4.2), the law II"'/"™ is indeed a coupling of the vectors

Xg,'fl) and ngm) for any n € NU {0}. Note that if n equals zero, the set {1,...,n}

2 coincide,

in lines 1 and 2 of the algorithm is empty and the laws IIg%"™ and II7"
implying that SBG-Alg may be viewed as a generalisation of Algorithm 3. The
main advantage of SBG-Alg over Algorithm 3 is that it samples n increments of the
Gaussian approximation over the interval [L,,T] using the fast Algorithm 2, with
the “error term” contribution §Z being geometrically small.

The computational complexity of SBG-Alg and Algorithms 2 & 3 is simple to
analyse. Assume throughout that all elementary mathematical operations (addition,
multiplication, exponentiation, etc.), as well as the evaluation of 7(x) and 72 for all
k € (0,1] have constant computational cost. Moreover, assume that the simulation

of any of the following random variables has constant expected cost: standard
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normal N(0,1), uniform U(0,1), Poisson random variable (independently of its
mean) and any jump with distribution v|g\(_, ) /7(k) (independently of the cutoff
level k € (0,1]). Recall that [40, Alg. MAXLOCATION] samples the law ®;(v, u)
with uniformly bounded expected cost for all values of the parameters p € R, v > 0

and ¢ > 0. The next statement follows directly from the algorithms.

Corollary 4.13. Under assumptions above, there exists a positive constant Cy (resp.
Cy; Cs), independent of k1, k2 € (0,1], n € N and time horizon t > 0, such that the
expected computational complexity of Algorithm 2 (resp. Algorithm 3; SBG-Alg) is
bounded by C1(1 + U(ka)t) (resp. Co(1 +T(k2)t); Cs(n + U(k2)t)).

Up to a multiplicative constant, Algorithms 2 and 3 have the same expected
computational cost. However, Algorithm 3 requires not only additional simulation
of jump times of X(#2) and a sample from ®;(v, 1) using [40, Alg. MAXLOCATION]
between any two consecutive jumps, but also a sequential computation of the output
(the “for-loop” in lines 5-15) due to the condition in line 9 of Algorithm 3. This
makes it hard to parallelise Algorithm 3. SBG-Alg avoids this issue by using the fast
Algorithm 2 over the stick lengths in SB representation (4.2) and calling Algorithm 3
only over the short time interval [0, L,], during which very few (if any) jumps of X (#2)
occur. Moreover, SBG-Alg consists of several conditionally independent evaluations
of Algorithm 2, which is paralellizable, leading to additional numerical benefits
(see §4.5.2 below).

§4.4.2 Complexity of the MC/MLMC estimator based on SBG-Alg

This subsection gives an overview of the bounds on the computational complexity
of the MC and MLMC estimators defined respectively in (4.52) and (4.53) of §4.6.5
below. Corollary 4.26 (for MC) and Theorem 4.29 (for MLMC) in §4.6.5 give the
full analysis.

Assume (0O-9) holds with some § € (0,2] throughout the subsection. As
discussed in §4.3.1 above, we take § as large as possible. In particular, if ¢ # 0
then § = 2. Let ¢ € (0,2] be as in (4.7) and thus ¢ > ¢ if 0 = 0. We take ¢ as
small as possible. For processes used in practice with ¢ = 0, we may typically take
d = q = 8, where 3 is the BG index defined in (4.6). Assumption (H7), required for
the analysis of the class BTy in (4.21) of discontinuous functions of 74 (X), holds
with v = 1 as (O-0) is satisfied (see the discussion following Proposition 4.9 above).
When analysing the class of discontinuous functions BT in (4.19), assume (H)

holds throughout with some ~ > 0.
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Monte Carlo.

An MC estimator is L?-accurate at level € > 0, if its bias is smaller than €/ V2
and the number N of independent samples is proportional to €2, see §3.5.1. The
following table contains a summary of the values k, as a function of €, such that the
bias of the estimator in (4.52) is at most ¢/+/2, and the associated Monte Carlo cost
Cmc(€) (up to a constant) for various classes of functions of x, . analysed in §4.3.2
(see also Corollary 4.26 below for full details).

Family of functions f Case K 2 - Cacle)
Lip in (X7, Xr) o#0 -1/B3 -9 /(3 —4q)
locLip in (X7, X7) o#0 -2/(4—-q) 2q/(4 = q)
Lip UlocLip in (X7, X7) =0 € q
— min{ S— 2 in{-SL 24
BT defined in (4.19) 070 mm{147q,137q} mm{%fq v f,q}
o=0 “3—3 a3 +3)
o#0 —-1/(3—q) 7/(3—q)
Lip in 7p(X) € (0,2)2\{%} —min{%max{%,%}} qmin{%,max{%,%}}
o#0 —2/(3—4q) 2q/(3 —q)
BT3 defined in (4.21) 6 €(0,2)\ {%} - min{%,max{{i, %}} qmin{%,max{?), %}}
5=2 -3 3q
3

Table 4.2: The table presents the power of €1 in the asymptotic behaviour of the level x and
the complexity Cmc/(€) as € — 0 for the MC estimator in (4.52).

The number of sticks n € N U {0} in SBG-Alg does not affect the law of
Xg:; )Tt only impacts the MC estimator in (4.52) through numerical stability and
the reduction of simulation cost. It is hard to determine the optimal choice for
n. Clearly, the choice n = 0 (i.e. Algorithm 3) is not a good one as discussed
in §4.4.1 above. A balance needs to be struck between (i) having a vanishingly
small number of jumps in the time interval [0, L,], so that Algorithm 3 behaves
in a numerically stable way, and (ii) not having too many sticks so that line 2
of SBG-Alg does not execute redundant computation of many geometrically small
increments of X (%), which are not detected in the final output. A good rule of thumb
isn =np+ [log2(1 +7(k)T)|, where [2] = inf{j € Z: j > z}, z € R, and the initial
value ng is chosen so that some sticks are present if for large s the total expected
number of jumps 7(k)T is small (e.g. ng = 5 works well in §4.5.2 for jump diffusions
with low activity, see Figures 4.6 and 4.5), ensuring that the expected number of

jumps in [0, L, vanishes as € (and hence k) tends to zero.
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Multilevel Monte Carlo.

The MLMC estimator in (4.53) is based on the coupling in SBG-Alg for consecutive
levels of a geometrically decaying sequence (k) jen and an increasing sequence of the
numbers of sticks (n;)jen. Table 4.3 summarises the resulting MLMC complexity
up to logarithmic factors, with full results available in Theorem 4.29 below.

There are two key ingredients in the proof of Theorem 4.29: (I) the bounds in
Theorem 4.22 on the L2-distance (i.e. the level variance, see §3.5.2) between the
functions of the marginals of the coupling H:Z ’}”1 constructed by SBG-Alg; (II) the
bounds on the bias of various functions in §4.3 above. The number of levels m in
the MLMC estimator in (4.53) is chosen to ensure that its bias, equal to the bias
of ng ) at the top cutoff level k,,, is bounded by €/v/2. Thus, the value of m can
be expressed in terms of € using Table 4.2 and the explicit formula for the cutoff
Kj, given in the caption of Table 4.3. The formula for x; at level j in the MLMC
estimator in (4.53) is established in the proof of Theorem 4.29 by minimising the
multiplicative constant in the computational complexity Cyy,(€) over all possible
rates of the geometric decay of the sequence (k;);en.

We stress that the analysis of the level variances for the various payoff functions
of the coupling HZ; ’}j“ in Theorem 4.22 is carried out directly for locally Lipschitz
payoffs, see Propositions 4.23. However, in the case of the discontinuous payoffs
in BT (see (4.19)) and BTy (see (4.21)), the analysis requires a certain regularity

(uniformly in the cutoff levels) of the coupling (ngj),ng j+1)). This leads to a

construction of a further coupling (X(TH I ), ng" I “), XT) where the components of the

pair (ngj),ngj“)) can be compared to the limiting object X, which can be shown

to possess the necessary regularity (see Proposition 4.25 below for details).

§4.5 Numerical examples

In this section we study numerically the performance of SBG-Alg. All the results
are based on the code available in repository [51]. In §4.5.1 we apply SBG-Alg to
two families of Lévy models (tempered stable and Watanabe processes) and verify
numerically the decay of the bias (established in §4.3.2 above) and level variance
(see Theorem 4.22 below) of the Gaussian approximations. In §4.5.2 we study
numerically the cost reduction of SBG-Alg, when compared to Algorithm 3, for the

simulation of the vector ng ).
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Family of functions f Case a The power of €1 in €2 - Cyr (€)
Lip in (X7, X ) o#0 2(g—1) 2(¢g—1)F/(3—-19q)
locLip in (X7, X7) o #0 2(g—1) 4q-1)"/(4-9q)
Lip UlocLip in (X7, X1) | 0=0 2(q —1) f(q.— 1): .
BT, defined in (4.19) | 77 ° 220 -1)/3 (2g = )" min{ 7=, ?;3«1}
0=0| 2(ql+v)—-7)/2+7) (¢1+1/7)—1)
Lip in £(X) Y - T
ip in T 5 q— (2 — ¢)min{1, —
! 0=0 | a- (- §minfs, 355} max{d, min{4/3,25}}
. 70 T G
e i g, | Qe @ omin( 25/ op
B 1 2 4712-9 max{d/2, min{2/3,}}

Table 4.3: The table presents the power of ¢ in € - CuL(e) as € — 0, neglecting only the
logarithmic factors (see Theorem 4.29 below for the complete result). Parameter a in the table
determines the decreasing sequence of cutoff levels () en as follows: r; = (1 + |a|/q)~20~V/lal if
a # 0 and k; = exp(—(2/q)(j — 1)) otherwise. The corresponding increasing number of sticks n;
in the definition of the law HZ;:;]“ can be taken to grow asymptotically as log®(1 + 7(x;)T) for
large j, see Theorem 4.29.

