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ABSTRACT
A Gaussian approximation machine learning interatomic potential for platinum is presented. It has been trained on density-functional theory
(DFT) data computed for bulk, surfaces, and nanostructured platinum, in particular nanoparticles. Across the range of tested properties,
which include bulk elasticity, surface energetics, and nanoparticle stability, this potential shows excellent transferability and agreement with
DFT, providing state-of-the-art accuracy at a low computational cost. We showcase the possibilities for modeling of Pt systems enabled by this
potential with two examples: the pressure–temperature phase diagram of Pt calculated using nested sampling and a study of the spontaneous
crystallization of a large Pt nanoparticle based on classical dynamics simulations over several nanoseconds.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143891

I. INTRODUCTION

Platinum belongs to the noble metal family and is often used
in expensive jewelry. However, the wider importance of Pt for the
global economy stems from its countless industrial uses, even in ele-
mental crystalline form. Platinum is commonly used as a catalyst for
many chemical reactions. For instance, Pt is the best known cata-
lyst for the hydrogen evolution reaction (HER), where it shows an
extremely small overpotential.1,2 Pt is also one of the few catalysts
that can withstand the highly oxidizing environments of the oxygen
reduction reaction (ORR) and oxygen evolution reaction (OER).3,4

At the same time, Pt is scarce in the Earth’s crust, and its supply
for industrial applications is severely limited by cost and availabil-
ity. Still, for some applications, the use of Pt can be so advantageous
compared to the next-best option that it remains in wide use. To
reduce the amount of raw Pt that is needed for a given application,

Pt thin films or nanoparticles (NPs) can be used instead of the bulk
material. The catalytic properties of Pt films are strongly influenced
by crystallographic surface orientation;2 for NPs, size and shape are
the parameters that determine these properties.5–7 Understanding
the atomic-scale structure of such systems is, therefore, critical for
understanding the catalytic properties.

In this article, we introduce and validate a general-purpose
machine learning (ML)-based Gaussian approximation potential
(GAP)8,9 for elemental Pt. This potential offers similar accuracy as
density-functional theory (DFT) for a small fraction of the com-
putational cost. Our potential shows extremely good transferability,
accurately predicting the interatomic interactions in Pt from bulk
to surface through NPs. The paper is organized as follows: we first
discuss the GAP theoretical framework and the generation of train-
ing data. We, then, benchmark our potential against the prediction
of the basic material properties of bulk, surface, and NP platinum.
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Finally, we use the GAP to compute the pressure–temperature
phase diagram of Pt using the nested sampling (NS) method and
to study the nucleation of face-centered cubic (FCC) Pt during the
solidification of a large Pt NP.

II. METHODS
A. Gaussian approximation potentials

Gaussian approximation potentials use kernel-based ML tech-
niques to regress the potential energy surface (PES) of an atomistic
system. Provided atomic data are available (typically energies, forces,
and virials), usually computed at the DFT level of theory, a GAP
can be trained on that data, from which it learns. A GAP prediction
is made by comparing the atomic structure for which we seek the
prediction to a set of structures in the database. Each of these com-
parisons yields a kernel, or measure of similarity, which is bounded
between 0 (the two structures are nothing alike) and 1 (the struc-
tures are identical). Different descriptors, and combinations thereof,
of the atomic structure can be used to describe the atomic envi-
ronments. For instance, in this work, we use a combination of
two-body (2b) and many-body (mb) soap_turbo descriptors.10,11

The actual prediction for the local atomic energy of atom i is
expressed as

ϵ̄i = e0 + (δ(2b))2∑
s

α(2b)
s k(2b)(i, s) + (δ(mb))2∑

s
α(mb)

s k(mb)(i, s),
(1)

where k(i, s) is the kernel between the atomic environment of i and
the different atomic environments s in the sparse set (a subset of
structures in the training database), the αs are fitting coefficients
obtained during training, e0 is a constant energy per atom, and δ
gives the energy scale of the model. Forces can be obtained analyt-
ically from the derivatives of Eq. (1). More details about the GAP
framework and many-body descriptors are given in Refs. 8–11.

