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Detecting Hazardous Events: A Framework for Automated Vehicle
Safety Systems

Dannier Xiao1, William Gonçalves Geiger1,2, Hakan Yekta Yatbaz1, Mehrdad Dianati1 and Roger Woodman1

Abstract— The driving domain is inherently dangerous. To
develop connected and automated vehicles that can detect po-
tential sources of harm, we must clearly define these hazardous
events and metrics to detect them. The majority of driving
scenarios we face do not materialise harm, but we often face
potentially hazardous near-miss scenarios. Potential harm is
difficult to quantify when harm is not materialised; thus, few
metrics detect these scenarios in the absence of collision and
even fewer datasets label non-collision-based hazardous events.
This study focuses on detecting near-miss scenarios due to other
actors since human error is the primary source of harm. We
first provide a concise overview of current event-specific met-
rics. We then propose an event-agnostic detection framework
that exploits vehicle kinematics to detect evasive manoeuvres
early and dynamically calculate minimum safe distances. Given
inconsistent dataset labelling methods and collision-focused
events, we provide a preliminary study to demonstrate an event-
agnostic and configurable dataset annotation technique to label
hazardous events, even when harm is not materialised. We
show promising results detecting hazardous scenes on a labelled
simulation benchmark, GTACrash.

I. INTRODUCTION

Road transportation has become ubiquitous in our every-
day lives, and the development of connected and automated
vehicles (CAVs) aim to automate specific driving functions
and improve safety. However, there are many dangers to
navigate and with 1.35 M global road traffic-related fatalities
per year [1], CAVs must be able to identify hazardous events.

In this research, we focus on hazardous events external to
the system and follow the definitions found in ISO 26262
[2] and 21448 [3] for the functional safety of road vehicles
and safety of intended functionality, respectively. Factors that
pose a “potential source of harm” are defined as hazards [2],
[3] and harm can be a physical injury or property damage.
Furthermore, the focus of hazard detection is not only on
collision events but also on the preceding triggering events
that lead up to harm. Nevertheless, the definition of triggering
events remains under-explored and unclear in the literature
since near-miss scenarios are hard to quantify, although more
common in real-life scenarios.

In this research, we focus on detecting the preceding
triggering events to harm, e.g. sudden braking by the vehicle
ahead or sudden lane cut-in, as exemplified in Figure 1. In the
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Fig. 1: Demonstration of our hazardous event labelling
technique, tested on a pre-labelled simulation benchmark,
GTACrash. The triggering event was detected using vehicle
kinematics and calculated safe distances.

space of hazardous event detection, there are many opposing
formulations that range in complexity but lack consensus.
Equally for model training, there is a vast volume of nat-
uralistic datasets but lack hazardous scenes labels, as such
scenes are hard to quantify when harm is not materialised.
Without a standard, labelling remains inconsistent and alter
the features that models learn.

As more automated driving functions are added, the
subsequent hazardous events to consider grow immensely.
The need to generalise harmful events or learn novel event
features is highlighted in the early works reviewing exter-
nal hazard detection [4]. To learn novel hazardous event
features, datasets are available but remain scattered in the
literature. Alternatively, to generalise events, a vast number
of proposals exist; however, few focus on the metrics to
detect triggering events. For example, in [5], methods are
categorised as time-based, kinematic-based, statistics-based
and potential field-based. Yet, the methods do not focus on
generalising potential sources of harm but evaluate specific
events in terms of likelihood and severity. However, in the
work of [6], a more focused metric review is taken to
detect hazardous events given no collision. Still, the metrics
presented overly conservative idealised safety metrics, which
are unrealistic for dataset annotation as actual driving does
not reflect such caution. Therefore, we must draw light to
more absolute measures to signify the triggering events.

With these current gaps and limitations, this paper aims
to provide a concise overview of hazardous event detection
metrics, give intuition to their formulation and provide a
consensus by proposing metrics to standardise dataset anno-
tation and demonstrating an annotation technique, as shown
in Figure 1. We give readers an overview of actor-focused
hazard datasets for model training and discuss their utility



and limitations for existing datasets. As such, the novel
contributions for this paper are as follows:

• A novel focus on near-miss hazardous events, as liter-
ature is dominated by collision-based events. Yet, most
hazardous scenarios we face do not materialise harm.

