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A B S T R A C T   

Evaluation of brittleness index (BI) is a fundamental principle of a hydraulic fracturing design. A wide variety of 
BI calculations often baffle field engineers. The traditional value comparison may also not make the best of BI. 
Moreover, it is often mixed up with the fracability in field applications, thus causing concerns. We, therefore, 
redefine fracability as the fracturing pressure under certain rock mechanical (mainly brittleness), geological and 
injecting conditions to clarify the confusion. Then, we propose a data-driven workflow to optimize BIs by con
trolling the geological and injecting conditions. The machine learning (ML) workflow is employed to predict the 
fracability (fracturing pressure) based on field measurement. Three representative ML algorithms are applied to 
average the prediction, aiming to restrict the interference of algorithm performances. The contribution of brit
tleness on pressure/fracability prediction by error analysis (rather than the traditional method of BI-value 
comparison) is proposed as the new criterion for optimization. Six classic BI correlations (mineral-, logging- 
and elastic-based) are evaluated, three of which are optimized for the derivation of a new BI using the backward 
elimination strategy. The stress ratio (ratio of minimum and maximum horizontal principal stress), representing 
the geological feature, is introduced into the derived calculation based on the independent variable analysis. The 
reliability of the new BI is verified by error analyses using data of eight fracturing stages from seven different 
wells. Approximately 40%–50% of the errors are reduced based on the new BI. The differences among the 
performances of algorithms are also significantly restrained. The new brittleness index provides a more reliable 
option for evaluating the brittleness and fracability of the fracturing formation. The machine learning workflow 
also proposes a promising application scenario of the BI for hydraulic fracturing, which makes more efficient and 
broader usages of the BI compared with the traditional value comparison.   

1. Introduction 

Brittleness index (BI), an essential parameter to evaluate the mineral, 
mechanical and failure characteristics of formations, is commonly 
applied in mining (e.g. rock cutting) and petroleum engineering (e.g. 
drilling and fracturing).1–3 For hydraulic fracturing, it is an essential 
criterion for the optimization of “sweet point” that is easy to crack and 
tends to create complex fracture networks – namely the evaluation of 
fracability (how easy the reservoir can be cracked).4–6 Initiating from 
the mineral component analysis, the BI calculations for hydraulic frac
turing are involving more and more rock mechanical and engineering 
features.7,8 

Dozens of BI calculations are proposed for various formations with 
unique lithological and elastic properties, which could be roughly 

classified into (i) the mineral-based brittleness index (MBI),9,10 (ii) the 
logging-based brittleness index (LBI),11 and (iii) the elastic-based brit
tleness index (EBI).12,13 Current efforts evaluate the BI calculations 
mainly based on numerical simulation,14 logging data,15 and static 
tests.16 Limited test at field-practical scales is presented, thus restricting 
the reliability and persuasion of these BI calculations. However, the 
successful applications of machine learning techniques in petroleum 
engineering have paved a potential data-driven approach for BI opti
mization at field-practical scales.17,18 

The primary application of BI is to evaluate the fracability for hy
draulic fracturing. However, the BI is often mixed up with the fracability 
in many fracturing applications, which has caused concerns about 
misleading the brittleness and ductility recognization of the targeting 
formation.19–21 Some researchers believe that the BI is more like a rock 
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type indicator. The geological properties should also play an important 
role in the evaluation of fracability, for instance, the in-situ confining 
stress, pore pressure, natural fractures and faults.22–24 To distinguish 
fracability from BI, we propose that fracability should be an even 
broader concept that involves the injection parameters (pump rate, fluid 
and proppant properties) as well. 

Therefore, we redefine fracability as the fracturing pressure, a more 
comprehensive response of the cracked reservoir under certain geolog
ical, rock mechanical and hydraulic injecting conditions. Then, a ma
chine learning (ML) workflow is proposed for optimizing BIs by 
predicting the fracability/pressure based on field measurements. The 
prediction errors are analyzed to evaluate the contribution of each BI via 
a control variate method (controlling the interferences of geological, 
hydraulic and ML algorithm conditions). A new BI is derived by inte
grating the geological feature based on the optimization, variable 
analysis (optimizing variables according to their significance to the 
prediction) and backward elimination strategy (starting with all candi
dates and eliminating one at a time until minimizing the error), which 
significantly improves the predictions of fracability/pressure compared 
with classic BIs. Our optimization work clarifies the confusion between 
BI and fracability, promotes the calculation of BI and provides a more 
reliable option of BI for the recognition of targeting formation and 
design of fracturing schedule. It also demonstrates a promising appli
cation scene of BI based on the data-driven approach, which takes better 
advantage of BI than the traditional value comparisons. 

