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Abstract

Online Transfer Learning (TL) allows knowledge to be learnt from a data rich

source domain to aid predictions in an online target domain. However, when all

domains are online, and a data rich source domain does not exist, we must determine

what to transfer, how to combine transferred knowledge, and whether to transfer

knowledge. To ensure the feasibility of online TL methods in real-world applications,

they should not only aid predictions in receiving domains, but should consider the

communication and computational overheads of knowledge transfer. To address

these challenges, this thesis presents methods for online TL when all domains are

online, which are evaluated using synthetic and real-world regression-based datasets.

First, the BOTL framework is introduced, which enables knowledge trans-

fer to be conducted bi-directionally between online data streams, where knowledge

is transferred in the form of predictive models, and combined using an OLS meta-

learner. Second, two methods of selecting a relevant yet diverse subset of transferred

and locally learnt models are presented, namely parameterised thresholding and con-

ceptual clustering. These approaches help to prevent overfitting when the number

of models transferred is large in comparison to the window of available data. To

reduce the computational overhead of selecting subsets of models, a static diver-

sity metric is introduced, which estimates the conceptual similarity between models

using the Principal Angles (PAs) between their underlying subspaces. Third, two

methods for determining whether to transfer knowledge are presented, namely IdDT

and IdCS, which maintain comparable predictive performances to when all models

are transferred, while reducing the number of models received in each domain by

47.1% and 30% respectively across the experiments conducted for this thesis.
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Notation

α
Domain α, where A is used in this thesis to denote a single source

domain, and B is used to denote a receiving domain.

Xα Data stream in domain α, where Xα= {x1, . . . , xt, . . . , xn}.
xt ∈ Xα The tth observed instance in Xα.

Y α The response variable space in domain α.

yt ∈ Y α The tth response variable in Y α.

Cα The set of concepts encountered in domain α.

cαi ∈ Cα The ith concept encountered in domain α.

Xα
i ∈ Xα

The data stream segment corresponding to concept cαi in domain

α.

fαi : Xα
i → Y α

i Model i learnt in domain α.

ŷαit Prediction using fαi (xt).

Mα Knowledge base of models available in domain α.

x∗t Meta instance of base model predictions for instance xt.

F : Xα→ Y α Meta-learner in domain α.

ŷ∗t Prediction using FM
′
(xt) where M′ ⊆M.

W Sliding window of |W | instances, W = {xt−|W |, . . . , xt}.
Wmax Maximum window size (RePro).

Wmin Minimum window size (ADWIN, AWPro).

errt Predictive error of instance xt.

errW Predictive error across W .

λl, λd Loss and drift thresholds (RePro).

λr Recurrence threshold (AWPro).

δ Confidence value (ADWIN, AWPro).

λperf Performance culling threshold.

λMI Mutual information culling threshold.

λCS Conceptual similarity culling threshold.

Ui Principal Components of the window used to learn model fi.
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M′ A subset of models available in domain α, where M′ ⊆Mα.
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Chapter 1

Introduction

The functionality of many real-world applications must be tailored to their sur-

rounding environments. For example, a smart home heating system should operate

to meet a user’s heating preferences to suit their pattern of life. Tailoring functional-

ities such as these often requires large numbers of user defined parameters as input.

For example, if we consider Adaptive Cruise Control (ACC) for a vehicle, a driver

may prefer to follow leading vehicles at different distances depending on factors such

as weather conditions, road conditions, or even the purpose of the journey. Relying

on a user to modify parameters to configure the functionality of applications can

become a burden to users. For example, the performance of a smart home heating

system is not only dependent on a user’s pattern of life, but it is also influenced

by external weather conditions, and therefore the user’s preference may change sea-

sonally [78]. To overcome this, machine learning techniques can be used to predict

tailored functionalities or user preferences from sensing the environment and, to

achieve this, learning algorithms must operate in online environments. Learning

in online environments can be considered as learning from streaming data, where

instances are observed sequentially. In this thesis, we consider the scenario where

the response variable associated with each instance is observed immediately after a

prediction has been made. In order to make predictions, an online learning algo-

rithm must be used, which can be trained either by incrementally updating model

parameters as each instance is sequentially observed, or by retraining a predictive

model using recent batches of data [26].

Characteristics of online environments introduce three key challenges that

must be considered by online learning algorithms. First, data required to train

learning algorithms can only be obtained in real-time, meaning that instances of

data are observed in the form of a data stream in which future instances are un-
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known [53]. Second, in many online learning applications, a rich history of data

cannot be retained since data may grow without limit [95]. Third, the underlying

distributions in the data may change over time, a phenomenon known as concept

drift [26, 43, 78]. Concept drift may be caused by changes in the distribution of

observations in the data stream, as a consequence of changes in the environment,

changes in the response variable to be predicted, or changes to the mapping between

observations and response variable [37]. In order to maintain effective predictions,

online learning algorithms must be able to adapt in the presence of concept drift.

One way this can be achieved is using concept drift detection strategies to identify

when predictive models must be updated or re-learnt due to concept drift [26].

A challenge of learning in concept drifting data streams is that data availabil-

ity is limited [32]. Even in situations where a rich history of data can be retained, the

presence of concept drift means that historical data may not be relevant to the cur-

rent mapping between observations and response variable, referred to as the current

concept. When a new concept is encountered, sufficient observations belonging to

the new concept must be observed before a new model can be learnt, or an existing

model updated [9]. To maintain effective predictions, online learning strategies need

to react quickly to concept drift [95]. However, this means that a predictive model

may need to be learnt or updated when few instances belonging to the new concept

have been observed. This can cause predictive models to be created that do not

generalise well, due to the limited availability of training data, and may not make

effective predictions for future instances belonging to the same concept. Therefore,

there is a trade-off between reacting quickly to concept drift and creating models

that generalise well [9].

Other challenges associated with online learning manifest from the appli-

cations in which it is beneficial. Many such applications are situated in dynamic

real-world environments, where a rapid response to the environment is paramount.

A wide variety of devices may be used for these applications, ranging from low cost

sensors to high performance computers. For example, a low cost sensor may be used

for environmental monitoring, to make predictions that are influenced by weather

conditions [33]; a smart phone may be used to monitor a user’s behavioural patterns

in order to make predictions with respect to their pattern of life [38]; and a high

performance computer may be used to monitor and make predictions of network

and communication irregularities [103]. Although the memory and computation

capabilities of the devices used vary greatly, two factors are common across such

applications. First, the memory and computation available on each device may be

limited. Second, applications of this nature are typically not stand-alone and may
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learn similar predictive tasks from independent data streams. For example, two

low cost sensors may be used for environmental monitoring in two different loca-

tions [86]. Since each device may have limited data to learn predictive models and

must react to concept drift, the models learnt on each device may not generalise

well. Therefore, knowledge can be learnt on each device and shared to enhance their

respective predictive performances through online Transfer Learning (TL) [104].

Existing online TL frameworks typically consist of one or more data rich

offline source domains, where knowledge can be learnt in the form of predictive

models. This knowledge can then be transferred to an online target domain that has

limited data availability [27, 32, 104]. The knowledge transferred is combined with

knowledge learnt in the target domain to improve predictive performance [65, 85,

107]. The primary challenges addressed by online TL research are determining what

to transfer, and how to combine transferred knowledge with locally learnt knowledge

to improve the predictive performance in the target domain [27, 52, 89, 97, 104].

However, these challenges have not been considered when all domains are online,

and where a data rich offline source domain does not exist.

In this thesis, we consider the scenario where all domains in a TL framework

are online. We address the challenges of determining what to transfer and how

to use transferred knowledge, focusing specifically on the characteristics of each

domain being online and susceptible to concept drift. In real-world applications

where knowledge is transferred between domains that correspond to devices situ-

ated in different physical locations, online TL frameworks may also be required to

consider the communicational overhead of knowledge transfer, since devices may be

networked with limited bandwidth. This limitation must be considered when de-

termining what to transfer, and also introduces the question of whether knowledge

should be transferred between domains. Without this consideration, knowledge that

is not beneficial to another domain may be transferred, incurring unnecessary com-

munication overheads. Therefore, in this thesis, we also address the challenge of

determining whether it is appropriate to transfer knowledge to other domains.

1.1 Objectives

The aim of online TL is to improve the predictive performance achieved in the target

domain by transferring knowledge learnt from a source domain. However, when all

domains are online, each domain can be considered as both a source and a target.

Therefore, in this thesis, a domain that has learnt knowledge which can be trans-

ferred is referred to as a source domain, and a domain that has received knowledge
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from another domain is referred to as a receiving domain. Each domain in the

framework can be both a source domain and a receiving domain, with the overarch-

ing aim of online TL being to improve the predictive performance in each domain.

This thesis addresses the challenges of determining what to transfer, determining

how to combine transferred knowledge with locally learnt knowledge, and determin-

ing whether knowledge should be transferred to receiving domains. Specifically, the

objectives of this thesis are as follows.

1. To determine what can be learnt from an online data stream that

may be beneficial to other independent online data streams when

transferred throughout an online TL framework.

Since data streams are subject to concept drift, addressing the challenge of

what to transfer requires predictive models to be created that represent the

underlying concepts encountered in each domain.

2. To determine how transferred predictive models can be combined

in receiving domains to aid predictive performance.

Since each domain is online, knowledge transfer is bi-directional, and there-

fore a novel online TL framework must be developed to transfer and combine

predictive models.

3. To determine whether a predictive model should be transferred to

other domains in an online TL framework. The transfer of a predictive

model may not always be beneficial to the receiving domain and, therefore,

it should be determined whether a predictive model will be beneficial to a

receiving domain prior to transfer to prevent unnecessary communication and

computation overheads.

1.2 Contributions

This thesis consists of 6 main contributions, which focus on the challenges of deter-

mining how to combine knowledge, and determining whether knowledge should be

transferred in online TL. The main contributions of the thesis are as follows.

• A novel online TL framework, the Bi-directional Online Transfer Learning

(BOTL) framework, is introduced in Chapter 5, which allows knowledge to

be transferred where all domains are online and there is no data rich offline

source domain. Knowledge is transferred in the form of predictive models,

which are combined with knowledge learnt locally from a receiving domain,
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using an Ordinary Least Squares (OLS) meta-learner, addressing the challenge

of how to combine transferred and locally learnt knowledge.

• As the number of models available in each domain, referred to as base models,

becomes large, the OLS meta-learner in BOTL becomes prone to overfitting.

Therefore, in Chapter 5, näıve culling mechanisms are also introduced, allow-

ing the number of models available to the meta-learner to be reduced. Model

culling is achieved using common ensemble pruning metrics, namely predic-

tive performance and Mutual Information (MI). BOTL frameworks that em-

ploy these näıve culling techniques are referred to as P-Thresh and MI-Thresh

respectively.

• Selecting a subset of relevant yet diverse base models is fundamental to pre-

venting meta-learners from overfitting in online environments. However, exist-

ing diversity metrics, such as MI, measure diversity by the level of disagreement

between base model predictions. Metrics such as MI must be re-calculated as

the data stream progresses due to its dependency on the underlying distribu-

tion of the data. A novel diversity metric, in the form of conceptual similarity,

that remains static even in the presence of concept drift, is introduced in Chap-

ter 6. The conceptual similarity of base models is estimated using the Principal

Angles (PAs) between the subspaces in which each base model was learnt. The

applicability of this diversity metric is not limited to online TL frameworks,

and it can be used in any online learning setting where the diversity of base

models must be calculated.

• We show, in Chapter 6, how conceptual similarity can be used as a diversity

metric for parameterised thresholding, which allows a subset of base models

to be used as input to the OLS meta-learner in the BOTL framework, referred

to as CS-Thresh. CS-Thresh achieves comparable predictive performances to

MI-Thresh while requiring fewer diversity metric calculations in order select a

subset of base models as input to the meta-learner.

• We also introduce parameterless conceptual clustering in Chapter 6, which

uses conceptual similarity as a diversity metric and Self-Tuning Spectral Clus-

tering (STSC) [100] to cluster base models available to a meta-learner, in

order to obtain a relevant yet diverse subset of base models without requiring

a user defined culling parameter. Parameterless conceptual clustering achieves

comparable predictive performances to MI-Thresh and CS-Thresh, but is not

dependent on domain expertise to select an appropriate culling threshold.

5



• Since a relevant yet diverse subset of base models should be selected as input

to a meta-learner, models transferred throughout the framework that are not

diverse to those already available in a receiving domain provide little benefit.

Transferring such models incurs unnecessary communication and computa-

tion overhead. Therefore, two novel approaches that address the challenge

of determining whether a base model should be transferred are introduced

in Chapter 7, namely Inter-domain Diversity Thresholding (IdDT) and Inter-

domain Conceptual Similarity (IdCS). These approaches maintain comparable

predictive performances to frameworks where all models are transferred, while

reducing the number of models received by each domain. Averaged across

all datasets and Concept Drift Detectors (CDDs) considered in this thesis,

IdDT reduces the number of models received by each domain by 47.1%, while

IdCS achieves a 30% reduction, reducing communication and computation

overheads.

To evaluate the main contributions of this thesis, 3 secondary contributions

were required. The secondary contributions consist of novel datasets, containing

online data streams specifically for regression tasks, and address the challenge of

determining what can be learnt from these data streams that can be transferred in

online TL. The secondary contributions of the thesis are as follows.

• Existing online TL research focuses on learning for classification tasks. How-

ever, many real-world applications require predictions to be made for regres-

sion tasks. Therefore, three types of novel datasets have been created and

are presented in Chapter 3. These consist of two types of synthetic datasets,

namely the drifting hyperplane datasets and the smart home heating simulator

dataset, and one real-world dataset, namely the following distance dataset1.

• To address the challenge of determining what to transfer, two existing CDDs,

namely RePro [95] and ADWIN [8], have been adapted to create predictive

models from regression based data streams that can be transferred throughout

online TL frameworks. These CDDs are used to create predictive models that

represent the concepts encountered in a data stream.

• A novel CDD, called AWPro, is presented in Chapter 4, which combines key

characteristics of RePro and ADWIN that are beneficial when learning in

online TL frameworks that have computation and communication limitations.

1These datasets and associated data generators are publicly available: https://github.com/

hmckay/BOTL.
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The remainder of this thesis is organised as follows. Chapter 2 provides an

overview of relevant areas of research, including online learning, ensemble learning,

and online TL. Chapter 3 presents the three types of datasets used in the remain-

der of this thesis to present experimental results, namely the drifting hyperplane

datasets, the smart home heating simulator dataset, and following distance dataset.

The underlying CDDs used to learn predictive models from online data streams are

discussed in Chapter 4. Specifically, modifications to RePro [95] and ADWIN [8],

to enable their use in regression settings, are presented, and a novel CDD, namely

AWPro, is introduced. These CDDs are used subsequently throughout the thesis to

create base models for transfer. The BOTL framework is introduced in Chapter 5,

alongside näıve culling thresholding approaches to reduce the number of base models

available to the meta-learner, namely P-Thresh and MI-Thresh. A novel diversity

metric, conceptual similarity, is defined in Chapter 6, and used alongside parame-

terised thresholding, CS-Thresh, and parameterless conceptual clustering, CS-Clust,

to obtain a subset of base models to be used as input to the OLS meta-learner in

BOTL. In Chapter 7, two techniques for determining whether a base model should

be transferred to a receiving domain are presented, namely Inter-domain Diver-

sity Thresholding (IdDT) and Inter-domain Conceptual Similarity (IdCS). Finally

Chapter 8 concludes the thesis by discussing the contributions made and outlining

avenues of future research.
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Chapter 2

Background

Learning in online environments can be challenging since data availability may be

limited, and future distributions in the data are unknown [53]. Despite this, many

real-world applications require learning to be conducted in such environments, and

are typically not stand-alone [38]. This means that knowledge can be shared between

applications that perform similar tasks to improve predictive performance [65]. To

achieve this, two fields of machine learning research can be considered, namely online

learning and Transfer Learning (TL).

In this chapter, common approaches to online learning are discussed in Sec-

tion 2.1, highlighting the challenges associated with learning in online environments,

and how knowledge can be learnt from online data streams. Section 2.2 discusses

methods of handling concept drift using single model based approaches. Ensemble-

based methods for online learning are discussed in Section 2.3, which consider how

knowledge learnt within a data stream can be leveraged to improve predictive perfor-

mance. Section 2.4 introduces TL, where knowledge can be learnt from one or more

sources of data and used to improve the predictive performance for a similar task

where data availability may be limited. TL has been used in online environments to

improve the predictive performance when the receiving domain is online, and Sec-

tion 2.5 presents some existing online TL frameworks, before Section 2.6 concludes

this chapter by identifying common limitations of existing online TL approaches,

motivating the contributions of this thesis.

2.1 Online Learning

When learning in online environments, predictions must be made from data streams,

where data is received one sample at a time [26]. Often in machine learning, an
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assumption is held that future samples of a data stream will be drawn from the

same distribution as samples previously seen [43]. However, this may not be the

case in real-world environments. In a data stream X, an instance xt ∈ X is observed

at time t, for which a response variable yt ∈ Y must be predicted. To achieve

this, a predictive model f can be learnt to map previously observed instances in

the data stream to the response variable, such that f : X → Y . The mapping

between observations and the response variable is referred to as a concept, and can be

considered as the joint probability distribution P (X,Y) [26]. Since future instances

within the data stream are unknown, and learning is conducted in dynamic, non-

stationary environments, the joint probability distribution, P (X,Y), may change

over time, a phenomenon known as concept drift. Concept drift can be caused

by changes to the underlying distribution of observations, P (X), often referred to

as virtual drift, or changes to the distribution of the response variable, P (Y |X),

often referred to as real drift [1, 26, 67, 78, 84, 108]. Often these types of drift

occur together, however, regardless of the type of concept drift the joint probability

distribution, P (X,Y), changes, altering the learnt mapping between the observations

and response variable, f : X → Y [37, 78, 108]. This means that a predictive

model that had previously been learnt to represent the underlying concept, f , may

no longer effectively represent the current mapping, X → Y [26]. Therefore, in

order to maintain effective predictions, the predictive model, f , must be updated or

relearnt [78].

Three types of concept drift are often considered, namely sudden drift, grad-

ual drift and recurring drift [1]. These three types of concept drift can be de-

scribed using ci and cj to denote two consecutive concepts observed within a data

stream. Sudden drifts occur instantaneously between consecutive instances in the

data stream such that the instance observed at time t belongs to the concept ci,

while the instance observed at time t+ 1 belongs to concept cj . This means that a

predictive model learnt to represent concept ci, denoted by fi, may not be able to

make an effective prediction for instance xt+1, since instance xt+1 belongs to con-

cept cj . Alternatively, gradual drifts occur over a period of multiple instances, for

example between times t and t+m in the data stream. This means that instances

observed prior to instance xt belong to concept ci, and instances observed after xt+m

belong to concept cj . However, instances observed between times t and t+m may

belong to either concept ci or cj . This means that m instances are observed during

the period of concept drift, where the probability of an instance belonging to concept

ci decreases proportionally to the number of instances observed after time t, while

the probability of an instance belonging to concept cj increases proportionally as
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we approach xt+m [108]. Recurring drifts occur when a historical concept reoccurs

throughout the data stream. This means that a predictive model, for example model

fi that has been learnt to represent the concept ci, could be used to make effective

predictions if concept ci reoccurs in the future. Reoccurring drifts can occur sud-

denly or gradually, and may be encountered periodically, or sporadically, throughout

the duration of the data stream [53]. Sudden, gradual and recurring drifts must be

handled when learning in online data streams to ensure that the model used to make

predictions for unseen instances effectively represents the current concept.

2.2 Handling Concept Drift

Approaches to handling concept drift include implicitly adapting to concept drift

by continually updating predictive models as the data stream progresses [49], or

explicitly identifying concept drift through the use of detection mechanisms [76].

2.2.1 Implicitly Adapting to Concept Drift

Incremental learners can be used to implicitly adapt to concept drift by gradually up-

dating model parameters as new instances are observed in the data stream [78, 108].

Gradually updating model parameters in this way means that incremental learners

can be effective when reacting to gradual drifts. However, model parameters can

be influenced by historical instances associated with a previously encountered con-

cept [48]. This means that incremental learners may react slowly in the presence

of sudden drifts [49]. Instance weighting and forgetting mechanisms can be used to

prevent historical instances from negatively impacting predictive performance when

concept drifts are encountered [26]. These techniques enable recently observed in-

stances to have a greater influence on model parameters in comparison to historical

instances, which may no longer be associated with the current concept [41]. Al-

though incremental learners can be used in online environments, the effect of con-

tinually updating model parameters, without the ability to detect occurrences of

concept drift, means that knowledge of previously encountered concepts can be lost

as the data stream progresses [53]. This can be detrimental in environments that

contain recurring concepts since the model parameters for a recurring concept must

be re-learnt [95].
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2.2.2 Explicitly Identifying Concept Drift

Alternatively, concept drift can be managed explicitly by detecting concept drifts as

they are encountered throughout the data stream [1]. Methodologies that explicitly

identify concept drifts are comprised to two stages, first a concept drift must be

detected, and second, once a drift has been detected, an alternative predictive model

must be used in order to adapt to the drift [5]. For example, a new predictive

model could be learnt from recent observations, or a previous predictive model

could be reused or updated. Concept Drift Detectors (CDDs) typically learn a

predictive model over a small window of recent observations in the data stream and

capture its predictive performance over a sliding window of instances, where new

instances are added to the window as they are observed [40]. Concept drifts can be

detected by monitoring the predictive performance [94], or identifying changes to

the distribution of predictive error [8]. When concept drifts are detected, alternative

predictive models can be learnt or reused (discussed in Chapter 4) [8, 54, 55, 95].

The use of a detection strategy means that sudden drifts can be identified quickly,

and an alternative predictive model can be used which is not influenced by instances

belonging to the previous concept. However, gradual drifts can be challenging to

identify, particularly if the gradual drift occurs slowly and over a long period of time

since there may not be an obvious change in a models predictive performance [49].

CDDs typically only retain recent observations, which means that they are

not influenced by historical instances that belong to a previously encountered con-

cept when detecting drifts or learning model parameters [8]. Since model parameters

are not usually incrementally updated when using CDDs, historical knowledge of

previously encountered concepts can be retained, and in some approaches is reused

when recurring concepts are encountered. For example, RePro [94] detects drifts by

monitoring predictive performance. When the predictive performance of a model

drops below a threshold, either a new model is learnt from the recent observations

captured in the sliding window, or a historical model is reused in the presence of

recurring concepts [67]. Other approaches to detecting concept drifts estimate the

precise point of drift by monitoring the distribution of predictive error. ADWIN [8]

uses this approach so that instances belonging to the previous concept can be dis-

carded prior to learning a new model. However, ADWIN does not make use of

historical models when encountering recurring concepts, and therefore new predic-

tive models are created in the presence of recurring concepts [8].

To learn a model that generalises well when using a CDD, sufficient instances

belonging to the new concept must be observed. During this period, ineffective

predictions may be made as the previously learnt model continues to be used. This
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is known as the cold start problem, and introduces a trade-off between reacting

quickly to drifts to prevent prolonged use of an ineffective model, and waiting for

sufficient observations in order to learn a model that generalises well [7]. This means

that predictive models may have to be learnt from small amounts of data. However,

to improve generalisation abilities, ensembles are often used to combine multiple

predictive models that have been learnt throughout the data stream [9, 22, 30, 47].

This allows previously learnt models to be used to enhance predictive performance

and reduce the impact of the cold start problem, particularly when concepts re-occur

throughout the data stream [31, 46].

2.3 Ensemble-based Methods for Online Learning

Ensemble-based approaches can be used alongside both implicit and explicit ap-

proaches to handling concept drift, for example, an ensemble-based approach could

be used in combination with a drift detection mechanism [76]. However, instead of

relying upon a single predictive model, multiple predictive models learnt throughout

the history of the data stream, referred to as base models, are combined to improve

predictive performance [9].

Dynamic Weighted Majority (DWM) [47], and the Additive Expert Ensemble

(AddExp) [46], follow similar approaches to handling concept drift through the

use of ensembles in classification settings. DWM and AddExp create base models,

referred to as experts, using incremental learners. As new instances are observed, the

weights associated with each base model are updated. These experts are combined

through the use of a discounted weighting mechanism, where the influence of an

expert is decreased by a multiplicative factor if it misclassifies an instance [46,

47]. If the overall prediction obtained by the ensemble is incorrect, then a new

expert is created [46, 47]. AddExp has also been adapted to a regression setting,

where the same principals are used, however misclassifications associated with the

creation of new experts, and updating ensemble weights, are identified using the

absolute error of an expert with respect to the current instance. Therefore, AddExp

considers a misclassification as occurring when the absolute error of an expert, or

the ensemble, is greater than a threshold [46]. The Online Weighted Ensemble

(OWE) [31] follows a similar approach to AddExp in regression settings, where

new base models are created when the predictive error of the ensemble exceeds a

threshold. However, OWE weights base models based on their errors over a recent

window of data, rather than incrementally discounting the weights [31, 46]. The

weights assigned to base models in the ensemble are determined using a discount

12



factor that allows the predictive errors that were made in the past to have less

impact in comparison to recent mistakes [31]. Using a discount factor to assign

weights in this manner is beneficial when encountering recurring concepts since

smaller discount factor parameters can be used to assign larger weights to historical

models that achieve good predictive performances on recent windows of data [31].

DWM, AddExp and OWE all use incremental learners to update the model

parameters for each base model in the ensemble as new instances are observed in

the data stream [31, 46, 47]. However, this means that the model parameters of

historically created base models continue to be updated, even when newly observed

instances belong to a different concept. This means that knowledge of previously

learnt concepts may be lost as the data stream progresses, requiring model param-

eters to be updated, or relearnt, in the presence of recurring concepts (discussed in

Chapter 4) [54]. Accuracy Weighted Ensemble (AWE) [82] prevents this loss of in-

formation through the use of a chunk-based learning strategy, where the data stream

is partitioned into chunks such that a new classifier is created for each chunk [82].

The weights assigned to each base model in the ensemble are proportional to their

predictive accuracy on the most recent chunk of data. Therefore, the model param-

eters of each base model are not influenced by future instances in the data stream

that may not belong to the same concept. In the presence of recurring concepts, a

historical base model can be assigned a larger weight to increase its influence in the

ensemble if it has previously been learnt to represent the same concept [82].

Since data streams are unbounded in size, and may have no limit [1, 95], pre-

dictive models could be added to the ensemble indefinitely, therefore approaches to

selecting subsets of base models to retain in the ensemble are necessary. This is often

achieved by defining a maximum number of base models that can be retained [46].

One approach to identify which base models should be removed from the ensem-

ble is to use the age of the model such that the oldest base models are discarded

first [46]. However, in concept drifting data streams, age may not be a good indi-

cator of relevancy, since concepts can reoccur throughout the data stream [31, 46].

Many ensemble-based approaches to handling concept drift use the predictive per-

formance of base models to determine which of those available should be retained,

or discarded [23]. The predictive performance of base models could be evaluated

over recent observations in the data stream [46], or the accumulated error could be

considered [31]. In AddExp [46], AWE [82] and OWE [31] the worst performing base

model is removed when the size of the ensemble becomes larger than a constant K,

whereas in DWM base models are removed from the ensemble if the weight assigned

to it drops below a threshold [47].
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Although most ensemble-based approaches for handling concept drift deter-

mine which base models should be retained by evaluating their predictive perfor-

mance, the diversity of base models can also be considered [36]. Maintaining a

diverse subset of base models is required to maintain good generalisation in both

classification and regression ensembles [11, 12, 23, 60]. Diversity for Dealing with

Drifts (DDD) [58] maintains two ensembles to handle concept drift, one where base

models have low diversity, which is used between concept drifts, and one where base

models have high levels of diversity, which is used immediately after a concept drift.

This approach enables DDD to maintain high generalisation abilities in the presence

of concept drift. As new instances are observed in the data stream, all base models

used by the ensembles, and the ensemble weights, are updated incrementally. Di-

versity is measured by considering the similarity between base model predictions for

classification tasks using Yule’s Q statistic [99].

DDD uses a drift detection strategy to determine which of the two ensembles

should be used to make predictions. When a drift is detected, the high diversity

ensemble is used to make predictions until sufficient instances belonging to the

new concept have been observed so that a low diversity ensemble that effectively

represents the new concept can be created. Once the new low diversity ensemble has

been created, it can be used to make more accurate predictions than what could be

achieved by the high diversity ensemble [58]. Since the weights of each base model

are incrementally updated, the weights of base models that were previously learnt

throughout the data stream are lost. This means that in the presence of recurring

concepts, base model weights historically learnt are no longer available.

Concept Drift handling based on Clustering in the Model Space (CDCMS) [15]

was introduced to address the loss of historically learnt weights caused by the use of

incremental learners in DDD. CDCMS uses a methodology similar to DDD to handle

concept drift, where an ensemble with high diversity, and an ensemble with low di-

versity are used to maintain high generalisation [58]. However, CDCMS creates new

base models to be used by the ensemble every b time-steps so that predictive models

that have been learnt to represent concepts are retained in case a recurring concept

is encountered. CDCMS creates ensembles with high and low diversity using base

model clustering such that base models are clustered using the similarity between

their predictions over a recent window of observations. Therefore, base models in

the same cluster make similar predictions, and as such, are likely to represent similar

concepts [15].

CDCMS creates a highly diverse ensemble by selecting a base model from

each cluster, whereas a low diversity ensemble is created by selecting base mod-
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els from the same cluster. Additionally, CDCMS uses base model clustering as a

memory management strategy to prevent all base models that have been learnt to

represent the same concept from being discarded, allowing at least one base model to

be retained in case the concept reoccurs [15]. Using ensemble-based approaches such

as these, allows knowledge of previously encountered concepts to be used to improve

predictions for unseen data [60], which can be considered as a form of TL [57].

2.4 Transfer Learning

Offline TL frameworks typically consist of one or more data rich domains, referred

to as source domains, and one domain that has limited data availability, known as

the target domain [65]. The aim of TL is to learn knowledge in the data rich source

domains, and transfer this knowledge to the target domain to improve predictive

performance in the target domain [85]. In TL, a domain consists of a feature space,

X and a marginal probability distribution, P (X), where X is the set of instances

observed, such that X = {x1, . . . xn} and xi ∈ X . Each domain is associated with a

task, consisting of a label space, Y, and a predictive function, f [65, 107]. TL aims

to learn the mapping between the observations and response variable in a data rich

source domain, such that f : xi → yi, where y ∈ Y [65]. TL allows this knowledge

to be used in a target domain, where data availability may be limited, to improve

the predictive performance in the receiving domain [85].

There are three distinct types of TL: inductive, transductive and unsuper-

vised [3, 17, 65]. Inductive TL is used when source and target predictive tasks are

different. Knowledge is transferred from the source to induce a supervised predic-

tive function in the target [17]. Typically, large amounts of labelled target data are

required to create a mapping between domains [65]. Unsupervised TL is applied in a

similar way, but to unsupervised learning tasks, such as clustering [65]. Transductive

TL is used when the source and target predictive tasks are the same, transferring

knowledge to improve the predictive performance in a target domain where no la-

belled data is available [3]. TL can be further categorised as homogeneous, where the

source and target domains are the same, or heterogeneous, where they differ [104].

In this thesis, we consider a homogeneous setting, and use inductive TL to improve

the predictive performances in the receiving domains.

Pan et al. outline four approaches of knowledge transfer typically considered

when deciding what to transfer and how each type of knowledge transfer can be

used in a target domain to improve predictive capabilities [65].

Instance transfer: This assumes that some, or all, instances of data available in
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the source domain will be beneficial in the target domain. Therefore instances

are transferred to the target domain so that they can be combined with the

instances available locally in the target domain, enabling a predictive model to

be learnt from source and target data [107]. This type of knowledge transfer

is typically used with instance weighting mechanisms so that the locally avail-

able data in the target domain has greater influence on the predictive model

created [39].

Feature-representation transfer: In this variant of knowledge transfer, a feature

representation for the target domain is learnt in the source. For example, this

may involve the identification of a subset of features available in the source

domain that will be beneficial to the target domain. The feature representation

is then transferred to the target domain and used to aid predictions [65].

Parameter transfer: This assumes that the source and target domains share some

parameters of a machine learning model. Therefore, a model can be learnt

from the data rich source domain, and model parameters are transferred to

the target domain. Model parameters are often tuned in the target domain

using the limited available data [85], or combined with model parameters learnt

from locally available data using ensembles or meta-learners [96].

Relational-knowledge transfer: In this approach to knowledge transfer the re-

lationships between source and target domain are identified and transferred.

This typically involves approaches such as domain adaptation, where both

source and target domains are mapped to a shared latent feature space such

that knowledge available in the source domain can be used in the target do-

main [107].

Another research question that must be addressed by TL frameworks is

whether knowledge learnt in a source domain should be transferred to the target do-

main [65]. The main reason for considering whether to transfer is to prevent negative

transfer [65, 70, 83, 85, 107], which is the transfer of knowledge that is detrimental

to the receiving domain [4, 6, 65]. This typically occurs when the tasks learnt in

the source domains are too dissimilar to the tasks in the receiving domain [2, 4].

Some approaches to preventing negative transfer include analysing the relatedness

of tasks [4, 6, 65], and clustering domains based on task relatedness [2, 4]. Negative

transfer can become more prominent when transferring knowledge from multiple

source domains, since it is highly unlikely for all source domains to be relevant to

the receiving domain [28]. Approaches to address this when parameter transfer is

16



used as a method of knowledge transfer typically include the use of weighting mecha-

nisms that assign weights to transferred models based on their predictive capabilities

in the receiving domain [28, 77, 85].

2.5 Online Transfer Learning

When learning in online environments, data availability is often limited and a rich

history of data cannot be retained [53, 95]. Therefore, TL can be used in online en-

vironments to improve the predictive performance obtained in an online data stream

by transferring knowledge learnt from other sources of data [104]. Online TL can

be broadly categorised into frameworks where knowledge is learnt from one or more

offline source domains, and transferred to an online target domain, and frameworks

where knowledge is learnt from online source domains and transferred to an on-

line target domain. In both of these settings, online TL approaches must address

research questions similar to those presented for TL, including what should be trans-

ferred, how transferred knowledge should be used, and whether knowledge should

be transferred [65]. However, using TL in online environments is more challeng-

ing than in offline environments since the receiving domain is online, and therefore

may be subject to concept drift. Since the presence of concept drift in the receiv-

ing domains changes the joint probability distribution of observations and response

variable, P (X,Y), how the transferred knowledge is used in a receiving domain must

be adapted so that the transferred knowledge is best used to aid predictions with

respect to the current concept observed in the target domain. Online TL can benefit

many real-world applications where data availability is limited, however, in order

to ensure that the use of online TL is feasible, the communication and computation

overheads of knowledge transfer should also be considered [38].

Although instance, feature-representation, parameter and relational-know-

ledge transfer are all applicable methods of knowledge transfer in traditional offline

TL settings [65, 85, 107], their feasibility may differ when using TL in some online

environments. For example, in frameworks where communication and computa-

tional resources are limited, as might be expected in real-world environments where

knowledge must be transferred between domains situated in different physical lo-

cations. Feature representation and relational knowledge transfer may be the least

applicable in environments such as these. This is because in order to learn a fea-

ture representation for the target domain, or to identify the relationship between

source and target domains, knowledge of the underlying distribution of data in the

target domain must first be made available to the source domain, which may not be
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feasible in frameworks where all domains are online and communication and compu-

tational resources are limited. Additionally, since the future distribution of the data

is unknown in advance, feature representations and relational knowledge can only

be learnt using data observed historically in the online receiving domain. There-

fore, the feature representation or relational knowledge initially learnt may not be

learnt from a distribution that is representative of the current concept observed in

the target domain. The presence of concept drift may also invalidate the feature

representations or relational knowledge learnt as the data stream progresses. Fea-

ture representations and relational knowledge could be relearnt as new concepts are

encountered, however, the computational overhead associated with these processes

must be considered in order for them to be feasible for real-world applications of

online TL.

Instance transfer could be used in online TL frameworks, however, the com-

munication overhead of transferring all, or a subset of, instances from the source

domain to the target domain is usually considered to be too high [63]. Therefore,

most online TL frameworks are restricted to using parameter transfer, where pre-

dictive models are learnt from data in the source domains, and are transferred to

the target domain, allowing knowledge to be transferred with low communication

and computation overheads [38]. When using parameter transfer in online TL, the

process of combining transferred knowledge with locally learnt knowledge shares fun-

damental similarities to ensemble-based approaches to handling concept drift. This

is because multiple predictive models are available in the receiving domain, which

must be combined to achieve improved predictive performances in comparison to

using a single model alone, while adapting to concept drift [57].

2.5.1 Offline Source Domains

The most frequently considered setting for online TL is where knowledge is trans-

ferred from one or more data rich offline source domains to improve the predictive

performance in an online target domain [18]. The Online Transfer Learning (OTL)

framework was one of the first frameworks to suggest using this approach [104].

OTL creates a predictive model from source domain data, which is transferred to

the receiving domain. This predictive model is combined with a predictive model

learnt in the receiving domain via incremental learning. To combine the models,

a loss based weighting mechanism is used. As instances are observed in the online

target domain, the model parameters associated with the locally learnt model are

updated, and the weights associated with source and target models are adjusted

with respect to their loss on the most recently observed instance in the target do-
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main [104]. Incrementally updating the target model’s parameters and adjusting

the weights assigned to each model allow OTL to adapt to concept drift.

The OTL framework is used in Concept-Drifting Online Learning (CDOL) [105]

as an ensemble-based approach to handling concept drifts in classification data

streams. In CDOL, a single data stream is partitioned, such that the previously

encountered partition is considered to be the offline source domain, and the cur-

rent partition is considered to be the online target domain. In each partition an

incremental learner is used to create a predictive model of recent observations, and

combined with the predictive model transferred from the previous partition. Which

ever is the best performing model in that period is transferred to the next partition

to be used as a source model [105].

The Generalized Online Transfer Learning framework (GOTL) [32, 33] ex-

tends the OTL weighting mechanism such that online TL can be used for both

classification and regression. The weighting mechanism used by GOTL incremen-

tally updates in steps to obtain weightings for source and target models. If the

step size, δ, used to modify the weights is small enough, the ensemble of source and

target models approximates the optimal weight combination [32]. However, if the

step size is too small, it may take substantial time for the weights to update to their

desired values, making predictions unreliable during this period.

Many other online TL frameworks have been developed for the scenario where

knowledge is learnt from multiple data rich offline source domains [27, 88, 91, 97].

Since negative transfer can become more prominent when knowledge is transferred

from multiple sources [28], online TL frameworks have been developed to reduce

the impact of negative transfer [21, 28, 89]. For example, Online Multiple Source

Transfer Learning (OMS-TL) [27] obtains weights by solving a convex optimisation

problem to combine source models and the target model when new instances are

observed in the target domain [27]. Online Transfer Learning with Multiple Sources

(OTLMS) [88] creates an ensemble of classifiers, where base models are learnt from

source domains, which are weighted based on their predictive performance on new

instances observed in the target domain. The ensemble of source models is then

combined with an incremental learner in the target domain using a linear weighting

combination strategy. OTLMS uses these two distinct stages to combine transferred

and locally learnt knowledge to help prevent the source domains that are irrelevant

to the current target concept from influencing the final prediction in the target

domain [88].

OMS-TL and OTLMS reduce the impact of negative transfer through the use

of weighting mechanisms. The Hybrid Ensemble Concept Drift tolerant Transfer
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Learning framework (HE-CDTL), aims to reduce the impact of negative transfer

by partitioning the target data stream into chunks, and projecting the data from

the offline source domains to the target space for each partition in the target data

stream [92]. In doing so, predictive models can be learnt from the projected source

domain data so that the knowledge learnt from the source domain is relevant to the

target domain, thereby reducing negative transfer [92]. These predictive models are

then combined with a locally learnt model using weights that are proportional to the

predictive performance of each model on the current partition of data observable in

the target domain. Although this approach is effective at reducing negative transfer,

in order to project the source domain data into the target space, the feature spaces

of the domains must be transferred, requiring large communication overheads, which

may not be feasible in some real-world applications of online TL.

2.5.2 Online Source Domains

For many real-world applications, a data rich offline source domain may not exist,

and therefore, more recently, new online TL frameworks have been proposed that

allow knowledge to be learnt from one or more online source domains, which is

transferred to an online target domain [20, 21, 57, 87]. This paradigm of online

TL is also referred to as TL in non-stationary environments [57]. When all source

domains are online, every domain in the framework can encounter concept drift.

However, knowledge can be leveraged from each of the concepts encountered in a

source domain, or from historical concepts in the target domain, and used to improve

predictive performance with respect to the current concept observed in the target

domain [20].

Multi-sourcE onLine trAnsfer learning for Non-statIonary Environments

(Melanie) [20] achieves knowledge transfer by creating a pool of ensembles asso-

ciated with each data stream, where a new ensemble is created for every concept

encountered in the source and target domains, identified using a CDD. Each en-

semble is comprised of base learners, also referred to as sub-classifiers, that have

been learnt to represent sub-concepts. Melanie is used for classification tasks, and

therefore a sub-classifier is learnt to predict the probability for each class label, and

the ensemble combines base models to obtain the most likely class label for unseen

instances [20]. For every new instance of data observed in a source or target do-

main, the most recent ensemble in that domain, representing the current concept,

is incrementally updated. If a new instance is observed in the target domain the

weights assigned to every sub-classifier, for every ensemble, in every domain are

updated such that they are assigned a weight proportional to the sub-classifier’s ac-
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curacy on the target data. A performance threshold is used to assign zero weights to

sub-classifiers that have poor performance to prevent them negatively impacting the

overall prediction. Resultant predictions are made by multiplying the sub-classifier

weights with the probabilistic prediction made by each sub-classifier, and a final

classification is made using majority voting across all sub-classifiers predictions [20].

Melanie’s approach to knowledge transfer is beneficial in online TL when

all domains are online since knowledge can be learnt from historically encountered

concepts in each domain and transferred to the target domain to make predictions.

However, in order to achieve this, large communication overheads are required, since

an ensemble of sub-classifiers must be transferred to the target domain for every

concept encountered in every source domain. Additionally, since the most recent

ensemble in each of the source domains is continually updated until a concept drift

is detected, ensemble weights, and base model parameters, must be continually

transferred to the target domain.

Melanie combines transferred knowledge through the use of weighted aver-

aging, and therefore the target domain may not fully benefit from knowledge learnt

in source domains when the task to be learnt in the source domain is dissimilar

to the target [21]. To further prevent negative transfer, Melanie was extended to

develop Multi-source mApping with tRansfer LearnIng for Non-stationary Envi-

ronments (Marline) [21]. Marline extends Melanie so that the target domain can

benefit from source concepts that are not similar to the current target concept by

projecting the target concept onto the space of each source concept [21]. This allows

new instances received in the target domain to also be projected into the space of

each source concept so that sub-classifiers for each source concept can make more

effective predictions. The mapping between target and source concept is achieved

using a pair of reference points for each concept. For example, a pair of reference

points are obtained for a classification task by taking the centroids of the distribu-

tions for positive and negative class labels [21]. The reference points are used to

create a vector for each concept, which allows a transition matrix to be identified,

mapping the target concept to the source concept by rotating the vectors between

the reference points of source and target concepts. Marline then assigns weights to

sub-classifiers and ensembles learnt in source and target domains and combines them

in a similar way to Melanie to obtain a classification for instances observed in the

target domain [20, 21]. This approach is beneficial since it allows the target domain

to make better use of predictive models learnt in source domains, without requiring

significant additional communication overheads to achieve this mapping. However,

similarly to Melanie, Marline requires significant communication overheads to trans-
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fer all ensembles, all sub-classifiers, and all weights for every concept encountered

in source domains.

