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Abstract

The actions of many interacting entities within socio-economic systems

proclaim the configurations such as the spatial structure in urban environ-

ments. Hence understanding these underlying interactions are important in

making the location decisions for growth in urban systems. In this thesis, a

Bayesian spatial interaction model, henceforth BSIM, is developed to provide

probabilistic predictions about revenues generated by a particular business

location, based on its features and the potential customers’ characteristics in

a given region. BSIM explicitly accounts for the competition among the facil-

ities through a probability determined by evaluating a store-specific Gaussian

distribution at a particular customer location. I propose a scalable variational

inference framework that exhibits comparable performance in terms of para-

meter identification and uncertainty quantification while being significantly

faster than competing Markov Chain Monte Carlo inference schemes.

The advantages of the introduced BSIM are explored in addressing the com-

petitive facility location problem that typically arises when businesses plan to

enter a new market or expand their presence in an environment with existing

competitors. A mathematical modelling framework is formulated to simultan-

eously identify the location and design of new stores in order to maximise the

revenue predicted from BSIM in a geographical region. Solving the underlying

optimisation problem requires the provision of an exhaustive set of potential

sites, which is difficult in practice. Instead, a search algorithm is proposed

based on the quadtree method to overcome this challenge by hierarchically

exploring geographic regions of varying spatial resolution.

This thesis introduces multiple large-scale real-world datasets compiled

with open and proprietary data. Finally, demonstrate the proposed framework
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by producing optimal facility locations and corresponding designs for two case

studies in the supermarket and pub sectors in Greater London, providing

valuable insights for planning and decision-making under uncertainty.
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Chapter 1

Introduction

Understanding the mechanics of complex systems such as cities is a challen-
ging task in contemporary science [6]. Cities are shaped by the actions of
many interacting individuals within socio-economic systems. These interac-
tions decide the existence, growth and decline in urban environments [61]. In
the last two decades, advancements in technology have significantly influenced
these interactions and urban structures. For instance, customers’ interactions
with businesses have predominantly moved from physical stores to online, chal-
lenging the existence of physical retail stores. In Great Britain, online sales
as a proportion of total retail sales have tripled in a decade, reaching 21%
in 2019 [110]. Technology has also enabled access to much richer large-scale
datasets and increased computer processing power has made it possible to cal-
ibrate complex mathematical models. Hence much attention has been gained
recently to adopt the Bayesian approach to quantify aleatoric and epistemic
uncertainty [84]. Indeed these developments demand a Bayesian approach for
formulating interactions in urban environments for making location decisions
and is the subject of this thesis.

System theories help better understand the complexities of the world we
live in and describe the underlying processes of real-world problems. These
theories affirm that events do not occur in isolation but involve interrelated
entities that form a consolidated group known as the system [138]. Thus
primarily, it aims to identify relevant interrelationships from the perspective
of entities and processes [33]. The nature of these relationships determines how
the entities interact with each other. The associations could be either between
the same class of entities or across multiple classes and at different levels.
System analysis has the great advantage of identifying underlying processes
to predict possible future outcomes.

Defining systems are never the same and depend on the problem as well as
the motivations of the analysis. The elements of a system may not only consist
of built components (e.g. computer chips, retail stores etc.) and natural
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entities (e.g. trees, rivers etc.) but also humans considered as intelligent
agents, thus known as socio-economic systems [115]. In order to explain human
behaviour and economics, it is important to understand the eco-dynamics of
the larger interconnected general system [19]. Broadly, the economic system
determines how societies or governments regulate the distribution of services
and goods across a geographic region, forming the financial structure of a
certain community [64].

1.1 Motivation

This thesis focuses on a significant component that drives economic systems:
the interactions of intelligent agents with entities providing services or products.
These social and economic systems vary across geographic space and time. For
instance, over time, the entities are drawn into areas in order to benefit from
positive externalities arising from shared resources, leading to changes in spa-
tial dynamics [47]. Furthermore, at a given moment, the differences in space
are evident comparing rural and metropolitan areas, where more contrasted
opportunities are available to citizens [138]. This study focuses on the be-
haviour of intelligent agents and decision makings on entities within spatial
dimensions in a certain time horizon.

System dynamics effects in respect to space are broadly explained by spa-
tial heterogeneity, and spatial dependence [4]. Spatial heterogeneity explains
the variation of the distribution in events across the geographic space [45]. For
example, differences in the spending capacity across regions. In contrast, spa-
tial dependencies define the association between events at a specific location
and actions in neighbouring areas. Such relationships influence the entities
to benefit from positive externalities known as agglomeration economies [99].
The interactions between the same class of entities lead to the specialism that
depicts localisation economies, whereas links between cross-industries produce
diversified cities forming urban agglomeration economies [47]. The knowledge
created by firms or institutions does not remain within only but spill over to
influence the other neighbouring economies [3]. The strategic role of interac-
tions among agents, institutions, and local economies is of primary interest in
explaining urban growth dynamics.

Henceforth a major area of research in urban science is to describe the
flows that arise from interactions between entities such as humans, goods and
service providers, and physical infrastructure [11]. The spatial interactions are
of various sorts: trade flows, commutes, ideas, capital, tourists, transportation,
migrants etc. In economic systems such as market economies, the financial
decisions and pricing of goods and services are controlled by the interactions
between supply served by facilities and demand created at demand points, also
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referred to as customers [88]. The flows (Fij) between destination (facility Dj)
and origin (demand point Oi) in an urban system are illustrated in Fig. 1.1.

Figure 1.1: Illustration of possible flows in an urban system. It is assumed
that there are 4 demand points and 2 facilities. The flow Fij denotes the flow
of quantities from origin Oi to destination zone Dj .

Mathematical modelling of spatial interactions has a long history dating
back to 1929 [125]. Since then, many researchers have formulated the declin-
ing pattern of flows with the increase in distance similar to the gravity model
[38, 79, 105]. The utility of a facility perceived by the customer depends on the
location and attraction. The facilities closer to customer and with high quality
are more attractive. Various methods are applied in the literature to model
utility, but the most popular method is to divide the attraction by a func-
tion of distance[11]. Early studies assumed that customers prioritise the most
attractive facility, known as the deterministic rule [37, 74]. However, this hy-
pothesis did not find empirical evidence except for areas with limited shopping
options, and transportation is difficult [51]. On the contrary, Huff introduced
the probabilistic rule that states customers patronise all facilities, and demand
is allocated proportionally to the utility [78]. Many extensions to this model
are predominantly applied in forecasting future customer choices, migration
patterns, and transportation demand [16, 34, 95, 135, 148]. However, accessing
individual customer transactional data is highly restrictive due to the confid-
entiality compared to transportation or migration data between designations.
Hence deriving aggregate forecasts such as revenues or demand at store levels
from a disaggregate spatial interaction model remains a challenge[129].

The estimated revenue or market share at new sites is of prime importance
for making location decisions in competitive environments [49]. A well-known
phenomenon is that the most critical attributes of stores are location, loca-
tion, and location. The competitive location problems formulate mathematical
models to incorporate all factors that may affect maximising the market share
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captured by new facilities [15, 40]. The objective of the optimisation model
depends on the current state in the market of the company that searches for
new sites. For instance, when a business with a chain of existing facilities
plans to add several new stores, the objective is to increase market share cap-
tured by the chain, not just the additional site [42, 85]. The location decision
provided by the facility location model is invaluable for decision-makers as
locating stores require high investments and is not easily altered.

Even though there is a long history in mathematical and statistical model-
ling for facility location problems and spatial interaction models, uncertainty
quantification has only been studied recently [46, 92]. The Bayesian frame-
work fully quantifies the uncertainty whilst making inferences and model pre-
dictions [96]. In Bayesian settings, all the unknown quantities are modelled
as random variables and uncertainty is reported by assigning probabilities to
possible values and summaries with credible intervals [136]. Henceforth, this
demonstrates many advantages over point estimates by addressing issues such
as existence and data sensitivity. Bayesian frameworks have gained popular-
ity with the advent of methods such as notably Markov chain Monte Carlo
(MCMC) [70], and Variational Inference [81]. Advancements in computer pro-
cesses and large-scale data availability have required using Bayesian methods
to celebrate complex mathematical and statistical models to real-world prob-
lems. Henceforth in this thesis, a significant step is taken to model aggregate
revenue or demand at facilities while accounting for the spatial interactions
with customers to make location decisions under uncertainty.

1.2 Motivating Example

One of the key results from the real-world case study is presented in Fig. 1.2
to demonstrate the ability to produce rich inference from the state-of-the-art
Bayesian spatial interaction model developed in this thesis. The map illus-
trates the clusters formed by customer zones with a common preference for
a particular pub in the area. The most likely pub to visit is not necessarily
within the cluster, as illustrated in Fig. 1.2(b). These inferred clusters would
provide great insights for the businesses to understand their customer segments
with respect to the geographic regions and their demographics. Additionally,
the map demonstrates varying average probabilities of the most prefered pub
across the Lower Layer Super Output Areas (LSOAs): red colour hotspots
indicate high competition, for instance, central London. Furthermore, the res-
ults can be summarised at LSOA (Fig. 1.2 b) or postcode level (Fig. 1.2 c), and
the preference for each pub regarding a postcode (Fig. 1.2 d). These inferences
provide valuable insights into the underlying spatial interactions between fa-
cilities and customers that are vital for business planning and decision making
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on their facility locations.

(b) Illustration of likely pubs to visit by people in clusters

(d) Most preferred pubs probability for each postcode

(c) Average Probability of the most preferred pub in LSOA

(e) Probability for visiting stores for a random postcode
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(a) Clustering based on the most preferred pub in each LSOA. Colour gradient represent 
the average probability of the most preferred pub by postcodes within the LSOA. 

Figure 1.2: (a) Illustrates the average probabilities of the most preferred pub
across the LSOAs. The most preferred pub for a postcode is the store with
the highest probability of choosing. Clusters are formed from LSOAs with
commonly preferred pubs. Only the clusters with ten or more LSOAs are
presented. (b) Illustration of likely pubs to visit by people in clusters that are
zoomed into. For the selected cluster, the histograms show: (c) the average
probability of the most preferred pub in each LSOA; (d) most preferred pubs
probability for each postcode; (e) probability of choosing a pub by a randomly
selected postcode.

1.3 Thesis contributions

This thesis introduces mathematical models and computational techniques as
well as their applications to address complex problems in urban science. A
review of the literature and Bayesian methods are provided in chapter 2. The
core of this thesis is the two topics forming chapters 3 and 4. This thesis
reinstate the value of transforming academic research into applied outcomes
for decision-makers by introducing large scale datasets and real-world case
studies in chapters 5 and 6. An overview of these contributions is provided in
the following subsections. Finally, conclusions and further work are discussed
in chapter 7.
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Chapter 3: A Bayesian spatial interaction model for estimating rev-
enue and demand at business facilities

An important problem in socio-economic systems is modelling spatial inter-
actions. Out of the many applications, interactions between customers and
facilities have had much attention because of their role in shaping urban spa-
tial structures. However, there is a lack of research addressing modelling with
uncertainty. Additionally, a large volume of transactions is required to calib-
rate spatial interaction models, which is difficult to obtain. To address these
shortcomings, in Chapter 3, a new spatial interaction model with a Bayesian
framework is introduced. The work in this contribution makes part of the
publication [118].

The key contributions are as follows:

• Developed a Bayesian spatial interaction model (BSIM) that can produce
probabilistic predictions of revenues or demand generated at business
facilities.

• A probabilistic method is proposed to formulates the relationship between
distance and attractiveness of facilities jointly, using a facility-specific
probability distribution.

• A scalable variational inference method is proposed and demonstrated
its benefits compared to MCMC methods in a variety of synthetic exper-
imental settings.

Chapter 4: On the Competitive Facility Location problem with an
extended Bayesian Spatial Interaction Model

The geographical placement of a new business facility is of critical importance
for commercial success. Like many spatial interaction models, BSIM also as-
sumed fixed demand which hinders the ability to make realistic predictions.
Hence BSIM is advanced and applied to a competitive facility problem to make
optimal store location decisions with uncertainty. The work in this contribu-
tion makes part of the publication [117].

The key contributions are as follows:

• The BSIM is extended in order to address one of the limitations by includ-
ing lost demand in competitive environments to provide more realistic
revenue estimates.
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• An optimisation problem is formulated to simultaneously identify op-
timal facility locations and corresponding designs in competitive envir-
onments and provide probability density estimates of revenues at new
sites.

• A search algorithm is proposed based on the quadtree method to explore
geographic regions of varying spatial resolution hierarchically. Synthetic
experiments were conducted to demonstrate the performance of different
sampling methods for creating potential locations.

Chapter 5: Introducing Large scale geo-spatial Datasets

The literature suffers from large scale real-world applications, mainly because
acquiring granular level data is usually expensive. Hence in literature, the
experiments only focus on either synthetic settings or aggregate level data.
In this thesis, the most advanced datasets in the property industry are in-
troduced with the partnership of one of the leading prop-tech companies in
the UK. Three major datasets are created by combining over 20 commercial
and open-source datasets. This Chapter forms parts of all three publications
[116–118].

The key contributions are as follows:

• A dataset for over 1500 Pubs in Greater London is compiled to demon-
strate revenue, physical store features, surrounding characteristics and
customer ratings.

• A unique dataset is introduced with approximated revenues and store
capacity for the nine largest supermarket chains in the UK.

• Over 150,000 postcodes, most granular administrative level, data set is
compiled for Greater London to represent customer zones and character-
istics.

Chapter 6: Real world applications

Demonstrating the applicability of academic research in real-world settings is
challenging primarily because of the lack of scalability in models and access
to relevant data. Both these shortcomings were addressed in the model build-
ing stage and by introducing granular level real-world data. To the best of
my knowledge, this thesis is the first to present a fully integrated competitive
facility location problem that includes both the spatial interaction modelling
component and the store location optimisation framework. The work in this
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contribution is taken from all three publications [116–118].

The key contributions are as follows:

• A state-of-the-art Fixed Rank Kriging model is proposed to cope with
high-dimensionality and learn business rateable values from spatial con-
text and property characteristics. By accounting for spatial effects, the
model improves on current business rates valuation practice and helps
with making the process more fair and transparent.

• BSIM method is applied to the pubs and supermarket sector that proved
to provide the best predictive performance compared to competing ap-
proaches while providing inference at the level of customers and business
facilities, delivering invaluable insights for planning and decision making.

• The optimal facility locations and their designs are demonstrated for a
new company to enter the pubs’ industry and expand the existence of a
supermarket chain in Greater London for two industries.

1.4 Summary

This section introduced and motivated the problem that is studied in this
thesis and listed the main contributions. The remaining of the thesis is or-
ganised as follows: In the next section, the essential background knowledge
required to understand the remainder of this thesis is discussed. In Chapter
3, the Bayesian spatial interaction framework is introduced and is extended
and develop a framework to identify the optimal location in Chapter 4. Next,
in Chapter 5, large scale datasets are introduced and then apply them in real-
world case studies in Chapter 6. Finally, in Chapter 7, the thesis is concluded
by discussing limitations and future extensions.
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Chapter 2

Background

Modelling is a mechanism that assists researchers, planners, decision-makers
and many other experts in making future predictions or spatial estimations in
a region. In the spatial context, its properties can be measured or reported
only at a discrete set of locations on a continuous plane. However, the decision-
makers are interested to know the values of uninvited places in between, hence
interpolating from the known measurements. My thesis’s main interest is to es-
timate potential returns for facilities at unexplored locations by understanding
the observed measurements from the existing sites to make location decisions
under uncertainty. Hence explore spatial modelling that is primarily based
on distance, and spatial interaction models that explore interactions between
the origin (customers) and destinations (facilities). Next, discuss the compet-
itive facility location problem that is built on the revenue predictions. Finally,
discuss the Bayesian framework and approximate inference techniques applied
for model calibration in this thesis.

2.1 Spatial models

In spatial modelling, the focus is to construct a model based on the values
measured at regular or irregular geographic locations in an area and then
make estimations at any selected geo-location within the same region.

2.1.1 Kriging

Kriging is a spatial predictor in geostatistics, and synonymous with “Optimal
spatial prediction” [27]. The term ‘kriging’ is in honour of Krige, a South
African mining engineer. Kriging predicts the values of a function at a spe-
cific point by averaging the known values of the process in the neighbourhood.
The spatial variability is quantified through the covariance function (or vari-
ogram). In contrast to other mathematical interpolators and regression, kri-
ging provides estimates of the errors in its interpolations [109]. Hence can
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produce maps of optimal predictions and associated prediction errors from
incomplete and noisy data. Also, this method minimises the errors and pre-
dictions are unbiased, thus known as best linear unbiased prediction (BLUP).
Fig. 2.1 provides an example of an synthetic spatial dataset (a) and the kriging
prediction for those observations (b). The red spatial points represent high
values and the blue points display low values in the simulated dataset. The
same colour scheme is applied for the kriged output.

(a) (b)

Figure 2.1: A visual representation (a) of an input of spatial points and (b)
Kriged output.

Kriging has become popular in the earth and environmental sciences. Drilling
wells to estimate oil reserves is an expensive process, and hence obtain small
samples of data and thereby interpolate [108]. However, growth in techno-
logy and the presence of remote sensing platforms on satellites have moved
into massive datasets [128]. Processing large scale data with kriging is more
challenging and is discussed in this section in more detail.

This section explains the Kriging formulation similar to that is demon-
strated by [29]. Kriging makes inference on unobserved values of an realisation
of a random process (or stochastic process or random field):

{Z(s) : s ∈ D}, (2.1)

where D is a fixed subset of Rd with d > 0; meaning spatial index s varies
continuously within the region D. The inferences are made using the data
Z ≡ (Z(s1) . . . Z(sn))

⊤ observed at spatial locations s1, . . . sn. The random
process Z(s) is decomposed as:

Z(s) = Y (s) + ε(s) (2.2)

where Y (·) ≡ E(Z(·)) is called the large-scale variation or referred to as the
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noiseless version of the Z and {ε(s) : s ∈ D} is a spatial white noise process
distributed as ε(s) ∼ N(0, σ2ν(s)) and ν(s) is known.

There are three popular versions of kriging: Simple Kriging assumes that
Y is constant across the region (first-order stationary) and known. Ordinary
Kriging assumes a constant unknown mean. In contrast Universal Kriging does
not assume constant mean but is an unknown linear function. In real world
settings as such in this thesis, the mean varies across the study area. Hence
focus on Universal Kriging that assumes Y (·) to have a linear structure:

Y (s) = x(s)⊤α+ ν(s), s ∈ D (2.3)

where x(·) represents a vector process of known covariates and coefficient α
are unknown. ν(·) has zero mean, 0 < var{ν(s)} < ∞,∀s ∈ D and generally
a non stationary spatial covariance function,

cov{ν(u),ν(v)} ≡ C(u,v) u,v ∈ D. (2.4)

The expression Eqs. (2.2) – (2.3) can be written as:

Z = Xα+ δ, δ = ν+ ε (2.5)

where X is a n × p matrix of known covariates (x(s1), . . . x(sn))
⊤ and δ is a

combination of two 0 mean components, thus E(δ) = 0 and var(δ) = Σ:

Σ = C+ σ2V (2.6)

where C ≡ C(si, sj) and V = diag{ν(s1) . . . ν(sn)}. It is desired to predict Y
process at location s0, s0 ∈ D:

Ŷ (s0) = x(s0)
⊤α̂+ k(s0)

⊤(Z −Xα̂) (2.7)

where

α̂ = (X⊤Σ−1X)−1X⊤Σ−1Z (2.8)

k(s0)
⊤ = c(s0)

⊤Σ−1 (2.9)

and c ≡ (C(s0, s1), . . . , C(s0, sn))
⊤. The linear unbiased predictor is obtained

by minimising the root mean-squared prediction error of Ŷ (s0), [E(Y (s0) −
Ŷ (s0))]:

σk(s0) = {C(s0, s0)− k(s0)
⊤Σk(s0) + (x(s0)−X⊤k(s0))

⊤ (2.10)

(X⊤Σ−1X)−1(x(s0)−X⊤k(s0))}1/2.
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For calculating both predictions (Eq. (2.7)) and prediction errors (Eq. (2.10))
requires evaluating Σ−1 that has a computational cost of O(n)3. While power-
ful with small data sets, the growth in spatial Big-data poses a growing chal-
lenge to perform computations in an appropriate amount of time.

2.1.2 Fixed Rank Kriging

Chrissie and Johannesson [29] introduced the FRK model to analyse very large
data sets, reducing computational cost to O(n) from O(n)3. In general, the
covariance function is modelled as being stationary, in which case it must be
a non-negative-definite function of u − v. In the FRK models the spatial
dependence is captured through a set of basis functions,

S(u) ≡ (s1(u), . . . , sr(u))′, u ∈ Rd (2.11)

and cov{ν(u), ν(v)} is modelled as,

C(u,v) = S(u)′KS(v), u, v ∈ Rd (2.12)

where K is an unknown r × r symmetric positive-definite matrix. The
expression Eq. (2.12) is a consequence of writing ν(s) = S(s)′η, s ∈ D,
where η is a r dimensional vector with var(η) = K and ν(·) is called a spatial
random effects model. Now the Eq. (2.6) can be expressed as:

Σ = SKS⊤ + σ2V. (2.13)

Finally the kriging predictor (Eq. (2.7)) is:

Ŷ (s0) = x(s0)
⊤α̂+ S(s0)

⊤KS⊤Σ−1(Z −Xα̂) (2.14)

where

Σ−1 = (σ2V)−1 − (σ2V)−1S{K−1 + S⊤(σ2V)−1}−1S⊤(σ2V)−1. (2.15)

And the kriging standard error (Eq. (2.10)) is

σk(s0) = {S(s0)⊤KS(s0)− S(s0)
⊤KS⊤Σ−1SKS(s0)+ (2.16)

(x(s0)−X⊤Σ−1SKS(s0))
⊤(X⊤Σ−1X)−1(x(s0)−X⊤Σ−1SKS(s0))}1/2.

For an extensive proof of the FRK refer [29]. One of the first applications
was on total column ozone satellite data with n = 173405. The method
is implemented in the FRK package [155] in the R statistical programming
language. This method is applied to make inference on a hidden spatial process
on the spatial domain of London in Section 6.2.
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Even though Kriging can be applied to estimate revenues at new sites based
on the neighbouring facilities, it ignores the underlying demand generating
mechanisms in urban environments. Hence next section discusses a method
that accounts for customer interactions in formulating the revenue generated
at the facilities.