2. Methodology 

The field measurements of hydraulic fracturing are collected and 
used as the Basic dataset for comparisons. By appending the brittleness 
index to the Basic dataset, the BI datasets are built for data processing. 
Three classic machine learning algorithms, Multiple Linear Regression 
(MLR), Support Vector Regression (SVR), and Artificial Neural Network 
(ANN) are used for data processing to mitigate the interference of al
gorithm performances on the predicted fracability. The mean absolute 
error (MAE) and root mean squared error (RMSE) are deployed for the 
prediction analyses and BI optimization. The backward elimination 
strategy and variable analysis are applied for the derivation of the new 
BI, as shown in Fig. 1. 

2.1. Data preparation 

We collect 76 stages of shale gas fracturing and logging measure
ments (11,860 groups of data at minute level) in 7 wells (denoted as W1 
to W7) from the Sichuan Basin (Longmaxi shale gas formation), China, 
as shown in Table 1. Each group of data involves parameters of fluid 
types (hydrochloric acid – HCL, slickwater, and gel), pump rate, prop
pant concentration, proppant mesh, and fracturing pressure. The log
ging interpretations for calculating BIs contain mineral components 
(Clay, Quartz, Carbonate and total organic carbon – TOC), Young’s 
modulus, Poisson ratio, density, porosity, wave velocities and 
compressional slowness (DTC). 

The training and predicting stages are specially designed (Table 1). 

There are 68 stages from wells W1~W4 used for algorithm training. The 
first four predicting stages (Stage 3, 5, 7 and 9) are selected successively 
from the same wells (W1~W4), aiming to control the uncertainties from 
geological heterogeneity in the shale formation. As a result, the opti
mization of BI based on the prediction is more reliable by minimizing the 
interference of geological uncertainties. Four more predicting stages are 
selected from the first and second halves of the fracturing stages in two 
new wells, as shown in Table 1. W5 and W3 are neighbour wells. W6 is a 
distant well far from all others. W7 drills through different subdivided 
formations from all other wells. We choose representative stages from 
the first and second halves of a fracturing operation to restrict the po
tential influence of human factors on fracturing pressures because op
erators usually learn experiences from precedents and perform better in 
subsequent fracturing stages. 

The categorical data encoding and feature scaling are carried out 
during the data pre-processing. There are three fluid types and one 
special fluid condition (the pump off, denoted as N/A) in our dataset, 
which are string variables and can not be used for algorithm training 
directly. Therefore, the fluid type is encoded by the OneHotEncoder and 
transformed into a combination of three binary digits (i.e. 0, 0 and 1) 
after deleting the dummy variable.25 The fluid type used to be one 
column of strings is then transformed into three columns of binary code 
when they are fed into the algorithm. The proppant type is presented by 
its averaged diameter. All input variables are standardized by removing 
the mean and scaling to unit variance. The datasets, inputs and outputs 
are summarized in Table 2. The pump rate, fluid type, proppant con
centration, averaged proppant diameter and BI are used as inputs for the 
algorithm training, in which the hydraulic parameters are set as control 
variables. The machine learning algorithm is trained by the inputs to 
predict fracturing pressures. The predictions are then compared with 
field records for error analyses. Both the Basic and BI datasets contain all 
stages in Table 1. 

2.2. Brittleness index for optimization 

Six representative BI calculations are selected from MBI, LBI and EBI 
categories for evaluations, as summarized in Table 3. BI1 and BI2, widely 
used for shale gas fracturing, are usually obtained by laboratory tests 
and reflect the mechanical properties of the rock. BI3 are empirical 
equations based on data from the shale gas wells in the Permian Basin 
(U.S.), which evaluates the BI based on the logging response of under
ground formations. The sum of the calculations is utilized for BI3. BI4 is 
the energy dissipation per unit area during the process of new fracture 
creation. The fracture toughness (KIC) represents the resistance of rock 
to fracture propagation. BI5 and BI6 are deformations and extensions of 
BI2. The correlations in Table 3 assess the brittleness from different as
pects (mineral components, rock mechanism, energy dissipation, log
ging interpretation, etc.) using various data sources (from both surface 
and subsurface). The calculation biases are inevitable because the brit
tleness is the synthetical result of multifactor. Therefore, the machine 
learning workflow is applied to evaluate the performances of BIs. Each 
BI is calculated by original data and fed into the algorithm as an input 
feature. Then, the prediction errors based on each correlation are 

Fig. 1. The structure for data processing and BI optimization.  

