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Abstract

As the field of High Performance Computing (HPC) moves towards the era of

Exascale computation, computer hardware is becoming increasingly parallel and

continues to diversify. As a result, it is now crucial for scientific codes to be able

to take advantage of a wide variety of hardware types. Additionally, the growth

in compute performance has outpaced the improvement in memory latency and

bandwidth; this issue now poses a significant obstacle to performance.

This thesis examines these matters in the context of modern plasma physics

simulations, specifically those that make use of the Particle-in-Cell (PIC) method

on unstructured computational grids. Specifically, we begin by documenting the

implementation of the particle-based kernels of such a code using a performance

portability library to enable the application to run on a variety of modern hard-

ware, including both CPUs and GPUs. The use of hardware specific tuning

is also explored, culminating in a 3× speedup of a key component of the core

PIC algorithm. We also show that portability is achievable on both single-node

machines and production supercomputers of multiple hardware types.

This thesis also documents an algorithmic change to particle representation

within the same code that improves solution accuracy, and adds compute in-

tensity – an important property where memory bandwidth is limited and the

ratio of the amount of computation to memory accesses is low. We conclude

the work by comparing the performance of the modified algorithm to the base

implementation, where we find that shifting the simulation workload towards

computation can improve parallel efficiency by up to 2.5×. While the perfor-

mance improvements that were hoped for were not achieved, we end this thesis

by postulating that the proposed methods will become more viable as compilers

and hardware improve.
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CHAPTER 1
Introduction

Since the invention of the first programmable computer, Colossus, in the 1940s

computers have rapidly become a core part of modern society. Along with

this significant shift, there has been a radical change in the way that scientific

experiments are performed by researchers of today, with computers being an

invaluable tool for many scientists. Whereas previously all experimentation was

conducted physically, it is now possible to carry out mathematical simulations of

real-world phenomena in a variety of theoretical and applied fields. The ability

to do so is especially useful in situations where the required experiments are

particularly dangerous, time consuming, infeasible, or prohibitively expensive

to carry out. The discovery of new chemical compounds, the simulation of fluid

dynamics systems, and weather forecasting are three examples of situations

where computer systems play a vital role.

While simulation via computation has a wide variety of applications, the

fidelity of a given simulation is limited by the amount of computational power

available, meaning that general purpose, consumer grade machines are unsuited

for these workloads. Therefore, we turn to the use of supercomputers, machines

that are many multitudes more powerful than standard desktops. The branch of

computer science concerned with the development of supercomputers and their

efficient use is known as High Performance Computing (HPC). Modern super-

computers are capable of performing vast numbers of mathematical operations

every second, and the peak performance of production supercomputers is ever

improving. Figure 1.1(a) highlights this fact, showing how the performance

of the fastest supercomputer in the world has changed over the past decade;

peak performance has increased by approximately 2.5 orders of magnitude since
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Figure 1.1: Achieved peak performance of the number one supercomputer in
the world and accelerator count in the TOP500 list from 2010–2020.

2010. Computer scientists and engineers are now striving to reach the mile-

stone of Exascale computing – the ability to carry out one quintillion (1018)

calculations per second. At the time of writing, the world’s fastest machine is

the ARM-based Fugaku [61], located at the RIKEN Center for Computational

Science in Kobe, Japan, which achieved a peak performance of 415,530 Tera-

Floating-Point Operations per Second (TFLOP/s) in the June 2020 TOP500

rankings [143].

Historically, supercomputers were based on many interconnected homoge-

2
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nous compute nodes, each with few Central Processing Units (CPUs) operating

at high clock rates resulting in relatively low levels of intra-node parallelism.

Improvements in the performance of these machines was typically driven by

increased CPU frequency, allowing more instructions to be issued in the same

period of time. However, growing cost, thermal output and power consumption

mean that this strategy is no longer viable; a different approach is needed in

order to realise Exascale computing. As a result, hardware manufacturers now

opt to make use of many lower frequency cores, or seek to pair the CPU with

specialised accelerators that are suited to highly parallel computation, i.e., the

use of a heterogeneous system. The use of many-core CPUs and accelerators is

becoming increasingly common, with nearly 30% of the current top 500 super-

computers using some form of accelerator (Figure 1.1(b)). This trend is expected

to continue as growing numbers of HPC centres seek the power efficiency and

performance advantages offered by heterogeneous computing.

Science aided by HPC systems continues to advance, and maintaining this

progress requires computational simulations of much greater complexity and

accuracy, thus demanding improved supercomputer performance. This require-

ment is a key motivation for the continued financial investment and research

effort into the field of HPC. However, the advent of modern hardware that is

progressively more complicated makes it difficult for application developers to

leverage the increased performance that is theoretically available. As a conse-

quence, developers must spend more time optimising current codes or developing

algorithms which are better suited for modern machines, a task which is made

more challenging as computer hardware now operates at an unprecedented scale

and continues to diversify.

This thesis investigates the performance issues present in modern computa-

tional plasma physics applications, and seeks to understand how they can be

alleviated. Specifically, it examines the use of a performance portability library

to allow such codes to execute and perform well on a variety of modern architec-

tures while maintaining only a single codebase. It additionally explores algorith-
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mic changes that are now viable on massively parallel modern hardware. The

proposed extensions raise the computational intensity of the simulation and also

offer increased accuracy, potentially having an advantage where limited memory

bandwidth poses an obstacle to performance.

1.1 Motivations

As discussed above, the emerging compute architectures of the modern age offer

unparalleled levels of floating-point performance, and the peak performance of

production supercomputers continues to increase at a rapid rate. This means

that both new and existing scientific simulation codes must be able to fully

exploit the extreme amounts of parallelism available in order to make optimal

use of the hardware, allowing experiments to be carried out at a much larger

scale. Moreover, the growth in compute performance has historically exceeded

the improvement in memory latency and bandwidth, and this trend seems set to

continue. As a result, the memory subsystem now increasingly poses an obstacle

to performance – compute units can currently process data more quickly than

it can be delivered for a variety of application types. Consequently, achieving

the peak performance of a modern machine is a challenging and ever-evolving

task.

The surge in architecture diversity has produced a rich landscape of avail-

able hardware and programming models. The MPI-only approach of the past

is now less than ideal – many alternatives exist for intra-node parallelism. In

the case of accelerators, the use of a specialised programming model is often a

requirement. Therefore, it is becoming ever harder for developers to modernise

existing large scale production codes (or develop modern replacements) to en-

able them to fully leverage this hardware. This problem is exacerbated by the

fact that different architectures require specific code optimisations in order to

function optimally. Scientific codes must be able to adapt to these requirements

without the difficulty of developing and maintaining several versions of the same
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application, a concept known as performance portability.

The work documented in this thesis focuses on modern computational plasma

physics simulations, specifically those that make use of the Particle-in-Cell (PIC)

method on unstructured computational meshes. Simulation of plasma via the

PIC algorithm has a variety of applications in both academia and industry

including, but not limited to: simulation of fusion energy devices, plasma be-

haviour in astrophysical settings, interactions between laser beams and plasmas,

and various types of nuclear experimentation. The United Kingdom is a key

contributor to many of these fields. For example, the UK-based Orion Laser

Facility is an Inertial Confinement Fusion (ICF) device used to recreate extreme

temperature and pressure conditions – devices such as these are often simulated

with PIC codes. It is clear to see that both the improvement and future-proofing

of plasma simulation codes aids scientific solutions and discoveries. Such future-

proofing is a key focus of the work in this thesis; Chapter 4 seeks to assess the

suitability of a performance portability library for an unstructured PIC code on

a range of modern hardware, and demonstrates that such portability is achiev-

able. This thesis also documents the addition of an algorithmic change to par-

ticle representation within the same code that improves solution accuracy, and

adds compute intensity – an important property where memory bandwidth is

limited and the ratio of the amount of computation to memory accesses is low.

The performance behaviour of the modified implementation is contrasted to the

base code, where it is shown that the proposed particle representation is viable

on modern hardware.

1.2 Thesis Contributions

The research presented in this thesis makes the following contributions:

• The development and implementation of the particle-based routines of

the unstructured PIC application EMPIRE-PIC using the Kokkos perfor-

mance portability library is documented. While traditional flat parallelism
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is used for the majority of the routines, the use of hierarchical parallelism

to express more complex algorithms that make improved use of highly

parallel hardware is also explored. Through a benchmarking comparison

it is shown that EMPIRE-PIC performs well across a variety of modern

hardware types including both Intel and ARM CPUs, Intel’s Xeon Phi

Knights Landing (KNL), and NVIDIA Tesla GPU-based systems at the

single node level. Additionally, a scaling study is performed, demonstrat-

ing that EMPIRE-PIC successfully scales up to more than two thousand

GPUs, and greater than one hundred thousand CPUs;

• The core PIC algorithm within EMPIRE-PIC is extended to make use of a

higher-order particle representation, specifically a smooth quadratic shape

function with compact support on some defined radius. This shape is rep-

resented as a collection of virtual particles surrounding each super-particle

in order to give the super-particle this smoother shape. The virtual par-

ticles have fixed offsets and weights obtained from Gaussian quadrature

rules and the chosen radius. As the virtual particles are purely computa-

tional, we obtain the additional benefit of adding increased arithmetic in-

tensity to traditionally memory-bound particle routines. The algorithmic

changes are validated, and the accuracy of the modified code is analysed

and compared to the base implementation of EMPIRE-PIC using four

representative benchmark problems;

• A performance analysis of the higher-order particle representation via the

virtual particles method versus the base EMPIRE-PIC code is performed.

We show that the use of virtual particles is less expensive than expected

on all systems considered, and improves strong scaling for highly paral-

lel CPUs for electrostatic simulations. A cost versus error analysis is also

performed, comparing the original implementation to the higher-order par-

ticle representation. We show that while virtual particles can outperform

the base EMPIRE-PIC implementation on specific inputs, in general it is
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still preferable to increase the amount of traditional simulation particles

used.

1.3 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2 introduces the reader to the various types of parallel computational

hardware that exist today, alongside the different programming models that

can be used to leverage them. It also details the theoretical concepts that

underpin parallel computing, and a brief introduction to the practical sides of

performance engineering, and the challenges involved in making full use of the

hardware. The chapter concludes by detailing the hardware specifications of the

various systems used to collect the performance data presented in this thesis.

Chapter 3 provides an overview of conducting simulations of plasma phenom-

ena using the PIC method, and motivates the use of unstructured meshes for

such simulations. We begin with the underlying physical equations, before mov-

ing on to the derivation of the unstructured PIC algorithm for both electrostatic

and electromagnetic problems. It also covers the notion of higher-order methods

in computational physics, and the associated benefits and drawbacks of using

these methods. Finally, we end the chapter with a discussion of the hybrid na-

ture of PIC algorithms, and general approaches to how they can be parallelised.

Chapter 4 documents the use of Kokkos to develop performance portable un-

structured PIC simulations. Specifically, it presents the implementation of the

particle-based routines of the PIC code EMPIRE-PIC, and also explores hard-

ware specific tuning for the particle move and charge deposition routines. The

performance of the application is evaluated at the single node level, and at scale

on multiple supercomputers: Trinity, Astra and Sierra. The analysis considers

a variety of hardware types including traditional CPUs, many-core CPUs, and

NVIDIA GPUs.
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Chapter 5 extends the core algorithm of EMPIRE-PIC to make use of an al-

ternative higher-order approach to the representation of simulation particles for

both electrostatic and electromagnetic unstructured FEM-PIC simulations. In

the modified PIC algorithm we represent particles as having a smooth quadratic

shape function limited by some specified finite radius, r0. A key feature of our

approach is the representation of this shape by surrounding simulation parti-

cles with a set of computational virtual particles with delta shape, with fixed

offsets and weights derived from Gaussian quadrature rules and the value of r0.