• Novel overview of near-miss event detection metrics.
• Proposed event-agnostic metrics to detect actor-based

hazardous events early and standardise dataset labelling.
• Novel overview of hazard-focused datasets.
• A demonstration of a configurable framework for haz-

ardous event detection and dataset annotation.
The rest of the paper is structured as follows: Section II
covers key terminology, detection metrics, proposed metrics
and datasets for training. Section III describes our hazardous
event labelling technique. Section IV discusses our con-
tribution, limitations and future work. Finally, Section V
concludes the paper.

II. LITERATURE REVIEW
A. Hazard Definition and Categorisation

As aforementioned, a hazard refers to a potential source of
harm [2], [3]. However, a hazard in isolation does not cause
harm, it is the combination of a hazard and the operational
situation [2], [3] (e.g. sudden braking by a lead vehicle).

Furthermore, hazardous event detection refers to identi-
fying potential sources of harm and not assessing them in
terms of likelihood and severity, which is defined as risk [2].
Specifically, we focus on triggering events, which are the
preceding events to harm as crashes are rare, and near-miss
scenarios are common, but difficult to quantify.

It is estimated that 83-94% of traffic accidents are due
to human error [7], [8], and as such, we focus on hazards
derived from surrounding traffic participants (e.g. vehicles,
pedestrians), which we refer to as actors. We then subdivide
actors into Motor Vehicles (e.g. cars, lorries, motorcycles)
and non-motor Vehicles (pedestrians, cyclists and animals).

The differentiation between motor and non-motor vehicles
is their freedom of movement. Due to the structured driving
domain, motor vehicles are typically easier to predict as they
must follow defined lanes and regulations. In contrast, non-
motor vehicles have more movement freedom, can rapidly
change direction, and do not always follow regulations.

B. Hazardous Event Metrics

Hazardous events are generally related to collisions and
are widely applied to collision avoidance systems (CAS). We
take a novel focus on triggering events and review the metrics
to generalise such events. We investigate two key formula-
tions for kinematic and safe gap-based metrics, as shown in
TABLE I. Kinematic attributes are popular to indicate evasive
manoeuvres, and safe gap-based metrics calculate safe spatial
or temporal thresholds in the longitudinal or lateral direction
around the ego vehicle.

Kinematics-based describes the triggering event occur-
rence by associating ranges of abnormal behaviour in case
of a hazard. For example, in [9], the range of deceleration
when the lead car suddenly brakes is defined between -4

and -7.5 m/s2. In other words, when deceleration exceeds
a certain threshold, it can signal a triggering event. Other
kinematic attributes are characterised between normal and
aggressive behaviour in [10]; these attributes include lateral
acceleration/jerk to identify triggering events as, e.g. lane
departure, evasive lane change, and control loss on bends.

Safe Gap-based qualifies a hazardous event by comparing
the actual gap to a hazard with a safe threshold gap. Safe
gaps can be represented in the spatial or temporal domain.
The threshold value can be pre-set or calculated based on
segments describing the sequence of events from detecting
a hazard to acting (e.g. applying brakes). The safe distance
segments in literature [11]–[14] can be summarised by:

• Safety Margin (Dmin) refers to the minimum distance
to keep from hazards, specifically when ego vehicle is
stationary but still keep a clearance.

• Thinking Distance (Dthink) refers to the distance trav-
elled from hazardous event detection to the execution
of action to avoid/mitigate harm.

• Acting Distance (Dact) refers to the distance travelled
from actuation of the planned action until it is com-
pleted (e.g. from starting to brake until the safe distance
is restored or standstill state is reached).

Three cases were identified in the literature, the first for
longitudinal safe distance in [11]–[13] that shall be kept

TABLE I: HAZARDOUS EVENT METRICS

Category Kinematic Safe Gap

Case 1: Dactual < Dsafe

x > threshold Case 2: Dactual > Dsafe

Intuition
x < threshold

Dsafe =
[
Dmin, Dthink, Dact

]
Case 3:

TTEpredicted

{
< TTEthreshold

> TTEthreshold

Deceleration
x = along,dec

x < −4m/s2

Case 1: Long. Safe Distance
Dsafe1=Dthink +Dact

Dsafe2=max(Dsafe1 , Dmin)
Dsafe3=Dmin +Dact

Metric Lat Accel.
x = alat,acc
x > 4m/s2

Case 2: Lat. Safe Distance
Dsafe4=Dvirt lane border

Lat/Long Jerk.
x = jlong,lat

x > 0.9m/s2

Case 3: Time-To-Event

TTEpredicted

{
< 0.5s, hazardous
> 2s, safe

Pros

Fast processing
with no minimal

calculations
required.