§4.5.1 Numerical performance of SBG-Alg for tempered stable and
Watanabe processes

To illustrate numerically our results, we consider two classes of exponential Lévy
models S = SpeX. The first is the tempered stable class, containing the CGMY
(or KoBoL) model, a widely used process for modeling risky assets in financial
mathematics (see e.g. [36] and the references therein), which satisfies the regularity
assumptions from §4.3.2 above. The second is the Watanabe class, which has diffuse
but singular transition laws [91, Thm 27.19], making it a good candidate to stress
test our results.

We numerically study the decay of the bias and level variance of the MLMC
estimator in (4.53) for the prices of a lookback put E[S7 — S7| and up-and-out
call E[(Sp — K)'1 (Gr<myl as well as the values of the ulcer index (UI), given
by 100E[(S7/St — 1)]'/2 [44, 77], and a modified ulcer index (MUI), given by
100E[(St/ST — 1)21{?T(S)<T/2}]1/2- The first three quantities are commonplace in
applications, see [36, 44]. The MUTI refines the UI by incorporating the information
on the drawdown duration, weights trends more heavily than short-time fluctuations.

In §4.5.1 and §4.5.1 we use N = 10 independent samples to estimate the means
and variances of the variables Djl» in (4.53) (with Xgi 7) substituted by y% I )), where
k; =e U7 and nj = [max{j,log*(1 + ¥(k;41))}|, j € N, discussed in §4.6.5.

Tempered stable.

The characteristic triplet (o2, v,b) of the tempered stable Lévy process X is given

‘,1,a

by o = 0, drift b € R and Lévy measure v(dz) = |z Sgn(z)csgn(x)e*)‘sgn(f)mdx,
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where at € [0,2), cx > 0 and Ay > 0, cf. (4.3). Exact simulation of increments is
currently out of reach if either ay > 1 or a— > 1 (see e.g. [58]) and requires the

Gaussian approximation.

(B) (Sr — K)*1{Sr < M}

Figure 4.3: Gaussian approximation of a tempered stable process: log-log plot of the bias and
level variance for various payoffs as a function of logk;. Circle (o) and plus (+) correspond to
log |E[D}]| and log V[D]], respectively, where D; is given in (4.53) with x; = exp(—7(j — 1)) for
r = 1/2. The dashed lines in all the graphs plot the rates of the theoretical bounds in §4.3.2 (blue
for the bias) and Theorem 4.22 (red for level variances). In plots (A)—(D) the initial value of the
risky asset is normalised to So = 1 and the time horizon is set to "= 1/6. In plot (B) weset K =1
and M = 1.2. The model parameters are given in Table 4.4 below.

Parameter set b ay a_ C+ c_ At Ao Graphs
1 0 .66 .66 .1305 .0615 | 6.5022 | 3.0888 | (A) and (B)
2 1274 | 1.0781 | 1.0781 | .41077 | .41077 | 49.663 | 59.078 | (C) and (D)

Table 4.4: The parameters used for Figure 4.3. The first set of parameters
corresponds to the risk-neutral calibration to vanilla options on the USD/JPY
exchange rate, see [3, Table 3]. The second set is the maximum likelihood estimate
based on the real-world S&P stock prices, see [63, Table 1].

In Figure 4.3, our bounds are close to the exhibited numerical behaviour for
continuous payoff functions. However, in the discontinuous case, Yg,f 2 appears to be
—(Kj+1)

much closer to Xp (resp. Xy’ ), than predicted by Propositions 4.7 & 4.9 (resp.
Theorem 4.22(b)&(d)).
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Watanabe model.

The characteristic triplet (o, v,b) of the Watanabe process is given by o = 0, the
Lévy measure v equals ) | -y Cy04-n-+c_0_g-—n, where a € N\{1} and J, is the Dirac
measure at x, and the drift b € R is arbitrary. The increments of the Watanabe
process are diffuse but have no density (see [91, Thm 27.19]). Since the process
has very little jump activity, the bound in Proposition 4.9 (see also (4.13)) is non-
vanishing and the bounds in Theorem 4.22(c) & (d) are not applicable, meaning
that we have no theoretical control on the approximation of 7r(S). This is not
surprising as such acute lack of jump activity makes the Gaussian approximation
unsuitable (cf. [6, Prop. 2.2]).

(A) gT — St withb=0 (B) (ST/ET — 1)21{?T(S)<T/2} with b=0

—40 ¢

—60 * : . t : .
—30 —20 —10 0 —-30 —20 —10 0

Figure 4.4: Gaussian approximation of a Watanabe process: log-log plot of the bias and level
variance for various payoffs as a function of log ;. Circle (o) and plus (+) correspond to log [E[D]]|
and log V[D}], respectively, where Dj is given in (4.53) with r; = exp(—r(j — 1)) for r = 1. The
dashed lines in graphs (A) & (C) plot the rates of the theoretical bounds in §4.3.2 (blue for the
bias) and Theorem 4.22 (red for level variances). In plots (A)—(D) the initial value of the risky
asset is normalised to Sp = 1 and the time horizon is set to T'= 1. The model parameters are given
by a=2,cy =c_ =1.

The pictures in Figure 4.4 (A) & (C) suggest that our bounds on the bias and
level variance in §4.3.2 and Theorem 4.22 are robust for continuous payoff functions
even if the underlying Lévy process has no transition densities. There are no dashed
lines in Figure 4.4 (B) & (D) as there are no results for discontinuous functions of
7pr(S) in this case. In fact, Figure 4.4(B) suggests that the decay rate of the bias
and level variance for functions of 77 (S) can be arbitrarily slow if the process does

not have sufficient activity. Figure 4.4(D), however, suggests that this decay is still
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fast if the underlying finite variation process X has a nonzero natural drift (see also
Remark 4.5).

§4.5.2 The cost reduction of SBG-Alg over Algorithm 3

Recall that Algorithm 3 and SBG-Alg both draw exact samples of a Gaussian
approximation K(TH ). However, in practice, SBG-Alg may be many times faster
than Algorithm 3: Figure 4.5 plots the speedup factor in the case of a tempered
stable process, defined in §4.5.1 above, as a function of . In conclusion, one should
use SBG-Alg instead of Algorithm 3 for the MC estimator in (4.52) (recall that

Algorithm 3 is not suitable for the MLMC estimator, as discussed in §4.4.1).

ar =1.2 ar =14

1074 1073 1072 107t 107 1072 1072 1071
’,,n:5 ——-n =10 n=15 —n:20‘

Figure 4.5: The pictures show the ratio of the cost of Algorithm 3 over the cost of SBG-Alg
(both in seconds) for the Gaussian approximations of a tempered stable process as a function of the
cutoff level k. The parameters used are A+ = 5, cx+ = 2. The number of sticks n in SBG-Alg varies
between 5 and 20. The ratio for n = 20 is 57.8 (resp. 61.7) in the case a+ = 1.2 (resp. a+ = 1.4)
for k = 2716 (resp. K = 271%).

If the Lévy process X is a jump diffusion, i.e. ¥(R\ {0}) < oo, we may apply
Algorithms 2 & 3 and SBG-Alg with k1 = ko = 0. In that case SBG-Alg still
outperforms Algorithm 3 by a constant factor, with computational benefits being
more pronounced when the total expected number of jumps A = v(R \ {0})T is
large. The cost reduction is most drastic when A is large, but the improvement is

already significant for A\ = 2.

§4.5.3 Estimating the Greeks: Delta and Gamma for barrier options
via Monte Carlo

A fundamental problem in mathematical finance is to compute the sensitivity of
the price of a derivative security to the various underlying parameters in order to
construct appropriate hedging strategies. These sensitivities are known as the Greeks
and are in practice given by the partial derivatives of the option price e "7 E[P]

(where 7 is the discount rate over the time horizon 7" and P is a random payoff).
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Merton’s model [78] Kou’s model [67]

Figure 4.6: The pictures show, for multiple number of sticks n, the ratio of the cost of Algorithm 3
over the cost of SBG-Alg (both in seconds) for jump diffusions as a function of the mean number of
jumps A = v(R\ {0})T". The ratio for n = 15 is 11.8 (resp. 10.8) in Merton’s (resp. Kou’s) model
when A\ = 10.

The most common of the Greeks are Delta and Gamma, given by the first and
second derivatives of the price e "7 E[P] with respect to the spot Sp.

If the risk-neutral dynamics of the risky asset is described by an exponential
Lévy model S = SpeX, SBG-Alg provides a simple procedure for the Monte Carlo
estimation of Delta and Gamma for any payoff P = g(xp) (recall that f'(z) and
1" (x) of a function f(z) are approximated by (f(x+h)— f(x—h))/(2h) and (f(x+
h)—2f(x)+f(z—h))/h?, respectively, for a small b > 0). This approach, widely used
in practice, requires the evaluation of e "' E[g(X1)] by SBG-Alg on a grid of current
spot prices Sy, where the simulated stick-breaking sequence and the corresponding
increments of X(®) can be reused over the grid points of Sj.

In order to test numerically the performance of SBG-Alg in this context, we
compute Delta and Gamma of an up-and-out digital option with barrier M and
payoff g(xy) = 1{St < M} = 1{X < log(M/Sp)} under an exponential Lévy
model with numerically accassible Delta and Gamma. Let X be an a-stable process
of infinite variation without positive jumps. Then X7 has the same law as X
conditioned to be positive and Delta and Gamma are thus equal to the first and
second derivatives of s + e "TP(Xp < log(M/s))/P(Xr > 0), which can be
numerically evaluated via definite integrals and power series [97, Ch. 4].