Adaptive Online TrAdaBoost (AOTrAdaBoost) [87] achieves online TL in a

slightly different manner to Melanie and Marline. For every concept encountered

in an online source or target domain a predictive model is created and stored along

with the set of training instances used to create each predictive model. When a new

concept is encountered in the target domain, a predictive model is created. This

model is then compared to other models that have been learnt from online source

domains to identify a single model in each domain that is the closest match to the

current target concept [87]. Similar models in the source domains are identified

using their predictions for instances observed in the target domain, and the Kappa

statistic is used to determine which model in each source domain makes the most

similar predictions to the model learnt in the target domain. The training instance

associated with each similar model, and newly observed instances in the target do-

main, are used by a boosting ensemble. If any of the base models in the boosting

ensemble achieve an improved predictive performance over the locally learnt target

model, then it is replaced by the base model from the boosting ensemble [87]. This

approach to online TL uses both parameter transfer and instance transfer, which

may incur high communication overheads if the size of training data is large, how-

ever, only model parameters for a single base model are transferred for each concept.

AOTrAdaBoost may encounter large computational overheads in order to identify

source models that match the current target concept. This is because model similar-

ity is determined using the predictive performances of source models over a window

of data in the target domain. Therefore, model similarity must be recalculated as

the data stream progresses since the similarity between model predictions may differ

when evaluated at different intervals in the target data stream due to concept drift.

2.5.3 Related Research Areas

The field of online TL relates to Online Multi-task Learning (OMTL) [62, 71, 73],

and Multi-Stream Regression (MSR) [35]. MSR can be seen as a special case,

where the source and target data streams are drawn from the same underlying

distribution, and all concepts encountered in the target domain have previously

been encountered in the source [19]. This means that the models transferred from

the source can be used to make predictions in the target without requiring a target

learner. This is unrealistic for many real-world applications as although source and

target domains may be similar, it is unlikely that the data streams are drawn from

the same distribution. The goal of OMTL is to minimise the cumulative global
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loss across all domains [50], whereas online TL aims to minimise the predictive

losses within each individual domain. Considering loss in this way is beneficial when

applied to tasks such as application personalisation, where each domain represents a

different user, and prediction errors should be minimised for that specific individual.

2.6 Summary

Research into the use of online TL is limited, particularly in the paradigm where

both source and target domains are in online environments. Existing approaches to

online TL mostly focus on classification tasks, and depend on methodologies that

are not easily extended to regression tasks. Therefore, in this thesis we consider a

regression setting where all domains in the framework are online. The communica-

tion and computation overheads of the techniques presented in Section 2.5 are also

rarely considered, which may limit their applicability to real-world applications.

Additionally, although some online TL frameworks consider the scenario where a

data rich offline source domain is not available, existing online TL frameworks focus

only on improving the predictive performance in a single receiving domain. When

all domains are online, and a data rich source domain does not exist, all domains

in the framework could benefit from knowledge transfer. However, this may have

significant computation and communication implications which must be considered.

Therefore, in this thesis we consider the challenge of online TL when all domains are

online and knowledge is transferred in a peer-to-peer fashion so that every domain

in the framework can benefit from knowledge transfer. We also consider the compu-

tation and communication overheads that impact the applicability of the proposed

approaches in real-world environments where each data stream is collected from

sensing independent environments. An example of this is when each domain is as-

sociated with a low cost sensor, and each sensor is situated in a different physical

location. Although most online TL frameworks aim to reduce the impact of nega-

tive transfer, through the use of weighting mechanisms or transforming the feature

space of the target domain onto the feature space of the source domain, determin-

ing whether the knowledge selected for transfer will be beneficial to the receiving

domain prior to transfer is rarely considered. This consideration is important when

using online TL to transfer knowledge between independent data streams, partic-

ularly when they are situated in a distributed environment, since the transfer of

knowledge that is unlikely to be beneficial to a receiving domain incurs unneces-

sary computation and communication overheads. Therefore, determining whether

to transfer is also considered in this thesis.
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Chapter 3

Datasets

Many benchmark datasets have been created to evaluate online learning research,

including concept drift detection strategies and online ensembles [40, 74, 75], how-

ever, most are categorically labelled. Additionally, most existing online TL research

also focuses on classification tasks [46, 52, 104]. However, many real-world applica-

tions require predictions to be made in regression settings [16, 59, 66]. Therefore,

the thesis presents new regression datasets containing concept drift which have been

created in order to evaluate online TL techniques in regressive settings.

In this chapter, three types of novel datasets are introduced. First, a mod-

ification of the classification based drifting hyperplane benchmark dataset [46] is

introduced, enabling it to be used for regression tasks [54]. Second, a simulation

of a smart home heating system is presented, using data from a UK weather sta-

tion to derive desired heating temperatures. Third, a real-world following distance

dataset is introduced, created from vehicle telemetry data, and used to predict the

Time-To-Collision (TTC).

The datasets presented in this chapter have been used throughout Chap-

ters 4–7 to evaluate CDDs, the BOTL framework, base model selection strategies,

and deciding whether to transfer knowledge. In Section 3.1, dataset characteristics

that are required to effectively evaluate online learning and online TL techniques are

discussed. The drifting hyperplane, smart home heating simulator, and following

distance datasets are then introduced in Sections 3.2, 3.3 and 3.4 respectively.

3.1 Dataset Characteristics for Online TL

In order to be used in online TL frameworks, a dataset must have certain character-

istics. Each dataset must be comprised of multiple independent, but related, data
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streams. This allows each data stream to be used as source and target domains in

online TL frameworks. Each data stream must contain observations, denoted by

x ∈ X, a response variable, y ∈ Y , and a mapping between them, X → Y . Since

learning is conducted in an online environment, each data stream may be subject

to concept drift, where the mapping between observation and the response variable

changes over time.

The research presented in this thesis is limited to homogeneous online TL.

This means that the feature space of observations, and the response variable are

consistent across the data streams in a dataset. However, since each domain is

independent, the mappings between observations and the response variable may

differ between data streams, and therefore the concepts observed in each domain

may differ. Additionally, since each data stream is independent, concept drifts do

not occur synchronously across data streams.

For each of the datasets, different types of concept drifts are considered,

namely sudden drifts and gradual drifts. Sudden drifts occur when the mapping

between observations and the response variable changes instantaneously between

consecutive observations in a data stream, whereas gradual drifts occur slowly over

a period of multiple observations. Recurring drifts are also considered in each of

these datasets, where historical concepts occur repeatedly throughout the duration

of a data stream. Table 3.1 summarises the key characteristics of each of the datasets

presented in this chapter.

3.2 Drifting Hyperplane Datasets

The drifting hyperplane datasets are modifications of a commonly used benchmark

dataset [46], adapted for regression settings [55]. Each instance xt at time t, is

a vector, xt = {xt1 , xt2 , . . . , xtn}, containing n randomly generated, uniformly dis-

tributed, variables, xtn ∈ [0, 1]. For each instance, xt, a response variable, yt ∈ [0, 1],

is created using the function yt = (xtp + xtq + xtr)/3, where p, q, and r reference

three of the n variables of instance xt. This function represents the underlying con-

cept, ca, to be learnt and predicted. Concept drifts are introduced by modifying

which features are used to create yt. For example, an alternative concept, cb, may

be represented by the function yt = (xtu + xtv + xtw)/3, where {p, q, r} 6= {u, v, w}
such that ca 6= cb.

A variety of drift types have been synthesised using this data generator, in-

cluding sudden drifts, gradual drifts and recurring drifts. In addition to synthesising

different types of drifts, this data generator can also be extended to synthesize data
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streams with differing severities of drifts, which could be considered in future work.

A sudden drift from concept ca to concept cb is created between time steps t and

t + 1 by instantaneously changing the underlying function used to create yt to an

alternative function for yt+1. A gradual drift from concept ca to cb is introduced

between time steps t and t + m, where m instances of data are observed during

the drift. Instances of data created between t and t + m use one of the underlying

concept functions, ca or cb, to determine the response variable. The probability

of an instance belonging to concept ca decreases proportionally to the number of

instances seen after time t, while the probability of it belonging to cb increases pro-

portionally as we approach t + m. Recurring drifts are created by introducing a

concept cc that reuses the underlying function defined by a previous concept, ca,

such that conceptual equivalence is achieved, where cc = ca.

Four variations of the drifting hyperplane datasets are considered in this

thesis, introducing concept drifts that represent different problems that may be

encountered when learning in real-world environments1. The first variation simply

introduces uniform noise, where yt ± 0.05 with probability 0.2. Datasets generated

in this way are denoted as SuddenA and GradualA for sudden and gradual drifting

data streams respectively. The second variant simulates sensor failure by setting a

feature vector, i, to 0 at time t for the remainder of the data stream with probability

0.001, such that xti = 0. In the case where feature i is used to create the response

variable y, two other randomly selected feature vectors, j and k, are modified such

that xtj = xti/4 and xtk = 3xti/4. This ensures that the underlying concept can still

be learnt from the data. Datasets generated in this way are denoted as SuddenB

and GradualB for sudden and gradual drifting data streams respectively.

The third variation simulates intermittent sensor failure by selecting a feature

vector i to fail at time t−1 with probability 0.001. Once selected to fail, the feature

value at all subsequent time steps t is set to 0 such that xti = 0 with probability

0.3. Datasets generated using this scenario are denoted as SuddenC and GradualC.

The final variant simulates the deterioration of a sensor by including noise

depending on the time step t, such that xti = xti ± (0.2(t/|X|)), where 0.2 is the

maximum amount of noise added to xti and |X| is the number of instances in the

dataset. This means that as the data stream progresses, more noise is added to

an individual feature, simulating the gradual deterioration in accuracy of a sensor

over time. Additionally, the probability of a sensor deteriorating increases as the

data stream progresses, such that the probability of a feature being selected for

1The drifting hyperplane datasets are available at: https://github.com/hmckay/BOTL/tree/

master/HyperplaneDG
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deterioration at time t is 0.001(t/|X|). Datasets generated in this way are denoted

as SuddenD and GradualD for sudden and gradual drifting data streams respectively.

Each drifting hyperplane dataset consists of 5 data streams, each containing

5 concepts, where each concept occurs for durations of 500 consecutive instances.

Each concept occurs 4 times throughout the duration of a data stream, ensuring that

every data stream contains recurring concepts. Data streams within each drifting

hyperplane dataset share at least 3 concepts with other data streams in the same

dataset variant. In gradual drifting hyperplane datasets, gradual drifts occur over a

period of 100 instances. These synthetic datasets are useful when evaluating online

TL frameworks since some of the knowledge learnt from one data stream will be

beneficial to other data streams while other knowledge learnt will not be of use to

receiving domains. Since concept drifts are artificially introduced, these datasets are

also useful for evaluating CDDs, since it is known how many concepts are present in

each data stream, and the points of concept drifts are known. However, due to their

synthetic nature, they may not be good indicators of how online TL frameworks

operate in real-world environments.

3.3 Smart Home Heating Simulator

The heating simulator dataset was created to generate data streams that are more

representative of real-world environments. Desired heating temperatures for a smart

home heating system were derived using data collected from a weather station in

Birmingham, UK, from 2014 to 2016. This dataset contains rainfall, temperature

and sunrise data, which are combined with a synthesised schedule, obtained from

sampling an individual’s pattern of life, to determine when the heating system should

be engaged2.

To create data streams for the heating simulator dataset, a weather simulator

was created to convert daily weather data into a data stream containing instances

at half hourly intervals. The weather simulation uses average daily temperatures

and monthly rainfall, obtained from the UK Met Office3. This is used, with the

addition of noise, to estimate temperature and rainfall at half hour intervals. To

create a representative model for changing temperatures over daily cycles, an algo-

rithm proposed by Reicosky et al. was used [68], as shown in Algorithm 1. This

algorithm takes the daily maxima, Tempmax, and minima, Tempmin, temperatures,

2The heating simulator dataset is available at: https://github.com/hmckay/BOTL/tree/

master/HeatingSimDG
3UK Met Office data is available at: https://www.metoffice.gov.uk/research/climate/

maps-and-data/historic-station-data#?tab=climateHistoric
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Algorithm 1: Calculation of temperature distributions using
Tempmax, Tempmin and RISEsun [68].

Input: Tempmax, Tempmin, RISEsun (time of sunrise)
1 Tempavg = (Tempmax + Tempmin)/2

2 AMP = (Tempmax − Tempmin)/2
3 if H < RISEsun then
4 H ′ = H + 1000h
5 else
6 H ′ = H − 1400h
7 for 0000h ≤ H < RISEsun and 1400h < H ≤ 2400h do
8 Temp(H) = Tempavg + AMP(cos(πH ′/(10.0 + RISEsun)))

9 for RISEsun ≤ H ≤ 1400h do
10 Temp(H)= Tempavg−AMP(cos(π(H −RISEsun)/(1400−RISEsun)))

and the estimated time of sunrise, RISEsun
4, to obtain a temperature distribution

that effectively represents changing temperature for different hours in the day, H,

in real-world environments [68]. Additionally, the average rainfall for each month

is used to estimate the probability of rain, which in turn is used to simulate the

occurrence of rainfall.

The weather simulator is used alongside a heating schedule to determine the

desired heating temperature for a simulated user. The heating schedule has been

created by sampling an individual’s pattern of life in order to create a synthetic rule

set which changes desired heating temperatures based on features such as outside

temperature, day of the week, time, and rainfall. An example of a rule contained

within the heating schedule is:

If day = weekday ∧Tempoutside < 8◦C ∧ rain = True then Tempdesired = 24◦C + α,

where α is noise. Figure 3.1 shows two samples of data generated via the smart home

heating simulation. The data samples are selected from February and June respec-

tively, highlighting the dependency of desired heating temperature upon external

weather conditions.

To create multiple data streams, weather data is sampled from overlapping

periods of time, and used as input to the synthesised heating schedule to determine

the desired heating temperatures. Due to the dependencies on weather data, each

data stream is subject to large amounts of noise. Concept drifts are introduced

manually by changing the schedule, however, drifts also occur naturally due to

changing weather conditions. By sampling weather data from overlapping time

4Sunrise data is available at: http://www.sunsettimes.co.uk/
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Figure 3.1: Heating schedule and outside temperatures in February and June.

periods, and due to seasonality, data streams follow similar trends, which can be

seen in Figure 3.2, ensuring that some of the knowledge learnt in each data stream is

beneficial to other data streams. The data streams in the heating simulator dataset

contain desired heating temperatures over an average duration of 12.2 months, with

a maximum of 18 months, and a minimum of 7. By using concepts that have a more

complex underlying distribution, and are dependent on noisy data, the evaluation of

online learning and online TL techniques on this dataset is more indicative of what

is achievable when used in real-world environments.

3.4 Following Distance Datasets

To determine the effectiveness of online TL approaches, real-world data is needed to

ensure that the methodologies developed can be applied to real-world applications.

In this section, the following distance dataset is presented, which uses a vehicle’s

following distance and speed to calculate the Time To Collision (TTC) when fol-

lowing another vehicle [54]. Vehicle telemetry data such as speed, gear position,

brake pressure, throttle position and indicator status, alongside sensor data that

infer external conditions, such as temperature, headlight status, and windscreen

wiper status, were recorded at a sample rate of 1Hz. Additionally, a selection of

signals such as vehicle speed, brake pressure and throttle position were averaged

over a window of 5 seconds to capture a recent history of vehicle state. The vehicle

telemetry and environmental data captured within these data streams can be used

to make predictions that allow vehicle functionalities to be personalised and reflect

current driving conditions. For example, Adaptive Cruise Control (ACC) can be

personalised by predicting TTC to identify a driver’s preferred following distance.
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Figure 3.2: Samples of average daily temperatures within three heating simulator
data streams.

3.4.1 Characteristics of ACC

An ACC system is an example of a real-world application that may collect data

similar to the data streams contained in the following distance dataset. ACC typi-

cally lets the driver set what they consider to be a comfortable following distance.

Vehicle manufacturers determine following distance using TTC, which calculates the

following distance of the vehicle using its current speed, which can then be adjusted

by a driver. A driver’s preferred following distance may change over time or with

changes in environment, such as traffic and weather conditions, introducing concept

drift. Online TL could be used to calibrate a vehicle’s ACC by combining knowledge

learnt from other drivers. Types of drifts that could be encountered include geo-

graphical drifts induced by regional norms, sudden drifts induced by changes in road

type or driving context, gradual drifts introduced by weather conditions and traffic,

and recurring drifts where historical concepts repeatedly occur. Possible causes of

concept drift when calibrating a personalised following distance for ACC include:

Driver: When deploying ACC an important factor to consider is the driver. Some

drivers may feel comfortable following vehicles at a relatively close proximity,

however, others may feel unsafe when following at the same distance. Sudden

concept drift could be encountered if more than one person were to drive a
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vehicle. Personalisation would be achievable if every driver was known to the

vehicle, however, if an unknown driver were to use the vehicle, online TL could

be used to enhance personalisations based on knowledge learnt from known

drivers.

Location: Acceptable following distances differ from country to country but may

also differ based on regional norms. For example, the preferred following dis-

tance of vehicles within highly populated areas, such as urban environments,

may differ from rural areas. Geographical drifts such as these can occur both

suddenly and gradually, however, it may be possible to enhance personalisa-

tions by transferring knowledge of the desired following distance learnt from

other drivers and other vehicles.

Context and Purpose: The context and purpose of a journey may impact the fol-

lowing distance desired by a driver. Journey context, such as time of day, may

greatly impact ACC customisation for an individual driver. For example, the

time of day may be indicative of traffic conditions or visibility. The purpose of

a journey may also impact personalisation, for example, the desired following

distance when commuting may be different in comparison to a leisurely drive.

Both context and purpose can cause sudden drifts from journey to journey,

however, gradual drifts could also be observed throughout the duration of a

single journey, particularly when travelling long distances. Additionally, drifts

caused by context and purpose are likely to reoccur, and therefore the ability

to transfer knowledge of historical concepts between drivers and vehicles may

help to maintain effective customisations.

Road Type: ACC personalisation may largely be affected by speed, however, road

type and layout will also be influential. For example, the desired following

distances on country roads may be different to those wanted for motorway

driving. Drifts induced by road type will typically occur suddenly with a high

likelihood of recurring in the future.

External Conditions: Other external factors that may impact comfortable fol-

lowing distances include weather conditions and lighting conditions. Examples

of concept drifts of this nature include preferring a larger following distance

when travelling in heavy rain, or at night, in comparison to dry day-time driv-

ing where good light conditions improve visibility. Drifts caused by external

conditions such as these can occur both suddenly and gradually, with a high

probability of recurring in future journeys.
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3.4.2 Data Collection

To evaluate online TL techniques the data collected for the following distance dataset

encapsulated the driving behaviours of multiple participants upon different road

types with varying environmental factors. As such, 2 drivers were asked to drive 3

scripted routes, and 2 drivers were asked to record data during daily commutes to

and from the University of Warwick, UK.

The scripted routes were selected to include driving on motorways, duel car-

riageways and A roads where vehicle functionalities such as ACC are most suitable,

as shown in Figure 3.3. The diversity of road types travelled induce concept drift

as an individual’s driving style naturally may change throughout the journey. Each

of these routes were recorded at different times of day, since following distance is

dependent on external and environmental factors such as traffic and weather. To

capture a wider variety of driving conditions, 2 drivers were asked to record their

daily commute, and 11 journeys were recorded in this manner, creating a total of

17 scripted and unscripted journeys. Each of the 17 journeys varied in duration,

collection time and route, where the maximum, minimum and average durations

were 83 minutes, 15 minutes and 43 minutes respectively. Each journey is consid-

ered to be an independent data stream, such that 6 data streams were generated

by the 2 drivers driving 3 scripted routes5, while the remaining 11 were generated

by 2 drivers commuting6. Each data stream is subject to concept drifts that occur

naturally due to changes in the surrounding environment, such as road types and

traffic conditions.

In Chapters 4–7, a subset of 7 following distance data streams is also used.

This subset contains vehicle telemetry data from one driver driving 2 scripted routes,

while the remaining 5 data streams were collected from two drivers commuting. This

smaller subset of data streams is representative of the dataset containing 17 data

streams, and allows insights to be gained into the scalability of proposed online TL

techniques by comparing these results to those obtained using all 17 journeys.

Using real-world data to evaluate online TL frameworks is important to en-

sure that the techniques developed can be used in real-world applications. However,

the presence, frequency and types of concept drift cannot be artificially managed

within this dataset. This means that there is no guarantee that knowledge learnt

from one data stream will be beneficial in another. Since each following distance

data stream captures the data for a single driver over a single journey, and a large

5This dataset is available at: https://github.com/hmckay/BOTL/blob/master/

FollowingDistanceData.zip
6For privacy reasons the commute data cannot be released.
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Figure 3.3: The three scripted routes used for following distance data collection.

proportion of journeys are recorded in similar geographical locations, the likelihood

of encountering similar concepts in different data streams is high. However, since

each data stream captures only a single journey, the likelihood of encountering re-

curring concepts is less likely than in the drifting hyperplane data streams, where

recurring concepts are introduced artificially.

3.5 Summary

The datasets presented in this chapter can be used to evaluate concept drift detec-

tion strategies, online ensembles, and online TL frameworks in regression settings.

Each of these datasets exhibit useful characteristics to evaluate the effectiveness of

proposed approaches. The drifting hyperplane datasets allow online learning and

online TL approaches to be evaluated in a controlled environment, where the pre-
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cise number of concepts, point of concept drift, and similarity between concepts are

known. This means that methods such as drift detection strategies can be evalu-

ated with respect to their reactivity to sudden and gradual drift. Additionally, the

underlying concepts are known in advance, and identical concepts are known to be

present in different data streams, therefore online TL frameworks can be evaluated

to ensure that knowledge transfer is beneficial since it is known that some knowl-

edge available in one data stream will be beneficial to other data streams. However,

since the drifting hyperplane datasets are synthetic, they do not provide a good in-

dication of how online learning and online TL approaches will perform in real-world

environments.

The smart home heating simulation dataset contains data streams that are

synthetically generated based on real-world weather data. This provides a better

indication of how online learning and online TL approaches will perform in real-world

environments where the types of concept drift and occurrences of concept drift are

unknown. However, since data streams are created from overlapping periods of

time, there is still some control over the amount of beneficial knowledge that could

be shared among data streams when using this dataset to evaluate the effectiveness

of online TL approaches.

In the following distance dataset there is no control over the types or oc-

currences of concept drift. Additionally there is no guarantee that a data stream

will contain knowledge that is useful to another data stream when evaluating on-

line TL frameworks. This dataset allows online learning and online TL approaches

to be evaluated using data collected from a real-world environment, therefore the

performance observed using this dataset is indicative of what can be achieved when

deploying online TL in real-world applications.

Overall, the drifting hyperplane datasets are useful for developing new strate-

gies for online learning and online TL. This ensures that proposed approaches per-

form as expected within a controlled environment. The following distance dataset

allows approaches to be evaluated where there is no control over the underlying

distribution of data in each data stream. This provides insight into what might

be expected when using online learning and online TL in real-world applications.

The smart home heating simulation dataset also provides useful insight into how

approaches are likely to perform in real-world environments where the existence of

large quantities of real-world data is not available when developing online learning

and online TL strategies.
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Chapter 4

Determining What to Transfer

To address the challenge of determining what to transfer in online TL, where all

domains are online, and where a data rich offline source domain does not exist, the

knowledge that can be learnt from each online data stream must be considered. In

Chapter 2, existing methodologies for learning in online environments have been

discussed, including incremental learning, Concept Drift Detectors (CDDs), and en-

sembles. In this chapter, two existing CDDs are used to create predictive models

that could be used to transfer knowledge between domains in an online TL frame-

work, namely RePro [95], originally created for classification tasks, and ADWIN [8].

In this thesis, we consider the case where knowledge is learnt from regression based

data streams, and so RePro has been adapted so that it can be used in regression

settings. RePro and ADWIN both present characteristics that are beneficial in the

context of determining what to transfer in online TL. As such, a novel CDD is

presented, which combines key characteristics of RePro and ADWIN to create a

CDD that is beneficial in online TL frameworks that may have computation and

communication limitations.

The main contributions of this chapter are as follows.

• Adaptations of RePro and ADWIN are presented so that they can be used to

create predictive models for regression tasks in online TL frameworks.

• A novel CDD, namely AWPro, is presented, which combines key characteristics

of RePro and ADWIN that are beneficial in online TL.

• The impact of parameters, such as drift sensitivity and window size, required

by RePro, ADWIN and AWPro to detect concept drifts are discussed, includ-

ing considering how their values may impact the use of each CDD in online

TL.
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In this chapter, each CDD is used to create predictive models for the datasets

presented in Chapter 3. Each CDD is dependent on user defined parameters, which

requires domain expertise to select appropriate values. The impact of the user

defined parameters on online learning is discussed, and their impact in the context

of online TL is considered.

The remainder of this chapter is organised as follows. Section 4.1 discusses

desirable characteristics when considering the challenge of determining what to

transfer. Section 4.2 presents RePro, and the adaptations required to make it appli-

cable in regression settings, Section 4.3 presents ADWIN and Section 4.4 presents

AWPro. Sections 4.2, 4.3 and 4.4 also discuss the parameters of each CDD that are

required to detect concept drifts. In Section 4.5 we consider the impact of CDD

parameters and how they may impact the challenge of determining what to transfer

in online TL.

4.1 Determining What to Transfer

When considering the challenge of what to transfer in online TL, we must consider

how the knowledge available in a source domain can be captured and transferred

such that the transfer of knowledge is beneficial to a receiving domain. Since the

underlying distribution of data observed in a receiving domain is unknown to a

source domain, we cannot infer whether knowledge learnt in the source domain will

be beneficial to the receiver prior to transfer. However, in this thesis we consider the

case where domains are homogeneous such that they share the same feature space,

and each domain is learning independent but related tasks. Therefore, we assume

that knowledge of the concepts encountered in a source domain may be beneficial

to a receiving domain.

Knowledge can be learnt from an online source domain using online learning

techniques. However, the choice of online learning technique is not only depen-

dent on its effectiveness when predicting in its own domain, but also whether it is

beneficial to a receiving domain. Additionally, in online TL, the communication

and computation overhead of knowledge transfer must be considered to ensure that

online TL can be used in real-world applications.

Ensemble learning has been shown to have great success in online learning,

particularly on concept drifting data streams [30, 49, 72]. As discussed in Chapter 2,

ensemble based approaches combine multiple predictive models that have been learnt

historically throughout the data stream [31, 106]. However, the use of an ensemble

learner in each online domain is not easily applicable when addressing the challenge
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of determining what to transfer in online TL. This is because the predictions made

by an ensemble depend upon the combination of multiple predictive models. This

means that the knowledge learnt to represent a single concept encountered in a

source domain may be encompassed across multiple models in the ensemble. There-

fore, in order to use an ensemble as a method of knowledge transfer, all predictive

models in the ensembles, and the weights that determine their influence with respect

to a concept, must be transferred between domains. This may incur high communi-

cation overheads, but also could become computationally expensive since multiple

ensembles, learnt to represent different concepts, may be transferred throughout an

online TL framework, which must be combined in a receiving domain.

Instead, to reduce communication and computation overheads, it is desirable

to transfer a single model between domains. This is the approach of many online TL

frameworks, where the existence of a data rich offline source domain is assumed [27,

32, 88, 105]. However, if all domains are online and susceptible to concept drift, new

knowledge is made available as each data stream progresses. In order to encapsulate

this evolution of data, an incremental learner can be used [108]. As discussed in

Chapter 2, incremental learners gradually update model parameters as new instances

are observed, allowing models to adapt to concept drift [49]. Although the use of

an incremental learner would reduce communication and computation overheads

in comparison to an ensemble, knowledge learnt historically in a data stream may

be lost due to incrementally updating model parameters [95]. This means that,

in the presence of concept drift, knowledge of a previously encountered concept

may be forgotten, and subsequently may have to be relearnt in the presence of

recurring concepts. This is detrimental to online TL where all domains are online,

since concept drifts are not guaranteed to occur synchronously between domains.

Therefore, the knowledge learnt historically within each data stream may be of use

to another domain.

Alternatively CDDs can be used [5], which are ideal for addressing the chal-

lenge of determining what to transfer in online TL. This is because they can be used

to detect concept drift in an online data stream, allowing predictive models to be

learnt that represent each of the concepts encountered in a domain. Although it is

not known whether a receiving domain will encounter the same, or similar, concepts

to those identified in a source domain, by transferring a single model that has been

learnt to represent each concept encountered in a source domain, a receiving domain

can then determine whether those models are useful for predicting its own current

concept. Additionally, this approach allows receiving domains to be provided with

knowledge of historical concepts encountered in a source domain in case a similar
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Table 4.1: CDD parameters: notation and descriptions.

RePro
Wmax Maximum window size: number of instances used to monitor accu-

racy and train predictive models.
λl Loss threshold: ε-insensitivity for small margins of predictive errors.
λd Drift threshold: determines sensitivity to concept drift and deter-

mines when historical models can be reused.

ADWIN
Wmin Minimum window size: number of instances used to train predictive

models.
δ Confidence value: determines sensitivity to concept drift.

AWPro
Wmin Minimum window size: number of instances used to train predictive

models.
δ Confidence value: determines sensitivity to concept drift.
λr Recurrence threshold: determines when historical models can be

reused.

concept is later encountered. Transferring knowledge in this way is beneficial due

to requiring low communication overheads, since the knowledge transferred between

domains consists only of the model parameters that have been learnt in a source

domain to represent each concept.

Since CDDs allow new predictive models to be created each time a concept

drift is encountered, knowledge learnt of historical concepts can be retained, and

knowledge can be transferred periodically so that a receiving domain can benefit

from the knowledge learnt in a source domain as new concepts are encountered, and

without having to wait for model parameters to be incrementally updated [49].

Therefore, in this thesis, RePro [95], ADWIN [8], and AWPro [55], are used as

CDDs to address the challenge of determining what to transfer in online TL. These

CDDs are used to create predictive models that represent the concepts encountered

in each data stream, which are then transferred to other online domains. However,

in order to detect concept drifts, each CDD requires parameters to be defined that

determine their sensitivity to concept drift, and to determine how much data is

retained to create predictive models. Table 4.1 presents the notation used by RePro,

ADWIN and AWPro with respect to these parameters. Since drift sensitivity and

window size can impact what knowledge can be learnt and transferred throughout

an online TL framework, the parameter values chosen must be considered carefully.

In the ideal scenario, these parameters will allow a single predictive model to be
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learnt for each concept encountered in a data stream, which is representative of the

underlying distribution of that concept.

4.2 RePro

In this section, an adaptation of RePro [95] for regression is presented. RePro

encapsulates key characteristics that allow few models to be learnt in each domain.

First, RePro is a sliding window based detection algorithm that learns a single

model to represent the current concept [94]. Second, RePro prioritises the reuse of

existing models over learning new models. This is achieved by retaining a history of

previously learnt models, H, and concept transitions, TM , to proactively determine

which concept is likely to occur next [95]. However, RePro is dependent on three

user defined parameters that impact its ability to detect concept drift, which must

be specified in advance, namely the window size, Wmax, a drift threshold, λd, and a

loss threshold, λl.

RePro was initially developed specifically for classification tasks [95], there-

fore modifications are required for regression settings, as shown in Algorithm 2.

The original RePro algorithm for classification tasks detects drifts by measuring the

model’s classification accuracy across the sliding window, W . The window is popu-

lated as new instances are observed in the data stream. When the window is full, if

the oldest instance in the window has been correctly classified, then it is discarded

from the window. If the window is full and the oldest instance captured within the

window has been incorrectly classified, then the sliding window of instances, W ,

is evaluated. If the classification accuracy over the sliding window drops below a

threshold, λd, a drift is detected. However, if the window is full, |W | = Wmax, but

the classification accuracy does not drop below the drift threshold, then the sliding

window is maintained by discarding the oldest incorrectly classified instance and

all subsequent correctly classified instances in the window [95]. To apply RePro to

regression tasks, the sliding window must be maintained, however, the notion of a

correctly classified instance must be altered since small inaccuracies are inevitable

in regression settings due to noise. To overcome this, ε-insensitivity can be used,

allowing for a small margin of error between the prediction and the response vari-

able. To maintain a sliding window (Algorithm 2: lines 10 – 13), a loss threshold,

λl, is used, which allows instance x(t−|W |) to be discarded from the window if the

predicted value, ŷ(t−|W |) satisfies

|ŷ(t−|W |) − y(t−|W |)| ≤ λl.
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Algorithm 2: Adapted RePro for regression.

Input: Wmax, λl, λd, X, H = ∅ (historical concepts), TM = ∅
(transition matrix)

1 Learn f1 using x1 . . . xWmax , add to H
2 for t = Wmax + 1,Wmax + 2, . . . do
3 Receive xt and predict ŷt = fi(xt)
4 Receive yt, add 〈xt, ŷt, yt〉 to W
5 if fi is new and stable then
6 Add fi to H and fi−1 → fi to TM
7 if R2(fi,W ) < λd then
8 fi+1 = getNextModel(H,TM,W ) using Alg. 3
9 W = {}

10 else if |W | ≥Wmax then
11 Remove x(t−|W |) from W

12 while |fi(x(t−|W |))− y(t−|W |)| ≤ λl do

13 Remove x(t−|W |) from W

Algorithm 3: Model selection and creation for RePro. For additional
details see [95].

Input: H,TM,W, λd
1 fi+1 = next model in TM
2 if R2(fi+1,W ) ≥ λd then
3 return fi+1

4 fi+1 = best performing model in H
5 if R2(fi+1,W ) ≥ λd then
6 return fi+1

7 Learn fi+1 using W
8 return fi+1

The R2 performance of the predictive model, fi, across W is used to detect drifts

(Algorithm 2: line 7). A drift is said to have occurred when the performance

of the model drops below a predefined drift threshold, λd, akin to observing the

classification accuracy dropping below an error threshold.

The original formulation of RePro used the notion of a stable learning size,

specifying how much data is required to learn a stable model. This was necessary for

the simulated classification tasks presented by Yang et al. [95] since small window

sizes were required to allow drifts to be detected quickly. However, this meant that

insufficient instances were available in the sliding window that could be used to

learn a predictive model that adequately represented the current concept [94]. To

overcome this Yang et al. initially create predictive models using Wmax instances,
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however, once a further 2Wmax instances have been observed, the predictive model

is relearnt using the previous 3Wmax instances of data. This predictive model is

then deemed to be stable [95]. Since real-world environments are often considerably

more noisy than the simulated or synthetic environments used by Yang et al., using

a small window size can cause drifts to be falsely detected, and therefore a larger

window size is necessary [8]. Increasing the window size also increases the stable

learning size, however, if the stable learning size is increased, the data used to create

a model may encapsulate multiple underlying concepts. To overcome this challenge,

the adaptation of RePro for regression defines a stable model to be one that is

learnt from Wmax instances and is used to make predictions over a further 2Wmax

of previously unseen instances in the data stream without a drift being detected.

To proactively determine future concepts, RePro maintains a transition ma-

trix, TM , to determine the likelihood of encountering a recurring concept. To

prevent the reuse of unstable models that make poor predictions, only those that

are considered to be stable are added to the transition matrix. If the transition ma-

trix indicates that it is equally likely that two or more concepts may be encountered

next, RePro evaluates the performance of each model on the current window of data

and selects the model with the highest accuracy. If the transition matrix does not

indicate a likely successor concept, each historical model is considered for reuse. A

new model is only learnt when all historical models perform worse than the drift

threshold, λd, as shown in Algorithm 3.

Parameter Selection

The characteristics of RePro as a drift detection strategy are desirable for online TL,

however, the selection of parameter values, Wmax, λd, and λl, may not be intuitive.

Given an online data stream, trade-offs must be considered for each parameter. For

example, selecting a large window size, Wmax, allows more data to be retained to

train the predictive models, increasing their accuracy and stability [7]. However,

a window size that is too large may cause RePro to react slowly to concept drifts,

and may retain data from multiple concepts, preventing a model from being created

to represent each concept independently. Alternatively, using a small window size

may allow RePro to react quickly to drifts, but selecting a window size that is too

small may prevent a representative sample from being retained to build a model

that generalises well for unseen instances belonging to the same concept.

The drift and loss thresholds, λd and λl, determine RePro’s sensitivity to

concept drift. Small drift thresholds and large loss thresholds decrease RePro’s

sensitivity to concept drifts, since small λd values allow the performance of a model

42



to greatly decrease before a drift is detected, while large λl values allow instances

to be removed from the sliding window when a model’s predictive error is high.

Large λd and small λl values increase RePro’s sensitivity to drifts. As RePro

becomes more sensitive to concept drifts, it also becomes more likely that a drift

is detected before a full window of instances belonging to the new concept have

been observed. This means that the window of data, W , used to build a model

for the newly encountered concept may contain instances belonging to the previous

concept. Models built using data belonging to both the previous and new concepts

may not make effective predictions as more instances belonging to the new concept

are observed. Since RePro monitors the model performance to detect drifts, this

can cause RePro to repeatedly detect drifts and create unstable models immediately

after a concept drift, and during periods of gradual drift. The repeated creation of

unstable models increases computation in each data stream, however, these models

are not added to the transition matrix, TM , or the model history, H, and therefore

do not greatly impact the overarching performance of RePro across the data stream,

and do not impact the communicational overhead of knowledge transfer when only

models considered to be stable are transferred. Due to this, selecting values for λd

that are too large, and values for λl that are too small, may prevent RePro from

creating stable models that can be added to the model history, since drifts may be

falsely detected frequently in the presence of noise.

4.3 ADWIN

ADWIN, presented by Bifet et al. [8], detects drifts by monitoring changes in the

distribution of a data stream. For use in a regression setting, the distribution of

predictive error is monitored across a sliding window. Instead of using a fixed length

sliding window, the size of the window is determined according to the rate of change

of predictive error observed in the data stream [8].

ADWIN operates on the principal that if two large enough sub-windows have

distinct enough mean values, then the expected values within each sub-window will

differ [8, 26]. As such, a drift is said to be detected when

|µ̂W0 − µ̂W1 | ≥ εcut, (4.1)

where µ̂W0 and µ̂W1 are the mean values of sub-windows W0 and W1, and εcut is
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Algorithm 4: ADWIN. For full implementation details see [8].

Input: Wmin, X, δ (confidence value), driftFlag = False.
1 Learn f1 using x1 . . . xWmin

2 adwin = new ADWIN(δ)
3 for each t = Wmin + 1,Wmin + 2, . . . do
4 Receive xt and predict ŷt = fi(xt)
5 Receive yt, and calculate diff = (ŷt − yt)
6 Add 〈xt, ŷt, yt, diff〉 to W
7 if not driftFlag then
8 driftFlag, W0,W1 = adwin.detectDrift(W ) (using Equ. 4.1 & 4.2)
9 if driftFlag then

10 W = W1

11 if driftFlag and |W | ≥Wmin then
12 Learn fi+1 using W = {xt−Wmin , . . . , xt}
13 driftFlag = False
14 adwin = new ADWIN(δ)

defined by the Hoeffding bound

εcut =

√
1

2m
· ln 4|W |

δ
, (4.2)

where m is the harmonic mean of the sub-windows, m = 2
1/|W0|+1/|W1| , and δ is

a confidence value, defined by the user, which determines the sensitivity of drift

detection [8, 26].

ADWIN can be used in online TL, as presented in Algorithm 4, to detect

drifts within the data stream by monitoring the distribution of the predictive error

of the model learnt from the data stream, fi,

|fi(xt)− yt|.

Once a drift is detected, a new model is learnt, fi+1, using the subsequent sub-

window such that W = W1 (Algorithm 4: lines 8 – 14). Monitoring the distribution

of predictive error allows drifts to be detected rapidly. However, if two consecu-

tive concepts are dissimilar, then drifts are frequently detected when only a small

number of instances from the new concept have been observed, and therefore the

data contained in the sliding window, W , after a drift is detected is unlikely to be

representative of the newly encountered concept. To address this, the implementa-

tion of ADWIN presented in this section only creates a new model, fi+1, once Wmin

instances belonging to the new concept have been observed, such that |W | = Wmin
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(Algorithm 4: lines 11 – 14). Until sufficient data has been observed to build a

model that adequately represents the new concept, the previously learnt model, fi,

must continue to be used to make predictions.

Parameter Selection

Using ADWIN in this way requires two user defined parameters, the minimum win-

dow size, Wmin, and the confidence value, δ. Similarly to RePro, domain expertise

is required to select these parameter values. Since ADWIN uses a dynamic slid-

ing window, the minimum window size parameter, Wmin, does not directly impact

ADWIN’s ability to detect concept drifts. Instead, Wmin is only used to determine

how much data should be retained to build a model that adequately represents the

current concept [7]. Similar to RePro’s Wmax parameter, large values of Wmin allow

more data to be made available to train the predictive model, fi, creating an accu-

rate and stable model [7]. However, if Wmin is too large, then the data contained

within the window may encapsulate data from multiple concepts, preventing indi-

vidual models being learnt for each concept, and if Wmin is too small, then the data

used to build a model may not be representative of the current concept, resulting

in predictive models that do not generalise well.

ADWIN detects drifts by monitoring the distribution of predictive error,

and therefore Wmin can indirectly effect ADWIN’s ability to correctly detect con-

cept drifts and the overall predictive performance. If Wmin is too small then it may

cause a model to be learnt that overfits the available window of data, and obtains

high predictive errors for unseen instances belonging to the same concept. Since

ADWIN monitors the change in distribution of predictive error, using a model that

initially has a high predictive error may prevent or delay the detection of a concept

drift because no significant change in the distribution of predictive error is observed

during periods of concept drift. However, large Wmin values increase the number of

instances observed before a new model can be learnt, prolonging the use of the previ-

ously learnt model, and decreasing the predictive performance observed throughout

the data stream.

The confidence value, δ, is used to determine ADWIN’s sensitivity to concept

drifts through the εcut threshold (Equations 4.1 and 4.2). High values of δ increase

drift sensitivity, however, in noisy data streams, this can cause drifts to be falsely

detected due to the increased variability of sub-window mean values, µ̂W0 and µ̂W1 .

