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Abstract

Generating high-quality and various image samples is a significant research

goal in computer vision and artificial intelligence. The Generative Adversarial

Networks (GAN) and Variational Autoencoder (VAE) are widely used to cap-

ture the distributions of actual distributions samples. In this thesis, we pay

attention to the GANs, a prominent unsupervised learning method that can

automatically capture the patterns in the training data. However, the train-

ing of GANs has simple memory imitation and non-convergence issues. The

memory imitation issue means generators produce same samples lazily to fool

discriminators. To generate various image samples and improve the GANs’ per-

formance efficiently, we develop the GAN structure from the following three

aspects: 1) The training procedure is not stable enough, which incurs the mode

collapse issues. The mode collapse means the GAN will generate samples with

single diversity; 2) The training process requires enormous time to capture

the pattern from the training data. The complexity of GAN structure and the

amount of training data influence the total training expense; 3) GAN demands

enough training data to ensure the accuracy and stability of the model. Lack of

comprehensive training data usually causes deterioration of the performance

of the network. Thus, we investigate training techniques and propose the

framework to develop the GANs’ performance and ability. First, we present

the Multi-group GAN (MGGAN), a light framework to solve the mode col-

lapse while increasing the diversity of generated samples. Next, we present

the Block Paralleling GAN (BPGAN) to decrease the total training time. It

uses a novel model parallelism to reduce the transmission cost. We provide

theoretical analysis to prove the benefit of our method. Finally, we present

Privacy-aware GAN (PrivacyGAN), a teacher-student framework based on

a generative adversarial network, to generate similar sensitive personal data

xv



from private clients. The experimental results and theoretical analysis demon-

strate that the techniques proposed in this thesis is effective.
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Chapter 1

Introduction

This chapter presents the motivation, the introduction to Generative Ad-
versarial Networks (GANs), the research contributions and the thesis organ-
isation. We start with the motivation for our research ideas, the significance,
and the process of our research. We then review the principle behind the
GANs, the variations and their applications in detail. Next, we introduce the
evaluation metrics of GANs. Finally, we present our research contributions
and the thesis organisation to explain our ideas.

1.1 Motivation and Objectives

With the development of artificial intelligence and deep learning, data has
been recognised as an essential resource. People have increasingly higher re-
quirements for high quality data in order to obtain a better trained network.
The work in [11][14][59][73][88][105][150] emphasises the significant role of data
in deep learning. This thesis mainly focuses on GANs, a unique unsupervised
learning approach to generate target samples. GANs have been successfully
applied in many aspects such as image-to-image translation [111], image super-
resolution [228], image manipulation [46], data augmentation [136][178][209]
and text-to-image [47][157][218]. However, GANs still suffer from the issues
like mode collapse and instability. Therefore, our research goal is to optimise
the GANs training from different aspects to improve the generated samples’
quality and reduce training cost and complexity. Moreover, we also design the
frameworks to extend the application scenarios of GANs.
Our first idea is to design a framework with better generality to solve the mode
collapse and improve the diversity of the generated samples. The “generality”
means that the framework can be applied to GAN variations while keeping
the training stable. However, the experimental results demonstrate that our
framework, unfortunately, increases the time expenses. Because the training
of GANs requires enormous computational resources and time, our second idea
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is to reduce the training time by designing a novel model parallelism method
based on modifying the training workflow of the GAN model. In model par-
allelism, all the training data is stored in the server. As artificial intelligence
becomes very popular nowadays, the data are collected everywhere by such as
mobile devices, individual organizations. The data can be used to train the
AI models. However, it is not feasible to upload these distributed data to a
central repository for model training, partly because it will consume enormous
communication bandwidth and storage facilities and partly because it may vi-
olate the data privacy. Therefore, it is a big challenge to develop an efficient
and effective method to train the GAN models over distributed training data.
This is the motivation of the third and final work presented in this thesis. It
develops a novel GAN framework based on the teacher-student mechanism to
synthesize the clients’ private data. The proposed method is able to generate
the targeted private information using limited training data.

1.2 Generative Adversarial Networks

1.2.1 The Concepts of GANs

GANs [54] have become a popular research topic nowadays. There are an
enormous number of papers related to GANs, according to Google scholar.
GANs belong to generative algorithms, which means that the algorithm is
based on a probabilistic model of the training data. Generative algorithms can
be classified into explicit density models and implicit density models. Fig.1.1
shows the taxonomy of the generative models.

Figure 1.1: The Taxonomy of Generative Models
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Explicit Density Model

The explicit density models simulate the distribution from the real datasets to
train the model to fit the training data. The explicit density models include
Neural Auto-regressive Distribution Estimation (NADE) [185], Masked Auto-
encoder for Distribution Estimation (MADE) [51], PixelRNN [187], nonlinear
Independent Components Analysis (ICA) [34], Variational Autoencoder (VAE)
[103] and Markov Chain [68][2][69].

Implicit Density Model

The implicit density models produce data instances from the distribution in-
stead of directly fitting the data distribution. The implicit density models
include Generative Stochastic Network (GSN) [3], Markov Chain and GANs.
These generative algorithm has their own disadvantages: PixelRNN has to
generate the pixels one by one, which can not be parallelized; VAE can only
generate samples with limited quality because it does not have a proper likeli-
hood function; NADE and MADE both have to depend on the previous output,
which requires enormous training time. However, GAN can overcome the dis-
advantages of other generative algorithms. Moreover, GAN is an exceptionally
designed deep learning network to produce better samples. Therefore, in this
thesis, we mainly introduce the related knowledge of GANs.

1.2.2 Original GANs

GAN aims to model high-dimensional distributions from real data. The ori-
ginal GAN framework defines a game of two players: a G (Generator) and a
D (Discriminator).

Figure 1.2: The training of discriminator.
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Figure 1.3: The training of generator (The faded diagram means the training
of generator does not need real world images).

Fig.1.2 and Fig.1.3 show the training schema of the original GAN frame-
work. It consists of a generator, which takes the noise vector as input and
exports the generated samples, and a discriminator, which distinguishes the
samples from natural images. The generator and discriminator are trained
adversarially in a minimax game. A generator tries to map a vector z from
the noise space Z to the realistic data space, generating a sample G(z) to sim-
ulate the real data and fooling the discriminator. The discriminator is trained
to maximise the probability of the labels correctly given to the real data and
the fake samples generated by the generator. The generator is trained sim-
ultaneously to minimise log(1−D(G(z))). pdata(x) means the distribution of
training data and pg(x) is the distribution of generated samples. In other
words, generator and discriminator play the following minimax game with the
objective function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (1.1)

When the generator is fixed, the optimal discriminator is given by [54]:

D∗
G(x) =

pdata (x)
pdata (x)+ pg(x)

(1.2)
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The minimax game in Eq.1.1 can now be reformulated as:

V (G) = max
D

V (G,D)

= Ex∼pdata (x) [logD∗
G(x)]+Ez∼pz(x) [log(1−D∗

G(G(z)))]

= Ex∼pdata (x) [logD∗
G(x)]+Ex∼pg(x) [log(1−D∗

G(x))]

= Ex∼pdata(x)

[
log

pdata (x)
pdata (x)+ pg(x)

]
+Ex∼pg(x)

[
log

pg(x)
pdata (x)+ pg(x)

]
(1.3)

The Kullback-Leibler (KL) divergence and Jensen-Shanon (JS) divergence
between two model’s distribution p(x) and q(x) is defined as:

KL(p∥q) =
∫

p(x) log
p(x)
q(x)

dx

JS(p∥q) =
1
2

KL
(

p(x)∥ p(x)+q(x)
2

)
+

1
2

KL
(

q(x)∥ p(x)+q(x)
2

) (1.4)

Combining Eq.1.3 and Eq.1.4, we obtain:

V (G) = KL
(

pdata (x)∥
pdata (x)+ pg(x)

2

)
+KL

(
pg(x)∥

pdata (x)+ pg(x)
2

)
= 2JS

(
pdata (x)∥pg(x)

)
−2log2

(1.5)
Since the Jensen-Shanno divergence between two distributions is always

positive or zero when they are equal, V ∗ =-2log2 is the global minimum of
V (G), and the only solution is pg(x) = pdata(x). Thus, the objective function of
GANs is related to both KL divergence and JS divergence. G is generally poor
at the early stage of the training, and the samples differ significantly from the
training data. As a result, D will confidently reject the generated samples with
high confidence. Therefore, we train G to maximize log(D(G(z))) instead of
minimizing log(1−D(G(z))). It has been theoretically shown that the minimax
game will reach a Nash Equilibrium. At the Nash Equilibrium, the distribution
of the generated samples is similar to the real data distributions, pdata(x) =

pg(x). Furthermore, the discriminators get D(x) = 0.5 for all x because they
can not determine whether the data is real or fake.

A significant advantage of GAN is that the network can be flexibly ap-
plied to different tasks and datasets, which enables GAN variants to solve
the problems in other challenging fields such as image generation and style
transferring.

1.2.3 GAN Varitations

Many papers related to GANs have been proposed for generating the images
of higher resolution, higher diversity, or subject to conditional constraints. In
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Figure 1.4: The road map of GANs from [56].

this subsection, we will introduce several representative variants of GANs that
have been shown to have high performance. The Fig.1.4 shows the brief history
of GANs from 2014.

DCGAN Unsupervised representation learning with deep convolutional GAN
(DCGAN) [155] is the first GAN architecture in which both the generator
and discriminator are designed by deep convolution neural networks. The
generator is based on transpose convolution structures, while the discriminator
is based on regular convolution structures. Fig.1.5 shows the structure of the
generator applied in DCGAN.

Figure 1.5: The structure of the generator used in DCGAN from [155].

In DCGAN, the authors suggest the following several essential tricks and
constraints:
1.Avoid the pooling layers and replace them with strided-convolutions. Use
the convolutional layer with stride of 2 in the discriminator and the transposed
convolutional (fractional-strided convolutions) layer with zero-padding in the
generator to export better gradients.
2. Use the Batch Normalization (BN) [91] in both generator and discriminator.
The last layer of G and the first layer of D are not batch normalized.
3. Remove the hidden fully-connected layers for deeper networks.
4. Use the ReLU activation in the generator and the Leaky-ReLU activation
in the discriminator.
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5. Use the Adam [101] optimizer instead of SGD with momentum.
These techniques and tricks efficiently stabilize the training process of

the GANs, which benefit the generation of high-quality images. Moreover,
DCGAN explores the question of latent space: how does the generator map a
linear combination of two vectors from the latent space if each of them can be
mapped to a different image?

Figure 1.6: Vector arithmetic for visual concepts. For each column, the Z
vectors (Z means the noise space) of samples are averaged. Arithmetic was
then performed on the mean vectors to create a new vector Y (Y means another
new noise space). The centre sample on the right hand side is produced by
feeding Y as the input to the generator.

Fig.1.6 from the original DCGAN paper demonstrates the research on ap-
plying arithmetic in the input space. The different underlying features, such
as male/female and with/without glasses, can be automatically learned by
DCGAN from the distinct direction of the vector in the latent space.

Wasserstein GAN The Wasserstein GAN (WGAN) [5] is proposed to solve
the issues of converge and mode collapse during the training procedure of GAN
from the perspective of cost functions. It applies the Wasserstein Distance to
measure the distance between two probability distributions. The Wasserstein
Distance, also called Earth Mover’s Distance (EM distance), can be explained
as the minimum energy cost of moving the dirt in the shape of one distribution
to the form of another distribution. The definition of the EM distance is:

W (pr, pg) = inf
γ∼Π(pr,pg)

E(x,y)∼γ [∥x− y∥] (1.6)

The Π(pdata, pg) is the set of all possible joint probability distribution
between pdata and pg. (x,y) ∼ γ means the percentage of dirt that should
be moved from point x to y. The EM distance is calculated by the following
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expression, as defined in [5]:

max
w∈W

Ex∼pdata (x) [ fw(x)]−Ez∼pz(z) [ fw(G(z))] (1.7)

{ fw}w∈W is a Lipschiz function determined by the discriminator D. When
D is fixed, Eq.1.7 calculates the EM distance. Then G aims to minimize Eq.1.7
to optimise the generated samples as close to the real data as possible. By
comparing Eq.1.1 and Eq.1.7, we find the following differences between the
original GAN and WGAN:

1) The D applied in WGAN approximates the EM distance, which is a
regression task while the label from the original GAN is binary. Therefore,
the D from WGAN does not perform the sigmoid function in the last layer.

2) The D in WGAN has to be a K-Lipschitz, which means the weights
of the discriminator in WGAN must be within a specific range. Therefore,
WGAN applies a simple clipping to restrict the weight. The network design
of WGAN is similar to that of the original GAN, except that WGAN does not
have a sigmoid output function.

Figure 1.7: The WGAN added noise to generated images to imporve the
stability. The p between discriminator and cost is the penalty.

3) Empirically, the authors suggested the RMSprop optimizer instead of
the momentum optimizer such as Adam. Wasserstein provides a smooth meas-
ure method even when the training data distribution and generated sample
distribution are far from each other. This distance stabilizes the learning
procedure, alleviating the mode collapse issues and improving the learning
ability. Though WGAN has many advantages, the authors mentioned that
the WGAN still suffers from the issues of unstable training, slow convergence
and vanishing gradients because of the weight clipping methods. Therefore,
the improvement, using the gradient penalty to replace the weight clipping,
has been proposed by [57]. Moreover, [104][201][151] also put forward different
approaches to improve the WGAN. The Fig.1.7 shows the trick to smoothen
the data distribution of the probability mass the by adding noise from [5].
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Conditional GAN The original GAN can be extended to the conditional
GANs (cGANs) [142] if both the discriminator D and the generator G are
conditioned by extra constraints y. The objective function of a two-player
minimax game has the following form:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x | y)]+Ez∼pz(z)[log(1−D(G(z | y)))] (1.8)

The cGANs are allowed to limit the type of generated samples according
to the extra constraint information. The conditioning is performed by feeding
y into both the discriminator and the generator as an additional input layer.
The generator receive the joint hidden representation that is combined by noise
and y as input. In the discriminator x and y are presented as inputs and to a
discriminative function (embodied again by a multilayer perceptron in cGAN).
The Fig.1.8 shows the structure of the simple cGAN.

Figure 1.8: The structure of a simple conditional adversarial net (The dotted
line and solid line means the y and x are fed into the network separately).

y could be any kind of auxiliary information, such as class labels or data
from other modalities. Such limitation allows the cGAN to generate the
samples on class labels [149][147], text [218][157]. cGAN has been applied
in face generation [50], image translation [179] and image description [29].
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Moreover, [92] used cGANs for image-to-image translation, which is called
pix2pix. The generator from pix2pix learns a mapping from an image y to the
output image G(y).

CycleGAN The Unpaired image-to-image Translation using Cycle-Consistent
adversarial networks (cycleGAN) [229] is designed to translate an image from
a source domain X to a target domain Y in the absence of paired examples.
Fig.1.9 illustrates the architecture of cycleGAN. It consists of two generators
(G : X → Y and F : Y → X) and two discriminators (Dx and Dy) with an ad-
versarial loss La and a cycle-consistency loss Lc. Dy encourages G to transform
X into the output that is indistinguishable from domain Y , and vice versa for
Dx and F . To further regularize the mapping, cycleGAN proposed two cycle
consistency losses that capture the intuition.

Figure 1.9: The model structure of the cycleGAN.

The adversarial loss LGAN for the mapping function G : X → Y and its
discriminator DY has the following equation:

LGAN (G,DY ,X ,Y ) = Ey∼pdata (y) [logDY (y)]

+Ex∼pdata (x) [log(1−DY (G(x))]
(1.9)

The G is applied to generate the images G(x) that has a similar distribution
to the images from domain Y , while DY aims to identify G(x) and the real
samples y: LGAN (G,DY ,X ,Y ). The similar adversarial loss is used for the
mapping function: F : Y → X and its discriminator DX : LGAN (F,DX ,Y,X).
Moreover, the cycle consistency loss Lcyc, which is used to reduce the possible
space of the generative functions and ensure the generated images to resemble
the input images, has the following form:

Lcyc(G,F) = Ex∼pdata (x) [∥F(G(x))− x∥1]

+Ey∼pdata (y) [∥G(F(y))− y∥1]
(1.10)

The cycle consistency loss is implemented by minimizing the L1 distance
between the input images and the reconstructed images. Therefore, the full
objective is:
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L (G,F,DX ,DY ) = LGAN (G,DY ,X ,Y )

+LGAN (F,DX ,Y,X)

+λLcyc(G,F)

(1.11)

where λ limits the relative weight of the two objectives. Eq.1.11 aims to solve
the following equation:

G∗,F∗ = argmin
G,F

max
Dx,DY

L (G,F,DX ,DY ) (1.12)

In conclusion, cycleGAN is an effective unsupervised image translation
model using the unpaired images from two different domains.

InfoGAN Information Maximizing GANs (InfoGANs) [19] is a generative ad-
versarial network that modifies the objective of GANs to learn meaningful
representations by maximizing the mutual information between a fixed small
subset of GAN’s noise variables and observations, which turns out to be rel-
atively straightforward. The work in [19] decomposes the input noise vector
into two parts: 1) z, which is treated as the source of incompressible noise; 2)
c, which is called the latent code and targets the salient structured semantic
features of the distributions of the training data. In the information theory,
the mutual information between X and Y measures the amount of information
learned from the knowledge of the variable X about the other variable Y. The
mutual information can be expressed as the difference of two entropy terms:

I(X ;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X) (1.13)

If X and Y are independent, I(X ;Y ) = 0, because knowing one variable
reveals nothing about the other. Given any x from PG(x), we want PG(c|x)
to have a small entropy. In other words, the information in the latent code
c should not be lost in the generation process. [19] proposed the following
information-regularized minimax game (The VI(D,G) means the loss function
based on the mutual information I):

min
G

max
D

VI(D,G) =V (D,G)−λ I(c;G(z,c)) (1.14)

In practice, we parameterise the auxiliary distribution Q as a neural net-
work. In most experiments, the auxiliary distribution Q and the discriminator
D share all convolutional layers. There is an extra final fully connected layer
to output the parameters for conditional distribution Q(c|x), which means In-
foGAN only adds an ignorable computation cost to GAN. Moreover, InfoGAN
adopted the techniques from DCGAN [155] to stabilize the training process.
The experimental results (Fig.1.10 [19]) show that InfoGAN can learn the inter-
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pretable representations that are competitive with the representations known
by the existing supervised methods.

Figure 1.10: Manipulating the latent codes on CelebA: (a) shows that a cat-
egorical code can capture the azimuth of face by discretizing this variation of
continuous nature; in (b) a subset of the categorical code is devoted to sig-
nalling the presence of glasses; (c) shows the variation in hair style, roughly
ordered from less hair to more hair; (d) shows the change in emotion, roughly
ordered from stern to happy

Progressive GAN The Progressive GAN [95] proposed a new training method-
ology for GAN to train both generator and discriminator progressively: start-
ing from a low resolution, they added new layers that model increasingly fine
details as the training progresses. This incremental mechanism allows the
model to first explore the large-scale structure of the image distributions and
then shift to the increasingly finer scale detail. Fig.1.11 (from [95]) shows the
training procedure of the Progressive GAN.

Fig.1.11 shows that the Progressive GAN uses a generator and discrim-
inator model from the original GAN structure and starts with a very small
image. The training process adds new blocks of convolutional layers to both
the generator and discriminator to allow the network to learn the coarse-level
details effectively and later acquire the fine-level details. The Progressive GAN
has the following benefits: 1) The generation of 4x4 pixel images is substan-
tially stable because fewer categories and modes exist; 2) It is much simpler
to increase the resolution step by step compared to discovering the fine-level
distribution from 1024x1024 images; 3) In practice, it stabilizes the training
sufficiently; 4) The training of the Progressive GAN needs less time because
most of the iterations are achieved at lower resolutions.

12



Figure 1.11: The training starts with both the generator and the discrimin-
ator having a low spatial resolution of 4x4 pixel. As the training advances,
the layers are added incrementally to the generator and the discriminator to
increase the spatial resolution of the generated images.

StackGAN The StackGAN [218] is proposed to generate photo-realistic im-
ages conditioned on text descriptions. Samples generated by StackGAN are
more plausible than those generated by existing approaches.

Figure 1.12: The architecture of the StackGAN. Stage− I draws rough shape
and basic colour of the object from the given text with low resolution. Stage−II
generates a high-resolution image with the photo-realistic details by condition-
ing on both the text and the results of Stage− I.

The StackGAN model (Fig.1.12) consists of Stage-I-GAN and Stage-II-
GAN. Instead of directly generating a high-resolution image conditioned on the
text description, it simplifies by first generating a low-resolution image. The
Stage-I-GAN generates the low-resolution images and mainly concentrates on
drawing a rough shape and correct colours for the objects. The Stage-II-GAN
receives the results from the Stage-I-GAN to generate the photo-realistic high-
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resolution images. It conditions on the low-resolution images generated by
the previous stage and the text embedding again to correct the defects in the
results of Stage-I-GAN, and encourages the model to extract the previously
ignored information in the text to generate more photo-realistic details. Im-
portantly, StackGAN for the first time generates the realistic 256x256 images
conditioned on only text descriptions, while the state-of-the-art methods can
generate at most 128x128 images.