The parameters were chosen as follows: X has unit scale (in Zolotarev’s (C)
parametrisation) and o = 1.5, while the market data is r = 0.05, 7 =1, M = 1 and
So € [1/2,1). The cutoff is set at £ = 0.1 and the grid spacing at h = 0.01. We used
n = 20 sticks and N = 107 samples. This resulted in a total simulation time ' of

1 minute. The estimation of Delta and Gamma is accurate and numerically stable

We used an HP Pavilion laptop 15-cwOxxx containing an AMD Ryzen 5 2500U with Radeon
Vega Mobile and 12 GB of RAM
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(see Figure 4.7). Surprisingly the error in Delta remains bounded all the way to the
barrier M.

(A) Delta (estimation) (B) Delta (relative error)
10°
107!
1072 .
1073 o0, o #7000 Cunge o000
-1 1 1 1 1 1 10_4‘ °° o 1 N 5
05 06 07 08 09 So1 05 06 07 08 09 So1
(C) Gamma (estimation) (D) Gamma (relative error)
25 ¢ 10°
2 10!
L5 . g geosecs? 00, 5
L R SO . 10734 5 ° E
0.5 + : : : 107 ‘ : : : K 3
05 06 07 08 09 So1 05 06 07 08 09 So1

Figure 47.7: Monte Carlo estimation of Delta and Gamma for the up-and-out digital option with
payoff 1{S7 < M}. Dotted lines with (o) correspond to the output based on SBG-Alg. Subfigures
(A) and (C) contain a solid line corresponding to the true values of Delta and Gamma.

§4.6 Proofs and technical results of Chapter 4

In the remainder of the chapter we use the notation 7, = 7,(X), IEK) = 7,(X®) for
all ¢ > 0.

§4.6.1 Proof of Theorems 4.1 and 4.2

In this subsection we establish bounds on the Wasserstein and Kolmogorov distances

between the increment X; and its Gaussian approximation Xt('{) in (4.5).

Proof of Theorem 4.1. Recall the Lévy-It6 decomposition of X at level x in (4.4)
and the martingale M) = oB + J"*. Set Z = X — M® and note X =
Z + \/WW, where W is a standard Brownian motion in (4.5), independent
of Z. Hence any coupling (Wt,Mt(H)) yields a coupling of (Xt,Xt(H)) satisfying
E[|X: — Xt('i)]p] = E[]Mt(”) — /32 4 a2W;|P]. Setting W = B, which amounts to

the independence coupling (W, J'*), and applying Jensen’s inequality for p € [1, 2]
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yields

E[| X — ”)‘p]2/10 < ]EH (\/O’i—i-O'Q—O')Wt‘Q]
— E[||J ) + (V2 + 02 — o)t < 2152,

For m € N we have M(H) 4 ot &, where &1, ..., &y, are did with §1 t(/nr?z

Hence [84, Thm 16] and [89, Thm 4.1] imply the existence of universal constants
K,, p € [1,2], with K; = 1/2, satisfying

K= 72 +02)|P/2E]|¢, [P+ (m/OE[M,7) [P+2]
Wh(M[", /5% + o?W,) < KpUeag e Ol — Kkp =t —, me N,

According to [46, Thm 1.1], the limit as m — oo of the right-hand side of the display
above equals K} f(—n ) |z|PT2v(dz) /(62 + %) < KBKP@?, implying the claim in the

theorem. ]

Proof of Theorem 4.2. (a) Define d,, = sup,cg |P(}M, H) <z)-P(\/72 + o?W; < 1)
and note that

IP(X; < 2)—P(X™ < 2)| = [E[P(M) < 2— 2| Z)—P(V/T2 + 02W; < a—Zi| Z1)]|

is bounded by d,, where the processes Z and M (5) are as in the proof of Theorem 4.1.
Since M%) is a Lévy process for any m € N we have Mt(ﬁ) 4 ot &, where

&1,..., &y are iid with §1 = t(f) . By the Berry-Esseen inequality [66, Thm 1],
there exists a constant Cgg, € (0, 3) such that
(k) |3
3 ¢ (m/OE[MS) P (m/t)E[|M, ) ]
4 < CeeE[|&1]°]  Cge t/ t/ e N

© = VmE[EZR2 T my/m (t/m)3/2 (a2 + o2)3/? = CBE Vi@ + 02)3/2

According to [46, Thm 1.1], the limit as m — oo of the right-hand side of the
display above equals Cgpg f(_,m) lzPv(dx) /(VEH(G2 + 02)%/?) < Cg(k/7.)ed VT,
implying (a).

(b) By [86, Thm 3.1(a)], X; has a smooth density f; and, given 7' > 0,
the constant C' = sup( ,)e(0,1)xr t1/9 f,(x) is finite. Applying (4.8) and (4.33) in
Lemma 4.18 with p = 2 gives (4.10). O

§4.6.2 Proof of Theorem 4.3

We recall an elementary result for stick-breaking processes.
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Lemma 4.14. Let (wy)nen be a stick-breaking process on [0,1] based on the law

U(0,1). For any measurable function ¢ > 0, we have

> Elp(wn)] = /0 gb;";)dx.

neN

In particular, for any ai,as > 0 and by < by with by > 0, we have

Z E[min{a;w®, agw??}]
neN
Z—;min{l, %}bQ/(lQ*bl) 4 %(1 — min {1’ % bl/(bQ*bl)), by # 0,

by ' min{as, a1 }(1 + log™ (g—f)), by =0.

Proof. The law of — log w,, is gamma with shape n and scale 1. Applying Fubini’s

theorem, implies

- [e¢) xn—l —x —:c - o] —x - 1@
ZE[cb(wn)]—Z/o RN b(e )da:—/o b(e )dx—/o —dw.

neN neN

The formula for ¢(x) = min{a12%, asz??} follows by a direct calculation. O]

The LP-Wasserstein distance, defined in above (4.17), satisfies W5 (£, &) =
fol |F~Y(u)—F(u)|[Pdu, where F~! (vesp. F, ') is the right inverse of the distribution
function F' (resp. F) of the real-valued random variable £ (resp. &) (see [19,
Thm 2.10]). Thus the comonotonic (or minimal transport) coupling, defined by

(€,6) = (FY(U),F-Y(U))  for some U ~ U(0,1), (4.25)

attains the infimum in definition (4.17).

Lemma 4.15. If the random variables £ and &, are comonotonically coupled, then
E1{¢ <o} — 1{& < o}l = [E[1{{ <2} — L{& < a}]|  for any x € R.

Proof. Suppose (£,&,) = (F~1(U), F-Y(U)) for some U ~ U(0, 1), where F and F,
are the distribution functions of £ and .. Suppose y = F(x) < Fi(z) =: y,. Since
F~!and F;! are monotonic functions, it follows that 1{¢ < 2} —1{& < 2z} < 0 ass.
since this difference equals —1 or 0 according to U € (y,y.] or U € (0,1) \ (v, y«),
respectively. If y > y,, we have 1{¢ <z} — 1{& < z} > 0 a.s. In either case, the

result follows. O
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For any t > 0, let G} denote the joint law of the comonotonic coupling of X,
and Xt(”) defined in (4.25). Note that a coupling (Xt,Xt(R)) with law GY satisfies
the inequality in Theorem 4.1. The following lemma is crucial in the proof of
Theorem 4.3.

Lemma 4.16. Let { = ({y)nen be a stick-breaking process on [0,t] and (&, 7(f)),
n € N, a sequence of random vectors that, conditional on £, are independent and
satisfy (§n,§7(f)) ~ G} forallm € N. Then for any p € [1,2] and x € R we have

1/p

E[(i\ﬁn—&“)!)p] < pp(k,t) and
n=1

- (4.26)
E| Y taf1(en < ab - 146 < 03| <4t 0)
n=1

where p, and pg are as in (4.12) and (4.13), respectively. Moreover, if (O-§) holds,
then for every T > 0 there exists a constant C' > 0, dependent only on (T, 0,0,v),
such that for all t € [0,T], k € (0,1] and x € R we have

E[Zénu{fn <a}-1{gl) < x}}] < p§ (1), (4.27)
n=1

where pj is defined in (4.15).

Proof. Note that u,(k,t) = pa(k,t) for all p € (1,2]. Hence, by Jensen’s inequality,
in (4.26) we need only consider p € {1,2}. Pick n € N and set r, = KhrPp2,
p € {1,2}, where K, and ¢, are as in the statement of Theorem 4.1. Condition on
¢, and apply the bound in (4.8) to obtain

E[I€) — &,[P|6n) < min {2P/25200/2 1), pe{1,2. (4.28)

An application of (4.28) and Lemma 4.14 yield the first inequality in (4.26) for
p=1:

S E[[6 - €] < 3 Blmin (21}
n=1 n=1
= 2min {\/ﬂﬁ,{, /-@1}(1 +log™ (\/ﬂﬁﬁ/m))_

Consider the case p = 2. A simple expansion yields

E[(i\&&fﬁ)\ﬂ ZEE[(& fﬁ)ﬂwi i E[[€n — €09 |6m — €0]).

n=1m=n+1
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We proceed to bound the two sums. The inequality in (4.28) for p = 2 and
Lemma 4.14 imply

[e.9] [e.9]

> E[(6 —€0)°] < > E[min {25740, 52 }]
n=1 n=1
= min {QtEi, /@2}(1 + 2log™ (\/ 2t5,4/\//£2)).

Define the o-algebra F,, = o(¢1,...,4¢,) and use the conditional independence to

obtain
E[|§n — T(f)Hém — fgﬁf)Hfm] < min{\/24,,5,, k1 } min{+/ 2,5, K1}, n < m.

