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lated, causing VI to over-concentrate. GVI can avoid this. Right:

Changing D provides prior robustness. Depicted are approximate

marginals for two different priors π ∈ {N(−30, 22), N(−5, 22)}. VI is
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7.1 Bayesian On-line Changepoint Detection with Model Selection (BOCPDMS):
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Panel 2: prediction error (black) and variance (gray). Panel 3:

Model posteriors p(mt|x1:t). Panel 4: log run-length distribution

(grayscale), its maximum (red) and MAP segmentation of CPs and

models in corresponding colors. . . . . . . . . . . . . . . . . . . . . . 148

7.2 SSBVAR modeling: Suppose that on a regular grid of size 9, Yt,5 de-
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on S = {1, . . . , 9} with L = 2, N0(5) = {5}, N1(5) = {2, 4, 6, 8},
N2(5) = {1, 3, 7, 9} and function ξ with ξ(1) = 2, ξ(2) = 1. . . . . . 155
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7.3 Results for 30 Portfolio data set, displayed from 01/01/1998–31/12/2008 :

Log run-length distribution (grayscale) and its maximum (dashed).

Changepoints (CPs) found by Saatçi et al. (2010) are marked in black,

additional CPs found by BOCPDMS in orange. Labels correspond to:
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by 4%, (4) 9/11, (5) Afghanistan war, (6) 2002 stock market crash,

(7) Bombing attack in Bali, (8) Iraq war, (9) Major tax cuts under

Bush, (10) US election, (11) Iran announces successful enrichment

of Uranium, (12) Northern Rock bank run, (13) Lehman Brothers

collapse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Financial crisis 01/08/2007–31/12/2008 : Colours as in Fig 7.3, with

MAP segmentation. Event labels: (1) BNP Paribas funds frozen, (2)

Fed cuts lending rate, (3) IKB 1bn$ losses, (4) Northern Rock bank

run, (5) Fed cuts interest rate, (6) Bush rescue plan for >106 home-

owners, (7) Fed, ECB, BoE loans for banks, (8) Fed cuts funds rate,

(9) G7 estimate: 400bn$ losses worldwide, (10) JP Morgan buys Bear

Stearns, (11) IMF estimate: >1trn$ losses worldwide, (12) HBOS’

rights issue fails, (13) ECB provides 200bn for liquidity, (14) Fan-

nie Mae & Freddie Mac bailout, (15) Lehman collapse, (16) Russia:

500bn Roubles crisis package, (17) Fortis bailout, (18) UK: £500bn

bank rescue package, (19) BoE, ECB cut interest rate, (20) G20

promise fiscal stimuli, (21) Madoff’s Ponzi scheme revealed, South

Korean CB sets interest rate at record low (22) Fed, Japanese central

bank cut interest rates. Dates from Guillén (2009). . . . . . . . . . . 160

7.5 Results for Nile data: Panel 1: Nile data with structural change at

715. Panel 2: Both run-length distribution (grayscale with dashed
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7.6 Results for European Temperatures: Panel 1: normalized temper-

ature for Prague and Jena Panel 2: Model Posterior maximum,

m̂t = arg maxmt∈M{p(mt|y1:t)}, model complexity decreasing top to

bottom. M(l),M(l+) are SSBVAR with l lags. Spatial dependence

in M(l+) is slower decaying. Periods of model uncertainty are (1)

2nd Industrial Revolution 1870− 1914, (2) Post WW2 boom 1950−
1973, (3) European Climate shift 1987−present, see Luterbacher et al.

(2004). Panel 3: To compare model uncertainty across different data

and M, the (Log) Standardized Generalized Variance (SGV) of m̂t
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7.8 Five jointly modeled Simulated Autoregressions (ARs) with true CPs

at t = 200, 400; bottom-most AR injected with t4-noise. The Maxi-
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Abstract

The mathematical machinery underlying Bayesian inference is Bayes’ Rule—

an important and elegant result dating back to the 18th century (Bayes, 1763). But

in statistical practice, mathematical elegance alone is not enough: for Bayes’ Rule

to be a useful practical device, we need to impose a number of stringent assumptions

that often do not reflect the realities of modern statistical and Machine Learning

applications. This thesis sets out to propose and apply formalisms that are useful in

situations where the assumptions underlying Bayes’ Rule are dramatically violated.

These assumptions include the presumption of a correctly specified statistical model,

prior information of sufficient quality to improve the posterior belief, and adequate

computational power. The violations of these assumptions and the proposed reme-

dies will be explored theoretically and methodologically, but also empirically on a

number of Machine Learning applications.
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π and likelihood function p(·|θ); q∗n,SB(θ) =

P (− log p(·|θ),KLD,P(Θ)).

L Loss function L : Θ×X n → R.

` Loss function ` : Θ × X → R that is as-

sumed to be additive so that L(θ, x1:n) =∑n
i=1 `(θ, xi).

D Statistical divergence D : P(Θ)2 → R≥0.

Π Some subset of P(Θ).

Q A subset of P(Θ) parametrized by a set of
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q∗n,GB(θ) Generalized Bayes posterior (for a given prior
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q∗n,GB(θ) = P (L,KLD,P(Θ)).
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loss L, the divergence D, and space Π.
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q∗A(θ) A posterior in some parametrized subset Q
approximating q∗n,GB(θ) or q∗n,SB(θ) by some

means.

q∗VI(θ) A posterior approximating q∗n,GB(θ) or

q∗n,SB(θ) via Variational Inference (VI); so

that q∗VI(θ) = P (L,KLD,P(Θ)).

q∗DVI(θ) A posterior approximating q∗n,GB(θ) or

q∗n,SB(θ) via Discrepancy Variational

Inference (DVI); so that q∗DVI(θ) =

arg minq∈Q

{
D(q(θ)‖q∗n,GB(θ))

}
.

Fb(Θ) The set of bounded and measurable functions

on Θ.

B(Θ) The set of finitely-additive measures on Θ.

GL,w−1D,Π The objective value associated with

P (L,w−1D,Π).

co (A) The convex hull of a set A.

co (A) The closure of the convex hull of a set A.

D?
π(L′) The Legendre-Fenchel conjugate of a statisti-

cal divergence D(·‖π) : P(Θ)→ R≥0 relative

to some loss L′ ∈ Fb(Θ).

EΠ(L) The minimum of L over elements of Π, ie

EΠ(L) = infq∈Π Eq(θ) [L(θ, x1:n)].

ρ A perturbation ρ ∈ Fb(Θ) by an adversary

(relative to L).

H A subset of ΘR such as a Reproducing Kernel

Hilbert Space or Fb(Θ).

dH(q, π) The IPM between q and π relative to

the function space H so that dH(q, π) =

suph∈H {Eq[h]− Eπ[h]}.
θ∗ The population-optimal value of θ for a given

loss ` : Θ×X → R so that for some µ ∈ P(X ),

we have θ∗ = arg minθ∈Θ Eµ [`(θ,x)] If we are

in the well-specified case so that `(θ, xi) =

− log p(xi|θ) and µ admits a density p(·|θ∗),
then θ∗ is also the value of θ for which p(·|θ)

recovers the true data-generating process.
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OVI The objective of a VI posterior whose varia-

tional family is parametrized by κ ∈ K, so

that OVI : K → R.

OGVI The objective of a GVI posterior whose vari-

ational family is parametrized by κ ∈ K, so

that OGVI : K → R.

ÔVI Estimate of OVI.

ÔGVI Estimate of OGVI.

D
(α)
AR Rényi’s α-divergence parametrized with pa-

rameter α.

D
(α)
A α-divergence parametrized with parameter α.

D
(β)
B β-divergence parametrized with parameter β.

D
(γ)
G γ-divergence parametrized with parameter γ.

Lβp Loss based on β-divergence; Lβp : Θ×X → R;

we also write Lβ(θ, x1:n) =
∑n

i=1 L
β
p(θ, xi).

Lγp Loss based on γ-divergence; Lγp : Θ×X → R;

we also write Lγ(θ, x1:n) =
∑n

i=1 L
γ
p(θ, xi).

Sh Slack term based on a hyperparameter h.

IG(a, b) Inverse-Gamma distribution with shape a and

scale b.

N (µ,Σ) (Multivariate) Normal distribution with mean

vector µ and covariance matrix Σ.

O(g(n)) Big-O notation; a function f(n) is of order

O(g(n)) if it scales as c ·g(n) for large enough.

Lq(X ,Q) For Q ∈ P(X ), Lq(X ,Q) is both the set of

functions f : X → R for which ‖f‖Lq(X ,Q) :=

(
∫
X |f |qdQ)1/q <∞ and the normed space in

which two elements f, g ∈ Lq(X ,Q) are iden-

tified if they are Q-almost everywhere equal.

Lq(X ) Lq(X ,Q), if Q is a Lebesgue measure.

PS(Rd) The subset of Borel measures P(Rd) on Rd

that admit an everywhere positive probabil-

ity density function (pdf) p : X → R>0 with

continuous partial derivatives.

SQ A Stein operator defined relative to a Stein set

H with Q ∈ P(X ) so that EX∼Q[SQ[h](X)] =

0 ∀h ∈ H.
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H A Stein set H defined relative to a Stein

operator SQ with Q ∈ P(X ) so that

EX∼Q[SQ[h](X)] = 0 ∀h ∈ H.

SD(Q‖P) A Stein discrepancy between distributions

Q,P ∈ P(X ), which for a Stein operator SQ
and a Stein set H is given as SD(Q‖P) =

sup‖h‖H≤1

∣∣∣EX∼P [SQ[h](X)]
∣∣∣.

Pn Empirical measure Pn =
∑n

i=1 δxi based on

x1:n.

Pθ Measure Pθ induced by the model density

p(·|θ).

K / k Matrix-valued / vector-valued kernel function

associated with a reproducing kernel Hilbert

space H.

KSD(Q‖P) Kernel-Stein Discrepancy between measures

Q,P ∈ P(X ) given by KSD2(Q‖P) :=

EX,X′∼P [SQSQK(X,X ′)].

‖ · ‖2 Euclidean norm.

C(X ) The set of continuous functions f : X → R.

C1
b (Rd) The set of functions f : Rd → R such

that both f and the partial derivatives x 7→
(∂/∂x(i))f(x) are bounded and continuous on

Rd.
C1,1
b (Rd × Rd) The set of bivariate functions f : Rd × Rd →

R such that both f and the partial deriva-

tives (x, x′) 7→ (∂/∂x(i))(∂/∂x
′
(j))f(x, x′) are

bounded and continuous on Rd × Rd.
S(X ;Rk) For an arbitrary set S(X ) of functions f :

X → R, denote by S(X ;Rk) the set of Rk-
valued functions whose components belong to

S(X ).

∇ The gradient operator on Rd; often we write

∇x to indicate the argument x to which the

operator is applied (eg ∇xf(x, y)).

∇· The divergence operator on Rd; often we write

∇x· to indicate the argument x to which the

operator is applied (eg, ∇x · f(x, y)).
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LKSD(x1:n,θ) The Loss based on the squared KSD2 given by

LKSD(x1:n,θ) = n · KSD2(Pθ‖Pn).

πKSD
n (θ) The KSD-Bayes posterior given by πKSD

n (θ) =

P (LKSD,KLD,P(Θ)), so that πKSD
n (θ) ∝

π(θ) exp {−wLKSD(x1:n,θ)}.
∂k The partial derivative operator (∂k/∂) for k ∈

N; so that [∇xf(x)](h) = (∂/∂x(h))f(x) and

[∇2
xf(x)](h,k) = (∂2/∂x(h)x(k))f(x).

PIF(y,θ,Pn) The posterior influence function given by

PIF(y,θ,Pn) = d
dεπ

L(θ;Pn,ε,y)
n |ε=0, where

Pn,ε,y = (1−ε)Pn+εδy is the ε-contamination

model.
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Foreword & About

This thesis collects my thoughts on and contributions to the field of generalized

Bayesian methodology. In my roughly five years within the Oxford-Warwick Statis-

tics Programme, I have come to witness that there is a large gap between the founda-

tion and application of standard Bayesian methodology—particularly in computa-

tionally demanding and emerging fields such as Machine Learning or simulator-based

inference. This thesis and my continued research is part of the effort to close this

gap, and I believe that over the coming years we will succeed in doing this—by ex-

tending and adjusting what it means to conduct Bayesian analysis. It is my personal

conviction that we will achieve this by thoroughly departing from the idea of using

Bayes’ Rule as the de-facto default method for deriving belief distributions; and it

is my hope that this thesis will convince the esteemed reader of this vision.

The structure of the thesis is fourfold: The introduction in Chapter 1 presents

the main object of study throughout the thesis: the Rule of Three (RoT). The RoT is

an optimization-centric generalization of Bayesian inference that recovers previous

extensions of Bayes-like procedures, and can be motivated both intuitively and ax-

iomatically. In the thesis’ first part (Chapters 2 and 3), we study various theoretical

properties of this optimization-centric generalization of Bayesian inference. Some of

the highlights relate to a new interpretation of Bayesian inference as an adversari-

ally robust procedure that has a game-theoretic interpretation; as well as a broadly

applicable result on frequentist consistency. The second part of the thesis (Chapters

4–6) introduces the methodology of Generalized Variational Inference (GVI) as one

of the main practical fallouts from the RoT for Machine Learning. This is comple-

mented by the third part of the thesis (Chapters 7 and 8), which illustrates how

the theory and methods discussed in the thesis can aid in two applications that are

often adversely affected by the severe misalignment between the theoretical basis

of standard Bayesian inference and the real world: on-line changepoint detection

models and intractable likelihoods. Lastly, we discuss our contributions in Chapter

9 and provide further details in Appendices A, B, and C.
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Chapter 1

Introduction & Motivation

Summary: In this first chapter, we take a closer look at the Bayesian paradigm and

introduce the core theme of this thesis. Specifically, we aim to answer the following

questions: what is the logic underlying Bayesian inference? What makes this logic

inappropriate for modern large-scale statistical problems such as Machine Learning

applications? And most importantly: which device are we proposing to remedy

these issues, and how does the approach put forward in this thesis differ from what

has been suggested in related previous work?

Though first discovered by the Reverend Thomas Bayes (1763), the version

of Bayes’ Theorem that a modern audience would be familiar with is much closer

to the one in De Laplace (1774). Bayes’ rule is one of the most fundamental results

in probability theory and states that for two events A,B, it holds that

P (A|B) =
P (B|A)P (A)

P (B)
.

where as usual, P (A|B) denotes the conditional probability of event A given that

event B occurred. It would take nearly two more centuries for this mathematical

result to be used as the basis for an entire school of statistical inference (for a full

account of this history, see Fienberg, 2006). More precisely, Fisher (1950) provides

the first mention of the term Bayesian in accordance with our modern understanding

(David, 1998).

Bayesian statistics uses Bayes’ Theorem to conduct inference on an unknown

and unobservable event A. Specifically, suppose that one can compute for an ob-

servable event B the probability P(B|A) and has a prior belief P(A) about the event

A before observing B. Now, Bayes’ rule tells us that we should be able to draw

1



probabilistic inferences on A|B by computing the probability P(A|B). In practice,

the event A quantifies the uncertainty about a parameter θ ∈ Θ indexing a sta-

tistical model, and so is of the form A ⊂ Θ. The prior beliefs about events A are

usually specified by some probability density π : Θ → R+ inducing the probability

measure P(A) =
∫
A dπ(θ). This leaves us with the need to specify a probability

distribution P (B|A) that relates the (unobserved) parameter θ to the (observable)

event B. In practice, B will correspond to the event that n random variables x1:n

take certain observable values x1:n ∈ X n. The next step is to hypothesise a distribu-

tion of B|A, which amounts to positing a likelihood function p(x1:n|θ) and setting

P(B|A) = p(x1:n|θ).1 If both the prior π and the likelihood function p admit densi-

ties with respect to the Lebesgue measure, we can put all this together and obtain

the standard Bayesian posterior which we denote as q∗n,SB(θ) throughout the thesis

and which is given by

q∗n,SB(θ) =
p(x1:n|θ)π(θ)

Z
.

Here, Z =
∫
Θ p(x1:n|θ)dπ(θ) is the normalizing constant—also known as the parti-

tion function—whose intractability is what makes computing the Bayesian posterior

an often rather involved problem.

Bayesian inference is appealing both conceptually and practically: First and

foremost, through Bayes’ Rule, it is based on a clear mathematical principle. Further

and unlike alternative frameworks of analysis such as Frequentist statistics, Bayesian

methods allow inferences to be informed by domain expertise in the form of a care-

fully specified prior belief π(θ). Furthermore, Bayesian inference produces belief

distributions (rather than point estimates) over the parameter of interest θ ∈ Θ.

As a consequence, Bayesian inferences automatically quantify uncertainty about θ.

This is practically useful in many situations, but especially if one uses θ predictively:

Integrating over q∗n,SB(θ) avoids being over-confident about the best value of θ, sub-

stantially improving predictive performance (see e.g. Aitchison, 1975). Amongst

other benefits, it is this enhanced predictive performance that has cast Bayesian in-

ference as one of the predominant paradigms in contemporary large-scale statistical

inference and Machine Learning.

While Bayesian methods automatically quantify the uncertainty about their

inferences, this comes at a cost: In the translation of Bayes’ rule into the Bayesian

1For pedagogical reasons, we have treated both x1:n and θ as if they were discrete so that
A = {θ = θ′} and B = {x1:n = x1:n} are well-defined events for any θ′ ∈ Θ and x1:n ∈ Xn. While
this does not describe most situations of interest, the underlying logic of setting P(B|A) = p(x1:n|θ)
is applicable more broadly with careful caveats, and in particular with continuously-valued variables.
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posterior q∗n,SB(θ), we have made three implicit but crucial assumptions. First,

we assumed that the modeller has a prior belief which is worth being taken into

account and which the modeller is capable of writing out mathematically as π(θ).

Second, we specified the likelihood function p(x1:n|θ) as a conditional probability.

In other words, we assumed that the model is correctly specified, which is to say

that p(x1:n|θ∗) = P(x1:n) for some unknown value of θ∗ ∈ Θ. Third, we assumed

the availability of enough computational power to make use of the often intractable

posterior q∗n,SB(θ). In many situations, these three assumptions built into q∗n,SB(θ)

are harmless. For a range of modern large-scale statistical problems including high-

dimensional inference, simulator-based models, or Machine Learning however, they

are frequently violated.

To address this, we take a step back from the traditional interpretation of the

Bayesian posterior q∗n,SB(θ) as an updating rule—Instead, we adopt an optimization-

centric view point. Throughout, we motivate this with the tensions and contradic-

tions between the three main assumptions underlying standard Bayesian inference

on the one hand, and the real world characteristics of many contemporary statistical

applications on the other hand. Aimed at resolving these tensions and contradic-

tions, we define an optimization-centric generalization of Bayesian inference that we

call the Rule of Three (RoT). The RoT is specified by an optimization problem over

the space of Borel probability measures P(Θ) on Θ with three arguments. These

arguments are a loss function L : Θ×X n → R which will often be additive so that

L(θ, x1:n) =
∑n

i=1 `(θ, xi), a divergence D measuring the deviation of the posterior

from the prior and a space Π ⊆ P(Θ) of feasible solutions. Together, these three

ingredients define posterior beliefs of the form

q∗(θ) = arg min
q∈Π

{
Eq(θ) [L(θ, x1:n)] +D(q‖π)

} def
= P (L,D,Π). (1.1)

While this objective clearly also depends on two additional arguments—data x1:n

and a prior π—we consider these fixed throughout and thus notationally suppress

this dependence. Note that whenever the loss is additive so that L(θ, x1:n) =∑n
i=1 `(θ, xi), we also define

P (L,D,Π)
def
= P (`,D,Π).

Though this may not be obvious, (1.1) in fact has an intimate relationship with the

standard Bayesian posterior q∗n,SB(θ), as the following result shows.

Theorem 1.1. If L(θ, x1:n) = − log p(x1:n|θ), D = KLD, Π = P(Θ); and if Z =
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∫
Θ exp {−L(θ, x1:n)}π(θ)dθ is so that 0 < Z <∞, then P (L,D,Π) = q∗n,SB(θ).

Proof. One may rewrite the objective of (1.1) as

q∗(θ) = arg min
q∈P(Θ)

{∫
Θ

[
log (exp {L(θ, x1:n)}) + log

(
q(θ)

π(θ)

)]
q(θ)dθ

}
= arg min

q∈P(Θ)

{∫
Θ

log

(
q(θ)

π(θ) exp {−L(θ, x1:n)}

)
q(θ)dθ

}
.

As one only cares about the minimizer q∗(θ) (and not the objective value), it also

holds that for any constant Z > 0, the above is equal to

q∗(θ) = arg min
q∈P(Θ)

{∫
Θ

log

(
q(θ)

π(θ) exp {−L(θ, x1:n)}Z−1

)
q(θ)dθ − logZ

}
= arg min

q∈P(Θ)

{
KLD

(
q(θ)

∥∥∥π(θ) exp {−L(θ, x1:n)}Z−1
)}

.

Lastly, one sets Z =
∫
θ exp {−L(θ, x1:n)}π(θ)dθ and notes that as the KLD is a

statistical divergence, it is minimized uniquely if its two arguments are the same, so

q∗(θ) = q∗n,SB(θ).

The proof of Theorem 1.1 is essentially a restatement from the supplement

of Bissiri et al. (2016), and is just a simple application of well-known results (see for

instance Csiszár (1975) or Donsker and Varadhan (1975)). It is important in the

context of this thesis because it implies that that the standard Bayesian posterior

can be thought of as the solution of an infinite-dimensional optimisation problem

that is structurally the same as the RoT. From this, it is clear that the RoT re-

covers q∗n,SB(θ). Beyond that, it also recovers previous generalizations of Bayesian

inference, including those inspired by Gibbs posteriors (e.g. Ghosh and Basu, 2016;

Bissiri et al., 2016; Jewson et al., 2018; Nakagawa and Hashimoto, 2019; Chérief Ab-

dellatif and Alquier, 2020), tempered posteriors (e.g. Grünwald, 2011, 2012; Holmes

and Walker, 2017; Grünwald and Van Ommen, 2017; Miller and Dunson, 2019), as

well as PAC-Bayesian approaches (for a recent overview, see Guedj, 2019). Unlike

any of these previous generalizations however, posteriors taking the form P (L,D,Π)

need not be exponentially additive. We point out this relationship between the RoT

and other Bayes-like procedures in Figure 1.1.

Before we move on to studying this generalization, its applications, and its

associated methodologies in more detail, we first need to answer one crucial question:

why is it needed?
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1.1 A reality check: Re-examining the traditional Bayesian

paradigm

This thesis argues for a generalized view on Bayesian methodology. The remainder

of this introduction explains why. In particular, we illuminate the misalignment

between the assumptions underlying the traditional Bayesian paradigm and the

way in which modern statistical Machine Learning uses (approximate) Bayesian

posteriors to conduct inference. We do so in three consecutive steps:

First, Section 1.1.1 elaborates on the three crucial assumptions underlying

the standard Bayesian posterior: Appropriate specification of prior (P) and

likelihood (L) as well as an infinite computational budget (C).

Next, Section 1.1.2 exposes the misalignment of these three assumptions with

inferential practices in contemporary statistical analysis for Machine Learning,

and complex large-scale inference problems.

Lastly, Sections 1.1.3–1.1.5 points to the adverse real-world consequences

arising from violating these assumptions.

1.1.1 The traditional Bayesian paradigm

Due to their direct correspondence with the fundamental rules of probability, Bayesian

posteriors q∗n,SB(θ) are desirable objects to be basing inference on. To see why, sup-

pose the following three conditions hold true.

(P) The Prior π(θ) is correctly specified: It encodes the best available judgement

about θ based on all information available to the modeller. Crucially, the

distribution π(θ) is assumed to reflect this prior belief exactly. This implies

that π(θ) should completely reflect all information available to the modeller

Figure 1.1: A taxonomy of some important belief distributions as special cases of
the RoT.
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such as previously observed observations x−m:0 of the same phenomenon or

domain expertise relating to the problem domain and the statistical model.

(L) There exists an (unknown but fixed) θ∗ making the Likelihood model equiva-

lent to the data generating mechanism of xi. This is to say that xi ∼ p(xi|θ∗).2

(C) The budget for Computation is infinite, so the complexity of computing the

belief q∗n,SB(θ) can be ignored; and both the prior and the likelihood can

be chosen without having to consider the implications their choices have on

computational complexity.

If (L), (P) and (C) are satisfied, Bayes’ Rule immediately implies that the best

belief about the best parameter value given the data {θ∗ = θ}|{x1:n = x1:n} is

given by

dP (θ|x1:n) ∝ dP (θ)
n∏
i=1

dP (xi|θ) = π(θ)
n∏
i=1

p(xi|θ) ∝ q∗n,SB(θ)dθ. (1.2)

The crucial insight is that (P) and (L) lend a practically meaningful interpreta-

tion to Bayes’ rule in form of conditional probability updates. Complementing this,

(C) ensures that it is feasible to compute the often intractable resulting posterior

q∗n,SB(θ). Accordingly, (C) generally is interpreted to mean that a Markov Chain

Monte Carlo algorithm can be run for long enough to accurately represent q∗n,SB(θ).

In summary, if (P), (L) and (C) hold, q∗n,SB(θ) is the only desirable posterior belief

distribution. But how well does reality align with (P), (L) and (C)? Turning at-

tention to (C) first, most traditional scientific disciplines have little need to worry

about computational complexity and will resort to sampling schemes for two rea-

sons: First, the models are often relatively simple and thus straightforward to infer.

Second—and even for more complicated models—the experimental setup as well as

the cost of data collection typically far outweigh those of computation q∗n,SB(θ). As

2 We note here that to keep the presentation simpler, we are giving conditions that are stricter
than what is required for Bayesian analysis. In particular, (L) corresponds to an objectivist treat-
ment of the likelihood and can be weakened under the subjectivist paradigm for Bayesian analysis.
In this paradigm, the treatment of the likelihood mirrors that of the prior: It now simply corre-
sponds to the modeller’s belief about the process that generated the data. While this first sounds
like a weaker requirement, it ends up producing the same misspecification problems as (L). Specifi-
cally, a subjectivist treatment of the likelihood requires the modeller to express her beliefs about the
likelihood function exactly. This forces her to make more probability statements than she realisti-
cally has time or introspection for (see e.g. Goldstein, 1990; O’Hagan and Oakley, 2004; Goldstein,
2006). The result is that the likelihood function supplied by the modeller is at best going to be an
approximate description of the modeller’s beliefs. This provides the subjectivist interpretation of
misspecification. Notice that it directly mirrors the objectivist interpretation of misspecification in
(L): The likelihood function supplied is at best going to be an approximate description of the true
data generating mechanism.
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for (P) and (L), neither prior nor likelihood are ever perfect reflections of one’s full

prior beliefs (see e.g. Goldstein, 1990; O’Hagan and Oakley, 2004; Goldstein, 2006)

or the data generating mechanism (see e.g. Bernardo and Smith, 2009). In other

words, (P) and (L) are invariably violated when interpreted literally. However and

as enshrined in Box’s aphorism that all models are wrong, but some are useful, this is

not a problem so long as these violations are sufficiently small. In traditional statis-

tics, ensuring that these violations are small has typically been enforced through

a simple recursion (e.g. Box, 1980; Berger et al., 1994). Specifically, until you are

confident that both (P) and (L) are close enough to the truth, repeat the following:

Check if (L) or (P) are violated severely for the data you wish to analyse. If they

are, choose a more appropriate likelihood and prior. In order to operationalize this

iterative logic, batteries of descriptive statistics, tests and model selection criteria

have been developed.

In summary then, ignoring the computational overhead and iteratively re-

fining likelihoods and priors is rightfully the predominant inferential strategy for

traditional scientific endeavours. Not only is domain expertise relevant for design-

ing priors and likelihoods, but the process of finding an appropriate model often

provides valuable insights in itself. Further, the expensive part of the analysis is

typically data collection. Consequently, performing inference even with the most

computationally expensive of sampling schemes is often not a major practical con-

cern. In line with this, most methodological contributions in Bayesian statistical

sciences rely to a substantial degree on (P), (L) and (C).

1.1.2 Machine Learning: A case study in the shortcomings of tra-

ditional Bayesian inference

Contemporary large-scale Machine Learning applications have frequently turned the

traditional schematic of statistical model design upside down: Rather than carefully

designing an appropriate likelihood model p(·|θ) for a specific data domain, statis-

tical Machine Learning research is typically characterized by the search of a flexible

algorithm that can fit any data set x1:n well enough to produce useful inferences.

The resulting likelihood models are typically not attempting to describe any data

generating processes in the sense of (L). Rather, they are highly over-parameterized

functions of θ and typically un-identifiable, meaning that the parameter θ∗ that

recovers the true data-generating mechanism is neither interpretable nor unique—if

it exists at all. Such models have three major issues under the traditional paradigm

of Bayesian inference that are readily identified:
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(EP) Invariably, the Prior is misspecified. Two factors compound this issue: Firstly,

the large number of parameters over-parameterizing the likelihoods of many

statistical Machine Learning models are no longer interpretable. This often

prohibits domain experts from carrying out carefully guided prior elicitation.

Secondly, priors are typically selected at least in part for their computational

feasibility. This fundamentally alters the interpretation of the prior: Rather

than the result of an attempt to capture the modeller’s knowledge before ob-

serving the data, the prior takes the role of a more or less arbitrary reference

measure whose primary function is ensure a form of smoothness or regular-

ization. To make matters worse, the number of parameters is often large

relative to n, which means that the priors have a disproportionate effect on

inference—a problem we discuss in Example 1.1 in the context of Bayesian

Neural Networks.

(EL) Clearly, the Likelihood is misspecified. This often has adverse side effects:

While using an over-parameterized or off-the-shelf likelihood function can pro-

vide a good fit for the typical behaviour of the data, it will struggle with het-

erogeneous or untypical data points. We demonstrate this phenomenon on a

black box model in Chapter 6.

(EC) With increasingly complex statistical models, efficient computation has be-

come only more important. Often, likelihood and prior choice are explicitly

taken to facilitate computation—and so (C) has proven an increasingly infea-

sible description of reality. Accordingly, this problem has inspired numerous

directions of research, including variational methods and Laplace approxima-

tions. To illustrate this, Example 1.2 goes over some of the research seeking to

reduce computation time for the case of Gaussian Processes—a class of models

that would be impossible to apply to large scale problems without the signifi-

cant advances that have been made in reducing its computational complexity.

Under the challenges outlined in (EP), (EL) and (EC), standard Bayesian posteriors

often do not provide posterior belief distributions that are appropriate for down-

stream analysis and decision making. In the remainder, we will explain how and

why this is the case for many parts of modern large-scale inference.

1.1.3 Prior misspecification

For most finite-dimensional parameters, even severely misspecified priors can often

be harmless. For example, prior misspecification is typically no problem in the
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asymptotic sense. Specifically, so long as (L) holds, it suffices that π(θ∗) > 0

for standard Bayesian posteriors to contract around θ∗ at rate O(n−1/2) (see e.g.

Ghosal, 1998; Ghosal et al., 2000; Shen and Wasserman, 2001; Walker, 2004, and

references therein).

Often, these results are used as an apology to neglect the role of prior spec-

ification. While it is reassuring that the sequence of standard Bayesian posteriors

shrinks to the population-optimum as n→∞, this does not describe the real world:

n is usually fixed and only a single posterior is computed. Further, it is possible to

specify arbitrarily bad priors for any n fixed observations. This means that once

one departs from assuming that (P) is at least approximately correct, the standard

Bayesian posterior belief about θ∗ can be made arbitrarily inappropriate. In sum-

mary, prior specification is particularly precarious whenever (i) the parameter space

is large relative to n or (ii) it is impossible to specify priors in a principled way. As

we discuss in the next example, a model invariably affected by both problems is the

Bayesian Neural Network (BNN).

Example 1.1 (Deep Bayesian models as violations of (P)). Bayesian Neural Net-

works (BNNs) (MacKay, 1996; Neal, 2012) combine Deep Learning with Bayesian un-

certainty quantification. For the parameter vector θ of network weights, let F (θ) be

the function specified by a Neural Network. One way of thinking about BNNs is as an

over-parameterized likelihood function with a large number of parameters d = |Θ|.
This is to say that one believes that (at least approximately), xi ∼ p(xi|F (θ∗)) for

at least one θ∗ ∈ Θ. For a prior π(θ) about θ, this means that BNNs seek to do

inference on the posterior given by

q∗n,SB(θ) ∝ π(θ)
n∏
i=1

p(xi|F (θ)).

This approach is conceptually appealing: One circumvents most issues with (L)

by making the likelihood function almost arbitrarily flexible, and also quantifies

uncertainty in the usual Bayesian manner. While both observations are correct, they

mask a severe practical issue with this approach: Specifying π(θ) in a principled

way and in accordance with (P) is generally impossible.

There are two main reasons for this: Firstly, the vector θ indexes a black box

model and is not interpretable, making domain expertise useless for prior elicitation.

Secondly, computational aspects are a major concern for BNNs, so that one typically

is constrained to choose priors that factorize over θ. As a consequence, practitioners

often resort to choosing “default priors” that do not even attempt to approximately

satisfy (P). Specifically, one typically just picks π(θ) =
∏d
j=1 πj(θj), where πj(θj)
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is a standard normal distribution for all j. Choosing priors in this ad-hoc fash-

ion violates the principles underlying classical Bayesian modelling and is especially

problematic when n is small relative to d (so that the prior has relatively strong

influence). At the same time, reliable uncertainty quantification is most important

whenever n is small relative to d. In fact, this is a well-known issue and addressed in

various contributions by up-weighting the likelihood (down-weighting the KLD term

in the ELBO), see Zhang et al. (2018); Rossi et al. (2020, 2019); Sønderby et al.

(2016).

We do not mean to suggest that it is impossible to specify meaningful or

useful priors for BNNs. For example, Toussaint et al. (2006) uses the principles of

transformation invariance and maximum entropy, Nalisnick et al. (2021) calibrates

priors via their predictive distribution and a ‘reference’ model, and Matsubara et al.

(2021b) focuses on the prior’s impact on the prediction space (see also Gelman

et al., 2017) and in particular its covariance structure to specify more principled

priors. While these approaches are all conceptually elegant, they also are computa-

tionally cumbersome—thus compounding the issues outlined in (EC). As a result,

the fully factorized priors discussed above are the de-facto default choices for most

applications of BNNs.

For completeness, we note that this thesis does not discuss uninformative

and so-called objective priors (see, e.g. Jeffreys, 1961; Zellner, 1977; Bernardo, 1979;

Berger and Bernardo, 1992; Jaynes, 2003; Berger, 2006). Such priors are constructed

to be as uninformative as possible. In some ways, they would be a natural, principled

alternative to ill-informed priors. Generally however, their construction results in

improper prior densities that do not correspond to a finite measure and thus do

not integrate to one. While this is not generally prohibitive, it would severely

complicate further developments because most divergences are not well-defined for

improper priors3.

1.1.4 Likelihood Misspecification

While prior misspecification affects inference adversely, the issue for inferential prac-

tice is even more serious if (L) is violated: Whenever the likelihood model for xi

is severely misspecified, inference outcomes suffer dramatically. Moreover, not even

the asymptotic regime offers a remedy: The adverse effects of misspecification per-

sist as n→∞. The traditional approach to addressing this issue is straightforward:

If the likelihood model p(xi|θ) is misspecified, simply investigate why exactly it

3 The KLD is the exception to this rule: As it depends on the log normalizer of π(θ) in an
additive fashion, improper priors can still be admissible.
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fits the data poorly. After residual analysis, intense study of descriptive statistics

and consultation with domain experts, redesign it to arrive at a likelihood model

p′(xi|θ′), which provides a better fit to the data and (approximately) satisfies (L).

In other words, the traditional view is that any problem with misspecification is

really a problem with careless modelling.

As outlined in Section 1.1.2, this strategy is neither practiced nor feasible

with contemporary large-scale models. The naive interpretation of likelihoods as

corresponding to an appropriately good description of the true data generating pro-

cess in the sense of (L) is thus wholly inappropriate. This is especially important

as many large-scale models are mainly interested in capturing the typical behaviour

of the data—rather than fully modelling every aspect of a population. While this

may appear to be a minor point at first glance, it has serious consequences for in-

ferential practice. To see why, suppose a population contains a small number of

outlying observations, local heterogeneities or spiky noise. The naive interpretation

of the likelihood as in (L) assumes that these untypical aspects are encoded in the

likelihood function. Hence, if xi is an outlier, the inference machinery of traditional

statistics interprets this as a strong signal: Since the likelihood model is an ap-

proximately correct description of the data, the most informative observations are

those that do not fit the model fitted to the rest of the data. This is why aberrant

parts of the data will have a disproportional impact on inference outcomes—leading

standard inference methods to break down (see also Jewson et al., 2018).

Moreover, the often-invoked intuition that a sufficiently flexible likelihood

family (such as likelihoods parameterized by Neural Networks) will not suffer these

problems is dangerously incorrect in at least two ways: firstly, increasing the dimen-

sion of the model space for a fixed number of observations amounts to placing more

weight on the prior—and so amounts to merely shifting the problem from (L) into

(P). Secondly, the symmetries and degeneracies of such likelihoods can be shown

to induce generalization errors that increase with the number of observations n (see

e.g. Watanabe, 2018, Example 19 and Remark 20).

1.1.5 Mismatch between theoretically required and available com-

putational resources

As Theorem 1.1 shows, the Bayesian posterior q∗n,SB(θ) is the result of optimizing

over the infinite-dimensional space P(Θ). Generally, this implies that the posterior

itself also does not live in a finite-dimensional space. In fact, the only case in which

q∗n,SB(θ) can be represented through a finite-dimensional parameter is when prior

and likelihood are conjugate to one another—a fact independently established by
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Koopman (1936), Pitman (1936), and Darmois (1935) and thus commonly referred

to as Koopman-Pitman-Darmois Theorem. This means that inference with q∗n,SB(θ)

is generally a hard problem, which manifests itself through the need to deal with

the posterior’s intractable normalizing constant. To address this problem, Markov

Chain Monte Carlo algorithms are typically used. Such algorithms produce an

exact representation of q∗n,SB(θ) if the chain runs indefinitely and collects infinitely

many samples. In practice, collecting a finite number of samples from the chain

yields can represent q∗n,SB(θ) almost exactly whenever d = |Θ| is not too large. For

large enough d however, the number of samples required to make the approximation

useful is often too large to make samplers computationally viable: For example, in

the best case scenario, Random Walk Metropolis Hastings scales like O(d2) (Roberts

et al., 1997), the Metropolis-adjusted Langevin algorithm like O(d4/3) (Roberts and

Rosenthal, 1998) and Hamiltonian Monte Carlo like O(d5/4) (Beskos et al., 2013).

Note that these results assume independence and Gaussianity—so on more complex

models, scaling rates are even worse.

Approximation strategies constitute an alternative way to avoid explicit com-

putation of normalizing constants. These methods project q∗n,SB(θ) into some pa-

rameterized subset Q ⊂ P(Θ). Clearly then, they produce approximations q∗A(θ)

of high quality only if the set Q is chosen to be sufficiently large. In practice how-

ever, most posterior belief distributions q∗A(θ) computed this way barely deserve to

be called approximations of q∗n,SB(θ). For example, consider the mean field normal

variational family given by

QMFN =


d∏
j=1

N (θj |µj , σ2
j ) : µj ∈ R, σ2

j ∈ R>0 for all j

 . (1.3)

For most interesting non-trivial posterior distributions q∗n,SB(θ), there will not ex-

ist an element q ∈ QMFN that could be considered a meaningful approximation

to q∗n,SB(θ). This is perhaps unsurprising: After all, QMFN assumes O(d2) inde-

pendence relationships in the approximate posterior belief for θ. Worse still: As

approximations are particularly attractive when |Θ| = d is large, in practice we will

resort to such insufficiently expressive “approximations” to q∗n,SB(θ) precisely when

the elements in QMFN are structurally most dissimilar from q∗n,SB(θ). To improve

the quality of these approximations, numerous directions of research have proposed

ever more flexible variational families in order to make Q more expressive. Exam-

ples include implicit distributions (e.g. Tran et al., 2017; Tiao et al., 2018; Shi et al.,

2018; Ma et al., 2019), normalizing flows (e.g. Rezende and Mohamed, 2015), or the
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variational Gaussian Process (Tran et al., 2016). Once again, there is no free lunch:

more expressive families Q will incur higher computational cost and compound the

issues with (C).

In this thesis, we advocate an optimization-centric view of posterior belief

computation. As a side-product of this view, we believe that it is often unhelpful to

think of q∗A(θ) as an approximation to q∗n,SB(θ). Rather, we prefer to think of q∗A(θ)

as defining a new and distinct posterior belief distribution in its own right—which

happens to also be an approximation to q∗n,SB(θ) if Q is sufficiently expressive.

To highlight the importance that computational considerations have played

in research on Bayesian Machine Learning, we end their discussion by pointing to

some of the recent research on Bayesian computation for Gaussian Processes.

Example 1.2 (large-scale Gaussian processes as violations of (C)). Many Bayesian

Machine Learning models prohibit exact computation. One particularly interesting

case are Gaussian Process (GP) models: Even in the special cases where they admit

closed form posteriors, it may well be impossible to compute them exactly for suffi-

ciently large inference problems. The reason is that for n observations, direct compu-

tation of the associated GP posterior takes O(n3) time. As a consequence, an entire

literature is dedicated to bringing down this computational complexity (see for in-

stance Williams and Seeger, 2001; Quiñonero Candela and Rasmussen, 2005; Snelson

and Ghahramani, 2006; Titsias) and developing software or computer-architecture

specific methods geared towards inference with GPs (e.g. Matthews et al., 2017;

Gardner et al., 2018; Balandat et al., 2020; Wang et al., 2019b). Furthermore, with

deep (i.e., hierarchical) approaches to GPs introduced in Damianou and Lawrence

(2013) and extended in various directions (e.g. Dai et al., 2016; Hegde et al., 2019),

this challenge has only become more important (see e.g. Bui et al., 2016; Cutajar

et al., 2017b; Salimbeni and Deisenroth, 2017).

1.2 Existing modifications of Bayesian inference

The last section explained why standard Bayesian posteriors may be an inappropri-

ate tool for performing inference in the context of Machine Learning. Before further

discussing how this can be alleviated by the RoT, we first briefly review and dis-

cuss some of the most important previous extensions and generalisations of Bayes’

Rule depicted in Figure 1.1. Most of these generalizations are motivated by similar

observations as those made in the previous sections, and aimed at fixing specific

shortcomings of a standard Bayesian approach to statistical inference. This will be

important to motivate further developments, but also to contrast the added benefit
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that the RoT can bring relative to existing methodologies. Lastly, it will also help

the reader to better grasp the most important ideas, techniques, and applications

of generalized Bayesian methods.

1.2.1 Probably Approximately Correct (PAC) Bayesian methods

While PAC-Bayesian results often have intimate links with traditional Bayesian in-

ference (see e.g. Germain et al., 2016; Grünwald and Van Ommen, 2017), their

motivations and origins are rather distinct (see e.g. Shawe Taylor and Williamson,

1997; Guedj, 2019): Unlike Bayesian inference, PAC-Bayesian results are not con-

structed based on assuming a correct likelihood or prior to be available and in this

sense circumnavigate both (L) and (P). In fact, they do not rely on likelihoods at all

and—much like the remainder of this thesis—treat the negative log likelihood as just

one choice of loss (amongst many possible). The aim of such PAC-Bayesian bounds

is in their name: they seek to derive generalization bounds for belief distributions

q(θ) ∈ P(Θ) defined over some hypothesis space Θ relative to a loss function `. For

example, under a prior belief π(θ), a loss ` and a data generating mechanism for

x1:n satisfying appropriate regularity conditions and for any q(θ) ∈ P(Θ) as well as

for any fixed value of ε > 0, McAllester’s seminal bound (McAllester, 1999a,b) says

that with probability at least 1− ε,

Eq(θ)

[
Ex1:n

[
1

n

n∑
i=1

`(θ,xi)

]]
≤ Eq(θ)

[
1

n

n∑
i=1

`(θ, xi)

]
+

√
KLD(q, π) + log 2

√
n
ε

2n
. (1.4)

Minimizing the right hand side of this bound with respect to q(θ) over some set Π ⊆
P(Θ) immediately recovers a special case for the RoT given by P (`,DMcAllester,Π).

Here, DMcAllester is just the last term of the above bound, with a subtracted constant

and rescaled by n:

DMcAllester(q‖π) =
√
n ·


√

KLD(q, π) + log 2
√
n
ε

2
−

√
log 2

√
n
ε

2

 .

Subtraction of the constant ensures that DMcAllester(q‖π) = 0 if and only if π = q.

The rescaling is necessary as we have to multiply both sides of eq. (1.4) by n to

bring them into the RoT form. Note that neither the addition of the constant nor

the rescaling affects the minimizer.

A similar logic can be applied to virtually all PAC-Bayesian bounds, crucially

also for bounds based on divergences other than the KLD such as those of Bégin
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et al. (2016), Alquier and Guedj (2018), or Ohnishi and Honorio (2021).4 In light of

this, PAC-Bayesian analysis may prove crucial in deciding which divergence should

be used for inference in a given problem: The bounds of Bégin et al. (2016), Alquier

and Guedj (2018), and Ohnishi and Honorio (2021) all depend on divergences other

than the KLD, and provide generalization guarantees for less restrictive settings

than the KLD. For example, the bounds of Alquier and Guedj (2018) depend on f -

divergences, and provide generalization guarantees even if the observation sequence

exhibits a substantial degree of heterogeneity or temporal dependence. Similarly,

unlike bounds based on the KLD, the bounds of Ohnishi and Honorio (2021) provide

generalization guarantees even if ` is an unbounded loss function.

While PAC-Bayesian bounds appear quite similar to the posterior belief dis-

tributions computed via the generalized posteriors proposed in this thesis, there are

a number of important differences. Firstly, PAC-Bayes bounds are mainly a theoret-

ical device. Unlike much of the methodology developed as part of this thesis, their

main interest is typically in establishing learning rates and theoretical guarantees—

often even for algorithms that themselves do not use a prior distribution as input.

Secondly and as a consequence of this, the choice of priors in PAC-Bayesian learn-

ing is often geared towards optimising an error bound. This is completely different

from how priors would be approached in traditional Bayesian inference: rather than

viewing the prior as a source of information, PAC-Bayesian bounds typically treat

them as nuisance parameters that ought to be minimized over (see for instance the

distribution-dependent priors derived by Lever et al. (2013)). Thirdly and on a re-

lated note, the literature on PAC-Bayes often takes no interest in actually computing

the PAC-Bayesian posterior. Rather, its role is purely conceptual: by plugging it into

a PAC-Bayesian bound, one obtains a generalization guarantee or error rate with

desirable properties. Lastly, there is a strong trade-off in PAC-Bayesian bounds be-

tween the strength of the theoretical guarantee on the one hand, and the class of loss

functions for which this guarantee holds on the other hand. In fact, most PAC-Bayes

bounds of practical interest assume that the loss ` is bounded both from above and

below, which immediately precludes us from using `(θ, xi) = − log p(xi|θ) for any

probability density p(xi|θ) for which we can find a sequence of parameters {θn}n∈N
so that p(xi|θn) → ∞ as n → ∞. While such sequences typically do not exist if

the data are discretely-valued, they can be found for most probability densities on

Euclidean spaces, such as normal distributions. As a consequence, the practicality

of PAC-Bayesian bounds is limited: in particular, they are far more practically rel-

evant for classification problems than they are for regression problems. For a more

4 For more classical bounds based on D = KLD 6= DMcAllester, see Catoni (2007); Zhang (2006).
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thorough review into the principles and limitations of PAC-Bayesian inference as

well as their relationship with traditional Bayesian methodology, see Guedj (2019).

1.2.2 Gibbs posteriors & general Bayesian updating

For a loss function L : Θ× X n → R and a prior π on Θ for which it can be shown

that
∫
Θ exp{−L(θ, x1:n)}dπ(θ) <∞, the corresponding Gibbs posterior (often also

called generalised Bayes posterior or pseudo posterior) is defined as

q∗n,GB(θ) =
exp{−L(θ, x1:n)}π(θ)∫

Θ exp{−L(θ, x1:n)}dπ(θ)
. (1.5)

Gibbs posteriors can be recovered as a special case of the RoT, as the following

extension of Theorem 1.1 shows.

Proposition 1.1. If
∫
Θ exp {−L(θ, x1:n)} dπ(θ) <∞, then it holds that q∗n,GB(θ) =

P (`,KLD,P(Θ)).

Proof. Note that the proof of Theorem 1.1 did not depend on the choice of L, so

the same arguments as before yield the result.

Belief distributions like q∗n,GB(θ) and their relationship to the standard Bayes

posterior q∗n,SB(θ) have been widely studied for particular special cases of L. This

includes so-called power posteriors which raise the likelihood to a power w so

that L(θ, x1:n) =
∑n

i=1− log p(xi|θ)w (see e.g. Grünwald, 2011, 2012; Holmes and

Walker, 2017; Grünwald and Van Ommen, 2017; Miller and Dunson, 2019), so-

called pseudo likelihood or composite likelihood approaches (e.g. Varin et al., 2011;

Pauli et al., 2011; Ribatet et al., 2012), as well as divergence- and disparity-based

Bayesian methods that take L(θ, x1:n) ≈ D(p(·|θ), pempirical(·)) as some (approxi-

mate) statistical discrepancy measure D between a likelihood model p(·|θ) and the

empirical data distribution pempirical(·) (e.g., Hooker and Vidyashankar, 2014; Ghosh

and Basu, 2016; Futoshi Futami et al., 2018; Jewson et al., 2018; Chérief Abdellatif

and Alquier, 2020; Matsubara et al., 2021a).

Perhaps the most important contribution in this space in recent years has

been the idea of generalized Bayesian updates in Bissiri et al. (2016), which advo-

cates for Gibbs posteriors with arbitrary additive losses of the form L(θ, x1:n) =∑n
i=1 `(θ, xi). Much as what this thesis outlined in (EL), a key motivation for gen-

eralized Bayes updates is the unavailability of correctly specified models in many

situations. To depart from the assumption of correct model specification, Bissiri

et al. (2016) poses that all one needs for belief updates is a way to link data xi to
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a parameter of interest θ via some loss function `, and a prior belief about ’good’

values of θ. In particular, the paper shows that the only belief update rule satisfying

coherence will be the generalized Bayesian belief update that leads to q∗n,GB(θ). In

a nutshell, coherence as defined in Bissiri et al. (2016) says that posteriors have to

be generated according to some function ψ : R2 → R which for the prior π(θ) and

loss terms `(θ, x1), `(θ, x2) behaves as

ψ (`(θ, x2), ψ (`(θ, x1), π(θ))) = ψ (`(θ, x1) + `(θ, x2), π(θ)) .

This requirement effectively enforces a multiplicative update via exponential addi-

tivity as in (1.5). Put differently and in terms of (1.1), this requirement enforces

that D = KLD and Π = P(Θ).

Imposing the requirement of coherence upon generalized posterior beliefs

has two main disadvantages: firstly, coherence is only well-defined and achievable

for additive losses. For this reason, it excludes many successful methodologies for

generalized posteriors derived from non-additive losses such as those based on V-

statistics or U-statistics (see for instance Hooker and Vidyashankar (2014), Chérief

Abdellatif and Alquier (2020), or Matsubara et al. (2021a)). Further, the idea of

coherence crucially relies on trusting the prior: it treats the prior belief as perfectly

and exactly encapsulating our full knowledge before we see any data; and therefore

being a quantity that is worth updating. Note that the premise for generalized

Bayesian updating is model misspecification, so the modeller is already in a setting

with limited information. This makes it likely that the prior is in fact not a perfect

encapsulation of our full knowledge. This is crucial, since if the prior is poorly

specified as outlined in (EP), coherence will in fact be an undesirable design choice

for a posterior belief. For these reasons, the RoT does not impose coherence.

1.2.3 Variational approximations to Bayes posteriors

While the logic of multiplicative updates inherent in Bayes’ rule and (1.5) is con-

ceptually elegant, the intractable normalization constants of q∗n,SB(θ) and q∗n,GB(θ)

often make these approaches infeasible in practice. Specifically, exact computation

of these posteriors is often only possible through sampling methods; and thus using a

posterior of this form typically incurs a large computational burden. To alleviate this

problem, many approximate Bayesian inference schemes have been proposed. Their

principal idea is to force the posterior belief into some parametric form. Specifically,

one seeks to approximate q∗n,SB(θ) ≈ q∗A(θ) (or q∗n,GB(θ) ≈ q∗A(θ)), where q∗A(θ) ∈ Q
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and

Q = {q(θ|κ) : κ ∈K} (1.6)

is a family of distributions on Θ parametrized by κ. This significantly reduces

the computational burden, because it transforms the problem of inference into a

finite-dimensional optimization problem.

The literature on such approximations is extensive and has diverse origins.

Their development arguably started with Laplace Approximations (see e.g. the

seminal papers of Tierney and Kadane, 1986; Shun and McCullagh, 1995; MacKay,

1998), which have recently been refined into Integrated Nested Laplace Approxi-

mations (Rue et al., 2009). A second family of approximation methods known as

Expectation Propagation (Opper and Winther, 2000; Minka, 2001) was motivated

through factor graphs and message passing (Minka, 2005). The third and arguably

most successful approach originated by connecting the Expectation-Maximization

algorithm (Dempster et al., 1977) and the variational free energy from statistical

physics (Neal and Hinton, 1998), culminating in Variational Inference (VI) (Jordan

et al., 1999; Beal, 2003). For these methods, Q is called the variational family.

Two main interpretations of VI prevail. Firstly, one may derive its objective

function as an Evidence Lower Bound (ELBO). Secondly, one can show that VI

minimizes the KLD between Q and q∗n,SB(θ) (or q∗n,GB(θ)).

VI from an Evidence Lower Bound (ELBO)

One context in which VI was originally derived is the task of model selection. In

Bayesian model selection, the integral p(x1:n) =
∫
Θ exp{−∑n

i=1 `(θ, xi)}π(θ)dθ—

called evidence or marginal likelihood whenever `(θ, xi) = − log p(xi|θ) for some like-

lihood model p(·|θ)—takes centre stage. Roughly speaking, one selects the model for

which this integral takes the largest value. But since p(x1:n) is generally intractable,

one finds an approximation to it. In particular, one notes that for any q(θ) ∈ Q,

log p(x1:n) = log

(∫
Θ

exp{−
n∑
i=1

`(θ, xi)}π(θ)dθ

)

= log

(∫
Θ

exp{−
n∑
i=1

`(θ, xi)}
π(θ)

q(θ)
q(θ)dθ

)
Jensen’s IE
≥

∫
Θ

log

(
exp

{
−

n∑
i=1

`(θ, xi)

}
π(θ)

q(θ)

)
q(θ)dθ. (1.7)
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If the loss function is `(θ, xi) = − log p(xi|θ) for some likelihood model p(·|θ), then

the right hand side of eq. (1.7) is called the Evidence Lower Bound (ELBO). Rewrit-

ing the integral, one now obtains the VI posterior as

q∗VI(θ) = P (`,KLD,Q)
def
= arg min

q∈Q

{
Eq(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q||π)

}
, (1.8)

where q∗VI(θ) = q(θ|κ∗) for some optimal parameter κ∗ ∈K. Note that here, we have

directly defined q∗VI(θ) relative to an arbitrary additive loss ` rather than relative to

the negative log likelihood. Consequently, q∗VI(θ) is defined as an approximation to

arbitrary generalized/Gibbs/pseudo Bayes posteriors q∗n,GB(θ), and we will use this

definition in the remainder of the thesis.

Taking inspiration from the interpretation of q∗VI(θ) as minimizing a lower

bound on the evidence, alternative approximations target generalized Evidence

Lower Bounds (e.g. Chen et al., 2018; Domke and Sheldon, 2018; Burda et al., 2016).

For a given bound log p(x1:n) ≥ G-ELBO(q), such methods produce posteriors as

q∗G−ELBO(θ) = arg min
q∈Q

{−G-ELBO(q)} .

Multi-sample bounds (see e.g. Burda et al., 2016) are a particularly prominent ex-

ample. As the name implies, these bounds interpret the ELBO term given in eq.

(1.8) by

ELBO(q) = Eθ∼q(θ)

[
log

(
exp{−∑n

i=1 `(θ, xi)π(θ)}
q(θ)

)]
as a bound constructed from a single sample of θ and replace the objective with its

K-sample version obtained by

MS-ELBO(q,K) = Eθ1:K∼
∏K
j=1 q(θj)

log
1

K

K∑
j=1

(
exp{−∑n

i=1 `(θj , xi)π(θ)}
q(θj)

) .
The rationale for doing so is that MS-ELBO(q, 1) = ELBO(q), and that the result-

ing bound on the (generalized) evidence is tighter than the standard ELBO. More

precisely, for any K ∈ N, log p(x1:n) ≥ MS-ELBO(q,K + 1) ≥ MS-ELBO(q,K) ≥
MS-ELBO(q, 1) = ELBO(q).
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VI as KLD-minimization and as Discrepancy-based VI (DVI)

A second well-known perspective on standard VI posteriors is motivated by rewriting

the objective in eq. (1.8) in terms of the Kullback-Leibler Divergence (KLD) as

follows:

q∗VI(θ) = arg min
q∈Q

{
KLD

(
q(θ)

∥∥∥q∗n,GB(θ)
)}

In words, the above shows that standard VI finds q∗VI(θ) ∈ Q closest to q∗n,GB(θ)

in the KLD-sense. The relevant algebraic arguments are simple, but worth stating

formally to clarify the crucial role of the logarithm in this equivalence.

Proposition 1.2. If
∫
Θ exp {−∑n

i=1 `(θ, xi)} dπ(θ) <∞, then it holds that P (`,KLD,Q) =

arg minq∈Q

{
KLD

(
q(θ)

∥∥∥q∗n,GB(θ)
)}

.

Proof. The arguments are once again the same as for the proof of Theorem 1.1:

taking Z =
∫
Θ exp {−∑n

i=1 `(θ, xi)} dπ(θ), it holds that

P (`,KLD,Q) = arg min
q∈Q

{∫
Θ

[
log

(
exp

{
n∑
i=1

`(θ, xi)

})
+ log

(
q(θ)

π(θ)

)]
q(θ)dθ

}

= arg min
q∈Q

{∫
Θ

log

(
q(θ)

π(θ) exp {−∑n
i=1 `(θ, xi)}

)
q(θ)dθ

}
.

= arg min
q∈Q

{∫
Θ

log

(
q(θ)

π(θ) exp {−∑n
i=1 `(θ, xi)}Z−1

)
q(θ)dθ − logZ

}
= arg min

q∈Q

{
KLD

(
q(θ)

∥∥∥π(θ) exp

{
−

n∑
i=1

`(θ, xi)

}
Z−1

)}
,

so that the result follows.

This insight has produced a growing literature seeking to minimize (local or

global) discrepancies D between Q and q∗n,GB(θ) different from the KLD (e.g. Minka,

2001; Opper and Winther, 2000; Li and Turner, 2016; Dieng et al., 2017; Hernández

Lobato et al., 2016; Yang et al., 2019; Cichocki and Amari, 2010; Ranganath et al.,

2016; Wang et al., 2018; Saha et al., 2019). For a disrepancy measure D : P(Θ)×
P(Θ)→ R, these methods compute

q∗DVI(θ) = arg min
q∈Q

{
D
(
q(θ)

∥∥∥q∗n,GB(θ)
)}

.

In the remainder, we will call such procedures Discrepancy Variational Infer-
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(a) DVI interpretation of VI (b) Interpretation of VI as in Theorem 1.3

Figure 1.2: Best viewed in color. Depicted is a schematic to clarify the concep-
tual distinction between two interpretations of VI. DVI methods interpret VI as the
KLD-projection of q∗n,GB(θ) into the variational family Q. New methods are then
derived by replacing the KLD with alternative projection operators. Alternatively,
VI posteriors can also be seen as the best solution to a constrained optimization
problem: specifically, rather than finding the global optimum q∗n,GB(θ) of the opti-
mization problem associated to P (L,KLD,P(Θ)), VI finds P (L,KLD,Q), which is
simply the Q-constrained solution in the subset Q ⊂ P(Θ).

ence (DVI) methods whenever D 6= KLD.5 We graphically summarize the inter-

pretation of DVI in Figure 1.2a. Note that DVI methods do not fall into our RoT

framework: they are generally not recoverable as P(L,D,Q) for any choice of L, D,

Q.

VI as constrained optimization

Because it will prove convenient for the remainder of the thesis, we introduce another

interpretation of VI that is obvious once seen. Surprisingly, this interpretation had

not been formally presented before work conducted as part of this thesis. To set the

stage for this interpretation, we first extend Theorem 1.1 in an obvious way. This

is done simply to emphasize that the proceeding discussion applies to both q∗n,SB(θ)

and q∗n,GB(θ). For convenience, we will state everything in terms of q∗n,GB(θ), since

it recovers q∗n,SB(θ) as a special case.

Corollary 1.1. Take L(θ, x1:n) = − log p(x1:n|θ), D = KLD, Π = P(Θ). If Z =∫
Θ exp {−L(θ, x1:n)}π(θ)dθ and 0 < Z <∞, then P (L,D,Π) = q∗n,GB(θ).

Proof. The proof is the same as for Theorem 1.1.

5Whenever D = KLD, we will refer to these methods just as standard Variational Inference (VI).
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The implication of this Corollary is that

q∗n,GB(θ)
def
= arg min

q∈P(Θ)

{
Eq(θ) [L(θ, x1:n)] + KLD (q||π)

}
. (1.9)

Comparing this to (1.8), it immediately becomes clear that q∗VI(θ) is theQ-constrained

counterpart to q∗n,GB(θ). This immediately implies that the following trivial result:

Proposition 1.3 (Optimality of standard VI). Relative to the objective associated

with q∗n,GB(θ) = P (L,KLD,P(Θ)), the variational posterior q∗VI(θ) = P (L,KLD,Q)

is the optimal solution in Q.

Proof. This essentially follows by definition. First, notice that the VI posterior belief

distribution q∗VI(θ) and the Bayesian posterior belief distribution q∗n,GB(θ) both seek

to minimize

Eq(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD(q‖π)

over q(θ). Second, notice that q∗VI(θ) is the minimizer of this objective relative to Q
while q∗n,GB(θ) is the minimizer relative to P(Θ). Third, note that Q ⊂ P(Θ).

This provides another meaningful interpretation of q∗VI(θ) depicted in Fig-

ure 1.2b. Specifically, the result endows standard VI with a special property: in

an optimization-centric view on Bayesian inference, we should prefer q∗VI(θ) to all

other possible approximations within Q provided we believe that the optimization

objective defining the Bayesian posterior is appropriate for the problem at hand.

In this sense, the result also implies the sub-optimality of alternative approx-

imation methods within the same variational family Q.

Corollary 1.2 (Suboptimality of alternative methods). Relative to the objective

associated with q∗n,GB(θ) = P (L,KLD,P(Θ)), any approximation method that pro-

duces some q∗ ∈ Q so that q∗ 6= P (L,KLD,Q) produces sub-optimal posterior

beliefs.

Proof. This follows immediately from Proposition 1.3, but for pedagogical reasons

we give another proof by contradiction. Suppose we are given a posterior belief

q∗A(θ) that could not have alternatively been produced by standard VI. First, by

definition of standard VI, it holds that that for any sequence of observations x1:n
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and for all n,

Eq∗VI(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q∗VI||π) ≤ Eq∗A(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q∗A||π) .

Since we also assumed that q∗A(θ) could not have alternatively been produced by

standard VI, it also holds that the inequality is strict, i.e.

Eq∗VI(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q∗VI||π) < Eq∗A(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q∗A||π) .

This yields the desired result.

Corollary 1.2 says that for a fixed variational family Q, any alternative ap-

proximation q∗A(θ) ∈ Q that is not equal to q∗VI(θ) will be sub-optimal under an

optimization-centric view on Bayesian inference. This concerns a host of methods,

including generalized evidence lower bound formulations, alternative Discrepancy

Variational Inference (DVI) methods or Expectation Propagation (EP) approaches.

Importantly, the result does not imply that these alternative posterior ap-

proximations will perform worse than VI in practice. In fact, from an optimization-

centric standpoint it is quite clear why such alternative approximations can deliver

empirical success: if q∗A(θ) performs better than the standard variational approxi-

mation q∗VI(θ), the objective underlying q∗A(θ) must implicitly be targeting a more

appropriate posterior belief for the problem at hand—an observation that partially

motivates some later developments of this thesis.

1.2.4 Links with Information Theory

One can also draw a close connection between the RoT and another latent variable

model: the Predictive Information Bottleneck (PIB) (see Tishby et al., 2000; Bialek

et al., 2001). Given a data generating process φ so that x1:∞ ∼ φ and a com-

pressed representation θ of the random variables x1:n, the PIB poses the following

optimization problem:

q∗(θ|x1:n) = arg min
p(θ|x1:n)∈ΠPIB

{−I(θ,xn+1:∞)} s.t. I(θ,x1:n) ≤ I0, (1.10)

where all random variables admit densities p with respect to the Lebesgue measure,

I(Z,Y ) = KLD (p(Z,Y )‖p(Z)p(Y ))
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denotes the mutual information between random variables Z and Y , and

ΠPIB =

{
q ∈ P(Θ|X n) :

∫
Θ
q(θ|x1:n)p(x1:n)dθ = p(x1:n)

}
is the set of admissible conditional distributions. This shows that the PIB max-

imizes the mutual information I(θ,xn+1:∞) between the future xn+1:∞ and the

compression (i.e. model) θ subject to an upper bound I0 on the mutual information

I(θ,x1:n) between said model and the distribution of the training data x1:n. The

PIB owes its name to the requirement that I(θ,x1:n) ≤ I0: in words, this bound

prevents the compression from being arbitrarily expressive and forces us to squeeze

the information contained in x1:n through a bottleneck.

This PIB form is generally hard to solve, but can be rewritten as a RoT-like

objective

q∗(θ|x1:n) = arg min
q∈ΠPIB

{Eq [Ln,PIB(q)] +DPIB(q‖πPIB)} .

The nature of Ln,PIB and DPIB as well as mathematical details for arriving at this form

are deferred to Appendix B.1. While the structure of the problem closely resembles

that of the RoT, there are some important differences. Most important among them,

the PIB relates to the full distributional characterizations of the random variables

x1:n via p(x1:n)—rather than to any actual observations x1:n. As a consequence,

the space of feasible solutions ΠPIB contains all possible conditional distributions

{q∗(θ|x1:n)}x1:n∈Xn—rather than a single conditional distribution q∗(θ|x1:n) depend-

ing on a single realization x1:n of x1:n only.

As shown in Alemi (2019) however, the PIB can also be variationally lower-

bounded and approximated with observations x1:n to arrive at the usual data-

dependent form of the RoT. Specifically, if we are willing to assume that x1:n are

independent, then we may rewrite p(x1:n|θ) =
∏n
i=1 p(xi|θ). This allows the coarse

approximation Ep(x1:n) [log p(x1:n|θ)] = Ep(x1:n) [
∑n

i=1 log p(xi|θ)] ≈∑n
i=1 log p(xi|θ),

which replaces dependence on p(x1:n) by dependence on a finite sample x1:n. This

yields the approximate lower bound

I(θ,x1:n) ≥ H(x1:n) + Ep(θ|x1:n)

[
Ep(x1:n) [log p(x1:n|θ)]

]
≈ H(x1:n) + Ep(θ|x1:n)

[
n∑
i=1

log p(xi|θ)

]
.
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For any π ∈ P(Θ), we can also derive another approximate upper bound via

I(θ,x1:n|xn+1:∞) ≤ Ep(θ|x1:n)p(x1:n)

[
log

(
p(θ|x1:n)

π(θ)

)]
≈ Ep(θ|x1:n)

[
log

(
p(θ|x1:n)

π(θ)

)]
Writing out the resulting bound and minimizing over p(θ|x1:n) ∈ P(Θ), we find

that its minimizer is P (− log p(·|θ), βKLD,P(Θ)).

Method `(θ, xi) D Π

Standard Bayes − log p(xi|θ) KLD P(Θ)

Power Likelihood Bayes1 − log p(xi|θ) 1
wKLD, w < 1 P(Θ)

Composite Likelihood Bayes2 −wi log p(xi|θ) KLD P(Θ)

Divergence-based Bayes3 divergence-based ` KLD P(Θ)

Gibbs/PAC-Bayes 4 any ` various D P(Θ)

VAE5,† − log pζ(xi|θ) KLD Q
β-VAE6,† − log pζ(xi|θ) β · KLD, β > 1 Q
Bernoulli-VAE7,† continuous Bernoulli KLD Q
Standard VI − log p(xi|θ) KLD Q
Power VI8 − log p(xi|θ) 1

wKLD, w < 1 Q
Utility VI9 − log p(xi|θ) + log u(h, xi) KLD Q
Regularized Bayes10 − log p(xi|θ) + φ(θ, xi) KLD Q
Gibbs VI11 any ` KLD Q
Posteriors in Online Learning
12

any ` f -divergences P(Θ) / Q

Table 1.1: Relationship of P (`,D,Q) to a selection of existing methods. 1(e.g.
Grünwald, 2011, 2012; Holmes and Walker, 2017; Grünwald and Van Ommen, 2017;
Miller and Dunson, 2019), 2(e.g. Varin et al., 2011; Pauli et al., 2011; Ribatet et al.,
2012; Hamelijnck et al., 2019), 3(e.g. Hooker and Vidyashankar, 2014; Ghosh and
Basu, 2016; Futoshi Futami et al., 2018; Jewson et al., 2018; Chérief Abdellatif
and Alquier, 2020), 4(Bissiri et al., 2016; Germain et al., 2016; Guedj, 2019; Syring
and Martin, 2019), 5(Kingma and Welling, 2013), 6(Higgins et al., 2017), 7(Loaiza
Ganem and Cunningham, 2019) 8(e.g. Yang et al., 2020; Huang et al., 2018) 9(e.g.
Kuśmierczyk et al., 2019; Lacoste Julien et al., 2011) 10(Ganchev et al. (2010), but
only if the regularizer can be written as Eq(θ) [φ(θ,x)] as in Zhu et al. (2014)), 11(e.g.

Alquier et al., 2016) 12(e.g. Alquier, 2021) †For notational clarification for the VAE

entries in the table, see Appendix B.2.
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1.3 Other directions of related research

It should go without saying that many other directions of research have sought

to extend or modify Bayesian posteriors in various ways. This includes utility-

based inference, so-called regularized Bayesian inference, divergence-based Bayesian

methods, belief distributions motivated via Online Learning, and even Variational

Autoencoders (VAEs). Notably, virtually all of these approaches can be seen as

special cases of the RoT. While it is beyond the scope or purpose of this introduction

to discuss each of these approaches and do them justice, Table 1.1 gives an overview

of some of the most important ones.

1.4 Axiomatic Derivation

So far, we have focused on relating the RoT to existing generalizations aimed at

fixing various shortcomings of Bayesian inference, and showing that it recovers them

as a special case. Since statistics is foremost an epistemological science, another

question well worth finding an answer to is under which conditions it is advisable

for a statistician to construct posteriors via the RoT. To this end, the following

section provides a simple axiomatic foundation. In essence, we argue that a useful

generalization of standard Bayesian posteriors should have three main properties:

First—and like standard Bayesian inference—it should be able to trade off prior

information against information in the data by means of an optimization problem

over probability measures. Second, the structure of this optimization problem should

be the same regardless of the prior, loss, and data used to compute the belief. Third,

the generalization must able to recover standard Bayesian inference.

Axiom I (Representation) The posterior q∗ ∈ P(Θ) solves an minimisation

problem over some space Π ⊆ P(Θ). For any finite sample {xi}ni=1, the minimisa-

tion problem’s objective is increasing in two arguments:

(i) An expected in-sample loss L(θ, x1:n) taken with respect to q∗(θ).

(ii) Deviation from the prior π(θ) as measured by some statistical divergence D.

Simply put, Axiom I formalizes the optimization-centric view on Bayesian

inference. More precisely, it tells us that for a fixed prior π, posteriors are specified

through an optimization problem with three parts: The loss `, the divergence D(·‖π)

and the space Π over which the objective is optimized. Making this insight more

precise, we can derive the following representation—which really is just a more

convenient restatement of the Axiom.
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Theorem 1.2 (Form 1). Under Axiom I, posterior belief distributions can be writ-

ten as

q∗(θ) = arg min
q∈Π

{
f
(
Eq(θ) [L(θ, x1:n)] , D(q||π)

)}
,

where f : R2 → R is some function that increases in both arguments, and may

depend on π,Π, `, {xi}ni=1, or D.

Proof. This follows directly from Axiom I: Firstly, any posterior belief distribution

q∗(θ) is the solution to an optimization problem over Π. Thus, for an appropriately

structured objective Obj, one can write

q∗(θ) = arg min
q∈Π

{Obj(q)} .

By (i) and (ii) of Axiom I, we also know that the optimization’s objective depends

only on D(q||π) and Eq(θ)[L(θ, x1:n)]. Clearly then, for some function f : R2 → R,

Obj(q) = f
(
Eq(θ) [L(θ, x1:n)] , D(q||π)

)
,

which completes the proof.

This result is a first and helpful step, but in itself does not suffice to yield

objectives that are useful in practice. Specifically, we need to get a handle on the

function f . It is clear that under Axiom I alone, very little can be said about

f . In fact, the mathematical mechanism f by which we compute posteriors may

depend on (random) data and the loss, which is clearly undesirable and notably

not a feature of standard Bayesian inference.6 Further, since our explicit target is a

generalization of the Bayesian inference problem, we will have to restrict the form

of f so that Theorem 1.2 admits only the Bayesian posterior whenever D = KLD

and Π = P(Θ). Both these issues are addressed in the following Axiom.

Axiom II (Recovers Bayesian Posteriors) Function f in Theorem 1.2 does not

depend on π,Π, `, {xi}ni=1, or D. Further, q∗ is the posterior q∗n,SB(θ) if D = KLD,

Π = P(Θ).

The intution of Axiom II is clear: in the case of q∗n,SB(θ), D = KLD, Π =

P(Θ); and f does not depend on the data {xi}ni=1, the prior π, the loss `, etc. As we

want to recover q∗n,SB(θ), we thus impose the same conditions for other posteriors.

Fortunately, this also drastically simplifies the representation of Theorem 1.2.

6In particular, Bayes’ rule does not depend on the choice of likelihood, prior, or the data observed.
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Theorem 1.3. Suppose the posterior belief q∗ ∈ P(Θ) satisfies Axioms I and II.

Then the objective of Theorem 1.2 can be written as f(x, y) = x+ y so that

q∗(θ) = arg min
q∈Π

{
Eq(θ) [L(θ, x1:n)] +D(q‖π)

}
= P (L,D,Π). (1.11)

Proof. This follows by combining Theorem 1.2 with Axiom II and the identity

q∗n,SB(θ) = arg min
q∈P(Θ)

{
Eq(θ) [− log p(xi|θ)] + KLD(q‖π)

}
,

so that the result follows.

The last result suggests that the RoT is not only an intuitively appealing

flexible recipe for the optimization-centric design of new posterior distributions, but

also a principled one. To conclude this section, we shall point out in two further

remarks why the RoT is an attractive proposition. The first of these explains some

connections the RoT has with the fundamental properties of standard Bayesian

procedures. The second notes an attractive modularity property that ties in directly

with the shortcomings of standard Bayesian methods as belaboured in Chapter 1.

Remark 1.1. Theorem 1.3 demonstrates that in combination with Axiom I, Axiom

II enforces an additive relationship between the expected loss and prior regularizer.

This additive relationship is desirable for a number of reasons, some of which include

• Invariance to additive, but not multiplicative constants: adding con-

stants to L will not change the posterior. In other words for, any C ∈ R,

we have P (L,D,Π) = P (` + C,D,Π). However, multiplying L by w (or

equivalently, D by 1
w ) for some w ∈ R changes the posterior that is com-

puted. This means that we recover a well-known feature of other Bayes-like

procedures. In fact, exponentiating likelihoods p(·|θ)w—which is equivalent to

multiplying `(θ, xi) = − log p(xi|θ) with some w ∈ (0, 1)—is a popular tool in

the existing literature on generalized Bayesian methods with D = KLD (e.g.

Grünwald, 2011, 2012; Holmes and Walker, 2017; Grünwald and Van Ommen,

2017; Miller and Dunson, 2019) and serves to up-weight (or down-weight) the

information of the data relative to the prior.

• Recovery of (D-approximated) prior without additional Informa-

tion: Given no information from the observations (i.e. if L = 0), the solu-

tion of the optimization problem in Theorem 1.3 is the member of Π that is
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closest to the prior π(θ) as measured by D. Put differently, P (0, D,Π) =

arg minq∈ΠD(q‖π). Clearly then, if π ∈ Π we have that P (0, D,Π) = π.

• Generalized (weak) likelihood principle: Data x1:n favours θ1 over θ2

if and only if L (θ1, x1:n) < L (θ2, x1:n). This is the natural generalization

of the ‘weak likelihood principle’ outlined by Sober (2008) from ` (θ, xi) =

− log p(xi|θ) to general loss functions , see also Mayo Wilson and Saraf (2020).

In summary, Theorem 1.3 results in a number of natural properties that one would

want to hold for any belief distribution trading off prior against data-driven infor-

mation.

Remark 1.2. Beyond the axiomatic development presented, there is another ad-

vantage of the RoT: each component of the optimization problem defined by the

posterior P (L,D,Π) serves a specific and separate purpose.

(L) A loss L : Θ × X n → R. The loss defines the parameter of interest θ by

linking it to the observations x1:n. To simplify presentation, we will assume

that all losses depend only on a parameter θ rather than on a latent variable.7

(P) A divergence D : P(Θ) × P(Θ) → R+ that regularizes the posterior by

penalizing deviations from the prior π(θ). Beyond regularization, D also de-

termines the nature of the uncertainty induced by π. To see this, consider

D = 0 and the (non-RoT) problem

q̂(θ) = arg min
q∈P(Θ)

{
Eq

[
n∑
i=1

`(θ, xi)

]}
. (1.12)

Denoting θ̂n = arg minθ∈Θ {L(θ, x1:n)} and δy(x) as the Dirac measure at

y, it is clear that q̂(θ) = δ
θ̂n

(θ), which holds as δ
θ̂n
∈ P(Θ). Clearly, the

absence of D corresponds to the absence of any uncertainty in the posterior.

Similarly, the nature of D determines the nature in which uncertainty about

θ is quantified.

(C) A set of feasible posteriors Π ⊆ P(Θ): By definition, any q ∈ Π is a feasible

solution for the optimization problem associated to the posterior P (L,D,Π).

The larger we choose the set Π, the more complicated we allow the result-

ing optimization problem to be. Consequently, the choice of Π amounts to

regulating our computational budget.

7 This requirement is not at all essential and easily relaxed: for instance, in the experiments on
Deep Gaussian Processes in Chapter 6, all losses are defined relative to latent variables.
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In summary, each of these three arguments directly addresses one of the problems

(EP), (EL) and (EC) in Section 1.1: Firstly, the loss L determines the parameter

and thus can be used to tackle model misspecification and other violations of (L).

Secondly—assuming one has specified the best possible prior—the divergence D can

tackle (P) by shaping the nature in which priors affect the way in which the posterior

quantifies uncertainty. Thirdly, the choice of Π can directly address (C): The more

computational power is available, the more complex Π is allowed to become.

1.5 Structure of this thesis

The core contribution of this thesis will be the exploration and study of the Rule

of Three (RoT). This proceeds in three parts: In the first part (Chapters 2 and 3),

we will study its theoretical properties. This includes conditions under which RoT

posteriors exist and are unique (Chapter 2). Beyond that, we study the dual of the

minimization problem defining the RoT; and show that it allows us to re-interpret

generalized Bayesian procedures as adversarially robust games (Chapter 2). Lastly,

we also study frequentist consistency for RoT posteriors when the space over which

the optimization is performed is parameterized (Chapter 3).