L. Hou et al.                                                                                                                                                                                                                                     



International Journal of Rock Mechanics and Mining Sciences 159 (2022) 105207

3

analyzed and used as the criterion for BI optimization. 

2.3. Machine learning algorithm and workflow 

Three different machine learning algorithms are deployed to restrict 
the potential interferences induced by the algorithm performances. The 
MLR is used for both pressure prediction and variable analysis. The SVR, 
with a radial basis function (RBF) kernel, is capable of both linear and 
non-linear regression.30,31 A three-layer ANN (input, hidden and output 
layers) is constructed under the Tensorflow frame with 20 neural units 
in the first and hidden layers referring to previous research.32,33 The 

dropout regularization (the rate of 0.2) is set after the first and hidden 
layers to avoid overfitting.34 The Adam routine is selected as the opti
mizer to compile the model, where a callback function is applied to 
return and automatically update the learning rate.35 Other hyper
parameters are optimized by the Grid search and K-fold cross-
validation,36,37 including the training epochs (30) and batch size (50). 

The detailed data processing workflow, integrating BI calculations 
and machine learning algorithms, is illustrated in Fig. 2. The original 
data is pre-processed by the calculations in Table 3 for BIs. Considering 
the division design in Tables 1 and 2, the geological and hydraulic ef
fects on fracturing pressure/fracability are restricted, thus boosting the 

Table 1 
Division of training and predicting stages for data processing workflow.  

Well No. W1 W2 W3 W4 W5 W6 W7 

For Training/Number of stages 14 17 17 20 / / / 
For Testing/Stage no. Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 18 Stages 

10 & 15 
Notes / / / / Neighbour well Distant well Different formation  

Table 2 
Summary of datasets, inputs and outputs for the data processing workflow.   

Inputs Outputs Error Analyses (Refer to Field 
Record) 

BI Optimization and 
Derivation 

Brittleness Hydraulic Parameters (Control Variates) 

Basic 
Dataset 

/ Pump rate; fluid type; proppant concentration and 
mesh 

Pressure 
(Baseline) 

Baseline 
error 

/ / 

BI Dataset Brittleness 
Index 

Pump rate; fluid type; proppant concentration and 
mesh 

Pressure (BI- 
based) 

BI-based 
error 

Error 
improvement 

New BI and verification  

Table 3 
Summary of the BI correlations for evaluation.  

No. Correlation Category Original parameters collected for calculations References 

BI1 BI =
Qtz + Carb

Qtz + Carb + Cly + TOC 
Mineral-based Qtz–quartz; Carb–carbonate; Cly–clay; TOC–total organic carbon 26 

BI2 BI =
1
2
(En + υn)

Elastic-based En–normalized Young’s modulus; υn–normalized Poisson ratio 12 

BI3 BI = − 0.012DTC + 1.4921
BI = − 1.5314φ + 0.8575 

Logging-based DTC–compressional slowness; φ–porosity 11 

BI4 BI = (1 − (υ)2
)*(

KIC2

E
)*103 Elastic-based E–Young’s modulus; υ–Poisson ratio; KIC–fracture toughness 27 

BI5 BI =
Eρ
υ 

Elastic-based ρ–density; E–Young’s modulus; υ–Poisson 28 

BI6 E
λ
=

ν2
s (3ν2

p − 4ν2
s )

(ν2
p − 2ν2

s )(ν2
p − ν2

s )

BI =
(E/λ)n + υn

2 

Logging-based vp–P-wave velocity; vs–S-wave velocity; λ–Lame’s first parameter; E–Young’s modulus; υ–Poisson ratio 29  

Fig. 2. Schematic of the data-driven workflow for BI optimization and derivation. Q, S and Dp represent the pump rate, proppant concentration and averaged 
proppant diameter, respectively. 
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dominance of BI on predictions. Each BI-based workflow processes the 
original measurements respectively. The predicted pressures based on 
the Basic (donated as the Baseline prediction) and BIi datasets are 
compared with field records for error analyses and BI optimization. The 
remaining errors are improved by the derivation of a new BI based on 
the backward elimination strategy. The geological features are selected 
based on the variable analysis, and then introduced as the correction 
coefficient into the new BI calculation for promotions. The derivation 
details are presented in Appendix B. Finally, the workflow is executed 
again to verify the performance of the new BI. 