To overcome this, lower values of δ can be chosen, however, this may prevent drifts

from being detected in domains containing similar consecutive concepts, or slow

gradual drifts, where the sub-window mean values do not change greatly.
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4.4 AWPro

The use of RePro as a concept drift detection algorithm can be computationally

demanding due to the creation of high volumes of unstable models, caused by its in-

ability to detect the precise point of drift within the sliding window. ADWIN allows

the point of drift to be estimated, such that the sliding window can be split into two

sub-windows, where the first sub-window contains instances belonging to the previ-

ous concept, which are discarded, while the second sub-window contains instances

belonging to the new concept. However, if the number of remaining instances in the

second sub-window is small, then ADWIN must wait until sufficient instances have

been observed before a new model can be learnt, negatively impacting its perfor-

mance. Additionally, ADWIN does not consider the presence of recurring concepts,

and therefore predictive models are re-learnt instead of reusing a historical model

when a concept reoccurs. This prevents previously learnt models from being used to

make predictions when few instances from a recurring concept have been observed,

and increases the number of models transferred between domains when ADWIN is

used in online TL.

To reduce the computational overhead of creating of large numbers of unsta-

ble models, while also preventing duplicate models from being learnt for recurring

concepts, a novel CDD, called Adaptive Windowing with Proactive predictions (AW-

Pro) is presented, as shown in Algorithm 5, which combines desirable characteristics

of ADWIN and RePro which are beneficial in the context of online TL. AWPro uses

ADWIN to monitor the change in distribution of predictive error, allowing the drift

detection strategy to partition instances belonging to different concepts within a

dynamic sliding window. Concept drifts are identified using Equations 4.1 and 4.2,

which use a confidence value, δ, to determine the sensitivity to changes in the distri-

bution of the predictive error (Algorithm 5: line 9). Once a model has been learnt

and is considered to be stable, it is added to the model history, H, and the transition

between concepts is added to the transition matrix, TM (Algorithm 5: lines 26 –

27). As in RePro, a stable model is one that is used to make predictions over 2Wmin

instances without a drift being detected.

When a concept drift is encountered, AWPro drops the first sub-window of

instances, W0, such that all instances that remain in the window belong to the new

concept, W = W1. If the remaining window of data is less than 1
2Wmin instances,

then the previous model continues to be used, and newly observed instances are

added to the window until 1
2Wmin have been observed (Algorithm 5: lines 12 – 13).

When 1
2Wmin or more instances are captured in W , the proactive nature of
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Algorithm 5: AWPro.

Input: Wmin, X, δ (confidence value), driftFlag = False, λr, H = ∅
(historical concepts), TM = ∅ (transition matrix)

1 driftFlag, tempModel = False
2 Learn f1 using x1 . . . xWmin , add to H
3 adwin = new ADWIN(δ)
4 for each t = Wmin + 1,Wmin + 2, . . . do
5 Receive xt and predict ŷt = fi(xt)
6 Receive yt, and calculate diff = (ŷt − yt)
7 Add 〈xt, ŷt, yt, diff〉 to W
8 if not driftFlag then
9 driftFlag, W0,W1 = adwin.detectDrift(W ) (using Equ. 4.1 & 4.2)

10 if driftFlag then
11 W = W1

12 if driftFlag and |W | < 1
2Wmin then

13 Continue using fi or ftemp, add xt to W

14 else if driftFlag and 1
2Wmin ≤ |W | < Wmin and not tempModel

then
15 if R2(getNextModel(H,TM,W, λr,Wmin),W ) ≥ λr then
16 fi+1 = getNextModel(H,TM,W, λr,Wmin) using Alg. 6
17 driftFlag,tempModel = False
18 adwin = new ADWIN(δ)

19 else
20 tempModel = True
21 Learn ftemp using W

22 else if driftFlag and |W | ≥Wmin then
23 fi+1 = getNextModel(H,TM,W, λr,Wmin) using Alg. 6
24 driftFlag,tempModel = False
25 adwin = new ADWIN(δ)

26 if fi is new and stable then
27 Add fi to H and fi−1 → fi to TM

47



Algorithm 6: Model selection and creation for AWPro.

Input: H,TM,W, λr,Wmin

1 fi+1 = next model in TM
2 if R2(fi+1,W ) ≥ λr then
3 return fi+1

4 fi+1 = best performing model in H
5 if R2(fi+1,W ) ≥ λr then
6 return fi+1

7 if |W | ≥Wmin then
8 Learn fi+1 using W = {xt−Wmin , . . . , xt}
9 return fi+1

RePro is used by AWPro to determine whether an existing model can be reused to

represent the current concept (Algorithm 5: lines 14 – 18). This allows AWPro to

identify an existing model, using Algorithm 6, that represents the current concept,

before a full window of instances have been observed after the concept drift. AW-

Pro uses a recurrence threshold that determines whether an existing model can be

reused, λr, which acts in the same way as the drift threshold, λd, in RePro, when

considering the reuse of existing models. If a model’s R2 performance is greater

than the recurrence threshold, λr, then it is reused, and the process of detecting

concept drifts through monitoring changes to the distribution of predictive error is

resumed. However, if no model exists, then a temporary model is created using W ,

where 1
2Wmin ≤ |W | < Wmin. Although these temporary models are akin to unsta-

ble models learnt using RePro, the window used to build these models only contains

instances belonging to the new concept. Having few instances available increases

the likelihood of learning a model that is not representative of the entire concept.

However, this may be preferable to ADWIN’s approach of continuing to use a model

that represents the previous concept, or RePro’s approach where a model may be

learnt from data belonging to both concepts. Once a temporary model has been

created, instances continue to be added to the window until Wmin instances belong-

ing to the new concept have been observed. Once the size of the window grows to

Wmin, AWPro uses the transition matrix and historical models to identify existing

models that could be reused now a more representative sample of data is contained

within the window. If no existing model exceeds the recurrence threshold, λr, then a

new model is learnt using the Wmin most recently observed instances (Algorithm 5:

lines 22 – 25, and Algorithm 6).
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Parameter Selection

AWPro relies on three user defined parameters: the confidence value, δ, the win-

dow size, Wmin, and the recurrence threshold, λr. Since AWPro adopts ADWIN’s

approach to detecting concept drifts, many of the challenges of parameter selection

outlined in Section 4.3 with respect to the confidence value, δ, and the window size,

Wmin, are also applicable to AWPro. However, instead of waiting for Wmin instances

to be observed after a drift is detected, AWPro uses the recurrence threshold, λr,

to determine whether an existing model can be reused.

If large values are chosen for λr, then the likelihood of reusing a historical

model decreases, since a historical model must exhibit low predictive error in order to

be selected for reuse. Therefore, high λr values will increase the number of models

learnt by AWPro. To increase the reuse of models in the presence of recurring

concepts smaller values should be chosen for λr. However, if λr is too small, then an

existing model may be incorrectly reused for a concept that has not previously been

encountered, lowering the predictive performance of AWPro. This may also hinder

the detection of concept drifts since the predictive error across the sliding window

of data may initially be high if a historical model is reused which does not represent

the current concept, and therefore identifying concept drifts through monitoring

changes to the distribution of predictive error becomes challenging.

4.5 Impact of Parameter Values

In order to investigate how online TL frameworks may be impacted by the parame-

ters used by RePro, ADWIN and AWPro, each CDD is used to detect concept drifts

and create predictive models for data streams in the datasets presented in Chapter 3,

namely the sudden and gradual drifting hyperplane datasets, the heating simulator

dataset and the following distance dataset. The performance of each CDD and the

number of stable and unstable models created by each CDD are evaluated to con-

sider the implications of their use in online TL. The parameter values chosen for each

CDD should be selected with the aim of maximising the performance of the predic-

tive models created, while reducing both the number of stable and unstable models.

These aims ensure that the transfer of knowledge can be beneficial to a receiving

domain, while minimising unnecessary computation, and reducing communication

overheads.

The first parameter to be considered is the loss threshold, λl, used by RePro,

which determines how close a prediction must be to the response variable in order

for it to be discarded from the sliding window. Since the hyperplane datasets are
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(a) RePro: SuddenA (b) RePro: GradualA

(c) ADWIN: SuddenA (d) ADWIN: GradualA

(e) AWPro: SuddenA (f) AWPro: GradualA

Figure 4.1: Performance and number of stable models created by RePro, ADWIN
and AWPro with varying drift sensitivities for the SuddenA and GradualA drifting
hyperplane datasets using a window size of 30 instances. Annotated with the total
number of models learnt and percent that are considered stable.

synthetic, and the response variables are in the range [0,1], a loss threshold of

λl = 0.01 is used, allowing for a 1% error in predictions. The heating simulator

and following distance datasets do not have a definitive range for their respective

response variables, and therefore a percentage of error cannot be used. Since these

datasets require predictions to be made for user facing applications, namely a smart

home heating system and ACC, λl was selected by considering errors that would not

be noticeable to a user. For the heating simulator dataset a loss threshold λl = 0.5

was used, since a prediction error of 0.5◦C would not be detectable by an individual.

Similarly, a loss threshold of λl = 0.1 was used for the following distance dataset,

allowing for a predictive error of 0.1 seconds. These loss thresholds are used by

RePro throughout the remainder of this thesis.

Drift sensitivities and window sizes must also be chosen for RePro, ADWIN
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(a) RePro: Heating (b) RePro: Following Distance

(c) ADWIN: Heating (d) ADWIN: Following Distance

(e) AWPro: Heating (f) AWPro: Following Distance

Figure 4.2: Performance and number of stable models created by RePro, ADWIN
and AWPro with varying drift sensitivities for the heating simulator and following
distance datasets using a window sizes of 480 for the heating simulator dataset
(capturing instances across a period of 10 days), and 90 for the following distance
dataset. Annotated with the total number of models learnt and percent that are
considered stable.

and AWPro. To consider how predictive performance and the number of models

created by each CDD are affected by parameter values, both the drift sensitivity

and the window size have been varied for each CDD.

Figures 4.1 and 4.2 display the results of varying drift sensitivities for each

CDD1. These results are obtained using a fixed window size for each dataset type,

representative of the results presented in Figures 4.3 and 4.4, which were obtained

by varying window size. Figure 4.1 uses a window size of 30 instances for the

drifting hyperplane datasets, and Figure 4.2 uses window sizes of 480 instances for

1For Figures 4.1 and 4.2, all plots show parameter values with decreasing sensitivity to concept
drift on the x-axis, with the most sensitive parameter value on the left of each plot, and the least
sensitive on the right.
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the heating simulator dataset, and 90 instances for the following distance dataset.

Figures 4.1a, 4.1b, 4.2a and 4.2b present the results obtained by varying Re-

Pro’s sensitivity to concept drift using λd in the sudden drifting hyperplane, gradual

drifting hyperplane, smart home heating simulation and following distance datasets

respectively. These results indicate that higher drift sensitivity values used by Re-

Pro typically obtain a higher performance across all dataset types, however, the

number of unstable models is also larger, and very few stable models are created.

Lowering the drift sensitivity of RePro introduces a slight decrease in performance

but significantly reduces the number of unstable models, and increases the propor-

tion of stable models. Therefore, a trade-off between performance and the number

of models created is necessary when using RePro as a CDD.

If the sole concern is the performance of the underlying CDD, then RePro

obtains the best performance overall. RePro outperforms ADWIN and AWPro in

Figures 4.1 and 4.2, due to its drift detection mechanism. Unlike ADWIN (Fig-

ures 4.1c, 4.1d, 4.2c and 4.2d) and AWPro (Figures 4.1e, 4.1f, 4.2e and 4.2f), RePro

monitors the predictive performance of the current model, and detects drifts when

its performance drops below the drift threshold, λd. This means that poorly per-

forming models are replaced as new instances of data are observed, until a model

that achieves a performance greater than λd is learnt. ADWIN and AWPro only

monitor the distribution of predictive error, regardless of how poorly the model per-

forms, and therefore a poorly performing model will only be replaced when a change

in the distribution of predictive error is observed.

Although RePro uses a sliding window to capture the most recent instances,

it does not estimate the precise point a drift occurs within the window. This means

that RePro frequently builds models from windows containing instances belonging

to both the previous and new concept, causing unstable models to be learnt. Since

RePro monitors the performance of each model, unstable models are often created

in quick succession during gradual drifts, or immediately after sudden drifts. This is

highlighted in the annotations in Figures 4.1a, 4.1b, 4.2a and 4.2b, which show the

percentage of models that were considered stable and useful for knowledge transfer.

RePro creates significantly more unstable models, wasting computation that may

mean it is impractical in real-world environments with limited computational re-

sources. ADWIN and AWPro may be more applicable in these environments, since

they estimate the point of drift using a dynamic sliding window, therefore reduc-

ing the number of unstable models. This is illustrated by considering the drifting

hyperplane datasets presented in Figure 4.1. As discussed in Chapter 3, each drift-

ing hyperplane data stream contains 5 concepts that occur 4 times throughout the
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stream. ADWIN identifies drifts effectively, since close to 20 models are created

across all drift sensitivity values for the sudden and gradual drifting hyperplane

datasets in Figures 4.1c and 4.1d respectively. When evaluating RePro using the

drifting hyperplane datasets, Figures 4.1a and 4.1b highlight the high frequency in

which unstable models are created by RePro. For example, in Figure 4.1b, nearly

1000 unstable models are created per data stream in the GradualA dataset when a

drift threshold of λd = 0.9 is used. Although ADWIN creates fewer unstable models

in the drifting hyperplane datasets (Figures 4.1c and 4.1d), it cannot reuse existing

models in the presence of recurring concepts, and therefore a larger number of stable

models are learnt in comparison to AWPro (Figures 4.1e and 4.1f).

AWPro combines ADWIN’s drift detection strategy with RePro’s ability to

prioritise the reuse of existing models. Therefore, AWPro creates very few unstable

models, and creates close to 5 predictive models over a variety of drift sensitivity

parameter values for the sudden and gradual drifting hyperplane datasets, as shown

in Figures 4.1e and 4.1f respectively. These 5 predictive models correspond to the

5 independent concepts encountered in the drifting hyperplane datasets, indicating

that AWPro is able to successfully identify recurring concepts in these datasets. This

reduces communication overheads and reduces the risk of overfitting introduced by

transferring multiple models that have been learnt to represent the same concept,

making AWPro more applicable to online TL where computation and communica-

tion resources may be restricted.

By considering performance and the number of stable and unstable models

learnt, a drift sensitivity value of λd = 0.5 is selected for RePro since the perfor-

mance obtained remains high across the drifting hyperplane datasets in Figures 4.1a

and 4.1b, and in the heating simulation and following distance datasets in Fig-

ures 4.2a and 4.2b. Additionally, the percentage of models learnt that are considered

stable increases compared to using drift sensitivity values of λd = 0.6 and λd = 0.7.

The percentage of models learnt by ADWIN that are considered stable varies

little across drift sensitivity values within the hyperplane datasets, however, a drop

in performance is observed when δ > 0.02 and δ > 0.002 for sudden and gradual

drifting datasets respectively, as shown in Figures 4.1c and 4.1d. Additionally,

an increase in the percentage of models that are considered stable is observed in

Figure 4.2c for the heating simulation dataset for δ < 0.02, while no significant

change in performance or number of stable or unstable models is observed in the

following distance datasets in Figure 4.2d. Therefore, a drift sensitivity value δ =

0.02 is selected for ADWIN.

Since AWPro is based upon the drift detection mechanism used by ADWIN,
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(a) RePro: SuddenA (b) RePro: GradualA

(c) ADWIN: SuddenA (d) ADWIN: GradualA

(e) AWPro: SuddenA (f) AWPro: GradualA

Figure 4.3: Performance and number of stable models created by RePro, ADWIN
and AWPro with varying window sizes for the SuddenA and GradualA drifting
hyperplane datasets using drift sensitivities of λd = 0.5 for RePro, and δ = 0.02
for ADWIN and AWPro. Annotated with the total number of models learnt and
percent that are considered stable.

observations in changes to performance with varying drift sensitivities are similar,

as shown in Figures 4.1e, 4.1f, 4.2e and 4.2f. To enable fair comparisons, a drift

sensitivity value δ = 0.02 is also chosen for AWPro.

In addition to the impact of drift sensitivity, the window size parameter

must be defined for RePro, ADWIN and AWPro. Figures 4.3 and 4.4 present the

results obtained when varying window size for each CDD. This parameter determines

how much data is made available to learn a new predictive model after a drift has

been identified, and how much data is retained in order to detect drifts in the case

of RePro. The results presented in Figures 4.3 and 4.4 use fixed drift sensitivity

values for each CDD, which are representative of the results presented in Figures 4.1

and 4.2, and displayed in Table 4.2.
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(a) RePro: Heating (b) RePro: Following Distance

(c) ADWIN: Heating (d) ADWIN: Following Distance

(e) AWPro: Heating (f) AWPro: Following Distance

Figure 4.4: Performance and number of stable models created by RePro, ADWIN
and AWPro with varying window sizes for the heating simulator and following dis-
tance datasets using drift sensitivities of λd = 0.5 for RePro, and δ = 0.02 for
ADWIN and AWPro. Annotated with the total number of models learnt and per-
cent that are considered stable.

Across synthetic sudden and gradual drifting hyperplane datasets, presented

in Figure 4.3, RePro, ADWIN and AWPro maintain similar ratios of stable to un-

stable models, regardless of window size, however, the performance of each CDD

typically decreases as the window size increases. This is observed since the underly-

ing concepts to be learnt in the drifting hyperplane datasets are simplistic, therefore

effective predictive models can be learnt from little data. Increasing the window size

decreases predictive performance in these datasets since larger window sizes delay

drift detection. However, a significant increase in performance is observed as the

window size increases for each CDD for the real-world following distance dataset

in Figures 4.4b, 4.4d and 4.4f since the concepts to be learnt are more complex,

and therefore require more data to be made available to build a predictive model
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RePro ADWIN AWPro
Wmax λd λl Wmin δ Wmin δ λr

SuddenA 30 0.5 0.01 30 0.02 30 0.02 0.5
GradualA 30 0.5 0.01 30 0.02 30 0.02 0.5
Heating 10 days 0.5 0.5◦C 10 days 0.02 10 days 0.02 0.5
Following 90s 0.5 0.1s 90s 0.02 90s 0.02 0.5

Table 4.2: Window size and drift sensitivity parameters used by RePro, ADWIN,
and AWPro to obtain results presented in Chapters 5–7.

that effectively represents the current concept [7]. Figures 4.3 and 4.4 highlight that

the performance and ratio of stable to unstable models is affected by the window

size. However, all CDDs perform similarly for each dataset, indicating that the

window size is dependant on the data stream to be learnt from, rather than the

drift detection strategy. From the results presented in Figure 4.3, window sizes of

30 instances are selected for the sudden and gradual drifting hyperplane datasets,

whereas window sizes of 480 instances for smart home heating simulator dataset,

which encapsulates 10 days of observations, and 90 instances for the following dis-

tance dataset, which encapsulates 90 seconds of observations are chosen based on

the results presented in Figure 4.4.

AWPro has an additional parameter, λr, which determines whether a histor-

ical model can be reused. Since it is used to identify recurring concepts in a similar

way to how λd is used by RePro, the parameter value, λr, for AWPro has been

selected based on the analysis of RePro in Figures 4.1 –4.4 to allow fair comparisons

between RePro and AWPro.

4.6 Summary

In order to determine what to transfer in online TL frameworks we must consider

what information can be learnt in each online domain that may be beneficial to

other domains. In frameworks where all domains are online and a data rich offline

source domain does not exist, CDDs can be used to identify each of the concepts

encountered in a domain. Knowledge of these concepts can be transferred between

domains by transferring the parameters of predictive models that have been learnt

to represent each of the concepts. Transferring knowledge in this way has a reduced

communication overhead in comparison to instance based transfer, which may be

beneficial to applications of online TL that have limited communication bandwidth

to transfer knowledge between domains.
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In this chapter, RePro, ADWIN and AWPro have been chosen as CDDs to

learn predictive models, however, other CDDs can also be used, including ensemble

based approaches. RePro, ADWIN and AWPro have key characteristics that are

beneficial when used in online TL frameworks. For example, a key characteristic

common to RePro, ADWIN and AWPro, is that a single predictive model is learnt to

represent each of the concepts encountered in a data stream. This means that there

is a lower communication overhead associated with knowledge transfer in compar-

ison to ensemble based concept drift detection strategies, where the representation

of a single concept may be encapsulated across multiple predictive models in the

ensemble.

Another key characteristic, exhibited by RePro and AWPro, is the reuse of

historical models in the presence of recurring concepts. Reusing historically learnt

models reduces the computational overhead of having to unnecessarily relearn pre-

dictive models and reduces communication overheads when transferring knowledge

of a recurring concept. Additionally, a key characteristic exhibited by ADWIN and

AWPro is that the precise point of concept drift is estimated within a dynamic

sliding window. This means that instances belonging to a previous concept are dis-

carded from the sliding window before a predictive model is learnt to represent a

newly encountered concept. Therefore, the knowledge learnt to represent each of

the concepts is not influenced by the preceding concept.

In order to use RePro, ADWIN and AWPro as CDDs, user defined param-

eters must be used to determine their sensitivity to concept drifts and the amount

of data available to learn predictive models. Section 4.5 has shown that these pa-

rameter values are dependent on the data streams in which concept drifts are to

be detected, and therefore, in order to use these techniques in real-world applica-

tions, initial analysis of the impact of parameter values must be conducted on data

streams which are representative of those encountered in real-world environments.

When such data streams are not available, considerable domain expertise may be

required.

To address the challenge of selecting drift sensitivity and window size pa-

rameter values, and to ensure fair comparisons throughout the remainder of this

thesis, a single window size has been selected per dataset type, which is used by

all CDDs, and a single drift sensitivity value has been chosen for each CDD, which

is used across all dataset types. This means that the parameter values chosen are

not fine tuned to each independent data stream, as might be expected when using

CDDs in real-world environments where an in-depth analysis of parameter values

for every data stream is infeasible. The parameter values displayed in Table 4.2 are

57



used throughout the remainder of this thesis, and are used to obtain the results pre-

sented in Chapters 5–7. Overall, parameter values have been selected such that the

window size is small to allow rapid drift detection, but ensure that sufficient data is

retained to build an effective predictive model. This was inferred by considering the

percentage of models that were considered stable. Drift sensitivity parameters have

been selected that prioritise high performance, but also take into account commu-

nication and computational overheads, which was inferred by considering both the

number of stable and unstable models.
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Chapter 5

The Bi-directional Online

Transfer Learning Framework

Learning in online data streams can be challenging since data availability is often

limited and a rich history of data cannot be retained [78]. Additionally, as discussed

in Chapter 2, learning in dynamic non-stationary environments can introduce the

problem of concept drift. Concept drift occurs when the underlying distribution

of data, or the mapping between observations and response variable, changes over

time [26]. This means that the knowledge that can be learnt from a data stream is

often limited [95].

Online TL allows knowledge to be learnt from independent sources of data

and transferred to others to improve predictive capabilities in an online data

stream [107]. Existing online TL frameworks typically assume that knowledge is

learnt from offline source domains, and transferred to online receiving domains [104].

However, this means that a data rich offline source domain must be available to learn

the predictive models that will be beneficial to the online receiving domain [27]. This

may not be the case for many real-world applications that consist of multiple de-

vices, each learning in online environments [54]. For example, online learning may

be used to personalise the functionality of a user facing application. This means

that personalisations must be learnt from the online data stream associated with

each user, however a data rich offline source domain does not exist.

In this Chapter, a novel online TL framework is introduced, namely the Bi-

directional Online Transfer Learning (BOTL) framework. BOTL enables knowledge

to be learnt from independent online data streams, and transferred to other online

data streams to enhance the predictive performances achieved in each data stream.

This means that both source and receiving domains are considered to be online.
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Considering each domain to be online has three benefits over the existing online TL

frameworks that are dependent on data rich offline source domains. First, concept

drift detection strategies, as discussed in Chapter 4, can be used to learn each of

the concepts encountered in a source domain and transferred to a receiving domain.

This means that the receiving domains can benefit from knowledge learnt about each

individual source concept. Second, as the data stream progresses in the online source

domain, knowledge of newly encountered concepts can be learnt and transferred to

a receiving domain. Third, knowledge can be transferred bi-directionally such that

knowledge learnt from the data stream in the online source domain can benefit

predictions made in the online receiving domain and vice versa.

The main contributions of this chapter are as follows.

• A novel online TL framework, namely BOTL, is presented, which enables

knowledge to be transferred bi-directionally between online domains in a re-

gression setting, and combined using an Ordinary Least Squares (OLS) meta-

learner.

• A proof of the empirical loss of BOTL is provided, showing that BOTL is

guaranteed to have an empirical loss no worse than the underlying CDD.

• Näıve model culling strategies are introduced, which can be used to prevent

overfitting when the number of models transferred throughout the framework

becomes large.

In this chapter, BOTL is evaluated in a regression setting using the synthetic

and real-world datasets introduced in Chapter 3, namely the drifting hyperplane,

heating simulator, and following distance datasets. The three CDDs discussed in

Chapter 4 are used to detect concept drift in each independent data stream, allowing

predictive models to be learnt to represent each of the concepts encountered, which

are then transferred bi-directionally throughout the framework. BOTL is compared

to the Generalised Online Transfer Learning (GOTL) framework [32], which assumes

the source domain is offline.

The remainder of this Chapter is organised as follows. Section 5.1 introduces

existing online TL frameworks, including GOTL. Section 5.2 formulates the setting

in which BOTL is used. The proposed BOTL framework is presented in Section 5.3,

and the empirical loss of BOTL is presented in Section 5.4. Section 5.5 briefly

discusses the experimental setup used to evaluate BOTL, which includes details of

how GOTL was adapted for use when all domains are online. Empirical results of

BOTL and BOTL with model culling are presented in Section 5.6, and Section 5.7
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presents further results and discussion on the effects of increasing the number of

models transferred throughout the framework. Finally, Section 5.8 concludes this

chapter, highlighting the limitations of BOTL and online TL in frameworks when

all domains are online.

5.1 Online TL

Most existing online TL frameworks aim to transfer knowledge learnt from an offline

source domain to an online target domain, referred to in this thesis as a receiving

domain, typically for classification tasks [52]. The Online Transfer Learning (OTL)

framework [104] was the first TL framework designed specifically to aid the predic-

tions of an online target domain. OTL creates a predictive model in the offline source

domain, which is transferred to the online target domain. A predictive model is also

learnt in the target domain, which is updated as more instances are observed in the

online data stream. Source and target models are then combined using a weighting

mechanism, which is updated with respect to the performance of the source and

target models over a sliding window of data in the target domain [104]. This allows

the influence of the source and target models to adapt as the data stream progresses

such that once sufficient instances are observed in the target domain, an effective

predictive model can be learnt in the target domain, and the influence of the source

model can be reduced. Using a weighting mechanism also allows the influence of

the source and target models to adapt to concept drifts encountered in the target

domain [104].

GOTL [32] extends the OTL weighting mechanism so that online TL can

be used for both classification and regression tasks. To achieve this, GOTL incre-

mentally updates the weights associated with the source and target models using

step sizes. If the step size, δ, used to modify the weights is small enough, the

ensemble of source and target models approximates the optimal weight combina-

tion [32]. However, if the step size is too small, it may take a substantial time for

the weights to update to their desired values, making predictions unreliable during

this period. Other online TL frameworks, such as Online Transfer Learning with

Multiple Sources (OTLMS) [88] and Online Multi-Source Transfer Learning (OMS-

TL) [27], follow similar approaches to online TL as OTL, but allow knowledge to be

transferred from multiple offline source domains. This knowledge is then combined

in the online target domain using ensemble methods [27, 88].

Although online TL has been actively studied [27, 33, 88, 91, 98, 104], existing

frameworks are typically limited to learning knowledge from one or more data rich
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Table 5.1: Notation for online TL and BOTL.

Definition

α Domain α, where A is used to denote a single source domain,
and B denotes a receiving domain

Xα Data stream in domain α, where Xα= {x1, . . . , xt, . . . , xn}
xt ∈ Xα The tth observed instance in Xα

Y α The response variable space in domain α
yt ∈ Y α The tth response variable in Y α

Mα Knowledge base of models available in domain α
fαi : Xα

i → Y α
i Model i learnt in domain α

FM
α

: Xα→ Y α Meta-model of M in domain α
ŷ∗t Prediction using FM

α
(xt) in domain α

ŷαit Prediction using fαi (xt)
W Sliding window of |W | instances, W = {xt−|W |, . . . , xt}
Wmax Maximum window size (RePro)
Wmin Minimum window size (ADWIN, AWPro)
errt Predictive error of instance xt
errW Predictive error across W
λl Loss threshold (RePro)
λd Drift threshold (RePro)
λr Recurrence threshold (AWPro)
δ Confidence value (ADWIN, AWPro)
λperf Performance culling threshold
λMI Mutual information culling threshold

offline source domains which can be transferred to an online receiving domain [104].

This means that online TL frameworks are dependent on acquiring and storing large

amounts of data before knowledge can be transferred to aid predictions in the online

receiving domain. This requirement of online TL frameworks limits the applicability

of online TL for many real-world applications, where learning is conducted across

multiple online devices without access to an offline source domain [20, 21]. The

BOTL framework has been developed to mitigate the need for offline source do-

mains, allowing knowledge to be learnt from online data streams and transferred to

aid predictions in other online data streams, as might be expected in real-world ap-

plications such as smart home heating, or vehicle personalisation such as Adaptive

Cruise Control (ACC).
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5.2 Problem Formulation

To present the BOTL framework, online TL is first formalised using the notation

given in Table 5.1. Let A and B denote two domains, each of which consist of

a feature space X, where xt ∈ Rm is the instance observed at time t such that

xt = {xt1 , . . . , xtm} ∈ X. Given a domain, for example domain B, a task consists of

the response variable, y ∈ Y B, where y ∈ R, and a regression function, fB : XB→ Y B,

which is learnt to represent the current concept, mapping observed data to response

variables [65]. The knowledge learnt in a source domain, for example domain A,

can be transferred to the receiving domain B, and used to enhance predictions [78].

Online TL aims to learn the predictive function in the receiving domain,

fB, that effectively predicts the response variable, yBt ∈ Y B, for each instance,

xBt ∈ XB, observed in the receiving domain’s data stream, such that ŷBit = fBi (xBt ).

Model transfer is used to enhance predictions in the receiving domain by combining

knowledge learnt in the local domain with knowledge learnt from other domains.

For example, if we consider the scenario of application personalisation, where each

domain represents an individual user, each instance, xt, may describe the user’s

current environmental setting. If we wish to personalise application functionality

by predicting some unknown value, yt, knowledge learnt from another user, fAj , can

be used to enhance the predictive performance in the receiving domain B.

Since most existing online TL frameworks consider the source domain to be

offline [32, 88, 104], typically only a single model is transferred from each source

domain to the receiving domain. However, if all domains in the framework are in

online environments, concept drift detection strategies can be used to learn models

that represent each of the concepts encountered in the data stream of a source

domain. For example, model fAj can be transferred, where j = 1, . . . , k, for each of

the k concepts encountered in the source domain.

BOTL aims to minimise the predictive error in the receiving domain by

combining knowledge learnt from the receiving domain’s data stream with models

previously learnt in a source domain. Focusing on minimising the loss with respect

to the local, or receiving, domain makes BOTL highly applicable to the task of

application personalisation, where predictions are made to benefit a specific indi-

vidual. To achieve this, if there is source domain, A, that has previously learnt

models fA1 , . . . , f
A
j , and a receiving domain, B, that has previously learnt models

fB1 , . . . , f
B
i , at time t, then models fA1 , . . . , f

A
j , should be made available to the re-

ceiving domain such that the predictions made in the receiving domain can benefit

from the knowledge learnt from the source domain A. Since both domains are on-
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line, and knowledge transfer is bi-directional, the models fB1 , . . . , f
B
i should also be

made available to domain A, such that the predictions made in domain A can ben-

efit from the knowledge learnt in domain B, thus domain A becomes the receiving

domain, and domain B becomes the source domain.

The source and receiving domains considered in this thesis are homogeneous,

such that they share the same underlying feature space, XA= XB, and Y A = Y B.

Although the domains are homogeneous, the underlying concepts to be learnt within

each domain may not be equivalent, and therefore models from a source domain

may not be relevant to the current concept observed in a receiving domain. BOTL

provides a mechanism to combine models and maximise the impact of transferred

models in the receiving domain.

5.3 BOTL

To utilise knowledge of distinct concepts, BOTL relies upon sliding window based

CDDs that employ batch learners to create base models, fi, from a window of data

within a domain. With small windows, batch learners are susceptible to overfit-

ting, however, larger window sizes can cause a reduction in sensitivity to gradual

drifts [26]. Alternatively, incremental or online learners can be used to create base

models. However, during periods of gradual drifts, data belonging to a new concept

may be used to incrementally update the base model, preventing a drift from being

detected. This is problematic for the BOTL framework since a pair of consecutive

concepts present in one domain may not exist in another domain, meaning that

transferred models may be less effective than if they were learnt using data from

individual concepts. The three CDDs introduced in Chapter 4 have been used to

learn predictive models from the data streams in each domain, namely RePro [95],

ADWIN [8], and AWPro [55].

Although BOTL uses knowledge learnt from other domains to improve the

predictive performance observed in the receiving domain, concept drift detection is

conducted solely using the locally learnt model. Performing drift detection indepen-

dently of any knowledge transfer is necessary since the use of transferred knowledge

may enhance the predictive performance across the current window of data in the

receiving domain, hindering drift detection.

A common challenge encountered by TL frameworks is that of negative trans-

fer [65], which occurs when an ineffective model is transferred between domains. To

address this, BOTL adopts the notion of model stability used by AWPro (in Chap-

ter 4) [55], where a model is deemed to be stable if it has been used to make predic-
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Algorithm 7: BOTL: transferring models to the receiving domain
B.

Input: Wmax, XB, MB

1 for t=1,2,... do
2 if fαj+1 available then
3 Receive fαj+1 from source domain α, add to MB

4 Receive xt∈XB

5 Update W = {xt−Wmax , . . . , xt}
6 Learn fBi and detect drifts using RePro, ADWIN or AWPro (see

Chapter 4), add to MB

7 xt′=〈fα1 (xt),...,fαk (xt),f
B
i (xt)〉

8 ŷ∗t=F
MB (xt′) (see Equ. 5.1)

9 Receive yt

10 if fBi is a new stable model then
11 Send fBi to all other domains in framework

tions across 2Wmax instances without a drift being detected. Unstable models are

not transferred, preventing them from negatively impacting predictions in a receiv-

ing domain. Defining model stability in this way prevents BOTL from transferring

models that have been learnt from short, noisy periods of data, for example, during

drifting periods as one concept changes to another. Once a model is considered to

be stable, it is transferred to other domains to aid their respective predictors, as

shown in Algorithm 7. This means that the models transferred by BOTL are limited

to those that have successfully learnt a concept in their local domain.

Knowledge transfer is achieved in BOTL by communicating models across

domains. When model fAj is received in domain B from the source domain A, it

is added to the set of received models, MB, and combined with the locally learnt

model, fBi , to enhance the overall predictive performance in domain B. Each pre-

dictive model is referred to as a base model, and those models are combined in the

receiving domain through the use of a meta-learner. BOTL uses an Ordinary Least

Squares (OLS) regressor as a meta-learner to combine the available models such that

the squared error of the predicted values, ŷ∗, across W is minimised. Other regres-

sion meta-learners that are less prone to overfitting on small windows of data, such

as Ridge Regression [13], could be used in place of OLS. However, OLS has been

chosen as the meta-learner since it does not require additional parameters which

would have to be determined from domain expertise or parameter tuning prior to

learning in each data stream.

Each transferred model, fαj ∈MB, where α denotes any domain in the frame-

work from which a base model has been received, and the current locally learnt
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model, fBi , are used to generate a new window of data. Each sample x∗t in the

newly generated window of data is of the form x∗t = {ŷα1
t , . . . , ŷαkt , ŷBit }, where ŷ

αj
t

for all j = 1, . . . , k is the predicted value of source model fαj on instance xt from

the original window of data observed in domain B, and ŷBit is the predicted value of

the model learnt locally in the receiving domain B, fBi , learnt using the underlying

CDD, for the current concept, ci. This window of model predictions is used by the

OLS meta-learner to obtain the overarching predictive function,

ŷ∗t = FM
B
(x∗t )

= w0 +

 k∑
j=1

wjf
α
j (xt)

+ w(k+1)f
B
i (xt).

(5.1)

The OLS meta-learner is prone to overfitting when the window size is small

and the number of base models is large, and therefore the BOTL framework only

uses the current predictive model, fBi , learnt in the receiving domain B, as opposed

to all historically learnt models from domain B, as input to the meta-learner. Other

historical models learnt within the data stream are excluded since the underlying

CDD deems the current predictive model, fBi , to be the most relevant with respect

to the current concept.

5.3.1 Bi-directional Transfer

BOTL considers the scenario where all domains are online, and therefore distinctions

between the source and receiving domains can be disregarded. BOTL conducts

peer-to-peer model transfer, allowing knowledge transfer to enhance the predictive

performances of all domains. When a newly learnt model is stable, it is transferred

to all other domains in the framework, and each domain α updates its model set,

Mα, when a concept drift is encountered.

Real-world applications, such as smart home heating system personalisation,

may be comprised of a large number of domains, rapidly increasing the number

of models to be transferred as the number of domains grows. Such applications

can suffer in predictive performance due to the curse of dimensionality, where the

number of input features to the OLS meta-learner becomes large in comparison to

the window size [25]. To combat this, model culling is introduced to BOTL.
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Algorithm 8: MI-Thresh: model culling.

Input: W , λperf , λMI , MB, fBi
1 for fαj ∈MB do
2 if R2(fαj ,W )≤λperf then
3 Remove fαj from MB

4 for fαk ∈M
B do

5 if MI(fαj ,fαk ,W)≥λMI then
6 if R2(fαj ,W )≥R2(fαk ,W ) then
7 Remove fαk from MB

8 else
9 Remove fαj from MB

5.3.2 Model Culling

Culling transferred models from the model set, MB, available to the meta-learner

in domain B, helps to prevent the OLS meta-learner overfitting when a large num-

ber of models have been received but only a small window of data is available.

This could be achieved by limiting the maximum number of models used by the

meta-learner. However, due to the dynamic nature of the online environment, the

maximum number of models that will prevent the meta-learner overfitting cannot

be known in advance. Therefore, a conservative estimate would have to be made,

requiring additional domain expertise. Using a conservative estimate may prevent

beneficial transferred knowledge from being used to enhance predictions in the re-

ceiving domain.

Alternatively, transferred models can be evaluated on the current window of

data observable in the receiving domain, W , allowing the models that are considered

to be the least beneficial to the receiving domain to be discarded. This is achieved by

introducing two variants of BOTL that use model culling, namely P-Thresh and MI-

Thresh. P-Thresh reduces the number of models available to the OLS meta-learner

by temporarily removing transferred models from the model set,MB, in domain B,

when their R2 predictive performance across the current window of data drops below

a threshold, λperf . These models can be considered to be the least beneficial to the

meta-learner in the receiving domain since they achieve poor predictive performance

on the current window of observable data. Culled models are re-added toMB when

a concept drift is encountered to enhance the predictions of future concepts in the

receiving domain. Although this method of culling is näıve, it can reduce the impact

of negative transfer.

In scenarios with high volumes of model transfer, P-Thresh requires a high

λperf to sufficiently reduce the number of models to prevent the OLS meta-learner
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overfitting. This can be detrimental since a high proportion of the models received

from other domains containing useful information are culled and no longer available

to enhance the predictive performance in the receiving domain. To overcome this,

MI-Thresh, outlined in Algorithm 8, evaluates transferred models based on both per-

formance and diversity, which are metrics commonly used in ensemble pruning [106].

Initially, MI-Thresh reduces the impact of negative transfer by culling models that

achieve an R2 predictive performance less than λperf on W . A low λperf value is

preferred, ensuring that transferred models containing some useful information are

retained. Using a low threshold may not sufficiently reduce the model set, MB,

to prevent overfitting, therefore a second round of culling is performed based on

model diversity. MI-Thresh measures the diversity between transferred models us-

ing Mutual Information (MI). MI allows models that obtain similar predictions on

the current window of observable data to be identified [23]. If two transferred mod-

els have a high MI, using both models as input to the meta-learner will provide

little benefit since a high MI indicates that the predictions of the two models on the

current window of data are highly correlated. Therefore, no additional knowledge

is provided by keeping both in the model set. If two transferred models have a

MI greater than λMI , then MI-Thresh culls the model that performs worse. This

enables redundant models to be removed from the model set, helping to prevent

overfitting.

Culling thresholds, λperf and λMI , could be updated as the data stream pro-

gresses using cross-validation, allowing alternative culling parameter values to be

compared. However, due to the online nature of the data streams, instances within

a window cannot be considered independent, therefore the i.i.d. assumption cannot

be made [34], since three consecutive instances in the window, xt−1, xt, and xt+1,

are likely to be dependent. Therefore, any validation set created from the window

has some dependence on the training set. This can cause cross-validation to provide

an overestimate of the performance of culling parameters. Additionally, using cross-

validation for this purpose would require p ∗ k models to be trained and validated

every time the meta-learner is updated, where p is the number of culling parame-

ter values compared, and k is the number of folds. Since the BOTL framework is

to be used in domains with concept drifts, the meta-learner must be updated regu-

larly in order to adapt to concept drifts. Therefore, the use of cross-validation would

significantly increase the computation and storage requirements of the BOTL frame-

work, while overestimating the performance of the culling parameters considered.

This would limit the use of BOTL in applications that have limited computational

resources.
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Alternatively, regularisation techniques could be used instead of model

culling to prevent the meta-learner overfitting. However, in order to achieve this,

regularisation parameters must be selected to determine how aggressively regular-

isation is used to reduce the influence of base models. Determining an appropri-

ate regularisation parameter value may be challenging since it is dependent on the

underlying distribution of data and the number of models available to the meta-

learner. Regularisation parameters may also be considered to be less intuitive than

the use of predictive performance or MI thresholds since the selection of a regular-

isation parameter value provides little indication of how beneficial the knowledge

retained after regularisation will be to the underlying concepts encountered in the

data stream. Similarly to culling thresholds, the regularisation parameter could be

updated as the data stream progresses through the use of cross-validation, how-

ever the predictive performance obtained from cross-validation is also likely to be

an overestimate, and increases computation and storage when used in the BOTL

framework. Therefore, within this chapter, the näıve culling approaches of P-Thresh

and MI-Thresh are used, since predictive performance and MI culling parameters

may be more intuitive and interpretable than regularisation parameters. The values

of culling parameters are chosen in advance by evaluating threshold values across

multiple different datasets, mitigating the need for cross-validation. Further analysis

on the effects of culling parameters is provided in Chapter 6.

5.3.3 Initialisation

For any underlying CDD, an initial window of data, W , is required to create the

first predictive model, fB1 , in domain B. Prior to obtaining this data, no predictions

can be made since no local knowledge has been learnt in domain B. BOTL allows

models transferred from other domains to be used to make predictions during this

period. Models transferred are initially weighted equally to obtain,

ŷ∗t =
1

|MB|

|MB|∑
j=1

fαj (xt). (5.2)

Before the first predictive model, fB1 , has been learnt and only a small amount of

data has been observed, the OLS meta-learner can create a model, FM
B
, using only

the models received from source domains, fαj . This approach is prone to overfitting

due to the small amount of data available, but may be preferred over making no

predictions or using Equation 5.2 over the entire initial window of data.