In addition to raising simulation accuracy, the modifications have the effect of

increasing the arithmetic intensity of traditionally memory-bound particle rou-

tines with only a minor increase in memory usage. The effect of the algorithm

on simulation solutions is explored using four representative benchmark prob-

lems that cover both electrostatics and electromagnetics, in addition to two-

and three-dimensional geometries. Good error reduction across all of the cho-

sen problems is achieved as the particles are made progressively smoother, with

the optimal particle radius appearing to be problem-dependent.

Chapter 6 builds on the all of the work previously presented in this the-

sis. It details the implementation of the higher-order particle representation

in EMPIRE-PIC using Kokkos, and explains the design decisions made from a

performance perspective regarding both the additional memory required, and

the modifications made to the particle-based routines. A performance analysis

is presented, quantifying the cost and strong-scalability of the proposed exten-

sions on a variety of modern compute architectures. This chapter concludes

with a cost versus error analysis of the base and extended PIC algorithms for

electromagnetic simulations.

Chapter 7 concludes the thesis, and discusses the implications of the work that

has been presented. The limitations of the research are also highlighted, and

avenues for future work are proposed.
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CHAPTER 2
Parallel Hardware and Performance Engineering

As High Performance Computing (HPC) moves towards the major milestone

of Exascale computing, modern hardware is becoming increasingly parallel and

continues to diversify. Additionally, increases in peak computational perfor-

mance have historically driven scientific development as a whole by allowing

domain scientists to tackle problems of ever-increasing complexity [102]. In

light of these facts, this chapter provides an overview of modern computational

hardware and programming models, and also introduces various key concepts

that underpin parallel computing and performance engineering. Finally, we

provide detail on the various platforms used to collect the performance data

presented in this thesis.

2.1 Types of Parallelism

Flynn’s Taxonomy, proposed by Michael J. Flynn in 1966, provides a framework

for the classification of computer architectures that considers whether they can

handle multiple streams of data and/or instructions [56]. In this context an

instruction refers to a single simple operation such as a multiply, and data can

be thought of as the number(s) to which instructions can be applied. Under this

system both instructions and data can be classed as either single or multiple.

These can be considered as serial or parallel, respectively, which results in a

classification consisting of four sub-groups in total. Figure 2.1 shows Flynn’s

Taxonomy and demonstrates the possible combinations of single/multiple in-

structions and data.

Single Instruction Single Data (SISD) refers to computation that is exclu-

sively serial, where only a single instruction is performed on a single data item
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Figure 2.1: Flynn’s Taxonomy shows how parallel processing elements (PEs)
can be applied to instructions and data.

at any given time during execution. In terms of hardware this is analogous to

a single-core, sequential computer loading a single instruction from memory at

a time, and dispatching this instruction to a single Processing Element (PE).

SISD computers are rare today as almost all modern hardware exhibits some

level of parallelism, such as possessing multiple Central Processing Unit (CPU)

cores. This is seen with both Personal Computers (PCs) and supercomputers.

Single Instruction Multiple Data (SIMD) is a form of parallel computation

where a single common instruction can be executed on multiple data items

simultaneously. For example, the elementwise multiplication of one or more

numerical vectors can be achieved by carrying out all of the multiplications

at once, as opposed to performing each operation in turn. This is typically

realised in hardware through the use of specialised vector registers and vector

processing units. Example implementations of SIMD include Intel’s Streaming
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Figure 2.2: The various levels of parallelism, from highest scale down to lowest
scale.

SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) extensions to

the x86 Instruction Set Architecture (ISA).

Multiple Instruction Single Data (MISD) is by far the least commonly seen

type of parallel computer. This is primarily due to it being difficult for different

hardware to process the same data item in parallel despite this being theoreti-

cally possible. This leads to MISD only being used in extremely specialised use

cases; one such use case is the flight control computer of a space shuttle [137].

Multiple Instruction Multiple Data (MIMD) is by far the most commonly

used form of parallelism in the computers of today. Both PCs and supercom-

puter systems are often found within this category. This type of parallelism is

characterised by having multiple independent PEs, where each element is capa-

ble of reading separate data items and operating on them independently. Typ-

ically, this is implemented in the form of multithreading. The Single Program

Multiple Data (SPMD) paradigm can also be considered to be part of MISD.

In the case of SPMD, multiple processors run the same program independently,

with the data explicitly decomposed over the processors. As all processors are

independent, each can be at different points in the program execution at any

one time.

In highly diverse modern hardware parallelism can be thought of as hierar-

chical, i.e., various levels of parallelism exist that must be properly leveraged in

order to achieve peak application performance. These levels of parallelism are

shown in Figure 2.2, where each layer can make use of the layers below it. The
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top layer refers to parallelism across multiple compute nodes in a supercomputer

where data must be transferred using inter-node message passing. This is known

as distributed memory parallelism. Below this level we have intra-node paral-

lelism achieved by multithreading across many CPU cores, with each thread

handling its own computation. This is often referred to as shared memory par-

allelism. One step lower, vector instructions taking advantage of SIMD can be

used to process data items in parallel. At the lowest level we have Instruc-

tion Level Parallelism (ILP), meaning that instructions without dependencies

between them can be executed simultaneously.

2.1.1 Instruction Level Parallelism

ILP refers to the idea that some portion of the instructions that comprise a

computer program can be executed in parallel. This can be implemented in a

variety of ways in computer hardware. One such method is instruction pipelin-

ing within a processor, where the pipelined processor can handle multiple in-

structions at the same time. Typically this means that while one instruction is

being executed, subsequent instructions can still be loaded from memory and

decoded. Therefore, all parts of the processor can be kept busy with useful

work, reducing the amount of time spent idle. Additional methods to expose

parallelism at the instruction level include superscalar instruction dispatch and

Out-of-Order (OoO) execution. Unlike a traditional scalar processor, super-

scalar processors can execute multiple instructions in a given CPU clock-cycle

as they are capable of dispatching multiple instructions to separate functional

units of the processor at the same time. This can additionally be combined with

instruction pipelining by fetching, decoding, and executing multiple instructions

simultaneously. OoO execution allows a set of instructions in a queue to be exe-

cuted in an arbitrary order, with the caveat that the chosen order cannot violate

dependencies between instructions. Dependencies can include both data depen-

dencies, where a later instruction requires the output of a previous instruction,

and control dependencies, where the outcome of a branch statement will deter-
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mine whether a given instruction is executed or not. In the case where a data

dependency can be resolved by the compiler it is still possible to achieve ILP.

However, in the case of a true data dependency which cannot be resolved no ILP

can occur if correctness is to be maintained. The performance impact of control

dependencies can be mitigated through the use of branch prediction, where a

branch predictor attempts to guess which code path will be taken during pro-

gram execution. This is known as speculative execution, where the processor

will execute the instructions of the most likely branch before the branch has ac-

tually occurred with the aim of reducing idle time in the pipeline, thus leading

to performance improvements. In the case of an incorrect branch being chosen

there is a performance penalty as the pipeline must be emptied and the correct

instructions loaded and executed. In light of this, significant research has been

undertaken to develop accurate dynamic branch prediction methods [156].

2.1.2 Vectorisation

Vectorisation is the concept represented by the SIMD sub-group of Flynn’s Tax-

onomy (Figure 2.1), which seeks to exploit parallelism at the data level. Typ-

ically, vectorisation is achieved in hardware through the use of vector registers

and vector processing units which allow for vector operations to be performed on

arrays of data. Example implementations include Intel’s SSE and AVX instruc-

tion sets, which exploit 128-bit and 256-bit vector registers, respectively. In the

case of AVX, this means that eight integer data items can be processed simulta-

neously, with this number reducing to four when double-precision floating-point

numbers are used. Fully exploiting the SIMD capability of modern hardware is

crucial – as the width of vector units grows, so does the performance penalty for

failing to take advantage of this functionality. This is particularly the case for

compute-bound HPC codes. In recent years with the release of Intel’s Xeon Phi

Knights Landing (KNL) many-core processor and the Skylake family of Xeon

CPUs, the AVX instruction set has been expanded to support 512-bit opera-

tions through the use of Advanced Vector Extensions-512 (AVX-512), allowing
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up to eight double-precision values to be handled at once. However, the use of

AVX-512 can cause certain Intel processors to operate at a lower clock frequency

to reduce thermal output, requiring the performance trade-off to be carefully

considered [80].

In general, there are two ways that application developers can ensure that

codes vectorise as desired. The first is allowing the compiler to auto-vectorise

code where possible, by generating vector instructions from scalar code. This

relies on the compiler being able to prove there are no data dependencies that

would render vectorisation unsafe to perform. In cases where the compiler

refuses to auto-vectorise code due to falsely perceived dependencies, a developer

can encourage vectorisation through the use of compiler directives that allow

the dependencies to be ignored. The second approach allows programmers to

write hand-implemented vectorised code, either by directly writing assembly

code or using wrapper functions available in higher level languages. These

wrapper functions are referred to as SIMD intrinsics. While having explicit

manual control over vectorisation can lead to performance improvements there

are also significant downsides to using this approach. The code tends to be

much more complex as a result of the low-level nature of intrinsics. This makes

the code much harder to read and, therefore, significantly more challenging

to extend and maintain. Additionally, intrinsics are often platform-specific or

optimised for specific SIMD hardware, severely reducing the portability of an

application. For these reasons compiler auto-vectorisation of scalar code is often

the preferred method, with hand-vectorisation used as a last resort for when

auto-vectorisation fails even with the assistance of directives.

2.1.3 Multithreading

Improved computational performance has historically been associated with in-

creased CPU complexity and clock speeds, as was seen throughout the 90s and

the beginning of the 2000s. This is in part due to the trend of the number of

transistors present in an integrated circuit doubling approximately every two
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Figure 2.3: Fork-Join Model of Multithreaded Execution

years, as predicted by Moore’s Law [106]. It has since become clear that the

consequential increase in CPU power consumption (and the associated costs)

and resultant thermal output is no longer sustainable nor acceptable to con-

sumers. As a result, chip manufacturers have instead adopted the multi-core

model, where a single high-frequency core is replaced by multiple cores that each

operate at a lower clock rate. In this way multi-core systems offer manageable

thermal output and improved efficiency in terms of Floating-Point Operations

per Second (FLOP/s) per Watt consumed. However, these benefits can only

be realised if the programs being run are capable of properly leveraging the

additional CPU cores that are available. In general this is accomplished by

applications using multiple threads of program execution, where each thread

can act independently. These threads can exploit both instruction and data

parallelism as in the MIMD class of Flynn’s Taxonomy. Modern hardware also

supports the use of numbers of threads greater than the number of physical

cores present on-chip. This can be accomplished via temporal multithreading

(also known as super-threading) where the CPU can context switch between

threads at runtime, giving the appearance of simultaneous execution despite

only the instructions of a single thread being present in the pipeline. More

modern systems often support Simultaneous Multithreading (SMT), otherwise

known by ‘hyperthreading’ as coined by Intel. This allows multiple threads to

share the functional units of a single core, enabling instructions from different

threads to be present in the same pipeline simultaneously [145]. Two-way SMT
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is the most common option available in modern processors, but some architec-

tures such as Intel’s KNL and ARM’s ThunderX2 support up to four-way SMT.

SMT is also used on Graphics Processing Unit (GPU) cards, to a much higher

degree than the typical CPU system. On a CPU system, multithreading at the

low-level is exposed via the pthreads library, which allows developers to write

multithreaded software in a shared memory context according to the POSIX

standard [111].

Similarly to SIMD intrinsics, while pthreads offers powerful low-level control

to application developers, this again comes at the expense of code readability

and extensibility. Moreover, pthreads code is often more difficult to implement

than multithreaded code written with the aid of a higher-level library. It is for

this reason that the Open Multi-Processing (OpenMP) standard is the most

commonly used method of writing multithreaded scientific applications [118].