Note that (€y,/Ln)pe—,41 is a stick-breaking process on [0, 1] independent of F,.
Use the tower property and apply (4.8) and Lemma 4.14 to get

> E[Jén — &5 |6m — &1 Fn]
m=n+1

< min{\/2,,5,, K1} Z E[min {\/20,,0%, k1 }| Fn]

m=n+1

= 2min{ 20,5, /41} min{ 2L,0, m} (1 +log™ <@>>

K1

<2min {2L,_17%, K3 } (1 +log™ (V2t5./k1)),

where max{Ly,,?¢,} < L,—1 <t is used in the last step. Since ¢, 4 L, n €N,
Lemma 4.14 yields

23 3 Eflen — & l6m — €]

n=1m=n+1
o
<4 E[min{2L, 152,57} (1+logt (V2t5,/k1))
n=1
= 2”1(Kvt)2'

Putting everything together yields the first inequality in (4.26) for p = 2.
Next we prove the second inequality in (4.26). By Lemma 4.15, we have

E[|1{¢, < 2} — e < a}|[t] = [P(Xe, < 2lln) —P(X[ <2)6,)|. (4.29)

Applying (4.9) in Theorem 4.2(a) implies En’]P’(Xgn < z|by) — P(Xé:) < m|£n)’ <

%(n /E,{)gai&ll/ 2, By Fubini’s theorem, conditioning each summand on ¢, applying

98



equality (4.29) and Lemma 4.14, we have

B 3 o160 < o) = 169 < 21| < 5VEls/mek Bl = it
neN neN
Let 6 € (0,2] satisfy inf,c(o 1 u’~2(62 4+ 0) > 0. By (4.10) in Theorem 4.2(b),
we see that £,|P(Xy, < z|l,) — P(Xé:) <zlly)| < w2/3 1-2/(39) , where ¢, = Crpy
as defined in (4.14). Moreover, we have En’P(Xgn < z|l,) — }P’(Xé:) < x’ﬁn)‘ < 4t,.
Hence by (4.29) and Lemma 4.14, we obtain

S Bltal1{gn < o) ~ 1l < )] ZE [min {£,, 23012/ GO]

n=1

tA 7/% 4 3 1/12/3 1= ( — min {1,15_1/61#5}6_2/3)7 6 € (0,2]\ {%}7
(t A ) (1 + log™ (b /%)), 0

Proof of Theorem 4.3. Let £ = (£,)nen and (£n,§£f)), n € N, be as in Lemma 4.16.
Define the vector

(<17 CQ? C37 Cl 9 C2 7 Z §n7 fn A 07 En]l{fng()}w é-T(LK)7€r(LK) A 07 gnﬂ{f,(f>g()}) .

n=1

By (4.1) and (4.25), we have ({1, (2,(3) 4 X, and (Clm),é”),(é“)) 4 KE“). Hence,
it suffices to show that these vectors satisfy (4.11), (4.13) and (4.14). Since = —
min{x,0} is in Lip, (R), the inequalities

max {|¢1 - @ < e - €] and
n=1
G — ¢ < > | 1{& < 0} — 1{l) < 0}
n=1
follow from the triangle inequality. The theorem follows from Lemma 4.16. d

Remark 4.17. Let C; and C't('{) denote the convex minorants of X and X*) on
[0,t], respectively. Couple X and X&) in such a way that the stick-breaking processes
describing the lengths of the faces of their convex minorants (see [87, Thm 1] and [56,
Sec. 4.1]) coincide. (The Skorokhod space D[0,t] and the space of sequences on R
are both Borel spaces by [62, Thms Al1.1, A1.2 & A2.2], so the existence of such
a coupling is guaranteed by [62, Thm 6.10].) Geometric arguments (see [53, §3]),

show that the sequences of heights of the faces of the convexr minorants, denoted by
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(gn)nGN and (gr(Ln))nENz satisfy

sup [Cu(s) — C(s)| <Y [en €| and
n=1

s€[0,¢]

|z — o7 <3 a[1{En < 0} — 1{€l <0},
n=1

Hence, if (fn,ﬁﬁf)), n € N, are coupled as in Lemma /.16, the inequalities in (4.26)
and (4.27) yield the same bounds as in Theorem 4.3 but in a stronger metric (namely,
the distance between the conver minorants in the supremum norm), while retaining

the control on the time of the infimum.

§4.6.3 The proofs of Propositions 4.6, 4.7, 4.9 and 4.12

The Lévy-Khintchine formula for X in (4.3), the definition of Xt('i) in (4.5) and the
inequality e* > 1+ z (for all z € R) imply

t~11logE [e“Xt(K)}
2
= bu+ (0 + Ei)% + / (" — 1 —uzl(_y1y(z))v(dz) (4.30)
R\(—k,k)

<Giu?/2+t logE[e"**] for any u€ R, ¢ >0 and & € (0,1].

Thus E[exp(uXt(”))] < Elexp(uX;)] exp(c2u?t/2) and, in particular, the Gaussian
approximation X ) has as many exponential moments as the Lévy process X.

Proof of Proposition 4.6. By [99, Thm 6.16], there exists a coupling between (&, () 4

(Xr, Xp) and (¢,¢) £ (X1, X1, such that
E[(lg — &1 +1¢ = DM = Wa((Xr. Xq), (X5, X)),
The identity e’ — e® = fab e“dz implies that, for x > y and 2’ > 1/, we have
(@, y)= (2, ))] < K(le"—e” |+]e? —e¥'|) < K(Jw—a'|+|y—y/|)e™> 17"} (4.31)

Apply this inequality, the Cauchy-Schwartz inequality, the elementary inequalities,
which hold for all a,b > 0, (a4 b)? < 2(a®+b%) and (a+b)"/? < a'/? +b'/2 and the
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bound in (4.30) to obtain

E|f(¢C) — f(€,¢)| < KE[(I€ — €]+ [¢ — {')AV/2E[(ef + ef)?]!/?
< 22K Wo (X, Xp), (X{7, X)) E[e +eX']1/2
< 2KWs((Xr, Xo), (X3, X0 )E[eXT]12(1 4 7=T),

Applying Corollary 4.4 gives the desired inequality, concluding the proof of the

proposition. ]

We now introduce a tool that uses the LP-distance E[|¢ — ¢'[P]'/P between
random variables ¢ and ¢’ to bound the L!-distance E| L1y, 00)(€) = 1y,00)(¢")] between

the indicators.

Lemma 4.18. Let (£,¢) and (¢,¢’) be random vectors in R™ x R. Fiz y € R and
let h € Lipg (R™) satisfy 0 < h < M for some constants K, M > 0. Then for any

p,7 >0, the difference H = h(&)1y,00)(¢) — h(§')1}y,00)(¢) satisfies
E|H| < KE||§ = &'l + MP(IC — y| < r) + Mr PE[|¢ — {'P]. (4.32)
In particular, if [P(¢ <y) —P(( <y +7)] < Clr[? for some C,y >0 and all v € R,
E|H| < KE|§ — €|l + M(2Cy/p)7+ (1 + p/7)E[¢ — ¢'[P]7+7. (4.33)

Remark 4.19. An analogous bound to the one in (4.32) holds for the indicator
L(—coy)- Moreover, it follows from the proof below that the boundedness of the
function h assumed in Lemma 4.18 may be replaced with a moment assumption
£, € LY for some q > 1. In such a case, Holder’s inequality could be invoked to
obtain an analogue to (4.34) below. Similar arguments may be used to simultaneously

handle multiple indicators.

Proof of Lemma 4.18. Applying the assumed local y-H6lder continuous property of
the distribution function of ¢ to (4.32) and optimising over r > 0 yields (4.33).
Thus, it remains to establish (4.32).

Elementary set manipulation yields

[Lgy<cr — Ly<ey| = Myery<er — Lie<y<cry|
< Tqie—¢rpsrer<y<er + Le-¢i<re<y<cr T Le—cisre<y<cy T Ljc—¢<re<y<cy
< Tge—¢p>ry + Lfic—yl<r)-
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Hence, the triangle inequality and the Lipschitz property gives

’h(g)l[y,oo)(C) - h(gl)]l[y,oo)(clﬂ
< R T1y,00) (€) = Liy,00) (€] + [A(E) = R(E)T1y,00) (<) (4.34)
< M(Ljje—y<ry + Lie-¢p=ry) + Kl =€l

Taking expectations and using Markov’s inequality P(|¢ — (| > r) < r PE[|¢ — {'|?]
yields (4.32). O

Proof of Proposition 4.7. Theorem 4.3 and (4.33) in Lemma 4.18 (with C and ~
given in Assumption (H) and p = 2) applied to (X7, X ) and (X}H),XFE,T)) under
the SBG coupling give the claim. O

Proof of Proposition 4.9. Analogous to the proof of Proposition 4.7, Theorem 4.3
and (4.33) in Lemma 4.18 (with C' and v given in Assumption (H7) and p = 1),
give the result. O

Lemma 4.20. Suppose X is not a compound Poisson process. Then the law of Tp

is absolutely continuous on (0,T") and its density is locally bounded on (0,T).

Proof. If X or —X is a subordinator then 74 is a.s. 0 or T, respectively. In
either case, the result follows immediately. Suppose now that neither X nor —X
is a subordinator. Denote by n(¢ > -) (resp. n(¢ > -)) the intensity measures of
the lengths ¢ of the excursions away from 0 of the Markov process X — X (resp.
X — X). Then, by Theorem 5 in [28] with FF = K = 1, the law of 74 can only
have atoms at 0 or T, is absolutely continuous on (0,7) and its density is given by
s—=n((>s)n(¢>T—s),s € (0,7). The maps s — n(¢ > s) and s — n(¢ > s)
are non-increasing, so the density is bounded on any compact subset of (0,7,

completing the proof. O
In preparation for the next result, we introduce the following assumption.