3. Results 

The prediction of pressure/fracability based on the Basic dataset is 
set as the reference. The error between the reference and field-recorded 
pressure is denoted as the baseline error, and is used to measure the 
promotion based on the BI dataset. The error improvement is applied as 
the criterion of BI optimization, and is quantified by the mean absolute 
error (MAE) and root mean squared error (RMSE). Based on the opti
mization, a new BI equation is derived via variable analysis and back
ward elimination strategy (the detailed process is presented in Appendix 
B), which is then verified based on field applications. 

3.1. Predictions of fracturing pressure 

Based on the data-processing workflow in Fig. 2, the predicted 
fracturing pressure/fracability produced by different algorithms are 
presented in Fig. 3 using Stage 5 from W2 as an example. The predictions 
based on BI3 (the blue dashed curve) and only hydraulic parameters (the 
red dashed curve) are compared with field measurements (the solid 
black curve). Generally, predictions based on BI3 fluctuate around the 
field curve and exhibit higher precision than baseline predictions. BI3 
introduces the logging data and porosity of the targeting formation, thus 
improving the interpretation of fracabiliby and reducing the error 

significantly. 
The BI3-based workflow (used as an example) is deployed to process 

the data from all eight testing stages. The errors of these testing stages 
are presented in Appendix A. Generally, the errors increase apparently 
in the last four stages from W5~W7 compared with errors based on 
W1~W4. Stages 3, 5, 7 and 9 are from the same wells (W1~W4) as the 
training stages (Table 1), which may constrain the geological un
certainties because of the close location and result in better predictions. 
The testing errors are averaged and used to characterize the error 
improvement by introducing the BI3, as shown in Fig. 4. The averaged 

Fig. 3. The predictions of fracturing pressure (frac
ability) produced by MLR, SVR, and ANN algorithms 
using Stage 5 from W2 as an example. The red dashed 
curve represents the prediction based on the Basic 
dataset and is used as a baseline (donated as Baseline 
Prediction). The blue dashed curve is the result based 
on the BI3-processed dataset (donated as BI3-based 
Prediction). The solid black curve is the original 
field record. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the Web version of this article.)   

Fig. 4. The comparison of averaged errors (eight testing stages) produced by 
MLR, SVR and ANN algorithms based on the Basic and BI3 datasets. 
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MAE and RMSE produced by different algorithms based on the Basic 
dataset are 0.22 and 15.1, respectively, which are reduced down to 0.18 
and 12.8 based on the BI3. The maximum values of the error are mainly 
obtained in the last four stages from W5~W7 (Appendix A). 

3.2. Error analyses and BI optimization 

The error analyses in Table A1 (Appendix A) and Fig. 4 are conducted 
for five more iterations based on BIi-based workflow (Fig. 2). The al
gorithms are trained by BIi datasets (i = 1, 2, 4, 5 and 6), respectively. 
The errors are analyzed and presented in Fig. 5, where the error pro
duced by the Basic dataset is used as a reference. Among all the BIs, BI6 
yields the largest MAE and RMSE, followed by BI4. The performances of 
BI2 and BI3 are comparable, which reduces around 12%–16% of the 
errors. BI1 performs slightly better in controlling errors than the per
formances of BI2 and BI3. BI5 produces the minimum errors compared 
with others, and diminishes the MAE and RMSE by 20% and 18%, 
respectively. Besides, the performance of the logging-based BI3 is un
expected since the equations are fitted using data from a different basin. 

The performances of ANN and SVR are better than that of the MLR 

algorithm for most of the predictions, as shown in Fig. 5. Therefore, the 
predictions based on ANN and SVR algorithms are used for the stage-by- 
stage error analysis. Noteworthy, an appropriate BI may restrain the 
difference in the algorithm performances as the results based on BI3 in 
Fig. 5 (noted by the vertical dashed line). The results based on the BI5- 
based workflow (with the minimum errors) are expanded as examples 
for the stage-by-stage analysis among different wells, as shown in Fig. 6. 