OpenMP is written using compiler directives known as pragmas that instruct

the compiler to parallelise sections of application code. Usually, this means that

the iterations of a for loop are broken up into chunks and distributed across

threads. OpenMP employs the well-known fork-join model, where a master

thread forks additional threads which carry out the pragma marked sections of

code in parallel. Once the parallel section of code has been executed, the forked

threads then rejoin the master thread, and serial code execution continues. This

process is shown pictorially in Figure 2.3.

While there are clear benefits to the multithreaded model, there are also

some downsides that must be considered. Most multi-core systems are made

up of at least two separate CPU sockets, while logically appearing as a single

processor. Each socket has relatively fast access to its own memory, but much

slower access to memory that is closer to the other processor. This is known

as Non-Uniform Memory Access (NUMA), where each socket is considered as

an individual NUMA node. This means that NUMA must be considered with

regards to process and/or thread placement in order to minimise the number of

non-local memory accesses that will occur in order to avoid huge performance
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penalties as a result of large amounts of memory traffic. Additionally, while

cores have the benefit of having individual L1 caches, when data is accessible

by multiple cores the issue of cache coherence arises. When a shared variable is

written to by a given core, each other core must then invalidate the copy of the

variable in its own local cache, and subsequently re-fetch the value from main

memory. False sharing can also occur when multiple threads alter different

variables that share the same cache line, causing the entire cache line to be

invalidated and re-fetched. As a result, great care must be taken when writing

multithreaded code in order to avoid this issue.

2.1.4 Message Passing

At the highest level of scale depicted in Figure 2.2, parallelism extends to mul-

tiple compute nodes. In this case, processors only have access to their own local

memory space and must instead communicate over a network fabric explicitly

via message passing in order to exchange data with remote nodes. The most

ubiquitous library used to accomplish this within the HPC space is the Mes-

sage Passing Interface (MPI) library [104]. In an MPI program each process

runs a separate copy of the program and communicates with other processors

when necessary. This is an example of the SPMD paradigm within Flynn’s

Taxonomy. Alternatives to MPI have also been proposed, including but not

limited to: HPX [84], and Charm++ [85]. The idea behind these other op-

tions is to abstract away the need for programmers to write explicit message-

passing code, instead allowing for a more conceptual approach, and also offer-

ing additional features such as load balancing and fault-tolerance. Partitioned

Global Address Space (PGAS) programming models that assume a logically par-

titioned, but global, memory address space have also been proposed as explicit

message-passing alternatives. Examples of these include coarray Fortran [113],

and UPC++ [157]. Despite the existence of these alternatives, MPI currently

remains the de facto standard for writing distributed memory HPC programs.

While MPI assumes a distributed memory model, it is frequently used for
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intra-node parallelism instead of a shared memory solution. This is particularly

true for legacy production codes that were developed before modern multi-

threading libraries. While this approach is often simpler due to developer famil-

iarity with MPI, overuse can lead to inefficient use of on-node shared memory

and an increase in overheads due to the large amount of MPI communications

that occur between processes (as each thread is a separate process). In order to

alleviate the issue of large amounts of communications, many modern applica-

tions adopt a hybrid MPI plus OpenMP approach. Typically, hybrid applica-

tions use one MPI process per socket, with OpenMP used for shared memory

parallelism within a socket, thus reducing communications while also taking

advantage of NUMA hardware. Some studies have shown that hybrid codes

exhibit comparable or even superior performance to their MPI only variants at

large scale due to the reduced communications profile [40, 124]. However, mod-

ern MPI implementations often conduct intra-node communications through the

use of shared memory, narrowing the performance gap between MPI-only codes

and their hybrid counterparts.

2.2 The Memory Hierarchy

All computer systems require the ability to store data and the instructions that

are carried out on that data. As CPU operating speeds have increased, the

memory subsystem has become a performance bottleneck for many HPC appli-

cations. As a result, it is key to maximise memory bandwidth, and minimise

access latency as much as possible to ensure that the CPU does not sit idle while

waiting for new data to be retrieved from memory. However, memory that is

quick to access is expensive to produce meaning that such memory is extremely

small in capacity. Registers and L1 cache made up of Static Random Access

Memory (SRAM) are common examples of low capacity memory with fast ac-

cess times. On the other hand, access time can be sacrificed in situations where

storage capacity is the primary concern – building an entire storage system out
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Registers
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Figure 2.4: The memory hierarchy. The fastest, lowest capacity, and most ex-
pensive memory at the top, the slowest, largest capacity, and cheapest memory
at the bottom.

of SRAM would be hugely expensive. Data backups are one such example where

storage capacity is key and speed of access is largely unimportant. Here, stor-

age with lower cost per byte can be chosen, e.g., traditional spinning hard disk

drives or magnetic tape.

The above concepts mean that, much like parallelism, memory systems can

also be considered to be hierarchical in nature. This is illustrated by the well-

known memory hierarchy diagram shown in Figure 2.4, where the trade-off

between access time, capacity, and cost can be clearly seen.

2.3 Many-Core & Heterogeneous Computing

As compute architectures have continued to diversify, so-called many-core pro-

cessors have become a core part of the HPC processor space. Where multi-core

processors are capable of acceptable performance for both serial and parallel

workloads, a many-core processor prioritises high levels of parallelism, at the

expense of subpar serial performance. As a result, codes that make poor use of

high levels of parallelism are unlikely to perform well on such a processor.

The many-core class of processors can include CPU-like architectures such

as Intel’s Xeon Phi range (both as coprocessor cards, and standalone CPUs), as
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well as GPUs manufactured by AMD and NVIDIA. Systems containing some

type of many-core processor are becoming increasingly common. For example,

at the time of writing, seven of the top ten supercomputers on the TOP500 list

make use of some sort of many-core processor [143].

The increased prevalence of many-core processors has also given rise to the

concept of heterogeneous computing, where a single compute node contains pro-

cessors of differing types. This is frequently set up as a traditional CPU, accom-

panied by one or more accelerators, such as GPUs or Field Programmable Gate

Arrays (FPGAs). GPUs have long been used to accelerate massively parallel

computation – processing graphical image and video data is but one exam-

ple. The application of GPU accelerators to standard computation is referred

to as General Purpose Graphics Processing Unit (GPGPU) computing, with

NVIDIA’s Compute Unified Device Architecture (CUDA) [116] being perhaps

the most well known framework used to achieve this. Many scientific codes are

beginning to make use of this constantly evolving technology as a result of the

increased computational power and memory bandwidth on offer. Therefore, it

has become increasingly important for codes to be able to take full advantage

of this hardware. However, as different supercomputers make use of varying

technologies, the portability of a given codebase has become a key issue that

must be considered.

2.3.1 Performance Portability

Heterogeneous systems that make use of accelerators or many-core CPUs are

rapidly becoming more prevalent as we continue to move away from the tra-

ditional homogeneous cluster systems that were previously the norm [15]. The

upcoming Exascale machines Aurora and Frontier will follow this same trend by

using Intel and AMD GPUs respectively. As a result, it is now highly desirable

for scientific codes to be able to perform well across a wide variety of systems, a

concept often referred to as ‘performance portability’. However, this increase in

architectural diversity brings greater difficulty in implementing production codes
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that are capable of fully exploiting the available hardware resources when com-

pared to the traditional SPMD MPI-based approach of the past. This problem

is exacerbated by the fact that each architecture requires specific optimisations

in order to achieve peak performance. Scientific codes must be able to adapt

to this changing landscape without the difficulty of developing and maintaining

several versions of the same application.

There are various standards that have been proposed to remedy this issue

by providing directives to the compiler that sections of code should be run

in parallel and/or on a given device – commonly an accelerator card. These

include OpenMP [118] and OpenACC [117]. Another approach being considered

to aid performance portability is the use of parallel programming frameworks

or libraries. Examples include Kokkos [52], from Sandia National Laboratories

(SNL), and RAJA [76], from Lawrence Livermore National Laboratory (LLNL),

both of which make use of C++ template meta-programming to inject hardware-

specific device code, targeting a system during compilation. Other notable

examples of parallel programming frameworks include Khronos’ OpenCL [86]

and SYCL [87], and Intel’s newly developed OneAPI [79]. The work presented

in Chapters 4 and 6 makes use of Kokkos to enable the use of a variety of modern

compute architectures.

While it is clear that there are many performance portability options avail-

able to developers, actually quantifying the portability of a given code in a

rigorous manner remains a difficult task. At the time of writing, there exists

only a single metric for measuring the performance portability of an application,

proposed by Pennycook et al. [120], which takes the harmonic mean of an ap-

plication’s performance efficiency across a specific set of platforms. This metric

has driven multiple further studies into the portability of several application

types by various authors [44, 88, 127].
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2.4 Performance Engineering

Performance engineering refers to the set of methods and techniques used by

application engineers and computer scientists to predict, measure, and improve

the performance of a given application. In this context, performance can refer to

several different metrics including, but not limited to: Time-to-Solution (TTS),

memory bandwidth and footprint [121], Input/Output (I/O) throughput [46],

and total power consumed [130]. This section provides a broad overview of both

the practical and theoretical sides of performance engineering, which is crucial

to understand parts of the work presented in this thesis.

2.4.1 Theory of Parallel Computing

While performance engineering is clearly a practical exercise, it is also under-

pinned by theoretical concepts. These are presented below in the form of defini-

tions and mathematical equations which can be applied in practice to compare

and understand HPC application performance.

Speedup

Speedup is the most basic metric with which to quantify application performance

improvements by considering how runtime changes as the amount of PEs is

increased. Given the values of serial runtime, TS , and the runtime using P

processors, TP , speedup can be defined as follows:

SP =
TS
TP

(2.1)

This is often the first metric considered when analysing application scalability.

In the ideal case SP = P – this is referred to as linear speedup. Speedup is often

the result of strong scaling, where a fixed problem size is ran on an increased

number of processors in an attempt to reduce the TTS.
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Parallel Efficiency

Parallel efficiency builds on the notion of speedup by quantifying how much

of the theoretical performance improvement an application makes use of when

running on P processors.

EP =
SP
P

(2.2)

The value of parallel efficiency generally resides in the interval between zero

and one, where the ideal linear case would result in a value of one. It is also

possible to obtain values of parallel efficiency greater than one, often known

as a super-linear speedup. This result is extremely uncommon for production

applications, and is usually the result of code exploiting architecture specific

benefits. One example would be where the problem size per processor becomes

small enough to reside entirely within CPU cache as a result of strong scaling.

Amdahl’s Law

Initially proposed in 1967, Amdahl’s Law is an equation which characterises the

maximum speedup achievable by increasing the amount of processors used to

run a parallel code [4]. The intuition behind the theory is that if a code possesses

some serial fraction FS (and by extension some parallel portion FP = 1 − FS)

then the maximum speedup achievable for that code will become limited by

FS as the number of processors continues to grow. The formal statement of

Amdahl’s Law is as follows:

SP ≤
1

FS + FP

P

(2.3)

It is clear to see that as P tends towards ever-larger values, the value of SP

becomes dominated by the serial fraction. One should also note that Amdahl’s

Law is closely related to the previously discussed notion of strong scaling, and

defines a theoretical limit to the benefits of such scaling. This limit can be

increased by adopting algorithms that have smaller values of FS .
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Gustafson’s Law

Gustafson’s Law is an attempt to address specific shortcomings of Amdahl’s

Law [66]. Specifically, Amdahl’s Law is based on the fundamental assumption

that the problem size remains fixed as the number of processors is increased.

Gustafson’s Law instead considers that as available computing power increases

larger problem sizes can be solved in the same fixed amount of time. As a result

of having more computational power, the total amount of computation can be

increased, easing the limitations posed by the serial part of the program. This

law is formally stated below:

SP = P − FS × (P − 1) (2.4)

This idea is intertwined with the notion of weak scaling, where a fixed problem

size per processor is used. This provides a different perspective to the strong

scaling considered by Amdahl’s Law. In an ideal embarrassingly parallel case,

application runtime would remain fixed as additional processors are added. As

a result, weak scaling studies allow HPC application developers to analyse the

overhead of increasing the amount of processors used.