In the second part (Chapters 4–6), we study one of the main applications for

the RoT of relevance in Machine Learning: Generalized Variational Inference (GVI).

First, we discuss how to compute GVI posteriors using modern computing methods

that have emerged with the increasing popularity of ordinary Variational Inference

(VI) in Chapter 4. Next, we illustrate how changing the prior regularizer D in GVI

posteriors can provide robustness if the prior belief is misspecified (Chapter 5); and

how this leads to performance improvements when compared to a standard Bayesian

approach. This is demonstrated on a range of Bayesian Neural Network (BNN)

examples. Lastly, Chapter 6 discusses how GVI can make probabilistic inferences

in black box Machine Learning methods robust to model misspecification. This

implications are illustrated on Deep Gaussian Processes (DGPs)—a canonical black

box Bayesian model of practical importance in many applications.

In the third and last part of the thesis (Chapters 7 and 8), we will study

the methodological ramifications of the RoT on two classes of models: Changepoint

(CP) models, and intractable likelihood models. For different reasons, both these

statistical problems are often severely and adversely affected by the misalignment

between the mathematical foundations of standard Bayesian inference on the one

hand, and the real world on the other hand.
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Part I

Theoretical Advances
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Chapter 2

Existence, Uniqueness, and

Duality

Summary: We give a full overview of the theoretical findings that relate to the

optimization problem posed by the Rule of Three (RoT). In particular, we first study

conditions under which RoT posteriors exist and are unique. While uniqueness is

generally harder to show if D is not strictly convex in its first argument, existence

is easier to prove. The second question we answer is what the dual problem of the

minimization underlying the RoT looks like. Doing so, we form a direct and hitherto

unknown connection between both standard and generalized versions of Bayesian

inference on the one hand, and adversarial robustness on the other hand.

For simplicity, we will avoid introducing measure-theoretic notation in the

remainder. To this end, we will typically assume that all probability measures

of interest have densities with respect to the Lebesgue measure. We also slightly

abuse notation in two ways: We often write q ∈ P(Θ) for probability densities q(θ)

of Borel measures on Θ, even though probability densities themselves are not in

P(Θ). However, q(θ) induces a Borel measure µq ∈ P(Θ) as µq(A) =
∫
A q(θ)dθ

for any measurable set A ⊂ Θ. Thus, whenever we write q ∈ P(Θ) and it is clear

that q is a density from context, what we mean is that µq ∈ P(Θ). Similarly, when

we write q1 6= q2, we mean that there exists a measurable set A ∈ Θ such that

µq1(A) 6= µq2(A).

While we informally introduced the RoT in Chapter 1, we begin our analysis

with a number of more formal definitions that will be applicable throughout this

thesis.
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Definition 2.1 (Loss Function). Losses are functions L : Θ × X n → R which are

lower bounded. For observations x1:n ∈ X n, their empirical risk minimizers are

given by

θ̂n ∈ arg inf
θ∈Θ

{L(θ, x1:n)} ,

and all elements of arg infθ∈Θ {L(θ, x1:n)} are finite-valued.

Definition 2.2 (Statistical Divergence). Statistical divergences are functions D :

P(Θ)× P(Θ)→ R so that D(q‖π) ≥ 0 and D(q‖π) = 0⇐⇒ q = π.

With these definitions out of the way, we can now proceed to formally stating

the RoT—the conceptual corner stone of this thesis.

Definition 2.3 (Rule of Three (RoT)). For observations x1:n ∈ X n, a prior π ∈
P(Θ), a space Π ⊆ P(Θ), a loss function L : Θ×X n → R and a divergence D(·‖π) :

Π → R≥0, we say that a posterior belief distribution q∗ has been constructed via

the Rule of Three (RoT) if it can be written as

q∗ ∈ P (L,D,Π) = arg inf
q∈Π

{
Eq(θ) [L(θ, x1:n)] +D(q‖π)

}
.

Here, P (L,D,Π) is a short-hand notation for the RoT suppressing dependence on

x1:n and π. If L decomposes additively as L(θ, x1:n) =
∑n

i=1 `(θ, xi), then we

additionally define P (L,D,Π) = P (`,D,Π).

Contrary to the introductory exposition, Definition 2.3 has used the arg inf

(rather than the arg min) operator to define the RoT—meaning that the RoT is

defined even if the minimizer is not attained inside Π. However, while we cannot

generally assume that the minimizer q∗(θ) is unique, in the more methodologically

oriented chapters of this thesis we will often ignore this problem and treat posteriors

derived via the RoT as if they had unique minimizers; and write P (L,D,Π) =

arg minq∈Π

{
Eq(θ) [

∑n
i=1 L(θ, x1:n)] +D(q‖π)

}
for convenience. As our first result

will reveal, this assumption is unproblematic so long as D(·‖π) is strictly convex on

Π.

2.1 Existence and Uniqueness

Since we will often treat P (L,D,Π) as if a minimizer in the interior of Π could

be guaranteed to exist, an important question is under which conditions this is
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justified. Using basic analysis, the next result gives some sufficient conditions for

an even stronger result: uniqueness.

Proposition 2.1. Suppose that Π is convex, that q 7→ Eq(θ)[L(θ, x1:n)] is linear,

and that q 7→ D(q‖π) is a strictly convex function on Π. Then, P (L,D,Π) is a

singleton.

Proof. This follows by basic analysis: if, q 7→ Eq(θ)[L(θ, x1:n)] is linear, it is a convex

function. Thus, if q 7→ D(q‖π) is strictly convex, the function q 7→ Eq(θ)[L(θ, x1:n)]+

D(q‖π) also is. Since L and D are both lower bounded (see Definitions 2.1 and 2.2),

the function has a unique minimizer and the result follows.

This result is simple, but quite useful since most divergences of practical

interest will be convex if we choose Π = P(Θ) to be the set of Borel measures on

Θ. For instance, it holds for all strictly convex f -divergences.

Corollary 2.1. Let L be any loss function, and take Π = P(Θ). If D is an f -

divergence so that f is a strictly convex function on R+ with f(1) = 0 and

D(q‖π) = Eπ(θ)[f(q(θ)/π(θ))].

Then, P (L,D,Π) is a singleton.

Proof. This follows by applying Proposition 2.1, since it is well-known that q 7→
D(q‖π) is strictly convex whenever f is.

The same result could be derived for numerous divergences outside the class

of f -divergences by following the same steps—including Rényi-divergences, a number

of Integral Probability Metrics, and certain members of the family of β- and γ-

divergences.

In some cases, we will not be able to show that P (L,D,Π) is a singleton.

In these cases, we may still want to show that a minimizer exists, which is to say

that P (L,D,Π) is not the empty set. There are two ways of guaranteeing this: via

a weaker convexity requirement on D, or via an assumption of coerciveness on L.

The former is a simple modification of Proposition 2.1, while the latter is technically

quite involved and relies on tightness and Prokhorov’s Theorem.

Proposition 2.2. Suppose that D(·‖π) 7→ R is a convex function on Π, and that

Π is a convex, closed and bounded set. Then, P (L,D,Π) is non-empty.

Proof. This follows by similar arguments as Proposition 2.1: q 7→ Eq(θ)[L(θ, x1:n)]+

D(q‖π) is convex, L and D are lower bounded, and so a minimizer exists.
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We next prove a more involved result that also guarantees that P (L,D,P(Θ))

is non-empty, but under much milder assumptions on D. In particular, all that is

required is that D is lower semi-continuous on the set of Borel measures P(Θ) on

Θ. This is an extremely weak requirement, and will be satisfied by virtually any

divergence of practical interest.

Definition 2.4 (lower-semicontinuity). A function F : X → R is lower-semicontinuous

at x ∈ X if for every sequence {xn}n∈N so that xn → x,

f(x) ≤ lim inf
n→∞

f(xn).

We say that a function F is lower-semicontinuous on X if F is lower-semicontinuous

for all x ∈ X.

In order to state the proof, we need a technical Lemma that relates coercive-

ness and the existence of minimizers.

Lemma 2.1. Suppose the functional q 7→ F (q) defined over P(Rd) for some d ∈ N
is lower-bounded, coercive, and lower semi-continuous. Then, there exists q∗ so that

infq∈P(Θ) F (q) = F (q∗).

Proof. Let {qn}n∈N be a minimizing sequence so that infq∈P(Θ) F (q) = limn→∞ F (qn).

Because F is coercive, its sub-level sets are closed and compact. Because of this and

thanks to Prokhorov’s Theorem, it must hold that there exists q∗ ∈ P(Θ) so that

weakly, qn → q∗ as n → ∞. By definition of the lower-semicontinuity of F , it also

holds that

F (q∗) ≤ lim
n→∞

F (qn) = inf
q∈P(Θ)

F (q).

Since q∗ ∈ P(Θ), we also have that infq∈P(Θ) F (q) ≤ F (q∗), so that F (q∗) =

infq∈P(Θ) F (q).

Theorem 2.1. Let Θ ⊆ Rd for d ∈ N be a (subset of a) Euclidean space. Suppose

that θ → L(θ, x1:n) is norm-coercive on Θ or that Θ is a compact space. Further,

assume that q 7→ D(·‖π) is lower semi-continuous on P(Θ). Then P (L,D,P(Θ)) is

non-empty.

Proof. We prove this by showing that the function given by

q 7→ Eq(θ)[L(θ, x1:n)] +D(q‖π) (2.1)
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is coercive (which is to say that its sub-level sets are both closed and compact).

Once this is established, we apply Lemma 2.1 to conclude the proof.

First, note that q 7→ Eq(θ)[L(θ, x1:n)]+D(q‖π) has closed sub-level sets, since

the functional is lower semi-continuous. Next, observe that it suffices to show that

{q ∈ P(Θ) : Eq(θ)[L(θ, x1:n)] ≤ t} is compact for any t ∈ R, since it clearly holds that

{q ∈ P(Θ) : Eq(θ)[L(θ, x1:n)] + D(q‖π) ≤ t} ⊆ {q ∈ P(Θ) : Eq(θ)[L(θ, x1:n)] ≤ t}
by virtue of the fact that D(q‖π) ≥ 0 for any q ∈ P(Θ). More specifically, being

a subset here implies (countable) compactness because P(Θ) is a metric space (via

Prokhorov’s metric), and because {q ∈ P(Θ) : Eq(θ)[L(θ, x1:n)] + D(q‖π) ≤ t} is a

closed set by virtue of q 7→ Eq(θ)[L(θ, x1:n)] +D(q‖π) being a lower semi-continuous

function.1 Thus, we proceed by showing that q 7→ Eq(θ)[L(θ, x1:n)] has compact

lower sub-level sets.

First, suppose that Θ is compact in the Euclidean metric. It is well-known

that this immediately implies that P(Θ) is tight. By Prokhorov’s Theorem, this

implies that P(Θ) is compact, which means that any subset of P(Θ) is compact.

Thus, q 7→ Eq(θ)[L(θ, x1:n)] is coercive whenever Θ is compact.

Now instead of compactness for Θ, suppose that θ 7→ L(θ, x1:n) is norm-

coercive on Θ. In other words, L(θ, x1:n) → ∞ as ‖θ‖ → ∞, where ‖ · ‖ denotes

the usual Euclidean norm. First, define the sub-level sets as St = {q ∈ P(Θ) :

Eq(θ)[L(θ, x1:n)] ≤ t}. Since θ 7→ L(θ, x1:n) is coercive in Θ, for any constant

C ∈ R, there exists θC so that for a sufficiently large ball BθC (rC) = {θ ∈ Θ :

‖θ − θt‖1/2 ≤ rC} of radius rC around θC , L(θ, x1:n) ≥ C for all θ /∈ BθC (rC).

Thus, for any q ∈ St and for any arbitrarily small and fixed ∆ > 0,

C

∫
Θ\BθC (rC)

q(θ)dθ ≤
∫

Θ\BθC (rC)
L(θ, x1:n)q(θ)dθ < t+ ∆ <∞.

Rearranging terms, this immediately implies that∫
Θ\BθC (rC)

q(θ)dθ <
t+ ∆

C

Since C was chosen arbitrarily and can be picked arbitrarily large thanks to the

coerciveness of L(θ, x1:n), this immediately implies that St is tight. Again, by

Prokhorov’s Theorem this implies that St is compact, which completes the proof.

While all existence and uniqueness results derived in this section consider

problems for convex sets Π, in practice one is often forced to compute P (L,D,Q) for

1In metric spaces, if K is compact and K′ ⊂ K, it suffices to show that K′ is closed to conclude
that K′ must be compact.
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some set of parametric distributions Q ⊂ P(Θ) as in variational methods. Crucially,

Q will typically not be convex: for example, if we choose Q to be the set of normal

distributions, Q will not contain mixtures of normals. Though the current thesis

does not provide theoretical guarantees for the uniqueness of these posteriors, this

is not treated as a problem throughout. There are two main reasons for this: firstly,

this problem is all but new. In fact, in practice most standard variational inference

(VI) posterior approximations of the form P (− log p(·|θ),KLD,Q) proceed without

guarantees on their uniqueness (or in fact even existence). Secondly—and closely

mirroring the standard VI case—our empirical findings suggest that it is reasonable

to expect objects of the form P (L,D,Q) to be unique in most cases of practical

interest.

2.2 Duality & Adversarial Robustness

So far, the only property of the RoT we have established relates to its fundamental

properties as an optimization problem. We shall stick with this theme for now, and

ask a second question: when thinking about the minimization problem P (L,D,Π),

how can we derive its dual form? And even more importantly, what can we learn

from the dual?

2.2.1 Preliminaries

To this end, the remainder of this section uses the optimization-centric formulation

of Bayesian procedures to tap into a very different branch of optimization: Duality

Theory. Doing so allows us to leverage the structural and constraint properties of

the optimization problem to explain the robustness of generalized Bayesian proce-

dures specified through the RoT via Fenchel duality. While Fenchel duality has been

extremely useful for the theoretical study of other Machine Learning methods such

as Generative Adversarial Networks (see Farnia and Tse, 2018; Liu and Chaudhuri,

2018; Husain et al., 2019) and regularization (Husain, 2020), the remainder is the

first analysis of this kind for (generalised and standard) Bayesian methods, and

lead to the discovery of a fundamental connection between risk robustness and the

variational optimization problem underlying (generalised and standard) Bayesian

inference. Understanding this connection advances our insight into Bayesian meth-

ods: Specifically, it provides a new, concise, and rigorous explanation why a large

class of Bayes-like methods typically outperform point estimation methods.

Before we can state it formally, we will need to define additional notation.

We take Fb(Θ) as the set of bounded and measurable functions on Θ, and B(Θ)
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as its dual space—the set of finitely-additive measures on Θ. Throughout, we will

denote P(Θ) as the set of Borel measures on Θ. (Note that P(Θ) ⊂ B(Θ).) Further,

we take w ∈ R+, and we define the objective value associated with P (wL,D,Π) =

P (L,w−1D,Π) as

GL,w−1D,Π := inf
q∈Π

{
Eq(θ) [L(θ, x1:n)] + w−1D(q‖π)

}
. (2.2)

Note that the role of w−1 here is to up- or down-weight the regularizer relative

to the loss. Equivalently, the role of w is to up- or down-weight the loss relative

to the regularizer. For the special case of Gibbs posteriors, the role of w has been

subject of frequent discussion (e.g. Grünwald, 2011, 2012; Holmes and Walker, 2017;

Grünwald and Van Ommen, 2017; Miller and Dunson, 2019) and can be interpreted

directly, since

P (L,w−1
KLD,P(Θ)) = P (w · L,KLD,P(Θ)) =

exp{−wL(θ, x1:n)}π(θ)∫
Θ exp{−wL(θ, x1:n)}dπ(θ)

.

For any set A ⊆ B(Θ) and h ∈ Fb(Θ), we use σA(h) = supν∈A 〈h, ν〉 and ιA(ν) =

∞ · Jν /∈ AK to denote the support and indicator functions such as in Rockafellar

(1970).

Throughout the development of our duality theory, we will make use of the

following regularity condition.

Assumption 2.1. Θ and X admit Polish topology. D is a divergence that is

both convex and lower semi-continuous in its first argument, the loss L(·, x1:n) is an

element of Fb(Θ), and the prior π is an element of P(Θ).

With this in hand, we can now define one of the main tools of our analysis:

the Legendre-Fenchel dual.

Definition 2.5. For π ∈ P(Θ), the Legendre-Fenchel conjugate of a regularizer

D(·‖π) : P(Θ)→ R is

D?
π(L′) = sup

µ∈B(Θ)

{∫
Θ
L′(θ)dµ(θ)−D(µ‖π)

}
,

for any L′ ∈ Fb(Θ).

For convenience, we also define an auxiliary minimization problem which

appears as part of the Legendre-Fenchel dual.
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Figure 2.1: The left image illustrates a choice for Π which consists of five probability
vectors over Θ = {a, b, c}. The right illustrates co (Π) over this choice where one
can see that the selection of probabilities increases vastly.

Definition 2.6. For any set of probability distributions Π ⊆ P(Θ), we define for

any L(·, x1:n) ∈ Fb(Θ)

EΠ(L) = inf
q∈Π

Eq(θ) [L(θ, x1:n)]

In words, EΠ(L) denotes the smallest possible value achievable by integrating

the loss L(·, x1:n) with an element from the class of probability distributions Π. For

example, if there is a unique minimizer θ̂ = arg minθ∈Θ L(θ, x1:n) and a sequence

qn ∈ Π so that qn → δθ̂ as n→∞, then we will have EΠ(L) = minθ∈Θ L(θ, x1:n).

Lastly, we introduce the closed convex hull of a set Π of admissible solutions

to the optimization problem in Definition 2.3. For a set of potential posteriors Π,

co (Π) denotes the smallest closed and convex set containing Π. In particular, we

will have

λ · q + (1− λ) · q′ ∈ co (Π) , (2.3)

for all q, q′ ∈ Π and λ ∈ [0, 1]. We illustrate this in Figure 2.1 for a discrete parameter

space Θ = {a, b, c} with only three elements. In this setting, P(Θ) is simply the

set of vectors in R3
≥0 whose co-ordinates sum to 1; though they can be viewed as

elements in R2 enclosed in a triangle with vertices (0, 0), (0, 1) and (1, 0). While

the definition of the convex hull is best understood in the geometric sense, it also

has a clear probabilistic counterpart in mixture models: For example, if Π is the set

of normal distributions, then co (Π) is the set of all (finite and infinite) mixtures of

normal distributions on Θ.

For pedagogical reasons, we now proceed by illustrating all relevant con-

cepts and definitions for this section on a simple example based on a least squares
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loss. This example is of little practical interest, and mostly meant for the reader’s

convenience.

Example 2.1. Given a dataset {(zi, yi)}ni=1 and xi = (zi, yi) so that zi, yi ∈ R and

X = R2, and the parameter space Θ = [0, 1], define the corresponding least squares

loss

L(θ, x1:n) =

n∑
i=1

(z>i θ − yi)2.

Further, consider for some m ∈ N the discretely supported and uniform prior

π(θ) =
1

m+ 1

m∑
j=0

δ(j/m)(θ)

and the variational family supported on the same atoms as

Π =

{ m∑
j=0

wjδ(j/m)(θ) : wj ≥ 0,

m∑
j=0

wj = 1

}
.

Clearly, both π ∈ Π and co (Π) = Π. Considering as regularizer the χ2-divergence

given for any q ∈ Π by

χ2(q‖π) = Eπ(θ)

[(
π(θ)

q(θ)
− 1

)2 ]
,

its Legendre-Fenchel conjugate is defined as

χ2,?
π (L′) = sup

µ∈B(Θ)

{∫
Θ
L′(θ)dµ(θ)− χ2(µ‖π)

}
,

for any L′ ∈ Fb(Θ). Further, taking w−1 = 1, the corresponding RoT is

P (L,w−1χ2,Π) = arg inf
q∈Π

{
Eq(θ) [L(θ, x1:n)] + χ2(q, π)

}
.

Lastly, we have that

EΠ(L) = inf
w1:n:

∑m
i=1 wi=1,wi≥0∀i


m∑
j=0

n∑
i=1

wj(zi · (j/m)− yi)2

 .

Before we can state the two main Theorems of this section, we will need

to introduce a number of key technical Lemmas. For completeness, we state these

Lemmas here but defer their proofs to Appendix C.1.
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Lemma 2.2.1. For any Π ⊆ P(Θ) and L ∈ Fb(Θ), we have

Eco(Π)[L] = EΠ[L].

Lemma 2.2.2. For any prior π ∈ P(Θ), we have

D(q‖π) = sup
ρ∈Fb(Θ)

{Eq(θ)[ρ(θ)]−D?
π(ρ)}.

Lemma 2.2.3. For any prior π ∈ P(Θ), regularizer D and set Π ⊆ P(Θ), define a

function F : P(Θ)×Fb(Θ)→ R as

F (q, ρ) = Eq(θ) [L(θ)] + Eq(θ) [ρ(θ)]−D?
π(ρ) + ιco(Π)(q).

It holds that

inf
q∈P(Θ)

sup
ρ∈Fb(Θ)

F (q, ρ) = sup
ρ∈Fb(Θ)

inf
q∈P(Θ)

F (q, ρ).

2.2.2 Main Results regarding Duality

We can now finally prove the main results of the current section. The first of these

is a strong duality result that reveals an interesting structure of the dual problem

associated with the RoT.

Theorem 2.2 (Strong Duality). For any Π ⊆ P(Θ), π ∈ P(Θ), and loss L ∈ Fb(Θ),

it holds for any w−1 > 0 that

GL,D,co(Π) = sup
ρ∈Fb(Θ)

{
EΠ(L+ ρ)− w−1D?

π

( ρ

w−1

)}
. (2.4)
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Proof.

inf
q∈co(Π)

{
Eq(θ) [L(θ)] +D(q‖π)

}
(1)
= inf

q∈co(Π)

{
Eq(θ) [L(θ)] + sup

ρ∈Fb(Θ)

{
Eq(θ) [ρ(θ)]−D?

π(ρ)
}}

= inf
q∈P(Θ)

sup
ρ∈Fb(Θ)

{
Eq(θ) [L(θ)] + Eq(θ) [ρ(θ)]−D?

π(ρ) + ιco(Π)(q)
}

(2)
= sup

ρ∈Fb(Θ)
inf

q∈P(Θ)

{
Eq(θ) [L(θ)] + Eq(θ) [ρ(θ)]−D?

π(ρ) + ιco(Π)(q)
}

= sup
ρ∈Fb(Θ)

{
inf

q∈P(Θ)

{
Eq(θ) [L(θ) + ρ(θ)] + ιco(Π)(q)

}
−D?

π(ρ)

}
(3)
= sup

ρ∈Fb(Θ)

{
Eco(Π)(L+ ρ)−D?

π(ρ)
}

(4)
= sup

ρ∈Fb(Θ)
{EΠ(L+ ρ)−D?

π(ρ)} ,

where (1) is due to Lemma 2.2.2, (2) is due to Lemma 2.2.3, (3) is by definition of

EΠ and (4) holds due to Lemma 2.2.1. The proof concludes by noting that the dual

of w−1D(·, π) is w−1D?
π(·/w−1).

The above result is interesting because it shows that the RoT has a close

correspondence to adversarial games. Specifically, the adversary in the game of

Theorem 2.2 changes the original loss L via some adversarial perturbation ρ so that

the minimum achievable integrated and perturbed loss Eq(θ)[L+ρ]—in other words,

EΠ[L + ρ]—is as large as possible. For perturbing the loss in this way however,

the adversary pays a price w−1D?
π(ρ/w−1). Note in particular that the nature of

this price for worsening the loss depends on the choice of prior π and the choice of

divergence D. As we shall see in the examples presented later, the role of π becomes

that of a cost function: in essence, it is more expensive for the adversary to perturb

L in regions of Θ with high probability under π. This prevents the perturbation ρ

from being flexible enough to make EΠ[L+ ρ] infinitely large.

Regarding the result, note also that Π ⊆ co (Π), which implies that in general,

GL,D,Π ≥ GL,D,co(Π). In practice, this means that unless our RoT is built on a set Π

for which it holds that Π = co (Π), we cannot use the above strong duality result.

However, even if Π 6= co (Π) we would still be able to conclude that

GL,D,Π ≥ sup
ρ∈Fb(Θ)

{
EΠ(L+ ρ)− w−1D?

π

( ρ

w−1

)}
. (2.5)

For the standard choice Π = P(Θ), it clearly holds that Π = co (Π). Hence,
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we obtain the following strong duality result that holds for standard Bayesian infer-

ence problems as well as for posteriors derived via the RoT with Π = P(Θ). This

includes the generalised posteriors studied in the previous chapter, as well as those

considered by Reid et al. (2015); Knoblauch (2019); Alquier (2021).

Corollary 2.2. If Π = P(Θ) then for any π,∈ P(Θ), L ∈ Fb(Θ) and w > 0, it

holds that

GL,D,Π = sup
ρ∈Fb(Θ)

{
EΠ(L+ ρ)− w−1D?

π

( ρ

w−1

)}
.

While Corollary 2.2 connects the two values of the objectives at the optimum,

we can make this dual connection much firmer. In fact, the RoT primal and its

adversarial dual share another—perhaps even more important—connection: The

RoT posterior minimizes the loss that results from the adversary’s perturbation.

Theorem 2.3 (Adversarial Robustness of GVI). Let ρ∗ denote a maximizer of the

dual in (2.5). If Π is convex and closed, it holds that

P (L,D,Π) = arg inf
q∈Π

Eq(θ) [L(θ) + ρ∗(θ)] .

Proof. Take qD,L,Π ∈ P (L,D,Π). Then, note that

EqL,D,Π(θ) [L(θ) + ρ∗(θ)] ≥ inf
q∈Π

Eq(θ) [L(θ) + ρ∗(θ)]

by definition. For the other direction, we have

inf
q∈Π

Eq(θ) [L(θ) + ρ∗(θ)]− EqL,D,Π(θ) [L(θ) + ρ∗(θ)]

=

(
EΠ[L+ ρ∗]− w−1D?

π

(
ρ∗

w−1

))
+ w−1D?

π

(
ρ∗

w−1

)
− EqL,D,Π(θ) [L(θ) + ρ∗(θ)]

(1)
= sup

ρ∈Fb(Θ)

{
EΠ[L+ ρ]− w−1D?

π

( ρ

w−1

)}
+ w−1D?

π

(
ρ∗

w−1

)
− EqL,D,Π(θ) [L(θ) + ρ∗(θ)]

(2)
= inf

q∈Π

{
Eq[L] + w−1D(q, π)

}
+ w−1D?

π

(
ρ∗

w−1

)
− EqL,D,Π(θ) [L(θ) + ρ∗(θ)]

(3)
= EqL,D,Π(θ)[L] + w−1D (qL,D,Π‖π) + w−1D?

π

(
ρ∗

w−1

)
− EqL,D,Π(θ) [L(θ) + ρ∗(θ)]

= w−1D (qL,D,Π‖π) + w−1D?
π

(
ρ∗

w−1

)
− EqL,D,Π(θ) [ρ∗(θ)]

(4)

≥ 0,
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where (1) is due to the optimality of ρ∗, (2) is via Theorem 2.2 noting that Π is

closed and convex by assumption, (3) is due to optimality of qL,D,Π and (4) holds

by applying the Fenchel-Young inequality on D.

This last result is striking: It tells us that posteriors derived via the RoT

are adversarially robust. More specifically, they produce optimal beliefs in the pres-

ence of an adversary whose cost for perturbing the original loss L by ρ is given by

w−1D?
π

(
ρ/w−1

)
. Though this idea is not pursued in the applications of this thesis,

the finding is particularly appealing for designing RoT posteriors: if we work out the

divergence D from a desired penalty w−1D?
π

(
ρ/w−1

)
imposed upon the adversary,

then we can use this result to construct posteriors motivated directly by adversarial

robustness considerations.

2.2.3 Examples

To illustrate the meaning of these results in more detail in a less abstract context,

we present some examples using two popular families of divergences: f -divergences

and Integral Probability Metrics (IPMs). For both f -divergences and IPMs, the

derivations used for the examples can be found in Appendix C.1

f-divergences

For a convex lower semicontinuous function f : R → (−∞,∞], the corresponding

f -divergence is D(q‖π) =
∫
Θ f(q(θ)/π(θ))dπ(θ) if π is absolutely continuous with

respect to q and D(q‖π) =∞ otherwise. This includes the popular Kullback-Leibler

divergence (KLD) when f(t) = t log t and the χ2-divergence if f(t) = (t− 1)2.

Hence, our theory applies to regularizers that are members of the f -divergences.

To gain some intuition about the penalization function these divergences entail for

the adversary, we will study the general case, as well as the special cases of the KLD

and the χ2-divergence more closely.

Example 2.2 (KLD). If D = KLD then the dual problem is

GL,KLD,P(Θ) = sup
ρ∈Fb(Θ)

{
EΠ(L+ ρ)− w−1 log

∫
Θ

exp

(
ρ(Θ)

w−1

)
dπ(Θ)

}
.

As this example reveals, the KLD penalizes the adversary for deviations ρ

from L proportionally to the prior belief π. As pointed out above, this means that

π plays the role of the adversary’s cost function in the dual form. Jensen’s inequality
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also gives a lower bound on the penalty associated with the KLD. While coarse, this

bound is perhaps more interpretable than the exact form:

w−1 log

∫
Θ

exp

{
ρ(θ)

w−1

}
dπ(θ) ≥

∫
Θ
ρ(θ)dπ(θ).

Specifically, it reveals that regularization via the KLD implies a perturbation penalty

that is at least as costly as a linear penalization. The linear penalty (i.e.,
∫
Θ ρ(θ)dπ(Θ))

is a useful benchmark to compare against: Linear penalties punish the adversary

simply by weighting its perturbation ρ with the prior. Note that this conforms with

our interpretation of a prior: at least a priori, we believe that the value of L matters

most in regions of high prior mass. Naturally then, it should be in these regions

that it is most expensive for an adversarial agent to increase our loss and harm our

inference procedure by means of a perturbation.

Having derived the perhaps most canonical form of the dual with D = KLD,

a natural next question is what we can say for the more general case where D is

chosen to be any f -divergence.

Example 2.3 (f -divergence). For any f -divergence D based upon a lower semicon-

tinuous convex function f : R→ (−∞,∞] with f(1) = 0, we have

GL,Df ,P(Θ) = sup
ρ∈Fb(Θ)

{
EΠ(L+ ρ)− inf

b∈R

[∫
Θ
f?(ρ(θ)− b)dπ(θ) + b

]}
,

where f?(t) = supt′∈dom(f) {t · t′ − f(t′)}

Note for any f as in the above example, it also holds that f?(t) ≥ t and so

immediately we get

inf
b∈R

[∫
Θ
f?(ρ(θ)− b)dπ(θ) + b

]
≥
∫

Θ
ρ(θ)dπ(θ), (2.6)

showing that what held true for the KLD also holds true for general f -divergences:

the linear penalization is a lower bound on the cost function implied by any f -

divergence. The linear penalty term also sometimes re-surfaces directly and rather

elegantly. As the next example shows, this happens the case of the χ2-divergence,

for which we can easily solve infb∈R
[∫

Θ f?(ρ(θ)− b)dπ(θ) + b
]
.

Example 2.4 (χ2-divergence). If D = w−1 · χ2 for some λ ≥ 0 then the dual

problem is

GL,χ2,P(Θ) = sup
ρ∈Fb(Θ)

{
EΠ(L+ ρ)−

∫
Θ
ρ(θ)dπ(θ)− 1

4w−1
Varπ(ρ)

}
. (2.7)
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Here, the role of w−1 is particularly interesting: in particular, the example

shows that for larger values of w−1, the variation of the perturbation function ρ (as

measured by Varπ(ρ)) is penalized less and less. The example also shows that for

the case of the χ2-divergence, we can exactly quantify the slack term arising from

(and therefore the looseness of) the bound in (2.6).

Integral Probability Metrics (IPMs)

Choosing f -divergences constitute an appealing way of penalizing how far a posterior

deviates from the prior. This is due to the fact that f -divergences requires absolute

continuity—so that the posterior is forced to be supported wherever the prior is.

This is not necessarily true for other divergences. For example, the family of Integral

Probability Metrics (IPMs) that we study next do not have this property, and thus

can be considered to be weaker regularizers.

Definition 2.7 (Integral Probability Metric). For a set of functions H ⊆ Fb(Θ),

the IPM between q, π ∈ P(Θ) is

dH(q, π) = sup
h∈H
{Eq[h]− Eπ[h]} . (2.8)

IPMs have often been studied for theoretical interest in Machine Learning as

they define metrics over probability spaces (Müller, 1997), with one famous example

being the 1-Wasserstein distance (Villani, 2008). Another example of an IPM is the

kernel-based Maximum Mean Discrepancy, which is comparatively easy to compute

in practice.

The downside of IPMs is that for a general class H, they cannot be easily

computed. In spite of this, IPMs have recently been popularized by work on Gener-

ative Adversarial Networks, where deep neural networks have played the role of H
with various kinds of parametrizations (Arbel et al., 2018; Li et al., 2017; Arjovsky

et al., 2017; Mroueh et al., 2018; Mroueh and Sercu, 2017). Beyond that, they have

also been used in the Wasserstein Autoencoder (Tolstikhin et al., 2018). This case

is of special interest to us because the Wasserstein Autoencoder can be shown to be

a special case of the RoT, as we will demonstrate later. Before we can do this, we

will first apply our general result to the case where D is an IPM.

Example 2.5 (Integral Probability Metric). For a set of functions H ⊆ Fb(Θ), and
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the IPM given by dH, if D = dH, then

GL,IPM,P(θ) = sup
ρ∈w−1·H

{
EΠ(L+ ρ)−

∫
θ
ρ(θ)dπ(θ)

}
,

where we have used the notation w−1 · H = {w−1 · h : h ∈ H}.

Notice that once again, the linear penalization makes an appearance. How-

ever, the dual of the RoT with an IPM-regularizer imposes a particularly strong

penalty on the adversary: Any perturbation ρ that is not in the set w−1 · H =

{w−1 · h : h ∈ H} incurs an infinitely large penalty. Translating this to the primal

form, we can conclude that an IPM in general will be a relatively weak regularizer.

That being said, the choice of w allows us to regulate this somewhat, and indeed

w → 0 (or equivalently, w−1 → ∞) reduces the constraints on the penalty to an

arbitrary degree.

Having stated the result for general IPMs, we can now use it to demonstrate

that the well-known Wasserstein Autoencoder (Tolstikhin et al., 2018) can be writ-

ten as the dual of a particular RoT problem with an IPM-regularizer. Before we can

do so, we first need to define the Wasserstein Autoencoder.

Definition 2.8 (Wasserstein Autoencoder). Consider θ = Z × X , where Z is typ-

ically referred to as a latent space. Take G : Z → X to be a fixed mapping, and

suppose we have a cost function c : X ×X → R. For θ = (z, x), and a fixed measure

PX ∈ P(X ), define

L(θ) = c(G(z), x) (2.9)

Π = {q ∈ P(θ) : q(Z ×A) = PX(A), A measurable} .

The Wasserstein Autoencoder objective is given by

inf
G,q∈Π

{∫
Θ
c(G(z), x)dq(z, x) + w−1D(F#q, π)

}
,

where D is a divergence, F : Θ→ Z is a projection mapping defined as F (z, x) = z

so that F#q is the marginal of q on Z; and π ∈ P(Z) is a prior distribution over Z.

Without going into too much detail about variational autoencoders, the

Wasserstein Autoencoder (WAE) problem consists in the usual optimization over

two different objects: the so-called decoder G, and the so-called encoder q. In the

literature on autoencoders, the term
∫
Θ c(G(z), x)dq(z, x) will often be referred to
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as reconstruction cost, while the divergence term D(F#q, π) usually is motivated by

ensuring smoothness of the encoder on the latent space Z. Note that in practice,

the choice of D as the Maximum Mean Discrepancy for the WAE as introduced in

Tolstikhin et al. (2018) was somewhat adhoc, and based mostly on computational

considerations. Since then, other work has considered the Wasserstein-1 distance

for D instead (Patrini et al., 2020; Zhang et al., 2019). Note that both choices for

D are IPMs, so that the duality result we are about to present for the WAE holds

regardless of the particular choice of D.

While the objective in Definition 2.8 looks similar to those of the RoT, there

are two minor complications: the additional optimization over G, as well as the fact

that D is defined only over Z—rather than Θ. Both are easily addressed: we simply

fix any arbitrary G, take H̃ = {f(x, z) = h(z) : h ∈ H}, and define D̃ = dH̃ as well

as π̃ = π × ν where ν ∈ P(X ) is an arbitrary probability measure. It then follows

that the WAE objective is precisely GL,D̃,Π with prior π̃. We now invoke our main

result, noting that Π is closed and convex to derive the dual:

GLG,D̃,Π = sup
ρ∈H

{
EΠ [L+ ρ]−

∫
Z
ρ(z)dπ(z)

}
,

where both L and Π are as defined in Definition 2.8. So far, we have kept the decoder

G fixed. What if we allow it to vary? Interestingly, the minimization problem over

G can now be interpreted as a min-max problem:

inf
G
GLG,D̃,Π = inf

G
sup
ρ∈H

{
EΠ [L+ ρ]−

∫
Z
ρ(z)dπ(z)

}
.

In other words, the function G is minimizing the worst case reconstruction loss as

altered by an adversary who can choose perturbations in H. The magnitude of these

perturbations is controlled via a penalty based on the prior π. This finding allows

us to reinterpret the Wasserstein Autoencoder (WAE) of Tolstikhin et al. (2018)

not only as a member of the RoT—and therefore a Bayes-like method—but also as

an adversarially robust procedure.
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Chapter 3

Frequentist consistency

Summary: In this chapter, we study the frequentist properties of variational forms

for the RoT. It is generally quite difficult to prove frequentist properties for RoT

posteriors. The reason for this is relatively simple: unlike the Gibbs posterior

or standard Bayesian setting where D = KLD and Π = P(Θ), RoT posteriors

generally will not have an analytically available solution. While this problem has

been addressed for the standard variational approximation setting where D = KLD,

Π = Q, these proofs rely on the fact that one is forming an approximation to an

analytically available object. In contrast, one loses this approximating interpretation

if one chooses D 6= KLD. For these reasons, the techniques developed here to

prove consistency for the RoT are very much unlike other work on the large sample

behaviour of generalized Bayesian objects. Specifically, we will need to introduce

the notions of Γ-convergence and associated concepts from functional analysis. And

even with these tools, it will not be possible to derive the speed of convergence—all

we will be able to find is the limit.

Before we can state and prove the results in this section formally, we need to

cover a number of concepts and definitions relating to Γ-convergence and functional

analysis that will not be used in the remainder of the thesis. Most of these will

be taken from Dal Maso (2012), which provides an excellent introductory reference

into Γ-convergence.

3.1 Γ-convergence

For a topological space X, let N(x) the be set of all open neighbourhoods of x ∈
X. Further, take Fn to be a sequence of functions so that Fn : X → R, where
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R = R∪{−∞,∞}. Because it is not instructive for a reader without vested interest

in advanced functional analysis, we defer the general Definition of Γ-convergence

to Appendix A.1. For the purposes of our proof, it is more important that once a

sequence of function {Fn}n∈N can be shown to be equi-coercive and Γ-convergent, we

can conclude that its minimizers converge. This raises two questions: what does it

mean for a function to be equi-coercive, and what conditions do we need to establish

in order to conclude that a function Γ-converges?

Before we can answer these questions in detail, it is worth recalling an equiv-

alence between lower-semicontinuity of a function on the one hand, and closedness

of a function’s sub-level sets on the other.

Proposition 3.1. F is lower-semicontinuous if and only if for all t ∈ R, {x ∈ X :

F (x) ≤ t} is closed.

Next, we can state a result that we shall use to prove the Γ-convergence of

functions.

Proposition 3.2 (Remark 5.5, (Dal Maso, 2012)). If {Fn}n∈N is an increasing

sequence of lower-semicontinuous functions which converges pointwise to a function

F , then F is lower-semicontinuous and Fn Γ-converges to F .

As Proposition 3.1 shows, the sub-level sets {x ∈ X : F (x) ≤ t} are closed

whenever F is lower-semicontinuous. Another property we will need these sub-level

sets to have for some of our proofs is compactness, a property that is also known as

coerciveness of F .

Definition 3.1 (coercive function). A function F : X → R is coercive if the closure

of {x ∈ X : F (x) ≤ t} is (countably) compact in X for every t ∈ R.

In contrast to coerciveness, equi-coerciveness is a property of a sequence of

functions {Fn}n∈N rather than a property of a single function.

Definition 3.2 (equi-coerciveness). A function {Fn}n∈N is equi-coercive on X if

for every t ∈ R, there is a closed (countably) compact set Kt ⊂ X so that {x ∈ X :

Fn(x) ≤ t} ⊂ Kt for every n ∈ N

Because it is difficult to prove this property directly from its definition, we

shall use the following equivalent condition.

Proposition 3.3 (Proposition 7.7, (Dal Maso, 2012)). {Fn}n∈N is equi-coercive if

and only if there exists a coercive, lower-semicontinuous function Ψ so that Fn ≥ Ψ

on X for all n ∈ N.
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3.2 Preliminaries and Notation

Throughout, (Θ, ‖ · ‖) will be a normed space of finite dimension. For virtually

all cases of practical interest, we will be in the situation where Θ ⊂ Rd. Unlike in

previous chapters, the current chapter only considers the case where Π = Q for some

parameterized set of Lebesgue densities Q on P(Θ). For its intimate relationship

with Variational Inference, we will often refer to this as the the variational setting.

Further to that, our study of consistency relies on additive losses for L, so that

throughout, we will only study RoT posteriors with losses of the form

L(θ, x1:n) =
n∑
i=1

`(θ, xi).

Accordingly and as introduced in Definition 2.3, we will use the notation P (`,D,Q)

instead of P (L,D,Q).

As in the remainder of the thesis, certain notational liberties are taken. In

particular, if the measure ν ∈ P(Θ) admits a density qν on Θ, we often write

qν ∈ P(Θ) to mean that ν ∈ P(Θ). Importantly for the current chapter, we extend

this to statements about convergence. For example, whenever we write qn
D→ δθ∗ ,

this means that the sequence of measures νn ∈ P(Θ) with densities qn converges

weakly to the measure δθ∗ ∈ P(Θ).

Unlike in previous chapters, we are interested in frequentist properties, which

necessitates a stochastic treatment of the observation sequence. In particular, it

is assumed that the fixed numbers xi ∈ X are realizations of random variables

xi : Ω→ X . In principle, our treatment allows x1:n to be non-identically distributed,

and even to exhibit certain forms of dependency. In other words, the general form

of our result is not limited to the case where x1:n are independent and identically

distributed (i.i.d.) copies of the random variable x1. Rather, we only require that

a strong law of large numbers holds: Specifically, we need that for some probability

measure µ, 1
n

∑n
i=1 `(θ, xi) converges µ-almost surely (µ-a.s.) to Eµ[`(θ,x)] as n→

∞. Throughout this chapter, we will denote this type of convergence by writing
1
n

∑n
i=1 `(θ, xi)

µ−a.s.−→ Eµ[`(θ,x)] as n → ∞; and the mode of convergence will be

assumed to be pointwise (in Θ) unless stated otherwise. The interpretation of µ

will depend on the specific application or problem, but it will be helpful to think of

it as the stationary distribution for x1:n as n → ∞. For the special case where xi

are i.i.d., this means that µ is simply the law of x1.

Throughout, we will hope that our posteriors collapse to a particular param-

eter value defined as θ∗ = arg minθ∈Θ Eµ [`(θ,x)], sometimes called the population-
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optimal value of θ.

3.3 Proof strategy and high-level summary

The goal of this chapter is to provide a generic proof strategy applicable to most

forms of the RoT using minimal assumptions. To this end, the proofs cannot assume

that the solution set P (`,D,Q) consists of an analytically available singleton. In

plain English: we have no idea what our posterior looks like, and the best we can do

in practice is numerically approximate it. Due to these extraordinarily challenging

conditions, the results are weaker than what one would expect for the standard

Bayesian setting or standard variational approximations1, and we have to rely on

a somewhat exotic theoretical tool kit: we deploy the machinery of Γ-convergence,

which was also used in the context of standard variational approximations by Lu

et al. (2017) and Wang and Blei (2018). Roughly speaking, the role of Γ-convergence

in the present work is as follows: If a sequence of functions Fn Γ-converges to a

function F , then the sequence qn = arg infq∈Q Fn(q) of its minimizers converges to

the minimizer of F under mild regularity conditions. Provided that we can prove the

minimizer of F to be a point mass at θ∗, this would prove frequentist consistency.

To this end, the current chapter studies the (stochastic) sequence of objec-

tives associated with P (`,D,Q) as well as their minimizers. Thus, we define for our

convenience a number of objects that will be used in the remainder of the chapter:

Fn(q) = Eq(θ)

[
1

n

n∑
i=1

`(θ, xi)

]
+

1

n
D(q||π),

qn = arg inf
q∈Q

Fn(q).

Inspecting Fn, the intuition behind our proof becomes obvious: mild regularity con-

ditions should ensure that 1
n

∑n
i=1 `(θ, xi)

µ−a.s.−→ Eµ [`(θ,x)] as n→∞ for an appro-

priate probability measure µ on X . Similarly, it is usually reasonable to expect that

for well-behaved losses, θ̂n = arg min{ 1
n

∑n
i=1 `(θ, xi)} → θ∗ = arg min{Eµ [`(θ,x)]}

as n → ∞, µ-almost surely. Intuitively then, one expects the sequence qn to con-

verge in distribution to δθ∗(θ) under mild regularity conditions, µ-almost surely. In

other words, the remainder of the chapter will aim to show that for Fb(Θ) the set

1in particular, the results of this chapter say nothing about the speed of convergence
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of continuous, bounded functions from Θ to R,

Pµ
(
qn(θ)

D→ δθ∗(θ)
)

= Pµ
(
∀f ∈ Fb(Θ) : lim

n→∞

{
Eqn(θ) [f(θ)]− f(θ∗)

}
= 0
)

= 1. (3.1)

However, any direct way of showing that this intuition holds would require estab-

lishing Γ-convergence of q 7→ Fn(q) to q 7→ Eq(θ) [Eµ [`(θ,x)]]. Unfortunately, the

stochasticity of Fn (introduced via x1:n) makes it hard to prove this directly. The

key insight of the proof technique presented here is a way to circumvent these tech-

nical complications: We simplify the problem, and then analyze the deterministic

sequence of functions Fn and its minimizers qn given by

Fn(q) = Eq(θ) [Eµ [`(θ,x)]] +
1

n
D(q||π)

qn = arg inf
q∈Q

Fn(q).

For this new objective Fn(q), establishing Γ-convergence to Eq(θ) [Eµ [`(θ,x)]] is

much simpler. The last and most important part of the proofs will then be to show

that the sequences qn and qn become arbitrarily close as n→∞ (µ-almost surely).

More precisely, we will show that the sequence {qn}∞n=1 constitutes a sequence of

εn-minimizers of Fn, i.e.

Fn(qn) ≤ inf
q∈Q

Fn(q) + εn,

where εn is a stochastic sequence converging to zero (µ-almost surely). This—

together with Γ-convergence and equi-coerciveness of Fn—suffices to show that as

desired, eq. (3.1) holds. To summarize, we will show consistency of the RoT for

additive losses and Π = Q in three steps:

(S1) Establishing that Fn is equi-coercive and Γ-converges to Eq(θ) [Eµ [`(θ,x)]],

from which it follows that qn
D→ δθ∗ as n→∞;

(S2) Showing that the minimizers qn of the stochastic sequence Fn are εn-minimizers

of Fn, so that Fn(qn) ≤ infq∈Q Fn(q)+εn for sufficiently large n and µ-almost

surely;

(S3) Proving that εn goes to zero µ-almost surely as n → ∞. This together with

the first two findings finally implies that as desired, qn
D→ δθ∗ holds µ-almost

surely.
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3.4 Standing assumptions

First, we present a collection of harmless assumptions that will generally be satis-

fied for most problems of practical interest. We start by providing mild regularity

conditions on the loss and its interaction with the data-generating mechanism.

Assumption 3.1. For the loss ` : Θ → R, the law µ ∈ P(X ), and the prior

π ∈ P(Θ), it holds that

(a) The minimizers θ̂n = arg minθ
{

1
n

∑n
i=1 `(θ, xi)

}
∈ Θ exist for all sufficiently

large n so that
∣∣minθ∈Θ

{
1
n

∑n
i=1 `(θ, xi)

}∣∣ <∞ holds µ-almost surely;

(b) The loss satisfies a strong law of large numbers, i.e. 1
n

∑n
i=1 `(θ, xi)

µ−a.s.−→
Eµ [`(θ,x)];

(c) The minimizer θ∗ = arg minθ Eµ [`(θ,x)] exists and is unique;

(d) The expected loss and the expected prior loss are finite, i.e. Eµ [`(θ,x)] <∞
for all θ ∈ Θ and Eπ [Eµ [`(θ,x)]] <∞.

Remark 3.1. The interpretation of µ for the case where xi
iid∼ x1 is clearly that

of the probability measure corresponding to x1. Things are perhaps less obvious

in the dependent case. For example, suppose that `(θ, xi) = `(θ, xi;xi−1) is the

negative log likelihood of a sequentially dependent model (like a first order autore-

gressive process) and that this model accurately describes how xi|xi−1 was gener-

ated. Then—provided that a strong law of large numbers holds—µ is essentially

the stationary distribution of the process. Dependencies like these are notationally

suppressed for readability, but would not affect any of the results derived in the cur-

rent chapter unless in those cases where independence of observations is specifically

required.

Remark 3.2. One may also be interested in the convergence properties of posteriors

built with a sequence of heterogeneous losses {`i(θ, xi)}∞i=1 where `i 6= `j for some

i, j. In this case, all derived convergence results follow after an easy adaptation

of the above assumption. Specifically, one requires that the minimizers exist for
1
n

∑n
i=1 `i(θ, xi) instead. Further, one requires that there exists some function ˜̀ : Θ×

X → R such that 1
n

∑n
i=1 `i(θ, xi)

µ−a.s.−→ Eµ
[˜̀(θ,x)

]
. Replacing the old convergence

requirement in the above Assumption by the new one and Eµ [`(θ,x)] by Eµ
[˜̀(θ,x)

]
completes the adaptation to heterogeneous losses.

54



While the previous standing assumption relates to the loss function ` and

the stochasticity in the data x1:n, the next one relates to the interplay between the

prior π, the divergence D, and the variational family Q.

Assumption 3.2. For the prior π ∈ P(Θ), the statistical divergence D : P(Θ)2 →
R≥0, and the variational family Q ⊆ P(Θ), it holds that

(a) Q is a collection of Lebesgue densities on Θ parameterized by κ ∈K. Further,

for any θ∗ ∈ Θ, there exist sequences {κk}∞k=1 of variational parameters so

that q(θ|κk) D→ δθ∗(θ) as k →∞. Since q(·|κk) are densities, this means that

q(θ|κk)→∞ at θ = θ∗, and q(θ|κk)→ 0 for all θ 6= θ∗;

(b) It holds that π ∈ Q;

(c) The prior π, regularizer D, and variational family Q are chosen so that for all

q ∈ Q, D(q||π) <∞.

(d) Both κ 7→ D(q(θ|κ)‖π) and κ 7→ Eq(θ|κ) [Eµ [`(θ,x)]] are lower semi-continuous

with respect to the Euclidean metric. Further,
{
κ : Eq(θ|κ) [Eµ [`(θ,x)]] ≤ t

}
is bounded for all t ∈ R.

Remark 3.3. The role of Assumption 3.2 (a) is to ensure that an analysis of fre-

quentist consistency is possible in the first place: frequentist consistency necessarily

implies that the variational family Q be such that it can get arbitrarily close to

dirac measures on Θ.

Remark 3.4. Assumption 3.2 (b) is purely technical, and its only function is to

guarantee that the RoT posteriors do not become worse than the prior belief after

observing data. Since this is a situation that is very unlikely to occur in practice

for even small sample sizes, in practice one will obtain frequentist consistency even

if one removes π from Q.

Remark 3.5. Assumption 3.2 (c) is the variational equivalent to the canonical

requirement that π(θ) > 0 in a neighbourhood of θ∗ that is imposed for traditional

Bayesian consistency proofs. Its role is to ensure that concentration on the dirac

measure at θ∗ is possible. In fact, the requirement is slightly stronger than necessary

for consistency: It would suffice to require that there exists a sequence pn ∈ Qθ so

that (i) pn
D→ δθ∗ and (ii) D(pn||π) <∞ for all finite n. If D = KLD, it is clear that

this latter requirement is satisfied if and only if Q satisfies Assumption 3.2 (a) and
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π(θ) > 0 in a neighbourhood of θ∗. Indeed, this equivalence holds over the wider

class of choices for divergences D in the set

{D : D satisfies Assumption 3.2 (c)}∩
{D(q||π) =∞ for all q that are not absolutely continuous w.r.t. π}.

Examples of divergences in this set are the KLD, the α-divergence, Rényi’s α-

divergence as well as the family of f -divergences.

Remark 3.6. In technical terms, Assumption 3.2 (d) will ensure that the functional

Fn is equi-coercive (in K), because the lower semi-continuity requirement together

with boundedness of the sub-level sets implies that
{
κ : Eq(θ|κ) [Eµ [`(θ,x)]] ≤ t

}
is a compact set for all t. Note that continuity implies lower semi-continuity, so

that a sufficient condition for part (d) would be that κ 7→ D(q(θ|κ)‖π) and κ 7→
Eq(θ|κ) [Eµ [`(θ,x)]] are continuous, and that K is a compact set. For most prob-

lems of interest, continuity in κ of this form is a reasonable assumption. Similarly,

compactness is not a prohibitive assumption: any non-compact K can be reparam-

eterized component-wise with some continuous one-to-one function r : K → [0, 1]

with continuous inverse to ensure compactness of the new variational parameter

space. For example, if K = Rd, then one can reparameterize component-wise via

r(κ) =

(
1

1 + e−κ1
,

1

1 + e−κ2
, . . .

1

1 + e−κd

)T
.

Since the inverse function r−1 exists and is continuous, and defining the new com-

pactified space Kr = {κr = r(κ) : κ ∈ K}, it also holds that κr 7→ D(q(θ|κr)‖π)

and κr 7→ Eq(θ|κr) [Eµ [`(θ,x)]] are continuous.

3.5 Main Results

Having outlined the general thrust of the theoretical argument in steps (S1)—(S3),

we now state the main results without any formal derivations. Instead, detailed

derivations are given and elaborated upon in the next section. Broadly speaking,

there are two classes of results we derive: the first type of result relies only on

conditions on the loss function, and therefore imposes conditions that can typically

be verified very easily (Theorem 3.1). While the advantage of the first result is that

it is easy to verify and does not require data to be independently and identically

distributed (i.i.d.), its disadvantage is that the conditions deployed therein require

that either the loss itself or its derivatives are bounded in certain ways.
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This is why we also derive a second type of result, whose strength is that the

boundedness conditions are replaced by mild regularity conditions on moments and

local continuity (Theorem 3.2). While these requirements are more general, their

drawback is that they also tend to be harder to verify. Additionally, we require the

data to be i.i.d. in order to deploy these types of results.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Further, suppose one

of the following three conditions holds:

(i) supxi∈X ,θ∈Θ `(θ,x) ≤M for some constant M , µ-almost surely;

(ii) `(θ,x) and Eµ[`(θ,x)] are both jointly continuous in θ and x, µ-almost surely;

and both X and Θ are compact;

(iii) The function θ 7→ 1
n

∑n
i=1 `(θ, xi) is continuously differentiable on Θ µ-almost

surely and for all n large enough. Additionally, it holds that supxi∈X ,θ∈Θ |∇θ`(θ, xi)| <
∞, or that supx1:n∈Xn,θ∈Θ

∣∣∇θ 1
n

∑n
i=1 `(θ, xi)

∣∣ <∞, or that supθ∈Θ

∣∣∇θ 1
n

∑n
i=1 `(θ, xi)

∣∣ <
∞ µ-almost surely and for all n large enough;

Then qn
D→ δθ∗ µ-almost surely.

Before we can introduce a result that replaces the boundedness conditions

on the loss function with moment and continuity requirements, we need a very mild

additional requirement for the variational family.

Assumption 3.3. The variational family Q is such that

(i) for each q ∈ Q, there exists M so that for all ‖θ‖2 > M , q is decreasing as we

move in any direction pointing outside of the set {θ ∈ Θ : ‖θ‖2 ≤M};

(ii) for any q ∈ Q, and on any compact set S of Θ, we can lower bound q on S so

that infθ∈S q(θ) > 0.

It is not difficult to see that this requirement will be met by virtually all vari-

ational families of practical interest, including fully factorized normals (see Lemma

3.8), multivariate normals, student’s t-distributions, uniform, and Beta distributions

to name but a few (see Lemma 3.9 and Corollary 3.3).

Theorem 3.2. Suppose that Assumptions 3.1, 3.2, and 3.3 hold, that x1:n
i.i.d.∼ µ,

and Eµ
[
Eπ [|`(θ,x)|]2

]
< ∞. Further, for A ⊂ Θ a compact set containing θ∗,

suppose that Eµ
[
|`(θ,x) · 1A(θ)|2+δ

]
< ∞ for all θ ∈ A for some δ > 0, that

θ 7→ `(θ, xi) is µ-almost surely continuous on A, and that θ 7→ Eµ [|`(θ,x)|] is

continuous on A. Then qn
D→ δθ∗ µ-almost surely.
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3.6 General Derivations for Technical results

Having set out the Assumptions to be used in the most general form of our deriva-

tion, we now follow the steps (S1)—(S3) in the remainder of this section. For each

subsection, we provide a short summary of the proof strategy. Whenever we write a

mapping in terms of q, this is a shorthand: all analysis happens on the level of the

parametric space into which q is embedded. In other words, whatever statement we

make or prove about the behaviour of a function F (q) will be a statement about the

function κ→ F (q(·|κ)).

3.6.1 Establishing convergence for the auxiliary objective (S1)

Role of (S1) for the overall proof: by virtue of Assumptions 3.1 and 3.2 (a), (c),

and (d) one can show that the sequence of functions Fn is equi-coercive (Lemma

3.1). Secondly, one can show that Fn Γ-converges to Eq [Eµ [`(θ,x)]] (Lemma 3.2).

Together, this implies that one of the main workhorses for proving consistency can

be deployed. Specifically, Corollary 7.24 in (Dal Maso, 2012) holds, proving that

qn
D→ δθ∗ (Corollay 3.1).

Lemma 3.1 (Equi-coerciveness). If Assumption 3.2 (d) holds, {Fn}∞n=1 is equi-

coercive on the space K associated with Q = {q(θ|κ) : κ ∈K}.

Proof. {Fn}∞n=1 is equi-coercive if and only if there exists a coercive function Ψ for

which Ψ ≤ Fn for all n by Proposition 3.3. Clearly, since D(·‖π) ≥ 0, it holds that

Ψ(q) = Eq [Eµ [`(θ,x)]] yields a lower bound on Fn(q) for all n and all q ∈ Q. All

that remains is to prove that κ 7→ Ψ(q(·|κ)) is coercive, which holds by virtue of

Assumption 3.2 (d) .

Lemma 3.2 (Γ-convergence). If Assumptions 3.2 (c) and (d) hold, Fn(q) Γ-converges

to Eq [Eµ [`(θ,x)]].

Proof. Clearly, it holds that Fn(q) ≤ Fn−1(q) so that Fn is a decreasing sequence

of functions. Moreover, it is clear that pointwise (i.e. for fixed q), Fn(q) →
Eq [Eµ [`(θ,x)]]. This holds trivially if Fn =∞ for all n and for the finite-valued case

provided that D(q||π) < ∞, which holds by Assumption 3.2 (c). Taken together,

this implies that Fn Γ-converges to the lower-semicontinuous envelope of its point-

wise limit by Proposition 5.7 in Dal Maso (2012). Now since Eq(θ|κ) [Eµ [`(θ,x)]]

is itself lower semi-continuous on K by Assumption 3.2 (d) , it is its own lower-

semicontinuous envelope. This completes the proof.
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Corollary 3.1 (Consistency). If Assumptions 3.1 and 3.2 hold, then qn
D→ δθ∗ , i.e.

the minimizers of Fn weakly converge to a point mass at θ∗ as n→∞. Moreover,

Fn(qn)→ Eµ [`(θ∗,x)] as n→∞.

Proof. This is a simple application of Corollary 7.24 in Dal Maso (2012): by Lemmas

3.1 and 3.2, Fn is both equi-coercive and Γ-convergent to Eq [Eµ [`(θ,x)]] (onK). To

complete the proof, we only need to show that the limiting functional has a unique

minimizer. Thanks to Assumptions 3.1 and 3.2 (a), the infimum of Eq [Eµ [`(θ,x)]]

over K is unique and given by the value of κ̃ ∈ cl(K) for which it holds that

limκn→κ̃ q(θ|κ) = δθ∗ .

3.6.2 Showing that {qn}n∈N are εn-minimizers of F n (S2)

Role of (S2) for overall proof: While step (S1) showed that the auxiliary ob-

jective’s minimizer qn behaves as we would hope, this is not useful unless we can

establish that qn and qn are not too different as n → ∞. To this end, in step (S2)

we prove that the minimizers qn are εn-minimizers of Fn. Specifically, Lemma 3.3

guarantees that qn corresponds to a µ-almost surely finite objective value for all n.

This can directly be used to show that the sequence εn consists only of µ-almost

surely finite-valued terms, which we use in Lemma 3.4 to derive an explicit form for

a finite εn. Crucially, this form does not depend on qn, but on qn. This will turn

out to substantially ease remaining proofs: Unlike qn which is a function of x1:n and

thus is random, qn is a fixed quantity.

Lemma 3.3. If Assumptions 3.1 and 3.2 (b) hold, then it also holds that

(i) Eπ [Eµ [|`(θ,x)|]] <∞ and Eqn [Eµ [|`(θ,x)|]] <∞;

(ii) Eπ [Eµ [`(θ,x)]] = Eµ [Eπ [`(θ,x)]] and Eqn [Eµ [`(θ,x)]] = Eµ
[
Eqn [`(θ,x)]

]
;

(iii) Eπ [`(θ, xi)] <∞ and Eqn [`(θ, xi)] <∞ µ-almost surely.

for any n ∈ N.

Proof. For simplicity, define q0 = π.

(i) First, observe that by Assumption 3.2 (b) and by the definition of the

objective Fn, it holds that

∞ > Eq0
[Eµ [`(θ,x)]] ≥ · · · ≥ Eqn [Eµ [`(θ,x)]] ≥ Eqn+1

[Eµ [`(θ,x)]] ≥ . . .(3.2)

It remains to show that this also holds if one takes the absolute value of the loss.

Denote by 1A(x) the indicator function that equals 1 if x ∈ A and zero otherwise;
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and by µ the probability measure as defined via Assumption 3.1. With this in mind,

it holds that

Eqn [Eµ [`(θ,x)]]

=

∫
Θ

∫
X
`(θ,x)µ(dx)qn(θ)

=

∫
Θ

∫
X
`(θ,x) · 1{`(θ,x)≤0}(x)µ(dx)qn(θ) +

∫
Θ

∫
X
`(θ,x) · 1{`(θ,x)>0}(x)µ(dx)qn(θ)

Because qn ≥ 0, this also immediately implies that one can compute the absolute

expectation via

Eqn [Eµ [|`(θ,x)|]]

= −
∫

Θ

∫
X
`(θ,x) · 1{`(θ,x)≤0}(x)µ(dx)qn(θ)

+

∫
Θ

∫
X
`(θ,x) · 1{`(θ,x)>0}(x)µ(dx)qn(θ), (3.3)

which will be finite if both integrals by themselves are finite. As it turns out, this

is indeed the case: by virtue of Assumption Assumption 3.2 (b) and eq. (3.2),

Eqn [Eµ [`(θ,x)]] <∞. Moreover, by Assumption 3.1, Eµ [`(θ,x)] is bounded below

by Eµ [`(θ∗,x)] = C <∞ so that it also holds that∫
Θ

∫
X
`(θ,x) · 1{`(θ,x)≤0}(x)µ(dx)qn(θ) ≤ min{0, C} <∞.

Thus, the only remaining term in eq. (3.3) must also be finite and (i) follows.

(ii) By virtue of (i), one may apply the Fubini-Tonelli Theorem to conclude

that Eqn [Eµ [`(θ,x)]] = Eµ
[
Eqn [`(θ,x)]

]
<∞.

(iii) By definition of the expectation, it is clear that Eµ
[
Eqn [`(θ,x)]

]
<∞ if

and only if Pµ
(
Eqn [`(θ,x)] =∞

)
= 0, or equivalently if Pµ

(
Eqn [`(θ,x)] <∞

)
= 1.

In other words, Eqn [`(θ, xi)] <∞ holds µ-almost surely.

Lemma 3.4 (εn-minimizers). If Assumptions 3.1, and 3.2 (a), (b) hold, then the

sequence {qn}∞n=1 produces finite valued objectives, i.e. Fn(qn) <∞. Moreover, qn

is a εn-solution of Fn, i.e.

Fn(qn) ≤ inf
q∈Q

Fn(q) + εn

for a sequence {εn}∞n=1 with εn <∞ µ-almost surely for all sufficiently large n and
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given by

εn = 2

∣∣∣∣∣Eqn
[

1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ,x)]

]∣∣∣∣∣ (3.4)

Proof. µ-almost surely finite-valued objectives: This immediately follows by

Assumption 3.1 and Lemma 3.3. Recall that the Lemma implies that Eπ [`(θ, xi)] <

∞ µ-almost surely, which means that Fn(qn) ≤ Fn(π) <∞, µ-almost surely for all

n. To complete the argument, note that for all sufficiently large n, Assumption 3.1

(a) implies a lower bound on Fn(qn).

Finite-valued εn: First, define the difference between Fn(q) and Fn(q) as

en(q) =

∫
Θ
q(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ,x)]

]
dθ.

It is clear that εn is finite-valued if and only if e(qn) is. Now, notice that

en(qn) ≤ 1

n

n∑
i=1

∫
Θ
Eqn [`(θ, xi)]︸ ︷︷ ︸

<∞, Lemma 3.3

− Eµ [`(θ∗,x)]︸ ︷︷ ︸
<∞, Assumption 3.1

<∞.

εn-solution: Note that

Fn(qn) + en(qn) = Fn(qn) = inf
q∈Qθ

[
Fn(q) + en(q)

]
≤ Fn(qn) + en(qn), (3.5)

µ-almost surely. Further, by definition of qn as the minimizer of Fn, it also holds

that Fn(qn) ≥ Fn(qn) µ-almost surely, so that one may conclude that

0 ≤ Fn(qn)− Fn(qn) ≤ en(qn)− en(qn), (3.6)

µ-almost surely, from which it clearly follows that

en(qn) ≤ en(qn), (3.7)

µ-almost surely. This allows to conclude that

0 ≤ en(qn)− en(qn) ≤ |en(qn)|+ |en(qn)| ≤ 2|en(qn)|,
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µ-almost surely. With this last result in hand, one can now define the sequence

εn = 2|en(qn)| <∞

which together with eq. (3.6) yields that,

Fn(qn) ≤ inf
q∈Qθ

Fn(q) + εn.

so that the result follows.

3.6.3 Proving that εn → 0, µ-a.s. (S3)

Role of (S3) for the overall proof: While (S2) established that the minimizers

qn are εn-minimizers of Fn, and while (S1) established that the minimizers qn of

Fn converge to the correct point, these insights do not suffice to prove consistency

unless we can show that εn goes to zero (µ-almost surely).

To achieve this, the generic strategy is as follows: Since 1
n

∑n
i=1 `(θ, xi) −

Eµ [`(θ,x)] converges µ-almost surely to zero for any θ ∈ Θ, we would hope that

this result extends to the integral that defines εn. In other words, we would hope

that µ-almost surely,

lim
n→∞

∫
Θ
qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ,x)]

]
dθ = 0,

as this immediately implies that εn goes to zero µ-almost surely.

The key step in proving this is to find sufficient conditions under with the

lim-operator can be pulled into the integral so that one may write

lim
n→∞

∫
Θ
qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ,x)]

]
dθ

(I)
=

∫
Θ

lim
n→∞

{
qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ,x)]

]}
dθ

(II)
= 0, (3.8)

where convergence is meant to occur µ-almost surely. Here, part (II) of this chain

of equalities is much easier to establish (Lemma 3.5).

Part (I) of this chain of equalities is more difficult to show, as it amounts

to finding conditions that are sufficient to prove the convergence of an indefinite

integral over a generally unbounded random function qn(θ) 1
n

∑n
i=1 `(θ, xi) to the

integral over its deterministic pointwise limit. We provide two different strategies

62



for proving this. The first one proceeds via conditions on the loss function or the

difference 1
n

∑n
i=1 `(θ, xi)−Eµ[`(θ,x)] and relies on dominated convergence theorems

or stochastic equicontinuity (Lemma 3.6, Corollary 3.2). The second method uses

a Law of Large Numbers (LLN) on the triangular array {{Eqn [Eµ [`(θ,x)]]}ni=1}∞n=1

in conjunction with a restriction argument.

The second method relies on assumptions that are generally more difficult to

establish, but remain unproblematic for a range of canonical settings in the varia-

tional case, where the variational family is Gaussian and the observations correspond

to independent and identically distributed random variables.

Proving that (II) holds

Lemma 3.5. Suppose that Assumptions 3.1 and 3.2 hold. Further, suppose that

(I) in (3.8) holds. Then, µ-almost surely,

lim
n→∞

{∫
Θ
qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]
dθ

}
= 0.

Proof. First, note that by virtue of Assumption 3.2 (a), it holds that 1
n

∑n
i=1 `(θ, xi)−

Eµ [`(θ∗,x)] −→ 0, µ-a.s. for all θ ∈ Θ. Further, we also have qn
D→ δθ∗ by Corol-

lary 3.1. Note in particular that qn
D→ δθ∗ together with Assumption ?? implies

that the limit limn→∞ qn(θ) = 0 exists for all θ 6= θ∗. Moreover, it holds for any

finite n that∫
Θ
qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]
dθ =

∫
Θ\{θ∗}

qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]
dθ,

so that this equality will hold in the limit, too. With this, we can now apply the

multiplication rule of limits to conclude that

lim
n→∞

{∫
Θ
qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]
dθ

}

=

∫
Θ\{θ∗}

lim
n→∞

{qn(θ)} lim
n→∞

{[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]}
︸ ︷︷ ︸

=0, µ−a.s.

dθ = 0,

which concludes the proof.
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Proving that (I) holds via conditions on the loss

Lemma 3.6. Suppose Assumptions 3.1, 3.2 hold and that (A) or (B) is true where

(A) supθ∈Θ |`(θ,x)− Eµ[`(θ,x)]| ≤ h(x) µ-almost surely, where Eµ[h(x)] <∞;

(B) 1
n

∑n
i=1 `(θ, xi) is asymptotically uniformly µ-almost surely bounded, i.e.

Pµ

(
lim
n→∞

sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

`(θ, xi)− Eµ [`(θ,x)]
∣∣∣ ≤ h(x)

)
= 1,

where Eµ[h(x)] <∞. Notice that for h(x) = 0, this is equivalent to requiring

a strong uniform law of large numbers to hold for 1
n

∑n
i=1 `(θ, xi) over Θ;

then, it also follows that µ-almost surely, both (I) and (II) in (3.8) hold.

Proof. It is clear that (II) holds by application of Lemma 3.5.

From (A), (II) follows since Eqn [Eµ[h(x)]] = Eµ[h(x)], so the dominated conver-

gence theorem implies that we can pull the limit operator under the integral sign in

limn→∞
∫
Θ qn(θ)

[
1
n

∑n
i=1 `(θ, xi)− Eµ[`(θ,x)]

]
dθ. From (B), (II) follows since by

assumption, for all n ≥ N for some N <∞, it holds that supθ∈Θ

∣∣∣ 1
n

∑n
i=1 `(θ, xi)−

Eµ [`(θ,x)]
∣∣∣ ≤ M + h(x) µ-almost surely for some constant M < ∞. This allows

us to once again use the dominated convergence theorem.

While the conditions of Lemma 3.6 may seem somewhat obtuse, they hold

for a range of mild conditions. The following Corollary elucidates this by providing

some of these conditions that are easy to check.

Corollary 3.2. Suppose that Assumptions 3.1 and 3.2 hold. Suppose that addi-

tionally, any one of the following holds:

(i) supxi∈X ,θ∈Θ `(θ,x) ≤M for some constant M , µ-almost surely;

(ii) `(θ,x) and Eµ[`(θ,x)] are both jointly continuous in θ and x, µ-almost surely;

and both X and Θ are compact;

(iii) The function θ 7→ 1
n

∑n
i=1 `(θ, xi) is continuously differentiable on Θ µ-almost

surely. Additionally, it holds that supxi∈X ,θ∈Θ |∇θ`(θ, xi)| < ∞, or that

supx1:n∈Xn,θ∈Θ

∣∣∇θ 1
n

∑n
i=1 `(θ, xi)

∣∣ <∞, or that supθ∈Θ

∣∣∇θ 1
n

∑n
i=1 `(θ, xi)

∣∣ <
∞ µ-almost surely;

Then, both (I) and (II) hold so that qn
D→ δθ∗ µ-almost surely.
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Proof. Conditions (i) and (ii) are just special cases of (A) in Lemma 3.6. This is im-

mediate for (i), since supxi∈X ,θ∈Θ `(θ,x) ≤ M implies that supθ∈Θ |Eµ [`(θ,x)]| ≤
M so that we can choose h(x) = 2M . A similar argument holds for (ii): joint con-

tinuity and compactness imply that one can apply the Extreme Value Theorem for

(θ, xi) 7→ `(θ, xi) and θ 7→ Eµ[`(θ,x)], which then entails that supxi∈X ,θ∈Θ `(θ, xi) ≤
M1 and supθ∈Θ |Eµ[`(θ,x)]| ≤M2 holds for some constants M1,M2; so that we can

set h(x) = M1 +M2.

Condition (iii) is a little more nuanced and amounts to showing that (B)

in Lemma 3.6 holds for h(x) = 0. In other words, condition (iii) establishes suffi-

cient conditions for a strong uniform law of large numbers. To this end, we invoke

Theorem 21.8 of Davidson (1994). This result tells us that for a sequence of func-

tions {fn}n∈N so that fn : Θ → R, fn converges uniformly µ-almost surely to f if

and only if fn(θ)
µ−a.s.−→ f(θ) for each θ ∈ Θ, and if {fn}n∈N is strongly stochasti-

cally equi-continuous. As shown in Theorem 21.10 of Davidson (1994), a function

sequence {fn}n∈N is strongly stochastically equi-continuous on Θ if there exists a

stochastic sequence Cn independent of θ so that |fn(θ)−fn(θ′)‖ ≤ Cn ·‖θ−θ′‖2 and

lim supn→∞Cn < ∞. Setting fn(θ) = 1
n

∑n
i=1 `(θ, xi), the fact that fn is continu-

ously differentiable by assumption implies that we can apply the Mean Value Theo-

rem to conclude that |fn(θ)−fn(θ′)‖ ≤ Cn ·‖θ−θ′‖2 for Cn = supθ∈Θ ‖fn(θ)‖2. It is

now easy to see that limn→∞Cn <∞ µ-a.s. (and therefore that lim supn→∞Cn <∞
µ-a.s.) if supxi∈X ,θ∈Θ |∇θ`(θ, xi)| <∞, or supx1:n∈Xn,θ∈Θ

∣∣∇θ 1
n

∑n
i=1 `(θ, xi)

∣∣ <∞,

or supθ∈Θ

∣∣∇θ 1
n

∑n
i=1 `(θ, xi)

∣∣ < ∞ holds µ-almost surely. Since we also have that

fn(θ) −→ f(θ) µ-almost surely for f(θ) = Eµ[`(θ,x)] and all θ ∈ Θ, we can invoke

Theorem 21.8 of Davidson (1994).

To conclude the proof, simply note that (I) and (II) guarantee that εn goes

to zero µ-almost surely, which in turn yields the desired consistency result by appli-

cation of Corollary 7.24 in (Dal Maso, 2012).

Proving that (I) holds with a restriction argument and a triangular Laws

of Large Numbers

Throughout this section, we define for convenience the triangular array {Z(n)
i }n∈N,

where Z
(n)
i = Eqn [1A(θ) · `(θ, xi)] for some compact set A that contains θ∗. The

two main conditions required for our alternative proof of (I) are as follows: Firstly,

we require that { 1
n

∑n
i=1 Z

(n)
i }n∈N satisfies a strong law of large numbers. Secondly,

it must be viable to restrict the analysis of the integral in 3.8 to the same compact
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set A in the sense that

lim
n→∞

∫
Θ
qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ,x)]

]
dθ

= lim
n→∞

∫
A
qn(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ,x)]

]
dθ. (3.9)

Proving that (I) holds with a restriction argument and a triangular Laws

of Large Numbers: the restriction argument (3.9)

As it turns out, the condition (3.9) holds if { 1
n

∑n
i=1 Eπ [|`(θ, xi)|]]}n∈N satisfies

a strong law of large numbers, and if we have that for large enough n, qn ≤ π

everywhere except in a compact set around the parameter value θ∗ that it converges

towards. The next Lemma demonstrates this.

Lemma 3.7. Suppose that Assumptions 3.1 and 3.2 (a), (d) and (b) hold, that

we have 1
n

∑n
i=1 Eπ [|`(θ, xi)|]] −→ Eµ [Eπ[|`(θ,x)|]] µ-almost surely, and that for a

compact set A containing θ∗, there exists N so that qn ≤ π for all Θ \A whenever

n ≥ N . Then, (3.9) holds for all n that are sufficiently large.

Proof. Note that (3.9) is equivalent to proving

lim
n→∞

{∫
Θ
qn(θ)1Θ\A(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]
dθ

}
= 0,

which we will do by justifying application of the Dominated Convergence Theorem.

To this end, first note that because 1
n

∑n
i=1 Eπ [|`(θ, xi)|]] −→ Eµ [Eπ[|`(θ,x)|]] µ-

almost surely, it also holds that we can find Ñ so that for a fixed and finite ε > 0

and n ≥ Ñ , it holds µ-almost surely that∣∣∣∣∣Eπ
[

1

n

n∑
i=1

|`(θ, xi)|
]
− Eµ [Eπ [|`(θ,x)|]]

∣∣∣∣∣ ≤ ε.
Since we also have qn ≤ π outside some compact set A containing θ∗ and all n ≥ N ,
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the following bound holds for all n ≥ max{N, Ñ}:∫
Θ

∣∣∣∣∣qn(θ)1Θ\A(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]∣∣∣∣∣ dθ
≤
∫

Θ
π(θ)1Θ\A(θ)

∣∣∣∣∣ 1n
n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

∣∣∣∣∣ dθ
≤
∫

Θ
π(θ)

∣∣∣∣∣ 1n
n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

∣∣∣∣∣ dθ
≤
∫

Θ
π(θ)

{
1

n

n∑
i=1

|`(θ, xi)|+ |Eµ [`(θ∗,x)]|
}
dθ

= Eπ

[
1

n

n∑
i=1

|`(θ, xi)|+ |Eµ [`(θ∗,x)]|
]

≤ Eµ [Eπ [|`(θ,x)|]] + ε+ |Eµ [`(θ∗,x)]|
= Eπ [Eµ [|`(θ,x)|]] + ε+ |Eµ [`(θ∗,x)]|
=

∫
Θ
|Eµ [|`(θ,x)|] + ε+ |Eµ [`(θ∗,x)]|| dθ <∞.