Makes live dynamic calculations us-
ing the real measurement of potential
hazards and their effect on the envi-
ronment.

Cons

Short detection
time as it

signals
immediate

evasive
manoeuvres.

Safe distances generally consider
overly conservative safety margins,
which may lead to a high rate of false
positives, as drivers leave very small
gaps in real scenarios.



from a lead vehicle/object and is applicable in CAVs such
as adaptive cruise control (ACC) or automatic emergency
braking (AEB). The safe distances formulated in [11], [12]
considers ideal situations with reaction time by ego and lead
vehicle and the required braking distance with the difference
that [12] impose a safety margin. The ideal safe distance
results in a long gap to be maintained to lead vehicles is
inspired by Rule 126 of the UK Highway Code [15] but is
not a realistic value applied by drivers on daily driving tasks.

The second case in [14] defines the lane centre as the
reference position, and virtual lane boundaries are defined on
each side that is the equivalent of a safe distance. Then, a lane
departure type of hazardous event is triggered whenever the
ego vehicle’s actual distance from the lane centre is greater
than the safe distance. This definition is used for application
on lane-keeping assist systems (LKAS).

The third case is based on time-to-event (TTE) and the
event of interest in [16] is a collision, making this metric
time-to-collision (TTC). This metric takes the time required
for the vehicle to reach the event of interest and either uses
a threshold to signal initiation or expert review. TTC is the
most popular metric which assumes that a collision might
occur, an assumption which can be made due to the implicit
prediction uncertainty.

C. Datasets

To train future systems to detect actor-based hazardous
events will require annotated datasets that label the collision
or near-miss scenes and include vehicle kinematic, to accu-
rately track vehicle motion as they evolve in time. This has
been a challenge as most hazard-focused datasets from real
scenes only consist of video data that lacks kinematic data.

Due to a lack of kinematic attributes, researchers have
turned to simulation environments such as CARLA [24];
however, actors do not respond realistically. Therefore, so-
phisticated game engines have also been used to create dy-
namic actors that automatically perform evasive manoeuvres
and follow traffic rules, such as the GTA game engine in the
works of [22], [17].

Hazard focused datasets in the literature can be categorised
by actor categories and their source, either from real-life or
simulation, as compiled in TABLE II.

Of the motor vehicle (e.g. car, van, lorry) datasets, these
contain scenes captured either from dashcam or simulation.

TABLE II: ACTOR-BASED HAZARD DATASETS

Data Scenes
(Haz — Safe) Time (s) Label

Scheme

R
ea

l
Sc

en
es

A3D0123 [17] 620 — 1130 5 TTC
AAD012 [18] 1500 — 0 2–20.8 TTC

Collision012 [19] 803 — 0 40∗ TTC
NIBD012 [16] 4595 — 0 10-15 Decel.

CCD0 [20] 1500 — 0 5 TTC
TAB0 [21] 1935 — 0 17.7∗ TTC

Si
m

. GTACrash013 [22] 7720 — 3661 2 TTC
VIENA01 [23] 1200 — 0 5 TTC

0Motor-Vehicle — 1Pedestrian — 2Cyclist — 3 Animal — ∗Average

Of the dashcam footage, NIBD [16] is the largest with
4.5k near-miss clips each 10-15s long. Of the simulation-
based datasets, GTACrash [22] and VIENA [23] are popular
for GTACrash’s vast volume of 10k scenes and VIENA’s
diversity of actor and scenario types. As all edge cases cannot
be guaranteed, CARLA [24] is a popular simulation platform
to build custom scenarios but is limited by simulated sensory
information and unrealistic surrounding actor behaviours.
Regarding the non-motor vehicle datasets, this category in-
cludes pedestrians, cyclists and even animals in A3D [17]
and GTACrash [22]. In general, the datasets have good scene
diversity between area types (e.g. urban, highway), as seen
in NIBD [16], A3D [17], Collision [19]. Scene diversity
is important for models to review various traffic conditions
that vary by area and see location-specific hazardous events
such as children crossing the street sporadically in residential
areas. The datasets exhibit a good contrast between day
and night illumination and a slight variation in weather
conditions, as shown in NIDB [16], A3D [17] and Collision
[19]. Varying environmental conditions are vital to train
models on worst-case weather scenarios that cause sensor
impairment or poor illumination in dark scenes.