P-Thresh and MI-Thresh help to reduce overfitting within this initial period,
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however, as the amount of available data is small, all transferred models may have R2

predictive performances below the culling threshold. In this scenario, both P-Thresh

and MI-Thresh select the best k transferred models, where k < |W |, regardless of

the culling threshold. Since the amount of available data is limited during this

period, the three best transferred models are selected such that k = 3.

5.4 Empirical Risk Guarantee

Using OLS as a meta-learner provides BOTL with a guarantee on the empirical risk.

In this section, we consider the empirical risk observed by the receiving domain B,

where knowledge is transferred from source domains, denoted by α.

Theorem 1. BOTL has a squared loss less than or equal to the model learnt locally

in domain B, using a CDD with no knowledge transfer,

L
(
fBi
)
≥ L

(
FM

B
)
, (5.3)

where L
(
fBi
)

denotes the squared loss of the local model, fBi , created using a CDD,

and L
(
FM

B
)

is the squared loss of the OLS meta-learner, FM
B

, created using the

set of k models transferred from source domains, denoted by α, {fα1 , . . . , fαk } and

the current locally learnt predictive model, fBi .

Proof. The loss over the local window of data, W , is measured using the mean

squared error of predictions,

L (·) =
1

|W |

|W |∑
t=1

(yt − ŷ∗t )
2 , (5.4)

where yt is the response variable for instance xt, and ŷ∗t is the predicted value. If

no transfer is used, the local model, fBi , is used to predict ŷ∗t for each instance xt

such that ŷ∗t = ŷBit , and ŷBit = fBi (xt).

BOTL uses the set of models, MB, to obtain predictions ŷBit and all ŷ
αj
t for

instance xt, using the locally learnt model, fBi , and each of the j transferred model,

fαj ∈ {fα1 , . . . , fαk }, respectively. Predictions are used to create a meta instance, x∗t ,

which the OLS meta-learner, FM
B
, uses to obtain an overarching prediction,

ŷ∗t = FM
B

(x∗t )

= FM
B (〈fα1 (xt), . . . , f

α
k (xt), f

B
i (xt)〉

)
= FM

B
(
〈ŷα1
t , . . . , ŷαkt , ŷBit 〉

)
,

(5.5)
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where

FM
B

(x∗t ) = w0 +

j=k∑
j=1

wj ŷ
αj
t + w(k+1)ŷ

Bi
t . (5.6)

Weights w0, . . . , w(k+1) are assigned to each prediction, ŷnt , for each model n inMB,

where |MB| = (k + 1), to obtain an ensemble prediction, ŷ∗t , for instance xt by

solving the optimisation problem that minimises the squared error of FM
B
:

min
w0,...,w(k+1)

|W |∑
t=1

yt −
w0 +

j=k∑
j=1

wj ŷ
αj
t + w(k+1)ŷ

Bi
t

2

. (5.7)

FM
B

is used to make predictions, ŷ∗t , for instance xt, using Equation 5.6.

Using Equation 5.4, we can rewrite the loss of FM
B

as,

L
(
FM

B
)

=
1

|W |

|W |∑
t=1

yt −
w0 +

j=k∑
j=1

wj ŷ
αj
t + w(k+1)ŷ

Bi
t

2

. (5.8)

If we constrain the optimisation problem in Equation 5.7 to obtain the meta-learner

FM
B∗

by fixing the weights, wa, such that the weight associated with the locally

learnt model fBi is 1, while all others are 0, we obtain a meta-learner of the form,

FM
B∗

(x∗t ) =

0 +

j=k∑
j=1

0ŷ
αj
t + 1ŷBit

 , (5.9)

giving the loss function

L
(
FM

B∗)
=

1

|W |

|W |∑
t=1

(
yt − ŷBit

)2
, (5.10)

equivalent to only using the locally learnt model, L
(
FM

B∗)
= L

(
fBi
)
. As the

optimisation problem in Equation 5.7 is convex,

L
(
FM

B∗) ≥ L (FMB) . (5.11)

Finally, as the constrained optimisation problem in Equation 5.9 is equivalent to

using only the locally learnt model, fBi , the loss of BOTL is less than or equal to

the loss of the locally learnt model.
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5.5 Experimental Set-Up

The datasets introduced in Chapter 3 are used to evaluate BOTL, namely the drift-

ing hyperplane, heating simulator and following distance datasets. Base models are

created in each domain using the underlying CDDs introduced in Chapter 4, namely

RePro [95], ADWIN [8] and AWPro [55]. The base models created in this chapter are

Support Vector Regressors (SVRs), however, since BOTL is model agnostic, other

regression based machine learning algorithms can be used. The results obtained

using SVRs as base models are presented in Section 5.6, and similar results are

presented in Appendix A which are obtained when using Ridge Regressors (RRs)

as base models. The underlying performance of each CDD is used as a baseline

so that BOTL can be compared against frameworks without knowledge transfer.

Additionally, BOTL is compared to the GOTL framework. GOTL assumes that

there exists an offline data rich source domain. However, as the BOTL framework

is being evaluated to consider the implications when all domains are online, minor

adaptations to GOTL were required. In this section, the adaptation of GOTL is

presented, and any user parameter values that were required by GOTL and BOTL

model culling strategies are provided.

5.5.1 GOTL Adaptation

Since each data stream is subject to concept drift, GOTL uses the CDDs outlined

in Chapter 4 to create models that represent each of the concepts encountered in

a source domain. Once knowledge of every concept has been learnt from the data

stream, the model that is considered to be the most stable is transferred to receiving

domains. Model stability was determined by the duration over which each model

was used to make predictions. Therefore, the model learnt in the source domain

that made predictions for the largest number of instances in the source domain was

considered to be the most stable, and transferred to the receiving domains. A small

step-size, δ = 0.025, was chosen, as suggested by Grubinger et al. [32], which slowly

modifies the weights used to combine the transferred model with the model learnt

locally in the receiving domain.

When evaluating GOTL, experiments were conducted such that each data

stream was paired with every other data stream as source and receiving domains

respectively. This allows the predictive performances of GOTL and BOTL to be

compared over the same test examples. Due to only transferring the most stable

model when using GOTL, learning in the receiving domain only commenced once

learning in the source domain had completed, such that the most stable model
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learnt in the source domain could be identified and transferred. This meant that

GOTL was able to learn the most stable predictive model from the entire data

stream available in the source domain prior to knowledge transfer, whereas in BOTL,

learning and knowledge transfer is conducted simultaneously across data streams

such that knowledge of the stability of future predictive models is not known in

advance. Due to this, the performance of GOTL presented in this chapter accounts

for both the performance of the source and receiving domains, since GOTL requires

models to be learnt in the source domain without knowledge transfer before learning

can commence in the receiving domain.

5.5.2 BOTL Frameworks

BOTL combines knowledge via the OLS meta learner and therefore no additional

parameters are required, however P-Thresh and MI-Thresh culling parameters must

be defined. We set λperf = 0.2 for P-Thresh, thereby discarding models that per-

formed worse than a poor predictor (R2 < 0.2). MI-Thresh also used a performance

threshold parameter of λperf = 0.2 and used a MI threshold of λMI = 0.2. These

threshold parameter values were chosen as a result of investigations of a wide rage

of culling parameter values, which is discussed further in Chapter 6.

When evaluating BOTL, P-Thresh, and MI-Thresh, all data streams for a

given experiment were used as source domains with bi-directional transfer. Repeat

experiments were conducted by randomising the ordering and interval between the

commencement of learning in each domain. This experimental approach has also

been used to obtain results in Chapters 6 and 7.

5.6 Experimental Results

In this section, BOTL, P-Thresh and MI-Thresh are compared to an existing online

TL framework, namely GOTL, and the underlying CDD, using performance met-

rics such as R2 and squared Product Moment Correlation Coefficient (PMCC2) to

highlight the benefits of using online TL where all domains are online. T-tests have

also been used to identify approaches that outperform the underlying CDD with

statistical significance (p < 0.01). Since t-tests are used in this thesis to compare

the predictions obtained from each data stream in a framework, where the number

of data streams in a framework ranges between 5 and 17 depending on the dataset

type, and results have been recorded from 30 repeat experiments, the number of

observations is large enough for the t-tests to be robust even though they may not

be normally distributed [24, 61]. For example, for the sudden drifting hyperplane
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dataset, the predictive performance of 5 data streams have been recorded for a sin-

gle experiment, which has been repeated 30 times, providing 150 observations used

by the t-test. In this thesis, every domain both transfers knowledge and receives

knowledge, and therefore when knowledge is learnt in a domain, it is referred to as a

source domain, and if it has received knowledge then it is referred to as a receiving

domain.

5.6.1 Drifting Hyperplane Datasets

BOTL is evaluated on variants of the drifting hyperplane datasets presented in

Chapter 3. Tables 5.2 and 5.3 present the results obtained by the CDDs, where no

knowledge is transferred, GOTL, and BOTL variants, for the sudden and gradual

drifting hyperplane datasets respectively.

These results show that GOTL obtained a poorer predictive performance

than the underlying CDD for most variants of the sudden and gradual drifting

hyperplane datasets, and was only able to outperform the underlying CDD with

statistical significance (p < 0.01) on the GradualD variant when AWPro is used

as the CDD. For the drifting hyperplane datasets, GOTL does not benefit from

knowledge transfer, even though the most stable model learnt from the source do-

main is transferred to the receiving domain. This is because these datasets contain

high frequencies of concept drifts, where concept drifts are encountered periodically

every 500 instances in each data stream. Since GOTL uses a step-wise mechanism

to incrementally update the weights associated with each model, the influence of

a model cannot change drastically over a small period of time. This means that a

large amount of data must be observed after each drift to converge on an approxi-

mation of the optimal weights. To overcome this, a larger step size could be used,

however, this may prevent or hinder convergence. BOTL overcomes this by using

the OLS meta-learner to minimise the squared error of the combined models with

instantaneous effect.

Although BOTL uses the OLS meta-learner to update the influence of the

locally learnt and received models, it also only outperforms the underlying CDD with

statistical significance (p < 0.01) for a minority of the drifting hyperplane datasets.

Additionally, in the SuddenB, SuddenD, GradualB and GradualD datasets, BOTL

achieves a negative R2 predictive performance. This is caused by the OLS meta-

learner in BOTL overfitting. The OLS meta-learner drastically overfits in these

datasets since a window size of only 30 instances is used to train the OLS meta-

learner when a large number of base models are used as input. For example, in the

SuddenB dataset where ADWIN is used as the CDD, the BOTL meta-learner has on
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(a) SuddenA: sudden drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.883 (±0.019) 0.884 1 1 0.851 (±0.008) 0.854 1 1 0.830 (±0.027) 0.835 1 1
GOTL 0.814 (±0.036) 0.844 2 2 0.745 (±0.056) 0.752 2 2 0.685 (±0.082) 0.690 2 2
BOTL 0.834 (±0.034) 0.845 24 31 0.828 (±0.026) 0.839 41 57 *0.884 (±0.016) 0.886 17 21
P-Thresh *0.902 (±0.008) 0.903 6 8 *0.886 (±0.010) 0.888 9 15 *0.881 (±0.016) 0.882 5 6
MI-Thresh *0.902 (±0.009) 0.902 4 5 *0.887 (±0.011) 0.889 3 4 *0.880 (±0.015) 0.882 3 4

(b) SuddenB: sudden drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.883 (±0.010) 0.884 1 1 0.830 (±0.018) 0.836 1 1 0.808 (±0.038) 0.814 1 1
GOTL 0.811 (±0.024) 0.836 2 2 0.718 (±0.061) 0.725 2 2 0.664 (±0.106) 0.676 2 2
BOTL -2e+21 (±5e+21) 0.507 26 34 -7e+22 (±1e+23) 0.499 41 60 -3e+22 (±5e+22) 0.532 20 27
P-Thresh *0.905 (±0.007) 0.905 5 8 -3e+18 (±9e+18) 0.767 8 14 *0.874 (±0.019) 0.875 4 6
MI-Thresh *0.904 (±0.007) 0.904 4 5 *0.879 (±0.012) 0.880 3 5 *0.873 (±0.020) 0.874 3 4

(c) SuddenC: sudden drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.873 (±0.020) 0.875 1 1 0.845 (±0.015) 0.848 1 1 0.847 (±0.010) 0.850 1 1
GOTL 0.817 (±0.031) 0.843 2 2 0.770 (±0.024) 0.780 2 2 0.752 (±0.032) 0.762 2 2
BOTL 0.841 (±0.022) 0.850 25 32 0.813 (±0.040) 0.827 41 57 *0.888 (±0.009) 0.889 18 21
P-Thresh *0.906 (±0.013) 0.906 6 8 *0.884 (±0.013) 0.886 8 13 *0.883 (±0.010) 0.884 4 6
MI-Thresh *0.905 (±0.013) 0.905 3 5 *0.882 (±0.014) 0.883 3 4 *0.881 (±0.010) 0.882 3 4

(d) SuddenD: sudden drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.870 (±0.026) 0.871 1 1 0.845 (±0.007) 0.849 1 1 0.810 (±0.059) 0.816 1 1
GOTL 0.809 (±0.023) 0.838 2 2 0.764 (±0.013) 0.773 2 2 0.649 (±0.135) 0.662 2 2
BOTL -1e+22 (±2e+22) 0.341 27 35 -9e+21 (±2e+22) 0.334 41 59 -2e+21 (±3e+21) 0.356 18 22
P-Thresh *0.902 (±0.012) 0.903 5 8 -2e+19 (±5e+19) 0.588 7 12 *0.874 (±0.022) 0.875 4 5
MI-Thresh *0.900 (±0.014) 0.901 3 5 *0.885 (±0.008) 0.886 3 4 *0.873 (±0.021) 0.874 3 4

Table 5.2: Sudden Drifting Hyperplane: R2 and PMCC2 predictive performance,
the average number of base models used to make predictions (|M′|), and the max-
imum number of base models used to make predictions (dM′e) for the underlying
CDD, GOTL, BOTL, P-Thresh and MI-Thresh for variants of the sudden drifting
hyperplane datasets when transferring base models between 5 data streams. Im-
proved predictive performances with statistical t-test values p < 0.01 compared to
the underlying CDD are indicated with ∗, and bold type indicates the approach with
highest performance.
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(a) GradualA: gradual drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.848 (±0.027) 0.848 1 1 0.796 (±0.049) 0.803 1 1 0.798 (±0.059) 0.804 1 1
GOTL 0.792 (±0.019) 0.820 2 2 0.712 (±0.053) 0.717 2 2 0.710 (±0.055) 0.718 2 2
BOTL 0.776 (±0.046) 0.800 31 37 0.792 (±0.046) 0.811 39 54 *0.883 (±0.011) 0.886 20 25
P-Thresh *0.892 (±0.020) 0.892 9 13 *0.880 (±0.023) 0.881 12 21 *0.888 (±0.023) 0.889 6 9
MI-Thresh *0.892 (±0.020) 0.892 4 6 *0.885 (±0.023) 0.885 4 5 *0.887 (±0.024) 0.887 4 5

(b) GradualB: gradual drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.859 (±0.010) 0.860 1 1 0.757 (±0.090) 0.771 1 1 0.697 (±0.094) 0.719 1 1
GOTL 0.784 (±0.023) 0.808 2 2 0.706 (±0.081) 0.715 2 2 0.641 (±0.120) 0.649 2 2
BOTL -6e+20 (±9e+20) 0.323 29 38 -1e+21 (±2e+21) 0.322 40 57 -1e+21 (±2e+21) 0.348 21 28
P-Thresh *0.890 (±0.014) 0.891 7 10 -3e+17 (±1e+18) 0.750 9 16 *0.848 (±0.033) 0.849 5 8
MI-Thresh *0.887 (±0.012) 0.888 4 5 *0.862 (±0.026) 0.863 3 5 *0.845 (±0.034) 0.846 3 4

(c) GradualC: gradual drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.842 (±0.008) 0.842 1 1 0.773 (±0.067) 0.779 1 1 0.759 (±0.091) 0.773 1 1
GOTL 0.778 (±0.028) 0.802 2 2 0.695 (±0.075) 0.700 2 2 0.697 (±0.073) 0.704 2 2
BOTL 0.781 (±0.044) 0.803 29 36 0.776 (±0.051) 0.799 39 54 *0.873 (±0.016) 0.875 21 27
P-Thresh *0.892 (±0.007) 0.893 8 11 *0.881 (±0.015) 0.882 10 15 *0.872 (±0.015) 0.872 6 8
MI-Thresh *0.890 (±0.007) 0.890 4 6 *0.878 (±0.020) 0.878 4 5 *0.870 (±0.014) 0.871 4 5

(d) GradualD: gradual drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.846 (±0.015) 0.847 1 1 0.484 (±0.468) 0.593 1 1 0.519 (±0.487) 0.629 1 1
GOTL 0.791 (±0.032) 0.813 2 2 *0.685 (±0.044) 0.691 2 2 *0.640 (±0.052) 0.643 2 2
BOTL -3e+22 (±5e+22) 0.147 31 41 -2e+22 (±3e+22) 0.143 26 44 -2e+22 (±3e+22) 0.129 17 26
P-Thresh *0.897 (±0.012) 0.898 7 10 *0.830 (±0.165) 0.831 6 12 *0.832 (±0.169) 0.833 4 7
MI-Thresh *0.898 (±0.010) 0.898 4 6 *0.812 (±0.191) 0.813 3 5 *0.821 (±0.195) 0.821 3 4

Table 5.3: Gradual Drifting Hyperplane: R2 and PMCC2 predictive performance,
the average number of base models used to make predictions (|M′|), and the max-
imum number of base models used to make predictions (dM′e) for the underlying
CDD, GOTL, BOTL, P-Thresh and MI-Thresh for variants of the gradual drifting
hyperplane datasets when transferring base models between 5 data streams. Im-
proved predictive performances with statistical t-test values p < 0.01 compared to
the underlying CDD are indicated with ∗, and bold type indicates the approach with
highest performance.
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average 41 transferred models that are used as input, and therefore 41 weights must

be learnt from 30 instances captured within the sliding window of data, to determine

the influence of each of the models received from other domains. The largest number

of models used as input to the meta-learner, dM′e, is also recorded in Tables 5.2

and 5.3, highlighting the correlation between obtaining a negative R2 predictive

performance and using large numbers of base models as input to the meta-learner.

This phenomenon, where the number of input features is large in comparison to the

window of available data, is known as the curse of dimensionality [25].

BOTL drastically suffers from the curse of dimensionality in the drifting

hyperplane datasets. To prevent overfitting, model culling strategies have been

used by P-Thresh and MI-Thresh. P-Thresh simply removes models if they have

an R2 predictive performance below λperf. This can be considered as removing

models that provide no beneficial information to the meta-learner. MI-Thresh also

culls transferred models using their predictive performance, but continues to cull

transferred models if two transferred models obtain predictions with high MI over

a recent window of observations. This means that MI-Thresh culls models that

provide no beneficial information to the meta-learner and those that provide no

additional information to the meta-learner.

P-Thresh obtains predictive performances that are statistically significantly

greater than the underlying CDDs with no knowledge transfer (p < 0.01) for all

drifting hyperplane datasets except for when ADWIN is used as the CDD in Sud-

denB, SuddenD and GradualB datasets, as shown in Tables 5.2b, 5.2d and 5.3b. In

addition to outperforming the CDDs in these datasets, P-Thresh also outperforms

GOTL with statistical significance (p < 0.01), and outperforms BOTL, where all

base models are used as input to the meta-learner, except for when AWPro is used

as the CDD in SuddenA, SuddenC and GradualC datasets. In these three datasets

BOTL achieves the best predictive performance of all frameworks, as shown in Ta-

bles 5.2a, 5.2c and 5.3c respectively.

Although P-Thresh shows that the transfer of knowledge can be used to

benefit predictions in the receiving domain, the OLS meta-learner used in P-Thresh

continues to suffer from overfitting when ADWIN is used as the CDD in SuddenB,

SuddenD and GradualB datasets, as shown in Tables 5.2b, 5.2d and 5.3b respec-

tively. Overfitting continues to occur, even with model culling in these frameworks

because ADWIN is used as the underlying CDD. Unlike RePro and AWPro, AD-

WIN does not reuse historical models in the presence of recurring concepts. This

means that a large number of models, which have been learnt to represent the same

concept, are created and transferred throughout the framework. Therefore, even
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RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.636 (±0.057) 0.652 1 1 0.635 (±0.066) 0.655 1 1 0.625 (±0.066) 0.645 1 1
GOTL 0.666 (±0.051) 0.677 2 2 0.656 (±0.047) 0.670 2 2 0.618 (±0.074) 0.635 2 2
BOTL *0.728 (±0.055) 0.735 10 15 *0.717 (±0.061) 0.725 9 15 *0.727 (±0.059) 0.734 10 15
P-Thresh *0.716 (±0.054) 0.723 6 10 *0.712 (±0.060) 0.719 6 10 *0.718 (±0.059) 0.725 7 10
MI-Thresh *0.706 (±0.051) 0.713 3 5 *0.705 (±0.056) 0.713 3 5 *0.708 (±0.054) 0.716 3 4

Table 5.4: Heating Simulator: R2 and PMCC2 predictive performance, the average
number of base models used to make predictions (|M′|), and the maximum number
of base models used to make predictions (dM′e) for the underlying CDD, GOTL,
BOTL, P-Thresh and MI-Thresh for the smart home heating simulator dataset when
transferring base models between 5 data streams. Improved predictive performances
with statistical t-test values p < 0.01 compared to the underlying CDD are indicated
with ∗, and bold type indicates the approach with highest performance.

though models with poor predictive performance are culled, the meta-learner still

suffers from overfitting.

MI-Thresh uses a more aggressive culling technique in comparison to P-

Thresh, since the similarity of model predictions are also used to determine when

transferred models should be culled. This aggressive nature can be seen in Ta-

bles 5.2 and 5.3, when comparing the average number of models used as input to

the meta-learner, M′, in the P-Thresh and MI-Thresh frameworks. In addition to

this, the largest number of models used as input to the meta-learner, dM′e, pre-

sented in Tables 5.2 and 5.3, indicates that the largest number of models used by

the meta-learner in MI-Thresh is almost half of the largest number of models used

by the meta-learner in P-Thresh. Due to this, MI-Thresh prevents the meta-learner

from overfitting in all sudden and gradual drifting hyperplane datasets, obtaining

predictive performances that are statistically significantly greater than both the

underlying CDD and GOTL (p < 0.01) for all drifting hyperplane datasets.

5.6.2 Heating Simulator Dataset

Lower predictive performances are observed across the heating simulator dataset in

comparison to drifting hyperplane datasets. This is because the data streams typi-

cally contain more complex concepts and additional noise due to their dependency

on real-world weather data. The addition of knowledge transfer, using BOTL and

GOTL, provides an increase in performance in comparison to the CDDs, except in

the case of AWPro, where GOTL obtains a slightly poorer predictive performance.

Table 5.4 shows that BOTL achieves the highest predictive performance,

outperforming both the CDDs and GOTL with statistical significance (p < 0.01).

Unlike the drifting hyperplane datasets, BOTL does not suffer from the curse of
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dimensionality, even when ADWIN is used as the underlying CDD. This is because

the size of the window of data used to train the meta-learner in the heating simulator

dataset is much larger than the window size used in the drifting hyperplane datasets.

Additionally, fewer predictive models are learnt and transferred throughout the

framework. For example, in the heating simulator dataset, an average of 10 models

are received by each domain in the BOTL framework, and the largest number of

models received by a domain, dM′e, is 15, while a window size of 480 instances,

capturing 10 days of weather observations, is used. Since fewer transferred models

and a larger window size are used to train the OLS meta-learner, BOTL is able to

create a meta-learner that does not overfit, and using culling mechanisms such as

P-Thresh and MI-Thresh obtain predictive performances lower than BOTL.

5.6.3 Following Distance Dataset

The results for GOTL, BOTL, P-Thresh and MI-Thresh for the real-world following

distance dataset with 7 data streams are shown in Table 5.5. These results show

that GOTL is able to out perform RePro and AWPro with statistical significance

(p < 0.01), highlighting the benefits of sharing knowledge in real-world online data

streams. BOTL continues to suffer from overfitting when ADWIN and AWPro are

used as CDDs. The use of P-Thresh to cull base models also suffers from overfitting

when ADWIN is used. Although the R2 predictive performance in these frameworks

is drastically reduced in comparison to the underlying CDD, where no knowledge

is transferred between domains, the PMCC2 predictive performance of BOTL is

greater than that of the CDD when AWPro is used to detect drifts, as is the PMCC2

performance of P-Thresh when ADWIN is used as the CDD. Although the average

number of models used as input to the meta-learner is small for P-Thresh when

ADWIN is used as the meta-learner, the largest number of models used as input

to the meta-learner, dM′e, remains high. This indicates that the meta-learner may

suffer from overfitting in small periods of the data stream, allowing an improved

PMCC2 predictive performance to be observed in comparison to the underlying

CDD, while also incurring a negative R2 predictive performance.

In the following distance datasets, MI-Thresh obtains the greatest predictive

performances across all frameworks for every CDD. This indicates that the transfer

of knowledge learnt from each data stream provides beneficial information to the re-

ceiving domain, however, overfitting can occur when all transferred models are used

as input to the meta-learner. To prevent this, MI-Thresh uses MI and performance

culling, and is able to outperform BOTL with statistical significance (p < 0.09).

This highlights the importance of removing base models from the meta-learner that
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RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e R2 PMCC2 |M′| dM′e

CDD 0.546 (±0.081) 0.565 1 1 0.441 (±0.153) 0.502 1 1 0.396 (±0.194) 0.515 1 1
GOTL *0.602 (±0.024) 0.657 2 2 0.419 (±0.416) 0.560 2 2 *0.487 (±0.358) 0.603 2 2
BOTL *0.646 (±0.117) 0.678 6 12 -2e+15 (±4e+15) 0.384 12 25 -9e+9 (±5e+10) 0.665 8 18
P-Thresh *0.648 (±0.117) 0.677 4 8 -2e+8 (±1e+9) 0.652 6 12 *0.688 (±0.103) 0.700 4 8
MI-Thresh *0.665 (±0.116) 0.522 2 3 *0.663 (±0.126) 0.527 3 4 *0.693 (±0.107) 0.503 2 4

Table 5.5: Following Distance: R2 and PMCC2 predictive performance, the average
number of base models used to make predictions (|M′|), and the maximum number
of base models used to make predictions (dM′e) for the underlying CDD, GOTL,
BOTL, P-Thresh and MI-Thresh for the following distance dataset when transfer-
ring base models between 7 data streams. Improved predictive performances with
statistical t-test values p < 0.01 compared to the underlying CDD are indicated
with ∗, and bold type indicates the approach with highest performance.

provide no beneficial or additional information to the meta-learner, when the num-

ber of base models is large in comparison to the window of available data.

Table 5.5 shows that AWPro obtains the worst predictive performance of

all CDDs without knowledge transfer. However, using MI-Thresh with AWPro as

the underlying CDD obtains the highest predictive performance across all CDDs,

GOTL, BOTL, P-Thresh and MI-Thresh variants for the real-world following dis-

tance dataset. This indicates that although AWPro may not be the most effective

prediction method when learning from a single data stream, its ability to estimate

the precise point of concept drift within the sliding window, and its ability to reuse

historical models in the presence of recurring concepts, are beneficial to online TL

in real-world environments.

5.7 Increasing Model Availability

The BOTL framework enables knowledge to be transferred bi-directionally between

frameworks that contain multiple online domains. However, using an OLS meta-

learner to combine transferred base models with the locally learnt model often suffers

from overfitting. In this section, the scalability of BOTL is considered by presenting

results for BOTL, P-Thresh and MI-Thresh as the number of base models available

to meta-learners increases.

Figure 5.1 shows the difference in R2 predictive performance of the OLS

meta-learner in comparison to using the model learnt via the underlying CDD alone,

as a sudden drifting hyperplane data stream progresses. Combining base model

predictions initially improves predictive performance. However, as each data stream

progresses, the number of available base models increases as new models are learnt
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(a) Difference in R2 predictive performance. (b) Number of base models.

Figure 5.1: BOTL vs. CDDs: The difference in R2 performance (a) between the OLS
meta-learner in BOTL vs. the underlying CDDs of RePro, ADWIN, and AWPro,
and the number of models used as base models (b) for a sudden drifting hyperplane
data stream (SuddenA). Base models are learnt locally and transferred from 4 other
sudden drifting hyperplane data streams.

and transferred throughout the framework. Since the window of available data

remains fixed in size, the likelihood of overfitting increases as the number of base

models becomes large in comparison to the window of available data [25]. This

means that as the number of base models grows, the meta-learner becomes more

susceptible to overfitting, causing a reduction in predictive performance, eventually

resulting in worse performance than using the current locally learnt model alone.

When using AWPro as the underlying CDD, a decrease in performance as

the data stream progresses is not observed. This is because AWPro prioritises

the reuse of historical models in the presence of recurring concepts, reducing the

number of base models available to the meta-learner in comparison to ADWIN [55].

Additionally, unlike RePro, the models created by AWPro are not influenced by

instances belonging to the previous concept [55] due to estimating the precise point

of drift, and therefore unstable models are less likely to be created, and the detection

of recurring concepts is not hindered. This means that when AWPro is used as

the underlying CDD, there are fewer base models available to the meta-learner in

comparison to when ADWIN and RePro are used as CDDs. These factors indicate

why BOTL is able to outperform AWPro in the SuddenA, SuddenC, GradualA and

GradualC datasets, as shown in Tables 5.2a, 5.2c, 5.3a and 5.3c, with statistical

significance (p < 0.01).

Figure 5.2 shows the difference in R2 predictive performance between the

OLS meta-learner in BOTL, P-Thresh and MI-Thresh in comparison to the under-

lying CDDs for a sudden drifting hyperplane data stream. P-Thresh and MI-Thresh
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(a) RePro

(b) ADWIN

(c) AWPro

Figure 5.2: BOTL, P-Thresh and MI-Thresh vs. CDDs: The difference in R2 per-
formance (left) between the OLS meta-learner in BOTL, P-Thresh and MI-Thresh
vs. the underlying CDDs of (a) RePro, (b) ADWIN, and (c) AWPro, and the num-
ber of models used as base models (right) for a sudden drifting hyperplane data
stream (SuddenA). Base models are learnt locally and transferred from 4 other sud-
den drifting hyperplane data streams.
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allow the number of base models used as input to the meta-learner to remain small,

even when the number of base models received from other domains in the framework

becomes large as the data stream progresses. Using P-Thresh and MI-Thresh to cull

base models reduces the impact of overfitting when RePro and ADWIN are used as

the underlying CDDs, presented in Figures 5.2a and 5.2b respectively. However, in

Figure 5.2c, where AWPro is used as the underlying CDD for BOTL, a reduction in

predictive performance is not observed as the data stream progresses, and therefore,

when P-Thresh and MI-Thresh are used to reduce the number of base models used

as input to the meta-learner, the increase in R2 predictive performance obtained

using P-Thresh and MI-Thresh compared to the underlying CDD is less than the

increase observed by BOTL. This is because the meta-learner learnt in BOTL is able

to generalise well, and therefore reducing the number of models used as input to the

meta-learner via P-Thresh and MI-Thresh, removes base models that provide useful

information to the meta-learner. However, the difference between the R2 predictive

performances of BOTL, P-Thresh and MI-Thresh decreases as the data stream pro-

gresses due to the increasing number of base models available to the meta-learner.

Therefore, it is likely that BOTL will suffer from overfitting if data streams in the

framework are long-lived and continue to receive base models from other domains,

even when AWPro is used as the underlying CDD.

The BOTL framework can also become susceptible to overfitting when the

number of domains in the framework is large. This can be seen in Figure 5.3 which

shows the R2 and PMCC2 predictive performance for BOTL, P-Thresh and MI-

Thresh for the following distance dataset in frameworks with an increasing number

of domains. The average number of models used as input to the meta-learner is also

shown in Figure 5.3. For frameworks with a small number of domains, BOTL, P-

Thresh and MI-Thresh obtain similar predictive performances, outperforming their

respective underlying CDD. As the number of domains increases, and the number

of transferred models increases, the R2 predictive performance drops drastically,

however, the PMCC2 performance gradually decreases to below the performance

of each CDD. These characteristics are observed due to the nature of the R2 and

PMCC2 performance metrics. PMCC2 values range between [0, 1], and therefore,

when one domain in the framework performs poorly, it does not greatly impact the

average PMCC2 across all domains. R2, on the other hand, ranges between (−∞, 1],

and therefore, when one domain performs poorly, the average R2 performance can

be greatly impacted. This means that R2 as a performance metric can be highly

skewed by small periods of the meta-learner overfitting.

The difference between performance metrics, shown in Figure 5.3, indicates
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Figure 5.3: R2 and PMCC2 predictive performance, and number of base models used
by BOTL meta-learners for increasing numbers of following distance data streams.

that BOTL and P-Thresh suffer from their respective OLS meta-learners overfitting

the small window of available data when the number of models transferred is large.

Culling base models using the performance of transferred models alone (P-Thresh)

enables a larger number of domains to be used in the framework, however, this can-

not be considered scalable since the performance of P-Thresh decreases below that of

the CDD when more domains are added. MI-Thresh uses a more aggressive culling

mechanism, using diversity alongside performance, ensuring that enough beneficial

knowledge is retained to enhance the predictive performance in each domain, while

minimising negative transfer and preventing the OLS meta-learner overfitting the

small window of locally available data.

Additionally, Figure 5.3 shows the PMCC2 and R2 performance when AD-

WIN is used as the underlying CDD. Compared to when RePro and AWPro are used
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as CDDs, the PMCC2 and R2 performances obtained by ADWIN reduce quickly,

even when a small number of domains are included. This again, highlights the im-

portance of selecting a CDD that reuses existing models in the presence of recurring

concepts, instead of relearning and transferring duplicate models.

5.8 Summary

In this chapter, the BOTL framework has been presented, which allows knowledge

to be learnt and transferred bi-directionally between online data streams. Using

BOTL for online TL is beneficial since CDDs are used in each online data stream,

allowing predictive models to be learnt to represent each of the individual concepts

encountered in a domain. These predictive models are transferred between domains

so that every receiving domain can benefit from the knowledge learnt about each

individual source concept. Since both source and receiving domains are online,

additional knowledge can be transferred when new concepts are encountered as

each data stream progresses. This means that if a new concept is encountered in one

domain, all other domains can benefit from the knowledge learnt about that concept,

prior to encountering it themselves. Additionally, since knowledge transfer is bi-

directional, every domain in the framework can benefit from the knowledge learnt in

other domains. This is beneficial for real-world applications where a data rich source

domain does not exist, and it is unlikely that the sole purpose of the application is to

improve the predictive performance in a single domain. For example, if considering

the use of online TL to tailor the functionality of an ACC, it is unlikely that the

aim of the online TL technique would be to improve the predictive performance

for a single driver. Instead, online TL should be used to improve the predictive

performance for every driver in the framework, so that predictions can be tailored

to each driver, but are aided by the knowledge learnt from other drivers.

The results presented in this chapter have shown that knowledge transfer can

be used to obtain improved predictive performances in receiving domains through

the use of an OLS meta-learner. However, when the number of models becomes

large in comparison to the window of available data, the meta-learner can suffer

from overfitting, caused by the curse of dimensionality. To prevent this, näıve culling

mechanisms can be used, as shown by P-Thresh and MI-Thresh.

Although P-Thresh and MI-Thresh help to reduce the likelihood of over-

fitting, their success is dependent on culling parameter values being chosen that

sufficiently reduce the number of models available to the meta-learner while re-

taining sufficient transferred knowledge to be of benefit to the receiving domain.
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Selecting an appropriate subset of base models is one of the key challenges faced

by the BOTL framework. This issue is not limited to online TL research, and is a

common challenge considered in meta-learning and ensemble research [11, 12, 58].

Therefore, in Chapter 6, the process of selecting base models to be used as input to

meta-learners or ensembles is investigated.
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Chapter 6

Base Model Selection for

Meta-Learners in Concept

Drifting Data Streams

The problem of the meta-learner in BOTL overfitting is not unique to online TL

frameworks. In fact, overfitting caused by the curse of dimensionality is frequently

encountered by meta-learners and ensembles in online environments [11, 12, 36].

Therefore, in this chapter the more general problem of how to prevent meta-learners

and ensembles from overfitting in online environments is addressed, regardless of

whether online TL is used.

Learning in online data streams can be challenging since data availability

may be limited if a rich history of observations cannot be retained [78], and as a

result of concept drift [26, 108]. Meta-learners and ensembles are often used in online

learning environments to improve predictive capabilities by combining models learnt

historically throughout the data stream [9]. Historical models, referred to as base

models, can be learnt to represent each concept encountered as the data stream

progresses. However, as the data stream progresses, and more base models are

learnt, meta-learners and ensembles can become prone to overfitting, particularly

when data availability is limited and the number of base models is large (as seen in

Chapter 5) [55].

To improve generalisation, a relevant yet diverse subset of base models can

be selected to be used as input to the meta-learner or ensemble [11]. Base model

selection is often achieved within offline environments using metrics such as predic-

tive performance to indicate relevancy, and Mutual Information (MI) between base

model predictions to indicate pairwise diversity [23]. However, determining rele-
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vancy and diversity can be more challenging in online environments due to concept

drift [12]. Encountering concept drift can impact the relevancy of a base model,

and therefore requires the relevancy of base models to be continually re-evaluated

as the data stream progresses. Many diversity metrics, such as MI, must also be

recalculated due to their dependency on the current underlying distribution of data

when identifying the covariance between model predictions. Repeatedly recalculat-

ing relevancy and diversity metrics may be computationally undesirable when using

meta-learners or ensembles in data streams, particularly when drifts are encountered

frequently or a large number of potential base models are available.

The contributions of this chapter are as follows.

• A novel diversity metric is proposed, which estimates the conceptual similarity

of base models in concept drifting data streams.

• We show that conceptual similarity can be used to identify a diverse subset of

base models using parameterised thresholding.

• Parameterless conceptual clustering is introduced, which uses conceptual sim-

ilarity to cluster base models such that a relevant yet diverse subset of base

models can be selected without requiring a user defined culling parameter.

The proposed approach for determining conceptual similarity uses the Prin-

cipal Angles (PAs) between the subspaces in which each base model was created.

Thus, the similarity between pairs of base models remains static in the presence of

concept drift and does not require recalculation. Empirical results are presented, us-

ing the proposed base model selection techniques to identify a subset of base models

to be used by the meta-learner in BOTL for the datasets introduced in Chapter 3.

Base models are obtained using the three CDDs introduced in Chapter 4, specifically

RePro [94], ADWIN [8], and AWPro [55]. BOTL [55], as introduced in Chapter 5,

is used to transfer models bi-directionally between online data streams. The thresh-

olding and clustering approaches proposed in this chapter are used to select a subset

of base models from those learnt locally within a data stream, and received from

other data streams for the OLS meta-learner in BOTL.

Conceptual similarity thresholding obtains predictive performances compa-

rable to the existing approaches of performance and MI thresholding, denoted as

P-Thresh and MI-Thresh in Chapter 5, while reducing the computational over-

head associated with base models comparisons. Additionally, conceptual clustering

achieves similar predictive performances without the need for a user defined culling

parameter. Although conceptual clustering increases the computational overhead
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in comparison to conceptual similarity thresholding due to the clustering of base

models, it can be less computationally expensive than thresholding using diversity

metrics that are not static, such as MI, when the number of base models is large.

The remainder of this chapter is organised as follows. Section 6.1 discusses

the use of meta-learners and ensembles in online learning frameworks, highlighting

existing approaches to selecting subsets of base models to prevent overfitting. A

novel approach for estimating the conceptual similarity of base models in concept

drifting data streams is defined in Section 6.2. Section 6.3 introduces parameterised

thresholding and parameterless conceptual clustering as methods for selecting sub-

sets of base models. In Section 6.4, further insight is provided into why the subset

of base models used by a meta-learner should be relevant yet diverse. Section 6.5

provides details of the experimental set-up used to obtain the results presented in

Section 6.6. Finally, Section 6.7 concludes this chapter and highlights how diversity

can be used in online TL to reduce the number of models transferred throughout

an online TL framework.

6.1 Ensembles, Meta-Learners and Model Selection

Three important issues must be addressed when using meta-learners or ensembles

in online environments. First, base models must initially be created in online data

streams. Second, base models must be combined to obtain an overarching prediction.

Third, if the number of base models becomes large in comparison to the available

data, a subset of base models must be selected to be used by the meta-learner or

ensemble to prevent overfitting.

Chapter 2 discussed methods through which predictive models can be learnt

from online data streams using incremental learners and CDDs, and combined using

meta-learners and ensembles to improve predictive performance [9]. Meta-learners

and ensembles often use weighting mechanisms to learn how much influence each

base model should have on the overarching prediction [106]. In this chapter, we

assume that base models are created using CDDs, representing the concepts his-

torically encountered throughout a data stream, and that a meta-learner is used to

combine base model predictions by learning weights using the predictions of base

models over a recent window of instances as input to the meta-learner.

Increasing the number of base models used by the meta-learner increases

its representational capacity. This allows a better approximation of the underlying

distribution of observable data to be made [81], which decreases the training error

of the meta-learner, known as the empirical risk. However, when the number of
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base models becomes large, the meta-learner may overfit the window of observable

data [25], which can increase the predictive error for unseen instances, known as the

true risk [106]. This often occurs when the representational capacity of the meta-

learner is too large to be able to effectively learn the meta-learner model parameters

from the fixed sized window of observable data [14, 64, 81]. In such cases, the

empirical risk can be a poor approximation of the true risk [14], which may lead to

poor predictive performance for unseen instances. Therefore, to prevent overfitting,

the representational capacity of the meta-learner can be reduced by selecting a subset

of base models to be used as input. To ensure that the meta-learner makes effective

predictions and generalises well for unseen instances, a relevant yet diverse subset of

base models should be selected [11]. Relevancy and diversity metrics are considered

in this chapter in order to select a subset of base models to be used as input to the

OLS meta-learner in the BOTL framework. Further discussion of how the empirical

risk of a meta-learner can be minimised, while remaining a good approximation of

the true risk, through the use of relevancy and diversity, is presented in Section 6.4.

Identifying the best subset of base models is challenging in online environ-

ments since future concepts are unknown, a rich history of data often cannot be

retained, and due to the presence of concept drift. Existing online ensemble tech-

niques, such as Accuracy Weighted Ensemble (AWE) [82], Online Weighted Ensem-

ble (OWE) [31] and Additive Expert ensemble (AddExp) [46], select base models

using the recency of a model, the predictive performance, or a combination of the

two, as indicators of relevancy. Using only the recency of a model as an indicator of

relevancy may be undesirable in online data streams since a historical model may be

more relevant than a recently learnt model due to recurring concepts [31, 46]. The

diversity among base models in online environments is considered less frequently.