The MAEs of the first four stages are controlled under 10% because 
the algorithms are trained by data from the same wells (W1~W4). The 
errors of W5 mildly increase, which may be explained by the adjacent 
relationship between W5 and W3, sharing similar geological properties. 
The algorithms produce the largest errors for W6 and W7, wells from a 
far distance and drilled through a different subdivided formation, 
respectively. The error improvements based on classic BIs mainly occur 
in the first four wells. Therefore, a new BI is necessary to promote its 
interpretation capacity for broader deploying scenarios, and then 
improve the errors for W6 and W7. The BI1, BI2, BI3, and BI5 perform 
better according to the error analyses (Fig. 5) and are optimized for the 
new BI derivation. 

Fig. 5. BI evaluation by comparing averaged errors based on eight testing 
stages. The blue square, orange triangle and red circle represent results pro
duced by MLR, SVR and ANN algorithms, respectively. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 6. Stage-by-stage analysis of MAE and RMSE among the testing wells 
based on the BI5-based workflow. The dashed curves are the errors based on the 
Basic dataset. The solid triangle and circle represent the errors based on the BI5 
dataset and different algorithms (SVR and ANN). 
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3.3. New BI derivation 

The new BI is designed to involve as many characteristics as possible 
to deliver more features into the algorithm training, thus improving the 
prediction. The backward elimination strategy (based on SVR) and in
dependent variable analysis (based on MLR) are employed to optimize 
the expression and new parameters. The derivation process is explained 
in Appendix B. The expression of the new BI is given by 

BINew =
(BI1n + BI3n + BI5n)

3
×

Stressmin

Stressmax
(1)  

where BIin is the normalized BIi (i = 1, 3, and 5), in which the mineral 
component (BI1n) exerts the most significant contribution followed by 
BI3n and BI5n according to the results of the backward elimination 
(Appendix B, Table B1); Stressmin and Stressmax are minimum and 
maximum horizontal principal stress, and are optimized by variable 
analyses (Appendix B, Table B2). 

The new calculation involves the mineral component, mechanical 
properties, logging interpretation and geological stresses, thus providing 
a more comprehensive evaluation method of brittleness. The application 
range of the new BI is constrained by the data source used for the 
derivation and verification. It is proposed based on field measurements 
from the shale gas wells in the Sichuan Basin, China. Broader assess
ments based on different basins are currently infeasible due to the data 
limitation. However, the BI3 fitted by the field data from the U.S. exerts 
relatively high performance in processing the data from China (Fig. 5). 
We believe that the universality of the new BI (Eq. (1), involving BI3) can 
also be extensive. 

3.4. Performance of new BI 

The performance of the new BI (Eq. (1)) is demonstrated by aver
aging the errors based on eight testing stages and three algorithms (MLR, 
SVR, and ANN), as shown in Fig. 7. The single BI1~BI6 decreases MAE 
and RMSE by around 20% compared with the baseline errors. However, 
the new BI cuts down 50% of MAE and 40% of RMSE, respectively. The 
new BI also restrains the differences in algorithm performances, 
demonstrating the promotion of predictions based on Eq. (1). 

Significant improvements are observed in cases of W6 and W7 based 
on the new BI, as shown in Fig. 8. Those errors are rarely reduced by BI5 
as shown in Fig. 6. The new BI suppresses the MAE of the neighbour well 
(W6) under 10%, which will benefit the evaluation of fracability for the 
well-factory mode fracturing (several neighbour wells are drilled and 
fractured in one platform). The experience of previous fracturing oper
ations can be extracted by the new BI for pressure prediction and 
schedule optimization for new neighbour wells. Meanwhile, approxi
mately 55% of MAE and 52% of RMSE, on average, are diminished for 
the W7 case. The new BI provides better interpretations of the new 
subdivided formation and helps the machine learning algorithms to 
yield more accurate predictions. Therefore, the higher performance of 
the new BI is demonstrated according to the error comparisons with 
classic BIs. 

4. Discussion 

4.1. Analysis of remaining errors 

We use error reductions (relative to the baseline reference) as the 
criterion of BI optimization. Therefore, the final errors in Fig. 8 may 
remain high for the W7 case, especially for Stage 10. The precise pre
diction of fracturing pressure is beyond the scope of this work since the 
performance of the new BI is already demonstrated by the significant 
improvement in MAE and RMSE. Future studies focusing on the pres
sure/fracability prediction may concern the remaining errors in Fig. 8 
and restrict the errors by introducing more dominating features or 

advanced machine learning algorithms. In addition, slight error in
creases are observed for W1. The hydraulic parameters may determine 
the prediction for W1, referring to the relative low MAE and RMSE yield 
by the Basic dataset where only pumping parameters are involved. The 
introduction of BI may provide limited contribution or even interference 
to the algorithm training and the predictions. Similar results are 
inspected in the case of W3, where low errors and limited promotion of 
the BIs are obtained. 