2.2 Spatial Interaction models

Spatial interaction models are determined to explain and predict patterns
of interactions among entities over the geographic space [5]. These spatial
interactions result from how entities in different locations make connections,
choices, or demand/ supply decisions [129]. The entities can be people or
firms, and the choices can include jobs, shopping facilities, school and sports
activities. Spatial interaction frameworks applied for modelling flows such as
migration [34, 135], commodities [5], retail sales [16, 95]. There is a long history
of almost a century in formulating spatial interactions. I discuss important
developments in literature, which was the motivation for my main study in
this section.

Newton’s Theory of Gravitation was prominent in the 19th century that
applied to explain everything observable in the universe. Thus no surprise this
shed light on describing certain types of peoples activity between entities in
geographic space. Newton’s Theory states that gravitational force Fij between
bodies i and j is:

Fij = kmimj(dij)
−2 (2.17)

where dij is the distance between the two massesmi andmj . Newton’s model is
translated to the conventional gravity models [22], to represent the interactions
between origin i and destination j by Fij , whereas mi and mj denotes the
amount of activities produced at origin i and attracted to the destination j,
and k is a constant of proportionality.

Reilly’s law of retail gravitation [126] introduced in 1931 based on Newton’s
law of gravity acts as the reference model in the modern economic analysis of
spatial interactions. He stated that the proportion of sales attracted by cities
from an intermediate town is directly proportionate to the population in the
two cities and inversely proportionate to the squares of the distance of the
intermediate town. The general formulation is:

Fij

Fik
=

(
mj

mk

)(
dik
dij

)2

(2.18)

where Fij and Fik are the trade attracted from intermediate town Oi to cities
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Dj and Dk respectively, mj and mk are the population of the two cities, and
dij and dik are the distances from town to respective cities, and total distance
between the two cities djk = dij + dik (see Fig. 1.1).

Figure 2.2: Illustration of trade attracted to cities from an intermediate town.
Trade attracted to cities F(·) from the intermediate town Oi and d(·) represent
the distance between locations.

Furthermore, the breaking point (d∗b) indicates the point that one city
dominates and beyond which the other city exercises retail trade influence. At
the breaking point Fij = Fik and the breaking point is:

d∗b =
djk

1 +
√

mj

mk

(2.19)

The above formulation is limited to evaluating competition between two retail
centres concerning an intermediate town. However, with the growth in large
shopping centres in cities in the ’60s, assessing the competition within urban
environments and between them was essential.

2.2.1 Huff model and extensions

Huff [78] in 1963 rose to the challenge by developing a probabilistic model
shifting the focus from competitive retail firms to modelling the choices made
by customers from alternative shopping options available in large urban en-
vironments. The Huff model utilises conceptual properties from the gravity
model and focuses on understanding factors affecting the customer choices of
shopping facilities and the choice process that leads to spatial behaviour. This
leads to unveiling great insights and reliable estimates of the retail trade in
urban areas.

The utility of a shopping centre to a customer depends on many factors.
Huff argues that customers would travel extra distances or pick a store with
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many items of their interest. Additionally, he considers the cost of travel to
be inversely related to the shopping facility’s choice. The probability pij of a
customer travelling from zone Oi to shopping centre Dj is formulated as:

pij =
wj/t

λ
ij∑n

j=1wj/tλij
(2.20)

where wj is the floor size of the shopping facility, tij denotes the cost of travel
from location Oi to shopping centre Dj , and λ is the effect of travel time. The
introduced probabilistic rule considers that customers patronise all facilities,
and demand attracted by each facility is proportional to its attraction. This
contrasts the deterministic rule that assumes customers buy only from one
facility that attracts them the most [37, 77]. Applying the derived probability
Pij of a customer in zone Oi choosing shopping centre Dj , the expected revenue
flow Tij is:

Tij = pij × bi (2.21)

where bi denotes the total budgeted spending or demand of customers in zone
Oi. Another interpretation is that suppose bi is the number of customers
in zone Oi then Tij provides the number of trips between Oi and Dj [129].
Suppose Tij is expected revenue flow, then the total revenue rj captured by
the facility is:

rj =
∑
i

Tij (2.22)

Wilson [152] in 1969 suggested a variation on Huff formulation by stating
that the probability a customer visiting a store is positively related to the
facilities attraction and inversely related to a function of the distance between
the customer and store locations dij . The exponential function was suggested
to represent the distance decay:

pij =
wα
j exp(−βdij)∑n

j=1w
α
j exp(−βdij)

(2.23)

where wj now denotes the attraction of the facility and β is the distance decay
parameter that assess the effect of distance. More generally the formulation
is expressed as the utility uij gained by a customer i visiting the shopping
facility in j:

pij =
uij∑n
j=1 uij

. (2.24)

The model for estimating retail sales in shopping centres, the retail model

15



of Wilson [150] that he considered as the production constrained model is
expressed closely related to the gravity model (Eq. (2.17)) as:

Tij = biajw
α
j exp(−βdij) (2.25)

aj =
1∑n

j=1w
α
j exp(−βdij)

(2.26)

and constraint on,

bi =
∑
j

Tij . (2.27)

Obtaining income level or demand at customer zones Oi is challenging
in practice. Classical approach [150] is to represent as a product of mean
expenditure and population in the customer region. But in recent studies,
financial exposure in customer zones are estimated as a function of diverse
factors, such as gender, age, household size, occupation, and income [16]. Sim-
ilarly, instead of representing the facility’s attraction with the floorspace, [105]
proposed to express as a product of factors that are components of attractive-
ness and hence known as multiplicative competitive interaction (MCI) model.
With the availability of data, both quantitative and qualitative factors such as
offers, parking and age of the business are considered to represent the facility’s
attraction [16, 112]. In addition to the attractiveness of the stores, customers
shop in areas with many facilities, such as shopping malls. This agglomer-
ation effect is captured in the modified Huff model [95] by multiplying the
attractiveness with the density of facilities around a store.

Furthermore, [69] suggested that competing shopping facilities may oper-
ate such that their floorspace cost balances the potential revenue generated
from consumer disposable income discounted by the inconvenience of consumer
travel. Thus it claimed that asymptotically in time, a deterministic equilib-
rium arises that is reflected by the most sustainable retail facility configuration:∑

i

Tij = kWj ∀j (2.28)

where Wj denotes the amount of floorspace and k is a constant.
One of the primary assumptions in the spatial interaction models is that

the entire spending budget is distributed among the available shopping fa-
cilities, where

∑
j pij = 1. However, in practice, the entire demand of the

customers are not satisfied due to lack of quality or availability. The decrease
in spending at traditional retail facilities with the internet growth is even more
prominent. This shortcoming is overcome by introducing a dummy facility [41]
where the buying power attracted by this facility represents the lost demand.
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The dummy facility is assumed to be located at the same distance d from
all customers. The distance d signifies an appropriate distance the customers
would travel to patronise a facility. Hence a more realistic formulation of the
revenue flow from demand point Oi to the shopping facility Dj is;

Tij = bi ×
wα
j exp(−βdij)∑n

j=1w
α
j exp(−βdij) + a exp(−βd)

. (2.29)

where dummy facilities attractiveness is denoted by a.
An essential step of operational modelling of urban systems is choosing a

parameter estimation or calibration method. It is important to note that the
equations (Eq. (2.25)) of spatial interactions are non-linear and cannot use
well-developed linear statistical methods. One of the popularised approaches
proposed by Wilson in 1969 [152] uses entropy-maximising principles. The
final results are obtained by applying numerical methods such as Newton-
Raphson scheme [7, 34]. Another approach is the log-linear analysis used
commonly in migration contingency tables for estimating model parameters
[123, 124]. Additionally, in literature, the parameters are commonly estimated
by resorting to regression methods [8, 53, 95, 105]. Until recently, the focus of
urban modelling was on the frequentist approaches that ignore the model and
data uncertainty. Recently, model parameters have been estimated using the
known spatial structure in a Bayesian manner by assuming that the facilities
had reached a stochastic equilibrium status [46]. The Bayesian methods are
limited to Markov Chain Monte Carlo MCMC [20, 46, 91] but does not scale
up with large data. Calibration techniques related to Bayesian approach is
discussed in more detail in Chapter 2.4.

One of the major challenges in calibrating spatial interaction model para-
meters is access to quality flow level data. In modelling migration flows, the
researchers frequently use census data [34, 135]. However, it is more challen-
ging to access transactional data from retail businesses to model retail flows of
customers primarily due to its sensitivity. Thus model calibration and exper-
iments are predominantly limited to synthetic data [2, 14, 105] or restrained
to information collected by surveying households [62, 137].

Therefore, it is essential to adopt models for aggregate-level data repres-
enting the total sales generated by the customers at the stores to overcome
the disaggregate level transactional data requirement. Furthermore, retail flow
modelling is used to forecast market share or demand that is typically required
to provide at the aggregate level of facilities. This would be more evident in
the next section that illustrates the use of such models for identifying retail
facility locations. While it is trivial in spatial interaction models forecasting
aggregate level from the disaggregate model is challenging [129], the thesis
address this in the modelling framework introduced in Chapter 3.
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2.3 Competitive facility location problem

Facility location analysis is one of the major areas studied under operational
research. The analysis depends on the industry that is of interest due to the
differences in their motives in operating. Facilities such as warehouses, plants
and distribution centres allocate customers by proximity that is discussed un-
der proximity-based models [68] and p-median problem that determines to
minimise the cost of transportation for satisfying the demand [67]. According
to the deterministic proximity rule attractiveness of all the facilities are con-
sidered to be equal, and the total spending of a demand point is concentrated
to one facility, “all or nothing” assumption [15]. In the context of locating
emergency departments such as fire and ambulance services, the objective is to
have the fewest number of sites so that all demand is covered within the stip-
ulated maximum service response time, which is addressed with the location
set covering problem [103, 140]. In contrast, competitive facility location prob-
lems emphasise industries such as retail businesses and commercial services,
which consider competition among stores when choosing their sites [15, 40].
These businesses compete to attract customers buying power in a given area
to capture market share, hence also known as maximum capture problem. This
Chapter focuses more on the models developed to address the competitive fa-
cility location problem. Two major components can be identified in forming
the model: estimation of market share and optimisation method.

2.3.1 Estimation of market share

The competitive facility location problem is focused on finding the best loca-
tion to attract the highest market share in a particular region for a new retail
or service facility(ies) while there are existing facilities. Hence it is important
to calculate an accurate estimate of the market share or revenue the new fa-
cility can capture. The market share is calculated by allocating the customer
budgeted spending among the facilities [43]. Multiple customer allocation
rules are applied in the literature to model customer behaviour.

Gravity model

One approach to calculating the market share is to apply the probabilistic
method introduced by Huff [78]. As discussed in the previous section, Huff
type models [78, 152] suggest that customers located at specific demand points
allocate their buying power among the competing facilities. The probability
that customers patronise a facility is argued to be positively related to the
attractiveness of the facility and inversely related to the cost of transport or
distance. The total of the spending by customers at a facility provides the
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revenue captured by the store (Eq. 2.22). Huff type models are proven to
provide robust estimations market share [129] and are frequently applied in
competitive facility location problems [15, 49, 75].

Let I be a set of customers each i ∈ I with a spending capacity of bi in a
competitive environment with an existing set of facilities J . Suppose the new
facilities can be located at L and the market share M of the chosen locations
of the new facilities L∗ ⊂ L is,

M =
∑
i∈I

bi

∑
l∈L∗ wα

l exp(−βdil)∑
j∈J w

α
j exp(−βdij) +

∑
l∈L∗ wα

l exp(−βdil)
. (2.30)

Random Utility model

Another approach is the utility models [37] that formulates the expected cus-
tomer satisfaction of each alternative facility with a utility function. This
function is an aggregate measure of the trade-off between quality and distance
to the facility. It is assumed that customers choose the facility with the highest
utility. Thus the customers located at certain demand point has the same util-
ity and select the same facility. In random utility theory [10, 54], the utility
uij obtained by customer i choosing a facility comprises of deterministic vij
and random term ϵij such that,

uij = vij + ϵij . (2.31)

The random term ϵij represents the non observable attributes and the determ-
inistic term is,

vij = wj − βdij (2.32)

where wj average perceived quality of facility j and dij is the distance between
i and j. Assuming ϵij is identically and independently distributed, the model
is referred to as the multinomial logit model and the probability a customer i
choose facility j from the existing set of facilities J options is:

pij =
exp(vij)∑
j∈J exp(vij)

. (2.33)

Then the market share captured by the new facilities is given by,

M =
∑
i∈I

bi

∑
l∈L∗ exp(vil)∑

j∈J exp(vij) +
∑

l∈L∗ exp(vil)
. (2.34)
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2.3.2 Optimisation problem

The type of space determines the method of solving the optimisation prob-
lem. There are three types used in the literature. Continuous type problems
consider anywhere in the plane as a potential location for the new facilities
[38, 50], and network type of formulations regards any point on the network
to be suitable for new facilities [132]. In contrast, the deterministic problem
considers only a finite set of possible sites to locate the new facilities [10, 54].
I focus on the deterministic type of problem and also extend to search for
optimal locations in competitive markets where the potential set of locations
are initially not recognised.

The problem can be stated as; given a set of customers i ∈ I and their
respective buying power or demand bi, a set of existing competing facilities
j ∈ J and perceived utility of a customer i towards facility j is uij . Suppose
the potential locations for new facilities l ∈ L in an area are given, and then
the problem is to locate q new facilities such that the expected market share
captured by the new facilities is maximised. Let xl be a binary variable that
is set to 1 if and only if a new facility is to be located at l. The optimisation
problem can be mathematically stated as:

max
xl

∑
i∈I

bi

∑
l∈L uilxl∑

j∈J uij +
∑

l∈L uilxl
(2.35)

subject to:
∑
l∈L

xl = q (2.36a)

xl ∈ {0, 1} (2.36b)

The objective function is a sum of ratios (Eq. 2.35) and takes the form of
a non-linear integer programming problem. This type of problem is known as
combinatorial optimisation and is proven to be NP-hard [9]. There are multiple
approaches employed to solve the problem such as branch-and-bound methods
[9, 54], branch-and-cut [97] and heuristic methods [10]. I resort to IBM-ILOG
CPLEX optimiser that provides constraint programming (CP) techniques to
compute solutions for combinatorial optimisation problems [26].

CPLEX CP optimiser handles non-linear problems by applying a large
set of arithmetic and logical constraints. The optimiser examines the model
structure and observes constraint propagation to guide towards good solutions.
There are multiple search types provided: depth-first search, restart search and
multi-point search.
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• Depth-first search
The depth-first search method is a tree search algorithm that considers
each decision variable as a branch in a search tree. The optimiser ex-
plores the branch’s subtree and moves to the next section only after
configuring a solution or proving that no solution exists in the current
branch. Generally, this method is less efficient than restart search since
it does not quickly recover from poor branching decisions.

• Restart search
Restart search is the default search method in the optimiser that restarts
the depth-first search after a certain number of failures to find an optimal
solution. The number of failures between restarts can be adjusted from
the model parameters.

• Multi-point search
Multi-point search constructs a set of solutions and combines them to
arrive at better solutions. Even though this method is diversified com-
pared to other methods, it does not guarantee a solution’s optimality or
existence. The search runs until it reaches a point that the best solution
found cannot be improved.

2.4 Bayesian Inference

As in all quantitative sciences, this thesis is concerned with data and learning
the underlying processes in the economic system or source which generated
data. The underlying data generating process is modelled with unknown para-
meters in mathematical formulations. There are two approaches in estimating
these parameters: classical or frequentist and Bayesian methods. The fre-
quentist approach focuses on finding the single best-fit parameter known as
point estimates. This approach has drawbacks, such as the existence and the
in-stability of the model due to data sensitivity. The Bayesian method ac-
commodates for various shortcomings in frequentist modelling and provides
many advantages such as a framework to quantify model or parameter un-
certainty by assigning probability distributions to their possible values and
applying prior knowledge to avoid overfitting [144]. Despite the drawbacks,
much of the literature related to spatial interaction models are focused on the
frequentist approach. Hence this thesis, resort to the Bayesian framework for
the calibration of model parameters to make decisions under uncertainty.

In Bayesian modelling, two major types of uncertainties are modelled that
are known as aleatoric and epistemic uncertainty [84]. Aleatoric explains the
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noise inherent in the observed data. Epistemic accounts for the uncertainty
in the model parameters also referred to as model uncertainty. The work-
flow of the Bayesian framework consists of three main steps. Initially capture
the available knowledge about a particular parameter via a prior distribution
which can be determined before collecting data. The likelihood function de-
termines the information about the parameters available in the observed data.
Finally, the Bayes’ theorem, combining both prior and likelihood functions,
forms the posterior distribution. Each step is explained in the next section.

The posterior distribution

Suppose the observed data denoted by y ∈ RN and model parameters are
denoted by θ ∈ RM . The prior knowledge about θ are described by prior
distribution p(θ). Then the likelihood p(y|θ) is expressed as the conditional
distribution that describes how likely y to arise given θ. Finally, the posterior
distribution provides the state of knowledge of θ parameters after observing y
which is the conditional distribution obtain from the Baye’s rule p(θ|y):

p(θ|y) = p(y|θ)p(θ)
p(y)

. (2.37)

The focus is to estimate the entire posterior distribution for the model
parameters. The posterior distribution is summarised using the associated
point estimates, such as posterior mean or median and a credible interval.

The unknown observable ỹ can be predicted from the same process. The
distribution of ỹ that is conditional on the observed data y is called the pos-
terior predictive distribution:

p(ỹ|y) =
∫
p(ỹ|y, θ)p(θ|y). (2.38)

The likelihood function

The likelihood function explains any discrepancy between the model specifying
underlying data generating process and observed data. The discrepancy is
modelled as a random variable to express the uncertainty. The additive noise
model is commonly used to express the observed values with a function f

to model the underlying process and some random noise ϵ to represent the
discrepancy between model and data:

y = f(θ) + ϵ. (2.39)

The ϵ is assumed to have some distribution ϵ ∼ Υ and typical to assume
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Gaussian distribution. The likelihood function is given by:

p(y|θ) = Υ(y − f(θ)). (2.40)

The prior distribution

The researcher is assumed to quantify the uncertainty about the parameters
using their domain knowledge of the problem. Suppose the beliefs such as
the values should be positive can be expressed with the statistical distribution
called a prior distribution p(θ). The epistemic uncertainty is captured by
placing prior distributions on the unknown parameters and observing their
variation given the data [84]. The prior distributions can have different levels
of informativeness. This is mainly classified into three levels: informative,
weakly informative and diffuse [144].

The marginal likelihood

The posterior distribution is proportional to prior multiplied by likelihood and
normalised constant known as marginal likelihood p(y) or model evidence. The
marginal likelihood is the distribution of the observed data and computed by
marginalising out the parameters θ:

p(y) =

∫
p(y|θ)p(θ)dθ (2.41)

The integration in Eq. 2.41 often presents computational challenges. Mostly
these integrals are high dimensional space and also analytically intractable.
This was the primary reason to discard Bayesian statistics favouring frequent-
ist approaches. However, Bayesian methods have gained popularity with the
advancements in computer processing power and developments of approximate
inference techniques. In the proceeding section, I discuss two widely used ap-
proximation techniques that I build upon in Chapter 3 : Variational Inference
(VI) [81] and Markov Chain Monte Carlo (MCMC) [70].

2.4.1 Markov Chain Monte Carlo

The simulation process is possible using MCMC to calculate integrals involved
in different forms of statistical inference [58]. This method is prominently ap-
plied in Bayesian inference to obtain posterior distribution using simulations
[55, 57]. The MCMC method draws samples of θ from approximate distribu-
tion and improves those draws in a way it converges to the target posterior
distribution p(θ|y) despite being high dimensional [56]. The sample θ values
form the empirical estimates of the posterior distribution of interest and its
related summary statistics such as mean, median and credible interval.
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The MCMC method is a combination of two concepts: Markov chains are
used to obtain parameter values from the posterior distribution, and Monte
Carlo integration obtains samples to estimate the posterior distribution [144].
The Monte Carlo integration is a technique that uses computer simulations
to estimate integrals by sampling from a certain distribution. Suppose θ is a
random variable with a distribution of p(θ) then the expectation E(θ) is:

E(θ) =
∫
θp(θ)dθ (2.42)

which can be estimated by drawing n samples from the distribution p(θ):

E(θ) ≈ 1

n

n∑
i=1

θi. (2.43)

Kernel density estimation for the sampled values can produce the marginal
posterior distribution of a certain parameter of interest.

The Markov chain is applied since it is impossible to sample directly and
independently from the posterior distribution. In Markov chain simulation,
a sequence of θ1, θ2 · · · is created by starting from θ0 and draws θt from a
transition distribution Tt(θt|θt−1) at each t that depends only on the last value
θt−1 [56]. The simulation is run sufficiently long such that the distribution of
the current draws is close enough to the stationary distribution that specifies
p(θ|y). Next, the standard Markov chain simulation methods are discussed:
the Gibbs sampler, the Metropolis-Hastings algorithm, Hamiltonian Monte
Carlo and the No-U-Turn Sample.

Metropolis and Metropolis-Hastings algorithms

Metropolis-Hastings (MH) [70] algorithms is a family of Markov chain methods
that are useful for sampling from Bayesian posterior distributions. The Met-
ropolis algorithm adapts a random walk that applies the acceptance/rejection
rule to converge to the target distribution.

The Metropolis-Hastings algorithm generalises the Metropolis algorithm in
two ways:

1. The proposal distribution need no longer be symmetric

2. Consequently to correct for the asymmetry the ratio is replaced by ratio
of ratios

r =
p(θ∗|y)/q(θ∗|θt−1)

p(θt−1|y)/q(θt−1|θ∗)
(2.44)

The adoption of asymmetric rules allows the jumps to make a reasonable
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Algorithm 1: The Metropolis algorithm

θ0 ← Starting point drawn from initial distribution p(θ);
for i = 1, 2 · · · do

θ∗ ← proposed point drawn from proposal distribtion at time t
qt(θ

∗|θt−1) ; // Proposal distribtion must be symmetric

r =
p(θ∗|y)
p(θt−1|y)

; // Ratio of the densities

θt =

θ
∗ with probability min(r,1)

θt−1 otherwise

end

distance that improves the speed of the random walk.