The first inequality follows since n is chosen large enough so that qn ≤ π outside

A, the second because 1 ≥ 1Θ\A, the third by repeated application of the triangle

inequality, and the fourth by virtue of the fact that n ≥ Ñ . The second-to-last

equality follows by application of Fubini’s Theorem. The finiteness of the last inte-

gral follows because ε < ∞ by assumption, Eµ [|`(θ,x)|] < ∞ by virtue of Lemma

3.3, and Eµ [`(θ∗,x)] < ∞ since the minimizer θ∗ is unique by Assumption 3.1.

Therefore, and defining

g(θ) = Eµ [|`(θ,x)|] + ε+ |Eµ [`(θ∗,x)]| ,

we have that g is integrable and upper bounds∣∣∣∣∣qn(θ)1Θ\A(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]∣∣∣∣∣
over Θ for all sufficiently large n. This implies that we can apply the Dominated
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Convergence Theorem and conclude that µ-almost surely,

lim
n→∞

{∫
Θ
qn(θ)1Θ\A(θ)

[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]
dθ

}

=

∫
Θ\A

lim
n→∞

{qn(θ)}︸ ︷︷ ︸
=0

· lim
n→∞

{[
1

n

n∑
i=1

`(θ, xi)− Eµ [`(θ∗,x)]

]}
︸ ︷︷ ︸

pointwise limit exists µ-a.s.

dθ = 0,

where the first pointwise limit follows by Assumption 3.2 (a), and the pointwise

limit of the second term exists (µ-almost surely) by virtue of Assumption 3.1.

We now provide a simple example under which the previous result can be

applied.

Lemma 3.8. Suppose that x1:n
i.i.d.∼ µ, Eµ

[
Eπ [|`(θ,x)|]2

]
<∞. Letting Q′ be the

collection of all fully factorized normal distributions on Θ = Rd parameterized by

κ = (σ,m) so that for each q ∈ Q′, there exist a positive definite vector σ ∈ Rd

and a vector m ∈ Rd for which

q(θ|(Σ,m)) = (2π)−d/2

(
d∏
i=1

σi

)−1/2

e−0.5·(θ−m)T (σI)−1(θ−m),

take any one-to-one, invertible and bounded transformation f : Rd≥0×Rd → [0, 1]d×
[0, 1]d and choose the variational family Q that is obtained by re-parametrizing κ

with f(κ). Further, suppose that Assumptions 3.1 and 3.2 hold. Then, (3.9) holds

for all n that are sufficiently large.

Proof. First, note that since Eµ
[
Eπ [|`(θ,x)|]2

]
< ∞ Kolmogorov’s strong law of

large numbers implies that 1
n

∑n
i=1 Eπ [|`(θ, xi)|]] −→ Eµ [Eπ[|`(θ,x)|]] µ-almost

surely.

Next, note that the transformation f applied to κ is invertible and one-to-

one, so we can conduct our analysis in the parameter space K of κ (see Remark

3.6). Further, by Assumption 3.2, we have that π ∈ Q′, which means that there

is a positive vector σπ and a mean vector mπ for which π(θ) = q(θ|(σπ,mπ)).

Further, since we can apply Lemma 3.1, we know that qn(θ|(σn,mn)) converges

to a point mass at θ∗, which implies that (mn,σn) −→ (θ∗,0). Now by virtue of

being Gaussian, π has monotonically decreasing tails in all directions. This allows

us to fix a compact set A containing θ∗ as well as mπ in the following way: set

d1 = ‖µπ − θ∗‖2, and define A = {θ ∈ Θ : ‖mπ − θ‖2 ≤ d1 + 1}. Since mπ ∈ A, we

know that π(θ) decreases as we move away from the boundary of A. This allows us
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to conclude that the smallest value of π(θ) in A occurs on the boundary, and we can

define it as πmin = minθ∈A π(θ). The next step consists in noting that there must

exist N so that mn ∈ B for all n ≥ N and B = {θ ∈ Θ : ‖θ∗ − θ‖2 ≤ 0.5}. Note

that B ⊂ A. More importantly, the boundary of B has a distance of at least 0.5 to

the boundary of A. Now, since qn is a normal distribution concentrating to a dirac

measure at a distance of at least 0.5 from the boundary of A, we know that there

must also exist Ñ so that for all n ≥ Ñ , the largest value attained by qn on the

boundary of A is at most as large as πmin. More formally, we know that there exists

Ñ so that supθ∈∂A qn(θ) ≤ πmin for all n ≥ Ñ , where ∂A denotes the boundary of

A. Figure 3.1 illustrates this visually. Consequently, we can apply Lemma 3.7 and

Figure 3.1: Depicted is the strategy for the proof in Lemma 3.8.

the result follows.

Remark 3.7. In the proof of Lemma 3.8, we have used normality of the prior

(which follows from Assumption 3.2 (b)) for pedagogical reasons. Clearly, this is

much stricter than what we require in the proof: as a quick glance at the proof

and Figure 3.1 reveals, all that is really required is the existence of a compact set

A containing θ∗ so that (i) θ∗ has at least some positive distance ε > 0 to the

boundary of A (where we chose ε = 1 in the proof), (ii) π(θ) is decreasing as we

move in any direction pointing outside of A, (iii) we can lower bound π on A so that

infθ∈A π(θ) = πmin > 0. All these properties are only sufficient (and not necessary);

and are true for virtually all commonly used priors, including full (rather than

factorized) multivariate Gaussians, priors distributed as Student’s t-distribution,
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the β-distribution, the uniform distribution, trapezoidal distributions, etc.

Remark 3.8. Similarly to the prior discussed in Remark 3.7, the choice of varia-

tional posterior family for Lemma 3.8—again, for pedagogical reasons—is far more

rigid than what is necessary. In fact, all the proof uses is that the tails of normal

distributions are decreasing. More generally speaking, we can use the same argu-

ments for any variational family which satisfies that for each q ∈ Q, there exists

M so that for all ‖θ‖2 > M , q is decreasing as we move in any direction pointing

outside of the set {θ ∈ Θ : ‖θ‖2 ≤M}.

Using the insights of Remarks 3.7 and 3.8, it becomes clear that a much more

general version of Lemma 3.8 can be shown to hold.

Lemma 3.9. Suppose that x1:n
i.i.d.∼ µ, Eµ

[
Eπ [|`(θ,x)|]2

]
< ∞, and that Q is a

variational family such that

(i) for each q ∈ Q, there exists M so that for all ‖θ‖2 > M , q is decreasing as we

move in any direction pointing outside of the set {θ ∈ Θ : ‖θ‖2 ≤M};

(ii) for any q ∈ Q, and on any compact set S of Θ, we can lower bound q on S so

that infθ∈S q(θ) > 0.

Further, suppose that Assumptions 3.1 and 3.2 hold. Then, (3.9) holds for all n

that are sufficiently large.

Proof. This follows by the same logic as the proof of Lemma 3.8 and by using the

insights of Remarks 3.7 and 3.8. Note that the requirements (i),(ii), and (iii) in

Remark 3.7 hold because π ∈ Q by Assumption 3.2 (b); and that the requirement

outlined in Remark 3.8 holds by assumption.

We can now use the previous Lemma to show that the restriction condition

in (3.9) will hold for a wide range of variational families. Note that the list of

distributions in the Corollary is obviously not complete, and many other candidate

families satisfy the conditions of the previous Lemma.

Corollary 3.3. Suppose that x1:n
i.i.d.∼ µ, Eµ

[
Eπ [|`(θ,x)|]2

]
<∞, and thatQ is the

collection of multivariate normals, multivariate student’s t-distributions, Beta distri-

butions, or uniform distributions on Θ re-parameterized by an invertible, bounded,

and one-to-one transformation. Further, suppose that Assumptions 3.1 and 3.2 hold.

Then, (3.9) holds for all n that are sufficiently large.
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Proving that (I) holds with a restriction argument and a triangular Laws

of Large Numbers: The Law of Large Numbers (LLN)

Having established suitably mild conditions for our restriction condition, we will

proceed with showing that { 1
n

∑n
i=1 Z

(n)
i }n∈N satisfies a strong law of large numbers

(LLNs) for relatively mild settings. Recall that Z
(n)
i = Eqn [1A(θ) · `(θ, xi)] for some

compact set A that contains θ∗. It is possible to establish LLNs for the triangular

array {Z(n)
i }n∈N with canonical i.i.d. assumption together with a mild moment

and continuity condition. The moment condition is unproblematic, but somewhat

difficult to verify without imposing needlessly strict conditions.

Lemma 3.10. Suppose that Assumptions 3.1 and 3.2 (a), (d) and (b) hold, that

x1:n
i.i.d∼ µ, thatA is a compact set containing θ∗, and that Eµ

[
|`(θ,x) · 1A(θ)|2+δ

]
<

∞ for all θ ∈ A and for some δ > 0. Lastly, assume that θ 7→ `(θ, xi) is µ-almost

surely continuous on A, and that θ 7→ Eµ [|`(θ,x)|] is continuous on A. Then,

µ-almost surely we have that

1

n

n∑
i=1

Z
(n)
i − Eµ[`(θ∗,x)] −→ 0.

Proof. We first show that

1

n

n∑
i=1

Z
(n)
i − Eµ

[
Eqn [`(θ,x)1A(θ)]

]
−→ 0. (3.10)

using Corollary 1 of Hu et al. (1989). Because x1:n
i.i.d.∼ µ, we clearly have that

Eµ

[
n∑
i=1

Z
(n)
i − Eµ

[
Eqn [`(θ,x)1A(θ)]

]]
= 0 (3.11)

The only other condition we need before we can apply said Corollary is the finiteness

condition supn≥1 Eµ
[∣∣Eqn [`(θ,x)1A(θ)]

∣∣2+δ
]
<∞. To this end, we can bound

sup
n≥1

Eµ
[∣∣Eqn [`(θ,x)1A(θ)]

∣∣2+δ
]

≤ sup
n≥1

Eµ
[
Eqn [|`(θ,x)|2+δ 1A(θ)]

]
= sup

n≥1
Eqn

[
Eµ[|`(θ,x)|2+δ 1A(θ)]

]
≤ sup
θ∈A

Eµ
[
|`(θ,x)|2+δ

]
<∞.
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Here, the first inequality follows by Jensen’s inequality, the equality by applica-

tion of Fubini’s Theorem; the second inequality by bounding Eqn [f(θ)1A(θ)] ≤
supθ∈A f(θ); and the finiteness implied by the last inequality follows by application

of the Extreme Value Theorem to the continuous function θ 7→ Eµ
[
|`(θ,x)|2+δ

]
on A. Note that the function is indeed continuous since Eµ

[
|`(θ,x)|2+δ

]
< ∞ for

θ ∈ A, and Eµ [|`(θ,x)|] is continuous.

The only step that is missing is to show thatmn = Eµ
[
Eqn [`(θ,x)1A(θ)]]

]
−→

Eµ[`(θ∗,x)] as n→∞. This follows by standard arguments: first, note that by as-

sumption, we have mn <∞. Further, because Eµ
[
Eqn [|`(θ,x)|1A(θ)]

]
<∞, we can

apply Fubini’s Theorem together with the fact that qn
D−→ δθ∗ implied by Corollary

3.1 to conclude that

lim
n→∞

mn = lim
n→∞

Eqn [Eµ[`(θ,x)1A(θ)]] = Eµ [`(θ∗,x)] ,

where the last equality follows by the Portmanteau Theorem and because θ 7→
`(θ, xi) is µ-almost surely continuous on A.

Remark 3.9. The only condition in the preceeding result that could be difficult to

justify is the moment condition that Eµ
[
|`(θ,x)|2+δ

]
<∞ for all θ ∈ A. The main

challenge with this assumption is that while it is easy to verify if the loss is bounded

on A (i.e., if supθ∈A,x∈X |`(θ, x)| < ∞), this is a much stricter condition than the

moment condition. In this sense, the moment condition often has to be taken on

faith. In contrast, the continuity conditions on A are not typically challenging in

practice: most losses will be continuous, especially in a small region around the

minimum; and it is reasonable to expect that the same is true when one integrates

out x with µ. Even if continuity were a problem however, we could get rid of

this assumption so long as it holds that supn≥1 Eµ
[∣∣Eqn [`(θ,x)1A(θ)]

∣∣2+δ
]
<∞ or

supθ∈A Eµ
[
|`(θ,x)|2+δ

]
<∞.

3.7 Proof of the Main Results

With everything now in place, we can now prove the two main results of the current

chapter.

3.7.1 Proof of Theorem 3.1

Clearly, this result is a straightforward application of Corollary 3.2.
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3.7.2 Proof of Theorem 3.2

This follows by showing that both the restriction condition (3.9) and the desired

Law of Large Numbers (LLN) hold. Clearly, this can be achieved by combining

Lemma 3.9 with Lemma 3.10.
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Part II

Methodological Advances
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Chapter 4

Generalized Variational

Inference, Part 1: Computation

Summary: In this and the following two chapters, we study the special case for the

Rule of Three (RoT) for which optimization happens over a set of parameterized dis-

tributions. For its obvious relationship to previous variational methods, we call this

family of algorithms Generalized Variational Inference (GVI). In this first of three

chapters devoted to GVI, we explain its computational properties. In particular, we

explain how—unlike most other RoT posteriors—GVI posteriors can usually be com-

puted (at least approximately). Particular attention is paid to the computational

toolkit from variational methods that enables this computation, how it needs to be

adjusted to fit GVI, and special cases for which the optimisation problem becomes

particularly easy to solve.

In this chapter, we study posteriors obtained via Generalized Variational

Inference (GVI). These posteriors are a particular version of RoT posteriors, and are

particularly feasible for scalable inference in complex, high-dimensional problems.

Definition 4.1 (Generalized Variational Inference (GVI)). Computing any RoT

posterior of form P (`,D,Q) for Q = {q(θ|κ) : κ ∈ K} being a subset of P(Θ)

parameterized by κ ∈ K (also called a variational family) constitutes a procedure

we call Generalized Variational Inference (GVI). Accordingly, the resulting posterior

is referred to as a GVI posterior.

As Definition 4.1 reveals, the feature that makes GVI posteriors particularly

appealing is their practicability: while it is unclear how to compute posteriors via the

RoT when optimization is performed over non-parameterized infinite-dimensional

75



spaces, this is not an issue when Π = Q: In this case, optimization is instead

performed over the finite-dimensional space K.

In the next three chapters, we proceed as follows: In the current chapter,

we explain how GVI relates to other variational methods in Bayesian statistics, but

also how it is fundamentally different from them. Most importantly, we also explore

how to compute GVI posteriors. Next, Chapters 5 and 6 will motivate practical

reasons for studying GVI, and explain how GVI posteriors can address questions of

robustness to ill-specified priors or likelihood functions. We demonstrate this on

two models that are commonly used in Bayesian Machine Learning: Deep Gaussian

Processes (DGPs) and Bayesian Neural Networks (BNNs).

4.1 Standard variational methods and GVI

The driving idea behind the RoT as well as GVI is that undesirable inference out-

comes are synonymous with an inappropriately designed optimization objective in

Definition 2.3—an observation we call the optimization-centric view on Bayesian

inference. Following this line of reasoning, the most transparent way of improv-

ing posteriors is a direct adjustment of the optimization problem that generated

them—and GVI posteriors are a tractable way of achieving this. GVI posteriors

have a number of desirable properties beyond tractability. Of particular importance

is that they inherit the modularity outlined in Remark 1.2. The ramifications are

twofold:

(1) GVI can address prior misspecification (as well as the nature of uncertainty

quantification) by changing D;

(2) GVI can address model misspecification by changing L.

In the context of potential misspecification problems, this modularity means that

GVI posteriors P (L,D,Q) are appealing alternatives to q∗n,SB(θ) or q∗VI(θ). More

precisely, if one can identify whether the assumptions underlying standard Bayesian

inference are violated via the likelihood or the prior, GVI can be used to address

this by directly modifying L or D. This means that GVI has an inherently different

motivation from other variational methods such as standard Variational Inference

(VI) or Discrepancy Variational Inference (DVI) introduced in Section 1.2.3: rather

than seeking to approximate q∗n,SB(θ) (or q∗n,GB(θ)) with a projection operation of

the form

q∗A(θ) = arg min
q∈Q

D(q‖q∗n,GB(θ)),
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GVI designs and computes an inherently different—and hopefully better-suited—

posterior belief for the problem at hand.

4.1.1 Approximating q∗n,SB(θ) vs. specifying a new posterior

Some practitioners may argue that this feature makes GVI less desirable than al-

ternative variational methods: why would we prefer these posteriors over approxi-

mations to q∗n,SB(θ)? In principle, this is a valid point: in fact, if the assumptions

underlying Bayesian inference are at least approximately correct, and if Q contains

qualitatively good approximations to q∗n,SB(θ), one will want to use a method that is

motivated as approximation to q∗n,SB(θ). Unfortunately, this idealization often does

not reflect the situation we encounter in practice. In fact, thinking of variational

methods as approximations is often misleading in the first place—even if likelihoods

and priors are correctly specified. The reason for this is that in many applications,

the set Q does not contain any distributions suitable for approximating q∗n,SB(θ) in

any meaningful way. For example, it is questionable if one obtains a meaningful

approximation to q∗n,SB(θ) if the latter is a multi-modal distribution and Q con-

sists of all uni-modal normal distributions on Θ. In this setting—which is rather

commonplace in Machine Learning applications—variational methods motivated by

approximating q∗n,SB(θ) have a clear conceptual drawback when compared to GVI

posteriors: they are not interpretable as a modularly specified belief distribution;

and so their only quality benchmark should be their approximating behaviour. We

demonstrate this tension in Example 4.1 and Figure 4.1, and will revisit this issue

with our experiments in the following two chapters.

Example 4.1 (Label switching and multi-modality). A recurrent theme in the re-

search on variational approximations q∗A(θ) to q∗n,SB(θ) is the observation that if Q
is a mean field normal family, q∗VI(θ) will center closely around the maximum likeli-

hood estimate (e.g. Turner and Sahani, 2011).1 This phenomenon is often referred

to as the zero-forcing behaviour of the KLD-projection (Minka, 2005). Its effect

are undesirably overconfident variational posteriors q∗VI(θ). Moreover, this prob-

lem is especially pronounced when the approximated posterior beliefs q∗n,SB(θ) are

multi-modal. Popular approaches to address this issue are Expectation Propagation

(EP) (Minka, 2001; Opper and Winther, 2000) and Divergence Variational Inference

(DVI) methods as introduced in Section 1.2.3 (e.g. Hernández Lobato et al., 2016;

Li and Turner, 2016; Dieng et al., 2017). All of these approaches seek to (locally

1Similarly, if we approximate q∗n,GB(θ), q∗VI(θ) will center closely around the empirical risk

minimizer θ̂n = arg minθ∈Θ L(θ, x1:n)
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or globally) minimize an alternative zero-avoiding2 divergence D between Q and

q∗n,SB(θ). In contrast with GVI, changing the divergence in the DVI-sense explicitly

encodes the desire to approximate q∗n,SB(θ).

Using Bayesian mixture models (BMMs), we show that this can indeed be

a problem in practice. In particular, we show that this can accidentally interfere

with the negative log loss targeted by the underlying Bayes posterior. BMMs produce

multi-modal posteriors as the likelihood function is invariant to switching parameter

labels. In other words, BMMs have multiple parameter values that constitute equally

good fits to the data. With this in mind, we simulate n = 100 observations from

p (x|θ = (µ1, µ2)) = 0.5 · N
(
x|µ1, 0.652

)
+ 0.5 · N

(
x|µ2, 0.652

)
for two different parameterizations 1) θ = (0, 0.75) and 2) θ = (0, 2). For in-

ference, we use the well-specified prior belief µj ∼ N (0, 22), j = 1, 2. Using the

correctly specified likelihood function `(θ, xi) = − log p (xi|θ = (µ1, µ2)), we com-

pare the standard Bayesian posterior q∗n,SB(θ), the standard VI posterior q∗VI(θ),

a DVI posterior based on Rényi’s α-divergence (D(α)
AR) as described by Li and Turner

(2016), and a GVI posterior using D = D
(α)
AR (see eq. (5.2)). For Q, we use the

collection of fully-factorized normals on Θ.

Figure 4.1 shows the results. Because p (x|θ = (µ1, µ2)) = p (x|θ = (µ2, µ1)),

there are two equally good parameter values describing the data—implying that the

full posterior q∗n,SB(θ) is bi-modal. By choice of Q however, the posteriors are forced

to be unimodal, which endows them with a straightforward interpretation: Firstly,

the modes of these posteriors should be close to (one of the two) best parameter

values of θ = (µ1, µ2). Secondly, their variances quantify the uncertainty about this

best value. For both settings of the true value for θ, DVI produces a posterior that

reflects a highly undesirable belief: the mode of the DVI posterior is located at a

(locally) worst value of θ. Unsurprisingly and as the bottom right plot shows, this

adversely affects predictive performance. This behaviour is entirely attributable to

the fact that unlike GVI posteriors, DVI do not inherit the modularity that stems

from the form in Definitions 2.3 and 4.1. In this context, Figure 4.1 serves as a

morality tale: In the GVI framework, changing D = KLD to another divergence only

changes uncertainty quantification and does not affect the way the best parameter

is defined: that part of the inference problem is determined by the loss L. In sharp

contrast, the DVI framework comes with no such guarantee! Accordingly, posteriors

produced by DVI with D 6= KLD conflate uncertainty quantification and the way

2The origin of this term is that approximations q∗A(θ) derived from these divergences—in contrast
to q∗VI(θ)—avoid being close to zero for regions of high probability mass under q∗n,SB(θ).

78



-0.5 0.0 0.5 1.0

0
.0

1
.0

2
.0

3
.0

µ1

D
en

si
ty

Exact Posterior

VI

DVI,D = D
(0.5)

AR
GVI, α = 0.25

MLE

-0.5 0.0 0.5 1.0

0
.0

1
.0

2
.0

3
.0

µ2

D
en

si
ty

-1 0 1 2 3

0.
0

1
.0

2
.0

3
.0

µ1

D
en

si
ty

-2 -1 0 1 2 3 4

0.
0

0.
1

0
.2

0
.3

0
.4

0
.5

x

D
en

si
ty

Figure 4.1: Best viewed in color. Depicted are inference outcomes for a Bayesian
Mixture Model (BMM), namely the (multimodal) standard Bayesian posterior,
standard VI posterior, a DVI-approximation based on minimizing D

(α)
AR between Q

and q∗n,SB(θ) (Li and Turner, 2016), and a GVI posterior taking D = D
(α)
AR. Top:

Posterior marginals for µ1 = 0, µ2 = 0.75. The mode of the DVI posterior is a locally
worst value for θ relative to the exact Bayesian posterior. In contrast, standard
VI and GVI respect the loss: They produce a posterior belief centered around one
(of the two) values of θ minimizing the loss. Bottom left: Posterior marginal for
µ1 = 0, µ2 = 2. The effects of the top row become even stronger as the modes
move further apart. Bottom right: Posterior predictive for µ1 = 0, µ2 = 2 against
the histogram depicting the actual data. VI, GVI and exact Bayesian inference
perform well and almost identically. DVI performs poorly, failing to capture the
mixture components of the BMM.

the best parameter is found.

4.2 VI, DVI, and GVI: a common problem

While GVI, DVI, and VI posteriors have many important conceptual differences, they

do have a major commonality: As their names suggest, they are all ’variational’

methods. But what does this mean? The naming convention emphasizes that

unlike most optimisation problems in Machine Learning and statistics, such methods
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optimise over a space of functions: variational calculus is essentially the study of

optimisation in function spaces. But what we will call variational methods in this

thesis can be even more narrowly defined: in particular, the function spaces in

question are parameterized sub-spaces Q of the space of probability distributions

on Θ.

This means that fundamentally, all these methods aim at solving different

variations of the same type of problem. In the remainder of the current chapter,

we leverage this strong connection to adapt a range of techniques for GVI that have

recently been popularized in the context of VI and DVI methods. Beyond that, we

also discuss both challenges and solutions that are unique to GVI. For example, we

will see that changing the loss function or divergence of a RoT problem sometimes

yields closed form objectives and derivatives.

4.3 Background: How are VI posteriors computed?

Before we are ready to adapt the techniques of existing variational methods to

the GVI setting, it is worth re-acquainting ourselves with the setup of standard

VI. Simply put, a standard VI posterior is specified by P (L,KLD,Q) with the re-

strictions that (i) L(θ, x1:n) = − log p(x1:n|θ) is a negative log likelihood for some

likelihood function p(·|θ), and that (ii) Q = {q(θ|κ) : κ ∈ K} is a set of distribu-

tions parametrized by a set K of parameters, where we typically have that K ⊆ Rd.
This means that we aim at solving the problem

κ∗ ∈ arg inf
κ∈K

{
Eq(θ|κ) [L(θ, x1:n)] + KLD(q‖π)

}
, (4.1)

since we can then conclude that q(θ|κ∗) = P (L,KLD,Q). This is the origin for the

(strictly speaking wrong but popular) phrase in Machine Learning that Variational

inference converts Bayesian inference from a sampling problem into an optimization

problem.3

4.3.1 Challenges in variational problems

Even though the optimization problem of (4.1) is typically easier to work with

than P (L,KLD,P(Θ)), it is not easy to work with. For example, it is typically

impossible to prove that κ∗ is unique—and in many cases even that it is attained

3The less sexy but more accurate version of this phrase would be that Variational inference [over
a parametric subset of P(Θ)] converts an infinite-dimensional into a finite-dimensional optimization
problem.
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in K. In particular, outside a number of niche cases the objective of (4.1) will not

be convex—so even though gradient-based optimization methods are the de-facto

default choice for variational posteriors, it is often unclear how good they actually

are at finding the true optimum κ∗. Further, it should be self-evident that taking

gradients with respect to κ is itself a formidable challenge: Unless we can write

down Eq(θ|κ) [L(θ, x1:n)] and KLD(q(·|κ)‖π) in closed form, it is not obvious how

the gradient should be computed in general.

In this thesis, we take the pragmatic approach of Machine Learning practi-

tioners: we are comfortable taking a leap of faith, and simply hope that gradient-

based methods for the variational problems we pose will generally lead to at least

reasonable, and hopefully even close-to-optimal solutions. In practical terms, this

means that we can focus on the actual computational devices—and in particular on

gradient-based methodology.

4.3.2 Gradient-based methodology for VI

While early applications of VI relied on at least partially available closed forms for

the expression in (4.1) and its gradient in κ (e.g. Ghahramani and Beal, 2001), the

far more wide-spread approach today is stochastic optimization. The most attractive

feature of stochastic optimization for VI is that modern computing equipment allows

us to perform this optimization as a black box—an idea made explicit by Ranganath

et al. (2014), but used to various degrees by a wide range of previous papers (e.g.

Wingate and Weber, 2013; Kingma and Welling, 2013; Carbonetto et al., 2009;

Titsias and Lázaro Gredilla, 2014) Specifically, if one can show that the gradient

exists, then modern automatic differentiation software means that we do not have to

derive this derivative by hand—a task that is not only tedious and time-consuming,

but will have to be re-done for every new type of model we want to do inference

for. The modern practitioner has many such automatic differentiation tools at their

disposal, including JAX (James Bradbury et al., 2018), NumPyro (Phan et al., 2019;

Eli Bingham et al., 2019), and Tensorflow Probability (Dillon et al., 2017).

The only remaining question is how one should compute or approximate the

expectations relative to which the gradient needs to be taken. For this, we can

use Monte Carlo gradient estimation—a vast field of research that has been studied

for decades across different disciplines. For readers interested in details, the recent

review of Mohamed et al. (2020) provides an excellent reference over this field of

scientific inquiry.

The predominant Monte Carlo gradient estimator in the context of varia-

tional methods is the REINFORCE estimator (Williams, 1992)—which is also known
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as the score function estimator (Kleijnen and Rubinstein, 1996; Rubinstein et al.,

1996), as well as the likelihood ratio method (Glynn, 1990). To apply this estimator,

rewrite the objective in (4.1) as a single expectation:

OVI(κ) = Eq(θ|κ) [L(θ, x1:n) + log q(θ|κ)− log π(θ)] .

Next, simply rewrite the gradient ∇κOVI(κ) as follows:

∇κOVI(κ) = ∇κ
∫

Θ
q(θ|κ) [L(θ, x1:n) + log q(θ|κ)− log π(θ)] dθ

=

∫
Θ
∇κ {q(θ|κ) [L(θ, x1:n) + log q(θ|κ)− log π(θ)]} dθ

=

∫
Θ
∇κq(θ|κ) [L(θ, x1:n)− log π(θ)] dθ +

∫
Θ
∇κ {q(θ|κ) log q(θ|κ)} dθ

= Eq(θ|κ) [∇κ log q(θ|κ) (L(θ, x1:n)− log π(θ))] . (4.2)

Here, the second equality follows due to the dominated convergence theorem4,

the third from the fact that ∇κ log π(θ) = 0, and the last from the derivation

that
∫
Θ∇κ {q(θ|κ) log q(θ|κ)} dθ = ∇κEq(θ|κ)[q(θ|κ)] = ∇κ1 = 0; where we have

once again used the dominated convergence theorem together with the fact that

∇x log f(x) = ∇xf(x)
f(x) . Equation (4.2) is convenient, as it allows for a simple Monte

Carlo estimator of ∇κOVI(κ) given by

̂∇κOVI(κ) =
1

S

B∑
b=1

∇κ log q(θ(s)|κ)
[
L(θ(s), x1:n)− log π(θ(s))

]
,

where θ(1:S) i.i.d.∼ q(θ|κ). Oftentimes, the variance of these gradients can be rather

large; and so numerous variance reduction techniques have been proposed to curtail

any negative side effects of using them.

While a host of other gradient-based estimators exist (such as pathwise gra-

dient estimators or measure-valued gradients, see Mohamed et al., 2020), these are

used only sparingly in practice. We therefore do not discuss them, and confine

ourselves to adapting only the score-based gradient estimator to GVI.

4.4 Black Box GVI: stochastic computation for GVI

Standard VI is scalable using doubly stochastic, model-agnostic optimization tech-

niques (e.g. Paisley et al., 2012; Hoffman et al., 2013; Titsias and Lázaro Gredilla,

4Numerous mild conditions will suffice to ensure that we can apply this theorem; and we will
not dwell on them here since in practice, these will hold for all but the most pathological of cases
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2014; Salimans and Knowles, 2014; Wu et al., 2019) collectively known as black box

VI (Ranganath et al., 2014). We extend these methods and introduce black box GVI

(BBGVI), an algorithm which is easily built into existing software: For example,

adapting the Deep Gaussian Process implementation of Salimbeni and Deisenroth

(2017) in Chapter 6 required <100 lines of Python code.

Suppose that for all q ∈ Q, one can sample θ ∼ q. Suppose also that

the derivatives ∇κ log q(θ|κ) and ∇κD(q||π) exist (almost surely relative to the

measure on Θ induced by any q ∈ Q). Now, define the GVI objective corresponding

to P (L,D,Q) as

OGVI(κ) = Eq(θ|κ) [L(θ, x1:n)] +D(q‖π).

Lastly, assume that the conditions for the dominated convergence theorem are met

so that ∇κEq(θ|κ) [L(θ, x1:n)] =
∫
Θ∇κ {q(θ|κ)L(θ, x1:n)} dθ. For many choices of

D, Q and π that are of practical interest, ∇κD(q||π) is available in closed form. In

this case, GVI posteriors can be computed through gradient-based schemes built on

the unbiased gradient estimate

∇̂κOGVI =
1

S

S∑
s=1

{
L(θ(s), x1:n) · ∇κ log q(θ(s)|κ)

}
+∇κD(q||π), (4.3)

where θ(1:S) i.i.d∼ q(θ|κ). The derivation of this family of estimators follows the

same logic as (4.2). Throughout the remainder of the thesis, all numerical examples

and applications in Chapters 5 and 6 admit closed forms for ∇κD(q||π). In other

words, (4.3) provides the de-facto gradient estimator we use for all of this thesis’

applications of GVI that require stochastic approximation.

If a closed form for ∇κD(q||π) is not available but we can write D(q||π) =

Eq(θ|κ) [dκ,π(θ)] as an expectation for a function dκ,π : Θ → R, one can use the

alternative unbiased gradient estimate

∇̂κOGVI =
1

S

S∑
s=1

{[
L(θ(s), x1:n) + dκ,π(θ(s))

]
· ∇κ log q(θ(s)|κ)

+∇κdκ,π(θ(s))

}
. (4.4)

This logic applies to virtually all popular divergences, including all f -divergences.

In particular, it is easy to see that this recovers the standard VI black box gradient

for dκ,π(θ) = log q(θ|κ) − log π(θ). In some cases however, divergences will not

be linear in q so that one has D(q‖π) = τ
(
Eq(θ|κ) [dκ,π(θ)]

)
for some non-linear
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function τ : R → R. In this case, BBGVI can be performed based on the biased

gradient estimate

∇̂κOGVI =
1

S

S∑
s=1

{
L(θ(s), x1:n) · ∇κ log(q(θ(s)|κ))

}
+

τ

(
1

S

S∑
s=1

dκ,π(θ(s))

)
· 1

S

S∑
s=1

∇κdκ,π(θ(s)). (4.5)

Note that the induced bias of this estimator could be eliminated using the techniques

of Grathwohl et al. (2018).

4.4.1 Closed forms for the divergence term

It should be obvious that the implied reduction in variance from having D(q‖π)

available in closed forms makes using (4.3) preferable over both (4.4) and (4.5).

Naturally, this raises the question which divergences will be available in closed form.

One family of robust divergences—called the αβγ-family by Cichocki and

Amari (2010), which includes α-divergences (D(α)
A ), Rényi’s α-divergences, β-divergences

(D(β)
B ), as well as γ-divergences (D(γ)

G )—is of particular interest for robustness to ill-

specified priors. We defer their detailed discussion and formal definitions to Chapter

5 and specifically Section 5.1.1, since discussing them more thoroughly makes more

sense later on in the thesis. While these divergences are discussed later, we provide

Proposition 4.1 at this stage, since this result shows that ∇κD(q‖π) will generally

be available for αβγ-divergences if all elements of Q are part of the same exponential

family.

Proposition 4.1 (Closed form D). Let q, π with natural parameters ηq,ηπ be in

the exponential family Q = {q(θ|η) = h(θ) exp {η′T (θ)−A(η)} : η ∈ N} with

natural parameter space N = {η : exp{A(η)} <∞}. Then,

(1) D
(α)
A (q||π) and D

(α)
AR(q||π) have closed form if α ∈ (0, 1), or αηq+(1−α)ηπ ∈ N

(2) D
(β)
B (q||π) has a closed form if h(θ) = h does not depend on θ and additionally,

(β − 1) · η1 + η2 ∈ N for any η1,η2 ∈ N

(3) D
(γ)
G (q||π) has closed form if D(β)

B (q||π) does for β = γ.

The above Proposition is meaningful, since exponential families are typically

of particular interest in Variational Inference schemes due to their computational
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convenience. In the context of Chapters 5 and 6, it means that we can use (4.3)

throughout all the experiments presented therein.

4.4.2 Black box variance reduction

Regardless of the exact form the gradient estimator takes, one may want to apply

black box variance reduction techniques in order to make inference both faster and

more reliable—even if the estimate in (4.3) can be used. In the context of standard

variational methods, more-or-less black box techniques for reducing variance have

previously been suggested by numerous authors, including Ranganath et al. (2014);

Wu et al. (2019); Grathwohl et al. (2018). An overview over such techniques for the

standard variational case is given in Mohamed et al. (2020).

Preliminaries and assumptions

In the remainder, we will find it helpful to distinguish a number of different cases

for variance reduction techniques. In general, most black box variance reduction

techniques for standard VI rely to varying degrees on three assumptions. These are

often not stated explicitly in the relevant papers, but of crucial importance to assess

which techniques we can transfer from standard VI into GVI problems. For the

purposes of what follows, we will state these assumptions explicitly as (A1)–(A3)

in the notation and context of GVI, and then proceed with explaining how we can

obtain GVI posteriors based on different sets of these assumptions holding true.

(A1) We can factorize the variational family into k independent factors as Q =

{q(θ|κ) =
∏k
j=1 qj(θj |κj) : κj ∈ Kj for all j : 1 ≤ j ≤ k}.

(A2) For the k factors θj : 1 ≤ j ≤ k, we have θ(j) so that θj∩θ(j) = ∅, and for which

we can additively decompose L(θ, x1:n) = L(j)(θj ,θ(j), x1:n)+L(−j)(θ−j , x1:n).

Here, L(j) is an additive component of the loss L that only depends on the

j-th factor and θ(j), while L(−j) is an additive component of the loss that may

depend on all of θ except for its j-th factor. In particular, L(−j) may depend

on θ(j), but cannot depend on θj .

(A3) D = 1
w · KLD (with w = 1 for standard VI).

Note that (A1) is always satisfied for both standard VI and GVI, because any vari-

ational family factorizes into at least a single factor. In contrast, note that (A2)

does not even necessarily hold. Its meaning is that there are k ways to rewrite

the loss function additively as L(j) + L(−j), so that each of these k ways splits up
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the parameters into three different blocks: θj , θ(j), and θ−j . This means we can

rewrite L(θ, x1:n) = 1
k

∑k
j=1 L

(j)(θj ,θ(j), x1:n) + L(−j)(θ−j , x1:n). Note that even

if L(θ, x1:n) = − log p(x1:n|θ), this form of decomposability will not generally hold

unless one imposes some conditional independence structure on the factors θj—in

which case θ(j) is called the Markov blanket of θj . Since the additivity of condition-

ally independent components is a simple consequence of the log score associated with

standard VI, for GVI the interpretation of the additivity property as conditional in-

dependence does not generally hold. Conversely, it also means that additivity could

hold for parameters that are not conditionally independent in a probability model

(and indeed for parameters that are not part of a probability model at all). Gener-

ally then, both (A2) and (A3) do not necessarily hold for GVI. If they do however,

they can greatly simplify BBGVI or improve its numerical performance.

In addition to the assumptions on parameter factorization, we also need to

discern two settings regarding the divergence D:

(D1) ∇κD(q‖π) has closed form for all q ∈ Q;

(D2) D(q‖π) = Eq(θ|κ)

[
`Dκ,π(θ)

]
for some function `Dκ,π : Θ→ R.

Under each condition, we find a different solution using as much of the available

information as possible to improve inference outcomes.

Standard black box VI with (A2) and (A3)

Clearly, if the regularizer used is still a rescaled version of the KLD, (D2) always

holds, so that one recovers an internally rescaled version of the classical VI objective

in (4.2).5 Naturally, if (D1) holds, then this gradient can be made even more elegant

using a version of the gradient estimate presented in (4.3). Next, we turn attention

to the cases that are more interesting: If (A3) does not hold (so that D 6= KLD)

and when the losses are not necessarily negative log likelihoods, meaning that (A2)

requires more careful consideration.

BBGVI under (A2): Rao-Blackwellization

First, recall that if we are not using the additional information in (A2), then we

obtain the objective of (4.3) if (D1) holds. Similarly, we obtain (4.4) if (D2) holds.

However, one can employ Rao-Blackwellization for variance reduction if the

losses satisfy (A2). The first step is to rewrite for q−j(θ−j |κ−j) =
∏k
l=1,l 6=j ql(θl|κl)

5Simply replace log π(θ) with w−1 log π(θ)
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the partial derivatives as

∇κjOGVI(κ) = ∇κjEqj(θj |κj)
[
Eq−j(θ−j |κ−j) [L(θ, x1:n) +D(q‖π)|θj ]

]
.

The hope is then to get around computing as many of the inner expectations over

q−j(θ−j |κ−j) as possible. Assume for the moment that at least (D2) holds. Further,

denote q−j(θ−j |κ−j) = q−j , qj(θj |κj) = qj , and in similar fashion the distributions

q(j), q−(j), q. Now, assuming that (A2) holds relative to the factors θj , one finds

∇κjOGVI(κ) = Eqj
[
∇κj log(qj(θ))

(
Eq−j

[
L(j)(θj ,θ(j), x1:n)

]
+ Eq−j [L

(−j)(θ−j , x1:n)]

+Eq−j [dκ,π(θ)]

)]
+ Eq−j [∇κjdκ,π(θ)].

Observing that Eqj [∇κj log(qj(θj))] = 0 and that Eq−j [L−(j)(θ−j)] is constant in θj

by definition of L−(j) and θ−j , this drastically simplifies to

∇κjOGVI(κ) = Eqj
[
∇κj log qj(θj |κj) ·

(
Eq−j

[
L(j)(θj ,θ(j), x1:n)

]
+ Eq−j [dκ,π(θ)]

)
+Eq−j

[
∇κjdκ,π(θ)

] ]
.

Next, observe that by virtue of how L(j) was constructed, it holds that we can also

simplify

Eqj
[
∇κj log(qj)Eq−j

[
L(j)(θj ,θ(j), x1:n)

]]
= Eq(j)

[
L(j)(θj ,θ(j), x1:n)

]
.

Putting the above together, we finally arrive at

∇κjOGVI(κ)

= Eqj
[
∇κj log qj(θj)

(
Eq−j

[
L(j)(θj ,θ(j), x1:n)

]
+ Eq−j [dκ,π(θ)]

)
+ Eq−j [∇κjdκ,π]

]
= Eq(j)

[
∇κj log qj(θj)L

(j)(θj ,θ(j), x1:n)
]

+ Eq
[
∇κj log qj(θj)dκ,π(θ) +∇κjdκ,π(θ)

]
.

which is the final form under (D1). Should (D1) hold, one can instead use the lower

variance estimate

∇κjOGVI(κ) = Eq(j)
[
∇κj log qj(θj)L

(j)(θj ,θ(j), x1:n)
]

+∇κjD(q‖π).

The k terms ∇κjOGVI(κ) can then be combined into a global gradient estimate

87



simply by setting

∇κOGVI(κ) = (∇κ1OGVI(κ),∇κ2OGVI(κ), . . .∇κkOGVI(κ))T .

As before, one will in practice need to approximate the gradients with a

sample θ(1:S) drawn from q(θ|κ). The relevant terms are computed as

̂∇κjOGVI(κ) =
1

S

S∑
s=1

{
∇κj log qj(θ

(s)
j |κj)L(j)(θ

(s)
j ,θ

(s)
(j), xi)

}
+∇κjD(q‖π)

for some closed form function ∇κjD(q‖π). If (D2) holds and there is no closed form

for the prior regularizer, ∇κjD(q‖π) is replaced by the stochastic estimator

̂∇κjD(q‖π) =
1

S

S∑
s=1

{
∇κj log qj(θ

(s)
j |κj)dπ,κ(θ(s)) +∇κjdπ,κ(θ(s))

}
.

We end this section by making the meaning of (A2) more tangible for the case

of general losses through a short example in the context of multivariate regression.

Example 4.2 (Additivity as per (A2) for general losses). Suppose each xi =

(xi,1, xi,2, xi,3)′ consists of three measurements that we wish to relate to some other

observables yi through

xi,1 = a+ yib+ ξ1

xi,2 = b+ yic+ ξ2

xi,3 = d+ ξ3

where ξj are unknown slack variables (or errors), the parameters of interest are θ =

(a, b, c, d, e) and we wish to produce a belief distribution over θ that is informative

about good values of θ relative to some prediction loss L(θ, x1:n) =
∑n

i=1 `(θ, xi),

where the individual loss terms are

`(θ, xi) = ‖f1
1 (θ1,θ(1), yi)− xi,1‖pp + ‖f1

2 (θ1,θ(1), yi)− xi,2‖pp︸ ︷︷ ︸
first factor, j=1

+ ‖f2
3 (θ2,θ(2), yi)− xi,3‖pp︸ ︷︷ ︸

second factor, j=2

,

where ‖ · ‖pp denotes some p-norm for p ≥ 1 and f jl seeks to predict only the l-th

dimension of xi = (xi,1, xi,2, xi,3)T by means of the j-th factor θj as well as θ(j).

Suppose that f jl will correspond to the l-th row written down in the above model
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for xi (excluding of course the error term), which means that

f1
1 (θ1,θ(1)) = a+ yib

f1
2 (θ1,θ(1), yi) = b+ yic

f2
3 (θ2,θ(2), yi) = d

In this case, the two factors of θ will clearly be given by

θ1 = (a, b, c)T , θ2 = (d),

and both θ(1) = θ(2) = ∅.

BBGVI if neither (A2) nor (A3) hold

It is of course possible that neither (A2) nor (A3) hold. Even if the assumptions do

hold, it may simply be convenient to build a software implementation of BBGVI that

does not impose any assumptions. Naturally, one can use the gradient estimates of

(4.3)–(4.5) in this case. Beyond that, one can also apply black box variance reduc-

tion techniques that work without the assumptions underlying Rao-Blackwellization.

The next paragraphs present these techniques, which are adapted from the standard

variational case as presented in Ranganath et al. (2014).

Generically applicable variance reduction

While the Rao-Blackwellization variance reduction will generally be more effec-

tive, some variance reduction techniques can work in circumstances where Rao-

Blackwellization does not. Conversely, this means that if Rao-Blackwellization is

applicable, one can actually deploy two variance reduction schemes at once to sub-

stantially speed up convergence. The control variate we use is simply

h(θ) = ∇κ log q(θ|κ)

with an optimal scaling parameter that can be estimated as

â∗ =

∑S
s=1 Ĉov(R(θ(s)), h(θ(s)))∑S

s=1 V̂ar(h(θ(s)))
,

where we have generically written R(θ(s)) as the stochastically estimated part of the

gradient estimate that can be decomposed additively. For example, in the estimator

of (4.3), we would have R(θ(s)) = L(θ(s), x1:n) · ∇κ log q(θ(s)|κ), while we would
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Algorithm 1 Black box GVI (BBGVI)

Input: x1:n, π, D, `, Q, h, StoppingCriterion, κ0, K, S, t = 0, LearningRate

done← False
while not done do

// Step 1: Get a subsample from x1:n of size K
ρ1:K ← SampleWithoutReplacement(1 : n,K)
x(t)1:K ← xρ1:K

// Step 2: Sample from q(θ|κt) and compute losses

θ(1:S) i.i.d.∼ q(θ|κt)
`i,s ← `(θ(s), x(t)i) · ∇κt log q(θ(s)|κt) for all s = 1, 2, . . . S and i = 1, 2, . . . ,K

`s ← n
K

∑K
i=1 `i,s for all s = 1, 2, . . . S

// Step 3: Compute divergence term
if D(q‖π) admits closed form then

`s ← `s +∇κD(q‖π) for all s = 1, 2, . . . S
else if D(q‖π) = Eq[`Dκ,π(θ)] then

`s ← `s + `Dκ,π(θ(s))∇κt log q(θ(s)|κt) +∇κt`Dκt,π(θ(s)) for all s = 1, 2, . . . S

else if D(q‖π) = τ
(
Eq[`Dκ,π(θ)]

)
then

`s ← `s + τ
(

1
S

∑S
s=1 `

D
κt,π(θ(s))

)
· ∇κt`Dκt,π(θ(s)) for all s = 1, 2, . . . S

// Step 4: Apply variance reduction via h if desired
if h 6= None then

hs ← h(θ(s), `s)
`s ← `s − hs for all for all s = 1, 2, . . . S

// Step 5: Update κt and stopping criterion
ρt ← LearningRate(t)
L← 1

S

∑S
s=1 `s

κt+1 ← κt + ρt · L
done← StoppingCriterion(κt+1,κt, t)
t← t+ 1

have R(θ(s)) =
[
L(θ(s), x1:n) + dκ,π(θ(s))

]
· ∇κ log q(θ(s)|κ) + ∇κdκ,π(θ(s)) for the

estimator of (4.4). Based on this, one can then compute the black box variance-
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reduced term ̂OGVI,VR(κ) from ÔGVI(κ) as

̂OGVI,VR(κ) = ÔGVI(κ)− â∗ ·
S∑
s=1

h(θ(s)).

Of course, the exact same logic could be applied to already Rao-Blackwellized

terms—thereby reducing the variance twice.

Algorithm 1 summarizes a generic BBGVI procedure. Because this allows

an additional layer of speed-up via data sub-sampling, we will assume throughout

the algorithm that L(θ, x1:n) =
∑n

i=1 `(θ, xi) for some additively decomposable loss

`.6 The algorithm is adaptable to the non-additive loss case in an obvious way.

Similarly, the algorithm could be modified to apply variance reduction through

Rao-Blackwellization before the black box variance reduction in Step 4 is applied.

4.5 Pseudo-conjugate GVI objectives

While the majority of GVI posteriors will need to be computed using the stochastic

approximations outlined in the previous section, we can sometimes obtain closed

forms for ∇κOGVI(κ). One such special case arises from losses based on the β- and

γ-divergences, which will be formally introduced in Chapter 6. Pseudo-conjugate

objectives are an edge case, and better introduced for the settings in which they are

used. For this reason, we defer the conditions for closed forms in the case of the

β-divergence to Theorem 7.3 in Chapter 7, where the result is used extensively for

on-line inference in changepoint models. Note that Proposition 4.2 and Theorem 7.3

are also extended in Chapter 6 (see Theorem 6.1) to both the β- and γ-divergence

loss for the special case of Deep Gaussian Processes (DGPs).

Since the result for the γ-divergence loss is of independent interest for com-

puting GVI posteriors (albeit not used in any particular application in this thesis),

we state the result here. The conditions for the β- and γ-divergences are relatively

similar, and essentially require that the prior π(θ) is conjugate to the likelihood

p(·|θ) together with some additional minor regularity conditions.

Proposition 4.2 (Closed form GVI objectives with the γ-divergences). Let Lβp be

the γ-divergence based scoring rule for likelihood p(·|θ) given by Lγ(θ, x1:n) =

6The idea of data sub-sampling is that for large enough n, it will be wasteful to evaluate all
individual loss terms `(θ, xi) so that we instead work with L ≈ 1

m

∑m
j=1 `(x

′
j |θ), where m << n

and x′j are i.i.d. draws from the empirical measure formed by x1:n.
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∑n
i=1 L

γ
p(θ, xi) for

Lγp(θ, xi) = − 1

γ − 1
p(xi|θ)γ−1 · γ

Ip,γ(θ)
γ−1
γ

; Ip,γ(θ) =

∫
X
p(xi|θ)γdx

Suppose p(·|θ) admits conjugacy relative to the exponential distributions given by

Q and let the conjugate prior π(θ|κ0) ∈ Q. Writing

p(x|θ) = h(x) exp
{
g(x)TT (θ)−B(x)

}
,

q(θ|κ) = h(θ) exp
{
η(κ)TT (θ)−A(η(κ))

}
,

N = {κ : exp{A(η(κ))} <∞} ,

the objective of P (Lγ ,KLD,Q) has closed form if for observations x1:n and all q ∈ Q

Ip,γ(θ) =

∫
X
p(xi|θ)γdx, F1(κ) =

∫
Θ
T (θ)q(θ|κ)dθ, F2(κ) =

∫
Θ
I(γ)(θ)

1−γ
γ q(θ|κ)dθ

are closed form functions of θ and κ for all xi such that (η(κ) + (γ − 1)g(xi)) ∈ N .

The proof of this result can be found in Appendix B.4
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Chapter 5

Generalized Variational

Inference, Part 2: Regularizer

Summary: In this, the preceding as well as the following chapter, we study the

special case for the Rule of Three (RoT) for which optimization happens over a set

of parameterized distributions. For its obvious relationship to previous variational

methods, we call this family of algorithms Generalized Variational Inference (GVI).

Broadly speaking, this second of three chapters of GVI explains how this methodol-

ogy can address poorly specified priors in Bayesian methods, and specifically in the

context of modern Machine Learning models. The benefits of GVI are explored by

approximate bounds that quantify the difference between GVI and standard Vari-

ational inference (VI), as well as an extensive empirical evaluation. To conclude,

we also study how GVI can help with poorly specified priors in Bayesian Neural

Networks (BNNs)—a canonical application of significant interest in the world of

Bayesian Machine Learning.

5.1 Quantifying the difference between VI and GVI

While it is clear that GVI posteriors do not aim to approximate the standard Bayes

posterior q∗n,SB(θ) or even necessarily a Gibbs posterior q∗n,GB(θ), it is reasonable

to expect that P (L,D,Q) will be close to the variational approximation q∗VI(θ) =

P (L,KLD,Q) of q∗n,GB(θ) = P (L,KLD,P(Θ)) whenever D(·‖π) ≈ KLD(·‖π). This

is relevant because often, we will choose D = Dh as a divergence parameterized by

some hyperparameter h so that limh→1D
h(q‖π) = KLD(q‖π) for any fixed q, π ∈

P(Θ).
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5.1.1 Parameterized divergences

This phenomenon is illustrated in Figure 5.1 with three different divergences: Rényi’s

α-divergence, the β-divergence—sometimes also known as density power divergence

(see Jones et al., 2001)—as well as the γ-divergence. These are parameterized di-

vergences that recover the KLD as their parameterization approaches unity. While

one can unify all these divergences into a three-parameter family called the αβγ-

divergence (see Cichocki and Amari, 2010), we elect not to present them in this

way, as it is not useful for what we set out to do here. Instead, we present them as

variants of the KLD based on generalized notions of the log function. Specifically,

it turns out that the parameterized robust divergences of the αβγ-family are all

based on various parameterized ’generalized’ log functions logh with the property

that limh→1 logh(x) = log(x). The motivation for this is the role of the log function

in the KLD, which is defined as

KLD(q‖π) = Eq(θ)

[
log

(
q(θ)

π(θ)

)]
. (5.1)

In other words, these divergences confer robustness by using a function close (but

not equal to) the log function, and then mimicking the behaviour of the KLD. Specif-

ically, all of them use the so-called replica trick, which says that

lim
h→1

xh − 1

h
= log(x).

For the readers interested in seeing how this works for each of the divergences we

introduce in the remainder, we refer to Cichocki and Amari (2010).

Throughout, we will study several divergences constructed with this logic:

The arguably most important of them is Rényi’s α-divergence (Rényi, 1961). We

denote it by D
(α)
AR and use the parameterization of Liese and Vajda (1987); Cichocki

and Amari (2010) rather than its original parameterization because it links the

divergence more obviously to other robust alternatives of the KLD.

Definition 5.1 (Rényi’s α-divergence (D(α)
AR) (Rényi, 1961)). Rényi’s α-divergence

is defined as

D
(α)
AR(q(θ)||π(θ)) =

1

α(α− 1)
log

(∫
q(θ)απ(θ)1−αdθ

)
, (5.2)

where α > 0.

Originally, Rényi’s α-divergence was motivated as the geometric mean infor-

mation to discriminate between the two hypotheses θ ∼ π(θ) and θ ∼ q(θ) of order
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Figure 5.1: Depicted is the magnitude D(q‖π) for different robust divergences
D and the KLD for two Normal Inverse Gamma distributions given by q(θ) =
NI−1(θ;µq,Vq, aq, bq) and π(θ) = NI−1(θ;µπ,Vπ, aπ, bπ) with µπ = (0, 0)T , Vπ =
25 · I2, aπ = 500, bπ = 500 and µq = (2.5, 2.5)T , Vq = 0.3 · I2, aq = 512, bq = 543.

α. This is directly based on the original motivations for the KLD, which itself was in-

terpreted and justified as the arithmetic mean information to discriminate between

θ ∼ π(θ) and θ ∼ q(θ) (Kullback and Leibler, 1951).1 Intuitively speaking, geomet-

ric means are generally more robust measures of central tendency than arithmetic

means (so long as α ∈ (0, 1)), and so the D(α)
AR is a more robust discrepancy measure

for α ∈ (0, 1).

Rényi’s α-divergence is arguably the most well-known divergence seeking to

robustify the KLD, but it is not the oldest. This honour falls to the α-divergence,

whose special case for α = 0.5 is well-known as the Hellinger Distance. The α-

divergence is also the only of the parameterized robust divergences of the αβγ-family

that is part of the family of f -divergences.

Definition 5.2 (The α-divergence (D(α)
A ) (Chernoff, 1952; Amari, 2012)). The α-

divergence is defined as

D
(α)
A (q(θ)||π(θ)) =

1

α(1− α)

{
1−

∫
q(θ)απ(θ)1−αdθ

}
, (5.3)

where α ∈ R \ {0, 1}.

The logic underlying the α-divergence is directly related to the replica trick:

1This way of measuring information stems from information theory, where information is mea-
sured in log-units because of their connection to storing information in systems based on binary
logic: it takes O(log(n)) bits to store an integer n ∈ Z.
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rather than using the standard log function to measure average information, it uses

a generalised log function of form logα(x) = xα−1
α ; and so a trivial derivation shows

that we recover the KLD as the limiting case for α→ 1.

The next divergence we introduce is the β-divergence (also called density

power divergence). Amongst the parameterized robust divergences discussed here,

it is the only one that also belongs to the family of Bregman divergences (Cichocki

and Amari, 2010).

Definition 5.3 (The β-divergence (D(β)
B ) (Basu et al., 1998; Mihoko and Eguchi,

2002)). The β-divergence is defined as

D
(β)
B (q(θ)||π(θ)) =

1

β(β − 1)

∫
q(θ)βdθ +

1

β

∫
π(θ)βdθ

− 1

β − 1

∫
q(θ)π(θ)β−1dθ, (5.4)

where β ∈ R \ {0, 1}.

The last and least well-known divergence we introduce is the γ-divergence.

We should note that this name is somewhat imprecise, since there have been mul-

tiple variants of strongly related discrepancy measures that have all been named

γ-divergences. We will spare the reader a discussion of this literature and define

γ-divergence very narrowly. The reason we choose our particular parameterization

of the γ-divergence can be found in Cichocki and Amari (2010): In particular, one

can show that it be generated from the β-divergence by applying the transformation

c0

∫
g(x)c1f(x)c2dx→ c0 log

∫
g(x)c1f(x)c2dx

to all three of the D
(β)
B terms. In this sense, the γ-divergence is to the β-divergence

what Rényi’s α-divergence is to the original α-divergence—since Rényi’s α-divergence

can be generated from the α-divergence by applying this same transformation of its

two terms.

Definition 5.4 (The γ-divergence (D(γ)
G ) (Fujisawa and Eguchi, 2008)). The γ-

divergence is defined as

D
(γ)
G (q(θ)||π(θ)) =

1

γ(γ − 1)
log

(∫
q(θ)γdθ

) (∫
π(θ)γdθ

)γ−1(∫
q(θ)π(θ)γdθ

)γ ,

where γ ∈ R \ {0, 1}.
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Remark 5.1. Before we move on, a word on terminology: For this chapter (and

indeed this thesis), we call a divergence D(q‖π) more robust than KLD(q‖π) if D

penalizes deviations of q from π less extremely than KLD whenever the data are

at odds with π. In this sense, when we say that we want a RoT or GVI posterior

to be more robust to prior misspecification, this implies that we want to choose a

divergence D which is almost adaptive: the ideal robust D will behave similarly to

KLD if the prior is well-specified, but will ignore the prior if it is contradicted too

strongly by the data.

5.1.2 Closed forms of robust divergences

A big advantage of the αβγ-divergences introduced in the last section is that we

can obtain them in closed form for a wide range of variational families that are of

practical interest. As it is cumbersome and not educational to state them here,

we defer the precise results to Appendix B.5. In essence, the results say that for

virtually all exponential families of practical interest in the context of variational

methods, D(α)
AR, D(α)

A , D(β)
B , and D

(γ)
G have closed forms whenever α ∈ (0, 1), β ∈ (0, 1),

or γ ∈ (0, 1). Even when the parameters exceed 1, they are still typically available

in closed forms in all but extreme cases. In practical terms, this means that for all

numerical experiments presented in the remainder of this chapter, we have closed

forms for the gradients ∇κD(q‖π) discussed in Chapter 4.

5.1.3 Parameterized Divergences as Prior Regularizers D: Does

GVI approximate a (generalized) posterior?

The parameterized divergences outlined in the last paragraphs all can be made arbi-

trarily close to the KLD in a point-wise sense. This motivates the question whether

GVI posteriors P (L,Dh,Q) with limh→1D
h(q‖π) = KLD(q‖π) can be thought of as

approximations of q∗n,GB(θ) = P (L,KLD,P(Θ)) similarly as q∗VI(θ) = P (L,KLD,Q).

The following results study P (L,D,Q) for D ∈ {D(α)
AR,D

(β)
B ,D(γ)

G } and are

geared towards answering this question. Since the derivations are not particularly

educational, they are deferred to Appendix B.5.

Theorem 5.1 (GVI as approximate Evidence Lower bound with D = D
(α)
AR). The

objective associated with P (L,D(α)
AR,Q) is a lower bound on the c(α)-scaled (gener-

alized) evidence lower bound of P (w(α) · L,KLD,P(Θ)):

Eq(θ) [L(θ, x1:n)] + D
(α)
AR(q||π) ≥ −c(α) · ELBO

w(α)L(q) + S1(α, q, π) (5.5)
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where ELBOw(α)L is the Evidence Lower Bound associated with the generalized

Bayesian posterior q∗n,GB(θ) ∝ π(θ) exp (−w(α)L(θ, x1:n)) and given by

ELBO
w(α)L(q) = Eq(θ) [w(α) · L(θ)] + KLD(q‖π),

S1(α, q, π) = 1(0 < α < 1) ·
{
D

(α)
AR(q(θ)||π(θ)− KLD(q(θ)||π(θ))

}
is a slack term,

c(α) = min{1, α−1} and w(α) = max{1, α}.

Equation (5.5) shows that the slack term S1(α, q, π) introduces the main dif-

ference between P (L,D(α)
AR,Q) and P (w(α)·L,KLD,Q). It is possible (but tedious) to

make analytically more concise statements about S1(α, q, π), and we will do so next.

In short, this will reveal that the slack term makes P (L,D(α)
AR,Q) more robust to mis-

specification of the prior than that of P (w(α) · L,KLD,Q), and that this behaviour

becomes more pronounced for smaller α. This phenomenon is summarized in Figure

5.2: since w(α) = 1 for α ∈ (0, 1), if we ignore S1(α, q, π) then the bound on the

right of eq. (5.5) is just the ELBO of the Standard VI posterior P (L,α−1KLD,Q))

for all P (L,D(α)
AR,Q) with α ∈ (0, 1). As the Figure reveals, these two posteriors are

quite different—making the slack term rather important in relating P (L,D(α)
AR,Q) to

P (L,KLD,Q)). Since P (L,D(α)
AR,Q) inflates variance relative to P (L,KLD,Q)), one

may expect that up-weighting the KLD term with 1
α may produce similar posteriors.

Thus, Figure 5.2 additionally compares P (L,D(α)
AR,Q) with P (L, 1

αKLD,Q)). Doing

so reveals that while P (L,D(α)
AR,Q) ≈ P (L, 1

αKLD,Q)) for reasonable prior specifi-

cation, the distributions diverge substantially as the prior becomes more and more

misspecified. This clarifies the role of the slack term S1(α, q, π): while it ensures

that P (L,D(α)
AR,Q) ≈ P (L, 1

αKLD,Q)) whenever π is well-specified, it robustifies

P (L,D(α)
AR,Q) (relative to P (L, 1

αKLD,Q))) for choices of π that are strongly at odds

with the observed data.

Similar results can be derived both for the β- and γ-divergences.

Theorem 5.2 (GVI as approximate Evidence Lower bound with D = D
(β)
B ). The

objective associated with P (L,D(β)
B ,Q) is a lower bound on the c(β)-scaled (gener-

alized) evidence lower bound of P (w(β) · `,KLD,P(Θ)):

Eq(θ) [L(θ, x1:n)] + D
(β)
B (q(θ)||π(θ)) ≥ −c(β)ELBO

w(β)`(q) + S1(β, q, π) (5.6)

where ELBOw(β)L is the Evidence Lower Bound associated with the generalized

Bayesian posterior q∗n,GB(θ) ∝ π(θ) exp (−w(β)L(θ, x1:n)) and given by

ELBO
w(β)L(q) = Eq(θ) [w(β) · L(θ, x1:n)] + KLD(q‖π),
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c(β) = min{1, β−1}, w(β) = max{1, β}, and where S1(β, q, π) is a slack term with

S
D

(β)
B

1 (β, q, π) =

 1
β(β−1)Eq(θ)

[
q(θ)β−1

]
− Eq(θ) [log q(θ)]− 1

β−1 if 0 < β < 1

1
βEq(θ) [log π(θ)]− 1

β−1Eq(θ)

[
π(θ)β−1

]
− 1

β(β−1) if β > 1.
(5.7)

Theorem 5.3 (GVI as approximate Evidence Lower bound with D = D
(γ)
G ). The

objective associated with P (L,D(γ)
G ,Q) is a lower bound on the c(γ)-scaled (gener-

alized) evidence lower bound of P (w(γ) · L,KLD,P(Θ)):

Eq(θ) [L(θ, x1:n)] + D
(γ)
G (q(θ)||π(θ)) = −c(γ)ELBO

w(γ)L(q) + S(γ, q, π) (5.8)

where ELBOw(γ)L is the Evidence Lower Bound associated with the generalized
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Figure 5.2: Best viewed in color. Marginal VI compared to different GVI posteriors
for the coefficient θ1 of data simulated from a d-dimensional Bayesian linear model
with different priors (see Section 5.2.1). The prior for the coefficients is a Normal
Inverse Gamma distribution given by µ ∼ NI−1(µπ ·1d, vπ ·Id, aπ, bπ) with vπ = 4·Id,
aπ = 3, bπ = 5 and various values for µπ. For all posteriors, the loss ` is the correctly
specified negative log likelihood of the true data generating mechanism. Further,
all variational posteriors are constrained to lie inside a mean field normal family
Q. Notice that the standard VI posterior corresponds to the ELBO component on
the right hand side of the bound in eq. (5.5). In contrast, the GVI posteriors are
obtained by maximizing the left hand side of the same bound.
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Bayesian posterior q∗n,GB(θ) ∝ π(θ) exp (−w(γ)L(θ, x1:n)) and given by

ELBO
w(γ)L(q) = Eq(θ) [w(γ) · L(θ, x1:n)] + KLD(q‖π),

where c(γ) = min{1, γ−1}, w(γ) = max{1, γ} and where S1(γ, q, π) is a slack term

with

Sγ(q, π) =

 1
γ(γ−1) logEq(θ)

[
q(θ)γ−1

]
− Eq(θ) [log q(θ)] if 0 < γ < 1

1
γEq(θ) [log π(θ)]− 1

γ−1 logEq(θ)

[
π(θ)γ−1

]
if γ > 1.

(5.9)

Theorems 5.2 and 5.3 provide a lower bound on an objective function asso-

ciated with the relevant GVI posterior. Interpreting this lower bound provides some

insight into the behaviour of the GVI posterior, and in particular whether it can be

seen as an approximation to some other posterior q∗n,GB(θ). First, we investigate

the case where the hyperparameters β and γ are in (0, 1). In this parameter range,

we find that the GVI objectives P (L,D,Q) for D ∈ {D(β)
B ,D(γ)

G } produce posterior

variances that are larger than those of q∗VI(θ) = P (L,KLD,Q). Secondly, we inves-

tigate the case where the hyperparameters β and γ are > 1, where we find that the

opposite effect takes place (see Section 5.2).

Case 1: 0 < β = γ < 1. For 0 < β = γ < 1 the terms c(β) = c(γ)

and w(β) = w(γ) ensure that c(β)ELBOw(β)L = c(γ)ELBOw(γ)L are precisely the

objective corresponding to P (L, β−1KLD,Q) = P (L, γ−1KLD,Q); so that the first of

the two terms in (5.7) and (5.9) amounts to the exact objective P (L, γ−1KLD,Q) =

P (γL,KLD,Q) of standard VI. This suggests that GVI continues to do something

similar to minimizing the KLD between the variational and generalized Bayesian

posterior based on the loss γL = βL. Unlike for standard VI however, GVI with D =

D
(β)
B or D = D

(γ)
G additionally minimises the slack terms S

D
(β)
B

1 (β, q, π) or Sγ(q, π).

These adjustment terms encourage the solution to P (L,D(β)
B ,Q) with 0 < β < 1

and P (L,D(γ)
G ,Q) with 0 < γ < 1 to have greater variance than the standard VI

posterior given by P (L,KLD,Q). For the D
(β)
B , we can see this by rewriting

Sβ(q, π) = − 1

β
h

(β)
T (q(θ)) + hKLD(q(θ)) +

1− β
β

.

Here, hKLD(q(θ)) is the Shannon entropy of q(θ) and h
(β)
T (q(θ)) is the Tsallis entropy

of q(θ) with parameter β. Applying Lemma B.2 (see Appendix B.6), we find that

for 0 < β < 1, h
(β)
T (q(θ)) > hKLD(q(θ)). It immediately follows that minimising

100



− 1
βh

(β)
T (q(θ)) + hKLD(q(θ)) for 0 < β < 1 will make h

(β)
T (q(θ)) large—an effect that

is achieved by increasing the variance of q(θ).

Applying the same type of logic to the D
(γ)
G , one can rewrite

Sγ(q, π) = −1

γ
h

(γ)
R (q(θ)) + hKLD(q(θ)).

As before, hKLD(q(θ)) is the Shannon entropy of q(θ), but unlike before, h
(γ)
R (q(θ))

now is the Rényi-entropy of q(θ) with parameter γ. Note that with this, one can

also extend Theorem 3 in Van Erven and Harremos (2014) to show that h
(γ)
R (q(θ))

is decreasing in γ. Since it is also well-known that limγ→1 h
(γ)
R (q(θ)) = hKLD(q(θ)), it

follows that minimising − 1
γh

(γ)
R (q(θ))+hKLD(q(θ)) for 0 < γ < 1 will make h

(γ)
R (q(θ))

large—an effect that is again achieved by increasing the variance of q(θ).

Case 2: β = γ = k > 1. For k = γ = β > 1, c(k) = 1
k and w(k) = k.

Minimizing KLD(q||q∗k) for k > 1 will encourage P (D(β)
B , `, Q) or P (D(γ)

G , `, Q) to be

more concentrated around the empirical risk minimizer θ̂n of ` than the standard

VI posterior given by P (KLD, `, Q). Additionally, one can show that minimising the

adjustment term also favours shrinking the variance of q(θ). To see this for the case

of D(β)
B , rewrite

Sβ(q, π) =
1

β
Eq(θ) [log(π(θ))]− 1

β − 1
Eq(θ)

[
π(θ)β−1 − 1

]
− 1

β
. (5.10)

Applying Lemma B.2 (Appendix B.6) then shows that for β > 1,

1

β − 1
Eq(θ)

[
π(θ)β−1 − 1

]
≥ Eq(θ) [log(π(θ))] ≥ 1

β
Eq(θ) [log(π(θ))] .

From this, it follows that minimising Eq. (5.10) will make 1
β−1Eq(θ)

[
π(θ)β−1

]
large.

Fixing π(θ), maximising 1
β−1Eq(θ)

[
π(θ)β−1

]
plus 1

β× the Tsallis entropy of q(θ) is

equivalent to minimising D
(β)
B (q(θ)||π(θ)). Because D

(β)
B is a divergence, this max-

imization would naturally seek to choose q(θ) close to π(θ). The Tsallis entropy

term in this formulation would have acted to increase the variance of q(θ). But since

we maximize only 1
β−1Eq(θ)

[
π(θ)β−1

]
—i.e. without adding the Tsallis entropy of

q(θ)—choices of β > 1 will lead to shrinking the variance of q(θ) relative to standard

VI.

For the D
(γ)
G , Jensen’s inequality shows that for γ > 1,

1

γ − 1
logEq(θ)

[
π(θ)γ−1

]
≥ Eq(θ) [log(π(θ))] ≥ 1

γ
Eq(θ) [log(π(θ))] .

101



As a result, minimising Sγ(q, π) will seek to make 1
γ−1 logEq(θ)

[
π(θ)γ−1

]
large.

Fixing again π(θ), maximising 1
γ−1 logEq(θ)

[
π(θ)β−1

]
plus 1

γ× the Rényi entropy of

q(θ) is equivalent to minimising D
(γ)
G (q(θ)||π(θ)), and thus seeks q(θ) close to π(θ).

The Rényi entropy term would have acted to increase the variance of q(θ). Therefore

and similarly to the case of D(β)
B , maximising 1

γ−1 logEq(θ)

[
π(θ)γ−1

]
without adding

the Rényi entropy will lead to shrinkage of the variance of q(θ).

In conclusion, while GVI posteriors with parameterized divergences Dh so

that limh→1D
h(q‖π) = KLD(q‖π) can indeed be interpreted as approximately tar-

geting a generalized Bayes posterior, the devil is in the detail: the validity of thinking

of GVI posteriors as approximations depends strongly on the form of the slack terms

Sh introduced in Theorems 5.1, 5.2, and 5.3. To emphasize that this slack term is

indeed of crucial importance, we provide a short empirical comparison between dif-

ferent robust regularizers and weighted versions of the KLD in the next section.

5.2 An Empirical Comparison

While Theorems 5.1, 5.2, and 5.3 and their slack terms give us some theoretical

guidance as to the behaviour we expect from posteriors of the form P (L,D,Q)

for D ∈ {D(α)
AR,D

(β)
B ,D(γ)

G }, we can at best form vague interpretations and base our

expectations on these. Moreover, these interpretations are relatively uniform for

all parameterized robust divergences, which does not answer the question which

of them one should prefer in practice. To bridge this gap in what our theory can

achieve, we now present a small empirical comparison.

5.2.1 Experimental setup

Throughout, we use the log likelihood loss of a correctly specified model. For this, we

use a simple Bayesian linear regression (BLR) with two highly correlated predictors.

Formally, we study the Bayesian model given by

σ2 ∼ IG(a0, b0)

θ|σ2 ∼ N
(
µ0, σ

2V0

)
(5.11)

yi|θ, σ2 ∼ N
(
Xiθ, σ

2
)
. (5.12)

We choose this example because it provides a closed form exact Bayesian poste-

riors and closed form objectives for the variational objectives of both standard

VI and GVI. Consequently, no stochastic optimization or sampling is required—

neither for calculating the exact posterior nor for the optimization of the GVI and
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VI posteriors—so that numerical errors and uncertainties are kept to a minimum.

Studying the exact closed form Bayesian (normal) posterior for θ = (θ1, θ2)T ,

one observes that if the two predictors are correlated, then the posterior covariance

of θ will inherit this correlation. This is convenient: it is well-known that for poste-

riors with highly correlated dimensions, standard VI will strongly underestimate the

marginal variances (Turner and Sahani, 2011); so that we will also be able to study

if GVI can address this shortcoming of standard VI. In particular, we simulate the

highly correlated predictors

(x1, x2)T ∼ N2

((
0

0

)
,

(
1 0.9

0.9 1

))

and compare the performance of the different GVI and VI posteriors on the resulting

BLR. All posteriors are based on the the mean field normal variational family given

by

Q = {q(θ1|σ2,κn)q(θ2|σ2,κn)q(σ2|κn)} so that

κn = (an, bn, µ1,n, µ2,n, v1,n, v2,n)T

with an, bn, v1,n, v2,n > 0 and µ1,n, µ2,n ∈ R

q(σ2|κn) = IG(σ2|an, bn)

q(θ1|σ2,κn) = N
(
θ1|µ1,n, σ

2v1,n

)
q(θ2|σ2,κn) = N

(
θ2|µ2,n, σ

2v2,n

)
.

For all experiments, n = 25 observations are simulated from eq. (5.12) with θ =

(2, 3) and σ2 = 4. We use the negative log-likelihood ` of the correctly specified

model as given in eq. (5.12) as loss function. The results are depicted in Figs. 5.3

and 5.5-5.8. We summarize the most interesting results in the following subsections.

5.2.2 A cautionary tale about boundedness

The attentive reader will note that while we have introduced the α-divergence in

Definition 5.2, we did not derive a corresponding robustness result for it in the

previous section. The reason for this is a practical one: As our results in Figure

5.3 show, the D
(α)
A is not a reliable prior regularizer within the GVI framework—

at least not for α ∈ (0, 1). In particular, the plot shows that the solutions to

P (`,D(α)
A ,Q) can produce essentially degenerate posteriors if α ∈ (0, 1). Note also

that this happens in spite of the relatively small sample size of n = 25. For example,

when α = 0.5, P (`,D(α)
A ,Q) is visually indistinguishable from a point mass at the

103



0 1 2 3 4 5
1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
De

ns
ity

D = -divergence (D( )
A )

Exact posterior
= 1.25

Standard VI
= 0.95
= 0.5
= 0.01

MLE

Figure 5.3: Best viewed in color. Marginal VI and GVI posterior for the θ1 coefficient
of a Bayesian linear model under the D

(α)
A prior regularizer for different values of α.

The boundedness of the D(α)
A causes GVI posteriors to severely over-concentrate if α

is not carefully specified. Prior Specification: σ2 ∼ IG(20, 50), θ1|σ2 ∼ N (0, 25σ2)
and θ2|σ2 ∼ N (0, 25σ2).

maximum likelihood estimate. This is a simple consequence of the boundedness of

D
(α)
A for α ∈ (0, 1): Specifically, it holds that D

(α)
A ≤ (α(1− α))−1 for α ∈ (0, 1).

As α decreases from 1, this upper-bound initially also decreases until reaching its

minimum for α = 0.5. As a result, decreasing α from unity to 0.5 significantly

decreases the maximal penalty for posterior beliefs far from the prior. In turn, this

forces the posterior to focus mostly on minimising the in-sample loss.

This phenomenon is illustrated in Figure 5.4, which also shows that the

divergence magnitude increases again as α approaches zero or if α > 1. Comparing

the plot with that in Figure 5.1, it is clear why hyperparameter selection for the

other members of the D
(α,β,r)
G family of divergences is a less complicated endeavour

than for the α-divergence. This does not mean that the D
(α)
A cannot be used for

producing GVI posteriors: For example, some GVI posteriors in Figure 5.3 based on

the D
(α)
A are able to achieve marginal variances that more closely correspond to the

exact posterior than VI—notably for α = 1.25 and α = 0.01. Generally speaking,

for values of α close to zero or above unity, it is possible to achieve more conservative

uncertainty quantification. Yet, the D
(α)
A also functions primarily as a cautionary

tale: Without understanding the properties of the prior regularizer D sufficiently

well, GVI may well yield unsatisfactory posteriors.
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Figure 5.4: A comparison of the size of D
(α)
A for various values of α between two

bivariate Normal Inverse Gamma distributions with an = 512, bn = 543, µn =
(2.5, 2.5), Vn = diag(0.3, 2) and a0 = 500, b0 = 500, µ0 = (0, 0), V0 = diag(25, 2).

5.2.3 Robustness to the prior

Next, we compare the impact of changing the prior regularizer on the posterior’s

sensitivity to appropriate specification of the prior for divergences that are of more

practical interest than the D(α)
A —in particular, D(α)

AR, D(β)
B , D(γ)

G and a weighted version

of the KLD, 1
w
KLD. The aim of this comparison is to identify the differences in

inference outcomes when compared to standard variational approaches: essentially,

we wish to find out the practical differences implied by the different slack terms in

Theorems 5.1, 5.2, and 5.3.

To this end, when we compare 1
w
KLD with D

(α)
AR and D

(γ)
G , we fixed α = γ = w.

Setting the values of these various hyperparameters to be the same makes sense: the

slack terms of GVI in Theorems 5.1, 5.2, and 5.3 are such that the first term always

corresponds to an ELBO whose KLD-regularizer is weighted by 1
α , 1

β , and 1
γ . As a

consequence, setting α = γ = w allows us to study the effect of the slack terms in

isolation. For the D
(β)
B , different values of β had to be selected to ensure that the

objective to be optimized is available in closed form.