Assumption (S-«). There exists some function a : (0,00) — (0,00) such that

X¢/a(t) converges in distribution to an a-stable law as t — 0.

Proposition 4.21. Let Assumption (S-«) hold for some a € (0, 2].

(a) If a > 1, then Assumption (H) holds uniformly on compact subsets of (—o0,0)
with v = 1.

(b) Suppose p = limy_,oP(X; > 0) € (0,1). Then for any v € (0,min{p,1 — p}),
there exists some constant C' > 0 such that Assumption (HT) holds for all s € [0,T].
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Note that p is well defined under Assumption (S-«) and that X;/a(t) can only
have a nonzero weak limit as t — 0 if the limit is a-stable. Moreover, in that case,
a is necessarily regularly varying at 0 with index 1/« and « is given in terms of the
Lévy triplet (02, v,b) of X:

2, o#0,
a=41, pe€(0,1) and b# f(—l,l) zv(dz),

B, otherwise,

where (3 is the BG index in (4.6). In fact, the assumptions of Proposition 4.12 imply
Assumption (S-«) by [17, Prop. 2.3], so Proposition 4.21 generalises Proposition 4.12.
We refer the reader to [60, Sec. 3 & 4] for conditions that are equivalent to (S-«).
Assumption (S-«) allows for the cases p = 0 or p = 1 when a < 1, correspond
to the stable limit being a.s. negative or a.s. positive, respectively. In these cases,
the distribution of 77(X) may have an atom at 0 or 7', while the law of 77(X ) is
absolutely continuous, making the convergence in Kolmogorov distance impossible.

This is the reason for excluding p € {0,1} in Proposition 4.21.

Proof of Proposition 4.21. By [17, Lem. 5.7], under the assumptions in part (a) of
the proposition, X has a continuous density on (—o0,0), implying the conclusion
in (a).

Since p = limy—,o P(X; > 0) € (0, 1), 0 is regular for both half-lines by Rogozin’s
criterion [91, Thm 47.2]. [28, Thm 6] then asserts that the law of 7, is absolutely
continuous with density given by s — n(¢ > s)n(¢ > T —s), s € (0,T). The maps
s+ n(¢ > s) and s — 7({ > s) are non-increasing and, by [17, Prop. 3.5], regularly
varying with indices p — 1 and —p, respectively. Thus for any v € (0, min{p,1 — p})
there exists some C' > 0 such that n(¢ > s)n(¢ > T — s) < Cs7 YT — )71 for all
s € (0,T). Thus, for any s,t € [0,7/2] with ¢t > s, we have

t t
P(rp <t)—P(ry < s) < / C’u'yfl(T — u)'yfldu < C’/ u'yfl(T/Q)W*ldu

s

< Oy T2 - ) < Oy T/ (- 8.

since the map = — 27 is concave. A similar bound holds for s,t € [T/2,T].
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Moreover, when s € [0,7/2] and t € [T/2,T] we have

Plrp <t) =Plrp < 8) <P(rp <t) = P(rp <T/2) + P(zp < T/2) = Pz < 5)
< Cy T2 (T/2 = ) + (t —T/2)"]
< CyHT/2)P2(t — 5)7.

This gives part (b) of the proposition. O

§4.6.4 Level variances under SBG-Alg

In the present subsection we establish bounds on the level variances under the
coupling II""'+™ (constructed in SBG-Alg) for Lipschitz, locally Lipschitz and even
discontinuous payoff functions (see BTy in (4.19) and BTy in (4.21)) of x.,..

Theorem 4.22. Fix T > 0, n € N and 1 > k1 > ko > 0. Denote the vector

(Zr(f}),zgf?,zgﬁ})) = ngiT), i € {1,2}, where the vector (ng})’&(f )

7). constructed in
SBG-Alg, follows the law IT'7"™.

(a) For any Lipschitz function f € Lipyx(R?), K > 0, we have
B[(1(202, 208) - 1259, 209))7) < KPT(ro2 4 4002). (439

For f € locLip(R?), defined in §4.3.2 above, if f[l %0) e**v(dz) < oo then there

exists a constant C' > 0 independent of (n, k1, k2) such that
E[(f(207, 203) = F(257 . 253))7) < C(3) " Vo) + % +Fuarir). (4:36)

(b) Suppose Assumption (H ) is satisfied by some y < 0 and C,~v > 0. Then for any
f e BT(y,K,M), K,M > 0, there exists some K' > 0 independent of (n, k1, k2)
such that

~

E[(f(22), 2% - (208, 250))%) < K'(0*27" +52) 7. (4.37)

(c) If 6 € (0,2] satisfies Assumption (O-), then there exists some C' > 0 such that
for any K >0, f € Lipg(R), n € N, k1 > ko and p € {1,2}, we have

E[lf (o)) = FEeI] w2
,2Kpr : <27"+Co, 077 (1+!log/i1|]l{5:%}), (4.38)

(d) Fiz s € (0,T) and let Assumption (O-0) hold for some 6 € (0,2], then for any
f€BTao(s, K, M), K, M > 0, there exists a constant C > 0 such that for anyn € N,
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p € {1,2} and K1 > K2, we have

min{z%- 1
E[lf () = 2] < C27% + o, =t 4 [log ki [1g5_z2y)]. (4:39)

The synchronous coupling of the large jumps of the Gaussian approximations,
implicit in SBG-Alg, ensures that no moment assumption on the large jumps of X
is necessary for (4.35) to hold. For locally Lipschitz payoffs, however, the function
may magnify the distance when a large jump occurs. This leads to the moment
assumption f[l’oo) e*®y(dr) < oo for f € locLip g (R?).

The proof of Theorem 4.22 requires bounds on certain moments of the differences
of the components of the output of Algorithms 2 & 3 and SBG-Alg, given in
Proposition 4.23.

Proposition 4.23. For any 1 > k1 > ka > 0, t > 0 and n € N, the following
statements hold.
(a) The pair (Zt('ﬂ), Zt(@)) ~ IV | constructed in Algorithm 2, satisfies

E[(2\"™) — 2"\ < 22, — a2))t,

m K2

E[(Z") — ZN) Y < 12(82, — 72,)%% + (52, — o2, )kit.

51

Moreover, we have E[(ng) — Zg )) P] < 4E[(Zt(m) - Z§R2))2p], for any p € {1,2}.

(b) The vector (Zt(m),zgm),zgm) Z( 2) Zg 2) z,ﬁ“?)) ~ " in Algorithm 3 satisfies

the following inequalities

E[(Z") - 2% = 2(0 + 52))1,
E[(Z") — 20 < 12(02 +02,)% + (62, — 02, )it

Oka

Moreover, we have E[(Z gm) — Zgw))%] < 4E[(Zt(m) - Zt(@))Qp], for any p € {1,2}.
(¢) The coupling ( ( ) X( )) H”lt’m, constructed in SBG-Alg, with components
X(m) _( ('%) Z("“z

Ant n,t »=n,t > nt

) i € {1,2}, satisfies the following inequalities:

4.40
256, + 24037 )% + T2 kit 4.41
< (2+43m)(0® +72,)27 "t + (2 + 5m)7, t

<2. 103[(a +5,,)237" + 5, | £

4.42
4.43

—~~ o~
~— ~— ~—

+ 27r621;-e15 t7 + 452 K3,
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Remark 4.24. (i) By Proposition 4.23, the L?-norms of the differences ngtl) —Z,(:f)
and Z, 2-@751) -Z fff) of the components of (X;’ftl), Xg?f))’ constructed in SBG-Alg, decay
at the same rate as the L?-norm of Zt(nl) —Zt('@), constructed in Algorithm 2. Indeed,
assume that k1 = cko for some ¢ > 1, ko — 0 and, for some ¢/, > 0 and all z > 0,
we have 7(z) = (R \ (—z,2)) > dx~". Then, for n = ﬂogQ(l + 7(k2))| we have
27" < Eil for all sufficiently small %1, implying the claim by Proposition 4.23(a)
& (c¢). Moreover, by Corollary 4.13, the corresponding expected computational
complexities of Algorithm 2 and SBG-Alg are proportional as ko — 0. Furthermore,
since the decay of the bias of SBG-Alg is, by Theorem 4.3, at most a logarithmic
factor away from that of Algorithm 2, the MLMC estimator based on Algorithm 2
for Ef(X;) has the same computational complexity (up to logarithmic factors) as
the MLMC estimator for Ef(X;, X,) based on SBG-Alg (see Table 4.3 above for the
complexity of the latter).

(ii) The proof of Proposition 4.23 implies that an improvement in Algorithm 2 (i.e.
a simulation procedure for a coupling with a smaller L2-norm of Zt(m) - Zt(m)) would
result in an improvement in SBG-Alg for the simulation of a coupling (Xl(f”l), Xg"?)).
Interestingly, this holds in spite of the fact that SBG-Alg calls Algorithm 3 whose
coupling [T is inefficient in terms of the L?-distance but is applied over the short
interval [0, Ly,].

(iii) A nontrivial bound on the moments of the difference Igm) — IEHZ) under the
coupling of Algorithm 3, which would complete the statement in Proposition 4.23(b),
appears to be out of reach. By the SB representation in (4.2), such a bound is
not necessary for our purposes. The corresponding bound on the moments of the
(k1) _7(72) constructed in SBG-Alg, follows from Proposition 4.25 below,

difference 7 Tt s

Tn,t
see (4.49).

(iv) The bounds on the fourth moments in (4.41) and (4.43) are required to control
the level variances of the MLMC estimator in the case of locally Lipschitz payoff
functions and are applied in the proof of Theorem 4.22(a).

