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Abstract
We want to efficiently find a specific object in

a large unstructured set, which we model by a

randomn-permutation, and we have to do it by revealing

just a single element. Clearly, without any help this task is

hopeless and the best one can do is to select the element

at random, and achieve the success probability
1

n
. Can

we do better with some small amount of advice about

the permutation, even without knowing the target object?

We show that by providing advice of just one integer in

{0, 1, … , n − 1}, one can improve the success probability

considerably, by a Θ
(

log n
log log n

)
factor. We study this and

related problems, and show asymptotically matching upper

and lower bounds for their optimal probability of success.

Our analysis relies on a close relationship of such prob-

lems to some intrinsic properties of random permutations

related to the rencontres number.

KEYWORDS
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1 INTRODUCTION

Understanding basic properties of random permutations is an important concern in modern data sci-

ence. For example, a preliminary step in the analysis of a very large data set presented in an unstructured

way is often to model it assuming the data is presented in a random order. Understanding properties

of random permutations would guide the processing of this data and its analysis. In this paper, we

consider a very natural problem in this setting. You are given a set S of n objects stored in locations
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any medium, provided the original work is properly cited.
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2 CZUMAJ ET AL.

FIGURE 1 Consider the above randomly shuffled deck, one card per locker. What advice should Alice give to Bob—just by

swapping the locations of at most one pair of cards—to increase the probability that Bob will find his randomly chosen card by

opening at most two lockers?

x0, … , xn−1 according to a random permutation 𝜎 of S. This is the haystack, and you want to find one

specific object, not surprisingly called the needle, by drawing from just one location. We will take the

set S to be [n] = {0, 1, … , n − 1}.
Clearly, the probability of finding this object 𝔰 in a single draw is always

1

n
, whichever location you

choose. Since the permutation 𝜎 is random, the probability that your object is there is exactly
1

n
. But can

I give you any advice or hint about 𝜎—without knowing which object you are seeking—to improve your

chance of finding 𝔰? If I could tell you the entire 𝜎, which can be encoded with log(n!) = Θ(n log n)
bits, then this task is trivial and you would know the location of 𝔰. But what if I give you just a small

hint (on the basis of 𝜎), one number 𝔥 from [n] (or equivalently, one log n-bit sequence)—even when

I know nothing about the target object?

Formally, the goal is to design a strategy to choose a hint 𝔥 = 𝔥(𝜎) and an index 𝔦 = 𝔦(𝔥, 𝔰), with

both 𝔥, 𝔦 ∈ [n], such that for a given 𝔰 ∈ [n], Pr
[
𝜎(𝔦) = 𝔰

]
is maximized, where the probability is over

the random choice of 𝜎.

1.1 Related puzzle: Communication in the locker room

The needle in a haystack problem is closely related to the following locker room problem(see

Figure 1): The locker room has n lockers, numbered 0, … , n − 1. A set of n cards, numbered

0, … , n − 1, is inserted in the lockers according to a uniformly random permutation 𝜎. Alice and

Bob are a team with a task. Before the game begins, Alice and Bob may communicate to decide on a

strategy. Alice enters the locker room, opens all the lockers and can swap the cards between just two

lockers, or may choose to leave them unchanged. She closes all the lockers and leaves the room. Bob

is given a number 𝔰 ∈ [n] and his task is to find card 𝔰. He can open at most two lockers. What is

their optimal strategy, and how efficient is it?

As in the needle in a haystack problem, without help from Alice, Bob can do no better than open

lockers at random. If he opens one locker his probability of success is
1

n
and if he opens two lockers

this probability is
2

n
. With the help of Alice, he can do better when opening one locker. For example,

their strategy could be that Bob will open locker 𝔰, where 𝔰 is his given number. Alice would then

try to increase the number of fixed points in the permutation above the expected number of 1. If there

is a transposition she can reverse it, increasing the number of fixed points by two, and if not she can

produce one more fixed point (unless the permutation is the identity). This strategy succeeds with

probability just under
12

5n
. When Bob can open two lockers, the challenge is to increase the success

probability to 𝜔
(

1

n

)
.

The answer involves viewing Bob’s first locker opening in a different way: not as looking for his

card but as receiving a communication from Alice. The interest is in finding what kind of information

Alice can send about the permutation which could help Bob in his search.

Now, we invite the reader to stop for a moment: to think about this puzzle, to find any strategy that

could ensure the success probability would be 𝜔

(
1

n

)
.

It is easy to see that a solution to the needle in a haystack problem immediately yields a solution

to the locker room problem: Alice just takes the card corresponding to the advice and swaps it into the
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CZUMAJ ET AL. 3

first locker. For example, the shuffled deck from Figure 1 corresponds to the following permutation 𝜎:

𝜎(0, 1, … , 19) = (13, 10, 14, 15, 4, 17, 2, 9, 7, 19, 5, 1, 6, 11, 16, 18, 8, 0, 3, 12).

If in the needle in a haystack problem the advice is a number 𝔥 ∈ [n], then Alice swaps the contents of

locker 0 and the locker containing the card corresponding to number 𝔥. This way, Bob gets the advice

𝔥 by opening locker 0.

For the strategy we propose in Theorem 7, Alice would swap cards 13 and 8. But can we do better?

1.2 Results for the needle in a haystack and locker roomproblems

We present a tight analysis of the needle in a haystack problem. While some basic examples suggest that

it is difficult to ensure success probability 𝜔

(
1

n

)
, we will show that one can improve this probability

considerably. Our main results are tight (up to lower order terms) lower and upper bounds for the

maximum probability that with a single number hint one can find the target object. First, we will show

that for any strategy, this probability is at most
(1+o(1)) log n

n log log n
(Theorem 5). As the main result of this

paper, we will complement this by designing a simple strategy that with a hint ensures that the target

is found with probability at least
(1+o(1)) log n

n log log n
(Theorem 7).

Further, we demonstrate essentially the same results for the locker room problem. Theorem 7 for

the needle in a haystack problem immediately implies that there is a simple strategy for Alice and

Bob which ensures that Bob finds his card with probability at least
(1+o(1)) log n

n log log n
. We will complement

this claim, and extend in Theorem 21 the result from Theorem 5 for the needle in a haystack problem,

to prove that for any strategy for Alice and Bob, the probability that Bob finds the required card is at

most O
(

log n
n log log n

)
.

Techniques. Our analysis exploits properties of random permutations to ensure that some short

advice can reveal information about the input permutation, which can be used to increase the success

probability substantially. Our approach depends on intrinsic properties of random permutations related

to the rencontres number, the number of n-permutations with a given number of fixed points.

To show the upper bound for the success probability (Theorem 5), we observe that every determin-

istic strategy corresponds to a unique partition of Sn (set of all permutations of [n]) into n parts, with

part 𝔥 containing those permutations that cause the choice of hint 𝔥. By a careful analysis of the prop-

erties of this partition, we devise a metric for the best possible accuracy of the prediction, counting

instances in each part of the partition in which a permutation maps a given choice 𝔦 to 𝔰. By combining

these estimates with the bounds for the rencontres number, we prove the upper bound for the success

probability in the needle in a haystack problem.

To show the lower bound for the success probability (Theorem 7), we present a simple shift strategy,

and then provide a non-trivial analysis of random permutations that demonstrates desirable properties

of this strategy. The analysis here is related to the maximum load problem for balls and bins, where

one allocates n balls into n bins, chosen independently and uniformly at random (i.u.r.). However, the

dependencies between locations of distinct elements in the random permutations make this analysis

more complex (see Remark 11 for more detailed discussion).

Finally, while a solution to the needle in a haystack problem immediately yields a solution to

the locker room problemwith the same success probability, we complement our analysis by showing

(Theorem 21) that no strategy of Alice and Bob can do much better. We show that Alice can do little

more than just to send a few numbers to Bob, which is essentially the setup of the needle in a haystack
problem.
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4 CZUMAJ ET AL.

1.3 Background: Permutations, puzzles, and locker rooms

Our locker room problemfollows a long line of combinatorial puzzles involving the analysis of prop-

erties of permutations. One such example is the following locker problem involving prisoners and

lockers: There are n lockers into which a random permutation of n cards are inserted. Then n prisoners

enter the locker room one at a time and are allowed to open half the lockers in an attempt to find their

own card. The team of prisoners wins if every one of them is successful. The surprising result is that

there is a strategy which wins with probability about 1 − ln 2. This problem was initially considered

by Peter Bro Miltersen and appeared in his paper with Anna Gál [8], which won a best paper award at

ICALP 2003. In that paper they refer to a powerful strategy approach suggested by Sven Skyum but it

was left to the readers to find it for themselves. This is the idea of using the number contained in each

locker as a pointer to another locker. Thus using a sequence of such steps corresponds to following a

cycle in the permutation. Solutions to these problems are of a combinatorial and probabilistic flavor
and involve an analysis of the cycle structure of random permutations. The original paper [8] stimu-

lated many subsequent papers considering different variants (see, for example, [4, 5, 9]), including a

matching upper bound provided in [6]. An early version giving the problem where each prisoner can

open half the lockers was published by [15] (see also [16, p. 18]). If each prisoner begins with the locker

corresponding to the number they seek then they will all succeed provided that there is no cycle in the

permutation which is longer than
n
2
. It is easy to show that a helpful prison warder, Alice, can always

find an appropriate transposition of the contents of two lockers so that the resulting permutation has

no cycle longer than
n
2
. We were told of this observation recently by Kazuo Iwama and this stimulated

the current paper, in which we subvert the locker problem tradition with a problem which has little to

do with the cycle structure of permutations and is more concerned with some basic communication

complexity and rather different properties of permutations.