We generate training data at the DFT level using the PBE func-
tional approximation12 and will denote it as PBE-DFT from now
on. We use a highly converged plane-wave basis set with a 520 eV
cutoff and an adaptive reciprocal-space integration mesh such that
the number of k points is given by Nk = 1000/Natoms. The VASP
software13–15 is used with input options given in the Appendix.
The composition and generation of the database are discussed in
Sec. II B. The training and validation of the potential are done with
the QUIP/GAP codes.16 Structure manipulation and database sort-
ing are done with ASE.17 Molecular dynamics (MD) simulations are
carried out using a Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS)18,19 and TurboGAP.20

B. Database generation and accuracy tests
We want to create a robust Pt GAP that can be used safely

in exploratory work, e.g., to assess the stability of Pt NPs derived
computationally. To this end, the GAP needs to be simultane-
ously accurate and transferable. Within a data-driven approach, it
is important to note that prior knowledge of physics and chem-
istry is not embedded in the form of the potential. That is, a GAP
does not “know” about the Schrödinger equation—it only knows
about data it has seen during training. Therefore, the training set
must be carefully crafted to contain all the relevant configurations.

This includes (meta)stable structures, but also, perhaps counterin-
tuitively, high-energy structures. High-energy structures must be
present in the database so that the GAP learns that they are, in fact, of
high energy; otherwise, the GAP could spuriously predict previously
unseen unstable structures to be low in energy.

It is also useful to realize that high-energy observables can
be learned with less accuracy than low-energy ones because low-
energy structures contribute much more to the partition function
of the system at the temperatures of interest and, thus, to the derived
thermodynamic properties. This leads to an efficient database con-
struction strategy where a few disordered structures, such as high-
temperature liquid or dimers at close range, are added to sample
configuration space sparsely but comprehensively. Further to these,
many configurations close to the known stable structures, like close-
packed crystal lattices and surfaces thereof, are added by “rattling”
the atoms around equilibrium and applying small amounts of strain
to the periodic cells. This, in turn, begs the question what about the
unknown stable structures?

To improve a GAP in a yet unknown region of configuration
space, a successful strategy is iterative training.21 In iterative train-
ing, one trains several versions of the GAP, and each time uses
the newest GAP to predict stable structures. The energy values and
atomic forces for those structures are then computed with PBE-DFT
and fed to the next version of the GAP, which will learn from its
predecessor’s successes and, especially, failures. This iterative pro-
cedure progressively refines the GAP’s accuracy in the region of
configuration space where the target structures (e.g., NPs) reside.
The advantage is that the computationally demanding procedure,
the structure generation, which might require thousands or millions
of energy and force evaluations, is performed with the GAP, inex-
pensively. The PBE-DFT calculations are only carried out for the
final structures or, in some cases, a small subset of the structures
selected along the path followed in configuration space to generate
the final ones.

Figure 1 shows the most commonly used numerical benchmark
for machine learning potentials (MLPs), i.e., a scatterplot of pre-
dicted vs reference energies for a 20%/80% test/training sets split.
That is, out of the entire database of structures, 80% are used to train
the GAP, and the 20% unseen structures are used to test the poten-
tial outside the training set. The root mean-square error (RMSE) is
computed to give a single numerical score for the overall perfor-
mance of the potential. Our Pt GAP shows remarkably low errors in
this simple test, with an RMSE of only 1.6 meV/atom. Application-
specific tests of the GAP are presented in Sec. III, more indicative
of how this potential performs for large-scale and high-throughput
simulations.