Five diversity metrics for regression ensembles were presented by Dutta, namely the

correlation coefficient between base model predictions, the covariance between model

predictions, the pairwise Chi-square of model predictions, the standard deviation of

predictions as a disagreement bound, and the MI between model predictions [23].

MI is a frequently used regression ensemble diversity metric, where the pairwise

diversity of base models is measured using the MI between predictions of base mod-

els over recent observations [23, 30]. However, each of the measures of diversity

proposed by Dutta [23] are dependent on the recent window of observations used

to evaluate base models. This is problematic in concept drifting data streams and

online TL environments since the diversity of base models that obtain similar pre-

dictive performances for some windows of observations, but have been learnt from

different distributions, or learnt to represent different concepts, is not accounted
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Table 6.1: Notation for conceptual similarity.

Definition

α Domain α, where A is used to denote a single source domain, and
B denotes a receiving domain

Xα Data stream in domain α, where Xα= {x1, . . . , xt, . . . , xn}
xt ∈ Xα The tth observed instance in Xα

Y α The response variable space in domain α
yt ∈ Y α The tth response variable in Y α

Cα The set of concepts encountered in domain α
cαi ∈ Cα The ith concept encountered in domain α
Xα
i ∈ Xα The data stream segment corresponding to concept cαi in domain

α
W Sliding window of |W | instances, W = {xt−|W |, . . . , xt}
fαi : Xα

i → Y α
i Model i learnt in domain α

Ui Principal Components of the window used to learn model fi
M Set of stable, locally learnt and transferred models
M′ A subset of stable, locally learnt and transferred models,M′ ⊆M
FM : Xα→ Y αMeta-learner in domain α using models in M
x∗t Meta instance of base model predictions for instance xt
ŷ∗t Prediction using FM

′
(xt) where M′ ⊆M

for [30]. Additionally, due to the dependency on a window of recent observations,

measuring diversity by the level of disagreement between base model predictions

can be influenced by concept drift, and therefore must be recalculated as the data

stream progresses.

To overcome this, a novel method of measuring the diversity of base models

for meta-learners in online environments is introduced. This method allows the

pairwise conceptual similarity between base models to be estimated independently

of the current distribution of observable data. This is achieved using the similarity

between the underlying subspaces in which each base model was learnt to obtain a

measure of diversity that remains static as the data stream progresses, even in the

presence of concept drift.

6.2 Conceptual Similarity

In this section, a novel method for estimating the conceptual similarity between

pairs of base models is presented. The conceptual similarity determines the diversity

among base models to be used by meta-learners in online environments. For ease of

reference, Table 6.1 presents the notation used in this chapter.

91



Given a set,M, of k base models and a data stream, X, the meta-learner, F ,

must learn a predictive function, mapping the predictions of base models, fi(xt), for

instance xt ∈ X at time t to the response variable yt, such that F (x∗t )→ yt, where

x∗t = 〈f1(xt), . . . , fk(xt)〉. Due to the presence of concept drift, the meta-learner

must re-weight base model predictions as the data stream progresses. Weights are

learnt using the predictions of base models over a sliding window of recent ob-

servations, W , which are then used to combine base model predictions for unseen

instances. As the data stream progresses, new models are learnt, and are trans-

ferred in the case of online TL, so that the meta-learner can use previously learnt

knowledge to aid predictive performance.

To prevent the meta-learner from overfitting, a relevant yet diverse subset of

base models must be selected. Although the relevancy of a base model is dependent

on the current distribution of data observable in W , the pairwise diversity of two

base models can be considered independently of W . To assess diversity, it may be

desirable to measure model similarity by comparing the underlying distributions

of all data belonging to each of the concepts that the base models were learnt to

represent [30]. However, for many real-world applications, it may not be feasible

to retain a rich history of data belonging to each concept, and its transfer may be

impractical due to communication overheads when knowledge is transferred via a

network in an online TL framework. Instead, conceptual similarity is approximated

by considering the subspace similarity using the PAs between the data in which each

base model was trained. The PAs between the subspaces in which a pair of base

models were learnt is defined as follows [10, 29, 45].

Definition 1 (Principal Angles (PAs) between subspaces). For two base models i

and j, let Xi ∈ RN×m and Xj ∈ RN×m denote the subspaces in which they were

learnt, containing N instances, m− 1 features and the associated response variable,

and let Ui ∈ RN×p and Uj ∈ RN×q represent orthonormal bases of Xi and Xj

respectively. Using Singular Value Decomposition (SVD) we obtain SVD(Uᵀ
i Uj) =

AΣB, where A and B are the unitary matrices and Σ ∈ Rp×q is the diagonal matrix

of singular values, Σ = diag([s1, . . . , sr]), where r = min(p, q) [45]. The PAs between

subspaces are given by

−→
Θ(Xi, Xj) = [arccos(s1), . . . , arccos(sr)]. (6.1)

6.2.1 Estimating Conceptual Distance

The conceptual similarity between the underlying concepts a pair of base models

were learnt to represent can be estimated using PAs. In order to obtain the PAs
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in Definition 1, an orthonormal representation of the subspaces in which each base

model was learnt is required. The Principal Components (PCs) of a subspace is an

orthonormal representation, and can be obtained using Singular Value Decomposi-

tion (SVD) on the covariance matrix,

SVD(Xᵀ
i Xi) = UiΣV, (6.2)

such that Ui ∈ RN×N are the PCs, and Σ their singular values.

Therefore, to estimate the conceptual similarity of base models, both the

model learnt to represent a concept, and an orthonormal representation of the train-

ing data must be stored in online learning frameworks, and transferred between data

streams when using online TL. In these online learning frameworks, the memory and

communication overhead required to store and transfer orthonormal representations

of the subspace associated with each base model, i, can be reduced by retaining only

the first p PCs that capture 99.9% of the variance of the original training data, Xi.

The diagonal matrix of singular values, Σ, obtained through SVD in Equation 6.2,

can be used to determine the number of PCs to retain.

Let Σ = diag([S11, . . . , SNN ]) represent the diagonal matrix of singular values

in Equation 6.2. The number of PCs, p, that capture 99.9% of the variance can be

identified using

1−
∑p

i=1 Sii∑N
j=1 Sjj

≤ 0.001. (6.3)

The percentage of variance captured by the p PCs can be decreased to reduce

the impact of noise in the data stream. This allows the orthonormal representations,

and the PAs between them, to be more robust to noise. However, alternative meth-

ods of obtaining orthonormal representations of each subspace, such as Laplacian

PCA [102] and Robust PCA [90], can be used to improve robustness to noise and

outliers in noisy data streams [42]. Once p has been identified, the matrix of N PCs,

Ui ∈RN×N, can be reduced such that only the first p PCs are retained, Ũi ∈RN×p.
Since the reduced orthonormal representation, Ũi, captures 99.9% of variance, for

ease of notation throughout the remainder of this chapter, Ui is used to denote the

reduced matrix of PCs. Therefore, from this point forward, Ui∈RN×p.
Using Definition 1 the PAs between the subspaces in which two base models

i and j were learnt, Xi and Xj , can be calculated using the reduced PCs, Ui and

Uj , as orthonormal bases. The conceptual distance between base models i and j is

defined as follows.

Definition 2 (Conceptual distance between base models). Let
−→
Θ(Xi, Xj) ∈ Rr be
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the vector of PAs, obtained using Definition 1, between the PCs Ui and Uj for Xi

and Xj respectively. The conceptual distance between base models i and j is defined

as

d(i, j) =
1

r

(
r∑

h=1

(1− cos(θh))

)
= 1− 1

r

(
r∑

h=1

cos(θh)

)
, (6.4)

where θh ∈
−→
Θ(Xi, Xj) and r = min(p, q). Therefore, d(i, j) → 0 when base models

i and j have been learnt from similar subspaces, and d(i, j)→ 1 when subspaces are

dissimilar.

6.2.2 Estimating Conceptual Similarity

Finally, to estimate the conceptual similarity among base models, an affinity matrix

is created.

Definition 3 (Conceptual similarity). The affinity matrix, ∆ ∈ R|M|×|M|, where

|M| is the number of available base models, is given by

∆ij =

exp(−d(i,j)
2

d̃id̃j
) if i 6= j

0 otherwise,
(6.5)

where d̃i and d̃j are local scaling parameters, which allows the conceptual difference

between base models to be scaled by the surrounding neighbourhoods of i and j [100]

such that d̃i = d(i, k), where k is the kth nearest neighbour of base model i.

Zelnik-Manor and Perona [100] suggest that a value of k = 7 yields good

results for local scaling, even for high-dimensional image segmentation and document

classification tasks. However, since the dimensionality of the affinity matrix for base

models is likely to be low in comparison to the affinity matrices used by Zelnik-Manor

and Perona [100], the impact of using local scaling parameter values between k = 2

and k = 7 are considered. The results of using different local scaling parameters

are briefly discussed in Section 6.6, and show that these scaling parameter values

obtain similar results, and therefore k = 7 is used to remain consistent with [100].

Local scaling is used to allow better affinities to be obtained when the density

of conceptually similar base models varies [100]. Although this requires a parameter,

k, to be defined, it has been shown that parameter tuning is not typically needed

for local scaling to perform well [42]. Alternatively, other scaling techniques could

be used, such as density-aware kernels [42, 101], to amplify intra-cluster similarities

in order to account for locally dense areas of conceptually similar base models [42].
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Algorithm 9: Concept similarity thresholding.

Input: M, fi, Ui, Dist, λCS
1 for j ∈M do
2 Disti,j = getDistances(Ui,M.getPCs(j)) using Def 1 and Def 2
3 Distj,i = Disti,j
4 iAffinities = getAffinities(Dist, i,M) using Def 3
5 if ∀j ∈ iAffinities < λCS then
6 Add {fi, Ui} to M
7 else
8 ∀j ∈M : Remove Disti,j and Distj,i from Dist
9 return M

Using Definition 3, the affinity matrix, ∆, is created, where element ∆ij → 1

when base models i and j are conceptually similar, and ∆ij → 0 when they are

dissimilar.

6.3 Base Model Selection

Two methods for selecting a relevant yet diverse subset of base models are presented

in this section, namely (i) parameterised thresholding and (ii) parameterless con-

ceptual clustering, using the estimated conceptual similarity of base models as a

diversity metric.

6.3.1 Parameterised Thresholding

Parameterised thresholding is the first method of base model selection introduced in

this section. This approach follows a similar methodology to MI-Thresh, presented

in Chapter 5, but uses the conceptual similarity of base models, instead of MI, as a

diversity metric.

As a data stream progresses, new models are made available when encounter-

ing concept drifts, or are received from other domains via online TL. The pairwise

conceptual similarities between a new model, fi, and existing base models, fj ∈M,

are calculated using the average PA between the two subspaces in which each model

was learnt (Definitions 1 and 2), to obtain a locally scaled affinity metric (Defini-

tion 3). Given a user defined culling threshold, λCS , models are added to M if no

existing base model in M is considered conceptually similar. This means that in

order for a new model, fi, to be used as input to the meta-learner, its affinity to

all other available base models, ∀j ∈M : ∆ij , is less than the conceptual similarity

threshold, λCS . Since conceptual similarity is calculated independently of the un-
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derlying distribution of data, a new model, fi, with an affinity to an existing base

model greater than λCS , can be discarded and does not need to be reconsidered as

input to the meta-learner. This process, shown in Algorithm 9, obtains a diverse

subset of base models.

Using a static diversity metric such as conceptual similarity prevents the need

to re-evaluate base models since they do not need to be reconsidered once culled.

However, the relevancy of remaining base models is dependent on the current con-

cept. To ensure that a relevant subset of the remaining base models are used by the

meta-learner, the predictive performance of each base model is evaluated to create

the subset of base models, M′, that are used by the meta-learner to make predic-

tions for unseen instances. The predictive performance of the models that remain

after executing Algorithm 9, M, are evaluated over the current sliding window of

data, W . Those that achieve an R2 performance greater than a performance thresh-

old, λperf, are included in M′. Base models that achieve an R2 performance less

than λperf are temporarily excluded from the meta-learner until a concept drift is

encountered. This ensures that the subset of base models used by the meta-learner

remains relevant to the current concept.

Selecting culling parameters can be challenging since they are dependent on

the presence of noise in the underlying data stream, the number of possible base

models, and their separability for a given similarity metric [55]. Values that promote

aggressive culling may result in discarding base models that are beneficial to the

meta-learner, while values that are less aggressive may not prevent overfitting [55].

To overcome this, culling parameters could be updated as the data stream

progresses using cross-validation. However, this would require the meta-learner

to be validated for various threshold values over a small window of data. This

increases computation, and the predictive performance obtained through cross-

validation would likely be an overestimate since validation splits are unlikely to

be independent due to the dependencies between consecutive instances within on-

line data streams [34]. This means that considerable domain expertise is required

to select the culling parameters for meta-learners in online environments.

6.3.2 Parameterless Conceptual Clustering

To prevent the need for domain expertise, parameterless conceptual clustering is

introduced. As with conceptual similarity thresholding, when new models are learnt

in a data stream or received via online TL, the affinity between existing base models,

fj ∈ M, and the new model, fi, must be calculated using Definitions 1, 2 and 3.

Once the affinity matrix, ∆, has been obtained it can be considered as a fully
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Algorithm 10: Conceptual clustering base model selection.

Input: W , M, fi, Ui, Dist, ∆
1 for j ∈M do
2 Disti,j = getDistances(Ui,M.getPCs(j)) using Def 1 and Def 2
3 Distj,i = Disti,j
4 ∆=getAffinityMatrix(Dist) using Def 3
5 clusterGroups = STSC(∆) [100]
6 for c ∈ clusterGroups do
7 Add bestPerformingModel(c,W ) to M′
8 if bestPerformingModel(c,W ) is fi then
9 Also add secondBestPerformingModel(c,W ) to M′

10 return M′

connected graph, where nodes represent available base models, and edges represent

their pairwise conceptual similarity. This allows graph clustering algorithms, such

as Spectral Clustering (SC), to be used to identify groups of conceptually similar

base models. SC algorithms typically have complexity O(n2) to create the similarity

matrix, and O(n3) for spectral analysis [93], where n is the number of available base

models, |M|. Therefore, it is important to use a static similarity metric, such as

conceptual similarity, so that updating the similarity matrix and clustering available

base models is only required when a new base model is learnt or received from

another data stream. Using metrics such as MI would require both the similarity

matrix and spectral analysis to be repeatedly updated due to the dependency on

the current distribution of observable data. The computational complexity of this

makes the use of metrics such as MI for clustering similar base models infeasible for

most real-world applications.

Self-Tuning Spectral Clustering (STSC) is used to create clusters of simi-

lar models. STSC is a well known SC algorithm [100], which allows the number

of clusters to be determined automatically. STSC uses the local scaling in Equa-

tion 6.5, and incrementally rotates the eigenvectors traditionally obtained from SC

to estimate the number of clusters [100]. Automatically determining the number of

clusters is advantageous when considering the diversity among base models in online

environments, particularly in online TL, where it is not known how many concepts

will be encountered in each data stream, or how similar the concepts learnt from

different data streams will be.

Once clusters of conceptually similar base models have been identified using

Algorithm 10, a subset of relevant yet diverse base models,M′, is created by select-

ing one base model from each cluster. To achieve this, the predictive performance
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of base models in a cluster over the current window of observable data, W , is used

as an indicator of relevancy. Therefore, the base model with the highest R2 perfor-

mance in each cluster is selected (Algorithm 10: lines 6 – 7). In the case where the

best performing model in a cluster is the model, fi, which has been learnt to rep-

resent the current concept, the second best performing model in that cluster is also

added to M′ (Algorithm 10: lines 8 – 9). This ensures that the meta-learner can

benefit from the additional support of a model learnt historically, or from another

data stream, that is conceptually similar to the current concept.

6.4 Minimising Online Meta-Learner Risk Using Rele-

vancy and Diversity

Before presenting experimental results for the base model selection strategies in-

troduced in Section 6.3, the impact of the number of available base models on the

the empirical risk and true risk of a meta-learner is considered. This highlights the

importance of selecting a subset of relevant yet diverse base models as input to a

meta-learner in an online environment.

6.4.1 Increasing the Number of Base Models

To consider the effect of increasing the number of base models available to a meta-

learner, the OLS meta-learner used in BOTL is used as an example. As discussed in

Section 5.4, increasing the number of base models used by the meta-learner reduces

the empirical risk. This was demonstrated in Section 5.4 by considering the loss of

a constrained meta-learner where the current locally learnt base model was given a

weight 1, while all other base models were given a weight 0. Since the optimisation

problem used to learn the weights of the OLS meta-learner is convex, any constraints

added increases the empirical risk. This occurs because adding constraints reduces

the representational capacity of the meta-learner, preventing complex underlying

distributions in the data stream from being captured.

However, as discussed in Section 5.7, since the window of available data re-

mains fixed in size, the likelihood of overfitting increases as the number of base

models becomes large in comparison to the window of available data [25], previ-

ously illustrated in Figure 5.1 (Chapter 5). Using the principal of Empirical Risk

Minimisation (ERM) [14], and the notation in Table 6.2, factors that impact a

meta-learner’s ability to generalise well for unseen instances in a data stream be-

tween concept drifts can be considered.
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Table 6.2: Notation for Empirical Risk Minimisation.

Definition

R( #»w ) True risk of model with parameters #»w
zt = (xt, yt) Instance xt at time t and respective response variable yt
Q(zt,

#»w ) Loss function of a model parameterised by #»w for instance zt
#»w0 Optimal parameters for a given function
Z|W | Training sample of size |W |
Remp

(
#»w |W |

)
Empirical risk of model with parameters #»w |W | learnt over Z|W |

#»w∗|W | Model parameters that minimise the empirical risk over Z|W |

6.4.2 ERM for Meta-Learners in Online Environments

In ERM, the overarching aim is to learn a function that maps the input space, X,

to the response variable space, Y , drawn from some unknown distribution. If the

distribution was known, then the function parameters, #»w , that minimise the risk,

R( #»w ), could be found such that

R( #»w ) =

∫
Q(z, #»w )dD

=
∑

Q(z, #»w )

R( #»w0) = min
#»w∈W

R( #»w ) ,

(6.6)

where z is an instance and response variable pair, z = (x, y), and Q(z, #»w ) is the

loss function, parameterised by #»w , on instance z. For example, the squared loss of

instance xt is Q(z, #»w ) = (yt− f (xt))
2 where model f has parameters #»w . Therefore,

R( #»w ) is the risk, or loss, of a model parameterised by #»w . R( #»w0) is used to denote the

risk of a model with optimal parameters, #»w0, which minimise the risk over the known

distribution, D. However, since the distribution is unknown, ERM approximates the

optimal risk by evaluating the loss over a window, W , of training samples, Z|W |, to

obtain the empirical risk, Remp

(
#»w∗|W |

)
. The empirical risk is defined as,

Remp

(
#»w∗|W |

)
=

|W |∑
i=1

Q(zi,
#»w∗|W |). (6.7)

The empirical risk is inherently biased towards the training sample, Z|W |,

and therefore the function learnt often underestimates the risk of the same function

when used on unseen instances of data belonging to the same concept. The risk over
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unseen instances is known as the true risk, and is denoted by R
(

#»w∗|W |

)
[14]. This

means that for a given training sample

Remp

(
#»w∗|W |

)
< R

(
#»w∗|W |

)
.

Due to the randomness of Z|W |, the empirical risk and true risk, Remp

(
#»w∗|W |

)
and R

(
#»w∗|W |

)
, are also random sequences, and the law of large numbers states

that the average converges to its expected value as the number of samples grows

large [14, 64, 81]. Therefore, as |W | → ∞,

R
(

#»w∗|W |

)
→ R( #»w0) ,

Remp

(
#»w∗|W |

)
→ R( #»w0) .

(6.8)

As the number of training samples grows, a better estimate of the parameter values
#»w∗|W | can be obtained for a fixed number of parameters k, where | #»w∗|W || = k, such

that the empirical risk tends to the true risk, Remp

(
#»w∗|W |

)
→ R

(
#»w∗|W |

)
. To obtain

a set of parameters that are a good approximation of the optimal parameters, such

that #»w∗|W | →
#»w0, the representational capacity of the model must be increased

to encapsulate more complex underlying distributions in the data stream [14]. In

turn, increasing the representational capacity of the model increases the number of

parameters in #»w∗|W | which must be learnt. However, by increasing the complexity of

the model, more training samples are required in order to ensure that the empirical

risk, Remp

(
#»w∗|W |

)
, is a good approximation of the true risk, R

(
#»w∗|W |

)
[64].

This means that to ensure a learnt model generalises well and approximates

the model with optimal parameters, #»w0, the number of training samples and the

model complexity must grow as a function of one another to guarantee conver-

gence [64]. However, in online settings, it may not be feasible to retain a large

number of historical instances. Additionally, due to the dynamic nature of learning

in online environments, even when a large history of instances can be retained, a

concept drift may be encountered prior to observing sufficient instances to estimate

the optimal parameters, #»w0. In the BOTL framework, the meta-learner is trained

on a window of instances W = {xt−|W |, . . . , xt}, where |W | is small (Chapter 5) [54].

As the data stream progresses, the number of available base models, learnt locally

or transferred from other data streams, increases, which increases the complexity of

the meta-learner, thereby reducing the empirical risk. However, since the window of

historical data remains small, the likelihood of the meta-learner having poor general-

isation increases as more base models are made available. Therefore, the conditions
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under which the probability that the empirical risk, Remp

(
#»w∗|W |

)
, is greater than

the true risk, R
(

#»w∗|W |

)
, plus some ε, is bounded, must be considered, such that

P
[
|Remp

(
#»w∗|W |

)
−R

(
#»w∗|W |

)
| > ε

]
. (6.9)

Vapnik [81] showed that the bound on the empirical risk in Equation 6.9 can

be written as

R
(

#»w∗|W |

)
≤ Remp

(
#»w∗|W |

)
+ ϕ

(
n

hk

)
, (6.10)

where ϕ( nhk ) is a confidence interval, dependent on the ratio between the number of

training samples, n, and the Vapnik-Chervonenkis (VC) dimension, hk, which is a

measure of the complexity of a model. Therefore, although a complex model may

have a low empirical risk, the confidence interval may be large when the ratio of

training samples to model complexity is large [81]. In such cases, a model is said to

overfit the training data. In order to reduce the right-hand side of Equation 6.10, a

small confidence interval is required, which would indicate that a model generalises

well on unseen instances. To minimise the confidence interval, ϕ( nhk ), a model with

a small VC dimension, hk, must be learnt. However, models with a small VC di-

mension have poorer representational capacity, thereby increasing the empirical risk,

Remp

(
#»w∗|W |

)
[81]. This introduces a trade off between the confidence interval and

representational capacity of the model. In order to obtain a model that generalises

well, we must simultaneously find the VC dimension that minimises the confidence

interval, and the parameter values that minimise the empirical risk [14, 64, 81].

To identify the number of base models that should be used, the meta-learner

must repeatedly solve this optimisation problem every time a concept drift is encoun-

tered, or a model is received via online TL. For many online learning applications,

solving this optimisation problem is not possible, or practical, due to its compu-

tational complexity. Therefore, alternative approaches to decrease the complexity

of the meta-learner must be considered in order to reduce the confidence interval,

such as selecting a subset of the available base models to be used as input to the

meta-learner.

6.4.3 Improving Generalisation for Meta-Learners in Online Envi-

ronments

Overfitting caused by increasing the representational capacity of a meta-learner is

known as the curse of dimensionality [25]. If future concepts were known, the curse

of dimensionality could be avoided by discarding base models that are known not
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to be beneficial to the meta-learner for current and future concepts. However, in

online environments future concepts are not known prior to learning. This means

that subsets of base models must be selected by repeatedly evaluating the set of

models learnt locally, and transferred when using online TL, as the data stream

progresses.

In online ensembles, one approach to solving this challenge is to only use the

k most recently learnt models as base models in the ensemble [30, 46]. However,

in many real-world environments that encounter recurring concepts, recency may

not be a good indicator of usefulness [30]. Instead, other feature selection and

ensemble pruning approaches must be used to determine which models may be

most beneficial. Ensemble pruning is based on the principle that combining the

predictions of an appropriate subset of base models will provide improved predictive

capabilities over combining all base models, as exemplified in bagging and boosting

offline ensembles [106]. Therefore, ensemble pruning techniques can be used to select

a subset of base models for meta-learners in online environments. Feature selection

techniques can be applied by considering the predictions of each base model as input

features to the meta-learner. These meta-features can be evaluated to consider how

useful they are for predicting the current concept [44].

In an ensemble of regressors there is a bias-variance-covariance trade-off [11,

79], where the generalisation error, or the expected error, denoted as, E [·], of an

ensemble of equally weighted regressors is:

E
[
(FM − y)2

]
= bias2 +

1

M
var +

(
1− 1

|M|

)
covar , (6.11)

where

bias =
1

|M|
∑
i

(E [fi]− y) ,

var =
1

|M|
∑
i

E [fi − E [fi]]
2 , and

covar =
1

|M|(|M| − 1)

∑
i

∑
i 6=j

E [fi − E [fi]]
(
fj − E

[
fj
])
.

This bias-variance-covariance decomposition also holds for non-uniformly weighted

ensembles [11], and therefore the bias and variance of base models, and the covari-

ance between them, can impact the generalisation ability of a meta-learner when

base models are not equally weighted. Factors such as these can be considered by

evaluating base models using metrics to determine which models should be used.
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Equation 6.11 indicates that base models should be relevant yet diverse in order to

prevent the meta-learner overfitting.

6.4.4 Evaluating Base Models

When undertaking ensemble pruning in offline settings, it is desirable to obtain a

relevant yet diverse subset of base models [11]. However, within non-stationary

environments base model diversity is rarely accounted for. The performance and

diversity of model predictions can be used to cull base models [55], as used in Chap-

ter 5. Using the R2 predictive performance of each base model on the current window

of data available to the meta-learner allows models that make poor predictions to

be removed. However, using performance alone as a metric to cull base models may

not sufficiently reduce the number of models, allowing the meta-learner to overfit

when the number of potential base models is high [55]. The covariance term, covar ,

in Equation 6.11, accounts for the pairwise difference of base models [69], which

relates to their diversity. As the number of base models in the ensemble, |M|, in-

creases, the generalisation error decreases due to the variance term, var . However,

increasing the number of base models can cause the covariance term, covar , to also

increase. When simply using the performance of base models as a culling metric,

the reduction of the covariance term in Equation 6.11 is not considered. To prevent

the covariance term from significantly increasing, base models must be selected that

have small, or negative covariance [69].

To account for the covariance term in Equation 6.11, the diversity of base

models can be used to remove those that exhibit high covariance. To achieve this,

the pairwise MI can be measured between the predictions of each of the base models

on the current window of data available to the meta-learner. When a pair of base

models have high MI, the base model with the lower predictive performance can

be culled from the model set [55]. This reduces the number of redundant models

used by the meta-learner, since including models with similar predictions provides

no additional information and increases the covariance term in Equation 6.11.

Measuring diversity through the level of disagreement between base model

predictions is a common approach in existing online ensemble pruning research [30].

However, this means that the diversity of base models must be recalculated as new

instances are observed in the data stream. Although diversity can be estimated

using these metrics [23], it does not guarantee that the underlying distributions

of data from which each base model was created are diverse [23]. Additionally,

disagreement in a regression setting can be highly skewed by a small number of

differing predictions made by base models that have been learnt from conceptually
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similar distributions of data. Instead, diversity among the concepts learnt by each

base model can be considered by estimating conceptual similarity.

6.5 Experimental Set-Up

To evaluate the effectiveness of using conceptual similarity as a metric for base

model selection techniques, parameterised thresholding and conceptual clustering

are used to obtain a subset of base models for the OLS meta-learner in the BOTL

framework. Using the datasets detailed in Chapter 3, RePro [94], ADWIN [8] and

AWPro [55] are used as the underlying CDDs to obtain Support Vector Regressors

(SVRs) as base models from the concept drifting data streams. SVRs have been

chosen to create base models since they have the representational capacity to model

the underlying concepts encountered in each of the different data stream types.

However, other regression models can be used since both the BOTL framework

and base model selection techniques are model agnostic. Section 6.6 presents the

results obtained when all base models are created using SVRs. Similar results are

obtained in frameworks that use Ridge Regressors (RRs), and a combination of

RRs and SVRs, as base models. These results are presented in Appendices A and B

respectively. In order to estimate the conceptual similarity between base models,

both the model, fi, which has been learnt to represent the current concept, and the

reduced PCs, Ui, obtained through Definition 1 and Equation 6.3 in Chapter 5, are

transferred between domains.

6.5.1 Baseline Approaches

To empirically evaluate the effectiveness of estimating conceptual similarity as a di-

versity metric for selecting a subset of base models, existing ensemble pruning and

meta-learner model selection techniques were considered for baseline approaches.

However, most online ensembles that can be used in regression settings, such as

AWE [82], OWE [31] and AddExp [46], combine base models using weighted aver-

aging, where weights are bound between 0 and 1 [106]. The use of bounded weights

introduces an assumption that the response variable each base model was learnt

to predict have a consistent range of values. This assumption may not be valid

when learning in real-world environments. For example, when predicting the de-

sired heating temperature for a smart home heating system, base models learnt over

summer months may have different ranges of response variables in comparison to

the base models learnt over winter months. Since the future distribution of the re-

sponse variable is unknown in an online data stream, the response variable cannot be

104



normalised to ensure that all base models are learnt over consistent ranges. There-

fore, bounding base model weights to be between 0 and 1 may lead to inaccurate

predictions. Instead, an OLS meta-learner is used to combine base models, since

weights are not bound between 0 and 1, and the underlying techniques employed

by existing online ensembles to prune base models are used as baseline approaches.

For example AWE [82] and AddExp [46] prune base models using their predictive

performance on the current window of observable data, and therefore a similar tech-

nique, which evaluates the predictive performance of base models, can be used to

obtain a subset of base models to be input to the OLS meta-learner. To achieve

this, the BOTL framework and the two variants of BOTL that implement model

culling strategies, P-Thresh and MI-Thresh, introduced in Chapter 5, are used as

baseline approaches [54, 55].

In addition to the BOTL variants, the underlying CDD is used as a default

baseline for what can be achieved without the use of a meta-learner to combine base

model predictions. This allows the benefits and drawbacks of using meta-learners

with differing base model selection techniques to be considered, and highlights the

importance of base model selection strategies when the number of base models

becomes large, which can be impacted by the choice of the underlying CDD.

6.6 Experimental Results

To evaluate the use of conceptual similarity as a diversity metric for selecting base

models, the base model selection techniques proposed in Section 6.3 are used by the

OLS meta-learner in BOTL. Parameterised thresholding is considered with the use

of three metrics, namely predictive performance (P-Thresh), MI and predictive per-

formance (MI-Thresh), and conceptual similarity and predictive performance (CS-

Thresh). Table 6.3 presents the notion used by P-Thresh, MI-Thresh and CS-Thresh

to denote their respective threshold parameters. These parameterised thresholding

approaches are then compared to parameterless conceptual clustering (CS-Clust).

The predictive performances of each approach are compared to determine their ef-

fectiveness, and the number of relevancy and diversity metric calculations required

to identify subsets of base models is also considered.

For CS-Thresh and MI-Thresh, a performance threshold, λperf = 0.2, was

used to ensure that diverse base models are also relevant to the current concept.

This performance threshold value has been chosen for MI-Thresh and CS-Thresh

based on the results obtained by P-Thresh, presented in Figures 6.1–6.4, and is

consistent with performance thresholds used in [55].
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Table 6.3: Parameterised thresholding approaches: notation and descriptions.

Approach Parameter Description

P-Thresh λperf Threshold on R2 predictive performance

MI-Thresh λperf Threshold on R2 predictive performance
λMI Threshold on the MI between base model predictions

CS-Thresh λperf Threshold on R2 predictive performance
λCS Threshold on the conceptual similarity between base models

6.6.1 Parameterised Culling Thresholds

Figures 6.1–6.4 show the increase in performance of the BOTL meta-learner com-

pared to using the underlying CDD alone, with increasingly aggressive culling pa-

rameters1 for the sudden drifting hyperplane variants, gradual drifting hyperplane

variants, smart home heating simulator and following data datasets respectively.

Analysing the performance of the meta-learner with varying culling parameter val-

ues highlights that the selection of such parameter values is challenging, and can

be dependent on many underlying factors, including the number of base models

available, noise in the data stream, separability of base models for a given diversity

metric, and the underlying CDD.

For sudden and gradual drifting hyperplane data streams with uniform noise

(SuddenA, GradualA), in Figures 6.1 and 6.2, the meta-learner is unlikely to overfit,

regardless of the number of base models, since the concepts to be learnt are sim-

ple and there is little noise in these variants of the synthetic data streams. This

means that using aggressive culling parameters reduces the overall predictive per-

formance of the meta-learner, since the meta-learner benefits from retaining more

base models without suffering from the curse of dimensionality. However, in drift-

ing hyperplane data streams with sensor failure (SuddenB and GradualB), more

aggressive culling parameters are required to prevent the meta-learner from overfit-

ting when using ADWIN as the underlying CDD. This is necessary since the increase

in noise increases the likelihood of the meta-learner overfitting, and ADWIN does

not make use of historical models in the presence of recurring concepts, leading to

large covariances between base models that have been learnt to represent the same

concept. This indicates that aggressive culling techniques may be required in noisy

data streams when using CDDs that do not reuse previously learnt models when

1For Figures 6.1–6.4, all plots show increasingly aggressive culling parameter values on the x-axis
with the least aggressive parameter value on the left of each plot, and most aggressive on the right.
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Figure 6.1: Sudden Drifting Hyperplane: increase in R2 performance compared to
using the underlying CDD alone, and number of base models used by the BOTL
meta-learner using increasingly aggressive culling threshold parameter values for
performance, MI, and conceptual similarity thresholding, for variants of the sudden
drifting hyperplane datasets when transferring base models between 5 data streams.
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Figure 6.2: Gradual Drifting Hyperplane: increase in R2 performance compared to
using the underlying CDD alone, and number of base models used by the BOTL
meta-learner using increasingly aggressive culling threshold parameter values for
performance, MI, and conceptual similarity thresholding, for variants of the gradual
drifting hyperplane datasets when transferring base models between 5 data streams.
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Figure 6.3: Heating Simulator: increase in R2 performance compared to using the
underlying CDD alone, and number of base models used by the BOTL meta-learner
using increasingly aggressive culling threshold parameter values for performance,
MI, and conceptual similarity thresholding, for the smart home heating simulator
dataset when transferring base models between 5 data streams.

concepts re-occur. Conversely, CDDs that reuse base models, such as RePro and

AWPro, benefit from less aggressive culling parameters in these synthetic drifting

hyperplane data streams.

When learning concepts with more complex underlying distributions, the

meta-learner is more likely to overfit when the number of base models is large in

comparison to the window of available data. Data streams created using the smart

home heating simulator are generated using real-world weather data, meaning that

the concepts to be learnt are more complex, and contain more noise, in comparison

to the drifting hyperplane data streams. These factors indicate that the meta-learner

is likely to overfit when the number of base models becomes large, therefore requir-

ing aggressive culling parameters. However, Figure 6.3 shows that less aggressive

culling parameters can be chosen. This is observed since a large window size has

been used to detect concept drifts, create base models, and train the meta-learner.

This highlights the relationship between the meta-learners generalisation ability,

representational capacity, and the amount of available training data.

In addition to this, a wider variety of culling parameters obtain similar predic-

tive performances in the smart home heating simulator data streams. For example,

there is little change in the predictive performance and number of base models se-

lected for P-Thresh values ranging between 0.1–0.5, MI-Thresh values 0.8–0.4, and

CS-Thresh values 0.8–0.5. A wider range of culling threshold values can be used for

base model selection in the smart home heating simulator data streams because the

number of base models available to the meta-learner does not change significantly

over these ranges of culling parameter values. This indicates that the meta-learner’s

sensitivity to culling parameter values is also dependent on how separable base mod-
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Figure 6.4: Following Distance: increase in R2 performance compared to using the
underlying CDD alone, and number of base models used by the BOTL meta-learner
using increasingly aggressive culling threshold parameter values for performance,
MI, and conceptual similarity thresholding, for the following distance dataset when
transferring base models between 7 and 17 data streams.

els are for a given metric. For example, if large numbers of base models are equally

diverse, aggressive culling parameters may be required to sufficiently reduce the

number of base models to prevent overfitting.

Figure 6.4 shows the increase in predictive performance of the meta-learner

compared to using the underlying CDD alone when transferring base models be-

tween 7 and 17 following distance data streams. Results for frameworks with dif-

fering numbers of data streams are presented to highlight the difficulty in selecting

culling parameter values when the number of data streams in the framework is large.

The meta-learners that use ADWIN as the underlying CDD are most sensitive to

the culling parameter values due to the increased covariance between base models

in the presence of recurring concepts. However, when base models are transferred

between 17 data streams, all meta-learners become sensitive to culling parameter

values, regardless of the underlying CDD used. To prevent overfitting, aggressive

culling parameters are required due to two factors. First, using bi-directional knowl-

edge transfer between 17 data streams increases the number of base models available

to the meta-learner, and therefore aggressive culling parameters are required to suf-

ficiently reduce the number of base models used as input to the meta-learner for

the given window size of available data. Second, aggressive culling parameters are
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required since there may be high levels of covariance between predictions of base

models learnt from different data streams that encounter similar concepts. These

challenges are highlighted when using P-Thresh as a culling mechanism. P-Thresh

selects base models using performance alone, and when selecting base models from

17 following distance data streams the meta-learner overfits, even with aggressive

culling parameters. This occurs because, after culling, the remaining base models

obtain high R2 performances, indicating similar predictions. This introduces high

levels of covariance between inputs to the meta-learner. MI-Thresh and CS-Thresh

also suffer from the increased number of base models and the covariance among the

predictions of base models from different data streams. However, a wider range

of culling parameters can be used to obtain a meta-learner with improved predic-

tive performance over the underlying CDD. This reiterates the importance of using

diversity when selecting base models.

The results presented in this section demonstrate that selecting appropriate

culling threshold parameter values is challenging and may require domain expertise

in order to prevent the meta-learner from overfitting. The aggressiveness of the

culling threshold chosen can be dependent on the amount of training data available

to the meta-learner, the number of base models available to select from, the complex-

ity of the underlying distribution of the data stream, and the diversity between base

models. Since each of these factors must be considered, selecting a culling parameter

value may be difficult to determine in advance, and selecting a single threshold pa-

rameter for all online environments is not possible. However, the results presented in

Figures 6.1–6.4 show that aggressive culling parameters are typically more beneficial

since less aggressive culling parameters can be ineffective at reducing the number

of base models sufficiently to prevent the meta-learner overfitting, as can be seen

in the following distance dataset. Additionally, only a small reduction in predictive

performance is observed when using an aggressive culling parameter in comparison

to less aggressive culling parameters that are also able to prevent the meta-learner

from overfitting, as seen in the drifting hyperplane and heating simulator datasets.

Since the selection of effective culling threshold parameters is challenging, param-

eterless base model selection techniques are required. This can be achieved using

conceptual similarity clustering, as introduced in Section 6.3.2.

The results presented in Figures 6.1–6.4 have been used to select parame-

ter values for each of the parameterised thresholding approaches. Parameter values

were selected that showed an increase in predictive performance in comparison to

using the underlying CDD alone across all dataset types. Therefore, MI-Thresh uses

the MI threshold λMI = 0.2, and CS-Thresh uses a conceptual similarity thresh-
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old λCS = 0.4, which are used to compare parameterised thresholding approaches

with parameterless clustering. P-Thresh is not used as a baseline technique in the

remainder of this chapter since it is not able to effectively obtain a subset of base

models to prevent overfitting in the BOTL framework with 17 following distance

data streams.

6.6.2 Parameterless Clustering

Tables 6.4–6.7 show the R2 and PMCC2 predictive performances, the average num-

ber of base models used by the meta-learner, the maximum number of base models

used by the meta-learner, and the average number of relevancy and diversity metric

calculations required to compare and evaluate base models for the various datasets

and CDDs considered. These results show that, without base model selection, BOTL

is more likely to overfit in noisy data streams, as seen in Tables 6.4b, 6.4d, 6.5b, 6.5d,

and 6.7. However, using base model selection techniques that obtain a relevant yet

diverse subset of base models reduces the likelihood of overfitting.