4.2. Limitations and implications 

The new BI is tested by eight fracturing stages from seven different 
wells, resulting in satisfactory performances. The limitation of this work 
may still exist in the complex expression of the new BI (3-BIs-combi
nation that involves mineral, logging and elastic parameters) that in
creases the assignment of data collection and calculations. We, 
therefore, mention that a 2-BIs-combination (Eq. B6in Appendix B, 
Table B1) may be a convenient substitute for on-site manual computa
tions. Noteworthy, the capacity of the 2-BIs-combination is likely to be 
restrained, especially when the missing features (compared with the 3- 
BIs-combination) are determinants of the brittleness. 

The new BI (considering mineral, mechanical, logging and geological 
features) provides a more accurate and comprehensive recognization of 
formation, thus improving the “sweet point” optimization and stage 
partition. According to the derivation, the usage of the new BI is more 
complicated (based on a machine learning workflow) than the tradi
tional value comparison. Fitting the correlation between the new BI and 
fracability (i.e. the maximum fracturing pressure) based on a mass of 
field cases may produce a similar value-based criterion as the traditional 
usage. However, we believe that it is more important to make better and 

Fig. 7. The averaged MAE and RMSE produced by the new BI based on eight 
testing stages and three algorithms. 
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broader usages of the brittleness index. Traditional value comparison of 
BI can only generate a qualitative adjustment about the fracturing dif
ficulty. The usage of comparison results highly depends on the experi
ences of field engineers, which may induce uncertainty and bias. In 
contrast, the data-driven method in this paper provides a more powerful 
approach to producing informative numerical predictions (such as the 
fracturing pressure). It is possible to use the new BI as a control variable, 
and then regulate the injection parameters (pump rate, fluid viscosity, 
etc.) for pressure prediction, thus implementing precise optimization of 
the pre-fracturing design based on the data-driven workflow. 

5. Conclusions 

Six classical mineral-, logging- and elastic-based BI correlations are 

evaluated by processing field measurements of shale gas fracturing 
based on machine learning workflows. The fracability is redefined as the 
fracturing pressure dominated by rock mechanical (mainly brittleness), 
geological, and hydraulic conditions (pumping parameters), which 
clarifies the confusion between brittleness and fracability. The control 
variate method is applied to restrain the effects of geological and 
injecting aspects and enhance the dominance of brittleness on frac
ability. Classic BIs are evaluated by predicting the fracturing pressure 
based on three different algorithms, trying to mitigate the interferences 
of algorithm performances. The data-driven approach makes better use 
of the BI for informative numerical predictions compared with the 
conventional way of value comparison that only generates a qualitative 
evaluation. The major conclusions may be generalized as follows:  

(1) The elastic-based BI produces the minimum errors for pressure 
predictions, followed by the logging-based BI, which is unex
pected since the logging-based BI is empirical equations based on 
data from a different basin. The mineral-based BI also exerts a 
significant contribution to predictions and is crucial for the new 
BI derivation according to the backward elimination analysis 
(Appendix B). Moreover, an appropriate BI may restrain the 
different performances of various machine learning algorithms.  

(2) A new BI calculation is derived by normalizing and averaging 
three optimized BIs based on the backward elimination strategy. 
The ratio of minimum and maximum horizontal principal stress, 
representing the geological factor, is also involved as the 
correction coefficient in the new equation according to variable 
analyses. The new correlation considers the mineral component, 
mechanical properties, logging interpretation and geological 
stresses, thus is more comprehensive and representative.  

(3) The new BI is verified by field applications of eight fracturing 
stages from seven different wells. It diminishes around 50% and 
40% of the MAE and RMSE, while classical BIs reduce about 20% 
of the errors. Moreover, the major error improvements are ob
tained in the distant well and different subdivided formations, 
indicating the higher performance and broader applicability of 
the new BI. The performances of different machine learning al
gorithms based on the new BI are also more uniform with limited 
variations. The new BI provides a more reliable option for 
recognizing the formation and may be essential for pre-fracturing 
design and prediction of operating pressure. 
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Appendix A. Summary of errors based on BI3-based workflow 