In Fig. 1, we also show the predictions of three embedded-
atom method (EAM)-type potentials on our test set for comparison:
Zhou’s EAM,22,23 the Gupta potential,24 and Lee’s modified EAM
(MEAM).25 EAM-type potentials are usually fitted using ground-
state (low-temperature) experimental data. For instance, Zhou’s
EAM was fitted to reproduce (quoting the authors) “basic material
properties such as lattice constants, elastic constants, bulk mod-
uli, vacancy formation energies, sublimation energies, and heats of
solution.”22 While EAMs can satisfactorily reproduce the energet-
ics of bulk FCC near equilibrium, as expected from the composition
of their training database, all other structure types are modeled
significantly less accurately. We will show in Sec. III C a further
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FIG. 1. Validation of the Pt GAP performed on atomic configurations unseen dur-
ing training. The different configuration types (FCC, HCP, etc.) are indicated with
different colors. The results of testing an EAM, Gupta, and MEAM potential on the
same set of structures are given for reference. Formation energies are computed
by Ef = Epred − nμ, where n gives the number of atoms in the structure and μ is the
reference energy per atom for the given potential (e.g., the energy of an isolated Pt
atom). The GAP errors are maximum energy error: 0.043 eV/atom; energy RMSE:
1.6 meV/atom; and force RMSE: 0.111 eV/Å. The EAM, Gupta, and MEAM errors
are, respectively, maximum energy error: 3.1, 7.7, and 4.8 eV/atom; energy RMSE:
420, 1457, and 607 meV/atom; and force RMSE: 1.36, 1.69, and 1.21 eV/Å.

comparison for NPs. In Fig. 2, we show a histogram of force errors.
Systematic deviations for the reference potentials (i.e., the error dis-
tributions peak above zero) are apparent, also visible in Fig. 1 for
high-energy structures. These high-energy structures fall outside
the scope of EAM-type potentials. However, they become relevant
in low-dimensional systems and, e.g., at high temperature and/or
pressure.

Clearly, the improved accuracy of GAP comes at the expense of
additional CPU time. For instance, to perform a single-point calcu-
lation for a NP with 147 atoms, our GAP requires ∼109 ms of CPU
time, whereas an EAM calculation only needs 1.2 ms. The GAP is
still significantly faster than PBE-DFT [using Vienna Ab initio Sim-
ulation Package (VASP)], for which this calculation requires of the
order of 102 CPU hours (i.e., ∼3.5 × 106 times more expensive than
the GAP).

FIG. 2. Force-error stacked histograms for our GAP and the tested reference
potentials. Note that the ranges are one order of magnitude wider for EAM, Gupta,
and MEAM than that of the GAP. The distributions are color coded according to
the structure type. The corresponding RMSEs are given in the caption of Fig. 1.

C. Nested sampling
We use the nested sampling (NS) technique26,27 to evaluate

the bulk macroscopic thermodynamic properties of the new Pt
GAP model. NS samples the entire potential energy surface, start-
ing from high-energy random configurations (representing the gas
phase) down to the ground-state structure through a series of nested
energy levels, without requiring any advance knowledge of the stable
phases.28,29 A unique advantage of NS is that it allows the calcu-
lation of the partition function as a simple post-processing step.
This gives access to thermodynamic properties, such as the heat
capacity—which is the second derivative of the partition function
with respect to temperature—and, hence, enables us to identify
all the phase transitions of the system. In the current work, we
perform the NS calculations at constant pressure, to compute the
pressure–temperature phase diagram.30–33 Simulations were carried
out using the pymatnest program package,34 using LAMMPS to
perform the dynamics.

III. BENCHMARKS
Our Pt GAP has been designed with the goal of general appli-

cability in mind. In this section, we prove its transferability across
a selection of different applications representative of common use
cases. We test the GAP for basic bulk properties (equation of state,
elasticity, and phonons), surface energetics, and NP formation ener-
gies. While avoiding a too detailed examination of each application,
which could merit on their own more focused studies, these exam-
ples showcase the predictive power of the new GAP. In Sec. IV, we
describe two, more detailed, applied studies: the phase diagram and
a spontaneous crystal nucleation in nanostructured Pt.

Accuracy tests that are missing from this section are those
relevant to nanoscopic processes in surface diffusion, aggregation,
nucleation, and, more generally, rare events involving the descrip-
tion of a transition state while crossing an energy barrier. The
exploration of the region of configuration space corresponding to
these is difficult to automate because transition states contribute
much less to the partition function than stable states and will not be
sampled by MD in significant proportions. We are currently devel-
oping the methodology to automate incorporating transition-state
configurations for GAP training and will add these to future ver-
sions of our Pt GAP as these developments become available. In the
meantime, one should expect inconsistent prediction of transition-
state energies with our GAP, and individual calculations should be
benchmarked against DFT before trusting the results.