CS-Thresh obtains improved predictive performances in comparison to us-

ing the underlying CDD alone (with statistical significance p < 0.01). CS-Thresh

also frequently outperforms BOTL without base model selection, and obtains com-

parable predictive performances to using MI-Thresh. For most datasets, CS-Clust

also achieves this. However, CS-Clust obtains a poor R2 predictive performance

on SuddenB data streams when using RePro and ADWIN as underlying CDDs, as

shown in Table 6.4b, and for all CDDs on GradualB data streams, as shown in

Table 6.5b. This indicates that CS-Clust is still susceptible to overfitting in data

streams with large amounts of noise. Noise in these data streams prevents the clus-

tering approach from effectively distinguishing between models learnt to represent

different concepts. Conceptual clustering is more challenging in noisy environments

because there is more variance in the underlying distribution of data used to create

base models. This can affect the PCs created from the underlying distribution of

data belonging to each concept, and can also increase the number of PCs required

to capture 99.9% of the variance of the window of data. Capturing the increased

noise within the PCs can reduce the PAs between these windows of synthetic data,

making conceptual clustering more challenging due to a reduction in the separa-

bility of base models. To overcome this, fewer PCs could be used to calculate the

PAs between the subspaces, thereby capturing less variance in the window of data

used to create base models. Alternatively, other methods of obtaining orthonormal

representations of data that are more robust to noise, such as Laplacian PCA [102]

or Robust PCA [90], can be used [42].
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(a) SuddenA: sudden drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.883 0.884 1 1 0 0.851 0.854 1 1 0 0.830 0.835 1 1 0
BOTL 0.834 0.845 24 31 0 0.828 0.839 41 57 0 *0.884 0.886 17 21 0
MI-Thresh 0.902 0.902 4 5 28466 0.887 0.889 3 4 51163 0.880 0.882 3 4 17031
CS-Thresh *0.892 0.892 2 4 2494 *0.875 0.877 2 4 2945 *0.863 0.865 2 3 1996
CS-Clust *0.904 0.904 5 8 5700 *0.885 0.887 6 8 5441 *0.878 0.879 5 8 1292

(b) SuddenB: sudden drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.883 0.884 1 1 0 0.830 0.836 1 1 0 0.808 0.814 1 1 0
BOTL -2e+21 0.507 26 34 0 -7e+22 0.499 41 60 0 -3e+22 0.532 20 27 0
MI-Thresh 0.904 0.904 4 5 27301 0.879 0.880 3 5 47080 0.873 0.874 3 4 17510
CS-Thresh *0.893 0.894 2 3 2868 *0.860 0.861 2 3 1905 *0.850 0.852 2 3 1984
CS-Clust -2e+19 0.870 5 8 5322 -2e+18 0.856 6 8 5627 *0.868 0.870 5 8 1666

(c) SuddenC: sudden drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.873 0.875 1 1 0 0.845 0.848 1 1 0 0.847 0.850 1 1 0
BOTL 0.841 0.850 25 32 0 0.813 0.827 41 57 0 *0.888 0.889 18 21 0
MI-Thresh 0.905 0.905 3 5 27026 0.882 0.883 3 4 45049 0.881 0.882 3 4 16104
CS-Thresh *0.881 0.881 2 3 2385 *0.867 0.868 2 3 2159 *0.867 0.869 2 3 1765
CS-Clust *0.909 0.909 5 7 5276 *0.885 0.886 6 8 5457 *0.887 0.888 5 9 1369

(d) SuddenD: sudden drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.870 0.871 1 1 0 0.845 0.849 1 1 0 0.810 0.816 1 1 0
BOTL -1e+22 0.341 27 35 0 -9e+21 0.334 41 59 0 -2e+21 0.356 18 22 0
MI-Thresh 0.900 0.901 3 5 28144 0.885 0.886 3 4 42669 0.873 0.874 3 4 14776
CS-Thresh *0.880 0.880 2 3 2694 *0.870 0.872 2 3 2838 *0.850 0.851 2 3 2278
CS-Clust *0.901 0.902 5 8 5850 *0.884 0.886 6 8 5416 *0.869 0.870 5 9 1392

Table 6.4: Sudden Drifting Hyperplane: R2 and PMCC2 predictive performance,
the average number of base models used by the meta-learner (|M′|), the maximum
number of base models used by the meta-learner (dM′e), and the average number
of relevancy and diversity metric calculations to compare and evaluate base models
(M.Calcs.) for variants of the sudden drifting hyperplane datasets when transferring
models between 5 data streams in BOTL. Improved predictive performances with
statistical t-test values p < 0.01 compared to the underlying CDD, while requiring
fewer relevancy and diversity metric calculations than MI-Thresh are indicated with
∗. Of these, bold type indicates the approach with highest performance.
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(a) GradualA: gradual drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.848 0.848 1 1 0 0.796 0.803 1 1 0 0.798 0.804 1 1 0
BOTL 0.776 0.800 31 37 0 0.792 0.811 39 54 0 *0.883 0.886 20 25 0
MI-Thresh 0.892 0.892 4 6 55814 0.885 0.885 4 5 73104 0.887 0.887 4 5 30561
CS-Thresh *0.864 0.864 2 4 3235 *0.850 0.850 3 5 3380 *0.850 0.850 3 4 2793
CS-Clust *0.898 0.899 5 7 12090 *0.880 0.881 6 8 5167 *0.880 0.880 5 8 1584

(b) GradualB: gradual drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.859 0.860 1 1 0 0.757 0.771 1 1 0 0.697 0.719 1 1 0
BOTL -6e+20 0.323 29 38 0 -1e+21 0.322 40 57 0 -1e+21 0.348 21 28 0
MI-Thresh 0.887 0.888 4 5 45279 0.862 0.863 3 5 59037 0.845 0.846 3 4 25333
CS-Thresh *0.873 0.873 2 4 3418 *0.835 0.836 2 4 3652 *0.809 0.810 2 4 2146
CS-Clust -1e+17 0.870 6 8 12917 -5e+16 0.829 6 8 5366 -6e+11 0.832 5 7 1712

(c) GradualC: gradual drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.842 0.842 1 1 0 0.773 0.779 1 1 0 0.759 0.773 1 1 0
BOTL 0.781 0.803 29 36 0 0.776 0.799 39 54 0 *0.873 0.875 21 27 0
MI-Thresh 0.890 0.890 4 6 52092 0.878 0.878 4 5 69921 0.870 0.871 4 5 29440
CS-Thresh *0.862 0.862 2 4 3640 *0.832 0.832 2 4 3375 *0.830 0.830 2 4 2596
CS-Clust *0.892 0.893 5 8 12375 *0.865 0.865 6 8 5059 *0.865 0.866 5 8 1666

(d) GradualD: gradual drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.846 0.847 1 1 0 0.484 0.593 1 1 0 0.519 0.629 1 1 0
BOTL -3e+22 0.147 31 41 0 -2e+22 0.143 26 44 0 -2e+22 0.129 17 26 0
MI-Thresh 0.898 0.898 4 6 45921 0.812 0.813 3 5 33128 0.821 0.821 3 4 19825
CS-Thresh *0.878 0.879 2 4 3592 *0.759 0.761 2 3 3021 *0.758 0.759 2 3 2525
CS-Clust *0.898 0.898 6 7 15333 *0.789 0.790 5 10 2698 *0.787 0.789 5 8 1310

Table 6.5: Gradual Drifting Hyperplane: R2 and PMCC2 predictive performance,
the average number of base models used by the meta-learner (|M′|), the maximum
number of base models used by the meta-learner (dM′e), and the average number
of relevancy and diversity metric calculations to compare and evaluate base models
(M.Calcs.) for variants of the gradual drifting hyperplane datasets when transferring
models between 5 data streams in BOTL. Improved predictive performances with
statistical t-test values p < 0.01 compared to the underlying CDD, while requiring
fewer relevancy and diversity metric calculations than MI-Thresh are indicated with
∗. Of these, bold type indicates the approach with highest performance.
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RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.636 0.652 1 1 0 0.635 0.655 1 1 0 0.625 0.645 1 1 0
BOTL *0.728 0.735 10 15 0 *0.717 0.725 9 15 0 *0.727 0.734 10 15 0
MI-Thresh 0.706 0.713 3 5 3441 0.705 0.713 3 5 4113 0.708 0.716 3 4 4034
CS-Thresh *0.705 0.712 3 4 508 *0.700 0.708 3 4 763 *0.696 0.703 3 4 676
CS-Clust *0.708 0.715 3 5 968 *0.707 0.715 4 5 1072 *0.707 0.715 3 5 1375

Table 6.6: Heating Simulator: R2 and PMCC2 predictive performance, the average
(|M′|) and maximum (dM′e) number of base models used by the meta-learner, and
the average number of relevancy and diversity metric calculations to compare and
evaluate base models (M.Calcs.) for the smart home heating simulator dataset when
transferring models between 5 data streams. Improved predictive performances with
statistical t-test values p < 0.01 compared to the underlying CDD, while requiring
fewer relevancy and diversity metric calculations than MI-Thresh are indicated with
∗. Of these, bold type indicates the approach with highest performance.

RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.546 0.565 1 1 0 0.441 0.502 1 1 0 0.396 0.515 1 1 0
BOTL *0.646 0.678 6 12 0 -2e+15 0.384 12 25 0 -9e+9 0.665 8 18 0
MI-Thresh 0.665 0.688 2 3 1116 0.663 0.682 3 4 2096 0.693 0.705 2 4 1287
CS-Thresh *0.652 0.678 3 5 263 *0.637 0.661 3 5 312 *0.660 0.677 2 4 279
CS-Clust *0.661 0.686 3 5 779 *0.673 0.695 4 8 1143 *0.705 0.716 3 7 730

Table 6.7: Following Distance: R2 and PMCC2 predictive performance, the average
(|M′|) and maximum (dM′e) number of base models used by the meta-learner, and
the average number of relevancy and diversity metric calculations to compare and
evaluate base models (M.Calcs.) for the following distance dataset when transferring
models between 7 data streams in BOTL. The R2 and PMCC2 predictive perfor-
mances and number of base model for other numbers of data streams is shown in
Figure 6.6. Improved predictive performances with statistical t-test values p < 0.01
compared to the underlying CDD, while requiring fewer relevancy and diversity met-
ric calculations than MI-Thresh are indicated with ∗. Of these, bold type indicates
the approach with highest performance.
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Although CS-Clust overfits in these synthetic data streams, the PMCC2 per-

formances are statistically significantly (p < 0.01) greater than BOTL with no base

model selection, and outperform the PMCC2 performance obtained when using the

underlying CDDs alone, except for when RePro is used as the underlying CDD in

the GradualD dataset. As discussed in Chapter 5, this is observed since PMCC2 is

bound between 0 and 1, whereas R2 is unbounded, (−∞, 1]. This means that the R2

predictive performance can be highly skewed if the meta-learner overfits for a small

number of instances in the data stream. The observed improvement in PMCC2 per-

formance indicates that although CS-Clust can be susceptible to overfitting in these

environments, the meta-learner overfits less frequently in comparison to the BOTL

meta-learner that uses all base models. With the exception of these noisy synthetic

data streams, CS-Clust obtains R2 performances statistically significantly (p < 0.01)

greater than the underlying CDDs, and outperforms the BOTL meta-learner with

no base model selection techniques for the majority of CDDs, across all datasets

except the heating simulator dataset, as shown in Table 6.6. Table 6.6 shows that

the BOTL framework with no base model selection strategy continues to achieve the

highest predictive performance in the smart home heating simulator data streams

due to the use of a large window size, showing that base model selection strategies

may not always be necessary.

Figure 6.5 shows the difference in predictive performance between the OLS

meta-learner in BOTL, MI-Thresh, CS-Thresh and CS-Clust in comparison to the

underlying CDDs as a sudden drifting hyperplane dataset (SuddenA) progresses.

Figure 6.5 shows that CS-Thresh provides the smallest increase in performance

over the underlying CDD for this sudden drifting hyperplane data stream, indi-

cating that using a parameterised conceptual similarity threshold is less effective

than using a parameterised MI threshold or using conceptual clustering. However,

the improvement in predictive performance obtained when using CS-Thresh does

not reduce as the data stream progresses and a larger number of base models are

made available to the meta-learner. This means that although CS-Thresh may not

select the best subset of base models in order to obtain a meta-learner with the

highest predictive performance, CS-Thresh is effective at reducing the likelihood of

the OLS meta-learner overfitting, particularly when RePro and ADWIN are used

as the underlying CDD, as shown in Figures 6.5a and 6.5b. Figure 6.5 also shows

that CS-Clust is able to maintain comparable predictive performances to MI-Thresh

as the sudden drifting hyperplane progresses without requiring a user defined pa-

rameterised threshold. These results indicate that CS-Clust is and MI-Thresh are

similarly effective at selecting a subset of base models which improve the predictive

116



(a) RePro

(b) ADWIN

(c) AWPro

Figure 6.5: BOTL, MI-Thresh, CS-Thresh and CS-Clust vs. CDDs: The difference
in R2 performance (left) between the OLS meta-learner in BOTL, MI-Thresh, CS-
Thresh and CS-Clust vs. the underlying CDDs of (a) RePro, (b) ADWIN, and (c)
AWPro, and the number of models used as base models (right) for a sudden drifting
hyperplane data stream (SuddenA). Base models are learnt locally and transferred
from 4 other sudden drifting hyperplane data streams.
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Figure 6.6: R2 and PMCC2 predictive performance, and number of base models used
by BOTL meta-learners for increasing numbers of following distance data streams.

performance of the OLS meta-learner, while reducing the likelihood of overfitting

when the number of base models available to the meta-learner continues to grow.

Figure 6.6 shows the predictive performance and number of base models used

by the meta-learner with increasing numbers of following distance data streams. CS-

Thresh prevents the meta-learner overfitting in these real-world data streams, ob-

taining similar predictive performances to MI-Thresh, while CS-Clust achieves this

without requiring a user defined threshold parameter. Although CS-Clust requires

additional computation for clustering, the use of conceptual similarity as a mea-

sure of diversity significantly reduces the number of pairwise comparisons between

base models. Unlike MI-Thresh, the diversity metric remains static, independent of

concept drifts, and therefore does not need to be recalculated as the data stream

progresses. This is shown in Figure 6.7, which highlights the number of relevancy
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Figure 6.7: Change in number of relevancy and diversity metric calculations required
to compare and evaluate base models for CS-Clust vs. MI-Thresh for increasing
numbers of following distance data streams.

and diversity metric calculations required to compare and evaluate base models in

CS-Clust compared to MI-Thresh, as the number of following distance data streams

increases. A significant reduction in relevancy and diversity metric calculations is

observed across all datasets, which can be seen in Tables 6.4–6.7.

6.6.3 Local Scaling in STSC

Parameterless conceptual clustering uses STSC [100] to create clusters of conceptu-

ally similar base models. Although the number of clusters of base models is deter-

mined by STSC, in order to perform SC the affinity matrix used by STSC undergoes

local scaling, as shown in Section 6.2, using Definition 3. This allows better affinities

to be obtained when the density of conceptually similar base models varies [100]. A

local scaling parameter of k = 7 has been used to generate the results presented in

this chapter, as suggested by Zelnik-Manor and Perona [100]. Although parameter

tuning is not typically needed for local scaling to perform well [42], the predictive

performance of CS-Clust, and the number of base models used by the OLS meta-

learner, have been considered for local scaling parameters varying between k = 2

and k = 7.

Figure 6.8 presents the predictive performance of CS-Clust and the number of

base models selected as input to the OLS meta-learner using the CDDs and datasets

presented in this thesis. Figure 6.8 shows that varying the local scaling parameter,

k, has minimal effect on the predictive performance of CS-Clust. Additionally, the

number of base models selected as input to the OLS meta-learner does not change

significantly. Since CS-Clust selects a single model from each cluster, the number of
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(a) Sudden drifting hyperplane

(b) Gradual drifting hyperplane

(c) Heating simulator

(d) Following distance

Figure 6.8: R2 and number of base models used by CS-Clust meta-learners for
varying local scaling parameters in the SuddenA drifting hyperplane, the GradualA
drifting hyperplane, the heating simulator, and the following distance data streams,
using RePro, ADWIN and AWPro as underlying CDDs.
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base models used by the meta-learner is a good indicator of the number of clusters

of conceptually similar base models identified by STSC.

These results support the suggestions in [100] and [42] that k = 7 is a rea-

sonable parameter value for local scaling in STSC. However, accounting for locally

dense areas in the affinity matrix can be challenging when clustering base mod-

els that have been learnt from online environments, particularly if CDDs such as

ADWIN are used, where base models are not reused in the presence of recurring

concepts. Therefore, future work may consider alternative methods, such as density-

aware kernels [42, 101] to overcome the challenges of clustering using affinity matrices

with locally dense areas.

6.7 Summary

CDDs can be used to make predictions in data streams that are subject to concept

drift, where data availability may be limited. Meta-learners can improve predictive

capabilities through the use of historically learnt knowledge, or transferred knowl-

edge when online TL is used. However, as the number of available base models

becomes large in comparison to the available data, a relevant yet diverse subset of

base models must be selected to prevent the meta-learner overfitting and to improve

generalisation.

In this chapter, a novel approach of estimating the similarity between base

models has been presented, namely conceptual similarity. Unlike existing diversity

metrics, conceptual similarity provides a measure of diversity that is independent of

the current distribution of data observed in an online data stream. This is beneficial

in online learning environments because it remains static, despite the presence of

concept drift, and therefore does not need to be repeatedly recalculated as the data

stream progresses.

Since conceptual similarity is model agnostic, it can be used to determine

the diversity between any regression-based predictive models. Identifying diversity

between models is not only beneficial to online TL, but is also a challenge that is

encountered by ensemble pruning strategies in both offline and online environments.

In offline environments, a diverse subset of base models should be identified to

improve generalisation abilities [106], whereas in online environments a subset of

highly diverse base models is beneficial during, and immediately after, periods of

concept drift, while a low diversity subset can be used between drifts to improve

generalisation [58, 60]. The conceptual similarity metric presented in this chapter

can be used in each of these scenarios to calculate the diversity between models.
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Two methods of selecting subsets of base models for meta-learners and en-

sembles have also been presented in this chapter, namely parameterised thresholding

and parameterless clustering. Each of these approaches use conceptual similarity to

identify the diversity among base models, and use predictive performance as an in-

dicator of relevancy. Comparable predictive performances to performance and MI

thresholding have been obtained, while requiring fewer base model comparisons.

Although parameterless conceptual clustering requires additional computation due

to reforming clusters when new base models are made available, the reduction in

base model comparisons, and the avoidance of user defined parameters, may make

it more applicable to real-world applications in which the number of base models

and frequency of drifts are unknown and could become large.

6.7.1 Other Uses of Diversity in Online TL Frameworks

Online TL frameworks are situated in distributed online environments. In many

real-world applications, it may not always be possible, or feasible, to transfer all

knowledge between all domains, particularly if the performance benefit of sharing

knowledge is minimal and the communication or computational cost of knowledge

transfer is high. This chapter has shown that a subset of relevant yet diverse base

models should be used as input to meta-learners in online TL frameworks. There-

fore, if a model is transferred that is not relevant to the receiving domain, or is

not diverse with respect to the models already available to that domain, then the

transfer of the model provides no beneficial or additional knowledge to the receiv-

ing domain. The transfer of such models incurs unnecessary communication and

computational overheads, which is detrimental in real-world applications of online

TL where knowledge may be transferred between a network of distributed domains.

Therefore, if the diversity of a model with respect to other models available in the

framework could be determined prior to transfer, then the number of base models

transferred throughout the framework could be reduced. The question of whether

a base model should be transferred in an online TL framework is considered in

Chapter 7, using diversity metrics to determine inter-domain model similarities.
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Chapter 7

Deciding Whether to Transfer

Existing TL research considers three important research questions, namely, what

to transfer, how to transfer, and whether to transfer [65]. The questions of

what to transfer and how transferred knowledge can be used have been consid-

ered throughout Chapters 4–6, and are considered extensively in existing online TL

research [27, 32, 55, 104]. However, the question of whether to transfer knowledge

has been considered less frequently [65, 85, 107]. In order to address this question,

online TL frameworks can be considered as a network of distributed domains, where

knowledge transfer incurs a communication overhead in order to share knowledge

learnt by each online domain. Therefore, the consideration of whether knowledge

transfer will be beneficial and, by extension, whether it may hinder the predictive

performance in a receiving domain is necessary [55].

In this thesis, online TL is conducted between multiple online domains which

are distributed, as might be expected in many real-world applications. This means

that in order to transfer knowledge between domains, the predictive model and PCs

used to represent a concept encountered in one domain must be sent to a receiving

domain via a network using a communication protocol. Therefore, knowledge trans-

fer incurs a communication overhead in order to make a predictive model available to

the receiving domain. However, for many real-world applications, it may not always

be possible, or feasible, to transfer all knowledge between all domains, particularly

if the performance benefit of sharing knowledge is minimal and the communication

or computational cost of knowledge transfer is high. Despite this, the question of

whether to transfer is often overlooked in online domains [104], even though commu-

nication and computational limitations must be considered to ensure the feasibility

of knowledge transfer in real-world applications [56, 63].

In this chapter, diversity metrics are used to determine whether knowledge
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should be transferred in an online TL framework, with focus on BOTL, presented in

Chapter 5 [54]. The use of diversity metrics enables the similarities between models

to be considered prior to transfer. Specifically, the contributions of this chapter are

as follows.

• A näıve approach to limiting model transfer is proposed, using Inter-domain

Diversity Thresholding (IdDT) to determine whether to transfer.

• A novel technique for determining whether to transfer is presented, using Inter-

domain Conceptual Similarity (IdCS).

• These approaches are evaluated in the BOTL framework, showing empirical re-

sults for both the synthetic and real-world datasets presented in Chapter 3 [54].

The proposed näıve approach to limiting model transfer, IdDT, uses diversity

thresholding to determine whether to transfer a model, and can be used in combi-

nation with any regression based diversity metric [23]. In this chapter, the Mutual

Information (MI) between model predictions is used to make this decision [23, 55].

Since there is limited research into whether knowledge should be transferred in on-

line TL frameworks, IdDT is used as a baseline approach to evaluate the effectiveness

of IdCS. IdCS determines whether to transfer models using conceptual similarity,

where the PAs between the underlying subspaces in which each model was learnt are

calculated and used as a diversity metric [56]. This chapter shows that the predic-

tive performances obtained by these approaches are comparable to those achieved

when all models are transferred, while achieving a reduction in communication and

computation overheads. Averaged across the datasets presented in Chapter 3, and

CDDs presented in Chapter 4, IdDT reduces the number of models received by each

domain by 47.1%, while IdCS achieves a 30.0% reduction.

The remainder of this chapter is organised as follows. Section 7.1 briefly

reviews how predictive models are created from online data streams, and how they

can be combined in online TL frameworks, and then considers how to determine

whether they should be transferred. Two approaches of determining whether to

transfer, namely IdDT and IdCS, are introduced in Section 7.2, and Section 7.3

outlines the experimental set-up for evaluating these approaches. This includes a

brief discussion on the baseline techniques used in this chapter, and identifies some

influential characteristics of the datasets and CDDs presented in Chapters 3 and 4

which may impact the decision of whether to transfer models. Finally, Section 7.4

presents experimental results, and Section 7.5 concludes this chapter.

124



7.1 Creating, Combining and Transferring Models

Although the decision of whether to transfer is rarely considered in online TL, it

is heavily dependent on what knowledge can be learnt in a source domain, what

knowledge is available in a receiving domain, and how knowledge is combined in

the receiving domain. Following from previous chapters, this chapter considers the

online TL setting where both source and receiving domains are in online environ-

ments [54, 55, 56], knowledge is transferred in the form of predictive models, and

combined using a meta-learner.

7.1.1 Creating and Combining Models

Chapter 2 outlined existing approaches to creating predictive models from online

data streams, and how online TL can be used to improve the predictive performance

in a receiving domain. Chapter 4 highlights how predictive models can be learnt such

that they are created to represent the underlying concepts encountered in a data

stream using CDDs such as RePro [95], ADWIN [8] and AWPro [55]. Chapter 5 con-

siders how knowledge, in the form of predictive models, can be used to improve the

predictive performance achieved in online data streams using BOTL [54]. However,

in Chapter 6 it has been shown that meta-learners can become prone to overfitting

when the number of models available becomes large in comparison to the window

of available data [14, 25, 55, 64, 81]. To prevent this, a relevant yet diverse subset

of base models are selected to be used as input to the meta-learner [11, 22, 79].

When meta-learners are used to combine transferred and locally learnt mod-

els in online TL, the approaches used to select subsets of base models to prevent

overfitting indicate which of the available models are most influential. Therefore,

metrics used for base model selection, such as relevancy and diversity [11, 31, 56],

can also be used to determine whether a model selected for transfer is likely to be

beneficial in a receiving domain prior to transfer.

7.1.2 Whether to Transfer Models

The main purpose of considering whether to transfer in existing TL research is to

prevent negative transfer [65, 70, 83, 85, 89, 107]. Reducing the impact of negative

transfer is often embedded in online TL frameworks since weighting mechanisms

are used to allow online TL frameworks to adapt to concept drift in the receiving

domain. This means that the weighting mechanism inherently reduces the impact

of negative transfer in the receiving domain [27, 32, 88, 97, 104]. However, although

the impact of negative transfer is reduced, the transfer of a model that is of no, or
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Table 7.1: Notation for determining whether to transfer.

Definition

α Domain α, where A is used to denote a single source domain, and
B denotes a receiving domain

Xα Data stream in domain α, where Xα= {x1, . . . , xt, . . . , xn}
xt ∈ Xα The tth observed instance in Xα

Y α Response variable space in domain α
yt ∈ Y α The tth response variable in Y α

Cα The set of concepts encountered in domain α
cαi ∈ Cα The ith concept encountered in domain α
Xα
i ∈ Xα The data stream segment corresponding to concept cαi in domain

α
W Sliding window of |W | instances, W = {xt−|W |, . . . , xt}
fαi : Xα

i → Y α
i Model i learnt in domain α

M Set of stable, locally learnt and transferred models
M′ A subset of stable, locally learnt and transferred models,M′ ⊆M
Υsim A subset of similar models in M
FM : Xα→ Y αMeta-learner in domain α using models in M
x∗t Meta instance of base model predictions for instance xt
ŷ∗t Prediction using FM

′
(xt) where M′ ⊆M

little, benefit incurs unnecessary communication and computation overheads. This

can limit the applicability of online TL frameworks in real-world online environ-

ments where communication and computational resources are constrained [51, 63].

Therefore, the question of whether to transfer should not only consider reducing

the impact of negative transfer after a model has been received by a domain, but

also how to prevent models from being transferred if they are unlikely to provide

additional beneficial knowledge to a receiving domain.

7.2 Determining Whether to Transfer Models

Since a relevant yet diverse subset of base models should be used as input to a meta-

learner [30], the same properties can be considered to determine whether to transfer.

However, the relevancy of a model with respect to the receiving domain cannot be

determined prior to transfer, since domains are distributed and online. Therefore,

the current concept observed in each domain is unknown to other domains, and fu-

ture concepts within each domain are also unknown [95]. Due to this, the relevancy

of a model with respect to a receiving domain, typically calculated using metrics

such as predictive performance, can only be determined after the model has been
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Algorithm 11: Whether to Transfer Models.

Input: MA, fAi , {transferredModels}, diversity metric
1 Using a diversity metric, find Υsim ∈Ma

2 sent = {}
3 delayed = {}
4 for B ∈ receivers do
5 Transfer list of model IDs in Υsim

6 if ∀j ∈ Υsim : j /∈MB then
7 Transfer fAi to domain B
8 Add B to sent list

9 else
10 Delay transfer of fAi to domain B
11 Add B to delayed list

12 Continue with BOTL
13 while no drift detected do
14 Store predictions of all models in Υsim

15 if drift detected then
16 Use Algorithm 12 for model replacement

transferred. Instead, the diversity of base models can be used to determine whether

to transfer using the inter-domain similarity of base models learnt locally and re-

ceived from other domains. Using the notation in Table 7.1, Inter-domain Diversity

Thresholding (IdDT), and Inter-domain Conceptual Similarity (IdCS) are proposed

as methods of determining whether to transfer models in online TL frameworks.

Both of these techniques use a similar methodology to determine whether to

transfer, consisting of two stages. First, a source domain must determine whether

the model selected for transfer will be beneficial to receiving domains, as shown

in Algorithm 11. Second, once the decision of whether to transfer has been made,

the source domain can later reconsider whether the model previously selected for

transfer is the most relevant with respect to the concept it was learnt to represent.

If an alternative model is considered to be more relevant, then the locally learnt

model can be replaced, as shown in Algorithm 12.

7.2.1 Inter-domain Diversity Thresholding (IdDT)

IdDT uses simple thresholding techniques to determine whether to transfer. Given

a model fAi learnt in a source domain A to represent concept cAi , which has been

selected for transfer, regression based diversity metrics can be used to determine the

pairwise similarity of model fAi and other models available in the source domain.

Common regression diversity metrics measure the level of disagreement be-
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Algorithm 12: Whether to Replace Previously Transferred Models.

Input: Model set MA, current local model ID 〈A; i〉, model fAi ,
receivers, sent, delayed, Υsim

1 〈α; j〉 = getIDbestPerformingModel(Υsim);
2 if 〈α; j〉 == 〈A; i〉 then
3 for B ∈ delayed do
4 Transfer fAi to domain B;

5 else
6 for B ∈ sent do
7 Discard fAi from MB in domain B;
8 for B ∈ receivers do
9 if 〈α; j〉 /∈MB then

10 Transfer fαj to domain B;

11 Replace model 〈A; i〉 with 〈α; j〉 in MA

tween base model predictions [23], meaning that the predictions of model fAi are

compared to other model predictions over a window of recent observations in the

source domain. IdDT compares model fAi to other models available in domain A,

fαj ∈ MA, where MA is the set of models learnt locally, and received from other

domains, and α denotes the domain in which model fαj was originally learnt. In

this chapter, IdDT uses MI as a diversity metric, where the pairwise MI between

fAi and fαj is denoted as MI(fAi , f
α
j ).

Once the pairwise diversity between models has been calculated, IdDT uses

a diversity threshold, λMI, to identify similar models. Thus, the pairwise MI be-

tween the current locally learnt model, fAi , and all other models available in the

source domain, fαj ∈ MA, is calculated, and similar models are identified when

MI(fAi , f
α
j ) > λMI. Using this approach a subset of similar models, Υsim, is created.

Therefore, in Algorithm 11 (line 1), Υsim is created using,

Υsim = ∃fαj ∈MA : MI(fAi , f
α
j ) > λMI . (7.1)

Since the models in Υsim are similar to model fAi , if a model in Υsim is available in

a receiving domain B, then it can be assumed that fAi will provide little beneficial

knowledge to the meta-learner in B, and therefore does not need to be transferred.

When domains in online TL frameworks are distributed and independent

there is no global overview of which models are available in each domain. There-

fore, a list of model identifiers corresponding to Υsim must initially be transferred

to the receiving domain B, where the identifier 〈α; j〉 is used to identify model fαj
(Algorithm 11: line 5). Although the transfer of model identifiers incurs a commu-
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nication overhead, this overhead is likely to be small in comparison to transferring

all predictive models via parameter transfer. This reduction in communication over-

head becomes more significant when complex models are used as base models, such

as Neural Networks, where large numbers of model parameters must be transferred

between domains. Once the list of model identifiers in Υsim has been transferred,

the receiving domain can check whether a model listed in Υsim is available in its

model set, MB. If none of the models listed in Υsim are available in the receiving

domain, the receiver can notify the source domain that model fAi is to be transferred

(Algorithm 11: lines 6–8). This allows the source domain to keep track of which

domains in the framework have received model fAi .

Once the decision of whether to transfer a model has been made in the

source domain, IdDT can then determine whether a similar model in Υsim is more

relevant than fAi with respect to the concept cAi , which model fAi was learnt to

represent. To achieve this, the predictive performances of each model in Υsim are

monitored until a concept drift is detected (Algorithm 11: lines 12–15). Once a drift

is detected, Algorithm 12 can be used, where the predictive performance of each

model in Υsim is compared to the predictive performance of fAi for all instances

observed during concept cAi . If fAi achieves the highest predictive performance

throughout the duration of the concept, it is considered to be the most relevant

model available in the source domain for concept cAi . Since model fAi is considered

to be the most relevant, it is also considered to be the most beneficial to receiving

domains. As such, model fAi is transferred to the domains in the framework that

did not initially receive it (Algorithm 12: lines 2–4).

Alternatively, if another model in Υsim, for example fαj , where α represents

any domain in the framework, including domain A, is found to have obtained a

better predictive performance over the concept cAi , then model fAi can be discarded

in the source domain, and replaced by model fαj (Algorithm 12: lines 5–11). In this

scenario, model fαj can be considered to be more relevant to the concept cAi than the

locally learnt model fAi , and therefore retaining model fAi unnecessarily increases

the computation required to select base models as input to the meta-learner. In

addition to this, model fAi can be discarded by any domain that previously received

it (Algorithm 12: lines 6–7), and model fαj can be transferred if it is not already

available in the receiving domains (Algorithm 12: lines 8–10).

Replacing models in this way allows the number of base models available

throughout the framework to be reduced, thereby reducing computational overheads

within each independent domain. Replacing models is particularly beneficial in

frameworks where domains may have differing computational or data availability.
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For example, some domains in the framework may have greater data availability or

computational resources, allowing base models to be learnt that may have greater

representational capacities or generalisation abilities. Model replacement enables

base models that have been learnt in domains with more restricted resources to be

replaced when a similar model learnt from a less restricted domain is transferred

throughout the framework.

Although model replacement is beneficial, if the locally learnt model, fAi , is

the best performing model, then the other models in Υsim cannot be replaced by fAi .

This is because it cannot be determined whether model fAi will achieve an improved

predictive performance over the concepts for which models in Υsim were originally

learnt to represent.

IdDT näıvely determines whether to transfer using MI as a diversity metric

and requires a user defined diversity threshold. Using this approach can be consid-

ered näıve since it makes the assumption that the MI between models is consistent

throughout the duration of each concept and across all domains in the framework.

However, MI is dependent on the underlying distribution of data used to obtain

model predictions. Therefore, there is no guarantee that models considered to be

similar in the source domain will continue to be considered similar in the source

domain as the data stream progresses due to concept drift, or considered similar in

receiving domains due to being independent of one another. To overcome this, a

static diversity metric is preferable, which remains consistent across domains and is

not affected by concept drift.

7.2.2 Inter-domain Conceptual Similarity (IdCS)

In common with IdDT, IdCS also uses Algorithms 11 and 12 to determine whether to

transfer a model, and whether to replace locally learnt models. However, IdCS uses

the conceptual similarity between base models as a diversity metric. Conceptual

similarity estimates the similarity between the concepts that each base model was

learnt to represent, and is calculated by considering the similarity between the un-

derlying subspaces in which base models were learnt. As discussed in Chapter 6, this

diversity metric is independent of the current distribution of observable data, and

therefore remains static between domains even in the presence of concept drift [56].

The conceptual similarity between two base models has been defined in Sec-

tion 6.2 [56], and is estimated using the PAs between orthonormal representations of

the subspaces used to train each model [10, 29, 45]. This estimates the conceptual

distance between two base models, which then undergoes local scaling using the

distance to the k-th nearest neighbour of each base model to adjust for locally dense
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areas of similar models. The value k = 7 is adopted for the local scaling parameter

as used in Chapter 6 and existing research [42, 56, 100].

The conceptual similarity of base models can be used as a diversity met-

ric in IdDT to obtain the subset of similar models available in the source domain,

Υsim. However, IdCS exploits the static nature of conceptual similarity to remove

the requirement of a user defined threshold to determine whether to transfer. In-

stead, parameterless conceptual clustering, presented in Section 6.3 is used, where

STSC [100] allows clusters of conceptually similar base models to be identified with-

out requiring the number of clusters to be predefined [56, 100]. STSC has previously

been used in Chapter 6 for base model selection, identifying a subset of relevant yet

diverse base models which are used as input to the meta-learner in BOTL [56].

Therefore, using STSC with conceptual similarity as a diversity metric is well suited

to informing the decision of whether to transfer in online TL frameworks. When

a model, fAi , is selected for transfer in the source domain, A, a subset of similar

base models, Υsim, is created using STSC and the affinity matrix, ∆, containing

pairwise conceptual similarities between base models, creating clusters of similar

base models,

Υ = {Υ1, . . . ,Υsim, . . . ,Υl} using STSC(∆) [100], wherefAi ∈ Υsim, (7.2)

where Υ = {Υ1, . . . ,Υl} are the l clusters of similar models created by applying

STSC to the affinity matrix, ∆, of conceptual similarities between models, and Υsim

is the cluster that contains the model selected for transfer, fAi . Once Υsim has

been identified, IdCS uses the same methodology as IdDT to determine whether

to transfer model fAi , and whether it should be replaced by a model in Υsim using

Algorithms 11 and 12 respectively.

One benefit of using IdCS is that a user defined diversity threshold is not

required to identify similar base models due to the use of STSC. While conceptual

similarity can be used as a diversity metric in IdDT in combination with a diver-

sity threshold, the use of metrics such as MI, which are dependent on the current

distribution of observable data, cannot feasibly be used alongside STSC [56]. This

is because SC algorithms typically have complexity O(n2) to create the similarity

matrix, and O(n3) for spectral analysis [93], where n is the number of base models.

Therefore, using metrics such as MI, which must be updated as the data stream

progresses, would incur a high computational overhead for updating the similarity

matrix, whereas static diversity metrics such as conceptual similarity only require

the similarity matrix to be updated when new base models are learnt, or received
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from other data streams [56].

7.3 Experimental Set-Up

Variants of the BOTL framework, presented in Chapters 5 and 6, are used to demon-

strate the use of IdDT and IdCS for determining whether to transfer models in online

TL. This section briefly discusses the BOTL variants used in this chapter, and iden-

tifies characteristics of the datasets and CDDs presented in Chapters 3 and 4 which

impact the decision of whether to transfer models.

7.3.1 BOTL Frameworks

Three existing variants of BOTL [54, 55, 56] are used to illustrate the use of IdDT

and IdCS. First, the original BOTL method presented in Chapter 5 is used, where

all stable base models are transferred and combined with the local model that has

been learnt to represent the current concept using an OLS meta-learner [54]. BOTL,

as presented in Chapter 5, is used as a baseline approach in this chapter, since it

shows the predictive performance achievable when no base model selection strategies

are used, and the decision of whether to transfer is not considered.

Second, MI-Thresh [54, 55], with the culling parameter values shown to be

effective in [55], [56], and in Chapter 6, for the datasets used in this thesis is used,

such that λperf = 0.2 and λMI = 0.2. MI-Thresh is used as a baseline to show the

predictive performance achievable when a relevant yet diverse subset of base models

is obtained via parameterised thresholding. Since MI is used as the diversity metric

to select base models in the receiving domain, MI-Thresh is also used as the foun-

dational framework for IdDT, where MI is used to determine whether to transfer.

This allows for a direct comparison between MI-Thresh and IdDT, highlighting the

efficacy of using MI to determine whether to transfer in online TL frameworks.

Third, CS-Clust is used, as presented in Chapter 6, which uses parameterless

conceptual clustering to select a subset of base models [56]. Similarly to MI-Thresh,

CS-Clust, is used as a baseline to show the performance that can be achieved with-

out requiring a user defined thresholding parameter. CS-Clust is also used as the

foundation for IdCS, where the conceptual similarity of base models is used to de-

termine whether to transfer. Since CS-Clust and IdCS use STSC and conceptual

similarity, the clustering of base models can be used to both determine whether to

transfer and to select subsets of base models. Therefore, no additional computation

is required to use IdCS when CS-Clust is also used. In addition to these three vari-

ants of BOTL, the underlying CDD is also used as a baseline to show the predictive
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performance achievable when each domain learns independently without knowledge

transfer.

7.3.2 CDDs

RePro [95], ADWIN [8] and AWPro [55], presented in Chapter 4, are used as underly-

ing CDDs to detect concept drifts and obtain base models in each data stream. These

three CDDs exhibit characteristics that are influential for determining whether to

transfer. ADWIN does not reuse historical models in the presence of recurring con-

cepts, and therefore multiple predictive models may be learnt from a single data

stream that represent the same concept. Transferring such models provides little

to no benefit to the receiving domain, and therefore, identifying similar models

that have been learnt to represent the same concept will help prevent unnecessary

knowledge transfer.

Another important characteristic of the underlying CDD used in online TL

is the window in which a base model was learnt, and the extent to which it is

representative of the underlying distribution of the current concept. ADWIN and

AWPro estimate the precise point of drift within the window of recent observations,

allowing instances belonging to the previous concept to be discarded prior to learning

each base model [8, 55]. This is beneficial for determining whether to transfer

because the similarity between base models is not influenced by the order in which

concepts are encountered, which may not be the same in other domains, or at

different periods in the data stream if concepts reoccur. However, this approach is

not used by RePro, which may hider the identification of conceptually similar base

models. For example, suppose concept ci is followed by concept cj in domain A.

Model fAj is learnt to represent concept cj , but the window of data used to learn fAj
is likely to contain instances belonging to concept ci since it may not take an entire

window of instances to be observed before a concept drift is detected. However,

suppose that in domain B, concept cj is preceded by concept ch, and that model fBj
is learnt to represent concept cj , and so the window of data used to learn fBj is likely

to contain instances belonging to ch. This means that although models fAj and fBj
have been learnt to represent the same concept cj , the retention of data belonging

to preceding concepts may influence measures of diversity, and prevent base model

similarities from being identified.
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7.3.3 Datasets

The drifting hyperplane, smart home heating simulator, and real-world following

distance datasets presented in Chapter 3 have been used to evaluate IdDT and

IdCS. Each of these datasets also exhibit characteristics that may influence the

decision of whether to transfer.

The drifting hyperplane datasets contain large numbers of recurring concepts

within each data stream which have been artificially introduced. Additionally each

data stream is guaranteed to share at least 3 concepts with another data stream.

Therefore, to determine whether to transfer, a domain must consider whether a

similar locally learnt base model has previously been transferred, and whether a

similar base model has been received from another domain.

The heating simulator dataset contains recurring concepts due to the cyclic

nature of the weather data used to generate each data stream. However, recurring

concepts occur less frequently than in the drifting hyperplane datasets, and concept

drifts induced by changing weather conditions occur gradually over long periods

throughout the data stream. Although the decision of whether to transfer a model

will be impacted by the presence of recurring concepts in these data streams, the

presence of similar concepts within independent data streams will be a more signifi-

cant factor that impacts the decision of whether to transfer since data streams have

been generated from sampling overlapping time periods of weather data.

Finally, in the following distance dataset, each data stream captures data

for a journey, where a large proportion of the journeys were recorded in similar

geographical locations. This means that the likelihood of encountering conceptu-

ally similar concepts within different data streams is high. However, since each

data stream captures only a single journey, the likelihood of encountering concep-

tually similar concepts within a single data stream is less likely than in the drifting

hyperplane data streams where recurring concepts are repeatedly introduced artifi-

cially. Therefore, the identification of similar models learnt in different domains is

important for deciding whether to transfer in the following distance data streams.

7.4 Experimental Results

The impact of negative transfer is inherently reduced in online TL frameworks due to

the use of meta-learners or ensembles to combine transferred base models. There-

fore, the decision of whether to transfer may not significantly impact the predic-

tions obtained in online TL frameworks. Instead, techniques such as IdDT and

IdCS should be evaluated with respect to the reduction in communication and com-
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putation achieved by preventing the transfer of base models that provide little or

no benefit to the receiving domain. To ensure that the proposed approaches are

effective, each technique aims to maintain comparable predictive performances to

frameworks that transfer all base models, while reducing communication and com-

putation overheads.

7.4.1 Maintaining Predictive Performance

MI-Thresh and CS-Clust are the foundations of IdDT and IdCS respectively, and

therefore direct comparisons can be made to consider the effect of determining

whether to transfer. First, the predictive performance achieved by each of these

approaches is considered to ensure that IdDT and IdCS obtain comparable perfor-

mances to when all base models are transferred.

Tables 7.2–7.5 show the predictive performances, average and largest number

of models used by the meta-learner, and the number of metric calculations required

to obtain subsets of base models to be used as input to the meta-learner, for each

of the methods used with sudden drifting hyperplane, gradual drifting hyperplane,

heating simulator, and following distance datasets respectively. Across each of these

datasets IdDT and IdCS achieve similar predictive performances to MI-Thresh and

CS-Clust respectively, indicating that the decision of whether to transfer does not

negatively impact the predictive performances. Additionally, the average number

of base models used by the OLS meta-learner, M′, and the largest number of base

models used by the meta-learner, dM′e, remains consistent with the MI-Thresh and

CS-Clust counterparts. This indicates that the decision of whether to transfer has

little impact on the ability to select a relevant yet diverse subset of base models.

Tables 7.2b, 7.2d, 7.3b, 7.3d and 7.5 present results for SuddenB, SuddenD,

GradualB, GradualD and following distance datasets. In these settings BOTL

achieves poor R2 predictive performance in comparison to the underlying CDD,

which is caused by the meta-learner overfitting [55, 56]. As discussed in Chap-

ter 6, MI-Thresh prevents the meta-learner from overfitting, however, requires large

numbers of relevancy and diversity metric calculations. CS-Clust requires fewer rel-

evancy and diversity metric calculations, but it not able to prevent the meta-learner

from overfitting in all datasets.