UnrolledGAN The unrolledGAN [141] proposed a method to stabilize the
Generative Adversarial Networks by the generator’s objective concerning an
unrolled optimization of the discriminator. It lowers the probability that the
generator is overfitted for a specific discriminator, which can lessen mode
collapse and improve stability.

Figure 1.13: An illustration of the computation graph for an unrolled GAN
with 3 unrolling steps (From [141]). The update of the generator involves
backpropagating the generator’s gradient (blue arrows) through the unrolled
optimization. Each step k in the unrolled optimization is indicated by the green
arrows. The discriminator’s update does not require the unrolled optimization
(red arrow).

UnrollGAN (Fig.1.13) performs K steps to figure out how the discriminator
might optimise itself for a given generator. It demonstrates that 5 to 10 un-
rolled steps (From the experimental results) attain a rather good performance
of the model. Each step applies the gradient descent to optimise a new model
for the discriminator. However, the generator used the unrolling to forecast
the motions. But it is not employed in the discriminator optimization, which
might overfit the discriminator for a specific generator. In conclusion, this
technique addresses the problem of mode collapse, stabilizes the GAN train-
ing with the complicated recurrent generators, and improves the variety and
the coverage of the data distributions of the generated samples.

SAGAN [220] proposed the Self-Attention Generative Adversarial Network
(SAGAN) that allows the attention-driven, long-range dependency modelling
for image generation tasks. The goal of SAGAN is for the network to recognise
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the geometric and structural patterns that frequently appear in certain classes
(For example, generated images of dogs do not have defined paws, but have
realistic fur). In SAGAN, the details can be generated using the cues from
all feature locations, and the discriminator can check that the highly detailed
features in distant portions of the image are consistent with each other.

Figure 1.14: The proposed self-attention module for the SAGAN. ⊗ denotes
the matrix multiplication. The softmax operation is performed on each row.

Armed with self-attention (The Fig.1.14), the generator may draw the
graphics in which the fine details at every location are meticulously coordin-
ated with the fine details in distant regions of the image. Moreover, the
discriminator can apply the complex geometric constraints more precisely to
the overall image structure. The authors also put forward two techniques to
stabilize the training of GANs. First, they use the spectral normalization [143]
in both the generator and the discriminator. Second, they use two time-scale
update rules (TTUR) [67] specifically to address the slow learning in regular-
ized discriminators. SAGAN achieves the state-of-the-art performance on the
class-conditional image generation on ImageNet.

StyleGAN & BigGAN A Style-Based Generator Architecture for Generative
Adversarial Networks (StyleGAN) [96] is proposed to generate impressively
photo-realistic high-quality images of faces with the control style. StyleGAN
uses the mapping network to map the points in latent space to an intermediate
latent space. It allows separating different types such as hair, age, and sex
to control the image’s appearance. Fig.1.15 shows the model structure of
StyleGAN.

StyleGAN has six significant aspects : a) Using the basic structure of Pro-
gressive GAN [95], b) Tuning the parameters of the model, c) Adding mapping
and styles to the model, d) Removing the traditional input, e) Adding noise
inputs, f) Adding mixing regularization. The input is first mapped to an in-
termediate latent space W, which controls the generator through the adaptive
instance normalization (AdaIN) [86] at each convolution layer. Gaussian noise
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Figure 1.15: The model structure of the StyleGAN .

is added after each convolutional operation before evaluating the non-linearity.
Here “A” learned a affine transform from the latent code, and “B” applies
learned per-channel scaling factors to the noise input. The mapping network
f consists of 8 layers and the synthesis network g consists of 18 layers - two
for each resolution. The output of the last layer is converted to RGB using
a separate 1x1 convolution. In Fig.1.15, styleGAN can generate high-quality
images and also allows controlling the style of the generated images.

Large-scale GAN training for high fidelity natural image synthesis, also
called BigGAN [15], is proposed to generate high-quality samples by scaling
up the architecture. BigGAN is a large scale Tensor Processing Unit (TPU)
implementation of GANs by simply increasing the batch size and scaling the
model. BigGAN efficiently generates the images with the high resolution up to
512x512 pixels. However, although BigGAN has the impressive performance,
it demands enormous training data and computation resources.

SinGAN Learning a Generative Model from a Single Natural Image, which is
called SinGAN [167], is a variant of GAN that the network learns a generative
model from a single natural image. SinGAN is an unconditional generative
model that can capture internal features within a single image. SinGAN has a
pyramid of fully convolutional GAN (illustrated in Fig.1.16), which consists of
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a multi-scale pipeline. Each of them learns the distribution at a different scale

Figure 1.16: SinGAN’s multi-scale pipeline.

of the image. The generator and the discriminator at the lowest scale capture
the coarse features like the background and the style, whereas at higher scales
they are allowed to capture the fine features like edges and corners. SinGAN
is trained sequentially starting from the lowest level and rising to the highest
level, which includes a combination of two-loss functions:
1) Adversarial Loss: Adversarial loss is applied to measure the distribution
difference between the real data and the generated samples. The original
implementations in [167] used Improved Training of WGAN (WGAN-GP) [57]
to keep the stability of the training procedure.
2) Reconstruction Loss: Reconstruction loss is used to penalize the network
for generating the samples that resemble the real training data. The original
implementation used the Root Mean Squared Error (RMSE) loss. Despite
using only one image as input, the generated samples show high diversity and
all the samples are distinguished from each other. Moreover, the internal GAN
(INGAN) [168] also trains the network through a single natural image.

1.2.4 The Training of GAN

In practice, training the original GANs model suffers the following common
failures:
1) Non-convergence: GAN is based on the zero-sum non-cooperative game. In
short, if one wins the other loses. Your opponent wants to maximize its loss
while your actions are to minimize them. In the game theory, the GAN model
converges when the discriminator and the generator reach a nash equilibrium.
When the generator and the discriminator fail to get a nash equilibrium, the
models do not converge and maybe become unstable.
2) Mode Collapse: Mode collapse is one of the most challenging issues in GAN.
The generator can only produce similar samples with limited diversity.
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Figure 1.17: a) KL(pdata||pg) , and b) KL(pg||pdata). Different behavior of
asymmetric KL divergence [54].

Maximizing likelihood is equivalent to minimizing KL(pdata||pg). Because
the KL divergence is not symmetrical, minimizing KL(pg||pdata) leads to a dif-
ferent result. Figure.1.17 from [54] shows the details of different outputs of
the asymmetric KL divergence. In Figure.1.17a, the points where pdata ̸= 0

contribute most to the value of KL divergence while other points has small
influence on the KL divergence. Thus, pg is not zero when pdata is not zero.
Therefore, pθ ∗ (x) in Figure.1.17a covers all modes of pdata(x), which means
KL(pdata||pg) focuses on covering all modes. As for KL(pg||pdata), the points
where pdata = 0 but pg ̸= 0 contribute to a higher cost. This is why pθ ∗ (x)
in Figure.1.17b focus on generating the samples that are likely to come from
pdata(x).
3) Diminished gradient: The discriminator is too powerful to provide a useful
gradient. Therefore, the generator cannot be updated, and face the problem
of gradient vanishing.
4) Unbalance between the training weights between generators and discrimin-
ators.
5) Highly sensitive to the hyper-parameter set during the training process.

The unstable GAN training can be improved by the following techniques
that are heuristically motivated to encourage the convergence:
Feature Matching [160] The generator tries to find the best image to fool the
discriminator. However, the optimization might turn too greedy, which leads
to the model does not converge. The feature matching solves the instability
of GANs by specifying a new cost function for the generator that prevents
it from over-training the current discriminator. The new objective requires
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the generator to produce the data that matches the statistics of the real data,
where the discriminator is only applied to specify the statistics that we think
are worth matching. Usually, the L2 distance is used as the measurement to
define the new objective function:

∥∥Ex∼pdata f(x)−Ez∼pz(z)f(G(z))
∥∥2

2 (1.15)

The discriminator and hence f (x), are trained in the usual way.
Minibatch Discrimination [160] When the collapse to a single-mode is im-
minent, the gradient of the discriminator may point at the similar directions
for many similar points. The discriminator will receive an extra similarity
between the images in the same mini-batch that is computed by a transforma-
tion matrix T . The similarity c(xi,x j) between image i and j using the L1-norm
and the following equation:

cb (xi,x j) = exp
(
−
∥∥Mi,b −M j,b

∥∥
1

)
∈ R (1.16)

The similarity o(xi) between image xi and the rest of images in the batch is:

o(xi)b =
n

∑
j=1

cb (xi,x j) ∈ R

o(xi) = [o(xi)1 ,o(xi)2 , . . . ,o(xi)B] ∈ RB

(1.17)

The discriminator can easily identify the generated samples from a real one,
which helps alleviate the mode collapse issue.

Figure 1.18: Figure sketches how minibatch discrimination works.
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Historical Averaging [160] The authors add an L2 cost to the cost func-
tion to penalize the models from the historical average (Eq.1.18). This trick
(We keep the track of the model parameters for the last t models) helps address
the non-convergence problem. ∥∥∥∥∥θ − 1

t

t

∑
i=1

θ [i]

∥∥∥∥∥
2

(1.18)

One-sided Label Smoothing [160] Label smoothing replaces the 0 and 1
targets for a classifier with the smoothed values like 0.1 or 0.9. The work in
[1] shows that the label smoothing technique can reduce the vulnerability of
the neural networks to the adversarial examples. [174] also proposes a similar
idea to add the noise to both real and fake samples.

More effective approaches for improving the GAN training can be found
in [22][160][140].

1.2.5 GANs Application

The most impressive applications of GANs are mainly in the areas of image
processing and computer vision, such as image super-resolution, image manip-
ulation, data augmentation and image restoration.

Image Super-Resolution The work presented in [111], which is called Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Net-
work (SRGAN), is the first framework capable of inferring the photo-realistic
natural images for upscaling factors. The authors proposed a super-resolution
generative adversarial network, for which they employ a Deep Residual Net-
work (ResNet) [64] with the skip-connection and diverge from Mean Square
Error (MSE) as the sole optimization target. They also defined a novel per-
ceptual loss using the high-level feature maps of the Very Deep Convolutional
Networks for Large-Scale Image Recognition (VGG) network [171][94][16] com-
bined with a discriminator. Fig.1.19 shows an example of the photo-realistic
images that were super-resolved with the upscaling factor.

Moreover, [193] studied the key components of SRGAN and improved the
performance. The work in [12] uses GAN for creating the versions of photo-
graphs of human faces. The training and testing phases from Face Convolu-
tional GAN (FCGAN) [52] are the end-to-end pipeline with little pre/post-
processing. To enhance the convergence speed and strengthen the feature
propagation, the skip-layer connection is employed in generative and discrim-
inative networks. The Fig.1.20 shows the experimental results from FCGAN.
The work in [95][95] successfully generates the plausible, realistic photographs
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Figure 1.19: The samples from the SRGAN. From left to right: bicubic inter-
polation, deep residual network optimised for MSE, deep residual generative
adversarial network optimised for a loss more sensitive to human perception,
original HR image. Corresponding Peak Singal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) are shown in brackets.

Figure 1.20: Visual comparisons on local details [52].
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of human faces by adding new layers (starting from a low resolution) that
model increasingly fine details as the training progresses. It also proposed a
simple way to increase the variation in the generated images (See Fig.1.21).

Figure 1.21: 256 x 256 images generated [95] from different Large-scale Scene
Understanding Challenge (LSUN) categories.

The Deep Tensor Generative Adversarial Networks (TGAN) [33] puts for-
ward the idea of generating high-quality images by improving the tensor struc-
tures. Moreover, BigGAN [15] is proposed to generate realistic samples by
scaling up the system of GAN (See Fig.1.22).

Figure 1.22: The samples from the BigGAN [15] model with the truncation
threshold (a-c) and an example of class leakage in a partially trained model
(d).

The work in [219] proposed the SAGAN that allows the attention-driven,
long-range dependency modelling for image generation tasks. It is different
from the traditional convolutional GANs that generate the high-resolution
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details as a function of only spatially local points in the lower-resolution feature
maps. There also exist other methods [216][227][85] for the generation of high
resolution images.

Image-to-image translation The image-to-image translation is a task of tak-
ing the images from one domain and transforming them so that they have the
style (or characteristics) of the images from another domain. Pix2Pix [92] is
a simple and efficient conditional GAN framework for a supervised image-to-
image generation. It can supplement the training dataset with generated data
to reduce the cost of data collection. Fig.1.23 shows the samples generated by
the Pix2Pix.The networks not only learn the mapping from the input images
to the output images, but also learn a loss function to train this mapping.
The authors also demonstrated that the method was good at generating the
photos from the label maps.

Figure 1.23: Conditional adversarial nets are a general-purpose solution that
works well on a wide variety of problems. Here we show the results of the
method on several applications [92]. In each case the same architecture and
objective are used for the training on different data.

The work in [100][25][229] is proposed to transform the images from one
domain to another domain, such as converting the style of the handbag to
shoes (See Fig.1.24), transforming the happy face to the sad one [25] and
transforming zebras to horses [229].

Text-to-image translation(text-to-image) A model of text to image genera-
tion aims to generate the photo-realistic images which are semantically con-
sistent with the text descriptions. The work in [218][157] generates multiple
images fitting the description of sentences. StackGAN [218] breaks down the
problem into more manageable sub-problems through a sketch-refinement pro-
cess. Stage-I-GAN captures the primitive shape and colors of the object based
on low-resolution images. The Stage-II-GAN receives the output from Stage-I-
GAN and text descriptions as the inputs and then exports the high-resolution
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Figure 1.24: The samples from GAN that Learns to Discover Relations
Between Different Domains (DiscoGAN) [100]. a) The colored images of hand-
bags are generated from the sketches of handbags; b) The colored images of
shoes are generated from the sketches of shoes; c) the sketches of handbags
are generated from the colored images of handbags
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images with the photo-realistic details. Samples generated by StackGAN are
more plausible than those generated by the existing approaches (See Fig.1.25).

Figure 1.25: Comparison of the propose StackGAN and a vanilla one-stage
GAN for generating 256×256 images. a) Given the text descriptions, Stage-I-
GAN sketches the rough shapes and the basic colors of the objects, yielding
low-resolution images. b) Stage-II-GAN takes as inputs Stage-I-GAN results
and text descriptions, and generates the high-resolution images with the photo-
realistic details. c) Results of a vanilla 256×256 GAN, which simply adds more
upsampling layers to the state-of-the-art Generative Adversarial Text to Image
Synthesis (GAN-INT-CLS) [157]. It is unable to generate any plausible images
of 256×256 resolution.

The work in [112] proposed a method called as MGANs, precomputing a
feed-forward, strided convolutional network that captures the feature statistics
of the Markovian patches and can generate the outputs of arbitrary dimensions
directly. With the adversarial training, the work in [125] obtains the sample
quality comparable to the recent methods of neural texture synthesis (shown
in Fig.1.26).
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Figure 1.26: MGANs learn a mapping from VGG 19 encoding of the input
photo to the stylized example (MDANs). They compare the results of MGANs
to Pixel VAE and Neural VAE with both training and testing data.

1.2.6 The GAN Evaluation

Evaluating the generative models is a relatively complicated job. Although hu-
man evaluation can sometimes acquire the correlation between samples, people
usually tend to appraise the images according to the visual quality and ignore
the global distributions, which are the significant features for the GAN train-
ing. Fortunately, some effective metrics have been proposed to replace human
evaluation. In this section, we show the evaluation metrics used for GAN.

Inception Score Inception Score (IS) is proposed in [160], which uses the in-
ception model [177] for every generated image to obtain the difference between
two distributions. IS is the most widely adopted metric, which is computed
as [160]:

IS(G) =exp
(
Ex∼pgDKL(p(y | x)∥p(y))

)
(1.19)

where x ∼ pg indicates that x is an image sampled from pg, DKL(p||q) is the
KL-divergence between the distributions p and q, p(y | x) is the conditional
class distribution. where p(y | x) is the conditional label distribution for the
image x.

A high IS is obtained when the generated samples belong to a specific
ImageNet category. It indicates the generative network’s ability to produce
the data with high quality and variety. Also, the IS is proved to be correlated
well with human judgement [160]. However, one disadvantage is that it might
make the wrong decision if the generators only produce one image per class.
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Frechet Inception Distance (FID) Heusel et al. [67] propose a metric called
FID, which measures the distance between the generated data and the real
data. The FID between the authentic images x and generated samples g is
computed as [67]:

FID(x,g) = ∥µx −µg∥2
2 +Tr

(
Σx +Σg −2(ΣxΣg)

1
2

)
(1.20)

where (µr,Σr) and (µg,Σg) are the mean and covariance of the real data and
model distributions,respectively. The trace of a matrix A, designated by Tr(A),
is the sum of the elements on the main diagonal. FID is sensitive to mode
collapse. So FID is a better assessment of the image diversity. FID is more
robust than IS. A lower FID value indicates the better image quality and
variety.

Mode Score The Mode Score [18][204] is an improved version of IS, which
can calculate the dissimilarity between the real distributions and the gener-
ated distributions.
However, selecting an appropriate evaluation metric for GANs is still a disput-
able subject [182]. Evaluation metrics discussed above still cannot measure
the performance of GAN exactly. Moreover, we cannot evaluate the accuracy
or error rate as we do in supervised learning because GAN is an unsupervised
learning method. Therefore, there still exist the room to improve the evalu-
ation for GAN. We decide to use IS and FID as the evaluation metrics because
many researchers used these metrics in their work [160][67][195].

1.3 Research Contributions

This thesis makes the following contributions:
1) We propose a framework called Multi-Group Generative Adversarial Net-

works (MGGAN) to effectively solve the mode collapse problem and increase
the diversity of the generated samples, even for the complicated dataset such
as face images. MGGAN trains a set of generative groups simultaneously,
each being constituted by a generator and a discriminator. During the train-
ing, the generators and the discriminators will be regrouped. A generator
will be paired with a discriminator from another randomly selected generat-
ive group. Further, we propose the learning rate adjustment strategies that
allow the network to jump out of the local minimums swiftly. We conduct the
extensive experiments with MGGAN on a synthetic dataset and three real-
istic datasets (MNIST, CIFAR-10, Lfw). The experimental results show that
MGGAN can generate high-quality samples while reducing the training time.
Moreover, MGGAN can be applied to other GAN variants. For example, we
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can use components from DCGAN or WGAN to compose generative groups.
2) We introduce a simple, communication-cheap model parallelism method

without modifying the internal structure of the training network to accelerate
the training of GANs. The proposed parallelization method can be applied to
any GAN extension. After analyzing the workflow of the GAN training, we
propose a novel training mechanism to reduce the total transmission expense
during the training procedure. Our method transforms part of transmission
time into the execution time within the working nodes since the executions of
the training operations in the nodes are more productive than the data trans-
mission. Next, we provide the theoretical analysis and the pseudo-code to
compare the proposed method and the traditional data parallelism method to
prove that our method can effectively benefit the training procedure. In other
words, we investigate both the training procedures of the proposed method
and the data parallelism method and construct the mathematical formulae to
measure the total training cost. The theoretical modeling clearly shows the
superiority of our approach. At last, we conduct the experiments on the syn-
thesis datasets, CIFAR-10, Lfw and LSUN. The results show that our method
can decrease the training cost while retaining the quality of the generated
samples.

3) We propose a GAN model to generate the unique samples for each
of a collection of mobile devices. We call our model PrivacyGAN as it can
generate the high quality samples without directly accessing the data in the
mobile devices (clients). In this work, we consider a scenario where we need
to make use of the collective data in a network of mobile devices as in the
distributed training paradigms such as Federated Learning. However, the mo-
bile devices may not have enough data to conduct the local training (a type
of few shot learning). PrivacyGAN consist of a teacher GAN and multiple
student GANs with the teacher residing in the server while each student GAN
residing in a client. The teacher shares the knowledge with the students to
improve the generalization and robustness of the generated samples. Our
proposed model enables us to a) improve the initial training condition and
b) generate the samples without the problem of over-fitting. We do not use
the data augmentation techniques to generate the training samples because
many data augmentation methods are specifically designed for images, such
as translation, flip and rotation, while a GAN model can be applied to gen-
erate any type of data and hence be used for a wider range of applications.
Importantly, since we consider a network of mobile devices in this work, which
are typically resource-constrained, the data augmentation methods [208][97],
which are typically computation-intensive, are not allowed. We claim that our
PrivacyGAN is lightweight because of the decentralized deployment method
proposed in this work. In addition, the decentralized deployment method is
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also a key for meeting the requirement of generating the samples for the cli-
ents without accessing the clients’ data directly. We transform the sensitive
data into fake samples and label them using a local discriminator residing in
the client. Considering the resource capability (computation and transmis-
sion cost) and model performance, we do not use the encryption algorithms
or compression approaches to achieve data privacy of the clients. At last, we
propose a Joint Restraint Learning Function (JRLF) to limit the information
that the student learns from the teacher. The features from the teacher model
may not be reliable, sometimes even harmful. Therefore, the strategy is pro-
posed to control the student model’s dependency on the teacher model. We
also conduct the experiments and the theoretical analysis to demonstrate the
efficiency of our method.