Gibbs sampler

Gibbs sampler [57] can be regarded as a special case of the Metropolis-Hastings
algorithm. In the Gibbs sampler the parameter vector θ is subdivided in to d
sub-vectors, θ = (θ1 · · · θd). At each iteration t the sample cycles through the
d sub-vectors of θ drawing each subset condition on the value of all the others.
At each iteration θtj is sampled from the conditional distribution provided all
the other components of θ:

θtj ∼ p(θj |θt−1
−j , y), (2.45)

where

θt−1
−j = (θt1, · · · , θtj−1, θ

t−1
j+1 · · · θ

t−1
d ).

The Gibbs sampler is widely used since the ability of standard statistical
models to sample from the conditional posterior distribution.

Hamiltonian Monte Carlo

Gibbs and Metropolis algorithms are inefficient in random walk behaviours,
especially when the target distribution is high dimensional. In the Hamiltonian
Monte Carlo (HMC) method [44, 98], a momentum term (ρj) is added for each
component θj to help the chain move quickly to the target distribution. Both
the terms are updated using the MH where the ρj gives distance and direction
for θj to move through the space of θ rapidly. An independent distribution
p(ρj) is assumed on ρj giving the join distribution, p(θ, ρ|y) = p(ρ)p(θ|y). The
parameters are simulated from the joint distribution, but only interest in the
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simulations of θ, and ρ is regarded as an auxiliary variable used to improve the
algorithm to move faster in the parameter space. The simultaneous update of
(θ, ρ) involves L ‘leapfrog steps’, and is scaled by a factor ϵ. The user has to
specify these two parameters, and poor selection could lead to dramatically
dropping HMC’s efficiency.

No-U-Turn Sampler (NUTS)

No-U-Turn Sampler (NUTS) is an extension of HMC that overcomes the need
to set the number of steps L [76]. A recursive algorithm runs the Hamiltonian
simulation both forward and backwards in time to construct a set of possible
values that span into a broader space of the target distribution. Additionally,
a dual averaging approach is adopted to set the step size parameter ϵ auto-
matically. The NUTS method is proven to run as efficiently as a well-tuned
HMC method without requiring user interventions or the costly processes of
finding optimal tuning parameters. Thus NUTS with dual averaging allows
Bayesian analysts to apply HMC efficiently without much effort in hand-tuning
the parameters. Hence adopt the NUTS method in calibrating the Bayesian
model parameters in Chapter 3.

Assessing performance and computer software

The Markov chain needs to run many iterations before making reliable infer-
ences on the posterior distribution. The period before the chain’s convergence
to the stationary distribution is regarded as the burn-in or warm-up period.
Only the samples obtained after this stretch is used to summarise the pos-
terior distribution and make final inferences. The trace plots are helpful for
visually exploring the parameters’ behaviour over the iterations as illustrated
in Fig. 2.3. These plots are used to determine when the Markov chain has
reached its stationary distribution. The formal procedure to decide the con-
vergence of the Markov chain is the R statistic that defines the ratio of within-
chain to between-chain variability [21]. R-value close to one indicates that the
Markov chain has converged to its stationary distribution, and the samples
can be regarded as from the posterior distribution.

There are software packages that have implemented Bayesian analysis, and
Stan is an open-source package developed in C++. The Rstan package [134]
with the R interface is adopted to execute the MCMC algorithms and to
generate diagnostics for assessing performance.

2.4.2 Variational Inference

MCMC has been the dominant approach for the approximate inference re-
quired to compute complex Bayesian models for many decades [70]. However,
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Figure 2.3: Trace plot illustrates the iteration number against a parameter
value for four independent chains of the MCMC. The shaded section represents
the warm-up phase which is omitted in creating the posterior distribution.

this method does not perform well with large scale datasets or complex models.
In such cases, similar to the problem that is interested in solving, spanning
into large scale spatial data, variational inference (VI) provides a better ap-
proach to approximate Bayesian inference. In contrast to sampling techniques
used in MCMC, the VI approach solves an optimisation problem.

The objective of variational inference is to approximate a posterior distri-
bution or conditional density of unknown parameters or latent variables given
the observations, p(θ|y). A family Q of densities is specified over θ, where each
q(θ) ∈ Q is considered a candidate approximation of the posterior distribution
of interest. The Kullback–Leibler (KL) divergence [86], a statistical distance
measure between two densities, is employed to identify the best candidate
q∗(θ) closest to the exact posterior. The inference is now obtained by solving
an optimisation problem:

q∗(θ) = min
q(θ)∈Q

KL (q(θ)||p(θ|y)) (2.46)

The (KL) divergence is given by:

KL (q(θ)||p(θ|y)) = E[log q(θ)]− E[log p(θ|y)], (2.47)

where all the expectation are in respect to q(θ). Expanding the conditional
density leads to,

KL (q(θ)||p(θ|y)) = E[log q(θ)]− E[log p(θ, y)] + log p(y). (2.48)

This shows the dependency on p(y) that possesses computational challenges
as discussed in Eq. 2.41 which compelled us to adopt approximate inference
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in solving the posterior distribution. Hence instead, optimise an alternative
objective function by disregarding the constant p(y) with respect to q(θ). This
function is called the evidence lower bound, ELBO :

ELBO(q) = E[log p(θ, y)]− E[log q(θ)], (2.49)

which is the negative KL divergence of Eq. 2.48 without the constant p(y).
Thus minimising the KL is equivalent to maximising ELBO. The ELBO can
be expressed as a sum of the expected log likelihood of the data and the KL
divergence between q(θ) and prior p(θ):

ELBO(q) = E[log p(θ)] + E[log p(y|θ)]− E[log q(θ)] (2.50)

= E[log p(y|θ)]−KL(q(θ)||p(θ)). (2.51)

The reasoning for the term ELBO can be explained by combining Eqs. 2.48
– 2.49:

log p(y) = KL(q(θ)||p(θ|y)) + ELBO(q) (2.52)

and since KL(·) ≥ 0 [82], ELBO is lower bound to log p(y) for any q(θ),
log p(y) ≥ ELBO(q) [18]. The negative ELBO is minimised where the con-
vergence over iterations are illustrated for ELBO and an unknown parameter
in Fig. 2.4.

(a) (b)

Figure 2.4: Illustrates the number of iteration against (a) negative ELBO (b)
a parameter value

The variational family Q is described in various ways. The class of dis-
tributions primarily determines the complexity of the optimisation. Hence
this thesis focus on a standard approach, mean-field variational family that
considers θ to be mutually independent [56]:

q(θ) =

j∏
i=1

qj(θj), (2.53)
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where each unknown parameter is governed by its own variational density
qj(θj). Each of these densities can take any form appropriate to the corres-
ponding random variable.

The variational algorithm is formulated by expanding Eq. 2.50 that max-
imises the ELBO over variational parameters. Then applies an optimisation
procedure by computing gradients. A limited set of variational families, such
as conjugate exponential family models, can derive a closed-form [59]. Other
models require analytic computations of various expectations that can be te-
dious. To overcome this, the black-box variational inference approach that
calculates expectations with Monte Carlo samples from the variational distri-
bution is adopted [121].

The variational inference formulation is translated to optimise ELBO in
Python programming software [145]. More specifically, the main model is built
on TensorFlow, which is an open-source platform for machine learning [1].

2.4.3 Comparison between VI and MCMC

This section compares and summarises the approximation techniques for Bayesian
analysis discussed. The MCMC method simulates from densities to form em-
pirical estimates, and VI is a technique that approximates densities. MCMC
methods guarantee exact samples from the target densities, whereas VI only
find a close distribution to the target. VI tends to underestimate the posterior
variance compared to MCMC [18] and is illustrated in Fig. 2.5 . Thus in cases
that require precise inferences, it should adopt MCMC methods. Based on
the problem, underestimation of variance may be acceptable.

Figure 2.5: Comparison between the approximate distributions that results
from MCMC and VI. Histogram shows the empirical distribution from MCMC
and a kernel density is fitted. Approximate density of the posterior from VI
is generated using the estimated distribution parameters.

MCMC is computationally intensive and slower than VI technique that
explores the advantages of using various optimisation processes. Hence VI is
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more suitable for making inferences with large datasets, whereas MCMC is
more appropriate for small scale problems. I compare approximate posterior
distributions in Chapter 3, using a simulation study to explore the variations
in the two methods. Based on the performance, the VI technique is adopted
in addressing real-world problems with large datasets in Chapter 6.

2.5 Summary

The scope of this Chapter has provided the reader with the essential back-
ground knowledge required to fully understand the remainder of this thesis:
(1) described a popular spatial model for spatial prediction, Kriging and its
extended variation of Fixed ranked Kriging; (2) put forth a history of spatial
interaction models and the theory behind them; (3) discussed the competitive
facility location problem and its main components; (4) comprehensive intro-
duction to Bayesian inference and approximation techniques - VI and MCMC.

Next chapter introduce the Bayesian spatial interaction model with a scal-
able variational inference framework that, while being significantly faster than
competing Markov Chain Monte Carlo inference schemes. Furthermmore.
demonstrate the benefits of BSIM in various synthetic settings characterised
by an increasing number of stores and customers.
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Chapter 3

A Bayesian spatial interaction
model for estimating revenue
and demand at business
facilities

3.1 Introduction

Understanding the interaction between business facilities and consumer pref-
erences is a prime factor of success for industries such as retail, healthcare and
hospitality. Therefore, accurate predictions of potential sales at business loc-
ations are becoming crucial for planning and decision-making in the current
ecosystem. Indeed, the continuous growth in e-commerce [110] is threaten-
ing the existence of traditional retail stores. I propose a Bayesian statistical
methodology that, by capturing the relationship between attractiveness of the
facility, distance between a business location and its customers, and demand
in terms of buying power, allows to make probabilistic forecasts about poten-
tial revenue at a business facility while quantifying the uncertainty in these
estimates.

As discussed in Chapter 2.2, one of the earliest mathematical models of
customer behaviours when choosing shopping facilities is known as Law of
Retail Gravitation [125], which was inspired by the Newtonian gravity model
and formulated a customer’s choice between two facilities as a function of
their attractiveness and distances. Huff [78] subsequently extended this model
to consider multiple facilities while providing a probabilistic interpretation
for the spatial interactions between customers and facilities. In the following
years, the Huff model [78] was improved by replacing the single attractiveness
term determined by floorspace with a composite index of a set of attributes
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at the facility, including economic and structural factors [32, 105]. Most of
the literature estimates the parameters of spatial interaction models by re-
sorting to regression methods [8, 53, 95, 105] or by maximising the entropy
with respect to some constraints [52, 151]. More recently, computationally
intensive Markov Chain Monte Carlo (MCMC) schemes have been proposed
as an alternative inference method within the Bayesian framework for model-
ling origin-destination flows but do not offer capabilities in estimating total
revenue or demand generated at the destination [25, 46, 90].

Inspired by the literature on gravity models, I have developed a Bayesian
spatial interaction model, henceforth named BSIM, which provides probab-
ilistic predictions about revenues generated at business facilities given their
features and the potential customers’ characteristics in a specified region in
space. The probability of a customer visiting each facility in a region is mod-
elled through Gaussian densities in geographic space. Specifically, each density
is centred on a facility with a variance that is further determined by its at-
tractiveness which in turn is modelled as a function of internal and external
characteristics (e.g. floorspace, distance to public transport access points) and
customer perspective (e.g. customer rating). The revenues for each facility are
then obtained by combining the probability of a customer visit with a proxy
of the individuals buying power, which is assumed to be a function of their
socio-demographic characteristics. I adopt a Bayesian approach that enables
to adequately account for the uncertainty associated with the customer inter-
actions with the facilities. My framework not only gives accurate predictions
but produces interpretable results that can support experts’ decision-making
processes. Moreover, this approach allows us to infer quantities at the business
facility or customer level, such as revenue flow from customers to businesses. In
BSIM, the posterior distributions of interest are intractable, and their approx-
imation poses significant computational challenges. This issue is addressed
by resorting to variational inference while also comparing with MCMC ap-
proximation. I demonstrate how the variational scheme is significantly faster
compared to MCMC used in the literature while providing comparable results
in terms of parameter identification and uncertainty quantification.

My main contributions from this chapter are: (a) develop a Bayesian spa-
tial interaction model (BSIM) that can be used to make probabilistic predic-
tions of revenues or demand generated at business facilities; (b) introduce
a probabilistic method to formulate the relationship between distance and
attractiveness of facilities jointly, using a facility-specific probability distribu-
tion; (c) propose a scalable variational inference and demonstrate its benefits
compared to MCMC methods in a variety of experimental settings.
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3.2 Methodology

Consider a regression problem for a given dataset D = {xs, ys}Ss=1 ∪ {vn}Nn=1,
where xs ∈ RD represents the s-th store1 features and ys ∈ R gives the revenue
for the s-th store and vn ∈ RP represents the features of the n-th customer
in a bounded region τ . Each feature vector x⊤

s = [l⊤s ,ϕ
⊤
s ] includes the store

location, which is denoted by ls ∈ R2, and additional store characteristics de-
noted by ϕs ∈ RD−2, e.g. floor size. For notational convenience S × (D − 2)

matrix denotes all stores characteristics by Φ. Suppose there exists N cus-
tomers within τ where v⊤

n = [m⊤
n ,w

⊤
n ] includes the customer location, which

is denoted by mn ∈ R2 and its characteristics denote by wn ∈ RP−2 such as
income level.

3.2.1 Model Formulation

The proposed Bayesian Spatial Interaction Model (BSIM) is characterised by
S Gaussian distributions, one for each store, which are uncorrelated a priori.
Each Gaussian distribution is centered on a store’s location µs = ls and has a
diagonal covariance matrix Σs = σ2sI, henceforth N (µs,Σs). The variance σ2s
captures level of “attraction” of a customer to a store. I propose two different
alternative forms for variance. In the first model σ2s is written as a function
of store specific coefficient υs ∈ R that is:

σ2s = exp(υs), (3.1)

In the second, the specification is improved by denoting υs as a function of
store characteristics:

υs = λ⊤ϕs + εs, (3.2)

where λ ∈ RD−2 represents shared coefficients across the stores, and εs de-
notes the non-observable store characteristics. The probability density func-
tion (PDF) of the Gaussian distribution centred on store location ls evaluated
at location mn which allows us to capture the likelihood for the n-th customer
to visit the s-th store based on their distance and on the store characterist-
ics. For illustration purposes, consider three stores where each has a Gaussian
distribution centred on the store, as shown in Fig. 3.1.

Irrespective of the store’s attractiveness, customer behaviour is not affected
after a certain maximum distance to the store, known as “consideration set” in
marketing. Therefore, truncate the Gaussian distributions in BSIM and force

1The the rest of the model is presented in relation to the specific instantiation where a
business location is a store, but this can be extended to other business facilities.
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(a) (b)

Figure 3.1: Illustration of the PDF of the Gaussian distribution centered on
three sample Stores: (a) 3D visualisation; (b) 2D visualisation. The white dots
indicate the store location and the numbers are used to identify the respective
stores on 3D and 2D visualisations.

their densities to be zero beyond a given radius dT from the store location.
The truncated Gaussian PDF denoted by f(dns) is given by:

f(dns) =


exp

(
−d2ns/2σ2s

)
2πσ2s

(
1− exp (−d2T /2σ2s)

) , 0 ≤ dns ≤ dT ,

0, otherwise,
(3.3)

where dns denotes the Euclidean distance between the store and customer
dns = ||mn − ls||2 . Fig. 3.2 demonstrates the truncated Gaussian densities
corresponding to the distributions shown in Fig. 3.1.

(a) (b)

Figure 3.2: Illustration of the Truncated Gaussian centered on three sample
Stores: (a) 3D visualisation; (b) 2D visualisation. The white dots indicate the
store location. There is a hard border around the distributions beyond which
the PDF is equal to zero.
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Given the truncated Gaussian distributions, the probability pns of a cus-
tomer visiting the s-th store is defined as:

pns =
f(dns)∑S
j=1 f(dnj)

. (3.4)

Note that I normalise the PDF calculated for the customer with respect to
the store by the total PDF respect to all the stores within the consideration
set to arrive at a value that falls in the interval of [0, 1]. Thus it is assumed
that every customer chooses at least one store in their consideration set, but
this can be relaxed by adding pseudo stores to account for unsatisfied demand
or unobserved data. The value of pns captures the level of competition in
the region τ for a specific type of store. For instance, pns will be lower in
competitive markets or areas while it will take higher values in non-competitive
settings. This is illustrated in Fig. 3.3 with respect to the non-truncated and
truncated Gaussian distributions.

(a)

(b)

Figure 3.3: Illustration of the probability of customers visiting a store pns:
(a) with none truncated Gaussian distribution; (b) with truncated Gaussian
distribution. This is an indication of the competition in the area. The white
dots indicate the store location, and the numbers are used to identify the
respective stores on (a) and (b) plots.

The consumption function in economics determines the relationship between
consumer spending and the various factors [102]. To model the amount budgeted
by each customer for spending bn, I propose a linear function g(·) which takes
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input wn representing the P − 2 customer characteristics:

bn = g(wn) = β⊤wn, (3.5)

where β ∈ RP−2. This leads to the conventional Spatial interaction system
[46, 78, 150]. Thus expenditure flow from customer n to store s:

rns = bn × pns, (3.6)

where the amount each customer budgeted to spend bn is weighed by the
probability to visit the s-th store. The total revenue for the s-th store is:

rs =

N∑
n=1

bnpns =

N∑
n=1

β⊤wn
f(dns)∑S
j=1 f(dns)

. (3.7)

Henceforth I derive the model for the case where the store variance is a func-
tion of its features (Eq. (3.2)), since the limiting case where the store variance
is store specific coefficient (Eq. (3.1)) is a trivial extension by setting λ to zero.

Likelihood function: The likelihood of the observed stores’ revenue Y =

{y1, . . . , yS} is defined as:

p(Y|β, λ, ε, γ) =
S∏

s=1

N

(
ys|

N∑
n=1

β⊤wn
f(dns)∑S
j=1 f(dns)

, γ−1

)
, (3.8)

where the model assumes constant noise precision (γ−1) for the Gaussian.

Prior Distributions: Prior distributions are assigned to all model para-
meters. First, a hierarchical prior distribution is defined for β, which is as-
sumed to be a Gaussian with mean µβ and covariance α−1I:

p(β|α) = N (β;µβ, α
−1I),

Following the standard practices, a Gamma prior distribution is introduced
with shape ω1 > 0 and scale ω2 > 0 for the hyper-parameter α:

p(α) = Gam(α;ω1, ω2)

Similarly, a Gamma prior distribution with shape ρ1 and scale ρ2 is assumed
for the likelihood precision parameter γ:

p(γ) = Gam(γ; ρ1, ρ2),
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Figure 3.4: Plate diagram for the graphical representation for the BSIM. This
express the spatial interaction between S number of stores with each store
revenue ys, located at ls with store features ϕs and N number of customers
located at mn with P-2 characteristics wn. Gaussian distributions are used as
priors for β, λ, ε and Gamma distributions for γ, α. The diagram represents
random variables with circles ( ), known values with grey filled circles ( )
while black filled circles ( ) indicate fixed parameters of prior and hyper-prior
distributions, edges denote possible dependence, and plates denote replication.

Finally, the following Gaussian prior distributions are selected for λ and ε,

p(λ) = N (λ;µλ, ϱλI)

p(ε) = N (ε;µε, ϱεI).

Posterior Distribution: The full vector of model parameters is denoted
by Θ = {β, λ, α, ε, γ}. Posterior probability given by:

p(Θ|D) = p(D|Θ)p(Θ)∫
p(D|Θ)p(Θ)dΘ (3.9)

where the marginal density takes the form:

p(D) =
∫
· · ·
∫
p(D|β, λ, γ)p(β|α)p(α)p(λ)p(ε)p(γ)dβ dα dλdεdγ. (3.10)

3.2.2 Inference

Our goal is to estimate the posterior distribution over all parameters given
the data i.e. p(Θ|D). Since marginal density is analytically intractable
(Eq. (3.10)), I resort to approximate inference by employing two commonly
used methods: Variational Inference (VI) [81] and Markov Chain Monte Carlo
(MCMC) [70].
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Variational Inference

VI is a powerful method to approximate intractable integrals, whereas in con-
trast to MCMC, it tends to be much faster because it rests on optimisation
instead of sampling [18]. VI first posits a family of densities and then finds
the member of that family, which is closest to the posterior, by minimising
the Kullback-Leiber (KL) divergence. Because the KL divergence cannot be
directly calculated, alternatively, maximise evidence lower bound, Lelbo that
is equivalent to minimizing the KL divergence. A more detailed explanation
is provided in Chapter 2.4.

Variational Distributions: The mean-field approximation is adopted and
assume a fully factorized variational distribution [17]:

q(β, α, γ, λ, ε) = q(β)q(α)q(γ)q(λ)q(ε), (3.11)

with

q(β) = N (β; µ̂β,Ω) (3.12)

q(α) = Gam(α; ω̂1, ω̂2), (3.13)

q(γ) = Gam(γ; ρ̂1, ρ̂2), (3.14)

q(λ) = N (λ; µ̂λ,Kλ), (3.15)

q(ε) = N (ε; µ̂ε,Kε), (3.16)

where ν = {µ̂β,Ω, ω̂1, ω̂2, ρ̂1, ρ̂2, µ̂λ,Kλ, µ̂ε,Kε} are the variational para-
meters which are optimized within the algorithm. Eqs. (3.12)–(3.16) define
our approximate posterior. With this, details of the variational objective func-
tion is given, i.e. ELBO, which aims to maximise with respect to ν.

Evidence Lower Bound: Following the standard variational inference,
ELBO can be written as a combination of expected log likelihood (Lell) and
KL-divergence term (Lkl):

Lelbo(ν) = Lell(ν)− Lkl(ν). (3.17)
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the expected log likelihood term can be written as

Lell = Eβ,γ,λ,ε[ln p(Y |β, γ, λ, ε)]

= −S
2
ln 2π +

S

2
(ψ(ρ̂1)− ln ρ̂2)− (3.18)

1

2

ρ̂1
ρ̂2

Eβ,γ,λ,ε

γ
2

S∑
s=1

(
ys − β⊤

N∑
n=1

wn
f(dns)∑S
j=1 f(dns)

)2


the KL-Divergence Term is expanded and simplified as:

Lkl = E[ln p(Θ)]− E[ln q(Θ)]

= Eβ,α[ln(p(β|α)] + Eα[ln p(α)] + Eλ[ln p(λ)] + Eε[ln p(ε)] + Eγ [ln p(γ)]−
(3.19)

Eβ[ln q(β)]− Eα[ln q(α)]− Eλ[ln q(λ)]− Eε[ln q(ε)]− Eγ [ln q(γ)],

where each term is expanded and simplified as:

Eβ,α[ln(p(β|µβ, α)] = −
P

2
ln(2π) +

P

2
(ψ(ω̂1)− ln ω̂2)

− ω̂1

2ω̂2

(
tr(Ω) + µ̂β

⊤µ̂β − 2µ⊤β µ̂β + µ⊤β µβ

) (3.20)

where ψ is the digamma function.