Weighted KLD ( 1
w

KLD)

To set a baseline, Figure 5.5 examines how changing the weight w affects the posteri-

ors P (`, 1
w
KLD,Q) = P (w`,KLD,Q). It should be clear that choosing w < 1 leads to

posteriors that encourage larger variances, leading to more conservative uncertainty

105



0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

D = w 1 KLD w = 1.25

= 3.0
= -5.0
= -20.0
= -50.0

MLE

D = w 1 KLD w = 1

= 3.0
= -5.0
= -20.0
= -50.0

MLE

1 0 1 2 3 4 5
1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

D = w 1 KLD w = 0.75

= 3.0
= -5.0
= -20.0
= -50.0

MLE

1 0 1 2 3 4 5
1

D = w 1 KLD w = 0.5

= 3.0
= -5.0
= -20.0
= -50.0

MLE

Figure 5.5: Best viewed in color. Marginal VI and GVI posterior for the coeffi-
cient of a Bayesian linear model under different priors using D = 1

w
KLD as prior

regularizer ( 1
w
KLD recovers KLD for w = 1). The prior specification is given by

θ1|σ2 ∼ N (µπ, σ
2) with σ2 ∼ IG(3, 5).
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quantification. Unfortunately and unsurprisingly, this comes at the cost of making

posteriors more sensitive to the prior: After all, one up-weights the term penalizing

deviations from the prior. Conversely, w > 1 will result in posteriors that are less

sensitive to the prior than standard VI. At the same time, they will also be more

concentrated around the Maximum Likelihood Estimator. This leads to a serious

problem when using 1
w
KLD to achieve robustness to poorly specified priors: If we

want to be robust to poorly specified priors, we should set w > 1. But this implies

that we are obtaining a more concentrated posterior belief! in other words, even

though we are less certain about one of our key ingredients to obtaining a belief

distribution, the posterior belief ends up being more certain about which regions

of the parameter space represent ’good’ values. As we shall see, this undesirable

trade-off is not shared by the other (robust) divergences considered in this section.

Unlike the 1
w
KLD or Brexit, they often provide a way to have your cake and eat it,

too.

Rényi’s α-divergence (D(α)
AR)

Figure 5.6 demonstrates the sensitivity of P (`,D(α)
AR,Q) to prior specification and

also shows P (`,KLD,Q) = P (`,D
(1)
AR,Q) in the top right panel for comparison. For

0 < α < 1, the posterior exhibits the kind of behaviour that is desirable in the

presence of prior misspecification, but which is difficult to attain with VI: It both

produces larger marginal variances and is robust to badly specified priors. This is

no longer true if α > 1, since it holds that D(α)
AR ≤ KLD for this parameter range—

which is why GVI no longer produces larger marginal variances than VI based on

the KLD for α > 1. This flip in robustness as α crosses from (0, 1) into values larger

than unity may seem strange, but can be understood by investigating the form of

the D
(α)
AR:

D
(α)
AR(q(θ)||π(θ)) =

1

α(α− 1)
log

∫
q(θ)απ(θ)1−αdθ =

1

α(α− 1)
log

∫
q(θ)α

π(θ)α−1
dθ.

It is clear that the magnitude of the divergence is determined by a ratio of two

densities. Glancing closer, for α > 1 this means that if q(θ) is large in an area

where π(θ) is not, then a severe penalty is incurred. This limits how far q(θ) can

move from the prior and thus results in lack of prior robustness. Conversely, if

α ∈ (0, 1), then π(θ)α−1 > π(θ) for regions where π(θ) < 1, which allows the

posterior to spread its mass in a less concentrated way than for α > 1. In fact, this

very finding is also implicitly stated in Theorem 5.1.
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Figure 5.6: Best viewed in color. Marginal VI and GVI posterior for the coefficient
of a Bayesian linear model under different priors using D = D

(α)
AR as prior regularizer

(D(α)
AR recovers KLD as α→ 1). The prior specification is given by θ1|σ2 ∼ N (µπ, σ

2)
with σ2 ∼ IG(3, 5).
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Figure 5.7: Best viewed in color. Marginal VI and GVI posterior for the coefficient
of a Bayesian linear model under different priors using D = D

(β)
B as prior regularizer

(D(β)
B recovers KLD as β → 1). The prior specification is given by θ1|σ2 ∼ N (µπ, σ

2)
with σ2 ∼ IG(3, 5).
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β-divergence (D(β)
B )

Figure 5.7 demonstrates the sensitivity of P (`,D(β)
B ,Q) to prior specification. The

plot shows that β > 1 is able to achieve extreme robustness to the prior, while

β < 1 causes extreme sensitivity to the prior. This phenomenon is a result of the

fact that the D(β)
B decomposes into three integrals, one containing just the prior, one

containing just q(θ) and one containing an interaction between them:

D
(β)
B (q(θ)||π(θ)) =

1

β

∫
π(θ)βdθ − 1

β − 1

∫
π(θ)β−1q(θ)dθ +

1

β(β − 1)

∫
q(θ)βdθ.

The integral depending only on the prior does not on depend q(θ), so we can

ignore it (since the prior is fixed across the different values of β). For β ∈ (0, 1),

the signs of both of the remaining terms flip and it is instructive to rewrite the

middle term as 1
1−β

∫ q(θ)
π(θ)1−β dθ with 1− β > 0. This shows that the prior appears

as a denominator. The consequences of this are similar to the behaviour of the

D
(α)
AR for α > 1: if q(θ) has large density in regions where π(θ) has small density,

then we divide a not-so-small number by a very small number and a huge penalty

is incurred for this. As a result, the corresponding posterior will be very close to

the prior. (In fact, notice that two of the four posteriors for β = 0.75 in Figure 5.7

favour the prior so much that the density around the maximum likelihood estimate

is virtually zero.) For β > 1 the opposite effect is observed. The prior no longer

appears as a denominator and therefore deviations from the prior are punished in

a milder manner by the middle term. This allows the third term, which depends

on q(θ) independently of the prior, to have greater influence on how uncertainty

is quantified. This third integral will become very large if the variance of q(θ)

gets very small, which prevents it from quickly converging to a point mass at the

maximum likelihood estimate. As a consequence, D(β)
B is able to provide virtually

prior-invariant uncertainty quantification for β > 1.

γ-divergence (D(γ)
G )

Lastly, Figure 5.8 demonstrates the sensitivity of P (`,D(γ)
G ,Q) to prior specification.

For γ < 1 it appears as though the D
(γ)
G reacts similarly to the 1

w
KLD for w < 1.

The D
(γ)
G with γ > 1 produces greater robustness to the prior than the 1

w
KLD prior

regularizer with w > 1, but this robustness is less pronounced than that achieved

with D = D
(β)
B . The reason for this is that although the D

(γ)
G consists of the same

three integral terms as the D(β)
B , these terms are now transformed into the logarithmic

scale. This means that the three integrals are combined multiplicatively (for D
(γ)
G )
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Figure 5.8: Best viewed in color. Marginal VI and GVI posterior for the coefficient
of a Bayesian linear model under different priors using D = D

(γ)
G as prior regularizer

(D(γ)
G recovers KLD as γ → 1). The prior specification is given by θ1|σ2 ∼ N (µπ, σ

2)
with σ2 ∼ IG(3, 5).
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rather than additively (for D
(β)
B ), which makes the variation of D

(γ)
G as a function

of γ much smoother than that of D
(β)
B as a function of β. Roughly speaking, this

smoothness implies that unlike for the D(β)
B , minimising the D(γ)

G no longer disregards

any one term in order to minimise the others.

5.3 Applications: Bayesian Mixture Models (BMMs) &

Bayesian Neural Networks (BNNs)

The final part of this chapter explores the use cases of GVI posteriors in the set-

ting of misspecified priors on two examples: Bayesian Mixture Models (BMMs), and

Bayesian Neural Networks (BNNs). Since our initial experimental evaluation sug-

gested that Reńyi’s α-divergence (D(α)
AR) is the most promising candidate for this

kind of treatment, we focus our evaluation on GVI posteriors with D = D
(α)
AR.

Conceptually, we also study two different forms of desiderata for robustness:

Since the BMM is a classical statistical model whose number of parameters is small

relative to the number of data points, our interpretation of robustness is also more

classical. In particular, a procedure robust to ill-specified priors should produce

posteriors that incorporate more parameter uncertainty about the (interpretable)

parameters of our model. For the BNN, our notion of robustness is necessarily

different: since this is an overparameterized black box model, individual parameters

have no clear interpretable meaning. Therefore, robustness needs to be evaluated

on the predictive precision of the model. In practice, this means that robustness

to a misspecified prior entails that we should pay less attention to the priors, and

more to the data. In other words, robustness in a BNN implies that we wish for

less parameter uncertainty (not more!). For the D
(α)
AR, this means that we will be

expecting parameterizations in the range α ∈ (0, 1) to work best for the BMM, while

parameterizations α > 1 should be expected to be more reliable for the black box

BNN model.

5.3.1 Bayesian Mixture Model (BMM)

Throughout, n observations are generated from the d-dimensional BMM with two

equally likely normal mixture components z = 0, 1 with dimension-wise unit variance

and mean given by

µz = (µz1, µ
z
2, . . . µ

z
d)
T =

2 · ed if z = 0

−2 · ed if z = 1
,

112



where ed = (1, 1, . . . 1)T is the d-dimensional column vector of ones. The n ob-

servations xi are drawn with equal probability from the two mixture components,

meaning that

zi
i.i.d.∼ Bernoulli(0.5)

xi|{zi = zi} i.i.d.∼ N (xi|µzi , Id). (5.13)

Notice in particular that this generates n latent variables z1:n that indicate mixture

memberships for x1:n, but are unobserved. With this, inference is conducted on µz

for z = 1, 2 via the negative log likelihood loss of the correct model. For θ = (µ1,µ2),

this loss is given by

`(θ, xi, zi) = − logN (xi|µzi , Id).

The variational family Q used for all experiments is the collection of mean-field

normal distributions given as Q = QMFN in (1.3). In our experiments, we consider

the benefits of alternative choices of D for the fixed number of observations n = 50.

To this end, B = 100 artificial data sets are generated according to the above

description.

If the prior is poorly specified, D = KLD will produce posterior beliefs that

place the same weight on the prior as they do on the data. In contrast, robust

alternatives to the KLD do not suffer from this problem: They can produce posterior

beliefs that take the prior into account, but are robust to prior misspecification.

To illustrate the phenomenon empirically, we compare the KLD with Rényi’s α-

divergence (D(α)
AR) for α = 0.5 under two settings: A well-specified prior π1(θ) and a

misspecified prior π2(θ), which are given by

π1(θ) = N
(
θ|0d,

√
10Id

)
π2(θ) = N

(
θ| − 10 · ed,

√
0.1Id

)
Across the B = 100 data sets generated, Figure 5.9 reports the average posterior

computed as

N (m̄, s̄) , where m̄ =
1

100

2d∑
j=1

B∑
b=1

mb,j , s̄ =
1

100

2d∑
j=1

B∑
b=1

sb,j .

Here, sb,j corresponds to the standard deviation computed for the j-th dimension

of the mean field normal posterior on the b-th artificial data sets. Similarly, mb,j
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corresponds to the mean of the same parameter posterior, albeit re-centered around

the true value of the inferred parameter.

As Figure 5.9 shows, D(α)
AR is an interesting alternative to the KLD in finite

samples: If the prior is misspecified (top row), the KLD produces belief distributions

that take the prior too strongly into account and are far from the truth. In contrast,

the D
(α)
AR provides both prior robustness as well as better uncertainty quantification

under misspecification. At the same time, D(α)
AR has no tangible disadvantage relative

to the KLD if the prior is well-specified (bottom row). Note that the posteriors in the

bottom row plot are very concentrated because the prior is already quite informative.
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Figure 5.9: The first column of each setting depicts the inferred VI and GVI

posteriors for θ in the BMM of eq. (5.13). Here, the GVI posteriors use D = D
(α)
AR

for α = 0.5. All inferred posterior beliefs are normals, so dots and whiskers mark
posterior means and standard deviations. The posteriors are re-centered so that
the y-axis measures the magnitude by which the posterior belief deviates from the
truth. The second column of each setting shows the inferred posterior mean and
its standard error across the 100 data sets on which the experiment was run. The
plots clearly show that the adverse effect of the prior stabilizes as the number d of
affected parameters increases.

Can varying D fix model misspecification?

The sceptics amongst the readers may wish to see proof that addressing model mis-

specification should be done via the loss function—rather than via the regularizer.

To this end, we now present a second variation of the above experiment. It not only

illustrates that the frequentist consistency results of Chapter 3 extend far beyond

the conditions outlined in the theorems presented there (in particular, they seem

to extend to latent variable models!) but also demonstrates that tackling model

misspecification cannot be tackled by changing the prior regularizer.
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To show this, two settings are compared: In the first setting, the data is

generated as before. In the second setting, additional noise is injected. Specifically,

after xi is generated according to eq. (5.13), inference is based on the polluted

observation x̃i generated as

x̃oi = xoi + ui · ηi · ed
ui

i.i.d.∼ Bernoulli(0.05)

ηi
i.i.d.∼ N (10,

√
3). (5.14)

To re-iterate our point—that model misspecification of this kind should be addressed

by the loss rather than the regularizer—two different types of loss functions are

compared: Firstly, the standard negative log likelihood given by

`(θ, xi) = − log p(xi|θ).

Secondly, a robust scoring rule derived from the γ-divergence (Hung et al., 2018)

given by

Lγp(θ, xi) = − 1

γ − 1
p(xi|θ)γ−1 · γ

Ip,γ(θ)
− γ−1

γ

.

For the relevant background on robust minimium scoring rules like this, the reader

will have to wait until Chapter 6. Alternatively, Dawid et al. (2016) and Jewson

et al. (2018) provide a more thorough overview. For the moment, it is only important

to note that the log score is not robust to misspecification (see e.g. Jewson et al.,

2018, and references therein). In contrast, Lγp defines a scoring rule that is strongly

robust to contamination (Fujisawa and Eguchi, 2008; Hung et al., 2018; Nakagawa

and Hashimoto, 2019). The degree of robustness is regulated by γ: While γ > 1

produces more robust inferences than the log score, Lγp recovers the log score as

γ → 1. Consequently, one should expect Lγp for γ = 1 + ε for very small values

of ε > 0 to produce desirable inferences. For γ = 1 + ε, inferences are nearly as

data-efficient as under the log score if the model is correctly specified. This small

loss in efficiency buys us something priceless: the inferences remain more reliable

under misspecification.

Figure 5.10 depicts this behaviour and connects it to the consistency findings

in Chapter 3. The plot demonstrates three phenomena: Firstly, robustness to model

misspecification cannot be achieved by adjusting D. Secondly, the exact path and

speed of the convergence for GVI posteriors depends on the choice for D, especially
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for small sample sizes. Thirdly, the overall patterns are the same across all choices

of D and are dictated by the choice of `. This should not come as a surprise: For

n→∞, the GVI posteriors concentrate around θ∗ = arg minθ∈Θ Eµ [`(x,θ)], which

does not depend on D. Note also that while Lγp recovers the true parameter values

of eq. (5.13) for n→∞ in both the misspecified and well-specified setting, the log

only manages to recover the true parameter values in the well-specified setting. In

particular, GVI posteriors based on the log score concentrate around a sub-optimal

parameter value in the misspecified setting, regardless of the choice for D.

5.3.2 Bayesian Neural Networks (BNNs)

As alluded to in Example 1.1, BNNs should be expected to suffer from prior mis-

specification: they are black box models, so that specifying a meaningful prior

belief over their parameterizations is a daunting task. Focusing on the regres-

sion case, we wish to alleviate this problem using GVI and thus focus on vary-

ing D. Accordingly, we fix the loss function to the usual negative log likelihood

`(θ, yi, xi, σ
2) = − log pN (yi|xi, σ2, F (θ)) for

pN (yi|xi, σ2, F (θ)) = N (yi|F (θ), xi, σ
2),

where we choose Q = QMFN as the normal mean field variational family given in

eq. (1.3). With this in hand, we compare three different constructions of posterior

beliefs:

(1) Standard VI;

(2) A DVI method motivated as approximations to the standard Bayesian poste-

rior q∗n,SB(θ) that find q∗A(θ) = arg minq∈QD(q‖q∗n,SB(θ)); with D being the

α-divergence (Hernández Lobato et al., 2016)2 and Rényi’s α-divergence (Li

and Turner, 2016);

(3) GVI with D = D
(α)
AR.

To make comparisons as fair as possible, our implementation is built on top of that

used for the results of Li and Turner (2016) and only changes the objective being

optimized. Similarly, all settings and data sets for which the methods are compared

are unchanged and taken directly from Li and Turner (2016) and Hernández Lobato

et al. (2016): We use a single-layer network with 50 ReLU nodes on all experiments.

2 We align the parameterization of the D
(α)
A with the thesis, meaning 1 − αcurrent =

αH.-L. et al. (2016)
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Inference is performed via probabilistic back-propagation (Hernández Lobato and

Adams, 2015) and the ADAM optimizer (Kingma and Ba, 2014) with its default

settings, 500 epochs and a batch size of 32. Priors and variational posteriors are

both fully factorized normal distributions. Further, the results are also evaluated on

the same selection of UCI data sets (Lichman, 2013) and in the same way as they

were in Li and Turner (2016) and Hernández Lobato et al. (2016): Using 50 random

splits of the relevant data into training (90%) and test (10%) sets, the inferred

models are evaluated predictively on the test sets using the average negative log

likelihood (NLL) as well as the average root mean square error (RMSE). For each of

the 50 splits, predictions are computed based on 100 samples from the variational

posterior.

We summarize the two main results of our experiments as follows: First,

Figure 5.11 depicts what appears to be the most typical relationship between VI,

DVI and GVI on BNNs. Second, Figure 5.12 explores a surprising finding about the

typical relationship further and connects it back to the modularity inherent in GVI,

but absent from DVI. Appendix A.2 contains some further results that reinforce

these findings.

Typical patterns (Figure 5.11)

As Figure 5.11 demonstrates, several findings form a consistent pattern across a

range of data sets. Three findings are most poignant.

(A) DVI can often achieve a performance gain for the NLL relative to standard

VI, but much less so for RMSE. On both metrics, there is no clear pattern of

improvement.

(B) Relative to standard VI, GVI significantly improves performance for both

NLL and RMSE if α > 1. Conversely, GVI worsens performance if α ∈ (0, 1).

In other words, larger posterior variances adversely affect predictive quality.

(C) GVI performance is a clear banana-shaped function of α across all data sets:

While predictive performance benefits as α gets larger than one, the improve-

ment flattens out and bends back in a banana shape as α grows too large. In

other words, decreasing uncertainty relative to the standard variational pos-

terior improves predictive performance, but becoming ‘overconfident’ worsens

it.

Finding (B) has a straightforward interpretation: Since it holds that D(α)
AR ≤ KLD for
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α > 1 (see Van Erven and Harremos (2014)3 and Figure 5.1), the GVI posteriors as-

sociated with D
(α)
AR for α > 1 are more concentrated than the standard VI posteriors,

a phenomenon also depicted on toy models in Figure 5.6. In other words: Ignoring

more of the poorly specified prior and consequently being closer to a point mass at

the empirical risk minimizer is beneficial for predictive performance. As alluded to

in Example 1.1, this is to be expected: it is doubtful if a literal interpretation of the

prior as in (P) is appropriate for BNNs. As finding (C) shows however, this does not

mean that point estimates are preferable to posterior beliefs: Increasing the value

of α shrinks the variances too much, eventually impeding predictive performance.

An advantage of GVI over DVI: A transparent optimization problem

While findings (B) and (C) should not come as a surprise by themselves, they do

raise an interesting question: In particular, GVI for D(α)
AR with α = 0.5 is the worst-

performing setting across the board. This is remarkable because this setting also

constructs the only GVI posteriors in our experiments with wider variances than

standard VI. At the same time, producing wider variances and more conservative

uncertainty quantification is one of the main motivations for Expectation Propaga-

tion (EP) and the presented DVI methods, see for example Figure 1(a) in Li and

Turner (2016) or Figure 8 in Hernández Lobato et al. (2016). This is puzzling: Are

wider variances for θ somehow beneficial for DVI posteriors’ predictive performance

while damaging that of GVI posteriors? As it turns out, this is not the case. Rather,

while both GVI with α = 0.5 and all DVI methods produce parameter posteriors

with larger variances, in the case of DVI this does not translate into predictive

uncertainty—as would be expected in standard Bayesian inference.

This phenomenon is depicted in Figure 5.12, which clearly shows that the

additional uncertainty in the DVI parameter posteriors q∗DVI(θ|κ∗) is completely

overshadowed by an extreme degree of variance shrinkage in the corresponding pos-

terior predictives. In other words, the increased uncertainty in θ is outweighed by

extremely small values for σ2. The plot demonstrates this by comparing the push-

forward F#q
∗
DVI(·|κ∗) with the posterior predictives. Formally, the push-forward is

given by

p(µ|xi) = (F#q
∗
DVI(·|κ∗)) (µ),

where the operation # is simply a formalization of the following two operations:

3 Note that their result holds for a different parameterization of the D(α)
AR, but it is easy to show

that our parameterization is strictly smaller than theirs for α > 1.
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(i) sample θ ∼ q∗DVI(θ|κ∗), (ii) compute µ = F (θ). The posterior predictive then

integrates the push-forward measure p(µ|xi) over the likelihood function as

p(yi|xi) =

∫
Θ
pN (yi|xi, σ2, F (θ))q∗DVI(θ|κ∗)dθ =

∫
R
pN (yi|xi, σ2, µ)p(µ|xi)dµ.

As Figure 5.12 shows, the push-forward (i.e. the posterior predictive) behaves as

expected for both GVI and VI. For DVI, the same cannot be said: specifically, the

posterior predictive generally has much less variance than that of standard VI.

This surprising phenomenon is due to hyperparameter optimization for σ2:

Since Variational Inference on σ2 complicates the DVI objectives, both Hernández

Lobato et al. (2016) and Li and Turner (2016) do not infer σ2 probabilistically.

Instead, it is optimized over their objectives. This approach poses an optimization

problem which for D = D
(α)
A and D = D

(α)
AR is given by

σ̂2, q∗DVI(θ|κ∗) = arg min
σ2

{
arg min
q∈Q

D(q(θ|κ)||q∗B(θ|σ2, x1:n, y1:n))

}
. (5.15)

Crucially, the inner part of this objective conditions on the exact Bayesian posterior

for a fixed value of σ2 and then seeks to approximate the posterior belief given by

q∗B(θ|σ2, x1:n, y1:n) ∝ π(θ)
n∏
i=1

pN (yi|xi, σ2, F (θ)).

At the same time however, the outer part of the objective seeks to find a value for

σ2 which makes the posterior q∗B(θ|σ2, x1:n, y1:n) as easily approximable as possi-

ble. In other words, an objective which is explicitly motivated as a projection of

q∗B(θ|σ2, x1:n, y1:n) into Q also changes the very point from which to project into Q.

Though it would be computationally easy to perform probabilistic inference

on σ2 within GVI, we also optimize σ2 as a hyperparameter for comparability. Thus,

we pose the alternative optimization problem

σ̂2, q∗GVI(θ|κ∗) = arg min
σ2

{
arg min
q∈Q

{
Eq

[
n∑
i=1

− log pN (yi|xi, σ2, F (θ))

]
+

D
(α)
AR(q||π)

}}
. (5.16)

As Figure 5.12 shows, the outcomes are drastically different: Unlike in the DVI

case, the predictive uncertainty for the GVI posterior moves in the same direc-

tion as parameter uncertainty as α varies. The modularity of GVI makes it ob-

vious what the optimization over σ2 corresponds to in eq. (5.16): Rather than
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choosing a posterior q∗B(θ|σ2, x1:n, y1:n) which minimizes the cost of projecting into

Q via D
(α)
AR, the optimization problem simply seeks to find the best possible loss

`σ2(yi|xi, F (θ)) = − log p(yi|xi, σ2, F (θ)) over all σ2 ∈ R+.

5.4 Conclusion & Summary

As outlined in Section 1.1.3, inference outcomes are adversely affected if the prior

does not at least approximately reflect the best available judgement about good

values of θ before any data is seen. This is a problem whenever the prior is specified

according to some (more or less arbitrary) default setting. For example, for the case

of Bayesian Neural Networks (BNNs) that we have studied in the current chapter, a

typical choice of prior is a multivariate standard normal distribution that factorizes

over all network weights. While this may seem harmless or even uninformative,

a supposedly uninformative prior specification of this kind actually encompasses a

large degree of information, e.g.

(U) The prior belief is unimodal. In other words, we believe that there exists

a uniquely most likely parameterization of the network before observing any

data.

(I) The prior belief is that all network weights of a BNN are uncorrelated. In

fact, we even believe that all network weights of a BNN are both pairwise and

mutually independent.4

The above implications are in direct and strong contradiction to our best possible

judgements about BNNs and thus violate (P):

(EU) Neural Networks are well-understood to have multiple parameter settings that

are equally good (e.g. Choromanska et al., 2015). The unimodality assumption

outlined in (U) is thus clearly not a reflection of the best judgement available:

A prior belief in accordance with (P) would encode multimodality.

(EI) By construction, Neural Networks encode a significant degree of dependence

in their parameters: The best values for parameters in the l-th layer will

strongly depend on the best values for parameters in the (l− 1)-th layer (and

vice versa). Hence, assuming uncorrelatedness (much less so independence!)

directly contradicts our best judgement.

4For joint normal distributions, variables are uncorrelated if and only if they are independent.
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From this, it is obvious that a fully factorized normal distribution is hardly an

appropriate default prior for BNNs in the sense of (P) in Section 1.1.1. At the same

time, it is often prohibitive or computationally infeasible to construct alternative

prior beliefs that reflect our best judgements more accurately. In other words, we

are stuck with a sub-optimal prior. Under the standard Bayesian paradigm, this is

not an acceptable position. In contrast, the optimisation-centric view on Bayesian

inference underlying the RoT and GVI do not require the prior to be flawless. We

can thus use our very imperfect prior to design more appropriate posterior beliefs:

Simply adapt the argumentD which regularizes the posterior belief against the prior.

In particular, we want to adapt D such that the resulting posteriors satisfy two

criteria: Firstly, they should be more robust to priors which strongly contradict the

observed data. Secondly, they should still provide reliable uncertainty quantification.

There is a host of robust alternatives to the KLD that we may hope behave in

this way, most of which fall within the family of αβγ-divergences. In this chapter, we

studied the way in which these divergences affect prior robustness and uncertainty

quantification in great detail. Some of the most important findings were that

• D should be unbounded over Q to prevent the posterior from collapsing to

a point mass in finite samples. This rules out the family of α-divergences as

well as the Total Variation Distance. Further and unsurprisingly, the larger

the regularizers D, the larger the induced posterior variances.

• Using D = 1
wKLD for w ∈ (0, 1) makes marginal variances larger, but is highly

non-robust to misspecified priors. This should not come as a surprise, since all

we do is giving more weight to the same regularizer that we were trying to fix

in the first place. While w > 1 decreases the adversarial effects of misspecified

priors, it also rapidly shrinks the posterior’s marginal variances.

• The robust families of β- and γ-divergences induce fairly similar behaviour.

While they are robust to misspecified priors for β > 1 (or γ > 1), this robust-

ness comes at the price of a smaller marginal variance.

• Amongst all robust divergences that we examined, Rényi’s α-divergence seems

to exhibit the most desirable properties. Specifically, it guarantees prior ro-

bustness without tightening the marginal variances. Thus, it provides the

prior robustness of β- and γ-divergences without the associated overconfident

uncertainty quantification, see Appendix 5.2.3)

In conclusion, we find that Rényi’s α-divergence provides prior robustness in the

most practically useful way. For values of α ∈ (0, 1), it generally also provides
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larger marginal variances than the KLD. Conversely, values of α > 1 provide tighter

marginal variances than the KLD. Specifically, this divergence produces similar pos-

teriors as D = KLD if the prior is correctly specified. However, unlike KLD, choosing

Rényi’s α-divergence continues to produce desirable uncertainty quantification when

the prior is misspecified.

While D(α)
AR behaves robustly, we should mention that it has one clear practical

drawback relative to other potential regularizers such as the KLD or f -divergences.

Specifically, eq. (5.2) defines it as a log expectation—meaning that standard stochas-

tic inference techniques do not provide unbiased estimates for D. In the experiments

of this thesis, we do not need to face this issue, as all experiments consider varia-

tional families Q that permit a closed form of D(α)
AR, so that the gradient estimator in

(4.3) can be deployed. Note that this requirement is not particularly restrictive, as

Rényi’s α-divergence has closed forms for essentially all exponential family members

(see Proposition 4.1).
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Figure 5.10: Depicted are the inferred VI and GVI posteriors for µ. Here, the GVI

posteriors use D = D
(α)
AR for α = 0.5 (top row), the reverse KLD (middle row), and the

bottom row (Fisher divergence). Because all inferred posterior beliefs are normals,
dots are used to mark out the posterior mean and whiskers to denote the posterior
standard deviation. All posteriors are re-centered around the true value of β1.
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Figure 5.11: Best viewed in color. Top row depicts RMSE, bottom row the NLL

across a range of data sets using BNNs. Dots correspond to means, whiskers to
standard errors. The further to the left, the better the predictive performance. For
the depicted selection of data sets, a clear common pattern exists for the performance
differences between standard VI, DVI and GVI.
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Figure 5.12: Best viewed in color. Depicted are test set predictions based on poste-
rior predictives (top panel) and parameter posterior pushforwards (bottom panel)
with four observations in the boston data set. Each column shows one observation
(dashed line). The predictive distributions (histogram) and their means (solid line)
for each row correspond to standard VI, DVI and GVI.
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Chapter 6

Generalized Variational

Inference, Part 3: Loss

Summary: In this and the two preceding chapters, we study the special case for

the Rule of Three (RoT) for which optimization happens over a set of parameter-

ized distributions. For its obvious relationship to previous variational methods,

we call this family of algorithms Generalized Variational Inference (GVI). Broadly

speaking, the current and third chapter on GVI explains how this methodology can

address poorly specified likelihood functions in Bayesian methods—specifically in

the context of modern Machine Learning models. We provide a short overview of

some robust losses that could be used instead of the negative log likelihood, and

explore their benefits on some numerical examples. We conclude with a case study

for a widely popular Bayesian Machine Learning model: the Deep Gaussian Pro-

cess (DGP) (Damianou and Lawrence, 2013), and show that robustifying it leads to

significant improvements for predictive performance.

6.1 Robustness & Losses

It will be germane to first briefly recapitulate standard notions of robustness from

the frequentist literature, and in particular the notion of influence functions. For

a full treatment of influence functions and the field of robust frequentist statistics

more broadly, we refer to the excellent monograph of Huber (2011).
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6.1.1 Estimation & Influence Functions

Adopting notation that is standard in frequentist robust statistics, assume that

T : P(X ) → Θ is an estimator for some parameter of interest θ.1 In traditional

statistics, most estimators T are motivated as follows: Given the set of param-

eterized distributions {p(·|θ) : θ ∈ Θ} ⊂ P(X ), can we construct T so that

T (p(·|θ)) = θ? In more practical terms, the question becomes whether for a sample

x1:n ∼ p(·|θ0) and the empirical measure F (x) = 1
n

∑n
i=1 δxi(x), we can guarantee

that T (F ) ≈ θ0, where the approximation should get exact as n→∞.

Influence functions are a way of assessing whether the function T is robust

to misspecification: in other words, they help us assess how poor an estimator

becomes if the data x1:n were generated by a distribution outside the collection

{p(·|θ) : θ ∈ Θ}. Specifically, they are meant to tell us what happens to T as the

distribution that x1:n is sampled from another distribution G—and therefore look

at limits of the form

lim
t→0

{
T ((1− t)H + tG)− T (H)

t

}
,

which is simply the Gateaux (i.e. functional) derivative of T at H in the direction of

G. Here, H could be the true data-generating mechanism p(·|θ0), or the empirical

measure F constructed from x1:n. Because directional derivatives (especially in

function spaces) are not a particularly easy object to study, a simplified form is

typically studied in practice; and usually it is this simplified form that people speak

about when they study robustness.

Definition 6.1 (Influence Function). Let T : P(X ) → Θ. The influence function

of T at F in the direction of δx is given as

IF(x;T, F ) = lim
t→0

{
T (tδx + (1− t)F )− T (F )

t

}
.

There are numerous ways in which the influence function can help us formal-

ize robustness. Arguably the most important of these is the so-called gross-error

sensitivity measure, which is defined as

S(T, F ) = sup
x∈X
|IF(x;T, F )| .

1Note that this estimator is still applicable for a finite sample x1:n of data, since the empirical
measure 1

n

∑n
i=1 δxi(x) is an element of P(X ).
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For a robust estimator, we want S(T, F ) to be finite—since this implies that the

influence of perturbations to F (via δx) has a bounded and therefore limited impact

on T .

In the context of the current thesis, it is important to note that Maxi-

mum Likelihood estimators—i.e., estimators based on minimizing the negative log

likelihood—generally will not produce bounded influence functions. The result is

that contaminants such as outliers or heterogeneity will severely affect how good

a log likelihood based estimator T can perform on an imperfect, real-world data

set. This is the main distinguishing feature between the negative log likelihood loss

on the one hand, and the robust losses we will advocate for in this chapter on the

other hand: while the former can produce seriously misleading estimates under mis-

specification, the latter have bounded influence functions and will retain desirable

properties even under certain types of misspecification.

6.1.2 Robustness in the Bayesian setting

While Definition 6.1 defines robustness in frequentist procedures, it should be clear

that these notions of robustness transfer straightforwardly into the Bayesian con-

text. In this thesis, we mostly choose to not approach Bayesian robustness in an

overly formal way.2 The reason for this is relatively simple: in general, the exist-

ing formalisations of robustness in the Bayesian setting require that P (L,D,Π) be

analytically available. Since this requirement is not satisfied unless D = KLD and

Π = P(Θ), the resulting theoretical analysis is limited to Gibbs posteriors—a small

subset of the RoT. Moreover, common sense strongly suggests that P (L,D,Π) will

inherit the robustness properties of L so long as D and Π are not pathologically

unsuitable choices. In this thesis, we will therefore mostly work with the rough

hypothesis that generally speaking, the RoT posterior P (L,D,Π) will be robust to

model misspecification if and only if the chosen loss L is robust to it.

Obviously, this is not a satisfying solution from a theoretician’s point of

view, but we will see that it is both a reasonable and pragmatic approach—with

considerable pay offs for methodology and applications.

6.1.3 A Selection of Robust Losses

While the notion of robust losses does not require a likelihood function, the current

chapter (and indeed the thesis as a whole) is interested primarily in likelihood-based

2The exception to this will be Chapter 8, where we will more formally define robustness through
adapted versions of influence functions in generalized Bayesian procedures by building on the work
of Hooker and Vidyashankar (2014) and Ghosh and Basu (2016).
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robust losses. The reason for this is simple: In the context of model misspecification,

we are automatically talking about the relationship of a probability model p(·|θ) and

the true data-generating mechanism px of x1:n. This means that we will ordinarily

be interested in robust inferences relative to the (incorrect) model p(·|θ)—which

necessitates a likelihood-based approach to designing robust losses.

Section 1.1.4 explained how and why (EL) can severely impede the useful-

ness of standard Bayesian posteriors: if p(·|θ) is not an accurate description of

the data generating mechanism, inferences are susceptible to outliers, heterogene-

ity, and other adversarial aspects of the data. Recalling that the standard Bayes

posterior is given by q∗n,SB(θ) = P (− log p(x1:n|θ),KLD,P(Θ)), it is also clear that

treating the likelihood model as (approximately) correct amounts to using the log

score L(θ, x1:n) = − log p(x1:n|θ) to assess how well p(x1:n|θ) fits {xi}ni=1. Indeed,

this loss processes information about the likelihood model p(x1:n|θ) contained in

x1:n optimally within a Bayesian framework if this model happens to be correctly

specified (Zellner, 1988).

While this implies that robust likelihood-based losses are typically less sta-

tistically efficient under correct specification, this tradeoff radically reverses even

under mild misspecification (see e.g. Basu et al., 1998; Fujisawa and Eguchi, 2008;

Hung et al., 2018; Jewson et al., 2018). For notational clarity, we will often write

L(θ, x1:n) = L(p(·|θ), x1:n) throughout the remainder of the current chapter to in-

dicate a robust loss assessing the fit of likelihood parameter θ on the sample x1:n.

The most appealing choices for L : Θ × X n → R are finite-sample estimators of

D(px(·)‖p(·|θ)) for some robust divergence D. In other words, a natural loss is

the estimated divergence between the true data-generating mechanism px that gave

rise to x1:n on the one hand, and the model p(·|θ) on the other hand. A notable

advantage of designing losses this way is the following: even in the unlikely event

that p(·|θ) is correctly specified for px—so that there is θ∗ so that x1:n were drawn

from the probability distribution with density given by p(x1:n|θ∗)—minimizing an

unbiased estimate of D(px(·)‖p(·|θ)) targets the correct value θ∗ for any statistical

divergence D. So even though robust losses are less efficient than the log score under

correct misspecification, they still recover the parameter value if the model happens

to be correctly specified. An overview of some robust losses constructed in this way

is provided in Table 6.1.

All losses presented in Table 6.1 guarantee various forms of robustness, and

their main limiting factors are often of practical nature. To begin with, all except

the Total Variation Distance depend on hyperparameters that are generally difficult

to choose in a non-heuristic way. All of the non-additive losses in the table also
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Divergence Hyperparameters Additive References

α-divergence α ∈ (0, 1) 7 Beran et al. (1977); Tamura and
Boos (1986); Simpson (1987); Lindsay
et al. (1994); Hooker and Vidyashankar
(2014)

β-divergence β > 1 3 Basu et al. (1998); Ghosh and Basu
(2016); Futoshi Futami et al. (2018)

γ-divergence γ > 1 3 Fujisawa and Eguchi (2008); Hung
et al. (2018); Nakagawa and Hashimoto
(2019)

Maximum Mean
Discrepancy

Kernel kν and ν 7 Briol et al. (2019); Chérief Abdellatif
and Alquier (2022, 2020)

Kernel Stein Dis-
crepancy

Stein Operator,
kernel kν and ν

7 Barp et al. (2019)

Total Variation
Distance

— 7 Yatracos (1985); Devroye and Lugosi
(2012); Jeremias Knoblauch and Lara
Vomfell (2020)

Table 6.1: Overview over robust likelihood-based losses derived from divergences

come with higher computational complexity, since non-additive losses do not admit

unbiased estimation by sub-sampling. On top of this, such losses generally come with

increased computational overhead. For example, kernel-based discrepancy measures

such as the Maximum Mean Discrepancy or Kernel Stein Discrepancy are estimated

using V-statistics or U-statistics. This means that evaluating these losses on a

sample of size n has a computational complexity of O(n2). Estimating losses based

on the α-divergence or the Total Variation Distance is even more computationally

demanding, since they require kernel density estimators if X = Rp. In summary,

computational feasibility often makes additive losses such as those based on the

β- and γ-divergences much more compelling than their non-additive alternatives.

Accordingly, they are the robust losses we will study most throughout this chapter.

Additive losses based on β- and γ-divergences

At the time of writing, the only two divergence-based losses that are both ro-

bust and additive are those corresponding to the family of β- and γ-divergences

first introduced by Basu et al. (1998) and Hung et al. (2018). We define them as
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Lβ(θ, x1:n) =
∑n

i=1 L
β
p(θ, xi) and Lγ(θ, x1:n) =

∑n
i=1 L

γ
p(θ, xi), where

Lβp(θ, xi) = − 1

β − 1
p(xi|θ)β−1 +

Ip,β(θ)

β
(6.1)

Lγp(θ, xi) = − 1

γ − 1
p(xi|θ)γ−1 · γ

Ip,γ(θ)
γ−1
γ

. (6.2)

Here, the integral term Ip,c(θ) =
∫
p(y|θ)cdy is generally available in closed form for

exponential families. These losses are more robust than the log score whenever β > 1

(or γ > 1). Relative to other robust losses, they have two additional benefits: firstly

and we saw in Section 4.5, they have desirable computational properties. Secondly,

the hyperparameter β (or γ) has a clear interpretation since the losses recover the

negative log likelihood as β → 1 (or γ → 1). To see this, one simply notes that

limx→1
zx−1−1
x−1 = log z and Ip,1(θ) = 1. Thus—unlike the other entries in Table 6.1

except the α-divergence—the losses Lβ and Lγ can be made arbitrarily close to the

standard negative log likelihood. More specifically, choices of β = 1+ε (or γ = 1+ε)

for small enough ε > 0 will provide a loss function that is both robust and nearly

as statistically efficient as the negative log likelihood. Unfortunately, it is generally

difficult to pick the optimal degree of robustness ε because its optimal level will

depend on both the scale of the data x1:n as well as the likelihood model. However,

in numerous experiments, we found that if the data are standardized, values for

ε ∈ [0.01, 0.1] will yield a very favourable trade-off between robustness and efficiency

across a very wide range of data sets, models, and forms of misspecification.

The estimators arising from minimizing either choice of loss can also be

shown to have bounded influence functions under mild regularity conditions and

for numerous statistical models (see Basu et al., 1998; Hung et al., 2018); and are

consistent in the frequentist sense.

In summary, robust losses based on the β- and γ-divergences are both prac-

tical and have numerous desirable properties—both from a theoretical as well as a

computational view point. For completeness, we will also elaborate upon two other

important robust losses outlined in Table 6.1; both of which are attractive alterna-

tives for robust generalized posteriors if computational complexity of order O(n2)

is not prohibitive (see Chérief Abdellatif and Alquier (2020) and Chapter 8).

Kernel-Stein Discrepancy Loss

While our ultimate goal is to introduce the Kernel-Stein Discrepancy (KSD), in the

context of this thesis there is merit in going the extra mile to understand KSD’s

origin: In Chapter 8, we will extensively analyse theoretical properties pertaining
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to the KSD, many of which rely on its relationship to Stein’s Method. To this end,

we will use the notation of that chapter, and denote for Q ∈ P(X ) by Lq(X ,Q)

both the set of functions f : X → R for which ‖f‖Lq(X ,Q) := (
∫
X |f |qdQ)1/q < ∞

and the normed space in which two elements f, g ∈ Lq(X ,Q) are identified if they

are Q-almost everywhere equal. If Q is a Lebesgue measure, we simply write Lq(X )

instead of Lq(X ,Q). Further, we write PS(Rd) as the set of all Borel probability

measures supported on Rd that admit an everywhere positive probability density

function (p.d.f.) p : X → R>0 with continuous partial derivatives.

Stein discrepancies were originally proposed in Gorham and Mackey (2015)

as statistical divergences that are both computable and capable of providing various

forms of distributional convergence control. In technical terms, the approach is

based on the well-known method of Stein (1972), which requires the identification

of a linear operator SQ : H → L1(X ,Q), depending on a probability distribution

Q ∈ P(X ) and acting on a Banach space H, such that

EX∼Q[SQ[h](X)] = 0 ∀h ∈ H. (6.3)

Such an operator SQ is called a Stein operator and H is called a Stein set. Given

a distribution Q ∈ P(X ), there are infinitely many operators SQ satisfying (6.3).

A convenient example is the Langevin Stein operator (Gorham and Mackey, 2015),

defined for X = Rd, Q ∈ PS(Rd) and a Banach space H of differentiable functions

h : Rd → Rd, as

SQ[h](x) = h(x) · ∇ log q(x) +∇ · h(x) (6.4)

where q is the p.d.f. of Q. Under suitable regularity conditions on ∇ log q and H,

the Langevin Stein operator satisfies Equation 6.3; see Gorham and Mackey (2015,

Proposition 1). Given P,Q ∈ P(X ) and a Stein operator SQ : H → L1(X ,Q) whose

image is contained in L1(X ,P), the Stein discrepancy (SD) is defined as

SD(Q‖P) := sup
‖h‖H≤1

∣∣∣EX∼P [SQ[h](X)]− EX∼Q [SQ[h](X)]
∣∣∣

= sup
‖h‖H≤1

∣∣∣EX∼P [SQ[h](X)]
∣∣∣, (6.5)

where the last equality follows directly from (6.3). Under mild assumptions, a SD

defines a statistical divergence between two probability distributions P,Q ∈ P(X ),

meaning that SD(Q‖P) ≥ 0 with equality if and only if P = Q; see Proposition 1

and Theorem 2 in Barp et al. (2019). An important property of SDs that we will
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exploit in Chapter 8 is that—unlike other divergences—SDs in general and the KSD

in particular can be computed with an un-normalized representation of Q.

Taking x1:n to be independently sampled from the true data generating pro-

cess P, letting Pn = 1
n

∑n
i=1 δxi be the empirical measure associated to this dataset,

and letting Pθ denote the probability measure associated with our likelihood model

p(·|θ), SDs provide a natural likelihood-based loss function as L(p(·|θ), x1:n) =

SD(Pθ‖Pn), which is the estimated analogue of SD(Pθ‖P). This leaves one deci-

sive question: How should we compute this loss in practice? In particular, how

should we deal with the supremum of (6.5)?

Compared to other Stein discrepancies, KSDs are attractive because precisely

because they correspond to a case where the supremum in (6.5) can be computed

explicitly. To define the KSD, the first ingredient is a (matrix-valued) kernel K :

X×X → Rd×d; the precise definition of which is deferred to Appendix A.3. For now,

it suffices to point out that any kernel K has a uniquely associated Hilbert space

of functions f : X → Rd, called a vector-valued reproducing kernel Hilbert space.

This space constitutes the Stein set in KSD, and we therefore denote it as H. Its

associated norm and inner product will be denoted as ‖ ·‖H and 〈·, ·〉H, respectively.

Then—and defining the action of a Stein operator SQ on both the first and second

argument of a kernel K as SQSQK—the following result is a generalisation of the

original KSD-construction of Chwialkowski et al. (2016) and Liu et al. (2016) to

general Stein operators.

Proposition 6.1 (Closed form of SD). Under Assumption 8.1 (see Chapter 8), we

have

SD2(Q‖P) = KSD
2(Q‖P) := EX,X′∼P

[
SQSQK(X,X ′)

]
where X and X ′ are independent.

The proof is in Appendix C.3.1. Note the immediate implication: Losses

based on the KSD can be computed explicitly:

KSD
2(Pθ‖Pn) =

1

n2

n∑
i=1

n∑
j=1

SPθSPθK(xi, xj), (6.6)

where the explicit form of SPθSPθK depends on SPθ . For instance, the case of X = Rd
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and the Langevin Stein operator in (6.4) is given by

SPθSPθK(x, x′)

= ∇x log p(x|θ) ·K(x, x′)∇x′ log p(x′|θ) +∇x ·
(
∇x′ ·K(x, x′)

)
+∇x log p(x|θ) ·

(
∇x′ ·K(x, x′)

)
+∇x′ log p(x′|θ) ·

(
∇x ·K(x, x′)

)
,

=
d∑

i,j=1

{
∂

∂x(i)
log pθ(x)

[
K(x, x′)

]
(i,j)

∂

∂x(j)
log pθ(x) +

∂2

∂x(i)∂x
′
(j)

[
K(x, x′)

]
(i,j)

+
∂

∂x(i)
log pθ(x)

∂

∂x′(j)

[
K(x, x′)

]
(i,j)

+
∂

∂x′(j)
log pθ(x

′)
∂

∂x(i)

[
K(x, x′)

]
(i,j)

}
.(6.7)

Clearly, this expression is straightforward to evaluate whenever we have access to

derivatives of the kernel and the log density and can afford the corresponding O(n2)

complexity. Moreover—and of particular interest for the current thesis—one can

choose the kernel in ways that impart robustness in the frequentist sense (see Barp

et al., 2019).

Maximum Mean Discrepancy Loss

The flexibility of choosing a kernel is a core feature of yet another likelihood-based

robust loss function: the Maximum Mean Discrepancy (MMD), which is another loss

that has been explored for generalized Bayesian methods (Chérief Abdellatif and

Alquier, 2020). Unlike the KSD, the MMD is a metric on P(X ) defined through a

kernel k : X×X → R. Much like the KSD, the MMD exhibits an number of appealing

computational and theoretical properties. In particular, for the reproducing kernel

Hilbert space H induced by k and associated with the usual norm ‖ · ‖H,

MMD(P‖Q) := sup
h∈H:‖h‖H≤1

|EX∼P[h(X)]− EX∼Q[h(X)]| .

Much like for the MMD, we can solve this supremum in a convenient closed form. The

key component for doing so is the kernel mean embedding—an integral transform

P 7→ µP that maps a distribution P ∈ P(X ) into an element of Hk. It is defined by

µP(·) := EX∼P[k(X, ·)] ∈ H, (6.8)

whenever EX∼P[k(X, ·)] < ∞. In terms of kernel mean embeddings, the MMD

between two distributions P and Q can then be written as

MMD(P‖Q) := ‖µP − µQ‖H.
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Conditions ensuring that µP(·) is well defined for any P—so that MMD(P‖Q) is a

metric—can be found in Sriperumbudur et al. (2010). An unrestrictive condition

ensuring this and particularly easy to verify in practice is that the kernel be bounded.

If we can ensure that µP(·) is well defined for any P, then using the well-known

reproducing property of H, one can show that

MMD(P‖Q)2 = EX,X′∼P[k(X,X ′)]− 2EX∼P,X′∼Q[k(X,X ′)] + EX,X′∼Q[k(X,X ′)]

(see e.g., Section 3.5 of Krikamol Muandet et al., 2017). This is extremely conve-

nient as it allows to compute unbiased estimators of MMD(P‖Q)2 by Monte Carlo

methods: all we need are samples from P and Q. More precisely, we can estimate

the MMD as

̂MMD(P‖Q)2 =
1

n2

J∑
j=1

K∑
k=1

(k(xj , xk)− 2k(xj , yk) + k(yj , yk)) ,

where x1:J
i.i.d.∼ P, and y1:K

i.i.d.∼ Q. Much like for the KSD in (8.2), this suggests

the likelihood-based loss function L(p(·|θ), x1:n) = ̂MMD(Pθ‖Pn)2. The resulting

frequentist estimator exhibits various robustness properties that are derived and

discussed by Briol et al. (2019), Alquier et al. (2020), and Pierre Alquier and Mathieu

Gerber (2020).

Having studied the robust likelihood-based losses more broadly and β- and

γ-divergence based losses in particular, we now turn to applying them in the context

of a well-known black-box Bayesian Machine Learning model that invariably suffers

under model misspecification: The Deep Gaussian Process (DGP).

6.2 Robustness for Deep Gaussian Processes

Machine Learning methods often shine when traditional modelling approaches fail.

In other words, we know empirically that—at least in terms of predictive performance—

we can often benefit from black-box models if it is hard to know our data-generating

process exactly. This situation is also precisely what motivates the Deep Gaussian

Process (DGP): with increasing depth, we attempt to provide an increasingly vague

function prior. At the same time, in practice, the hyperparameters of that function

prior are optimized as part of the inference procedure in an empirical-Bayes type

fashion. This means that the prior will be adjusted to the data we present the

DGP with, relative to the likelihood function that the DGP uses. For computational

convenience, for the regression case this likelihood function in the DGP is typically
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chosen to be a normal distribution, so that the hyperparameter optimization will

try to find a latent function prior that conforms to a normal likelihood given the

observations.

While this may often work in practice, remember that the motivation for

using black-box models is that data-generating processes are not well-understood

in the first place. Data of this type are likely to exhibit heterogeneities, outliers,

and various other forms of misspecification. Why then impose the rather stringent

normality requirement? Specifically, even simple forms of misspecification—such as

heterogeneity via outliers—are well-understood to adversely affect posterior infer-

ences if we do not protect ourselves against them. Fortunately, this is a problem

that can straightforwardly be addressed by robust losses.

We illustrate this—using a much simpler model than the DGP for now—in

Figure 6.1: As the right hand side panel shows, data are generated from a so-

called ε-contaminated model: For some ε ∈ (0, 1), a proportion ε of the data are

contaminants or outliers, while the remaining 1 − ε come from the model specified

by the user. This means that the true data-generating process is

ptrue(x) = (1− ε)p(x|θ0) + εc(x),

for some parameter θ0 ∈ Θ and some contamination distribution c ∈ P(X ). In

the right hand side panel of the Figure, ε = 0.05, the parametric model p(·|θ0) is a

standard normal; and data generated from it is displayed in light grey color. The

contaminating distribution is also a normal, but with higher dispersion and with

mean value of 8. Data generated from it is displayed in black. As we can also

see on the right hand side panel, fitting a variational posterior with the negative

log likelihood score of a normal will shift the posterior predictive distribution in the

direction of this contamination. In contrast, the various GVI posteriors (constructed

with robust losses based on β-divergences) do not suffer this problem.

On the left hand side of the panel, we quantify this difference in a more thor-

ough way by displaying a Bayesian equivalent of influence functions. The displayed

influence functions quantify the impact the (n + 1)-th observation has on the pos-

terior distribution q∗n,SB(θ) constructed from the first n observations (see Peng and

Dey, 1995), where the influence is measured by computing the Fisher-Rao diver-

gence between the posteriors based on x1:n and on x1:(n+1). On the x-axis, we have

expressed the magnitude of xn+1 relative to the standard deviation of q∗n,SB(θ). As

the Figure shows, for the negative log likelihood loss with the normal distribution,

the influence of xn+1 on the posterior belief grows stronger and stronger the more
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Figure 6.1: Best viewed in color. The plots compare influence functions (Left)
and predictive posteriors (Right) of a standard Bayesian inference against a GVI

posterior. Left: The influence functions of scoring the normal likelihood with a
standard negative log likelihood against a robust scoring rule derived from β-
divergences. Here, the influence is computed as the Fisher-Rao divergence between
the posterior based on n = 100 and n = 101 observations, where we measure the
magnitude by which the 101-th observation deviates from the first 100 observations
through standard deviations from the posterior mean. For more details on this, see
Kurtek and Bharath (2015). Right: A univariate normal is fitted using all the
data depicted, including the outlying contamination. The posterior predictive cor-
responding to the robust scoring rule and β = 1.25 is able to ignore these outliers.
This stands in contrast to the posterior predictive based on standard Bayesian
inference, which assigns increasingly large influence to outlying observations.

untypical the observation is relative to previously observed data. This behaviour is

not the same for the β-divergence, for which the outlier only gains influence up to a

tipping point. Beyond said tipping point, the influence of the observation slowly but

surely decays until the point where xn+1 has virtually no impact on the posterior

anymore.

In summary, since we ordinarily apply black-box models like the DGP to

data sets that are hard to model, it is reasonable to expect that these data sets

may contain various contaminations and outliers. It stands to reason that in the

presence of these contaminations however, one would substantially benefit from

robustification of the DGP. This is what we set out to do next. To this end, we first
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introduce the method and model to be improved.

6.2.1 VI for DGPs using Salimbeni & Deisenroth (2017)

While there are other variational methods that one could modify using GVI, we focus

on the inference scheme introduced by Salimbeni and Deisenroth (2017). Unlike

competing VI approaches for DGPs, this family encodes some part of the conditional

dependence structure of the DGP. This comes at the expense of losing a tractable

closed form lower bound (as in Damianou and Lawrence, 2013), but makes DGPs

more practically viable by allowing for more flexible and adaptable function priors.

Deep Gaussian Processes (DGPs)

Deep Gaussian Processes (DGPs) were introduced by Damianou and Lawrence (2013)

and extend the logic of deep learning to the nonparametric Bayesian setting. The

principal idea is to iteratively place Gaussian Process (GP) priors over emerg-

ing latent spaces. More specifically, given matrices of observations (X,Y ) where

X ∈ Rn×D and Y ∈ Rn×p, a DGP of L layers introduces the additional collection

of latent functions {F l}Ll=1. Here, F l is a matrix of dimension Dl ×Dl+1. Setting

F 0 = X, D0 = D and Dl+1 = p for notational convenience, one can now write the

hierarchical DGP construction as

Y |F L ∼ p
(
Y
∣∣ F L

)
F L|F L−1 = fL(F L−1) ∼ GP

(
µL(F L−1),KL(F L−1,F L−1)

)
F L−1|F L−2 = fL−1(F L−2) ∼ GP

(
µL−1(F L−2),KL−1(F L−2,F L−2)

)
. . .

F 1|F 0 = f1(F 0) ∼ GP
(
µ1(F 0),K1(F 0,F 0)

)
,

where the mean and covariance functions are of form µl : RDl → RDl+1
and K l :

RDl×Dl → RDl+1×Dl+1
for the collection of matrix-valued kernels {K l}Ll=1. Scalable

inference in this construction is obviously a challenge. In principle, the attempts at

tackling this problem rely on Variational inference (VI) strategies (Damianou and

Lawrence, 2013; Dai et al., 2016; Salimbeni and Deisenroth, 2017; Hensman and

Lawrence, 2014), Monte Carlo methods (Vafa, 2016; Wang et al., 2016) or more

specialized approaches (Bui et al., 2016; Cutajar et al., 2017a). In the remainder,

we will focus on variational strategies for DGP inference. To keep things as simple as

possible, we discuss the implications of Generalized Variational Inference (GVI) only

in relation to the arguably most promising VI approach of Salimbeni and Deisenroth
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(2017) which encodes conditional dependence into the variational family Q.

The conditionally dependent variational family for DGPs

Under the popular inducing point framework for GP inference (see Titsias; Ed-

win V. Bonilla et al., 2019; Matthews et al., 2016), we now introduce the exact

Bayesian posterior arising from the DGP construction. First, we define the set

of m additional inducing points Z l = (zl1, z
l
2, . . . ,z

l
m)T and their function values

U l = (f l(zl1), f l(zl2), . . . , f l(zlm))T in addition to the observations (X,Y ). In this

context, the core idea is to choose m << n in order to speed up computation via

conditioning of (Z,U) on (X,Y ). Throughout, we will often drop X and Z l from

the conditioning sets of the conditional probability distributions. Further, note that

we will denote the i-th row of the Dl ×Dl+1 latent functions F l as fLi . With this

in place, the joint distribution of the DGP construction is

p
(
Y , {F l}Ll=1, {U l}Ll=1

)
=

n∏
i=1

p(yi|fLi )︸ ︷︷ ︸
likelihood

×
L∏
l=1

p
(
F l
∣∣∣ U l,F l−1,Z l−1

)
p
(
U l
∣∣∣ Z l−1

)
︸ ︷︷ ︸

(DGP) prior

.

Thus, the posteriors p
(
{F l}Ll=1, {U l}Ll=1

)
and p

(
{F l}Ll=1

)
are intractable due to the

normalizing constants required for their computation. To overcome this, different

variational approximations have been proposed. Here, we focus on the variational

family proposed in Salimbeni and Deisenroth (2017) given by

q
(
{F l}Ll=1, {U l}Ll=1

)
=

L∏
l=1

p
(
F l
∣∣∣ U l,F l−1,Z l−1

)
q
(
U l
)
, (6.9)

q
(
U l
)

= N
(
U l
∣∣∣ml,Sl

)
. (6.10)

The variational parameters for this posterior are κ =
{
{ml}Ll=1, {Sl}Ll=1

}
. The

normal form for q
(
U l
)

is chosen because it allows for exact integration over the

inducing points {U l}Ll=1, yielding the closed form variational posterior

q
(
{F l}Ll=1

)
=

L∏
l=1

N
(
F l
∣∣∣ µl,Σl

)
,

where the parameters of the posterior are available as[
µl
]
i

= µm
l,Zl−1

(fLi ) = µl(fLi ) + a(fLi )T
(
ml − µl(Z l−1)

)
[Σl]i,j = ΣSl,Zl−1(fLi ,F

j,l) = K l(fLi ,F
j,l)− a(fLi )T

(
K l(Z l−1,Z l−1)− Sl

)
a(F j,l),
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and we define a(fLi ) = K l(Z l−1,Z l−1)−1K l(Z l−1,fLi ). Note the attractive feature

of the family specified via eqs. (6.9) – (6.10): At each layer l, the output f li only

depends on the corresponding input f l−1
i . This property is a direct consequence

of setting every layer up exactly as a sparse GP (see, e.g. Titsias; Hensman et al.,

2013; Edwin V. Bonilla et al., 2019). This enables efficient probabilistic backpropa-

gation (Hernández Lobato and Adams, 2015) with the reparameterization trick (e.g.

Rezende et al., 2014; Kingma et al., 2015) and makes the approach scalable through

the stochastic variational methods outlined in Chapter 4.

In particular, Salimbeni and Deisenroth (2017) propose a doubly stochastic

minimization of the negative Evidence Lower Bound (ELBO) given by

OVI(κ) = −
n∑
i=1

Eq(fLi )

[
log p(yi|fLi )

]
+

L∑
l=1

KLD(q(F l,U l)||p(F l,U l|Z l−1)). (6.11)

The Kullback-Leibler divergence (KLD) terms of this bound further simplify because

by eq. (6.9), q is designed to cancel the conditional over F l with p. This finally

leads to the bound

OVI(κ) = −
n∑
i=1

Eq(fLi )

[
log p(yi|fLi )

]
+

L∑
l=1

KLD(q(U l)||p(U l|Z l−1)), (6.12)

where for optimization the samples for F l are drawn using the variational posteriors

from the previous layers. Because fLi only depends on the corresponding input

F i,l−1, this can be done using univariate Gaussians, which means that no matrix

operations are required. Ultimately, it is this trick that enables the approach to

produce more expressive variational approximations without losing computational

efficiency.

Why is this method a so-called ’doubly stochastic’ minimization? The first

layer of stochasticity in the model stems from approximating the expectation over

q(θ). The second layer is due to drawing a mini-batches from X = F 0 and Y at

each iteration. Because of this degree of stochasticity, it is a particularly appealing

feature that the expectations Eq(fLi )

[
log p(yi|fLi )

]
in the very last layer are available

in closed form for some choices of p—since this removes one layer of randomness

from the procedure. Such closed forms are for instance available in the regression

setting, where p is a normal likelihood. Later on, we also derive such closed forms

for a new class of alternatives for p geared towards robustness and derived from

normal likelihoods.
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An alternative problem representation

We now decompose the components of the DGP model. Specifically, we define the

collection of likelihood terms as

`n

(
{{F l}Ll=1, {U l}Ll=1},Y

)
=

n∑
i=1

`
(
fLi ,yi

)
for `

(
fLi ,yi

)
= − log p(yi|fLi )

and the layered DGP prior via

p
(
{F l}Ll=1, {U l}Ll=1

∣∣∣ {Z l}Ll=1

)
=

L∏
l=1

pl

(
F l,U l

∣∣∣ F l−1,U l−1,Z l−1
)

(6.13)

pl

(
F l,U l

∣∣∣ F l−1,U l−1,Z l−1
)

= p
(
F l
∣∣∣ F l−1,U l,Z l−1

)
p
(
U l
∣∣∣ Z l−1

)
. (6.14)

With this, one can rewrite the sought-after posterior as

p
(
{F l}Ll=1, {U l}Ll=1

∣∣∣ Y ,X)
=

exp
{
−`n

(
{{F l}Ll=1, {U l}Ll=1},Y

)}
π
(
{F l}Ll=1, {U l}Ll=1

∣∣ {Z l}Ll=1

)∫
Y exp

{
−`n

(
{{F l}Ll=1, {U l}Ll=1},Y

)}
π
(
{F l}Ll=1, {U l}Ll=1

∣∣ {Z l}Ll=1

)
dY

(6.15)

This representation gives a generalized Bayesian distribution associated with a gen-

eral loss function `. For the standard DGP, the loss function is the negative log

likelihood `(fLi ,yi) = − log p(yi|fLi ), which is the loss traditionally associated with

the Bayesian paradigm. While this is the de-facto default choice for the loss, the

variational methods outlined in the previous section still applies to any other ad-

ditive loss `—such as the β- and γ-divergence based losses introduced in Section

6.1.3.

6.2.2 GVI for DGPs

Note that throughout, we will—strictly speaking—be deriving posteriors for infinite-

dimensional latent functions rather than finite-dimensional parameters θ. Yet, this

distinction is somewhat semantic: In actual fact, we will not obtain posterior beliefs

over all of the latent functions, but only the finitely many points of evaluation in

{F l}Ll=1 and {U l}Ll=1. For this reason, one may think of these latent functions as

de-facto parameters and think of {{F l}Ll=1, {U l}Ll=1} as the parameter of interest.

β- and γ-divergences for DGPs

Our idea for robustifying DGPs is as simple as it is elegant: replace the negative log

likelihood loss by the summable and robust β- or γ-divergence based losses Lβp or
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Lγp , leading for some choice of divergence D to the objectives

OβDGP,GVI(κ) =

n∑
i=1

Eq(fLi )

[
Lβp(fLi ,yi)

]
+

L∑
l=1

D(q(F l,U l)||p(F l,U l|Z l−1)),

OγDGP,GVI(κ) =

n∑
i=1

Eq(fLi )

[
Lγp(fLi ,yi)

]
+

L∑
l=1

D(q(F l,U l)||p(F l,U l|Z l−1)).

Through tedious but straightforward calculation, one can show that the ex-

pectations Eq(fLi )

[
Lβp(fLi ,yi)

]
and Eq(fLi )

[
Lγp(fLi ,yi)

]
are available in closed form

for the regression setting when Lβp and Lγp are based on a normal likelihood.

Theorem 6.1 (Closed form for robust regression). If it holds that yi ∈ Rd,

p(yi|fLi ) = N
(
yi;f

L
i , σ

2Id
)

; q(fLi ) = N (fLi ;µ,Σ), (6.16)

then for the quantities given by

Σ̃−1 =
( c
σs
Id + Σ−1

)
; µ̃ =

( c
σ2
yi + Σ−1µ

)
; I(c) = (2πσ2)−0.5dcc−0.5d(6.17)

and for

E(c) =
1

c

(
2πσ2

)−0.5dc |Σ̃|0.5
|Σ|0.5 exp

{
−1

2

( c
σ2
yTi yi + µTΣ−1µ− µ̃T Σ̃µ̃

)}
(6.18)

the following expectations are available in closed form:

Eq(fLi )

[
Lβp(fLi ,yi)

]
= −E(β − 1) +

I(β)

β
(6.19)

Eq(fLi )

[
Lβp(fLi ,yi)

]
= −E(γ − 1) · γ

I(γ)
γ
γ−1

(6.20)

We defer the proof of this result to Appendix B.7.1. Note that for numerical

stability, Lγp is the preferable loss: it is multiplicative and—unlike Lβp—it never

changes sign. Thus, it can be processed and stored entirely in log form, which is a

desirable property for stable gradients in stochastic variational methods.

6.2.3 Varying the regularizer

Unlike their frequentist counterparts, Bayesian methods provide uncertainty quan-

tification about the latent parameters (or functions) of interest. Specifically, uncer-

tainty about values of θ is quantified by penalizing how far the posterior q diverges
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Figure 6.2: Comparing standard VI (D = KLD) against GVI with D = D
(α)
AR us-

ing posteriors with Gaussian likelihoods and mean-field Gaussian approximations.
Left: Changing D improves marginal variances. Depicted are exact and approxi-
mate marginals. The exact posterior is correlated, causing VI to over-concentrate.
GVI can avoid this. Right: Changing D provides prior robustness. Depicted are
approximate marginals for two different priors π ∈ {N(−30, 22), N(−5, 22)}. VI is
sensitive to the badly specified prior. GVI can avoid this.

from the prior π. To assess whether there is a benefit of using robust regularizers

for DGPs, we focus on Rényi’s α-divergence (D(α)
AR) as introduced in Chapter 5. This

divergence is available in closed form for the variational families and priors on DGPs

of (Salimbeni and Deisenroth, 2017) for α ∈ (0, 1). More importantly, it provides

larger marginal variances than VI for α ∈ (0, 1), tighter marginal variances than VI

for α > 1, and is robust to badly specified priors. We refer to Figure 6.2 for an

illustration of both properties. We further point to Chapter 5, which contains a

much wider selection of pictorial examples that also encompass other divergences.

As a second alternative to D = D
(α)
AR, we also consider D = 1

wKLD (see also

Yang et al., 2020). Note that this has an intimate relationship to power likelihoods.

In particular, using the negative power log likelihood− log p(yi|θ)w = −w log p(yi|θ)

as the loss gives the same solution as using the standard log likelihood together

with D = 1
wKLD. For D = 1

wKLD, D(q||p) has closed form if both q and p are

(multivariate) normal densities. To show that this discrepancy is also available in

closed form for D = D
(α)
AR, we next give a version of Proposition B.1 (see Appendix

B.5).

Theorem 6.2 (closed forms for D = D
(α)
AR). For q(θ) = N (θ;µq,Σq) and p(θ) =
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N (θ;µp,Σp) and

(Σ∗)−1 = αΣ−1
q + (1− α)Σ−1

p ; µ∗ = Σ∗
(
αΣ−1

q µ
q + (1− α)Σ−1

p µ
p
)

it holds that for α ∈ (0, 1),

D
(α)
AR (q(θ)||p(θ)) =

1

2α(1− α)

{
− α

[
µq
′
Σ−1
q µ

q + ln |Σq|
]
− (1− α)

[
µp
′
Σ−1
p µ

p + ln |Σp|
]

+
[
µ∗
′
(Σ∗)−1µ∗ + ln |Σ∗|

]}
(6.21)

Notice that computing this is of the same order as computing the KLD. In particular,

one needs to perform a Cholesky decomposition of Σq and Σq for either choice of

D.

With Dl ∈ {D(α)
AR,

1
wKLD} for l = 1, 2, . . . L, the final form of the GVI objec-

tives studied in this section are given as

Oβ,D
1:L

DGP,GVI(κ) =
n∑
i=1

Eq(fLi )

[
Lβp(fLi ,yi)

]
+

L∑
l=1

Dl(q(F
l,U l)||p(F l,U l|Z l−1)),

Oγ,D
1:L

DGP,GVI(κ) =
n∑
i=1

Eq(fLi )

[
Lγp(fLi ,yi)

]
+

L∑
l=1

Dl(q(F
l,U l)||p(F l,U l|Z l−1)).

As shown by Theorems 6.1 and 6.2, a number of relevant quantities in this objective

will be available in closed form.

Does the layer-specific divergence define a valid divergence?

The attentive reader may pause here: while the extension to general losses is

straightforward, the same cannot be said about the new regularizers. In partic-

ular, two important questions arise at this point:

(I) Will the divergence term simplify to
∑L

l=1Dl(q(U
l)||p(U l|Z l−1)) as in eq.

(6.12)?

(II) Is
∑L

l=1Dl(q(F
l,U l)||p(F l,U l|Z l−1)) a valid divergence between the full (rather

than layer-specific) prior π of eq. (6.13) and the full (rather than layer-specific)

variational posterior q of eq. (6.9)?

To see that (I) can be answered positively, one simply needs to re-examine

eq. (10)–(12) in Edwin V. Bonilla et al. (2019). In particular, note that for any

divergence D′(q||p) that can be written as D′(q||p) = g(D(q||p)) for some function
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g(x) such that g(x) ≥ 0 and g(x) = 0 if and only if x = 0 and for some f-divergence

Dl(q||p) =
∫
F l,U q(F

l,U l)f
(

q(F l,U l)
p(F l,U l|Zl−1)

)
d(F l,U l), it holds that

D′(q(F l,U l)||p(F l,U l|Z l−1)) = g

(
Eq(F l,U l)

[
f

(
q(F l,U l)

p(F l,U l|Z l−1)

)])
= g

(
Ep(F l|U l,Zl−1)q(U l)

[
f

(
q(F l,U l)

p(F l,U l|Z l−1)

)])
= g

(
Eq(U)

[
f

(
q(U l)

p(U l|Z l−1)

)])
= D′(q(U l)||p(U l|Z l−1)). (6.22)

This clearly holds for the special case of the D
(α)
AR with g(x) = 1

α(1−α) log(x+ 1) and

f(x) = x1−α. Therefore, we can simplify the objectives further to

Oβ,D
1:L

DGP,GVI(κ) =

n∑
i=1

Eq(fLi )

[
Lβp(fLi ,yi)

]
+

L∑
l=1

Dl(q(U
l)||p(U l|Z l−1)),

Oγ,D
1:L

DGP,GVI(κ) =
n∑
i=1

Eq(fLi )

[
Lγp(fLi ,yi)

]
+

L∑
l=1

Dl(q(U
l)||p(U l|Z l−1)).

Does the layer-specific divergence simplify?

The answer to (II) is less obvious and relies on a technical Lemma in Appendix

B.7.2.

Corollary 6.1. In the DGP construction (see for instance eq. (6.12)), replacing the

sum of KLD-terms by

L∑
l=1

Dl(q(U l)||p(U l))

defines a valid divergence between q({F l}Ll=1, {U l}Ll=1) and p({F l}Ll=1, {U l}Ll=1) so

long as Dl is an f -divergence or a divergence obtained as a monotonic transform g

of an f -divergence for all l = 1, 2, . . . L.

Since conditions (i) and (ii) of this Theorem are easily verified for the DGP

as long as Dl ∈ {D(α)
AR,KLD} for all l = 1, 2, . . . , L, the answer to (I) is also positive.

For details, we refer to Appendix B.7.2
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6.2.4 Experimental results

We make the comparisons as fair as possible by using the gpflow (Matthews et al.,

2017) implementation of Salimbeni and Deisenroth (2017). Further, we use the same

settings, meaning that all experiments use 20,000 iterations of the ADAM optimizer

(Kingma and Ba, 2014) with a learning rate of 0.01 and default settings for all other

hyperparameters. We perform inference for each of the UCI data sets (Lichman,

2013) after normalization using the RBF kernel with dimension-wise lengthscales,

100 inducing points, with batch sizes of min(1000, n) and latent function dimension

Dl = min(D, 30), where we remind that D0 = D was the dimension of the observa-

tion space. As Salimbeni and Deisenroth (2017), we use 50 random splits with 90%

training and 10% test data to assess predictive performance in terms of negative log

likelihood (NLL) and root mean square error (RMSE). With this, we compare two

inference schemes:

(1) The state of the art standard VI techniques of Salimbeni and Deisenroth

(2017);

(2) A GVI variant of the same inference method which replaces the log score with

the robust γ-divergence based scoring rule Lγp ; and the KLD with the D
(α)
AR.

DGPs with γ-divergence losses

As noted earlier, Lγp has the distinct advantage over Lβp that it can be stored fully in

log form, which is of great practical utility in the context of numerically sensitive

stochastic gradient approximation. For this reason, we only study the case of losses

with the γ-divergence here—though we have found the results to be near-identical

for the β-divergence so long as the gradients remained numerically stable.

For choosing a value of γ, we note that inferences are robust for γ > 1 and

that Lγp recovers the log score as γ → 1. At the same time, the scoring rule will grow

increasingly happy to ignore virtually all of the data as γ → ∞. Accordingly, one

will typically want to pick

γ = 1 + ε

for a small ε > 0. Choosing γ in this way encodes the intuition that a good robust

scoring rule will behave like the log score for all but the most extreme outliers. We

thus pick ε ∈ {0.01, 0.05}. We note that hyperparameter optimization might appear

to be the natural choice for picking γ, but will not perform well in practice: Rather
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than producing robust inferences, this will select for a value of γ generally producing

the smallest GVI objective values across Q3.

The results of our empirical comparison are depicted in Figure 6.3 and con-

firm our two main intuitions about robustness: Firstly, the robust scoring rule

provides a significant performance improvement. Secondly, the smaller value of γ

(which will be closer to the log score) generally outperforms the larger value of γ,

though both choices are equally good in many data sets.4 We believe that the per-

formance gains of the robust scoring rule is due to large parts of the latent spaces

being non-informative. This implies that it is beneficial to implicitly down-weight

the influence of these non-informative parts of the latent space. It is clear that ro-

bust scoring rules do exactly that (see for instance Figure 6.1), which explains their

superior performance in the DGP experiments. This intuition is further bolstered by

the following observation: Generally, performance improves with a larger number

of layers L under the robust score Lγp , but worsens under the log score. In other

words: The more dispersed the prior over the latent space (i.e., the DGP) becomes,

the more inferential outcomes benefit from implicitly ignoring its non-informative

(or indeed anti-informative!) regions. Next, we provide a small batch of additional

results showing that as expected, modifying D is less beneficial for DGPs than it is

for BNNs. Most likely, this is due to hyperparameter optimization for the kernels of

the DGP: together with the fact that Gaussian Processes are far more informative

priors than fully factorized normals, careful selection of the hyperparameters ensures

that unlike in the BNN case, the prior is informative.

DGPs with D
(α)
AR regularizers

While we showed that DGPs allow for the variation of both losses and prior regu-

larizers, we do not want to emphasize the flexibility afforded by varying D in the

current chapter. For comparison however, we showcase what happens when the

regularizer is varied jointly with the loss in Figure 6.4, which compares a number of

different GVI posteriors for DGPs with L = 3 layers. The loss is either the robust

loss Lγp for γ ∈ {1.01, 1.05} (top 8 entries in each row) or the standard log score

(bottom 4 entries in each row). We also compare D = 1
wKLD for w = 2.0, 1.0, 0.5 as

3 In practice, this means that hyperparameter optimization pushes γ → 1 or γ →∞, depending
on the magnitudes of {p(yi|fLi )}ni=1.

4 We expect this second finding about γ to generalize to new settings so long as the inputs are
normalized and the outputs are not high-dimensional, which would make γ = 1.01 a decent default
choice in such scenarios.
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Figure 6.3: Comparing performance in DGPs with L layers for DGP-GVI with
`n(θ,x) =

∑n
i=1 L

γ
p(θ, xi) and DGP-VI. Benchmark performance is the DGP with

three layers as in (Salimbeni and Deisenroth, 2017). Top rows: Negative test log
likelihoods. Bottom rows: Test RMSE. The lower the better.

well as the composite layer-wise divergence

D(q‖π) =

3∑
l=1

Dl(ql‖πl), D1 = D2 = KLD, D3 = D
(α)
AR for α = 0.5.

Aligned with the intuition that the priors in DGPs are rather informative due to

various hyperparameter optimization schemes, changing the prior regularizer from

the KLD to the D(α)
AR generally typically has either fairly little or even adverse impact.
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Figure 6.4: Best viewed in color. Top row depicts RMSE, bottom row the NLL across
a range of data sets using DGPs with L = 3 layers. Dots correspond to means,
whiskers the standard errors. The further to the left, the better the predictive
performance.

Similarly, up- or down-weighting the KLD seems not to be beneficial across the board

and will depend on the loss function. For the case of the log score however, we find

a consistent improvement for down-weighting the KLD: Predictively, it improves

the predictions on both metrics and across all data sets relative to standard VI.

Similarly, up-weighting the KLD term is counterproductive under the log score and

yields a performance deterioration across all data sets. This indicates that despite

best efforts to the contrary in the form of empirical-Bayes style hyperparameter

optimizations, DGPs are violating (P); so that their predictive performance can be

enhanced by ignoring more prior information.
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Advances in Applications

150



Chapter 7

Robustness for on-line

changepoint inference

Summary: In this chapter, we make two contributions to the body of work on

Bayesian On-line Changepoint Detection (BOCPD). Firstly, we extend the frame-

work to spatio-temporal problems and on-line model selection. Secondly, we use

the Rule of Three (RoT) to robustify this important family of time series methods

against outliers. We will first show how to modify the previous iterations of the

algorithm to incorporate multiple models and an on-line model selection mecha-

nism, and how this leads to richer posterior inferences—particularly in the context

of spatio-temporal modelling problems. But by increasing the number of models

the algorithm tracks and compares at the same time, we also amplify an existing

problem of the base algorithm: a severe lack of robustness to model misspecifica-

tion. Since time series data are especially hard to model correctly, this motivates

the derivation of a robust version of BOCPD based on GVI with a β-divergence loss.

We will discuss the contributions of this chapter in two main sections. In

Section 7.1, we will show how Bayesian On-line Changepoint Detection (BOCPD)

can be extended to Bayesian On-line Changepoint Detection with Model Selection

(BOCPDMS); and how BOCPDMS is particularly suitable for spatio-temporal infer-

ence problems. In Section 7.2, we will build on some of the insights into the lack of

robustness in Bayesian On-line Changepoint methods that we gained from deriving

BOCPDMS. In particular, we will show how BOCPD and BOCPDMS can suffer under

model misspecification and in the presence of outliers; and how a GVI posterior

151



based on the β-divergence can rectify this issue.