A. Equation of state, elastic properties, and phonons
The equation-of-state calculation shows the expected mini-

mum for the FCC phase from zero up to very high pressure, with
HCP about 60 meV/atom above FCC and body-centered cubic
(BCC) slightly above HCP. The simple cubic (SC) phase is signifi-
cantly higher in energy than FCC, HCP, and BCC, except at large
tensile strain, i.e., at large (and unrealistic) negative pressures, where
it becomes the stable phase. All phases evolve smoothly as a function
of unit cell volume, as shown in Fig. 3.

Our tests for Pt show that phonons and elastic constants can
be learned accurately when the training data only contain structures
created for this specific purpose. However, the trained potential is
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FIG. 3. Equation of state for three cubic and one hexagonal Pt crystal phases:
face-centered cubic (FCC), hexagonal closed-packed (HCP), body-centered cubic
(BCC), and simple cubic (SC). The inset shows a closed-up view of the region
where the global minimum is located.

then only able to describe those properties and will not have general-
purpose applicability. When different structures are added to bring
in more general-purpose applicability, the high accuracy on both
phonons and elastic constants is sacrificed. Phonons (Fig. 4) are still
described reasonably well as compared to the PBE-DFT results as far
as the main trends are concerned, except for a systematic deviation
at the W point. Table I shows the elastic constants computed with
GAP and compared to PBE-DFT, as well as to experiment. Overall,
the agreement with PBE-DFT (the GAP’s “ground truth”) is good,
with a systematic deviation of only +4%. This deviation is smaller
than the PBE-DFT error as compared to experiments, highlighting
how, in some cases, the overall accuracy of the GAP is more lim-
ited by the intrinsic accuracy of the reference method (PBE-DFT
in our case) than by the accuracy of the fit. That is, for the specific
purpose of calculating elastic constants, the GAP is a better represen-
tation of PBE-DFT than PBE-DFT is of reality. For reference, we also
provide the elastic constants computed with EAM, which compare
favorably to experiment. They are indeed closer to the experimental
values than the PBE-DFT results, a consequence of the fact that the
EAM was fitted to reproduce the experimental ground-state results,
as discussed earlier.

FIG. 4. Phonon dispersion as computed by GAP and PBE-DFT with phonopy.35

The trends are well-reproduced in comparison to PBE-DFT except for a systematic
deviation at the W point.

TABLE I. Comparison of GAP-predicted elastic constants with PBE-DFT and experi-
mental values. The percentage in parantheses shows the deviation vs experiment for
PBE-DFT and EAM, and the deviation vs PBE-DFT for GAP.

Exp.36 PBE-DFT GAP EAM

C11 (GPa) 373 320 (−14%) 333 (+4%) 345 (−8%)
C12 (GPa) 242 218 (−10%) 228 (+5%) 250 (+3%)
C44 (GPa) 78 77 (−1%) 80 (+4%) 76 (−3%)

B. Surfaces
Platinum is a material widely used in interfacial (elec-

tro)catalysis, and thus, it is important to ensure that an interatomic
potential for Pt can accurately reproduce surface formation ener-
gies. The three surfaces most commonly studied are those defined by
the (111), (100), and (110) crystallographic FCC planes.2 The (111)
surface is the most stable one and the one most often used in electro-
catalysis, e.g., for hydrogen production, due to the low overpotential
it exhibits for HER.1

A comprehensive study of surface energetics for arbitrary
Miller indices (hkl) becomes prohibitive for DFT, due to the large
number of atoms in the unit cell for large indices. For example, a 7-
atom thick Pt slab with (10 1 0) indices already contains 280 atoms
in the primitive unit cell. With our Pt GAP, studying these surfaces
with small tilt angles becomes possible. We, therefore, calculated
the surface formation energies, with bulk FCC Pt as reference, for
all the symmetry-inequivalent Miller planes that can be constructed
in Pt when letting each index run up to 10. To ensure that recon-
struction effects beyond the primitive unit cell are considered, we
ran the calculation for the primitive unit cell generated with ASE17

as implemented by Buus, Howalt, and Bligaard, its Niggli equiva-
lent cell,37–39 as well as 2 × 2 supercells built thereof. We included
small random initial displacements of the atoms to avoid biasing
the geometry optimization due to high-symmetry starting configu-
rations. Altogether, six calculations were carried out for each set of
Miller indices and the obtained surface formation energies per atom
were always the same (except for negligible numerical differences).
This indicates that simple relaxation of the atomic positions takes
place as the surfaces are created and that the surfaces have the same
periodicity as the primitive unit cell.