2.4.2 Benchmarking

Benchmarking allows users of a computer system to assess the relative perfor-

mance of some component of the system, e.g., peak performance of the compute

units. Historically, the peak performance of a CPU or supercomputer has been

expressed in terms of Millions of Instructions per Second (MIPS) and FLOP/s.

These values are often quoted by vendors to allow comparison between differing

machines. However, these metrics merely provide the theoretical upper bound of

how well a given system will perform during execution. This is because almost

all real-world applications will fail to achieve full utilisation of the hardware

at all times, resulting in suboptimal performance. As a consequence, metrics

such as peak FLOP/s are seen as a poor measure of the actual performance
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of a computer system in production [48]. It is this issue that comprehensive

benchmarking seeks to address.

A benchmark can be thought of as a small code designed to capture the

performance of a given subsystem of a computer, typically by stressing this sub-

system in some methodical fashion. Generally, the benchmark will attempt to

mimic the behaviour of real-world applications in order to generate meaningful

performance data that can later be used for comparison to other configurations

or systems. As a consequence, a wide variety of benchmarks have been de-

veloped by the scientific community which can be used as a collective to rank

existing supercomputers. The TOP500 [142] and Graph500 [64] lists are the

most well-known rankings. Some of the most common benchmarks in use to

measure peak FLOP/s include Linear Algebra Package (LINPACK) [49], the

linear algebra based benchmark that is used to determine the TOP500 rank-

ings, and the High Performance Conjugate Gradients (HPCG) [48] benchmark.

HPCG provides an alternative ranking of the TOP500 machines that is in-

tended to complement LINPACK by being representative of codes that operate

on sparse data structures, in contrast to the dense systems of equations handled

by LINPACK. Other key benchmarks used to test computer subsystems include

STREAM [101], which is used to test sustained data throughput from Random

Access Memory (RAM), and the SKaMPI benchmark [128] and the Intel MPI

benchmarks [78] that both stress the installed MPI software and, by extension,

the communication fabric between individual compute nodes.

While specialised benchmarks allow engineers to analyse and draw conclu-

sions regarding the performance of individual system components, it is often

much more difficult to extrapolate this data to reason about a full application

that will use all of the components in tandem. For this purpose we require less

specialised macro-benchmarks that are more representative of real-world appli-

cations than the micro-benchmarks described above. Macro-benchmarks can be

written to be broadly representative of a given class of application in such a way

that they are easily ported to be tested on new systems and, as such, are often
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shared with vendors. Additionally, it is common for HPC centres to develop

and maintain their own benchmark suites. These suites typically contain a set

of macro-benchmarks that are broadly representative of the type of workloads

that will be run at the site, making them a key part of the procurement process.

Examples of these include the NAS Parallel Benchmarks (NPB) [10] used to rep-

resent codes used by the NASA Advanced Supercomputing Division (NAS), the

Rodinia benchmark suite for heterogeneous computing [37], and the National

Energy Research Scientific Computing Center (NERSC) benchmark suite [7],

used by the laboratory of the same name.

2.4.3 Application Profiling

While benchmarks provide a general idea of how a given application could per-

form on a specific hardware and software stack, they generally do not provide

the fine-grained detail that is required to identify the underlying cause of a

performance issue. For example, STREAM may report that system memory

bandwidth is underutilised, but not why this is the case. For this reason, ap-

plication engineers often use a profiler to conduct detailed analyses of code

behaviour. Typically, a profiler will accomplish this by monitoring program

execution and system performance counters in order to collect metrics that pro-

vide a ‘profile’. This profile can then be analysed to discern the true source

of suboptimal performance. Several profiler options exist today, some of which

have a specialised focus (e.g. application I/O tracing [154], memory read and

write monitoring [110], and MPI communication tracing [108]), and some of

which are more general. Examples of general profilers include GNU gprof [63],

Intel’s VTune Amplifier tool [77], and NVIDIA’s nvprof [114], which provide

performance breakdowns at the kernel1 level, alongside function call trees.

From the above, it is clear to see that profiling plays a key role in the process

of performance engineering. Many of the performance tuning decisions presented

1Note that in this thesis kernel refers to a collection of program code grouped within the
same subroutine or function, that performs a well-defined task, e.g., updating the pressure in
a simulation.
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in Chapter 4 are initially guided by profiling results, followed by hand inspection

of code once problematic areas have been identified. This is especially useful

for optimisations that exploit features of specific GPU hardware, and the Single

Instruction Multiple Thread (SIMT) paradigm employed by CUDA warps.

2.4.4 Representative Applications

While benchmarking can provide a great deal of information to assist with tun-

ing applications, full-scale scientific production codes are far more complex than

any benchmark. Additionally, these applications can consist of upwards of one

million lines of code, making for an extremely complex codebase. As a result,

exploring new technologies and optimisations for such codes is an arduous un-

dertaking which can take years to achieve. Representative applications, some

times referred to as mini-applications (or mini-apps), are smaller codes written

to capture the performance behaviour of their parent production code. Due

to their more manageable size, mini-applications can be readily ported to new

technologies, or otherwise rapidly altered in terms of optimisation, often by a

single developer, or at most a small team. Therefore, mini-applications are a

key part of the HPC software development life cycle and supercomputer pro-

curement process in the sense that large commitments do not have to be made

blindly.

There are a wide variety of mini-applications in the HPC space. The Man-

tevo suite [70], maintained by SNL, is one major set of mini-applications, and

contains codes representative of Finite Element Method (FEM) based solvers,

Computational Fluid Dynamics (CFD), Molecular Dynamics (MD), and magne-

tohydrodynamics schemes. Other notable mini-applications maintained by the

UK Mini-App Consortium include CloverLeaf [99] (structured hydrodynamics),

TeaLeaf [103] (structured heat conduction), and BookLeaf [96, 144] (unstruc-

tured hydrodynamics). The performance behaviour of all of these codes has

been evaluated on multiple systems and, as such, is well understood by the

community.
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2.4.5 Performance Modelling

Performance modelling refers to the practice of attempting to predict perfor-

mance data (most commonly runtime) from knowledge of the performance be-

haviour of a code, and the specifications of the hardware that is being consid-

ered. This performance prediction can then be used to facilitate procurement

decisions, enabling HPC sites to gain a preliminary understanding of how their

workloads may perform on a candidate system [68]. This can be especially useful

for commercially sensitive work, where a model can be shared, but the parent

code cannot [47]. Additionally, as a model provides an approximation of what

performance a code should achieve, modelling can be used to expose and resolve

performance issues, or evaluate potential code optimisations.

The techniques used in performance modelling can generally be separated

into two categories – the first of these is analytical modelling. Analytical mod-

elling seeks to express the performance behaviour of an application as a system

of equations, where the terms of the equations represent the performance critical

parts of the code, and the values of which are determined from initial empiri-

cal experiments. In the case of an MPI application, these terms are typically

the time spent carrying out computation, and the time spent executing inter-

process communications. The analytical approach has several advantages, the

most obvious of which is that, given new parameters, the model can return new

predictions extremely quickly. However, it also comes with the disadvantage

that it can be challenging (or sometimes impossible) to accurately capture the

performance behaviour of complex applications. Analytical models have pre-

viously been applied to wavefront codes [107], and CFD simulations [119], to

name but two examples.

The second common modelling approach is simulation, where the behaviour

of an application is simulated on a defined hardware setup. The scale of this

simulation can vary greatly, from a completely simulated approach where all

hardware is modelled, down to systems that merely simulate the communi-

cations between nodes, but continue to use the analytical approach described
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above to handle computation. Simulation has a clear advantage over analyti-

cal modelling when inter-node communication accuracy is key, but this comes

with the downside that detailed simulations take much longer to deliver results

than an analytical model. There are many simulators available, including the

Warwick Performance Prediction Toolkit (WARPP) [67], and the Structural

Simulation Toolkit (SST) [131]. SST has previously been used by Bird et al. to

model the performance of the Lagrangian-Eulerian code, Lare [22].

2.5 Benchmarking Platforms

The research presented in this thesis makes use of a variety of different ma-

chines and compute architectures. Additionally, we make a distinction between

single-node systems, and supercomputers that are made up of many individual

compute nodes. Therefore, this section presents a detailed summary of the dif-

ferent types of hardware used, and the various differences between them, both

at the single-node and cluster level. Where possible, every attempt has been

made to carry out all experiments on the same hardware in order to ensure

consistency in performance results. When this was not achievable (e.g. due to

restricted access to classified machines) this is made clear in the text. All ex-

periments are repeated five times, with the lowest runtime being selected as the

final result. As the code used in this thesis is deterministic, we can be sure

that variation in timings is due to background noise on the node, e.g., operating

system processes and other such services. Therefore, the taking the minimum

is more appropriate than averages such as the mean or median which may be

skewed by abnormally high values. Additionally, raw performance data for all

graphs in Chapters 4, and 6 can be found in Appendices A and C, respectively.

2.5.1 Single Nodes

The majority of the experiments documented in this thesis were carried out on

single-node systems. Note that in the case of the CPU systems, all nodes are
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Intel Xeon

E5-2698v3 E5-2660v4 Gold 6252 Phi 7210 Phi 7250

Cores 16 14 24 64 68
Clock Speed (GHz) 2.3 2.0 2.1 1.3 1.4
Peak GFLOP/s 294.4 224.0 806.4 1331.27 1523.2
Bandwidth (GB/s) 68.0 76.8 141.0 102.0 115.2
TDP (W) 135 105 150 215 215
Instruction Set AVX2 AVX2 AVX-512 AVX-512 AVX-512
Micro-architecture Haswell Broadwell Cascade Lake KNL KNL

Table 2.1: Hardware specifications of the Intel CPUs used in this thesis.

Cavium ThunderX2 IBM POWER

CN9975 CN9980 POWER9 22c

Cores 28 32 22
Clock Speed (GHz) 2.0 2.1 3.4
Peak GFLOP/s 224.0 268.8 598.4
Bandwidth (GB/s) 158.9 158.9 170.0
TDP (W) 180 180 190
Instruction Set NEON NEON Power v3
Micro-architecture Vulcan Vulcan POWER9

Table 2.2: Hardware specifications of the other CPUs used in this thesis.

dual-socket unless otherwise stated, meaning that each node contains two of the

individual chips specified in the tables. Tables 2.1, and 2.2 detail the CPUs used

in this thesis, and Table 2.3 shows the GPUs used. For each component, the

peak computational performance for double-precision computation is reported

in Giga-Floating-Point Operations per Second (GFLOP/s), and memory band-

width as quoted by the manufacturer is given in Gigabytes per Second (GB/s).

This data should be thought of as the theoretical peak performance achiev-

able used to broadly compare systems – these values are almost never realised

during a typical production experiment. The base clock rate is also provided in

Megahertz (MHz) or Gigahertz (GHz) as appropriate, along with the power con-

sumption in the form of Thermal Design Power (TDP) in Watts. It is important

to keep all of these metrics in mind when comparing application performance

between systems in order to ensure that fair comparisons are made, especially

when the architectures differ greatly. The importance of making such fair com-

parisons has been highlighted by multiple previous authors acknowledging that

the level of performance tuning of each application version and the appropri-

ateness of the metrics compared is crucial [97, 150]. For example, comparing
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NVIDIA

K40c P100 V100

Compute Units 15 56 80
FP64 Cores 960 1792 2560
Clock Speed (MHz) 745.0 1328.0 1312.0
Peak GFLOP/s 1680.0 5300.0 7800.0
Bandwidth (GB/s) 288.0 732.0 900.0
TDP (W) 235 300 300
Micro-architecture Kepler Pascal Volta

Table 2.3: Hardware specifications of the NVIDIA GPUs used in this thesis.

Trinity (Haswell) Trinity (KNL)

Processor Xeon E5-2698v3 Xeon Phi 7250
Cores/node 32 68
Nodes 9436 9984
Accelerators/node None None
Memory/node (GB) 128 96
Interconnect Cray Aries Cray Aries

Table 2.4: Hardware specifications of both partitions of Trinity.

an unoptimised CPU implementation to a fully-tuned GPU code would yield

extremely biased results.