7.1 Spatio-temporal Bayesian On-line Changepoint De-

tection with Model Selection

Real-world spatio-temporal processes are often poorly modelled by standard infer-

ence methods that assume stationarity in time and space. A variety of techniques

have been developed for modelling non-stationarity in time via changepoints (CPs),

ranging from methods for Gaussian Processes (GPs) (Garnett et al., 2009), the Lasso

(Lin et al., 2017) or the Ising model (Fazayeli and Banerjee, 2016) over approaches

using density ratio estimation (Liu et al., 2013) and kernel-based methods exploit-

ing M-statistics (Li et al., 2015) to framing CP detection as time series clustering

(Khaleghi and Ryabko, 2014). In contrast, CP inference allowing for non-stationarity

in space (Herlands et al., 2016) has received comparatively little attention.

We offer the first on-line solution to this problem by modeling non-stationarity

in both space and time. CPs are used to model non-stationarity in time, and the use

of spatially structured Bayesian Vector Autoregressions (SSBVAR) circumvents the

assumption of stationarity in space. We unify Adams and MacKay (2007) and Fearn-

head and Liu (2007) into an inference procedure for on-line prediction, model

selection and CP detection, see Fig. 7.1. Our construction exploits that both

algorithms use Product Partition Models (Barry and Hartigan, 1993), which assume

independence of parameters conditional on the CPs and independence of observa-

tions conditional on these parameters.

In essence, we extend the existing work on BOCPD by allowing for model

uncertainty. This yields a new and powerful framework: It allows on-line infer-

ence using many existing and well-developed models simultaneously. For instance,

Adams and MacKay (2007), Saatçi et al. (2010), and Fearnhead and Liu (2007)

all develop different model families for BOCPD, but in their setting, one has to

guess the ’best model’ a priori. This is a severe issue in the on-line setting, where

restarting the algorithm if the data-generating process changes drastically is not an

option. We propose to solve this problem by including all relevant models in one

single model universe, deciding internally and on-line which one fits the data best

at which time. By letting the data speak for itself, we can also alleviate potential

misspecification problems. This is practically relevant as it allows the user to deploy

the algorithm without first having to extensively study idiosyncrasies of the data

source. The second major contribution is an application of this very general prop-

erty to complex non-stationary multivariate (spatio)temporal patterns via Spatially
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Figure 7.1: Bayesian On-line Changepoint Detection with Model Selection
(BOCPDMS): Panel 1: Artificial data across times 1− 500 for a regular spatial
grid with 4- and 8-neighbourhood dependency structure as in Fig. 7.2, where Model
universe M uses AR and Spatially Structured BVAR models with 4-neighbourhood
and lag lengths 1 − 3, see Fig 7.2. Panel 2: prediction error (black) and variance
(gray). Panel 3: Model posteriors p(mt|x1:t). Panel 4: log run-length distribu-
tion (grayscale), its maximum (red) and MAP segmentation of CPs and models in
corresponding colors.

Structured Bayesian Vector Autoregression (SSBVAR) models. This application is

of great practical importance: For the very first time, BOCPD becomes amenable

to inference in complicated multivariate spatial structures. We note that our work

is also first to model multivariate data jointly within BOCPD. In other work like

Saatçi et al. (2010), each time series is modeled as independently except for the

common changepoints. In a sense, our extension can be seen as modified on-line

version of Xuan and Murphy (2007). In their method, inference is off-line, the model

universe M is built during execution and multivariate dependencies are restricted

to decomposable graph. In contrast, our procedure specifies M before execution,

but runs on-line and does not restrict dependencies. The closest competing on-line

procedure in the literature thus far is the work of Saatçi et al. (2010), which develops

GP CP models for BOCPD. Though our results suggest that parametric models may

be preferable to GP models, the latter can still be integrated into our method as
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elements of the model universe M without any further modifications.

In summary, we make three contributions: Firstly, we substantially augment

the existing work on BOCPD by allowing for on-line model uncertainty. Unlike previ-

ous extensions of the algorithm (e.g. Adams and MacKay, 2007; Saatçi et al., 2010),

this avoids having to guess a single best model family a priori. Secondly, we intro-

duce SSBVARs as the first class of models for multivariate inference within BOCPD.

Thirdly, we demonstrate that using a collection of parametric models can outperform

nonparametric GP models in terms of prediction, CP detection and computational

efficiency.

The structure of this chapter is as follows: Section 7.1.1 generalizes the

BOCPD algorithm of Adams and MacKay (2007), henceforth AM, by integrating

it with the approach of Fearnhead and Liu (2007), henceforth FL. In so doing,

we arrive at BOCPD with Model Selection, henceforth BOCPDMS. Section 7.1.2

proposes VAR models for non-stationary processes within the BOCPD framework.

This motivates populating the model universe M with spatially structured BVAR

(SSBVAR) models. Sections 7.1.3–7.1.4 address computational aspects. Section

7.1.5 demonstrates the algorithm’s advantages on real world data.

7.1.1 BOCPDMS

Let {xt}∞t=1 be a data stream with an unknown number of CPs. Focusing on uni-

variate data, FL and AM tackled inference by tracking the posterior distribution

for the most recent CP. While FL allow the data to be described by different model

classes between CPs, AM only allow for a single model class. However, AM perform

one-step-ahead predictions, whereas FL do not. Instead, they propose a Maximum

A Posteriori (MAP) segmentation for CPs and models. In the remainder of this sec-

tion, we unify both inference approaches. We call the resulting algorithm BOCPD

with model selection (BOCPDMS), as it performs prediction, MAP segmentation and

model selection all at once and on-line.

Run-length & model universe

The run-length rt at time t is defined as the time since the most recent CP at time t,

so rt = 0 corresponds to a CP at time t. Suppose that data between successive CPs

can be described by Bayesian models collected in the model universe M. For the

process {xt} on RS , a model m ∈ M with finite memory of length L ∈ N0 consists

of an observation density fm(xt = xt|θm, x(t−L):(t−1)) on RS and a parameter prior

πm(θm) on Θm depending on hyperparameters νm. The notion of M is due to
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BOCPD with Model Selection (BOCPDMS)

Input at time 0: model universe M; hazard h; prior q
Input at time t: next observation xt
Output at time t: x̂(t+1):(t+hmax), St, p(mt|x1:t)

5pt
for next observation xt at time t do

// STEP I: Compute model-specific quantities

for m ∈M do
if t− 1 = lag length(m) then

[I.A] Initialize p(x1:t, rt = 0,mt = m) with prior
else if t− 1 > lag length(m) then

[I.B.1] Update p(x1:t, rt,mt = m) via (7.5a), (7.5b)
[I.B.2] Prune model-specific run-length distribution
[I.B.3] Perform hyperparameter inference via (7.13)

// STEP II: Aggregate over models

if t >= min(lag length(m)) then
[II.1] Obtain joint distribution over M via (7.6a)–(7.6f)
[II.2] Compute (7.7)–(7.9)
[II.3] Output: x̂(t+1):(t+hmax), St, p(mt|x1:t)

FL and allows for model uncertainty amongst models developed for BOCPD. For

instance, m ∈M could be a GP Saatçi et al. (2010), a time-deterministic regression

(Fearnhead, 2005) or a mixture distribution (Caron et al., 2012).

Probabilistic formulation & recursions

Denote by mt the model describing x(t−rt):t, i.e. the data since the last CP. Given

hazard function h : N→ [0, 1], and model prior q :M→ [0, 1], the prior beliefs are

H(rt|rt−1) =


1− h(rt−1 + 1) if rt = rt−1 + 1

h(rt−1 + 1) if rt = 0

0 otherwise.

(7.1a)

q(mt|mt−1, rt) =

1mt−1(mt) if rt = rt−1 + 1

q(mt) if rt = 0.
(7.1b)

Eq. (7.1b) implies that the model at time t will be equal to the model at time t− 1

unless a CP occured at t, in which case the next model mt will be a random draw

from q. At time t, the algorithm requires for all possible models m and run-lengths
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rt the computation of the posterior predictives

fm(xt|x1:(t−1), rt)=

∫
Θm

fm(xt|θm)πm(θm|x(t−L−rt):(t−1))dθm. (7.2)

To make the evaluation of this integral efficient, one can use conjugate models (Xuan

and Murphy, 2007) or approximations (Turner et al., 2013; Niekum et al., 2014). If

the integral can in fact be computed efficiently, then the following recursion will be

efficient, too:

p(x1:t, rt,mt) =
∑
mt−1

∑
rt−1

{
fmt(xt|x1:(t−1), rt)q(mt|x1:(t−1), rt,mt−1)×

p(rt|rt−1)H(x1:(t−1), rt−1,mt−1)
}
. (7.3)

The recursion in AM is the special case for |M| = 1. For |M| > 1, q(mt|mt−1, rt, x1:(t−1))

arises as a new term, which for 1a as the indicator function of a is given by

q(mt|mt−1, rt, x1:(t−1)) =

1mt−1(mt)q(mt−1|x1:(t−1), rt−1) if rt = rt−1 + 1

q(mt) if rt = 0.
(7.4)

Next, define the growth- and changepoint probabilities as

p(x1:t, rt = rt−1 + 1,mt)=fmt(xt|x1:(t−1), rt)p(x1:(t−1), rt−1,mt−1)×
(1− h(rt))q(mt−1|x1:(t−1), rt), (7.5a)

p(x1:t, rt = 0,mt) =fmt(xt|x1:(t−1), rt)q(mt)×∑
mt−1

∑
rt−1

{
h(rt−1 + 1)p(x1:(t−1), rt−1,mt−1)

}
.(7.5b)

The evidence can then be calculated via (7.6a), which in turn allows calculating the

joint model-and-run-length distribution (7.6b), the model posterior (7.6c), as well

as the model-specific (7.6d) and global (7.6e) run-length distributions:

p(x1:t) =
∑

mt

∑
rt
p(x1:t,mt, rt) (7.6a)

p(rt,mt|x1:t) = p(x1:t, rt,mt)/p(x1:t) (7.6b)

p(mt|x1:t) =
∑

rt
p(rt,mt|x1:t) (7.6c)

p(rt|mt, x1:t) = p(rt,mt|x1:t)/p(mt|x1:t) (7.6d)

p(rt|x1:t) =
∑

mt
p(rt,mt|x1:t) (7.6e)

q(mt−1|x1:(t−1), rt−1) =
p(mt−1, rt−1|x1:(t−1))

p(rt−1|x1:(t−1))
. (7.6f)
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Here, (7.6f) is the conditional model posterior from (7.4). Note that (7.6e) is arrived

at directly in FL and used for on-line MAP segmentation. By framing our derivations

in the run-length framework of AM, we additionally obtain (7.4)–(7.6d), which

enables us to additionally perform both on-line prediction and model selection at

the same computational cost.

On-line algorithm outputs

Prediction: Recursive h-step-ahead forecasting uses (7.6b):

p(xt+h|x1:t) =
∑
rt,mt

{
p(xt+h|x1:t, x̂

h
t , rt,mt)p(rt,mt|x1:t)

}
, (7.7)

where x̂ht = ∅ if h = 1 and x̂ht = x̂(t+1):(t+h−1) otherwise, with x̂t+h = E(xt+h|x1:t, x̂
h
t )

the recursive forecast.

Tracking the model posterior/Bayes Factors: Another one of the novel

capabilites of the algorithm is on-line monitoring of the model posterior via Eq.

(7.6c). This is attractive when structural changes in the data happen slowly and are

not captured well by CPs. In this case, p(mt|x1:t) can be used to identify periods of

change, see Fig. 7.6. For pairwise comparisons, Bayes Factors can be monitored:

BF(m1, m2)t =
p(mt = m1|x1:t) · q(m2)

p(mt = m2|x1:t) · q(m1)
. (7.8)

Maximum A Posteriori (MAP) segmentation: For MAPt denoting the

density of the MAP-estimate of models and CPs before t, and for MAP0 = 1, FL’s

recursive estimator is given by

MAPt = max
r,m

{
p(x1:t, rt = r,mt = m)MAPt−r−1

}
. (7.9)

For r∗t ,m
∗
t maximizers for time t, the MAP segmentation is St = St−r∗t−1 ∪ {(t −

r∗t ,m
∗
t )}, S0 = ∅, where (t′,mt′) ∈ St means a CP at t′ ≤ t, with mt′ ∈M the model

for xt′:t.

7.1.2 Building a spatio-temporal model universe

The last section derived BOCPDMS for arbitrary data streams {xt}. Next, we pro-

pose models for M if {xt} can be mapped into a some space S with spatial struc-

ture. Let S with |S| = S be a set of spatial locations in S with measurements

xt = (Yt,1, Yt,2, . . . , Yt,S)T recorded at times t = 1, 2, . . .
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Bayesian VAR (BVAR)

Inference on {xt} can be drawn using conjugate Bayesian Vector Autoregressions

(BVAR) with lag length L and E additional variables Zt as elements of model uni-

verse M:

σ2 ∼ InverseGamma(a, b) (7.10a)

εt|σ2 ∼ N (0, σ2 ·Ω) (7.10b)

c|σ2 ∼ N (0, σ2 · Vc) (7.10c)

xt = α+BZt +
∑L

l=1Alxt−l + εt. (7.10d)

Here,Al,B are S×S, S×E matrices, and c = (α, vec(B), vec(A1), vec(A2), . . . vec(AL))T

is a vector of S · (LS + 1 + E) model parameters. Scalars a, b > 0, matrix Vc, and

diagonal matrix Ω are hyperparameters.

Approximating processes using VARs

Modelling {xt} as VAR is attractive, as many complex non-linear processes have

VAR representations, including Hidden Markov Models (HMMs), time-stationary

GPs as well as multivariate Generalized Autoregressive Conditionally Heteroskedas-

tic (GARCH) and fractionally integrated Vector Autoregressive Moving Average

(VARMA) processes (Inoue and Kasahara, 2006; Inoue et al., 2018). Performance

guarantees for VAR approximations to such processes are derived using Baxter’s In-

equalitiy with multivariate versions of results in Hannan and Kavalieris (1986). We

formally state this in a representation theorem which heavily draws on the findings

in Meyer and Kreiss (2015). For the formal statement, we need an Assumption to

hold for the spectral density matrix of the process.

Denoting the spectrum of a matrix B (i.e., the set of its eigenvalues) by

σ(B), the relevant condition is a restatement of the relevant part in condition A of

Meyer & Kreiss (2015):

Assumption 7.1. LetW be the spectral density matrix of the purely non-deterministic

stochastic process {xt}∞t=1 satisfying the conditions of Theorem 1. We assume that

the spectral density matrix is bounded, i.e. there is a constant c > 0 so that

min (σ(W (λ))) ≥ c (7.11)

for all frequencies λ ∈ (−π, π], i.e. the eigenvalues of the spectral density matrix are

uniformly bounded away from zero.
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Theorem 7.1. Let {xt} be a time-stationary spatio-temporal process with spectral

density satisfying Assumption 7.1, || · || a matrix norm, E(xt) = 0, E(xtx
T
t ) < ∞,∑∞

h=−∞(1 + |h|)3||E[xtx
′
t+h]|| <∞. Then (1)–(3) hold.

(1) xt =
∑∞

i=1Aixt−i + εt for matrices {Al}l∈N and E(εt) = 0, E(εtε
′
t) = D, D

diagonal.

(2) For xt =
∑L

l=1A
L
l xt−l + et with {AL

l }Ll=1 the best linear projection coeffi-

cients, ∃L0 : ∀L > L0,
∑L

l=1(1 + |l|)3||AL
l −Al|| ≤ C ·∑∞l=L+1(1 + |l|)3||Al||

with C constant.

(3) Using T observations with L = O([T/ ln(T )]1/6) to estimate AL
l as MAP ÂL

l

of (7.10a)–(7.10d), it holds that L(T )2
∑L(T )

l=1 ||Â
L(T )
l −AL(T )

l || P→ 0 as T →∞.

Proof. Part (1) is shown in Inoue et al. (2018), part (2) in Lemma 3.1 of Meyer and

Kreiss (2015). Part (3) follows by their Remark 3.3 if we can prove that the MAP

estimator ĉ(L(T )) of c equals its Yule-Walker estimator (YWE) as T →∞. Let B =

0, α = 0 and note that YWE equals OLS as T →∞. With V1:T the regressor matrix

of xt−L(T ):t, ĉ(L(T )) = (V ′1:TV1:T + V −1
c )−1(x′1:Tx1:T ). Then, part (3) holds since

under the regularity conditions of the Theorem, OLS
P→ E(V ′1:TV1:T )−1E(V ′1:Tx1:T )

and

ĉ(L(T )) = (V ′1:TV1:T + V −1
c )−1(V ′1:Tx1:T )

= (
1

T
V ′1:TV1:T +

1

T
V −1
c )−1 1

T
(V ′1:Tx1:T )

P→ E(V ′1:TV1:T )−1E(V ′1:Tx1:T ). �,

where we have denoted convergence in probability by
P→.

Note that in the above result, assuming E(xt) = 0 is without loss of gen-

erality: If E(xt) = α +BZt, define x∗t = xt − (α +BZt) and apply the theorem

to {x∗t }. Moreover, the results do not require stationarity in space. Lastly, part

(3) suggests a principled way of picking lag lengths L for BVAR models based on

functions L(T ) = C · (T/ ln(T ))1/6, with C a constant: If between T1 and T2 ob-

servations are expected between CPs, L = {L ∈ N : L(T1) ≤ L ≤ L(T2)}. In our

experiments, we employ this strategy using the heuristic T1 = 1, T2 = T .

Modeling spatial dependence

While Thm. 7.1 motivates approximating spatio-temporal processes between CPs

with (7.10a)–(7.10d), the matrices {AL
l }Ll=1 have S(LS + 1 + E) parameters. This
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increases model complexity and ignores spatial information. We remedy both issues

through neighbourhood systems on S.

Definition 7.1 (Neighbourhood system). For a set of locations S with the

sets Ni(s) ⊆ S as the i-th neighbourhoods of s for 0 ≤ i ≤ n and all s ∈ S,

let Ni(s) ∩ Nj(s) = ∅, s′ ∈ Ni(s) ⇐⇒ s ∈ Ni(s
′) and N0(s) = {s}. Then, the

corresponding neighbourhood system is N(S) = {{Ni(s)}ni=1 : s ∈ S, 0 ≤ i ≤ n}.

In the remainder of the section, smaller indices i imply that the neighbour-

hoods Ni(s) are closer to s. For a BVAR model of lag length L, the decay of spatial

dependence is encapsulated through ξ : {1, . . . , L} → {0, . . . , n}. In particular, only

s′ ∈ Ni(s) with i ≤ ξ(l) are modeled as affecting s after l time periods.

t− 2

1 2 3

4 5 6

7 8 9

t− 1

1 2 3

4 5 6

7 8 9

t

1 2 3

4 5 6

7 8 9

Figure 7.2: SSBVAR modeling: Suppose that on a regular grid of size 9, Yt,5 depends
on the past two realizations of itself and its 4- neighbourhood, and the last realization
of its 8-neighbourhood. This is an SSBVAR on S = {1, . . . , 9} with L = 2, N0(5) =
{5}, N1(5) = {2, 4, 6, 8}, N2(5) = {1, 3, 7, 9} and function ξ with ξ(1) = 2, ξ(2) = 1.

Spatializing BVAR

In principle, givenN(S), sparsification of the BVAR model (7.10a)–(7.10d) is possible

in two ways: As restriction on the contemporaneous dependence via the covariance

matrix of the error term εt, or as restriction on the conditional dependence via the

coefficient matrices {Al}Ll=1. We choose the latter for three reasons: Firstly, linear

effects have more interesting interpretations than error covariances. Secondly, using

{Al}Ll=1 to encode spatial dependency allows us to work with arbitrary neighbour-

hoods. In contrast, modelling dependent errors under conjugacy limits dependencies

to decomposable graphs (Xuan and Murphy, 2007). Since not even a regular grid

is decomposable, this is problematic for spatial data. Thirdly, modelling errors as

contemporaneous is attractive for low-frequency data where the resolution of tem-

poral effects is coarse, but the situation reverses for high-frequency data. Since the

algorithm runs on-line, we expect {xt} to be observed with high frequency.
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Definition 7.2 (Spatially structured BVAR (SSBVAR)). For process {xt} on

S and (L,N(S), ξ(·)), define the matrices {Ãl}Ll=1 by imposing that [Ãl](s,s′) =

0 ⇐⇒ s′ /∈ Ni(s) for any i ≤ ξ(l). Let Ã 6=0
l be the vector of non-zero entries in Ãl

and c̃ = (α, vec(B), Ã 6=0
1 , Ã 6=0

2 , . . . Ã6=0
L )T . The SSBVAR model on {xt} induced by

(L,N(S), ξ(·)) is obtained by combining (7.10a)–(7.10b) with

c̃|σ2 ∼ N (0, σ2 · Vc̃) (7.11a)

xt = α+BZt +
∑L

l=1 Ãlxt−l + εt. (7.11b)

Fig. 7.2 illustrates this idea. Further sparsification is possible by modelling

neighbourhoods jointly, i.e. [Ãl](s,s′) = ai(s),∀s′ ∈ Ni(s), reducing the number of

parameters to S ·∑L
l=1 ξ(l). If one imposes ai(s) = ai(s

′) = · · · = ai, this number

drops to
∑L

l=1 ξ(l).

Building SSBVARs: choosing L,N(S), ξ(·)

For the choice of lag lengths L, part (3) of Thm. 7.1 suggests L ∈ {L′ ∈ N : L(T1) ≤
L′ ≤ L(T2)} for L(T ) = η · [T/ ln(T )]1/6 for some η > 0 if one expects T1 to T2 ob-

servations between CPs. For any data stream {xt} on a space S, there are different

ways of constructing neighbourhood structures N(S). For example, when analysing

pollutants in London’s air in section 7.1.5, N(S) could be constructed from Eu-

clidean or Road distances. By fillingM with SSBVARs constructed using competing

versions of N(S), BOCPDMS provides a way of dealing with such uncertainty about

spatial relations. In fact, it can dynamically discern changing spatial relationships

on S. Lastly, ξ(·) should usually be decreasing to reflect that measurements affect

each other less when further apart.

7.1.3 Hyperparameter optimization

Hyperparameter inference on νm can be addressed either by introducing an addi-

tional hierarchical layer (Wilson et al., 2010) or using and empirical Bayes procedure.

The latter is obtained by maximizing the model-specific evidence

log p(x1:T |νm) =
T∑
t=1

log p(xt|νm, x1:(t−1)). (7.12)

Computation of the righthand side requires evaluating the gradients∇νmp(x1:t, rt|νm),

which are obtained efficiently and recursively (Turner et al., 2009). Saatçi et al.

(2010) use x1:T ′ as a test set, and run BOCPDK times to find ν̂m = arg maxνm {p(x1:T ′ |νm)}.
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Most other on-line GP approaches also require substantial recomputations for hy-

perparameter learning (e.g., Ranganathan et al., 2011). In contrast, Caron et al.

(2012) propose on-line gradient descent updates via

νm,t+1 = νm,t + αt∇νm,t log p(xt+1|x1:t,νm1:t). (7.13)

The latter is preferable for two reasons: Firstly, inference and empirical-Bayes ad-

justmend of the priors are executed simultaneously (rather than sequentially) and

thus enable cold-starts of BOCPDMS. Secondly, neither the on-line nature nor the

computational complexity of BOCPDMS is affected.

7.1.4 Computation & Complexity

While tracking |M| models, BOCPDMS has linear time complexity. Step 1 in the

pseudocode is the bottleneck, but looping over M can be parallelized: With N

threads, it executes in O (d|M|/Ne ·maxM∈MCmpTime(M)), where CmpTime(M)

denotes the computation time for model M . Step 2 takes O(|R(t)||M|), for R(t)

the set of all run-lengths at time t.

Pruning the run-length distribution

In a naive implementation, all run-lengths are retained and R(t) = {1, 2, . . . , t}.
This implies execution time of order O(t) for processing xt, but can be made time-

constant by pruning: If one discards run-lengths whose posterior probability is

≤ 1/Rmax or only keeps the Rmax most probable ones, |R(t)| ≤ Rmax (Adams

and MacKay, 2007). A third way is Stratified Rejection Control (SRC) (Fearnhead

and Liu, 2007), which Caron et al. (2012) found to perform as well as the other

approaches. In our experiments, we prune by keeping the Rmax most probable

model-specific run-lengths p(rt|mt, x1:t) for each model.

BVAR updates

With V1:T the regressor matrix of xt−L(T ):t as before, the bottleneck when up-

dating a BVAR model in M is step I.B.1 in the pseudocode of BOCPDMS, when

updating the MAP estimate c(r, t) = F (r, t)W (r, t) of the coefficient vector, where

F (r, t) = (V ′(t−r):tV(t−r):t+Vc̃)
−1 andW (r, t) = V ′(t−r):tx(t−r):t for all r ∈ R(t). Since

W (r, t) = W (r−1, t−1)+V ′t xt, updates are O(kS). F (r−1, t−1) can be updated

to F (r, t) using rank-k updates to its QR-decomposition in O(k3) or using Wood-

bury’s formula, in O(S3), implying an overall complexity of O(|R(t)|min{k3, S3})
at time t.
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Table 7.1: Computation time in seconds per model and per parameter in the space
Θ = ∪m∈MΘm

Nile

Time/|M| Time/|Θ|
ARGPCP 42.2 21.0

BVAR 4.03 0.35

Snowfall

Time/|M| Time/|Θ|
ARGPCP 284 142

BVAR 157 4.25

Bee

Time/|M| Time/|Θ|
ARGPCP 164 23.4

BVAR 97.3 0.04

30 Portfolios

Time/|M| Time/|Θ|
ARGPCP 12077 403

BVAR 34183 1.48

Comparison with GP-based approaches

Define kmax as the largest number of regressors of any BVAR model in M. From

the previous paragraphs, it follows that if all models inM are BVARs, the overhead

C = dN/|M|e ·min{k3
max, S

3} is time-constant. Thus, BOCPDMS runs in O(TRmax)

on T observations. In contrast, the models of Saatçi et al. (2010) run in O(TR3
max).

Empirical evaluation of computation time

The experiments in section 7.1.5 confirm our improved computational complexity

relative to the GP-based competitor methods: Using the software of Turner (2012)

on the Nile data, fitting their ARGPCP model takes 42 seconds compared to 12

seconds when fitting three models in BOCPDMS, so a BVAR model is > 10× faster

to process. Per inferred parameter, BOCPDMS is > 60× faster than ARGPCP; and

this factor is much larger for multivariate data (e.g., > 270 for the 30 Portfolio

data).

For this comparison, we use the original code of Turner (2012) for the GP-

models. As the MSE is smallest for ARGPCP for all data sets except for the snowfall

163



1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Year

0

50

100

150

200

250

ru
n 

le
ng

th

1 2 3 4 5 6 7 8 9 10 11 12 13

-1000 -699 -696 -629 0

Figure 7.3: Results for 30 Portfolio data set, displayed from 01/01/1998–
31/12/2008 : Log run-length distribution (grayscale) and its maximum (dashed).
Changepoints (CPs) found by Saatçi et al. (2010) are marked in black, additional
CPs found by BOCPDMS in orange. Labels correspond to: (1) Asia Crisis, (2) Dot-
Com bubble bursting, (3) OPEC cuts output by 4%, (4) 9/11, (5) Afghanistan war,
(6) 2002 stock market crash, (7) Bombing attack in Bali, (8) Iraq war, (9) Major
tax cuts under Bush, (10) US election, (11) Iran announces successful enrichment
of Uranium, (12) Northern Rock bank run, (13) Lehman Brothers collapse.

data, we compare BOCPDMS against the arguably best GP CP model. We note that

while NSGP performs better on the snowfall data than ARGPCP, its requirement

to do Hamiltonian Monte Carlo sampling will make it significantly slower. We also

note that BVAR models inside BOCPDMS outperformed the MSE of the ARGPCP

model for all data sets considered. All computations were performed on a 3.1 GHz

Intel i7 with 16GB RAM.

Table 7.2 summarizes the results. It is clear that BOCPDMS outperforms

ARGPCP computationally: e.g., the computation time per parameter is between

60 (Nile data) and 585 (Bee data) times faster for BOCPDMS with BVAR models.

Computation times are faster per model, too. The only exception to this is the

30 Portfolio data set, where the deployed SSBVAR models are orders of magnitude

more parameter-rich than the ARGPCP-model. Related to this, we also note that

comparing the computation time per parameter makes sense for two reasons: Firstly,

BVARs model the d time series jointly, thus requiring d2 parameters in the posterior

covariance matrix of xt. In contrast, the GP-models ignore any dependence between

the series, resulting in d parameters of the (diagonal) posterior covariance matrix

for x. Secondly, the parameters of the GP’s kernel arguably making its parameter

space Θ infinite-dimensional are not actually learnt on-line at all. Instead, they

are optimized for a training period of T ′ observations and then fixed, see section

4 in their paper. Hence, the parameter space the GP-models can learn in is finite-

dimensional.
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Figure 7.4: Financial crisis 01/08/2007–31/12/2008 : Colours as in Fig 7.3, with
MAP segmentation. Event labels: (1) BNP Paribas funds frozen, (2) Fed cuts lending
rate, (3) IKB 1bn$ losses, (4) Northern Rock bank run, (5) Fed cuts interest rate,
(6) Bush rescue plan for >106 homeowners, (7) Fed, ECB, BoE loans for banks,
(8) Fed cuts funds rate, (9) G7 estimate: 400bn$ losses worldwide, (10) JP Morgan
buys Bear Stearns, (11) IMF estimate: >1trn$ losses worldwide, (12) HBOS’ rights
issue fails, (13) ECB provides 200bn for liquidity, (14) Fannie Mae & Freddie Mac
bailout, (15) Lehman collapse, (16) Russia: 500bn Roubles crisis package, (17) Fortis
bailout, (18) UK: £500bn bank rescue package, (19) BoE, ECB cut interest rate,
(20) G20 promise fiscal stimuli, (21) Madoff’s Ponzi scheme revealed, South Korean
CB sets interest rate at record low (22) Fed, Japanese central bank cut interest
rates. Dates from Guillén (2009).

7.1.5 Experimental results

We evaluate the performance of the algorithm in two parts. First, we compare it

to benchmark performances of GP-based models on real world data reported by

Saatçi et al. (2010). This shows that as implied by Theorem 7.1, VARs are excellent

approximations for a large variety of data streams. Next, we showcase BOCPDMS’

novelty in the multivariate setting. We use uniform model priors q, a constant

Hazard functions H and gradient descent for hyperparameter optimization as in

Section 7.1.3. The lag lengths of models inM are chosen based on Thm. 7.1 (3) and

the rates of Hannan and Kavalieris (1986) for BVARs and Bayesian Autoregressions

(BARs), respectively.

Comparison with GP-based approaches

As in Saatçi et al. (2010), ARGPCP will refer to the non-linear GP-based AR model,

GPTSCP to the time-deterministic model, and NSGP to the non-stationary GP al-

lowing hyper-parameters to change at every CP. Saatçi et al. (2010) compute the

mean squared error (MSE) as well as the negative log predictive likelihood (NLL)

of the one-step-ahead predictions for three data sets: The water height of the Nile

between 622 − 1284 AD, the snowfall in Whistler (Canada) over a 37 year period

and the 3-dimensional time series (x-, y-coordinate and headangle) of a honey bee
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Table 7.2: One-step-ahead predictive MSE and NLL of BOCPDMS compared to GP-
based techniques, with 95% error bars. All GP results are taken from Saatçi et al.
(2010) and Turner (2012).

Nile Snowfall

Method MSE NLL MSE NLL

ARGPCP 0.553 1.15 0.750 −0.604

(0.0962) (0.0555) (0.0315) (0.0385)

GPTSCP 0.583 1.19 0.689 1.17

(0.0989) (0.0548) (0.0294) (0.0183)

NSGP 0.585 1.15 0.618 −1.98

(0.0988) (0.0655) (0.0242) (0.0561)

BVAR 0.550 1.13 0.681 0.923

(0.0948) (0.0684) (0.0245) (0.0231)

Bee Dance 30 Portfolios

Method MSE NLL MSE NLL

ARGPCP 2.62 4.07 29.95 39.55

(0.195) (0.150) (0.50) (0.22)

GPTSCP 3.13 4.54 30.17 39.44

(0.241) (0.188) (0.51) (0.22)

NSGP 3.17 4.19 – –

(0.230) (0.212) – –

BVAR 1.74 3.57 25.93 48.32

(0.222) (0.166) (0.906) (0.964)

during a waggle dance sequence. In Turner (2012), all of the models except NSGP

were also compared on daily returns for 30 industry portfolios from 1975 − 2008.

In Table 7.2, BOCPDMS is compared to these benchmarks forM consisting of BAR

and SSBVAR models.

Designing M Both the Nile and the snowfall data are univariate, so M
consists of Bayesian Autoregressions (BARs) with varying lag lengths. For the 3-

dimensional bee data, M additionally contains unrestricted BVARs. Lastly, SSB-

VARs are used on the 30 Portfolio data. Two neighbourhood systems are constructed

from distances in the spaces of pairwise contemporaneous correlations and autocor-

relations prior to 1975, a third using the Standard Industrial Classification ( SIC),

with ξ(·) decreasing linearly.
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Predictive performance and fit: In terms of MSE, BOCPDMS clearly

outperforms all GP-models on multivariate data. Even on univariate data, the only

exception to this is the snowfall data, where NSGP does better. However, NSGP

requires grid search or Hamiltonian Monte Carlo sampling for hyperparameter op-

timization at each observation (Saatçi et al., 2010). Overall, there are three main

reasons why BOCPDMS performs better: Firstly, being able to change lag lengths

between CPs seems more important to predictive performance than being able to

model non-linear dynamics. Secondly, unlike the GP-models, we allow the individual

time series to be modelled jointly via {AL
l }. Thirdly, the hyperparameters of the GP

have a strong influence on inference. In particular, the noise variance σ is treated as a

hyperparameter and optimized via type-II Maximum Likelihood/Empirical Bayes.

Except for the NSGP, this is only done during a training period. Thus, the GP-

models cannot adapt to the observations after training, leading to overconfident

predictive distributions that are too narrow (see Turner, 2012, p. 172). This in

turn leads them to be more sensitive to outliers, and to mislabel them as CPs. In

contrast, (7.10a)–(7.10d) models σ as part of the inferential Bayesian hierarchy, and

hyperparameter optimization is instead applied at one level higher. Consequently,

our predictive distributions are wider, and the algorithm is less confident about the

next observations, making it more robust to outliers. This is also responsible for the

overall smaller standard errors of the GP-models in Table 7.2, since the GPs inter-

pret outliers as CPs and immediately adapt to short-term highs or lows. Amongst

other things, it is this observation that inspires our robust procedure for on-line

changepoint methods introduced later in the chapter.

CP Detection: The Nile data set is also a good demonstration of this lack

of robustness for the GP based models: there, BOCPDMS’s MAP segmentation finds

a single CP, corresponding to the installation of the nilometer around 715 CE, see

Fig 7.5. In contrast, Saatçi et al. (2010) report 18 additional CPs corresponding

to outliers. The same phenomenon is also reflected in the run-length distribution

(RLD): While the probability mass in Figs. 7.3, 7.4 and 7.5 are spread across the

retained run-lengths, the RLD reported in Saatçi et al. (2010) is more concentrated

and even degenerate for the 30 Portfolio data set. On the other hand, such enhanced

sensitivity to change can be advantageous. For instance, in the bee waggle dance, the

GP-based techniques are better at identifying the true CPs. The reason is twofold:

Firstly, the variance for the bee waggle data is homogeneous across time, so treating

it as fixed helps inference. Secondly, the CPs in this data set are subtle, so having

narrower predictive distributions is of great help in detecting them. However, it
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adversely affects performance when changes in the error variance are essential, as

for financial data: In particular, BOCPDMS finds the ground truths labelled in Saatçi

et al. (2010), and discovers even more, see Fig. 7.3. This is especially apparent in

times of market turmoil where changes in the variance of returns are significant.

We show this using the example of the subprime mortgage financial crisis: While

the RLD of Saatçi et al. (2010) identified only 2 CPs with ground truth and a third

unlabelled one during the height of the crisis, BOCPDMS detects a large number of

CPs corresponding to ground truths, see Fig. 7.4.

Lastly, we note that segmentations obtained off-line for both the bee waggle

dance and the 30 Portfolios are reported in Xuan and Murphy (2007). Compared

to the on-line segmentations produced by BOCPDMS, these are closer to the truth

for the bee waggle data, but not for the 30 Portfolio data set.

Model selection: In most of the experiments where abrupt changes model

the non-stationarity well, the model posterior is fairly concentrated and periods of

model uncertainty are short. This is different when changes are slower, see Fig.

7.6. The implicit model complexity penalization Bayesian model selection performs

provides BOCPDMS with an Occam’s Razor mechanism: Simple models are typically

favoured until evidence for more complex dynamics accumulates. For the bee waggle
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Figure 7.5: Results for Nile data: Panel 1: Nile data with structural change at
715. Panel 2: Both run-length distribution (grayscale with dashed maximum) and
MAP segmentation detect the change.
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Figure 7.6: Results for European Temperatures: Panel 1: normalized
temperature for Prague and Jena Panel 2: Model Posterior maximum,
m̂t = arg maxmt∈M{p(mt|y1:t)}, model complexity decreasing top to bottom.
M(l),M(l+) are SSBVAR with l lags. Spatial dependence in M(l+) is slower decay-
ing. Periods of model uncertainty are (1) 2nd Industrial Revolution 1870 − 1914,
(2) Post WW2 boom 1950 − 1973, (3) European Climate shift 1987−present, see
Luterbacher et al. (2004). Panel 3: To compare model uncertainty across different
data andM, the (Log) Standardized Generalized Variance (SGV) of m̂t can be used.

and the 30 Portfolio data set, BVARs are preferred to BARs. For the 30 Portfolio

data, the MAP segmentation only selects SSBVARs with neighbourhoods constructed

from contemporaneous correlation and autocorrelations. Neighbourhoods using SIC

codes are not selected, reflecting that this classification from 1937 is out of date.

Performance on spatio-temporal data

European Temperature: Monthly temperature averages 01/01/1880−01/01/2010

for the 21 longest-running stations across Europe are taken from http://www.ecad.eu/.

We adjust for seasonality by subtracting monthly averages for each station. Station

longitudes and latitudes are available, so N(S) is based on concentric rings around

the stations using Euclidean distances. Two different decay functions ξ(·), ξ+(·) are

used, with ξ+(·) using larger neighbourhoods and slower decaying. Temperature

changes are poorly modeled by CPs and more likely to undergo slow transitions.

Fig. 7.6 shows the way in which the model posterior captures such longer periods of

change in dynamics. The values on the bottom panel are calculated by considering

m̂t = arg maxmt∈M p(mt|x1:t) as |M|-dimensional multinomial random variable. Its

Standardized Generalized Variance (SGV) (Wilks, 1960; SenGupta, 1987) is calcu-

lated as |M|-th root of the covariance matrix determinant. We plot the log of the
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SGV computed using the model posteriors for the last 8 years. This provides an

informative summary of the model posterior dispersion.

Air Pollution: Finally, we analyze Nitrogen Oxide (NOX) observed at 29

locations across London 17/08/2002 − −17/08/2003. The quarterhourly measure-

ments are averaged over 24 hours. Weekly seasonality is accounted for by sub-

tracting week-day averages for each station. M is populated with SSBVAR models

whose neighbourhoods are constructed from both road- and Euclidean distances.

As 17/02/2003 marks the introduction of London’s first ever congestion charge, we

find structural changes in the dynamics around that date. A model with shorter

lag length but identical neighbourhood structure is preferred after the congestion

charge. In Fig. 7.4.2, Bayes Factors (BFs) capture the shift: Kass and Raftery

(1995) classify logs of BFs as very strong evidence if their absolute value exceeds 5.
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Figure 7.7: Results for Air Pollution: Panel 1: NOX levels for Brent, with con-
gestion charge introduction date Panel 2: Model posteriors for the two best-fitting
models, with Euclidean neighbourhoods. Panel 3: Their log Bayes Factors, [−5, 5]
shaded.

7.2 Doubly Robust Bayesian On-line Changepoint De-

tection

As we saw in Section 7.1.5, even with multiple models, BOCPD and BOCPDMS

are not robust algorithms in the presence of outliers. To address this, we now
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present a robust version through generalized posteriors based on β-divergence losses.

The resulting inference procedure is doubly robust for both the predictive and the

changepoint (CP) posterior, with linear time and constant space complexity. We

provide a construction for exponential models and demonstrate it on the Bayesian

Linear Regression (BLR) model. In so doing, we make two additional contributions:

Firstly, we use Variational approximations that are exact as β → 1. Secondly,

we give a principled way of choosing the divergence parameter β by minimizing

expected predictive loss on-line. This offers the state of the art and improves the

False Discovery Rate of CPs by more than 80% on several real world data set.

In a nutshell, inference algorithms building on BOCPD (e.g. Adams and

MacKay, 2007; Fearnhead and Liu, 2007; Turner et al., 2009; Xuan and Murphy,

2007; Wilson et al., 2010; Saatçi et al., 2010; Caron et al., 2012; Niekum et al., 2014;

Turner et al., 2013; Ruggieri and Antonellis, 2016; Knoblauch and Damoulas, 2018)

declare CPs if the posterior predictive computed from x1:t at time t has low density

for the value of the observation xt+1 at time t + 1. Naturally, this leads to a high

false CP discovery rate in the presence of outliers and—as the algorithms run on-

line—pre-processing is not an option. Here, we address this problem by changing the

way the predictive distribution is formed: rather than integrating over the standard

Bayes posterior—which as we have seen in Chapter 1 is not robust to outliers and

misspecification—we design a robust posterior belief over model parameters using

Generalized Variational Inference (GVI).

7.2.1 Motivation

For data x1:n with empirical measure Pn and a likelihood model p(·|θ) with associ-

ated measure Pθ, it approximately holds that

arg min
θ∈Θ

KLD(Pn‖Pθ) ≈ arg min
θ∈Θ

1

n

n∑
i=1

− log p(xi|θ),

which demonstrates that standard Bayesian inference aims at minimizing the Kullback-

Leibler divergence (KLD) between the fitted model and the Data Generating Mecha-

nism. As this thesis has discussed extensively however, the negative log likelihood—

or equivalently, the KLD—is not a robust way of performing inference on the model

parameters under outliers or model misspecification due to the negative log likeli-

hood’s influence function (see Figure 6.1). We remedy this by instead minimizing

the β-divergence (D(β)
B ) between the model and the data. As Figure 6.1 showed,

doing so allows us to circumvent the drawbacks of the log likelihood. In addressing

misspecification and outliers this way, our approach builds on the principles of the
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Rule of Three (RoT), General Bayesian Inference (GBI) (see Bissiri et al., 2016; Jew-

son et al., 2018), Generalized Variational Inference (GVI), and robust divergences

more broadly (e.g. Basu et al., 1998; Ghosh and Basu, 2016). To make our approach

work, we make three contributions in separate domains that are also illustrated in

Figures 7.8 and 7.10:

(1) Robust BOCPD: We construct the very first robust BOCPD inference proce-

dure. The method is applicable to a wide class of (multivariate and univari-

ate) models and is demonstrated on Bayesian Linear Regression (BLR). Unlike

standard BOCPD or BOCPDMS, it is robust to confusing outliers and CPs, see

Figure 7.8 B.

(2) Scalable GBI: We remedy the intractability of the proposed posterior be-

lief using GVI. Our proposed variational family is expressive, and preserves

parameter dependence. Beyond that, the GVI posterior we propose has the

interpretation of an approximation to a generalized (or Gibbs-) posterior, and

is exact as β → 0, which results in a near-perfect approximation; see Figure

7.10.

(3) Choosing β: While Figure 6.1 shows that β regulates the degree of robustness

(see also Jewson et al., 2018; Basu et al., 1998), it is unclear how to set

its magnitude. For the on-line setting, we provide a way of initializing and

sequentially refining β by minimizing predictive losses.

The remainder of the section is structured as follows: In Section 7.2.2, we show how

to extend BOCPD (and BOCPDMS) to robust inference using the D
(β)
B . We quantify

the degree of robustness and show that inference using the D
(β)
B can be designed so

that a single outlier never results in false declaration of a CP, which is impossible

under the KLD. Next, we motivate an efficient GVI posterior interpretable as ap-

proximation to a generalized (or Gibbs) posterior based on the β-divergence loss.

Within BOCPD, we propose using this posterior with variance-reduced Stochastic

Gradient Descent. Next, Section 7.3 expands on how β can be initialized before the

algorithm is run and then optimized on-line during execution time. Lastly, Section

7.4 showcases the substantial gains in performance of robust BOCPD when compared

to its standard version on real world data in terms of both predictive error and CP

detection.
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Figure 7.8: Five jointly modeled Simulated Autoregressions (ARs) with true CPs at
t = 200, 400; bottom-most AR injected with t4-noise. The Maximum A Posteriori
(MAP) locations of CPs are shown as solid (dashed) vertical lines. The results of
our robustified procedured are depicted in of blue; those of standard BOCPD in red.

7.2.2 Using Bayesian On-line Changepoint Detection with β-Divergences

BOCPD and BOCPDMS are based on the Product Partition Model (Barry and Har-

tigan, 1993). Recall from the previous section that the BOCPDMS model is

rt|rt−1 ∼ H(rt, rt−1) mt|mt−1, rt ∼ q(mt|mt−1, rt) (7.14a)

θm|mt ∼ πmt(θmt) xt|mt,θmt ∼ fmt(xt|θmt) (7.14b)

where q(mt|mt−1, rt) = mt−1 for rt > 0 and q(mt) otherwise, and where for con-

venience, we have written H(r, r′) = p(r|r′). For example, an instantation of this

model with Bayesian Linear Regression (BLR) using a d × p time-varying regres-

sor matrix Vt is given by θm = (σ2,µ), fm(xt|θm) = Nd(xt;Vtµ, Id) and πm(θm) =

Nd(µ;µ0, σ
2Σ0)IG(σ2; a0, b0); where N denotes a normal and IG an inverse-gamma

distribution. If the computations of the parameter posterior πm(θm|x1:t, rt) and the

173



posterior predictive

fm(xt|x1:(t−1), rt) =

∫
Θm

fm(xt|θm)πm(θm|x1:(t−1), rt)dθm (7.15)

are efficient for all models m ∈ M, then so is the recursive computation given in

the previous section. For the BVAR and SSBVAR models discussed before, this is

the case due to conjugacy—which guarantees that the predictive distributions are

available in closed form.

Once we depart from the negative log likelihood function to perform robust

on-line inference with a β-divergence based loss, this is no longer true. Consequently,

computing the integrals and predictives becomes a challenge that needs solving.

Because running samplers would blow up the computation time of the algorithm to

a point where it would be on-line in name only, we choose to turn to a tool which

we have studied before: GVI.

Throughout this section, we assume that the prior belief for our parameters is

reasonable. Consequently, we seek to compute a posterior within the RoT that uses

a robust loss function, but the conventional (and convenient) choice of D = KLD.

Optimized over the space of all probability measures, this would entail that we are

working with a posterior of the form P (Lβpm ,KLD,P(Θ)) given as

πβm
m (θm|x(t−rt):t) ∝ πm(θ) exp

{
−∑t

i=t−rtL
βp
m (xt,θ)

}
, (7.16)

where—adapting the notation of Chapter 6 to the current setting—we have that

Lβpm (xt,θ) = −
(

1

βm − 1
fm(xt|θm)βm − 1

βm

∫
X
fm(z|θm)βmdz

)
. (7.17)

The above equation illustrates on an intuitive level why the D
(β)
B excels at robust

inference: Similar to tempering, Lβpm exponentially down-weights the density for

values of βm > 1, thereby attaching less influence to observations in the tails of the

model. Conversely, under the log score of KLD, more influence is associated with an

observation the further out in the tails of the model it occurs. It is this phenomenon

that we saw depicted with influence functions in Figure 6.1.

7.2.3 Robust BOCPD

The literature on robust on-line CP detection so far is sparse, and only covers limited

settings without Bayesian uncertainty quantification (e.g. Pollak, 2010; Cao and

Xie, 2017; Fearnhead and Rigaill, 2019). For example, the method in Fearnhead
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and Rigaill (2019) only produces point estimates and is limited to fitting a piecewise

constant function to univariate data. In contrast, BOCPD and BOCPDMS can be

applied to multivariate data and a set of models M while quantifying uncertainty

about these models, their parameters and potential CPs, but is not robust. Noting

that for standard BOCPD the posterior expectation is given by

E
(
xt|x1:(t−1)

)
=
∑
rt,mt

E
(
xt|x1:(t−1), rt−1,mt−1

)
p(rt−1,mt−1|x1:(t−1)), (7.18)

the key observation is that prediction is driven by two probability distributions: The

run-length and model posterior p(rt,mt|x1:t) and parameter posterior distributions

πm(θ|x1:t). This also means that we should make BOCPD robust by using two

posteriors robustified via the D(β)
B —one for the run-lengths and models we will denote

pβrlm(rt,mt|x1:t), and one for the parameters that we will denote πβm
m (θ|x1:t). Here,

βrlm > 0, and βm > 0 (and in fact, βrlm > 1 and βm > 1 whenever inference is

supposed to be robust).

βrlm prevents abrupt changes in pβrlm(rt,mt|x1:t) caused by a small number

of observations, see section 7.2.4. This form of robustness is easy to implement and

retains the closed forms of the standard BOCPD and BOCPDMS computations: one

simply replaces fmt(xt|x0) and fmt(xt|x1:(t−1), rt−1) by their respective counterpart

exp{Lβrlm
mt (rt|x1:t)} = exp

{
−
(

1

βrlm − 1
fmt(xt|x1:(t−1), rt−1)βrlm−1

− 1

βrlm

∫
Y
fmt(z|x1:(t−1), rt−1)βrlmdz

)}
. (7.19)

While pβrlm(x1:t, rt,mt) is not a normalized density anymore—and so does not gener-

ally integrate to one—pβrlm(rt,mt|x1:t) still is a valid probability measure and sums

to one. More importantly, pβrlm(rt,mt|x1:t) ensures that the run-length distribution

is robust.

Complementing this, βm regulates the robustness of the parameter posteriors

πβm
m (θ|x1:t) by preventing them from being dominated by tail events. Section 7.2.5

overcomes the intractability of πβm
m (θ|x1:t). While computation is more challeng-

ing for πβm
m (θ|x1:t) than it is for the non-robust posterior πm(θ|x1:t)—which was

available in closed form due to conjugacy!—we will see later on how GVI based on

P (Lβpm ,KLD,Q) with Q being the set of all normal distributions can help us address

this challenge. In particular, this GVI posterior is not only computationally efficient,

but even recovers the approximated distribution P (Lβpm ,KLD,P(Θ)) = πβm
m (θ|x1:t)

exactly as βm → 1.
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Figure 7.9: A: Lower bound on the odds of Thm. 7.2 for priors used for Figure
7.8 B and h(r) = 1/100. B: k̂ for different choices of βp = βm − 1 (so that βp = 0
corresponds to the negative log likelihood) and output (input) dimensions d (2d) in
an autoregressive BLR.

7.2.4 Quantifying robustness

The algorithm of Fearnhead and Rigaill (2019) is robust because hyperparameters

enforce that a single outlier is insufficient for declaring a CP. Analogously, we can

quantify robustness by conditioning on rt = r and studying the odds of rt+1 ∈
{0, r + 1}:

p(rt+1 = r + 1|x1:t+1, rt = r,mt)

p(rt+1 = 0|x1:t+1, rt = r,mt)

= (
((((

((((p(x1:t, rt = r,mt) · (1−H(rt+1, rt))f
βrlm
mt (xt+1|x1:(t−1), rt−1)

((((
(((

((
p(x1:t, rt = r,mt) ·H(rt+1, rt)f

βrlm
mt (xt+1|x0)

. (7.20)

Here, fβrlm
mt denotes the negative exponential of the score under divergence D. In par-

ticular fβrlm
mt (xt+1|x1:(t−1), rt−1) = exp{Lβrlm

mt (rt|x1:t)} as in (7.19). Taking a closer

look at (7.20), if xt+1 is an outlier with low density under fβrlm
mt (xt+1|x1:(t−1), rt−1),

the odds will move in favor of a CP provided that the prior is sufficiently uninfor-

mative to make fβrlm
mt (xt+1|x0) > fβrlm

mt (xt+1|x1:(t−1), rt−1). In fact, even very small

differences have a substantial impact on the odds. For BLR, Theorem 7.2 provides

conditions guaranteeing that these odds never favor a CP after a single observa-

tion under the β-divergence based loss when they would under the negative log

likelihood—i.e. when fmt(xt+1|x0) is much larger than fmt(xt+1|x1:(t−1), rt−1).

Theorem 7.2. If mt in (7.20) is the Bayesian Linear Regression (BLR) model with

µ ∈ Rp and priors a0, b0, µ0, Σ0; and if the posterior predictive’s variance deter-

minant is larger than |V |min > 0, then one can choose any (βrlm, H(rt, rt+1)) ∈
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S (p, βrlm, a0, b0, µ0,Σ0, |V |min) to guarantee that

(1−H(rt+1, rt))f
βrlm
mt (xt+1|x1:(t−1), rt−1)

H(rt+1, rt)f
βrlm
mt (xt+1|x0)

≥ 1, (7.21)

where the set S (p, βrlm, a0, b0, µ0,Σ0, |V |min) is defined by an inequality given in

Appendix C.2.

Thm. 7.2 says that one can bound the odds for a CP independently of xt+1.

The requirement for a lower bound |V |min results from the integral term in (7.19),

which dominates D
(β)
B -based inference if |V | is extremely small. In practice, this

is not restrictive: E.g. for p = 5, h(r) = 1
λ , a0 = 3, b0 = 5,Σ0 = diag(100, 5)

used in Fig. 7.8, Thm. 7.2 holds for (βrlm, λ) = (0.15, 100) used for inference if

|V |min ≥ 8.12× 10−6. Fig. 7.9 A plots the lower bound derived in Appendix C.2 as

function of |V |min.
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Figure 7.10: Exemplary contour plots of bivariate marginals for the approxima-
tion π̂βm

m (θm) of (7.23) (dashed) and the target πβm
m (θm|x(t−rt):t) of (7.16) (solid)

estimated and smoothed from 95, 000 Hamiltonian Monte Carlo samples for the
β-divergence robustified posterior of BLR with d = 1, two regressors and βm = 1.25.

7.2.5 Structural Variational Approximation & pseudo-conjugacy

While there has been a surge in theoretical work on generalized Bayesian methods

(e.g. Bissiri et al., 2016; Ghosh and Basu, 2016; Jewson et al., 2018), applications

have been sparse, in large part due to intractability issues. While MCMC methods

have been used successfully (Jewson et al., 2018; Ghosh and Basu, 2016), it is hard

to scale them for the on-line BOCPD setting: One would have to sample from the

parameter posteriors for each run-length and additionally require a second layer of

sampling to evaluate the integral in (7.19). Circumventing MCMC, most work on

BOCPD has focused on conjugate distributions (Adams and MacKay, 2007; Turner

et al., 2009; Fearnhead and Liu, 2007) and approximations (Turner et al., 2013;
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Niekum et al., 2014). We extend the latter branch of research by deploying a GVI

method that does not impose independence in the parameter posterior across the

dimensions of θ. For an illustration, see Figure 7.10. Further, since D
(β)
B → KLD as

β → 1, there is an especially compelling way of doing GVI based on the fact that

the approximation

πβm
m (θm|x(t−rt):t) ≈ πm(θm|x(t−rt):t) (7.22)

is exact as β → 0. Thus, for Q denoting the set of all normal distributions on Θ,

we approximate the β-divergence based posterior for model m and run-length rt as

π̂βm
m (θm) = arg min

q∈Q

{
KLD

(
q(θm)

∥∥∥∥πβm
m (θm|x(t−rt):t)

)}
, (7.23)

which is exactly equivalent to computing the GVI posterior P (Lβpm ,KLD,Q). Note in

particular that for the BLR case, this ensures that both π̂βm
m and πKLD

m belong to the

same family—namely the family of normal distributions—even if the parameters can

be very different between them. Further, for many models—and in particular for the

BLR—optima of the optimization in (7.23) can be computed efficiently due to the

closed form of all associated expectations. We state this in Theorem 7.3, which is

almost identical to Proposition 4.2, and which we prove in Appendix B.8.1. Further,

Appendix B.8.2 contains the derivation of the closed forms for the derivatives of the

GVI objective for Bayesian Linear Regression (BLR) that we use in experiments.

Theorem 7.3. The objective corresponding to the posterior approximation in (7.23)

as well as its derivatives with respect to the variational parameters are analytically

available if they are based on an exponential family likelihood model

fm(x; θm) = exp
(
η(θm)TT (x)

)
g(η(θm))A(x),

with conjugate prior π0(θm|ν0,X0) = g(η(θm))ν0 exp
(
ν0η(θm)TX0

)
h(X0, ν0), and

variational posterior π̂βm
m (θm|νm,Xm) = g(η(θm))νm exp

(
νmη(θm)TXm

)
h(Xm, νm)

within the same conjugate family. Additionally, the following three quantities need

to have closed form:

E
π̂βm
m

[η(θm)] ;

E
π̂βm
m

[log g(η(θm))] ;∫
A(z)βm

[
h

(
(βm)T (z) + νmXm

βm + νm
, βm + νm

)]−1

dz.

178



The conditions of Theorem 7.3 are met by many exponential models, e.g. the

Normal-Inverse-Gamma, the Exponential-Gamma, and the Gamma-Gamma. For

a simulated autoregressive BLR, we assess the quality of π̂βm following Yao et al.

(2018), which proposes to estimate a difference k̂ between πβm
m and π̂βm

m relative

to a posterior expectation. We use this on the posterior predictive, which is an

expectation relative to πβm
m and drives the CP detection. Yao et al. (2018) rate

π̂βm
m as close to πβm

m if k̂ < 0.5. Figs 7.10 and 7.9 B show that our approximation

lies well below this threshold for choices of βm decreasing reasonably fast with the

dimension. Note that these are exactly the values of βm one will want to select for

inference: As d increases, the magnitude of fmt(xt|x1:(t−1), rt−1) decreases rapidly.

Hence, βm needs to decrease as d increases to prevent robust inference from being

dominated by the integral in (7.19) and disregarding xt (Jewson et al., 2018). This

is also reflected in our experiments in section 7.4, for which we initialize βm = 0.05

and βm = 0.005 for d = 1 and d = 29, respectively. However, as Figures 7.10 and

7.9 B illustrate, the approximation is still excellent for values of βm that are much

larger than that.

7.2.6 Stochastic Variance Reduced Gradient (SVRG) for BOCPD

While highest predictive accuracy within BOCPD is achieved using full optimization

of the variational parameters at each of T time periods, this has space and time

complexity of O(T ) and O(T 2). In comparison, Stochastic Gradient Descent (SGD)

has space and time complexity of O(1) and O(T ), but yields a loss in accuracy,

substantially so for small run-lengths. In the BOCPD setting, there is an obvious

trade-off between accuracy and scalability: Since the posterior predictive distribu-

tions fmt(xt|x1:(t−1), rt) for all run-lengths rt drive CP detection, SGD estimates are

insufficiently accurate for small run-lengths rt. On the other hand, once rt is suffi-

ciently large, the variational parameter estimates only need minor adjustments and

computing an optimum is costly.

Recently, a new generation of algorithms interpolating SGD and global op-

timization have addressed this trade-off. They achieve substantially better con-

vergence rates by anchoring the stochastic gradient to a point near an optimum

(Johnson and Zhang, 2013; Defazio et al., 2014; Nitanda, 2014; Harikandeh et al.,

2015; Lei and Jordan, 2017). We propose a memory-efficient two-stage variation

of these methods tailored to BOCPD. First, the variational parameters are moved

close to their global optimum using a variant of (Johnson and Zhang, 2013; Nitanda,

2014). Unlike standard versions, we anchor the gradient estimates to an optimum

every m steps for the first W iterations. Compared to standard SGD or SVRG, this
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Stochastic Variance Reduced Gradient (SVRG) inference for BOCPD

Input at time 0: Window & batch sizes W , B, b; frequency m, prior θ0, #steps
K, step size η
for next observation xt at time t do

for retained run-lengths r ∈ R(t) do
if τr = 0 then

if r < W then
θr ← θ∗r ← FullOpt (ELBO(xt−r:t)); τr ← m

else if r ≥W then
θ∗r ← θr; τr ← Geom (B/(B + b))

ganchor
r ← 1

B

∑
i∈I ∇ELBO(θ∗r , xt−i), where I ∼ Unif{0, . . . ,min(r,W )},

|I| = B

for i = 1, 2, . . . ,K do
Ĩ ∼ Unif{0, . . . ,min(r,W )} and |Ĩ| = b
gold
r ← 1

b

∑
i∈Ĩ ∇ELBO(θ∗r , xt−i), gnew

r ← 1
b

∑
i∈Ĩ ∇ELBO(θr, xt−i)

θr ← θr + η ·
(
gnew
r − gold

r + ganchor
r

)
; τr ← τr − 1

r ← r + 1 for all r ∈ R(t); R(t)← R(t) ∪ {0}

substantially decreases variance and increases accuracy for small rt. Second, once

rt > W we incrementally refine the estimates while keeping their variance low using

a stochastic-batch variant of SVRG (Lei and Jordan, 2017; Lei et al., 2017) on a

window with the W most recent observations. The resulting on-line inference has

constant space and linear time complexity like SGD, but produces good estimates

for small rt and converges faster (Johnson and Zhang, 2013; Lei and Jordan, 2017;

Lei et al., 2017). We provide a detailed complexity analysis of the procedure in

Appendix B.8.7. Compared to MCMC-based inference, our algorithm is orders of

magnitude faster: E.g. for the well-log data in section 7.4.1, an MCMC implemen-

tation in Stan (Carpenter et al., 2017) takes 105 times longer.

7.3 Choice of β

Initializing βm: Losses based on the β-divergence have been used in a variety of

settings (Basu et al., 1998; Ghosh and Basu, 2016; Futami et al., 2018; Yılmaz et al.,

2011), but there is no principled framework for selecting the hyperparameter β.

We address this by minimizing the expected predictive loss with respect to βm

on-line. As the losses may not be convex in βm, initial values can matter for the opti-

mization. A priori, we pick βm maximizing the D(β)
B influence for a given distance v∗

between the parameter prior πm(θm) and βm. The notion of a Malahanobis Distance

(MD) allows us to measure such a distance between a point on the one hand and a
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Figure 7.11: Illustration of the initialization procedure for βm, from left to right.

distribution on the other hand. Denoting by Î(βm, πm(θm) the (estimated) Fisher-

Rao divergence depicted on the lefthand side in Figure 6.1, we define for our purposes

the (estimated) MD distance as M̂D(βm, πm(θm)) = arg maxx∈R+
Î(βm, πm(θm))(x).

The rationale behind this is as follows: As Figure 6.1 shows, βm > 0 induces

a point of maximum influence: Points further in the tails are treated as outliers,

while points closer to the mode receive similar influence as under the KLD. Our MD

measure provides the value along the x-axis at which this point of maximum influence

is achieved. With this in hand, we initialize βm by solving the inverse problem: For

a given x∗, we seek the value of βm for which the point of maximum influence occurs

at the MD x∗. This is illustrated in Figure 7.11. The k-th standard deviation under

the prior is a good choice of x∗ for low dimensions (see also Fearnhead and Rigaill,

2019), but not appropriate as delimiter for high density regions even in moderate

dimensions d. Thus, we propose x∗ =
√
d for larger values of d. One then finds βm

by approximating the gradient of M̂D(βm, πm(θm)) with respect to βm. As βrlm does

not affect πβm
m , its initialization matters less and generally, initializing βrlm ∈ [0, 1]

produces reasonable results.

Optimizing β on-line: For β = (βrlm, βm) and prediction x̂t(β) of xt ob-

tained as posterior expectation via (7.18), define εt(β) = xt − x̂t(β). For some

predictive loss Lp : R → R+, we target β∗ = arg minβ {E (Lp(εt(β)))}. Replacing

expected by empirical loss and deploying SGD, we seek to find the partial deriva-

tives of ∇βLp (εt(β)). Noting that ∇βLp (εt(β))) = L′p (εt(β))) ·∇β x̂t(β), the issue

reduces to finding the partial derivatives ∇βrlm
x̂t(β) and ∇βm x̂t(β). Remarkably,

∇βrlm
x̂t(β) can be updated sequentially and efficiently by differentiating the recur-

sion underlying BOCPD. The derivation is provided in Appendix B.8.8. The gradient
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∇βm x̂t(β) on the other hand is not available analytically and thus is approximated

numerically. Now, β can be updated on-line via

βt = βt−1 − η ·
[
∇βrlm,t

Lp
(
εt(β1:(t−1))

)
∇βp,tLp

(
εt(β1:(t−1))

)
)

]
(7.24)

In spirit, this procedure resembles existing approaches for model hyperparameter

optimization (Caron et al., 2012). For robustness, Lp should be chosen appropriately.

Thus, in our experiments we use Lp(x) = |x|.
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Figure 7.12: Maximum A Posteriori (MAP) segmentation and run-length distri-
butions of the well-log data. Robust segmentation depicted using solid lines, CPs

additionally declared under standard BOCPD with dashed lines. The correspond-
ing run-length distributions for robust (middle) and standard (bottom) BOCPD are
shown in grayscale. The most likely run-lengths are dashed.

7.4 Results

Next, we illustrate the most important improvements this chapter makes to BOCPD.

First, we show how robust BOCPD deals with outliers on the well-log data set.

Further, we show that standard BOCPD breaks down in the M-open world whilst

D
(β)
B yields useful inference by analyzing noisy measurements of Nitrogen Oxide

(NOX) levels in London. In both experiments, we use the methods in section 7.3, on-

line hyperparameter optimization (Caron et al., 2012) and pruning for p(rt,mt|x1:t)

(Adams and MacKay, 2007). More detailed information on the recursion itself can

be found in Appendix B.8.8; and on the numerical treatment in Appendix A.4.3.

Additionally, Appendix A.4 provides extensive further details on the empir-

ically studied data sets below.
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7.4.1 Well-log

The well-log data set was first studied in O’Ruanaidh (1994) and has become a

benchmark data set for univariate CP detection. However, except in Fearnhead

and Rigaill (2019) its outliers have been removed before CP detection algorithms

are run (e.g. Adams and MacKay, 2007; Levy leduc and Harchaoui, 2008; Ruggieri

and Antonellis, 2016). With M containing one BLR model of form yt = µ + εt,

Figure 7.12 shows that robust BOCPD deals with outliers on-line. The maximum

of the run-length distribution for standard BOCPD is zero 145 times, so declaring

CPs based on the run-length distribution’s maximum (see e.g. Saatçi et al., 2010)

yields a false discovery rate of more than 90%. This problem persists even with

non-parametric, Gaussian Process, models (p. 186, Turner, 2012). Even using

Maximum A Posteriori (MAP) segmentation (Fearnhead and Liu, 2007), standard

BOCPD mislabels 8 outliers as CPs, making for a false discovery rate of still more

than 40%. In contrast, the segmentation of our robust version does not mislabel

any outliers. Further and in accordance with Thm. 7.2, its run-length distribution’s

maximum falsely drops to a zero run-length only once, which is in response to more

than 20 consecutive outliers. A natural byproduct of the robust segmentation is

a reduction in mean square (absolute) prediction error by 10% (6%) compared to

the standard version. The robust version has more computational overhead than

standard BOCPD, but still needs less than 0.5 seconds per observation using a 3.1

GHz Intel i7 and 16GB RAM.

Not only does robust BOCPD’s segmentation in Figure 7.12 match that in

Fearnhead and Rigaill (2019), but it also offers three additional on-line outputs:

Firstly, it produces probabilistic (rather than point) forecasts and parameter in-

ference. Secondly, it self-regulates its robustness via the on-line adjustment of β.

Thirdly, it can compare multiple models and produce model posteriors (see section

7.4.2). Further, unlike Fearnhead and Rigaill (2019), it is not restricted to fitting

univariate data with piecewise constant functions.

7.4.2 Air Pollution

We also apply robust BOCPD to analyze Nitrogen Oxide (NOX) levels across 29 sta-

tions in London using spatially structured Bayesian Vector Autoregressions (SSBVARs).

Previous robust on-line methods (e.g. Pollak, 2010; Cao and Xie, 2017; Fearnhead

and Rigaill, 2019) cannot be applied to this problem because they assume univari-

ate data or do not allow for dependent observations. As Figure 7.13 shows, robust

BOCPD finds one CP corresponding to the introduction of the congestion charge,
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while standard BOCPD produces a false discovery rateof more than 90%. Both

methods find a change in dynamics (i.e. models) after the congestion charge intro-

duction, but variance in the model posterior is substantially lower for the robust

algorithm. Further, it increases the average one-step-ahead predictive likelihood by

10% compared to standard BOCPD.
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Chapter 8

Robustness & Computational

Convenience for Intractable

Likelihoods

Summary: In this chapter, we study how the RoT can be used for the benefit of

intractable likelihood models. In standard Bayesian inference, likelihood functions

with intractable normalization constants incur severe computational disadvantages.

By using a computationally beneficial instantiation of Stein’s Method and in par-

ticular Kernel-Stein Discrepancies (KSDs) as loss functions, we circumnavigate this

challenge entirely. In fact, in a wide range of settings we manage to obtain closed

form posteriors for problems that would lead to doubly intractable posteriors under

the standard Bayesian paradigm. Further, we show that by appropriate choice of the

kernel, one can straightforwardly impart robustness on what we will call KSD-Bayes

posteriors. KSD-Bayes posteriors can be written in terms of the RoT, and belong

to the subclass of Gibbs posteriors. This means that they have an analytic form,

which enables us to prove a range of regularity conditions that include consistency,

asymptotic normality, and bias-robustness.

As we have discussed throughout this thesis, a considerable proportion of

statistical modelling deviates from the idealised approach of fine-tuned, expertly-

crafted descriptions of real-world phenomena. If one proceeds by naively applying

Bayes’ Rule, this leads to miscalibrated posteriors that concentrate at undesirable

regions in the parameter space. As we have seen in the previous two chapters, one

way of rectifying this is by changing how the model’s parameters are scored, affecting
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how “good” parameter values are discerned from “bad” ones. The current chapter

considers this situation in the presence of intractable likelihoods: not only are our

models of the world misspecified, but they also are of the form p(x|θ) = q(x,θ)/Z(θ),

where q(x,θ) is an analytically tractable—but un-normalized—function, and Z(θ) is

an intractable normalization constant. Standard Bayesian posteriors resulting from

such intractable likelihood models are sometimes called doubly intractable, since two

unknown normalizers—that of the likelihood and that of the posterior itself—have

to be tackled for inference (Iain Murray et al., 2006). Notably, virtually all standard

Markov chain Monte Carlo (MCMC) methods cannot be used in this setting: they

typically require explicit evaluation of the likelihood. Doubly intractable posteriors

are not a fringe phenomenon either, and appear in many important statistical ap-

plications. This includes spatial models (Julian Besag, 1974, 1986; Peter J. Diggle,

1990), exponential random graph models (Jaewoo Park and Murali Haran, 2018),

models for gene expression (Jiang et al., 2021), or hidden Potts models for satellite

data (Moores et al., 2020).

In this chapter, we propose an inference approach based on the RoT for

intractable likelihoods. Specifically, we employ a loss function based on a Stein

discrepancy (Gorham and Mackey, 2015) and in particular on the minimum Stein

discrepancy estimators of Barp et al. (2019). We focus on the Kernel-Stein discrep-

ancy (KSD), and we call the resulting generalised Bayesian approach KSD-Bayes.

In addition to dealing with intractable likelihoods, we also prove that KSD-Bayes

posteriors provide robustness against misspecification, allow for a form of conjugacy

that allows us to compute them in closed form, and satisfy numerous desirable the-

oretical properties—including frequentist consistency and Bernstein-von-Mises type

results.

8.1 Background

First we provide a short summary of the relevant standing assumptions, and the

notation used throughout the current chapter. Because of the substantial technical

developments required for the proofs of this chapter, a lot of the notation required

will be more precise and technical than in preceeding chapters.

Standing Assumption 1: The topological space X in which the data are con-

tained, is locally compact and Hausdorff. The set Θ ⊆ Rp, in which parameters are

contained, is Borel.
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8.1.1 Notation

Measure theoretic notation: For a locally compact Hausdorff space such as X , we

let P(X ) denote the set of all Borel probability measures on X . A point mass at

x is denoted δx ∈ P(X ). Similarly to what we have done in previous chapters,

if X is equipped with a reference measure (such as the Lebesgue measure if X =

Rd), then we abuse notation by writing p ∈ P(X ) to indicate that the distribution

with probability density function (p.d.f.) p is an element of P(X ). As in previous

chapters, we use Pθ ∈ P(Θ) as the measure induced by the p.d.f p(·|θ); and we

use Pn = 1
n

∑n
i=1 δxi to denote the empirical measure on X induced by the sample

x1:n. For P ∈ P(X ), we occasionally overload notation by denoting by Lq(X ,P)

both the set of functions f : X → R for which ‖f‖Lq(X ,P) := (
∫
X |f |qdP)1/q < ∞

and the normed space in which two elements f, g ∈ Lq(X ,P) are identified if they

are P-almost everywhere equal. As is common practice, if P is a Lebesgue measure,

we simply write Lq(X ) instead of Lq(X ,P). Let PS(Rd) be the set of all Borel

probability measures P supported on Rd, admitting an everywhere positive p.d.f. p

and continuous partial derivatives x 7→ (∂/∂x(i))p(x).

Real analytic notation: The Euclidean norm on Rd is denoted by ‖ · ‖2.

The set of continuous functions f : X → R is denoted C(X ). We denote by

C1
b (Rd) the set of functions f : Rd → R such that both f and the partial deriva-

tives x 7→ (∂/∂x(i))f(x) are bounded and continuous on Rd. We also denote by

C1,1
b (Rd × Rd) the set of bivariate functions f : Rd × Rd → R such that both f and

the partial derivatives (x, x′) 7→ (∂/∂x(i))(∂/∂x
′
(j))f(x, x′) are bounded and contin-

uous on Rd × Rd. For an arbitrary set S(X ) of functions f : X → R, denote by

S(X ;Rk) the set of Rk-valued functions whose components belong to S(X ). Let

∇ and ∇· be the gradient and the divergence operators in Rd. For functions with

multiple arguments, we sometimes use subscripts to indicate the argument to which

the operator is applied (e.g. ∇xf(x, y)). For f an Rd-valued function, [∇f(x)](i,j) :=

(∂/∂x(i))f(j)(x) and ∇ · f(x) :=
∑d

i=1(∂/∂x(i))f(i)(x). For f an Rd×d-valued func-

tion, [∇f(x)](i,j,k) := (∂/∂x(i))f(j,k)(x) and [∇ · f(x)](i) :=
∑d

j=1(∂/∂x(j))f(i,j)(x).

8.1.2 Stein Discrepancy & Kernel-Stein Discrepancy (KSD)

We refer to Chapter 6 for an overview of the Stein Discrepancy generally and the

Kernel-Stein Disrepancy (KSD) in particular. Essentially, we saw via Proposition 6.1

that for the Stein operator SQ : H → L1(X ,Q) on the Vector-Valued Reproducing

Kernel Hilbert Space (v-RKHS) H induced by the (matrix-valued) kernel K : X 2 →
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R, the KSD is given by

KSD
2(Q‖P) := EX,X′∼P

[
SQSQK(X,X ′)

]
. (8.1)

The necessary condition required to apply Proposition 6.1 is a mild continuity as-

sumption on the Stein operator given below.

Assumption 8.1. Let H be a v-RKHS with kernel K : X × X → Rd×d. For

Q ∈ P(X ), let SQ be a Stein operator with domain H. For each fixed x ∈ X , we

assume h 7→ SQ[h](x) is a continuous linear functional on H. Further, we assume

that EX∼P [SQSQK(X,X)] <∞.

Note that it is straightforward to verify that h 7→ SQ[h](x) is a continuous

linear functional for each fixed x ∈ X once the form of SQ is specified; see Appendix

C.3.1. If this condition is satisfied so that the KSD-based loss takes the form of

(8.1), then for samples x1:n ∼ P and for Pn the empirical measure of x1:n, this loss

can be computed approximately as

KSD
2(Pθ‖Pn) =

1

n2

n∑
i=1

n∑
j=1

SPθSPθK(xi, xj), (8.2)

where the explicit form of SPθSPθK depends on SPθ . In (6.7), we gave provided the

example for the case where the Stein Operator in question is the Langevin Stein

operator and X = Rd.
For completeness, we note here that in both (6.7) as well as the rest of the

chapter, we will use the following notation: we denote the j-th column of K(x, x′) ∈
Rd×d byK−,j(x, x

′) ∈ Rd, we define SQK(x, x′) := [SQK−,1(x, x′), . . . ,SQK−,d(x, x′)] ∈
Rd where SQK−,j(x, x′) := SQ[K−,j(·, x′)](x) is an action of SQ for the Rd-valued

functionK−,j(·, x′) at each x′ ∈ X ; and we define SQSQK(x, x′) := SQ[ SQK(x, ·) ](x′)

as an action of SQ for the Rd-valued function SQK(x, ·) at each x ∈ X .

8.2 The KSD-Bayes posterior

Suppose we are given a prior p.d.f. π ∈ P(Θ) and a statistical model {Pθ | θ ∈ Θ} ⊂
P(X ) with associated p.d.f. p(·|θ). For a sample x1:n of independent observations

generated from P and forming the empirical measure Pn, we define the KSD-Bayes

posterior below.

Definition 8.1 (KSD-Bayes). For each θ ∈ Θ, select a Stein Operator SPθ and

denote the associated Stein discrepancy SD(Pθ‖·). Further, let the Stein Set H be
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a v-RKHS associated with the kernel function K and let w ∈ (0,∞). Writing

LKSD(x1:n,θ) = n · KSD
2(Pθ‖Pn),

the KSD-Bayes posterior is given as

πKSD
n (θ) = P (LKSD,KLD,P(Θ))

∝ π(θ) exp {−wLKSD(x1:n,θ)} (8.3)

where θ ∈ Θ.

At first glance, it may seem that there is an arbitrariness to using squared

discrepancy (as opposed to another power of the discrepancy), but this choice turns

out to be appropriate for the KSD in a meaningful way: in particular, it ensures

that fluctuations of LKSD(θ) about its expectation are of order O(n−1/2)—exactly

like the standard log likelihood loss. Beyond this, it enables tractable computation

(Section 8.3) and analysis (Section 8.4).

A more difficult question is how the weight w should be selected: So far,

we have considered the w- and γ-divergences in the previous two chapters. For

these divergences, we can recover the standard log likelihood as w → 1 (γ → 1),

and indeed we chose values of w and γ very close to 1. This meant that we had

approximately well-calibrated posteriors by just choosing w = 1, and did not have

to worry about calibration all too much.

In contrast, there is no parameterisation for the KSD that lets us recover the

standard log likelihood function. Consequently, we will have to find ways of choosing

w to obtain (approximately) calibrated posteriors. This is an issue affecting many

generalized posteriors, and we defer our discussion for the KSD-Bayes to Section 8.5.

8.3 Conjugate Inference

The KSD-Bayes posterior can be computed in closed form for an important special

case—specifically for natural exponential family models with conjugate priors. Let-

ting η : Θ → Rk and t : X → Rk be any sufficient statistic for some k ∈ N and

letting a : Θ→ R and b : X → R, an exponential family model has probability mass

function (p.m.f.) or p.d.f. (with respect to an appropriate reference measure on X )

of the form

p(x|θ) = exp(η(θ) · t(x)− a(θ) + b(x)). (8.4)
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This includes a wide range of distributions with an intractable normalization con-

stant exp(a(θ)), used in statistical applications such as random graphs (Yang et al.,

2015), spin glass models (Julian Besag, 1974) or the kernel exponential family model

(Canu and Smola, 2006). The model in (8.4) is called natural whenever the canonical

parametrisation η(θ) = θ is used.