Various results about permutations have found diverse applications in computer science, espe-

cially for sorting algorithms (e.g., see [11, chapter 5]). In this article, we are particularly interested in

rencontres numbers. Firstly, to apply known results concerning their asymptotic growth, in order to

approximate the optimal success probabilities in both the needle in a haystack problem and the locker
room problem. Secondly, to use them to examine the way in which the sizes of “shift sets” (sets of ele-

ments which a permutation displaces by the same number of positions “to the right”) are distributed in

permutations of Sn for a fixed natural number n. In particular, to determine the mean size of the largest

shift set of a permutation chosen uniformly at random from Sn, as well as to show that it is typical, that

is, that the variance of the size of the largest shift set is small. These results are useful for providing a

concrete optimal strategy for both of the titular search problems.

2 PRELIMINARIES

2.1 Formal framework and justification about worst-case versus random 𝔰

We consider the problem with two inputs: a number 𝔰 ∈ [n] and a permutation 𝜎 ∈ Sn. We are

assuming that 𝜎 is a random permutation in Sn; no assumption is made about 𝔰.
For the needle in a haystack problem (a similar framework can be easily set up for the locker room

problem), a strategy (or an algorithm) is defined by a pair of functions, 𝔥 = 𝔥(𝜎) and 𝔦 = 𝔦(𝔥, 𝔰), with

both 𝔥, 𝔦 ∈ [n].
For a fixed strategy, let 𝔭(𝔰) be the success probability for a given 𝔰 and for a randomly chosen

𝜎 ∈ Sn. That is,

𝔭(𝔰) = Pr
[
𝜎(𝔦) = 𝔰

]
,
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CZUMAJ ET AL. 5

where the probability is over 𝜎 taken i.u.r. from Sn.

The goal is to design an algorithm (find a strategy) that will achieve some given success probability

for every 𝔰 ∈ [n]. That is, we want to have a strategy which maximizes

Pr[] = min
𝔰∈[n]

{𝔭(𝔰)}.

In our analysis for the upper bounds in Sections 2 and 3 (Theorem 5) and Section 6 (Theorem 21),

for simplicity, we will be making the assumption that 𝔰 (the input to the needle in a haystack problem

and to the locker room problem) is random, that is, 𝔰 is chosen i.u.r. from [n]. (We do not make such

assumption in the lower bound in Section 4 (Theorem 7), where the analysis is done explicitly for

arbitrary 𝔰.) Then the main claim (Theorem 5) is that if we choose 𝔰 i.u.r. then 𝔭(𝔰) ≤ (1+o(1)) log n
n log log n

.

Observe that one can read this claim equivalently as that
∑
𝔰∈[n]

𝔭(𝔰)
n
≤

(1+o(1)) log n
n log log n

. However, notice

that this trivially yields

Pr[] = min
𝔰∈[n]

{𝔭(𝔰)} ≤
∑
𝔰∈[n]

𝔭(𝔰)
n
,

and therefore Theorem 5 yields Pr[] ≤ (1+o(1)) log n
n log log n

, as required.

Note that such arguments hold only for the upper bound. Indeed, since min𝔰∈[n]{𝔭(𝔰)} may be

much smaller than
∑
𝔰∈[n]

𝔭(𝔰)
n

, in order to give a lower bound for the success probability, Theorem 7

proves that there is a strategy that ensures that 𝔭(𝔰) ≥ (1+o(1)) log n
n log log n

for every 𝔰 ∈ [n]; this clearly yields

Pr[] ≥ (1+o(1)) log n
n log log n

, as required.

2.2 Describing possible strategies for needle in a haystack

In this section, we prepare a framework for the study of strategies to prove an upper bound for the

success probability for the needle in a haystack problem (see Section 3). First, we rephrase the original

problem as an equivalent communication game between Alice and Bob. Bob, the seeker, has as his

input a (random) number 𝔰 ∈ [n]. Alice, the adviser, sees a permutation 𝜎 chosen i.u.r. from Sn, and

uses 𝜎 to send advice to Bob in the form of a number 𝔥 ∈ [n]. Bob does not know 𝜎, but on the basis

of 𝔰 and 𝔥, he picks some 𝔦 ∈ [n] trying to maximize the probability that 𝜎(𝔦) = 𝔰.
First we will consider deterministic strategies, and will later argue separately that randomized

strategies cannot help much. For deterministic strategies, the advice sent is a function Sn → [n], which

can be defined by a partition of Sn into n sets.

Definition 1. A strategy C for Sn is a partition of Sn into n sets C0,C1, … ,Cn−1. Such a strategy

C is denoted by C = ⟨C0,C1, … ,Cn−1⟩.

Given a specific strategy C, we examine the success probability. Let  be the event that the target

is found, 𝔥 the event that 𝔥 is the received advice, and 𝔰 the event that 𝔰 is the target. Notice that

for every 𝔥 ∈ [n] we have Pr
[
𝔥

]
= |C𝔥|

n!
and for every 𝔰 ∈ [n] we have Pr[𝔰] = 1

n
. Therefore, since

the events𝔥 and 𝔰 are independent,

Pr[] =
n−1∑
𝔰=0

n−1∑
𝔥=0

Pr
[
|𝔥 ∩ 𝔰

]
⋅ Pr

[
𝔥 ∩ 𝔰

]
=

n−1∑
𝔰=0

n−1∑
𝔥=0

Pr
[
|𝔥 ∩ 𝔰

]
⋅ Pr

[
𝔥

]
⋅ Pr[𝔰]
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6 CZUMAJ ET AL.

= 1

n

n−1∑
𝔥=0

|C𝔥|
n!

⋅
n−1∑
𝔰=0

Pr
[
|𝔥 ∩ 𝔰

]
. (1)

Definition 2. Let C = ⟨C0,C1, … ,Cn−1⟩ be a strategy. The magneticity of an element i for an

element k in the class Cj is defined as mag(Cj, i, k) = |{𝜎 ∈ Cj ∶ 𝜎(i) = k}|.
The element with the greatest magneticity for k in the class Cj is called the magnet in Cj of k and

is denoted max-mag(Cj, k); ties are broken arbitrarily. The magneticity of max-mag(Cj, k) is called

the intensity of k in Cj, denoted by int(Cj, k); that is, int(Cj, k) = maxi∈[n]{mag(Cj, i, k)}.

Let us discuss the intuitions. Firstly, the magneticity in the class Cj of an element i for an element k,

mag(Cj, i, k), denotes the number of permutations in Cj with k in position i. Therefore, the magnet in

Cj of k is an index i ∈ [n] such that, among all permutations in Cj, k is most likely to be in position i.
The intensity in Cj of k denotes just the number of times (among all permutations in Cj) that k appears

in the position of the magnet i.
In the needle in a haystack problem, Alice sends to Bob a message 𝔥 which points to a class C𝔥 of

their agreed strategy C, and Bob has to choose a number 𝔦 in order to find whether 𝜎(𝔦) is the number

𝔰 ∈ [n] which he seeks. The maximum probability that they succeed is
int(C𝔥,𝔰)

|C𝔥|
, realized if Bob opts

for the magnet of 𝔰 in C𝔥. Thus, by (1), we obtain

Pr[] ≤ 1

n
⋅

1

n!
∑
𝔰,𝔥∈[n]

int(C𝔥, 𝔰).

Definition 3. Let the field of Sn be F(n) = maxC=⟨C
0
,C

1
,… ,Cn−1

⟩
∑
𝔰,𝔥∈[n] int(C𝔥, 𝔰).

With this definition, a strategy which yields the field of Sn is called optimal, and

Pr[] ≤ 1

n
⋅

1

n!
∑
𝔰,𝔥∈[n]

int(C𝔥, 𝔰) ≤
1

n
⋅

F(n)
n!

. (2)

We will use this bound to prove Theorem 5 in Section 3, that whatever the strategy, we always have

Pr[] ≤ (1+o(1))⋅log n
n log log n

.

2.3 Derangements

We use properties of random permutations related to derangements and rencontres numbers.

Definition 4. A permutation 𝜎 ∈ Sn with no fixed points is called a derangement. The number

of derangements in Sn is denoted Dn. A permutation 𝜎 ∈ Sn with exactly r fixed points is called an

r-partial derangement. The number of r-partial derangements in Sn (also known as the rencontres

number) is denoted Dn,r.

Definition 4 yields Dn,0 = Dn and it is easy to see that Dn,r =
(

n
r

)
Dn−r. It is also known (see, e.g.,

[10, p. 195]) that Dn = ⌊ n!
e
+ 1

2
⌋, and hence one can easily show Dn,r ≤

n!
r!

.
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CZUMAJ ET AL. 7

3 UPPER BOUND FOR THE SUCCESS PROBABILITY FOR NEEDLE IN A
HAYSTACK

We will use the framework set up in the previous section, in particular the tools in Definition 2 and

inequality (2) and that 𝔰 is chosen i.u.r. from [n], to bound from above the best possible success

probability for the needle in a haystack problem.

Theorem 5. For any strategy in the needle in a haystack problem, the success probability satisfies

Pr[] ≤ (1 + o(1)) log n
n log log n

.

Proof. Consider a strategy C = ⟨C0, … ,Cn−1⟩. For a permutation 𝜎 ∈ Cj to contribute at least r
to

∑
i∈[n] int(Cj, i), 𝜎−1

must map at least r elements to their magnets in Cj. Hence, there are at most(
n
r

)
(n − r)! = n!

r!
permutations in Cj that contribute at least r to

∑
i∈[n] int(Cj, i), so all in all there are

at most n ⋅ n!
r!

permutations that contribute at least r to F(n).
Let X be the random variable measuring the contribution to F(n) of a permutation 𝜎 chosen

uniformly at random from Sn. Then for any natural 𝓁,

F(n)
n!

= E[X] =
n∑

i=1

P(X ≥ k) ≤ 𝓁 +
n∑

r=𝓁+1

n
r!
.