However, the datasets are primarily based on collision
scenes, which do not make up most hazardous events. Only
NIBD [16] included near-misses by recording scenes based
on deceleration events to spot potential harm. Furthermore,
there is a mixed case in annotation procedures for each
dataset. The majority used variations of TTC with human
review to label. The lack of standardisation means inconsis-
tency between datasets, resulting in varying model biases.

Furthermore, there is a mixed case of dataset balance. The
majority of datasets include only hazardous event scenes and
others being split, 7:3 hazardous/safe split in GTACrash [22]
and 6:11 in A3D [17]. Balance is crucial as hazardous scenes
are rare in real driving; thus, the balance must be considered
to avoid introducing incorrect model biases.

III. METHODS
A. Proposed Metrics

This study proposes metrics to detect actor-based haz-
ardous events, even in the case of near-misses. Given overly
conservative metrics and inconsistent dataset labelling, we
propose a set of event-agnostic metrics exploiting kinematics
to detect evasive manoeuvre early and safe gap-based metrics
to establish a minimum safe distance around the ego.

Regarding the safe gap-based metrics, we establish a
minimum safe distance around the ego vehicle. The proposed
formulation for longitudinal direction shall overcome the
unrealistic distances defined in the literature. Therefore we
target the acting distance identified as braking distance in
Equation 1, and tune deceleration using both normal driving
ranges as in [11], [13], and maximum feasible deceleration
by a passenger car, similar to acting distance component in
[12]. Therefore, the Equation is formulated as follows:

dlongsafe =

(
V long
ego − V long

target

)2
2 µ |amax|

+max
(
tgap V

long
target, d

long
min

)
(1)



where;
dlongsafe : the longitudinal safe distance,
vlongego : the actual longitudinal velocity of ego vehicle,

vlongtarget : the longitudinal target velocity from the actor
ahead,

µ : the friction coefficient from road surface to ego
vehicle tire,

amax : the maximum feasible deceleration by ego vehicle
that is proposed a value of -8 m/s2 in [25],

tgap : the minimum time gap to keep from actor ahead
and the value 0.5s is proposed, which follows the
hazardous value defined in [16],

dlongmin : the minimum distance to keep when ego target
velocity is 0 km/h, its value is proposed to 5m as
suggested in [15].

To illustrate this metric, we consider a scenario with the
ego vehicle driving at 80 km/h (∼22.2 m/s) with an actor
ahead driving at 72 km/h (20 m/s). Applying Equation (1),
We assume an ideal dry road (i.e. µ = 1), which gives a
resulting safe distance of ∼10.3 metres, while the suggested
by Highway Code [15] for 80 km/h is 53 metres (∼414%
higher). Our safe distance represents a more realistic distance
of drivers in real traffic as the braking distance considers the
velocity difference with respect to the lead vehicle.

The proposal for lateral safe distance consists of a calcu-
lation dependent on current ego velocity and an upper and
lower bound, formulated in Equation 2.

dlatsafe = max

{
min

[(
Vego sin (Ψmax)
+V lat

target

)
tgap, d

lat
max

]
, dlatmin

}
(2)

where;
dlatsafe : the lateral safe distance,
vego : the absolute velocity of ego vehicle,
tgap : the minimum time gap to keep laterally from actor,

Ψmax : the max yaw angle when moving laterally set to
∼12◦ in [26],

dlatmax : the upper bound is used as a threshold to detect a
hazardous event. An initial value of 1.5 metres was
defined as reference to the requirement of distance
to cyclists in [27]. Further analysis is required to
optimise this value.

dlatmin : the lower bound that limits the lateral safe distance
to a minimum of 65 cm since the minimum lane
width in the UK is 3.3m [28] that given an
average passenger car width of 2 metres leads
to an unoccupied space on lane of 1.3 metres,
splitting half each side results ins 65 cm.

This formulation was based on lateral safe distance in [29],
with the intention to calculate the lateral distance that ego
would travel when suddenly changing its heading by Ψmax,
whilst applying some constraints of minimum and maximum
lateral distance to avoid under or overestimation.

Regarding the kinematic-based metrics, we select deceler-
ation, acceleration and jerk to detect hazardous events in a
generalised form, using previously studied abnormal ranges
to signal triggering events, as shown in TABLE III.