Proposition 8.1. Consider X = Rd and the Langevin Stein operator SPθ in (6.4),

where Pθ is the exponential family in (8.4), and a kernel K ∈ C1,1
b (Rd × Rd;Rd×d).

Assuming the prior has a p.d.f. π, the KSD-Bayes posterior has a p.d.f.

πKSD
n (θ) ∝ π(θ) exp (−wn{η(θ) · Λnη(θ) + η(θ) · νn}) ,

where Λn ∈ Rk×k and νn ∈ Rk are defined as

Λn :=
1

n2

n∑
i,j=1

∇t(xi) ·K(xi, xj)∇t(xj),

νn :=
1

n2

n∑
i,j=1

∇t(xi) ·
(
∇xj ·K(xi, xj)

)
+

∇t(xj) ·
(
∇xi ·K(xi, xj)

)
+ 2∇t(xi) ·K(xi, xj)∇b(xj).

For a natural exponential family so that we have η(θ) = θ, and a prior given by

π(θ) ∝ exp(−1
2(θ − µ) · Σ−1(θ − µ)) for a positive definite matrix Σ leads

πKSD
n (θ) ∝ exp

(
−1

2
(θ − µn) · Σ−1

n (θ − µn)

)
, (8.5)

where Σ−1
n := Σ−1 + 2wnΛn and µn := Σ−1

n (Σ−1µ− νn).

The proof is in Appendix C.3.2. That the Gaussian distribution will be

the conjugate prior for the KSD-Bayes posterior for all naturally parameterised

likelihoods—even in the presence of an intractable likelihood—is remarkable, and a

notable difference when compared to the classical Bayesian case.

That being said, it is well known that certain minimum discrepancy estima-

tors, such as the score matching estimator (Aapo Hyvärinen, 2005) and the minimum

KSD estimator (Barp et al., 2019), have closed forms in the case of an exponential

family models; and the reasoning that has led us to Proposition 8.1 is similar to the

reasoning required to obtain these closed forms.
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8.4 Theoretical Properties

Before showcasing the practical utility of KSD-Bayes, we study its theoretical prop-

erties. The main results are posterior consistency and a Bernstein–von Mises the-

orem in Section 8.4.2. Beyond that, we derive a formal guarantee for global bias-

robustness of KSD-Bayes in Section 8.4.3. In obtaining these results we have devel-

oped novel intermediate results concerning an important V-statistic estimator for

KSD; these are also of independent interest, and so we present them in Section 8.4.1

rather than delegating them to the Appendix. Note that as throughout the rest of

the thesis, all theory is valid for the misspecified regime: We do not assume that

P ∈ {Pθ : θ ∈ Θ}. Moreover, the results in Section 8.4.1 and Section 8.4.2 hold for

general data domains X . For convenience, we set w = 1 throughout the theoretical

derivations—but all results follow immediately for w 6= 1 simply by replacing K

with wK.

Standing Assumption 2: The dataset x1:n consists of independent samples gen-

erated from P ∈ P(X ), with empirical distribution Pn := (1/n)
∑n

i=1 δxi . Θ ⊆ Rp is

open, convex and bounded. Section 8.1 holds with Q = Pθ for every θ ∈ Θ.

Note that assuming that Θ is bounded is done merely for simplifying pre-

sentation. In particular, there is no loss of generality here, since we can always

re-parametrize a likelihood function defined on an unbounded space to ensure that

its re-parameterized version is defined on a bounded space.

Notation: For shorthand, let ∂1, ∂2 and ∂3 denote the partial derivatives (∂/∂θ(h)),

(∂2/∂θ(h)∂θ(k)) and (∂3/∂θ(h)∂θ(k)∂θ(l)) for h, k, l ∈ {1, . . . , p}, where to reduce

notation the indices (h, k, l) are left implicit. The gradient and Hessian operators

are [∇θ](h) = (∂/∂θ(h)) and [∇2
θ](h,k) = (∂2/∂θ(h)∂θ(k)).

8.4.1 Minimum KSD Estimators

First we present a novel analysis for the V-statistic in (8.2). Note that a U-statistic

estimator for the KSD was analysed in Barp et al. (2019) for the so-called diffusion

Stein operator (which itself can be seen as a generalization of the Langevin-Stein

operator). In contrast, our results for the V-statistic do not depend on a specific

form of SPθ , and therefore are of independent interest.

It is well-known that V-statistics exhibit finite-sample bias as estimators. For

our case however, this bias vanishes in the big data limit so that we can derive the

following consistency result:
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Lemma 8.1 (a.s. pointwise convergence). For each θ ∈ Θ,

KSD
2(Pθ‖Pn)− KSD

2(Pθ‖P)
a.s.−→ 0. (8.6)

The proof is contained in Appendix C.3.3. If we impose further regularity conditions,

we can strengthen the pointwise convergence to a uniform one. For this purpose, it

will be convenient to introduce an Assumption indexed by some integer rmax ∈ N
as follows:

Assumption 8.2 (rmax-regularity). For all r so that 0 ≤ r ≤ rmax, it holds that

(1) the map θ 7→ ∂rSPθ [h](x) exists and is continuous, for all h ∈ H and x ∈ X ;

(2) h 7→ (∂rSPθ)[h](x) is a continuous linear functional on H, for each x ∈ X ;

(3) EX∼P[supθ∈Θ((∂rSPθ)(∂rSPθ)K(X,X))] <∞,

where (∂0SPθ) := SPθ . Note that (2) with r = 0 is automatically true by virtue of

Standing Assumption 2.

As with SPθSPθK(x, x), the first and second (∂rSPθ) are applied to the first and

second argument of K respectively in the expression (∂rSPθ)(∂rSPθ)K(X,X) above.

While these assumptions may seem arcane, they become clearly interpretable and

concrete once a specific Stein operator is chosen. We showcase this with the Langevin

Stein operator in Appendix C.3.1.

Lemma 8.2 (a.s. Uniform Convergence). Suppose Assumption 8.2 holds for rmax =

1. Then,

sup
θ∈Θ

∣∣KSD
2(Pθ‖Pn)− KSD

2(Pθ‖P)
∣∣ a.s.−→ 0. (8.7)

The proof is deferred to Appendix C.3.3.

While this result shows us that the loss can be estimated well in a uniformly

good way over Θ, it does not tell us anything about the minimizers of these esti-

mated losses. This is what the next results take care of: they concern consistency

and asymptotic normality of the estimator θn = arg minθ∈Θ KSD2(Pθ‖Pn)—the min-

imizer for the V-statistic in (8.2). Before we can analyze the minimizer of course,

we will have to assume it and its desired limit exist.

Assumption 8.3. There exist minimisers θn ∈ arg minθ∈Θ KSD(Pθ‖Pn) for all

sufficiently large n ∈ N. Further, there exists a unique θ∗ s.t. KSD(Pθ∗‖P) <

inf{θ∈Θ:‖θ−θ∗‖2≥ε} KSD(Pθ‖P) for any ε > 0.
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For the well-specified case where ∃θ0 such that Pθ0 = P, the uniqueness of θ∗

holds automatically if KSD is a proper divergence—i.e. KSD(P‖Q) = 0⇐⇒ P = Q.

For example, if the mild regularity conditions of Barp et al. (2019, Proposition 1)

are satisfied and the parametrisation θ 7→ Pθ is injective, the minimum is uniquely

attained. Generally speaking, it is often reasonable to assume that the minimiz-

ers exist and are unique—both for minimizers in finite samples (θn) and in the

population-sense (θ∗).

Lemma 8.3 (Strong Consistency). Suppose Assumption 8.2 holds for rmax = 1,

and that Assumption 8.3 also holds. Then,

θn
a.s.−→ θ∗. (8.8)

The proof is deferred to Appendix C.3.3.

While the previous result tells us that the minimizer behaves as we would like

in the large data limit, it tells us nothing about the rate (in n) at which this happens.

This is addressed next, and we establish asymptotic normality of θn (and thereby

a
√
n-rate of convergence) that holds if we impose a small number of additional

regularity conditions.

Lemma 8.4 (Asymptotic Normality). Suppose Assumption 8.2 holds for rmax =

3, and that Assumption 8.3 holds. Let H∗ := ∇2
θKSD2(Pθ‖P)|θ=θ∗ and J∗ :=

EX∼P[S(X,θ∗)S(X,θ∗)
>], where we define the column vector

S(x,θ) := E
X∼P

[∇θ(SPθSPθK(x,X))].

If H∗ is non-singular,

√
n (θn − θ∗) d→ N (0, H−1

∗ J∗H
−1
∗ ),

where
d→ denotes the convergence in distribution.

The proof is given in Appendix C.3.3. These preliminaries on minimum-KSD estima-

tion are required for our main asymptotic results on KSD-Bayes; which we present

next.

8.4.2 Posterior Consistency and Bernstein-von-Mises

Armed with the technical results of Section 8.4.1, we can now establish frequentist

consistency of KSD-Bayes and a Bernstein–von Mises result. Our consistency result
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requires a prior mass condition, similar to that of Chérief Abdellatif and Alquier

(2020):

Assumption 8.4. The prior is assumed to

1. admit a p.d.f. π that is continuous at θ∗, with π(θ∗) > 0;

2. satisfy
∫
Bn(α1) π(θ)dθ ≥ e−α2

√
n for some constants α1, α2 > 0,

where we define Bn(α1) := {θ ∈ Θ : |KSD2(Pθ‖P)− KSD2(Pθ∗‖P)| ≤ α1/
√
n}.

Assumption 8.4 specifies the amount of prior mass in a neighbourhood around the

population-optimal value θ∗ that is required. This is not a strong assumption and

Appendix C.3.7 demonstrates how Assumptions 8.3 ,8.2, and 8.4 can be verified in

the case of an exponential family model.

Theorem 8.1 (Posterior Consistency). Suppose Assumptions 8.3 and 8.4 holds.

Let σ(θ) := EX∼P [SPθSPθK(X,X)]. Then, for all δ ∈ (0, 1],

P
(∣∣∣∣∫

Θ
KSD

2(Pθ‖P)πKSD
n (θ)dθ − KSD

2(Pθ∗‖P)

∣∣∣∣ > δ

)
≤ α1 + α2 + 8 supθ∈Θ σ(θ)

δ
√
n

(8.9)

where the probability is with respect to realisations of the dataset x1:n
i.i.d.∼ P.

The proof is deferred to Appendix C.3.4.

While the last result shows that the posterior will ultimately collapse to

a point mass at the desired point in the parameter space Θ, it does not tell us

at which speed this collapse occurs. To investigate this speed, we now derive a

Bernstein–von Mises result; which will show that the convergence happens at rate
√
n. The pioneering work of Hooker and Vidyashankar (2014) and Ghosh and Basu

(2016) established Bernstein–von Mises results for Gibbs (or pseudo-) posteriors

of the form P (L,KLD,P(Θ)) based on losses derived from the family of α- and w-

divergences. Unfortunately, the form of KSD is rather different—a V-statistic instead

of an average—and so different theoretical tools are required to tackle it. To this end,

we turn to Jeffrey W. Miller (2021), who introduced a general approach to deriving

Bernstein–von Mises results for Gibbs (or pseudo-) posteriors P (L,KLD,P(Θ)),

demonstrating how the assumptions can be verified for several additive loss functions

L. Our proof builds on Jeffrey W. Miller (2021), demonstrating that the required

assumptions can also be satisfied by the non-additive KSD loss function in (8.2).
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Theorem 8.2 (Bernstein–von Mises). Suppose Assumption 8.2 holds for rmax = 3,

and that Assumptions 8.3, and part (1) of 8.4 hold. Let π̂KSD
n the p.d.f. of the

random variable
√
n(θ − θn) for θ ∼ πKSD

n , viewed as a p.d.f. on Rp. Let H∗ :=

∇2
θKSD2(Pθ‖P)|θ=θ∗ . If H∗ is nonsingular,∫

Rp

∣∣∣∣π̂KSD
n (θ)− 1

det(2πH−1
∗ )1/2

exp

(
−1

2
θ ·H∗θ

)∣∣∣∣dθ a.s.−→ 0, (8.10)

where the a.s. convergence happens as n→∞ with respect to P.

The proof can be found in Appendix C.3.5. The theoretical results we have de-

rived are highly encouraging: they indicate that KSD-Bayes posteriors in many

ways behave like standard Bayes posteriors. We note also that the asymptotic pre-

cision matrix H∗ from Theorem 8.2 differs to the precision matrix H∗J
−1
∗ H∗ of the

minimum KSD estimator from Lemma 8.4 which would give us correct frequentist

coverage. This is precisely analogous to fact that Bayesian credible sets can have

asymptotically incorrect frequentist coverage if the statistical model is misspecified

(Kleijn and van der Vaart, 2012), a point we will be addressing in Section 8.5.2.

8.4.3 Global Bias-Robustness of KSD-Bayes

While the main appeal of KSD-Bayes are its computational advantages in the pres-

ence of intractable normalization constants, the choice of kernel also enables us to

make the KSD-Bayes robust to contamination in the dataset. Since the KSD-Bayes

posterior takes the form P (w ·LKSD,KLD,P(Θ)), it is a Gibbs posterior and can be

written out in analytical form. Unlike most posteriors derived from the RoT, this

allows us to establish its robustness using a fairly standard mathematical toolbox.

To this end, consider the ε-contamination model Pn,ε,y = (1 − ε)Pn + εδy,

where y ∈ X and ε ∈ [0, 1] (see Huber, 2011). In words, the data point y is

considered to be a contaminant relative to the dataset x1:n. Robustness to this

form of contamination in the Bayesian setting has been considered in Hooker and

Vidyashankar (2014); Ghosh and Basu (2016); Tomoyuki Nakagawa and Shintaro

Hashimoto (2020), and we will build on this previous literature in what follows. For

this, it will be convenient to overload notation and define

LKSD(θ;Pn) := LKSD(θ, x1:n).

With this in hand and following Ghosh and Basu (2016), we then consider a KSD-

Bayes posterior based on the (contaminated) loss L(θ;Pn,ε,y) with corresponding
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density π
L(θ;Pn,ε,y)
n , and define the posterior influence function as

PIF(y,θ,Pn) :=
d

dε
π
L(θ;Pn,ε,y)
n |ε=0. (8.11)

Note that unlike the influence functions we have seen in Chapter 6, this influence

function is defined for every point in the parameter space; and so additionally de-

pends on θ. We call a KSD-Bayes posterior globally bias-robust if

sup
θ∈Θ

sup
y∈X
|PIF(y,θ,Pn)| <∞,

meaning that the sensitivity of the generalised posterior to the contaminant y is

limited.

In fact, this notion of robustness can be applied not only to the KSD-Bayes

posterior, but to any Gibbs posterior πLn = P (L,KLD,P(Θ)) for a loss that acts on

x1:n only through Pn. The following lemma provides sufficient conditions for which

global bias-robustness holds for any Gibbs posterior of this form:

Lemma 8.5. Let πLn be a generalised Bayes posterior for a fixed n ∈ N with a

loss L(θ;Pn) and a prior π. Suppose L(θ;Pn) is lower-bounded and π(θ) is upper-

bounded over θ ∈ Θ, for any Pn. Denote DL(y,θ,Pn) := (d/dε)L(θ;Pn,ε,y)|ε=0.

Then πLn is globally bias-robust if, for any Pn,

1. supθ∈Θ supy∈X |DL(y,θ,Pn)|π(θ) <∞, and

2.
∫
Θ supy∈X |DL(y,θ,Pn)|π(θ)dθ <∞.

The proof is deferred to Appendix C.3.6. It is interesting—albeit unsurprising—to

note that standard Bayesian inference does not satisfy the conditions of Lemma 8.5

in general. Indeed, when L(θ;Pn) = n ·Pn(− log p(·|θ)) is the negative log likelihood

as in the standard Bayesian case, DL(y,θ,Pn) = log p(y|θ)−∑n
i=1 log p(xi|θ), and

the term log p(y|θ) will generally be unbounded over y ∈ X . This can occur even

if the statistical model is not heavy-tailed, e.g. for a normal location model p(·|θ)

on X = Rd. In contrast, the kernel K in KSD-Bayes provides a degree of freedom

which can be leveraged to ensure that the conditions of Lemma 8.5 are satisfied.

The specific form of DL(y,θ,Pn) for KSD-Bayes is derived in Appendix C.3.6, and

allows us to derive sufficient conditions on K for global bias-robustness of KSD-

Bayes. These conditions are summarized in the following result.

Theorem 8.3 (Globally Bias-Robust). For each θ ∈ Θ, let Pθ ∈ PS(Rd) and let

SPθ denote the Langevin Stein operator of (6.4). Let K ∈ C1,1
b (Rd × Rd;Rd×d).
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Suppose that π is bounded over Θ. If there exists a function γ : Θ→ R such that

sup
y∈Rd

(
∇y log pθ(y) ·K(y, y)∇y log pθ(y)

)
≤ γ(θ) (8.12)

and, in addition, supθ∈Θ |π(θ)γ(θ)| <∞ and
∫
Θ π(θ)γ(θ)dθ <∞, then KSD-Bayes

is globally bias-robust.

The proof is outlined in Appendix C.5. The conditions of Theorem 8.3 can be

satisfied through an appropriate choice of kernel K. We discuss these choices next.

Unsurprisingly, the choice of kernel amounts to a robustness-efficiency trade-off, and

the resulting differences in KSD-Bayes inference is explored empirically later on.

8.5 Setting Hyperparameters

Having thoroughly explored the theory of KSD-Bayes, we now turn to experimental

evidence that confirms the findings of the previous section. Before doing so, we first

discuss how we will set the relevant hyperparameters.

8.5.1 Setting SPθ and K

For Euclidean domains X = Rd, we advocate the default use of the Langevin Stein

operator SPθ in (6.4) together with the kernel

K(x, x′) =
M(x)M(x′)>

(1 + (x− x′)>Σ−1(x− x′))γ , (8.13)

where Σ is a positive definite matrix, γ ∈ (0, 1) is a constant, and M ∈ C1
b (Rd;Rd×d)

is a matrix-valued weighting function. Note that using a non-constant weighting

function is equivalent to replacing the Langevin Stein operator with the diffusion

Stein operator based on a diffusion matrix M(x) as introduced by Gorham et al.

(2019). For the specific choice M(x) = Id, (8.13) is well-known under the name of

an inverse multi-quadratic (IMQ) kernel.

Both the IMQ kernel and the Langevin Stein operator have appealing proper-

ties in the context of the KSD. Firstly, under mild conditions on P, KSD(P||Pn)→ 0

implies that Pn converges weakly to P (Chen et al., 2019, Theorem 4). This con-

vergence control has conceptual relevance for our context. In particular, it ensures

that small values of KSD(Pθ‖Pn) imply similarity between Pθ and Pn in the topology

of weak convergence. We note that many other common kernels (e.g., Gaussian or

Matérn kernels) fail to provide convergence control (Jackson Gorham and Lester
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Mackey, 2017, Theorem 6). Secondly—and on a more practical level—the combina-

tion of the diffusion Stein operator and IMQ kernel with γ = 1/2 has been found to

perform reliably in practice (Chen et al., 2019; Riabiz et al., 2021). In line with this,

we will be treating γ = 1/2 as the de-facto default value for the IMQ and diffusion

kernel.

Having fixed the general form of K and its hyperparameter γ, we are left

with the weighting function M(x) as the last unspecified degree of freedom in our

methodology. To set M(x), note that it can be chosen to regulate the efficiency-

robustness trade-off: If global bias robustness is not required, then we recommend

setting M(x) = Id as a default. Conversely, if global bias-robustness is required, one

should select M(x) such that the supremum in (8.12) exists and the preconditions

of Theorem 8.3 are satisfied; see the worked examples in Section 8.6.

Lastly, while the theoretical analysis of Section 8.4 assumed that K is fixed,

our experiments follow standard practice in the kernel methods community by using

a data-adaptive choice of the matrix Σ. To this end, all of our experiments use the

`1-regularised sample covariance matrix estimator of Ollila and Raninen (2019). The

sensitivity of KSD-Bayes to the choice of kernel parameters is investigated in Section

8.6.

8.5.2 Setting w

In all our experiments, we found that the variance of the KSD-Bayes posterior

with w = 1 is never smaller than that of the standard posterior. This provides

a rough heuristic justification for a default choice of w = 1. For the case of a

simple normal location model, this heuristic can be justified more formally, see

Section 8.6.1. However, in a misspecified setting, smaller values of w are needed to

avoid over-confidence in the KSD-Bayes posterior in the frequentist sense (see e.g.

Pei-Shien Wu and Ryan Martin, 2020). Here, we aim to pick w to approximately

calibrate the KSD-Bayes posterior. In other words, we will aim to match the scale

of the asymptotic precision matrix for the KSD-posterior (namely, H∗; see Theorem

8.2) matches that of the minimum-KSD point estimator with correct frequentist

coverage (namenly, H∗J
−1
∗ H∗; see Lemma 8.4), an approach pioneered in Lyddon

et al. (2019). While it is clear that no choice of w will make the asymptotic covariance

matrices equal under misspecification, the hope is to at least approximately match

the scales of both variance matrices. Naturally, this is complicated by the fact that

P is unknown, so that one needs to estimate both H∗ and J∗ by their finite-sample

equivalents Hn and Jn. With these estimates in hand, we propose the following
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default for w:

w = min (1, wn) where wn =
tr(HnJ

−1
n Hn)

tr(Hn)
, (8.14)

where

Hn := ∇2
θ KSD2(Pθ‖Pn)

∣∣
θ=θn

Jn :=
1

n

n∑
i=1

Sn(xi,θn)Sn(xi,θn)>,

Sn(x,θ) :=
1

n

n∑
i=1

∇θ(SPθSPθK(x, xi)). (8.15)

The minimum taken in (8.14) provides a safeguard against selecting a value of w

that over-shrinks the posterior covariance matrix— a phenomenon that we observed

for some of the experiments reported in the next section—due to poor quality of the

numerical approximations Hn and Jn when n is small. The above expressions and

estimators are derived for the exponential family model in Appendix C.3.7.

8.6 Experiments

Next, we present four distinct experiments. The first experiment, in Section 8.6.1,

concerns a normal location model, allowing the standard posterior and the KSD-

Bayes posterior to be compared and confirming our robustness results are meaning-

ful. Section 8.6.2 presents a two-dimensional precision estimation problem, where

standard Bayesian computation is challenging but computation with KSD-Bayes is

available in closed form. Then, Section 8.6.3 presents a 25-dimensional kernel ex-

ponential family model, and Section 8.6.4 presents a 66-dimensional exponential

graphical model; in both cases a Bayesian analysis has not, to-date, been attempted

due to severe intractability of the likelihood. In addition, the kernel exponential

family model allows us to explore a multi-modal dataset and to understand the po-

tential limitations of KSD-Bayes in that context. For all experiments, we use the

hyperparameter settings discussed in the previous section.

8.6.1 Normal Location Model

For pedagogical purposes, we first consider fitting a normal location model Pθ =

N (θ, 1) to a dataset x1:n. Our aim is to illustrate the robustness properties of

KSD-Bayes, and we therefore generate the dataset using a ε-contaminated normal
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Figure 8.1: Standard Bayes and KSD-Bayes posteriors for the normal location model.
The true parameter value is θ = 1, while a proportion ε of the data were contami-
nated by noise of the formN (y, 1). In the top row y = 10 is fixed and ε ∈ {0, 0.1, 0.2}
are considered, while in the bottom row ε = 0.1 is fixed and y ∈ {1, 10, 20} are con-
sidered.

location model. Specifically, the true data-generating process is

(1− ε)Pθ + εPy,

where we have set Py = N (y, 1). In this model, ε controls the extent and y the

location of the contamination of Pθ. Given data from this model, the aim is to

make reliable inferences for θ based on a contaminated dataset of size n = 100. The

prior on θ was N (0, 1).

The standard Bayesian posterior is depicted in the leftmost panels of Figure

8.1, for varying ε (top row) and varying y (bottom row). Straightforward calcula-

tion shows that the expected posterior mean is n
n+1 [θ + ε(y − θ)], which increases

linearly as either y or ε are increased, with the other fixed. This behaviour is also

evident in the leftmost panels of Figure 8.1. The KSD-Bayes posterior is depicted

in the central panels of Figure 8.1. As can be seen, it is far less sensitive to contam-

ination compared to the standard Bayes posterior. Moreover, the variance slightly

increases whenever either ε or y are increased, which is a result of estimating the

weight w. In the rightmost panels of Figure 8.1, we display a robust version of

the KSD-posterior using the weighting function M(x) = (1 + x2)−1/2. This choice

will bound the influence of large values in the dataset, since M(x) vanishes just fast

enough as |x| → ∞ to ensure that the bias-robustness conditions of Theorem 8.3 are

satisfied. The effect is clear from the bottom right panel of Figure 8.1, where even
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(a) θ 7→ |PIF(y = 2.0,θ,Pn)| (b) θ 7→ |PIF(y = 20,θ,Pn)|

Figure 8.2: Posterior influence function for the normal location model.

for y = 20, the KSD-Bayes posterior remains centred very close to the true value

θ = 1. While our theoretical results relate to y and do not guarantee robustness

when ε is increased, the top right panel in Figure 8.1 suggests that the KSD-Bayes

posterior is indeed robust in this regime as well. Figure 8.2 displays the posterior

influence function (8.11) for this normal location model. It reveals that the stan-

dard Bayesian posterior is not bias-robust, since the tails of the posterior are highly

sensitive to the contaminant y. In contrast, the tails of the KSD-Bayes posterior are

insensitive to the contaminant y. This appears to be the case for both weighting

functions, despite only one weighting function satisfying the conditions of Theorem

8.3, which is an indication that our conditions for robustness in the Theorem are

much stricter than required.

8.6.2 Precision Parameters in an Intractable Likelihood Model

Our second experiment is due to Liu et al. (2019), and concerns an exponential

family model p(x|θ) = exp(θ · t(x)− a(θ) + b(x)), where θ ∈ R2 are parameters to

be inferred and x ∈ R5. The model specification is completed with

t(x) = (tanh(x(4)), tanh(x(5))),

b(x) = −0.5
∑5

i=1 x
2
(i) + 0.6x(1)x(2) + 0.2

∑5
i=3 x(1)x(i).

Despite the apparent simplicity of this model, the term a(θ), which determines

the normalization constant, is analytically intractable and exact simulation from

this data-generating model is not straightforward (except for the case where θ =

0). As a consequence, standard Bayesian analysis is not practical without, model-

specific numerical methods—such as cubature rules to approximate the intractable

normalization constant. In sharp contrast, the KSD-Bayes posterior is available in

closed form for this model via Proposition 8.1. Our aim here is to assess robustness of
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Figure 8.3: Standard Bayes posteriors and KSD-Bayes posteriors for the Liu et al.
(2019) model. The true parameter value is θ = 0, while a proportion ε of the data
were contaminated by being shifted by an amount y = (10, 10).

the KSD-Bayes posterior, focusing on the setting where y is fixed and ε is increased,

since this is the regime for which our theoretical results do not hold. A dataset of

size n = 500 is generated from the model Pθ with true parameter θ = (0, 0), so that

Pθ has the form N (0,Σ) and can be sampled from exactly. Each datum xi is, with

probability ε, shifted to xi+ y where y = (10, . . . , 10). The prior on θ is N (0, 102I).

The left column in Figure 8.3 displays the standard Bayes posterior1, which

is sensitive to contamination in the dataset—in much the same way as in the normal

location model of Section 8.6.1. The KSD-Bayes posterior with M(x) = Id is de-

picted in the middle column of Figure 8.3, and is seen to actually be more sensitive

to contamination compared to the standard Bayesian posterior, in the sense that

the mean moves further from 0 as ε is increased. Finally, in the right column of Fig-

ure 8.3 we display a provably robust KSD-Bayes posterior obtained with weighting

1To obtain these results, the intractable normalization constant was approximated using a nu-
merical cubature method. To do this, we recognise that p(x|θ) = N (x; 0,Σ)rθ(x)/Cθ where
rθ(x) = exp(θ1 tanh(x4) + θ2 tanh(x5)). Then Cθ =

∫
rθ(x)dN (x; 0,Σ), which is approximated

using (polynomial order 10) Gauss-Hermite cubature in 2D.
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function

M(x) = diag

(
(1 + x2

(1) + · · ·+ x2
(5))
−1/2, (1 + x2

(1) + x2
(2))
−1/2,

. . . , (1 + x2
(1) + x2

(5))
−1/2

)
,

As in the normal location model, this choice of M(x) ensures the criteria for bias-

robustness in Theorem 8.3 are satisfied. From the figure, we observe that the ro-

bustness guarantee of the Theorem is practically relevant and noticeable—even for

the largest contamination proportion considered (ε = 0.2). We can also see that

the KSD-Bayes posterior variance increases as ε does. At ε = 0, the spread of the

robust KSD-Bayes posterior is almost twice that of the standard posterior, which is

a reflection of the trade-off between robustness and efficiency inherent in the choice

of K (via M).

8.6.3 Robust Nonparametric Density Estimation

Our third experiment concerns density estimation using the kernel exponential fam-

ily, and explores the performance of KSD-Bayes when the dataset is multi-modal.

Multi-modality is well-known to cause certain pathologies for minimum-KSD esti-

mators (see Gorham et al. (Section 5.1 2019) and Wenliang (2020)); and here we

study empirically if these pathologies carry over to the KSD-Bayes posterior. Let h

denote a reference p.d.f. on Rd, and let K̃ : Rd × Rd → R be a reproducing kernel.

The kernel exponential family model relative to K̃ is given by (Canu and Smola,

2006)

p(x|f) ∝ h(x) exp(〈f , K̃(·, x)〉H(K̃)), (8.16)

and parametrised by f , an element of the v-RKHS H(K̃). The normalization con-

stant of (8.16) (if it exists) is typically an intractable function of f . Due to this,

there appears to be no Bayesian (or even generalised Bayesian) treatment of (8.16) in

the literature. Indeed, we are not aware of any computational algorithm that would

easily facilitate Bayesian inference for (8.16)—and so we will be unable to compare

our KSD-Bayes procedure against standard Bayesian analysis. As the theory in this

paper is finite-dimensional, we consider a finite-rank approximation of elements in

H(K̃) of the form f(x) =
∑p

i=1 θ(i)φ(i)(x), with coefficients θ(i) ∈ R and basis func-

tions φ(i) ∈ H(K̃), where we will take θ to be p-dimensional for p = 25. Finite rank

approximations have previously been considered for frequentist learning of kernel

exponential families in (Strathmann et al., 2015; Danica J. Sutherland et al., 2018).
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Figure 8.4: KSD-Bayes posteriors for the kernel exponential family model. A pro-
portion ε of the data (top row) were contaminated.

In our case, the finite rank approximation ensures that any prior we induce on f

via a prior on the coefficients θ(i) will be supported on H(K̃). If one is interested

in a well-defined limit as p → ∞, then one will need to ensure a.s. convergence of

the sum in this limit. If the φi are orthonormal in H(K̃), and if the θ(i) are a priori

independent, then E[‖f‖2H(K̃)
] =

∑p
i=1 E[θ2

(i)] so a sufficient condition, for example,

is E[θ2
(i)] = O(n−1−δ) for some δ > 0.

Our interest is in the performance of KSD-Bayes applied to a multi-modal

dataset. To this end, we consider the galaxy data of Postman et al. (1986); Roeder

(1990), comprising n = 82 velocities in km/sec of galaxies from 6 well-separated

conic sections of a survey of the Corona Borealis. The data were whitened prior to

computation, but results are reported with the original scale restored. For the kernel

exponential family we use h(x) = N (0, 32) and the kernel K̃(x, y) = exp(−(x −
y)2/2), which ensures that (8.16) is normalizable due to Proposition 2 of Wenliang

et al. (2019). For basis functions, we use φ(i+1)(x) = (xi/
√
i!) exp(−x2/2), i =

0, . . . , 24, which are orthonormal in H(K̃) (Steinwart et al., 2006). For our prior, we

let θ(i) ∼ N (0, 102i−1.1), which is weakly informative within the constraint of having

a well-defined p → ∞ limit. Our contamination model replaces a proportion ε of

the dataset with values independently drawn from N (y, 0.12), with y = 5, shown as

black bars in the top row of Figure 8.4.
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The KSD-Bayes posterior with M(x) = 1 is displayed in the second row of

Figure 8.4, with the bottom row presenting a robust KSD-Bayes posterior based

on the weighting function M(x) = (1 + x2)−1/2, which ensures the conditions of

Theorem 8.3 are satisfied. The results we present are for fixed y and increasing ε,

since this regime is not covered by Theorem 8.3. The KSD-Bayes posterior mean is a

uni-modal density, even though multi-modal densities are evident in sampled output.

We attribute this to the insensitivity of KSD to mixture proportions, as discussed

by Gorham et al. (Section 5.1 2019) and Wenliang (2020). Our results indicate that

the robust weighting function reduces sensitivity to contamination in the dataset.

Note in particular how the mass in the central mode of the KSD-Bayes posterior

decreases when ε = 0.2, where the identity weighting function is used. Whether this

insensitivity of KSD to well-separated regions in the dataset is desirable or not will

depend on the application, but in this case it happens to be beneficial.

8.6.4 Network Inference with Exponential Graphical Models

Our final example concerns an exponential graphical model, representing negative

conditional relationships among a collection of random variables W = (W1, . . . ,Wd),

described in Yang et al. (2015, Sec. 2.5). The likelihood function is

pW |θ(w|θ) ∝ exp
(
−
∑
i

θ(i)w(i) −
∑
i<j

θ(i,j)w(i)w(j)

)
, (8.17)

where w = (w(1), w(2), . . . w(d)) ∈ (0,∞)d and θ(i) > 0,θ(i,j) ≥ 0. The total num-

ber of parameters is p = d(d + 1)/2. Simulation from this model is challenging

and the normalization constant is an intractable integral, so in what follows a

standard Bayesian analysis is not attempted. Our aim is to fit (8.17) to a pro-

tein kinase dataset, mimicking an experiment presented by Yu et al. (2016) in the

score-matching context. This dataset, originating in Sachs et al. (2005), consists of

quantitative measurements of d = 11 phosphorylated proteins and phospholipids,

simultaneously measured from single cells using a fluorescence-activated cell sorter,

so the parameter θ is 66-dimensional. Nine stimulatory or inhibitory interventional

conditions were combined to give a total of 7, 466 cells in the dataset. The data were

square-root transformed and samples containing values greater than 10 standard de-

viations from their mean were judged to be bona fide outliers and were removed.

The remaining dataset of size n = 7, 449 was normalized to have unit standard de-

viation. In most cases the measurement reflects the activation state of the kinases,

and scientific interest lies in the mechanisms that underpin their interaction. Note

that there is no scientific basis to expect only negative conditional dependencies
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in the dataset; in this sense the model is likely to be misspecified. Our interest

is in assessing the robustness properties of KSD-Bayes only, and no scientific con-

clusions will be drawn using this model. These mechanisms are often summarised

as a protein signalling network, whose nodes are the d proteins and whose edges

correspond to the pairs of proteins that interact. An important statistical challenge

is to estimate a protein signalling network from such a dataset (Oates, 2013). How-

ever, it is known that existing approaches to network inference are non-robust in a

very general sense, with the network inference community regularly highlighting the

different conclusions drawn by different estimators applied to an identical dataset

(Hill et al., 2016). Our interest is in determining whether networks inferred with

KSD-Bayes posteriors are robust.

For our experiment, the variables w(i) were re-parametrised as x(i) := log(w(i)),

in order that they are unconstrained and Pθ ∈ PS(Rd). For the contamination

model, a proportion ε of the data were replaced with the fixed value y = (10, . . . , 10) ∈
Rd. Parameters were a priori independent with θ(i) ∼ NT(0, 1), θ(i,j) ∼ NT(0, 1),

where NT is the Gaussian distribution truncated to the positive orthant of Rp. Note

that even though it is not a full normal, this prior is conjugate to the likelihood,

as explained in Section 8.3, and allows the KSD-Bayes posterior to be computed

in closed form. KSD-Bayes posteriors are produced both without and with the ex-

ponential weighting function [M(x)](i,i) = exp(−x(i)), the latter aiming to reduce

sensitivity to large values in the dataset and coinciding with the identity weighting

function at x = 0. From these, protein signalling networks were estimated using

the s most significant edges, defined as the s largest values of θ̄(i,j)/σ(i,j), where

the KSD-Bayes posterior marginal for θ(i,j) is NT(θ̄(i,j), σ
2
(i,j)). Results are shown in

Figure 8.5; to optimise visualisation we report results for s = 5, though for other

values of s similar conclusions hold. It is interesting to observe little agreement

between the networks returned when the identity weighting function is used, which

may reflect the difficulty of the network inference task. Reduced sensitivity to ε

was observed when the exponential weighting function was used. In Figure 8.5 we

report the number of edges that are consistent with the network reported in Sachs

et al. (2005, Fig. 3A); the use of the exponential weighting function resulted in more

edges being consistent with this benchmark network.
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Figure 8.5: Exponential graphical model; estimated protein signalling networks as
a function of the proportion ε of contamination in the dataset.
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Part IV

Discussion & Appendix
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Chapter 9

Discussion

In this last part of the thesis, we will first review the thesis’ contributions to the

field of optimization-centric posteriors and generalized posteriors more broadly in

Section 9.1. In Section 9.2, we will explain some of the most important problems

that remain.

9.1 Contributions of this thesis

Various generalizations of Bayesian posteriors have been developed to address the

shortcomings of Bayes’ Rule in the context of modern large-scale applications. This

thesis contributes to the development of this branch of research in several ways:

conceptually, theoretically, and methodologically. More precisely,

• Chapter 1 conceptually unified and generalized existing approaches to Bayes-

like posteriors via an optimization-centric view on Bayesian methods that we

call the Rule of Three (RoT). As its name suggests, the RoT allowed us to spec-

ify a belief distribution by making three independent choices: a loss, a prior

regularizer, and a space over which to perform optimization. Intriguingly,

each of these choices is suitable to address one of the three main assumptions

associated with Bayesian inference that are often inappropriate in practice:

The assumption of unlimited computational power, the assumption of a cor-

rectly specified likelihood model, and the assumption of a well-specified (or

’good’) prior. The optimization-centric view on generalized Bayesian methods

as expressed via the RoT is particularly appealing because it is axiomatically

justified; and because it seamlessly connects both previous work on pseudo-

and Gibbs-posteriors as well as that on variational methods.

• Chapter 2 answers fundamental questions about the class of generalized pos-
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teriors introduced in Chapter 1. In particular, we show that under very mild

regularity conditions, posteriors specified via the minimization problem un-

derlying the RoT exist. Under slightly stronger conditions, the posterior is

also unique. Beyond that, we also studied the dual form associated with the

RoT. This provided invaluable insights into generalized Bayes posteriors, and

enabled us to interpret them in a new light. Specifically, it allowed us to view

them as adversarially robust procedures: in its dual form, the RoT took the

form of an optimization problem that can be interpreted as a game. In this

game, the statistician seeks to minimize a loss. Meanwhile, an adversary is

allowed to perturb this loss. Crucially, the extent to which the adversary may

perturb the loss depends on the choice of prior regularizer and the prior belief:

together, they form a cost function that penalizes the adversary for changing

the loss—with higher penalties in regions of the parameter space with large

prior probability.

• Chapter 3 studied conditions under which the RoT produces posteriors that are

consistent in the frequentist sense. While showing frequentist consistency for

Gibbs distributions (or approximations thereof) is usually straightforward due

to them being available analytically—at least up to a normalization constant—

this is not true for general RoT posteriors. Notably, RoT posteriors are gen-

erally not available in any kind of closed form; and we therefore had to rely

on more ’heavy-handed’ tools from functional and variational analysis such as

Γ-convergence. Accordingly, the proofs of this chapter really do not build on

any previous work within the statistics community; and so none of the proof

techniques are standard.

• Chapters 4–6 investigated Generalized Variational Inference (GVI)—one of the

main methodological advances stemming from the development of the RoT. In

a nutshell, GVI posteriors are the type of RoT posterior that is based on opti-

mizing over a parameterized set of distributions; and can therefore always be

(approximately) computed in practice. Chapter 4 compared GVI posteriors to

standard variational inference (VI) posteriors; and illuminated how to adapt

stochastic approximation techniques commonly used for VI for the computa-

tion of GVI posteriors. Chapter 5 investigated the effects of variations in the

prior regularizer on the posterior. While there were a small number of limited

theoretical results, most of our insights derived from empirical comparisons

and confirmed that—unsurprisingly—more robust prior regularization yields

posterior beliefs that are less susceptible to ill-informed prior beliefs. This was
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shown for Bayesian mixture model, as well as for a Bayesian Neural Network—

a black-box Bayesian Machine Learning model whose priors will invariably be

ill-specified in practice. Lastly, Chapter 6 explored different robust model-

based losses amenable to the GVI setting. The impact of choosing robust

losses was then studied for the Deep Gaussian Process (DGP)—another black

box Machine Learning model, whose likelihood should be assumed to be mis-

specified in most cases. The results showed that there is tangible merit to using

robust losses; and the predictive performance of robust DGPs was consistently

improved relative to the standard version.

• Chapter 7 applied the methodological toolkit developed in previous chapters

to the setting of Bayesian On-line Changepoint Detection (BOCPD). On-line

inference problems are particularly difficult to model—even more so in the

presence of changepoints—and so it stands to reason that likelihoods in these

algorithms will typically be misspecified. In fact, even in the canonical well-log

data set, it had been common practice in previous work on on-line methods to

pre-process this data set to remove outliers to avoid pathologies. We showed

how RoT posteriors of the GVI families (based on robust losses derived from

the β-divergence) could be used within BOCPD to eradicate these pathologies,

and produce more robust and reliable statistical methods for BOCPD.

• Lastly, Chapter 8 used the versatility of the RoT to provide robustness and

simplify computation in the context of intractable likelihood models. In par-

ticular, we showed that a loss based on the Kernel-Stein Discrepancy (KSD)

provided not only robust posterior inferences, but also a significant computa-

tional advantage over the negative log likelihood loss associated with standard

Bayesian inference: a KSD-Bayes posterior converts a doubly intractable stan-

dard Bayesian posterior into a much simpler problem. In fact, it even yields

closed form posteriors in a range of settings that are of practical interest. While

we studied this empirically, we also derived a number of theoretical results

pertaining to the KSD-Bayes posterior’s robustness as well as its asymptotic

behaviour.

9.2 Open problems

While this thesis made several fundamental contributions to the field of generalized

Bayesian methods, a number of key challenges remain for this collection of ideas,

the most important of which we discuss below.
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• Choosing between posteriors: While generalizing Bayesian inference can

solve many problems, it raises a new problem. In particular, once Bayes’ rule

is abandoned as the guiding principle for performing posterior inferences, it

is unclear which of the many possible alternatives one ought to choose. Note

that this is not a model selection problem: the model selection problem re-

volves around the statistical model to be chosen for the data. Once this model

is chosen and the prior is specified, the standard Bayes posterior follows with-

out further any further decision. In contrast, in the generalized framework

set out in this thesis, we do not even need a statistical model—a general loss

function that ties the data to a parameter of interest suffices. Even in the

case where we want to perform likelihood-based inference however, there are

innumerable loss functions that connect a given statistical model to the data.

In addition, we also have to specify a space over which to optimize the prob-

lem; and a divergence that dictates the influence the prior is allowed to have

on the posterior. Throughout this thesis, we have motivated the choice of

posterior through reasonable arguments—the loss should usually address con-

cerns about model misspecification, the regularizer should be used to discount

poorly-specified priors, and the space should be chosen in accordance with our

computational budget—but we have not provided a general theoretically mo-

tivated recipe for making these choices. Instead, the choices throughout have

been subjective. In some ways, this is somewhat dissatisfying—and certainly

a missing ingredient to make the RoT a fully reliable practical tool.

• Theory of Robustness: A second challenge relates to quantification of ro-

bustness. While we can quantify robustness whenever the RoT posterior has

an analytically available form (at least up to a normalization constant) as for

instance in the theoretical analysis of Chapter 8, the standard methods for an-

alyzing robustness are not applicable to general RoT posteriors without closed

forms.1 To advance theory of robustness in RoT posteriors, it will be necessary

to overcome this hurdle and find tools of analysis that are applicable directly

to optimization problems.

• Computation: Most RoT posteriors cannot be computed. In fact, apart

from Gibbs (or pseudo-) posteriors or GVI posteriors, it is unclear how RoT

posteriors should be computed in practice (apart from some naive discretiza-

tion techniques that would be computationally prohibitive). To ensure more

1The only exception to this is the family of VI posteriors: since these posteriors can be interpreted
as approximations of the standard Bayes posterior, we can sometimes prove that robustness of a
posterior covers over to its approximation.
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wide-spread practical use of the RoT, we will have to find ways of computing a

wider class of optimization-centric posteriors. The first steps in this direction

have arguably already been taken by Alquier (2021), which managed to derive

the form of RoT posteriors that were prior-regularized with f -divergences.

Since the work on optimization-centric posteriors has just begun, many other

open problems remain. This thesis has demonstrated that it is worth tackling these

significant challenges: faced with the challenges of finding suitable priors, likeli-

hoods, and methods of computation, it is of significant practical and theoretical

merit to go beyond Bayes’ Rule.
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Appendix A

Additional Details

A.1 Γ-convergence

The following definition is adapted from Dal Maso (2012), and holds on general

topological spaces X.

Definition A.1 (Γ-convergence). We say that a function sequence {Fn}n∈N with

sequence members Fn : X → R Γ-converges to a function F : X → R if the Γ-lower

limit l : X → R and the Γ-upper limit u : X → R coincide. Here,

l(x) = sup
U∈N(x)

lim inf
n→∞

inf
y∈U

Fn(y)

u(x) = sup
U∈N(x)

lim sup
n→∞

inf
y∈U

Fn(y),

where N(x) is the set of all open neighbourhoods in X containing x ∈ X.

A.2 Additional BNN Experiments

While the most interesting findings of our numerical studies can be found in the

main text, here we give a brief overview over two more sets of experiments for

further insights into BNNs. The first set consists in three more data sets with the

same settings as used in the main text. While these findings do not change the overall

picture, they do require more careful analysis and dissemination. The second set of

results investigates the interaction between robustifying inference relative to the loss

with robustifying it relative to the prior. The results suggest a clear relationship for

predictive performance as measured by the root mean square error: If robust losses

are used, the KLD generally performs better. Moreover, the combination of robust

loss and D = KLD outperforms VI and the investigated DVI methods on all data
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Figure A.1: Top row depicts RMSE, bottom row the NLL across a range of data sets
using BNNs. Dots correspond to means, whiskers the standard errors. The further
to the left, the better the predictive performance. For the depicted selection of data
sets, no common pattern exists for the performance differences between standard
VI, DVI and GVI.

sets studied. The relationship is less clear for the predictive negative log likelihood,

both between loss and prior regularizer as well as between the performance to be

expected under GVI, VI and DVI.

First set of additional experiments (Figure A.1)

Figure A.1 provides the predictive outcomes on three more data sets using the exact

same settings and experimental setup as described in the main text. The findings

generally reinforce the findings of the main text. First, while the GVI methods with

α > 1 still perform as good as or better than standard VI on the kin8mn data set,

DVI methods show a clear performance gain relative to either of the two. Crucially,

it is not clear what leads to this improvement gain, though the fact that the best-

performing DVI method is the one recovering EP (D(α)
A for α = 0) suggests that

there is tangible merit in producing mass-covering approximations to the posterior

of θ on this data set. While the deployment of DVI methods looks tempting on

the kin8mn data set, the results on the naval data set are a reminder that the

behaviour of these methods is in many ways unpredictable. Moreover, it shows that

the risks we identified in Example 4.1 readily translate into real world applications:

By using DVI methods, we may accidentally conflate the role of the loss and the role

of uncertainty quantification. If the loss is well-suited for the data at hand—as the
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Figure A.2: Top row depicts RMSE, bottom row the NLL across a range of data sets
using BNNs. Dots correspond to means, whiskers the standard errors. The further
to the left, the better the predictive performance. For the depicted selection of data
sets, patterns exists for the interplay between the loss and prior regularizer for GVI.

RMSE panel suggests it is in the naval case—the mass-covering behaviour of DVI

methods can be extremely detrimental. Lastly, the wine data set provides a very

similar picture to the results in Figure 5.11: Varying α introduces a banana-shaped

curve for the GVI methods. As it so happens, the ideal choice of α on the wine

data set appears to be around α = 1 (i.e., standard VI). Taking into account the

predictive uncertainty in form of the whiskers, it is doubtful if any of the methods

is dominating another one on wine. Presumably, the reason for this is that the true

posterior is relatively well approximated with the mean field normal family, yielding

very similar results across all settings.

Second set of additional experiments (Figure A.2)

In a second set of additional experiments, we varied the loss function to be a robust

scoring rule. Specifically, we used scoring rules based on the β-divergence and

the γ-divergence. See (6.1) and (6.2) for the definition and more detail on these

robust scoring rules. As for the DGP examples, we choose values of the scoring rule

that are close to the log score, but sufficiently far to induce robust behaviour. All

settings for optimization, initialization as well as the code are the same as for the

results provided in the main text. Figure A.2 shows the results: For the RMSE,

the results are unambiguous: Combining a robust scoring rule with the standard
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prior regularizer D = KLD appears to be the winning combination across all four

data sets. The picture is less clear for the NLL: Relative to both VI and DVI, the

performance gains depend on the data set. Even within the class of GVI posteriors,

it is data-set dependent which prior regularizer should be chosen: For example,

it is clearly beneficial to choose the D
(α)
AR as prior regularizer in the boston and

concrete data sets, but the opposite is true on the yacht data set. Above all other

things, this highlights the need for a good selection strategy of GVI hyperparameters:

Oftentimes, intuitions about the correct prior regularizer or the appropriate loss may

be incorrect.

A.3 Background on kernel methods

We provide some necessary background on matrix-valued kernels that explains them

and is used in the proofs of Appendix C.3. Our main references are Carmeli et al.

(2006); Caponnetto et al. (2008); Carmeli et al. (2010). For simplicity we start with

the scalar-valued case and define a scalar-valued kernel:

Definition A.2 (Scalar-valued kernel). A function k : X × X → R is called a

(scalar-valued) kernel if

1. k is symmetric; i.e. k(x, x′) = k(x′, x) for all x, x′ ∈ X ,

2. k is positive semi-definite; i.e.
∑n

i=1

∑n
j=1 cicjk(xi, xj) ≥ 0 for all n ∈ N,

c1, . . . , cn ∈ R and all x1, . . . , xn ∈ X .

To every scalar-valued kernel is an associated Hilbert space H of functions

h : X → R, called the reproducing kernel Hilbert space (RKHS) of the kernel.

Definition A.3 (Reproducing kernel Hilbert space). A Hilbert space H is said to

be reproduced by a kernel k : X × X → R if

1. k(x, ·) ∈ H for all x ∈ X ,

2. 〈h, k(x, ·)〉H = h(x) for all x ∈ X and h ∈ H.

The last item is called the reproducing property of k in H.

It can be shown that, for every kernel k, there exists a unique Hilbert spaceH
reproduced by k (Paulsen and Raghupathi, 2016, Theorem 2.14). These definitions

can be generalised in the form of a matrix-valued kernel K : X × X → Rm×m.

Definition A.4 (Matrix-valued kernel). A function K : X × X → Rm×m, m > 1,

is called a (matrix-valued) kernel if
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1. K is symmetric; i.e. K(x, x′) = K(x′, x) for all x, x′ ∈ X ,

2. k is positive semi-definite; i.e.
∑n

i=1

∑n
j=1 ci · k(xi, xj)cj ≥ 0 for all n ∈ N,

c1, . . . , cn ∈ Rm and all x1, . . . , xn ∈ X .

As a direct generalisation of the scalar-valued case, there exists a uniquely

associated Hilbert space H of functions h : X → Rm to every matrix-valued kernel

K : X × X → Rm×m. To define this Hilbert space, whose inner product we denote

〈·, ·〉H, some additional notation is required: Let F be a Rm×m-valued function and

let Fi,− denote the vector-valued function Fi,− : X → Rm defined by the the i-th

row of F . Similarly, let G be a Rm×m-valued function and let G−,j denote the

vector-valued function G−,j : X → Rm defined by the j-th column of G. Formally

define the symbols 〈F, g〉H, 〈f,G〉H and 〈F,G〉H as follows

〈F, g〉H :=


〈F1,−, g〉H

...

〈Fm,−, g〉H

 ∈ Rm, 〈f,G〉H :=


〈f,G−,1〉H

...

〈f,G−,m〉H

 ∈ Rm,

〈F,G〉H :=


〈F1,−, G−,1〉H · · · 〈F1,−, G−,m〉H

...
...

〈Fm,−, G−,1〉H · · · 〈Fm,−, G−,m〉H

 ∈ Rm×m,

where these are to be interpreted as compound symbols only (i.e. we are not at-

tempting to define an inner product on matrix-valued functions). Then, the gener-

alisation of the reproducing property (see Definition A.3) to a matrix-valued kernel

K is

h(x) = 〈h,K(x, ·)〉H =


〈h,K−,1(x, ·)〉H

...

〈h,K−,m(x, ·)〉H


for all x ∈ X and h ∈ H (Carmeli et al., 2010). The generalisation of the symmetry

property (see Definition A.3) is straight-forward; K(x, x′) = K(x′, x) for all x, x′ ∈
X . A Hilbert space H for which these two properties are satisfied is called a vector-

valued RKHS that we say is reproduced by the matrix-valued kernel K. Matrix-

valued kernels and their associated vector-valued RKHS have recently been exploited

in the context of Stein’s method (e.g. Barp et al., 2019; Wang et al., 2019a).
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A.4 Additional Details on Experiments for Robust Change-

point Detection

For all experiment, constrained Limited Memory BroydenFletcherGoldfarbShannon

is used for the full optimization step, where the constraints are ân > 1, b̂n > 1. We

use Python’s scipy.optimize wrapper, which calls a Fortran implementation. We

also tested whether inference is sensitive to different initializations of βm and found

that it is fairly stable as long as βm is chosen reasonably. For example, for the Air

Pollution data, we could recover the same changepoint (±5 days) for initializations

of βm ranging from 0.005 up to 0.1. All experiments were performed on a 2017

MacBook Pro with 16 GB 2133 MHz LPDDR3 and 3.1 GHz Intel Core i7.

A.4.1 Well-log data

Hyperparameters: We set the hyperparameters for standard Bayesian

On-line Changepoint Detection slightly differently, the reason being that due to the

robustness guarantee of Theorem 1, we can use much less informative priors with

the robust version than we can with the standard version: If priors are too flat,

the standard version declares far too many changepoints. Thus, for the standard

version, we use a constant CP prior (hazard) H(rt = rt−1 + 1|rt−1) = 0.01, a0 = 1,

b0 = 104, Σ0 = 0.25, µ0 = 1.15 · 104, while for the robust version we can use a

less informative prior by instead setting b0 = 107. By virtue of our initialization

procedure for βp, this implies setting βp,0 ≈ 0.05. To start out close to the KLD, we

initialize βrld,0 = 0.0001.

Inferential procedure: For the robust version, we set W = 360, B = 25,

b = 10, m = 20, K = 1. For both versions, only the 50 most likely run-lengths are

kept. For the robust version, the average processing time was 0.487 per observation.

A.4.2 Air Pollution data

Preprocessing & Model Setup: The air pollution data is observed every 15

minutes across 29 stations for 365 days. We average the 96 observations made over

24 hours. This is done to move the observed data closer to a normal distribution, as

the measurements have significant daily volatility variations. To account for weekly

cycles, we also calculate for each station the mean for each weekday and subtract

it from the raw data.. Yearly seasonality is not accounted for. Afterwards, the

data is normalized station-wise. This is done only for numerical stability, because
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the internal mechanisms of the used VAR models perform matrix operations (QR-

decompositions and matrix multiplications in particular) that can adversely affect

numerical stability for observations with large absolute value. Fig. A.3 shows some

of the station’s data after these preprocessing steps have been taken.

0
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Figure A.3: Some of the stations after preprocessing steps. x-axis gives NOX level,
y-axis the day.

The autoregressive models and spatially structured vector autoregressive

models (VARs) are chosen to have lag lengths 1, 2, 3. These short lag lengths are

chosen to explicitly disadvantage the robust model universe: The non-robust run we

compare against uses more than 20 models, with lag lengths 1, 5, 6, 7, meaning that

it is much more expressive and should be able to cope with outliers better. In spite

of this, it not only declares more CPs, but also does worse than the robust version

in terms of predictive performance. For both the robust and non-robust model, two

spatially structured VARs are included as in Knoblauch and Damoulas (2018).

Hyperparameters: We set H(rt = rt−1+1|rt−1) = 0.001, a0 = 1, b0 = 25,

µ0 = 0, Σ0 = I · 20, which yields initialization βm ≈ 0.005, βrlm = 0.1. The non-

robust results are directly taken from Knoblauch and Damoulas (2018) and can be

replicated running the code available from

https://github.com/alan-turing-institute/bocpdms/

Inferential procedure: We set W = 300, m = 50, B = 20 and b = 10,

K = 25 and retain the 50 most likely run-lengths. Processing times are more volatile
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than for the well-log because the full optimization procedure is significantly more

expensive to perform. Most observations take significantly less than 20 seconds

to process, but some take over a minute (depending on how many of the retained

run-lengths are divisible by m at each time point).

A.4.3 Optimizing β

Lastly, we investigate the trajectories for β as it is being optimized. For all trajec-

tories, a bounded predictive absolute loss was used with threshold τ , i.e. L(x) =

max{|x|, τ}. For βrld, τ = 5/T (where T is the length of the time series) while for

βp, τ = 0.1. The results are not sensitive to these thresholds, and they are picked

with the intent that (1) a single observation should not affect βp by more than 0.1

and (2) that overall, βrld should not change by more than 5 in absolute magnitude.

As the initialization procedure for βp works very well for predictive performance,

the on-line optimization never even comes close to making a step with size τ . The

picture is rather different for βrld, which reaches τ rather often. We note that this

is because the estimated gradients for βrld can be very extreme, which is why the

implementation averages 50 consecutive gradients before performing a step. Over-

all, we note that for the well log data whose trajectories are depicted in Fig. A.4,

the degrees of robustness do not change much relative to their starting points at

βp = 0.05 and βrld = 0.001. In particular, the absolute change over more than 4, 000

observations is < 0.002 for βp and < 0.015 for βrld. Step sizes are 1/t at time t.

For the Air Pollution Data, the story is slightly different: Here, βp does not

change after the first iteration, where it jumps from 0.005 directly to 10−10. While

this seems odd, it is mainly due to the fact that for numerical stability reasons1

, one needs to ensure that βp > ε for some ε > 0; and in our implementation,

ε = 10−10. The interpretation of the trace graph is thus that the optimization

continuously suggests less robust values for βp, but that we cannot admit them due

to numerical stability. The downward trend also holds for βrld, which is big enough

to not endanger numerical stability and hence can drift downwards.

Fig. A.4 also shows that the optimization technique used for β needs further

investigation and research. For starters, the outcomes suggest that a second order

method could yield better results than using a first-order SGD technique. In the

future, we would like to explore this in greater detail and also explore more advanced

optimization methods like line search or trust region optimization methods for this

1In particular, working with the D
(β)
B implies that one takes the exponential of a density, i.e.

ef
β

. So even working on a log scale now means working with the densities fβ directly. It should
be clear that these quantities become numerically unstable for β too large or too small.
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Figure A.4: β trajectories for the well-log data. For βrld, steps are only taken every
50 observations to average gradient noise

problem.
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Appendix B

Technical Derivations

B.1 Link to the Predictive Information Bottleneck

One can rewrite eq. (1.10) as an unconstrained optimization problem by a well-

known argument. For a scalar β = β(I0,x1:n) derived as in Theorem 1 of Tishby

et al. (2000), we have that

q∗(θ|x1:n) = arg min
p(θ|x1:n)∈ΠPIB

{−I(θ,xn+1:∞) + (1− β)I(θ,x1:n)} .

But we can do even better: by noting that any distribution on θ is obtained

by compressing (i.e. training on) x1:n only, we also know that θ and xn+1:∞

are independent once conditioned on x1:n. This means that p(θ,xn+1:∞|x1:n) =

p(θ|x1:n)p(xn+1:∞|x1:n), so that I(θ,xn+1:∞|x1:n) = 0. By elementary operations

(see Alemi, 2019), this implies that we can rewrite

I(θ,xn+1:∞) = I(θ,x1:n)− I(θ,x1:n|xn+1:∞),

which we can plug into the unconstrained form to find that

q∗(θ|x1:n) = arg min
p(θ|x1:n)∈ΠPIB

{I(θ,x1:n|xn+1:∞)− βI(θ,x1:n)} . (B.1)

Though this may not be immediately obvious, eq. (B.1) has a close relationship

with the RoT. To see how this conclusion can be reached, first note that

βI(θ,x1:n) = βEp(θ|x1:n)p(x1:n)

[
log

(
p(θ|x1:n)���

�p(x1:n)

p(θ)���
�p(x1:n)

)]
= βEp(x1:n) [KLD (p(θ|x1:n)‖p(θ))] .

=: DPIB(p(θ|x1:n)‖πPIB(θ)),
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where we have defined the marginal πPIB(θ) =
∫
Xn p(θ|x1:n)p(x1:n)dx1:n. Clearly,

DPIB(p(θ|x1:n)‖πPIB(θ)) ≥ 0 and DPIB(p(θ|x1:n)‖πPIB(θ)) = 0 ⇐⇒ p(θ|x1:n) =

πPIB(θ). Notice that unlike in the Bayesian paradigm, the prior πPIB here is not

a free variable. Instead, it gives the distribution over θ which is obtained over

all possible configurations of x1:n, which makes this prior conceptually close to a

bootstrap distribution.

Similarly, we can rewrite the first term as a loss function by noting that

I(θ,x1:n|xn+1:∞)

= Ep(xn+1:∞) [KLD (p(θ,x1:n|xn+1:∞)‖p(θ|xn+1:∞)p(x1:n|xn+1:∞))]

= Ep(xn+1:∞)

[
KLD

(
p(θ|x1:n)((((

((((p(x1:n|xn+1:∞)‖p(θ|xn+1:∞)((((
((((p(x1:n|xn+1:∞)

)]
= Ep(θ|x1:n)

[
Ep(x1:n) [log (p(θ|x1:n))]− Ep(xn+1:∞) [log p(θ|xn+1:∞)]︸ ︷︷ ︸

=Ln,PIB(p(θ|x1:n))

]
.

While this loss is not computable in practice, it has a clear interpretation. Specifi-

cally, it jointly minimizes (i) the information that θ loses on future data xn+1:∞ and

(ii) the difference between the information that θ loses on x1:n versus xn+1:∞. The

loss Ln,PIB has two properties that set it apart from the losses we have considered

thus far: first of, Ln,PIB does not depend on a sample x1:n (but the distributions of the

underlying random variables x1:n,xn+1:∞). Second, Ln,PIB is not summable. Neither

of these properties affect the axiomatic development in Section ??, since any empty

sample is a finite sample and because summability was imposed for presentational

purposes only.

Putting everything together, we can rewrite the PIB as

q∗(θ|x1:n) = arg min
q∈ΠPIB

{Eq [Ln,PIB(q)] +DPIB(q‖πPIB)} .

B.2 Latent Variable Models & Variational Autoencoders

While we have thus far stated the entire development in terms of a single global

latent variable θ, nothing stops us from extending the presented ideas to local latent

variables. The reason for this is that none of our Axioms prohibit Θ or Π to depend

on n or indeed x1:n. In other words, we can seamlessly transfer everything we

considered thus far to the context of inference on local latent variables z1:n ∈ Zn
by taking Θ = Θ(n) = Zn.

To make this logic more tangible, we will explain how Variational Autoen-

coders (VAEs) (Kingma and Welling, 2013) can be recast in the RoT form. VAEs

224



use local latent variables, in our notation θ = θ1:n, to encode lower dimensional

representations of observations x1:n via the global parameter κg. Simultaneously,

they seek to probabilistically decode the latent variables back to the observation

space via the global decoder model with parameters ζ. This involves an optimisa-

tion problem over a set of distributions for the latent variables. The corresponding

variational family is

Πx1:n =

{
q(θ|κg) =

n∏
i=1

q(θi|κi) so that q(θi|κi) = N (θi;µ(κg, xi), σ(κg, xi)

}
,

where the parameters κi = (κg, xi) consist of a fixed local component observation

xi as well as the global parameter κg that is shared to be optimized over. Here,

κg will define the weights of a neural network indexing a probabilistic model. The

optimization problem underlying a VAE is now given by

arg min
ζ,q∈Πx1:n

{
n∑
i=1

Eq(θi|κi) [− log pζ(xi|θi)] +

n∑
i=1

KLD (q(θi|κi)‖π(θi))

}
.

where
∑n

i=1 Eq(θi|κi) [− log pζ(xi|θi)] minimises the expected reconstruction error of

decoding the probabilistic encoding and the KLD term regularises this encoding to

improve the model’s capacity to generate realistic pseudo-observations. Now simply

note that for the fully factorized prior π(θ) =
∏n
i=1 π(θi), one can rewrite the above

as

arg min
ζ,q∈Πx1:n

{
Eq(θ|κg)

[
n∑
i=1

− log pζ(xi|θi)
]

+ KLD (q(θ|κg)‖π(θ))

}
, (B.2)

which is a RoT form with an added optimization over the hyperparameter ζ.1 An

important distinction between this example and many of the others in Table 1.1

is that for VAEs, the variational distributions are introduced in order to regularise

the latent space rather than to approximate an underlying Bayesian posterior. As

a result, the VAE objective exists solely as a means to generate desirable generative

distributions for a particular inference tasks.

1Optimizing over hyperparameters in variational objectives is very common, and our experiments
in Chapter 5 make use of this technique, too. While optimizing over hyperparameters is strictly
speaking not part of the RoT definition, we treat and discuss objectives of this kind essentially as
members of the RoT.
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B.3 Derivations for Duality Examples

B.3.1 Proof of Example 2.3

Note that when we pick D as an f -divergence, there is a standard result we can

recall in the following lemma.

Lemma B.1. For any f -divergence D based on the lower-semicontinuous convex

function f : R → (−∞,∞] with f(1) = 0 so that Dπ(·) = D(·‖π), and h ∈ Fb(Θ),

it holds that

D?
π(h) = inf

b∈R
{Eπ[f?(h− b)] + b} , (B.3)

where f?(t) = supt′ {tt′ − f(t′)} is the convex conjugate.

A proof of this result can be found in Equation (22) of (Liu and Chaudhuri,

2018). Using this, we can now prove the example for the Kullback-Leibler and χ2

divergences.

B.3.2 Proof of Example 2.2

Noting that f?(t) = exp(t− 1), the inner problem revolving around b can easily be

solved:

inf
b∈R
{Eπ[exp(h− b)] + b} = inf

b∈R
{exp(−b) · Eπ[exph] + b}

= logEπ[exph]

B.3.3 Proof of Example 2.4

In this case we have f?(t) = t + t2

4 and in particular (w−1f)?(t) = t + t2

4w−1 . The

infimum problem, similar to the KLD case becomes easily tractable:

inf
b∈R

{
Eπ[h] +

1

4w−1
Eπ
[
(h− b)2

]}
= Eπ[h] +

1

4w−1
inf
b∈R

Eπ
[
(h− b)2

]
= Eπ[h] +

1

4w−1
Varπ[h]

B.3.4 Proof of Example 2.5

For this case, we just invoke (Husain, 2020, Lemma 5); which in combination with

our main result yields the desired result.
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B.4 Proof of Proposition 4.2

Proof. Proposition 4.2 considers the following forms of the prior and likelihood

π(θ|κ0) = h(θ) exp
{
η(κ0)TT (θ)−A(η(κ0))

}
q(θ|κ) = h(θ) exp

{
η(κ)TT (θ)−A(η(κ))

}
p(x|θ) = h(θ) exp(g(x)TT (θ)−B(x)),

whereA(η(κ)) = log
∫
h(θ) exp

{
η(κ)TT (θ))

}
dθ and h(θ) = 1∫

exp(g(x)TT (θ)−B(x))dx
.

The GVI objective function in this scenario is

OGVI(κ) = Eq(θ|κ)

[
n∑
i=1

`
(γ)
G (θ,xi)

]
+ KLD(q(θ|κ)||q(θ|κ0))

=

n∑
i=1

∫
`
(γ)
G (θ,xi)︸ ︷︷ ︸
C1(κ,θ,xi)

q(θ|κ)dθ

︸ ︷︷ ︸
C2(κ,xi)

+KLD(q(θ|κ)||π(θ|κ0))︸ ︷︷ ︸
C3(κ,κ0)

.

This decomposition contains three terms that we need to check are closed forms of

κ. Firstly

C1(κ,θ,xi) = `
(γ)
G (xi,θ) = − 1

γ − 1
p(xi;θ)γ−1 γ[∫

p(z;θ)γdz
] γ−1

γ

;

so that in order for this to be a closed form function of κ, θ, and xi, we require that

I(γ)(θ) =

∫
p(z|θ)γdz =

∫
h(θ)γ exp(γg(z)TT (θ)− γB(z))dz,

where the theorem statement ensures that I(γ)(θ) is a closed form function of θ.

Next, consider that

C2(κ,xi)

= − γ

γ − 1

∫
h(θ)γ−1 exp((γ − 1)g(xi)

TT (θ)− (γ − 1)B(xi))
1[

h(θ)γI(γ)(θ)
] γ−1

γ

q(θ|κ)dθ

= − γ

γ − 1

exp ((1− γ)B(xi) +A (η(κ) + (γ − 1)g(xi)))

exp (A(η(κ)))
Eq(θ|(η(κ)+(γ−1)g(xi)))

[
I(γ)(θ)

1−γ
γ

]
,

where the theorem statement ensures that (η(κn) + (γ − 1)g(xi)) ∈ N for all xi and

that F2(κ∗) = Eq(θ|κ∗)
[
I(γ)(θ)

1−γ
γ

]
is closed form function of κ∗ for all κ∗ ∈ N .
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Lastly

C3(κ, κ0) =

∫
h(θ) exp

{
η(κ)TT (θ)−A(η(κ))

}
log

h(θ) exp
{
η(κ)TT (θ)−A(η(κ))

}
h(θ) exp {η(κ0)TT (θ)−A(η(κ0))}dθ

= A(η(κ0))−A(η(κ)) + (η(κ)− η(κ0))T Eq(θ|κ) [T (θ)] ,

where the statement ensures that F1(κ∗) = Eq(θ|κ∗) [T (θ)] is a closed form function

of κ∗ for all κ∗ ∈ N .

B.5 Closed forms for divergences & proof of Proposi-

tion 4.1

This section proves various closed forms for the prior regularizers in the GVI problem

with the D
(α)
A , D(α)

AR, D(β)
B , and D

(γ)
G . We do so by proving conditions for closed forms

of the αβγ-divergence (D(α,β,r)
G ), recovering D

(α)
A , D(α)

AR, D(β)
B , and D

(γ)
G as special cases.

Note that the special case of these results for the D
(α)
AR has been derived before (see

Gil et al., 2013; Gil, 2011; Liese and Vajda, 1987). Unlike previous work, our results

apply to a range of other divergences, too. We start by defining D
(α,β,r)
G .

Definition B.1 (The αβγ-divergence D
(α,β,r)
G (Cichocki and Amari, 2010)). The

αβγ-divergence D
(α,β,r)
G Cichocki and Amari (2010) takes the form

D
(α,β,r)
G (q(θ)||π(θ)) =

1

α(β − 1)(α+ β − 1)r

[(
D̃

(α,β)
G (q(θ)||π(θ)) + 1

)r
− 1
]

where r > 0, α 6= 0, β 6= 1 and

D̃
(α,β)
G (q(θ)||π(θ)) =

∫ (
αq(θ)α+β−1 + (β − 1)π(θ)α+β−1 − (α+ β − 1)q(θ)απ(θ)β−1

)
dθ

Remark B.1. D
(α)
A is recovered from D

(α,β,r)
G when r = 1 and β = 2 − α. D

(α)
AR is

recovered from D
(α,β,r)
G in the limit as r → 0 and β = 2 − α. D

(β)
B is recovered from

D
(α,β,r)
G when r = α = 1. D(γ)

G is recovered from D
(α,β,r)
G in the limit as r → 0, α = 1

and β = γ.

B.5.1 High-level overview of results and preliminaries

Summarizing some of the most important findings of this section, we find that if

both q(θ) and π(θ) are in the same exponential variational family Q,
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• D
(α)
AR(q||π) and D

(α)
A (q|π) are always available in closed form if α ∈ (0, 1) (see

Corollary B.1)

• D
(α)
AR(q||π) and D

(α)
A (q|π) are available in closed form if α > 1 for most expo-

nential families (see again Corollary B.1)

• D
(β)
B (q||π) and D

(γ)
G (q||π) are available in closed form for β > 1 and γ > 1 for

most exponential families (See Corollary B.5).

We note that these findings are interesting because closed forms for the divergence

term drastically reduce the variance of black box GVI as introduced in Chapter

4. The remainder of this section is devoted to tedious but rigorous derivations of

these findings. Before stating any results, it is useful to state the definition of an

exponential family and its natural parameter space upon which the proofs rely.

Definition B.2 (Exponential families). Object θ ∈ Θ ⊂ Rd, d ≥ 1 has an exponen-

tial family distribution with parameters κ ∈K ⊂ Rp′ , p′ ≥ 1 if there exist functions

η : K → N ⊂ Rp, p ≥ 1, T : Θ→ T ⊂ Rp, h : Θ→ R≥0 and A : N → R such that

p(θ|η(κ)) = h(θ) exp
{
η(κ)TT (θ)−A(η(κ))

}
,

where A(η(κ)) = − log
(∫
h(θ) exp

{
η(κ)TT (θ)

}
dθ
)
. The set N is called the natu-

ral parameter space and is defined to ensure p(θ|η(κ)) is a normalized probability

density, N = {η(κ) : A(η(κ)) <∞}.

Throughout the rest of this section, we assume that the following condition

holds for both the prior and the variational family Q.

Assumption B.1 (The prior and variational families). It holds that

1. the variational family Q is an exponential family as given in Definition B.2

2. the prior π(θ|η(κ0)) is a member of that variational family.

Amongst other things, this implies that the log-normalizing constant is a closed

form function of the natural parameters and that we can derive generic conditions

for closed forms by using the canonical representation of exponential families.

To showcase the implications of the derived results, we use the Mulitvariate

Gaussian (MVN) to provide examples along the way.
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Definition B.3 (The MVN exponential family). The density of the MVN exponential

family for vector θ of dimension d is p(θ|η(κ)) = h(θ) exp
{
η(κ)TT (θ)−A(η(κ))

}
where

η(κ) =

(
V −1µ

−1
2V
−1

)
T (θ)=

(
θ

θθT

)

h(θ) = (2π)−d/2 A(η(κ))=

[
1

2
log |V |+ 1

2
µV −1µ

]
and the natural parameter space requires that µ is a real valued vector of the same

dimension as θ and V is a d× d symmetric semi-positive definite matrix.

B.5.2 Results, proofs & examples

The remainder of this section is structued as follows: First, we give the main result

for the αβγ-divergence (D(α,β,r)
G ) in Proposition B.1. This “master result” is then

applied to various special cases for D(α,β,r)
G that are of practical interest, namely the

α-divergence (D(α)
A ), Rényi’s α-divergence (D(α)

AR), the β-divergence (D(β)
B ) as well the

γ-divergence (D(γ)
G ).

Master result for D
(α,β,r)
G

While the following result and corresponding proof are somewhat tedious to read,

they are conceptually simple: In fact, all that is needed to derive the results is some

basic algebra and the canonical form of the exponential family.

Proposition B.1 (Closed form D
(α,β,r)
G between exponential families). The D

(α,β,r)
G

between a variational posterior q(θ|κn) and prior π(θ|κ0) is available in closed form

under the following conditions

1. η(κ0), η(κn) ∈ N ⇒ (αη(κ0) + (β − 1)η(κn)) ∈ N ;

2. Ep(θ|η(κ))

[
h(θ)α+β−2

]
is a closed form function of η(κ) ∈ N .

If these conditions hold the D
(α,β,r)
G can be written as

D̃
(α,β)
G (q(θ|κn)||π(θ|κ0))

= αB(κn, (α+ β − 1))E(κn, (α+ β − 1)) + (β − 1)B(κ0, (α+ β − 1))E(κ0, (α+ β − 1))

− (α+ β − 1)C(κn,κ0, α, (β − 1))Ẽ(κn,κ0, α, (β − 1))
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where

B(κ, δ) =
exp {A(δη(κ))}
exp {A(η(κ))}δ

, C(κ1,κ2, δ1, δ2) =
exp {A (δ1η(κ1) + δ2)η(κ2))}

exp {A(η(κ1))}δ1 exp {A(η(κ2))}δ2

E(κ, δ) = Ep(θ|δη(κ))

[
h(θ)δ−1

]
, Ẽ(κ1,κ2, δ1, δ2) = Ep(θ|δ1η(κ1)+δ2η(κ2))

[
h(θ)δ1+δ2−1

]
we suppress the dependence of these functions on A(·) and h(·) as these derive form

the definition of the exponential family (Definition B.2).

Proof. The D(α,β,r)
G is a closed form function of D̃(α,β)

G given in Definition B.1. Hence

if D̃
(α,β)
G is available in closed form, then so is D

(α,β,r)
G . In order to ensure that

D̃
(α,β)
G (q(θ|κn)||π(θ|κ0)) has closed form, we need to make sure the three integrals

below are available in closed form for the exponential family.

G1 :=

∫
q(θ|κn)α+β−1dθ, G2 :=

∫
π(θ|κ0)α+β−1dθ,

G3 :=

∫
q(θ|κn)απ(θ|κ0)β−1dθ.

First we tackle G1.

G1 =

∫
h(θ)α+β−1 exp

{
(α+ β − 1)η(κn)TT (θ)− (α+ β − 1)A(η(κn))

}
dθ

= exp {A((α+ β − 1)η(κn))− (α+ β − 1)A(η(κn))}Ep(θ|(α+β−1)η(κn)

[
h(θ)α+β−2

]
,

where condition (1) with η(κ0) = η(κn) ensures that

A((α+ β − 1)η(κn)) =

∫
h(θ) exp

{
(α+ β − 1)η(κn)TT (θ)

}
dθ <∞,

which in turn ensures that p(θ|(α+ β− 1)η(κn) is a normalized probability density

and that

Ep(θ|(α+β−1)η(κn)

[
h(θ)α+β−2

]
is a valid expectation. Now, condition (2) guarantees

this is a closed form function of η(κn). Similarly for G2,

G2 =

∫
h(θ)α+β−1 exp

{
(α+ β − 1)η(κ0)TT (θ)− (α+ β − 1)A(η(κ0))

}
dθ

= exp {A((α+ β − 1)η(κ0))− (α+ β − 1)A(η(κ0))}Ep(θ|(α+β−1)η(κ0)

[
h(θ)α+β−2

]
,

where in analogy to G1, conditions (1) and (2) with η(κk) = η(κ0) ensure this has
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a closed form. Lastly for G3,

G3 =

∫
h(θ)α exp

{
αη(κn)TT (θ)− αA(η(κn))

}
·h(θ)β−1 exp

{
(β − 1)η(κ0)TT (θ)− (β − 1)A(η(κ0))

}
dθ

= exp {A (αη(κn) + (β − 1)η(κ0))− αA(η(κn))− (β − 1)A(η(κ0))}
·Ep(θ|(αη(κn)+(β−1)η(κ0))

[
h(θ)α+β−2

]
,

where once again in analogy to G1 and G2, conditions (1) and (2) ensure this is a

closed form function of η(κn) and η(κ0).