Figure 5 (top panel) shows the surface formation energies for
varying Miller indices within the triangle enclosed by the (111),
(110), and (100) planes as end points. The values predicted for
those planes, 0.091, 0.117, and 0.117 eV/Å2, respectively, are in good
agreement with our reference PBE-DFT values (0.096, 0.123, and
0.120 eV/Å2, respectively) and with recent values from the litera-
ture.40 The GAP predicts smooth transitions as the cleaved (and
relaxed) crystal facet is tilted between the most common facets. The
bottom panel of the figure shows the surprising result that our Pt
GAP is more capable of reproducing the PBE-DFT surface energies
provided by a “high-quality” PBE-DFT calculation (computed with
the same VASP settings as those reported in Sec. II) than another
PBE-DFT calculation with “standard” settings. The GAP tends to
slightly underestimate the surface formation energies (by about 5%)
but the trends, i.e., the relative formation energies, are accurately
captured.
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FIG. 5. (Top) Comparison between the Pt GAP, a standard-quality PBE-DFT cal-
culation (with VASP defaults and a 300 eV plane-wave cutoff), and our reference
VASP PBE-DFT calculations (which use a larger cutoff of 520 eV). (Bottom) Sur-
face energies computed with the Pt GAP for a range of crystal orientations resulting
from tilting the faces between the (111), (100), and (110) directions. Each cross rep-
resents an actual data point, with selected Miller indices indicated, and the color
map is drawn by interpolating between those.

C. GAP accuracy for nanoparticle modeling
We have generated a large database of Pt NPs for this

work. This database is divided into the two following sub-
sets, NP-DB01 and NP-DB02. NP-DB01 contains 8000 NPs
generated between Natoms = 10 and Natoms = 349 using an
annealing–quenching–relaxation procedure, starting from a
highly disordered precursor, where the annealing and quenching
steps take 20 ps each and the annealing happens at 1500 K; we call
this a “cooking” protocol. NP-DB02 contains 3400 NPs between
Natoms = 10 and Natoms = 349 (10 for each size) where the annealing
step of the cooking protocol takes place at the optimal crystallization
temperature of 1150 K (see Sec. IV B) but, otherwise, generated in
the same way as NP-DB01. This database is freely available from the
Zenodo repository41 and will be extended in subsequent work, in
particular with larger NPs beyond Natoms = 349.

To assess the ability of our GAP to accurately model Pt NPs and
to compare it to previously available, commonly used, force fields
for Pt modeling, we selected NPs from NP-DB01 up to Natoms = 150.
The energies were computed with our GAP, standard-quality
PBE-DFT (300 eV plane-wave cutoff), the Gupta potential,24 and the
EAM potential.22,23 We compare all these numbers to a benchmark-
quality PBE-DFT calculation (520 eV plane-wave cutoff). The results
of this comparison are shown in Fig. 6. Clearly, the GAP out-
performs the other force fields with errors (∼40 meV/atom) one
order of magnitude smaller than Gupta (∼400 meV/atom) and EAM

FIG. 6. Formation energies for a selection of annealed NPs computed with dif-
ferent potentials and standard-quality PBE-DFT vs a benchmark-quality PBE-DFT
calculation.

(∼500 meV/atom) around and above 50-atom NPs. The GAP errors
for these NPs are about five times larger than those obtained from
standard-quality PBE-DFT. For very small NPs (<50 atoms), the
GAP results are still better than for the other force fields, but the
errors are significantly higher than for larger NPs. Since the atomic
motifs in small NPs look significantly different from those of bulk
and surfaces, it is not surprising that the errors are larger.