We choose some 𝓁 = (1+o(1)) log n
log log n

to ensure that n = o(𝓁!), yielding (𝓁 + s)! ≥ (𝓁 + 1)s𝓁! ≥ (𝓁 + 1)sn
for every s ∈ N, whence we obtain

F(n)
n!
≤ 𝓁 +

∞∑
s=1

(𝓁 + 1)−s = 𝓁 + 1

𝓁
= (1 + o(1)) log n

log log n
. (3)

We can combine (2) and (13) to obtain the following,

Pr[] ≤ 1

n
⋅

F(n)
n!
≤
(1 + o(1)) log n

n log log n
.

▪

Remark 6. The upper bound of
(1+o(1)) log n

n log log n
is valid not only for deterministic strategies, but also for

randomized strategies. Let c(C, (𝜎, i)) be the indicator function of the event that the strategy C fails to

guess the image of i under the permutation 𝜎. Let us consider a probability measure P over the set D
of all deterministic strategies, and the distribution U =

(
USn ,U[n]

)
over Sn×[n], where US denotes the

uniform probability measure over the set S. Let S be a random strategy chosen according to P, and let

X be a random set-up chosen according to U. Then, by Yao’s principle, max(𝜎,i)∈Sn × [n] E [c(S, (𝜎, i))] ≥
minC∈D E

[
c(C,X)

]
. That is, the probability that a randomized strategy fails for the worst-case input

exceeds the probability that an optimal deterministic strategy fails. Hence, the worst-case probability

that a randomized strategy succeeds is also bounded above by
(1+o(1)) log n

n log log n
.
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8 CZUMAJ ET AL.

4 LOWER BOUND: SOLUTION FOR THE NEEDLE IN A HAYSTACK
SEARCH

In Theorem 5, we showed that whatever strategy we use in the needle in a haystack problem, the

best success probability we can hope for is
(1+o(1)) log n

n log log n
. In this section we will show that such success

probability is achievable by a simple strategy, which we call the shift strategy.

• Let 𝔥 ∈ [n] maximize |{𝓁 ∈ [n] ∶ 𝓁 = 𝜎(𝓁 + 𝔥 (mod n))}|.
• In order to find number 𝔰 ∈ [n] in 𝜎, check 𝜎(𝔰 + 𝔥 (mod n)).

(Observe that our choice of 𝔥 is equivalent to maximizing |{𝓁 ∈ [n] ∶ (𝓁 − 𝔥 (mod n)) = 𝜎(𝓁)}|.)
We will prove that the shift strategy ensures a success probability of at least

(1+o(1)) log n
n log log n

. Notice that

this is equivalent to saying that Pr
[
𝜎(𝔰 + 𝔥 (mod n)) = 𝔰

]
≥

(1+o(1)) log n
n log log n

, and hence, by the definition

of 𝔥, that with probability 1 − o(1),

max
s∈[n]

{|||{𝓁 ∈ [n] ∶ 𝓁 − 𝜎(𝓁) = s (mod n)}|||
}
≥
(1 + o(1)) log n

log log n
.

This also implies, by Theorem 5 (Section 3), that the shift strategy is asymptotically optimal.

Theorem 7. For any 𝔰 ∈ [n], the shift strategy satisfies Pr[] ≥ (1+o(1)) log n
n log log n

.

In order to prove Theorem 7, we introduce some notation. For every i ∈ [n], let v(i) = i −
𝜎(i) (mod n). Since 𝜎 is random, v(i) has uniform distribution over [n].

Let S𝓁 = |{i ∈ [n] ∶ v(i) = 𝓁}|. Notice that in the shift strategy C = ⟨C0,C1, … ,Cn−1⟩, if 𝜎 ∈ C𝔥
then S𝔥 = max𝓁∈[n]{S𝓁}. Therefore, our goal is to study basic properties of the distribution of S𝔥, and

in particular, to estimate the largest value of Sj over all j ∈ [n].

Example 1. Using the example presented in Figure 1 with

𝜎(0, 1, … , 19) = (13, 10, 14, 15, 4, 17, 2, 9, 7, 19, 5, 1, 6, 11, 16, 18, 8, 0, 3, 12),

we have

v(0, 1, … , 19) = (7, 11, 8, 8, 0, 8, 4, 18, 1, 10, 5, 10, 6, 2, 18, 17, 8, 17, 15, 7).

Then

(S0, S1, … , S19) = (1, 1, 1, 0, 1, 1, 1, 2, 4, 0, 2, 1, 0, 0, 0, 1, 0, 2, 2, 0),

so 𝔥 = 8 and S𝔥 = 4. Alice delivers this hint to Bob by exchanging cards 13 and 8. Then, over all

𝔰 ∈ [n], Pr[𝜎(𝔰 + 8 (mod 20)) = 𝔰] = 4

20
. ⊠

Let us first notice the following simple auxiliary lemma which should give the intuition behind our

approach (see Appendix A.1 for a standard and elementary proof).
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CZUMAJ ET AL. 9

Lemma 8. The expected number of values j ∈ [n] with Sj ≥
(1+o(1) log n

log log n
is at least one.

Lemma 8 tells us that in expectation, there is at least one value j such that Sj ≥
(1+o(1)) log n

log log n
. Notice

however that in principle, we could have that this expectation is high but only because with small

probability the random variable takes a very high value. Therefore the bound in Lemma 8 is fairly

weak. We will now prove, using the second moment method, that with high probability there is some

j such that Sj ≥
(1+o(1)) log n

log log n
. This yields Theorem 7.

Lemma 9. With probability 1 − o(1), there is some j ∈ [n] such that Sj ≥
(1+o(1)) log n

log log n
.

Proof. Let Zt
j be the indicator random variable that Sj = t. Let Rt =

∑n−1

j=0
Zt

j . With this notation,

our goal is to show that Rt = 0 is unlikely for our choice of some t = (1+o(1)) log n
log log n

(since if Rt > 0

then maxj∈[n] Sj ≥ t, and hence Pr
[
maxj∈[n] Sj ≥ t

]
≥ Pr[Rt > 0]). We use the second moment method

relying on a standard implication of Chebyshev’s inequality,

Pr
[

max
j∈[n]

Sj < t
]
≤ Pr[Rt = 0] ≤ Var[Rt]

E[Rt]2
. (4)

Let us recall that

Var[Rt] = Var

[n−1∑
j=0

Zt
j

]
=

n−1∑
j=0

Var
[
Zt

j
]
+

∑
i,j∈[n],i≠j

Cov
[
Zt

i ,Zt
j
]
. (5)

Next, since every Zt
j is a 0-1 random variable, we obtain the following,

Var
[
Zt

j
]
= Pr

[
Zt

j = 1
]
⋅ Pr

[
Zt

j = 0
]
≤ Pr

[
Zt

j = 1
]
= E

[
Zt

j
]
. (6)

Our main technical claim is that the covariance of random variables Zt
j , Zt

i is small. Although the proof

of Lemma 10 is the main technical contribution of this section, for clarity of presentation, we defer its

proof to Section 5.

Lemma 10. Let t ≤ O(log n). Then, the following holds for any i ≠ j, i, j ∈ [n]:

Cov
[
Zt

i ,Zt
j
]
= E

[
Zt

i ⋅ Zt
j
]
− E

[
Zt

i
]
⋅ E

[
Zt

j
]
≤ o(1) ⋅ E

[
Zt

i
]
⋅ E

[
Zt

j
]
. (7)

Therefore, if we combine (6) and Lemma 10 in identity (5), then (assuming t ≤ O(log n))

Var[Rt] =
n−1∑
j=0

Var
[
Zt

j
]
+

∑
i,j∈[n],i≠j

Cov
[
Zt

i ,Zt
j
]
≤

n−1∑
j=0

E
[
Zt

j
]
+ o(1)

∑
i,j∈[n],i≠j

E
[
Zt

i
]

E
[
Zt

j
]

= E[Rt] + o(1) ⋅ E[Rt]2.

If we plug this into (4), we will get the following (assuming t ≤ O(log n)),

Pr[Rt = 0] ≤ Var [Rt]
E[Rt]2

≤
1

E [Rt]
+ o(1). (8)
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10 CZUMAJ ET AL.

Therefore, if for some 𝜍 > 0 we have E[Rt] ≥ 𝜍 (with t ≤ O(log n)) then the bound above yields

Pr
[
maxi∈[n] Si < t

]
≤

1

𝜍

+ o(1). Hence we can combine this with (A1) to obtain E[Rt] =
∑n−1

j=0
E
[
Zt

j
]
=

∑n−1

j=0
Pr

[
Sj = t

]
>

n
2et!

, which is 𝜔(1) for any t such that t! = o(n). This in particular holds for some

t = (1+o(1)) log n
log log n

, and thus concludes Lemma 9. ▪

Remark 11. A reader may notice a close similarity of the problem of estimating maxi∈[n] Si to the

maximum load problem for balls and bins, where one allocates n balls into n bins i.u.r. Indeed, ran-

dom variables S0, … , Sn−1 have similar distribution to the random variables B0, … ,Bn−1, where Bi
represents the number of balls allocated to bin i. However, the standard approaches used in the anal-

ysis of balls-and-bins processes seem to be more complicated in our setting. The main reason is that

while every single random variable Si has approximately Poisson distribution with mean 1, as has Bi,

the analysis of maxi∈[n] Si is more complicated than the analysis of maxi∈[n] Bi because of the intri-

cate correlation of random variables S0, … , Sn−1. For example, one standard approach to show that

maxi∈[n] Bi ≥
(1+o(1)) log n

log log n
with high probability relies on the fact that the load of a set of bins Bi with

i ∈ I decreases if we increase the load of bins Bj with j ∈ J, I ∩ I = ∅. However, the same property

holds only approximately for S0, … , Sn−1 (and in fact, the o(1) error term in Lemma 10 corresponds to

this notion of “approximately”; for balls and bins the covariance is known to be always non-positive).

To see the difficulty (see also the classic reference for permutations [14, chapters 7–8]), notice that,

for example, if 𝜎(i) = i + 𝓁 then we cannot have 𝜎(i + 1) = i + 𝓁, meaning that there is a special cor-

relation between S𝓁 (which counts i with 𝜎(i) = i+𝓁) and S𝓁−1 (which counts i with 𝜎(i+ 1) = i+𝓁).