Therefore, provided conditions (1) and(2) hold, the integrals G1, G2 and G3

are available in closed form, implying that the same holds for D(α,β,r)
G (q(θ|κn)||π(θ|κ0)).

Remark B.2 (Conditions of Proposition B.1 for the MVN exponential family). In

order to illuminate the meaning and generality of the conditions of Theorem B.1,

we apply them to the MVN exponential family described in Definition B.3. In this

case the two conditions become:

i) For µ∗ :=

{
µ1 + µ2 −

((
1
αV1

)−1
+
(

1
β−1V2

)−1
)−1((

1
αV1

)−1
µ2 +

(
1

β−1V2

)−1
µ1

)}
we require that

α

(
V −1

1 µ1

−1
2V
−1

1

)
+ (β − 1)

(
V −1

2 µ2

−1
2V
−1

2

)
=


(

1
αV1

)−1
µ1 +

(
1

β−1V2

)−1
µ2

−1
2

{(
1
αV1

)−1
+
(

1
β−1V2

)−1
}


=


{(

1
αV1

)−1
+
(

1
β−1V2

)−1
}
µ∗

−1
2

{(
1
αV1

)−1
+
(

1
β−1V2

)−1
}
 ∈ N

ii) Ep(θ|η(κ))

[
(2π)−d/2(α+β+2)

]
= (2π)−d/2(α+β+2) = f(η(κ)) where f is a closed

form function.

Part ii) shows that the second condition is trivially satisfied for the MVN exponential

family. Part i) shows that for the MVN exponential family, the first condition is

satisfied provided (V ∗)−1 =

{(
1
αV1

)−1
+
(

1
β−1V2

)−1
}

is a positive definite matrix.

This condition is enough to ensure that V ∗ is invertible and thus that µ∗ is well-

defined. We elaborate further on what this means for certain parametrisations

below.
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Corollary: The special cases of D
(α)
A , D(α)

AR

Next, we consider the D
(α)
A and D

(α)
AR special cases of the D

(α,β,r)
G family. Definitions

5.2 and 5.1 can be used to show that the D
(α)
AR is available as the following closed

form function of the D
(α)
A . In particular, it holds that

D
(α)
AR(q(θ)||π(θ)) =

1

α(α− 1)
log
{

1 + α(1− α)D(α)
A (q(θ)||π(θ))

}
. (B.4)

Thus, as demonstrated in Corollary B.2 below, the D
(α)
A being available in closed

form immediately provides the D
(α)
AR in closed form. Before stating these results, we

note that Gil et al. (2013); Gil (2011); Liese and Vajda (1987) have shown our closed

form results for the D(α)
AR (and thus implicitly the D(α)

A ) before. We nevertheless think

there is merit in stating them, since our results refer to the D(α,β,r)
G and thus are more

general, recovering both the D
(α)
A and D

(α)
AR only as a special case.

Corollary B.1 (Closed form D
(α)
A for exponential families). The D

(α)
A between a

variational posterior q(θ|κn) and prior π(θ|κ0) is available in closed form under the

following conditions

1. (αη(κn) + (1− α)η(κ0)) ∈ N

and in this case the D
(α)
A can be written as

D
(α)
A (q(θ|κn)||π(θ|κ0) =

1

α(1− α)
[1− C(κn,κ0, α, (1− α))] ,

where C(κ1,κ2, δ1, δ2) was defined in Proposition B.1 .

Proof. Following Cichocki and Amari (2010) the single-parameter D(α)
A is recovered

as a member of the D
(α,β,r)
G family when r = 1 and β = 2 − α. In this situation,

Condition (2) of Theorem B.1 holds automatically and we are left with Condition

(1). Substituting β = 2− α provides Condition (1) of the Theorem above.

If α ∈ (0, 1) then the convexity of the natural parameter space ensures that

providing η(κn) ∈ N and η(κ0) ∈ N then αη(κn) + (1− α)η(κ0) ∈ N . If α < 0 or

α > 1, then this can no longer be guaranteed.

Corollary B.2 is then an immediate consequence of Corollary B.1.

Corollary B.2 (Closed form D
(α)
AR for exponential families). The D

(α)
AR between a

variational posterior q(θ|κn) and prior π(θ|κ0) will have closed form providing the

D
(α)
A between the same two densities for the same value of α has closed form.
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Proof. The proof of this follows immediately from the fact that the D
(α)
AR can be

recovered using the closed form function of the D
(α)
A shown in eq. (B.4)

Remark B.3 (Conditions for Corollary B.1 for the MVN exponential family). The

condition that αη(κn) + (1 − α)η(κ0) ∈ N can only be guaranteed for α ∈ (0, 1).

However we can see from Remark B.2 that provided V ∗ =

((
1
αV1

)−1
+
(

1
β−1V2

)−1
)−1

is a symmetric semi-positive definite (SPD) matrix for β = 2−α then this condition

will be satisfied. For α > 1 or α < 0 we cannot guarantee that V ∗ is SPD. However,

we implement the D(α)
AR to quantify uncertainty for α > 1 in the main text. Corollary

B.1 demonstrates that these parameters will still produce a closed form divergence

provided the prior has sufficiently large variance, which can always be guaranteed

to hold in practice.

Corollary: The special cases of D
(β)
B , D(γ)

G

Next, we turn attention to the β- and γ-divergence families. Definition 5.4 shows

that the D(γ)
G can be recovered as a closed form function of the terms of the D(β)

B and

thus, as demonstrated in Corollary B.4 below, the D(β)
B being available in closed form

immediately provides that the D
(γ)
G is available in closed form While the conditions

for these are slightly more restrictive than they were for the D
(α)
A and D

(α)
AR, one can

still obtain closed form prior regularizers for a large range of settings.

Corollary B.3 (Closed form D
(β)
B for exponential families). The D

(β)
B between a

variational posterior q(θ|κn) and prior π(θ|κ0) is available in closed form under the

following conditions

1. η(κ1), η(κ2) ∈ N ⇒ ((β − 1)η(κ1) + η(κ2)) ∈ N

2. Ep(θ|η(κ))

[
h(θ)β−1

]
is a closed form function of η(κ) ∈ N .

and in this case the D
(β)
B can be written as

D
(β)
B (q(θ|κn)||π(θ|κ0)) =

1

β(β − 1)
B(κn, β)E(κn, β) +

1

β
B(κ0, β)E(κ0, β)

− 1

(β − 1)
C(κn,κ0, 1, (β − 1))Ẽ(κn,κ0, 1, (β − 1)),

where the functions B(κ, δ), C(κ1,κ2, δ1, δ2), E(κ, δ) and Ẽ(κ1,κ2, δ1, δ2) are de-

fined in Proposition B.1.

Proof. Following Cichocki and Amari (2010), the single-parameter D(β)
B is recovered

as a member of the D(α,β,r)
G family when r = 1 and α = 1. In this situation, Condition

(1)-(2) of Theorem B.1 become (1)-(2) above.
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Corollary B.4 is then an immediate consequence of Corollary B.3.

Corollary B.4 (Closed form D
(γ)
G for exponential families). The D

(γ)
G between a

variational posterior q(θ|κn) and prior π(θ|κ0) will have closed form providing the

D
(β)
B between the same two densities with β = γ has closed form.

Proof. The proof of this follows immediately from the fact that the D
(γ)
G can be

recovered from the D(β)
B using closed form function as outlined in Definition 5.4.

Remark B.4 (Conditions for Corollary B.3 under the MVN exponential family).

Following Remark B.2, Corollary B.3 is satisfied providing V ∗ =

(
(Vn)−1 +

(
1

β−1V0

)−1
)−1

is a symmetric SPD matrix. The sum of two symmetric SPD matrices is symmetric

SPD and additionally the inverse of a symmetric SPD matrix is also SPD. Therefore

provided β > 1 we can be sure that Condition iii) will be satisfied. Similarly to

Remark B.3, when β < 1 closed forms will require that the prior has a sufficiently

large variance.

In fact Remark B.4 can be extended to many other exponential families if

we constrain β = γ > 1, this is formalised in Corollary B.5.

Corollary B.5 (Closed form D
(β)
B and D

(γ)
G for exponential families when β = γ > 1).

When β = γ > 1, the conditions for Corollary B.3 are satisfied by any exponential

family whose h(θ) is a constant function of θ and whose natural parameter space

is closed under addition and scalar multiplication. This includes the Beta, Gamma,

Gaussian, exponential and Laplace families.

Proof. The proof of Corollary B.5 follows straight from that of Corollary B.3.

B.6 Log Trick (Taylor bound)

Lemma B.2 (A Taylor series bound for the natural logarithm). The natural loga-

rithm of a positive real number Z can be bounded as followslog(Z) ≤ Zx−1
x if x > 0

log(Z) ≥ Zx−1
x if x < 0.

Proof. Using the series expansion of exp(x) and the Lagrange form of the remainder

235



we see that

Zx − 1

x
=

exp (x logZ)− 1

x
=

(x logZ) + 1
2! (x logZ)2 + 1

3! (x logZ)3 + . . .

x

=
(x logZ) + 1

2 exp(c) (x logZ)2

x
= logZ +

1
2! exp(c) (x logZ)2

x

where c ∈ [0, x log(Z)]. Now the numerator of the remainder term
1
2!

exp(c)(x logZ)2

x is

always positive and therefore the sign of x determines whether this remainder term

forms an upper or lower bound for log(Z).

B.7 Derivations for DGPs

B.7.1 Proof of Theorem 6.1

Proof. The likelihood is Gaussian with a fixed variance parameter σ2, i.e. for yi ∈ Rd

with i = 1, 2, . . . , n

p(yi|fLi ) = (2πσ2)−0.5d exp

{
− 1

2σ2
(yi − fLi )T (yi − fLi )

}
With this, note that integrating out the normal density yields

Ip,c(f
L
i ) = (2πσ2)−0.5dcc−0.5d. (B.5)

Note in particular that this is a constant and does not depend on f , which makes

computing the expectation over q(fLi ) depend only on the power likelihood. Next,

we show that the power likelihood is also available in closed form. This is laborious

but not difficult and relies on the same algebraic tricks in the Appendix of Knoblauch

et al. (2018). To simplify notation, we write f = fLi . Note also that the variational

parameters µ and Σ are (stochastic) functions of the draws of f1:L−1
i from the
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previous layers, but we suppress this dependency, again for readability.

Eq(f |µ,Σ)

[
1

c
p(yi|f)c

]
=

1

c
(2πσ2)−0.5dc · Eq(f |µ,Σ)

[
exp

{
− c

2σ2
(yTi yi + fTf − 2fTyi)

}]
=

1

c
(2πσ2)−0.5dc exp

{
− c

2σ2
yTi yi

}
· Eq(f |µ,Σ)

[
exp

{
− c

2σ2
(fTf − 2fTyi)

}]
=

1

c
(2πσ2)−0.5dc(2πσ2)−0.5d|Σ|−0.5 exp

{
− c

2σ2
yTi yi

}
×∫

exp

{
−1

2

(
c

σ2
fTf − 2c

σ2
fTyi + (f − µ)TΣ−1(f − µ)

)}
df

=
1

c
(2πσ2)−0.5dc(2π)−0.5d|Σ|−0.5 exp

{
−1

2

( c
σ2
yTi yi + µTΣ−1µ

)}
×∫

exp

{
−1

2

(
c

σ2
fTf − 2c

σ2
fTyi + fTΣ−1f − 2fTΣ−1µ

)}
df

The integral suggests one can obtain a closed form through the Gaussian integral

by completing the squares. Defining Σ̃−1 =
(
c
σs Id + Σ−1

)
, µ̃ =

(
c
σ2yi + Σ−1µ

)
,

µ̂ = Σ̃µ̃, one indeed has

c

σ2
fTf − 2c

σ2
fTyi + fTΣ−1f − 2fTΣ−1µ

= fT
(
Id

c

σ2
+ Σ−1

)
f − 2fT

( c
σ2
yi + Σ−1µ

)
= (f − µ̂)T Σ̃−1 (f − µ̂)− µ̃T Σ̃µ̃,

which allows us to finally rewrite the integral as∫
exp

{
−1

2

(
c

σ2
fTf − 2c

σ2
fTyi + fTΣ−1f − 2fTΣ−1µ

)}
df

= exp

{
−1

2
µ̃T Σ̃µ̃

}∫
exp

{
−1

2
(f − µ̂)T Σ̃−1 (f − µ̂)

}
df = exp

{
1

2
µ̃T Σ̃µ̃

}
(2π)0.5d|Σ̃|0.5.

Putting everthing together and simplifying expressions, this means that

Eq(f |µ,Σ)

[
1

c
p(yi|f)c

]
=

1

c

(
2πσ2

)−0.5dc |Σ̃|0.5
|Σ|0.5 exp

{
−1

2

( c
σ2
yTi yi + µTΣ−1µ− µ̃T Σ̃µ̃

)}
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Depending on whether one uses the β- or γ-divergence for robustifying the loss, one

thus obtains the closed form expressions

Eq(f |µ,Σ)

[
− 1

β − 1
p(yi|f)β−1 +

Ip,β(f)

β

]
= Eq(f |µ,Σ)

[
− 1

β − 1
p(yi|f)β−1

]
+
Ip,β(f)

β

Eq(f |µ,Σ)

[
− 1

γ − 1
p(yi|f)γ−1 · γ

Ip,γ(f)
γ−1
γ

]
= Eq(f |µ,Σ)

[
− 1

γ − 1
p(yi|f)γ−1

]
· γ

Ip,γ(f)
γ−1
γ

,

with the expectation over q(f |µ,Σ) as in and the integrals Ip,β(f), Ip,γ(f) as defined

above. Note that we have derived the general case for yi ∈ Rd, where Σ, f and µ

are matrix- and vector-valued.

In fact, we can simplify everything even further in the univariate case. We

summarize this in the next part.

Remark B.5. Since the derivation of Salimbeni and Deisenroth (2017) shows that

one in fact only needs to integrate over the marginals fLi , if d = 1 (as in all experi-

ments in both that paper and (Salimbeni and Deisenroth, 2017)), the computation

corresponding to the expression above simplifies considerably as no matrix inverses

and determinants are needed. In particular, denoting the uni-variate mean and vari-

ance parameters as µ,Σ and defining Σ̃ = 1
c
σs

+ 1
Σ

and µ̃ =
( cyi
σ2 + µ

Σ

)
, the expectation

term over the posterior q simplifies to

Eq(f |µ,Σ)

[
1

c
p(yi|f)c

]
=

1

c
s
(
2πσ2

)−0.5c

√
Σ̃

Σ
· exp

{
−1

2

(
cy2
i

σ2
+
µ2

Σ
− µ̃2Σ̃

)}
.

B.7.2 Proof of Corollary 6.1

We first prove a Lemma that plays a key role in the proof of Corollary 6.1.

Lemma B.3 (Divergence recombination). Let Dl be divergences and cl > 0 scalars

for l = 1, 2, . . . , L. Further, denote θ−l = θ1:l−1,l+t:L and let ql(θl|θ′−l) and πl(θl|θ′−l)
be the conditional distributions of θl for q(θ) and π(θ) conditioned on θ−l = θ′−l.

Then, Dθ
′
(q||π) =

∑L
l=1 clDl

(
ql(θl|θ′−l)||πl(θl|θ′−l)

)
is a divergence between q(θ)

and π(θ) if (i) Dθ
◦
(q||π) = Dθ

′
(q||π) for all conditioning sets θ◦, θ′ and (ii) a

Hammersley-Clifford Theorem holds for the collection of conditionals πl(θl|θ′−l) and

ql(θl|θ′−l).

Proof. First, observe by definition of a divergence, Dl(ql(θl|θ′−l)||πl(θl|θ′−l)) = 0

for all l and over all potential conditioning sets θ′ holds if and only if ql(θl|θ′−l) =

πl(θl|θ′−l). Next, note that we have assumed that Dθ
′
(q||π) = Dθ

◦
(q||π) for all
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conditioning sets θ′, θ◦. In other words, if Dθ
′
(q||π) = 0 for some θ′, then it will

also be 0 for any conditioning set θ◦. This immediately entails that for arbitrary

θ′, Dθ
′
(q||π) = 0 if and only if ql(θl|θ′−l) = πl(θl|θ′−l) for all l and for any choice of

θ′−l. In other words, the conditionals are the same. Since the positivity condition

holds, we can then apply the Hammersley-Clifford Theorem to conclude that the

conditionals fully specify the joint. This finally yields the desired result: Dθ
′
(q||π) =

0 if and only if q(θ) = π(θ).

With this technical result in hand, one can now prove the result, which shows

that reverse-engineering prior regularizers inspired by eq. (??) is feasible so long as

the layer-specific divergences Dl are f -divergences or monotonic transformations of

f -divergences.

Proof. Suppressing again Z l and X for readability, first recall that

q({U l}Ll=1, {F l}Ll=1) =
L∏
l=1

p(F l|U l,F l−1)q(U l)

p({U l}Ll=1, {F l}Ll=1) =
L∏
l=1

p(F l|U l,F l−1)p(U l)

and write for a fixed conditioning set {F l
◦}Ll=1 the new divergence

D{F
l
◦}Ll=1

(
q({Ul}Ll=1, {Fl}Ll=1)‖p({Ul}Ll=1, {Fl}Ll=1)

)
=

L∑
l=1

Dl
(
p(F l|U l,F l−1

◦ )q(U l)‖p(F l|U l,F l−1
◦ )p(U l)

)
=

L∑
l=1

Dl
(
q(U l)‖p(U l)

)
The first equality is simply the definition of the new divergence. The second equality

follows by virtue of Dl being a monotonic function of an f -divergences or an f -

divergence for all l, which ensures that the l-th term is given by

Dl
(
p(F l|U l,F l−1

◦ )q(U l)‖p(F l|U l,F l−1
◦ )p(U l)

)
(B.6)

= g

(
Ep(F l|U l,F l−1

◦ )p(U l)

[
f

(
p(F l|U l,F l−1

◦ )q(U l)

p(F l|U l,F l−1
◦ )p(U l)

)])
.

= g

(
Ep(U l)

[
f

(
q(U l)

p(U l)

)])
= Dl

(
q(U l)‖p(U l)

)
.

Now note that we can invoke Lemma B.3: The first condition is satisfied because the

derivation was independent of the chosen {F l
◦}Ll=1. The second condition is satisfied

as both conditionals satisfy the positivity condition required for the Hammersley-
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Clifford Theorem to hold.

B.8 Derivations for the robust GVI objective for Bayesian

On-line Changepoint Detection (with Model Selec-

tion)

B.8.1 Proof of Theorem 7.3

Proof. For ease of notation and convenience, we use βm = β + 1. The model used

for the inference is an exponential family model of the form

f(x; θ) = exp
(
η(θ)TT (x)

)
g(η(θ))A(x),

where g(η(θ)) :=
(∫

exp
(
η(θ)TT (x)

)
A(x)dx

)−1
. The posterior arising from this

model and its conjugate prior is approximated by a member of the conjugate prior

family. As a result, the conjugate prior and variational posterior to the above model

have the form

π0(θ|ν0,X0)=g(η(θ))ν0 exp
(
ν0η(θ)TX0

)
h(X0, ν0)

πV Bn (θ|νn,Xn)=g(η(θ))νn exp
(
νnη(θ)TXn

)
h(Xn, νn),

where (ν0,X0) are the prior hyperparameters, (νn,Xn) represent the varia-

tional parameters and h(Xi, νi) :=
(∫
g(η(θ))νi exp

(
νiη(θ)TXi

)
dθ
)−1

. The resulting

objective function has the form

OGVI(νn,Xn) =

EπV Bn

[
log

(
exp

(
n∑
i=1

−`D(x; θ)

))]
− dKL

(
πV Bn ‖π0 (θ|ν0,X0)

)
,

where for the D
(β)
B posterior
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−`β(x; θ)=
1

β

(
exp

(
η(θ)TT (x)

)
g(η(θ))A(x)

)β −
1

β + 1

∫ (
exp

(
η(θ)TT (z)

)
g(η(θ))A(x)

)1+β
dz

=
1

β
exp

(
βη(θ)TT (x)

)
g(η(θ))βA(x)β−

1

β + 1

∫
exp

(
(1 + β)η(θ)TT (z)

)
g(η(θ))1+βA(x)1+βdz.

Therefore the OGVI (νn,Xn) has three integrals that need evaluating

B1 =

n∑
i=1

∫
1

β
exp

(
βη(θ)TT (xi)

)
g(η(θ))βA(xi)

βπV Bn (θ|νn,Xn)dθ (B.7)

B2 =
n

β + 1

∫ {∫
exp

(
(1 + β)η(θ)TT (z)

)
g(η(θ))1+βA(z))1+βdz

}
×

πV Bn (θ|νn,Xn)dθ (B.8)

B3 = KLD
(
πV Bn (θ|νn,Xn) , π0 (θ|ν0,X0)

)
. (B.9)

Now firstly for the term B1 in (B.7)

B1=
n∑
i=1

∫
1

β
exp

(
βη(θ)TT (xi)

)
g(η(θ))βA(xi)

βg(η(θ))νn exp
(
νnη(θ)TXn

)
h(Xn, νn)dθ

=
n∑
i=1

1

β
A(xi)

βh(Xn, νn)

∫
g(η(θ))β+νn exp

(
η(θ)T (βT (xi) + νnXn)

)
dθ

=
n∑
i=1

1

β
A(xi)

βh(Xn, νn)
1

h(βT (xi)+νnXn
β+νn

, β + νn)
.

Where we know that

h(
βT (xi) + νnXn

β + νn
, β + νn) =

∫
g(η(θ))β+νn exp

(
η(θ)T (βT (xi) + νnXn)

)
dθ

is integrable and closed form as it represents the normalizing constant of the same

exponential family as the prior and the variational posterior. Next we look at B2 in

equation (B.8). The whole integral is the product of two densities which must be

positive and in order for the OGVI (νn,Xn) to be defined it must also be integrable.

Therefore we can use Fubini’s theorem to switch the order of integration
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B2 =
n

β + 1

∫ {∫
exp

(
(1 + β)η(θ)TT (z)

)
g(η(θ))1+βπV Bn (θ|νn,Xn)dθ

}
A(z)1+βdz

=
n

β + 1
h(Xn, νn)

∫ {∫
exp

(
η(θ)T ((1 + β)T (z) + νnXn)

)
g(η(θ))1+β+νndθ

}
A(z)1+βdz

=
n

β + 1
h(Xn, νn)

∫
A(z)1+β

h( (1+β)T (z)+νnXn
1+β+νn

, 1 + β + νn)
dz.

once again,

h(
(1 + β)T (z) + νnXn

1 + β + νn
, 1 + β + νn) =

∫
exp

(
η(θ)T ((1 + β)T (z) + νnXn)

)
g(η(θ))1+β+νndθ

is the normalizing constant of the same exponential family as the prior and the

variational posterior and is thus closed form. Lastly we look at B3 in equation (B.9)

B3 =

∫
πV Bn (θ|νn,Xn) log

g(η(θ))νn exp
(
νnη(θ)TXn

)
h(Xn, νn)

g(η(θ))ν0 exp (ν0η(θ)TX0)h(X0, ν0)

=log
h(Xn, νn)

h(X0, ν0)

∫
πV Bn (θ|νn,Xn)

{
(νn − ν0) log g(η(θ)) +

(
η(θ)T (νnXn − ν0X0)

)}
=log

h(Xn, νn)

h(X0, ν0)

{
(νn − ν0)λV Bn +

(
(µV Bn )T (νnXn − ν0X0)

)}
,

where µV Bn = EπV Bn [η(θ)] and λV Bn = EπV Bn [log g(η(θ))].

As a result we get that

OGVI(νn,Xn)=B1 −B2 −B3

=
n∑
i=1

1

β
A(xi)

βh(Xn, νn)
1

h(βT (xi)+νnXn
β+νn

, β + νn)

− n

β + 1
h(Xn, νn)

∫
A(z)1+β

h( (1+β)T (z)+νnXn
1+β+νn

, 1 + β + νn)
dz

− log
h(Xn, νn)

h(X0, ν0)

{
(νn − ν0)λV Bn +

(
(µV Bn )T (νnXn − ν0X0)

)}
.
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B.8.2 Derivation of closed form GVI objective & its derivative

Because it simplifies notation and derivations, we use 1+β = βm and derive all closed

forms in terms of β (rather than βm). Furthermore, we will suppress conditioning

on the model m since the GVI parameter posterior πβm
m has to be derived for each

model m. To simplify notation, we therefore denote a generic GVI posterior to be

computed as πβ.

With this notation in place, recall that we wish to approximate the posterior

belief distribution πβ(µ, σ2|x) which for observations x = (x1, x2, . . . , xn)T with

xi ∈ Rd, prior NIG0(µ, σ2|a0, b0,µ0,Σ0), model likelihood f and density power

divergence (DPD) loss

`β(µ, σ2|xi) =
1

β
f(xi|µ, σ2)β − 1

1 + β

∫
Y
f(xi|µ, σ2)1+βdx

is given by

πβ(µ, σ2|x) ∝ NIG0(µ, σ2|a0, b0,µ0,Σ0) · exp

{
−

n∑
i=1

`β(µ, σ2|xi)
}
.

In particular, we want to approximate it with a posterior NIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n)

via Variational Bayes. This can be done by minimizing the variational parameters

in a Kullback-Leibler sense:

(a∗, b∗,µ∗,Σ∗) = argmin
(ân ,̂bn,µ̂n,Σ̂n)

{
KLD

(
πβ(µ, σ2|x)

∥∥∥NIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n)
)}

.

It is straightforward to rewrite the objective function for the above minimization as

the objective targeted by the GVI posterior. Throughout, we will call this objective

OGVI

OGVI = −KLD

(
NIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n)

∥∥NIG0(µ, σ2|a0, b0,µ0,Σ0)
)︸ ︷︷ ︸

=Q1

.

−EVB

[
−

n∑
i=1

`β(µ, σ2|xi)
]

︸ ︷︷ ︸
=Q2

.

In what follows, closed forms are derived for both Q1 and Q2. Some algebraic

tricks will be applied multiple times, and will be referred to by the following symbols:
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� Completion of Squares, i.e. u′Au−2v′u = (u−A−1v)′A(u−A−1v)−v′A−1v;

I(N ) Integrating out the Normal density;

I(IG) Integrating out the Inverse Gamma density.

Throughout, the dimensionality of µ is p ∈ N, N (µ|µ0,Σ0) refers to a normal pdf

in µ with expectation µ0, variance Σ0 and IG(σ2|a, b) to an inverse gamma pdf in

σ2 with shape a and scale b.

B.8.3 Q1

First, note that by definition,

Q1 =

∫
µ,σ2

log

(
NIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n)

NIG0(µ, σ2|a0, b0,µ0,Σ0)

)
︸ ︷︷ ︸

=Qlog
1

NIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n)dµdσ2.

Writing outQlog
1 , one obtains a natural sum of three components C1, C2(σ2), C3(σ2,µ):

Qlog
1 = log

 |Σ̂n|−0.5 b̂ânn
Γ(ân)(σ2)−0.5p−ân−1 exp

{
− 1

2σ2

[
(µ− µ̂n)′Σ̂−1

n (µ− µ̂n) + 2b̂n

]}
|Σ0|−0.5 b

a0
0

Γ(a0)(σ2)−0.5p−a0−1 exp
{
− 1

2σ2

[
(µ− µ0)′Σ−1

0 (µ− µ0) + 2b0
]}


= log

(
b̂ânn Γ(a0)

ba0
0 Γ(ân)

)
+ 0.5 log

∣∣∣Σ0Σ̂
−1
n

∣∣∣︸ ︷︷ ︸
=C1

+ (ân − a0) log(
1

σ2
)︸ ︷︷ ︸

=C2(σ2)

− 1

2σ2

[
(µ− µ̂n)′Σ̂−1

n (µ− µ̂n)− (µ− µ0)′Σ−1
0 (µ− µ0) + 2(̂bn − b0)

]
︸ ︷︷ ︸

=C3(σ2,µ)

.

Next, note that C3(σ2,µ) further decomposes into

1

2σ2

[
µ′
(
Σ̂−1
n −Σ−1

0

)
µ− 2µ′

(
Σ̂−1
n µ̂n −Σ−1

0 µ0

)]
︸ ︷︷ ︸

=C4(σ2,µ)

+

1

σ2

[
1

2
µ̂′nΣ̂

−1
n µ̂n −

1

2
µ′0Σ

−1
0 µ0 + (̂bn − b0)

]
︸ ︷︷ ︸

=C5︸ ︷︷ ︸
=C6(σ2)

.

Notice that we have isolated the random variable µ inside C4(σ2,µ) and that by defi-

nition, NIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n) = NVB(µ|µ̂n, σ2Σ̂n) ·IGVB(σ2|ân, b̂n), meaning
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that

Q1 = C1 +

∫
σ2

{
C2(σ2)− C6(σ2)

}
IGVB(σ2|ân, b̂n)dσ2

−
∫
σ2

{∫
µ

C4(σ2,µ)NVB(µ|µ̂n, σ2Σ̂n)dµ

}
︸ ︷︷ ︸

=C7(σ2)

IGVB(σ2|ân, b̂n)dσ2.

The inner integral is available in closed form, and naturally decomposes as

C7(σ2) =
1

2σ2
ENVB

[
µ′
(
Σ̂−1
n −Σ−1

0

)
µ
]
− 2

2σ2
ENVB

[
µ′
] (

Σ̂−1
n µ̂n −Σ−1

0 µ0

)
=

1

2σ2
ENVB

[
tr
((

Σ̂−1
n −Σ−1

0

)
µµ′

)]
− 1

σ2
µ̂′n

(
Σ̂−1
n µ̂n −Σ−1

0 µ0

)
=

1

2σ2
tr
((

Σ̂−1
n −Σ−1

0

)
ENVB

[
µµ′

])
− 1

σ2
µ̂′n

(
Σ̂−1
n µ̂n −Σ−1

0 µ0

)
=

1

2σ2
tr
((

Σ̂−1
n −Σ−1

0

) [
σ2Σ̂n − µ̂nµ̂′n

])
− 1

σ2
µ̂′n

(
Σ̂−1
n µ̂n −Σ−1

0 µ0

)
=

1

2
tr
(
I −Σ−1

0 Σ̂n

)
︸ ︷︷ ︸

=C8

− 1

σ2

[
1

2
µ̂′n(Σ̂−1

n −Σ−1
0 )µ̂n − µ̂′n

(
Σ̂−1
n µ̂n −Σ−1

0 µ0

)]
︸ ︷︷ ︸

=C9︸ ︷︷ ︸
=C10(σ2)

.

We may now rewrite Q1 so as to integrate out σ2 next:

Q1 = C1 − C8 +

∫
σ2

{
C2(σ2)− C6(σ2)− C10(σ2)

}
IGVB(σ2|ân, b̂n)dσ2.

Using the additivity of integrals, we consider its three components separately and

then add them up together afterwards. For C2(σ2), (I) apply a change of variable

with z = σ2

b̂n
and then use (II) that d

dxa
−x = −ax · log(a) = ax · log(a−1) together
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with Fubini’s Theorem (III) to find that

C11 =

∫
σ2

C2(σ2)IGVB(σ2|ân, b̂n)dσ2

= (ân − a0)

∫
σ2

log

(
1

σ2

)
b̂ânn

Γ(ân)
(σ2)−ân−1 exp

{
− b̂n
σ2

}
dσ2

(I)
= (ân − a0)

∫
z

log

(
1

zb̂n

)
b̂ân+1
n

Γ(ân)

(
zb̂n

)−ân−1
exp

{
−1

z

}
dz

= (ân − a0)
1

Γ(ân)

∫
z

(
− log(z)− log(̂bn)

)
z−ân−1 exp

{
−1

z

}
dz

I(IG)
= (ân − a0)

[
1

Γ(ân)

∫
z

(− log(z)) z−ân−1 exp

{
−1

z

}
dz − log(̂bn)

]
(II)
= (ân − a0)

[
1

Γ(ân)

∫
z

d

dân

{
z−ân−1 exp

{
−1

z

}}
dz − log(̂bn)

]

(III)
= (ân − a0)


1

Γ(ân)

d

dân

{∫
z

z−ân−1 exp

{
−1

z

}
dz

}
︸ ︷︷ ︸

I(IG)
= Γ(ân)

− log(̂bn)


= (ân − a0)

(
Γ′(ân)

Γ(ân)
− log(̂bn)

)
= (ân − a0)

(
Ψ(ân)− log(̂bn)

)
,

where Ψ is the digamma function. For C6(σ2), one obtains the closed form as

C12 =

∫
σ2

C6(σ2)IGVB(σ2|ân, b̂n)dσ2

= C5

∫
σ2

b̂ânn
Γ(ân)

(σ2)−ân−1−1 exp

{
− b̂n
σ2

}
dσ2

I(IG)
= C5

Γ(ân + 1)

b̂nΓ(ân)
.

Using the exact same steps for C10(σ2), one finds

C13 =

∫
σ2

C10(σ2)IGVB(σ2|ân, b̂n)dσ2

I(IG)
= C9

Γ(ân + 1)

b̂nΓ(ân)
,
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finally yielding

Q1 = C1 − C8 + C11 − C12 − C13

= log

(
b̂ânn Γ(a0)

ba0
0 Γ(ân)

)
+ 0.5 log

∣∣∣Σ0Σ̂
−1
n

∣∣∣− 1

2
tr
(
I −Σ−1

0 Σ̂n

)
+ (ân − a0)

(
Ψ(ân)− log(̂bn)

)
−
[

1

2
µ̂′nΣ̂

−1
n µ̂n −

1

2
µ′0Σ

−1
0 µ0 + (̂bn − b0)

]
· Γ(ân + 1)

b̂nΓ(ân)

−
[

1

2
µ̂′n(Σ̂−1

n −Σ−1
0 )µ̂n − µ̂′n

(
Σ̂−1
n µ̂n −Σ−1

0 µ0

)]
· Γ(ân + 1)

b̂nΓ(ân)

= log

(
b̂ânn Γ(a0)

ba0
0 Γ(ân)

)
+ 0.5 log

∣∣∣Σ0Σ̂
−1
n

∣∣∣− 1

2
tr
(
I −Σ−1

0 Σ̂n

)
+ (ân − a0)

(
Ψ(ân)− log(̂bn)

)
+

1

2

[
(µ0 − µ̂n)′Σ−1

0 (µ0 − µ̂n) + 2(b0 − b̂n)
]
· Γ(ân + 1)

b̂nΓ(ân)

B.8.4 Q2

Noting that one can write Q2 as

= EVB

[
n∑
i=1

`β(µ, σ2|xi)
]

=

∫
µ,σ2

{ n∑
i=1

[
1

β
f(xi|µ, σ2)β − 1

1 + β

∫
Y
f(x|µ, σ2)1+βdx

]
×

NIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n)

}
dσ2dµ

=

n∑
i=1

[∫
µ,σ2

{
1

β
f(xi|µ, σ2)β − 1

1 + β

∫
Y
f(x|µ, σ2)1+βdx

}
NIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n)dσ2dµ

]
. (B.10)

The last equation implies that it is sufficient to concern ourselves with the integral

for a single term. To this end, observe that the likelihood for a single observation

xi with regressor matrix Xi is given by

f(xi|µ, σ2) = N (xi|X ′iµ, σ2Id), (B.11)
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where Id is the identity matrix of dimension d . Looking at the likelihood terms

inside `β, the β-exponentiated likelihood term can be rewritten as

1

β
f(xi|µ, σ2)β =

1

β
(2π)−0.5dβ(σ2)−0.5dβ︸ ︷︷ ︸

=D1(σ2)

· exp

{
− β

2σ2

[
(xi −X ′iµ)′(xi −X ′iµ)

]}

= D1(σ2) · exp

{
− β

2σ2

[
x′ixi+

µ′ (XiX
′
i)︸ ︷︷ ︸

=Σ̈−1
i

µ− 2(x′iXi)µ

]}

�
= D1(σ2)·exp

−
1

2σ2

β(µ−Σ̈i(X
′
ixi)︸ ︷︷ ︸

=µ̈i

)′Σ̈−1
i (µ−µ̈i)+β[x′ixi−(xiX

′
i)Σ̈i(Xix

′
i)]︸ ︷︷ ︸

=D2,i




= D1(σ2) · exp

− 1

2σ2

β(µ− µ̈i)′Σ̈−1
i (µ− µ̈i)︸ ︷︷ ︸

=D3,i(µ)

+D2,i




= D1(σ2) · exp

{
− 1

2σ2
[D3,i(µ) +D2,i]

}
, (B.12)

while the integral is available in closed form as

1

1 + β

∫
Y
f(x|µ, σ2)1+βdx

I(N )
= (σ2)−0.5pβ (2π)−0.5dβ(1 + β)−0.5d−1︸ ︷︷ ︸

=D4

(B.13)

One can see a neat separation between terms involving σ2 and terms involving

µ again, allowing us to rewrite the integral in equation (B.10) such as to exploit

the conditional structure of the normal inverse-gamma distribution in Eqs. (B.13),

(B.12). Looking at integrating out σ2 from (B.12) first, note that

L1 =

∫
σ2

{
1

1 + β

∫
Y
f(x|µ, σ2)1+βdx

}
IGVB(σ2|ân, b̂n)dσ2

= D4

∫
σ2

(σ2)−0.5dβ−ân−1 b̂ânn
Γ(ân)

exp

{
− b̂n
σ2

}
dσ2

I(N )
= D4 ·

Γ(ân + 0.5dβ)

Γ(ân)̂b0.5dβn

. (B.14)
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For the β-exponentiated likelihood term, one finds that

L2,i =

∫
σ2,µ

1

β
f(xi|µ, σ2)βNIGVB(µ, σ2|ân, b̂n, µ̂n, Σ̂n)dσ2dµ

=

∫
σ2

D1(σ2) · exp

{
− 1

2σ2
D2,i

}[∫
µ

exp

{
− 1

2σ2
D3,i(µ)

}
NVB(µ|µ̂n, σ2Σ̂n)dµ

]
︸ ︷︷ ︸

=D5,i(σ2)

×

IGVB(σ2|ân, b̂n)dσ2,

where we have again exploited the conditional structure of our assumed posterior.

The inner integral equals

D5,i(σ
2) = (2π)−0.5p

∣∣∣σ2Σ̂n

∣∣∣−0.5

∫
µ

exp

−
1

2σ2

[
D3,i(µ) + (µ− µ̂n)′Σ̂−1

n (µ− µ̂n)
]

︸ ︷︷ ︸
=D6,i(µ)

︸ ︷︷ ︸
=D7,i(σ2)

,

indicating that the closed form for the integral is available if one rewrites it as a

normal density. To this end, one can use completion of squares to rewrite

D6,i(µ) = β(µ− µ̈i)′Σ̈−1
i (µ− µ̈i) + (µ− µ̂n)′Σ̂−1

n (µ− µ̂n)

= µ′
[
Σ̂−1
n + βΣ̈−1

i

]
︸ ︷︷ ︸

=Σ̃−1
i

µ− 2
[
b̂′nΣ̂

−1
n + βµ̈′iΣ̈

−1
i

]
µ+

[
µ̂′nΣ̂

−1
n µ̂n + βµ̈′iΣ̈

−1
i µ̈i

]

�
=

µ− Σ̃i

[
Σ̂−1
n b̂n + βΣ̈−1

i µ̈i

]
︸ ︷︷ ︸

=µ̃i


′

Σ̃−1
i (µ− µ̃i)+

µ̂′nΣ̂
−1
n µ̂n + βµ̈′iΣ̈

−1
i µ̈i −

(
Σ̂−1
n µ̂n + βΣ̈−1

i µ̈i

)′
Σ̃i

(
Σ̂−1
n µ̂n + βΣ̈−1

i µ̈i

)
︸ ︷︷ ︸

=D8,i

= (µ− µ̃i)′Σ̃−1
i (µ− µ̃i) +D8,i,

which then allows integrating out µ from D7,i(σ
2) using the density of a normal

random variable:

D7,i(σ
2) = exp

{
− 1

2σ2
D8,i

}∫
µ

exp

{
− 1

2σ2
(µ− µ̃i)′Σ̃−1

i (µ− µ̃i)
}
dµ

I(N )
= exp

{
− 1

2σ2
D8,i

}
(2π)0.5p|σ2Σ̃i|0.5,
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so we can finally rewrite the entire integral as

D5,i(σ
2) = |Σ̂−1

n Σ̃i|0.5 exp

{
− 1

2σ2
D8,i

}
,

which enables rewriting L2,i as

L2,i =
1

β
(2π)−0.5dβ|Σ̂−1

n Σ̃i|0.5︸ ︷︷ ︸
=D9,i

∫
σ2

(σ2)−0.5dβ exp

{
− 1

σ2
· 1

2
[D2,i +D8,i]

}
IGVB(σ2|ân, b̂n)dσ2

I(IG)
=

D9,i · Γ(ân + 0.5dβ) · b̂ânn
Γ(ân) ·

[
b̂n + 0.5(D2,i +D7,i)

](ân+0.5dβ)
,

finally implying that one may write

Q2 =

n∑
i=1

L2,i − nL1

=
n∑
i=1

 D9,i · Γ(ân + 0.5dβ) · b̂ânn
Γ(ân) ·

[
b̂n + 0.5(D2,i +D8,i)

](ân+0.5dβ)

− nD4 ·
Γ(ân + 0.5dβ)

Γ(ân)̂b0.5dβn

=
n∑
i=1


1
β (2π)−0.5dβ

∣∣∣∣Σ̂−1
n

[
Σ̂−1
n + β(XiXi)

]−1
∣∣∣∣0.5 · Γ(ân + 0.5dβ) · b̂ânn

Γ(ân) ·
[
b̂n + 0.5 (D2,i +D8,i)

](ân+0.5dβ)


−n · (2π)−0.5dβ(1 + β)−0.5d−1 · Γ(ân + 0.5dβ)

Γ(ân)̂b0.5dβn

.

We further simplify this expression by observing that

D2,i +D8,i

= β
[
x′ixi − (xiX

′
i)Σ̈i(Xix

′
i)
]

+ µ̂′nΣ̂
−1
n µ̂n + βµ̈′iΣ̈

−1
i µ̈i

−
(
Σ̂−1
n µ̂n + βΣ̈−1

i µ̈i

)′
Σ̃i

(
Σ̂−1
n µ̂n + βΣ̈−1

i µ̈i

)
= βx′ixi − β(xiX

′
i)Σ̈i(Xix

′
i) + µ̂′nΣ̂

−1
n µ̂n + β(xiX

′
i)Σ̈i(Xix

′
i)

−
(
Σ̂−1
n µ̂n + β(X ′ixi)

)′
Σ̃i

(
Σ̂−1
n µ̂n + β(X ′ixi)

)
= βx′ixi + µ̂′nΣ̂

−1
n µ̂n −

(
Σ̂−1
n µ̂n + β(X ′ixi)

)′ [
Σ̂−1
n + β(XiXi)

]−1 (
Σ̂−1
n µ̂n + β(X ′ixi)

)
,
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leaving us with

Q2 =
Γ(ân + 0.5dβ) · b̂ânn · |Σ̂−1

n |0.5
β(2π)0.5dβΓ(ân)

×

n∑
i=1

{ ∣∣∣∣[Σ̂−1
n +β(XiXi)]

−1
∣∣∣∣0.5[

b̂n+0.5

(
βx′ixi+µ̂

′
nΣ̂−1

n µ̂n−(Σ̂−1
n µ̂n+β(X′ixi))

′
[Σ̂−1
n +β(XiXi)]

−1
(Σ̂−1

n µ̂n+β(X′ixi))
)](ân+0.5dβ)

}

−n · Γ(ân + 0.5dβ)

Γ(ân)̂b0.5dβn (2π)0.5dβ(1 + β)0.5d+1
.

B.8.5 Objective

Putting together the results of the two previous sections, the OGVI is obtained as

OGVI = −Q1 +Q2

= − log

(
b̂ânn Γ(a0)

ba0
0 Γ(ân)

)
− 0.5 log

∣∣∣Σ0Σ̂
−1
n

∣∣∣+
1

2
tr
(
I −Σ−1

0 Σ̂n

)
− (ân − a0)

(
Ψ(ân)− log(̂bn)

)
−
[

1

2
(µ0 − µ̂n)′Σ−1

0 (µ0 − µ̂n) + (b0 − b̂n)

]
· Γ(ân + 1)

b̂nΓ(ân)

+
Γ(ân + 0.5dβ) · b̂ânn · |Σ̂−1

n |0.5
β(2π)0.5dβΓ(ân)

×

n∑
i=1

{
|Σ̂−1
n +β(X′iXi)|−0.5

[
b̂n+0.5

(
βx′ixi+µ̂

′
nΣ̂−1

n µ̂n−(Σ̂−1
n µ̂n+β(X′ixi))

′
[Σ̂−1
n +β(X′iXi)]

−1
(Σ̂−1

n µ̂n+β(X′ixi))
)](ân+0.5dβ)

}

−n · Γ(ân + 0.5dβ)

Γ(ân)̂b0.5dβn (2π)0.5dβ(1 + β)0.5d+1

B.8.6 Differentiation

In this section, we take derivatives of OGVI with respect to each variational parame-

ter, i.e. ân, b̂n, µ̂n, Σ̂n. Observing that differentiation with respect to Σ̂−1
n is easier

than with respect to Σ̂n, parametrize the optimization using the Cholesky decom-

position, i.e. Σ̂−1
n = LL′, where L is a lower triangular matrix and is unique if Σ̂n

(equivalently Σ̂−1
n ) is positive definite2.

2Note that L need not be unique if Σ̂n is positive semi-definite, but this is of no concern for us
here: Since we implicitly impose that Σ̂n is non-singular (so that Σ̂−1

n is unique and well-defined),

all covariance matrices Σ̂n considered have to be positive definite.
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Derivative with respect to L

In what follows, we differentiate the OGVI term by term with respect to the p(p−1)1
2

entries in the lower triangular part of L that can be summarized in the vector

vech (L). To this end, define

E1 = −0.5 log
∣∣∣Σ0Σ̂

−1
n

∣∣∣+
1

2
tr
(
I −Σ−1

0 Σ̂n

)
(B.15)

E2 =
Γ(ân + 0.5dβ) · b̂ânn
β(2π)0.5dβΓ(ân)︸ ︷︷ ︸

=F

|Σ̂−1
n |0.5 (B.16)

E3,i =
∣∣∣Σ̂−1

n + β
(
X ′iXi

)∣∣∣−0.5
(B.17)

E4 = µ̂′nΣ̂
−1
n µ̂n (B.18)

E5,i = −µ̂′nΣ̂−1
n

[
Σ̂−1
n + β

(
X ′iXi

)]−1
Σ̂−1
n µ̂n (B.19)

E6,i = −β2(x′iXi)
[
Σ̂−1
n + β

(
X ′iXi

)]−1
(X ′ixi), (B.20)

E7,i = −2βµ̂′nΣ̂
−1
n

[
Σ̂−1
n + β

(
X ′iXi

)]−1
(X ′ixi). (B.21)

Obtaining the derivative of the OGVI is equivalent to obtaining the derivatives of

these newly defined quantities, as

∂

∂vech (L)
{OGVI}

=
∂

∂vech (L)
{E1}+

∂

∂vech (L)
{E2} ·

n∑
i=1

 E3,i[
b̂n + 0.5 (βx′ixi + E4 + E5,i + E6,i + E7,i)

]ân+0.5dβ


+E2 ·

n∑
i=1


∂

∂vech(L) {E3,i}[
b̂n + 0.5 (βx′ixi + E4 + E5,i + E6,i + E7,i)

]ân+0.5dβ


+E2 ·

n∑
i=1

{
E3,i ·

∂

∂vech (L)

{[
b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)]−ân−0.5dβ
}}

,
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where the chain and sum rule imply that

∂

∂vech (L)

{[
b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)]−ân−0.5dβ
}

= (−ân − 0.5dβ) ·
[
b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)]−ân−0.5dβ−1
×

0.5 · ∂

∂vech (L)
{E4 + E5,i + E6,i + E7,i} ,

For convenience and simplified notation when taking the derivatives of the expres-

sions defined in (B.15)–(B.21), also define the following matrices:

R =
[
Σ̂−1
n + β

(
X ′iXi

)]
Θ = µ̂nµ̂

′
n.

Define also the following symbols to mark operations used in the derivations:

∂ Switching from differential notation ∂L to the derivative ∂
∂vech(L) ;

tr Properties of the trace like invariance under cyclic permutations, invariance

under the transpose, additivity, and the fact that for c a scalar, tr(c) = c.

Note than when the differential operator ∂ is used, its scope is always limited to the

next term only, unless brackets are used. Hence ∂LL′ uses the differential only with

respect to L, while ∂ (LL′)−1 uses it with respect to the entire expression (LL′)−1.

It is also worth noting that ∂L′ = (∂L)′ for any matrix L, as this will be used in

conjunction with the transpose invariance of the trace throughout to simplify terms.

Using these symbols and the differential notation, proceed by noting the following:

∂(LL′) = ∂R = ∂LL′ + L∂L′ = ∂LL′ + L∂L′ = ∂LL′ +
(
∂LL′

)′
∂(LL′)−1 = −(LL′)−1

[
∂(LL′)

]
(LL′)−1

∂|LL′| = |LL′| · tr
(

(LL′)−1
[
∂LL′ +

(
∂LL′

)′])
tr
= 2|LL′| · tr

(
L′(LL′)−1∂L

)
∂R−1 = −R−1∂RR−1 = −R−1∂LL′R−1 −

[
R−1∂LL′R−1

]′
.

With this in place, the derivatives of the quantities defined before are obtained as

∂E1 = −1

2
∂
{

log |Σ0|+ log |LL′|
}
− 1

2
∂
{

tr
(
Σ−1

0 Σ̂n

)}
= −1

2
· |LL′|−1 · ∂|LL′| − 1

2
tr
(
Σ−1

0 ∂
(
LL′

)−1
)

= −1

2
tr
(
L′(LL′)−1∂L

)
+

1

2
tr
(
Σ−1

0 (LL′)−1
[
∂(LL′)

]
(LL′)−1

)
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tr
= −tr

(
L′(LL′)−1∂L

)
+ tr

(
L′
(
LL′

)−1
Σ−1

0

(
LL′

)−1
∂L
)

∂E2 = F · ∂|LL′|0.5

=
F

2
· |LL′|−0.5 · 2|LL′| · tr

(
L′(LL′)−1∂L

)
= F · |LL′|0.5tr

(
L′(LL′)−1∂L

)
∂E3,i = ∂R−0.5 = −1

2
|R|−1.5∂R

= −1

2
|R|−0.5tr

(
R−1∂

(
LL′

))
tr
= −|R|−0.5tr

(
L′R−1∂L

)
∂E4

tr
= tr

(
µ̂′n∂(LL′)µ̂n

)
= tr

(
µ̂′n
[
∂LL′ + L∂L′

]
µ̂n
)

tr
= 2 · tr

(
L′Θ∂L

)
∂E5,i

tr
= −tr

(
µ̂′n∂

(
LL′

)
R−1

(
LL′

)
µ̂n
)
− tr

(
µ̂′n
(
LL′

)
∂R−1

(
LL′

)
µ̂n
)

−tr
(
µ̂′n
(
LL′

)
R−1∂

(
LL′

)
µ̂n
)

tr
= −2 · tr

(
µ̂′n∂LL′R−1

(
LL′

)
µ̂n
)

+ 2 · tr
(
µ̂′n
(
LL′

)
R−1∂LL′R−1

(
LL′

)
µ̂n
)

−2 · tr
(
µ̂′n
(
LL′

)
R−1∂LL′µ̂n

)
tr
= −2 · tr

(
L′R−1

(
LL′

)
Θ∂L

)
+ 2 · tr

(
L′R−1

(
LL′

)
Θ
(
LL′

)
R−1∂L

)
−2 · tr

(
L′Θ

(
LL′

)
R−1∂L

)
∂E6,i

tr
= −β2tr

((
x′iXi

)
∂R−1

(
X ′ixi

))
tr
= 2β2tr

((
x′iXi

)
R−1∂LL′R−1

(
X ′ixi

))
tr
= 2β2tr

(
L′R−1

(
X ′ixi

) (
x′iXi

)
R−1∂L

)
∂E7,i

tr
= −2β ·

[
tr
(
µ̂′n∂

(
LL′

)
R−1 (Xixi)

)
+ tr

(
µ̂′n
(
LL′

)
∂R−1 (Xixi)

)]
tr
= −2β ·

[
tr
(
µ̂′n∂LL′R−1 (Xixi)

)
+ tr

(
µ̂′nL∂L′R−1 (Xixi)

)
−tr

(
µ̂′n
(
LL′

)
R−1∂LL′R−1 (Xixi)

)
− tr

(
µ̂′n
(
LL′

)
R−1L∂L′R−1 (Xixi)

) ]
tr
= −2β ·

[
tr
(
L′R−1 (Xixi) µ̂

′
n∂L

)
+ tr

(
L′µ̂n

(
x′iXi

)
R−1∂L

)
−tr

(
L′R−1 (Xixi) µ̂

′
n

(
LL′

)
R−1∂L

)
− tr

(
L′R−1

(
LL′

)
µ̂n
(
x′iXi

)
R−1∂L

) ]
This can now be converted into derivative notation and simplified. To this end,

first note that for any p× ∂ matrix A which is not a function of L,

tr(AdL) =

p∑
i=1

A1idLi1 +

p∑
i=2

A2idLi2 + · · · =
p∑
j=1


p∑
i=j

AjidLji

 ,
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implying in particular that

∂

∂vech (L)
tr(AdL) = vech(AT )

and use this by defining vechT (A) = vech(AT ) to note that

∂

∂vech (L)
E1

∂
= vechT

(
−
[
L′(LL′)−1

]
+
[
L′
(
LL′

)−1
Σ−1

0

(
LL′

)−1
])

= vechT
(
L′
(
LL′

)−1
[
Σ−1

0

(
LL′

)−1 − Ip
])

= vechT
(
L−1

[
Σ−1

0

(
LL′

)−1 − Ip
])

= vech
([(
LL′

)−1
Σ−1

0 − Ip
]
L−T

)
∂

∂vech (L)
E2

∂
= F · |LL′|0.5 · vechT

(
L′(LL′)−1

)
= F · |LL′|0.5 · vech

(
L−T

)
∂

∂vech (L)
E3,i

∂
= −|R|−0.5 · vech

(
R−1L

)
∂

∂vech (L)
E4

∂
= 2 · vech (ΘL)

∂

∂vech (L)
E5,i

∂
= vechT

(
−2L′R−1

(
LL′

)
Θ + 2L′R−1

(
LL′

)
Θ
(
LL′

)
R−1 − 2L′Θ

(
LL′

)
R−1

)
= 2 · vechT

([
L′R−1

(
LL′

)
Θ
[(
LL′

)
R−1 − Ip

]]
−
[
L′Θ

(
LL′

)
R−1

])
= 2 · vechT

(
L′
[
R−1

(
LL′

)
Θ
[(
LL′

)
R−1 − Ip

]
−Θ

(
LL′

)
R−1

])
= 2 · vech

([[
R−1

(
LL′

)
− Ip

]
Θ
(
LL′

)
R−1 − R−1

(
LL′

)
Θ
]
L
)

∂

∂vech (L)
E6,i

∂
= 2β2 · vech

(
R−1

(
X ′ixi

) (
x′iXi

)
R−1L

)
∂

∂vech (L)
E7,i

∂
= −2β · vechT

(
L′R−1 (Xixi) µ̂

′
n + L′µ̂n

(
x′iXi

)
R−1

−L′R−1 (Xixi) µ̂
′
n

(
LL′

)
R−1 − L′R−1

(
LL′

)
µ̂n
(
x′iXi

)
R−1

)
= −2β · vechT

(
L′R−1

(
X ′ixi

)
µ̂′n
[
Ip −

(
LL′

)
R−1

]
+
[
Ip − L′R−1L

]
L′µ̂n

(
x′iXi

)
R−1

)
= −2β · vech

([
Ip − R−1

(
LL′

)]
µ̂n
(
x′iXi

)
R−1L

+R−1
(
X ′ixi

)
µ̂′nL

[
Ip − L′R−1L

])
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Derivative with respect to µ̂n

Differentiating with respect to µ̂n is trivial. One proceeds by the same logic as in

the section before, to which end one additionally needs to define the new term

E8 = −1

2

[
(µ0 − µ̂n)′Σ−1

0 (µ0 − µ̂n) + 2(b0 − b̂n)
]
· Γ(ân + 1)

b̂nΓ(ân)
,

allowing us to write

∂

∂µ̂n
{OGVI} =

∂

∂µ̂n
{E8}+

E2 ·
n∑
i=1

{
E3,i ·

∂

∂µ̂n

{[
b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)]−ân−0.5dβ
}}

,

where

∂

∂µ̂n

{[
b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)]−ân−0.5dβ
}

= (−ân − 0.5dβ) ·
[
b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)]−ân−0.5dβ−1
×

0.5 · ∂

∂µ̂n
{E4 + E5,i + E7,i} ,

so that obtaining the derivative is achieved by finding ∂
∂µ̂n

E4,
∂

∂µ̂n
E5,i,

∂
∂µ̂n

E7,i and
∂

∂µ̂n
E8:

∂

∂µ̂n
E4 = 2 · µ̂′nΣ̂−1

n

∂

∂µ̂n
E5,i = −2 · µ̂′nΣ̂−1

n R−1Σ̂−1
n

∂

∂µ̂n
E7,i = −2β ·

(
x′iXi

)
R−1Σ̂−1

n

∂

∂µ̂n
E8 = −1

2
· Γ(ân + 1)

b̂nΓ(ân)

[
∂

∂µ̂n

(
µ̂′nΣ

−1
0 µ̂n

)
− 2

∂

∂µ̂n

(
µ̂nΣ

−1
0 µ0

)]
= −1

2
· Γ(ân + 1)

b̂nΓ(ân)

[
2µ̂′nΣ

−1
0 − 2µ′0Σ

−1
0

]
=

Γ(ân + 1)

b̂nΓ(ân)

[
(µ0 − µ̂n)′Σ−1

0

]
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Derivative with respect to ân

We proceed again by the same logic. Define

E9 = − log

(
b̂ânn Γ(a0)

ba0
0 Γ(ân)

)
E10 = −(ân − a0)

(
Ψ(ân)− log(̂bn)

)
E11 = −n · Γ(ân + 0.5dβ)

Γ(ân)̂b0.5dβn (2π)0.5dβ(1 + β)0.5d+1
.

Use this to write

∂

∂ân
{OGVI} =

∂

∂ân
{E8}+

∂

∂ân
{E9}+

∂

∂ân
{E10}+

∂

∂ân
{E11}+

+
∂

∂ân
{E2}

n∑
i=1

 E3,i[
b̂n + 0.5 (βx′ixi + E4 + E5,i + E6,i + E7,i)

]ân+0.5dβ


+E2 ·

n∑
i=1

{
E3,i ·

∂

∂ân

{[
b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)]−ân−0.5dβ
}}

,

where for ân, the inner term equals

∂

∂ân


b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)︸ ︷︷ ︸
=K


−ân−0.5dβ

 = − log (K) ·K−ân−0.5dβ,
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so that the differentiation with respect to ân requires obtaining the following terms:

∂

∂ân
E2 =

|Σ̂−1
n |0.5

β(2π)0.5dβ

[ ∂
∂ân
{Γ(ân + 0.5dβ)} b̂ânn

Γ(ân)
+

∂
∂ân

{
b̂ânn

}
Γ (ân + 0.5dβ)

Γ(ân)

+
∂

∂ân

{
Γ(ân)−1

}
· b̂ânn Γ(ân + 0.5dβ)

]
=
|Σ̂−1

n |0.5b̂ânn Γ(ân + 0.5dβ)

β(2π)0.5dβΓ(ân)

[
Ψ(ân + 0.5dβ) + log(̂bn)−Ψ(ân)

]
∂

∂ân
E8 = −1

2

[
(µ0 − µ̂n)′Σ−1

0 (µ0 − µ̂n) + 2(b0 − b̂n)
]
×[

∂
∂ân
{Γ(ân + 1)}
b̂nΓ(ân)

−
∂
∂ân
{Γ(ân)}Γ(ân + 1)

Γ(ân)2b̂n

]
= −1

2

[
(µ0 − µ̂n)′Σ−1

0 (µ0 − µ̂n) + 2(b0 − b̂n)
]
×

Γ(ân + 1)

b̂nΓ(ân)
· [Ψ(ân + 1)−Ψ(ân)]

∂

∂ân
E9 = − ∂

∂ân

{
ân log(̂bn)

}
+

∂

∂ân
{log (Γ(ân))}

= − log(̂bn) + Ψ(ân)
∂

∂ân
E10 =

∂

∂ân

{
ân log(̂bn)

}
− ∂

∂ân
{(ân − a0) Ψ(ân)}

= log(̂bn)−Ψ(ân)− (ân − a0) Ψ(1)(ân)

∂

∂ân
E11 = − n

b̂0.5dβn (2π)0.5dβ(1 + β)0.5d+1
· ∂

∂ân

{
Γ(ân + 0.5dβ)

Γ(ân)

}
= − n

b̂0.5dβn (2π)0.5dβ(1 + β)0.5d+1
· Γ(ân + 0.5dβ)

Γ(ân)
· [Ψ(ân + 0.5dβ)−Ψ(ân)] ,

where Ψ(1) denotes the trigamma function.

Derivative with respect to b̂n

As for the other variational parameters, note that

∂

∂b̂n
{OGVI} =

∂

∂b̂n
{E8}+

∂

∂b̂n
{E9}+

∂

∂b̂n
{E10}+

∂

∂b̂n
{E11}+

+
∂

∂b̂n
{E2}

n∑
i=1

 E3,i[
b̂n + 0.5 (βx′ixi + E4 + E5,i + E6,i + E7,i)

]ân+0.5dβ


+E2 ·

n∑
i=1

{
E3,i ·

∂

∂b̂n

{[
b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)]−ân−0.5dβ
}}

,
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where the chain rule implies that

∂

∂b̂n


b̂n + 0.5

(
βx′ixi + E4 + E5,i + E6,i + E7,i

)︸ ︷︷ ︸
=K


−ân−0.5dβ

 = (−ân − 0.5dβ) ·K−ân−0.5dβ−1.

Thus one proceeds by the same logic as before.

∂

∂b̂n
E2 =

ânΓ(ân + 0.5dβ) · |Σ̂−1
n |0.5

β(2π)0.5dβΓ(ân)
· b̂ân−1
n

∂

∂b̂n
E8 =

1

2

[
(µ0 − µ̂n)′Σ−1

0 (µ0 − µ̂n) + 2b0
] Γ(ân + 1)

Γ(ân)
· 1

b̂2n
∂

∂b̂n
E9 = − ân

b̂n
∂

∂b̂n
E10 =

ân − a0

b̂n
∂

∂b̂n
E11 =

ndβ · Γ(ân + 0.5dβ)

2 · Γ(ân)(2π)0.5dβ(1 + β)0.5d+1
· b̂−0.5dβ−1
n

B.8.7 Complexity Analysis of Inference

Time complexity: Our SVRG method crucially hinges on the complexity of the

gradient evaluations. For BLR, we note that evaluating the complete OGVI-gradient

derived above for n observations has complexity O(np3), where p is the number

of regressors. We proceed by defining g as the (generic) complexity of a gradient

evaluation, so for BLR g = p3. Clearly, an SGD step using b observations is of

order O(bg). Similarly, the computation of the anchors is O(Bg). Next, let the

optimization routine used for full optimization have complexity O(m(n, dim(θ))).

Most standard (quasi-) Newton optimization routines such as BFGS or LBFGSB

(used in our implementation) are polynomial in n and dim(θ). For such methods,

since it holds that at most W ≥ n observations are evaluated in the full optimization,

and since dim(θ) is time-constant, m(n, dim(θ)) is also constant in time. Thus,

though these constants can be substantial, all optimization steps (whether SVRG

steps or full optimization steps) are O(1) in time. Since one performs T of them for

T observations, the computational complexity (in time) is O(T ).

Space complexity: One needs to store observations yt as well as gradient

evaluations. Storing one of them takes O(d) and O(dim(θ)) space, respectively.

Since we only keep a window W of the most recent observations (and gradients),

this means that the space requirement is of orderO(W (d+dim(θ))) and in particular

constant in time.
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B.8.8 Recursive On-line Optimization of βrlm

Recall that

ŷt(β) =
∑
rt,mt

E
(
yt|y1:(t−1), rt−1,mt−1, βm

)
p(rt−1,mt−1|y1:(t−1), βrlm).

the issue reduces to finding the partial derivatives ∇βrlm
ŷt(β) and ∇βm ŷt(β). Notice

that for ∇βrlm
ŷt(β), one finds that

∇βrlm
x̂t(β) =

∑
rt,mt

E
(
xt|x1:(t−1), rt−1,mt−1, βm

)
∇βrlm

p(rt−1,mt−1|x1:(t−1), βrlm).

Observe now that for p(x1:t) =
∑

rt,mt
p(rt,mt, x1:t|βrlm),

∇βrlm
p(rt,mt|x1:t, βrlm)

=∇βrlm

{
p(rt,mt, x1:t|βrlm)∑

rt,mt
p(rt,mt, x1:t|βrlm)

}

=
∇βrlm

p(rt,mt, x1:t|βrlm)

p(x1:t)
− p(rt,mt,y1:t|βrlm)

p(x1:t)2
·
∑
rt,mt

∇βrlm
p(rt,mt, x1:t|βrlm).

Thus we have reduced the problem to finding ∇βrlm
p(rt,mt, x1:t|βrlm). Defining for

a predictive posterior distribution fmt(xt|x1:(t−1), rt−1) its β-divergence analogue as

fβrlm
mt (xt|x1:(t−1), rt−1)

= exp

{
1

βrlm − 1
fmt(xt|x1:(t−1), rt−1)βrlm−1 − 1

βrlm

∫
Y
fmt(xt|x1:(t−1), rt−1)βrlmdxt

}
and uppressing the conditioning on βrlm for convenience, one can using the recursion

p(x1:t, rt,mt) =
∑

mt−1,rt−1

{
fβrlm
mt (xt|x1:(t−1), rt−1)q(mt|x1:(t−1), rt−1,mt−1)

H(rt, rt−1)p(x1:(t−1), rt−1,mt−1)
}
,

compute ∇βrlm
p(rt,mt, x1:t) from ∇βrlm

p(rt−1,mt−1, x1:(t−1)|βrlm) for rt = rt−1 + 1

as

∇βrlm
p(x1:t, rt,mt)

=
{
∇βrlm

fβrlm
mt (xt|x1:(t−1), rt−1)q(mt|x1:(t−1), rt−1,mt−1)H(rt, rt−1)p(x1:(t−1), rt−1,mt−1)

}
+{

fβrlm
mt (xt|x1:(t−1), rt−1)∇βrlm

q(mt|x1:(t−1), rt−1,mt−1)H(rt, rt−1)p(x1:(t−1), rt−1,mt−1)
}

+{
fβrlm
mt (xt|x1:(t−1), rt−1)q(mt|x1:(t−1), rt−1,mt−1)H(rt, rt−1)∇βrlm

p(x1:(t−1), rt−1,mt−1)
}
.
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Similarly, for rt = 0 the expression becomes

∇βrlm
p(x1:t, rt,mt)

= ∇βrlm
fβrlm
mt (xt|x1:(t−1), rt−1) · q(mt)

∑
rt−1,mt−1

H(0, rt−1)p(x1:(t−1), rt−1,mt−1)+

fβrlm
mt (xt|x1:(t−1), rt−1) · q(mt)

∑
rt−1,mt−1

H(0, rt−1)∇βrlm
p(x1:(t−1), rt−1,mt−1).

This implies that if fβrlm
mt (xt|x1:(t−1), rt−1) and q(mt|x1:(t−1), rt−1,mt−1) are differ-

entiable with respect to βrlm, then the entire expression can be updated recursively.

For most exponential family likelihoods (and in particular the normal likelihood

of the Bayesian Linear Regression), ∇βrlm
fβrlm
mt (xt|x1:(t−1), rt−1) is available analyt-

ically. In particular, as long as
∫
Y fmt(xt|x1:(t−1), rt−1)1+βrlmdxt has a closed form,

∇βrlm
fβrlm
mt (xt|x1:(t−1), rt−1) can be found in analytic form. In the case of Bayesian

Linear Regression where the d-dimensional posterior predictive takes the shape of

a student-t distribution with ν degrees of freedom and posterior covariance ν
ν−2Σ,

one finds that

∇βrlm
fβrlm
mt (xt|x1:(t−1), rt−1) = ∇βrlm

g1(βrlm)g2(βrlm)g3(βrlm)+

g1(βrlm)∇βrlm
g2(βrlm)g3(βrlm)+

g1(βrlm)g2(βrlm)∇βrlm
g3(βrlm),

where for η = νd+ dβrlm + ν,

g1(βrlm) =

(
Γ(0.5[ν + d])

Γ(0.5ν)

)βrlm

g2(βrlm) =
Γ(0.5η)

Γ(0.5[η + p])

g3(βrlm) = (νπ)−0.5p·(βrlm−1) · |Σ|−(βrlm−1),

so that their derivatives are given by

∇βrlm
g1(βrlm) = −βrlm · log(g1(βrlm)) · g2(βrlm)

∇βrlm
g1(βrlm) = 0.5(ν + p)

[
·Γ(0.5η)Ψ(0.5η)

Γ([0.5[η + p])
− Γ(0.5[η])Ψ(0.5[p+ η])

Γ([0.5[η + p])

]
∇βrlm

g3(βrlm) = −g3(βrlm) · log(g3(βrlm)) · 1

βrlm − 1
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As for ∇βrlm
q(mt|x1:(t−1), rt−1,mt−1), one can again obtain it recursively, since for

rt > 0,

∇βrlm
q(mt|x1:(t−1), rt−1,mt−1)

= ∇βrlm

{
p(x1:(t−1), rt−1,mt−1)∑
mt−1

p(x1:(t−1),mt−1)

}

=
∇βrlm

p(x1:(t−1), rt−1,mt−1)∑
mt−1

p(x1:(t−1), rt−1,mt−1)
−
∑

mt−1
∇βrlm

p(x1:(t−1), rt−1,mt−1)(∑
mt−1

p(x1:(t−1), rt−1,mt−1)
)2 .
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Appendix C

Proofs

C.1 Duality

We will be invoking general convex analysis on the space Fb(Θ), noting that Fb(Θ)

is a Hausdorff locally convex space (through the uniform norm). Recall that B(Θ)

denotes the set of all bounded and finitely additive signed measures over Θ (with

a given σ-algebra). For any set D ⊆ B(Θ) and h ∈ Fb(Θ), we use σD(h) =

supν∈D 〈h, ν〉 and ιD(ν) =∞·Jν /∈ DK to denote the support and indicator functions

as in Rockafellar (1970).

Before we begin with the proofs, we introduce the conjugate specific to these

spaces.

Definition C.1 (Rockafellar (1968)). For any proper convex function F : B(Θ)→
(−∞,∞), we have for any h ∈ Fb(Θ) we define

F ?(h) = sup
µ∈B(Θ)

{
∫

Θ
hdµ− F (µ)}

and for any µ ∈ B(Θ) we define

F ??(µ) = sup
h∈Fb(Θ)

{
∫

Θ
hdµ− F ?(h)}.

Further, we recall a convenient reflexivity property that was shown to hold

on these spaces and of which we will make use in the sequel.

Theorem C.1 (Zalinescu (2002) Theorem 2.3.3). If X is a Hausdorff locally convex

space, and F : X → (−∞,∞] is a proper convex lower semi-continuous function

then F ?? = F .

Equipped with this, we can now prove the required technical Lemmas.
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Lemma 2.2.1. For any Π ⊆ P(Θ) and L ∈ Fb(Θ), we have

Eco(Π)[L] = EΠ[L].

Proof. For any n ∈ N, we denote ∆n = {α ∈ [0, 1]n :
∑n

i=1 αi = 1}. We then have

Eco(Π)[L] = inf
q∈co(Π)

Eq[L]

= inf
n∈N:α∈∆n,qi∈Π,∀i=1,...,n

E∑n
i=1 αiqi

[L]

(1)
= inf

n∈N:α∈∆n,qi∈Π,∀i=1,...,n

n∑
i=1

αiEqi [L]

= inf
n∈N:α∈∆n

n∑
i=1

αi inf
qi∈Π

Eqi [L]

= inf
n∈N:α∈∆n

n∑
i=1

αiEΠ[L]

= EΠ[L],

where (1) holds due to linearity of expectation.

We will employ Theorem C.1 to derive the duality result and present in the

form of an early Lemma for consistency in notation.

Lemma 2.2.2. For any prior π ∈ P(Θ), we have

D(q‖π) = sup
ρ∈Fb(Θ)

{Eq(θ)[ρ(θ)]−D?
π(ρ)}.

Proof. Using Theorem C.1, we have D = D?? since D is proper convex and lower-

semicontinuous by assumption. From this, we now obtain the desired result simply

by applying Definition C.1.

We now require one last technical result.

Lemma 2.2.3. For any prior π ∈ P(Θ), regularizer D and set Π ⊆ P(Θ), define a

function F : P(Θ)×Fb(Θ)→ R as

F (q, ρ) = Eq(θ) [L(θ)] + Eq(θ) [ρ(θ)]−D?
π(ρ) + ιco(Π)(q).

It holds that

inf
q∈P(Θ)

sup
ρ∈Fb(Θ)

F (q, ρ) = sup
ρ∈Fb(Θ)

inf
q∈P(Θ)

F (q, ρ).
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Proof. First note that since L, ρ ∈ Fb(Θ) and co (Π) is closed and convex (by con-

struction), it holds that the mapping q 7→ F (q, ρ) is convex and lower-semicontinuous

(Penot, 2012). Furthermore note that D?
π(ρ) is convex and lower-semicontinuous

for any choice of D. Now, since q ∈ P(Θ) ⊂ B(Θ), it follows that the mapping

ρ 7→ F (q, ρ) is also convex and lower-semicontinuous. Next, by endowing B(Θ)

with the topology associated with the Banach-Alaoglu Theorem, we can use strong

duality between Fb(Θ) and P(Θ), so that it follows that P(Θ) is compact (Liu and

Chaudhuri, 2018, Lemma 27(b)). Finally, noting that all conditions for Ky Fan’s

minimax Theorem are satisfied (Fan, 1953, Theorem 2), the result follows.

C.2 Proof of Theorem 7.2

Proof. Conditioned on the event {rt = r}, either rt+1 = r+1 or rt+1 = 0. The odds

of these two possibilities are as in the quantity of interest in Theorem 7.2.

Now substituting the definitions of fβrlm
mt (xt+1|x1:(t−1), rt−1) and fβrlm

mt (xt+1|x0)

leaves

fβrlm
mt (xt+1|x1:(t−1), rt−1)

fβrlm
mt (xt+1|x0)

=
exp

(
1

βrlm−1p(xt+1|x1:t)
βrlm−1 − 1

βrlm

∫
p(z|x1:t)

βrlmdz
)

exp
(

1
βrlm−1p(xt+1|x0)βrlm−1 − 1

βrlm

∫
p(z|x0)βrlmdz

)
= exp

(
1

βrlm − 1

(
p(xt+1|x1:t)

βrlm−1 − p(xt+1|x0)βrlm−1
)
−

1

βrlm

∫
p(z|x1:t)

βrlm − p(z|x0)βrlmdz

)
. (C.1)

This proof first seeks a lower bound for this ratio. A lower bound on
1

βrlm−1p(xt+1|x1:t)
βrlm−1 is 0, while the maximal value of 1

βrlm−1p(xt+1|x0)βrlm−1 will

occur at the prior mode. For the multivariate t-distribution prior predictive with

NIG hyperparameters a0, b0, µ0, Σ0 of dimensions p the prior mode has density
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p(µ0|ν0,µ0,V0, p)

=
Γ((ν0 + p)/2)

Γ(ν0/2)ν
p/2
0 πp/2 |V0|1/2

[
1 +

1

ν0
(µ0 − µ0)Σ−1

0 (µ0 − µ0)

]−(ν0+p)/2

(C.2)

=
Γ((ν0 + p)/2)

Γ(ν0/2)ν
p/2
0 πp/2 |V0|1/2

(C.3)

=
Γ(a0 + p/2)

Γ(a0) (2b0π)p/2 |I +XΣ0XT |1/2
. (C.4)

Hence, the only term in the lower bound of fβrlm
mt (xt+1|x1:(t−1), rt−1)/fβrlm

mt (xt+1|x0)

that does not solely depend on the prior parameters is 1
βrlm

∫
p(z|x1:t)

βrlmdz. This

term appears in the negative and thus to lower bound fβrlm
mt (xt+1|x1:(t−1), rt−1)/fβrlm

mt (xt+1|x0),

an upper bound for 1
βrlm

∫
p(z|x1:t)

βrlmdz must be found. The multivariate t-distribution

can be integrated as

1

βrlm

∫
MVStν(z|µ,V )βrlmdz

=
Γ((ν + p)/2)βrlmΓ((βrlm − 1ν + βrlm − 1p+ ν)/2)

Γ(ν/2)βrlmΓ((βrlm − 1ν + βrlm − 1p+ ν + p)/2)
×

1

βrlm(νπ)(βrlm−1p)/2 |V |βrlm−1/2

=
Γ((ν + p)/2)βrlm−1Γ((ν + p)/2)Γ((βrlm − 1ν + βrlm − 1p+ ν)/2)

Γ(ν/2)βrlm−1Γ(ν/2)Γ((βrlm − 1ν + βrlm − 1p+ ν + p)/2)
×

1

βrlm(πν)(βrlm−1p)/2 |V |βrlm−1/2

≤ Γ((ν + p)/2)βrlm−1

Γ(ν/2)βrlm−1

1

βrlm(πν)(βrlm−1p)/2 |V |βrlm−1/2
. (C.5)

The inequality is derived from the fact that
Γ(x+ p

2 )
Γ(x) is increasing in x and as

βrlm − 1 ≥ 0 and ν ≥ 0 then (βrlm − 1ν + βrlm − 1p + ν)/2) ≥ ν/2 which implies
Γ((ν+p)/2)Γ((βrlm−1ν+βrlm−1p+ν)/2)
Γ(ν/2)Γ((βrlm−1ν+βrlm−1p+ν+p)/2) ≤ 1.

Now employing the well-known result using Stirling’s formula to bound the

gamma function

(2π)1/2xx−1/2 exp(−x) ≤ Γ(x) ≤ (2π)1/2xx−1/2 exp(1/(12x)− x) (C.6)

we can therefore rewrite the ratio of gamma functions leaving
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1

βrlm

∫
MVSt− tν(z|µ,V )βrlmdz

≤ Γ((ν + p)/2)βrlm−1

Γ(ν/2)βrlm−1

1

βrlm(πν)(βrlm−1p)/2 |V |βrlm−1/2

≤
(√

2π((ν + p)/2)(ν+p−1)/2) exp(−(ν + p)/2 + 1/6(ν + p)
)βrlm−1(√

2π(ν/2)(ν−1)/2 exp(−ν/2)
)βrlm−1

βrlm(πν)(βrlm−1p)/2 |V |βrlm−1/2
(C.7)

= ((1 +
p

ν
)βrlm−1(ν+p−1)/2) exp(βrlm − 1(1/(6(ν + p))− p/2))×

1

βrlm(π)(βrlm−1p)/2 |V |βrlm−1/2
. (C.8)

Clearly exp (βrlm − 1(1/(6(ν + p))− p/2)) is decreasing in ν for all p and to

demonstrate when ((1+ p
ν )βrlm−1(ν+p−1)/2) is decreasing in ν we examine its derivative

w =
(

1 +
p

ν

)βrlm−1(ν+p−1)/2
(C.9)

= exp
(

(βrlm − 1(ν + p− 1)/2) log
((

1 +
p

ν

)))
(C.10)

dw

dν
=
βrlm − 1

2

(
log
(

1 +
p

ν

)
− (ν + p− 1)

p
ν2

1 + p
ν

)(
1 +

p

ν

)βrlm−1(ν+p−1)/2)
.(C.11)

The sign of dw
dν is dictated by

(
log
(
1 + p

ν

)
− (ν + p− 1)

p

ν2

1+ p
ν

)
, which can be

demonstrated to be positive always if p = 1 and negative always if p > 1.