Eα[ln p(α)] = ω1 lnω2 + (ω1 − 1)(ψ(ω̂1)− ln ω̂2)− ω2
ω1

ω̂2
− ln Γ(ω1) (3.21)

Eγ [ln p(γ)] = ρ1 ln ρ2 + (ρ1 − 1)(ψ(ρ̂1)− ln ρ̂2)− ρ2
ρ̂1
ρ̂2
− ln Γ(ρ1) (3.22)

Eλ[ln(p(λ)] = −
m

2
ln (2πϱ)− 1

2ϱ
(tr(Kλ) + µ̂λ

⊤µ̂λ − 2µ⊤λ jλ + µ⊤λ µλ)

(3.23)

Eβ[ln q(β)] = −
1

2
ln |Ω| − P

2
(ln (2π) + 1) (3.24)

Eγ [ln q(γ)] = (ρ̂1 − 1)ψ(ρ̂1) + ln ρ̂2 − ρ̂1 − ln Γ(ρ̂1) (3.25)

Eα[ln q(α)] = (ω̂1 − 1)ψ(ω̂1) + lnω2 − ω̂1 − ln Γ(ω̂1) (3.26)

Eλ[ln q(λ)] = −
1

2
ln |Kλ| −

m

2
(ln (2π) + 1) (3.27)
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Lelbo(ν) is not computable in analytically closed forms and remains in-
tractable. Hence I resort to Black Box variational inference method where the
gradient is computed from the Monte Carlo samples from the variational dis-
tributions [121]. The algorithm is implemented in Tensorflow 2 [1] in Python 3.

Markov Chain Monte Carlo

In order to compare the estimations, MCMC is employed, which has been the
dominant paradigm for approximate inference for decades. First, a Markov
chain on Θ is constructed whose stationary distribution is the posterior p(Θ|D).
Then samples are collected from the stationary distribution by sampling from
the Markov chain. Finally, the collected samples are used to approximate the
posterior with an empirical estimate. MCMC methods ensure producing exact
samples from the target density but tend to be computationally intensive [127].
When the datasets are large, MCMC becomes slower and computationally ex-
pensive to form inferences. I use open-source software, Stan, which is a C++
library for Bayesian modelling, with the R interface to compile results [134].
The No-U-Turn sampling method is adopted, an extension to the Hamiltonian
Monte Carlo algorithm for the experiments [76]. The MCMC methods are
discussed in Chapter 2.4.

3.2.3 Edge Correction

Stores on the edge of the study area τ cannot be evaluated without a certain
bias because the model cannot capture the contribution from customers living
outside τ . To overcome this, the revenues of the stores {ys}Ss=1 are adjusted,
and this is carried out before fitting the model. Following a similar approach
to the model, I assume a Gaussian centred on the store and calculate the area
under the curve (AUC) A, which intersects with the study area. The variance
η2 of the Gaussian is set to be dT /4 to cover approximately an area of 0.99
within the buffer radius of dT around the store centre ls. Calculating the AUC
for an arbitrary polygon as shown in Fig. 3.5, is computationally challenging.
Henceforth I use the Monte Carlo method, where the samples are drawn from
N (ls, η

2I) and reject them if outside the τ to calculate the fraction of samples.
The adjusted revenue ỹs is formulated as the actual revenue weighted by

the AUC:

ỹs = ys ×A. (3.28)

This is applied for edge correction in the real-world data before fitting the
BSIM.
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Figure 3.5: The red marker denotes a store at the edge of London. There
may be customers who contributes to its revenue but not in the study area.
Intersection of the radius and London map results in an arbitrary polygon.

3.3 Synthetic Experiments

A simulation study is designed to examine the inferences obtained from VI
and MCMC methods under different synthetic settings characterised by an
increasing number of stores and customers. I also compare the computational
performance of the two methods by observing the run time of each fitted model.
First, the data is simulated from a spatial process that closely matches the
modeling framework introduced in Section 3.2, Eq. (3.2) with εs = 0. The
process is defined as:

ys|β,λ, σ2 ∼ N (rs, γ
−1), (3.29)

where the locations of stores and customers are simulated within a square.
Two customer features are generated, one with a strong spatial correlation and
the other with a moderate spatial correlation to closely reflect the real-world
customer features as shown in Fig. 3.6. The store locations are randomly
sampled within the same spatial boundaries used to sample the customers.
Store features are sampled from a Gamma distribution (Φ ∼ Gam(1, 1)) to
represent features such as floorspace.

(a) (b)

Figure 3.6: Simulated Customer features for N = 1000 under two different
spatial correlation structures to closely simulate the real-world scenarios: (a)
Strong Spatial Correlation; (b) Moderate Spatial Correlation.
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3.3.1 Parameter Estimation

For both VI and MCMC methods, all priors are chosen to be weakly inform-
ative to allow the data to drive the inference as illustrated in Table 3.3. VI
optimisation algorithm is run over 5000 iterations where the convergence of
the negative ELBO and parameters are illustrated in Fig. 3.7.

(a) (b) (c)

Figure 3.7: Convergence of the parameters over iterations in running the op-
timisation algorithm for VI : (a) negative ELBO, (b) β and (c) λ.

MCMC model is fitted using one chain with 5000 iterations by removing the
first 2500 for warm-up, and every post-warm-up iteration is used for posterior
samples. The diagnostics tests indicated that the chains have converged to
a common distribution with R-hat close to one. The summary statistics for
parameter estimates, and sampler diagnostics are presented in Table 3.1 and
Fig. 3.8.

Table 3.1: MCMC summary statistics for parameter estimates, and sampler
diagnostics

Parameter Mean SD Quantile n_eff
†

R-hat
2.5% 50% 97.5%

β1 -0.198 0.17 -0.235 -0.197 -0.166 982 1.000
β2 0.400 0.021 0.358 0.399 0.447 1006 1.000
λ1 0.185 0.547 -0.839 0.168 1.387 1201 1.001
λ2 0.387 0.393 -0.313 0.361 1.269 1394 1.000
γ 1.908 0.304 0.562 1.759 4.054 1218 1.001

† provides a crude measure of effective sample size for each parameter.

The posterior distributions along with the prior distributions are visualised
in Table 3.3 and parameter estimates are presented in Table 3.2. The results
indicate that both methods approximate the posterior mean effectively and
variational approximations of the posterior variance are lower than MCMC
method.
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Figure 3.8: Traceplot corresponding to Markov chains, for a visual represent-
ation to inspect sampling behaviour and assess convergence.

Table 3.2: The first row indicates the True values of the parameters used to
create the synthetic data, and the following rows display the first (Mean) and
second moments (Standard deviation) along with its 95% quantile-based Cred-
ible Intervals (CI) for the posterior distributions for VI and MCMC methods.

β1 β2 λ1 λ2 γ

True −0.2 0.4 0.1 0.5 4

VI
Mean −0.196 0.398 0.164 0.383 1.821
Std 0.014 0.018 0.235 0.116 0.727
CI (−0.224,−0.169) (0.362,0.434) (−0.296, 0.625) (0.156, 0.609) (0.687, 3.499)

MCMC
Mean −0.198 0.400 0.185 0.387 1.908
Std 0.017 0.021 0.547 0.393 0.904
CI (−0.235,−0.166) (0.358 , 0.447) (−0.839, 1.387 ) (−0.313, 1.269) (0.562, 4.054)

The simulation process explained above is experimented under two differ-
ent synthetic settings:

1. sim1: 10 stores with 1000 individuals (S = 10, N = 1000)

2. sim2: 50 stores with 2000 individuals (S = 50, N = 2000)

Random store locations are simulated to create 50 datasets and compare
the performance across datasets using the posterior means of β, λ, γ and
the 95% quantile-based credible intervals for each parameter from each fit-
ted model. Three standard measures are used to compare the performance
between MCMC and VI methods:

1. the bias, which measures the differences between the posterior mean
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Table 3.3: Column one demonstrates the weakly informative prior distribu-
tions, and the following columns illustrate marginal posteriors of the interested
parameters inferred by VI and MCMC. Synthetic experiment consists of 10
stores and 1000 customers (S = 10, N = 1000).

Prior VI vs. MCMC
p(β|α) ∼ N (0, α−1I) β1 β2

p(α) ∼ Γ(1, 1)

p(λ) ∼ N (0, α−1I) λ1 λ2

p(γ) ∼ Γ(1, 1) γ

from the model fit to dataseti (β̂i) and the true value of the parameter
β, Bias = 1

50

∑50
i=1(β̂i − β);

2. the mean-squared error (MSE), which takes the squared of the difference
between posterior mean and true value, MSE = 1

50

∑50
i=1(β̂i − β)2;

3. the coverage of the 95% quantile-based credible interval (CI) obtained
from fitting the model to dataseti, coverage = 1

50

∑50
i=1 I (β ∈ credible intervali),

where I(·) is the indicator function equal to 1 if the statement is true
and 0 otherwise.

Table 3.4 and Table 3.5 show the results of the fitted models for the two
synthetic settings, averaged across the 50 datasets. Both VI and MCMC
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algorithms exhibit comparable performance in terms of bias, MSE, and cov-
erage across both simulation studies. For sim1, it is observed lower coverage
for γ with the VI scheme. However, the coverage for γ is improved to one in
the sim2. Both λ and γ parameters result in a higher estimated MSE under
both the simulation setting for VI and MCMC methods. This is an indica-
tion of the lack of identifiability in the parameters due to the flexibility in
the model. The precision γ of the error term tends to be underestimated on
average. Both models are fitted on an Intel Xeon CPU (3.5GHz and 32 GB
of RAM). The run time of the VI algorithm is about five times faster than
the MCMC algorithm in the simulation study. This is vital for our real-world
data application, where the number of spatial locations is much larger than
the synthetic settings. Overall the VI algorithm exhibited a reduced run time
while providing good estimations and inference of the parameters of interest
in this simulation study.

Table 3.4: VI and MCMC simulation study performance for S = 10, N = 1000.

Metric Method β1 β2 λ1 λ2 γ

Bias VI −0.002 0.004 0.258 0.110 −1.828
MCMC −0.002 0.004 0.265 0.116 −1.772

MSE VI 0.000 0.000 0.130 0.051 3.467
MCMC 0.000 0.42 0.130 0.049 3.276

Coverage VI 0.94 0.96 1. 1. 0.44
MCMC 0.96 0.98 1. 1. 0.94

Run time (s) VI MCMC
207 1064

Table 3.5: VI and MCMC simulation study performance for S = 50, N = 2000.

Metric Method β1 β2 λ1 λ2 γ

Bias VI 0.000 0.002 −0.338 0.352 −0.754
MCMC 0.002 -0.001 −0.092 0.341 −0.734

MSE VI 0.000 0.000 0.185 0.179 0.598
MCMC 0.000 0.000 0.008 0.186 0.571

Coverage VI 1. 0.94 0.84 0.94 1.
MCMC 1. 1. 1. 0.857 1.

Run time (s) VI MCMC
1079 5280

3.3.2 Model Predictions

The facilities operating in an area at time t and time t + 1 are simulated as
illustrated in Fig. 3.9. At time t+ 1 more stores are added and that leads to
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more competition and loss of revenue for the existing facililities as compared
in Fig. 3.9(c). First fitted the model for time t and estimated parameters are
presented in Table 3.2.

(a) (b)
(c)

Figure 3.9: Synthetic setting of stores locations and their revenues indicated
by the colour gradients at (a) time t and (b) time t+1, new stores are denoted
by red colour circles. (c) Comparison of the revenues at time t and t+ 1.

Then model predictions are conducted for both time t and time t+1, and
performance is evaluated with three standard metrics:

1. the Normalised Root-Mean-Squared Error (NRMSE), which measures
the differences between the values predicted by a model (Ŷ) and the
values observed (Y), NRMSE) =

√
E[Y−Ŷ]2

E[Y] ;

2. the R-squared, which is the ratio of the variance of the residuals (SSres)
and he variance of the observed Y (SStot), R2 = 1− SSres

SStot
.

3. the coverage of the 95% prediction intervals, that computes the actual
coverage percentage of the prediction intervals on samples; larger the
coverage, the better the model [80].

The model performance are summarised in Table 3.6 and visualised pre-
dictions against actual revenues in Fig. 3.10. Both time t and t+1 prediction
performance are consistent with high R2 and coverage of 100%. This indicates
that the model can forecast the revenues of facilities with future changes in
the spatial structure with good accuracy.

Table 3.6: R2, NRMSE and prediction interval coverage for the BSIM .

Time R2 NRMSE Coverage
t 0.98 0.08 100%
t+1 0.97 0.1 100%
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(a) (b) (c)

Figure 3.10: Predicted revenue against actual revenue at: (a) time t and (b)
time t+ 1. (c) The outer and inner rings show the 95% credible interval.

3.4 Model Comparison

In this section, the BSIM is compared against the prior literature in terms of
the methodological advancement and compare the performance with a simu-
lation study.

3.4.1 Methodological advancements

The spatial interaction models state that the perceived utility of a customer
selecting a facility is positively related to the attraction and inversely related
to distance, which is formulated as a ratio. As discussed in Chapter 2.2, the
earliest developments formulated the relationship of distance as a power func-
tion [78] and later the exponential function is applied to represent the distance
decay [152]. In the BSIM, a probability distribution is introduced to formulate
the relationship between attraction and distance jointly. The variance of the
distribution is modelled as a function of the facility’s characteristics. Even
though the Gaussian distribution is applied in this thesis, other probability
distributions, such as the Beta distribution, can be used. This novel prob-
abilistic approach provides more flexibility to capture the variation in utility
perceived by customers with respect to the facilities.

Primarily the spatial interaction models are formulated to forecast the
flows [5, 34, 135]. Even though it is common to find migration flows, acquiring
transactional flows between customers is challenging. The BSIM overcomes
this constraint by modelling aggregate level revenue or demand at stores.
Henceforth, the BSIM can be applied to forecast the revenue at new sites,
which is essential for businesses locating new facilities. Additionally, BSIM
has the key advantage of providing interpretable inferences at the level of
customers and stores. These inferences are beneficial for informed decision-
making for property developers, planners, marketers, and business executives.

BSIM considerably improves existing classical spatial interaction models
by formally addressing uncertainties arising in the modelling process via a
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Bayesian framework. Recently, model parameters have been estimated using
the known spatial structure in a Bayesian manner at the disaggregated level
by assuming that the facilities had reached a stochastic equilibrium status
[46]. Henceforth BSIM is a significant contribution to literature where it mod-
els aggregate level flows while providing probability densities of the revenue
estimates at the store locations.

Traditionally the spatial interaction models are limited to experimenting
with small datasets due to the scalability of the model calibration techniques
that is addressed in this thesis. Classical models use entropy-maximising
principles by applying numerical methods such as Newton-Raphson scheme
[7, 34] or resorting to regression methods [8, 95, 105]. The recently developed
Bayesian methods are limited to Markov Chain Monte Carlo MCMC [20, 46,
91] but does not scale up with large data. The parameters of the BSIM are
estimated by applying the scalable variational inference technique. Hence this
study stands out as the first scalable spatial interaction model with a Bayesian
approach for estimating aggregate store-level revenue or demand.

3.4.2 Performance comparison

In order to demonstrate the performance of the BSIM, a comparison is con-
ducted with one of the recently developed method known as the modified Huff
model [95] using a simulation study. Various drawbacks of the traditional
Huff type models are improved in the modified Huff model by considering
both spatial competition and agglomeration concurrently. The purchase in-
cidence is lower when multiple competitors exist, and in contrast, when there
are multiple stores nearby, such as shopping malls, the purchase incidence
tends to be higher, which is explained by the agglomeration effect [111]. This
is graphically represented in Fig. 3.11. The BSIM does not explicitly account
for the agglomeration effect, but the Gaussian distribution place at the centre
of stores could learn their parameters to adjust for such consequences.

In the modified Huff model the probability a customer n visiting store s
with size As is:

Pns =
AsG

λ
s/d

β
sn∑S

s AsGλ
s/d

β
sn

(3.30)

where Gs is the number of agglomeration stores within a radius of store
s and its effect on shopping is reflected by parameter λ, dsn is the distance
between store s and customer n. The expected revenue at store s is:

Es =
∑
n

PnsBnC
γ
s (3.31)

where Bn is the budgeted amount to spent, Cs is the number of competitors
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Figure 3.11: Agglomeration and competition areas in respect to the store
shown in red pin. G is the agglomeration area and C is the service area
(including G); Dg is the point that the agglomeration and competition forces
are in balance; Dc is the radius of the service area.

within a radius of store s and γ reflects the effects of competition on shopping.
A linear regression model is used to calibrate γ after applying Logarithms to
Eq. (3.31). The remaining parameters (λ, β) are calibrated using an iterative
optimisation approach by drawing values of the parameters incrementally from
a range. Additionally the agglomeration and competition areas are evaluated
against multiple radii. The final parameters are selected on the best fitted
model based on R2.

Two standard metrics are used to evaluate the performance: Table 3.7
displays the results for BSIM and Huff modified model. BSIM exhibits better
performance across both the settings compared to the modified Huff model. An
increase in NRMSE for both models are observed as the number of stores and
customers increases. However, the R2 remains unaffected and remains high,
showing more robust performance for BSIM under both simulation settings
compared to the modified Huff model.

Table 3.7: Performance of the simulation studies for BSIM and Huff modified
model. sim1 : S = 10, N = 1000 and sim2 : S = 50, N = 2000 .

sim1 sim2

R2 Model 0.98 0.94
Modified Huff Model 0.77 0.30

NRMSE Model 0.07 0.15
Modified Huff Model 0.24 0.64
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3.5 Summary

In this chapter, I have studied modelling the spatial interaction under uncer-
tainty. First, a new approach is proposed to formulate the utility perceived
by the customers through adopting a store-specific probability distribution.
The distance and attraction attribute that influences the customer is repres-
ented with the probability distribution configurations. A Bayesian framework
is proposed to model the spatial interactions that advance the existing model
calibration methods in the literature. I have resorted to approximation tech-
niques since the posterior distribution is analytically intractable.

A scalable variational inference framework is proposed that, while being sig-
nificantly faster than competing Markov Chain Monte Carlo inference schemes,
exhibits comparable performance in terms of parameters identification and
uncertainty quantification. The benefits of BSIM is illustrated in various syn-
thetic settings characterised by an increasing number of stores and customers.
A detailed real-world application is demonstrated in Chapter 6.

In the next Chapter, the BSIM is extended to overcome the fixed demand
assumption. The extended BSIM is used to identify the optimal facility loca-
tion in the competitive location problem. A hierarchical search algorithm is
proposed to solve the problem while presenting sampling techniques to over-
come the requirement to identify an exhaustive set of potential locations.
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Chapter 4

On the Competitive Facility
Location problem with an
extended Bayesian Spatial
Interaction Model

4.1 Introduction

The geographical placement of a new business facility is of critical importance
for commercial success. Growth in e-commerce continues to challenge the ex-
istence of physical retail stores. Therefore, it is essential to understand how
customers interact with physical business facilities in order to design new com-
mercial centres in competitive markets. I propose a modelling framework that
accounts for customer behaviour to identify the optimal criteria for entering
a new market or expanding its presence in a geographical region. This study
aims to address three of the most pivotal questions facility planners face: the
number of sites, their geographical locations, and design.

The formulation of optimal location models varies with the industry and
purpose of the site. When locating facilities such as warehouses or manufac-
turing plants, the main focus is on the proximity to the customer, which is
explained with proximity-based models [68]. In the context of locating emer-
gency departments such as fire and ambulance services, the plan is to have the
fewest number of sites so that all demand is covered within the stipulated max-
imum service response time, which is addressed with the location set covering
problem [103, 140]. In contrast, competitive facility location problems emphas-
ise industries such as retail businesses and commercial services, which consider
competition when choosing their sites [15, 40]. These companies compete to
attract customers buying power in a given area to capture market share.
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As discussed in Chapter 2.2, one of the earliest probabilistic approaches
for estimating market share was proposed by [78] based on the gravity model
[126]. Huff’s formulation states that the value or utility gained by a customer
visiting a shopping centre is proportional to the store’s floor space and inversely
related to the power of the distance. Instead of the power function, it has been
shown that exponential decay with additional store attraction better explains
customer behaviour [39, 150]. Customers are assumed to patronise shopping
centres based on their satisfaction indicated by a utility function [40]. The
competitive location facility problem integrates the spatial interaction between
customers and stores into the optimisation model according to utility models
[10, 54].

In this study, the Bayesian spatial interaction model (BSIM), introduced
in the previous chapter, is considered to integrate the spatial interactions in
deciding the location. In BSIM, the utility gained by a customer visiting a
facility is derived by evaluating the probability density function at the custom-
ers’ location with respect to the underlying distribution centred on the store.
Additionally, BSIM is based on a variational Bayesian approach, with key ad-
vantages of adaptability for large-scale problems and the ability to quantify
aleatoric and epistemic uncertainty [84]. BSIM and in general spatial inter-
action models assume a fixed demand, but in most realistic situations, prices
or availability of specific quality could affect the total number of customers
patronising the stores or products. Hence I extend the BSIM to integrate such
demand elasticities by adding dummy facilities as proposed by [89] and [41].
The extended BSIM method is adopted to model customer behaviour and es-
timate revenue generated at the new stores. My approach provides not only
point estimates but also probability density estimates of revenues at optimal
locations. Thus, the proposed competitive location modelling framework of-
fers many advantages for decision-making over classical frequentist methods
found in the literature.