In particular, from what we can see, random variables S0, … , Sn−1 are not negatively associated [7].

In a similar way, we do not expect the Poisson approximation framework from [1] (see also [12, chap-

ter 5.4]) to work here. Our approach is therefore closer to the standard second moment method, see,

for example, [2, chapter 3] and [13].

5 PROOF OF LEMMA 10: BOUNDING THE COVARIANCE OF Zt
i AND Zt

j

The main technical part of the analysis of the lower bound for the needle in a haystack problem in

Section 4 (see Theorem 7) relies on the proof of Lemma 9. This proof, in turn, is quite simple except

for one central claim, Lemma 10, bounding the covariance of Zt
i and Zt

j . The proof of Lemma 10 is

rather lengthy, and therefore for the convenience of the reader the proofs of some lemmas are deferred

to Section A.

Let Zt
j be the indicator random variable that Sj = t. Since Zt

i and Zt
j are 0-1 random variables, we

have E
[
Zt

i ⋅ Zt
j
]
= Pr

[
Si = t, Sj = t

]
, E

[
Zt

i
]
= Pr[Si = t] and E

[
Zt

j
]
= Pr

[
Sj = t

]
. Since Pr[Si = t] =

Pr
[
Sj = t

]
= u(n−t)

et!
= 1+o(1)

et!
by (A1), to complete the proof of Lemma 10, we only have to show that,

for i ≠ j,

Pr
[
Si = t, Sj = t

]
≤ (1 + o(1)) 1

(et!)2
. (9)

We will prove this claim with Lemma 19 in Section 5.2.4 below.

5.1 Notation and key intuitions

For any set I ⊆ [n] and any integer 𝓁 ∈ [n], let I,𝓁 = {𝜎 ∈ Sn ∶ 𝜎(i) = i + 𝓁 (mod n) iff i ∈ I} and


∗
I,𝓁 = {𝜎 ∈ Sn ∶ ∀i∈I 𝜎(i) = i + 𝓁 (mod n)}. Notice that I,𝓁 ⊆ 

∗
I,𝓁 . Further, |I,𝓁| = Dn−t,0 where
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CZUMAJ ET AL. 11

t = |I|, and

Pr[Si = t] =
|⋃I⊆[n],|I|=t I,i|

n!
=

∑
I⊆[n],|I|=t |I,i|

n!
=

(
n
t

)
Dn−t,0

n!
.

Next, with this notation and for i ≠ j, we also have

Pr[Si = t, Sj = t] = 1

n!
|||

⋃
I,J⊆[n],|I|=|J|=t

I,i ∩ J,j
||| =

1

n!
∑

I,J⊆[n],|I|=|J|=t
|I,i ∩ J,j|.

Notice that in the sum above one can restrict attention just to I ∩ J = ∅, since I,i ∩J,j = ∅ otherwise.

In view of this, our goal is to estimate |I,i ∩ J,j| for disjoint sets I, J ⊆ [n].
In what follows, we will consider sets Si and Sj with i = 0 and j = s for some s ∈ [n] ⧵ {0}. By

symmetry, we can consider the first shift to be 0 without loss of generality; s is an arbitrary non-zero

value. As required in our analysis (see Lemma 10), we will consider t ≤ O(log n).
Our approach now is to focus on a typical pair I and J, and consider some atypical pairs separately.

We will show in Lemma 13 that almost all pairs of disjoint sets I and J are so-called compatible for
shift s. As a result, the contribution of pairs I and J that are not compatible for s is negligible, and so

we will focus on pairs compatible for s. Then, for the pair of indices I and J we will estimate |I,i∩J,j|
using the Principle of Inclusion-Exclusion. For that, we must consider the contributions of all possible

sets K ⊆ [n] ⧵ (I ∪ J) to the set of permutations in 
∗
I,i ∩ ∗J,j. As before, contributions of some sets

are difficult to be captured and so we will show in Lemma 15 that almost all sets K ⊆ [n] ⧵ (I ∪ J) are

so-called feasible for I, J, and s. As a result, the contribution of sets K that are not feasible for I, J,

and s is negligible, and so we will focus on sets that are feasible for I, J, and s. The final simplification

follows from the fact that we do not have to consider all such sets K, but only small sets K, of size

O(log n). Once we have prepared our framework, we can use the Principle of Inclusion-Exclusion to

estimate |⋃I,J⊆[n],|I|=|J|=t I,i ∩ J,j| in Lemmas 18 and 19.

5.2 The analysis

For an integer 𝓁 and subset L ⊆ [n], we use L + 𝓁 to denote the set of elements in L shifted by 𝓁, in

arithmetic modulo n, that is, L + 𝓁 = {i + 𝓁 (mod n) ∶ i ∈ L}. Similarly, L − 𝓁 = {i − 𝓁 (mod n) ∶
i ∈ L}.

Let Φ0,s(I, J) = I,0 ∩ J,s = {𝜎 ∈ Sn ∶ 𝜎(i) = i iff i ∈ I and 𝜎(j) = j + s (mod n) iff j ∈ J}.
Let Φ∗

0,s(I, J) = ∗I,0 ∩ ∗J,s = {𝜎 ∈ Sn ∶ ∀i∈I 𝜎(i) = i and ∀j∈J 𝜎(j) = j + s (mod n)}.
It is easy to compute the size of Φ∗

0,s(I, J). Notice first that if I ∩ J ≠ ∅ or I ∩ (J + s) ≠ ∅, then

Φ∗
0,s(I, J) = Φ0,s(I, J) = ∅. Otherwise, if I ∩ J = ∅ and I ∩ (J + s) = ∅, then |Φ∗

0,s(I, J)| = (n− |I ∪ J|)!
(see also 12).

However, our main goal, to compute the size of Φ0,s(I, J), is significantly more complicated, as

this quantity cannot be reduced to an intersection test and a simple formula over n, |I|, |J|, and s.

5.2.1 Disjoint sets I ⊆ [n] and J ⊆ [n] ⧵ I compatible for shift s

Let I and J be two arbitrary subsets of [n] of size t. We say I and J are compatible for shift s if the four

sets I, J, I − s, and J + s are all pairwise disjoint.

Lemma 12. If I and J are compatible for shift s, thenΦ0,s(I, J) ≠ ∅ and |Φ∗
0,s(I, J)| = (n− |I ∪ J|)! .
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12 CZUMAJ ET AL.

Proof. If I and J are compatible for shift s then any permutation 𝜎 ∈ Sn with 𝜎(i) = i for all i ∈ I,

𝜎(j) = j + s (mod n) for all j ∈ J and complemented by an arbitrary permutation [n] ⧵ (I ∪ J) is in

Φ∗
0,s(I, J). Hence the claim follows from the fact that since I, J, and J + s are pairwise disjoint, such

permutations always exist. ▪

The following lemma shows that almost all pairs of disjoint sets of size t ≤ O(log n) are compatible

(see A.2 for a proof).

Lemma 13. Let s be an arbitrary nonzero integer in [n]. If we choose two disjoint sets I, J ⊆ [n]

of size t i.u.r., then the probability that I and J are compatible for shift s is at least
(

1 − 4t
(n−2t)

)2t
. In

particular, if t ≤ O(log n), then this probability is at least 1 − O
(

log
2n

n

)
.

Because of Lemma 13, our goal will be to compute the sizes of sets Φ0,s(I, J) only for compatible

sets I and J. For given disjoint sets I and J compatible for shift s, we will consider all sets K ⊆

[n] ⧵ (I ∪ J), and their contributions to |Φ∗
0,s(I, J)| using the Principle of Inclusion-Exclusion.

5.2.2 Properties of sets K ⊆ [n] feasible for I, J, and s

Define I,J,0,s(K) = {𝜎 ∈ Φ∗
0,s(I, J) ∶ for every 𝓁 ∈ K, 𝜎(𝓁) ∈ {𝓁,𝓁 + s (mod n)}}. While it is

difficult to study I,J,0,s(K) for all sets K ⊆ [n] ⧵ (I ∪ J), we will focus our attention only on subsets

with some good properties. We call a set K ⊆ [n] feasible for I, J, and s, if I and J are compatible for

shift s, K ∩ (K + s) = ∅, and K ∩ (I ∪ J ∪ (I − s) ∪ (J + s)) = ∅.

To justify this definition, we begin with the following simple lemma (see A.3 for a proof).

Lemma 14. If K ⊆ [n] is feasible for I, J, and s, then |I,J,0,s(K)| = 2
|K|(n − |I ∪ J ∪ K|)! .

Next, similarly to Lemma 13, we argue that almost all suitably small sets are feasible for pairs of

disjoint small sets (see A.4 for a simple proof).

Lemma 15. Let s be an arbitrary non-zero integer in [n]. Let I and J be a pair of compatible sets
for s with |I| = |J| = t. Let k be a positive integer with 2k ≤ n − 4t. If we choose set K ⊆ [n] ⧵ (I ∪ J)

of size k i.u.r., then the probability that K is feasible for I, J, and s is at least
(

1 − 2t+k
n−2t−k

)k
.

In particular, if t, k ≤ O(log n), then this probability is at least 1 − O
(

log
2n

n

)
.

5.2.3 Approximating |Φ0,s(I, J)| for compatible sets I, J for s

In this section we will complete our analysis to provide a tight bound for the size of Φ0,s(I, J) for any

pair I and J of sets compatible for shift s with |I| = |J| ≤ O(log n). Our analysis relies on properties

of sets feasible for I, J, and s, as proven in Lemmas 14 and 15.

We begin with two auxiliary claims (for simple proofs, see Appendices A.5 and A.6). For both, let

r be the smallest integer such that 2r ≥ log
2

n and let t = |I| = |J| ≤ O(log n).

Claim 16.