2.5.2 Supercomputers

In addition to the single-node systems described above, the work documented

in Chapter 4 makes use of three different United States Department of En-

ergy (DOE) supercomputers in order to conduct scaling studies. The first of

these machines is Trinity, a Cray XC40 located at Los Alamos National Lab-

oratory (LANL), New Mexico, USA. Trinity initially consisted of two separate

partitions, with one partition made up of dual-socket Intel Xeon E5-2698v3

nodes, and the other made up of Intel Xeon Phi 7250 KNL nodes. As of June

2017, both partitions have been merged to create a single heterogeneous cluster.

Full details of Trinity are shown in Table 2.4.

Secondly, we have Astra – a petascale ARM-based HPE Apollo 70 installed

at and operated by SNL, New Mexico, USA, and the first ARM system to make

it into the TOP500 listings. Astra is a homogenous cluster made up of dual-

socket Cavium ThunderX2 CN9975 nodes. Full details of this system can be

found in Table 2.5.

31



2. Parallel Hardware and Performance Engineering

Astra Sierra

Processor TX2 CN9975 POWER9 22c
Cores/node 56 44
Nodes 2592 4340
Accelerators/node None 4× NVIDIA V100
Memory/node (GB) 128 256
Interconnect EDR Infiniband EDR Infiniband

Table 2.5: Hardware specifications of Astra and Sierra.

Finally, we come to Sierra, an IBM Power System AC922 located at LLNL,

California, USA. Sierra is a heterogeneous supercomputer consisting of dual-

socket IBM POWER9 22c CPUs, with each node also containing four NVIDIA

V100 GPU accelerator cards. Additionally, the system has NVLink capabilities,

allowing separate GPUs on the same node direct read/write access to each

other’s device memory. As with Astra, comprehensive hardware specifications

for Sierra can be found in Table 2.5.

2.6 Summary

This chapter has detailed the various classes of parallel hardware that exist

today, and the types of parallelism that can be used to fully exploit them.

We have also introduced the concept of performance engineering, and high-

lighted various theoretical and practical concepts that can be used to measure,

analyse, and improve HPC application performance. Particular focus has been

placed on emerging many-core architectures and heterogeneous computing, and

how these are driving the need for applications to be portable across multiple

modern hardware types, and how such portability could be achieved. Much

of this background knowledge is fundamental to the performance related work

presented in this thesis. Finally, we have presented a summary of the vari-

ous different hardware components and supercomputers used to carry out the

experiments presented in Chapters 4 and 6.
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CHAPTER 3
Particle-in-Cell Simulations

The work presented in this thesis focuses on the unstructured EMPIRE-PIC

Particle-in-Cell (PIC) application developed at Sandia National Laboratories

(SNL). While this thesis is primarily concerned with the development of the

particle-based kernels of the code, and related algorithmic extensions, this chap-

ter also contains a discussion of Maxwell’s equations, and the formulation of the

relevant field solvers in the interest of completeness. Therefore, this chapter

provides an overview of the unstructured Finite Element Method (FEM) PIC

method, beginning with the motivations behind using unstructured grids for

PIC simulations, then describing underlying physical equations, before moving

on to present the formulation of each step of the algorithm implemented in

EMPIRE-PIC in detail.

3.1 Motivation

High Performance Computing (HPC) can be applied within a variety of sci-

entific fields, with the areas of fusion energy research, and the behaviour of

plasmas under various conditions being notable examples. PIC codes are com-

monly used to carry out simulations of charged particles in plasmas under the

influence of electric and magnetic fields [23, 42, 73]. Examples of applications

in fusion energy research include the simulation of both Inertial Confinement

Fusion (ICF) and Magnetic Confinement Fusion (MCF) devices. Such devices

include the National Ignition Facility (NIF), located at Lawrence Livermore Na-

tional Laboratory (LLNL), and the Iternational Thermonuclear Experimental

Reactor (ITER) located in France, which each attempt ICF and MCF respec-

tively. Other applications include the behaviour of magnetrons in microwave
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Figure 3.1: Comparison of grid representation in structured versus unstructured
PIC. The finite element shown here assumes the fields are located at the element
nodes.

generation systems, charged particle beams, laser-plasma interaction [8], astro-

physical plasmas [129], and applications in biomedicine [59].

Traditionally, PIC employs a structured grid approach to represent the space

being simulated, storing the field values on cell edges and faces [155], modelling

particles as discrete objects in the problem space. The algorithm is commonly

implemented using a Finite Difference Time Domain (FDTD) scheme with the

fields represented on a staggered Yee grid (Figure 3.1(a)), with discrete particles

present within the domain [43, 94, 155]. Notable examples of such PIC codes

include the Extendable PIC Open Collaboration (EPOCH) [8], OSIRIS [57],

ICEPIC [26], the Plasma Simulation Code (PSC) [62] and VPIC [30, 31]. Gy-

rokinetic PIC algorithms have also been applied to the challenge of kinetic

plasma simulation in five-dimensional phase space. Two such codes are GTC-P,

the Gyrokinetic Toroidal Code [152], and XGC, the X-point Gyrokinetic Code,

developed at Princeton University [91].

These codes are varied in their features and implementations but, with the

exception of GTC-P and XGC, each operates on a traditional structured rec-

tilinear grid. The application of such meshes to problems with high fidelity

geometries is challenging due to the extreme resolution that is needed to accu-

rately represent the simulation space. One approach to resolve this is through

34



3. Particle-in-Cell Simulations

the use of Adaptive Mesh Refinement (AMR) to refine the problem only in ar-

eas of interest, reducing the total number of cells required for simpler sections

of the geometry. The use of AMR-PIC has previously been explored for both

electrostatic and electromagnetic problems by Vay et al. in WARP [147] and

Warp-X [146], respectively.

Alternatively, a solution to the problem of representing complex geometry

is to use an unstructured computational mesh with finite elements of arbitrary

shapes and sizes. Figure 3.1(b) shows an example of one such element type. Like

AMR, this provides the flexibility of refining the problem in areas of key interest,

but without the restriction that the grid cells themselves retain their structured

properties. Unstructured PIC algorithms have previously been explored by mul-

tiple authors, with work by Squire et al. [138] and Moon et al. [105] being but

two examples. Instances of PIC codes implementing unstructured schemes in-

clude PTetra [100] and the open-source Spacecraft Plasma Interaction Software

(SPIS) [132].

3.2 Physical Equations

PIC algorithms are commonly used for the simulation of plasma dynamics. This

is accomplished by numerically solving the Vlasov equation that governs the

time evolution of a given collisionless plasma [149]. A collection of Np discrete

particles is used to represent the plasma, each of which has an associated position

~x, velocity ~v, charge q, and mass m. These are used to approximate a probability

distribution, f , as a series of delta functions, δ, across all particles i.

f =

Np∑
i=1

fi =

Np∑
i=1

δ(~x− ~xi)δ(~v − ~vi) (3.1)

The probability distribution for each particle is updated via Newton’s Law and

the Lorentz force equation, where ~B and ~E are the magnetic and electric fields,
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respectively. These can be expressed as the updates shown in (3.2) and (3.3).

d~xi
dt

= ~vi (3.2)

d~vi
dt

=
qi
mi

(
~E(~xi) + ~vi × ~B(~xi)

)
(3.3)

These equations can then be assembled into the Vlasov equation, which is related

to the Klimontovich equation for particle dynamics [50, 89, 112]:

∂fi
∂t

+
~vi
m
· ∇fi +

qi
mi

(
~E(~xi) + ~vi × ~B(~xi)

) ∂fi
∂~v

= 0 (3.4)

With given magnetic and electric fields, this system can be used to fully describe

the particle evolution, and Maxwell’s equations can used to couple the charged

particles to the electric and magnetic fields. They consist of the following:

Gauss’ Law, the magnetic divergence constraint, Faraday’s Law, and Ampère’s

Law. For clarity, these equations are given below in the form of differential

equations. Here ρ and ~J are the charge and current densities, and ε0 and µ0 are

the permittivity and permeability of free space, respectively.

∇ · ~E =
ρ

ε0
(3.5)

∇ · ~B = 0 (3.6)

∂ ~B

∂t
= −∇× ~E (3.7)

∂ ~E

∂t
=

1

µ0ε0
∇× ~B − 1

ε0
~J (3.8)

Finally, the particles can be coupled back to Maxwell’s equations via the charge

and current densities defined below.

ρ =

Np∑
i=1

qifi (3.9)

~J =

Np∑
i=1

qi~vifi (3.10)
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Figure 3.2: The main time loop of a Particle-in-Cell simulation.

3.3 The Particle-in-Cell Method

Introduced by Birdsall and Dawson, the PIC method is a well established pro-

cedure for modelling the behaviour of charged particles in the presence of elec-

tric and magnetic fields [24, 43]. Discrete particles are tracked in a Lagrangian

frame, while the electric and magnetic fields are stored on stationary points on a

fixed Eulerian mesh. Therefore, the algorithm can be thought of as two coupled

solvers where one is responsible for updating the electric and magnetic fields,

and another updates the particles via the method of characteristics and calcu-

lates their charge/current contributions back to the grid. These are referred to

as the field solver and the particle mover (sometimes called the particle pusher),

respectively. Combining these solvers results in the main time loop of the core

PIC algorithm that consists of several key steps, summarised in Figure 3.2. In

short this consists of: solving for the field values on the computational mesh,

weighting these values to determine the fields at particle locations, updating

the particle velocities and positions, and carrying out the particle charge/cur-

rent deposits to grid points. The number of physical particles (defined at the

level of atoms and/or electrons) required to simulate a modern plasma system

is exceedingly large. Thus, so-called super-particles are employed in order to

make simulation via computation feasible. These can be thought of as ‘compu-

tational particles’ that reflect the behaviour of a collection of physical particles.
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For example, one super-particle may represent many billions of electrons within

a plasma. This allows the number of computational particles within the system

to be much lower, therefore reducing the workload required. It should be noted

that as the Lorentz force is only related to the charge-to-mass ratio of particles,

these super-particles will exhibit the same movement as their physical counter-

parts. However, they will affect the fields by an amount proportional to the

chosen weight.

3.3.1 Solving Maxwell’s Equations

In order to obtain the values of the electric and magnetic fields it is necessary

to solve Maxwell’s equations. Maxwell’s equations hold true for all cases, but

approximations can be made if certain conditions are satisfied. Specifically, if

the movement of the plasma particles is slow in comparison to the speed of

light, c, the equations can be reduced such that only Gauss’ Law (3.5) must be

solved, and the magnetic divergence constraint (3.6) is implicitly maintained.

This is known as the electrostatic approximation, i.e., where the electric field is

irrotational: ∇× ~E = 0. However if the particles move at relativistic velocities,

or the current density is large, then the electrostatic approximation is no longer

valid. In such cases we must solve the full set of Maxwell’s equations in order

to account for the changing magnetic field. We refer to this class of problems

as electromagnetic.

We now show in detail the formulation of both electrostatic and electro-

magnetic problems, such that they can be solved via the FEM [83]. Once the

problem has been formulated correctly, it can be solved using a variety of iter-

ative or direct methods.

Electrostatic Field Solver

When conducting an electrostatic simulation we need only solve (3.5) during

the field solve. In this case, the electric field can be represented as a gradient of
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electric potential, φ, as in (3.11), where ~E is defined as specified in (3.12).

∇2φ = − ρ

ε0
(3.11)

~E = −∇φ (3.12)

In order to solve this system via FEM we must first expand the equation into

a basis function, multiply by a test function, and subsequently integrate. Here

we are using a Galerkin method, i.e., the basis functions and test functions

are the same. In our electrostatic case, we are using basis functions v̂ ∈ HGrad,

sometimes known as the P1 basis elements, or the space of linear basis functions.