Case 1: when p > 1, 1
βrlm

∫
p(z|x1:t)

βrlmdz is decreasing in ν and thus we

can upper bound it by substituting the smallest value of ν. Here we bound ν above

1 in order to enforce that the mean of the predictive t-distribution exists. Under the

KLD posterior it is clear that a0 rises as more data is seen and while we do not have

closed forms associated with the variational approximation to the D
(β)
B posterior we

expect this to be the case here. As more data is seen the finite sampling uncertainty,

represented by ν in the NIG case, should be decreasing. Therefore provided a0 is set

such that 2a0 > 1, then this lower bound should never be violated.

Case 2: when p = 1, Stirling’s formula has failed to provide a decreasing

upper bound for 1
βrlm

∫
p(z|x1:t)

βrlmdz. However in the univariate case
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1

βrlm

∫
Stν(z|µ,V )βrlmdz

≤ Γ((ν + 1)/2)βrlm−1

Γ(ν/2)βrlm−1

1

βrlm(ν |V |)(βrlm−1)/2π(βrlm−1)/2

≤ 1

βrlm |V |(βrlm−1)/2 π(βrlm−1)/2

Where p = 1 is substituted into the bound from equation (C.5) and the inequality

comes from that fact that Γ((x+1)/2)
Γ(x/2) ≤ √x. This bound conveniently does not

depend on the degrees of freedom ν at all.

We can therefore lower bound fβrlm−1
mt (xt+1|x1:(t−1), rt−1)/fβrlm−1

mt (xt+1|x0) as

fβrlm−1
mt (xt+1|x1:(t−1), rt−1)

fβrlm−1
mt (xt+1|x0)

≥



exp

{
− 1
βrlm−1

(
Γ(a0+1/2)

Γ(a0)(2b0π)1/2|I+XΣ0XT |1/2

)βrlm−1

− 1

βrlm|V |(βrlm−1)/2π(βrlm−1)/2 +

Γ(a0+1/2)βrlmΓ(βrlm−1a0+βrlm−1/2+a0)

Γ(a0)βrlmΓ(βrlm−1a0+βrlm−1/2+a0+1/2)
1

βrlm(2πb0)(βrlm−1)/2|I+XΣ0XT |βrlm−1/2

}
if p = 1

exp

{
− 1
βrlm−1

(
Γ(a0+p/2)

Γ(a0)(2b0π)p/2|I+XΣ0XT |1/2

)βrlm−1

+

Γ(a0+p/2)βrlmΓ(βrlm−1a0+βrlm−1p/2+a0)

Γ(a0)βrlmΓ(βrlm−1a0+βrlm−1p/2+a0+p/2)
1

βrlm(2πb0)(βrlm−1p)/2|I+XΣ0XT |βrlm−1/2−

((1 + p)βrlm−1p/2) exp(βrlm − 1(1/(6(1 + p))− p/2)) 1

βrlm(π)(βrlm−1p)/2|V |βrlm−1/2

}
if p > 1

Now fixing p, a0, b0, µ0,Σ0 and |V |min which values of βrlm−1 and H(rt, rt+1)

would leave

1−H(rt, rt+1))

H(rt, rt+1)

fβrlm
mt (xt+1|x1:(t−1), rt−1)

fβrlm
mt (xt+1|x0)

≥ 1? (C.12)

We demonstrate this for p > 1 but it is straightforward to see that it extends

to when p = 1. Rearranging the inequality in equation (C.12) gives us that (C.12)

holds providing
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1

|V |βrlm−1/2
≤[

Γ(a0 + p/2)βrlm−1

Γ(a0)βrlm−1 (2b0π)βrlm−1p/2 |I +XΣ0XT |βrlm−1/2
×(

Γ(a0 + p/2)Γ(βrlm − 1a0 + βrlm − 1p/2 + a0)

Γ(a0)Γ(βrlm − 1a0 + βrlm − 1p/2 + a0 + p/2)

1

βrlm
− 1

βrlm − 1

)
+ log

(
1−H(rt, rt+1))

H(rt, rt+1)

)]
×

βrlm(π)(βrlm−1p)/2

((1 + p
2a0

)α(2a0+p−1)/2) exp(βrlm − 1(1/(6(2a0 + p))− p/2))

We define the set defined by inequality (C.13) as

S (p, βrlm, a0, b0, µ0,Σ0, |V |min)

= {(βrlm, H(rt, rt+1))s.t. (C.13) is satisfied for p, βrlm − 1, a0, b0, µ0,Σ0, |V |min} .

As a result, we can see that for fixed of a0, b0, µ0,Σ0 and |V | ≥ |V |min it is always

possible to choose values of βrlm and H(rt, rt+1) such that this holds. To see this

consider fixing βrlm, the the upper bound is simply increasing in log
(

1−H(rt,rt+1)
H(rt,rt+1)

)
which takes values in R and thus can be set large enough so that the inequality

holds.

We note that in practice this results is likely to be stronger than is necessary.

The observation that is most likely to generate a change-point will have 0 mass

under the predictive associated with the current segment but also appears at the

prior mode. While this was necessary to demonstrate this result for all situations

this is incredibly unlikely to occur. The requirement for |Vmin| is a result of the beta-

divergence loss function depending on
∫
p(z|x1:t)

βrlmdz. In the proof of this result

we demonstrate that fβrlm
mt (xt+1|x1:(t−1), rt−1)/fβrlm

mt (xt+1|x0) is increasing in |V | and

as a result if it is allowed to get too small the inequality in equation (C.13) would

not hold. This is an undesirable consequence of the beta-divergence score not being

completely local, that is to say not solely depending on the predictive probability

of the observation, thus the score under the prior can be quite a lot bigger than

the score under the continuing run length independent of the observations seen and

solely based on the predictive covariances.
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C.3 Proofs of KSD-Bayes Theoretical Results

This appendix provides proofs for all theoretical results in the main text. On occa-

sion we refer to auxiliary theoretical results, which are given in Appendix A.3

C.3.1 Preliminaries

The following properties of the Stein operator SQ will be useful:

Lemma C.1. Under Assumption 8.1, we have, for all x, x′ ∈ X and h ∈ H,

(i) SQK(x, ·) ∈ H ,

(ii) SQ[h](x) = 〈h(·),SQK(x, ·)〉H ,

(iii) |SQSQK(x, x′)| ≤
√
SQSQK(x, x)

√
SQSQK(x′, x′) .

Proof. First of all, since h 7→ SQ[h](x) is a continuous linear functional on H for

each fixed x ∈ X by assumption, from the Riesz representation theorem (Steinwart

and Christmann, 2008, Theorem A.5.12) there exists a so-called representer gx ∈ H
for each fixed x ∈ X s.t.

SQ[h](x) = 〈h, gx〉H.

Second of all, the reproducing property h(x′) = 〈h(·),K(·, x′)〉H holds for any h ∈ H,

where we recall that the inner product between h ∈ H and a matrix-valued function

K(x, ·) is defined in Appendix A.3. By the reproducing property, for all x, x′ ∈ X ,

gx(x′) = 〈gx,K(·, x′)〉H = SQ
[
K(·, x′)

]
(x) = SQK(x, x′). (C.13)

In particular, SQK(x, ·) ∈ H since gx ∈ H, establishing (i). Based on these two

observations, we can rewrite SQ[h](x) at each fixed x ∈ X as

SQ[h](x) = 〈h, gx〉H = 〈h(·),SQK(x, ·)〉H, (C.14)

establishing (ii). We now apply (C.14) with h(·) = SQK(x′, ·) to deduce that

SQSQK(x′, x) = SQ
[
SQK(x′, ·)

]
(x) = 〈SQK(x′, ·),SQK(x, ·)〉H. (C.15)

Applying the Cauchy-Schwarz inequality,

|SQSQK(x, x′)| = |〈SQK(x, ·),SQK(x′, ·)〉H| ≤ ‖SQK(x, ·)‖H‖SQK(x′, ·)‖H.
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Here for each x ∈ X the norm term can computed using (C.15):

‖SQK(x, ·)‖H =
√
〈SQK(x, ·),SQK(x, ·)〉H =

√
SQSQK(x, x)

Therefore for all x, x′ ∈ X we have

|SQSQK(x, x′)| ≤
√
SQSQK(x, x)

√
SQSQK(x′, x′),

establishing (iii).

Proof of Proposition 6.1

Proof. From (ii) of Lemma C.1, for each x ∈ X , h ∈ H, we have

SQ[h](x) = 〈h(·),SQK(x, ·)〉H.

Taking the expectation of both sides,

EX∼P [SQ[h](X)] = EX∼P [〈h(·),SQK(X, ·)〉H] = 〈h(·),EX∼P [SQK(X, ·)]〉H .(C.16)

Here since the inner product is continuous liner operator, the expectation and inner

product can be exchanged if the function x 7→ SQK(x, ·) is Bochner P-integrable

(Steinwart and Christmann, 2008, A.32). This is indeed the case, since from (ii) of

Lemma C.1 again, and Jensen’s inequality,

EX∼P [‖SQK(X, ·)‖H] = EX∼P
[√
〈SQK(X, ·),SQK(X, ·)〉H

]
(C.17)

= EX∼P
[√
SQSQK(X,X)

]
≤
√

EX∼P [SQSQK(X,X)] <∞

where the last term is finite by Assumption 8.1. A standard argument based on the

Cauchy–Schwarz inequality gives

sup
‖h‖H≤1

∣∣〈h(·),EX∼P
[
SQK(X, ·)

]〉
H
∣∣ =

∥∥EX∼P[SQK(X, ·)
]∥∥
H

=
√〈

EX∼P [SQK(X, ·)] ,EX′∼P [SQK(X ′, ·)]
〉
H

=
√
EX,X′∼P

[〈
SQK(X, ·),SQK(X ′, ·)

〉
H
]

=
√

EX,X′∼P [SQSQK(X,X ′)] (C.18)
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where X and X ′ are independent, and we again appeal to Bochner P-integrability to

interchange expectation and inner product. Thus from (C.16) and (C.18) we have

KSD2(Q‖P) =

(
sup
‖h‖H≤1

∣∣∣EX∼P [SQ[h](X)]
∣∣∣)2

= EX,X′∼P
[
SQSQK(X,X ′)

]
,

as claimed.

Verifying Assumption 8.1 for the Langevin Stein Operator

This section demonstrates how to verify the assumption that h 7→ SQ[h](x) is a

continuous linear functional on H for each fixed x ∈ X in the case where SQ is the

Langevin Stein operator (6.4) for Q ∈ PS(Rd). Since a linear functional is continuous

if and only if it is bounded, we aim to show that, for each fixed x ∈ X , there exist

a constant Cx s.t. |SQ[h](x)| ≤ Cx‖h‖H for all h ∈ H.

For each fixed x ∈ Rd, the Langevin Stein operator SQ is given as

SQ[h](x) = ∇ log q(x) · h(x) +∇ · h(x).

From the reproducing property h(x) = 〈h,K(x, ·)〉H for any h ∈ H, we have

SQ[h](x) = ∇ log q(x) · 〈h,K(x, ·)〉H +∇x · 〈h,K(x, ·)〉H (C.19)

= 〈h,K(x, ·)∇ log q(x)〉H + 〈h,∇x ·K(x, ·)〉H

where the order of inner product and other operators is exchangeable by the conti-

nuity of 〈h, ·〉H : H → R (Steinwart and Christmann, 2008, Corollary 4.36). Then

by the Cauchy–Schwarz inequality,

|SQ[h](x)| ≤
(
‖K(x, ·)∇ log q(x)‖H + ‖∇x ·K(x, ·)‖H

)
‖h‖H (C.20)

=
(√
∇ log q(x) ·K(x, x)∇ log q(x) +

√
∇ · (∇ ·K(x, x))

)
‖h‖H =: Cx‖h‖H.

where the first and second gradient of ∇ · (∇ ·K(x, x)) are taken each with respect

to the first and second argument of K. For the constant Cx to exist, it is sufficient

to require that ∇ log q(x), K(x, x) and ∇· (∇·K(x, x)) exist. This is the case when,

for example, Q ∈ PS(Rd) and K ∈ C1,1
b (Rd × Rd;Rd×d), as assumed in Jackson

Gorham and Lester Mackey (2017).
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C.3.2 Proof of Proposition 8.1

Proof. From (6.7), SPθSPθK is given by

SPθSPθK(x, x′)
+C
= ∇ log p(x|θ) ·K(x, x′)∇ log p(x′|θ)︸ ︷︷ ︸

(∗1)

+∇ log p(x|θ) ·
(
∇x′ ·K(x, x′)

)︸ ︷︷ ︸
(∗2)

+∇ log p(x′|θ) ·
(
∇x ·K(x, x′)

)︸ ︷︷ ︸
(∗3)

,

where
+C
= indicates equality up to an additive term that is independent of θ. The

exponential family model in (8.4) satisfies ∇ log p(x|θ) = ∇t(x)η(θ) +∇b(x). Thus

for term (∗1) we have

n∑
i=1

n∑
j=1

(∗1)

=
n∑
i=1

n∑
j=1

(∇t(xi)η(θ)) ·K(xi, xj)∇t(xj)η(θ) +∇b(xi) ·K(xi, xj)∇t(xj)η(θ)

+(∇t(xi)η(θ)) ·K(xi, xj)∇b(xj) +∇b(xi) ·K(xi, xj)∇b(xj)

+C
= η(θ) ·

 n∑
i=1

n∑
j=1

∇t(xi)>K(xi, xj)∇t(xj)

 η(θ)

+η(θ) ·

2
n∑
i=1

n∑
j=1

∇t(xi)>K(xi, xj)∇b(xj)

 (C.21)

where the last equality follows from symmetry of K. For terms (∗2) and (∗3),

n∑
i=1

n∑
j=1

(∗2) =
n∑
i=1

n∑
j=1

(∇t(xi)η(θ)) · (∇x′ ·K(xi, xj)) +∇b(xi) · (∇x′ ·K(xi, xj))

+C
= η(θ) ·

 n∑
i=1

n∑
j=1

∇t(xi)>(∇x′ ·K(xi, xj))

 , (C.22)

n∑
i=1

n∑
j=1

(∗3) =

n∑
i=1

n∑
j=1

(∇t(xi)η(θ)) · (∇x ·K(xi, xj)) +∇b(xj) · (∇x ·K(xi, xj))

+C
= η(θ) ·

 n∑
i=1

n∑
j=1

∇t(xj)>(∇x ·K(xi, xj))

 . (C.23)
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From 8.2, the KSD-Bayes posterior is

πDn (θ) ∝ π(θ) exp

−βn
 1

n2

n∑
i=1

n∑
j=1

(∗1) + (∗2) + (∗3)


 ,

so we may collect together terms in (C.21), (C.22), and (C.23) to obtain the expres-

sions in Proposition 8.1.

C.3.3 Proofs of Results in Section 8.4.1

Proof of Theorem 8.1 (a.s. Pointwise Convergence)

Proof. Let fn(θ) := KSD2(Pθ‖Pn) and f(θ) := KSD2(Pθ‖P). Decomposing the

double summation of fn(θ) into the diagonal term (i = j) and non-diagonal term

(i 6= j),

fn(θ) =
1

n2

n∑
i=1

SPθSPθK(xi, xi) +
1

n2

n∑
i=1

n∑
j 6=i
SPθSPθ(xi, xj)

=
1

n

1

n

n∑
i=1

SPθSPθK(xi, xi)︸ ︷︷ ︸
(∗a)

+
n− 1

n

1

n(n− 1)

n∑
i=1

n∑
j 6=i
SPθSPθK(xi, xi)︸ ︷︷ ︸

(∗b)

.

Fix θ ∈ θ. From the strong law of large number (Durrett, 2010, Theorem 2.5.10),

(∗a) =
1

n

n∑
i=1

SPθSPθK(xi, xi)
a.s.−→ EX∼P [SPθSPθK(X,X)] , (C.24)

provided that EX∼P [|SPθSPθK(X,X)|] <∞. From the positivity of SPθSPθK(x, x),

we have EX∼P [|SPθSPθK(X,X)|] = EX∼P [SPθSPθK(X,X)], which has been as-

sumed to exist. The form of (b) is called an unbiased statistic (or U-statistic for

short) and Wassily Hoeffding (1961) proved the strong law of large numbers

(∗b) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i
SPθSPθK(xi, xj)

a.s.−→ EX,X′∼P
[
SPθSPθK(X,X ′)

]
, (C.25)

whenever EX,X′∼P [|SPθSPθK(X,X ′)|] < ∞. From item (iii) of Lemma C.1 and

Jensen’s inequality, we have EX,X′∼P [|SPθSPθK(X,X ′)|] ≤ EX∼P [SPθSPθK(X,X)]

where the right hand side is again assumed to exist. Therefore, since 1/n→ 0 and
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(n− 1)/n→ 1,

fn(θ) =
1

n
(∗a) +

n− 1

n
(∗b) a.s.−→ EX,X′∼P

[
SPθSPθK(X,X ′)

]
= f(θ), (C.26)

where the argument holds for each fixed θ ∈ θ.

Proof of Theorem 8.2 (a.s. Uniform Convergence)

Proof. Let fn(θ) := KSD2(Pθ‖Pn) and f(θ) := KSD2(Pθ‖P). Recall that θ ⊂ Rp is

bounded. Theorem 21.8 in Davidson (1994) implies that fn
a.s.−→ f uniformly on Θ

if and only if (a) fn
a.s.−→ f pointwise on Θ and (b) {fn}∞n=1 is strongly stochastically

equicontinuous on Θ. The condition (a) is immediately implied by Theorem 8.1 and

we hence show the condition (b) in the remainder.

By Davidson (1994, Theorem 21.10), {fn}∞n=1 is strongly stochastically equicon-

tinuous on Θ if there exists a stochastic sequence {Ln}∞n=1, independent of θ, s.t.

|fn(θ)− fn(θ′)| ≤ Ln‖θ − θ′‖2, ∀θ,θ′ ∈ Θ and lim sup
n→∞

Ln <∞ a.s.(C.27)

Since fn is continuously differentiable on θ, and θ is assumed to be open and convex,

the mean value theorem yields

|fn(θ)− fn(θ′)| ≤ sup
θ∈Θ
‖∇θfn(θ)‖2‖θ − θ′‖2, ∀θ,θ′ ∈ Θ. (C.28)

Lemma C.9 (the first of our auxiliary results, stated and proved in Appendix C.4)

implies that supθ∈Θ ‖∇θfn(θ)‖2 < ∞ a.s. for all sufficiently large n. Therefore,

setting Ln = supθ∈Θ ‖∇θfn(θ)‖2 concludes the proof.

Proof of Lemma 8.3 (Strong Consistency)

The following result from real analysis will be required:

Lemma C.2. Let θ ⊂ Rp be open and bounded. Let fn : θ → R and f : θ → R be

continuous functions. Assume that (i) there exists an unique θ∗ ∈ θ s.t. f(θ∗) <

inf{θ∈θ:‖θ−θ∗‖2≥ε} f(θ) for any ε > 0, and (ii) supθ∈θ |fn(θ)− f(θ)| → 0 as n→∞.

Let {θn}∞n=1 be any sequence s.t. θn ∈ arg minθ∈θ fn(θ) for all sufficiently large n.

Then θn → θ∗ as n→∞.

Proof. The following argument is similar to that used in van der Vaart (1998, The-

orem 5.7) and Whitney K. Newey and Daniel McFadden (1994, Theorem 2.1). Fix

η > 0 and consider n sufficiently large that θn is well-defined. From (ii), for all suf-

ficiently large n, we have the uniform bound |f(θ)− fn(θ)| < η/2 over θ ∈ θ. Since
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θn is a minimiser of fn, we therefore have f(θn) < fn(θn) + η/2 < fn(θ∗) + η/2 <

f(θ∗)+η. Since η > 0 was arbitrary, we may take η = inf{θ∈θ:‖θ−θ∗‖2≥ε} f(θ)−f(θ∗),

where η > 0 from (i), to see that f(θn) < inf{θ∈θ:‖θ−θ∗‖2≥ε} f(θ). Thus we have

shown that θn ∈ {θ ∈ θ : ‖θ − θ∗‖2 < ε} for all sufficiently large n. Since the

argument holds for ε > 0 arbitrarily small, the result is established.

Now we can prove Lemma 8.3:

Proof of Lemma 8.3. Let fn(θ) := KSD2(Pθ‖Pn) and f(θ) := KSD2(Pθ‖P). From

Assumption 8.3, there exists an unique θ∗ ∈ θ s.t. f(θ∗) < inf{θ∈θ:‖θ−θ∗‖2≥ε} f(θ)

for any ε > 0, and θn ∈ θ minimises fn a.s. for all sufficiently large n. Since

Assumption 8.2 (rmax = 1) hold, fn is continuous a.s. and supθ∈θ |fn(θ)−f(θ)| a.s.→ 0

by Theorem 8.2. Thus the conditions of Lemma C.2 are a.s. satisfied, from which

it follows that θn
a.s.−→ θ∗.

Proof of Lemma 8.4 (Asymptotic Normality)

Proof. Let fn(θ) := KSD2(Pθ‖Pn) and f(θ) := KSD2(Pθ‖P). It was assumed that,

for any h ∈ H and x ∈ X , the map θ 7→ SPθ [h](x) is three times continuously

differentiable, from which it follows that fn is three times continuously differentiable

as well. Since θn minimises fn for all sufficiently large n, we have ∇fn(θn) = 0.

Hence a second order Taylor expansion around θ∗ yields

0 = ∇fn(θn) = ∇fn(θ∗) +∇2fn(θ∗)(θn − θ∗) + (θn − θ∗) · ∇3fn(θ′n)(θn − θ∗)

where θ′n = αθ∗ + (1− α)θn for some α ∈ [0, 1]. By transposing the terms properly

and scaling the both side by
√
n, we have

√
n(θn − θ∗) =

(
∇2fn(θ∗)︸ ︷︷ ︸

(∗1)

+ (θn − θ∗) · ∇3fn(θ′n)︸ ︷︷ ︸
(∗2)

)−1(
−√n∇fn(θ∗)︸ ︷︷ ︸

(∗3)

)
. (C.29)

In the remainder, we show the convergence of (∗1), (∗2) and (∗3), and apply the

Slutsky’s theorem to see the convergence in distribution of
√
n(θ − θn).

Term (∗1): From the auxiliary result Lemma C.10 in Appendix C.4, we have that

∇2fn(θ∗)
a.s.→ ∇2f(θ∗) = H∗ where H∗ is positive semi-definite.

Term (∗2): From the Cauchy–Schwarz inequality and auxiliary result Lemma C.9
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in Section C.4,

lim sup
n→∞

∥∥(θn − θ∗) · ∇3fn(θ′n)
∥∥

2
≤ lim sup

n→∞
sup
θ∈Θ
‖∇3fn(θ)‖2‖θn − θ∗‖2

≤ lim sup
n→∞

sup
θ∈Θ
‖∇3fn(θ)‖2︸ ︷︷ ︸

<∞ a.s.

× lim sup
n→∞

‖θn − θ∗‖2(C.30)

Since Lemma 8.3 implies that ‖θn − θ∗‖2 a.s.→ 0, we have (∗2)
a.s.→ 0.

Term (∗3): Let F (x, x′) := ∇θ(SPθSPθK(x, x′))|θ=θ∗ ∈ Rp and recall that S(x,θ∗) =

EX∼P [F (x,X)] ∈ Rp. Then

√
n∇fn(θ∗) =

√
n

 1

n2

n∑
i=1

F (xi, xi) +
1

n2

n∑
i=1

n∑
j 6=i

F (xi, xj)

 (C.31)

=
1√
n

1

n

n∑
i=1

F (xi, xi)︸ ︷︷ ︸
(∗a)

+
n− 1

n

√
n

n(n− 1)

n∑
i=1

n∑
j 6=i

F (xi, xj)︸ ︷︷ ︸
(∗b)

. (C.32)

First, it follows from the strong law of large number (Durrett, 2010, Theorem 2.5.10)

that (∗a) a.s.→ EX∼P[F (X,X)] whenever EX∼P[‖F (X,X)
)
‖2] <∞. Second, since (∗b)

is a U-statistic multiplied by
√
n, it follows from van der Vaart (1998, Theorem 12.3)

that (∗b)
p→ (1/

√
n)
∑n

i=1 S(xi,θ∗) whenever EX,X′∼P[‖F (X,X ′)‖22] <∞. (Here
p→

denotes convergence in probability.) Both the required conditions indeed hold from

the auxiliary result Lemma C.11 in Appendix C.4. Thus we have

√
n∇fn(θ∗) =

1√
n

(∗a) +
n− 1

n
(∗b)

p−→ 1√
n

n∑
i=1

S(xi,θ∗). (C.33)

This convergence in probability implies that
√
n∇fn(θ∗) and (1/

√
n)
∑n

i=1 S(xi,θ∗)

converge in distribution to the same limit. Therefore we may apply the central

limit theorem for (1/
√
n)
∑n

i=1 S(xi,θ∗) to obtain the asymptotic distribution of
√
n∇fn(θ∗). Again from van der Vaart (1998, Theorem 12.3), we have

1√
n

n∑
i=1

S(xi,θ∗)
d−→ N (0, J∗) , J∗ = EX∼P

[
S(X,θ∗)S(X,θ∗)

>
]

(C.34)

whenever EX,X′∼P
[
‖F (X,X ′)‖22

]
<∞, which implies the existence of the covariance

matrix J∗. Hence
√
n∇fn(θ∗)

d→ N (0, J∗).
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Collecting together these results, we have shown that

(∗1)
a.s.−→ H∗, (∗2)

a.s.−→ 0, (∗3)
d−→ N (0, J∗) . (C.35)

Since H∗ is guaranteed to be at least positive semi-definite, it is in fact strictly

positive definite if H∗ is non-singular, as we assumed. Finally, Slutsky’s theorem

allows us to conclude that
√
n(θ − θn)

d→ N
(
0, H−1

∗ J∗H
−1
∗
)

as claimed.

Verifying Assumption 8.2 for the Langevin Stein Operator

Here we compute the quantities involved in Assumption 8.2 for the Langevin Stein

operator SPθ with Pθ ∈ PS(Rd). In this case,

∂rSPθ [h](x) = ∂r
(
∇x log p(x|θ) · h(x)

)
+ ∂r

(
∇x · h(x)

)
=
(
∂r∇x log p(x|θ)

)
· h(x).(C.36)

The operator ∂rSPθ in (C.36) is therefore well-defined and θ 7→ ∂rSPθ [h](x) is con-

tinuous whenever θ 7→ ∇x log p(x|θ) is r-times continuously differentiable over Θ.

For each fixed x ∈ X , it is clear that h 7→ (∂rSPθ)[h](x) is a continuous linear func-

tional on H. Then the term (∂rSPθ)(∂rSPθ)K(x, x) appearing in the final part of

Assumption 8.2 takes the explicit form

(∂rSPθ)(∂rSPθ)K(x, x) =
(
∂r∇x log p(x|θ)

)
·K(x, x)

(
∂r∇x log p(x|θ)

)
.(C.37)

The regularity of (C.37) therefore depends on K and Pθ. See Appendix C.3.7, where

(C.37) is computed for an exponential family model.

C.3.4 Proof of Theorem 8.1 (Posterior Consistency)

The following preliminary lemma is required, which takes inspiration from Alquier

et al. (2016); ?. Let fn(θ) = KSD2(Pθ‖Pn) and f(θ) = KSD2(Pθ‖P).

Lemma C.3. Suppose Assumption 8.3 and Assumption 8.4 hold. For all δ ∈ (0, 1],

with probability at least 1− δ,∫
θ
f(θ)πDn (θ)dθ ≤ f(θ∗) +

(
α1 + α2 +

8 supθ∈θ σ(θ)

δ

)
1√
n
. (C.38)

where the probability is taken with respect to realisations of the dataset {xi}ni=1
i.i.d.∼

P.

Proof. From the auxiliary result Theorem C.2 in Appendix C.4, we have a concen-
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tration inequality

P (|fn(θ)− f(θ)| ≥ δ) ≤ 4σ(θ)

δ
√
n
≤ 4 supθ∈θ σ(θ)

δ
√
n

(C.39)

for each θ ∈ θ, where the probability is taken with respect to the samplesX1, . . . , Xn
i.i.d.∼

P. Taking the complement and re-scaling δ, (C.39) is equivalent to

P
(
|fn(θ)− f(θ)| ≤ 4 supθ∈θ σ(θ)

δ
√
n

)
≥ 1− δ. (C.40)

Notice that by virtue of the absolute value, the following inequalities hold simulta-

neously with probability at least 1− δ:

f(θ) ≤ fn(θ) +
4 supθ∈θ σ(θ)

δ
√
n

. (C.41)

fn(θ) ≤ f(θ) +
4 supθ∈θ σ(θ)

δ
√
n

. (C.42)

Taking an expectation with respect to the generalised posterior on both side of

(C.41) yields, with probability at least 1− δ,∫
θ
f(θ)πDn (θ)dθ ≤

∫
θ
fn(θ)πDn (θ)dθ +

4 supθ∈θ σ(θ)

δ
√
n

(C.43)

In order to apply the identity of Knoblauch et al. (2019, Theorem 1), we add the

term (1/n) KL(πDn ‖π) ≥ 0 in the right hand side and see that, with probability at

least 1− δ,∫
θ
f(θ)πDn (θ)dθ ≤ 1

n

{∫
θ
nfn(θ)πDn (θ)dθ + KL(πDn ‖π)

}
+

4 supθ∈θ σ(θ)

δ
√
n

.(C.44)

Clearly, the bracketed term on the right hand side is the solution to the following

variational problem over P(θ):∫
θ
f(θ)πDn (θ)dθ ≤ 1

n
inf

ρ∈P(θ)

{∫
θ
nfn(θ)ρ(θ)dθ + KL(ρ‖π)

}
+

4 supθ∈θ σ(θ)

δ
√
n

= inf
ρ∈P(θ)

{∫
θ
fn(θ)ρ(θ)dθ +

1

n
KL(ρ‖π)

}
+

4 supθ∈θ σ(θ)

δ
√
n

.(C.45)

Plugging (C.42) in (C.45), we have with probability at least 1− δ,∫
θ
f(θ)πDn (θ)dθ ≤ inf

ρ∈P(θ)

{∫
θ
f(θ)ρ(θ)dθ +

1

n
KL(ρ‖π)

}
+

8 supθ∈θ σ(θ)

δ
√
n

.(C.46)
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Plugging the trivial bound f(θ) ≤ f(θ∗) + |f(θ)− f(θ∗)| into (C.46), we have

(C.46) ≤ f(θ∗) + inf
ρ∈P(θ)

{∫
θ
|f(θ)− f(θ∗)| ρ(θ)dθ +

1

n
KL(ρ‖π)

}
+

8 supθ∈θ σ(θ)

δ
√
n

.(C.47)

Notice that the infimum term can be upper bounded by any choice of ρ ∈ P(θ).

Letting Π(Bn) :=
∫
Bn
π(θ)dθ, we take ρ(θ) = π(θ)/Π(Bn) for θ ∈ Bn and ρ(θ) = 0

for θ 6∈ Bn. Then Assumption 8.4 part (2) ensures that
∫
Bn
|f(θ)− f(θ∗)|ρ(θ)dθ ≤

α1/
√
n and that KL(ρ‖π) =

∫
θ log (ρ(θ)/π(θ)) ρ(θ)dθ =

∫
Bn
− log(Π(Bn))π(θ)dθ/Π(Bn) =

− log Π(Bn) ≤ α2
√
n. Thus∫

θ
f(θ)πDn (θ)dθ ≤ f(θ∗) +

(
α1 + α2 +

8 supθ∈θ σ(θ)

δ

)
1√
n
, (C.48)

with probability at least 1− δ, as claimed.

Now we turn to the proof of Theorem 8.1:

Proof of Theorem 8.1. Since θ∗ uniquely minimise f ,

f(θ)− f(θ∗) ≥ 0, ∀θ ∈ θ =⇒
∫
θ
f(θ)πDn (θ)dθ − f(θ∗) ≥ 0.(C.49)

Thus, from Lemma C.3,

P
(∣∣∣∣∫

θ
f(θ)πDn (θ)dθ − f(θ∗)

∣∣∣∣ ≤ (α1 + α2 +
8 supθ∈θ σ(θ)

δ

)
1√
n

)
≥ 1− δ.(C.50)

Applying the simplifying upper bound

α1 + α2 +
8 supθ∈θ σ(θ)

δ
≤ α1 + α2 + 8 supθ∈θ σ(θ)

δ
,

taking complement of the probability and performing a change of variables, we

obtain the stated result.

C.3.5 Proof of Theorem 8.2 (Bernstein–von–Mises)

In this section we define the notation fn(θ) := KSD2(Pθ‖Pn) and f(θ) := KSD2(Pθ‖P).

Similarly, denote Hn := ∇2
θfn(θn) and H∗ = ∇2

θf(θ∗). Our aim is to verify the con-

ditions of Theorem 4 in Jeffrey W. Miller (2021). The following technical lemma

lists and establishes the conditions that are required:
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Lemma C.4. Suppose that Assumption 8.2 (rmax = 3), Assumption 8.3, and part

(1) of Assumption 8.4 hold. Assume that H is nonsingular. Then the following

statements almost surely hold:

1. the prior density π is continuous at θ∗ and π(θ∗) > 0,

2. θn → θ∗,

3. the Taylor expansion fn(θ) = fn(θn) + 1
2(θ − θn) · Hn(θ − θn) + rn(θ − θn)

holds on Θ, where the remainder rn satisfies |rn(ϑ)| ≤ C‖ϑ‖32 for all ‖ϑ‖2 ≤ ε,
all sufficiently large n and some C and ε > 0,

4. Hn → H∗, where Hn is symmetric and H∗ is positive definite,

5. lim infn→∞(inf{θ∈θ:‖θ−θn‖2≥ε} fn(θ)− fn(θn)) > 0 for any ε > 0.

Proof. We sequentially prove each statement in the list.

Part (1): Directly assumed in Assumption 8.4 part (1).

Part (2): Assumption 8.2 (rmax = 3) and 8.3 are sufficient for Lemma 8.3 and

hence θn
a.s.→ θ∗.

Part (3): From Assumption 8.2 (rmax = 3), for all h ∈ H and x ∈ X the map

θ 7→ SPθ [h](x) is three times continuously differentiable, meaning that fn is three

times continuously differentiable on Θ. Hence a second order Taylor expansion gives

fn(θ) = fn(θn) +∇fn(θn)(θ − θn) +
1

2
(θ − θn) ·Hn(θ − θn) + rn(θ − θn)(C.51)

where, for all sufficiently large n, ∇fn(θn) = 0 was assumed and the mean value

form of the remainder term rn in the Taylor expansion provides a bound

|rn(θ − θn)| ≤ sup
θ∈Θ
‖∇3fn(θ)‖2‖θ − θn‖32. (C.52)

Finally, lim supn→∞ supθ∈Θ ‖∇3fn(θ)‖2 < ∞ a.s. by the auxiliary Lemma C.9 in

Appendix C.4.

Part (4): Hn is symmetric since the assumed regularity of fn allows the mixed

second order partial derivatives of fn to be interchanged. The auxiliary Lemma

C.10 in Appendix C.4 establishes that Hn
a.s.→ H∗ where H∗ is positive semi-definite.

Thus, since we assumed H∗ is nonsingular, it follows that H∗ is positive definite.

Part (5): The inequality lim infn→∞(an + bn) ≥ lim infn→∞ an + lim infn→∞ bn

holds for any sequences of an, bn ∈ R. Combining the property lim infn→∞(−bn) =
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− lim supn→∞ bn, we have that lim infn→∞(an−bn) ≥ lim infn→∞ an−lim supn→∞ bn.

Applying this inequality,

lim inf
n→∞

(
inf

{θ∈θ:‖θ−θn‖2≥ε}
fn(θ)− fn(θn)

)
≥ lim inf

n→∞
inf

{θ∈θ:‖θ−θn‖2≥ε}
fn(θ)− lim sup

n→∞
fn(θn) =: (∗)(C.53)

Since fn(·) a.s.→ f(·) uniformly on Θ by Theorem 8.2 and θn
a.s.→ θ∗ by Lemma 8.3,

(∗) a.s.= inf
{θ∈θ:‖θ−θ∗‖2≥ε}

f(θ)− f(θ∗) > 0 (C.54)

where the last inequality follows from Assumption 8.3.

Now we turn to the main proof:

Proof of Theorem 8.2. Our aim is to verify the conditions of Theorem 4 in Jeffrey

W. Miller (2021). Note that this result in Jeffrey W. Miller (2021) views {fn}∞n=1 as

a deterministic sequence; we therefore aim to show that the conditions of Theorem

4 in Jeffrey W. Miller (2021) are a.s. satisfied by our random sequence {fn}∞n=1.

Recall that the generalised posterior has p.d.f. πDn (θ) ∝ exp (−nfn(θ))π(θ)

defined on θ ⊂ Rp. This p.d.f. can be trivially extended to a p.d.f. on Rp by defining

π(θ) = 0 and (e.g.) fn(θ) = infθ∈θ fn(θ) + 1 for all θ ∈ Rp \ θ. This brings us

into the setting of Jeffrey W. Miller (2021). The assumptions of Jeffrey W. Miller

(2021, Theorem 4) are precisely the list in the statement of Lemma C.4, and the

conclusion is that∫
Rp

∣∣∣∣π̂Dn (θ)− 1

det(2πH−1
∗ )1/2

exp

(
−1

2
θ ·H∗θ

)∣∣∣∣ dθ → 0. (C.55)

Thus, since from Lemma C.4 the assumptions of Jeffrey W. Miller (2021, Theorem

4) are a.s. satisfied, the conclusion in (C.55) a.s. holds, as claimed.

C.3.6 Proof of Robustness Results

Proof of Lemma 8.5

Proof. First of all, (17) of Ghosh and Basu (2016) demonstrates that

PIF(y,θ,Pn) = βnπLn (θ)

(
−DL(y,θ,Pn) +

∫
θ

DL(y,θ′,Pn)πLn (θ′)dθ′
)
.(C.56)
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By Jensen’s inequality, we have an upper bounded

sup
θ∈θ

sup
y∈X
|PIF(y,θ,Pn)|

≤ βn sup
θ∈θ

πLn (θ)

(
sup
y∈X
|DL(y,θ,Pn)|+

∫
θ

sup
y∈X

∣∣DL(y,θ′,Pn)
∣∣πLn (θ′)dθ′

)
.(C.57)

Recall that πLn (θ) = π(θ) exp(−βnL(θ;Pn))/Z where 0 < Z <∞ is the normalizing

constant. Thus we can obtain the bound πLn (θ) ≤ π(θ) exp(−βn infθ∈θ Ln(θ;Pn))/Z =:

Cπ(θ) for some constant 0 < C <∞, since Ln(θ;Pn) is lower bounded by assump-

tion and n is fixed. From this upper bound, we have

sup
θ∈θ

sup
y∈X
|PIF(y,θ,Pn)|

≤ βnC sup
θ∈θ

π(θ)

(
sup
y∈X
|DL(y,θ,Pn)|+ C

∫
θ

sup
y∈X

∣∣DL(y,θ′,Pn)
∣∣π(θ′)dθ′

)

≤ βnC sup
θ∈θ

(
π(θ) sup

y∈X
|DL(y,θ,Pn)|

)
+

βnC2

(
sup
θ∈θ

π(θ)

)∫
θ

sup
y∈X

∣∣DL(y,θ′,Pn)
∣∣π(θ′)dθ′.

Since supθ∈θ π(θ) < ∞ by assumption in the statement of Lemma 8.5, it follows

that

sup
θ∈θ

(
π(θ) sup

y∈X
|DL(y,θ,Pn)|

)
<∞ and

∫
θ
π(θ) sup

y∈X
|DL(y,θ,Pn)|dθ <∞

are sufficient conditions for supθ∈θ supy∈X |PIF(y,θ,Pn)| <∞, as claimed.

The Form of DL(y,θ,Pn) for KSD

The following lemma clarifies the form of DL(y,θ,Pn) for KSD:

Lemma C.5. For L(θ;Pn,ε,y) = KSD2(Pθ‖Pn,ε,y), we have

DL(y,θ,Pn) = 2EX∼Pn
[
SPθSPθK(X, y)

]
− 2EX,X′∼Pn

[
SPθSPθK(X,X ′)

]
. (C.58)

Proof. From the definition of the ε-contamination model as a mixture model, and
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using the symmetry of K, we have

KSD2(Pθ‖Pn,ε,y)
= EX,X′∼Pn,ε,y

[
SPθSPθK(X,X ′)

]
= (1− ε)2EX,X′∼Pn

[
SPθSPθK(X,X ′)

]
+ 2(1− ε)εEX∼Pn [SPθSPθK(X, y)]

+ε2SPθSPθK(y, y). (C.59)

Direct differentiation then yields

DL(y,θ,Pn) =
d

dε
KSD2(Pθ‖Pn,ε,y)

∣∣∣∣
ε=0

= 2EX∼Pn
[
SPθSPθK(X, y)

]
− 2EX,X′∼Pn

[
SPθSPθK(X,X ′)

]
,(C.60)

as claimed.

Proof of Theorem 8.3

Proof. From Lemma 8.5 with X = Rd, it is sufficient to show that

(i) sup
θ∈θ

(
π(θ) sup

y∈Rd
|DL(y,θ,Pn)|

)
<∞ and (ii)

∫
θ

sup
y∈Rd

|DL(y,θ,Pn)|π(θ)dθ <∞.

To establish (i) and (ii) we exploit the expression for DL(y,θ,Pn) in Lemma C.5.

This gives us the bound

∣∣DL(y,θ,Pn)
∣∣ ≤ 2EX∼Pn

[
|SPθSPθK(X, y)|︸ ︷︷ ︸

=:(∗1)

]
+ 2EX,X′∼Pn

[
SPθSPθK(X,X ′)

]︸ ︷︷ ︸
=:(∗2)

.(C.61)

From Lemma C.1,

(∗1) ≤
√
SPθSPθK(y, y)

√
SPθSPθK(X,X);

(∗2) ≤ EX∼Pn [SPθSPθK(X,X)].

Plugging these bounds into (C.61) and using Jensen’s inequality gives

(C.61)

≤ 2
√
SPθSPθK(y, y)

√
EX∼Pn [SPθSPθK(X,X)] + 2EX∼Pn [SPθSPθK(X,X)] .(C.62)
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Now, observing that

EX∼Pn
[
SPθSPθK(X,X)

]
≤ EX∼Pn

[
sup
y∈Rd

(SPθSPθK(y, y))
]

= sup
y∈Rd

SPθSPθK(y, y) (C.63)

and taking a supremum over y in (C.62), we obtain the bound

sup
y∈Rd

|DL(y,θ,Pn)| ≤ 4 sup
y∈Rd

SPθSPθK(y, y). (C.64)

Therefore, from (C.64), it suffices to verify the conditions

(I) sup
θ∈θ

(
π(θ) sup

y∈Rd
SPθSPθK(y, y)

)
<∞ and

(II)

∫
θ

sup
y∈Rd

SPθSPθK(y, y)π(θ)dθ <∞,

which imply the original conditions (i) and (ii). To this end, in the remainder

we (a) exploit the specific form of SPθ to derive the an explicit upper bound on

supy∈Rd SPθSPθK(y, y), then (b) verify the conditions (I) and (II) based on this

upper bound.

Part (a): By the reproducing property of K, the definition of the diffusion Stein

operator SPθ , and the fact (a1 +a2)2 ≤ 2(a2
1 +a2

2) for a1, a2 ∈ R, we have the bound

SPθSPθK(y, y) = ‖SPθK(y, ·)‖2H
= ‖∇y log p(y|θ) ·K(y, ·) +∇y ·K(y, ·)‖2H (C.65)

≤ 2‖∇y log p(y|θ) ·K(y, ·)‖2H + 2 ‖∇y ·K(y, ·)‖2H . (C.66)

For the first term, the reproducing property of K gives that

‖∇y log p(y|θ) ·K(y, ·)‖2H = ∇y log p(y|θ) ·K(y, y)∇y log p(y|θ), (C.67)

while for the second term, and letting R(x, x′) := ∇x·(∇x′ ·K(x, x′)), the reproducing

property gives that

‖∇yK(y, ·)‖2H =
〈
∇y ·K(y, ·),∇y ·K(y, ·)

〉
H = R(y, y). (C.68)
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Thus, taking the supremum with respect to y ∈ Rd yields the upper bound,

sup
y∈Rd

SPθSPθK(y, y) ≤ 2 sup
y∈Rd

(
∇y log p(y|θ) ·K(y, y)∇y log p(y|θ)

)
+ 2 sup

y∈Rd
R(y, y).

Since K ∈ C1×1
b (Rd×Rd) by assumption, it follows that CMK := supy∈Rd R(y, y) <

∞. Thus we have have that

sup
y∈Rd

SPθSPθK(y, y) ≤ 2γ(θ) + 2CMK , (C.69)

where γ(θ) was defined in the statement of Theorem 8.3.

Part (b): Now we are in a position to verify conditions (I) and (II). For condition

(I), we use (C.69) to obtain

sup
θ∈θ

(
π(θ) sup

y∈Rd
SPθSPθK(y, y)

)
≤ 2 sup

θ∈θ
π(θ)γ(θ) + 2CMK sup

θ∈θ
π(θ) (C.70)

which is finite by assumption. Similarly, for condition (II), we use (C.69) to obtain∫
θ

sup
y∈Rd

SPθSPθK(y, y)π(θ)dθ ≤ 2

∫
θ
π(θ)γ(θ)dθ + 2CMK

∫
θ
π(θ)dθ, (C.71)

which is also finite by assumption. This completes the proof.

C.3.7 Verifying Assumptions 8.3 8.2, 8.4

In this appendix we demonstrate how Assumptions 8.3 8.2, 8.4 can be verified for

the exponential family model when the Langevin Stein operator is employed. For

simplicity, consider the case where the data dimension is d = 1, the parameter

dimension is p = 1, and the conjugate prior π(θ) ∝ exp(−θ2/2) is used. From (8.4),

a canonical exponential family model with η(θ) = θ and X = R is given by

p(x|θ) = exp(θ · t(x)− a(θ) + b(x)) (C.72)

where t : R→ R, a : θ → R and b : R→ R. Accordingly, the log derivative is given

by ∇ log p(x|θ) = ∇t(x)θ + ∇b(x). Identical calculations to Proposition 8.1 show

that the KSD of the exponential family model with the Langevin Stein operator

takes a quadratic form

KSD2(Pθ‖Pn) = C1,nθ
2 + C2,nθ + C3,n and KSD2(Pθ‖P) = C1θ

2 + C2θ + C3.
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where Ci,n = (1/n2)
∑n

i,j=1 ci(xi, xj) and Ci = EX,X′∼P[ci(X,X
′)] and

c1(x, x′) := ∇t(x) ·K(x, x′)∇t(x′)
c2(x, x′) := ∇t(x) ·

(
∇x′ ·K(x, x′)

)
+∇t(x′) ·

(
∇x ·K(x, x′)

)
+ 2∇t(x) ·K(x, x′)∇b(x′)

c3(x, x′) := b(x) ·K(x, x′)b(x′) +∇x · (∇x′ ·K(x, x′))

+ b(x) · (∇x′ ·K(x, x′)) + b(x′) · (∇x ·K(x, x′)).

Note that C1,n > 0 and C1 > 0 if a positive definite kernel K is used.

Verifying Assumption 8.2 (rmax = 3): First, note thatH∗ = ∇2
θ KSD2(Pθ‖P)|θ=θ∗

is non-singular since ∇θ KSD2(Pθ‖P) = ∇2
θ(C1θ

2 + C2θ + C3) = 2C1 > 0. Now, as

demonstrated in Section 8.4.1, when SPθ is the Langevin Stein operator, we have

(∂rSPθ)[h](x) = (∂r∇x log p(x|θ)) · h(x) and h 7→ (∂rSPθ)[h](x) is a continuous lin-

ear functional on H for each fixed x ∈ X . In the exponential family case, the map

θ 7→ ∇x log p(x|θ) is infinitely differentiable over Θ since it is polynomial, leading

to

∂1∇x log p(x|θ) = ∇t(x), ∂2∇x log p(x|θ) = 0, ∂3∇x log p(x|θ) = 0.

It is then clear that EX∼P[supθ∈Θ((∂rSPθ)(∂rSPθ)K(X,X))] <∞ for r = 2, 3. For

r = 1,

EX∼P
[

sup
θ∈Θ

(
(∂1SPθ)(∂1SPθ)K(X,X)

)]
= EX∼P [∇t(X) ·K(X,X)∇t(X)] . (C.73)

For the remaining term in Assumption 8.2, by essentially same calculations as Propo-

sition 8.1,

EX∼P
[

sup
θ∈Θ

(
SPθSPθK(X,X)

)]
= EX∼P

[
sup
θ∈Θ

(
c1(X,X)θ2 + c2(X,X)θ + c3(X,X)

)]
≤ EX∼P

[
c1(X,X) sup

θ∈Θ
θ2 + c2(X,X) sup

θ∈Θ
θ + c3(X,X)

]
(C.74)

Since θ is a bounded set in R, it is clear that supθ∈Θ θ <∞. The finiteness of (C.73)

and (C.74) can therefore be interpreted as finite moment conditions involving t, b,

K and P.

Verifying Assumption 8.3: If both KSD2(Pθ‖Pn) and KSD2(Pθ‖P) are of quadratic

form with C1,n > 0 and C1 > 0, the estimator θn exists and the minimiser θ∗
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is unique over R. It depends on C1, C2, C3 whether θ∗ is contained in θ, but if

we are free to select θ then we may select it such that θ∗ ∈ θ. Since C1 > 0,

the well-separated property of θ∗ is automatically satisfied; i.e. KSD(Pθ∗ ,P) <

inf{θ∈θ:‖θ−θ∗‖2≥ε}KSD(Pθ,P) for all ε > 0.

Verifying Assumption 8.4: Part (1) is immediately satisfied since the prior den-

sity π(θ) ∝ exp(−θ2/2) is continuous and positive on θ. For part (2), we first

have

|KSD2(Pθ‖P)−KSD2(Pθ∗‖P)| = |C1θ
2 + C2θ − C1θ

2
∗ − C2θ∗|

= C1

∣∣(θ + Z2)2 − Z1

∣∣
where Z1 := C2

2/(4C
2
1 ) + θ2

∗ + (C2/C1)θ∗ and Z2 := C2/(2C1) by completing the

square. By the simple calculation, the set Bn(α1) = {θ ∈ θ : |KSD2(Pθ‖P) −
KSD2(Pθ∗‖P)| ≤ α1/

√
n} is then given by

Bn(α1) =

{
θ ∈ θ : −

(
α1

C1
√
n

+ Z1

) 1
2

− Z2 ≤ θ ≤
(

α1

C1
√
n

+ Z1

) 1
2

− Z2

}

While it is difficult to derive an explicit inequality between Π(Bn) and exp(−α2
√
n),

since it requires division into cases according to the values of C1, C2, C3, θ∗, and the

set θ, the explicit form of Bn renders it straightforward to numerically determine

which values for α1 > 0 and α2 > 0 ensure that Π(Bn) ≥ exp(−α2
√
n) holds for all

n ∈ N.

Quantities Sn(x,θ) and Jn: Here we provide the explicit form of Sn(x,θ) and Jn

used to determine the value of β for exponential family model. From the definition,

Sn(x,θ) =
1

n

n∑
i=1

∇θ
(
SPθSPθK(x, xi)

)
= 2

(
1

n

n∑
i=1

c1(x, xi)

)
θ +

(
1

n

n∑
i=1

c2(x, xi)

)
. (C.75)

Let c1,n(x) := (1/n)
∑n

i=1 c1(x, xi) and c2,n(x) := (1/n)
∑n

i=1 c2(x, xi). From the

definition,

Jn =
1

n

n∑
i=1

Sn(xi,θn)Sn(xi,θn)>

=
1

n

n∑
i=1

(
2c1,n(xi)θn + c2,n(xi)

)(
2c1,n(xi)θn + c2,n(xi)

)>
.
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Together with Hn = C1,n, the default choice of β is given by (8.14) in Section 8.5.

C.4 Auxiliary Theoretical Results for KSD-Bayes

In Appendix C.3 we exploited a number of auxiliary results, the details of which

are now provided. Recall that Standing Assumptions 1 and 2 continue to hold

throughout.

C.4.1 Derivative Bounds

Our auxiliary results mainly concern moments of derivative quantities, and the aim

of Appendix C.4.1 is to establish the main bounds that will be used. Recall that ∂1,

∂2 and ∂3 denote the partial derivatives (∂/∂θh), (∂2/∂θh∂θk) and (∂3/∂θh∂θk∂θl)

respectively. For the proofs in Appendix C.4.1, we make the index explicit by re-

writing them as ∂1
(h), ∂

2
(h,k) and ∂3

(h,k,l). For x ∈ X and (h, k, l) ∈ {1, . . . , p}3, we

define

m0(x) := sup
θ∈Θ

√
SPθSPθK(x, x),

m1(x) := sup
θ∈Θ

√√√√ p∑
h=1

(∂1
(h)SPθ)(∂1

(h)SPθ)K(x, x),

m2(x) := sup
θ∈Θ

√√√√ p∑
h,k=1

(∂2
(h,k)SPθ)(∂2

(h,k)SPθ)K(x, x),

m3(x) := sup
θ∈Θ

√√√√ p∑
h,k,l=1

(∂3
(h,k,l)SPθ)(∂3

(h,k,l)SPθ)K(x, x).

where we continue to use the convention that the first and second operator in ex-

pressions such as (∂1
(h)SPθ)(∂1

(h)SPθ)K(x, x′) are respectively applied to the first and

second argument of K. Further define

M1(x, x′) := m1(x)m0(x′) +m0(x)m1(x′),

M2(x, x′) := m2(x)m0(x′) + 2m1(x)m1(x′) +m0(x)m2(x′),

M3(x, x′) := m3(x)m0(x′) + 3m2(x)m1(x′) + 3m1(x)m2(x′) +m0(x)m3(x′).

Based on these quantities, we now provide three technical results, Lemmas C.6, C.8

and C.7.
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Lemma C.6. Suppose Assumption 8.2 (rmax = 3) holds. For each r = 1, 2, 3, and

for any x, x′ ∈ X ,

sup
θ∈Θ

∥∥∇rθ(SPθSPθK(x, x′)
)∥∥

2
≤M r(x, x′). (C.76)

If instead Assumption 8.2 (rmax = 1) holds, then (C.76) holds for r = 1.

Proof. We first derive the upper bound for r = 1 and then apply the same argument

for the remaining upper bound for r = 2 and r = 3. By the definition of ∇θ,

sup
θ∈Θ

∥∥∥∇θ(SPθSPθK(x, x′)
)∥∥∥

2
= sup
θ∈Θ

√√√√ p∑
h=1

(
∂1

(h)

(
SPθSPθK(x, x′)

))2
. (C.77)

By Lemma C.1 and Standing Assumption 2, we have SPθK(x, ·) ∈ H for any x ∈ X
and

(∗1) := ∂1
(h)

(
SPθSPθK(x, x′)

)
= ∂1

(h)

( 〈
SPθK(x, ·),SPθK(x′, ·)

〉
H

)
. (C.78)

From Assumption 8.2 (rmax = 1), the operator (∂1
(h)SPθ) exists over Θ and satisfies

the preconditions of Lemma C.1. Hence, by setting SQ = (∂1
(h)SPθ) in Lemma C.1,

we have that (∂1
(h)SPθ)K(x, ·) ∈ H for each x ∈ X . Let fθ(·) = SPθK(x, ·) and

gθ(·) = SPθK(x′, ·). Then the following product rule holds:

∂1
(h)〈fθ, gθ〉H = 〈∂1

(h)fθ, gθ〉H + 〈fθ, ∂1
(h)gθ〉H, (C.79)

which is verified from definition of differentiation as a limit and continuity of the in-

ner product. Note that ∂(h)fθ(·) = (∂1
(h)SPθ)K(x, ·) ∈ H and ∂(h)gθ(·) = (∂1

(h)SPθ)K(x′, ·) ∈
H. Therefore by (C.79) and the Cauchy–Schwarz inequality,

(∗1) =
〈
∂1

(h)SPθK(x, ·),SPθK(x′, ·)
〉
H

+
〈
SPθK(x, ·), ∂1

(h)SPθK(x′, ·)
〉
H

≤
∥∥∥(∂1

(h)SPθ)K(x, ·)
∥∥∥
H︸ ︷︷ ︸

(∗a)

∥∥SPθK(x′, ·)
∥∥
H︸ ︷︷ ︸

(∗b)

+ ‖SPθK(x, ·)‖H︸ ︷︷ ︸
(∗c)

∥∥∥(∂1
(h)SPθ)K(x′, ·)

∥∥∥
H︸ ︷︷ ︸

(∗d)

.
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For the original term (C.77), by the triangle inequality,

sup
θ∈Θ

√√√√ p∑
h=1

(∗1)2 ≤ sup
θ∈Θ

√√√√ p∑
h=1

(
(∗a)(∗b) + (∗c)(∗d)

)2

≤ sup
θ∈Θ

√√√√ p∑
h=1

(∗a)2(∗b)2 + sup
θ∈Θ

√√√√ p∑
h=1

(∗c)2(∗d)2. (C.80)

For the term (∗a), expanding the norm yields that

(∗a)2 =
〈

(∂1
(h)SPθ)K(x, ·), (∂1

(h)SPθ)K(x, ·)
〉
H

= (∂1
(h)SPθ)(∂1

(h)SPθ)K(x, x).

A similar argument applied to (∗b)2, (∗c)2 and (∗d)2 leads to the overall bound

sup
θ∈Θ

∥∥∇θ(SPθSPθK(x, x′)
)∥∥

2
≤ m1(x)m0(x′) +m0(x)m1(x′) = M1(x, x′).

The upper bounds for r = 2 and r = 3 are obtained by an analogous argu-

ment. Indeed, from the definition of ∇2
θ and ∇3

θ,

sup
θ∈Θ

∥∥∇2
θ

(
SPθSPθK(x, x′)

)∥∥
2

= sup
θ∈Θ

√√√√ p∑
h,k=1

(
∂2

(h,k)

(
SPθSPθK(x, x′)

))2
=: (∗′′),

sup
θ∈Θ

∥∥∇3
θ

(
SPθSPθK(x, x′)

)∥∥
2

= sup
θ∈Θ

√√√√ p∑
h,k,l=1

(
∂3

(h,k,l)

(
SPθSPθK(x, x′)

))2
=: (∗′′′).

From Assumption 8.2 (rmax = 3), the operators (∂2
(h,k)SPθ) and (∂3

(h,k,l)SPθ) ex-

ist over Θ and satisfy the preconditions of Lemma C.1. Hence from Lemma C.1,

∂2
(h,k)fθ(·) = (∂2

(h,k)SPθ)K(x, ·) ∈ H and ∂3
(h,k,l)fθ(·) = (∂3

(h,k,l)SPθ)K(x, ·) ∈ H for

any x ∈ X , and in turn ∂2
(h,k)gθ(·) ∈ H and ∂3

(h,k,l)gθ(·) ∈ H. Repeated application

of the product rule (C.79) gives that

∂2
(h,k)〈fθ, gθ〉H

= 〈∂2
(h,k)fθ, gθ〉H + 〈∂1

(h)fθ, ∂
1
(k)gθ〉H + 〈∂1

(k)fθ, ∂
1
(h)gθ〉H + 〈fθ, ∂2

(h,k)gθ〉H,
∂3

(h,k,l)〈fθ, gθ〉H
= 〈∂3

(h,k,l)fθ, gθ〉H + 〈∂2
(h,k)fθ, ∂

1
(l)gθ〉H + 〈∂2

(h,l)fθ, ∂
1
(k)gθ〉H + 〈∂2

(k,l)fθ, ∂(h)gθ〉H
+〈∂1

(h)fθ, ∂
2
(k,l)gθ〉H + 〈∂1

(k)fθ, ∂
2
(h,l)gθ〉H + 〈∂1

(l)fθ, ∂
2
(h,k)gθ〉H + 〈fθ, ∂3

(h,k,l)gθ〉H.(C.81)

Following the same argument as the preceding upper bound for r = 1, the triangle
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inequality and Cauchy–Schwarz imply that

(∗′′) ≤ m2(x)m0(x′) +m1(x)m1(x′) +m1(x)m1(x′) +m0(x)m2(x′)

= m2(x)m0(x′) + 2m1(x)m1(x′) +m0(x)m2(x′) = M2(x, x′),

(∗′′′) ≤ m3(x)m0(x′) +m2(x)m1(x′) +m2(x)m1(x′) +m2(x)m1(x′)

+m1(x)m2(x′) +m1(x)m2(x′) +m1(x)m2(x′) +m0(x)m3(x′)

= m3(x)m0(x′) + 3m2(x)m1(x′) + 3m1(x)m2(x′) +m0(x)m3(x′) = M3(x, x′),

which are the claimed upper bounds for the cases r = 2 and r = 3.

Lemma C.7. Suppose Assumption 8.2 (rmax = 3) holds. For r = 0, 1, 2, 3, EX∼P[|mr(X)|] <
∞ and EX∼P[|mr(X)|2] < ∞. For r = 1, 2, 3, EX,X′∼P[|M r(X,X ′)|] < ∞ and

EX∼P[|M r(X,X)|] < ∞. If instead Assumption 8.2 (rmax = 1) holds, these results

hold for 0 ≤ r ≤ 1.

Proof. First, note that positivity of mr(·) and M r(·) implies that the absolute value

signs can be neglected. Moreover, from Jensen’s inequality (EX∼P[mr(X)])2 ≤
EX∼P[mr(X)2]. Thus it is sufficient to show that (a) EX∼P[mr(X)2] < ∞, (b)

EX,X′∼P[M r(X,X ′)] <∞ and (c) EX∼P[M r(X,X)] <∞.

Part (a): The argument is analogous for each r = 0, 1, 2, 3 and we present it with

r = 3. The bounded follows from Jensen’s inequality and the triangle inequality:

EX∼P
[
m3(X)2

]
≤ EX∼P

sup
θ∈Θ

p∑
h,k,l=1

(∂3
(h,k,l)SPθ)(∂3

(h,k,l)SPθ)K(X,X)


≤

p∑
h,k,l=1

EX∼P
[

sup
θ∈Θ

(
(∂3

(h,k,l)SPθ)(∂3
(h,k,l)SPθ)K(X,X)

)]

where the terms in the sum are finite by Assumption 8.2 (rmax = 3).

Part (b): Since X,X ′ are independent in the expectation EX,X′∼P[M r(X,X ′)], it

is clear from the definition of M r that EX,X′∼P[M r(X,X ′)] exists if the expectation

of each term ms(X), s ≤ r, exists. Thus by part (a), EX,X′∼P[M r(X,X ′)] <∞ for

r = 1, 2, 3.

292



Part (c): From the definition of M r(x, x) for r = 1, 2, 3,

EX∼P[M1(X,X)] = 2EX∼P[m1(X)m0(X)],

EX∼P[M2(X,X)] = 2EX∼P[m2(X)m0(X)] + 2EX∼P[m1(X)m1(X)],

EX∼P[M3(X,X)] = 2EX∼P[m3(X)m0(X)] + 6EX∼P[m2(X)m1(X)].

Applying the Cauchy–Schwarz inequality for each term,

EX∼P[M1(X,X)]

≤ 2
√
EX∼P[m1(X)2]

√
EX∼P[m0(X)2],

EX∼P[M2(X,X)]

≤ 2
√
EX∼P[m2(X)2]

√
EX∼P[m0(X)2] + 2

√
EX∼P[m1(X)2]

√
EX∼P[m1(X)2],

EX∼P[M3(X,X)]

≤ 2
√
EX∼P[m3(X)2]

√
EX∼P[m0(X)2] + 6

√
EX∼P[m2(X)2]

√
EX∼P[m1(X)2].

Since each of the latter expectations is finite by part (a), EX∼P[M r(X,X)] <∞ for

r = 1, 2, 3.

Inspection of the proof reveals that these results hold for r = 0, 1 if instead

Assumption 8.2 (rmax = 1) holds.

Lemma C.8. Suppose Assumption 8.2 (rmax = 3) holds. Then, for r = 1, 2, 3,

1

n2

n∑
i=1

n∑
j=1

M r(xi, xj)
a.s−→ EX,X′∼P[M r(X,X ′)] <∞. (C.82)

If instead Assumption 8.2 (rmax = 1) holds, then (C.82) holds for r = 1.

Proof. The proof is based on the strong law of large numbers, the sufficient condi-

tions for which are provided by Lemma C.7, which shows that EX∼P [|mr(X)|] <
∞ for r = 0, 1, 2, 3 under Assumption 8.2 (rmax = 3). Then the strong law of

large numbers (Durrett, 2010, Theorem 2.5.10) yields that (1/n)
∑n

i=1m
r(xi)

a.s.→
EX∼P [mr(X)] =: (∗r) for r = 0, 1, 2, 3. Then, from the definition of M1,

lim
n→∞

1

n2

n∑
i=1

n∑
j=1

M1(xi, xj) = lim
n→∞

1

n2

n∑
i=1

n∑
j=1

(
m1(xi)m

0(xj) +m0(xi)m
1(xj)

)
= lim

n→∞

1

n

n∑
i=1

m1(xi)× lim
n→∞

1

n

n∑
j=1

m0(xj) + lim
n→∞

1

n

n∑
i=1

m0(xi)× lim
n→∞

1

n

n∑
j=1

m1(xj).
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Since each limit in the right hand side converges a.s. to either (∗0) or (∗1), so that

1

n2

n∑
i=1

n∑
j=1

M1(xi, xj)

a.s.−→ EX∼P[m1(X)]× EX∼P[m0(X)] + EX∼P[m0(X)]× EX∼P[m1(X)]

= EX,X′∼P[m1(X)m0(X ′) +m0(X)m1(X ′)] = EX,X′∼P[M1(X,X ′)],

where X,X ′ are independent. An analogous argument holds for M2(xi, xj) and

M3(xi, xj), giving that

1

n2

n∑
i=1

n∑
j=1

M2(xi, xj)
a.s.−→ (∗2)(∗0) + 2(∗1)(∗1) + (∗0)(∗2)

= EX,X′∼P[M2(X,X ′)],

1

n2

n∑
i=1

n∑
j=1

M3(xi, xj)
a.s.−→ (∗3)(∗0) + 3(∗2)(∗1) + 3(∗1)(∗2) + (∗0)(∗3)

= EX,X′∼P[M3(X,X ′)].

Inspection of the proof reveals that (C.82) still holds for r = 1 if Assumption 8.2

(rmax = 1) holds instead.

C.4.2 Technical Lemmas

Throughout this section we let fn(θ) := KSD2(Pθ‖Pn) and f(θ) := KSD2(Pθ‖P).

Similarly to ∇2
θ, we let ∇3

θ := ∇θ ⊗ ∇θ ⊗ ∇θ denote the tensor product ⊗ where

each component is given by ∂3
h,k,l. For a matrix a ∈ Rp×p and tensor b ∈ Rp×p×p,

denote their Euclidean norms by ‖a‖2 and ‖b‖2.

Lemma C.9 (Derivatives a.s. Bounded). Suppose Assumption 8.2 (rmax = 3)

holds. Then lim supn→∞ supθ∈Θ ‖∇rθfn(θ)‖2 < ∞ a.s. for r = 1, 2, 3. If instead

Assumption 8.2 (rmax = 1) holds, then the result holds for r = 1.

Proof. First of all, for finite n we have

∇rθfn(θ) = ∇rθ
1

n2

n∑
i=1

n∑
j=1

SPθSPθK(xi, xj) =
1

n2

n∑
i=1

n∑
j=1

∇rθ
(
SPθSPθK(xi, xj)

)
.

From the triangle inequality and Lemma C.6, we further have

sup
θ∈Θ
‖∇rθfn(θ)‖2 =

1

n2

n∑
i=1

n∑
j=1

sup
θ∈Θ

∥∥∇rθ(SPθSPθK(xi, xj)
)∥∥

2
≤ 1

n2

n∑
i=1

n∑
j=1

M r(xi, xj).
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It follows from Lemma C.8 that (1/n2)
∑n

i=1

∑n
j=1M

r(xi, xj)
a.s.−→ EX,X′∼P[M r(X,X ′)] <

∞. Therefore, a.s. lim supn→∞ supθ∈Θ ‖∇rθfn(θ)‖2 < ∞. Inspection of the proof

reveals that the argument still holds for r = 1 if Assumption 8.2 (rmax = 1) holds

instead.

Lemma C.10 (A.S. Convergence of Derivatives). Suppose Assumption 8.2 (rmax =

3) and 8.3 hold. Then we have ∇rθfn(θ∗)
a.s.→ ∇rθf(θ∗) for r = 1, 2, 3. Let Hn :=

∇2
θfn(θn) and H∗ := ∇2

θf(θ∗). We further have Hn
a.s.→ H∗, where Hn and H∗ are

symmetric and H∗ is semi positive definite.

Proof. The proof is structured as follows: First we show (a) ∇rθfn(θ∗)
a.s.→ ∇rθf(θ∗)

for r = 1, 2, 3. Then we show (b) Hn
a.s.→ H∗. Finally we show (c) Hn is symmetric

and H∗ is semi-positive definite.

Part (a): The argument here is analogous to that used to prove Theorem 8.1, based

on the decomposition

∇rθfn(θ) = ∇rθ
1

n2

n∑
i=1

n∑
j=1

SPθSPθK(xi, xj) =
1

n2

n∑
i=1

n∑
j=1

∇rθ
(
SPθSPθK(xi, xj)

)
.

Let F (x, x′) := ∇rθ
(
SPθSPθK(x, x′)

)
to see that

∇rθfn(θ) =
1

n

1

n

n∑
i=1

F (xi, xi)︸ ︷︷ ︸
(∗1)

+
n− 1

n

1

n(n− 1)

n∑
i=1

n∑
j 6=i

F (xi, xj)︸ ︷︷ ︸
(∗2)

. (C.83)

It follows from the strong law of large number (Durrett, 2010, Theorem 2.5.10) that

(∗1)
a.s.→ EX∼P[F (X,X)] provided EX∼P[‖F (X,X)‖2] <∞. Similarly, it follows from

the strong law of large number for U-statistics (Wassily Hoeffding, 1961) that (∗2)
a.s.→

EX,X′∼P[F (X,X ′)] provided EX,X′∼P[‖F (X,X ′)‖2] < ∞. Both the required condi-

tions holds by Lemma C.7 and the fact that ‖F (x, x′)‖2 ≤ supθ∈θ ‖∇rθ(SPθSPθK(x, x′))‖2 ≤
M r(x, x′) from Lemma C.6. Thus

∇rθfn(θ)
a.s.−→ EX,X′∼P[F (X,X ′)] = EX,X′∼P[∇rθ

(
SPθSPθK(xi, xj)

)
]. (C.84)

Since EX,X′∼P[‖F (X,X ′)‖2] < ∞, we may apply the dominated convergence theo-

rem to interchange expectation and differentiation:

EX,X′∼P[∇rθ(SPθSPθK(X,X ′))] = ∇rθEX,X′∼P[SPθSPθK(X,X ′)] = ∇rθf(θ). (C.85)
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Therefore, setting θ = θ∗, we conclude that ∇rθfn(θ∗)
a.s.→ ∇rθf(θ∗).

Part (b): First of all, by the triangle inequality,

∥∥∇2
θfn(θn)−∇2

θf(θ∗)
∥∥

2
≤
∥∥∇2

θfn(θn)−∇2
θfn(θ∗)

∥∥
2︸ ︷︷ ︸

(∗∗1)

+
∥∥∇2

θfn(θ∗)−∇2
θf(θ∗)

∥∥
2︸ ︷︷ ︸

(∗∗2)

.

By the mean value theorem applied to (∗∗1) and Lemma C.9 (i.e. limn→∞ supθ∈Θ ‖∇3
θfn(θ)‖2 <

∞ a.s.), there a.s. exists a constant 0 < C <∞ s.t., for all sufficiently large n,

(∗∗1) =
∥∥∇2

θfn(θn)−∇2
θfn(θ∗)

∥∥
2
≤ sup
θ∈Θ
‖∇3

θfn(θ)‖2‖θn − θ∗‖2 ≤ C‖θn − θ∗‖2.(C.86)

Then applying Lemma 8.3 (i.e. ‖θn − θ∗‖2 a.s.→ 0), we have (∗∗1)
a.s.→ 0. Fur-

ther the preceding part (a) implied that (∗∗2)
a.s.→ 0. Therefore, we conclude that

∇2
θfn(θn)

a.s.→ ∇2
θf(θ∗).

Part (c): Since fn is twice continuously differentiable over Θ by assumption,

commutation of two partial derivatives ∂(h)∂(k)fn(θ) = ∂(k)∂(h)fn(θ) holds over

Θ by the Clairaut’s theorem. Therefore the (h, k)-th entry and (k, h)-th entry of

Hn = ∇2
θfn(θn) are equal. An analogous argument applies to H∗ = ∇2

θf(θ∗), so

that both Hn and H∗ are symmetric. Furthermore, the Hessian H∗ is semi positive

definite since θ∗ is the minimiser of f from Assumption 8.3.

Lemma C.11 (Moment Condition for Asymptotic Normality). Suppose that As-

sumption 8.2 (rmax = 3) holds. Let F (x, x′) := ∇θ(SPθSPθK(x, x′)) for any fixed

θ ∈ θ. Then we have EX,X′∼P
[
‖F (X,X ′)‖22

]
<∞ and EX∼P [‖F (X,X)‖2] <∞.

Proof. First of all, it follows from Lemma C.6 that for any x, x′ ∈ X ,

‖F (x, x′)‖2 ≤ sup
θ∈Θ
‖∇θ

(
SPθSPθK(x, x′)

)
‖2 ≤M1(x, x′). (C.87)

Thus for the first moment we have EX∼P [‖F (X,X)‖2] ≤ EX∼P[M1(X,X)] < ∞
from Lemma C.7. For the second moment, EX,X′∼P

[
‖F (X,X ′)‖22

]
≤ EX,X′∼P

[
M1(X,X ′)2

]
=:

(∗). By definition,

(∗) = EX,X′∼P
[(
m1(X)m0(X ′) +m0(X)m1(X ′)

)2]
= 4EX∼P

[
m1(X)2

]
EX∼P

[
m0(X)2

]
. (C.88)

Each of these expectations is finite by Lemma C.7, which completes the proof.
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Theorem C.2 (Concentration Inequality for KSD). Let σ(θ) := EX∼P[SPθSPθK(X,X)].

Then

P (|fn(θ)− f(θ)| ≥ δ) ≤ 4σ(θ)

δ
√
n
, ∀θ ∈ θ, (C.89)

where the probability is with respect to realisations of the dataset {xi}ni=1
i.i.d.∼ P.

Proof. Since |a2 − b2| = |(a+ b)(a− b)| = (a+ b)|a− b| for all a, b ∈ [0,∞), we have

the bound

∣∣KSD2(Pθ‖Pn)−KSD2(Pθ‖P)
∣∣︸ ︷︷ ︸

=:(∗)

= (KSD(Pθ‖Pn) + KSD(Pθ‖P))︸ ︷︷ ︸
=:(∗1)

|KSD(Pθ‖Pn)−KSD(Pθ‖P)|︸ ︷︷ ︸
=:(∗2)

. (C.90)

In what follows we use E to denote an expectation with respect to the dataset

{xi}ni=1
i.i.d.∼ P. Applying Markov’s inequality followed by Cauchy–Schwarz, we have

P((∗) ≥ δ) ≤ 1

δ
E[(∗)] =

1

δ
E[(∗1)(∗2)] ≤ 1

δ

√
E[(∗1)2]

√
E[(∗2)2]. (C.91)

To conclude the proof, we bound the two expectations one the right hand side.

Bounding E[(∗1)2]: From the fact that (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R,

E[(∗1)2] ≤ 2E
[
KSD2(Pθ‖Pn) + KSD2(Pθ‖P)

]
= 2
(
E
[
KSD2(Pθ‖Pn)

]
+ KSD2(Pθ‖P)

)
.

The preconditions of Lemma C.1 holds due to Standing Assumption 2. Thus from

Lemma C.1 part (iii), together with Jensen’s inequality, we have the two bounds

KSD2(Pθ‖Pn) ≤ (1/n)
∑n

i=1 SPθSPθK(xi, xi) and KSD2(Pθ‖P) ≤ EX∼P[SPθSPθK(X,X)].

Plugging these into the previous inequality, and exploiting independence of xi and

xj whenever i 6= j, we have

E[(∗1)2] ≤ 2

(
E

[
1

n

n∑
i=1

SPθSPθK(xi, xi)

]
+ EX∼P[SPθSPθK(X,X)]

)
= 2
(
EX∼P[SPθSPθK(X,X)] + EX∼P[SPθSPθK(X,X)]

)
= 4σ(θ),

where existence of σ(θ) for all θ ∈ θ is ensured by Standing Assumption 2.

Bounding E[(∗2)2]: From the fact | supx |f(x)| − supy |g(y)|| ≤ supx |f(x) − g(x)|
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for functions f and g, the term (∗2) is upper bounded by

(∗2) =

∣∣∣∣∣ sup
‖h‖H≤1

∣∣∣∣∣ 1n
n∑
i=1

SPθ [h](xi)

∣∣∣∣∣− sup
‖h‖H≤1

∣∣∣∣∣EX∼P[SPθ [h](X)]

∣∣∣∣∣
∣∣∣∣∣

≤ sup
‖h‖H≤1

∣∣∣∣∣ 1n
n∑
i=1

SPθ [h](xi)− EX∼P[SPθ [u](X)]

∣∣∣∣∣
= sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(xi)− EX∼P[f(X)]

∣∣∣∣∣ . (C.92)

where F := {SPθ [h] | ‖h‖H ≤ 1}. We can see from this expression that standard

arguments in the context of Rademacher complexity theory can be applied. Noting

that | · |2 is a convex function, Proposition 4.11 in Wainwright (2019) gives that

E
[
(∗2)2

]
≤ E

(sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(xi)− EX∼P[f(X)]

∣∣∣∣∣
)2


≤ EEε

22

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣
)2
 (C.93)

where {εi}ni=1 are independent random variables taking values in {−1,+1} with

equiprobability 1/2 and Eε is the expectation over {εi}ni=1. From the essentially

same derivation as Proposition 6.1, the following equality holds:

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣
= sup
‖h‖H≤1

∣∣∣∣∣ 1n
n∑
i=1

εiSPθ [h](xi)

∣∣∣∣∣ = sup
‖h‖H≤1

∣∣∣∣∣
〈
h,

1

n

n∑
i=1

εiSPθK(xi, ·)
〉
H

∣∣∣∣∣
=

∥∥∥∥∥ 1

n

n∑
i=1

εiSPθK(xi, ·)
∥∥∥∥∥
H

=

√√√√ 1

n2

n∑
i=1

n∑
j=1

εiεjSPθSPθK(xi, xj).

Plugging this equality into the upper bound of E
[
(∗2)2

]
, we have

E
[
(∗2)2

]
≤ 4EEε

 1

n2

n∑
i=1

n∑
j=1

εiεjSPθSPθK(xi, xj)

 (C.94)

= 4E

[
1

n2

n∑
i=1

SPθSPθ [K(Xi, Xi)]

]

=
4

n
EX∼P[SPθSPθK(X,X)] =

4σ(θ)

n
. (C.95)
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Bounding E[(∗)2]: Returning to (C.91), we have the overall bound

P((∗) ≥ δ) ≤
√

4σ(θ)
√

4σ(θ)

δ
√
n

≤ 4σ(θ)

δ
√
n

(C.96)

as claimed.
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