1.4 Thesis Organisation

In section 1.1, we demonstrate the motivations of the research presented in
this thesis. In section 1.2, we introduce the GAN, including the concepts,
variations, the challenges during the training of the GAN, the evaluation and
the typical applications of GAN. In section 1.3 we outline the main research
contributions.

In section 2.1, 2.2 and 2.3, we present the related work to optimise the
GAN training procedure and improve the quality of generated samples by
addressing for example the mode collapse issue. In section 2.4, we present the
methods to tackle the few-shot learning given our PrivacyGAN is proposed
in a few-shot learning scenario. In section 2.5, we discuss the teacher-student
model given our PrivacyGAN adopts the teacher-student model.

In chapter 3, we propose MGGAN to solve the mode collapse issue in GAN
training to improve the diversity and quality of the generated samples.

In chapter 4, we propose a novel framework called BPGAN to accelerate
the GAN training without sacrificing the quality of the samples generated by
GAN.

In chapter 5, a lightweight GAN framework called privacyGAN is proposed.
It can generate the samples for the clients without accessing their real data
and hence protect the privacy of the client’s sensitive data.

Finally, chapter 6 concludes the thesis and chapter 7 discusses the future
work.
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Chapter 2

Literature Review

2.1 The Optimization of GAN Training

GANs training is difficult and insecure for a variety of reasons [160][155][4].
Many methods are proposed to address the problems that occur during the
training procedure.

The work in [4] presented the theoretical analysis to help explain the train-
ing of GANs. It analyzed why GANs are challenging to train and provided
rigorous studies to show the problem during the training, such as saturation
and instability. Moreover, the authors examined a practical and theoretically
grounded direction to mitigate the issues. The work in [67] proposed a TTUR
for training GANs with stochastic gradient descent on arbitrary GAN loss
functions. It is proven that TTUR for both generator and discriminator can
assist the training in converging to a local nash equilibrium.

The work in [206] proposed a simple modification of stochastic gradient des-
cent, called a prediction step, which stabilizes the adversarial network. The
authors presented the theoretical results that demonstrate that the prediction
step is stable for solving the saddle point problems. Liang et al. [120] firstly
regard the GAN training as a continual learning problem. Next, the authors
proposed to utilize the continual learning methods to improve the discrimin-
ator in preserving the learning ability to recognize the generator’s samples.

2.2 The Mode Collapse in GAN

GAN has shown impressive success in generating realistic, high-quality samples
when being trained on the class-specific datasets (e.g. Faces [130]). A few suc-
cessful applications of GANs are conditional GANs [92][157], image-to-image
translation [229], image super-resolution [111], image manipulation [228]; data
augmentation [46][136], 3D data generation [133]; text to image [218] and im-
ages restoration [215]. Furthermore, adversarial attacking [161][80][128] is a
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popular research topic because of its development in face recognition systems.
Both adversarial attacking models and face recognition systems require a sub-
stantial number of human face images with high quality and diversity.

However, GANs still suffer from the mode collapse problem [18][160][175][9],
in which the generator only produces the samples from limited data modes and
ignores other modes. The worst outcome is that the generator might simply
generate a single sample, which results in complete collapse [4][6]. Many efforts
have been made to solve this problem from the following different perspectives.

2.2.1 Covering diverse modes

Many methods were proposed to solve mode collapse by improving the di-
versity of the generated data [175][40]. For example, Reducing Mode Collapse
in GANs using Implicit Variational Learning (VEEGAN) adds a reconstruc-
tion network by introducing an implicit variational encoder to map the distri-
butions from training data to noise [175]. Learning Diverse Generations Using
Determinantal Point Process (GDPP) uses the determinantal point process to
enforce the generated data to have a distribution similar as the real data [40].
StyleGAN [96] redesigns the structure of the network to solve mode collapse
by adjusting the latent code. Moreover, BigGAN [15] enlarges the size of the
GAN model to improve the performance.

2.2.2 Enhancing the training process of the network

The UnrolledGAN proposed a novel method to tackle the instability by de-
fining an unrolled optimization of the discriminator [140], which shows the
reduction of mode collapse. UnrolledGAN differs from the standard GAN in
that it updates the generator based on a k-step updated discriminator given the
update of the current generator, which aims to review how the discriminator
responds to the current generator’s state. When the generator is updated, it
unrolls the discriminator’s training step to consider the discriminator’s state in
the future k steps with respect to the generator’s current update. At the same
time, the discriminator is updated in the same manner as the standard GAN.
WGAN presents a new cost function based on the Wasserstein distance that
has a smoother gradient [5], which can improve the generation’s convergence.
The Deep regret analytic GAN (DRAGAN) [104] found that the undesirable
local equilibria caused the mode collapse phenomenon in this non-convex game.
DRGAN adds a gradient penalty scheme that biases the discriminator to avoid
the local equilibria.
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2.2.3 Using multiple generators and discriminators

Another way to reduce mode collapse is adopting more than one generator or
discriminator to capture various modes. Multivariate Anomaly Detection for
Time Series Data with Generative Adversarial Networks (MAD-GAN) [113]
combines multiple generators with one discriminator. The system encour-
ages each generator to capture its own mode. This technique is inspired by
the fact that when the images from two different generators become similar,
a higher similarity value is produced. Therefore, it can potentially solve the
mode collapse problem by making each generator move toward different modes.
Coupled Generative Adversarial Networks (CoGAN) [125] proposed an exten-
sion to model the pairs of corresponding images in two different domains. The
model combines two GANs and shares the weights of the higher layers of
both generator and discriminator. A trained CoGAN (See Fig.2.1) can be
used to synthesize pairs of corresponding image that share the same high-level
abstraction but have different low-level realizations.

Figure 2.1: CoGAN consists of a pair of GANs: GAN1 and GAN2. Each
has a generative model for synthesizing realistic images in one domain and a
discriminative model for classifying whether an image is real or synthesized.

Dual Discriminator Generative Adversarial Nets (D2GAN) [148] proposed
a minimax game that couples two discriminators with one generator, where
one discriminator provides high scores for generated samples while the other
discriminator identifies the data from the true distribution. The generator
produces the data to fool both discriminators. The work in [148] also developed
the theoretical analysis to show D2GAN can reduce the mode collapse by
minimizing both the KL and the reverse KL divergences between the true
distribution and the distribution of the generated data. [38] extends GANs
to multiple discriminators and allows the generator to automatically tune its
learning schedule, which outperformed GANs with a single discriminator. This
framework achieved the faster convergence to higher quality and stability on
different tasks. The work in [90] proposed a framework to parallelize many
networks and pick the best one to cover diverse modes.

The work in [71] proposed the method called Mixture Generative Ad-
versarial Nets (MGAN). They present the theoretical analysis to demonstrate

32



Figure 2.2: The MGAN (left) and D2GAN (right)

that the JS divergence between the mixture of generators’ distributions and the
empirical data distribution is minimal at the equilibrium point (See Fig.2.3).
Fig.2.2 (left) illustrates the general architecture of our proposed MGAN, where
all components are parameterized by neural networks. Gk(s) tie their paramet-
ers together except the input layer, whilst C and D share parameters except the
output layer. This parameter sharing scheme enables the networks to leverage
their common information such as features at low-level layers that are close to
the data layer, hence helps to train model effectively. It can avoid the mode
collapse issue because at this point the JS divergence among the generators’
distribution is maximal. Moreover, the authors used the parameter sharing
technique, which adds only minimal computational cost to the standard GAN.

Figure 2.3: The structure of MGAN with K generators, a binary discriminator,
a multi-class classifier. Each generator Gk maps z to x = Gk(z), thus inducing
a single distribution PGk; and K generators altogether induce a mixture over
K distributions, namely Pmodel in the data space. An index u is drawn from
a multinomial distribution Mult(π) where π = [π1,π2, ...,πK ] is the coefficients
of the mixture; and then the sample Gu(z) is used as the output.

However, these methods have some disadvantages, which might result in
the following problems. i) The methods make the discriminators too strong,
which leads to the problem of vanishing gradient [90][113]. The generators can-
not receive enough gradient to make progress from an optimal discriminator.
A powerful discriminator does not provide enough information for parameter
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updating. ii) Some methods increase the complexity of the network structure
and loss function. It might increase the computational time or make the model
even harder to converge [125]. iii) Some approaches [140] and [5] have limited
ability of generalization. The methods are based on particular training models,
which makes it difficult to apply them to other training networks.

2.3 Speeding up the Training of GAN

Many researchers put forward the approaches to reduce the training and learn-
ing time from two points of views: 1) Decreasing computation expense; 2)
Accelerating the training speed. Since the GAN belongs to the deep neural
networks, some methods used to accelerate the deep neural networks can also
be applied in the GANs.

2.3.1 Decreasing Computation Expense

Optimize the Model Internal Structure Several recent works were proposed
to reduce the computational cost by optimizing the internal structure of the
deep neural networks. The tensor decomposition methods belong to the scope
of designing optimal architectures. One of the most important attempts at
building the architecture is the Network-In-Network (NIN) [122]. NIN builds
the micro neural networks with more complex structures to abstract the data
within the receptive field. Multilayer (two-layer) perceptron, which is regarded
as a universal approximator, is chosen as the replacement.

Figure 2.4: Comparison of linear convolution layer and mlpconv layer. The
linear convolution layer includes a linear filter while the mlpconv layer includes
a micro network

SqueezeNet [89] proposed a compact network that achieves AlexNet-Level
accuracy with 50x fewer parameters. There are three main strategies when
designing the architecture:
1) Replace 3x3 filters with 1x1 filters whenever possible. Smaller filters have
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fewer parameters.
2) Decrease the number of input channels to 3x3 filters. To get a small total
number of parameters in a CNN, it is essential to also decrease the number of
input channels to the 3x3 filters. The authors decrease the number of input
channels to 3x3 filters using the squeeze layers.
3) Downsample late in the Network so that the convolution layers have large
activation maps. The authors present their intuition that large activation maps
(due to delayed downsampling) can lead to higher classification accuracy, with
all else being held equal.

Strategies 1 and 2 judiciously ensure that the model is both small and
fast, while the third principle is about maximizing the accuracy on a limited
budget of parameters. Moreover, [89] also proposed a building block for the
CNN architectures called Fire Module, which allows strategies 1,2 and 3 to be
successfully employed.

Efficient Convolutional Neural Networks for Mobile Vision Applications
(MobileNet) [78] is based on a streamlined architecture that uses the depth-
wise separable convolutions [203] to build the light-weight deep neural net-
works for mobile and embedded vision applications. The authors used an effi-
cient network and two hyper-parameters to construct a tiny and low latency
model that could easily satisfy the design requirements for mobile and embed-
ded vision applications. MobileNet employs the simple and effective tricks to
control the model performance: the network width is adjusted by the width
multiplier α while the input resolution is adjusted by the resolution multiplier
ρ.

Many researchers target at designing a light module with the similar func-
tions to replace the heavy components as used in the deep learning model.
The work in [171] uses the microscopic receptive fields (3x3 with a stride of
1) instead of large receptive fields like AlexNet [107] (11x11 with a stride of
4). The small-sized convolution filters allow VGG [171] to have a large num-
ber of weight layers and fewer parameters. GoogleNet [159] adopts different
convolution layers to create an Inception Module (IM) and capture different
information. The improved IM with a 1x1 convolution filter enhances the net-
work’s performance while reducing the number of parameters. The work in
[122][78] also optimizes the convolution layers to lower the number of para-
meters. However, the module optimization techniques usually depend on the
specific module and service, which requires the customized design. Finally, it
is noted that the efficient architecture design is not limited to specific tasks,
such as the classification task.

Model Compression [21] is proposed to accelerate the model training by drop-
ping the redundant weights and parameters. A model can be compressed from
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Figure 2.5: Standard convolutional layer with batchnorm and ReLU (left)
and Depthwise Separable convolutions with Depthwise and Pointwise layers
followed by batchnorm and ReLU (right).

the following three aspects: quantization, network pruning and designing of
structural matrices.

A) Quantization
Almost all the weights and activations parameters of a typical network are

the values of the 32-bit floating-point format. Quantization is used to com-
press the original network by reducing the number of bits required to represent
each weight. The methods can be further categorized into the following two
aspects: weight quantization to lower the model size, and activation quantiz-
ation [93][188] to lower the inference latency.

i) Weight Quantization: The work in [74] provided a theoretical analysis of
the errors caused by the low-bit quantization to determine the bandwidth for
a multiplayer perceptrons. These early works focused on simple multiplayer
perceptrons. The work in [24] shows that Hessian-weighted k-means can be
used to measure the network parameters, which is proposed for clustering and
quantizing the network parameters. The work in [79] proposed a novel method
called BWNH to train the Binary Weight Networks via hashing. The authors
revealed the connection between inner-product preserving hashing and binary
weigh network and shows that training binary weights networks is equal to
a hashing problem. The work in [192] introduced a novel Fixed-point Fac-
torized Networks (FFN) for pre-trained models to reduce the computational
complexity as well as the storage requirement of the networks. The networks
have only the weights of -1, 0 and 1 , which efficiently eliminates the most
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resource-consuming multiply-accumulate operations (MACs). Moreover, the
work in [53][200] used k-means to quantize the weights and the work in [58]
introduced a 16-bit representation in the stochastic CNN training to reduce
the memory usage.

ii) Activation Qunatization: In order to achieve the latency improvement
with the quantized networks, the math operations have to be executed in the
fixed-point representations. Binarized Neural Network (BNN) [99] is suitable
for resource-constrained environments because they replaces either floating-
or fixed-point arithmetic with more efficient bitwise operation. The benefit
is that BNN demands less spatial complexity, less memory bandwidth and
less power consumption in hardware. The authors proposed several training
schemes such as weight compression and noisy backpropagation, which results
in a bitwise network that behaves almost as well as the counterpart network
with real values. In addition, the work in [180] extends BNN to the ImageNet
classification task and receives the higher accuracy. The work in [197] used a
sparsity regularizer on each layer to reduce the number of neural parameters
and channels. The work in [188] achieved a 3x speedup for inference by using a
purely fixed-point model on an x86 CPU without losing the accuracy compared
to a floating-point model on the same CPU.

B) Network Pruning
Pruning (See Fig.2.6) is a technique for removing the unimportant para-

meters and expanding the sparsity of the parameters while ensuring the model
performance remains above the desired threshold. Some classical works are

Figure 2.6: A simplified illustration of pruning weights (connections) and neur-
ons (nodes) in a neural network [138]

Optimal Brain Damage(OBD) [110] and Optimal Brain Surgeon Paper(OBSP)
[63]. These methods start with a network that has been pre-trained to a de-
cent level of quality to reduce the influence on validation loss. After each
pruning, the network is updated with the rest parameters. This iteration is
repeated several times until the required number of parameters have been
removed. Their work demonstrated that such pruning methods have higher
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accuracy than magnitude-based pruning, such as the weight decay method.
The work in [61] propose to reduce the total number of parameters and com-
putation in the networks by filtering the important layers. In [184], a simple
regularization method based on soft weight-sharing was proposed, which used
both quantization and pruning in each training procedure. The work in [197]
applied a structured sparsity regularizer on each layer to decrease the irrel-
evant filters, parameters or layers. Moreover, the work in [114] employs the
L1-norm to select and prune unimportant filters. The work in [197] used a
sparsity regularizer on each layer to reduce neural parameters and channels.
The work in [60] proposed a three-stage compression method including prun-
ing, quantization and Huffman coding. It prunes the small-weight connections
after regular network training. Finally, the sparsely connected networks are
re-trained to learn the final weights.

C) Design Structural Matrix
A structural matrix can use much fewer parameters to describe an m× n

matrix. Significantly, the structure can reduce the memory usage and accel-
erate the training and gradient computations. The work in [211] introduces a
novel Adaptive Fastfood Transform to re-parameterize the fully connected lay-
ers. Moreover, the work in [172][26][146] showed the effectiveness of using the
structured matrices. However, the traditional compression methods are not
appropriate for GAN because of the training difficulty and the differences in ar-
chitecture. Many researchers propose specific methods to compress the model.
The work in [117] proposed a compression framework to reduce the inference
time and the model size in cGANs [142]. The work in [169] developed a novel
co-evolutionary approach to reduce their memory usage and Floating-Point
Operations Per Second (FLOPs) simultaneously by pruning the network.
Although the above three compression methods bring many benefits, they
have the following drawbacks in addition to the difficulty of implementation:
1) Quantization might lower the accuracy of the networks when it is applied
in large CNNs such as GoogleNet [159]. Another drawback of such binary
nets is that the simple matrix approximations ignore the effect of binariza-
tion on the accuracy loss. 2) As for the network pruning technique, first it
usually requires superfluous training to find the redundant weights. Second,
pruning with L1 and L2 regularization requires more iterations to converge
than the general methods. Finally, network pruning will not improve the effi-
ciency although it can reduce the model size. 3) When designing the structural
matrices, the structural constraint may hurt the performance because the con-
straint increases the deviation of the model. On the other hand, there is no
theoretical way to find an appropriate matrix.
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2.3.2 Accelerating Computation Speed

Data Parallelism is a widely used strategy that divides the dataset into several
independent splits and loads them to multiple nodes for parallel training. It
accomplishes the target of parallelization by processing more data in a time
unit. Data parallelism means that each node trains the same model on a dif-
ferent subset of data. In data parallelism, the forward computing in the nodes
does not need the synchronization because each node has a copy of the entire
network, including the structure and the parameters. However, the gradients
from different nodes must be synchronized in backpropagation. In addition,
data parallelism can still accelerate the training even when the computation
is performed on a single device, which is achieved by loading a mini-batch of
samples to the device.
Model Parallelism refers to the approaches that divide the network structure
into different parts. It indicates that each node is responsible for training one
piece of model on the same data samples. There are three typical scenarios
where model parallelism is applied: 1) When training a deep network, such
as CNN, the forward or backward computation of different layers can be dis-
patched on different nodes. Each working node can concentrate on training
the specific layers. 2) When the model is too big to fit in the memory of one
single device, one can partition the model into multiple parts. 3) Some deep
learning programs, such as matrix factorization [144], only update a small
part of parameters per step. In this case, model parallelism can be used to
parallelize the work and update them simultaneously. The performance of
model parallelism is usually worse than data parallelism because it has much
communication cost. In parallel mechanisms, many researchers focus on re-
ducing the bottleneck caused by communications. For example, the work in
[115][116] introduced the Parameter Server and the work in [52] is used to
reduce the communication cost among working nodes. Moreover, the gradient
compression [226][166][123], gradient accumulation [66][191] and gradient com-
pensation [225] are common approaches that target at the gradients. However,
parallel processing manifests the defect that the extra cost will be incurred to
exceed the profit of parallelization when too many nodes are used.

2.4 Generating Samples with Few Training Data

2.4.1 Few-Shot Learning

The FSL problem is also defined as an N-way-K-Shot classification problem.
The training datasets of Few-Shoot Learning includes N class labels and K

labelled images for each class. Now we want query Q images among the N

classes. FSL [194][173] is a type of machine learning problem that the model
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only contains a limited quantity of samples with supervised information. The
existing problems in FSL mainly belong to the problems in supervised learn-
ing, such as few-shot classification [198][76][39], few-shot regression [181][82]
and few-shot reinforcement learning [30][36]. The current FSL works can be
classified from the following three aspects.

A) Data
The key problem in FSL is that the network cannot export a robust model

with limited training data. Therefore, data augmentation is proposed to solve
the issue. Except for simple techniques such as translation, rotation, and re-
verse, there are specific methods to enlarge the training dataset. The work
in [165] proposed a technique named Delta-encoder to augment additional
training examples and solve the data insufficiency. This method employs a
non-linear function to learn the transformations. The work in [132] considers
the information at the instance level and combines the attention mechanism
to generate various image data. The work in [28] uses two components: a
search algorithm and a search space to auto-generate valuable samples. The
search algorithm has two parts: a controller, which is a recurrent neural net-
work and a training algorithm. The search space consists of 5 sub-policies,
and each sub-policy has two image operations. Moreover, the work in [20]
combines a meta-learner with an image deformation to generate additional
training samples. They augment and diversify the one-shot training images
by using the deformation network.

In [153], a simple and effective solution is presented to many different target
domains: self-training a source domain representation on the unlabelled data
from the target domain, which is called Self Training to Adapt Representations
To Unseen Problems (STARTUP). The goal of STARTUP is to build the
learners for new domains that can be quickly trained to identify new classes
when being trained with very few labelled data points. The proposed method
generates a feature representation that: a) is adapted to the target domain
and, b) receives prior knowledge from the source task to the extent that it is
relevant.