2r∑
k=1

(−1)k+1
∑

K⊆[n]⧵(I∪J),|K|=k
K feasible for I, J, and s

|I,J,0,s(K)| ≥
(

1 − O
(

log
2n

n

))
(n − 2t)! (1 − e−2). (10)
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CZUMAJ ET AL. 13

Claim 17.

2r∑
k=1

(−1)k+1
∑

K⊆[n]⧵(I∪J),|K|=k
K not feasible for I, J, and s

|I,J,0,s(K)| ≥ −O
(

log
2n

n

)
(n − 2t)!.

To approximate the size of Φ0,s(I, J) for sets I and J compatible for shift s, we first notice that

Φ0,s(I, J) = Φ∗0,s(I, J) ⧵
⋃

𝓁∈[n]⧵(I∪J)
I,J,0,s({𝓁}). (11)

Therefore, since we know that |Φ∗
0,s(I, J)| = (n − (|I| + |J|))! by (12), we only have to approximate

|⋃𝓁∈[n]⧵(I∪J) I,J,0,s({𝓁})|. We need a good lower bound.

We compute |⋃𝓁∈[n]⧵(I∪J) I,J,0,s({𝓁})| using the Principle of Inclusion-Exclusion:

|||
⋃

𝓁∈[n]⧵(I∪J)
I,J,0,s({𝓁})

||| =
∑

K⊆[n]⧵(I∪J),K≠∅
(−1)|K|+1|||

⋂
𝓁∈K
I,J,0,s({𝓁})

|||
=

∑
K⊆[n]⧵(I∪J),K≠∅

(−1)|K|+1|||I,J,0,s(K)
|||

=
n−(|I|+|J|)∑

k=1

(−1)k+1
∑

K⊆[n]⧵(I∪J),|K|=k

|||I,J,0,s(K)
|||.

Since computing |I,J,0,s(K)| for arbitrary nonempty sets K ⊆ [n] ⧵ (I ∪ J) is difficult, we make

further simplifications by restricting our attention to small sets K which are feasible for I, J, and s. For

that, we need to show that by restricting only to small sets K easible for I, J, and s, we will not make

too big errors in the calculations.

Let r be the smallest integer such that 2r ≥ log
2

n. We can use the Bonferroni inequality [3] to

obtain the following,

|||
⋃

𝓁∈[n]⧵(I∪J)
I,J,0,s({𝓁})

||| ≥
2r∑

k=1

(−1)k+1
∑

K⊆[n]⧵(I∪J),|K|=k

|||I,J,0,s(K)
|||

=
2r∑

k=1

(−1)k+1

⎛
⎜⎜⎜⎝

∑
K⊆[n]⧵(I∪J),|K|=k

K feasible for I, J, and s

|||I,J,0,s(K)
||| +

∑
K⊆[n]⧵(I∪J),|K|=k

K not feasible for I, J, and s

|||I,J,0,s(K)
|||
⎞
⎟⎟⎟⎠

≥ −O
(

log
2n

n

)
(n − 2t)! +

(
1 − O

(
log

2n
n

))
(n − 2t)! (1 − e−2)

=
(

1 − O
(

log
2n

n

))
(n − 2t)! (1 − e−2), (12)

where the last inequality follows from the auxiliary Claims 16 and 17.

If we combine (11) and (12), then we get the following lemma.

Lemma 18. If I and J are compatible for shift s and |I| = |J| = t = O(log n), then

|Φ0,s(I, J)| = |Φ∗
0,s(I, J)| − |||

⋃
𝓁∈[n]⧵(I∪J)

I,J,0,s({𝓁})
||| ≤

(n − 2t)!
e2

(
1 + O

(
log

2n
n

))
.
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14 CZUMAJ ET AL.

Proof. Indeed, by (11), we have

|Φ0,s(I, J)| = |Φ∗
0,s(I, J)| − |||

⋃
𝓁∈[n]⧵(I∪J)

I,J,0,s({𝓁})
|||,

by Lemma 12 we get

|Φ∗
0,s(I, J)| = (n − (|I| + |J|))!,

and by (12) we have

|||
⋃

𝓁∈[n]⧵(I∪J)
I,J,0,s({𝓁})

||| ≥
(

1 − O
(

log
2n

n

))
(n − 2t)! (1 − e−2).

Putting these three bounds together yields the promised bound. ▪

5.2.4 Completing the proof of inequality (9)

Now, with (18) at hand, we are ready to complete our analysis in the following lemma.

Lemma 19. For any i, j ∈ [n], i ≠ j, and for t ≤ O(log n), we have,

Pr
[
Si = t, Sj = t

]
≤

(
1 + O

(
log

2n
n

))
1

(et!)2
.

Proof. Without loss of generality we assume that i = 0 and j ∈ [n] ⧵ {0}.
First, let us recall the following

∑
I,J⊆[n],|I|=|J|=t,I∩J=∅

|||I,0 ∩ J,j
||| =

∑
I,J⊆[n],|I|=|J|=t,I∩J=∅

|||Φ0,j(I, J)
|||

=
∑

I,J⊆[n],|I|=|J|=t,I∩J=∅
I and J not compatible for j

|||Φ0,j(I, J)
||| +

∑
I,J⊆[n],|I|=|J|=t

I and J compatible for j

|||Φ0,j(I, J)
|||.

We see that if I and J are not compatible for shift j and I∩ J = ∅, then |Φ0,s(I, J)| ≤ (n−2t)! (since

once we have fixed 2t positions, we can generate at most (n − 2t)! distinct n-permutations). Further,

by (18), we know that if I and J are compatible for shift j, then |Φ0,s(I, J)| ≤ (n−2t)!
e2

(
1 + O

(
log

2n
n

))
.

Next, we notice that by (13), we have,

|||{I, J ⊆ [n] ∶ |I| = |J| = t, I ∩ J = ∅ and I, J not compatible for j}|||
= O

(
log

2n
n

) |||{I, J ⊆ [n] ∶ |I| = |J| = t, I ∩ J = ∅}||| = O
(

log
2n

n

)(n
t

)(n − t
t

)
.

This immediately gives,

∑
I,J⊆[n],|I|=|J|=t,I∩J=∅

I and J not compatible for j

|||Φ0,j(I, J)
||| ≤ O

(
log

2n
n

)(n
t

)(n − t
t

)
(n − 2t)! = O

(
log

2n
n

)
n!
(t!)2
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CZUMAJ ET AL. 15

and

∑
I,J⊆[n],|I|=|J|=t

I and J compatible for j

|||Φ0,j(I, J)
||| ≤

(n
t

)(n − t
t

) (n − 2t)!
e2

(
1 + O

(
log

2n
n

))

=
(

1 + O
(

log
2n

n

))
n!
(et!)2

.

Therefore,

∑
I,J⊆[n],I∩J=∅

|I|=|J|=t

|||I,0 ∩ J,j
||| =

∑
I,J⊆[n],|I|=|J|=t,I∩J=∅

I and J not compatible for j

|||Φ0,j(I, J)
||| +

∑
I,J⊆[n],|I|=|J|=t

I and J compatible for j

|||Φ0,j(I, J)
|||

≤

(
1 + O

(
log

2n
n

))
n!
(et!)2

.

Hence, we can conclude that for i ≠ j we have,

Pr
[
Si = t, Sj = t

]
= 1

n!
∑

I,J⊆[n],I∩J=∅
|I|=|J|=t

|I,i ∩ J,j| ≤
(

1 + O
(

log
2n

n

))
1

(et!)2
.

▪

6 ANALYSIS OF THE COMMUNICATION IN THE LOCKER ROOM SETTING

A lower bound for the success probability in the locker room problemis provided by a straightforward

adaptation of the shift strategy: Alice enters her message relaying the most common shift 𝔥 to locker

0, then Bob opens locker 0 and uses Alice’s message to check location (𝔰+ 𝔥)mod n for his card. This

strategy ensures a success probability of
(1+o(1)) log n)

n log log n
.

As in Sections 2 and 3, we will consider the case when 𝔰 is chosen i.u.r. from [n] (see Section 2.1).

In order to obtain an upper bound for the success chance in the locker room problem, we shall introduce

some intermediate settings, or “protocols”. In the CLR protocol, the rules which govern the locker room
problem, Alice views the contents of all the lockers, interchanges the contents of two lockers, then Bob

is given a number and can open two lockers in search of it. In the NH protocol, the rules which govern

the needle in a haystack game, Alice views the contents of all the lockers, communicates a message of

length log n to Bob, then Bob is given a number and can open one locker in search of it. Moreover, we

could append the modifier “-with-r-bits” to NH, which substitutes r for log n in the above description.

We write Pr[()] for the optimal probability of success in protocol  and Pr
[
(C,)

]
for

the probability of success for strategy C in protocol  . For example, we have already shown that

Pr[(NH)] = (1+o(1)) log n
n log log n

.

Lemma 20. Pr[(CLR)] ≤ Pr
[
(NH-with-(4 log n)-bits)

]
.

Proof. We will interpolate between CLR and NH-with-(4 log n)-bits with two other protocols.

In the protocol CLR0, Alice views the contents of all the lockers and interchanges the contents of

two lockers, then Bob is given a number and can open two lockers in search of it, and he can recognize

upon seeing the content of the first locker whether it has been altered by Alice.
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16 CZUMAJ ET AL.

In the protocol CLR1, Alice views the contents of all the lockers, interchanges the contents of

two lockers, and leaves these two lockers open with their contents visible to Bob, then Bob is given a

number and can open one locker in search of it.

Also, let Sim be the strategy in NH-with-(4 log n)-bits in which Alice uses her message to commu-

nicate to Bob the cards whose positions she would exchange, and the positions of these cards, if she

encountered the permutation 𝜎 while working in the CLR1 protocol, simulating an optimal strategy C

in CLR1. Since this is an ordered quadruple in [n]4, it can indeed be communicated in at most 4 log n
bits.