In competitive facility location problems, the goal is to maximise the es-
timated market share or revenue of the business. Formulating the objective
function of the optimisation model depends on the current state in the market
of the company that searches for new sites. For instance, when a business
with a chain of existing facilities plans to add several new stores, the object-
ive is to increase market share captured by the chain, not just the additional
site [42, 85]. I present the objective function of the optimisation problem con-
sidering three different scenarios: a company entering into a new market, a
franchise expanding its presence in a competitive environment, and a business
expanding in a monopolistic market. The objective function is maximised to
choose the best locations and designs simultaneously from a set of potential
sites and structures, in terms of store characteristics, within a certain budget.
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In the process of establishing new facilities, the users are usually unable
to provide an exhaustive set of potential sites, or this set is too large that it
becomes computationally expensive. I propose a hierarchical search method
that starts with a broad area and narrows the search to several regions to
explore the neighbouring locations using a quadtree approach. The initial
candidates are formed, ensuring that more potential sites are situated in areas
with a high-density ratio between customer purchasing power and existing fa-
cilities. A non-parametric approach, kernel density estimation, is adopted to
estimate the probability density functions [17]. According to the density ratio,
the samples are generated from a multiresolution grid structure [130] and an
inhomogeneous Poisson point process [93]. I evaluate the performance of these
methods and regular grid sampling using synthetic experiments and demon-
strate that the multiresolution grid structure outperforms other approaches.

My main contributions are: (a) propose a method to advance the BSIM in
order to address one of the limitations by including lost demand in competitive
environments to provide more realistic revenue estimates; (b) formulate an
optimisation problem to simultaneously identify optimal facility locations and
corresponding designs in competitive environments and provide probability
density estimates of revenues at new sites; (c) propose a search algorithm
based on the quadtree method to explore geographic regions of varying spatial
resolution hierarchically.

4.2 Methodology

As discussed, the BSIM model assumes that the existing facilities capture the
entire customer buying capacity, and there is no lost demand. This assumption
is lifted by extending the BSIM in order to provide a more realistic formulation
of customer choices and revenue predictions at business facilities. Next, I
introduce the competitive facility location problem and a framework to search
for optimal sites.

4.2.1 An extended Bayesian Spatial Interaction Model (BSIM)

Suppose there are N customers residing in location mn ∈ R2 having socio-
demographic characteristics denoted by vn ∈ RP . Consider a set of available
stores S where each store s ∈ S located at ls ∈ R2 with store characteristics
of ϕs ∈ RD. The customer n ∈ N allocate their demand based on the utilities
uns perceived by customer n for selecting each store s ∈ S. In the BSIM
utilities are modelled by evaluating the probability density function (PDF) of
truncated Gaussian distribution f(dns), centered on a facility µs = ls and
has a diagonal covariance matrix Σs = σ2sI that indicates the store attraction.
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This captures the likelihood for the n-th customer to visit the s-th store:

uns = f(dns) =


exp

(
−d2ns/2σ2s

)
2πσ2s

(
1− exp (−d2T /2σ2s)

) , 0 ≤ dns ≤ dT

0, otherwise.

(4.1)

where denotes dns the Euclidean distance between the customer and store
locations dns = ||mn− ls||2 and dT is the maximum distance a customer would
travel, beyond which the densities are set to zero in the truncated Gaussian
distribution. Variance of the Gaussian σ2s is formulated as a function of store
characteristics ϕs and the non-observable store characteristics εs ∈ R;

σ2s = exp (λ⊤ϕs + εs) (4.2)

where λ represents a shared coefficients across the stores. Next the probability
pns, for a customer n to visit a given store s is defined by,

pns =
uns∑S
j=1 unj

(4.3)

BSIM and most spatial interaction models assume a fixed demand, but in
most realistic situations, prices or availability of specific quality might affect
the total number of customers using the facilities or products. I extend the
BSIM to introduce elasticity of total demand as proposed by [89] and [41].
Henceforth, the model is advanced by introducing utility term und assuming
a dum‘my facility in addition to the existing alternatives:

pns =
uns∑S

j=1 unj + und
(4.4)

It is now observed that the choice probabilities for a given customer (pn) no
longer always add up to unity.

pn =

S∑
s=1

pns =

∑S
n=1 uns∑S

j=1 unj + und
≤ 1 (4.5)

The dummy facility is assumed to be located at the same distance dD for
all customers. The distance dD represents a reasonable extent (dD ≤ dT )
shoppers willing to travel. The revenue attracted by the dummy facility is
considered to be the unsatisfied demand by the existing facilities. The vari-
ance of the Gaussian placed on the dummy facility is set to σ2d = dT /4, to
obtain approximately 0.99 area under the curve within the maximum distance
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a customer travel to a store. Hence the constant utility term und is given by:

und =


exp

(
−d2D/2σ2d

)
2πσ2d

(
1− exp (−d2T /2σ2d)

) , 0 ≤ dD ≤ dT

0, otherwise.

(4.6)

The budgeted spending of a customer n is denoted by bn is assumed to be a
linear function of customer socio-demographics:

bn = β⊤vn (4.7)

Finally the revenue or demand at a given store s is:

rs =

N∑
n=1

bnpns (4.8)

Finally the complete data likelihood is:

p(Y|β, λ, ε, γ−1) =
S∏

s=1

N

(
ys|

N∑
n=1

β⊤vn
uns∑S

j=1 unj + und
, γ−1

)
, (4.9)

with Y = {y1, . . . , yS} and the model assumes constant-variance (γ−1)
for the Gaussian noise. The posterior parameters of the extended BSIM are
estimated using the variational inference approach similar to the Chapter 3.2.
Customers are assumed to make their choices according to the extended BSIM,
and the estimated parameters are used for the optimisation problem in locating
new facilities.

4.2.2 Optimal facility location

Consider the problem where a company wants to find the optimal store fa-
cility to maximise the market share. An increase in revenue of new facilities
is assumed to increase market share; thus, maximising revenue is equivalent
to maximising market share. The optimisation problem aims to identify the
optimal locations with store characteristics to gain maximum forecasted rev-
enue within a set budget constraints. Consider an environment in which the
customers are already served by existing stores L. Let L̃ denote the set of
potential locations to open new facilities. For a given set of newly open stores
L∗ ⊆ L̃ the customer demand is split based on the utilities unl perceived by
consumer n for selecting each facility l ∈ L∗. Suppose a discrete number of
designs R are available and let r ∈ 1 . . . R represent a particular design. The
features of a new store located at l with design r are denoted by ϕlr. Thus
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the truncated Gaussian PDF denoted by f(dnlr) is:

f(dnlr) =


exp

(
−d2nlr/2 exp (λ

⊤ϕlr)
)

2πσ2s
(
1− exp (−d2T /2 exp (λ

⊤ϕlr))
) , 0 ≤ dnl ≤ dT

0, otherwise.

(4.10)

where dnlr denotes the Euclidean distance between the customer and new store
location l with design r.

Let xlr be a binary variable set to one if and only if the company decides
to locate a store at l ∈ L̃ with design r. Then the utility unl can be written
as:

unl =

R∑
r=1

f(dnlr)xlr (4.11)

Consequently, the probability for customer n to visit new store l is calcu-
lated as:

pnl =
unl

unL + und +
∑

l′∈L̃ unl′
, (4.12)

where unL represents the total utility derived by customer n from all the exist-
ing stores. Total revenue generated by the new store locations L∗ formulated
by:

yL∗ =
∑
l∈L̃

N∑
n=1

bn
unl

unL + und +
∑

l′∈L̃ unl′
(4.13)

Let clr be the cost of locating a facility with design r at l ∈ L̃. Suppose
the available budget for locating new facilities is B ∈ R, and thus the budget
constraint is obtained by:

∑
l∈L̃

R∑
r=1

clrxlr ≤ B (4.14)

Objective function

The objective function of the optimisation model depends on the current state
in the market of the company that searches for new sites. Thus three unique
objective functions are formulated and denoted by ν(xlr):

Case I: Consider a company that wants to find the optimal store location
to enter a new market. The objective is to maximise the revenue of the new
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facilities, and the objective function is expressed by:

N∑
n=1

bn

∑
l∈L̃
∑R

r=1 f(dnlr)xlr

unL + und +
∑

l∈L̃
∑R

r=1 f(dnlr)xlr
(4.15)

Case II: Suppose a company already has a chain of existing facilities in a
market L̂, wants to build new stores to expand their presence. In this scenario,
the company would wish to maximise the revenue of the new facility and make
sure their existing facilities revenues are less affected. Henceforth the objective
would be to maximise the total revenue of the current and new stores owned
by the company. The objective function is:

N∑
n=1

bn

∑
l′∈L̂ unl′ +

∑
l∈L̃
∑R

r=1 f(dnlr)xlr

unL + und +
∑

l∈L̃
∑R

r=1 f(dnlr)xlr
(4.16)

Case III: The following scenario is where the market is a monopoly in which
all the facilities are owned by one franchise. The objective would be to locate
new facilities while optimising the total revenue generated from the market.
The objective function is given by:

N∑
n=1

bn
unL +

∑
l∈L̃
∑R

r=1 f(dnlr)xlr

unL + und +
∑

l∈L̃
∑R

r=1 f(dnlr)xlr
(4.17)

Optimisation problem

Given the above definitions, I formulate the optimisation problem that is ap-
plicable for all three cases with the common constraints to find at most k
number of locations to build new facilities within the given budget B to max-
imise the revenues:

max
xlr

ν(xlr) (4.18)

subject to:
∑
l∈L̃

R∑
r=1

clrxlr ≤ B (4.19a)

∑
l∈L̃

R∑
r=1

xlr ≤ k (4.19b)

R∑
r=1

xlr ≤ 1 for l ∈ L̃ (4.19c)

xlr ∈ {0, 1}, for r = 1 . . . R; l ∈ L̃ (4.19d)

where constraint (4.19a) is an upper limit for the total cost, (4.19b) limits
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the maximum number of facilities and (4.19c) ensures multiple designs are
not used for the same store. Since the objective function in all three cases is
a sum of ratios with binary variables, the optimisation problem is identified
as an integer nonlinear programming problem. The problem is related to the
family of multiple-choice knapsack problem (MCKP) with generalised upper
bound constraints, which is proven to be NP-hard [83]; hence our problem
is NP-hard. The MCKP problem selects at most one item to pack into a
knapsack from disjoint classes to maximise the sum of profits similar to our
problem but differs by the objective function where it uses a sum of ratios.
These types of problems are known as combinatorial optimisation problems,
where the aim is to select a subset of the items to maximise the profit [153].
The optimisation problem is solved using constraint programming with the
CP optimiser on IBM ILOG CPLEX studio 20.1.

4.2.3 Hierarchical search

In establishing a new facility, it is tedious for planners to provide an exhaustive
set of candidate locations, or this set is so large that it is computationally
expensive. A hierarchical search algorithm is proposed to start with potential
locations from a broader region and narrow it down to explore neighbourhood
locations. The algorithm executes a sequence of actions at several levels. The
pseudo-code of the algorithm is presented in Algorithm 2.

Algorithm 2: Hierarchical search
load L̃ ; // Load set of potential locations
initialise L ; // Create matrix L to save optimal locations L∗

τ ← threshold;
for samples in L̃ do

L∗, ν ← findOptimalLocs(samples,B, k ) ;
save L∗ in L;

end
∆ν ← τ ;
while ∆ν ≥ τ do

ν0 ← ν ;
L∗, ν ← findOptimalLocs(L, B, k) ;
L ← getQuadtree(L∗) ;
∆ν ← (ν − ν0)/ν0 ;

end

Three options are presented in the following sections to generate the initial
set of candidate locations for the hierarchical search algorithm. Before execut-
ing the optimisation algorithm, the potential facility locations are split into
random samples in the first level. Decomposing the larger matrix into smaller
samples improves computational complexity in optimisation algorithms. Addi-
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tionally, partitioning improves efficiency significantly in distributed computing
environments. The solution at the first level contains optimal locations selec-
ted independently from each list. Subsequently, these optimal sites become
the new potential locations for the next level. In addition to these sites, the
neighbourhood locations are produced using the quadtree method, which is
a tree data structure. The cells where the optimal locations were found are
subdivided into four quadrants and use the midpoint as their neighbourhood
locations. In the second level, search for the optimal locations and calculate
its objective value. If the improvement of the objective value is larger than
the given threshold, then the new optimal locations are recursively further
decomposed and optimised with the new set of candidate locations until the
improvement is smaller than the threshold.

Three sampling methods are proposed to generate the initial set of poten-
tial locations. The first method, the regular grid sampling approach, does not
account for spatial variability. In contrast, the other two are density-based
sampling methods; inhomogeneous Poisson point process and multiresolution
accounts for spatial variability of customers and facilities.

Regular grid sampling

The regular grid sampling method does not account for the customer and
facilities’ spatial variability; thus, the candidate locations are uniformly dis-
tributed in space. The potential sites are generated using the midpoints of
grid cells with a given resolution in a bounded region. The dimensions of the
regular grids are a compromise between representation efficiency and compu-
tation overhead. A set of random samples are created to execute the hierarch-
ical search parallelly using a stratified sampling approach. The data points
are split into sub-regions or use statistical geographical boundaries and then
sample from the subgroups independently.

Density-based sampling

I propose a density-based sampling method to create the initial candidate loca-
tions to overcome sampling errors in regular grid sampling. A non-parametric
approach, kernel density estimation, is adopted for estimating the probability
density function [17]. Given the existing facility locations ls ∈ R2, the density
estimate at a point x ∈ R2 is given by:

fs(x) =
1

Sh

S∑
s=1

K

(
x− ls
h

)
(4.20)

where K(·) is a kernel function, chosen to be a Gaussian kernel with band-
width parameter h, optimally selected according to [133]. The spending power
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bn (Eq. 4.7) is unevenly distributed at customer locations mn. Hence a
weighted kernel density estimator is considered to model customer spending
capacity [60]. The spending capacity bn at each customer location mn is
normalised and denoted by wn, so they add up to one. The weighed density
estimate function is given by:

fn(x) =
1

Nh

N∑
n=1

wnK

(
x−mn

h

)
(4.21)

A ratio fr(x) between the density estimates is calculated. This provides an
indicator of how dense the area is in terms of customers spending power com-
pared to the available facilities:

fr(x) =
fn(x)

fs(x)
(4.22)

Two sampling methods are proposed using the estimated density ratio.

Sampling with inhomogeneous Poisson point process
The potential set of locations is simulated using the inhomogeneous Poisson
points process (IPPP ) to have many locations in the sample from regions
with high intensity of the ratio fr(x). In a homogeneous Poisson process
with intensity λ, the number of events η in any bounded region A is Poisson
distributed with mean λ|A| where |A| denotes the area of A [28]. In contrast,
the intensity function of an inhomogeneous Poisson process is a nonconstant
function λ(x) of spatial location x ∈ R2.

IPPP is simulated through [93] thinning algorithm. First a random number
η∗ is obtained from a Poisson distribution with mean µ(A) =

∫
A λ(x)dx. Next,

a homogeneous Poisson point process is simulated with intensity value λ∗

which is an upper bound of the intensity function λ(x). For this the maximum
of the ratio between the density estimates, λ∗ = max fr(x) is used. Finally,
points x∗ of the homogeneous process is thinned according to fr(x

∗)/λ∗ (i.e.
each point x∗ is deleted independently if a uniform(0,1) random number is
greater than fr(x∗)/λ∗) which results in a IPPP forming the candidate lo
cations for the hierarchical search. The second level of the hierarchical search
does not continue recursively since the grids are not used to generate data,
unlike the other two proposed methods.

Sampling with Multiresolution grid structure
The multiresolution depth grid is created in the proposed approach based on
the estimated density ratio fr(x). First, fr(x) is estimated on a fine meshgrid
created in the study region. Next, create a regular grid and calculate the
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average µr, of fr(x) within each cell. Compute the q-quantiles of the µr,
and assign to which quantile each cell resides. This represents the number of
iterations to decompose each cell into four smaller sub-blocks. The midpoint of
sub-blocks is used as the candidate locations. The dimension of the regular grid
and depth of resolution (q) is a compromise between representation efficiency
and computation overhead. The pseudo-code of the method is presented in
Algorithm 3.

Algorithm 3: Multiresoltion grid structure
x← constructPointsMeshgrid(region);
grid← decompose(region, m) ; // decompose region into m
sub-blocks

foreach ci in grid do // for each cell ci in the grid
µr ← mean(fr(x)) ; // Mean of fr(x) of points in cell ci
save µr in ci;

end
q̂ ← max(µr)/q ; // q denotes the depth of resolution
foreach ci in grid do

points← midpoint(ci) ; // Midpoints of cell ci
save points in out ;
for j = 1 to q do

if (j − 1)× q̂ ≥ µr ≤ j × q̂ then
for g = 1 to j do

ci ←decompose(ci, 4) ; // Decompose ci into 4
square submatrices and repeat recursively
points← midpoint(ci) ;
save points in out ;

end
exit

end
end

end

4.3 Synthetic Experiments

A simulation study is designed to experiment with the optimisation problem
using the three objective functions introduced and compare the performance
using the three sampling methods proposed in Section 4.2. The computational
performance of the methods is compared by observing each optimisation prob-
lem’s run time. All the experiments are executed on an Intel Core i5 CPU
(2.3 GHz Dual-Core and 8 GB of RAM).

First, data is simulated from a spatial process that closely matches the
extended BSIM framework introduced in Section 4.2 with the dummy facilities.
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The process is defined as:

ys|β,λ, σ2 ∼ N (rs, γ
−1), (4.23)

where a reasonable distance that a customer is willing to travel is assumed to
be half of the maximum extent prepared to travel (dD = dT /2). The locations
of stores and customers are simulated within a square. Customer budgeted
spending is generated, with a strong spatial correlation where rich and poor
areas are demonstrated to reflect the real-world scenario closely, as shown in
Fig. 4.1(a). The customers’ satisfied demand (pn) from the existing stores are
shown in Fig. 4.1(b). The store locations are randomly sampled, and their
current revenue is displayed in Fig. 4.1(c). Two possible designs (r = 2), say
small and large facility structures, are assumed to be available for development.
Suppose the cost of a large building is six times the smaller facility, and the
cost of each design (clr) remains unchanged despite the locations.

(a) (b) (c)

Figure 4.1: (a) Simulated customer locations (N = 1000) and budgeted spend-
ing (colour gradient); (b) Satisfied customer demand (colour gradient) and the
existing stores (red) (c) Revenue of the existing stores (colour gradient) and
potential store locations (grey).

4.3.1 Demonstration of the optimal facility location with vary-
ing objective functions

Given the above synthetic setting, the optimisation problem is solved to find
the optimal location for one new facility with a budget of ten(B = 10) for
the three objective functions discussed in Section 4.2. A regular grid sampling
approach is used to generate the potential facility locations, as presented in
Fig. 4.1(c). The results of the optimisation problem with the objective function
in case I (Eq. 4.15), a company entering the market for the first time, the new
facility is to be located in the area with the wealthiest customers generating
the highest revenue compared to all the facilities (Fig. 4.2(a)). In case II (Eq.
4.16), a franchise opening a new facility, the optimal location moves away from
the other facilities in the chain as displayed in Fig. 4.2(b). Revenue of the new
facility reduces compared to case I, but the total sales of the chain facilities
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Table 4.1: Revenue of the existing and optimal facilities

Optimisation
Existing Case I Case II Case III

Total revenue of all stores 204.3 210.8 209.9 213.6
Total revenue of chain stores 55.4 70.3 77.7 75.9
Revenue of new store 27.6 23.5 20.4

are increased, as shown in Table. 4.1. Finally, in case III (Eq. 4.17), when
opening a new facility in a monopolistic market, the new store locates away
from all the existing facilities (Fig. 4.2(c)) to gain additional sales to maximise
the total revenue of all the facilities. Total revenue shows the highest while the
sales at the new facility show the lowest compared to other cases (Table. 4.1).
In all three cases, the optimal facility design is large size.

(a) (b) (c)

Figure 4.2: The experiment is to find the optimal location for a new facility
under three different objectives: (a) Maximise the revenue of the new facility
(Eq. 4.15). (b) Maximise the revenue of all facilities owned by the franchise
(Eq. 4.16). Square indicates the existing facilities owned by the franchise. (c)
Maximise the revenue of all facilities in the market (Eq. 4.17). Hexagons
indicate that all facilities owned by the same company. The optimal location
is shown within the red colour dashed circle, square and hexagon.

4.3.2 Evaluation of sampling methods for the hierarchical search

I experiment with the hierarchical search using the three sampling methods
proposed in Section 4.2. The synthetic setting remains as described above.
Experiments are performed with the objective function where a new company
is entering the market (Eq. 4.15) and looking to establish two facilities with a
budget of 10. The threshold of the hierarchical search for the recursive stage
is set to 0.01, meaning the objective function should increase by more than
1% to continue the search.
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Regular grid sampling

A regular grid with dimensions of 10 × 10 is used to generate the initial can-
didate locations. The locations are split into four samples using the strati-
fied sampling method. The optimisation problem is solved independently for
each sample to identify two optimal sites forming eight in total, as shown in
Fig. 4.3(a). For the next level of the hierarchical search, the neighbourhood
locations are produced using the quadtree method forming 40 potential sites
as reported in Fig. 4.3(b). The recursive algorithm stops after two iterations
producing two locations to establish the new facilities with the two designs.

(a) (b) (c)

Figure 4.3: Visual progression for regular grid sampling for hierarchical search.
(a) Initial candidate locations generated from 10 × 10 regular grid. Eight op-
timal locations are found from each sample producing one small and large
design facilities. (b) Neighbourhood locations for the optimal locations gener-
ated from the previous step and the new optimal locations. (c) Final optimal
locations are derived from ten potential locations.
Density-based sampling
The initial step for the density-based sampling method is to fit the kernel dens-
ity functions for customer spending budget and the store locations. Fig. 4.4
demonstrates the density contour plot generated for customer purchasing
power, store locations and the ratio of the two density estimates in the area.
A 100× 100 meshgrid is used to estimate the density and calculate the ratio.

(a) (b) (c)

Figure 4.4: Demonstrates the density contour plot generated for (a) customer
spending, (b) store locations (c) ratio of the two density estimates in the area.
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Sampling with inhomogeneous Poisson point process: The max-
imum estimated ratio from the meshgrid is considered as the λ∗ for the IPPP.
Four random samples are generated from IPPP and solved the optimisation
problem independently to identify eight optimal facilities as displayed in Fig. 4.5.
These eight locations become the potential sites for the final iteration to find
the optimal facilities.

(a) (b)

Figure 4.5: Visual progression for IPPP sampling for hierarchical search.(a)
Random samples are generated from the IPPP as the potential locations for
the optimisation problem. Eight optimal facilities are found, with each sample
producing one small and large facility location. (b) The optimal locations of
the previous stage becomes the candidate sites for the second level from which
the optimal locations are identified.