The authors from TIM [13] proposed a method to maximize the mutual in-
formation between the query features and their label predictions for a few-shot
task at the inference while minimizing the cross-entropy loss on the support
set.

B) Model
Solving the FSL problem from the model perspective, one needs to general-

ize a robust model with the auxiliary data. The issues can tackled from three
aspects: i) Multitask Learning, ii) Embedding Learning, and iii) Learning with
External Memory.

i) Multitask Learning
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The work in [223][81] uses the relevance of multitasking and shares the
underlying features to learn the specific elements from each task. These ap-
proaches can share the parameters during the training process.

In [10], both the original and generated samples are first mapped to a task-
specific space by learning separate embedding functions for the source and
target tasks and then embedded by a shared variational auto-encoder.

Figure 2.7: Solving the FSL problem by multi-task learning with parameter
sharing [194].

ii) Embedding Learning The embedding learning [42][173] depends on the
additional tasks to learn a metric space, which can be applied to new jobs
without updating the parameters. Moreover, it can avoid over-fitting during
the training.

In [210], a novel method named distribution propagation graph network
(DPGN) is proposed for few-shot learning. It transmits both the distribution-
level relations and instance-level relations in each few-shot learning task. The
authors designed a dual complete graph network, which consists of a point
graph and a distribution graph with each node representing an occasion of
combining the distribution-level relations and instance-level relations. In [224],
the authors proposed a Dynamic Convolutional Network (DCN) to deal with
conditional few-shot learning. DCN consists of two subnets: DyConvNet con-
tains a dynamic convolutional layer with a bank of basis filters. CondiNet
predicts a set of adaptive weights from conditional inputs to linearly combine
the basis filters. This greatly improves the parameter learning across different
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conditions when there are only limited data.
iii) Learning with External Memory
The work in [156][163] applies the external memory to store the features.

Then the learning of the new task matches the elements to generalize the
model. The work in [134] presented an inverted pyramid network (IPN) that
demonstrates the human’s coarse-to-fine cognition paradigm. IPN consists of
the global stage and local stage. At the global stage, a class-specific contextual
model with a memory mechanism (CCMNet) is proposed to learn the discrim-
inative global support-query relation embeddings. Then at the local stage, a
fine-grained calibration is further appended to complement the coarse relation
embeddings, targeting more precise query-to-class similarity evaluation.

Meta-Learning [199][75] aims to train a mapping from a few training samples
to the hidden parameters that benefit the optimization process. For example,
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (MAML)
[43][44][45] is the most popular method to initialize the parameters of a neural
network. The parameter-centric methods depend on current optimizer such
as SGD or ADAM [101] to extract the initialization. The approaches [77][176]
learn the inner optimizer and generate optimization steps for each training
iteration.

Parameters Fine-tuning: The key to optimizing the few-shot learning is
to design a proper algorithm to avoid over-fitting [17][72]. However, these
methods have their limitations. In practice, the typical data augmentation
methods, such as rotation and flip, do not apply to the texts because only the
images are invariant to rotation. Other complex data augmentation methods
[208][97] improve the model performance at the expense of computation and
stability. Therefore, in this thesis, we dispense these approaches to enlarge the
dataset. Moreover, in Chapter 5, we assume that the clients’ personal inform-
ation are unlabeled and therefore its learning is unsupervised learning, which
makes these approaches not suitable for modelling and algorithm optimization
in FSL.

2.5 Teacher-Student Model

The teacher-student model is a concept from Knowledge Distillation (KD),
which was previously proposed to compress the deep neural networks [70]. KD
refers to the method that improves the training process of a smaller student
network under the guidance of a more extensive teacher network. Unlike other
compression approaches, KD can downsize the parameters from a network
regardless of the structural difference between the teacher and the student
network.
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Figure 2.8: Illustrations of the KD methods with the teacher-student frame-
works (from [190]). (a) for model compression and for knowledge transfer, (b)
semi-supervised learning, and (c) self-supervised learning

2.5.1 KD on Teacher-Student Model

There are the following aspects of KD with the teacher-student model: a) KD
based on the number of teachers, b) KD based on data format and c) KD
based on teacher-free model, which are described in the following subsections.

a) KD based on the number of Teachers
Transmitting the knowledge from the teacher network to the student net-

work can be performed by logits or internal features from the teacher model.

Figure 2.9: Illustration of KD with multiple teachers. The KD methods can
be categorized into six types: (a) KD from the ensemble of logits, (b) KD from
the ensemble of feature representations via some similarity matrices.

i) KD from Logits
Soft Labels: The work in [7] proposed to transfer the knowledge from the

teacher network to the student network by learning the distributions from soft
labels. The output of the softmax function on the teacher model’s logits has
the correct class with a very high probability, while the probabilities of other
class are close to zero. It does not provide enough information beyond the
ground truth labels. Therefore, the work in [32] puts forward the residual label
and the residual loss to allow the student model to use the wrong experience
during the training phase to prevent over-fitting and improve the performance.
Similarly, the work in [183] proposed the teacher’s knowledge as the structured
information and trained a student model to extract the important mutual
information during the contrastive learning. The work in [23] proposed that
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the teacher model with an early-stopping technique makes a better student
model.

Noisy Labels: The work in [119] assumes a small clean dataset and a
large noisy dataset. It enriches the small clean data to learn a better visual
representation by the large amount of noisy data. The knowledge is extracted
from the small clean dataset in order to improve the model generated from
the large noisy dataset. The work in [202] trains a noisy student model by
the following three steps: 1) training a teacher model by the labelled data; 2)
using the teacher model to generate the fake labels on unlabeled images, and
3) training a student model on a mixture of labelled and fake labelled images
while introducing noise into the student model for improved generalization
and robustness. The disadvantage of this method is that when the capacity of
the student model is insufficient, it is difficult for the student to assimilate the
teacher’s logits knowledge successfully. Therefore, it is expected to improve
the generality and provide a better representation of logits information that
can be easily accepted by the student model.

ii) The Knowledge Distillation from Intermediate Layers
The work in [65] adds a batch normalization layer after a 1x1 convolu-

tion layer to determine the margin of the margin ReLU transformer proposed
by the teacher. In KD, there are certain benefits to applying 1x1 convolution
layer. First, it provides a channel-wise pooling without reducing spatial dimen-
sionality. Second, it can be used to create a one-to-one linear projection of the
stack of feature maps. Finally, the projection created by the 1x1 convolution
can also be used to increase the number of feature maps directly.

There are several drawbacks to use internal features from the layers in KD.
First, most research chooses the intermediate features randomly as knowledge
and does not explain why they can be the representative information across
all layers. Second, the distillation position of the features is manually selected
based on the network or the task. Finally, numerous features may not indicate
the knowledge superior to a single layer’s feature. As the result, the better
methods could be investigated for selecting the knowledge from the layers and
representing the knowledge.

b) KD based on the Data Format
There are the following two aspects of KD based on the data format : i)

KD using the generators, ii) KD with a few training data, which are described
in the following subsections.

i) KD Using the Generators
The work in [41] took both the teacher and student as the discriminator to

reduce the discrepancy between them, while a generator is trained to generate
some samples to adversarially enlarge the discrepancy. In [213], the generator
is set to receive two inputs: a sampled class label y, and a noise input z. A
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decoder is also applied to reconstruct the noise z′ and the class label y′ from the
fake data generated by the generator from the noise. The generator produces
the higher quality samples by minimizing the errors between y and y′ and
between z and z′.

ii) KD with a Few Training Data
To enable the student model to learn more efficiently with a small amount

of training data, the work in [108][118][8] presented the few-sample KD strategies.
The work [126] generated the fake labels from a teacher model with semantic
information to provide a supervision signal for the student. Moreover, the
work in [118] added an extra 1x1 layer after each pruned layer block in the
student model, and estimated the least-squared error to align the parameters
with the student. However, although the KD methods with a limited amount
of training data can be improved by the approaches of data augmentation and
layer-wise learning, the performance of the student is heavily dependent on
the number of fake labels, which may influence the effectiveness of the model.

c) The KD based on Teacher-free Model
The traditional KD methods [212][98] have several drawbacks to overcome,

although the impressive performance has been achieved. First, these methods
are inefficient since the student models rarely utilize all of the knowledge from
the teacher models. Second, there are still many challenges in designing and
training high-capacity teacher models. Finally, offline distillation necessitates
a high level of computing and storage resources. Several unique self-distillation
frameworks [207][131][145][205] have been proposed recently to address these
issues. Self-distillation is a technique for learning a student model by distilling
the knowledge without referencing other models. The work in [48] introduced
the notion of self-distillation, in which the student models are parameterized
identically to their teacher models.

However, there are still numerous obstacles to overcome. First, the the-
oretical analysis is needed to explain why self-distillation is more effective.
Second, the existing methods focus on self-distillation with certain types of
group-based network structures. Finally, all present methods are based on
the classification-based activities. It is unclear whether the self-distillation
works appropriately for other tasks.

2.5.2 KD on Student Model

The complexity of a deep neural network mainly comes from its depth and
width. The teacher model usually belongs to an extraordinarily complex net-
work and is trained separately using the whole dataset, demanding heavy com-
putation resources. The student model is usually: 1) a simplified version of the
teacher network which contains fewer layers or parameters [129], 2) a smaller
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network with proper basic operations [222][83] or 3) the same network as the
teacher [48]. Various methods have been proposed [55][124][189] to transfer
the information to the student networks. The work in [154] combines model
quantization with knowledge distillation. The student model is a quantized
version of the teacher model.

The work in [158] proposed Hints for Thin Deep Nets (FitNets) to train
a deeper and thinner student neural network. Because the depth of neural
networks is more significant than the width, the framework compresses the
wide and deep networks into thin and deeper ones by using the intermediate-
level hints from the teacher’s hidden layers to guide the training process of
the student. Moreover, the work in [139][202][217] proposed to improve both
accuracies as well as the speed of convergence of the student models across
the domains by using the teacher-student mechanism.

However, the traditional teacher-student model has the “Simply Accept”
problem: The student simply agrees with all the knowledge from the teacher
model. The teacher model targets the global dataset in the server, which is
different from the data owned the student. Therefore, it may not produce
the best result if the student simply accept all the knowledge shared by the
teacher. In chapter 5, we will propose an efficient method to restrict the
student’s acceptability of the information from the teacher model by applying
the JRLF to the training.
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Chapter 3

MGGAN: Improving Sample
Generations of Generative
Adversarial Networks

GANs are powerful generative models that are widely used to produce syn-
thetic data. This chapter proposes a Multi-Group Generative Adversarial
Network (MGGAN), a framework that consists of multiple generative groups
for addressing the mode collapse problem and creating high-quality samples
with less time cost. The idea is intuitive yet effective. The distinguishing
characteristic of MGGAN is that a generative group includes a fixed gener-
ator but a dynamic discriminator. All the generators need to combine with a
random discriminator from other generative groups after a certain number of
training iterations, which is called regrouping. The multiple generative groups
are trained simultaneously and independently without sharing the parameters.
The learning rate and the regrouping interval are adjusted dynamically in the
training process. We conduct extensive experiments on the synthetic and real-
world datasets. The experimental results show the superior performance of
our MGGAN in generating high quality and diverse samples with less training
time.

3.1 Introduction

Generative models have been rapidly growing in recent years. The elemental
concept behind such models is to extract the distributions of high dimensional
features in the data such as images and texts. Training generative models
demands huge computation resources as it requires the complex integration in
a high-dimensional space. The model training can be implemented by deep
neural networks with the back-propagation algorithm. There are two well-
known generative models: GAN [54] and Variational Autoencoders [102]. This
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work mainly focuses on GAN, which is known to generate persuasive and agile
samples. The generative model includes a generator and a discriminator play-
ing a minimax game that targets reaching a nash equilibrium. The objective
of the generator is to generate the data in the same format as the real data in
the training set. The discriminator is responsible for capturing the difference
in feature distribution between real data (from realistic data Pdata(x)) and fake
data (from the generated data Pg(z)). When the Nash Equilibrium is reached,
the generator can produce the data with the similar feature distributions so
that they are regarded as being authentic.

Though GANs can generate the samples for data augmentations, it suffers
from a problem called mode collapse [4][18][19][140][160], in which the gen-
erator collapses and only generates the samples with limited variety. If the
discriminator identifies the samples produced by the generator as genuine, the
generator will always produce similar distributions. It is considered a major
challenge to extract the feature distributions from complicated datasets with
multiple object classes (e.g., ImageNet [31]) since it is difficult for GAN to con-
verge and sometimes the Nash equilibrium does not even exist. In this case,
mode collapse becomes a prominent problem. The mode collapse problem is
even more severe when using GAN to generate face images. This is because
the initial layers in the model mostly learn the same fine-grained feature distri-
butions for a specific type of dataset. In this phase, the generator is limited to
targeting a particular pattern even though the discriminator offers favourable
feedback. There are two widely used approaches to deal with the puzzle: 1)
reinforcing the GANs’ learning ability [4][140][160], and 2) ensuring the GANs
can extract a variety of modes from different data distributions [18][19][125].
This work takes the second approach.

In this work, we propose a framework called Multi-Group Generative Ad-
versarial Nets (MGGAN) to effectively solve the mode collapse problem and in-
crease the diversity of the generated samples, even for the complicated dataset
such as face images. MGGAN trains a set of generative groups simultaneously,
each of which is constituted by a generator and a discriminator. During the
training, the generators and the discriminators will be regrouped. A generator
will be paired with a discriminator from another randomly selected generat-
ive group. The regrouping gives the system the opportunity of inheriting the
network parameters from the previous group, which prevents the system from
dropping the distributions that have been learned.

The challenge of introducing multiple generative groups and performing re-
grouping is as follows. After each regrouping instance, a new network is formed
in each generative group. The new network may produce worse results in the
initial period of a regrouping instance because the network starts to capture
new features, and then recover gradually to generate better samples. This may

48



generate many local optimums in the loss curve. We made careful observations
to the loss trend during the training in this multi-group setting and proposed
a learning rate adjustment strategy to allow the network to jump out of the
local minimums swiftly. Further, we propose a strategy to determine the re-
grouping interval dynamically (i.e., the number of training iterations between
two consecutive regrouping instances in MGGAN). The learning rate adjust-
ment strategy combined with the regrouping strategy can facilitate MGGAN
to learn disparate modes and share the network parameters efficiently among
multiple generative groups. We conduct the extensive experiments with MG-
GAN on a synthetic dataset and three realistic datasets (MNIST, CIFAR-10,
LFW). In the experiments, DCGAN [155] is implemented with our MGGAN
framework and is evaluated in terms of the metrics of IS (Inception Score)
and FID (Frechet Inception Distance). The experimental results show that
MGGAN can generate high quality samples while reducing the training time.
Moreover, MGGAN can be applied to other GAN variants. Namely, we can
train several different types of GANs simultaneously by employing MGGAN
in the same training procedure.

In summary, our main contributions are the following. 1) A novel GAN
framework is proposed to reconstruct the GAN group and increase the diversity
of generated samples and address the mode collapse problem. Moreover, our
proposed structure can improve the quality of the generated samples, which
can be applied in the field that requires high-quality samples such as ad-
versarial attacking. 2) A dynamic learning rate adjustment strategy is de-
veloped to speed up the training procedure and improve the system stability.
It can also decrease the stability of loss function as well. 3) Comprehensive ex-
periments have been conducted to evaluate the effectiveness of our framework
with the quantitative benchmarks on different types of datasets.

3.2 The GAN Framework

In GANs training, minimizing G can be transformed to minimize the Jensen-
Shanon (JS) divergence between the Pdata(x) and PG(x) distribution:D js =

(Pdata(x) ∥ PG(x)). At the Nash Equilibrium, the distribution of the generated
samples is similar to the real data distributions, Pdata(x) = PG(x). Furthermore,
the discriminators get D(x) = 0.5 for all x because they can not determine
whether the data is real or generated. Because the JS divergence is also known
as the symmetric form of the KL divergence [182][87], GAN suffers from the
mode collapse problem, which produces samples with limited variety. As the
consequence, the synthesized data has low diversity [18][140]. Training GANs
is usually separated from the optimal situation (Reaching the nash equilib-
rium) because of the following reasons:
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Figure 3.1: Mode Collapse

1) The generator collapses and can only generate limited varieties of samples,
which means the system can only capture a few modes from the real dis-
tribution. For example, there exist 10 patterns from 0 to 9 in the MNIST
dataset. The top row generates all 10 modes but the second row creates only
one mode.This is the issue of ’Model Collapse’ (Fig.3.1). Namely, only part
of the data modes are produced.
2) The model parameters oscillate and never converge. The well-trained dis-
criminators will reject the samples produced by generators, which lead to the
gradient vanishing. Some loss functions will not unite with gradient descents,
especially for a non-convex game. In other words, the opponent is always try-
ing to confront the behaviour to prompt the models harder to converge.
3) GANs training consumes lots of time. Generators need to transform the
one-dimensional noise to the high-dimensional data, in which feature extrac-
tion takes long training time.
The first issue is caused by that if the discriminators identify the samples
produced by generators as genuine,the generators will always produce similar
distributions because it is the easiest way to fool the discriminators. Suppose
the discriminators cannot find the best strategy and obtain a plausible out-
put. Then the generators will produce the same data in next iteration, which
causes mode collapse. The second issue occurs when the discriminators are
powerful enough to distinguish the fake samples produced by the generators
effortlessly. The generators cannot get any useful feedback from the train-
ing procedure, and the gradient will stop flowing to the generators. However,
the convergence of training process is not necessary in accordance with the
advance of the data quality generated from GAN. The gradient optimization
approaches can only converge to a Nash Equilibrium for convex functions. But
the loss curves from GANs are mostly non-convex. The last issue comes from
the randomness of the GAN. GAN is an unsupervised learning system and
receive random noise as input, which means the output may be different for
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(a) (b)

Figure 3.2: a) is the standard GAN working flow. b) is the proposed GAN
working flow. In spatial distribution, M1 and M2 are the initial targeted of gen-
erators G1 and G2. In original GAN, G1 and G2 target their own distributions,
which ignore other distribution. In MGGAN, during the swapping instance,
G1 and G2 will turn to learn M2 and M1. Therefore, the G1 and G2 can learn
another different distribution M3.

each training. The generators’ samples may not satisfy the requirements even
though we have an effective network and a reliable dataset. The targeted data,
which belong to high-dimension, have many features compared to the noise
samples. Therefore, each training will generate different samples while having
the same conditions.

3.2.1 Generative Groups

To tackle the mode collapse problem in the GAN training, we propose a new
GAN training framework called MGGAN. The standard GAN consists of a
generator and a discriminator, which interact in the same network. In MG-
GAN, multiple generative groups are generated, each of which consists of a
generator and a discriminator. After a certain number of training iterations
(called regrouping interval T ) in MGGAN, a generator is regrouped with a
discriminator randomly selected from a generative group. Between two consec-
utive regrouping instances, the generative groups are trained simultaneously
without sharing the parameters.

Empirically, the generator accepts the data from the noise space, which
are of low dimension, to produce the samples, while the real data are usu-
ally high dimensional data. The high dimensional data convey much more
information than low dimensional data. Thus after a regrouping instance, the
samples produced by the generator in a new group will be distinct (new) for
the discriminator. The regrouping presents the opportunity to improve the
diversity of the generated samples because a generator needs to produce vari-
ous samples to fool the new discriminators after each regrouping. However,
the regrouping also challenges the discriminators’ recognition ability because
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they have to identify the samples produced by different generators, which may
slow down the training process or even make the training difficult to converge.
This is the reason why we propose the strategy to adjust the learning rate
dynamically.

3.2.2 The Strategy of Adjusting the Learning Rate

Our MGGAN can work with any GAN model based on a single (G, D) group
(which we call the base GAN model), such as DCGAN [155]. When we im-
plement MGGAN to work with a base GAN model, multiple (G, D) groups
are generated with each group trains with the base GAN model. During the
training, regrouping is performed according to our strategy to be presented in
this section. Note that different generative groups can also train with different
base GAN models.

As we have discussed in previous section, regrouping instances offers the
opportunity to increase the diversity of the generated samples. But after
each regrouping instance, generators and discriminators will face new part-
ners and need to capture new features, which may cause the loss to increase
after regrouping and consequently increase the training time. We conducted
the experiments to observe the trend of loss as the training progresses with
regrouping being performed from time to time. Fig.3.3 shows the loss trace of
a generator in a randomly selected generative group over epochs (up to 200
epochs) when training two generative groups on CIFAR-10 with DCGAN as
the base GAN model. After the careful observations and analysis to the loss
trace, we found that the training process with regrouping can be divided into
three periods, which are labelled as A, B and C in Fig. 3.3.