The proof is in four parts:

(i) Pr[(CLR)] ≤ Pr[(CLR0)],
(ii) Pr[(CLR0)] ≤ Pr[(CLR1)] + O

(
1

n

)
,

(iii) Pr[(CLR1)] ≤ Pr
[
(Sim, NH-with-(4 log n)-bits)

]
,

(iv) Pr
[
(Sim, NH-with-(4 log n)-bits)

]
≤ Pr

[
(NH-with-(4 log n)-bits)

]
.

(i), (iii), (iv) are straightforward and so we only have to show (ii). Let pt be the maximum probability

that Bob finds his target in the tth
locker that he opens, t ∈ {1, 2}.

Firstly, we bound p1. Suppose that Alice and Bob have settled on a specific strategy. Let ex,w be the

probability that 𝜎 is such that Alice’s transposition sends the card x to locker w. Evidently, 0 ≤ ex,w ≤
n−1

n
for all x,w ∈ [n] and

∑
x,w∈[n] ex,w ≤ 2.

Having received his number 𝔰, Bob has to open a specific locker, let us say b = b(𝔰). The probability

that Bob happens upon the card 𝔰 in the locker b is at most e𝔰,b(𝔰)+ 1

n
(either Alice substitutes the content

of b(𝔰) for 𝔰, or the content of b(𝔰) is initially 𝔰 and Alice does not interfere). Thus, choosing 𝔰 i.u.r.

from [n], the probability that Bob finds 𝔰 at his first try is at most
1

n

∑
𝔰∈[n]

(
e𝔰,b(𝔰) + 1

n

)
<

3

n
= O

(
1

n

)
.

Then, we bound p2. If Bob opens first one of the lockers whose contents have been altered by Alice,

then there is one remaining locker for him to open, and he has at most as much information as in the

CLR0 protocol. Hence, in this case, p2 ≤ Pr[(CLR0)].
Alternatively, Bob first opens one of the lockers whose contents have not been altered by Alice.

This requires a more detailed analysis of the CLR0 protocol.

Alice’s choice of a transposition is informed solely by the initial permutation 𝜎 of the cards inside

the lockers. Hence, there should be a function a ∶ Sn →
(
[n]
2

)
which directs Alice to a pair of lockers.

Then, Bob’s choice of a first locker to open is informed only by his target, and is given by the function

b ∶ [n] → [n]. Finally, Bob chooses his second locker by considering his target and the content of the

first locker, so there should be a function b′ ∶ {0, 1} × [n]2 → [n] which directs Bob to his second

locker, where the binary factor distinguishes whether Bob’s first locker has had its content altered by

Alice or not. The strategy which Alice and Bob employ in the CLR0 protocol can therefore be identified

with a triple [a, b, b′].
Let Fw = b−1(w) be the event that Bob opens the wth

locker first, so Pr[Fw] = |b−1(w)|
n

. Let Gy be

the event that the initial content of Bob’s first locker is y, so Pr
[
Gy

]
= 1

n
. If s(y,w) ⊆ Sn is the set of

permutations which map w to y, and Eu,v = a−1({u, v}) is the event that Alice transposes the contents

of the uth
and vth

lockers, then Pr
[
Eu,v|Fw ∩ Gy

]
= |a−1({u,v})∩s(y,w)|

(n−1)!
.

The probability that Bob finds his target in his second attempt given that his first locker was not

altered by Alice is

p2 ≤

∑
u,v,w,y∈[n]

u,v,w distinct

Pr
[
Eu,v|Fw ∩ Gy

]
⋅ Pr[Fw] ⋅ Pr

[
Gy

]
⋅ Pr

[
(CLR0)|Eu,v ∩ Fw ∩ Gy

]
.
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CZUMAJ ET AL. 17

Observe that

Pr
[
(CLR0)|Eu,v ∩ Fw ∩ Gy

]
≤

(n − 2)!
|||
(
Sn ⧵

⋃
𝓁∈[n] a−1({w,𝓁})

)
∩ s(y,w)|||

+ 2

n
.

This holds because, barring the
2

n
probability for Bob’s target to be in a locker whose content was

changed by Alice, Bob is only going to find his target in his second locker if the permutation 𝜎 maps

both w to y and Bob’s second locker to his target. There are exactly (n− 2)! such permutations, which

yields the numerator. For the denominator, when Bob opens the locker w and views the card inside, he

sees that its content is y and that it has not been touched by Alice, so he knows that 𝜎 is a permutation

which maps w to y and which does not prompt Alice to transpose y with some other card, and there

are exactly
|||
(
Sn ⧵

⋃
𝓁∈[n] a−1({w,𝓁})

)
∩ s(y,w)||| such permutations.

Also, note that

⋃
u,v∈[n]

u,v,w distinct

(a−1({u, v}) ∩ s(y,w)) =

(
Sn ⧵

⋃
𝓁∈[n]

a−1({w,𝓁})

)
∩ s(y,w) ⇒

∑
u,v∈[n]

u,v,w distinct

|a−1({u, v}) ∩ s(y,w)| = |||
(

Sn ⧵
⋃
𝓁∈[n]

a−1({w,𝓁})

)
∩ s(y,w)||| .

Combining the above, we obtain that

p2 ≤

∑
u,v,w,y∈[n]

u,v,w distinct

1

n
⋅
|a−1({u, v}) ∩ s(y,w)|

(n − 1)!
⋅
|b−1(w)|

n

(
Pr

[
(CLR0)|Eu,v ∩ Fw ∩ Gy

]
+ 2

n

)

≤

∑
w,y∈[n]

1

n
⋅

1

n − 1
⋅
|b−1(w)|

n
+ 2

n
= 1

n − 1
+ 2

n
.

Thus, in this case, p2 ≤
4

n
.

Ultimately, p2 ≤ Pr[(CLR1)] + 4

n
, and hence Pr[(CLR0)] ≤ p1 + p2 ≤ Pr[(CLR1)] + O

(
1

n

)
,

concluding the proof. ▪

Theorem 21. Pr[(CLR)] ≤ (4+o(1)) log n
n log log n

.

Proof. We use Lemma 20 along with the fact that Pr
[
(NH-with-(4logn)-bits)

]
≤

(4+o(1)) log n
n log log n

, which

can be immediately derived from Theorem 22 in Section 7.1 by setting m = n4
. ▪

7 GENERALIZATIONS

There are several natural generalizations of the problem studied in this paper and related questions

about properties of random permutations, which we will discuss here.
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18 CZUMAJ ET AL.

7.1 Simple generalization: Longer message

In the needle in a haystack problem, when Alice sends the message 𝔥 to Bob, there is no reason why

she must choose a number in [n]; instead, she could transmit a number 𝔥 ∈ [m] for an arbitrary integer

m. One can easily generalize the analysis from Theorems 5 and 7 in this setting for a large range of m.

Let us denote the maximum attainable sum of intensities received from partitioning Sn to m parts

the m-field of Sn, and denote it by F(n,m). Fields are simply diagonal m-fields (fields of the form

F(n, n)).
We have F(n, 1) = n! (yielding a success probability of

1

n
, corresponding to not receiving advice)

and F(n,m) = n ⋅ n! for every m ≥ n! (yielding a success probability of 1, corresponding to obtaining

full information). For other values of m we can follow the approach used in Theorem 5. First, notice that

there is 𝓁 = (1+o(1)) log m
log log m

, such that m = o(𝓁!). Then, using the techniques from the proof of Theorem 5,

we obtain for a random variable X recording the contribution of a random permutation to F(n,m) that

E[X] = F(n,m)
n!

≤ 𝓁 +
∞∑

s=1

(𝓁 + 1)−s = 𝓁 + 1

𝓁
= (1 + o(1)) log m

log log m
. (13)

By (2), this yields the success probability of
(1+o(1)) log m

n log log m
, giving the following theorem.

Theorem 22. If Alice can choose a number 𝔥 ∈ [m], then the maximum attainable success prob-
ability is at most (1+o(1)) log m

n log log m
. In particular, if m = poly(n), then the maximum attainable success

probability is at most O
(

log n
n log log n

)
.

Since the algorithm given in Theorem 7, using the shift strategy with hint 𝔥 ∈ [n], has success

probabilityΩ
(

log n
n log log n

)
, Theorem 22 implies that this shift strategy is asymptotically optimal to within

a constant factor for any hint 𝔥 which is polynomial in n. A similar conclusion holds also for the

communication in the locker room setting: even if Alice leaves Bob a message by altering the contents

of a constant number c of lockers rather than just one, this message is c log n bits long, and hence the

success probability is still at most O
(

log n
n log log n

)
.

Asymptotic results for several other interesting domains of m could be found in a similar way.

However, for super-polynomial domains, the upper bound derived above is far from the lower bound

in Theorem 7. Determining some properties of the rate of growth of F(n,m) for fixed n would be a

good step towards determining its values. With this in mind, we have the following natural conjecture.

Conjecture 1. For any fixed n, the function f (m) = F(n,m) is concave.

7.2 Optimal strategies

Although we have successfully calculated the maximum field and the maximum success probability for

the needle in a haystack problem, the problem of determining a characterization of, or even some major

properties for, optimal strategies remains. Indeed, the only optimal strategy that we have explicitly

described so far is the shift strategy (which is in fact a set of different strategies, since, for permutations

which have several S𝔥’s of maximum size, there are multiple legitimate options for their class). A

natural generalization of shift strategies are latin strategies; in these, Alice and Bob decide on a n × n
latin square S, and Alice’s message indicates the row of S which coincides with 𝜎 at the maximum

number of places.
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CZUMAJ ET AL. 19

We present a couple of interesting questions concerning the optimal strategies for Sn in needle in
a haystack.

Conjecture 2. For every natural number n, there is an optimal strategy for Sn whose parts all
contain exactly (n − 1)! permutations.

Conjecture 3. Optimal strategies are exactly the latin strategies.