By putting the expression into the weak form and using a test function v̂i we

obtain the following: ∫ L

0

[
d2φ

dx2
+
ρ

ε0

]
v̂i dx = 0 (3.13)

Expanding the electric potential into a finite-dimensional basis function and

substituting into the weak form expression, where N is equal to the number of

bases, yields:

φ ≈
N∑
j=0

φj v̂j (3.14)

∫ L

0

[
d2
∑N
j=0 φj v̂j

dx2
+
ρ

ε0

]
v̂i dx = 0 (3.15)

As φj does not depend on x the summation can be moved outside of the integral,

which can then be separated into two parts. However, leaving the equation in

this form would require us to compute the second derivative of the basis function

– a process which is often intractable. In order to resolve this issue, we apply

integration by parts to move one of the derivatives from the basis function to

the test function instead.

N∑
j=0

φj

[∫ L

0

−dv̂j
dx

dv̂i
dx

dx+
dv̂j
dx

v̂i|L0

]
+

∫ L

0

ρ

ε0
v̂i dx = 0 (3.16)
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As we have chosen P1 elements (the space of linear basis functions), we can

represent any piecewise linear function. Therefore we can define a sparse tridi-

agonal stiffness matrix, S, which allows us to rewrite (3.16).

Si,j =

∫ L

0

−dv̂j
dx

dv̂i
dx

dx (3.17)

N∑
j=0

φj

[
Si,j +

dv̂j
dx

v̂i|L0
]

= −
∫ L

0

ρ

ε0
v̂i dx (3.18)

In order to handle the right hand side of the above expression we assume that

the charge density, ρ originates from k discrete particles at some location ~xk.

This allows us to represent the equation as a summation over the particles as

shown in (3.19). For the P1 basis elements this results in a linear interpolation

to the nodes.

∫ L

0

ρ

ε0
v̂i dx =

NP∑
k=1

∫ L

0

qkδ(~xk)

ε0
v̂i dx =

NP∑
k=1

qkv̂i(~xk)

ε0
(3.19)

As the term
dv̂j
dx v̂i|L0 in (3.18) is only nonzero for i = j ∈ {0, N}, and can often

be ignored through the use of alternative boundary condition handling tech-

niques, (3.18) results in a sparse matrix equation which can be solved through

a variety of iterative or direct approaches when combined with (3.19). Once we

have computed the values for φ, we can easily determine the electric field.

~E ≈ −
N∑
j=0

φj∇v̂j (3.20)

It should be noted that extending this one-dimensional example to multidimen-

sional problems is trivial, however the resultant stiffness matrix is no longer

tridiagonal, but will remain sparse. This extension is shown in (3.21), where Ω

represents some finite domain.

Si,j =

∫
Ω

−∇v̂j · ∇v̂i dΩ (3.21)
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It is relatively simple to implement a linear field solver for the electrostatic

formulation. To achieve this in EMPIRE-PIC the traditional Krylov iterative

methods provided by the Belos Trilinos package are used [14]. The MueLu Trili-

nos package is used in conjunction with Belos to provide an Algebraic Multigrid

(AMG) preconditioner [16].

Electromagnetic Field Solver

When solving Maxwell’s equations for electromagnetic simulations, we use sim-

ilar techniques to those employed for electrostatic problems. However, we use

different basis functions to expand both the electric and magnetic fields. Specifi-

cally, we make use of the lowest order Nédélec [109] edge elements ê ∈ HCurl and

Raviart-Thomas [32] face elements b̂ ∈ HDiv , respectively. In addition, we must

also consider the temporal term. We begin our electromagnetic FEM formula-

tion with the weak form of Faraday’s Law, shown in (3.22). This works because

the chosen Nédélec elements are a compatible discretisation, i.e., the curl of the

HCurl basis is within the divergence space HDiv . Therefore, the ∇ × êj maps

directly into the space of ~B. The expansion is shown in (3.22) where Nface and

Nedge are the number of element faces and edges, respectively.

Nface∑
j=0

∂Bj
∂t

∫
Ω

b̂i · b̂j dΩ = −
Nedge∑
j=0

Ej

∫
Ω

∇× êj · b̂i dΩ (3.22)

Similarly to the electrostatic equations we form and substitute a curl matrix,

KB . Furthermore, we also define a new term, MB , that represents a mass

matrix. We can then use these terms to rewrite the weak form of Faraday’s

Law (3.22).

MB =

∫
Ω

b̂i · b̂j dΩ (3.23)

KB =

∫
Ω

∇× êj · b̂i dΩ (3.24)

MB
∂B

∂t
= −KBE (3.25)
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We deal with the formulation of Ampère’s Law, (3.8), in a similar fashion,

beginning by expressing it in the weak form, and applying integration by parts

as shown in (3.26) and (3.27). This allows us to move the curl operator from

b̂j to êi in order to avoid the issue of the curl of the HDiv space being not well

defined causing poor definition of ∇× b̂j .

Nedge∑
j=0

∂Ej
∂t

∫
Ω

êi · êj dΩ

= − 1

µ0ε0

Nface∑
j=0

Bj

∫
Ω

∇× b̂j · êi dΩ− 1

ε0

∫
Ω

~J · êi dΩ

(3.26)

Nedge∑
j=0

∂Ej
∂t

∫
Ω

êi · êj dΩ

= − 1

µ0ε0

Nface∑
j=0

Bj

∫
Ω

b̂j · ∇ × êi dΩ− 1

ε0

∫
Ω

~J · êi dΩ

(3.27)

Similarly to Faraday’s Law, we can now form the corresponding mass matrix,

ME , and curl matrix, KE , for Ampère’s Law. However, these matrices may not

necessarily be square in all cases.

ME =

∫
Ω

êi · êj dΩ (3.28)

KE = − 1

µ0ε0

∫
Ω

b̂j · ∇ × êi dΩ (3.29)

We must also now consider the time derivative terms for both Faraday’s and

Ampère’s Laws. Common approaches include backward Euler, Crank-Nicolson

(C-N), and Friedman [60] time integration schemes. Here we consider the C-N

scheme that is unconditionally stable, energy conservative, and second-order

accurate. Here n is the discrete time level, we approximate the time derivative

via a one-sided difference, and the expression is evaluated at both the new and

current time. It should be noted that while C-N offers second order convergence
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and exact energy conservation, it is not always an ideal choice of integrator.

The scheme is non-dissipative, so high frequency modes once perturbed will

persist throughout the simulation. This, combined with the stochastic nature

of particle simulations, can result in particle noise coupling to the fields, creating

undesirable feedback [65]. In such situations a Friedman integrator can be used

to damp out any high frequency noise. For simplicity and ease of presentation,

the C-N formulation for first-order Maxwell’s equations is presented here. We

can now show the following:

MEE
n+1 − ∆t

2
KEB

n+1 = MEE
n − ∆t

2
KEB

n − ∆t

ε0

∫
Ω

~J · êi dΩ (3.30)

MBB
n+1 +

∆t

2
KBE

n+1 = MBB
n − ∆t

2
KBE

n (3.31) MB
∆t
2 KB

−∆t
2 KE ME


Bn+1

En+1

 =

 MBB
n − ∆t

2 KBE
n

MEE
n − ∆t

2 KEB
n − ∆t

ε0
Jn+1/2

 (3.32)

Here, we express the current as Jn+ 1
2 , a vector form of 1

ε0

∫
Ω
~J · êidΩ. If we

assume that charge is represented by a point delta function with some charge

q, we can define the current as shown in (3.33).

1

ε0

∫
Ω

~J · êi dΩ =
1

ε0

∫ (n+1)∆t

n∆t

∫
Ω

q~u(t)δ(~x(t)) · êidΩ dt

=
1

ε0

∫ (n+1)∆t

n∆t

q~u(t) · êi(~x(t)) dt

(3.33)

The electromagnetic formulation requires a more specialised solver, detailed

here. We know that the system has the following form, where RB and RE

represent the right-hand side of the system of equations to be solved.

 MB
∆t
2 KB

−∆t
2 KE ME


︸ ︷︷ ︸

A

Bn+1

En+1

 =

RB
RE

 (3.34)
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The above system can then be altered by a block LU decomposition,

A =

 I 0

−∆t
2 KEM

−1
B I


MB

∆t
2 KB

0 SE

 (3.35)

where the electric field Schur complement, SE , is given by:

SE = ME +
∆t2

4
KEM

−1
B KB (3.36)

This formulation can then be solved by a preconditioned conjugate gradient

method. In this case, EMPIRE-PIC uses the ‘refMaxwell’ AMG preconditioner

proposed by Bochev et al. [27].

3.3.2 Weighting of Fields to Particles

After solving for the field values at the nodes of the simulation grid, we require

a method of determining the value of the fields at any specific particle position.

In order to do so we weight the field values from the grid nodes to the required

location. Assuming that we know the values of the electric and magnetic fields

we can evaluate the value of the fields at a given point as shown below by

applying the basis function. Here Nedge and Nface refer only to the number of

edges and faces for the containing element, respectively.

~E(~xi) =

Nedge∑
j=0

Ej êj(~xi) (3.37)

~B(~xi) =

Nface∑
j=0

Bj b̂j(~xi) (3.38)

However, using the raw edge values of the electric field produces a large ‘self-

force’ on the particle being pushed, as edge fields conserve energy whereas nodal

fields conserve momentum [74]. The standard structured PIC algorithm uses

special averaging of the edge fields to the nodes in order to generate the fields

that are used to push the particles. However, in our unstructured algorithm, we
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mimic the approach used in the structured method by using projections from

the edge based electric fields to create fields that are based at the grid nodes.

These projections have the form:

∫
Ω

(
~Enodal − ~Eedge

)
v̂ dΩ

=

Nn∑
j=1

Nn∑
i=1

Enodal,i

∫
Ω

v̂iv̂j dΩ−
Nn∑
j=1

Ne∑
i=1

Eedge,i

∫
Ω

êiv̂v dΩ = 0

(3.39)

This can then be reduced to a solve of a mass matrix equation MnodalEnodal =

Mnodal,edgeEedge. One possible technique is to ‘lump’ the mass matrices, i.e.,

convert them into diagonal matrices with dual area on the diagonal. This leads

to a volume-based field averaging which, when used on a uniform mesh, is

identical to the method used within structured PIC simulations.

3.3.3 Particle Mover

The force felt by a charged particle due to the presence of electric and magnetic

fields is described by the Lorentz force equation, shown in (3.40). The particle

mover within a PIC code is responsible for solving for this force on each particle

within the simulation, and subsequently updating the particle velocities and

positions. In our method we make use of the well known Boris algorithm to

handle the acceleration due to the electric field, and rotation about the magnetic

field [29].

~F = q
(
~E + ~v × ~B

)
(3.40)

To make the algorithm relativistic, here we define ~u = γ~v, where γ is the Lorentz

factor. Therefore we are solving the for the new velocity defined as:

~u n+1/2 − ~u n−1/2

∆t
=

q

m

[
~E n +

1

c

~u n−1/2 + ~u n+1/2

2γn
× ~B n

]
(3.41)
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The Boris method eliminates the electric field from the magnetics rotation via

the following substitutions:

~u n−1/2 = ~u − − q ~E n

m

∆t

2
(3.42)

~u n+1/2 = ~u + +
q ~E n

m

∆t

2
(3.43)

~u + − ~u −
∆t

=
q

2γnmc

(
~u + + ~u −

)
× ~B n (3.44)

Next we derive the expression for performing the rotation about the magnetic

field. First we find the vector bisecting the angle formed between the velocity

before and after the rotation. In a given time-step, the velocity will rotate

through the following angle: tan(θ/2) = −(q ~B)∆t/2γnmc. Rewriting this as a

vector we obtain: ~t ≡ −b̂ tan θ/2. We can then define ~u ′ as shown below:

~u ′ = ~u − + ~u − × ~t (3.45)

~u + = ~u − + ~u ′ × ~s (3.46)

~s =
2~t

1 + ~t 2
(3.47)

Once we have calculated ~u +, we can obtain the new particle velocity by adding

an additional half of the acceleration as per (3.42)-(3.44).