Period A is the period before the first regrouping instance. In period A,
the loss may oscillate in the early stage of the train and then begin to decrease.
Period B starts with a dramatic increase in loss (point a in Fig. 3.3). Then the
following general pattern occurs throughout period B: the loss decreases fast to
some point (point c in Fig. 3.3), increases dramatically again (to point f in Fig.
3.3) and then decreases to a point (point e in Fig. 3.3), which may be lower
than the previous low point (i.e., point c). Our experimental records show
that the dramatic increases in loss during period B are due to the regrouping
in the training. This phenomenon is reasonable, because in the initial period
of each regrouping instance, the samples generated by a generator is new and
distinct to the discriminator in the new group. If the generator could learn the
new features effectively after a regrouping, the loss may decrease to a point
lower than the previous low point. In Period C, the loss becomes fluctuating
without showing the decreasing pattern seen in period B. Based on the above
observations, we propose the following strategy to set the learning rate as the
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Figure 3.3: The loss trace of a generator with the G-D regrouping. The graph
generated by 2 generative group based on the DCGAN and CIFAR-10 with
E=200, T=100.

training progresses.
In period A, we use the learning rate set by the base GAN model. When

the loss does not show the obvious decrease, we set it at the end of period
A and performs the first regrouping. Now the training process enters period
B. We adjust the learning rate in each generative group back to the value at
the beginning of period A. This is because after regrouping, each generative
group needs to learn new features. After the dramatic increase in loss after a
regrouping, the loss will typically decrease fast (e.g., from point a to c). This is
because the network has learned some features in previous training iterations.
A problem of the regrouping scheme is that many deep local optimums (such as
point c) appear in period B since the loss decreases fast after last regrouping
instance and will increase drastically when the next regrouping instance is
performed. Without appropriate handling, the training may be stuck in a
local optimum. This is the reason why the loss may not decrease to a point
lower than the previous low point after a regrouping. In order to address this
situation, we adopt the strategy outlined in Algorithm 1 to adjust the learning
rate in period B.

Assume the current regrouping interval is T (i.e., T iterations need to
be run between the pervious regrouping instance and the current regrouping
because we want to reserve the offset). With T , we can know at which iteration
(denoted by iT ) the next regrouping instance will be performed. When the
iteration index is in the range [iT −α, iT +α] (Line 1), we increase the learning
rate by a fraction of δ each time (Line 2 in Algorithm 1), which aims to
help the training escape the local optimum. The training may not be stable
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Algorithm 1: Adjusting the learning rate in Period B
Input: current iteration (i), the iteration at which the next regrouping

is performed (iT ), Learning rate adjusting region (α), upper
limit of learning rate (L), learning rate adjusting ratio (δ ),
Variation Ratio of the Loss (γ), threshold of Variation Ratio of
the Loss (VRL) (γ), current learning rate (L), learning rate at
the beginning of period A (L0)

Output: the adjusted learning rate (L‘)
1 if ( iT −α ≤ i ≤ iT +α and γ ≤ γ) then
2 L+= L∗δ ;
3 L′ = L;
4 if L′ ≥L then
5 L′ = L;
6 end
7 end
8 if (i = iT +α +1) then
9 L=L0;

10 L′=L;
11 end

if the learning rate is too high. Therefore, a upper limit (L) is used to cap
the learning rate (Lines 3-4). When the training comes out of the range
of [iT −α, iT +α] (e.g., α is 10 iterations), it means that a new grouping is
performed, we adjust the learning rate back to the initial value at the beginning
of period A (L0) to allow the base GAN model to learn new modes. There are
the variables γ and γ in the algorithm. We will present the meaning of them
in the next subsection. In this algorithm, α and γ are the hyper-parameters
in the training.

3.2.3 Variation Ratio of the Loss

In Line 1 of Algorithm 1, the if condition includes a term γ ≤ γ. This is related
to a notion we propose in this work: Variation Ratio of the Loss (VRL). γ is the
current value of VRL while γ is the threshold value of VRL. VRL is calculated
by Eq.3.1, where L(n) is the loss value at iteration n. The idea of introducing
VRL is based on the following considerations and observations to the training
process.

V RLn = |Ln−1 −Ln|/Ln (3.1)

First, the reason why we want to increase the learning rate because we want
to jump out of the local optimums quickly. But through the observations to
the training process, we found that when there is a sufficient change in the
loss between two consecutive iterations (i.e., |Ln−1 −Ln|) compared with the
current value of the loss, it is very likely that the training can jump out of
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the local optimums itself without the need of adjusting the learning rate. It
is reasonable because when there are sufficient changes in the loss between
iterations, it means that the current learning rate is performing well.

Second, Algorithm 1 takes iT as input. The value of iT is directly based
on the value of the regrouping interval T (we will present how to determine
T in next subsection). The computed value of T may not be accurate. The
consequence of the inaccurate T is that the next regrouping and the adjustment
of the learning rate are not performed around the local optimum regions (we
will discuss the impact of inaccurate T in more detail in next subsection).
Introducing VRL can serve as a remedy scheme in the case where the value
of T is accurate. Namely, when we attempt to adjust the learning rate, the
loss curve is not around a local optimum region. Then it is likely that the
current training iterations still produce sufficient changes in loss, which can
be detected by checking whether γ ≤ γ.

3.2.4 The Regrouping Interval

The regrouping interval is the number of iterations performed between two
consecutive regrouping instances. We draw an analogy to illustrate the impact
of the regrouping interval on the training process. Suppose each generative
group is a student who needs to solve a set of mathematical questions and
different students are given different sets of questions. Regrouping is to swap
the question sets among the students. The regrouping interval T is then
the time given to the students to work out their questions before they face
new questions. If T is set too big, the generators cannot learn more features
from the current samples and waste the training time. If T is too small,
the generators do not have enough time to learn the features in the current
samples before they are forced to learn other features, which may aggravate
the concussion during the training, and even worse the training may never
converge. Therefore, if the value of T cannot be accurately predicted anyway,
we would rather T to be overestimated than to be underestimated.

Based on the above discussion, we propose the following strategy to de-
termine the regrouping interval T . The initial value of T , denoted by T0, is
set as the length of period A. Given the current T , the next T is calculated
by T = T ∗ξ , where ξ is a number greater than one and is a hyper-parameter
in the training. This suggests that in our MGGAN the regrouping interval
increases as more regrouping instances are performed. The reasons for this
are two-fold.

First, as a generator has learned more features (modes), it needs, in theory,
to spend longer time in capturing additional new feature. This is because the
network needs to adjust more parameters associated with the modes which
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have been learned to minimize the divergence in the characteristic distribu-
tions between the generator and the discriminator. As the training progresses,
more regrouping instances are performed and more modes have been learned.
Therefore, it should take longer for a generative group to learn even more
modes. Hence the regrouping interval should be increased at subsequent re-
grouping.

Second, as discussed above, usually the generative group require enough
time to capture efficient features after each swapping instance , which means
we would rather T to be overestimated than to be underestimated.

We also set an upper limit for T , denoted by T , which is a hyper-parameter
in training. The reason is because when T is too big, the frequency at which
the generative groups are fed new samples will be too low. We found this will
cause the generative group to regard the new features contained in the new
samples as the noise. This claim is also supported by our experimental results
(Fig. 3.4 in the experiment section).

3.3 Experiments

In this section, we conduct the experiments to evaluate MGGAN and analyze
its behaviour. Both synthetic data and real-world datasets are used. The
synthetic data are used to visualize the generated samples and evaluate the
learning ability of MGGAN. Meanwhile, we use the real-world datasets to
demonstrate the reliability and robustness of MGGAN in tackling the mode
collapse in a high-dimensional data space. We train our model on a GPU
server equipped with two 1080Ti GPUs. This equipment meets the resource
demand for training the GAN.

3.3.1 Experimental Setup

The GAN Structure In the experiments, we adopt DCGAN[155] as the base
GAN model . All generators and discriminators are mostly convolutional nets.
Only the first layer is the fully connected layer in the generators. The output of
previous convolution layer is flattened and fed to the sigmoid function, whose
output is then sent to the discriminators. The batch normalization is applied
to all the layers except the output layer for the generator and the input layer of
the discriminator. In addition, we can use different types of generative models
as the base GAN model in MGGAN. For example, we can use both DCGAN
and WGAN as the base GAN models. The two GAN models can be trained
simultaneously and the network shares the parameters between them.

Datasets We performed the experiments on two classic datasets: synthetic
data and realistic datasets. The synthetic data are sampled from a 2D mixture
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of 8 Gaussians arranged in a circle with a covariance matrix of 0.02I and
means put in the process of zero centroids and a radius of 2.0. The mixture
of Gaussian can help investigate the behaviour of our method. Meanwhile, it
can evaluate the ability to extract multiple data modes. Though the synthetic
data has limited modes and diversity, it can be quickly assessed via visual
inspection.

The large-scale datasets includes MNIST[109], CIFAR-10[106] and LFW[84].
MNIST is the dataset of handwritten digits which has a training set of 60000
grayscale images of 28x28 pixels and a test set of 10000 images. All the di-
gits have been size-normalized and centred in a fixed-size image. The training
set in CIFAR-10 has 50000 RGB images of 32x32 pixels, while the test set
has 10000 images. The images belong to one of the 10 classes. Each class
is composed of 6000 images. Label Faces in the Wild (LFW) is a dataset
of face photographs designed for studying the problem of unconstrained face
recognition. It is composed of 13233 RGB images of 250x250 pixels from 5749
people.

Parameters Configurations For the fair comparison, we use identical experi-
mental parameters for all training networks:
1) Length of a latent vector 100;
2) ReLu activations for all the hidden units;
3) Tanh activation for the output units of the generators;
4) Adam optimizer [101] with dynamic learning rate;
5) The weights are randomly initialized from a normal distribution N∼ (0,0.02).

Evaluation Metrics IS [160] and FID [67] are used as the evaluation metrics.
A high Inception Score is obtained when the generated samples belong to a
specific category from ImageNet. It indicates the generative network’s ability
to produce the data with high quality and variety. Also, the Inception Score
is proved to be well correlated with human judgment[160]. However, one
disadvantage is that it might make the wrong decision if the generators only
produce one image per class.

Heusel et al.[67] propose a metric called FID, which measures the distance
between the generated data and real data. FID is sensitive to mode collapse
and is a better assessment to evaluate image diversity. Therefore, FID is more
robust than IS. A lower FID value indicates better image quality and variety.
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3.3.2 Experimental Results

Synthetic Data

In these experiments, we use the synthetic data to evaluate the ability of MG-
GAN in learning and capturing multiple data modes and avoid mode collapse.
We did not apply our adjustment strategy for the learning rate and the re-
grouping interval in this training because i) the toy dataset has limited modes
and ii) we want to evaluate the impact of different regrouping intervals on the
training outcome. Figure.3.4 shows the output of MGGAN and the original
GAN. The generated samples are around the authentic modes of the distri-
bution but usually ignore some specific modes. When we apply MGGAN to
the training, the generators converge to the real distribution quickly, and the
system learns all the modes with the suitable regrouping interval.

(a) E=600 (b) E=1500 (c) E=2700

Figure 3.4: The MGGAN training outputs on a 2D mixture Gaussians dataset.
The columns display the data distribution after certain epochs, while the first,
second and third row show the training output with the regrouping interval
of 0, 25 and 300, respectively. The blue dots are the generated samples, and
the green dots are the targeted distributions.

The top row of Fig.3.4 shows that the GAN without regrouping ignores a
specific mode. The second and third rows employ MGGAN and converges to
the targeted distribution quickly. However, we notice that the data distribu-
tion in the second row is more confusing. The distribution spreads out with
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disorder due to the different value of regrouping interval T . The learning pro-
cedure in the second row has more regrouping instances than that in the third
row, which means that the model requires sufficient time to capture explicit
features before they learn new samples.

Figure 3.5: The heatmap of the generated distribution at different regrouping
frequencies with the increasing number of training epochs

Fig.3.5 displays the heatmap from the mixture Gaussians dataset. The top
row displays the output from a standard GAN. The graph shows the generated
data disperse instantly and move to the targeted distribution. The top row
indicates that even enough training time is given, the model still mislaid some
modes from the targeted distribution. The samples generated with proper
regrouping interval (The second row of Fig.3.5) moderately spread out to the
targeted modes. Two other experiments (The second and third row of Fig.3.5)
generate the data that focus on several points near the circle constituted by
the modes. For example, the bottom row displays that the generative model
mainly focuses on the left part of the circle modes, while the model with the
proper parameters from the second row covers all the mode distributions.
Moreover, we conduct experiments to get results from more generative groups.
Fig.3.6 shows samples produced by MGGAN with the different number of gen-
erative groups (GG) trained for 30k epochs. The model with 2, 3 and 4 gener-
ative groups cover all the modes successfully, but the model with more gener-
ative groups produces congregated points between contiguous modes. Fig.3.7
shows that a model with more generative groups (such as 6GG) has a better
performance than a model with less generative groups (such as 3GG).

Fig.3.8 and Fig.3.7 show that our method has better performance than
the original GAN, Adversarially Learned Inference (ALI) [37], and VEEGAN.
Moreover, unrolledGAN generates the better results in covering all the modes.
Although unrolledGAN has better performance, it requires extra K updating
iterations to adjust the training mechanism. Because of this additional com-
putation cost, unrolledGAN is not suitable to be applied in the devices with
limited computing power.
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(a) 2 GG (b) 3 GG

(c) 4 GG (d) 6 GG

Figure 3.6: Samples generated by MGGAN on synthetic data with 2, 3, 4, 6
generative groups. Generated data is in blue and targeted data is in green.

Figure 3.7: The heatmap of the generated distribution from different 2, 3, 4,
6 generative groups

Figure 3.8: Density plots of the true data and the distributions of the samples
generated by different GAN methods. The GANs are trained on the mixtures
of Gaussians arranged in a ring [175].
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MNIST

Through this experiment, the generated samples demonstrate that our method
produces various modes of data, which can be seen by inspecting Fig.3.9. The
model without regrouping generates the same modes even if it has been trained
maturely. The samples in the top row generate same digits, such as 3 and 7,
after a long time of training. The second row can produce a variety of modes
from the early stage of training. The images in the second row demonstrate
that MGGAN increases the quality and diversity of the generated samples.

(a) E=50 (b) E=400 (c) E=600

Figure 3.9: MGGAN avoids mode collapse for a GAN trained on MNIST.
The top row was generated by the standard GAN, while the bottom row was
generated by MGGAN. The images are generated by the generators after the
specified number of training epoch.

CIFAR-10

CIFAR-10 is a real-world dataset with high-dimensional images and is much
more complicated compared with the MNIST. Therefore, we test MGGAN
on a more effective convolution architecture called DCGAN [155]. In this
experiment, we employ our learning rate adjustment strategy, but use different
regrouping interval to examine the impact on the quality and the time cost of
the samples.

We first show the performance in terms of IS on CIFAR-10 collected from
the standard GAN and MGGAN with the same network structure. We set the
output from the standard GAN as the benchmark to evaluate the performance.

61



The positive values in the figures mean that MGGAN returns a better result.
Fig.3.10a and Fig.3.10b shows that MGGAN can improve the capability of
the generative model in producing the images with high quality and diversity.
Fig.3.10c shows the effectiveness of MGGAN in accelerating the training.

(a) (b)

(c) (d)

Figure 3.10: The performance improvement over the epochs using MGGAN
on CIFAR-10 with T=0, 25, 50, 65, 85, 100, 200, 300, 500. a) Improvement of
IS; b) Improvement of FID; c) Improvement of training time; d) Improvement
of FID from a model with 4GG to a model with 2GG

Fig.3.10a shows that when T < 200, the results are all positive (positive
means that MGGAN can benefit the IS value of the generated samples). When
T > 200, we find that the model performance decreases and is even worse than
that of the original GAN. This is because when T is too large, the generative
groups are fed with new samples very infrequently. Then the generative groups
are likely to treat the new features in the new samples as noise. This is reason
why we set a upper limit for T in the training. Meanwhile, from Fig.3.10a,
we found that when T is too small, there is not enough time for the model to
learn new distributions from the new generative group. The same trend can
also be found in Fig.3.10b and Fig.3.10c.

MGGAN can speed up the training and capture the distribution if enough
iterations are provided. From Fig.3.10c, we can see that our approach can sig-
nificantly reduce the training cost with suitable regrouping interval. Fig.3.10c
displays that the model gets better improvement in terms of time when T
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is small. The optimization idea of our model is based on the swapping in-
stances. More swapping instances tend to generate better results. From the
experimental results in Fig.3.10d, we found a model with 4 generative groups
produces a better FID value than the model with 2 generative at the training
condition while keeping similar IS outputs. Fig.3.10d also demonstrates that
more generative groups with appropriate T improves the diversity of generated
samples.

Finally, we randomly select several samples generated by MGGAN trained
on the CIFAR-10 and present them in Fig.3.11. It shows that MGGAN can
produce visually appealing images with convoluted features like cars, trucks,
aeroplanes and animals.

Figure 3.11: Images generated by MGGAN on the CIFAR-10 dataset.

LFW

LFW is a fine-grained human face dataset with sophisticated features such
as hair, clothes and facial expressions. These factors make the training more
difficult if we do not improve the capability of the generative model. The
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standard generators often mislay some particular texture, resulting in mode
collapse and low-quality samples. MGGAN can guide the generators to learn
the fine-grained features with less training time and increase the learning qual-
ity of the base GAN models even for the complex data.

(a) (b) (c)

Figure 3.12: The performance improvement over epochs by using MGGAN
on LFW with T=0, 25, 50, 100, 150. a) Improvement of IS for LFW; b)
Improvement of FID for LFW; c) Improvement of training time for LFW

Though the data from LFW have much more fine-grained texture than
the images from CIFAR-10, MGGAN can still save a lot of training time while
keeping the quality and diversity of generated samples. The figures show that
MGGAN has better performance in improving IS. Moreover, training process
with more epochs can generate the samples with a higher FID value. Fig.3.13
shows some samples produced by MGGAN after training on LFW.

3.4 Discussion

3.4.1 Limitations

However, some limitations should be noted. First, our method increases the
computational expense and memory budget compared to the standard GAN.
Therefore, we propose a dynamic strategy to reduce the converge time. Second,
our method focuses on light models like DCGAN because our method aims
to tackle the mode collapse issues without modifying the internal structure.
At last, the improvement of our framework is not linearly with the number of
generative groups.

3.4.2 Conclusions

In this chapter, we present a novel GAN framework called MGGAN. In MG-
GAN, we propose to use a set of generative groups. A learning rate adjust-
ment strategy is proposed to help the model accomplish faster convergence
and reduce concussion during the training. The regrouping interval is also
craftily determined to ensure the model can capture more modes effectively
and efficiently. We have conducted the extensive experiments to evaluate the
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Figure 3.13: Images generated by MMGAN on the LFW dataset.

robustness and generality of MGGAN by using the Gaussian mixture distribu-
tion and the real-world datasets. The experimental results show that MGGAN
i) addresses the mode collapse problem well, ii) generates more diverse and
higher quality samples with different type of images such as aeroplane and
animals, iii) achieves better results when training with fine-grained and com-
plicated datasets such as human faces, and iv) reduces the training cost while
maintaining the high quality of the generated samples.
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Chapter 4

BPGAN: Acceleration the GAN
Training by a Novel Model
Parallelism Scheme

With the development of computer vision and artificial intelligence, generative
models are widely used to simulate the original data and receive great success
in producing images and videos. Although GAN has been widely used to pro-
duce synthetic data. It demands enormous training time to obtain a mature
GAN model. The training time consists of executing time and transmitting
time. In this thesis, we propose the Block Parallelization-based Generative
adversarial networks (BPGAN) to reduce the total time cost during the train-
ing process. BPGAN is a distributed GAN acceleration framework based
on model parallelism. The framework focuses on the operation executions
in the model to divide the GAN structure. Different execution components
will be deployed in different work nodes (e.g., GPUs) to reduce the training
cost. Moreover, BPGAN is an acceleration approach at the framework level,
which means that it has excellent compatibility and can be applied to various
GAN models. We also provide the theoretical analysis to model the benefit of
BPGAN. We conduct extensive experiments on real-world datasets, such as
MNIST, CIFAR-10, LFW and LSUN. The experimental results demonstrate
the superior performance of our method.

4.1 Introduction

Generating the samples from the complex distribution is one of the funda-
mental problems in deep learning. GAN has shown impressive success in gen-
erating realistic and high-quality samples on specific datasets (e.g., faces [130],
bedrooms [170]). Though GAN attains huge success in images [221][127][164]
and audio [135][35], it still suffers from the demand for intensive computation
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resources and high latency. For example, capturing the distributions of highly
diverse datasets usually requires very long training time due to the sophistic-
ated GAN structure and the large training datasets. For example, in [15] 128
TPUs are needed to achieve the training goal. In [27], 48 hours are required
to finish each training step.

Dataset

Model  
Copy

Parameter Server

1 1 122 2

3 3 3

1 The nodes send gradients 
 to Parameter Server

2 The Parameter Server prodive 
 the summarized gradients

3 Dividing the dataset to  
each working node

Figure 4.1: The procedure of the data parallelism method. Each work node
receives the same batch of data to update the model and sends the gradients
to the Parameter Server.