7.3 Alice-In-Chains

Let us explore another specific strategy. The naive strategy is to group permutations according to

the content of location 0. That is, 𝜎, 𝜎
′

belong to the same class if and only if 𝜎(0) = 𝜎

′(0).
This is a natural strategy to conceive, and it agrees with the common (but erroneous) notion

that efficiency in the lockers game cannot be improved beyond O
(

1

n

)
. Indeed, straightforward

calculations yield a success probability of
2

n
for the naive strategy in the needle in a haystack

problem.

Intuitive though it is, in the preceding sections we have proven the naive strategy to be suboptimal.

In fact, the naive strategy fails to fully utilize the possibilities provided by the problem’s framework. In

this subsection, we show that, with only a minor restriction for our problem, the naive strategy becomes

optimal. This demonstrates that strategic efficiency is very sensitive to changes in our assumptions

about the needle in a haystack.

Suppose that Alice and Bob face a challenge similar to the needle in a haystack, but with this

restriction: the chosen strategy C = ⟨C0, … ,Cn−1⟩ must satisfy

∃s∈[n] ∀i∈[n] ∃h∈[n] ∀𝜎∈Ch 𝜎(i) ≠ s,

that is, “there exists a needle s such that for each location i there is a corresponding message h from

Alice which tells Bob that s is not in i”. We call this the Alice-In-Chains (AIC) variant.

Theorem 23. The naive strategy is optimal in Alice-In-Chains.

Proof. It is easy to see that the naive strategy satisfies the AIC rules. For instance, we can take

s = 0, in which case the message h = 1 informs Bob that s is not in locker 0, and the message h = 0

informs Bob that s is not in locker i for any i > 0.

We proceed by induction. For n ≤ 3, it is easy to see that the naive strategy is optimal, even without

the restriction.

Suppose that it is optimal for n ≤ N. Let C = ⟨C0, … ,CN⟩ be an optimal strategy for SN+1 in the

AIC variant. Without loss of generality, let s = N.

Let Am be the subset of SN+1 which contains every permutation that maps N to m. To bound the field

FAIC(N + 1), we will try to maximize the sum of the intensities produced by distributing the members

of Am across the N + 1 classes. That is, we partition each Am into a collection C(m) = [Am,0, … ,Am,N]
which maximizes the sum

∑
0≤s,h≤N int(Am,h, s). We claim that

FAIC(N + 1) ≤
N∑

m=0

∑
0≤s,h≤N

int(Am,h, s). (14)
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20 CZUMAJ ET AL.

To see that, observe that partitioning one set of permutations to several does not decrease the sum

of the intensities. Indeed,

int(Ch, s) = mag(Ch, s,max-mag(Ch, s)) =
N∑

m=0

mag(Am,h, s,max-mag(Ch, s))

≤

N∑
m=0

mag(Am,h, s,max-mag(Am,h, s)) =
N∑

m=0

int(Am,h, s).

Hence,

FAIC(N + 1) =
∑

0≤s,h≤N
int(Ch, s) ≤

N∑
m=0

∑
0≤s,h≤N

int(Am,h, s).

However, each Am is a copy of Sn, and one of its parts must be empty (because of the restriction of AIC,

and the fact that all of the members of Am agree on the image of N). Therefore,
∑

0≤s,h≤N int(Am,h, s) =
FAIC(N) for all m ∈ [N], and so (14) yields

FAIC(N + 1) ≤ (N + 1)FAIC(N). (15)

From our inductive hypothesis, the naive strategy is an optimal strategy for Sn in the AIC variant, so

FAIC(N) = 2N!, which from (15) implies FAIC(N+1) ≤ 2(N+1)!. Since the yield of the naive strategy

for SN+1 is exactly 2(N + 1)!, we have that the naive strategy is optimal for SN+1 in the AIC variant.

Remark 24. The above implies that the Alice-In-Chains variant has a maximum attainable probabil-

ity of
2

n
. It also proves an interesting result about the form of optimal strategies: every optimal strategy

in the needle in a haystack setting is such that every element c ∈ [n] has an image which is present in

all of the strategy’s classes.

▪
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APPENDIX A: PROOFS OF AUXILIARY CLAIMS

A.1 Proof of Lemma 8 (from Section 4)

We present an elementary proof of Lemma 8 (following standard arguments) showing that the expected

number of j ∈ [n] with Sj ≥
(1+o(1)) log n

log log n
is at least one.

Proof of Lemma 8. Let us recall Definition 4 for derangements and r-partial derangements. The

probability that a random permutation in Sn is a derangement is Dn∕n! =
⌊

n!
e
+ 1

2

⌋
∕n! ∼ 1

e
. Let

u(n) =
⌊

n!
e
+ 1

2

⌋
∕ n!

e
and note that Dn = u(n) n!∕e, that u(n) = 1 + o(1), and u(n) > 0.9 for all n > 1.

Since the permutation 𝜎 ∈ Sn is chosen i.u.r., we have

Pr[S0 = k] = Dn,k

n!
=

(
n
k

)
Dn−k

n!
=

(
n
k

)
(n−k)!

e
u(n − k)

n!
= u(n − k)

ek!
.

The same bound can be obtained for Sj for every j ≥ 0. For any permutation 𝜎 ∈ Sn and any integer

𝓁 ∈ [n], define the permutation 𝜎𝓁 ∈ Sn given by

𝜎𝓁(i) = 𝜎(i) + 𝓁 (mod n) .

For any permutation 𝜎 ∈ Sn and any 𝓁, the operator 𝜎 → 𝜎𝓁 is a bijection from Sn to Sn, and a

permutation 𝜎 ∈ Sn with 𝓁 ∈ [n] has exactly k fixed points if and only if permutation 𝜎𝓁 has exactly

k points with 𝜎𝓁(i) = i + 𝓁 (mod n). Hence for every j, j′ ∈ [n] and k ∈ [n], we have Pr
[
Sj = k

]
=

Pr
[
Sj′ = k

]
.

Therefore, for any integers j ∈ [n] and k ∈ [n − 2],

Pr
[
Sj = k

]
= u(n − k)

ek!
>

1

2ek!
. (A1)
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Let k(n) be the largest k such that 2ek! ≤ n. Then Pr
[
Sj = k(n)

]
> 1∕n. Hence, if we let Qj be the indi-

cator random variable that Sj = k(n), then Pr
[
Qj = 1

]
> 1∕n, and hence E

[∑n−1

j=0
Qj

]
=

∑n−1

j=0
E
[
Qj

]
=

∑n−1

j=0
Pr

[
Qj = 1

]
> 1. Therefore, in expectation, there is at least one value j such that Sj = k(n). It is

easy to show that k(n) = log n
log log n

(1 + o(1)). ▪

A.2 Proof of Lemma 13 (from Section 5.2.1)

Proof of Lemma 13. I and J are compatible for shift s if sets I, J, I−s, and J+s are pairwise disjoint.

We will give a construction of sets I and J, each of size t, such that I and J are compatible for shift s.

We begin by selecting t elements from I one by one. We will ensure that sets I, I− s, and I− 2s are

pairwise disjoint. The first element i1 is arbitrary, and we can select it in n ways. We choose the second

element i2 from [n] ⧵ {i1, i1 − s (mod n), i1 − 2s (mod n)} in at least n− 3 ways, the third element i3 in

at least n− 6 ways, and so on; since the elements in I can be ordered arbitrarily, the number of choices

is at least
n(n−3)… (n−3(t−1))

t!
.

Next, we choose t elements from J. We will ensure that J is pairwise disjoint from sets I and I − s,

and J + s is pairwise disjoint from sets I and I − s; notice that the latter means that J is pairwise

disjoint from sets I − s and I − 2s. The first element j1 is selected in at least (n − 3t) ways, since

j1 ∈ [n] ⧵ (I ∪ I − s ∪ I − 2s) implies that {j1}∩ (I ∪ I − s) = ∅ and {j1 + s (mod n)} ∩ (I ∪ I − s) = ∅.

Next, we select j2 ∈ [n] ⧵ (I ∪ I − s ∪ I − 2s ∪ {j1, j1 + s (mod n), j1 − s (mod n)}) to ensure that the

constructed I and J = {j1, j2} are compatible for shift s. Then we select j3 ∈ [n] ⧵ (I ∪ I − s ∪ I − 2s ∪
{j1, j2} ∪ {j1, j2} + s ∪ {j1, j2} − s) in at least (n − 3(t + 2)) ways, and so on. Since the elements in J
can be ordered arbitrarily, the number of choices is

(n−3t)(n−3(t+1))… (n−3(2t−1))
t!

.

Therefore, we have presented a way of selecting at least

n(n − 3) … (n − 3(t − 1))
t!

⋅
(n − 3t)(n − 3(t + 1)) … (n − 3(2t − 1))

t!

distinct pairs of sets I and J of size t that are compatible for shift s. This implies that if we choose two

disjoint sets I, J ⊆ [n] of size t i.u.r., then the probability that I and J are compatible for shift s is at least

1(
n
t

)(
n−t

t

) ⋅ n(n − 3) … (n − 3(t − 1))
t!

⋅
(n − 3t)(n − 3(t + 1)) … (n − 3(2t − 1))

t!

=
2t−1∏
𝓁=0

(n − 3𝓁)
(n − 𝓁)

=
2t−1∏
𝓁=0

(
1 − 2𝓁

n − 𝓁

)
≥

(
1 − 4t

n − 2t

)2t
.

Next, we use

(
1 − 1

a+1

)a
> e−1

to get

(
1 − 4t

n−2t

)2t
> e

−8t2

n−6t and then we use the assumption t ≤ O(log n)

to get e
−8t2

n−6t ≥ e−O(log
2n)∕n ≥ 1 − O

(
log

2n
n

)
. ▪

A.3 Proof of Lemma 14 (from Section 5.2.2)

Proof of Lemma 14. Let 𝜁 ∶ K → {0, 1}. We call a permutation 𝜎 ∈ Sn consistent with I, J, s, K,

and 𝜁 , when

• if i ∈ I then 𝜎(i),
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CZUMAJ ET AL. 23

• if j ∈ J then 𝜎(j) = j + s (mod n), and

• if k ∈ K then 𝜎(k) = k + 𝜁(k) ⋅ s (mod n).