Proof of Proposition 4.23. (a) The difference Zt(m) —Zt(m) equals, by (4.5), a sum of
two independent martingales: ((72 +02)Y/2 — (52, +¢2)'/2)W, and R
(bky — bky)t. Thus, we obtain the identity

E[(Zt(nﬂ - Zt(@))Q] = [(\/02 +52 — \/02 +E%2)2 +52 — G2, |t

The first inequality follows since 0 < (02 +52 )/2 — (o2 +Ei2)1/2 < (o2, —Ei2)1/2.

Since Zt(nl) - Zt(m) is a Lévy process, differentiating its Lévy-Khintchine formula
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in (4.3) yields the identity
E[(Zgnl) - Zt(@))ﬂ = 3[(\/02 +52 — \/0'2 + 622)2 +0. — 02, g
+ L‘/ ztv(dx),
(=r1,m1)\(—K2,K2)

which implies the second inequality. Since |Z§m) —Z£H2)| < SUPyefo g |z _ 7))

Doob’s maximal martingale inequality [62, Prop. 7.16] applied to the martingale
(ng) - ZS(“?))SE[OJ] yields

EHZEM) 7;&%2)‘:0] < (1 . 1/p)_pEHZ§R1) _ Zt(nz)lp]’ p>1.

The corresponding inequalities follow because (p/(p — 1))P < 4 for p € {2,4}.

(b) Analogous to part (a), the difference Zt('ﬂ) —Zt(m) constructed in Algorithm 3
is a sum of two independent martingales: (72, + o?)1/2B; — (@2, + o2)'2W; and
JPEU — P52 4 (b, — be,)t, where B and W are independent standard Brownian
motions. Thus the statements follow as in part (a).

(c) Let (€15, &2,%) ~ HZ’”Q, ke{l,...,n}, and (§1,§2) ~ II7""™ be independent
draws as in line 2 of SBG-Alg above. Denote by (€i7n+1’§i,n+l) the first two
coordinates of (, i € {1,2}. Since the variables {& j — €2} 11 have zero mean and
are uncorrelated, by conditioning on {¢;}}_, and L,, and applying parts (a) and (b)

we obtain

E[(Z'r(:tl) - Zv(:f))ﬂ = V[Zé’?) - Zq(z’ff)] = V[ 1 — Eont1] + ZV[fl,k — &9 ]
k=1

< 2(0? +72))E[Ly) + 252 ZE@
=2(0* +72,)2 "t + 202, (1 — 27t

implying (4.40). Similarly, by conditioning on {/;}}_, and L,,, we deduce that the

expectations of

3
i —&om) e —Emy)s (Gopy —&k)” [[ 1k —E2k),  and H 1k —E2,k:)
i=2
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vanish for any distinct k1, ko, k3, k4 € {1,...,n+1}. Thus, by expanding, we obtain

n+1
E[(thl) - Z,(ff))zl] = ZE[(&,k - 52,k)4]
= n n+1 ) )
+6> Y E[(Grm — o) (61 — E20)°].
m=1k=m-+1

The summands in the first sum are easily bounded by parts (a) and (b). To bound
the summands of the second sum, condition on {{;}}_; and L,, and apply parts (a)
and (b):

4EiE€m£ ) m<k§n’
E[(&1r — &) (61m — E2m) "] < | [7 k]ﬁ
A(0® +52 )52 ElbmLy), m<k=n+1.

Inequality (4.41) follows since E[¢,,0;] = 3~ ™m2m~F=142 E[(L,] = 37*2F""142 for
m < k <nand 0227752 < 0237252 < (0137 +7L) /2.

The representation in line 3 of SBG-Alg and the elementary inequality: for all
a,b € R, |min{a,0} — min{b,0}| < |a — b, imply

n

E[(Ziftl) - Zgﬁf))ﬂ <E |:(§17n+1 - §2,n+1)2 +> (& — §2,k)2]

k=1

n
+2E Z ’§1,n+1 - §2,n+1 | ’51716 - 52176’ (4.44)
k=1

n—1 n
+EY ST |€im — Eom €1 — 2.

m=1k=m-+1

The first term on the right-hand side of this inequality is easily bounded via the
inequalities in parts (a) and (b). To bound the second term, condition on {f}}_,
and Ly, apply the Cauchy-Schwarz inequality, denote v = /o2 + Eil and observe
that for m < k < n we get

E[1€ 001~ Eon 610 — €24l] S E[\/16(0° + 52,52 taLn] =m0z (3)" (3",
E

61 Sl [€14 — aul) < E[ /108, 6] = 2, ()" (3)* ™,

where the equalities follow from the definition of the stick-breaking process. By (4.44)
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we have

[ee] o0
E[(207) - 2U2)) <2t 4 252 t ST ok omu,, (2)"Y (3)F
k=1 k=1

o o i
ot > 2 (E)
m=1 k=1
so (4.42) follows from the inequalities v(2/3)"7, < v2 27, < (V22" +52)/2.
As before, |min{a,0} — min{b,0}| < |a — b| for a,b € R, yields the inequality

n 4
E[(ngtl) - Z;’Tf))él] < E[<‘§17n+1 - §27n+1| + Z |§17k - €2J€|> ] : (4~45)
k=1

By Jensen’s inequality, E[|9)] < E[¢Y]*/* and E[¢] < /E[#?] for any random
variable . Hence, we may bound the first and third conditional moments of

€16 — &k

conditioning on {{;}}_, and L,, and using elementary estimates as in all the

and ]§1,n+1 - §27n+1| given {{}}_, and L,. Thus, by expanding (4.45),

previously developed bounds, we obtain (4.43). O

In order to control the level variances of the MLMC estimator in (4.53) for
discontinuous payoffs of x , and functions of 7,, we would need to apply Lemma 4.18
to the components of (Xgl’f;),ngf)) constructed in SBG-Alg. In particular, the
assumption in Lemma 4.18 requires a control on the constants in the locally Lipschitz
property of the distribution functions of the various components of (Xﬁﬂ)@f{?))
in terms of the cutoff levels k1 and k9. As such a uniform bound in the cutoff
level appears to be out of reach, we establish Proposition 4.25, which allows us to
compare the sampled quantities ngtl) and X,(ff) with their limit x ] (as K1, k2 — 0).
Since, under mild assumptions, the distribution functions of the components of the
limit x , bossess the necessary regularity and do not depend on the cutoff level, the
application of Lemma 4.18 in the proof of Theorem 4.22 becomes feasible using

Proposition 4.25.

Proposition 4.25. There is a coupling between x, = (X, Xy, 1) and (X;’itl), ngt?)) ~
105" such that for any i € {1,2} and p > 1, the vector (Z(Hi) Z) 2y - &(ﬁ)

n,t »=n,t 1 -+n,t
satisfies
E[(X: - 2%)%] < (40%27" - 11y (6) + 202t (4.46)
E[(X, - 2%)?] < (480227 - 1y (i) + 4252t (4.47)
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Moreover, if § € (0,2] satisfies Assumption (O-0), we have
E[|r, — 70 [P] <277 + 7 710(t, i), (4.48)

where, given T > t, there exists a constant C > 0 dependent only on (T,0%,v,b)
such that for all k € (0, 1], the function 0(t, k) is defined as

(1A V/Ca)t, §=2,
0(t, k) = t/\(C’E,i);T‘sa_|_5g17f2 Caﬁ(t%_t%/\((jan)%), 56(072)\{%}7
t ANVCG, 4+ /Ca,log™ (t//CGy), §=2.

As a simple consequence of (4.48) (with p = 1) in Proposition 4.25 and the
inequality \Igftl) — I;Hf)] < t, we deduce that the coupling in SBG-Alg satisfies

EHIX”;) — T(m)!p] < ol=myp 4 2tp_19(t, k1), for any p > 1. (4.49)

-—n,t

The bounds in (4.46) and (4.47) of Proposition 4.25 imply the inequalities in (4.40)
and (4.42) of Proposition 4.23(c) with slightly worse constants.

Proof. The proof and construction of the random variables is analogous to that of
Proposition 4.23(c), where, for i € {1,2}, we compare the increment 2 defined
in Algorithm 2 with the Lévy-Ité decomposition X, = bs + oW, + J&& + J2ri
(W is as in Algorithm 2, independent of J'* and .J?*i) over the time horizons
s € {l,...,l,_1}. Similarly, we compare the pair of vectors (Xi’“), XgHQ)) output by
Algorithm 3 with x _for s = Ly, where we assume that the (standardised) Brownian
component of X equals that of Xg“” (and is thus independent of the one in Xg'“))
and all jumps in J?"2 are synchronously coupled.

Denote the first and fourth components of the vector (Xg””l), X§“2)) by Z 5('“) and
Z S(HQ), respectively. Hence, it is enough to obtain the analogous bounds and identities
to those presented in parts (a) and (b) for the expectations IE[(Xt—Zt(M))Q], ie{1,2}
under both couplings: II;*"* and II;"""*. Such bounds may be obtained using the

proofs of parts (a) and (b), resulting in the following: for ¢ € {1,2}, we have

. 2
E[(X: — Zt(m))Z] = {(\/0'2 +52, — 0) +Eii]t < 2.t, under IIf""™,  (4.50)
2

E[(X: — 2")%] = 2(0 - 1y (i) + 721, under 17",

Thus Doob’s martingale inequality and elementary inequalities give (4.46) and (4.47).