There are mainly two types of parallelism for training the models: data
parallelism (DP) and model parallelism (MP). Data parallelism is illustrated
in Fig.4.1. In step 3 of this figure, the dataset is divided into N parts (N is
also the number of GPUs). Then, a copy of the model is placed on each GPU
and trained with the corresponding data parts. After a round of training, the
gradients are sent to the parameter server [116][196]. This step is asynchronous
because the speed of each work node is different (step 1). Once the parameter
server collects all the gradients, it calculates the gradients’ average and sends
the gradients back to the work nodes, where the model is updated (step 2).
Then the data parallelism process moves to the next iteration.

There are two problems with this approach: 1) the entire set of gradients
must be transmitted from the parameter sever to the work nodes in order
to update the model (step 2). The communication speed will limit the pro-
gress of the training iterations. Consequently, this data parallelism approach
does not scale well with the number of work nodes; 2) Data parallelism can
be further divided into synchronous (Fig.4.2) and asynchronous approaches
(Fig.4.3), each of which has its own problems.

The synchronous mechanism means that all the nodes use the same model
parameters to conduct the local training. The parameter server waits for the
gradients until all the nodes complete their training. This is equivalent to
training the model by aggregating small batches on many nodes to form a
large cluster. However, the synchronized methods require to balance the com-
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Figure 4.2: The mechanism of the synchronous approach. The parameter
server will keep waiting for the gradients until all models in nodes have been
updated. The Parameter Server provides a single gradient to update the mod-
els in different nodes.

puting power and communication costs of each node. Therefore, the training
procedure of the synchronous approach is relatively slow;

The asynchronous methods can update the model after receiving the gradi-
ents from only one node instead of from all nodes. This approach is much
quicker than the synchronous counterpart. However, there exists a common
issue called stale gradients in the asynchronous approach. After one node has
submitted its gradients to the server for model updating, the other nodes may
still utilize the same gradients for training, which means those gradients are
out of date. Although the asynchronous approach can quickly summarize the
gradients, the model quality is usually degraded.

The traditional model parallelism method (Fig.4.4) divides the inner struc-
ture of the model into blocks of model layers and run different blocks of layers
on different nodes in sequence, which is an intuitive way of allocating com-
puter resources when the entire model and its data cannot be fitted into the
memory of a single GPU. The batch is sequentially calculated on all the nodes
Node1,Node2, ...,NodeN for forwarding propagation. The backpropagation is
performed in the reverse order, starting from NodeN to Node1. The advantage
of model parallelism is that the model that cannot be fitted into a single node
can be trained. However, the disadvantage is that a node relies on the results
from its previous node, which increases the waiting time during the training.
Fig.4.4 illustrates the model parallelism. In the figure, step1 shows Node2

and Node3 have to wait until they receive the gradients from Node1. Such a
mechanism may cause the blockages in a single node and consequently result
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Figure 4.3: The mechanism of the asynchronous approach. The nodes send
their own dependent gradients to the parameter server. When the parameter
server receives any gradient, it dispatches the summarized gradient to update
the models immediately rather than waiting for all the models.

in high latency of the training procedure. Moreover, this mechanism requires
high communication capacity because each node has to transmit its gradients
to next node.

To address the above-mentioned problems and reduce the running cost in
the GAN training, we propose a new framework called BPGAN. Specifically,
we design a division strategy for model parallelism, which reduces the time of
training a model compared with the traditional data parallelization method.
BPGAN depends on the execution workflow of the model training process.
It allows us to train the models faster under the same conditions without
modifying the internal structure of the models or augmenting the original
datasets. It is based on model parallelism. BPGAN divides the training
network into two blocks based on the computations in the execution workflow
of the GAN. Different blocks will be run on distinct nodes, which change both
the execution and communication modes for the better. Comparing to the
traditional data parallelism method, BPGAN can reduce the communication
cost without increasing other processing cost. In addition, the technique is
generic and can be applied to any other GAN variants. We can even change the
one-to-one mapping between the generators and the discriminators to quickly
implement a model from the existing GAN model [148] [62], or combine the
model in [57] with DCGAN [155] to form a new network by adopting different
blocks.

The contributions of this chapter can be summarized as follows:
1) We develop a simple, communication-efficient model parallelism method
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Figure 4.4: The illustration of model parallelism. The neural model is divided
into several parts, and each part is deployed in different nodes. A node requires
the parameters of previous layers.

to accelerate the training of GAN without the need of modifying the internal
model structure. Our parallelization method can be applied to any GAN
variants. After analyzing the execution workflow of the GAN training, we
propose a novel training mechanism to reduce the total transmission cost in the
training. Our method transforms part of transmission time into the execution
time in the work nodes since running operations is faster than communicating
the data. Our method can also be used to create new GAN structures by
selecting the generators and the discriminators from different GAN variants,
for example, a generator from DCGAN [155] and a discriminator from WGAN
[57].

2) We conduct the theoretical analysis to compare our method with the
traditional data parallelism method. We investigate the procedures in both
the proposed method and the data parallelism method, and model their total
training cost theoretically. The modelling shows the superiority of our ap-
proach rigorously.

3) We conduct the extensive experiments on the synthetic dataset, CIFAR-
10, LFW and LSUN. The results show that our approach can reduce the
training cost without sacrificing the quality of generated samples.

4.2 The Proposed Method

The traditional model parallelism for GAN splits the GAN network (either
generator network or discriminator network) into multiple parts and run each

70



part on a different node. Though it allows training a large model, the tradi-
tional model parallelism method cannot be applied in practical applications
due to the unstable waiting time and the large quantity of gradients and model
weights that need to be transmitted between the nodes. As for the data par-
allelism framework, the model weights and gradients have to be transmitted
between the parameter server and each of the work nodes, which incurs much
communication overhead. Considering these drawbacks, we propose a new
parallelization scheme called BPGAN to accelerate the running of the GAN
framework.

In BPGAN, the whole GAN framework is divided into two parts, which
we call Discriminator Block (DB) and Generator Block (GB). The structures
of DB and GB are illustrated in Fig.4.5. In each block, we further divide
the calculations in the execution workflow of GAN training into two types:
First-order calculations and second-order calculations. The first-order calcu-
lation contains the operations that are performed on the parameters of GAN
networks (either generator network or discriminator network, labelled ”1” in
Fig.4.5) to update model weights, including convolution, deconvolution, pool-
ing, etc. The second-order calculations (encapsulated as the second-order com-
puting space, labelled ”2” in the figure) include the operations that are per-
formed on the output of the first-order calculations, including the calculation
of loss function (i.e., error), generating samples (for the generator network)
and generating the labels (for the discriminator network). It is worth noting
that most of the first-order calculations are the computations performed on
the higher-dimensional data (e.g., calculating the model weights) in the neural
network, compared with the second-order calculations, which are performed
on the low-dimensional data such as the computation of the mean error, the
total error of fake/real samples, the label of generation samples, etc. The
second-order computing space in DB accepts the weights computed by the
neural network of the discriminator to generate the labels and the error of
discriminator network. The labels are sent to the other node of the node pair
to assist the training of the corresponding generator. The error of the discrim-
inator, which contains the errors for the fake and the real samples, is used to
update the parameters of the discriminator.

Similarly, GB contains the first-order calculations performed for the gener-
ator network and the second-order computing space, which accepts the weights
of the neural network of the generator to generate fake samples and calculating
the errors for updating the generator network.

As described above, DB and GB are deployed to run on two different nodes.
As shown in Fig.4.5 (labelled “3” in the figure), the communication between
this pair of nodes includes the labels and the fake samples, the volume of which
is very small compared with the parameters of the neural networks, which is
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Figure 4.5: The network structure of the DB and GB.

the key we claim BPGAN can reduce the communication cost compared with
the data parallelism approach (the detailed analysis on training cost will be
presented in next section).
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Parameter Server
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fake  
samples
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fake  
samples……

Figure 4.6: The workflow of our proposed method. Our method includes
the transmission part and execution part within the training system. The
nodes with DB updates the discriminator and the nodes with GB update the
generator.

BPGAN splits the GAN framework into two blocks and needs to be run
on at least two nodes. Fig.4.6 shows the structure and the execution work of
BPGAN when it is deployed on M working nodes (M is an even number). In
BPGAN, a subset of training data is loaded to the DB nodes (i.e., the work
nodes where the DB block is deployed). After a DB node finishes a round of
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local training, it sends the computed gradients (i.e., ∇ fi(x) in the figure) to the
parameter server, where the gradients received from different DB nodes are
used to update the model weights of the discriminator network. The updated
weights of the discriminator network (i.e., wt+1) are then sent back to the DB
nodes. Based on the new model weights, the DB nodes start a new round of
local training. In BPGAN, the generator network is only trained locally based
on the update of the discriminator network. The advantages of BPGAN are
as follows:

1) In BPGAN, a subset of the training data is only loaded to the DB nodes,
i.e., half of all nodes. Fig.4.7 show the architecture and the execution flow of
the traditional data parallelism approach. In the traditional data parallelism
approach, each work node contains a full copy of the GAN framework, includ-
ing the generator network and the discriminator network, and a subset of the
training data has to be loaded to every work node. Therefore, BPGAN saves
half of data loading cost.

Database

Parameter Server

Database

……

DatabaseDatabase

Figure 4.7: The training procedure of Data Parallelism (DP)

2) In the traditional data parallelism approach, the model gradients and
weights need to be transmitted between the parameter server and every work
node. In BPGAN, the gradients and weights are only transmitted between
the parameter server and the DB nodes, which once again saves half of the
communication cost.

3) In the traditional data parallelism, a work node has both discriminator
and generator and therefore has to train the discriminator network and the
generator network in sequence. In BPGAN, however, each node in the node
pair calculates the gradients and weights of the discriminator or the generator
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Algorithm 2: DB Node processing the DB for each iteration
Data: The training data Data, the label L, the discriminator Network

netD, the error of real sample Er, the error of fake sample E f ,
the error of discriminator ED, the fake samples Fake,

Result: Update the discriminator in DBNode
1 Loading the training data to DBNode Data.to(′DBNode′);
2 Create label L;
3 Load the discriminator Network netD(Data).to(′DBNode′);
4 Calculate error Er;
5 Generate label L and noise and transmit label L to GBNode;
6 Receive the fake samples Fake from GBNode;
7 Calculate the error E f ;
8 Total Error of discriminator ED = Er +E f ;
9 Update parameters of discriminator Network.

network in parallel since our method allows the DB node to send the labels to
the GB node before it is maturely trained. This enables the GB node to start
the training of the generator network in advance, and therefore accelerates the
training process.

4) In traditional data parallelism, the gradients of both generator and dis-
criminator in every work node are sent to the parameter server for aggregation.
BPGAN eases the computation burden on the parameter server since only the
gradients of the discriminator network are sent to the parameter server for
aggregation in BPGAN.

All the above benefits brought by BPGAN only comes at the price of
the light communication cost (i.e., fake samples and labels) in the node pair.
In the traditional data parallelism method, the generators have to send the
weights and gradients to the parameter server for aggregation. BPGAN trans-
forms this communication into the fake samples and labels in the node pair,
which have much less data volume than the weights and gradients of the en-
tire network. Moreover, since the communication of fake samples and labels
are transmitted within each node pair, the efficiency of our approach becomes
more prominent as the number of nodes increases. Algorithm.2 and 3 show
the pseudo-code of training DB and GB on different nodes.

4.3 Theoretical Analysis

In this section, we conduct the theoretical analysis on the training cost, in-
cluding computation and transmission cost, involved in the traditional data
parallelism approach and BPGAN. The analysis shows that BPGAN can effi-
ciently reduce the training cost.
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Algorithm 3: GB Node processing the GB for each iteration
Data: The generator network netG, the label L, the error of generator

EG, the fake samples Fake,
Result: Update the generator in GB Node

1 Create noise;
2 Load the generator network netG(noise).to(′GBNode′);
3 Receive the label L from DB Node;
4 Calculate the loss of EG;
5 Update parameters of generator network;
6 Generate the fake sample Fake and transmit the Fake to DB Node;
7 Calculate total error of generator EG;
8 Update parameters of discriminator network.

The Analysis of Data Parallelism Method

Fig.4.7 shows the training process for the traditional data parallelism. To
facilitate the analysis, we define the cost of various tasks as follows, in which
T (d), T (b) and T ( f ) are the communication cost while T (r) and T (u) are the
computation cost.

T (d): the time for loading the data to the nodes.
T (b): the time for transmitting the model weights from Parameter

Server to the work node.
T ( f ): the time for transmitting the gradients from the work node

to Parameter Server.
T (r): the time for the work node updating the model.
T (u): the time for Parameter Server updating the model.

Then we define the following variables related to the system settings. Note
that we assume that in the optimal situation the discriminator network and the
generator network have the same volume of model weights and model gradients,
so we do not differentiate the weights or the gradients for the discriminator or
the generator.

v: transmission speed
D: the volume of the training data
M: the number of work nodes in the system
tD: the time spent by the discriminator in processing one unit of

training data when training the discriminator network
tG: the time spent by the generator in processing one unit of

training data when training the generator network
tS: the time spent by the parameters server in processing one unit of

model data (gradients or weights)
g: the volume of the gradients of the discriminator network or

the generator network
ω: the volume of the weights of the discriminator network or

the generator network
With the above system settings, we can calculate various training cost

involved in the traditional data parallelism.
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Td = D
v

Tb =
M×(2ω)

v , where 2ω is for the gradient of both discriminator and
the generator network

Tf =
M×(2g)

v , where 2g is for the gradient of both discriminator and
the generator network

Tr =
D×(tD+tG)

M
Tu = tS × (g+ω)×M

The total training time of traditional data parallelism can then be modelled
as:

TDP = Td +Tb +Tr +Tf +Tu

=
D
v
+

Mω
v

+
M×g

v
+

D(tD + tG)
M

+ tS(g+ω)M (4.1)

The Analysis of BPGAN

Fig.4.6 shows the meachanism of the synchronous approach. In addition to
the training cost defined above for the data parallelism approach, there are
the following two costs in BPGAN.

T (m): The time for transmitting the fake samples from GB node
to the DB node.

T (n): The time for transmitting the labels from the DB node to
the GB node.

Compared with the data parallelism approach, there are the following dif-
ferences in BPGAN: a) only half of the work nodes receive the training data; b)
only the gradients and weights from the discriminators will be transmitted to
and computed in the parameter server; c) the discriminator and the generator
can perform the computation in parallel. Therefore, various training costs in
BPGAN can be calculated as follows.

Td = D
v

Tm = M
2 × F

v , where F is the volume of the fake samples and M
2

represents the number of the node pairs in the system
Tn =

M
2 × L

v , where L is the volume of the labels
Tb =

Mω
v

Tf =
Mg
v

Tr =
D×tD

M
2

Tu = tS × (g+ω)× M
2

The total training time of BPGAN, denoted by TBP is:

TBP = Td +Tb +Tf +Tm +Tn +Tr +Tu

=
D
v
+

Mω
v

+
Mg
v

+
M
2v

(F +L)+
DtD

M
2

+ tS(g+ω)
M
2

(4.2)

We assume that in the optimal situation the computing speed for the
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discriminator network and the generator network is the same, i.e., tD ≈ tG. We
perform Eq.4.1 subtract Eq.4.2:

TDP −TBP =
D
v
+

2Mω
v

+
2Mg

v
+

D(tD + tG)
M

+ tS(g+ω)M

− [
D
v
+

Mω
v

+
Mg
v

+
M
2v

(F +L)+
DtD

M
2

+ tS(g+ω)
M
2
]

=
Mω

v
+

Mg
v

+
D
M
(tD + tG −2tD)+ tS(g+ω)

M
2
− M

2v
(F +L)

=
Mω

v
+

Mg
v

+ tS(g+ω)
M
2
− M

2v
(F +L)

=
M
v
(ω +g− F +L

2
)+ tS(g+ω)

M
2

(4.3)

In Eq. 4.3, ω and g are both higher-dimensional data compared with the
fake samples (F), which are for example images, and the labels (L), which
are scalar values. Therefore we can conclude that TDP > TBP, which shows
that BPGAN reduces the total training time. Moreover, as M increases and
the models become bigger, the cost difference becomes bigger, which indicates
that the advantage of BPGAN over the traditional data parallelism approach
is more prominent.

4.4 Experiments

BPGAN reduces the training time of GAN by partitioning the discriminator
and the generator and reducing the transmission cost. In the experiments,
we implement four types of GAN structures with BPGAN and conduct the
experiments on two realistic datasets. 1080Ti GPUs are used to train the
networks in the experiments. Some effective metrics have been proposed to
replace human evaluation.

4.4.1 GAN Structure

BPGAN allows combining various GAN components to form new GAN vari-
ations. In the experiments, we combine two standard GAN models (DCGAN
and WGAN) to form two GAN variants, called DCWGAN and WDCGAN.

DCGAN is an extension to the standard GAN, except that it explicitly
uses the convolutional and convolutional-transpose layers in the discriminator
and the generator, respectively. The discriminator is made up of strided con-
volution layers, batch norm layers, and LeakyReLU activations. The input is
3x64x64 input images, and the output is a scalar probability of the input is
from the real data distribution. The generator is comprised of convolutional-
transpose layers, batch norm layers, and ReLU activations. The WGAN is
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an extension to the GAN, which improves the training stability and provides
a loss function that correlates with the quality of generated images. WGAN
approximates the distribution of a given training dataset better. WGAN uses
a linear activation function in the output layer of the critic model instead of
the sigmoid function. It constrains the weights of the critic model to a limited
range after each batch update.

We create two GAN variations named DCWGAN and WDCGAN to evalu-
ate the performance of BPGAN. DCWGAN adopts the generator from DCGAN
with the discriminator from WGAN. The WDCGAN adopts the generator
from WGAN and the discriminator from DCGAN. These experiments are
conducted to demonstrate the generality and robustness of BPGAN.

4.4.2 Datasets

We conducted the extensive experiments on two standard datasets: CIFAR-10
[106], LFW [84]. The CIFAR-10 dataset consists of 60000 32x32 colour images
in 10 classes, with 6000 images per class. There are 50000 training images and
10000 test images. The dataset is divided into five training batches and one
test batch, each with 10000 images. The test batch contains exactly 1000
randomly-selected images from each class. The training batches contain the
remaining images in the random order, but some training batches may contain
more images from one class than another. Between them, the training batches
contain exactly 5000 images from each class. Fig. 4.8 shows the classes in the
dataset, as well as 10 random images from each class.

LFW is a dataset of face photographs created for studying the problem
of unconstrained face recognition. The data set contains more than 13,000
images of faces collected from the web. Each face has been labelled with the
name of the pictured person. 1680 of the people pictured have two or more
distinct photos in the data set. There are now four different sets of LFW
images including the original and three different types of ”aligned” images.
The aligned images include ”funneled images” (ICCV 2007), LFW-a, which
uses an unpublished method of alignment, and ”deep funneled” images (NIPS
2012).

4.4.3 Evaluating DCGAN

In this subsection, we parallelize DCGAN by our BPGAN (called BP-DCGAN)
and by the traditional data parallelism approach (called DP-DCGAN), and
conducted the extensive experiments on different datasets. Fig.4.9(a) and
Fig.4.9(b) compare BP-DCGAN with DP-DCGAN, in which the CIFAR-10
and LFW datasets are used and the results are generated by 300, 600 and 1k
epochs. The results show that BP-DCGAN takes much less the training time
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Figure 4.8: The CIFAR-10 Datasets

than DP-DCGAN.
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Figure 4.9: a) The Training time of DCGAN parallelized by BPGAN and DP;
the datasets are CIFAR-10 and LFW (left). b) The reduction percentage in
training time achieved by BPGAN on CIFAR-10 and LFW (right).

Fig.4.9a shows that our method can reduce the total training time by
nearly 1/3. Theoretically, our approach can reduce the gradient transmission
cost by half. However, in practice, the discriminators and the generators
contain different amounts of gradients. Therefore, the achieved improvement
will be less than the theoretical prediction. Fig.4.9 also displays that when
we increase the training iterations (e.g., from 300 epochs to 600 epochs), the
increase in the training time of the BP-DCGAN framework is less than that of
DP-DCGAN. This result indicates that BPGAN has better robustness than
the DP approach. Fig.4.9(b) shows that the improvements that BP-DCGAN
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achieves on CIFAR-10 and LFW. It can be seen that BP-DCGAN reduces the
training time by higher percentages on CIFAR-10 than on LFW. Moreover,
the improvement diminishes as the training iteration increases.

Table 4.1: Evaluating BP-DCGAN and DP-DCGAN on CIFAR-10 and LFW

Training
Iterations
(Epochs)

DCGAN
CIFAR-10

DCGAN
LFW

BP DP BP DP
IS FID IS FID IS FID IS FID

300 2.10 221 2.30 208 2.10 78.6 1.97 83.2
600 4.10 54.2 3.90 73 2.60 59.6 2.70 59.6
1k 4.40 54.5 4.20 55.4 2.80 54.3 2.60 58.6

Table 4.1 presents the quality of the samples generated by BP-DCGAN and
DP-DCGAN in terms of the metrics IS and FID. It can be seen from the table
that BP-DCGAN achieves the similar performance as DP-DCGAN. These
results suggest that BPGAN can reduce the training time without sacrificing
the quality of the generated samples (except one or two specific disturbance
points caused by the random factors). The error of IS can be maintained
within 10%, and the error of FID be within 5%).