The accuracy of GAP can be enhanced specifically for NPs by
iteratively training the potential for that purpose. That is, we can
improve the accuracy of the GAP in the future by adding (some
of) these NPs to the training set and training a new version of the
potential, as exemplified in Fig. 7. In that figure, we observe the per-
formance of two versions of the Pt GAP. The first one, GAPv1, is
initially used to make two sets of small NPs, with Natoms ≤ 50. One
of the sets is used to retrain the GAP, giving GAPv2, and the second
set is used to test the predictions of both versions vs PBE-DFT. The
results are shown in Fig. 7 (left) where GAPv1 is shown to predict
too low (i.e., too stable) energies for the smallest NPs in the test set
(Natoms ≲ 40), whereas GAPv2 correctly orders all of the NPs gen-
erated with GAPv1. On the right-hand side of the figure, we show
the energy predictions of GAPv1 and GAPv2 for NPs that were gen-
erated with GAPv2. There are two features of the GAP accuracy

FIG. 7. (Left) Predicted GAPv1 and GAPv2 energies computed on NPs generated
with GAPv1, vs the corresponding DFT values, for NPs in the size range from 10
to 50 atoms. High energy-per-atom values correspond to smaller NPs, whereas
low values correspond to larger NPs. (Right) Same test as on the left panel but
performed on NPs generated with GAPv2. The followed NP generation method in
both cases is the “cooking” protocol reported in the text.
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refinement provided by iterative training which are apparent from
this right-hand panel. On the one hand, as expected, GAPv2 pro-
duces “better” NPs than GAPv1, in the sense that they are lower in
energy when looking at the PBE-DFT energy prediction (i.e., the dat-
apoints are shifted horizontally to the left, compared to the left-hand
panel), and there is less data scatter. On the other hand, counter-
intuitively, the GAPv1 predictions for these GAPv2-generated NPs
are in better agreement with PBE-DFT than the GAPv2 predic-
tions. While unexpected, this is a typical result for early iterations in
GAP iterative training: a given iteration of the potential, used in an
application-specific simulation, will favor structures which populate
artificially low regions of the PES. As new iterations of the potential
add these low-energy structures to the database, the PES is refined
and the GAP “unlearns” the spurious minima and the scatterplot
converges toward optimal agreement with DFT.

The structure generation strategy that we followed here to aug-
ment the GAPv1 database is as follows: we first generate all the
regular FCC tetrahedra that can be constructed below 50 atoms,
which correspond to 4, 10, 20, and 35 atoms. We, then, start an MD
simulation from the ideal (relaxed) structure, quickly (10 ps) heat up
to 3000 K and quickly (another 10 ps) quench down to 100 K. From
this MD trajectory, we sample 11 equidistant (in time) snapshots,
which ensure we incorporate a wide diversity of small nanoclusters,
including some that are high in energy: regular (crystal-like), ther-
mally disordered, and quenched structures are added to the training
database.

Generally, as new training configurations are generated, we can
retrain and refine the accuracy of our GAP. For reference, we pro-
vide in the repository42 two versions of the GAP: the one used for
most of the simulations presented in this article (v1) and the one that
contains a small amount of NP-specific iterative training (v2). Any
future version of the GAP will be added to this repository together
with a note on any further additions to the database, compared to the
configurations reported here, with all published versions remaining
publicly available. This will ensure that the user base of the poten-
tial has easy access to the most accurate (and most recent) Pt GAP
while enabling reproducibility of the results produced with all earlier
versions. Upcoming work from our group will focus on a detailed
study of small Pt NP formation and stability, and we expect to update
this repository with a NP-optimized version of the GAP in the near
future.

For the sake of clarity, we emphasize here that GAPv1 was
used to generate all the results in this paper except for those labeled
as GAPv2 results in this subsection. In addition, we note that the
linked repository42 allows us to browse the full history of GAP ver-
sions, even though the latest version is shown by default. Both v1
and v2 can be retrieved from the repository and are listed under
“Versions.”