K1,R2

nit  in SBG-Alg, there exist random variables

By the construction of the law I
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(&.)r—, such that for & € {1,...,n}, conditional on ¢, = s and independently of
{¢;} 2k, the distributional equality (£}, &1k, &2,k) 4 (Xs,Zénl),Z§H2)) holds, where
(Zt(m), Zt(@)) ~ II;"" and W in Algorithm 2 equals the Brownian component of X
n (4.4). Note that by (4.2) we have

)
In,t

R <0} —1{&r <0}, forie{1,2}. (4.51)

‘It -

Let § € (0,2] be as in the statement of the proposition. By [86, Thm 3.1(a)], as
in the proof of Theorem 4.3, we know that the density f; of X; exists, is smooth and,
given T > 0, the constant ¢’ = 23/2 SUD(s,2)(0,T] xR sY9f(x) is finite. Thus, (4.33)
in Lemma 4.18 (with constants v =1 & C = 2_3/26;1/5C’ and M =1, K =0&
p=1) gives

E[|1{& < 0} — 1{& 1 < 0}|]¢] < min {1, 271/4\@61;%15[!& — fi,ka]m}
< min {1,274/, 7 (252 0) /1,

for any i € {1,2} and k € {1,...,n}, where the second inequality follows from
Jensen’s inequality and (4.50). Hence, elementary inequalities, together with (4.51)
and Lemma 4.14 imply the following: for i € {1, 2},

Elr, — 7% <EL, +ZE [0 148, < 0} — 1{&x < O}]
k=1

<27t 4+ Z}E[min{\/C’Eﬁifé_%,Ek}] <27 4 0(t, k).
k=1

For p > 1, the result follows from the case p = 1 and the inequality |7, — 7- |p <
P, — 7'( )|. O

n,t

Proof of Theorem 4.22. (a) Proposition 4.23(c) and elementary inequalities yield
the bound in (4.35), so it remains to consider the case f € locLipy(R?). As in
the proof of Proposition 4.6, by the inequality in (4.31) and the Cauchy-Schwarz

inequality, we have

K K K 212 K K K K
E[(f(Z\%,208) — 1202, 2h)*)? < K'E[(120%) — 292 + 1208 - Z02)Y,

)

where K’ = K'E[(exp(Zy)) + exp(Z,7))1] < 8Elexp(4X{™)) + exp(4X{™))].
Applying (4.30), we get Elexp(4 X:(FHZ))] < Elexp(4X7)] exp(4T752)) and 72, < 573,
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i € {1,2}, where Elexp(4X7)] is finite since f[l 00) e*®y(dr) < co. The concavity of
x — /z and Inequalities (4.41) & (4.43) Proposition 4.23(c) imply the existence of
a constant C' > 0 satisfying

VEIZE - 2030+ 1255 — 2824
< C(2/3)" + 11T52 + V2r T35 3 + /5T 5, 1.

Inequality (4.36) then follows from the fact that 5%4/&?/ ‘< max{cy,, K1} < T, +HK1.

(k1) . (k2) . " . .
(b) Let (Xps Xp.7+ Xnr ) be coupled as in Proposition 4.25 with the notation
Xy = (X7, Xqp, 77) and XE?%J = (Zi“;),gff;),sz;)), i € {1,2}. The triangle inequality
and the inequalities 0 < f < M give

E[(f(2,7.2.7) = 127 . 2,7))°) < ME|f (2. 2,71 - 1(277. 2,7))]

2
<MY E[F(205, 259) — F(Xr, X7)].

i=1

Apply (4.33) in Lemma 4.18 with C' and v from Assumption (H) to (X7, X ;) and
(245,29 o g

E|f(X7, Xg) — f(2\%), 20|
< KE[|Z2\5) - Xr|] + M(1+2/)(CE[| 253 — X, [*]")7

< KyT(0?27 - 1y () + 202) + K(0%27" - 1y (i) + )55,

for any i € {1,2}, where K" = M(1 + 2/7)(48C?y?>T")/2+7)_ In the second
inequality we used the bounds (4.46) & (4.47) in Proposition 4.25. Since G, > Gy,,
the result follows.

(c) Recall that the inequality in (4.49) follows from (4.48) of Proposition 4.25.
The inequality in (4.38) in the proposition is a direct consequence of the Lipschitz
property and (4.49).

(d) The proof follows along the same lines as in part (b): we apply (4.33)
in Lemma 4.18 with C' and v from Assumption (H7) and bounds (4.46)—(4.48) in
Proposition 4.25. O

§4.6.5 MC and MLMC estimators

In the present subsection we address the application of our previous results to

estimate the expectation E[ f(XT)} for various real-valued functions f satisfying
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E[f(XT)2] < oo. By definition, an estimator T of E[f(x,.)] has L2-accuracy of
level € > 0 if E[(T — IEf(XT))Z] < €2. We assume in this subsection that X has
jumps of infinite activity, i.e. »(R\ {0}) = oco. If the jumps of X are finite activity,
both Algorithm 3 and SBG-Alg are exact with the latter outperforming the former
in practice by a constant factor, which is a function of the total number of jumps

Tv(R\ {0}) < oo, see §4.5.2 for a numerical example.

MC estimator

Pick k € (0,1] and let the sequence Xi;’i, i € N, be iid with the same distribution
as ng) simulated by SBG-Alg with n € NU {0} sticks. Note that the choice of n
does not affect the asymptotic behaviour as € N\, 0 of the computational complexity

Cmc(€). The MC estimator based on N € N independent samples is given by

N
Tuc = %Z FOh). (4.52)
=1

The requirements on the bias and variance of the estimator YTyc (see §3.5.1),
together with Theorem 4.3 and the bounds in (4.18) as well as Propositions 4.6,
4.7 & 4.9, imply Corollary 4.26. By expressing « in terms of ¢ via Corollary 4.26
and (4.12), (4.15)-(4.16), the formulae for the expected computational complexity
Cumc(€) in Table 4.2 (of §4.4.2 above) follow.

Corollary 4.26. For any € € (0,1), define k as in (a)-(d) below and set N =
{26_2V[f(ng))ﬂ as in §3.5.1. Then the MC estimator Ync of E[f(x,)] has L2-
accuracy of level € and expected computational cost Cynic(€) bounded by a constant
multiple of (1 +7(k)T)N.

(a) For any K > 0, g € Lipg(R?) (resp. g € locLipg(R?)) and f : (v,z,t) —
g(z,z), set

k= sup{x’ € (0,1] : 2u1 (K, T) < €/V/2}
(resp. K =sup{x’ € (0,1] : 8K uz(x', T)(1 + exp(2T7%))Elexp(2X7)] < €2/2}).

(b) Picky < 0 and let Assumption (H ) hold for some C,~y > 0. Suppose f : R3 — R
is given by f(x,z,t) = h(x)1} )(2) where h € Lipg(R) and 0 < h < M for some
K, M > 0. Then

= sup{’ € (0,1] : M(CY)/ (1 +2/7)a(i', TV WD 4 Kpuy (W, T) < €/ V2.

(c) Let § € (0,2] satisfy Assumption (O-6). Let f : (z,z,t) — g(t), where g €
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Lipg(R), K > 0, then
k =sup{x’ € (0,1] : Kul(k',T) < ¢/V/2}.

(d) Fiz s € (0,T) and let 6 € (0,2] satisfy Assumption (O-0). Then there ezists a
constant C > 0 such that for f € BTy(s, K, M), K, M > 0, we have

k =sup{x’ € (0,1] : C\/KuI(x',T) < €/V2}.

MLMC estimator

Let (rj)jen (resp. (nj)jenuqoy) be a decreasing (resp. increasing) sequence in (0, 1]
(resp. N) such that lim; oo k; = 0. Let XO,z‘ 4 ng) and (X{Z’X%Z) ~ EZ?,;HI’

i,7 € N, be independent draws constructed by SBG-Alg. Then, for the parameters
m, No, ..., Ny, € N, the MLMC estimator takes the form

1Ay G - (), i1,
Yur =Y ~ > Di, where Di=¢"'72 =1 (4.53)
=0 Nj o ! ’ F(xX%, j=0

The bias of the MLMC estimator is equal to that of the MC estimator in (4.52)
with Kk = kpm. Given the sequences (n;);enuqoy and (k;)jen, which determine the
simulation algorithms used in estimator (4.53), §3.5.2 derives the asymptotically
optimal (as € “\, 0) values for the integers m and (N;)jL, minimising the expected
computational complexity of (4.53) under the constraint that the L?-accuracy of
Twr is of level e. The key quantities are the bounds B(j), V(j) and C(j) on
the bias, level variance and the computational complexity of SBG-Alg at level
j (ie. run with parameters x; and nj;). The number of levels m in (4.53) is
determined by the bound on the bias B(j), while the number of samples N; used
at level j is given by the bounds on the complexity and level variances, see the
formulae in (3.44)—(3.45). Proposition 4.27, which is a consequence of Theorem 4.3
and Propositions 4.6, 4.7 & 4.9 (for bias), Theorem 4.22 (for level variance) and
Corollary 4.13 (for complexity), summarises the relevant bounds B(j), V(j) and
C(j) established in this chapter (suppressing the unknown constants as we are only

interested in the asymptotic behaviour as € N\ 0).

Proposition 4.27. Given sequences (kj)jen and (nj)jenufoy as above, set C(j) =
nj + U(kjp1)T. The following choices of functions B and V' ensure that, for any
e > 0, the MLMC estimator Yy, with integers m and {N; o gwen by (3.44)-

(3.45), has L%-accuracy of level e with complexity asymptotically proportional to
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Cu(e) = 262 (e VEDV())*
(a) If K > 0, g € Lipg (R?) (resp. g € locLipg(R?)) and f : (z,2,t) — g(x, 2), then
for any 7 € N,

B(j) = p(k;, T) and V(j) =0°27" + 72,
(resp. B(j) = pa(s;, T) and  V(§) = (2/3)"/% - Ip\(oy (0) + T, + T, 5j).