Multiresolution sampling: A regular grid of 5× 5 is created and calcu-
late the average within each cell using the estimated density ratios from the
meshgrid. The resolution depth is chosen to be three and calculate 3-quantiles
of the average values to decide the resolution of each cell. Fig. 4.6 (a) presents
the multiresolution samples used as the potential locations. The set of can-
didates is split into four random samples and solve the optimisation problem
independently. The algorithm stops after two iterations providing the optimal
facilities, as shown in Fig. 4.6 (c).

(a) (b) (c)

Figure 4.6: The progression of the multiresolution sampling method to find
the optimal locations. (a) Multiresolution samples for 5×5 grids with a depth
of three. (b) Neighbourhood locations for the optimal sites generated from
the previous step and the new optimal locations. (c) Final optimal locations
are derived from ten potential sites.
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Comparison between sampling methods

The results are compared in terms of the final objective values and the run time
of the hierarchical search for the setup described above. All three methods
show consistent results, whereas the multiresolution approach shows margin-
ally higher optimal revenue as reported in Table. 4.2. The optimal locations
for all three methods are in the same regions, whereas the large store is located
on the left and the small store on the right side.

Table 4.2: Results of the hierarchical search with the sampling methods

Sampling Method Starting number of locations Objective Value Run time (s)
Regular grid 225 (grids = 15x15) 53.83 231
IPPP 271 (samples = 4 ) 53.78 240
Multiresolution 217 (depth = 3) 53.85 275

The comparison is extended by simulating the experiment 100 times. Data-
sets are created by generating random store locations while keeping the same
setup for the customers described in the simulation study. The initial number
of candidate locations for the three sampling methods are experimented with
at two levels to demonstrate the behaviour based on the initial sample size.
The performance are compared across three sampling methods and the initial
sample size. The Table. 4.3 presents a summary of the results.

Table 4.3: Performance comparison between sample methods

Sampling
Method

Starting number
of locations

Number of
times with best
Objective value

Average
objective

value

Average
run time

Regular grid

64 41 58.23 33
(grids = 8x8)

225 47 58.30 252
(grids = 15x15)

IPPP

76 1 57.23 57
(samples = 1 )

262 0 58.02 288
(samples = 4 )

Multiresolution

73 58 58.25 38
(depth = 2)

217 53 58.31 241
(depth = 3)

The average of the objective value for each sampling method is marginally im-
proved as the starting number of candidate locations for the hierarchical search
increases. The multiresolution sampling method has obtained the highest ob-
jective value 58 times, while the regular grid method has obtained this 41
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times for the setting with low number of starting locations. However, with
the increase in the starting number of candidate locations, the comparison
between the regular grid and multiresolution methods are narrowed. This im-
plies that increasing the regular grid method’s resolution could achieve as good
a result as the multiresolution method. IPPP has performed comparatively
poorly with only ones obtaining the best objective function. This could be
because the IPPP approach does not recursively evaluate neighbouring loca-
tions. Since IPPP run time is higher than the other methods, an approach
is not considered to explore the neighbouring sites. It can be concluded that
the multiresolution sampling method could produce better results with a low
number of starting locations while being efficient.

4.4 Summary

In this chapter, I have studied the competitive facility location problem that
typically arises when businesses plan to enter a new market or expand their
presence in an environment with existing competitors. A mathematical model-
ling framework is formulated to simultaneously identify the location and design
of new stores in order to maximise revenue in a given geographical region. In
doing so, the Bayesian spatial interaction model (BSIM) is extended by incor-
porating demand elasticity, thus providing more realistic revenue estimates.
Solving the underlying allocation optimisation problem requires the provision
of an exhaustive set of potential sites, which is difficult in practice. Instead,
a search algorithm is introduced based on the quadtree method to overcome
this challenge by hierarchically exploring geographic regions of varying spatial
resolution. Different sampling techniques are proposed to generate the initial
set of candidate locations for the algorithm: regular and multiresolution grid
structures and inhomogeneous Poisson point processes. The multiresolution
approach based on kernel density estimates is proven to be the most compet-
itive performance.

The sampling techniques do not provide an exhaustive list or may not
provide the true optimal sites that could build the facilities. But these op-
timal sites indicate the areas that need to be explored with real opportunities
based on different criteria such as availability and size of land. The introduced
framework could be valuable for decision-makers in companies, property de-
velopers, planners etc.

The framework is put into practice with two real-world case studies in
Chapter 6. The challenges and limitations in applying to real-world problems
are discussed along with its results. The next chapter introduces real-world,
large-scale datasets required for real-world experiments.
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Chapter 5

Introducing large scale
geo-spatial datasets

5.1 Introduction

In the literature, experiments on spatial interaction modelling are limited to
small synthetic datasets or real-world aggregated data since acquiring granu-
lar level real-world data is usually expensive [2, 14]. This is also common in
competitive facility location literature, where the applications are limited to
identifying optimal facility locations within a synthetic setting or small geo-
graphic regions [10, 41, 54]. To address these constraints, I create a dataset
that includes variables observed at a granular level for public houses (pubs),
supermarkets and customer zones. This is performed by combining large geo-
spatial and non-geospatial data from open and commercial data sources. Addi-
tionally, I gather customer reviews from Google’s customer rating API, which
covers a broader audience compared to the traditional survey methods found
in the literature [39].

My main contributions are: (a) constructed an unprecedented real-world
large spatial dataset for over 1500 Pubs in Greater London to demonstrate
revenue, physical store features, surrounding characteristics and customer rat-
ings. (b) introduce a dataset with approximated revenues and store capacity
for the nine largest supermarket chains in the UK; (c) over 150,000 postcodes,
most granular administrative level, data set is compiled for Greater London
to represent customer zones and characteristics.

5.2 Compilation of pubs and supermarkets datasets

Accessing revenue generated at the business locations are nearly impossible due
to the confidential and competitive nature of the data. Hence in this thesis, I
explore two industries, pubs and supermarkets, that have a close relationship
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between revenues and rateable values published by Valuation Office Agency
(VOA) [143]. This section presents a comprehensive description of the data
and the steps to compile the two new datasets.

5.2.1 Non-Domestic properties

The Valuation Office Agency (VOA) [143] maintains rateable values, also
known as business rates, of around 2 million non-domestic properties in Eng-
land and Wales. The latest rating list was compiled in April 2017, and the
next publication is due in 2022. The rateable value of business properties is
usually adjusted every five years to reflect changes in the property market.
The most common valuation method is the open market annual rental value
of the property. Each local billing authority is responsible for compiling and
maintaining the local rating list. The regular site and building survey support
the majority of the properties rateable value. The local councils multiply the
rateable value with the multiplier set by the VOA to calculate the business
rates of non-domestic properties. The complete list can be downloaded in the
CSV format from the VOA website [143] and are protected by Crown Copy-
right and Crown Database rights. Variables that are provided in the dataset
is presented in Table 5.1.

The non-domestic properties include properties or land that are not solely
used for residential. Each property is classified into over 300 categories (schools,
pubs, hotels, food stores, nightclubs etc.). 80% of the non-domestic proper-
ties in England are represented by only 4% of the categories. The frequency
distribution of these 15 categories is shown in the figure 5.1.

5.2.2 Properties geo-coordinates

The Ordnance Survey Addressbase premium [113] is the most comprehensive
address data set for the UK, containing approximately 40 million addresses.
Each property has a Unique Property Reference Number (UPRN) and is clas-
sified as either commercial or residential, and further classified into over 500
categories. The data set provides the spatial point coordinates for each prop-
erty. This is a commercial proprietary product from the Ordnance survey.
The spatial database is queried using PostGIS.

5.2.3 Properties boundary Polygons

This dataset provides the indicative shape and position of each boundary of a
registered title for land and property in England and Wales [72]. Each title is
either freehold or a leasehold with a unique title number with at least one index
polygon. There are more than 25 million titles and 28 million polygons. The
area of the title polygon gives the size of the land. The dataset is published
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Table 5.1: Variables in VOA data

Variable Type Description

1 Billing Authority Code Character Code representing Billing Authority
2 Primary And Second-

ary Description Code
Character Code providing a high level description of

the property

3 Unique Address Refer-
ence Number UARN

Number VOA Internal key used to link information
about the same hereditament

4 Full Property Identifier Character Location of property as shown in Rating
List (Usually less than 100 characters).

5 Firms Name Character The name of the company
6 Number Or Name Number Number and or name of the hereditament
7 Street Character Name of Street
8 Town Character Name of Town
9 Postal District Character The Postal District
10 County Character Name of County
11 Postcode Character Postcode of hereditament as recorded by

VOA
12 Effective Date Date Format DD-MON-YYYY Date the current

assessment came into effect.

13 Rateable Value Number Rateable value is an assessment of the open
market rental value of the property on the
prescribed valuation date.

14 List Alteration Date Date Format DD-MON-YYYY. Date on which
List entry was created or last amended

15 SCAT Code And Suffix Character Code used by the VOA to group properties
together for operational purposes

as a commercial dataset by HM Land Registry. Variables that are provided
in the dataset is presented in Table 5.2.

5.2.4 Topographic data

The Ordnance Survey MasterMap Topography Layer provides access to the
most detailed, current, and comprehensive dataset of Great Britain’s landscape
[114]. Each record in the database offers geometric position and shape on
Earth and its related attributes. This helps to identify the landscape, building
footprint, and heights. Ordnance Survey develops, manage, and maintain the
data within one of the world’s largest spatial databases [114]. Real-world
topographic features are represented by points, lines, and polygons, along with
a unique identifier. The dataset size is over 40GB and is in the Geography
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Figure 5.1: Frequency distribution for categroies that account for 80% of non-
domestic properties in England.

Mark-up Language (GML) format.

Figure 5.2: Illustration of proporties geo-coordinates, boudary polygon and
topographics

5.2.5 Property Ownership

The ownership dataset published by HM Land Registry provides details of
the registered properties in England and Wales that UK companies own [73].
The title number is directly linked to the national polygon dataset and is
published monthly that is accessible for free in CSV format. The variables
that are provided in the dataset is presented in Table 5.3.
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Table 5.2: Variables in National polygon data

Variable Type Description

1 Shape Geometry Geometry of the Index Polygon must be a
single area

2 Poly_ID Number Unique polygon reference.
3 Title_No Character Unique number which identifies a re-

gistered title to land
4 Insert Date Date on which the polygon in the title was

initially created on the index map
5 Update Date Date on which all or part of the title was

last updated
6 Vers_No Number Version of Poly_ID
7 Rec_Status Character Identifier to describe status of the polygon.

Added (A), Changed (C), Deleted (D)

5.2.6 London Business rates

In this thesis, the real-world applications are concerned with Greater London,
England’s capital and largest city. The non-domestic properties (5.2.1) and
address geo-coordinate datasets 5.2.2 are joined using the cross-reference to
develop a comprehensive spatial point dataset with rateable values. The spa-
tial intersect between the property data set and statistical spatial boundary
for London is used to subset the data set to filter London’s non-domestic prop-
erties. Business rates are charged from 277,906 non-domestic properties in
London. 90% of the non-domestic properties in London are represented by 16
of the categories, and the frequency distribution is presented in figure 5.3.

The rateable value ranges between £41 and £212.4 million, with an av-
erage value of £63,461. The log transformation is used on rateable values
to overcome the skewness of the data. Figure 5.4. shows the variability in
distributions for the log of rateable value for each of the 16 major categories.

5.2.7 External store characteristics

In addition to the internal store characteristics, the external features are ex-
tracted to use in the model. These features are concerned with explaining
the urban environment of the stores are located. External characteristics are
explained by denoting if it is placed in a major town, the closest distance to
public transport access points [35], tourist attractions [71] and sports facilities.

Access points to public transport

The National Public Transport Access Nodes (NaPTAN) database lists all
points of access to public transport in Great Britain. It records approximately
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Table 5.3: Variables in the Corporate ownership dataset

Variable Type Description

1 Title number Character Unique number which identifies a re-
gistered title to land or a caution against
first registration.

2 Tenure Character Freehold or leasehold.
3 Property Address Character The unformatted address in the register.
4 District Character Name of an administrative district.
5 County Character Name of current county in England and

Wales.
6 Region Character Name of a geographic region.
7 Postcode Character It is part of a coding system created and

used by the post office across the UK.
8 Price Paid Character The sale price stated on the transfer deed
9 Proprietor name Character Non-private Individual Name. Given upto

3 owners of the title.
10 Company Registration Character A unique identifier assigned to a company

when it is registered at Companies’ House.
11 Proprietorship Cat-

egory
Character Text which describes the category in which

a name falls.
12 Proprietor address Character Register address string.
13 Date Proprietor added Date The date a proprietor was added to the re-

gister.
14 Additional Proprietor

Indicator
Character Indicates if there are other proprietors in

the register.

400,000 bus stops across England, Scotland and Wales, and other transport
terminals, including rail stations and airports [35]. The dataset can be ac-
cessed openly and downloaded as a CSV. The given geo-coordinates are then
converted into a spatial database and stored in PostgreSQL. This dataset is
subject to the Open Government Licence.

Places of Interest

The tourist attractions such as monuments, world heritage sites, and parks and
gardens spatial data are available on ‘Historic England’ under listing datasets
[71]. The files are in the format of shapefiles and provide the locations as
polygons. This dataset is subject to the Open Government Licence. Addition-
ally, the locations of sports facilities are taken from the OS Addressbase data
(5.2.2).
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Figure 5.3: Frequency distribution of the categories that represent 90% of
Non-domestic properties in London.

English town centres

The English town centres are provided as polygons in shapefile format [101].
The properties are spatially joined to obtain if it is placed within a town.
The output is generated as a binary variable. The spatial distribution of the
English towns is presented in Fig. 5.7.

5.2.8 Customer ratings

The customer rating is an important aspect to demonstrate store attractive-
ness. I have strengthened the store characteristics by including the customer
reviews on Google [63]. People can write reviews and rate the places voluntar-
ily on Google maps. The ratings are then aggregated and shown to the public.
Obtaining data from a wider audience adds significant value compared to tra-
ditional survey methods. The Google Places API provides access to this data
at a cost. The process applied in compiling the dataset is presented in Fig. 5.8.

5.2.9 Dataset with characteristics of pubs in Greater London

The calculation of the rateable values of pubs is different from other categories.
In contrast, the rateable value of pubs is based on the annual level of trade
(excluding VAT) that a pub is expected to gain if operated in a reasonably
efficient way [142]. Hence the rateable value is a good proxy of the pub rev-
enues. There are 40,000 pubs recorded in non-domestic properties dataset for
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Figure 5.4: Frequency distribution of Rateable values in London.

Figure 5.5: Illustration of public transportation access points in London.

Figure 5.6: Illustration of the places of interest in Greater London.

England and Wales, and 3,534 in Greater London. The spatial distribution of
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Figure 5.7: English town centres in Greater London.

Data processing – Google Place data Variables

Geo-locations for the pubs are 
taken from the dataset created 
from the initial data processing 
step.

Using the Google Place API, 
near by search option the 
locations with keyword ‘pub’ 
list is read in the json format. 
This is then transformed to a 
spatial table using the geo-
coordinates. 

The correct google pin is 
identified by spatial join with 
the title polygon of the 
respective pub. 

• Name (The place's name)

• Latitude 

• Longitude 

• Place ID

• Vicinity (A simplified 

address for the place)

• Price level

• Rating (from 0.0 to 5.0, 

based on aggregated user 

reviews)

• Types (e.g.: bar, restaurant, 

food)

• Total number of ratings

Figure 5.8: Diagram demonstrate the steps of extracting Google ratings for
Pubs. Since there is no direct cross-reference between Google and other data-
sets, I have employed spatial joining to link data.

pubs across England is shown in Fig. 5.9.
A dataset around pubs is compiled to demonstrate internal and external

characteristics for each facility by combining the datasets described early in
the chapter. This is accomplished by first spatially joining the polygon of the
land [72] with locations of stores and next spatially joining the polygon of
the footprint from Mastermaps. I have strengthened the store attractiveness
measures by using the customer reviews on Google [63]. The flow diagram in
Fig. 5.10 presents the process built to extract the store features. The summary
statistics of the store features compiled are presented in Table 5.4.

5.2.10 Dataset for the largest supermarket chains in the UK

In this section, I develop a large scale geospatial dataset for supermarket chains
in the UK using multiple data sources. First, filter the properties owned
by the leading supermarket chains (Asda, Co-op Food, Iceland, Lidl, Marks
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(a) (b)

Figure 5.9: Spatial distribution of pubs: (a) across England; (b) zoomed into
Greater London. The region is split into equal size grids of hexagons (size of
each side : (a) 5km; (b) 0.5km) and number of pubs within each hexagon is
displayed with a colour gradient.
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Figure 5.10: Diagram illustrates the steps to extract the store features. Each
dataset is named as per the data source along with its number of records
(obs) or size. Initially, OS Addressbase 5.2.2 is joined with the non-domestic
properties dataset and then spatially joined with National Polygons data to
find the Title polygon of each land. This is next joined with Mastermaps and
linked with Google data to obtain the store footprints and google customer
ratings, respectively.

& Spencer, Morrisons, Sainsbury’s, Tesco, Waitrose) from the commercial
and corporate ownership data by [73]. However, the filtered data contains
other types of businesses owned by the respective supermarket chains, such as
their warehouses. [143] data provides the categorisation of the non-domestic
properties along with their rateable values and floor sizes. The VOA dataset
is filtered to extract the properties representing supermarket or food store
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Table 5.4: Summary statistics of the compiled dataset for pubs in London.

Characteristics Mean SD Min Median Max

Pubs internal
characteristics

Floorspace (sqm) 287.3 203.7 39.0 238.0 2,499.0
Height (m) 6.8 3.3 2.5 6.5 20.3
Number of floors 2.3 1.3 1.0 2.0 8.0
Total area of land (sqm) 578.2 384.0 44.0 480.0 3,806.0

Distance to the
closest (m)

Metro 1,572.9 1,948.7 1.4 730.3 12,481.5
Train Station 691.3 655.2 7.2 507.4 6,592.7
Bus Stop 89.0 81.2 3.0 65.6 1,230.2
Park 1,280.6 1,240.5 2.0 885.3 6,739.9
Popular Attractions 1,949.5 1,334.5 10.0 1,625.3 6,731.8
Sports Facility 225.5 176.1 7.2 181.2 1,207.4

Google data
Customer rating 4.2 0.3 1.6 4.2 5.0
Number of users rated 472.8 473.4 1.0 359.0 5,478.0

categories. Since there is no direct link between the two datasets, VOA data
with the OS Addressbase data 5.2.2 are joined with the cross-reference to
obtain the geo-coordinates of the properties. Next, the filtered ownership data
is joined with the National polygons dataset [72] to identify each properties
title polygon. Finally, the two datasets are spatially joined to obtain a dataset
of Supermarkets in the UK with their geo-location coordinates. This process is
illustrated in a flow diagram such that it is visually easy to read Fig. 5.11. The
spatial distribution of supermarkets in Greater London is shown in Fig. 5.12,
and the summary statistics of the compiled dataset is presented in Table 5.5.

Figure 5.11: The flow diagram presents the steps in developing a dataset of
Supermarkets in the UK with their geo-location coordinates. (a) The map
shows title polygons. (b) Filter only the titles owned by supermarket chains.
(c) Spatially join to identify the data from OS. (b) Finally, join with VOA
data to get only the supermarkets and their rateable values.

The annual revenue generated by supermarkets is extracted using the com-
panies’ annual statements. Since the individual revenues at each store are not
published, I calculate a revenue proxy using the reported annual revenues
proportional to their rateable values.
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(a) (b)

(c)

Figure 5.12: (a) Visualisation of the supermarket locations with their respect-
ive supermarket chains name. (b) Greater London is split into equal size grids
of hexagons (size of each side is 0.5km) and number of supermarkets within
each hexagon is displayed with a colour gradient. (c) Frequency distribution
of the supermarkets

Table 5.5: Summary statistics of the compiled dataset for supermarkets in
Greater London.

Characteristics Mean Std Min Median Max

Store
characteristics

Floorspace (sqm) 1,728 2,762 18 518 29,054

Distance to the
closest (m)

Metro 1,456 1,793 3 692 9,856
Train Station 800 730 10 589 6407
Bus Stop 68 48 2 56 442
Park 1428 1252 5 1065 6792
Popular Attractions 2093 1395 7 1794 6665
Sports Facility 171 172 4 124 1420

Google data
Customer rating 3.7 0.53 1.7 3.9 4.7
Number of users rated 356 646 2 70 7214
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5.3 Customer zone characteristics

In this section, a dataset is formed to use in the application to demonstrate
the customer level characteristics. The most granular level of customer data
can be identified as the residential locations. OS Addressbase dataset [113]
provides both residential and commercial addresses (over 40 million) along
with geo-locations. However, since there is no data for customer features at
the residential level, in this thesis, I consider postcodes which is the next most
granular level. Henceforth, we assume that the customers’ behaviour who are
residing in the same postcode are homogeneous.

5.3.1 Postcode level data

There are approximately 1.8 million postcodes in the UK, and on average,
each postcode has 15 properties. In Greater London, on average, there are
17 households per postcode. The postcode centroids for Greater London are
displayed in Fig. 6.3. The dataset can be accessed as point data with the
geo-coordinates [107]. Additionally, the postcode population breakdown with
gender is available to download as CSV [141]. The population and proportion
of gender at the postcode level are extracted to reflect the demographics in
the area. This dataset is subject to the Open Government Licence v.3.0.

5.3.2 Indices of Deprivation

In this thesis, the deprivation data are employed to enclose a broad range of
an individual’s living conditions. For instance, lack of financial resources to
support people’s needs can be considered living in poverty, but lack of any
kind of resources can be considered deprived. Hence there are seven domains
of deprivation: (1) Income Deprivation; (2) Employment Deprivation; (3) Edu-
cation, Skills and Training Deprivation; (4) Health Deprivation and Disabil-
ity; (5) Crime; (6) Barriers to Housing and Services; (7) Living Environment
Deprivation. The Indices of Deprivation [100] provide a set of relative meas-
ures of deprivation for small areas (Lower-layer Super Output Areas) across
England. This dataset is subject to the open government license. Since the
deprivation data is provided at the LSOA level, it is assigned to the postcodes
by point to polygon spatial join to match the customer zone data.