The BI3-based workflow (used as an example) is performed to process the data from all eight testing stages. The errors are summarized in Table A1. 
Each value represents the averaged error of the entire fracturing curve. The MAE and RMSE characterize the accuracy and similarity between actual 
and predicted fracturing curves, respectively. Generally, the errors increase apparently in the last four stages from W5~W7 compared with errors 
based on W1~W4. Stages 3, 5, 7 and 9 are from the same wells as the training stages, which may constrain the geological uncertainties because of the 

Fig. 8. Stage-wise improvements of MAE and RMSE based on the new BI.  
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close location and result in better predictions. 
Appendix B. Derivation of the new BI 

The BI1, BI2, BI3, and BI5 produce smaller errors according to the error analyses (Fig. 5) and are optimized for the new BI derivation. The SVR is 
used for derivation because of its relatively high accuracy and computational efficiency, referring to Fig. 5. The new BI is designed to involve as many 
characteristics as possible to deliver more features into the algorithm training, thus improving the prediction. Therefore, the initial expression of new 
BI is proposed by averaging the normalized BIs referring to previous efforts12,29 

BINew− 1 = (BI1n + BI2 + BI3n + BI5n)/4

BIin =
BIi − BIimin

BIimax − BIimin

(B1)  

where BIin is the normalized BIi (i = 1, 3, and 5). BI2 is an average of the normalized Young’s modulus and Poisson ratio (Table 3), thus remaining the 
original value. 

The backward elimination strategy (starting with all candidates and eliminating one at a time until minimizing the error) is deployed for the new BI 
derivation. Eq. (B1), containing all four selected BIs, is firstly applied for algorithm training, which is denoted as the All-in step. The prediction error in 
this step is used as a reference. Then, three out of the four BIs are freely assembled for four 3-BIs-combinations, in which the one with the minimum 
error is chosen for further derivation (Iteration 1 in Table B1). If the minimum errors are not larger than the All-in errors, the chosen 3-BIs-combination 
will be the new reference for the next round comparison – an elimination process. The elimination process repeats for smaller-scale combinations until 
the new error is larger than the reference (Iteration 2 in Table B1). 

The averaged errors based on all eight testing stages are summarized in Table B1. All new BI combinations promote the model performance 
compared with the errors based on BI5. Eqs. (B2) and (B8), without BI1, produce the most prominent errors in each iteration, indicating the signif
icance of mineral components for the interpretation of fracability. Eq. (B6) requires fewer parameters (2-BIs-combination) and produces relatively 
small errors, thus may be a convenient substitute for on-site estimations. Eq. (B3) results in the minimum errors and is selected for further derivation. 
According to the error improvements during Iteration 2 in Table B1, BI5n contributes 7.69% of MAE reduction to Eq. (B3), from 0.130 to 0.120. BI3n 
and BI1n decreased 12.3% and 26.4% of MAE, respectively, based on the errors of Eqs. (B7) and (B8). 

New parameters are tested and introduced into the expression to promote BI performance. A series of geological and engineering candidates are 
applied for variable analyses (Table B2). The parameters involved in Eq. (B3) and hydraulic parameters are set as the control variables. The well depth, 
pore pressure, stage length, number of clusters, and stress ratio (ratio of minimum and maximum horizontal principal stress) are appended to the 
control variables and fed into the algorithm independently and successively (Tests 1–5 and All-in test), as shown in Table B2. Correspondingly, a series 
of MLR workflow is constructed to process the training dataset. The new parameter is optimized by referring to the variable coefficient and P values – 
the significance of a variable to the pressure prediction. Since the feature scaling is performed, the larger coefficient (absolute value) indicates a more 
significant impact of the corresponding variable on the fracturing pressure. 

The stress ratio, with the largest coefficient in Tests 1–5 and All-in test (Table B2), is chosen as the new parameter and used as the correction 
coefficient for the new equation. The expression of the new BI, therefore, is given by 

BINew =
(BI1n + BI3n + BI5n)

3
×

Stressmin

Stressmax
(B9)  

where Stressmin and Stressmax are minimum and maximum horizontal principal stress, respectively.  
Table A1 
Summary of prediction errors based on different datasets and algorithms.   