IdCS performs similarly to CS-Clust in the datasets where BOTL suffers

from overfitting. However, when IdCS is used in the SuddenB datasets with RePro

as an underlying CDD, the addition of the decision of whether to transfer prevents

the meta-learner from overfitting, obtaining R2 predictive performances that are

statistically significantly greater than the underlying CDD (p < 0.01), and obtain-

135



(a) SuddenA: sudden drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.883 0.884 1 1 0 0.851 0.854 1 1 0 0.830 0.835 1 1 0
BOTL 0.834 0.845 24 31 0 *0.828 0.839 41 57 0 *0.884 0.886 17 21 0
MI-Thresh 0.902 0.902 4 5 28466 0.887 0.889 3 4 51163 0.880 0.882 3 4 17031
IdDT *0.899 0.899 3 4 11258 *0.887 0.888 3 4 24640 *0.876 0.878 3 4 7462
CS-Clust *0.904 0.904 5 8 5700 *0.885 0.887 6 8 5441 *0.878 0.879 5 8 1292
IdCS *0.902 0.903 5 7 3523 *0.884 0.886 5 8 2866 *0.876 0.877 4 6 897

(b) SuddenB: sudden drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.883 0.884 1 1 0 0.830 0.836 1 1 0 0.808 0.814 1 1 0
BOTL -2e+21 0.507 26 34 0 -7e+22 0.499 41 60 0 -3e+22 0.532 20 27 0
MI-Thresh 0.904 0.904 4 5 27301 0.879 0.880 3 5 47080 0.873 0.874 3 4 17510
IdDT *0.902 0.902 3 4 13320 *0.879 0.881 3 5 21097 *0.870 0.871 3 4 8653
CS-Clust -2e+19 0.870 5 8 5322 -2e+18 0.856 6 8 5627 *0.868 0.870 5 8 1666
IdCS *0.905 0.906 5 7 3715 -4e+18 0.848 5 8 3024 *0.865 0.867 5 7 1194

(c) SuddenC: sudden drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.873 0.875 1 1 0 0.845 0.848 1 1 0 0.847 0.850 1 1 0
BOTL 0.841 0.850 25 32 0 0.813 0.827 41 57 0 *0.888 0.889 18 21 0
MI-Thresh 0.905 0.905 3 5 27026 0.882 0.883 3 4 45049 0.881 0.882 3 4 16104
IdDT *0.904 0.904 3 4 10224 *0.885 0.886 3 4 16777 *0.878 0.879 2 3 6901
CS-Clust *0.909 0.909 5 7 5276 *0.885 0.886 6 8 5457 *0.887 0.888 5 9 1369
IdCS *0.908 0.908 5 7 3108 *0.884 0.885 5 8 2549 *0.884 0.885 4 7 960

(d) SuddenD: sudden drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.870 0.871 1 1 0 0.845 0.849 1 1 0 0.810 0.816 1 1 0
BOTL -1e+22 0.341 27 35 0 -9e+21 0.334 41 59 0 -2e+21 0.356 18 22 0
MI-Thresh 0.900 0.901 3 5 28144 0.885 0.886 3 4 42669 0.873 0.874 3 4 14776
IdDT *0.897 0.898 3 4 13852 *0.884 0.885 3 4 20328 *0.867 0.869 2 4 7912
CS-Clust *0.901 0.902 5 8 5850 *0.884 0.886 6 8 5416 *0.869 0.870 5 9 1392
IdCS *0.901 0.901 5 7 4004 *0.884 0.885 5 7 2898 *0.867 0.868 4 8 1024

Table 7.2: Sudden Drifting Hyperplane: R2 and PMCC2 predictive performance,
the average number of base models used by the meta-learner (|M′|), the maximum
number of base models used by the meta-learner (dM′e), and the average number of
relevancy and diversity metric calculations required to compare and evaluate base
models (M.Calcs.) for meta-learners in BOTL for variants of the sudden drifting hy-
perplane datasets when transferring base models between 5 data streams. Improved
predictive performances with statistical t-test values p < 0.01 compared to the un-
derlying CDD, while requiring fewer relevancy and diversity metric calculations than
MI-Thresh are indicated with ∗. Of these, bold type indicates the approach with
highest performance.
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(a) GradualA: gradual drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.848 0.848 1 1 0 0.796 0.803 1 1 0 0.798 0.804 1 1 0
BOTL 0.776 0.800 31 37 0 0.792 0.811 39 54 0 *0.883 0.886 20 25 0
MI-Thresh 0.892 0.892 4 6 55814 0.885 0.885 4 5 73104 0.887 0.887 4 5 30561
IdDT *0.890 0.890 3 5 17594 *0.884 0.884 4 5 27556 *0.878 0.878 3 4 11203
CS-Clust *0.898 0.899 5 7 12090 *0.880 0.881 6 8 5167 *0.880 0.880 5 8 1584
IdCS *0.898 0.899 5 7 7369 *0.880 0.881 5 8 2354 *0.878 0.879 4 6 1023

(b) GradualB: gradual drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.859 0.860 1 1 0 0.757 0.771 1 1 0 0.697 0.719 1 1 0
BOTL -6e+20 0.323 29 38 0 -1e+21 0.322 40 57 0 -1e+21 0.348 21 28 0
MI-Thresh 0.887 0.888 4 5 45279 0.862 0.863 3 5 59037 0.845 0.846 3 4 25333
IdDT *0.887 0.887 3 5 19477 *0.864 0.864 3 5 22717 *0.835 0.835 3 4 11071
CS-Clust -1e+17 0.870 6 8 12917 -5e+16 0.829 6 8 5366 -6e+10 0.832 5 7 1712
IdCS -1e+17 0.863 5 7 7728 -3e+17 0.836 5 7 2591 *0.827 0.828 4 7 1020

(c) GradualC: gradual drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.842 0.842 1 1 0 0.773 0.779 1 1 0 0.759 0.773 1 1 0
BOTL 0.781 0.803 29 36 0 0.776 0.799 39 54 0 *0.873 0.875 21 27 0
MI-Thresh 0.890 0.890 4 6 52092 0.878 0.878 4 5 69921 0.870 0.871 4 5 29440
IdDT *0.887 0.888 4 5 24079 *0.882 0.883 4 5 32570 *0.854 0.854 3 4 12251
CS-Clust *0.892 0.893 5 8 12375 *0.865 0.865 6 8 5059 *0.865 0.866 5 8 1666
IdCS *0.892 0.892 5 7 8298 *0.864 0.865 5 8 2637 *0.861 0.862 5 7 1033

(d) GradualD: gradual drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.846 0.847 1 1 0 0.484 0.593 1 1 0 0.519 0.629 1 1 0
BOTL -3e+22 0.147 31 41 0 -2e+22 0.143 26 44 0 -2e+22 0.129 17 26 0
MI-Thresh 0.898 0.898 4 6 45921 0.812 0.813 3 5 33128 0.821 0.821 3 4 19825
IdDT *0.894 0.895 3 5 25772 *0.819 0.820 3 4 19072 *0.799 0.800 3 4 10814
CS-Clust *0.898 0.898 6 7 15333 *0.789 0.790 5 10 2698 *0.787 0.789 5 8 1310
IdCS *0.897 0.898 5 7 10455 *0.778 0.780 5 8 1488 *0.779 0.780 4 7 828

Table 7.3: Gradual Drifting Hyperplane: R2 and PMCC2 predictive performance,
the average number of base models used by the meta-learner (|M′|), the maximum
number of base models used by the meta-learner (dM′e), and the average number of
relevancy and diversity metric calculations required to compare and evaluate base
models (M.Calcs.) for meta-learners in BOTL for variants of the gradual drifting hy-
perplane datasets when transferring base models between 5 data streams. Improved
predictive performances with statistical t-test values p < 0.01 compared to the un-
derlying CDD, while requiring fewer relevancy and diversity metric calculations than
MI-Thresh are indicated with ∗. Of these, bold type indicates the approach with
highest performance.
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ing the best R2 and PMCC2 performances of all framework variants. IdCS is also

able to prevent the meta-learner from overfitting for the GradualB dataset when

AWPro is used as the CDD, achieving a R2 predictive performance statistically

significantly greater (p < 0.01) than the underlying CDD alone. IdDT achieves

comparable predictive performances to MI-Thresh for all datasets, achieving R2

predictive performances that are statistically significantly greater than the under-

lying CDD (p < 0.01). With the exception of SuddenB and GradualB datasets in

Tables 7.2b and 7.3b, IdCS also achieves this.

Figures 7.1 and 7.2 show the difference in R2 predictive performance obtained

by BOTL, MI-Thresh and IdDT, and BOTL, CS-Clust and IdCS, in comparison to

the underlying CDD respectively, for a sudden drifting hyperplane dataset. The

improvement in predicted performance in comparison to the underlying CDD ob-

served by IdDT and IdCS when using ADWIN and AWPro as the underlying CDD

are similar to those observed by MI-Thresh and CS-Clust. This highlights that

when ADWIN and AWPro are used as CDDs, the decision of whether to transfer

has minimal effect on the predictive performances achieved by these approaches.

However, when RePro is used as the underlying CDD, IdDT and IdCS obtain a

smaller increase in predictive performance than MI-Thresh and CS-Clust, where all

base models are transferred between domains. This indicates that the decision of

whether to transfer base models has a larger impact on predictive performance when

RePro is used as the underlying CDD. This highlights the importance of ADWIN

and AWPro’s ability to estimate the precise point of concept drift to ensure that

predictive models are not learnt from data containing instances belonging to the

previous concept. Since RePro does not exhibit this characteristic, the identifica-

tion of similar base models using metrics such as MI or conceptual similarity can be

influenced by the order in which concepts are encountered in each domain. There-

fore, IdDT and IdCS achieve smaller increases in predictive performance over the

underlying CDD in comparison to transferring all base models between domains.

Although a smaller increase in performance is observed, IdDT and IdCS achieve an

improved predictive performance in comparison to BOTL due to the use of base

model selection techniques to determine the subset of base models to be used as

input to the meta-learner.

Table 7.4 shows that BOTL achieves the greatest predictive performance in

the heating simulator dataset, whereas Table 7.5 shows that MI-Thresh and CS-

Clust obtain higher predictive performances than BOTL for the following distance

dataset. This occurs due to the larger window size of instances used in the heating

simulator data streams, reducing the likelihood of the meta-learner overfitting due
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(a) RePro

(b) ADWIN

(c) AWPro

Figure 7.1: BOTL, MI-Thresh and IdDT vs. CDDs: The difference in R2 perfor-
mance (left) between the OLS meta-learner in BOTL, MI-Thresh and IdDT vs. the
underlying CDDs of (a) RePro, (b) ADWIN, and (c) AWPro, and the number of
models used as base models (right) for a sudden drifting hyperplane data stream
(SuddenA). Base models are learnt locally and transferred from 4 other sudden drift-
ing hyperplane data streams.
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(a) RePro

(b) ADWIN

(c) AWPro

Figure 7.2: BOTL, CS-Clust and IdCS vs. CDDs: The difference in R2 performance
(left) between the OLS meta-learner in BOTL, CS-Clust and IdCS vs. the under-
lying CDDs of (a) RePro, (b) ADWIN, and (c) AWPro, and the number of models
used as base models (right) for a sudden drifting hyperplane data stream (Sud-
denA). Base models are learnt locally and transferred from 4 other sudden drifting
hyperplane data streams.
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RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.636 0.652 1 1 0 0.635 0.655 1 1 0 0.625 0.645 1 1 0
BOTL *0.728 0.735 10 15 0 *0.717 0.725 9 15 0 *0.727 0.734 10 15 0
MI-Thresh 0.706 0.713 3 5 3441 0.705 0.713 3 5 4113 0.708 0.716 3 4 4034
IdDT *0.705 0.712 3 4 1646 *0.707 0.715 3 5 1483 *0.694 0.702 3 4 2802
CS-Clust *0.708 0.715 3 5 968 *0.707 0.715 4 5 1072 *0.707 0.715 3 5 1375
IdCS *0.708 0.715 3 4 814 *0.704 0.712 3 4 812 *0.705 0.712 3 4 943

Table 7.4: Heating Simulator: R2 and PMCC2 predictive performance, the average
number of base models used by the meta-learner (|M′|), the maximum number of
base models used by the meta-learner (dM′e), and the average number of relevancy
and diversity metric calculations required to compare and evaluate base models
(M.Calcs.) for meta-learners in BOTL for the smart home heating simulator dataset
when transferring base models between 5 data streams. Improved predictive per-
formances with statistical t-test values p < 0.01 compared to the underlying CDD,
while requiring fewer relevancy and diversity metric calculations than MI-Thresh
are indicated with ∗. Of these, bold type indicates the approach with highest per-
formance.

RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.546 0.565 1 1 0 0.441 0.502 1 1 0 0.396 0.515 1 1 0
BOTL *0.646 0.678 6 12 0 -2e+15 0.384 12 25 0 -9e+9 0.665 8 18 0
MI-Thresh 0.665 0.688 2 3 1116 0.663 0.682 3 4 2096 0.693 0.705 2 4 1287
IdDT *0.673 0.695 2 3 874 *0.656 0.676 2 4 1431 *0.680 0.692 2 4 821
CS-Clust *0.661 0.686 3 5 779 *0.673 0.695 4 8 1143 *0.705 0.716 3 7 730
IdCS *0.658 0.684 3 4 647 *0.663 0.687 4 8 788 *0.686 0.701 3 5 594

Table 7.5: Following Distance: R2 and PMCC2 predictive performance, the aver-
age number of base models used by the meta-learner (|M′|), the maximum number
of base models used by the meta-learner (dM′e), and the average number of rel-
evancy and diversity metric calculations required to compare and evaluate base
models (M.Calcs.) for meta-learners in BOTL for the following distance dataset
when transferring base models between 7 data streams. Improved predictive per-
formances with statistical t-test values p < 0.01 compared to the underlying CDD,
while requiring fewer relevancy and diversity metric calculations than MI-Thresh
are indicated with ∗. Of these, bold type indicates the approach with highest per-
formance.
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to an increased training sample size [25, 56, 81]. Similarly to the drifting hyper-

plane datasets, both IdDT and IdCS achieve comparable predictive performances

to BOTL, MI-Thresh and CS-Clust, while improving predictive performance with

statistical significance (p < 0.01) when compared to using the underlying CDD

alone.

The results presented in Tables 7.2–7.5 also show that the number of base

models used as input to the meta-learner, M′, remains consistent between MI-

Thresh and IdDT, and CS-Clust and IdCS. This indicates that the addition of the

decision of whether to transfer has little impact on the base model selection strategies

used by MI-Thresh and CS-Clust. Since the predictive performances obtained by

IdDT and IdCS are comparable to MI-Thresh and CS-Clust respectively, and M′

and dM′e are consistent, this indicates that the models that were not transferred

as a result of using IdDT and IdCS provided little to no beneficial knowledge to the

receiving domains.

7.4.2 Communication and Computation Overhead

The impact of IdDT and IdCS on the communication and computation overheads

in online TL are important factors to consider. Figures 7.3–7.6 show the average

number of base models received by each domain for MI-Thresh, IdDT, CS-Clust

and IdCS frameworks for sudden drifting hyperplane, gradual drifting hyperplane,

heating simulator and following distance datasets respectively. These figures show

that deciding whether to transfer using IdDT and IdCS reduces the number of base

models received by each domain, indicating that IdDT and IdCS reduce commu-

nication overheads across all dataset types, and for every underlying CDD used in

this evaluation.

The greatest reduction in number of models received by domains is observed

when ADWIN is used as the underlying CDD since ADWIN does not reuse historical

models in the presence of recurring concepts. Therefore, without the decision of

whether to transfer, multiple models may be learnt and transferred which have been

learnt to represent the same concept from a single data stream containing recurring

concepts.

Averaged across all results presented in Figures 7.3–7.6, IdDT reduces the

average number of models received by each domain by 47.1%, while IdCS reduces this

by 30.0%, in comparison to when all models are transferred. Across all dataset types,

IdDT achieves a greater reduction in the number of base models received by domains

compared to IdCS. However, IdDT makes the assumption that the base models

which are considered to be similar to the model selected for transfer in the source
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Figure 7.3: Sudden Drifting Hyperplane: The average number of models received
per domain for MI-Thresh, IdDT, CS-Clust and IdCS when using RePro, ADWIN
and AWPro as the underlying CDDs for 5 drifting hyperplane data streams.

Figure 7.4: Gradual Drifting Hyperplane: The average number of models received
per domain for MI-Thresh, IdDT, CS-Clust and IdCS when using RePro, ADWIN
and AWPro as the underlying CDDs for 5 drifting hyperplane data streams.
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Figure 7.5: Heating Simulator: The average number of models received per domain
for MI-Thresh, IdDT, CS-Clust and IdCS when using RePro, ADWIN and AWPro
as the underlying CDDs for 5 heating simulator data streams.

domain will also be considered similar in the receiving domains. This may not be the

case in real-world environments due to the dependency on the distribution of data

used to obtain predictions to calculate the MI between models, however, Figures 7.3–

7.6 show that IdDT achieves the greatest reduction in communication overhead.

Tables 7.2–7.5 present the number of relevancy and diversity metric calculations

required to both select a subset of base models as input to the meta-learner, and

to determine whether to transfer, denoted by M.Calcs. These results indicate that

IdCS has the smallest computational overhead, despite transferring more models

than IdDT.

Although the decision of whether to transfer requires diversity metrics to

be calculated to determine whether a model should be transferred to a receiving

domain, the reduction in the number of models received by each domain reduces the

number of pairwise relevancy and diversity metric calculations that are required to

identify a subset of base models to be used as input to the meta-learner. Therefore,

across all datasets, IdDT and IdCS reduce the computational overhead compared

to MI-Thresh and CS-Clust respectively.

Despite IdCS transferring more models than IdDT, the number of M.Calcs is

significantly fewer than for IdDT due to the use of conceptual similarity as a diversity
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Figure 7.6: Following Distance: The average number of models received per domain
for MI-Thresh, IdDT, CS-Clust and IdCS when using RePro, ADWIN and AWPro
as the underlying CDDs for 7 and 17 following distance data streams.

metric, which remains static. IdCS is also beneficial since the decision of whether to

transfer does not require any user defined threshold parameters. This makes IdCS

more applicable to real-world environments since the threshold parameter used by

IdDT may be challenging to determine prior to learning.

Figure 7.6 shows the average number of models received for the real-world

following distance dataset. Results are presented for frameworks with 7 and 17 do-

mains, which show that IdDT achieves reductions in the number of models received

of 32.3%, 32.4 and 32.6% when RePro, ADWIN and AWPro are used as CDDs re-

spectively in frameworks with 7 domains, and achieves reductions of 34.8%, 46.2%

and 54.6% in frameworks with 17 domains. Similarly, IdCS achieves reductions

of 18.5%, 28.1% and 18.4% in frameworks with 7 domains, and 18.9%, 37.2% and

44.2% with 17 domains for RePro, ADWIN and AWPro respectively. This shows

that a higher proportion of base models are prevented from being transferred in

IdDT and IdCS with 17 domains compared to 7. Therefore, to consider the scala-

bility of IdDT and IdCS, they have been used in frameworks where the number of

domains range between 2 and 17 using the following distance dataset.
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Figure 7.7: Following Distance: R2 and PMCC2 predictive performance, and num-
ber of base models used by BOTL meta-learners, for the underlying CDD, BOTL,
MI-Thresh, IdDT, CS-Clust and IdCS with increasing numbers of following distance
data streams.

7.4.3 Increasing Numbers of Domains

In this section, the performances of frameworks with increasing numbers of domains

for the following distance dataset are presented. The number of models received by

domains, and the average number of relevancy and diversity metric calculations are

also considered, and used as indicators of communication and computation over-

heads as the framework increases in size.

The R2 and PMCC2 predictive performances achieved by IdDT and IdCS

are shown alongside the underlying CDD, BOTL, MI-Thresh, and CS-Clust in Fig-

ure 7.7, for frameworks with increasing numbers of following distance data streams.

This highlights that MI-Thresh and CS-Clust achieve the highest predictive perfor-
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Figure 7.8: Following Distance: The average number of models received per domain
for MI-Thresh, IdDT, CS-Clust and IdCS for increasing numbers of following dis-
tance data streams, using RePro, ADWIN and AWPro as the underlying CDDs.

mances, while IdDT and IdCS obtain similar predictive performances to MI-Thresh

and CS-Clust, where all base models are transferred between domains, for all sized

frameworks with differing underlying CDDs. Figure 7.7 also shows the average

number of base models used by the OLS meta-learner for each of these approaches.

These results highlight that each of the variants that implement base model selec-

tion techniques, MI-Thresh and CS-Clust, utilise a similar number of base models

in order to achieve their respective predictive performances, which are considerably

fewer than the number of base models used by BOTL with no base model selec-

tion. Figure 7.7 also shows that the absence of a base model selection technique

causes the OLS meta-learner to overfit, even when the number of data streams in

the framework is small.

Figure 7.8 shows the average number of base models received by following

distance data streams with increasing numbers of domains in each framework. Fig-

ures 7.7 and 7.8 highlight that although knowledge transfer is reduced when using

IdDT and IdCS, a predictive performance similar to that achieved when all base

models are transferred can be achieved. This means that IdDT and IdCS allow

communication overheads to be reduced, while maintaining predictive performance.

As the number of data streams in the framework increases, IdDT and IdCS en-
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Figure 7.9: Following Distance: Change in number of relevancy and diversity metric
calculations required to compare and evaluate base models for IdDT, CS-Clust and
IdCS in comparison to MI-Thresh for increasing numbers of following distance data
streams.

able greater reductions in the proportion of base models transferred, indicating that

the similarity of base models learnt in different domains can be exploited to reduce

communication overheads in real-world online TL, where the number of independent

data streams can become large. The greatest reduction in average number of base

models received in each domain for IdDT and IdCS is observed when ADWIN is

used as the underlying CDD. This is because without the aid of IdDT or IdCS to de-

termine whether to transfer, frameworks that implement ADWIN as the underlying

CDD must transfer new base models when recurring concepts are encountered.

Figure 7.9 shows the average decrease in the number of relevancy and diver-

sity metric calculations, M.Calcs, required to obtain a relevant yet diverse subset of

base models to be used as input to the OLS meta-learner, and to determine whether

to transfer, for IdDT, CS-Clust and IdCS in comparison to MI-Thresh, for frame-

works with increasing numbers of following distance data streams. This shows that

the use of conceptual similarity as a diversity metric reduces the computational

overhead of selecting a relevant yet diverse subset of base models. However, the

reduction in the number of models transferred when using IdDT and IdCS not only

reduces communication overheads, but also reduces the computational overhead as-
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sociated with base model selection for the OLS meta-learner, since there are fewer

base models received in each domain. As the number of domains in the frameworks

increases, a greater reduction in M.Calcs is observed because IdDT and IdCS are

able to identify a larger number of similar models learnt from different data streams,

preventing the transfer of increasing numbers of base models, as shown in Figure 7.8.

Overall, Tables 7.2–7.5, and Figures 7.3–7.9, show that IdDT and IdCS can

be used to reduce the number of base models transferred in online TL, allowing

communication and computation overheads to be reduced, without significantly im-

pacting the overall predictive performances of the OLS meta-learner in the BOTL

framework.

7.5 Summary

In this chapter, the question of whether to transfer models in online TL frameworks

has been considered. Unlike existing offline TL research, the question of whether to

transfer not only attempts to reduce the impact of negative transfer, but it also pre-

vents the transfer of knowledge that provides little or no beneficial information to the

receiving domain to reduce unnecessary communication and computation overheads.

Determining whether to transfer is paramount to the feasibility of using online TL

for real-world applications since communication and computational resources may

be limited, and therefore, it may not be possible to transfer all knowledge between

all domains.

IdDT has been proposed, where the decision of whether to transfer is de-

termined by parameterised diversity thresholding, which is demonstrated in this

chapter using MI. IdCS has also been proposed, where the decision of whether to

transfer is determined by parameterless conceptual clustering. Both approaches have

been shown to reduce communication and computation overheads in comparison to

frameworks that transfer all available base models, while maintaining comparable

predictive performance. This means that IdDT and IdCS successfully prevent the

transfer of knowledge that provides little or no beneficial information to the receiving

domains, and therefore could be beneficial for online TL in real-world applications

where communication and computational resources are limited.

Table 7.6 summarises the reductions in communication and computation,

and changes in R2 and PMCC2 predictive performances, achieved by IdDT in com-

parison to MI-Thresh and IdCS in comparison to CS-Clust, for all datasets used

in this thesis. IdDT achieves the greatest reduction in communication overheads,

and also achieves the greatest reduction in computation proportional to its corre-
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RePro ADWIN AWPro
Dataset ∆Comm ∆Comp ∆R2 ∆PMCC2 ∆Comm ∆Comp ∆R2 ∆PMCC2 ∆Comm ∆Comp ∆R2 ∆PMCC2

SuddenA
IdDT -52.7% -60.4% -0.003 -0.003 -57.2% -51.8% -0.000 -0.001 -28.3% -56.2% -0.004 -0.004
IdCS -28.3% -38.2% -0.002 -0.002 -35.8% -47.3% -0.001 -0.001 -14.0% -30.5% -0.002 -0.002

SuddenB
IdDT -43.5% -51.2% -0.002 -0.002 -59.2% -55.2% 0.000 0.000 -31.3% -50.6% -0.003 -0.003
IdCS -23.8% -30.2% 0.905 0.036 -35.1% -46.3% 0.000 -0.007 -17.0% -28.3% -0.003 -0.003

SuddenC
IdDT -54.1% -62.2% -0.001 -0.001 -65.4% -62.8% 0.003 0.003 -33.5% -57.1% -0.003 -0.003
IdCS -35.7% -41.1% -0.001 -0.001 -41.8% -53.3% -0.001 -0.001 -15.5% -29.8% -0.003 -0.003

SuddenD
IdDT -47.4% -50.8% -0.003 -0.003 -56.5% -52.4% -0.001 -0.001 -28.8% -46.4% -0.005 -0.005
IdCS -24.0% -31.6% -0.001 -0.001 -35.6% -46.5% -0.001 -0.001 -16.9% -26.4% -0.001 -0.001

GradualA
IdDT -62.8% -68.5% -0.002 -0.002 -66.7% -62.3% -0.001 -0.001 -43.0% -63.3% -0.009 -0.009
IdCS -32.5% -39.0% 0.000 0.000 -41.8% -54.4% 0.000 0.000 -25.7% -35.4% -0.002 -0.002

GradualB
IdDT -51.4% -57.0% 0.000 0.000 -62.8% -61.5% 0.002 0.002 -33.9% -56.3% -0.010 -0.010
IdCS -34.7% -40.2% 0.000 -0.007 -39.8% -51.7% 0.000 0.008 -28.4% -40.4% 0.827 -0.004

GradualC
IdDT -49.5% -53.8% -0.003 -0.003 -57.5% -53.4% 0.004 0.004 -42.8% -58.4% -0.017 -0.016
IdCS -27.0% -32.9% 0.000 0.000 -36.3% -47.9% -0.001 -0.001 -26.4% -38.0% -0.004 -0.004

GradualD
IdDT -49.2% -43.9% -0.003 -0.003 -45.9% -42.4% 0.007 0.007 -36.2% -45.5% -0.021 -0.021
IdCS -28.1% -31.8% -0.001 -0.001 -36.5% -44.8% -0.010 -0.010 -31.2% -36.8% -0.008 -0.008

Heating
IdDT -54.7% -52.2% -0.001 -0.001 -59.3% -63.9% 0.002 0.002 -48.8% -30.5% -0.014 -0.014
IdCS -29.5% -15.9% 0.000 0.000 -48.1% -24.3% -0.003 -0.003 -33.6% -31.4% -0.002 -0.003

Following IdDT -32.3% -21.7% 0.008 0.007 -32.4% -31.7% -0.007 -0.006 -32.6% -36.2% -0.013 -0.013
(n=7) IdCS -18.5% -16.9% -0.003 -0.002 -28.1% -31.1% -0.010 -0.008 -18.4% -18.6% -0.019 -0.015
Following IdDT -34.8% -26.5% -0.020 -0.010 -46.2% -44.0% -0.007 -0.010 -54.6% -58.4% 0.008 -0.002
(n=17) IdCS -18.9% -22.1% -0.002 0.001 -37.2% -37.9% 0.003 0.003 -44.2% -45.3% -0.014 0.002

Table 7.6: Summary of comparisons between MI-Thresh and IdDT, and CS-Clust
and IdCS, showing the average reduction in number of models received (%), denoted
as ∆ Comm., the average reduction in performance and diversity metric calculations
(%), denoted as ∆ Comp., and the average difference between R2 and PMCC2

predictive performances.

sponding foundation framework which transfers all models, MI-Thresh. Although

the reduction in computational overhead, as a percentage, is greater for IdDT, IdCS

has a lower computational overhead since it uses a static diversity metric, concep-

tual similarity, that does not need to be recalculated, which could previously be seen

in Tables 7.2–7.5 and Figure 7.9. Additionally, IdCS does not require user defined

diversity threshold parameters to determine whether to transfer, which may make

it more applicable for use in real-world online TL.
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Chapter 8

Conclusion

This thesis has considered the online TL research paradigm where online TL is used

in frameworks where a data rich offline source domain does not exist. This means

that knowledge must be learnt from online domains to aid the predictions in other

online domains. The research proposed in this thesis has three objectives, namely

(i) to determine what can be learnt from online data streams that may be beneficial

to other independent online data streams, (ii) to determine how transferred knowl-

edge can be combined with locally learnt knowledge to aid predictions, and (iii) to

determine whether knowledge should be transferred to other domains in an online

TL framework. These three research objectives were used to guide the development

of the contributions presented in this thesis.

For all proposed approaches, a common factor underpinned their evaluation,

which was their feasibility with respect to real-world applications. This meant that

an increase in predictive performance in receiving domains was not the only mea-

sure of success, and factors such as communication and computation overhead were

important to consider. Throughout this thesis, all proposed approaches were evalu-

ated using three types of regression based datasets, namely the drifting hyperplane

datasets, the smart home heating simulator dataset, and the real-world following

distance dataset. These datasets were used to gain insight into how the proposed

approaches handled different types of concept drift, and how they performed in

real-world environments.

In this chapter, the contributions of this thesis are summarised and avenues

of future work are discussed.
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8.1 Determining What to Transfer

To address the challenge of determining what to transfer in online TL, a novel CDD,

called AWPro [55], was introduced in Chapter 4. AWPro combines key characteris-

tics of existing CDDs, namely RePro [95] and ADWIN [8], that are beneficial when

learning in online TL frameworks that have computation and communication limi-

tations. First, it uses the sliding window based concept drift detection mechanism

proposed by ADWIN to estimate the precise point of drift. This is beneficial when

determining what to transfer in online TL since predictive models can be created

from data belonging to a single concept by discarding instances observed prior to the

estimated point of drift. This means that predictive models can be learnt without

being influenced by data belonging to a previous concept, allowing models to be

created that are more representative of the newly encountered concept, which could

then be transferred to other online domains. Second, AWPro uses the proactive

nature of RePro to prioritise the reuse of historical models in the presence of recur-

ring concepts. This allows AWPro to adopt the use of a historical model when only

half a window of instances belonging to the new concept have been observed, allow-

ing AWPro to react quickly to concept drift when the new concept has previously

been encountered. More importantly to online TL, this prevents multiple predictive

models from being created that have been learnt to represent the same concept,

reducing the number of models transferred throughout the framework, thereby re-

ducing communication overheads.

Although AWPro achieves poorer predictive performances in comparison to

RePro and ADWIN when used as a stand-alone method of learning, with no knowl-

edge transfer, as shown in Chapter 4, it exhibits communication and computational

qualities that are highly desirable in online TL. In Chapter 5, these characteristics

enable AWPro to be used in online TL to determine what to transfer, achieving

lower computational overhead due to a reduction in the number of unstable models

created in comparison to RePro, and a lower communication overhead in compar-

ison to ADWIN due to the reuse of historical models in the presence of recurring

concepts. Additionally, these characteristics enabled online TL frameworks that

employed AWPro as the underlying CDD to frequently outperform frameworks that

used RePro or ADWIN as CDDs, despite achieving poorer predictive performances

when used alone.
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8.2 Determining How to Combine Transferred Knowl-

edge

A large proportion of this thesis addresses the challenge of how transferred knowl-

edge can be combined with locally learnt knowledge to best aid the predictions in

each online domain. In Chapter 5, the BOTL framework [54, 55] was introduced,

which allows knowledge to be transferred, in the form of predictive models, bi-

directionally between online domains, which are then combined with locally learnt

models through the use of an OLS meta-learner. Using BOTL provides three bene-

fits over existing approaches to online TL. First, the use of CDDs enables predictive

models to be learnt that represent each of the concepts encountered in a domain.

Therefore, each domain in the framework can benefit from knowledge learnt about

each individual source concept. Second, knowledge of newly encountered concepts

are transferred between domains as each data stream progresses, and therefore, if

a domain encounters a new concept, other domains can benefit from its knowledge

prior to encountering it themselves. Third, knowledge transfer is bi-directional, and

therefore all domains in the framework can benefit from knowledge transfer, rather

than only aiding the predictive performance in a single target domain. This ap-

proach to transferring and combining models to improve the predictive performance

in a receiving domain initially showed promise when the number of models available

to the OLS meta-learner was small in comparison to the window of available data.

However, as the number of base models transferred becomes large, BOTL is prone to

overfitting, resulting in predictive performances that are worse than those achieved

without knowledge transfer.

To address this, näıve model culling strategies were introduced in Chapter 5,

namely P-Thresh and MI-Thresh [55]. P-Thresh and MI-Thresh reduced the num-

ber of base models available to the meta-learner by evaluating each base model’s

predictive performance, and the similarity of base model predictions over a recent

window of observations, using R2 and MI as relevancy and diversity metrics. These

approaches were dependent on a user defined threshold parameter to determine

whether base models should be retained as input to the meta-learner. In Chapter 5,

P-Thresh and MI-Thresh were shown to reduce the likelihood of the meta-learner

overfitting, with MI-Thresh obtaining better predictive performance than P-Thresh

due to its more aggressive culling strategy.

The results presented in Chapter 5 for BOTL, P-Thresh and MI-Thresh in-

dicate that the selection of a relevant yet diverse subset of base models is paramount

to preventing the meta-learner from overfitting in online TL. However, existing di-
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versity metrics, such as MI, must be continually recalculated in concept drifting data

streams due to their dependency on the underlying distribution of data used to ob-

tain base model predictions. Therefore, in Chapter 6, a novel diversity metric was

introduced, which estimates the conceptual similarity of base models using the PAs

between the subspaces in which each base model was learnt [56]. Since the concep-

tual similarity between base models is estimated using the data used to train each

base model, this diversity metric remains static, despite concept drift, and therefore

does not need to be recalculated as the data stream progresses. Identifying the di-

versity between regression models using conceptual similarity is not only beneficial

to online TL, and the use of conceptual similarity as a diversity metric could also

be extended to ensemble learning in both offline and online environments. In offline

environments, ensemble generalisation can be improved by selecting a diverse subset

of base models, whereas in online environments it has been shown that highly di-

verse base models are desirable during, and immediately after, concept drifts, while

ensembles with low diversity are preferable between drifts [58, 60].

Conceptual similarity was used as a diversity metric for parameterised thresh-

olding in Chapter 6, in the form of CS-Thresh [56]. CS-Thresh requires a user de-

fined threshold parameter to determine whether base models should be discarded

by the meta-learner. If a base model is found to have a conceptual similarity above

the threshold with respect to existing models available to a meta-learner, then that

model can be excluded from the meta-learner such that a relevant yet diverse subset

of base models could be selected as input to the meta-learner.

Using parameterised conceptual similarity thresholding, as in CS-Thresh, for

base model selection obtains a comparable predictive performance to P-Thresh and

MI-Thresh, but requires significantly fewer diversity metric calculations due to the

static nature of the diversity metric. This makes CS-Thresh more appealing for

use in online TL with limited computational resources. However, in Chapter 6, it

was found that selecting appropriate threshold parameter values for P-Thresh, MI-

Thresh and CS-Thresh is challenging. Considerable domain expertise is required in

order to sufficiently reduce the number of models available to the meta-learner to

prevent overfitting, while retaining beneficial models to improve predictive perfor-

mance. The results presented in Chapter 6 showed that the aggressiveness of the

culling parameter was dependent on the amount of training data available to the

meta-learner, the number of base models available to select from, the complexity of

the underlying distribution in the data stream, and the separability of base models

for a given diversity metric.

To remove the dependency on domain expertise, parameterless conceptual
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clustering, namely CS-Clust [56], was also introduced in Chapter 6. CS-Clust uses

the novel conceptual similarity diversity metric and STSC [100] to cluster base mod-

els into groups of conceptually similar base models. Since STSC does not require the

number of clusters to be defined in advance, CS-Clust is used to identify a relevant

yet diverse subset of base models to be used as input to the meta-learner. CS-Clust

obtained comparable predictive performances to MI-Thresh and CS-Thresh with-

out requiring domain expertise to define a culling parameter. The ability to select

a subset of base models to be used as input to the meta-learner without requiring a

user defined parameter may make CS-Clust more applicable to uses of online TL in

real-world environments, where the aggressiveness of culling parameters is unlikely

to be known in advance. Although CS-Clust increases the computational overhead

in comparison to CS-Thresh, due to the use of spectral clustering, it can become

less computationally expensive than MI-Thresh when the number of base models is

large due to the use of a static diversity metric.

MI-Thresh, CS-Thresh and CS-Clust proved to effectively address the chal-

lenge of determining how to combine knowledge transferred in online TL, while

reducing the likelihood of the meta-learner overfitting. However, each of these ap-

proaches succeeds due to selecting a relevant yet diverse subset of base models to be

used as input to the meta-learner. This means that the models that are transferred

throughout the framework that are not diverse with respect to the models already

available in a receiving domain provide little or no benefit to the meta-learner in the

receiving domain. Transferring such models incurs unnecessary communication and

computation overheads. Therefore, the challenge of deciding whether to transfer

was considered.

8.3 Deciding Whether to Transfer

In Chapter 7, the challenge of determining whether to transfer has been considered.

This challenge is paramount to the feasibility of using online TL for real-world ap-

plications where communication and computational resources may be limited. Two

approaches of determining whether to transfer were considered, namely IdDT and

IdCS. These approaches allow the diversity of base models to be considered prior to

transfer to determine whether a predictive model should be transferred to a receiv-

ing domain. In both approaches, if a similar predictive model is already available in

the receiving domain, then the predictive model selected for transfer in the source

domain is not transferred. Additionally, if a similar model is found in the source

domain that achieves a better predictive performance than the locally learnt model,
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over the concept for which it was learnt to represent, then the similar model replaces

the locally learnt model. Using these approaches enabled the number of predictive

models transferred throughout the framework to be reduced, thereby reducing com-

munication overheads. By reducing the number of models received by each domain,

computation overheads were also reduced, due to requiring fewer relevancy and di-

versity metric calculations for base model selection. From the results presented in

Chapter 7, IdDT and IdCS maintain comparable predictive performances in com-

parison to when all base models are transferred, while on average IdDT reduces

the number of models received by each domain by 47.1%, while IdCS achieves a

30% reduction. This indicates that these approaches prevent the transfer of base

models that provide little or no beneficial information to receiving domains, which

is highly desirable in real-world application of online TL where communication and

computational resources are limited.

8.4 Future Work

The research presented in this thesis opens up several avenues of future work. In

this section, potential improvements to the approaches proposed in this thesis are

discussed, and key areas of future work are identified.

8.4.1 Possible Extensions

Extensions to BOTL and the BOTL variants presented in this thesis revolve around

scalability, robustness to noise, and adaptations to the proposed methodologies.

• The approaches presented in this thesis all centre around the use of an OLS

meta-learner to combine base models. OLS was chosen as the meta-learner

since it is a simple approach to combining base models, and does not require

parameterisation. However, OLS is highly susceptible to overfitting, as shown

in Chapter 5. A simple extension is to consider the use of alternative ma-

chine learning models, which are less prone to overfitting, as meta-learners.

For example, models that use regularisation to help reduce the likelihood of

overfitting could be considered, such as a Ridge Regressors, or a Lasso Regres-

sors [80]. The use of regularisation may help to prevent the meta-learner from

overfitting, however, this was not considered within the scope of this thesis

since regularisation parameters must be defined. The selection of regularisa-

tion parameters may be challenging for meta-learners in online TL since they

may be dependent on the complexity of the underlying distribution observed

156



in each data stream, and the number of models available to each meta-learner,

both of which change over time.

• CS-Thresh, CS-Clust and IdCS depend on the conceptual similarity metric

introduced in Chapter 6. The conceptual similarity metric uses local scaling

to allow better affinities to be obtained when the locally dense areas of con-

ceptually similar base models are present in the affinity matrix. Although

the local scaling parameter chosen in this thesis is supported by experimental

results, presented in Section 6.6, and existing research in [42, 100], other scal-

ing techniques could be used that amplify intra-cluster similarities when the

volume of conceptually similar base models increases, such as density-aware

kernels [42, 101].

• The conceptual similarity metric could also be improved by increasing its

robustness to noise. In this thesis, the conceptual similarity of base models is

calculated using the PAs between orthonormal representations of the training

data used to create each base model. Orthonormal representations are created

using SVD to obtain the PCs for each of the subsets of training data for each

model. Obtaining orthonormal representations of each subspace in this way

can be susceptible to noise, and therefore in this thesis only the first p PCs

that capture 99.9% of the variance are retained. However, this approach is still

susceptible to outliers in the training data, and therefore other methodologies

to obtain estimates of the orthonormal representations could be used that are

more robust to noise, such as Laplacian PCA [102] and Robust PCA [90].

8.4.2 Future Research Areas

Scalability is the most challenging issue relating to the use of online TL frameworks

where no data rich offline source domain exists. In order to use these approaches in

real-world applications, online TL frameworks must be able to manage the fact that

each online data stream may grow without limit [95]. This means that the number of

concepts transferred throughout the framework may also grow without limit. This is

a challenge encountered by most online learning frameworks, which is often overcome

through the use of forgetting mechanisms. However, using forgetting mechanisms

in online TL may not be appropriate since concepts can reoccur, and concepts

historically encountered in one domain may be greatly beneficial to other domains.

Therefore, future investigations into how knowledge transfer can be managed in

these settings are necessary.

Another important factor to consider with respect to the scalability of online
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TL is the management of knowledge transfer when the number of domains in the

framework becomes very large. In this setting, the use of peer-to-peer knowledge

transfer becomes infeasible. An interesting avenue of future research would be to

consider how an online TL framework could be partitioned such that a majority

of knowledge transfer is conducted between independent subsets of peers in the

framework, while knowledge transfer between each of the subsets of peers in the

framework occurs less frequently. Subsets of peers in real-world environments could

be identified using factors such a geographical locations, for example, when online

TL is used in distributed sensor networks. However, another interesting avenue

of research would be to consider how domains in an online TL framework could be

partitioned so that frequent knowledge transfer is conducted among similar domains,

where domains that are likely to learn knowledge that will be the most beneficial to

other domains are contained within the same partition. This would allow knowledge

transfer to be conducted in a peer-to-peer fashion among domains that are contained

within the same partition. The knowledge found to be the most beneficial among

peers within a partition could then be transferred to other partitions via inter-

partition knowledge transfer.