IV. APPLICATIONS
A. Pressure–temperature phase diagram

The NS calculations were performed as presented in Ref. 31.
The simulations were run at constant pressure in the range of
p = 0.07–50 GPa, using a simulation cell of variable shape and size,
containing 24 atoms. We used 1000 walkers and performed 440 steps
(8:1:2:2 ratio of total-energy Hamiltonian Monte Carlo, volume, cell
shear, and cell stretch steps) to generate the new configurations

during the NS iterations. These parameters ensure convergence of
the melting transition within ±40 K. The use of small systems will
inevitably cause some finite-size effects, for example, an underesti-
mation of the boiling curve and an overestimation of the melting
line as compared to the macroscopic value.30 In order to estimate
this error, we repeated the simulations with 48 atoms at p = 1 GPa
and obtained 2.8% lower melting temperature than the 24-atom
calculation.

Figure 8 shows the pressure–temperature phase diagram. At
low pressure, we observe a heat capacity peak at high temperature
corresponding to the boiling curve and its extension to the supercrit-
ical region, the Widom line, marked by a shallower and broader peak
(shown by the dashed red line in Fig. 8). To locate the critical point
in the NS calculations, we drew on the results of Bruce and Wilding43

and calculated the density distribution in the temperature region
of the peak. With this, we estimate the critical parameters to be
pc = 0.1–0.2 GPa and Tc = 9500–10 600 K. The low-pressure melt-
ing transition is estimated to be ≈1650 K, hence underestimating
the experimentally determined transition. This inaccuracy could be
either due to our GAP or to an inherent error of the PBE functional
used to train it. Since the NS calculations at the PBE level are simply
intractable, there is no straightforward way to pinpoint the origin
of this disagreement with experiment. The NS calculations found
the solid structure to be FCC as expected and explored other close-
packed stacking variants only in thermodynamically insignificant
proportions.

B. Spontaneous FCC nucleation and crystallization
We also used the Pt GAP to study the spontaneous nucleation

of the stable FCC structure and the spontaneous formation of facets
in a large NP (16 384 atoms) with MD. Figure 9 shows the sequence
from the initial cube carved out of an FCC lattice. This is melted
at 3000 K for 40 ps and then the quenching process takes place by
cooling the NP from 3000 K down to 300 K over 1 ns using a linear
temperature profile, controlled by a Berendsen thermostat with time
constant 0.1 ps. The figure also shows a slice through the middle
of the NP and, for reference, a periodic solid with the same num-
ber of atoms and undergoing the same temperature profile. For the
solid, the pressure is controlled with a Berendsen barostat with time

FIG. 8. Pressure–temperature phase diagram calculated by nested sampling (red
lines and symbols). Error bars represent the full widths at half maximum of the heat
capacity curves. Green and blue symbols show experimental melting temperatures
taken from Refs. 44 and 45, respectively.
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FIG. 9. Snapshots throughout the process of spontaneous crystallization from a
melted Pt droplet as it cools down to room temperature, as modeled with our GAP.
The left column shows the resulting NP from the outside, whereas the central
column shows a slice through the middle. The same process for bulk Pt is shown
on the right column. The color coding indicates the degree of similarity, computed
from SOAP kernels, of each local atomic environment (centered on the atoms) to
the stable bulk FCC motif, as well as the three most common surface motifs: (100),
(110), and (111), where (111) is the most stable facet. The dark bands between
FCC (red) regions in the final structures correspond to grain boundaries.

constant 1 ps and inverse compressibility equal to 100 times that of
water.

To get further insight into the atomistic processes taking place
during crystallization, in Fig. 9 we map the similarity of the local
atomic structures to reference atomic motifs: bulk FCC and the sta-
ble (100), (110), and (111) FCC surface reconstructions. This is done
by computing the SOAP descriptors of each atom in the system and
calculating the similarity kernel with the SOAP descriptors of the
reference motifs. These similarities are indicated by color coding
the resulting structures. As expected, toward the end of the quench
the interior of the NP (as well as the solid) is FCC-like, and the NP
facets are (111)-like. Interestingly, the simulation shows that the for-
mation of the FCC interior is nucleated from the surfaces inward.
Therefore, there is grain formation with the (111) direction pointing
approximately from the surface toward the center of the NP. For this

reason, the resulting NP is polycrystalline, with the grain boundaries
indicated by dark-colored atoms. It is clear from the figure that the
formation of the FCC interior in the NP happens at a higher temper-
ature than in the solid due to the nucleation effect at the (111) facets.
A video animation of this process is available.46