3.3.4 Weighting of Particles to Grid

During each time-step in the PIC algorithm we must weight the contributions

of each particle back onto the grid before we can commence the next field solve,

though this contribution changes depending on whether the simulation is elec-

trostatic or electromagnetic. For electrostatics, we apply (3.19) at the end of

the particle move at the newly updated particle position. An electromagnetic

simulation requires us to evaluate the the current (3.33) as shown in (3.48).

For simplex elements, it is sufficient to use a midpoint rule for the integration,

however, for higher-order elements we must evaluate this temporal integration
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with higher-order numerical cubature. Specifically, EMPIRE-PIC uses two-

point Gaussian quadrature with points at
(
1± 1/

√
3
)
/2, each with a weight of

1/2 when using non-simplex elements. This reduces to the charge conservation

scheme for regular hexahedral elements previously presented by Villasenor and

Buneman [148].

∫
Ωj

~Jêi dV =

NP∑
k=1

∫
Ωj

1

∆t

∫ (n+1)∆t

n∆t

qk~uk · êi dt dV

=

NP∑
k=1

∆tqk~uk

(
~x
n+1/2
k

)
· êi
(
~x
n+1/2
k

) (3.48)

3.4 Higher-Order Methods

In addition to unstructured or adaptively refined meshes, many domain scien-

tists have also experimented with the use of higher-order methods that make

use of finite elements that possess additional degrees of freedom. Figure 3.3

shows a comparison of first-order and second-order tetrahedral finite elements.

While these methods have previously been seen as prohibitively computation-

ally intensive, the extreme levels of parallelism offered by modern supercomput-

ers is causing a revival of such methods – the BLAST Arbitrary Langrangian-

Eulerian (ALE) code developed at LLNL is one notable example [5, 6]. This

resurgence is due to the increased arithmetic intensity of these methods improv-

ing the amount of Floating-Point Operations per Second (FLOP/s) performed

per byte moved from Random Access Memory (RAM), providing an advantage

in situations where limited memory capacity and bandwidth poses an obsta-

cle to performance. The additional computational cost is also accompanied

with improved simulation accuracy and convergence. Such methods have the

benefit of enabling the use of coarser computational grids and reduced simula-

tion constraints, while still reaching an acceptable solution due to the increased

accuracy that they can provide. However, higher-order methods also require

smooth source terms to integrate. In higher-order PIC this means that smooth

particle shape functions are required to achieve the desired higher-order conver-

47



3. Particle-in-Cell Simulations

Figure 3.3: Comparison of first-order (left) and second-order (right) tetrahedral
elements.

gence. A smoother particle representation also results in a better sampling of

the surrounding fields when interpolating the fields to the particles, and reduced

aliasing when depositing charge/current as particles move between cells.

Structured PIC codes generally implement higher-order methods by using

smooth particle shapes extending over multiple cells [8], combined with higher-

order field solvers. One example of such a particle shape can be achieved by

implementing the Cloud-in-Cell (CIC) representation proposed by Birdsall and

Fuss [24]. Unfortunately, smooth particle shapes are non-trivial to implement

in practice for unstructured PIC codes as evaluating a higher-order basis often

becomes intractable when spanning multiple elements.

Jacobs and Hesthaven present a discontinuous Galerkin PIC method that

incorporates both higher-order time domain solution of Maxwell’s equations and

smooth particle shapes [71, 82]. The algorithm is implemented for unstructured

grids with the problem space being discretised into non-overlapping, triangular

finite elements. The particles are treated as fixed size clouds, and multiple

smooth shape functions are considered. Through testing on a set of benchmark

problems, the authors demonstrate the ability to simulate plasma phenomena

with geometric flexibility while exhibiting reduced solution noise.

Essex and Bridson also show a higher-order PIC algorithm, HOPIC, that

extends the PIC method to fourth-order accuracy for transport problems [53].

Specifically, the authors compare first- and third-order B-spline interpolation

functions to a reference Cell Mean Value (CMV) approach which distributes

48



3. Particle-in-Cell Simulations

the charge of all particles in a cell equally to all cell nodes. The scheme is

implemented at fourth order, with explicit Runge-Kutta methods (namely RK4)

being used to achieve this. Weighting from the grid to the particles is achieved

via a smooth fourth order interpolation method, while particles are weighted to

the grid using moving least squares (MLS) and a basis of cubic polynomials. The

implementation was tested on both two- and three-dimensional test problems,

and was shown to exhibit the theoretical fourth order convergence.

Stindl et al. have also investigated higher-order methods within an electro-

magnetic discontinuous Galerkin PIC code, with a particular focus on the cou-

pling of the particles and the unstructured grid [139]. Specifically, the authors

compare first and third order B-spline interpolation functions to a reference Cell

Mean Value (CMV) approach which distributes the charge of all particles in a

cell equally to all cell nodes. It was found that the higher-order interpolation

methods provide improved result accuracy against a refined solution, and also

reduced runtime due to the decrease in the amount of computational particles

required to carry out the simulation. It is finally suggested that such coupling

methods are particularly appropriate for the simulation of complex engineering

problems in order to achieve acceptable results.

3.5 Stability and Accuracy of PIC Simulations

As EMPIRE-PIC uses an implicit Crank-Nicolson method to handle time in-

tegration, the FEM-PIC algorithm implemented in the code is unconditionally

stable. However, initial problem conditions must be carefully selected in order

to ensure the accuracy of a given simulation.

In our case, particular care must be taken when selecting the grid spacing,

∆x, and the time-step size, ∆t to guarantee the accuracy of any experiments

performed. In the case of distorted unstructured grids, ∆x is often taken to

be the average cell size of the computational mesh. In cases where the degree

of grid distortion is large, the minimum cell size is sometimes preferred. While
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smaller values of these parameters increase accuracy, the computational cost in

terms of time and/or compute resources required also grows, meaning that the

available equipment limits the fidelity of PIC simulations carried out by domain

scientists.

The first important accuracy condition of the PIC method relates ∆x to the

Debye length [38] of the plasma, λD, which quantifies the the electrostatic effect

of a charge carrier in a solution and how far this effect persists. λD is shown in

Equation (3.49), where kB is the Boltzmann constant, Te is the temperature of

the electrons in the plasma, ne is the number density of the electrons, and qe is

the charge of an electron. The resultant condition is shown in (3.50).

λD =

√
ε0kBTe
neq2

e

(3.49)

λD ≥ ∆x (3.50)

When the Debye length is under-resolved the Kinetic Energy (KE) of the sim-

ulation can increase erroneously until Te reaches a value such that λD becomes

resolved. This process is known as numerical heating, and is explored experi-

mentally in Section 5.3.3.

Additionally, the mesh spacing and time-step size in PIC are related and

constrained by the Courant-Friedrichs-Lewy (CFL) condition, which is a nec-

essary condition for the convergence of solvers that handle certain systems of

partial differential equations. The formal statement of the CFL condition in one

dimension is given below for velocity u, and Cmax is the maximum allowable

CFL for a given solver. In the case of an explicit solver Cmax is typically equal

to one.

CFL =
u∆t

∆x
≤ Cmax (3.51)

Note that the CFL condition is treated differently for electrostatic and electro-

magnetic simulations. Specifically, for electrostatics u is taken to be the velocity

of the fastest particles in the simulation, whereas for electromagnetics the speed
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Figure 3.4: Graph showing how electric field error behaves for various PPC
values as a simple electromagnetic problem is refined.

of light, c, is used due to the more complex nature of the simulation. As a con-

sequence, this places much stricter upper bounds on the values of ∆x and ∆t,

meaning that electromagnetics requires higher spatial and temporal resolutions.

Finally, we must consider how the amount of computational particles used

affects the accuracy of the simulations conducted. We are generally concerned

with the value of Particles per Cell (PPC) at the start of a simulation, which

is usually set as an initial condition parameter. Total particle count is a major

factor in limiting the amount of numerical heating that occurs as a simulation

progresses, where low values of PPC can lead to extremely rapid growth in

system KE. It is also necessary to use enough particles that the particle distri-

bution does not dominate solution error to the extent that spatial and temporal

convergence and accuracy is greatly reduced. Here we consider this phenomenon

for a simple electromagnetic test case, described in detail in Section 5.3.2. From

Figure 3.4 it is clear to see that, as the value of PPC is increased, we approach
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Figure 3.5: An example of how a simple PIC simulation can be parallelised
across four processors.

the theoretical rate of second-order convergence in space and time.

3.6 Parallelisation of PIC Simulations

Due to the hybrid nature of the PIC algorithm coupling both grid-based and

particle-based workloads, PIC codes exhibit a unique set of performance chal-

lenges to application developers on both current and future compute architec-

tures. Fortunately, PIC methods contain a large amount of inherent parallelism

that can be exploited in order to achieve high performance [3, 92, 151]. In gen-

eral this is achieved by spatially decomposing the problem with respect to both

the collection of particles being simulated, and the spatial grid containing the

field data. Typically, this means that the grid is broken up into a set of chunks,

where each chunk is assigned to a given processor. That processor then loads

the particles that occupy that area of the grid, and is subsequently responsible

for updating those particles during the simulation. When particles leave the

domain of their host processor, they are packed into send buffers and migrated

to the destination processor(s). Figure 3.5 depicts an example of how such a

spatial decomposition can be achieved for an example problem being executed

on four processors.

Since both the particle mover and field solver are completely independent
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entities, the parallelisation of each of them can and should be considered sep-

arately. As discussed in Section 3.3.1, unstructured PIC simulations formulate

the field solver as an FEM problem that can be solved by a variety of iterative

or direct linear solvers. The parallelisation, performance, and scalability of lin-

ear solvers is well studied, with multiple library options available to end users.

Examples of these include PETSc [1, 12, 13] from Argonne National Labora-

tory (ANL), Trilinos [69, 141] from SNL, and Hypre from LLNL [54, 55]. The

performance behaviour of these libraries at scale has been detailed extensively

in previous studies [11, 90, 95, 98, 125, 134].

The parallelisation of particle-based routines is also well documented. Such

algorithms are well-suited to parallelisation as an individual particle can be

handled as a completely independent entity, with minimal inter-particle data

dependencies. For example, Molecular Dynamics (MD) codes that have no con-

cept of a mesh have long been used by domain scientists to study the behaviour

of dynamic systems of particles. As a result, the performance of such codes is

well understood with a variety of parallelisation strategies available [28, 58, 122].

Many of the lessons learnt from MD codes can also be applied to PIC appli-

cations in the sense that particles can be processed independently, and decom-

posed over multiple processors much like a mesh-based problem. The primary

difference between the two code types is the lack of direct particle-particle in-

teractions1 and the presence of a computational mesh in a PIC simulation. PIC

instead approximates the interactions between particles via the forces interpo-

lated from the fields that are calculated on the grid. This reduces a potentially

worst-case complexity of O(n2) particle calculations to a single O(n) loop over

the particles in the simulation, executed once per time-step.

The most significant obstacle to parallelising the particle-based routines of a

PIC code is the weighting of the particles to the grid, commonly referred to as

charge deposition in electrostatics, and current deposition in electromagnetics.

This issue occurs in the form of a write-conflict, as the particle contributions

1One should note that there are PIC codes that implement collisions between particles,
but that these codes are beyond the scope of this thesis.
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require a global charge or current array to be written to by all particles. As a

given grid cell can contain many particles, some form of protection is required to

maintain correctness, and it is this synchronisation that limits performance and

scalability. This is especially true for electromagnetic problems, as a particle

must deposit current to all cells crossed in a step, leading to more particle-to-

grid writes than its electrostatic counterpart. This performance issue, alongside

others, is explored in greater depth in Chapter 4.