TABLE III: PROPOSED KINEMATIC METRICS

Kinematic
Attribute Triggering Event Condition Kinematics

Target Values

Longitudinal
Deceleration along

(dec)
< Target V alue -4 m/s2 [9]

Lateral
Aceleration alat

(acc)
< Target V alue -4 & 4 m/s2 [9]

Longitudinal
Jerk jlong < Target V alue -0.9 m/s3 [10]

Lateral
Jerk jlat < Target V alue -0.9 & 0.9 m/s3 [10]

By deriving a set of metrics, we hope to provide the
framework to generalise the detection of hazardous events,
making it possible to systematically annotate large datasets
to train models to understand such events.

B. Hazardous Event Annotation Technique

We propose the pipeline presented in Figure 2 to create
a hazardous event annotator. The figure shows that the
annotator only requires basic information regarding posi-
tion, velocity, time and direction, like rotation matrix or
yaw value, to calculate all necessary metrics and perform
labelling. To make the technique as data-agnostic as possible,
we perform all calculations to compute vehicle kinematics, as
they are typically not available in public datasets. A sliding
window with length of three frames is moved with stride
value one to calculate actor acceleration, heading, and jerk
metrics. The selection of the frames can be adjusted based on
the sampling rate of the selected dataset. Having calculated
the kinematics for each actor, we rotate all values by (360◦-
ego vehicle angle) to standardise the lateral and longitudinal
axes around to the ego vehicle perspective.

After actor kinematics are calculated and rotated, the
data is fed to the annotation module to compare against
our proposed safety metrics. We use kinematic acceleration,
deceleration and jerk to detect evasive manoeuvres and
dynamically calculate longitudinal and lateral safe distances
between the ego vehicle and each actor. Subsequently, the
system labels a scene is hazardous if any of the kinematics-
based metrics are flagged or if the longitudinal and lateral
safety distances are both violated to avoid cases of vehicles
overtaking in the same direction but different lanes.

Subsequently, our system can take in unlabelled datasets
and annotate each frame and scene as hazardous or safe. The
input parameters for annotation can be tuned to reflect user
preferences or factors in driving conditions, such as friction
coefficient in differing weather or road types.

We have tested the system with the GTACrash dataset to
observe its behaviour on an annotated dataset. This process
aims to shed light on the vulnerabilities of each metric for
future improvements. For this reason, 3600 crash scenes are
sampled from the GTACrash as crashes are known hazardous
events. In addition, to show that the metrics can detect
hazardous cases even if the harm is not materialised (near-
miss), the collision frames are removed. It shall be also noted
that non-crash scenes could not be used due to the lack



Fig. 2: Dataset annotation flowchart

TABLE IV: ACCURACY ON NEAR-MISS SAMPLES*

Kinematic Safe-Gap

Metric Result (%) Metric Result (%)

Long. Decel. 6.06 Long. Safe Distance 88.47Lat. Accel. 26.97
Long. Jerk. 98.13 Lat. Safe Distance 96.08Lat. Jerk. 73.92

Combined 99.52%
*Generated by removing collision frames from crash scene sequences

to simulate near-miss detection.

of labels of near-miss events. TABLE IV summarises the
annotator’s ability to label hazardous scenes from GTACrash.
TABLE IV shows that the acceleration focused kinematic-
based metrics can detect roughly 27%, the jerk focused ones
achieve up to 98%, and the safe gap-based metric annotates
up to 96.08% of the hazardous cases. Alternatively, when
the proposed combined method is utilised, the system detects
99.52% of all hazardous events.

Interestingly, the results in TABLE IV show that the
proposed metrics individually cannot annotate all hazardous
cases, but synergise when used in combination. There are
a few possible reasons why this is the case. Firstly, the
GTACrash dataset uses the game GTA5 to generate the
dataset where the reasoning of the actors in case of a
hazardous event is limited. To illustrate, it is possible for
the ego vehicle not to perform an evasive manoeuvre even
if a vehicle appears in front. Additionally, it is possible to
crash from different sides, with varying headings, which can
be missed by either the longitudinal or lateral safe distances.

All in all, the proposed metrics detected around 99.5% of
simulated near-miss cases and are implemented in a modular
way to adapt to different operational domains.

IV. DISCUSSION

For this study, we have taken a novel focus to detect
potential sources of harm, including non-collision-based haz-
ardous events. Given a focus on collision-based events and
inconsistent dataset labelling methods, the first task evaluated
existing metrics to detect the triggering events preceding
harm. After discovering overly conservative metrics with un-
realistically large safety gaps, our first contribution proposes
objective metrics to detect triggering events in a robust and
more realistic formulation. We do this by correlating abnor-
mal values from vehicle kinematics where drivers perform

evasive manoeuvres and dynamically calculate more realistic
safe gaps around the vehicle to avoid false positives.