Algorithm Error Stage 3 Stage 5 Stage 7 Stage 9 Stage 
11 

Stage 
18 

Stage 10 Stage 15 

Basic dataset MLR MAE 0.08 0.26 0.07 0.14 0.19 0.19 0.59 0.31 
RMSE 7.11 14.57 6.60 13.26 18.13 17.84 28.48 18.41 

SVR MAE 0.10 0.29 0.05 0.10 0.17 0.16 0.59 0.33 
RMSE 8.25 16.75 5.40 9.84 16.31 16.53 29.12 19.74 

ANN MAE 0.10 0.29 0.05 0.09 0.16 0.15 0.56 0.31 
RMSE 8.25 16.37 5.40 9.01 15.03 15.53 27.75 18.71 

BI3 dataset MLR MAE 0.08 0.05 0.05 0.13 0.12 0.11 0.60 0.32 
RMSE 7.13 4.45 4.73 12.41 12.16 11.93 29.21 19.14 

SVR MAE 0.09 0.07 0.05 0.08 0.13 0.12 0.60 0.36 
RMSE 8.68 5.62 4.77 8.75 12.31 12.26 30.31 21.73 

ANN MAE 0.11 0.07 0.05 0.06 0.12 0.11 0.58 0.35 
RMSE 10.30 5.39 5.15 6.83 12.02 11.51 29.58 20.99   
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Table B1 
Selection of the BI-combinations based on the backward elimination strategy.  

Iteration 1 Iteration 2 

Eq.  MAE RMSE Eq.  MAE RMSE  

Single BI5 (reference) 0.174 12.1     
(B1) All-in (reference) 0.121 9.25 (B3) BInew− 3 = (BI1n +BI3n +BI5n)/3 (reference) 0.120 9.20 
(B2) BInew− 2 = (BI2 + BI3n + BI5n)/ 3 0.167 11.7 (B6) BInew− 6 = (BI1n + BI3n)/2 0.130 9.86 
(B3) BInew− 3 = (BI1n + BI3n + BI5n)/ 3 0.120 9.20 (B7) BInew− 7 = (BI1n + BI5n)/2 0.136 10.2 
(B4) BInew− 4 = (BI1n + BI2 + BI5n)/ 3 0.130 9.85 (B8) BInew− 8 = (BI3n + BI5n)/2 0.163 11.5   

Table B2 
Summary of the independent variable analysis based on MLR algorithm and training dataset.    

Original test Test 1 Test 2 Test 3 Test 4 Test 5 All-in test 

Dependent variable Fracturing pressure        
Independent variables Depth  3.14***     2.78*** 

P-pore   2.10***    − 8.27*** 
Stage length    − 1.38***   1.81*** 
Clusters     − 2.43***  − 3.02*** 
Stress ratio      6.19*** 17.44*** 

Control variables Fluid 4.77*** 4.70*** 4.78*** 4.74*** 4.62*** 4.79*** 4.59*** 
Fluid 3.59*** 3.66*** 3.61*** 3.61*** 3.61*** 3.61*** 3.63*** 
Fluid 7.54*** 7.46*** 7.57*** 7.49*** 7.27*** 7.60*** 7.26*** 
Quartz − 4.42*** − 7.54*** − 6.40*** − 4.54*** − 2.78*** − 7.10*** − 4.70*** 
Clay − 8.28*** − 10.66*** − 9.32*** − 8.75*** − 7.73*** − 9.56*** − 8.60*** 
Carb 7.82*** 4.12*** 6.80*** 6.61*** 6.01*** 0.47 − 12.81*** 
TOC 1.67*** 1.26*** 1.13*** 1.87*** 0.95*** 1.19*** 0.93** 
Porosity − 1.30*** − 2.09*** − 0.59* − 1.30*** − 0.84*** − 0.58** − 2.21*** 
Density 4.31*** 2.38*** 3.16*** 5.44*** 4.95*** 2.36*** 0.95** 
Young’s M − 12.86*** − 10.46*** − 13.55*** − 11.51*** − 12.80*** − 12.82*** − 9.59*** 
Poisson 5.62*** 3.73*** 4.22*** 5.74*** 4.21*** 3.54*** 1.71*** 
DTC − 18.94*** − 15.57*** − 18.96*** − 17.01*** − 18.16*** − 17.56*** − 13.55*** 
Pump rate 5.08*** 5.20*** 5.06*** 5.16*** 5.37*** 5.04*** 5.37*** 
Sand-ratio − 0.67*** − 0.47** − 0.66*** − 0.65*** − 0.58*** − 0.67*** − 0.45** 
Proppant − 0.14 − 0.22 − 0.13 − 0.14 − 0.20 − 0.11 − 0.24 

Notes: The p-value is the significant level (*p < 0.05, **p < 0.01, ***p < 0.001). 
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