4.4.4 Evaluating WGAN

In this subsection, we parallelize WGAN by our BPGAN (called BP-WGAN)
and the traditional DP (called DP-WGAN). WGANs are used to improve
the stability and solve model collapse problem in the GAN training. Fig.4.10
compares the training time spent by BP-WGAN and DP-WGAN. The res-
ults once again show that BPGAN-WGAN reduce the training time effect-
ively. Moreover, different from the results of BP-DCGAN, the improvements
achieved by BP-WGAN are similar on CIFAR-10 and LFW (see Fig.4.10(b)).
Also, as the training iteration increases, the improvement decreases at a slower
pace compared with BP-DCGAN.

Table 4.2: Evaluation of the samples generated by BP-WGAN and DP-WGAN
on CIFAR-10 and LFW

Training
Iterations
(Epochs)

WGAN
CIFAR-10

WGAN
LFW

BP DP BP DP
IS FID IS FID IS FID IS FID

300 2.8 116 2.9 118 2.1 88.9 2.2 92.3
600 3.2 100.7 2.6 127.5 2.4 70.7 2.5 78.3
1k 3.5 98.4 3.3 99.0 2.6 62.6 2.7 59.6

Table 4.2 shows the quality of the samples generated by BP-WGAN and
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Figure 4.10: a) The training cost of BP-WGAN and DP-WGAN on CIFAR-10
and LFW (left). b) The improvement of BP-WGAN over DP-WGAN (right).

DP-WGAN. The difference in terms of IS is less than 10%. In terms of FID,
the difference of samples is still small, Although the difference is a bit big
(more than 25%) when the number of epochs is 600, the difference converges
to a very small value (0.6%) when the number of epochs increases to 1K. These
results suggest that BP-WGAN can reduce the training time while keeping the
quality of generated samples.

4.4.5 Evaluating the hybrid GAN variants

To show the generality of our framework, we created two hybrid GAN net-
works: DCWGAN and WDCGAN. DCWGAN is composed of a generator
from DCGAN and a discriminator from WGAN, while in WDCGAN the gen-
erator is from WGAN and the discriminator from DCGAN. We then par-
allelize the two GAN variants using BPGAN and DP. The resulting versions
are called BP-DCWGAN, DP-DCWGAN, BP-WDCGAN and DP-WDCGAN.
Fig. 4.11(a) shows the training cost of these four variants as the number of
epochs increases. The results once again show that BPGAN can deliver lower
training cost than DP.

Table 4.3 shows the quality of the samples generated by the four GAN vari-
ants. Once again, the differences in terms of IS and FID between BPGAN and
DP are small. The results indicate that BPGAN has excellent generalization
ability and can be used to parallelize the hybrid GAN variants.

4.5 Conclusion

In this work, we propose BPGAN to build a novel parallelism framework.
We carefully designed the architecture and crafted the execution workflow of
the GAN training in BPGAN. As the result, the proposed BPGAN can be
used to parallelize various GAN variants and reduce their training time on
different datasets. At the same time, the quality of the samples generated by
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Figure 4.11: a) The training cost of BP and DP using Created GAN on CIFAR-
10 (left). b) The improvements of BPGAN compared to the DP methods of
the Training (right).

Table 4.3: Evaluating the quality of samples generated under BPGAN and
DP on CIFAR-10

Training
Iterations
(Epochs)

DCWGAN
CIFAR-10

WGDCGAN
CIFAR-10

BP DP BP DP
IS FID IS FID IS FID IS FID

300 2.90 166.7 2.60 194.2 2.70 125 2.80 131
600 3.10 87.0 3.00 127.1 3.40 97.0 3.30 99.0
1k 3.40 68.0 3.30 65.0 3.80 74.2 3.70 79.4

BPGAN is not sacrificed. Although BPGAN offers an efficient new perspective
to accelerate the GAN training, there is still the space to research further,
such as optimizing the execution efficiency within the work nodes, which will
be our future work. Note that our method will not show obvious benefit
for the network with very big bandwidth. Our approach aims to speed up
the training by optimizing the communication cost of the gradients and the
weights between a working node and the parameter server. If the bandwidth
is very big, there is no much space for optimization because the transmission
cost is already very small. However, in reality, the network bandwidth of
mobile devices is still limited and precious nowadays. Therefore, the realistic
networking scenarios today can benefit significantly from the method proposed
in this work.
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Chapter 5

PrivacyGAN: A Lightweight,
Privacy-aware GAN Framework

With the development of computer vision and artificial intelligence, the per-
sonal biological information has been regarded as a confidential resource. At-
tackers can invade users’ privacy by spreading, diffusing, and aggrieving the
private data. However, the service suppliers also need users’ data to improve
the service, such as updating the recommendation system, analyzing the users’
habits, or supporting the marketing research. Therefore, a legal approach to
accessing personal data from clients (e.g., Mobiles, Laptops) should be con-
sidered. In deep learning, generative models are widely used to simulate the
original data and receive great success in producing images and videos. How-
ever, in practice, we will face the following problems: 1) the servers (or the
suppliers) are not allowed to access the personal data directly (e.g., the cloud
server should not access the data in mobile devices without special agreement);
2) the clients usually have limited personal information, training on a small
amount of data can easily over-fit the models; 3) the clients may have limited
computing resources (such as in mobile devices), which means that complex
learning algorithms and models cannot be deployed on local devices. In order
to address these issues, we propose a lightweight, privacy-aware GAN frame-
work called PrivacyGAN to generate the samples similar to the sensitive data
in the clients. We first design a Teacher-Student model to solve the over-
fitting problem caused by the limited training data in the clients. Next, we
propose a new deployment strategy to tackle the private issue. Finally, we ad-
opt a novel objective function which we call Joint Restraint Learning Function
(JRLF) to avoid the issue of ”Simply Accepting (SA)”. We conduct extens-
ive experiments on real-world datasets, including CIFAR-10, lFW, and LSUN.
The experimental results show that the model in the server can synthesize the
clients’ data efficiently without directly accessing the clients’ data.
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5.1 Introduction

In this chapter, we aim to generate the samples for the distributed architec-
ture illustrated in Fig.5.1, where a collection of clients are connected to a
server. In particular, we assume that the clients are resource-constrained mo-
bile devices, such as mobile phones. Many systems in the real world has this
distributed architecture, such as a cloud system. Some distributed machine
learning paradigms are also run on such architecture, such as Federated Learn-
ing [137], where the clients train the local models on their local data and send
the local models to the server while the server aggregates the local models from
the clients to produce the global model. Data is a critical resource in develop-
ing artificial intelligence and computer vision system. Sensitive data include
personal data containing private information, such as GPS location, weather
forecasts, landscape photos, family or selfie photos, and the application’s ser-
vice time. The server can quickly acquire personal information such as home
address, name and the surroundings by analyzing these personal data. There-
fore, people usually do not want to share their private data. It is also against
the law for the companies to acquire the clients’ data with consent. The work
in [162] demonstrates the importance of the high quality data. However, in
real applications, the data in the clients may be too limited to perform effect-
ive local training (e.g., in the scenario of few-shot learning). One approach to
solving the problem is to generate the data for the clients.

Sending the labels from the client

Server 

Client_1

Similar Data to the 
Privacy Database

Sending the fake samples from the Server

Processing the privacy data and updating the model 

Client_2

Generating the data that has similar distribtuions to 
the Privacy Database 

Client_N

Privacy Database 

1
1

12 22

Privacy Database Privacy Database 

1

2

3 33

3

4

4

Figure 5.1: The structure of PrivacyGAN. The private data are only accessed
by the clients. The training process is achieved by transmitting fake samples
and labels between the server and the clients. The server generates the fake
samples that mimic the distributions of the private data in clients

There are different approaches to generating data. Data Augmentation
(DA) has been shown to be a useful regularization technique to increase both
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quantity and the diverisity of training data. However, many data augmenta-
tion methods, such as translation, flip and rotation, are designed specifically
for images. Moreover, the complex data augmentation approaches [208][97][28]
are often computation-intensive. Table [28] shows that AutoAugment, a data
augmentation technique, requires thousands of GPU hours even in the reduced
data and network settings. Although the work in [121] proposed an efficient
search method called Fast AutoAugement to improve the generalization per-
formance of a given network while searching the augmentation policies signi-
ficantly faster than AutoAugment, it still requires at least 1.5 hours, which
are not bearable for mobile devices.

Dataset AutoAug [28] Fast AutoAug [121]
CIFAR-10 5000 3.5
SVHN 1000 1.5
ImageNet 15000 450

Table 5.1: The GPU hours spent by the method in [121] and the method
in [28]. NVIDIA Tesla V100 is used in [121] while Tesla P100 is used in
[28]. The datasets include CIFAR-10, Street View House Number (SVHN)
and ImageNet.

Data privacy is another issue in the distributed architecture considered in
this chapter, especially when we assume that the clients are mainly mobile
devices. Private personal data, which contains the most valuable information,
should be strictly guarded. Otherwise, there may arise security concerns. For
example, the criminals may be able to bypass a face recognition system to
attack a financial system, or put people’s lives in danger with the development
of auto-driving.

This chapter aims to explore an efficient lightweight method to generate
high-quality samples for the private data in the devices with limited compu-
tation capacity. To achieve the goal, we must address several issues in the
training process. Firstly, since the data in the clients are limited, the over-
fitting problem can easily occur. In order to solve this problem, we adopt
the teacher-student model from the Few-Shot Learning field, which can be ap-
plied to generate the samples with only a limited amount of data that include
the supervised information for the target distribution. The teacher-student
model is a type of knowledge distillation technique, which trains a student
model residing in the client to gain the similar performance to the teacher
model in the server. Secondly, we need to train the network without acquir-
ing sensitive personal data directly. The traditional methods for addressing
the privacy issue include encrypting the data and transmitting them in a se-
cure way [137][152][49][186].

However, the previous approaches described above have the following prob-
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lems:
1) The Few-Shot Learning targets at generating a specific class of data.

In our work, we need a GAN framework that can generate the resembling
samples for any type of data.

2) The traditional security-related operations such as encryption and fea-
ture compression increase the complexity and the computation expenses. These
extra payloads may not be suitable for the resource-constrained clients.

3) The student-model often heavily depends on the teacher model. How-
ever, it may not be appropriate in the scenario assumed in this chapter. In
this chapter, different clients may have different personalized data. If the stu-
dent models in all clients simply accept the knowledge shared by the teacher
model, the student models will not generate the samples following the unique
distribution in a client.

4) Although GAN has achieved impressive success in synthesizing data,
the drawback is that it requires plenty of training data and intensive com-
putation resources and its training stability cannot be guaranteed. This is a
challenging issue in our scenario since the clients possess limited labelled data,
and the resource-constrained devices have limited computation and commu-
nication capability.

To overcome these difficulties, we propose a novel GAN framework to gener-
ate the samples that resemble the private data in local clients without accessing
the data directly. The proposed methodology contains three key components:
1) A teacher-student GAN model is proposed, in which the lightweight student
GAN resides in the clients while the teacher GAN is located and trained in
the server. The student GAN receives the gradients and weights provided by
the teacher GAN. This technique can generate high-quality samples even with
a limited quantity of training data. 2) A novel deployment mechanism allows
the model on the server to extract the features and synthesize the distributions
without accessing the private data. We transform the sensitive data into a fake
sample and labels by a local discriminator. Considering the limited resource
capability (computation and transmission cost) and model performance, we do
not use encryption algorithms or compression approaches. These approaches
usually increase the training load and affect the precision of the output, and 3)
A joint restraint learning function is proposed to solve the ”Simply Accepting”
issue. This technique is applied to constraint the extent to which the student
model depends on the teacher model.

Since the clients have limited data, we cannot simply deploy a GAN frame-
work on the clients to generate the samples that mimic the clients’ data. The
limited amount of training data usually leads to instability and over-fitting.
Therefore, we propose to use a global auxiliary Teacher-Student model to ad-
dress the issue.
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First, we use the global training data and the global GAN model to obtain
the teacher model, which is used to guide the learning for the student model.
Then, each client is assigned with a student GAN, which is responsible for
training the student model with the limited sensitive data. The teacher GAN
is a global model which is trained on a large dataset on the server. The
well-trained teacher, also called a global discriminator, is used to share the
knowledge and optimize the training outcome of the student model. The
auxiliary teacher-student model can improve the quality of generated samples
while avoiding the over-fitting problem.

Next, the server should train the network without contacting the personal
data in the clients. Considering the discriminators and generators from GANs
are relatively independent, they have their separate computation convolution
layers. Moreover, one network (discriminator or generator) is updated through
the labels or fake samples generated by the other network (generator or dis-
criminator). Therefore, we proposed a novel deployment mechanism to protect
data privacy by locating different components on different devices. The idea
of the proposed method is that the discriminator networks reside on clients,
while the generator networks on the server. The labels and fake samples gen-
erated by the networks are used for updating the networks through iterations.
The advantage of doing so is that the discriminators can be made unavailable
to the outside world and only the labels are accessible by the server. Com-
pared to the traditional approaches, the clients in our method only undertake
the computations involved in the discriminators. They do not need to trans-
mit the heavy data (e.g., model gradients and weights) to the server, which is
friendly to the resource-limited clients. Moreover, each client has its independ-
ent student model to generate the samples with distinguishing distributions.
We deploy the global discriminator on the server. As for the student GAN,
we deploy the discriminator in the clients and the generator in the server sep-
arately. In our mechanism, the discriminator in the student model is updated
upon receiving the outcome (fake samples) from the matching generator in
the server, while the generator in the student model is updated based on the
labels sent by the discriminator. Our approach enables the server to capture
the embedded features of the targeted data in the clients without accessing
them.

Finally, we propose a JRLF to solve the SA problem. The SA problem
means that the student fully believes in the teacher and simply accept all
of its knowledge. Although the teacher GAN captures the features from the
global dataset, the student GAN aims to synthesize the data in the local
client. Believing in the teacher model ultimately may not capture the unique-
ness of the data distribution in each local client. The traditional student model
lacks judgement and cannot sift the gradients and weights of the shared lay-
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ers. Simply accepting the parameters of the teacher model reduces the space
distance between the samples generated by the student model and the global
samples generated by the teacher model, which does not meet the requirements
of generating the data for the unique clients. The essence of the problem is
that our student and teacher models may target different data distributions.
Therefore, we re-design a novel objective function (i.e., JRLF) for the training
to constrain the impact of the information provided by the teacher model. In
other words, the JRLF function is used to limit the training ability of the
teacher given that the teacher does not fully represent the data distributions
in the clients.

The main contributions of this chapter are summarized as follows:
1.We propose a Teacher-Student model consisting of a student GAN and a

teacher GAN. The teacher shares the knowledge with the student to improve
the generalization and robustness of the training. The proposed model a)
improves the original training condition and b) generates the high quality
samples without the over-fitting problem.

2.We propose an Decentralized Deployment method to address the problem
that the server does not have the permission to access clients’ data.

3.We propose a Joint Restraint Learning Function to limit the informa-
tion that the student learns from the teacher. The features from the teacher
model are not reliable, even sometimes harmful. Therefore, the strategy is pro-
posed to control the level of the student model’s dependency on the teacher’s
knowledge.

5.2 PrivacyGAN

5.2.1 The Teacher-Student Model and its Deployment Strategy

The limited training data usually result in over-fitting the models, which means
the models lack the generalization. To solve this problem, we designed a
global teacher GAN model and a local student GAN model. The teacher GAN
model consists of a global discriminator Dglobal and a global generator Gglobal,
which are both deployed on the server. The student GAN model includes
a set of generators Glocal = [Glocal1,Glocal2, ...,GlocalN ] and a set of matching
discriminators Dlocal = [Dlocal1,Dlocal2, ...,DlocalN ] (N is the number of clients).
(Glocali,Dlocali) is the student GAN model for client i. Dlocali is deployed and
trained on the local clients while the generator Glocali is on the server. The
student GAN model will receive the knowledge from the teacher model to
overcome the issues of over-fitting and low-diversity. Fig.5.2 illustrates the
deployment of our teacher-student model in PrivacyGAN. The teacher model
(includes Dglobal and Gglobal) is used to extract the distributions of the global
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dataset and train a mature global discriminator on the server. An independent
student GAN model (i.e., (Glocali,Dlocali)) is allocated to each client. The
generators from all the student models (i.e., Glocali,1 ≤ i ≤ N) are deployed on
the server, while the discriminator of a student GAN model (i.e., Dlocali) is
deployed on the corresponding client. The server is responsible for training
the teacher GAN model (i.e., both Dglobal and Gglobal) and the generators (i.e.,
Glocali) from the student models. Each client is responsible for training the
discriminator (i.e., Dlocali) of its student model. Dlocali,Glocali and Dglobal are
updated together to reach a Nash Equilibrium.

In the training process, we first train the student GAN model using the
local data in the clients. The fake samples generated by Glocali on the server
are transmitted to the clients, and the labels generated by Dlocali are sent to
the server. Dlocali and Glocali are then updated by the fake samples and the
labels. For preserving the authoritativeness, the parameters of the teacher
GAN model are fixed during the training, which means the teacher model
does not modify its parameters, but only guides the training of the student
GAN model. Next, Dglobal is trained using the global datasets on the server
as the teacher model.

In each training round, the global discriminator Dglobal optimizes the Glocali

to reduce the distribution distance between the generated samples and the
global dataset. Then, client i receives the fake samples generated by Glocali

and uses local training data to train Dlocali, and transmits the predicted labels
to the server. Next, Glocali is updated by the server based on the labels received
from client i. Meanwhile, the global discriminator optimizes Glocali to reduce
the space distance between the generated samples and the global dataset. It
needs to be emphasized that the teacher model is not allowed to receive the
gradients from Glocali due to the security requirement, which may affect the
performance of the teacher model. In other words, Dglobal , Dlocali and Glocali

will be trained jointly to reach the Nash Equilibrium. Once the training ends,
Glocali can be utilized to generate the samples for client i. The generated
samples can also be stored for further updates and investigations.

5.2.2 The Advantages of the Decentralized Deployment Strategy

As described in the previous subsection, the components in our teacher-student
model are decentralized and deployed on different clients and the server. The
advantages of the deployment strategy are as follows:

First, it helps protect the privacy of the data in the clients, which is a key
objective of PrivacyGAN.

Second, the deployment strategy reduces the computation load of the
resource-limited clients while improving the generalization and generality of
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Figure 5.2: The workflow of PrivacyGAN. The global discriminator will be
trained on server and then guide student models (including Glocal and Dlocal)
to learn distributions from limited private samples.

the training. In the deployment strategy, the generators of the clients are
deployed in the server.

Third, there are no exchanges of model gradients and weights between
the clients and the server, but only the fake samples and the labels, which
reduces the communication cost significantly. Suppose we simply apply the
traditional method of deploying the teacher and student GAN on the server
and the clients. The teacher GAN on the server has to transmit its gradients
and weights to the clients. The clients then train the student GAN to generate
fake samples and send the fake samples to the server. When implementing
DCGAN using Pytorch and the deep learning networks, the size of the model
weights of the discriminator is nearly 10.6MB, which means in each iteration
at least 10.6MB data have to be transmitted from the server to each of the
client. In our deployment strategy, we only need to communicate the labels
and the fake samples. The label is the scalar value, whose size is minimal.
Assume a fake sample is an image with RGB. Its size ranges from 0.3MB to
0.8MB. Therefore, our deployment strategy reduces the communication cost
significantly. The size of the model weights and fake image are from the weight
file extracted from the trained DCGAN based on pytorch.
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5.2.3 The Joint Restraint Learning Function

In our scenario, the teacher model and the student models target different
datasets in the training. This introduces the SA problem if the students
have the full confidence in the teacher and fully accept the knowledge shared
from the teacher model. Since the SA problem may jeopardize the model
performance or even lead the student model to abandon its distinction, we
propose the JRLF to limit the optimization weights provided by the teacher
model.