The second contribution refers to the definition of a near-
miss labelling framework to label datasets using the proposed
hazardous event detection metrics. To which, we demonstrate
performance on the simulation-based benchmark, GTACrash
[22] with promising preliminary results of (∼99.5%) accu-
racy for hazardous event detection.

Moreover, we discuss the limitations and future work
to expand the scope of hazard categories considered, the
detection metrics proposed, and the annotation framework.

Hazard Categories: This research focused on actor-based
hazards, but it can be expanded to consider other external fac-
tors such as environmental and regulatory rules. For example,
static environmental factors, such as sharp turns and dynamic
factors like road debris or adverse weather, can make road
surfaces slippery or limit visibility. Similarly, regulatory
hazards could encompass understanding traffic laws to detect
surrounding violations that could signal potential harm or
avoid ego violation. Alternatively, it is possible to extend
annotation to internal hazards, such as input degradation and
system failures, given appropriate metrics.

Hazardous Event Metrics: The aim of the proposed
metrics was to detect triggering events involving actor-based
hazards. Given further hazard categories, environmental ef-
fects could be considered to factor in the friction coefficient
to weather conditions or road curvature to detect triggering
events when driving on bends. The utility of the metrics
can also be further expanded to safety check the outputs
of motion planning for safer decision-making models.

Annotation Technique: This study aims to present an
dataset annotator, which only needs vehicle position and
velocity data to derive the necessary kinematics and annotate
the scenes provided. Although the preliminary results are
promising on annotating simulated near-miss events, it is not
possible to draw conclusions for performance on safe scenes,
as near-misses are unlabelled. Hence, further exploration is
needed to evaluate the performance of the proposed annotator
robustly. In addition, as the bulk of datasets contain only
perception data, future work could investigate translating
perception input to relative positions and velocities, so that
the system can extend to all datasets, since actor kinematics
are usually not provided.

Situation Awareness: Although the proposed system aims
to provide a generic solution to hazardous event annotation,
there are certain cases where the context affects whether the



safe distances are applicable (e.g. actors travelling in the
same direction, but in other lanes). Current metrics have
limited context as they only consider the heading and the
distances between vehicles. Thus, future work could explore
how to program in a higher level of context-awareness to
provide more realistic annotations.

Benchmark Hazardous Event Dataset: In this study, we
have utilised the simulation-based GTACrash dataset as it
contains detailed vehicle kinematics (i.e. position, velocity)
about each actor and labelled crash events. However, since
simulations are not realistic and crashes are not the only
type of hazardous event, a realistic near-miss benchmark
dataset is required and remains a gap in the literature for
hazardous event detection. For this purpose, our labelling
technique allows researchers to annotate a real-life dataset
using the proposed annotation scheme to generate a realistic
benchmark for training near-miss events.

V. CONCLUSION
The development and testing of advanced driver assistance

systems on public roads have been increasing rapidly in
recent years. Such systems need to operate safely in very
dynamic and hazardous domains. Safe functionality requires
a robust understanding of hazardous events that are not
limited to collisions but also include the events preceding
a crash, referred to as triggering events (e.g. sudden braking
by the vehicle ahead or unintended lane departure).

This study takes a novel approach to detect potential
sources of harm, including non-collision-based hazardous
events, which are difficult to quantify. Given event-specific
metrics, inconsistent dataset labelling and collision-focused
events, we contribute a set of generalised hazardous event
detection metrics that synergise vehicle kinematics to detect
evasive manoeuvres early and safe gaps to calculate mini-
mum safe distances dynamically. These metrics then formed
our standardised dataset annotation technique.

Our proposed hazardous event labelling technique is de-
signed to be configurable, to detect collisions and near-
miss hazardous events in different operational domains
utilising our event-agnostic detection metrics. We show
99.5% accuracy in detecting simulated near-miss scenes in
our preliminary tests on a labelled simulation benchmark,
GTACrash. Although, given the diversity of scenarios and
lack of labelled near-miss datasets that guarantee safe scenes,
there is further work to validate robustness. By generalising
hazardous event detection and enabling automatic dataset
labelling, we provide an important first step to identify harm
earlier and obtain the datasets to learn such events at scale.
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