5.3.3 Lower-layer Super Output Areas (LSOA)

The Office for National Statistics design LSOA for the purpose of reporting
statistics in small areas[106]. Each area consists of similar population size,
with an average of approximately 1,500 residents or 650 households. There
are 32,844 LSOAs in England. The dataset is available to download in shapefile
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format that is consists of polygons. This dataset is subject to the Open Gov-
ernment Licence.

5.4 Summary

In this chapter, the focus was on compiling three main datasets : (1) over
1500 pubs geospatial and related characteristics; (2) supermarket store data
for the seven leading chains in the UK; (3) customer zone data at the postcode
level. This chapter overcomes one of the major limitations in the literature by
presenting real-world data for large-scale experiments. The datasets compiled
in this study could be beneficial for future research. All the primary datasets
that are available in the property-related industry are discussed in the study.
Using the methods introduced opens up many other directions to compile
datasets to explore different sectors such as restaurants and cafes.

The next chapter introduces two large scale real-world experiments to ex-
plore the methodologies and datasets introduced in this thesis. First explores
the non-domestic properties by applying state-of-the-are Fixed ranked kriging.
Finally, the BSIM is fitted and subsequently used to identify optimal facility
locations for pubs and supermarket industries.

5.4.1 Availability of data

The data that support the findings of this study was generated by combining
open source and commercial proprietary data. The commercial proprietary
data were obtained from the industrial partner to support research purposes
and are subject to strict non-disclosure agreements. However, researchers
interested in replicating our results on the commercial problems can directly
request data from the relevant organisations using the references made in
the paper. The data used for synthetic experiments and data created from
the open sources for real-world applications are provided under ‘Data’ in the
GitHub repository available at https://github.com/shanakap/BSIM.
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Chapter 6

Real-world Applications

6.1 Introduction

This chapter presents multiple real-world applications to demonstrate the
methodologies introduced by employing the large-scale datasets introduced in
the previous chapter. I initially explore the spatial variations in non-domestic
properties rateable values by applying the Kriging method. The following sec-
tions present two applications for a subset of non-domestic properties: pubs
and supermarkets. These two applications demonstrate the proposed BSIM
method and apply it to make location decisions to enter a new market or
expand in an existing competitive market.

My main contributions are: (a) application of Kriging to explore spatial
variation in rateable values across different categories of non-domestic proper-
ties; (b) BSIM method is applied to pubs and supermarket sector that proved
to provide the best predictive performance compared to competing approaches
while providing inference at the level of customers and business facilities, deliv-
ering invaluable insights for planning and decision making; (c) demonstrated
the optimal facility locations and their designs for a new company to enter the
pubs’ industry and expand the existence of a supermarket chain in Greater
London.

To the best of my knowledge, I am the first to present a fully integrated
competitive facility problem that includes both the spatial interaction model-
ling component and the store location optimisation framework demonstrated
in one of the major cities in the world using a large-scale dataset with over
1000 supermarkets, 1500 pubs, and 150000 customer regions.

6.2 Modelling Business Rates with FRK

The first application is primarily interested in exploring the non-domestic data-
set presented in Chapter 5. In this application, I propose a state-of-the-art
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Fixed Rank Kriging model to cope with high-dimensionality and learn rateable
values from the spatial context and category of the non-domestic properties.
By accounting for spatial effects, the model improves current business rates
valuation practice and could help in making the process more fair and trans-
parent.

Three different formulations are evaluated in modelling the logarithm of
rateable values:

1. Model with no covariates.
This model only uses the spatial coordinates to fit the model and will
not use the information about the category of the properties.

2. Model for each category with no covariates.
An individual model fits for each category using spatial coordinates.

3. Model with category as the covariate.
The category of the non-domestic property and spatial coordinates are
used in the model.

6.2.1 Cross validation

The standard data sampling methods used for cross-validation (CV) to eval-
uate prediction performance assumes the training and testing data are inde-
pendent of each other. According to the first law of geography, “Everything
is related to everything else, but near things are more related than distant
things” [139]. This causes the standard sampling methods to produce optim-
istic performance measures for spatial models. Spatial k-fold cross-validation
(SKCV) is a modification method of the standard CV to remove the spatial
autocorrelation (SAC) between the training and testing data [119]. This is
achieved by removing training data within a pre-determined radius, known as
the deadzone, around the test data. There is a trade-off between the radius
of deadzone and the loss of data in the training sample. Three data sampling
methods used for CV in this study:

1. Standard k-fold CV

2. SKCV with 20m deadzone

3. SKCV with 50m deadzone

6.2.2 Results

The three model variations discussed are fitted for each of the cross-validation
methods. Under the k-fold sampling 90% of the data were used in training at
each fold, but for SKCV on average, only 68% and 38% of the data were used
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for 20m and 50m deadzones respectively. Further increase in deadzone radius
would result in less data for training; hence 20m and 50m radius were used for
cross-validation.

FRK predictions are obtained for point locations on the test data set for
each fold. Fig. 6.1 shows the outcome of the three models for predictions at
all points using SKCV with 20m deadzone. Similar patterns were observed for
the other sampling methods. Hot spots of high rateable values are observed
in the centre of each map, which represents Central London. 6.1(a) is more
smoother compared to 6.1(b) and (c). This is likely due to the fact that Model
1 is not using the category of the property in modelling.

(a) (b)

(c)

Figure 6.1: Prediction of log Rateable value obtained from FRK: (a)Model 1;
(b)Model 2; (c)Model 3.

A summary of all the performance for validation data are recorded in table
6.1. The bold font represents the best model for each sampling technique. R2

double when the model uses information about the category of the property.
This emphasises that business rates are influenced significantly by the category
of the property in addition to the location. SKCV with a deadzone is utilised
to penalise the over bias caused by spatial autocorrelation. The k-fold cross-
validation is providing optimism due to the overestimation of statistical effects,
but 50m deadzone removes 60% of the training set, so although it removes the
SAC between the training and test set, it also provides pessimism in the fact
that it has a smaller training set. However, notably, there is no significant
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difference in the performance across the sampling techniques.

Table 6.1: Results table for three models with the three validation techniques.

k-fold Dead zone - 20M Dead zone - 50M
Model 1 2 3 1 2 3 1 2 3

R2 0.17 0.54 0.49 0.16 0.53 0.49 0.14 0.52 0.47
RMSE 0.096 0.072 0.075 0.097 0.073 0.078 0.098 0.074 0.079
MAPE 9.48 6.96 7.27 9.56 7.04 7.37 9.7 7.13 7.49

In order to understand the performance of the model, for each category, I
have calculated the R2 of the validation data for the three models and shown
in Fig. 6.2. Model 2 performs better for each category compared to models
1 and 3. There is a notable difference in R2 for three models in the sales
kiosks category, which has the least number of properties in the subset used
for London (Fig. 5.3). Furthermore, restaurants shows the highest R2 under all
the three models despite representing only 2.5% of the data. Overall Fig. 6.2
shows that the predictability varies greatly (R2 between 0.01 to 0.48 ) with
the category of the property and in combination with Fig. 5.3 provides no
evidence this is driven by the number of observations in each category. Fur-
thermore, restaurants, cafes and offices show similar R2 for all three models
which indicates that these categories are representative of the overall system
compared to Sales Kiosks, Pubs, Business units and Factories tend to have
their own subsystems.
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Figure 6.2: R2 for each property category in SKCV with 50m deadzone.
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6.2.3 Limitations

There are various limitations in applying kriging for interpolation. The accur-
acy is limited if the number of observations is small, data has restricted spatial
coverage, or the data is not sufficiently correlated. The interpolated points
have to lie within the range of the observations. Hence if the peaks are not
sampled, then they cannot be inferred accurately. In the study, this is made
more concerning when using the spatial k-fold cross-validation method as it
can ignore the peaks when fitting the model, leading to poor results. The in-
terpolated points have to lie within the range of the observations. Hence if the
peaks are not sampled, then they cannot be inferred accurately. In the study,
this is made more concerning when using the spatial k-fold cross-validation
method as it can ignore the peaks when fitting the model, leading to poor
results.

Furthermore, kriging cannot account for additional dimensions such as the
temporal variation in the data. Hence the method is limited to only predicting
the rateable values in a certain time horizon. However, the predictive rateable
value model needs to have the possibility to forecast as the values change over
time. Additionally, the study is limited to Greater London, drawing a hard
boundary and ignoring the observations outside the area. Hence the data
beyond the boundary are not reflected in the model. Therefore the estimation
of the values at the edge could perform less accurately.

The correlation between the different sectors is not accounted for in the
kriging model. However, the Co-Kriging method can be adapted to predict
the unobserved locations by combining known spatial attributes and correlated
variables or simultaneously predicting values of two or more sectors [104]. The
limitation with such a method is that it doesn’t scale up well, such as the
method used in this study, FRK.

This study models the total rateable value with the FRK method. One of
the key limitations is that the size of the non-domestic property is not accoun-
ted for in model fitting. The VOA data does not provide all industries’ total
building sizes, and it is a tedious process to acquire that data. Additionally,
there are sectors such as public houses where the rateable value is not decided
on the internal area but is calculated based on their revenue. Henceforth the
results may be improved by considering the various valuation schemes used to
calculate the rateable value by the Land Registry.
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6.3 Case study 1: Optimal locations for entering
into a market concerning the pub industry

In this section, I illustrate our proposed methodology using the pubs’ data-
set developed for Greater London in Chapter 5. After compiling data from
different sources, the final complete dataset consists of S = 1804 pubs. There-
fore some pubs are not considered in the study, hence unable to capture the
competition accurately. The derived approximated revenue after adjusting for
edge correction (Eq. (3.28)) is used as the response variable ys in the model
with natural log transformation. The approximated revenue may not provide
accurate predictions. For each pub, specific features are derived: floorspace,
height, number of floors, the total area of land; distance to the closest metro,
train station, bus stop, park, popular attractions, sports facility; customer
rating on Google, number of users rated and an indicator to show if the pub is
in a major town. The Euclidean distance is considered when creating spatial
features such as the distance to public transport access points. However, the
use of a road network would provide more realistic results. Additionally, the
number of users rating the pubs would depend on the period of its operations.
Hence a more realistic approach is to normalise the value based on the period
that each facility was in operation.

The customer locations are considered to be at the postcode level, which
is the most granular level of census estimates are released. There are N =

174360 postcodes for Greater London. The characteristics of the postcodes
are represented by the population at each postcode and its proportion of male,
and deprivation scores. All features have been normalised before training the
model. People living in the postcodes are assumed to have similar behaviour,
but this may not hold in reality. The model may be improved with more
granular customer-specific characteristics; underlying arguments would remain
the same. Centroids of the postcodes and retail locations of the pubs are
presented in Fig. 6.3(a), on a map of London.

6.3.1 Estimating revenues using the BSIM

Customer behaviour is not affected after a certain distance from the business
facility, despite the pubs’ attractiveness. The model is explored under three
different radius, dT = 15km, 20km and 25km as presented in Fig. 6.4. The dis-
tance between origin and pub is calculated using Euclidean distance, although
a better representation would use a transport network. Hence the maximum
distance a customer travelling cannot be accurately determined by the radii
selected to truncate the Gaussian.

I first perform a preliminary study of our model with a store-specific coeffi-
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(a) (b)

Figure 6.3: (a) Visualization of the locations of pubs in orange markers (S =
1804) and postcode centroids in blue markers (N = 174360) over the map of
London; (b) Greater London is split into equal size grids of hexagons (size of
each side is 0.5km) and number of postcodes within each hexagon is displayed
with a colour gradient.

(a) (b) (c)

Figure 6.4: Demonstration of different radius used for truncated Gaussian
with an example concerning a pub located in the center of London. Three
radii were used in the study: (a) 15km; (b) 20km; (c) 25km.

cient which denotes the store-specific variance σ2s = exp(υs), representing the
attractiveness of the store as given by Eq. (3.1). The model is experimented
with three different radii of the truncated Gaussian and model performance
summarised in Table 6.2. Results indicate that R2 increased to 0.72 as the ra-
dius increased from 15km to 20km but reduced to 0.57 as the radius increased
to 25km. Hence the best experimental results yielded for truncated Gaussian
with a radius of 20km.

Table 6.2: R2, γ−1, NRMSE and coverage for the fitted BSIM with revenues of
pubs in Greater London under three different radii of the truncated Gaussian.

Truncated radius (km) R2 γ−1 NRMSE Coverage
15 0.19 0.67 0.08 94%
20 0.72 0.45 0.05 96%
25 0.57 0.52 0.06 95%

Next, a detailed study is performed on the model with improved specifica-
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Table 6.3: Coefficient (λ) of the store features† for the best fitted model.

Variable coefficient CI (95%)
Floor space -0.14 [-1.21, 0.92]
Height 0.22 [-0.76, 1.19]
Total area 0.13 [-1.08, 1.34]
Distance to metro -0.89 [-1.75, -0.03]
Distance to rail -0.04 [-1.01, 0.94]
Distance to bus stop -0.10 [-1.3, 1.09]
Distance to closest park 0.31 [-0.46, 1.08]
Distance to closest monument 0.47 [-0.39, 1.33]
Distance to closest sports 0.37 [-0.47, 1.21]
Google customer rating 0.27 [-0.42, 0.95]
Number of users rated 0.70 [-0.46, 1.86]
Store in Town 0.44 [-0.03, 0.91]

† All the variables are normalised before using in the model.

tions where store features represent the attractiveness of the store (Eq. (3.2)).
In this study, the radius of the truncated Gaussian is set to 20km, as it demon-
strated the best results for the previous experiment. The model with these
settings resulted in a high R2 of 0.88, coverage over 96% for the 95% CI and
a low NRMSE of 0.03. The plots (Fig. 6.5) of the observed revenue and pre-
dicted revenues suggest that the model provides a good fit for the data. It is
important to consider that the evaluation is for in-sample data, but a better
approach would be to evaluate against out-of-sample data for testing. The
cross-validation techniques cannot be applied because all the store data are
required to model competition at a certain time horizon. Hence, this study is
restricted to in-sample because of the limited access to temporal data. The
residuals are relatively high out of central London, closer to a major ringway
as shown in Fig. 6.5 c. Additionally, the predicted revenue of a few pubs at
the edge of the study area is underestimated, reflecting the edge effects. This
could be because in the edge correction the competition of the pubs outside
the study area is not adjusted.

Using the parameter estimates (λ, ε) from the best-fitted model, the at-
tractiveness (σ2s) of pubs are demonstrated around London in Fig. 6.6(a). It
can be observed that the most attractive pubs are within or around the major
towns. Further exploring the coefficients (λ) for the best-fitted model presen-
ted in Table 6.3, it is observed that number of people rated on Google had the
highest positive contribution towards the attraction term. This implies that
customer rating is a critical indicator in describing the customer attractiveness
to the pubs. One could argue that a higher number of customers rated the pub
as it was operating for a longer period. Hence there have to be more variables,
such as the start dates of the pubs, to conclude this remark accurately.
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Figure 6.5: Visualisation of the Pub’s revenue and predictions over greater
London map with truncated Gaussian radius of 20 km: (a) Revenue at each
pub; (b) Predicted revenue at each pub; (c) Residuals marked in points and
lines are the major roads; (d) Actual against predicted revenue. The experi-
ment resulted in R2 = 0.88 and NRMSE = 0.03.

The remaining term that expresses the attractiveness, unobserved pub
features (εs), where the absolute coefficient is mapped in Fig. 6.6(b). There
is a similar pattern to the residual plot, but the overall spatial distribution
appears to be random. A deep investigation is required to understand what
could explain the unobserved pub features.

For demonstration purposes, a pub in central London is randomly selected
to explore the insights from the fitted model. The probability of people within
the postcode selecting the particular pub (pns) is calculated using the model
parameter estimates with Eq. (3.4). These probabilities are mapped into a
heatmap as shown in Fig. 6.7. There appear to be two hotspots on the map,
one closer to the pub, and another one towards North-West London. It is
natural to see higher probabilities closer to the pub, but the other hotspot
is possible because the pubs’ density in the area is comparatively low, as
shown in Fig. 6.3(a). Hence people in the area also prefer travelling to pubs
in central London. The distribution of probabilities tends to be having an
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(a) (b)

Figure 6.6: Exploring the pubs attractiveness for the fitted model: (a) Vari-
ance (σ2s) of the Gaussian placed on each pub. Blue colour polygons denote the
major towns; (b) Absolute coefficients of the unobserved pub characteristics
(εs).

oval shape, possibly because the distance between the customers and pubs is
calculated as Euclidean distance. Furthermore, the pub with the highest pns
can be regarded as the most likely pub to visit by the people living in a given
postcode. This interpretation is extended to infer the cluster of postcodes with
similar preferences and presented as a motivational example in Chapter 1.2.

Figure 6.7: Visualisation of the probability (pns) of people in each postcode
selecting the particular pub shown in a white dot in the centre of London.

Coefficients of the deprivation features are presented in Table 6.4. The
results indicate that areas with higher income, high employment, less risk of
crimes, a better quality of life, and the environment positively influence the
customers’ spending at pubs.

The amount spent by customers living in each postcode (bn) can be estim-
ated using the best-fitted model’s parameter estimates (β). The amount spent
at each Borough can be derived by calculating the total of the estimated spend-
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Table 6.4: Coefficient (β) of the customer features † for the best fitted model.

var coefficient CI (95%)
Postcode Population -0.19 [-1.26, 0.87]
Male Proportion -0.18 [-1.15, 0.79]
Income Deprivation 0.19 [-1.02, 1.4]
Employment Deprivation 0.22 [-0.64, 1.08]
Education, Skills and Training Deprivation -0.51 [-1.49, 0.46]
Health Deprivation and Disability 0.46 [-0.74, 1.65]
Crime Deprivation 0.32 [-0.45, 1.09]
Barriers to Housing and Services -0.28 [-1.14, 0.58]
Living Environment Deprivation 0.26 [-0.59, 1.1]

† All the variables are normalised and one minus the normalised deprivation value
is obtained to reflect higher values as better areas. For example higher value for
transformed income deprivation would mean a wealthy area.

ing amount at each postcode within the Borough. This is compared against
the alcohol-related mortality in the London Boroughs published by [120]. The
rank of Boroughs respective to the spending and mortality levels published
for 2017 is mapped in Fig. 6.8. The rank correlation between mortality count
and estimated spending shows a moderate positive relationship of 0.4. Our
intuition is that higher alcohol-related mortalities are to be expected in the
areas of high alcohol consumption. However, it is important to consider that
the formulation of budgeted spending is based on the assumption of a linear
relationship with customer characteristics. Hence, this assumption should be
verified against actual data before making final conclusions. Furthermore, the
Fig. 6.8 (a) shows that central London is top of the ranking for spending, but
the mortality ranking is lower. This could be an indication that the model
is unable to capture the high demand generated in central London from the
customers living outside London.

Finally, a comparison is performed with a spatial interaction model from
the literature for completeness of the study. The Modified Huff model [95] is fit-
ted for the same dataset, which displayed very low performance with R2 of only
0.03 and NRMSE of 0.84. Our model outperforms the benchmark model with
a notable improvement and provides valuable inferences for decision-makers.

6.3.2 Optimal facility locations

In this application, the data and parameter estimates evaluated in the pre-
vious spatial interactions study is applied. Optimisation problem considers
three sizes of pub designs with total floor size: 175 sqm, 500 sqm and 1275
sqm. The cost of each design is calculated based on the ratios between the
sizes: 1, 3 and 7 are the costs of constructing small, medium and large size
pubs, respectively. For simplicity the cost of constructing a pub anywhere in
London is considered to be eqaul but in practice the cost of construction in
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(a) (b)

Figure 6.8: Visualisation of ranking on estimated revenue and mortality in
the London Boroughs : (a) Rank of estimated amount spent at the pubs by
people living in each Borough; (b) Rank of Mortality count.

central London is significanly higher compared to rest of the area. Addition-
ally, the other characteristics for each potential facility location are calculated
as discussed in Chapter 5.2. Google ratings at the new sites are assumed to
achieve the average ratings of the existing pubs. There could be more insights
in the Google ratings that could be relate to the new facilities such as the pub
size and region. This could improve the estimation of Google rating rather
than using the average across all new pubs. The unobserved pub features (εs)
are assumed to be similar to the average of existing pubs within the grids used
for sampling new potential locations.

I search for optimal locations to build at most two pubs using a budget
of nine. The multiresolution sampling method is used with 5 × 5 grids with
a depth of three to generate the initial set of candidate locations. The gener-
ated potential locations are split into four random samples and executed the
optimisation algorithm parallelly. Two optimal locations for a new company
entering the pubs market is detected to be in Redbridge and Bromley with
small and large structures, respectively, as demonstrated in Fig. 6.9(b). The
optimal pub locations are tend to be in the edge of the study area, this could
be mainly because the model is unable to capture the competition created by
the pubs outside the study area. Henceforth there has to be a method to cap-
ture the competition on edge before making the final decision on the optimal
sites.
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Figure 6.9: Optimal sites to establish two pubs in London. (a) Optimal loca-
tions from four independent samples. (b) All the potential locations that were
eventuated at different stages and the final optimal locations. (c) Existing
pubs and new optimal facility location.

The median and 50% credible interval(CI) of the estimated revenue for the
two locations are displayed in the Table. 6.5. The monthly estimated sales of
both the pubs are higher than the average revenue generated by the existing
pubs within their respective boroughs. It is important to consider that the
revenue in the study is approximated using the rateable values and not the
actual turnover of the businesses. Hence the experiments need to be conducted
with the actual revenue to make final conclusions.

Distance between the optimal locations and the public transport access
points and key venues are presented in Table. 6.6. New sites are located near
sports facilities and closer to bus stops. The distance is calculated as the
Euclidean distance and not the actual road distance. Hence the final results
may change when adopting the road network. Revenue at the small pub is
expected to be driven by the customers attracted to the area with key venues.

The area of the small pub is explored with an eagle view in Fig. 6.10. A
park, monument, and gymnastics centre are located near the optimal location,
meaning a busy area with more people interactions. There is only one pub
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Table 6.5: Monthly revenue† estimations of the two optimal pubs reported in
millions

Pub Borough Average Revenue
in the Borough

Estimated Revenue
Median 50% CI

1 Redbridge 0.62 1.25 (0.75, 1.88)
2 Bromley 0.54 4.26 (2.52,10.67)

†Revenue at the existing pubs are derived using the business rateable values.