In the training process of Dglobal , DlocalN and GlocalN , we first update Dlocali

and Glocali. As discussed above, the training aims to optimize V (DlocalN ,GlocalN)

as defined below [54], where G is a differentiable function represented by a
multiplayer perceptron. D(x) represents the probability that x comes from the
training data rather than Pg (Pg is the generated samples distributions).

min
G

max
D

V (DlocalN ,GlocalN) = Ex∼pdata (x)[logDlocalN(x)]+

Ez∼pz(z)[log(1−DlocalN(GlocalN(z)))]

After we have the mature GlocalN and DlocalN based on the training on
the private data from the clients, we focus on updating GlocalN with a fixed
discriminator DlocalN to initialize the parameters, which can be formalized as:

min
G

V (DlocalN ,GlocalN) = Ex∼pdata (x)[DlocalN(x)]+

Ez∼pz(z)[log(1−DlocalN(GlocalN(z)))] (5.1)

Next, we update V (Dglobal ,GlocalN). As described above, Dglobal is not al-
lowed to be updated. Therefore, the training process is to minimize V (Dglobal ,GlocalN):

min
G

V (Dglobal ,GlocalN) = Ex∼pdata (x)[logDglobal(x)]+

Ez∼pz(z)[log(1−Dglobal(GlocalN(z)))] (5.2)

In practice, we sample pdata(x) from Sdata = [x1,x2, ...,xm] (Sdata is the dis-
tributions of training data) instead of performing the integral operation, and
pG(x) (generated samples) from SG = [xG1,xG2, ...,xGm] (SG is the distributions
of generated samples). Therefore, the new objective function of minimizing
V (D,G) can be formulated as:

min
G

max
D

V (D,G) =
1
m

m

∑
i=1

logD(xi)+
1
m

m

∑
i=1

log(1−D(G(zi))) (5.3)
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When we update the generator, the first item in Eq.5.3 is irrelevant to the
generator. Therefore, the training of the generator can be simplified as:

V = Ez∼Pz(z)[log(1−D(G(z)))] (5.4)

In practice, however, the value of D(x) is between 0 to 1, and the gradient
of log(1−D(x)) at the beginning is relatively small, which lead to a very slow
training process. Therefore, an improved loss is proposed as follows to solve
the problem.

V = Ez∼Pz(z)[− log(D(G(z)))] (5.5)

In Eq.5.5, the training starts faster and then becomes slower at the later
stage, which is more consistent with the general trend of the training. Moreover,
the improved loss function is equivalent to the error of the data generated by
the generator as a positive sample of the discriminator. In summary, the
improved objective function can be implemented as:

min
G

max
D

V (D,G) =
1
m

m

∑
i=1

logD(xi)+
1
m

m

∑
i=1

[− log(D(G(zi)))] (5.6)

Therefore, the training of discriminator and generator can be formalized
as follows:

max
D

V (D,G) =
1
m

m

∑
i=1

logD(xi)+
1
m

m

∑
i=1

[− log(D(G(zi)))] (5.7)

min
G

V (D,G) =
1
m

m

∑
i=1

[− log(D(G(zi)))] (5.8)

The first term in Eq.5.7 means the error of the real data as a positive
sample of the discriminator, and the second term means the error of the real
data generated as a positive sample of the discriminator. The term in Eq.5.8
means the error of fake data generated by the generator as a positive sample
of the discriminator. Combining Eq.5.6 and Eq.5.8, we add the error of the
fake samples generated by Glocali as the positive samples of Dglobal to the
original function. We also introduce two hyper-parameters α and β , subject
to α +β = 1 and α,β > 0, as the weight of the students accepting the teacher’s
knowledge. Therefore, the new objective function, called the Joint Restraint
Learning Function, to train Glocali on the server has the following form:
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min
G

V (D,G) = α
1
m

m

∑
i=1

[− log(Dlocali(Glocali(zi)))]+β
1
m

m

∑
i=1

[− log(Dglobal(Glocali(zi)))]

= αErrorDlocali +βErrorDglobal (5.9)

The first term αErrorDlocali in Eq.5.9 means the error of the fake samples
generated by Glocali as the positive samples of the Dlocali, and the second item
means the error of the fake samples generated by Glocali as the positive samples
of Dglobal . α regulates the contribution provided by Dlocali while β regulates
the contribution provided by Dglobal . We can change the value of α and β
to generate the required outcome through the experiments. In addition, when
α = 1, the student model will reject the knowledge, and the framework then
recedes into a standard GAN.

5.3 Experiments

5.3.1 Datasets

Considering the personal data in clients are unlabeled, we begin by conducting
the experiment on three standard datasets: CIFAR-10 [106], LFW [84] and
LSUN [214] dataset, instead of on the Few-Shot-Learning datasets such as
CIFAR-FS, Omniglot and ImageNet-1k. The Large-scale Scene Understand-
ing (LSUN) classification dataset contains 10 scene categories, such as dining
room, bedroom, chicken, outdoor church, etc. Each category includes a huge
number of images for training, ranging from around 120,000 to 3,000,000. The
validation data consists of 300 photos, and the test data has 1000 images for
each category. For small datasets, i.e., CIFAR-10 and LFW, we pick the im-
ages from the original dataset at the ratio of 1:10 to construct a personal
dataset for clients. For the large dataset, i.e., LSUN dining room dataset, we
choose the images from the original dataset at the ratios of 1:10 and 1:100 to
create two personal datasets for clients. Table.5.2 list the datasets used in the
experiments.

Table 5.2: Local training datasets for different original datasets

Datasets Original Datasets Personal Datasets
1:100 1:10

CIFAR-10 60k \ 6k
Lfw 10k \ 1k

LSUN Dining Room 650k 6.5k 65k
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5.3.2 Evaluation

We implemented DCGAN [155] using our PrivacyGAN framework. For the
fair comparison, all training networks in DCGAN and WGAN-GP use the
parameters similar as those in [155] and [57]: 1) the length of a latent vector
is 100; 2) the learning rate is 1e-4 for both generator and discriminator, an
Adam optimizer is used with β1=0 and β2=0.99 ; 3) the weights are randomly
initialized from a normal distribution N (0,0.02); 4) the feature map size is 64
in both generator and discriminator. We use IS [160] and FID as the evaluation
metrics.

CIFAR-10

We compare PrivacyGAN under different hyper-parameters with the stand-
ard GAN on CIFAR-10. As shown in Table.4.2, the adequate training data
(the results from the full set of CIFAR-10 samples) can improve the model
performance noticeably.

Table 5.3: The quality of the samples (From α=0.9 to α=0.5) generated by
DCGAN and PrivacyGAN training on a full set of CIFAR-10 samples (60K)
and a local dataset (6k)

DCGAN
CIFAR-10
(60K)

DCGAN
CIFAR-10
Local Dataset

PrivacyGAN CIFAR-10
Local Dataset (6k)
with different values
of the α
0.9 0.8 0.7 0.6 0.5

IS 4.2 3.1 3.2 3.4 3.7 3.7 3.8
FID 57 107 102 90 69 81 79

Table 5.4: The quality of the samples (From α= 0.4 to α=0.1) generated by
DCGAN and PrivacyGAN training on a full set of CIFAR-10 samples (60K)
and a local dataset (6k)

DCGAN
CIFAR-10
(60K)

DCGAN
CIFAR-10
Local Dataset

PrivacyGAN CIFAR-10
Local Dataset (6k)
with different values
of the α
0.4 0.3 0.2 0.1

IS 4.2 3.1 4.0 3.7 3.8 3.5
FID 57 107 79 62 69 72

We conducted a series of experiments with different values of α. The
results are also listed in Table.5.3 and Table.5.4. The results demonstrate
that our technique improves the performance of IS and FID. As α increases,
the student model becomes increasingly dominant, and the teacher model
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results in the improvement in solving the over-fitting problem. The teacher
model prompts the generator to learn the diverse features in the global dataset.
When α decreases, the student model can generate the samples with more
uniqueness. Comparing the trend curve of IS and FID (shown in Fig.5.3),
we find that PrivacyGAN can improve the quality and the diversity of the
generated samples. It can be seen from Fig.5.3 that both IS and FID reach
the optimal values at α = 0.4. The difference is that the improvement of IS
increases steadily from α = 0.9 to α = 0.4, which indicates the optimization
procedure is relatively stable. But the improvement of FID oscillates around
α = 0.4. Fig.5.4 shows the samples produced by PrivacyGAN from a local
CIFAR-10 dataset (6k).

Figure 5.3: The IS scores (left) and the FID scores (right) of the samples
generated by PrivacyGAN based on the full set of CIFAR-10 samples and a
local CIFAR-10 dataset.

Figure 5.4: Images generated by PrivacyGAN on the local CIFAR-10 dataset
(6k).
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LFW

For the LFW dataset, we used the same architecture and experimental setup
as for CIFAR-10. As shown in Table.4.3, we obtain the similar results as those
for CIFAR-10, i.e., PrivacyGAN improves both IS and FID scores. Compared
with the smooth increase in IS for CIFAR-10, our method achieves bigger
improvements for LFW. From the results under different values of α, we can
see our JRLF function optimizes the sample quality steadily compared with
the results from CIFAR-10.

Table 5.5: The quality of the samples (From α=0.9 to α=0.5) generated by
DCGAN and PrivacyGAN training on a full set of LFW samples (10k) and a
local dataset (1k)

DCGAN
LFW (10K)

DCGAN
LFW Local
Dataset(1k)

PrivacyGAN LFW
Local Dataset (1k)
with different values
of the α
0.9 0.8 0.7 0.6 0.5

IS 2.60 1.80 2.40 2.20 2.10 2.20 2.00
FID 46 345 122 247 170 204 197

Table 5.6: The quality of the samples (From α= 0.4 to α=0.1) generated by
DCGAN and PrivacyGAN training on a full set of LFW samples (10K) and a
local dataset (1k)

DCGAN
LFW (10K)

DCGAN
LFW Local
Dataset(1k)

PrivacyGAN LFW
Local Dataset (1k)
with different values
of the α
0.4 0.3 0.2 0.1

IS 2.60 1.80 2.20 2.00 2.20 2.35
FID 46 345 226 176 189 188

It is noted that we got better IS scores at α = 0.9 and α = 0.1 (From
Table.5.5 and Table.5.6). The phenomenon occurs when the training dataset
is small, which implies that it does not take much effort to generate good
samples for the small feature space. Fig.5.5 shows the samples produced by
PrivacyGAN training on the local LFW dataset (1k).

LSUN

We evaluated our method on a large dataset LSUN. The enormous number
of objects makes GAN training challenging because of the tendency to un-
derestimate the entropy distributions. We conduct a series of experiments
to demonstrate that our method improves the IS and FID. The experimental
results are shown in Fig.??.
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Figure 5.5: Images generated by PrivacyGAN on the 1k LFW dataset.
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Figure 5.6: The IS of samples generated by DCGAN and PrivacyGAN training
on a full LSUN dataset and the local datasets (6k and 60k). The baseline of
different numbers of samples in the figure means the results obtained by the
standard DCGAN. The samples in the figure are used for the visual inspection.
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Figure 5.7: The FID of samples generated by DCGAN and PrivacyGAN train-
ing on a full LSUN dataset and the local datasets (6k and 60k). The baseline
of different numbers of samples in the figure means the results obtained by
the standard DCGAN. The samples in the figure are used for the visual in-
spection.

We can make the following observations from Fig.5.6 and Fig.5.7.
1) When the model is trained with small values of α, it creates the samples

worse than the results from standard DCGAN. For the large dataset such as
LSUN, increasing α equips the teacher model with high training weight, which
makes the generated samples resemble the full dataset better than the local
one.

2) Compared with the standard DCGAN, PrivacyGAN improves the samples’
quality on the 6k local dataset compared with the output from the 65k local
dataset. The results indicate that the improvement for the 6k local dataset
is more robust than the improvement for the 65k local dataset. Since the
6k local dataset has fewer sample features than the 65k dataset, the results
also indicate that there is more room to optimize the model when training on
a dataset with less information. Although the improvement for the smaller
dataset is more robust, a bigger dataset usually results in better optimization
results eventually.

3) As α decreases, we can observe that although PrivacyGAN can improve
the results, the model trained by PrivacyGAN on the LSUN dataset sometimes
generates the worse samples than the standard DCGAN. This result is caused
by insufficient training data. Therefore, for the large dataset, we need to set
the weight of the student model to be a big value so as to improve the quality
of the generated samples. Fig.5.8 shows the samples produced by PrivacyGAN
training on the full LUSN dining room dataset.
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(a) 6k dining room (b) 65k dining room (c) standard GAN from 6k,65k
local

Figure 5.8: Images generated by PrivacyGAN on the LSUN dining room data-
set.

5.4 Conculsion

In this chapter, we proposed a lightweight, privacy-aware GAN framework
called PrivacyGAN to generate the high quality samples that resemble the
private data in local clients. We proposed several optimization techniques,
including the decentralized deployment strategy and an optimized loss func-
tion called JRLF, to synthesize the local data and improve the quality of
the generated samples. The decentralized deployment strategy can reduce
the communication cost between the server and the clients as well as reduce
the computation load for the clients. The JRLF function solves the Simply
Accepting problem in the teacher-student model. We conducted extensive ex-
periments on multiple popular datasets to show the performance of our work.
Although PrivacyGAN offers the efficient performance on generating personal
data, there is still room to optimize the framework further, such as optimizing
the structure of the teacher and the student models, which will be our future
work.
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Chapter 6

Conclusions

6.1 Conclusion

Improving the performance of the generative adversarial network is a challen-
ging task and a long-term goal in the field of artificial intelligence and computer
vision. The performance of GAN includes many aspects. 1) The quality of
the generated samples can be judged by the diversity and the similarity of the
samples, etc. 2) The training performance can be measured by the stability
and the training time, etc. 3) The performance of GAN is also affected by the
restrictions in real application scenarios, such as limited computing capacity
of the nodes, the limited training data and the requirement of data privacy,
etc.

6.1.1 MGGAN: Improving Sample Generations of Generative Adversarial
Networks

Mode collapse is one of the most common issues in the training of the GAN.
In chapter 3, we proposed a novel GAN framework called MGGAN to address
this issue. In MGGAN, multiple generative groups are constructed to enrich
the diversity of the generated samples. We also devised a dynamic adjust-
ment strategy to escape from local optimums. Moreover, we demonstrated
the importance of the swappping frequency which the generators and discrim-
inators in different generative groups are regrouped. The generative groups
with arbitrary regrouping frequency may aggravate the concussion or even
cause the training hard to converge. We conducted the extensive experiments
on different datasets to show the effectiveness of our method. The experi-
mental results show that our method can obtain faithful samples and increase
their quality and diversity. Moreover, we identified the appropriate swapping
interval, which was of great importance for capturing the data distribution.
We finally conducted the experiments to evaluate the quality of the generated
samples in terms of IS and FID.
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6.1.2 BPGAN: Accelerating the GAN Training by a Novel Model Par-
allelism Scheme

The training of GAN usually demands enormous time to extract valuable fea-
tures due to the complexity of the network and the training datasets. In
Chapter 4, we proposed BPGAN, a lightweight model parallelism framework
for GAN, to accelerate the training. BPGAN requires at least a pair of working
nodes to parallelize the GAN framework. The GAN framework is partitioned
into two blocks (called Discriminator Block and Generator Block) based on
the execution workflow. The computations are further divided into the first
order computations, which are the operations performed directly on the net-
work parameters, and the second order computations, which are the operations
performed based on the results obtained by the first order computations. The
partition reduce the communication cost and also the total training time. We
conducted the theoretical analysis to compare the time cost between BPGAN
and traditional data parallelism, which shows that BPGAN indeed reduces
the training cost. We finally conducted the extensive experiments on a syn-
thetic dataset, CIFAR, LFW and LSUN. The results show that our method
can reduce the training cost without sacrificing the quality of the generated
samples or increasing the complexity of the network.

6.1.3 PrivacyGAN: A Teacher-Student Framework based on GAN to
Simulate Limited Privacy Data in Clients

Chapter 5 proposed PrivacyGAN, a teacher-student GAN model to produce
the samples that resemble the sensitive data in local clients. We applied
a teacher model to update the student model by sharing the knowledge of
the teacher model. It avoids the overfitting issue resulted from the limited
training data on the clients. We also proposed a decentralized deployment
mechanism to capture the unique distributions of the clients’ data without
directly accessing the sensitive data. The deployment mechanism transforms
the sensitive data into the fake images and labels through a local discriminator
to update the generator on the server. Moreover, we designed a novel objective
function to constraint the student’s acceptance of the knowledge shared by the
teacher. Simply accepting the knowledge from the teacher model may lose the
unique diversity of the private data in the clients. Finally, we conducted
a set of experiments to demonstrate the effectiveness of PrivacyGAN. The
experimental results show that our PrivacyGAN can improve the quality and
variety of the generated samples even with the limited training data. Notably,
the acceptance weight should be set to be large values for the large dataset in
order to improve the model performance.
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Chapter 7

Future Work

7.1 Future Work of Research Contributions

Chapter 3 proposed a lightweight framework to tackle the mode collapse issue
during the GAN training. The generative groups and dynamic adjustment
strategy improve the generated samples’ diversity and the training stability.
In future, we plan to modify the structure of generative groups, such as adding
a transformer component or design other tricks to improve the training per-
formance. In addition, we will optimize the adjustment strategy to stabilize
the training procedure for generating reliable fake samples. Moreover, we also
plan to optimize the algorithm for identifying the regrouping intervals and
develop a universal controlling parameter, which can reduce the randomness
of the training process.

Chapter 4 investigated the impact of the model parallelism on the GAN
training. We proposed a novel parallelism framework to speed up the training.
In the future, we plan to extend our research in two folds.

i) Our method requires an even number of nodes to parallelize the GAN,
limiting the framework’s generality. Therefore, we plan to optimize the seg-
mentation mechanism to apply our method in different settings.

ii) Our approach requires designing a specific execution partition for GAN
models, which reduces the robustness and the generality. Hence, we plan to
develop an improved method to minimize the efforts required to design the
execution partition.

Chapter 5 proposed a lightweight, privacy-aware GAN framework to gen-
erate the samples that are similar to the sensitive data on the clients. We
applied different strategies to address the over-fitting and privacy issues dur-
ing the training. In future, our research will be extended to a more complex
scenario: further reducing the computation requirement on the clients and
the communication cost between the server and clients. We will apply some
light encryption algorithms adopted in Federated learning to improve the per-
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formance while protecting data privacy. Furthermore, more efficient teacher
models can be developed to improve its guidance on the student models and
reduce the communication costs. We will also try to collect the data from
groups of people instead of one single person, which may increase people’s
willingness to share their private data.

7.2 Future Work of Thesis

In addition, another research direction following the above work is to develop a
flexible framework that can adapt to other GAN variations. Different combin-
ations of the GAN structure lead to different training mechanisms on working
nodes. Moreover, we want to go further in applying the GAN to the applic-
ation level by solving the issues caused by limited computing resources and
bandwidth. Our next goal is to improve the performance on small mobile
devices by optimizing the GAN models and algorithms.
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Appendix A

More Experimental Results

In this Chapter, we present samples randomly generated by our proposed
model.

A.0.1 MGGAN: Improving Sample Generations of Generative Adversarial
Networks

Fig.A.1 to Fig.A.8 are experimental results from Chapter 3.

A.0.2 BPGAN: Accelerating the GAN Training by a Novel Model Par-
allelism Scheme

Fig.A.9 to Fig.A.14 are experimental results from Chapter 4.

A.0.3 PrivacyGAN:A Teacher-Student Framework based on GAN to
Simulate Limited Privacy Data in Clients

Fig.A.15 to Fig.A.16 are experimental results from Chapter 5.
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Figure A.1: Images generated by MGGAN (2GG) on the CIFAR-10 Dataset
with epoch=1k and T=50

Figure A.2: Images generated by MGGAN (2GG) on the CIFAR-10 Dataset
with epoch=1k and T=65
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Figure A.3: Images generated by MGGAN (2GG) on the CIFAR-10 Dataset
with epoch=1k and T=100

Figure A.4: Images generated by MGGAN (4GG) on the CIFAR-10 Dataset
with epoch=1k and T=80
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Figure A.5: Images generated by MGGAN (4GG) on the CIFAR-10 Dataset
with epoch=1k and T=300

Figure A.6: Images generated by MGGAN (4GG) on the Lfw Dataset with
epoch=1k and T=50
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Figure A.7: Images generated by MGGAN (4GG) on the Lfw Dataset with
epoch=1k and T=100

Figure A.8: Images generated by MGGAN (4GG) on the Lfw Dataset with
epoch=1k and T=150
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Figure A.9: Images generated by BPGAN on CIFAR Dataset with epoch=300.
The DP (Left) and BPGAN (Right)

Figure A.10: Images generated by BPGAN on CIFAR Dataset with
epoch=600. The DP (Left) and BPGAN (Right)
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Figure A.11: Images generated by BPGAN on Lfw Dataset with epoch=600.
The DP (Left) and BPGAN (Right)

Figure A.12: Images generated by BPGAN on Lfw Dataset with epoch=1k.
The DP (Left) and BPGAN (Right)
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Figure A.13: Images generated by BPGAN on CIFAR Dataset with
epoch=600. The DP (Left) and BPGAN (Right)

Figure A.14: Images generated by BPGAN on CIFAR Dataset with epoch=1k.
The DP (Left) and BPGAN (Right)
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Figure A.15: Images generated by PrivacyGAN on LSUN Dataset with
epoch=600. The a=0.4 (Left) and a=0.8 (Right)

Figure A.16: Images generated by PrivacyGAN on LSUN Dataset with
epoch=600. The a=0.1 (Left) and a=0.9 (Right)
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