Let PC𝜁

I,J,0,s(K) be the set of all permutations consistent with I, J, s, K, and 𝜁 . We notice that

I,J,0,s(K) is the union over all 2
|K|

functions 𝜁 ∶ K → {0, 1} of the sets of all permutations consistent

with I, J, s, K, and 𝜁 , that is, I,J,0,s(K) =
⋃
𝜁∶K→{0,1} PC𝜁

I,J,0,s(K).
First, let us note that if K is feasible for I, J, and s, then for any two distinct functions 𝜁, 𝜁

′ ∶
K → {0, 1} the set of all permutations consistent with I, J, s, K, and 𝜁 and the set of all permutations

consistent with I, J, s, K, and 𝜁
′

are disjoint, that is, PC𝜁

I,J,0,s(K) ∩ PC𝜁

′

I,J,0,s(K) = ∅. Indeed, let us take

two distinct 𝜁, 𝜁
′ ∶ K → {0, 1} and let 𝜎 be an arbitrary permutation in PC𝜁

I,J,0,s(K). We will show that

𝜎 ∉ PC𝜁′
I,J,0,s(K). Since 𝜁 and 𝜁

′
are distinct, there is some 𝓁 such that 𝜁(𝓁) ≠ 𝜁 ′(𝓁); without loss of

generality let 𝜁(𝓁) = 0. But then, for any permutation 𝜎
′ ∈ PC𝜁

′

I,J,0,s(K), we have 𝜎
′(𝓁) = 𝓁 + 𝜁 ′(𝓁) ⋅

s (mod n) ≠ 𝓁 + 𝜁(𝓁) ⋅ s (mod n), and thus 𝜎 ∉ PC𝜁

′

I,J,0,s(K), and hence PC𝜁

I,J,0,s(K) ∩ PC𝜁

′

I,J,0,s(K) = ∅.

Next, we argue that for any 𝜁 ∶ K → {0, 1}, if K is feasible for I, J, and s, then |PC𝜁

I,J,0,s(K)| =
(n− |I ∪ J ∪K|)!. Indeed, for a given 𝜁 ∶ K → {0, 1}, let K + 𝜁 = {k + 𝜁(k) ⋅ s (mod n) ∶ k ∈ K} and

let SI,J,K,s(𝜁) be the set of all permutations 𝜋
∗ ∶ [n] ⧵ (I ∪ J ∪ K) → [n] ⧵ (I ∪ J + s ∪ K + 𝜁). Notice

that since K is feasible for I, J, and s, both

(1) I, J, and K are pairwise disjoint, and

(2) I, J + s, and K + 𝜁 are pairwise disjoint.

Therefore SI,J,K,s(𝜁) is non-empty, and hence |SI,J,K,s(𝜁)| = (n − |I ∪ J ∪ K|)!. Now, the claim that

|PC𝜁

I,J,0,s(K)| = (n − |I ∪ J ∪ K|)! follows directly from the fact that any permutation consistent with

I, J, s, K, and 𝜁 corresponds in a unique way to a permutation in SI,J,K,s(𝜁).1
We now summarize our discussion under the assumption that K is feasible for I, J, and s. We have

• I,J,0,s(K) =
⋃
𝜁∶K→{0,1} PC𝜁

I,J,0,s(K),
• for any 𝜁 ∶ K → {0, 1}, |PC𝜁

I,J,0,s(K)| = (n − |I ∪ J ∪ K|)!, and

• for any two distinct functions 𝜁, 𝜁
′ ∶ K → {0, 1}, sets PC𝜁

I,J,0,s(K) and PC𝜁

′

I,J,0,s(K) are disjoint.

This clearly implies that |I,J,0,s(K)| = 2
|K|(n − |I ∪ J ∪ K|)! . ▪

A.4 Proof of Lemma 15 (from Section 5.2.2)

Proof of Lemma 15. Following the approach from Lemma 13, for given disjoint sets I and J that are

compatible for s, we will construct sets K ⊆ [n] ⧵ (I ∪ J) that are feasible for I, J, and s.

We select set K ⊆ [n]⧵ (I ∪ J) by choosing k elements one by one. We will want to ensure that K is

pairwise disjoint with the sets I, J, I−s, J+s, and K+s. The first element k1 is selected arbitrarily from

[n]⧵(I ∪ J ∪ I−s ∪ J+s) in at least n−4t ways. The second element cannot be in I ∪ J ∪ I−s ∪ J+s
and also must be distinct from k1 and k1+ s (mod n); hence, it can be chosen in at least n−4t−2 ways.

In the same way, inductively, k𝓁 is selected from [n]⧵(I ∪ J ∪ I−s ∪ J+s ∪ {kr ∶ 1 ≤ r < 𝓁}∪{kr+s ∶
1 ≤ r < 𝓁}) in at least n − 4t − 2(𝓁 − 1) ways. Since the elements in K can be ordered arbitrarily, we

constructed a set of at least
(n−4t)… (n−4t−2(k−1))

k!
distinct sets K ⊆ [n]⧵(I∪J) of size k that are feasible for I,

1
That is, for any 𝜎 ∈ Sn consistent with I, J, s, K, and 𝜁 , and any 𝜎

∗ ∈ SI,J,K,s(𝜁 ), we define 𝜎
′ ∈ Sn such that

𝜎

′(𝓁) =

{
𝓁 if 𝓁 ∈ I ∪ J ∪ K,
𝜎

∗(𝓁) if 𝓁 ∈ [n] ⧵ (I ∪ J ∪ K).
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24 CZUMAJ ET AL.

J, and s. Thus the probability that a set K ⊆ [n]⧵(I ∪ J) of size k chosen i.u.r. is feasible for I, J, and s is

at least

1(
n−2t

k

) ⋅ (n − 4t) … (n − 4t − 2(k − 1))
k!

=
k−1∏
𝓁=0

n − 4t − 2𝓁
n − 2t − 𝓁

=
k−1∏
𝓁=0

(
1 − 2t + 𝓁

n − 2t − 𝓁

)

≥

k−1∏
𝓁=0

(
1 − 2t + k

n − 2t − k

)
=

(
1 − 2t + k

n − 2t − k

)k
.

Next, assuming that t, k ≤ O(log n), we have

(
1 − 2t+k

n−2t−k

)k
≥ e

−(2t+k)k
n−4t−2k ≥ 1 − O

(
log

2n
n

)
. ▪

A.5 Proof of Claim 16 (from Section 5.2.3)

Proof of Claim 16. Let 𝜀 be such that the 1 − O
(

log
2n

n

)
probability in Lemma 15 is at least 1 − 𝜀.

For simplicity of notation, let

Ak = {K ⊆ [n] ⧵ (I ∪ J) ∶ |K| = k and K is feasible for I, J, and s}.

By combining Lemma 15 with the trivial upper bound for |Ak|, we have

(1 − 𝜀)
(n − 2t

k

)
≤ |Ak| ≤

(n − 2t
k

)
. (A2)

Then,

2r∑
k=1

(−1)k+1
∑

K∈Ak

|I,J,0,s(K)| (A3)

=(by Lemma 14)

2r∑
k=1

(−1)k+1
∑

K∈Ak

2
k(n − 2t − k)! (A4)

≥
(by (17))

2r∑
k=1

2
k(n − 2t − k)!

(n − 2t
k

)
⋅

{
(1 − 𝜀) if k odd

−1 if k even

= (n − 2t)!

(
−

2r∑
k=1

(−2)k
k!

− 𝜀
2r∑

k=1, k odd

2
k

k!

)

≥ (n − 2t)!

(
1 −

∞∑
k=0

(−2)k
k!

− 2
2r

(2r)!
− 𝜀

∞∑
k=0

2
k

k!

)
(A5)

= (n − 2t)! (1 − e−2 − 2
2r

(2r)!
− 𝜀 e2). (A6)

Inequality (A4) holds since
2

2r

(2r)!
≥

2
2r+1

(2r+1)!
for all r > 0. Equality (A5) holds since

∑∞
k=0

(−2)k

k!
= e−2

and

∑∞
k=0

2
k

k!
= e2

. Inequality (10) then follows because 2r ≥ log
2

n and (log n)! = nΩ(log log n)
. ▪
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CZUMAJ ET AL. 25

A.6 Proof of Claim 17 (from Section 5.2.3)

Proof of Claim 17. For simplicity of notation, let

NAk = {K ⊆ [n] ⧵ (I ∪ J) ∶ |K| = k and K is not feasible for I, J, and s} .

In our analysis we use two basic facts for sets K ∈ N Ak: that |I,J,0,s(K)| ≤ 2
k(n − 2t − k)! and that

the set of such K ⊆ [n] ⧵ (I ∪ I) is, by Lemma 15, of size at most O
(

log
2n

n

)(
n−2t

k

)
:

2r∑
k=1

(−1)k+1
∑

K∈NAk

|I,J,0,s(K)| ≥ −
2r∑

k=1

∑
K∈NAk

|I,J,0,s(K)| ≥ −
n−2t∑
k=1

∑
K∈NAk

|I,J,0,s(K)|

≥ −
n−2t∑
k=1

∑
K∈NAk

2
k(n − 2t − k)!

≥ −
n−2t∑
k=1

O
(

log
2n

n

)(n − 2t
k

)
2

k(n − 2t − k)!

= −O
(

log
2n

n

)
(n − 2t)!

n−2t∑
k=1

2
k

k!
≥ −O

(
log

2n
n

)
(n − 2t)!

∞∑
k=1

2
k

k!

= −O
(

log
2n

n

)
(n − 2t)!e2 = −O

(
log

2n
n

)
(n − 2t)! .

▪
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