Table 6.6: Characteristics of the two optimal pubs

Pub Design
Floor
size

(sqm)

Distance to the nearest (m)
Metro Rail Bus Parks Attractions Sports

Facility
1 Small 175 8,36 2,136 533 312 224 678
2 Large 1,275 3,521 4,564 733 6,206 4,285 718

within the 1 km radius, indicating less competition for the new pub. A bus
stop is located within walking distance, offering people easy accessibility to
the location. However, there is no main road access to the site, thus including
distance to the main road as a store feature could provide more realistic results.

Figure 6.10: Eagle view of the optimal pub location with the small design.
The dashed squares indicate some of the key venues in the surrounding of 1
km radius.
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6.4 Case study 2: Best sites to expand a chain re-
lated to Supermarkets

In this section, first, I demonstrate the extended BSIM by modelling the rev-
enue of supermarkets and subsequently find the optimal locations for a super-
market chain to expand in Greater London.

This case study is centred on the seven largest supermarket chains in the
UK. The complete dataset consists of S = 1079 supermarkets located within
Greater London. The derived store features are used for each supermarket
store: floorspace, customer rating on Google, number of users rated, an indic-
ator to show if the supermarket is in a major town and distance to the nearest
metro, train station, bus stop, park, popular attractions, sports facility. The
postcode level data represents customer locations and their characteristics:
population, the proportion of males, and deprivation scores. As discussed in
the previous case study, this real-world experiment also inherits the limitations
in the features used.

6.4.1 Estimating revenues using the extended BSIM

The BSIM parameters are estimated under four truncated radii for the Gaus-
sian distribution and summarise the performance in Table. 6.7. The reasonable
distance a customer is willing to travel is assumed to be half of the maximum
extent a customer would travel (dD = dT /2). The results demonstrate that R2

increased to 0.89 while increasing the truncated radius to 20 km. However, R2

decreased significantly when it reached a 25 km radius that covers the whole
of London. Similar results were obtained in the BSIM study for pubs in the
previous section.

Table 6.7: R2, γ−1 and NRMSE for the fitted extended BSIM for revenues of
supermarkets in London under four different radii of the truncated Gaussian
distribution

Truncated radius (km)
10 15 20 25

R2 0.38 0.64 0.89 0.1
γ−1 0.64 0.5 0.31 0.72
NRMSE 0.07 0.05 0.03 0.09

The results from the best-fitted model are demonstrated in Fig. 6.11. The
scatter plot with the actual log revenue against the predicted log revenue in
Fig. 6.11(a) shows that there are predicted values with large deviance from the
actual in tails of the distribution. The spatial distribution of the predicted
values are shown in Fig. 6.11(b). The residual values are explored for each
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supermarket chain in Fig. 6.11(c). Tesco and Sainsbury’s, the two chains with
the highest number of stores, 353 and 277 respectively, show larger variance
for residual values. The spatial distribution of the residuals exhibits to be
randomly distributed, as shown in Fig. 6.11(d).

(a) (b)

(c) (d)

Figure 6.11: The results of the best-performed experiment for the extended
BSIM with the supermarkets’ revenue. (a) Actual against predicted revenue at
each supermarket. (b) Predicted revenue at each store. (c) Residuals against
the supermarket chain. (d) Spatial distribution of the residuals.

6.4.2 Optimal facility locations

The parameter estimates from the best-fitted extended BSIM are used to cal-
culate the objective function of the optimisation problem. There are four types
of supermarket stores with varying floorspace: Express (278 sqm), Metro (1021
sqm), Superstores (3251 sqm), Extra (5574 sqm). These sizes are used as the
possible designs to structure the new facilities. The cost of each design is
calculated based on the ratios between the sizes: 1, 4, 12 and 20 for construct-
ing Express, Metro, Superstores and Extra stores, respectively. The cost of
building a supermarket across Greater London is assumed to be constant, but
this will not hold in practice. Additionally, parking for supermarkets is an
essential factor that is very challenging to find in central London. Hence these
aspects should be considered in making the final decisions.

Additionally, the other characteristics at each potential facility are calcu-
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lated, and for Google ratings, it is assumed to have the average ratings of
the existing stores for each chain. Optimal locations to build at most two
supermarkets are evaluated within a budget of 35. The optimal locations are
demonstrated for the largest supermarket chain in the UK, Tesco.

(a) (b)

(c)

Figure 6.12: Optimal locations to establish two Tesco supermarkets. (a) The
initial set of candidate locations is generated from multiresolution sampling
with 5 × 5 grids with a depth of three and optimal locations from four in-
dependent samples. (b) All the potential locations that were evaluated at
different stages and the final optimal locations. (c) Existing Tesco and other
supermarkets and new optimal stores.

The supermarket chains search for optimal locations not just to optim-
ise the revenue at the new facility but to have less impact on the revenues
generated at their existing facilities. Hence Eq. 4.16 is used as the object-
ive function. The multiresolution sampling method is used with 5 × 5 grids
with a depth of three to generate the initial set of candidate locations. The
generated potential locations are split into four random samples and executed
the optimisation algorithm parallelly. Four different optimal sets of locations
are detected with varying facility designs as displayed in Fig. 6.12(a). The
search algorithm continued for two iterations evaluating the neighbourhood
locations produced from quadtree. The optimal locations for Tesco supermar-
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ket are detected to be in Croydon and Bromley with designs of a Superstore
and Extra respectively as shown in Fig. 6.12(b). No new facility is to be loc-
ated in the same area as one of the competitors. Similar to the previous case
study, the optimal locations for the supermarkets are away from the centre.
This is mainly because the model is not accounted for the competition created
by the supermarkets outside greater London.

The median and 50% credible interval (CI) of the estimated revenue for the
two optimal supermarkets are reported in the Table. 6.8. Both the facilities
are predicted to generate more revenue than the average revenue produced by
the existing supermarkets in their respective Boroughs. It is important to re-
gard that the revenue is an approximated value and may not provide accurate
estimations. The recommended new supermarket in Bromley is located in a
less dense area as shown in Fig. 6.12(c). There is only one Tesco and 16 other
supermarkets in a 5 km radius (Table. 6.9), compared to the average of 40
Tesco and 59 other supermarket chains found around the existing Tesco super-
markets in London. Significantly high predicted revenue and less competitive
location demonstrate an ideal site for a new Tesco store. There has to be more
investigation, such as identifying the availability of commercial properties for
development and access to the site before making the final decisions.

Table 6.8: Monthly revenue estimations of the optimal stores reported in mil-
lions

Supermarket Borough Average Revenue
in the Borough

Estimated Revenue
Median 50% CI

1 Croydon 1.3 2.7 (2.2, 3.5)
2 Bromley 1.6 6.7 (5.3, 8.4)

Table 6.9: Characteristics of the two optimal supermarkets

Supermarket Design
Floor
size

(sqm)

Stores in 5km radius † Distance to the nearest (m)
Tesco Others Rail Bus Sports

Facility
1 Superstore 3,251 18 43 1,144 200 791
2 Extra 5,574 1 16 309 57 631

† On average there are 40 Tesco and 59 other supermarket chains around 5 km radius
of the existing Tesco supermarkets in Greater London.
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6.5 Summary

In this chapter, I have presented three real-world applications: (1) fixed ranked
Kriging to model the business rateable values; (2) applied BSIM to model
revenue of the pubs in Greater London and thereby search for the optimal
locations and corresponding designs for a newcomer to enter the market; (3)
seven leading supermarkets revenues are modelled using the extended BSIM
and thereby search for best sites for a chain to expand their existence. I have
demonstrated how BSIM outperforms competing approaches by evaluating the
case studies in terms of prediction performances while providing results that
are both interpretable and consistent with related indicators observed for the
London region. The introduced modelling frameworks in Chapter 3 and 4 are
proven to provide valuable insights for planning and decision-making in the
real-world context under uncertainty.

However, it is essential to understand the limitations in interpreting the
results of the real-world case studies. As in many other studies, all the factors
are not accounted for in the models or experiments. Various attributes such
as the social, political and economic climate are not precisely accounted for
when modelling revenue or making the optimal location. Hence before making
the final decisions, the experts in the respective sectors should be consulted.

The edge correction technique is only applied to address the customers
outside the study area but does not account for the competition created by
the stores outside the area. This can be observed in the optimal location study
where the sites are identified away from the centre. Additionally, road access
to the potential sites is not considered in exploring the optimal sites. Hence
the sites identified in the study may not be suitable for practice before making
the necessary adjustments to the data.

The BSIM is only evaluated for cross-sectional data at a certain time with
the real-world data. Hence due to the limited access to data, the forecasting
capacity of the model is yet to be validated. Therefore the forecasted revenue
for the optimal locations may not provide accurate predictions. The modelling
and case studies have presented an advanced approach to spatial interaction
modelling in practice, but there are various elements to make it better.

The next chapter makes concluding remarks while discussing the limita-
tions and future extensions to improve the modelling frameworks and experi-
ments presented in the thesis.
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Chapter 7

Conclusions and Future Work

The work in this thesis is motivated by the requirement to quantify uncertainty
in formulating mathematical models for making location decisions in urban en-
vironments. More specifically, the thesis focuses on developing a state-of-the-
art mathematical framework to identify the optimal location for businesses
under uncertainty by accounting for the underlying spatial interactions in
urban systems. Henceforth, build upon the Bayesian framework for uncer-
tainty quantification due to the practical and philosophical reasons discussed
in Section 2.4. The thesis provides several new methods that improve the
existing modelling capabilities on socio-economic systems and demonstrates
their applications in real-world problems. A discussion and conclusions of the
work in this thesis are presented in Section 7.1 and further extensions are
identified in Section 7.3.

7.1 Discussion and conclusions

Estimating the potential revenue or demand at a new site is of the highest
importance for making location decisions for businesses success in dynamic
urban environments. Kriging is a popular method for estimating values at
unvisited places, but calculations are only limited to the observed data in
their neighbourhood. Hence a more comprehensive approach to formulating
revenues is applying the underlying spatial interactions with their customers.
Such spatial interaction modelling has a long history that primarily concerns
the flows between origin and destination. While recently there have been some
efforts to formulate spatial interaction models with the Bayesian framework
they are only limited to flows at the disaggregated level [20, 25].

In Chapter 3, I developed a Bayesian spatial interaction model to simulate
customers’ behaviour with business facilities using their respective character-
istics. BSIM considerably improves existing classical Huff type models as it
formally addresses uncertainties arising in the modelling process via a Bayesian
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framework while providing inferences at the level of business and customer loc-
ations. The key advantage of the proposed model is that it is scalable and
can make inferences on large-scale datasets through variational inference, in
contrast to the existing models. The BSIM is extended in Chapter 4 by lift-
ing the assumption of fixed demand, which is also common in literature, by
introducing dummy facilities to make more realistic estimations.

The synthetic experiments show how VI performs five times faster than
MCMC while providing comparable performances in terms of parameter iden-
tification and without significant underestimation of the posterior covariance.
It is important to consider all the data at a specific time horizon when fitting
the model to assess the competition accurately. Therefore the usual cross-
validation techniques are not applicable but can evaluate the model forecasts.
In simulations studies, the model has proven to forecast future revenues by
accounting for the changes in competition.

Addressing the vital question of best business facility location in competit-
ive environments, I have formulated a mathematical modelling framework to
simultaneously identify optimal facility locations and corresponding designs
in a competitive environment in Chapter 4. This formulation considerably im-
proves the existing competitive models based on classical utility methods as it
considers model uncertainty via a Bayesian approach and provides probability
density estimates of the revenue at new stores.

Additionally, I proposed a hierarchical search algorithm to overcome the
challenge of providing exhaustive sets of potential locations to solve the op-
timisation problem in large geographical regions. The algorithm starts from
an extensive collection of possible sites from a broad area and identifies the
optimal facilities, then recursively explores the neighbouring locations until
the objective value improvement is small. The first stage of the hierarchy can
be executed in parallel to improve algorithm efficiency, but this could under-
represent the true combinations of optimal locations when searching for more
than one facility. The initial candidate locations created with the multiresolu-
tion grid structure that accounts for density between customer spending and
existing facilities reported the best and most efficient results.

One of the areas lacking in spatial interactions and facility location liter-
ature is that there are no real-world large scale applications. This is primar-
ily because acquiring granular level real-world data is usually expensive. In
Chapter 5, I presented datasets that include multiple variables observed at a
granular level for public houses (pubs), supermarkets and customer zones at
the postcode level. These datasets are formed by utilising both open and com-
mercial proprietary data sources. The datasets are further enriched by adding
reviews from Google’s customer rating API, covering a broader audience than
the traditional survey methods found in the literature.
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For the first time, I have demonstrated the capability of estimating spatial
interactions in large real-world urban areas such as Greater London with more
than 1000 supermarkets, 1500 pubs and 150000 customer zones in Chapter
6. The inferences are made on different components of the spatial interac-
tions, thereby making valuable conclusions for a business’s ability to make
decisions. As demonstrated in Chapter 1.2, clusters of customers can be in-
ferred to identify customer segments that drive the sales at popular pubs.
Hence the model can be of great value for businesses to understand their
underlying revenue-generating mechanisms. Furthermore, BSIM is proven to
outperform competing approaches in terms of prediction performances while
providing consistent results with related indicators observed for the London
region. However, the lack of time-series data limited the evaluation of the
model forecasts in the real-world setting.

Subsequently, two case studies were presented to illustrate optimal sites:
for a new company to enter the pubs market; and for the largest supermarket
chain in the UK to expand its presence in the market. The optimal locations
identified from the model demonstrate higher revenues than existing facilit-
ies while locating in less competitive areas, providing valuable insights for
planning and decision-making. Although the introduced methodologies are
presented only for supermarkets and pubs, they can also apply to any facility
in the retail sector and other industries such as hospitality and healthcare. In
the applications, we assume that the cost of locating is constant across the
region, but considering spatial variation may produce more realistic results.

A leading prop-tech company in the UK, Nimbus property technology, sup-
ported the work in this thesis by providing valuable insights into the property
industry and access to a more extensive database. The methodologies de-
veloped will be integrated into their system and make it available for property
developers, business decision-makers and to a wider community to make more
informed decisions on business locations in competitive urban environments.

In conclusion, my work stands out as the first effort to use a Bayesian
framework to formulate revenue or demand for retail businesses based on their
underlying generating spatial interactions with customers and thereby making
location decisions. Additionally, the proposed variational inference advances
existing models’ capacity to deal with large-scale data. The methods provide
valuable insights for planning and decision-making under uncertainty.

7.1.1 Code availability

BSIM is released under Apache License Version 2.0 and maintained in a public
GitHub repository available at https://github.com/shanakap/BSIM. Detailed
descriptions on how to run the codes are presented in the repository.
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7.2 Limitations

A new approach to formulate customer-perceived utility of facilities is proposed
in the context of spatial interaction models in Chapter 3. The probability
density of isotropic Gaussian distribution is assumed to convey customers’
utility by exploring the distance decaying nature in the distribution. Hence
proximity between origin and destination to be of Euclidean distance, which
is common in geostatistical models, although the urban landscape is unlikely
to exhibit such properties. For example a store can be behind a customer
location but entrance on different roads where the actual distance to travel is
more than the Euclidean distance. Furthermore, the Gaussian distribution is
assumed to isotropic where the variance of the distribution is same despite the
direction. This may not hold in real world where the attraction levels could
change across various directions.

One of the challenges in spatial modelling is the edge effects [66]. In this
thesis, this is addressed in Chapter 3.2 by applying edge correction on the
facilities’ revenues to account for customers that are outside the study region.
However, the competition created by the facilities outside the study area is not
accounted for when edge corrections are applied. This is more evident from
the results in chapter 6 where the optimal locations tend to be on the edge
of the study area. Hence it is important to consider these limitations before
deciding on the optimal sites presented in the study.

The formulation of the customers’ budgeted spending (Eq. (3.5)) and the
variance of the store-specific Gaussian distribution (Eq. (3.2)) assume a linear
relationship with their respective features for simplicity. In practice, this as-
sumption may not provide a realistic relationship; hence interpretation of the
coefficients should be made with expert knowledge.

The BSIM formulates the spatial interactions that take place in a specific
time horizon but does not account for the changes that influence over time.
Hence the model has less information about the variation of revenues due to
the changes that take place in the markets over time. This limits the use of
the model for making accurate forecasts on facility revenue or demand.

In this thesis, the prior distributions are chosen to be weakly informative,
and it remains to evaluate the impact of these priors. Hence, it is important
to assess these priors’ impact on the posterior through a sensitivity analysis.
Therefore this limits the interpretations of the impact of prior distributions
on the posterior distributions and predictions.

There are multiple Bayesian approaches proposed in this thesis where VI
is proven to scale up well compared to MCMC technique. However, the com-
putational time is also vital to generating real-time results in practice. The
current setup cannot use mini-batch processing techniques since the model re-
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quires all the data to correctly moderate the competition in the area. Hence
this slows down computations and limits the ability to adapt techniques such
as stochastic optimisation.

Furthermore, the VI framework for approximating the probability densit-
ies is focused on the mean-field inference (Eq. (3.11)) that assumes unknown
variables are mutually independent. However, in practice, there may be de-
pendencies between the approximate posterior distributions. Henceforth these
assumptions limit the interpretation of the posterior distributions.

The introduced BSIM accounts for uncertainty and is expanded into mak-
ing the location decisions to provide predictive distributions of the new sites in
Chapter 4. However, in the optimisation process, the parameters’ uncertainty
is not accounted for but only uses the mean of the posterior distributions.
Therefore the final results may not provide accurate predictions. Addition-
ally, the cost of building facilities across greater London is assumed to be
constant, but in practice, there are regions such as central London that are
more expensive than the other areas. Henceforth this limits producing realistic
outputs from the framework.

The spatial interaction model and the mathematical formulation of the
competitive facility location introduced in this thesis are limited to learning
one task at a time, for instance, focusing on the supermarket industry revenue
only. Hence the model will not react to the changes in facilities from other
sectors. Additionally, the optimal location framework is limited to identifying
facilities from one industry at a time.

The modelling framework introduced in this thesis also encounters similar
problems known in machine learning models. An important problem is the
identification of model parameters as noticed in Chapter 3.3, and it is twofold
[146] : (1) theoretical identification that arises from model specification usually
associated with the presence of too many parameters; (2) empirical identific-
ation that results from lack of rich data for model estimation, although this
is likely to improve with large data but not a sufficient condition [24]. The
theoretical identification can lead to incorrect parameter estimation; hence im-
portant to explore ways to validate the parameter estimates from the model.

This thesis provides various datasets to overcome the empirical identifica-
tion but has been restricted to modelling approximated revenues, and custom-
ers are represented by the postcode level. Thus the optimal locations provided
in the real-world experiments may not provide accurate information. Further-
more, important features such as access to a road are not considered when
evaluating the potential sites. Hence the results offer limited details to make
the final decisions. Many of the limitations discussed can be overcome with
the suggested future work in the next section.s
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7.3 Further work

The proposed methodology can be extended and improved upon across mul-
tiple dimensions. First, one could consider adopting travel network to estimate
the distance [30, 65, 87] instead of the Euclidean metric used in this study could
provide a more realistic configuration of the geographical setting and lead to
better inferences. Additionally, the model can be explored by applying other
probability distributions such as Beta, Gamma and Wishart distribution to
evaluate customers utility.

One of the important areas in spatial modelling is edge correction. There
are avenues to improve the edge corrections introduced in chapter 3.2 by ex-
ploring methods to adjust for the competition due to the stores outside the
study area. Furthermore, in this thesis, the extended BSIM is formulated in
Chapter 4.2 to account for the unsatisfied demand in the market. Both the
versions performed well with high R2 (see Fig. 6.11 and Fig. 6.5 ), but further
work is required to understand the practical implications and the inference on
dummy facilities.

A better approximation of the budgeted spending of customers and vari-
ance of the distribution concerning their features is to adopt Gaussian Pro-
cesses that would offer a more flexible framework but potentially less inter-
pretable [122, 149]. This would provide better estimations for variance at new
stores by excluding the unobserved parameter (εs).

The proposed framework can be extended to a spatio-temporal by consider-
ing the time in addition to the two geographic dimensions [36]. This approach
could capture the time evolution of parameters to understand the behavioural
changes of customers, and changes in urban systems will also be of significant
interest. Furthermore, such advancements could provide better recommend-
ations to place the new facilities by accounting for the changes in the urban
systems.

The experiments should be expanded to improve the prior distributions.
It may be beneficial to adopt priors derived from the sample data with meth-
ods such as maximum likelihood [31] or sample statistics [147]. Additionally,
domain knowledge can be built into priors to restrict the range of a certain
parameter or relationships between variables [144].

Further work is required to improve the computation time and explore
the optimisation methods used in VI to assess the viability of modifying the
algorithm to apply min-batch optimisation [94] techniques. Additionally, the
current setup requires the model to be fitted to the entire dataset, but in
practice, it will be beneficial to explore efficient ways to update the model
parameters as new data becomes available.

In the VI framework, it adopts the mean-field to keep the computations
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less complicated.The work can be expanded into more complex families to
add dependencies between the variables, called structured variational inference
[131]. This method potentially improves the approximations, but there is a
trade-off as it is more difficult to solve the variational optimisation problem
[18].

The proposed competitive facility location framework applies only the
mean of the posterior distributions as for the parameters, but this could be
extended to deal with uncertainty in the data of the optimisation problem by
applying robust optimisation [13]. Furthermore, considering industry-led cost
functions for placement or risk exposure is an interesting extension of my work
that could be studied under Bayesian decision theory [12].

Further work is needed to exploit the advantages of multi-task learning
that can solve multiple tasks simultaneously while learning commonalities and
discrepancies across tasks [23]. In practice, this would be beneficial to learn
from different industries and make optimal location predictions for multiple
sectors simultaneously.

The real-world experiments can be improved by providing granular and ac-
curate data. In practice, it is advantageous to explore the model performance
with actual revenue or demand data from stores to gain rich information. Also,
incorporating much granular level customer characteristics such as Experian
Mosaic data [48] could improve richer data and provide more interpretable
results. The store characteristics can be improved with features such as traffic
data and available products at the stores. This thesis discusses two unique real-
world case studies: a new company entering the market and a chain expanding
existence in a competitive market. It remains to explore the formulation for
an optimal facility location in a monopolistic market (Eq. (4.17)), such as
the government expanding facilities with exclusive rights to provide certain
services.

Adopting these directions in future studies can improve the BSIM to make
accurate predictions while providing important inferences for decision making
in businesses and the property industry.
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