In each of these scenarios, the ability to identify diversity in online TL is

paramount, and therefore further research into the creation of diversity metrics that

remain static within non-stationary environments could provide many benefits to

both online TL and more general online learning techniques.

8.5 Summary

To ensure the feasibility of online TL in real-world environments, where all do-

mains are online and an offline data rich source domain does not exist, online TL

frameworks must determine what to transfer, how to combine transferred knowl-

edge and whether to transfer knowledge. In this thesis, these challenges have been

considered and are addressed by the proposed approaches. Bi-directional knowledge

transfer allows the predictions in each domain to be aided by knowledge learnt in

other domains, while base model selection strategies have been proposed to prevent

overfitting when the number of base models transferred throughout the framework

becomes large in comparison to the window of available data. Diversity metrics have

also been used to limit knowledge transfer to base models that are likely to be ben-

eficial to a receiving domain, significantly reducing the communication overhead of

knowledge transfer, while maintaining comparable predictive performances to when

all models are transferred. However, further research is required into methods of
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knowledge transfer that are scalable, so that online TL can be used in real-world

applications where the number of domains in a framework may be much larger, and

where the data streams associated with each domain may grow without limit.
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Appendix A

Using Ridge Regressor Base

Models

This Appendix present the results for each of the approaches proposed in this thesis

where Ridge Regressors (RRs) are used to create base models. Tables A.1–A.4

present the results for BOTL, P-Thresh, MI-Thresh, CS-Thresh, CS-Clust, IdDT

and IdCS for the sudden drifting hyperplane, gradual drifting hyperplane, heating

simulator and following distance datasets respectively. These results show that

the proposed approaches can be used to transfer knowledge in the form of RRs,

indicating that the techniques used are model agnostic, and therefore any regression

based machine learning model can be used to create base models.

Figures A.1–A.4 also show the average number of models received by do-

mains for MI-Thresh, IdDT, CS-Clust and IdCS for each of these datasets. These

results indicate that the decision of whether to transfer base models reduces the

communication overheads when RRs are used as base models. Figure A.5 shows the

R2 and PMCC2 predictive performances, and the average number of models used by

the meta-learners in BOTL, MI-Thresh, IdDT, CS-Clust and IdCS, in frameworks

with increasing numbers of following distance data streams. These results show

that BOTL is susceptible to overfitting when the number of base models available

to be meta-learner becomes large in comparison to the window of available data.

Additionally, Figure A.6 shows the average number of models received by domains

for MI-Thresh, IdDT, CS-Clust and IdCS for frameworks with increasing numbers

of following distance data streams. Figure A.7 shows the decrease in the average

number of relevancy and diversity metric calculations required by IdDT, CS-Clust

and IdCS, in comparison to MI-Thresh, as the number of following distance data

streams in the framework increases. This shows that the decision of whether to
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(a) SuddenA: sudden drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.755 0.831 1 1 0 0.640 0.653 1 1 0 0.637 0.652 1 1 0
BOTL *0.906 0.907 27 32 0 *0.875 0.876 34 51 0 *0.872 0.873 15 20 0
P-Thresh *0.889 0.889 7 9 18767 *0.847 0.848 9 15 22626 *0.818 0.820 5 7 9373
MI-Thresh 0.883 0.884 5 6 35958 0.828 0.829 3 5 47425 0.811 0.812 3 4 16015
CS-Thresh *0.862 0.862 2 3 2502 *0.760 0.761 2 4 2601 *0.754 0.756 2 4 2111
CS-Clust *0.891 0.892 5 8 5758 *0.802 0.804 5 8 3962 *0.795 0.797 5 8 1021
IdDT *0.877 0.877 3 5 14889 *0.826 0.827 3 5 18497 *0.794 0.795 3 4 7533
IdCS *0.891 0.891 5 8 4038 *0.794 0.796 5 8 1847 *0.785 0.787 4 6 732

(b) SuddenB: sudden drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.763 0.833 1 1 0 0.533 0.543 1 1 0 0.557 0.565 1 1 0
BOTL -6e+19 0.545 25 33 0 -3e+19 0.553 35 54 0 -2e+19 0.526 18 24 0
P-Thresh -6e+20 0.780 7 10 17665 -2e+20 0.777 9 16 23042 *0.818 0.819 5 7 11304
MI-Thresh 0.883 0.884 5 7 34766 0.810 0.811 4 6 44907 0.807 0.809 3 5 18547
CS-Thresh *0.861 0.861 2 4 2546 *0.694 0.696 2 4 2363 *0.699 0.702 2 3 2100
CS-Clust -2e+11 0.883 5 8 5258 -5e+19 0.748 6 10 3862 *0.768 0.770 5 9 1367
IdDT *0.873 0.874 4 6 17732 *0.823 0.825 4 6 21925 *0.801 0.802 3 5 9743
IdCS *0.885 0.886 5 8 3638 *0.752 0.755 5 8 2056 *0.773 0.775 4 6 988

(c) SuddenC: sudden drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.756 0.827 1 1 0 0.618 0.637 1 1 0 0.628 0.648 1 1 0
BOTL *0.905 0.906 24 30 0 *0.880 0.881 37 55 0 *0.879 0.880 17 21 0
P-Thresh *0.883 0.883 6 9 16165 *0.848 0.849 9 14 24718 *0.835 0.836 5 6 10860
MI-Thresh 0.877 0.877 4 5 29082 0.832 0.833 3 5 48504 0.825 0.826 3 4 17350
CS-Thresh *0.844 0.844 2 3 2168 *0.761 0.763 2 3 2812 *0.766 0.767 2 3 2353
CS-Clust *0.885 0.886 5 8 4502 *0.803 0.805 5 7 4855 *0.800 0.802 5 9 1274
IdDT *0.868 0.868 3 4 10525 *0.830 0.831 3 4 19120 *0.808 0.809 3 4 7301
IdCS *0.881 0.881 5 7 2764 *0.796 0.798 5 7 2136 *0.793 0.795 4 6 849

(d) SuddenD: sudden drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.754 0.836 1 1 0 0.596 0.611 1 1 0 0.585 0.602 1 1 0
BOTL -2e+20 0.362 24 30 0 -9e+20 0.352 38 56 0 -1e+21 0.352 18 24 0
P-Thresh *0.890 0.891 6 9 16367 -2e+19 0.456 9 16 25261 -6e+17 0.801 5 7 11043
MI-Thresh 0.884 0.884 4 6 29905 0.821 0.823 4 6 50212 0.816 0.817 4 5 18508
CS-Thresh *0.858 0.858 2 3 2379 *0.726 0.727 2 4 2380 *0.710 0.712 2 3 1769
CS-Clust *0.890 0.891 5 8 4586 *0.796 0.798 6 8 4800 *0.775 0.777 5 7 1340
IdDT *0.878 0.878 3 5 13608 *0.827 0.828 4 5 24978 *0.794 0.795 3 5 9333
IdCS *0.888 0.889 5 8 3093 *0.786 0.788 5 7 2343 *0.760 0.762 4 6 927

Table A.1: Sudden Drifting Hyperplane with RR base models: R2 and PMCC2 pre-
dictive performance, the average number of base models used by the meta-learner
(|M′|), the maximum number of base models used by the meta-learner (dM′e),
and the average number of relevancy and diversity metric calculations required to
compare and evaluate base models (M.Calcs.) for meta-learners in BOTL for vari-
ants of the sudden drifting hyperplane datasets when transferring RR base models
between 5 data streams. Improved predictive performances with statistical t-test
values p < 0.01 compared to the underlying CDD, while requiring fewer relevancy
and diversity metric calculations than MI-Thresh are indicated with ∗. Of these,
bold type indicates the approach with highest performance.
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(a) GradualA: gradual drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.728 0.798 1 1 0 0.520 0.529 1 1 0 0.552 0.564 1 1 0
BOTL *0.902 0.903 29 35 0 *0.893 0.894 35 50 0 *0.889 0.890 19 24 0
P-Thresh *0.885 0.886 10 15 25299 *0.854 0.855 12 20 26892 *0.842 0.843 7 11 14717
MI-Thresh *0.873 0.874 5 8 70628 0.834 0.835 4 6 75363 0.825 0.825 4 6 34538
CS-Thresh *0.837 0.838 3 5 3179 *0.725 0.726 3 5 2993 *0.731 0.732 2 4 2485
CS-Clust *0.879 0.879 6 8 10024 *0.773 0.774 6 8 3688 *0.781 0.782 5 7 1427
IdDT *0.860 0.861 4 6 24906 *0.832 0.833 4 6 32772 *0.788 0.789 3 5 13266
IdCS *0.875 0.876 5 8 5768 *0.762 0.763 5 8 1791 *0.760 0.761 4 6 829

(b) GradualB: gradual drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.715 0.790 1 1 0 0.559 0.571 1 1 0 0.626 0.650 1 1 0
BOTL -6e+17 0.361 30 38 0 -2e+17 0.358 37 53 0 -2e+18 0.356 19 25 0
P-Thresh -7e+18 0.703 9 14 26561 -2e+18 0.680 10 19 28873 *0.843 0.843 6 9 14123
MI-Thresh 0.858 0.858 5 7 60837 0.818 0.818 4 6 62251 0.835 0.836 4 5 26405
CS-Thresh *0.829 0.830 2 4 3278 *0.749 0.750 2 4 2785 *0.780 0.781 2 3 2448
CS-Clust *0.870 0.871 6 7 11963 -4e+17 0.777 6 8 4651 -7e+16 0.797 5 8 1475
IdDT *0.852 0.853 4 6 28281 *0.815 0.815 4 6 26430 *0.810 0.811 3 5 11597
IdCS -3e+18 0.862 5 7 7234 -6e+18 0.773 5 7 2275 *0.806 0.807 4 6 972

(c) GradualC: gradual drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.706 0.777 1 1 0 0.504 0.518 1 1 0 0.508 0.531 1 1 0
BOTL *0.899 0.900 30 39 0 *0.876 0.877 34 49 0 *0.870 0.871 17 22 0
P-Thresh *0.882 0.882 10 13 27767 *0.846 0.847 10 16 26010 *0.820 0.821 6 9 12599
MI-Thresh 0.869 0.869 6 8 74580 0.824 0.825 4 6 61700 0.809 0.809 4 5 26037
CS-Thresh *0.827 0.827 3 5 3758 *0.703 0.704 2 3 2707 *0.702 0.703 2 3 2238
CS-Clust *0.874 0.875 6 8 13051 *0.747 0.749 5 7 3956 *0.744 0.745 5 7 1250
IdDT *0.858 0.858 5 6 33161 *0.817 0.817 4 6 26051 *0.788 0.789 4 5 12275
IdCS *0.870 0.870 5 7 8235 *0.743 0.745 5 7 1918 *0.715 0.716 4 5 784

(d) GradualD: gradual drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.723 0.793 1 1 0 0.620 0.637 1 1 0 0.631 0.648 1 1 0
BOTL -1e+20 0.177 32 42 0 -3e+20 0.174 35 51 0 -7e+20 0.175 18 23 0
P-Thresh *0.892 0.892 9 12 30119 -4e+18 0.702 9 15 27133 *0.858 0.859 5 8 13185
MI-Thresh 0.882 0.883 5 7 63323 0.849 0.849 4 5 53836 0.848 0.849 4 5 23299
CS-Thresh *0.852 0.853 2 4 3954 *0.784 0.785 2 3 2655 *0.785 0.786 2 3 2366
CS-Clust *0.884 0.884 6 8 15127 *0.832 0.833 6 8 3959 *0.828 0.829 5 7 1259
IdDT *0.876 0.876 5 7 36542 *0.843 0.844 4 5 23891 *0.832 0.833 3 5 11171
IdCS *0.879 0.879 5 8 9873 *0.825 0.826 5 7 1828 *0.823 0.824 4 6 862

Table A.2: Gradual Drifting Hyperplane with RR base models: R2 and PMCC2 pre-
dictive performance, the average number of base models used by the meta-learner
(|M′|), the maximum number of base models used by the meta-learner (dM′e),
and the average number of relevancy and diversity metric calculations required to
compare and evaluate base models (M.Calcs.) for meta-learners in BOTL for vari-
ants of the gradual drifting hyperplane datasets when transferring RR base models
between 5 data streams. Improved predictive performances with statistical t-test
values p < 0.01 compared to the underlying CDD, while requiring fewer relevancy
and diversity metric calculations than MI-Thresh are indicated with ∗. Of these,
bold type indicates the approach with highest performance.
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RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.625 0.637 1 1 0 0.594 0.607 1 1 0 0.585 0.602 1 1 0
BOTL *0.742 0.748 9 16 0 *0.718 0.725 10 18 0 *0.723 0.730 9 15 0
P-Thresh *0.733 0.739 6 11 1103 *0.702 0.710 7 12 1310 *0.717 0.724 6 10 1369
MI-Thresh 0.728 0.734 6 9 3761 0.695 0.703 6 11 5654 0.713 0.720 5 8 4340
CS-Thresh *0.704 0.710 3 4 607 *0.670 0.678 3 4 764 *0.689 0.697 3 4 580
CS-Clust *0.718 0.724 3 5 806 *0.699 0.706 3 5 1069 *0.707 0.714 3 6 1236
IdDT *0.723 0.730 5 8 2871 *0.693 0.701 5 10 4484 *0.707 0.714 4 7 3428
IdCS *0.714 0.720 3 5 665 *0.694 0.701 3 5 877 *0.699 0.706 3 4 960

Table A.3: Heating Simulator with RR base models: R2 and PMCC2 predictive
performance, the average number of base models used by the meta-learner (|M′|),
the maximum number of base models used by the meta-learner (dM′e), and the
average number of relevancy and diversity metric calculations required to compare
and evaluate base models (M.Calcs.) for meta-learners in BOTL for the smart
home heating simulator dataset when transferring RR base models between 5 data
streams. Improved predictive performances with statistical t-test values p < 0.01
compared to the underlying CDD, while requiring fewer relevancy and diversity met-
ric calculations than MI-Thresh are indicated with ∗. Of these, bold type indicates
the approach with highest performance.

RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.437 0.469 1 1 0 0.115 0.330 1 1 0 0.195 0.380 1 1 0
BOTL *0.521 0.550 2 5 0 -2e+17 0.268 14 28 0 *0.421 0.572 8 16 0
P-Thresh *0.515 0.544 2 4 100 *0.506 0.558 4 10 1415 *0.510 0.557 3 7 767
MI-Thresh 0.524 0.551 2 3 118 0.503 0.555 3 4 2043 0.488 0.545 2 4 983
CS-Thresh *0.498 0.529 2 3 78 *0.351 0.445 2 4 337 *0.445 0.511 2 4 284
CS-Clust *0.541 0.565 2 4 201 *0.578 0.621 4 9 1478 *0.499 0.575 3 6 753
IdDT *0.520 0.548 2 3 156 *0.501 0.546 2 4 1550 *0.462 0.521 2 4 832
IdCS *0.523 0.549 2 4 189 *0.550 0.598 4 7 951 *0.507 0.567 3 5 591

Table A.4: Following Distance with RR base models: R2 and PMCC2 predictive
performance, the average number of base models used by the meta-learner (|M′|),
the maximum number of base models used by the meta-learner (dM′e), and the
average number of relevancy and diversity metric calculations required to compare
and evaluate base models (M.Calcs.) for meta-learners in BOTL for the follow-
ing distance dataset when transferring RR base models between 7 data streams.
Improved predictive performances with statistical t-test values p < 0.01 compared
to the underlying CDD, while requiring fewer relevancy and diversity metric cal-
culations than MI-Thresh are indicated with ∗. Of these, bold type indicates the
approach with highest performance.
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Figure A.1: Sudden Drifting Hyperplane with RR base models: The average number
of RR models received per domain for MI-Thresh, IdDT, CS-Clust and IdCS when
using RePro, ADWIN and AWPro as the underlying CDDs for 5 drifting hyperplane
data streams.

transfer also helps to reduce computational overheads in online TL frameworks, and

highlights the benefits of using a static diversity metric. Finally Table A.5 dis-

plays a summary of the results obtained by IdDT in comparison to MI-Thresh, and

IdCS in comparison to CS-Clust, for the sudden drifting hyperplane, gradual drift-

ing hyperplane, heating simulator and following distance datasets. These results

show that both IdDT and IdCS reduce communication and computation overheads

while maintaining comparable predictive performances to when all base models are

transferred.
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Figure A.2: Gradual Drifting Hyperplane with RR base models: The average num-
ber of RR models received per domain for MI-Thresh, IdDT, CS-Clust and IdCS
when using RePro, ADWIN and AWPro as the underlying CDDs for 5 drifting hy-
perplane data streams.

Figure A.3: Heating Simulator with RR base models: The average number of RR
models received per domain for MI-Thresh, IdDT, CS-Clust and IdCS when using
RePro, ADWIN and AWPro as the underlying CDDs for 5 heating simulator data
streams.
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Figure A.4: Following Distance with RR base models: The average number of RR
models received per domain for MI-Thresh, IdDT, CS-Clust and IdCS when using
RePro, ADWIN and AWPro as the underlying CDDs for 7 and 17 following distance
data streams.
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Figure A.5: Following Distance with RR base models: R2 and PMCC2 predictive
performance, and number of RR base models used by BOTL meta-learners, for
the underlying CDD, BOTL, MI-Thresh, IdDT, CS-Clust and IdCS with increasing
numbers of following distance data streams.
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Figure A.6: Following Distance with RR base models: The average number of RR
models received per domain for MI-Thresh, IdDT, CS-Clust and IdCS for increasing
numbers of following distance data streams, using RePro, ADWIN and AWPro as
the underlying CDDs.

Figure A.7: Following Distance with RR base models: Change in number of rele-
vancy and diversity metric calculations required to compare and evaluate RR base
models for IdDT, CS-Clust and IdCS in comparison to MI-Thresh for increasing
numbers of following distance data streams.
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RePro ADWIN AWPro
Dataset ∆Comm ∆Comp ∆R2 ∆PMCC2 ∆Comm ∆Comp ∆R2 ∆PMCC2 ∆Comm ∆Comp ∆R2 ∆PMCC2

SuddenA
IdDT -39.5% -58.6% -0.007 -0.007 -64.3% -61.0% -0.003 -0.003 -22.7% -53.0% -0.017 -0.017
IdCS -20.6% -29.9% -0.001 -0.001 -42.5% -53.4% -0.008 -0.008 -14.8% -28.3% -0.010 -0.010

SuddenB
IdDT -35.9% -49.0% -0.010 -0.010 -50.8% -51.2% +0.013 +0.013 -26.7% -47.5% -0.006 -0.006
IdCS -23.2% -30.8% +0.885 +0.003 -36.8% -46.7% +0.752 +0.007 -16.5% -27.7% +0.005 +0.005

SuddenC
IdDT -47.1% -63.8% -0.008 -0.008 -65.1% -60.6% -0.001 -0.001 -29.5% -57.9% -0.017 -0.017
IdCS -32.3% -38.6% -0.005 -0.005 -44.2% -56.0% -0.007 -0.007 -17.0% -33.3% -0.007 -0.007

SuddenD
IdDT -41.3% -54.5% -0.006 -0.006 -57.4% -50.3% +0.005 +0.005 -31.4% -49.6% -0.022 -0.022
IdCS -23.2% -32.6% -0.002 -0.002 -40.1% -51.2% -0.009 -0.009 -20.7% -30.8% -0.015 -0.015

GradualA
IdDT -41.6% -64.7% -0.013 -0.013 -55.7% -56.5% -0.002 -0.002 -41.8% -61.6% -0.037 -0.036
IdCS -33.6% -42.5% -0.004 -0.004 -40.1% -51.4% -0.011 -0.011 -32.9% -41.9% -0.021 -0.021

GradualB
IdDT -37.8% -53.5% -0.006 -0.006 -55.3% -57.5% -0.003 -0.003 -32.3% -56.1% -0.025 -0.025
IdCS -31.0% -39.5% -0.870 -0.009 -39.2% -51.1% +0.000 -0.004 -22.5% -34.1% +0.806 +0.010

GradualC
IdDT -43.6% -55.5% -0.011 -0.011 -60.4% -57.8% -0.007 -0.007 -28.4% -52.9% -0.020 -0.020
IdCS -26.4% -36.9% -0.005 -0.005 -40.6% -51.5% -0.004 -0.004 -25.1% -37.3% -0.029 -0.029

GradualD
IdDT -36.1% -42.3% -0.007 -0.007 -59.7% -55.6% -0.005 -0.005 -28.2% -52.1% -0.016 -0.016
IdCS -24.8% -34.7% -0.005 -0.005 -42.7% -53.8% -0.007 -0.007 -19.9% -31.5% -0.006 -0.006

Heating
IdDT -21.6% -23.7% -0.005 -0.005 -29.2% -20.7% -0.002 -0.002 -34.3% -21.0% -0.006 -0.005
IdCS -26.2% -17.5% -0.003 -0.003 -32.4% -18.0% -0.005 -0.005 -36.8% -22.4% -0.008 -0.008

Following IdDT 0.0% 31.9% -0.003 -0.003 -24.5% -24.1% -0.002 -0.009 -25.5% -15.3% -0.026 -0.024
(n=7) IdCS -6.8% -5.9% -0.018 -0.016 -30.3% -35.7% -0.028 -0.022 -22.4% -21.6% +0.008 -0.008
Following IdDT -13.0% 12.1% -0.001 -0.001 -40.6% -41.2% -0.000 -0.004 -46.7% -51.6% -0.014 -0.014
(n=17) IdCS -14.4% -6.9% -0.007 -0.005 -41.6% -44.2% -0.026 -0.011 -40.7% -42.4% -0.007 -0.006

Table A.5: Summary of comparisons between MI-Thresh and IdDT, and CS-Clust
and IdCS, when RRs are used as base models, showing the average reduction in
number of models received (%), denoted as ∆ Comm., the average reduction in
performance and diversity metric calculations (%), denoted as ∆ Comp., and the
average difference between R2 and PMCC2 predictive performances.
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Appendix B

Using Support Vector Regressor

and Ridge Regressor Base

Models

This Appendix present the results for each of the approaches proposed in this thesis

when approximately 50% of the domains in the framework create base models using

SVRs, while the remaining domains create base models using RRs. Tables B.1–B.4

present the results for BOTL, P-Thresh, MI-Thresh, CS-Thresh, CS-Clust, IdDT

and IdCS for the sudden drifting hyperplane, gradual drifting hyperplane, heating

simulator and following distance datasets respectively. These results show that the

proposed approaches can be used to transfer knowledge when domains are not able

to use the same machine learning algorithm to create base models, which may occur

when domains have differing computational availabilities.

Figures B.1–B.4 also show the average number of models received by do-

mains for MI-Thresh, IdDT, CS-Clust and IdCS for each of these datasets. These

results indicate that the decision of whether to transfer base models reduces the

communication overheads when a mixture of model types are used to create base

models. Figure B.5 shows the R2 and PMCC2 predictive performances, and the

average number of models used by the meta-learners in BOTL, MI-Thresh, IdDT,

CS-Clust and IdCS, in frameworks with increasing numbers of following distance

data streams. These results show that BOTL is susceptible to overfitting when the

number of base models available to be meta-learner becomes large in comparison to

the window of available data. Additionally, Figure B.6 shows the average number

of models received by domains for MI-Thresh, IdDT, CS-Clust and IdCS for frame-

works with increasing numbers of following distance data streams. Figure B.7 shows
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(a) SuddenA: sudden drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.831 0.862 1 1 0 0.765 0.772 1 1 0 0.755 0.764 1 1 0
BOTL *0.855 0.862 25 33 0 *0.839 0.847 38 57 0 *0.876 0.878 17 22 0
P-Thresh *0.897 0.897 6 9 17418 *0.867 0.869 9 15 25299 *0.859 0.860 5 7 10338
MI-Thresh 0.896 0.896 4 6 32006 0.869 0.870 3 5 49479 0.855 0.856 3 5 16237
CS-Thresh *0.880 0.880 2 4 2415 *0.834 0.836 2 4 2751 *0.822 0.824 2 4 2019
CS-Clust *0.900 0.901 5 8 5761 *0.855 0.857 6 8 4882 *0.849 0.850 5 9 1196
IdDT *0.893 0.893 3 5 12750 *0.869 0.870 3 5 21363 *0.851 0.853 3 4 7653
IdCS *0.899 0.899 5 7 3679 *0.854 0.856 5 7 2485 *0.847 0.849 4 6 850

(b) SuddenB: sudden drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.835 0.863 1 1 0 0.710 0.718 1 1 0 0.707 0.715 1 1 0
BOTL -9e+21 0.516 26 36 0 -6e+22 0.520 39 59 0 -4e+22 0.529 19 27 0
P-Thresh -2e+20 0.864 6 10 18292 -1e+21 0.746 8 15 25421 *0.850 0.852 5 7 11964
MI-Thresh 0.898 0.899 4 6 29612 0.858 0.860 4 5 47037 0.849 0.851 3 5 17681
CS-Thresh *0.881 0.881 2 4 2702 *0.795 0.797 2 4 2509 *0.787 0.789 2 3 2043
CS-Clust -2e+19 0.889 5 8 5362 -2e+17 0.815 6 9 4812 -6e+18 0.821 5 8 1529
IdDT *0.895 0.895 3 5 15366 *0.858 0.859 3 5 21450 *0.846 0.847 3 4 9132
IdCS *0.900 0.900 5 7 3758 -7e+14 0.823 5 8 2689 *0.838 0.840 4 6 1113

(c) SuddenC: sudden drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.826 0.856 1 1 0 0.755 0.765 1 1 0 0.757 0.766 1 1 0
BOTL *0.852 0.860 24 32 0 *0.832 0.841 40 57 0 *0.879 0.881 18 21 0
P-Thresh *0.896 0.897 6 9 16794 *0.868 0.869 8 14 26045 *0.866 0.867 4 6 11093
MI-Thresh 0.894 0.894 4 5 27819 0.866 0.867 3 4 45940 0.863 0.864 3 4 16500
CS-Thresh *0.869 0.869 2 3 2348 *0.819 0.821 2 3 2265 *0.825 0.827 2 3 2075
CS-Clust *0.901 0.901 5 7 4950 *0.854 0.855 6 8 5188 *0.856 0.858 5 9 1337
IdDT *0.893 0.893 3 4 10451 *0.868 0.869 3 4 15917 *0.861 0.863 2 3 6925
IdCS *0.899 0.899 5 6 2912 *0.850 0.852 5 7 2358 *0.852 0.853 4 6 931

(d) SuddenD: sudden drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.822 0.856 1 1 0 0.745 0.752 1 1 0 0.721 0.730 1 1 0
BOTL -2e+22 0.342 26 34 0 -2e+22 0.340 39 58 0 -1e+22 0.353 18 23 0
P-Thresh *0.899 0.900 6 9 17874 -4e+20 0.512 8 15 26339 *0.854 0.856 4 7 10988
MI-Thresh 0.896 0.897 4 6 28329 0.860 0.862 4 6 46369 0.851 0.852 3 5 16280
CS-Thresh *0.875 0.875 2 3 2428 *0.815 0.817 2 3 2589 *0.800 0.801 2 3 2140
CS-Clust *0.897 0.898 5 8 5241 *0.849 0.851 6 8 5134 *0.836 0.837 5 9 1385
IdDT *0.891 0.892 3 5 14055 *0.862 0.864 3 5 21502 *0.848 0.849 3 4 8243
IdCS *0.897 0.897 5 7 3626 *0.849 0.851 5 7 2607 *0.837 0.839 4 6 970

Table B.1: Sudden Drifting Hyperplane with SVR and RR base models: R2 and
PMCC2 predictive performance, the average number of base models used by the
meta-learner (|M′|), the maximum number of base models used by the meta-learner
(dM′e), and the average number of relevancy and diversity metric calculations re-
quired to compare and evaluate base models (M.Calcs.) for meta-learners in BOTL
for variants of the sudden drifting hyperplane datasets when transferring SVR and
RR base models between 5 data streams. Improved predictive performances with
statistical t-test values p < 0.01 compared to the underlying CDD, while requiring
fewer relevancy and diversity metric calculations than MI-Thresh are indicated with
∗. Of these, bold type indicates the approach with highest performance.

171



(a) GradualA: gradual drifting hyperplanes with uniform noise.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.801 0.830 1 1 0 0.675 0.683 1 1 0 0.697 0.705 1 1 0
BOTL 0.791 0.810 30 37 0 *0.824 0.835 37 53 0 *0.883 0.885 20 26 0
P-Thresh *0.888 0.888 9 14 26412 *0.867 0.868 12 20 28977 *0.869 0.869 7 10 15015
MI-Thresh 0.886 0.886 5 7 61134 0.864 0.864 4 6 73059 0.863 0.864 4 6 31782
CS-Thresh *0.857 0.857 3 4 3206 *0.796 0.797 3 5 3264 *0.808 0.809 3 4 2631
CS-Clust *0.893 0.894 5 8 11089 *0.834 0.835 5 8 4626 *0.843 0.844 5 8 1534
IdDT *0.881 0.882 4 6 21966 *0.867 0.867 4 6 26264 *0.851 0.851 3 5 11643
IdCS *0.892 0.892 5 7 6714 *0.833 0.834 5 7 2134 *0.843 0.844 4 6 951

(b) GradualB: gradual drifting hyperplanes with single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.801 0.831 1 1 0 0.677 0.692 1 1 0 0.677 0.699 1 1 0
BOTL -9e+20 0.327 30 40 0 -2e+21 0.331 39 56 0 -1e+21 0.350 20 28 0
P-Thresh -1e+18 0.822 8 14 27037 -6e+18 0.707 9 17 30440 *0.847 0.847 5 9 15183
MI-Thresh 0.877 0.877 4 6 50643 0.841 0.842 4 6 59678 0.841 0.842 3 5 25919
CS-Thresh *0.859 0.859 2 4 3518 *0.797 0.798 2 4 3193 *0.796 0.797 2 4 2342
CS-Clust -3e+16 0.873 6 8 12544 -1e+17 0.827 6 8 5093 -4e+17 0.808 5 7 1630
IdDT *0.875 0.875 3 6 22210 *0.846 0.847 3 6 24643 *0.831 0.832 3 4 10910
IdCS -1e+14 0.868 5 8 7885 -6e+17 0.806 5 7 2438 *0.827 0.828 4 6 1003

(c) GradualC: gradual drifting hyperplanes with intermittent single sensor failure.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.787 0.816 1 1 0 0.660 0.669 1 1 0 0.654 0.674 1 1 0
BOTL 0.782 0.804 30 39 0 *0.807 0.821 37 55 0 *0.869 0.871 19 26 0
P-Thresh *0.887 0.887 9 13 26902 *0.862 0.863 10 17 28525 *0.852 0.853 6 8 14505
MI-Thresh 0.883 0.884 5 7 59677 0.861 0.862 4 6 68206 0.849 0.849 4 5 27610
CS-Thresh *0.850 0.850 2 4 3563 *0.780 0.781 2 4 3056 *0.772 0.773 2 4 2431
CS-Clust *0.886 0.887 5 7 12769 *0.820 0.821 6 8 4666 *0.814 0.815 5 8 1493
IdDT *0.879 0.879 4 6 27589 *0.857 0.858 4 5 28660 *0.830 0.830 3 5 12241
IdCS *0.885 0.885 5 8 8480 *0.820 0.821 5 8 2364 *0.812 0.813 4 7 994

(d) GradualD: gradual drifting hyperplanes with gradual sensor deterioration.
RePro ADWIN AWPro

R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.796 0.825 1 1 0 0.541 0.614 1 1 0 0.537 0.619 1 1 0
BOTL -4e+22 0.152 32 42 0 -3e+22 0.150 30 53 0 -2e+22 0.146 17 28 0
P-Thresh -2e+17 0.888 8 11 29709 -1e+18 0.780 7 15 22753 *0.836 0.836 5 9 13378
MI-Thresh 0.892 0.893 5 7 53032 0.858 0.858 4 5 45607 0.847 0.848 3 5 22295
CS-Thresh *0.870 0.870 2 4 3714 *0.773 0.774 2 4 2950 *0.773 0.774 2 3 2342
CS-Clust *0.894 0.895 6 8 15360 *0.791 0.793 5 9 2927 *0.802 0.803 5 7 1307
IdDT *0.888 0.889 4 6 27570 *0.829 0.830 3 5 20614 *0.807 0.808 3 5 11711
IdCS *0.892 0.893 5 8 10263 *0.799 0.801 5 7 1682 *0.812 0.813 4 7 910

Table B.2: Gradual Drifting Hyperplane with SVR and RR base models: R2 and
PMCC2 predictive performance, the average number of base models used by the
meta-learner (|M′|), the maximum number of base models used by the meta-learner
(dM′e), and the average number of relevancy and diversity metric calculations re-
quired to compare and evaluate base models (M.Calcs.) for meta-learners in BOTL
for variants of the gradual drifting hyperplane datasets when transferring SVR and
RR base models between 5 data streams. Improved predictive performances with
statistical t-test values p < 0.01 compared to the underlying CDD, while requiring
fewer relevancy and diversity metric calculations than MI-Thresh are indicated with
∗. Of these, bold type indicates the approach with highest performance.
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RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.629 0.643 1 1 0 0.617 0.634 1 1 0 0.609 0.628 1 1 0
BOTL *0.741 0.748 9 15 0 *0.719 0.727 9 18 0 *0.729 0.737 10 15 0
P-Thresh *0.730 0.737 6 11 1205 *0.709 0.716 6 12 1262 *0.721 0.728 6 10 1399
MI-Thresh 0.721 0.728 4 8 3542 0.706 0.714 5 10 4681 0.712 0.720 4 6 4129
CS-Thresh *0.702 0.709 3 4 664 *0.690 0.698 3 4 764 *0.691 0.698 3 4 714
CS-Clust *0.721 0.727 3 5 891 *0.705 0.713 3 5 1087 *0.712 0.719 3 6 1164
IdDT *0.720 0.726 4 7 2323 *0.702 0.710 4 8 2485 *0.707 0.714 4 6 3230
IdCS *0.715 0.722 3 4 744 *0.700 0.708 3 5 852 *0.707 0.714 3 4 874

Table B.3: Heating Simulator with SVR and RR base models: R2 and PMCC2

predictive performance, the average number of base models used by the meta-learner
(|M′|), the maximum number of base models used by the meta-learner (dM′e),
and the average number of relevancy and diversity metric calculations required to
compare and evaluate base models (M.Calcs.) for meta-learners in BOTL for the
smart home heating simulator dataset when transferring SVR and RR base models
between 5 data streams. Improved predictive performances with statistical t-test
values p < 0.01 compared to the underlying CDD, while requiring fewer relevancy
and diversity metric calculations than MI-Thresh are indicated with ∗. Of these,
bold type indicates the approach with highest performance.

RePro ADWIN AWPro
R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs. R2 PMCC2 |M′| dM′e M.Calcs.

CDD 0.497 0.521 1 1 0 0.294 0.429 1 1 0 0.290 0.452 1 1 0
BOTL *0.628 0.656 4 10 0 -2e+16 0.341 12 26 0 -4e+13 0.584 8 19 0
P-Thresh *0.640 0.663 3 7 380 0.467 0.644 5 11 1206 *0.627 0.653 4 8 761
MI-Thresh 0.622 0.645 2 3 570 0.597 0.627 3 4 2019 0.625 0.649 2 4 1107
CS-Thresh *0.638 0.660 2 5 236 *0.545 0.588 2 5 325 *0.560 0.599 2 4 293
CS-Clust *0.631 0.655 3 4 562 *0.644 0.672 4 9 1308 *0.633 0.663 3 7 796
IdDT *0.626 0.649 2 3 635 *0.588 0.620 2 4 1457 *0.598 0.624 2 4 823
IdCS *0.628 0.651 3 4 488 *0.628 0.661 4 8 858 *0.626 0.656 3 5 547

Table B.4: Following Distance with SVR and RR base models: R2 and PMCC2

predictive performance, the average number of base models used by the meta-learner
(|M′|), the maximum number of base models used by the meta-learner (dM′e),
and the average number of relevancy and diversity metric calculations required to
compare and evaluate base models (M.Calcs.) for meta-learners in BOTL for the
following distance dataset when transferring SVR and RR base models between
7 data streams. Improved predictive performances with statistical t-test values
p < 0.01 compared to the underlying CDD, while requiring fewer relevancy and
diversity metric calculations than MI-Thresh are indicated with ∗. Of these, bold
type indicates the approach with highest performance.
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Figure B.1: Sudden Drifting Hyperplane with SVR and RR base models: The
average number of SVR and RR models received per domain for MI-Thresh, IdDT,
CS-Clust and IdCS when using RePro, ADWIN and AWPro as the underlying CDDs
for 5 drifting hyperplane data streams.

the decrease in the average number of relevancy and diversity metric calculations

required by IdDT, CS-Clust and IdCS, in comparison to MI-Thresh, as the number

of following distance data streams in the framework increases. This shows that the

decision of whether to transfer also helps to reduce computational overheads in on-

line TL frameworks, and highlights the benefits of using a static diversity metric.

Finally Table B.5 displays a summary of the results obtained by IdDT in compar-

ison to MI-Thresh, and IdCS in comparison to CS-Clust, for the sudden drifting

hyperplane, gradual drifting hyperplane, heating simulator and following distance

datasets. These results show that both IdDT and IdCS reduce communication and

computation overheads while maintaining comparable predictive performances to

when all base models are transferred.
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Figure B.2: Gradual Drifting Hyperplane with SVR and RR base models: The
average number of SVR and RR models received per domain for MI-Thresh, IdDT,
CS-Clust and IdCS when using RePro, ADWIN and AWPro as the underlying CDDs
for 5 drifting hyperplane data streams.

Figure B.3: Heating Simulator with SVR and RR base models: The average number
of SVR and RR models received per domain for MI-Thresh, IdDT, CS-Clust and
IdCS when using RePro, ADWIN and AWPro as the underlying CDDs for 5 heating
simulator data streams.
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Figure B.4: Following Distance with SVR and RR base models: The average number
of SVR and RR models received per domain for MI-Thresh, IdDT, CS-Clust and
IdCS when using RePro, ADWIN and AWPro as the underlying CDDs for 7 and 17
following distance data streams.
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Figure B.5: Following Distance with SVR and RR base models: R2 and PMCC2

predictive performance, and number of SVR and RR base models used by BOTL
meta-learners, for the underlying CDD, BOTL, MI-Thresh, IdDT, CS-Clust and
IdCS with increasing numbers of following distance data streams.
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Figure B.6: Following Distance with SVR and RR base models: The average num-
ber of SVR and RR models received per domain for MI-Thresh, IdDT, CS-Clust
and IdCS for increasing numbers of following distance data streams, using RePro,
ADWIN and AWPro as the underlying CDDs.

Figure B.7: Following Distance with SVR and RR base models: Change in number
of relevancy and diversity metric calculations required to compare and evaluate SVR
and RR base models for IdDT, CS-Clust and IdCS in comparison to MI-Thresh for
increasing numbers of following distance data streams.
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RePro ADWIN AWPro
Dataset ∆Comm ∆Comp ∆R2 ∆PMCC2 ∆Comm ∆Comp ∆R2 ∆PMCC2 ∆Comm ∆Comp ∆R2 ∆PMCC2

SuddenA
IdDT -47.0% -60.2% -0.003 -0.003 -61.7% -56.8% 0.000 0.000 -22.6% -52.9% -0.003 -0.003
IdCS -25.4% -36.1% -0.001 -0.001 -37.9% -49.1% -0.001 -0.001 -13.6% -28.9% -0.002 -0.002

SuddenB
IdDT -36.9% -48.1% -0.003 -0.003 -57.4% -54.4% 0.000 0.000 -27.4% -48.4% -0.004 -0.004
IdCS -22.9% -29.9% +0.900 +0.011 -33.7% -44.1% 0.000 +0.007 -14.8% -27.2% +0.838 +0.019

SuddenC
IdDT -50.7% -62.4% -0.001 -0.001 -68.0% -65.4% +0.002 +0.002 -31.9% -58.0% -0.001 -0.001
IdCS -33.6% -41.2% -0.002 -0.002 -43.1% -54.5% -0.004 -0.004 -16.1% -30.4% -0.005 -0.005

SuddenD
IdDT -42.3% -50.4% -0.005 -0.005 -57.0% -53.6% +0.002 +0.002 -29.5% -49.4% -0.003 -0.003
IdCS -22.9% -30.8% 0.000 0.000 -37.8% -49.2% 0.000 0.000 -20.7% -29.9% +0.002 +0.001

GradualA
IdDT -50.9% -64.1% -0.005 -0.005 -64.4% -64.1% +0.003 +0.003 -39.4% -63.4% -0.012 -0.012
IdCS -31.7% -39.5% -0.001 -0.001 -42.5% -53.9% -0.001 -0.001 -27.3% -38.0% 0.000 0.000

GradualB
IdDT -45.6% -56.1% -0.002 -0.002 -58.9% -58.7% +0.005 +0.005 -35.0% -57.9% -0.010 -0.010
IdCS -29.1% -37.1% 0.000 -0.005 -40.6% -52.1% 0.000 -0.021 -26.4% -38.4% +0.827 +0.020

GradualC
IdDT -46.3% -53.8% -0.004 -0.004 -59.5% -58.0% -0.004 -0.004 -35.0% -55.7% -0.019 -0.019
IdCS -24.9% -33.6% -0.001 -0.001 -38.2% -49.3% 0.000 0.000 -24.2% -33.5% -0.002 -0.002

GradualD
IdDT -45.0% -48.0% -0.004 -0.004 -56.3% -54.8% -0.029 -0.029 -37.3% -47.5% -0.040 -0.040
IdCS -26.3% -33.2% -0.002 -0.002 -32.5% -42.5% +0.008 +0.008 -20.3% -30.4% +0.010 +0.010

Heating
IdDT -35.5% -34.4% -0.001 -0.001 -45.5% -46.9% -0.004 -0.003 -42.0% -21.8% -0.005 -0.005
IdCS -30.5% -16.5% -0.005 -0.005 -41.1% -21.6% -0.005 -0.005 -35.4% -25.0% -0.005 -0.005

Following IdDT -11.6% 11.2% +0.005 +0.004 -30.5% -27.9% -0.009 -0.007 -28.5% -25.6% -0.027 -0.025
(n=7) IdCS -16.9% -13.1% -0.003 -0.004 -30.3% -34.4% -0.016 -0.011 -27.8% -31.2% -0.007 -0.007
Following IdDT -31.7% -18.5% -0.015 -0.011 -40.4% -39.5% -0.013 -0.009 -53.1% -58.6% +0.002 -0.007
(n=17) IdCS -15.4% -14.6% -0.019 -0.009 -44.8% -50.0% +0.027 +0.016 -42.1% -43.1% +0.012 +0.009

Table B.5: Summary of comparisons between MI-Thresh and IdDT, and CS-Clust
and IdCS, when SVRs and RRs are used as base models, showing the average
reduction in number of models received (%), denoted as ∆ Comm., the average
reduction in performance and diversity metric calculations (%), denoted as ∆ Comp.,
and the average difference between R2 and PMCC2 predictive performances.
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