(b) Picky < 0 and let Assumption (H ) hold for some C,~v > 0. If f € BT1(y, K, M),
K, M >0, then for any j € N,

B(j) = min{yu (r55, T) O, o (s, 7)Y} and
V() = a2/ (2+7)9=nv/(247) + 2/ (2+7)
Kj

(c) Let Assumption (O-6) hold for some ¢ € (0,2] and f : (x,z,t) — g(t) for some
g € Lipg(R), K > 0, then for any j € N,

B(j) = pl(r;,T) and V(j) =27 4 gpntl/220/C=0k(1 4 |log k| - Ls_2y).

(d) Let f € BTa(s, K, M) for some s € (0,T) and K,M > 0. If § € (0,2] satisfies
Assumption (0-6), then for any j € N,

B(j) = \/pI(k;,T) and V(j)= 2*”j/2+52?n{1/4’5/(2_6)} (l—i—\/\log nj\-]l{(;:%}).

Remark 4.28. By (4.12) and (3.45) we note that x,, in Proposition 4.27(a) is
bounded by (and typically proportional to) Coe/|loge|. Moreover, if i, = e¢~7("~1)
for some r > 0, then the constant Cy does not depend on the rate . A similar

statement holds for (b), (c¢) and (d), see Table 4.2 above.

It remains to choose the parameters (n;);enufo} and (k;)jen for the estimator
in (4.53). Since we require the bias to vanish geometrically fast, we set x; = e rU-1)
for 5 € N and some r > 0. The value of the rate r in Theorem 4.29 below is
obtained by minimising the multiplicative constant in the complexity Cyr,(€). Note
that n; does not affect the bias (nor the bound B(j)) of Tmr,. By Proposition 4.27,
n; may be as small as a multiple of log(1 /Ei],) without affecting the asymptotic
behaviour of the level variances V'(j) and as large as 7(k;41) without increasing the
asymptotic behaviour of the cost of each level C'(j). Moreover, to ensure that the
term 0227 in the level variances (see Theorem 4.22 above) decays geometrically,
it suffices to let n; grow at least linearly in j. In short, there is large interval

within which we may choose n; without it having any effect on the asymptotic
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performance of the MLMC estimation (see Theorem 4.29 below). The choice n; =
ng+ [max{j, log?(1 + ﬂ(nﬁl)T)}], for j € N, in the numerical examples of §4.5 fall
within this interval (recall [z] =inf{j € Z: j > 2z} for z € R).

Theorem 4.29. Suppose q € (0,2] and ¢ > 0 satisfy V(k) < ck™9 and 72 < ck?74
forallx € (0,1]. Pickr >0, set k; = e "0~V and assume that max{j, log2/3(ﬁij)} <
nj < CU(kjy1) for some C > 0 and all sufficiently large j € N. Then, in cases
(a)-(d) below, there exists a constant C, > 0 such that, for all € € (0,1), the
MLMC' estimator Yy, defined in (4.53), with parameters given by (3.44)-(3.45),
is L2-accurate at level € with the stated expected computational complezity Cyr(€).
Moreover, Cy is minimal for r = (2/|al)log(1 + |a|/q) - Tr\(oy(a) + (2/q) - 1{0y(a),
with a € R given explicitly in each case (a)-(d).

(a) Let g € Lipg(R?) UlocLipg (R?) for K > 0 and f : (x,2,t) = g(x,2). Define
a=2(¢—1) and b= L) + L0y (Ligerip, (22)) * 57 T LiggLin,c(22)) * 1) then

C a i
Cuwle) < 575 (14 log? e 11y (g) + [log e (/DOHHIELPIEDD g | o) (q)). (4.54)

(b) Let f: (x,z,t) — g(z,z) where g € BT1(y, K, M) for somey < 0 and K, M>0

such that (H ) is satisfied by y and some C,~v > 0. Define a = 2‘1(1;—_3 Te (- 2_5_7, 2]
and b= (1/2+1/7)(Lig=0} + Yorog<1} " 5o55 + Lorog21) 75, then

C <Y 14 1 log |

ML) < 5rorp (L +1og” e Tggm oy + [logel® - 1o 1y(4) (4.55)

+ |log e[/ '1[1,2](@),

(¢) Let f: (x,z,t) — g(t) where g € LipK(]R) K >0, and let (0-0) hold for some
5 € (0,2]. Definea=q— (1— %) min{3, ;2 6} and b = min{3, max{3, }}}, then

o | e Mo dpuo—amgy  9€ OANE 5D
Cuw(e) < 62Tj+b [ log €| - 1(2/5,2)(q) + |log el - Li=2y, 0= Z, (4.56)
[ log e[, 6 =3

(d) Fiz s € (0,T) and let 6 € (0,2] satisfy (O-0). Definea = q—(1— ‘722)m1n{4, 525

and b = min{%,max{f&, %}}, then for any K, M > 0 and f € BTy(s, K, M), we have

C, 1—|—10g26-]l{q:%}, §=2,

Curle) < 5o .
T 1 1 4+ /loge| T2y + |logel - 15 sy, 0 €(0,2).

(4.57)
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Remark 4.30. For most models either 3 = § or o > 0, implying a™b € [0,2] in
parts (a) and (c), a™b € [0,2(1/2 + 1/~)] in part (b) (with ~ typically equal to 1)
and a*b € [0,4] in part (d).

Proof of Theorem 4.29. Note that k1 = 1 by definition independently or r > 0,
thus making both the variance V[Dé] and the cost of sampling of Dé independent of
r. We may thus ignore the 0-th term in the bound 6*2(22-”:0 VV(5)C(5))? on the
complexity Cpy(€) derived in §3.5.2. Since m is given by (3.44), by Table 4.2 and
Remark 4.28, the function 7 : (0,1) — (0, 00) given by

(b|loge| + clog|loge|)/r, in (a) & (b) and, if § = , in (c) & (d),
bllogel|/r in (c) & (d) if 6 # 2,

satisfies m < m(e) + C’/r for all € € (0,1) and r > 0, where the constant C’ > 0 is
independent of r > 0. Thus, we need only study the growth rate of

[m(e)] [m(e)]
o) =3 VOV = Y /i + 55 )TV (), as €0,
j=1

Jj=1

because Cyr(€) is bounded by a constant multiple of € ?¢(¢)2. In the cases where
V(j) contains a term of the form e™*" for some s > 0 (only possible if o # 0), the

product nje %" < eni/2

vanishes geometrically fast since n; > j for all large j.
Thus, the corresponding component in ¢(¢€) is bounded as ¢ — 0 and may thus be
ignored. By Proposition 4.27, in all cases we may assume that V'(j) is bounded by
a multiple of a power of Eij and C(j) is dominated by a multiple of T(k;j41).

Since (k) < ck~? and 72 < ck?~? for x € (0,1], Proposition 4.27 implies

SO e in (a),
o0 < 6, 4 Dt in (b),
SOV Ji G mint 220 ) log g 11,060(5)), i (o),
STy e OIEEN (1 oy [14ay(9)), in (a),

for some constant K, > 0 independent of r and all € € (0,1), where in part (a) we
used the fact that 7.k < \/ck2~9/2 for all x € (0, 1].
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a) Recall that x; = e "0U~1) and Kity] = e "U=D=" implying
J J

nj__glﬂi_q =" for all j € N, where a = 2(q — 1), (4.58)

Suppose a < 0, implying ¢ € (0,1). By (4.58), the sequence (/i;flli?_q)jeN
decays geometrically fast. This implies that lim,jo ¢(e) < oo and gives the desired
result. Moreover, the leading constant C., as a function of r, is proportional to
€"1/(1 —e¥/?)2 as € | 0. Since a # 0 for ¢ € (0,1), the minimal value of C, is
attained when r = (2/]al) log(1 + |al/q).

Suppose a = 0, implying ¢ = 1. By (4.58) and the definition of m(e€), ¢(e) <
K.e"/2(b|log €| + log |loge|)/r, giving the desired result. As before, the leading
constant C,., as a function of 7 is proportional to e"/r? as e — 0, attaining its
minimum at r = 2.

Suppose a > 0, implying ¢ € (1,2]. By (4.58) and the definition of m(e), it

similarly follows that

K2erd K2erd
* ea(b| log e[+log |loge|) _ * S€ ab’ loge\a.

A" < s oy (I

The corresponding result follows easily, where the leading constant C,, as a function
of 7, is proportional to €"9/(e®/2 —1)2 as € | 0 and attains its minimum at r =
(2/a)log(1 + a/q), concluding the proof of (a).

(b) As before, we have

_ . 1 _
~q 2=/ (24) _ equ‘"(j_l), for all j € N, where a = 27(1( +7) 24

Rjt17 24~

(4.59)
Suppose a < 0, implying ¢ < /(1 + ). Then lim,o¢(e) < oo by (4.59),
implying the claim. Moreover, r = (2/|a|) log(1+ |a|/q) minimises C, as in part (a).
Suppose a = 0, implying ¢ = /(1 + 7). Then we have the bound ¢(¢)? <
K2r=2e™(b|loge| + log |loge|/2)?, and r = 2/q = 2 + 2/~ minimises the leading
constant.
Suppose a > 0, implying ¢ > /(1 + 7). By (4.59), we have

K2erd K2erd _
(;5(6)2 * ea(b|loge|+log|loge|/2) * 6 ab’ loge‘a/27

- (ea’r/2 _ 1)2 (ear/Q _ 1)2

and the leading constant is minimal for r = (2/a)log(1 + a/q).
In parts (c) and (d), note that a < 0 if and only if 6 = 2 (i.e. o # 0). Analogous

arguments as in (a) and (b), complete the proof of the theorem. O
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