To elucidate the role of the quench rate on the results, we mon-
itored the evolution of the NP’s structure as it was cooled down from
3000 to 300 K for additional quench rates corresponding to 2–10 ns
simulations, with the same MD settings as before. Figure 10 shows
the evolution of the potential energy as a function of temperature
in the 1400–800 K temperature window, where most of the FCC
nucleation takes place in these simulations (outside of this range the
potential energy evolves linearly with temperature, as expected from
the virial theorem). According to our MD results, the onset of sig-
nificant structure rearrangement favorable toward FCC nucleation
takes place at around 1200 K and continues down to a tempera-
ture, which depends on the quench rate (the slower the rate the
higher the final temperature). From these values, we infer an optimal
crystallization temperature around 1150 K. This is analogous to the
graphitization temperature in carbon materials.47,48 We, therefore,
repeated the MD simulation starting from the 3000 K-melted NP but
fixing the thermostat’s target temperature at 1150 K and annealed
for 1 ns (indicated as “Ann.” in the figure). There is a rapid quench
from 3000 to 1150 K, and then, the system equilibrates for a few
ps, corresponding to the loop seen at high potential energy, before
it starts to go down in energy as it crystallizes (the vertical drop
in potential energy at 1150 K). Most of the annealing process was
completed after 250 ps, with no noticeable further drop in poten-
tial energy after 500 ps of MD. After the 1 ns annealing simulation
had ended, we further quenched the structure to 300 K over 100 ps
using a linear temperature profile. The results showed good agree-
ment with the more computationally demanding slow quenches.
This annealing process at 1150 K, thus, allows us to minimize
the number of MD steps that are required to generate a reason-
ably stable NP, generated from a process mimicking spontaneous
solidification.

FIG. 10. Potential energy profile as a function of temperature in a series of melt-
quench simulations, for different cooling rates (1–10 ns cooling period). The overall
process starts at 3000 K and ends at 300 K; the shown data focus on the region
where crystallization takes place, corresponding to the formation of stable FCC
motifs. The thin gray line shows the profile of a simulation where the sample is
quenched extremely fast from 3000 to 1150 K and annealed at that temperature
before being brought down to room temperature. See the text for details.
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V. CONCLUSIONS AND OUTLOOK
We have developed a GAP for Pt with state-of-the-art force-

field accuracy for the description of bulk, surface, and nanostruc-
tured systems. We have benchmarked our GAP against PBE-DFT
for general accuracy, elasticity, phonons, surface energetics, and NP
formation energies. Except for small NPs (Natoms ≲ 40), our GAP
shows remarkable agreement with the reference PBE-DFT data. We
have, then, proceeded to use the GAP in situations beyond the
reach of PBE-DFT calculations. Namely, we have computed the
temperature–pressure phase diagram and studied the spontaneous
solidification and FCC-motif nucleation in a large NP. The new
GAP and several other resources have been made freely available.
In the near future, we will further develop our reference database
and the potential itself for improved description of NPs and sur-
face dynamics, with the objective to get detailed insight into the
atomic-scale phenomena taking place in Pt-based systems of interest
in (electro)catalysis.
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APPENDIX: VASP INPUT FILE

The VASP INCAR input file used for the PBE-DFT calculations
is given below:

PREC = Accurate
ENCUT = 520
EDIFF = 1.0e-05
ISMEAR = 0; SIGMA = 0.1
ALGO = Normal
LWAVE = .FALSE.
LCHARG = .FALSE.
The k-space sampling is not explicitly set in the INCAR file.

Instead, k points are chosen by homogeneously sampling the first
Brillouin zone with the total number of points determined by the
relation natoms × nk = 1000. To enable high-throughput calculations,
the Fireworks framework49 was used for task automation and single-
point workflows, similar to the implementation in Atomate,50 which
rely on Custodian51 as VASP handler.
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