In addition, the performance behaviour of PIC has been previously stud-

ied by other authors across a variety of hardware types. The performance of

the GTC-P code at scale has been demonstrated on a number of notable HPC

systems, such as Sequoia, Piz Daint, Titan, and Tianhe-2 [2, 140, 153], per-

forming well in terms of both strong and weak scaling on a variety of compute

architectures, including both Central Processing Units (CPUs) and accelerators.

The representative code Mini-EPOCH has been used to understand the perfor-

mance behaviour of, and explore novel optimisations to, the main EPOCH code

by Bird et al. [20]. The ICEPIC code [26] has also been optimised to scale up

to thousands of CPUs [19].

The use of Graphics Processing Units (GPUs) to accelerate the PIC algo-

rithm has also been documented by multiple authors, showing good speedup rel-

ative to CPU implementations [39, 45]. One example, PIConGPU [36], consists

of a CUDA [116] implementation of the structured PIC algorithm, demonstrat-

ing scalability across multiple GPU compute nodes. Additionally, the perfor-

mance of the EPOCH code has also been evaluated for accelerator architectures,

showing promising results across GPU-based systems [21]. The XGC code has

demonstrated weak scaling on nearly the full pre-Exascale Summit machine

(over 24, 000 GPUs) at Oak Ridge National Laboratory [133] by using the Ca-

bana particle algorithm library [136].

As a collective, the modern computational hardware and parallel program-

ming strategies discussed above mean that the supercomputers of today can be

used to conduct PIC simulations at huge scales. In the case of EMPIRE-PIC,
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a typical problem can consist of many hundreds of millions of mesh elements

with over one hundred particles per element, where approximately 20% of the

problem domain initially contains particles in an unbalanced problem. By com-

parison a balanced problem such as that considered in Chapter 4 loads particles

in the vast majority of the elements. Production simulations are generally exe-

cuted for over one hundred thousand time-steps, due to the large periods of time

that must be simulated. As a result, runtimes of multiple days for production

problems are not uncommon.

3.7 Summary

In this chapter, we have introduced the reader to the idea of plasma simulation

via the PIC method, and its usefulness to the scientific community. Specifically,

we have covered traditional structured FDTD-PIC simulations, and highlighted

the issues that arise with representing complex geometries using this method,

and how these can be addressed via an FEM-PIC approach using unstructured

meshes. We also detail the relevant theoretical concepts that underpin the

algorithm implemented in FEM-PIC applications, and how this pertains to the

EMPIRE-PIC code. We conclude the chapter with a broad overview of higher-

order algorithms, and a general high-level discussion of how PIC codes can be

parallelised in a performant manner. PIC code performance and changes to the

underlying algorithm are key themes throughout this thesis, and this chapter

aims to provide insight into the relevant background of these topics.
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CHAPTER 4
Performance Portable Finite Element Method

Particle-in-Cell Simulations

While codes that simulate the behaviour of plasmas under the influence of elec-

tric and magnetic fields are a key part of the computational physics research

that is often conducted on many supercomputers, such codes are extraordinar-

ily expensive to produce and/or maintain. This is because these applications

are extremely complex and producing them requires large amounts of specialist

knowledge, both in terms of the mathematical methods that must be faithfully

implemented, and the software engineering and tuning required to achieve ac-

ceptable performance. As a result, developing a new production application

from scratch is extremely expensive; this is the case in terms of both financial

cost and the time taken (timescales of many years are not uncommon). These

costs are then increased by the need to continually rewrite or tune existing ap-

plications as new compute architectures continue to be made available to High

Performance Computing (HPC) users. Consequently, there is a clear need for

the codes that are produced to remain fit for purpose for as long as possible in

order to maximise the efficiency of the resources used to develop them.

As touched on in Section 2.3.1, many traditional supercomputers are ho-

mogenous in nature and, as such, a large number of the production applications

that exist today were written with this in mind. Frequently, this means that

these codes are solely parallelised by using MPI with a large focus on efficient

communication patterns between different nodes. While MPI processes can be

placed on the same node in order to saturate multiple cores, there are other

frameworks such as OpenMP that are specialised in leveraging shared memory

parallelism. Additionally, an MPI-only code will be unable to take advantage
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of the accelerators that are increasingly more common as compute architectures

continue to diversify.

As the number of architectures continues to grow, so too does the number

of programming models and libraries that are produced so that programmers

can use this new equipment. Moreover, it is clearly not feasible to both produce

and maintain separate versions of a code for each type of hardware an end user

may want to use. Ideally, a new production code would be developed in such a

way that only a single codebase must be written, and subsequently compiled for

whichever hardware is desired. To this end, the Kokkos [52] framework devel-

oped by Sandia National Laboratories (SNL) has been used for the development

of EMPIRE-PIC.

In this chapter, we outline the implementation of the particle-based kernels

of EMPIRE-PIC using Kokkos to achieve portability across modern architec-

tures, employing OpenMP for CPUs and NVIDIA’s CUDA for GPUs; and also

highlight the performance challenges of these kernels. We additionally explore

the usage of the performance tuning opportunities made available by the more

specialised features of Kokkos. This allows us to evaluate the performance of

EMPIRE-PIC across multiple architecture types in the form of a performance

study.

4.1 Kokkos Implementation

Kokkos makes various parallel patterns available to application developers, with

the aim of being ‘no more conceptually difficult than OpenMP’ to write [51].

The options on offer are parallel for loops, reductions, and pre- and post-fix array

sums (parallel scans), accessed via Kokkos’ parallel for, parallel reduce,

and parallel scan functions, respectively. Parallel loops can then be writ-

ten by passing a C++ function object (sometimes called a functor), or lambda

function that overrides the () operator to the relevant Kokkos function. The

operator takes a const index argument, such that a call to the function rep-
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1 struct HelloWorld {

2 KOKKOS_INLINE_FUNCTION

3 void operator () (const int idx) const {

4 printf("Hello iteration %d\n", idx);

5 }

6 };

7
8 // Launch a basic for-loop with 100 iterations

9 Kokkos :: RangePolicy <> range_policy (0 ,100);

10 Kokkos :: parallel_for(range_policy , HelloWorld ());

Figure 4.1: Flat Kokkos parallel for-loop.

1 typedef Kokkos :: TeamPolicy <> TeamPolicy;

2 typedef TeamPolicy :: member_type TeamMember;

3
4 struct HelloWorldTeam {

5 KOKKOS_INLINE_FUNCTION

6 void operator () (const TeamMember thr) const {

7 const int team = thr.league_rank ();

8 const int t_id = thr.team_rank ();

9
10 // Nested loop using threads within team

11 Kokkos :: parallel_for(

12 Kokkos :: TeamThreadRange(thr , 10), [=](const int i) {

13 printf("Hello team %d, thread %d, iteration %d\n",

team , t_id , i);

14 }

15 );

16 }

17 };

18
19 // Launch 50 teams , with Kokkos choosing the team size

20 TeamPolicy team_policy (50, Kokkos ::AUTO);

21 Kokkos :: parallel_for(team_policy , HelloWorldTeam ());

Figure 4.2: Hierarchical Kokkos parallel for-loop.

resents the ith iteration of the loop body. These function calls are generally

inlined in order to avoid the overhead of repeated function calls causing many

context switches in succession. We must also pass a RangePolicy to the par-

allel function call that defines the desired iteration space. Figure 4.1 shows a

simple ‘hello world’ example expressed as a Kokkos parallel for loop using

the functor-style implementation. For Central Processing Units (CPUs), this

results in a typical OpenMP parallel for loop. In the case of CUDA builds, the

choice of block and grid size is determined by Kokkos.
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In addition to flat parallelism, Kokkos also allows developers to leverage

multiple levels of nested shared memory hierarchical parallelism. This func-

tionality is exposed through the use of Kokkos ‘thread teams’. Teams provide

a CUDA-like interface where threads are grouped into blocks; threads in the

same team have access to a local shared memory, can synchronise with each

other, and can also carry out team-local nested parallel loops. An example of

Kokkos hierarchical parallelism is shown in Figure 4.2 (note that RangePolicy

has been replaced with a TeamPolicy). In this way, a maximum of three lay-

ers of nesting can be used: team-, thread-, and vector-level parallelism. On

GPUs, this maps to warp, and sub-warp parallelism, while on CPUs it is imple-

mented as distributing nested loop iterations between threads, and decorating

vector-level loops with directives such as #pragma ivdep to encourage SIMD

vectorisation. While the maximum number of teams that can be created is ar-

bitrary, the team size is constrained by hardware. The optimal team size varies

by compute architecture; on CPUs it is typically one, for KNL it is the number

of hyperthreads used per core, and for CUDA it is generally some multiple of

32 (the warp size). Therefore, in order to achieve performance portable code, it

is usually best to allow Kokkos to decide the team size at compile-time, based

on the target architecture.

The majority of the kernels detailed in this chapter were implemented using

a flat approach unless otherwise stated. However, the hierarchical parallelism

features described above can be used to implement more complex algorithms

that can address performance issues by making better use of the underlying

hardware. We explore such tuning in this chapter for the particle mover (Sec-

tion 4.1.3), and the charge deposition scheme for electrostatic simulations (Sec-

tion 4.1.4). In all cases where the teams interface is used we allow Kokkos to

select the most appropriate team size for each build.
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4.1.1 Application Data Layout

Efficient memory accesses are crucial for achieving high performance PIC in

general, particularly for the particle-based kernels, due to the low arithmetic

intensity relative to the amount of bytes moved to and from main memory. As

a result, it is important to consider the way that the data used by an application

is laid out in memory. A memory layout that performs well on a CPU-based

architecture is not guaranteed to perform well on GPUs. Kokkos abstracts

the notion of memory layout away from the application developer by storing

data in so-called Kokkos ‘views’. Each view has an associated memory layout

template parameter, allowing the appropriate layout for a given architecture to

be selected at compile-time. CPU-based systems default to row-major layout

such that a given thread can access consecutive data entries in order to make

good use of cache. For GPUs a column-major layout is chosen as the default,

such that consecutive threads in the same warp access consecutive locations in

memory; this is known as coalesced access, and makes better use of the available

global memory bandwidth.

Views also have an assigned memory space that specifies where their data

is stored. In the case of EMPIRE-PIC, host memory is used for CPU systems,

whereas CUDA Unified Virtual Memory (UVM) is required for NVIDIA GPUs

to allow for compatibility with CUDA builds of Trilinos. This has the additional

benefit of removing the need for explicit data transfers between the host and

device. Both the electric and magnetic field data are stored in N × 3 two-

dimensional Kokkos views, where N is the number of degrees-of-freedom for

the specific field. The particle data is stored in a Structure-of-Arrays (SoA)

layout, using one-dimensional Kokkos ‘dynamic views’ that support constant-

cost runtime resizing, greatly simplifying the addition of new particles to the

data structure. The use of an SoA layout has the benefit of allowing each

dynamic view to be accessed in unit stride, facilitating both vectorisation on

CPUs and coalesced access on GPUs.
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4.1.2 Weighting of Fields to Particles

As the values of the fields are only known at the points of the problem mesh, it

is necessary to interpolate their values to the position of the particles as shown

in Section 3.3.2. To accomplish this, the particle container contains both ~E

and ~B arrays to store the results of gathering the fields to each particle. This

also improves spatial locality during the particle move by avoiding the repeated

reading of irregular memory locations that would result from computing the field

values for each particle on the fly. Moreover, the operations of this kernel are free

from dependencies, making the code much easier to parallelise. Representing

the kernel in Kokkos is a simple matter – a single particle is assigned to each

Kokkos thread.

For electrostatic runs no further tuning is required as there is no need to cal-

culate a magnetic field. For electromagnetics, we employ loop fusion by merging

the loops that perform the magnetic and electric field weighting. This halves

the number of times each particle must be fetched from main memory (this is

crucial, given the memory-bound nature of Particle-in-Cell (PIC) algorithms).

As a consequence this also eliminates redundant evaluation of the basis func-

tions at the particle location – one of the most expensive calculations in the

particle-based parts of the code.

4.1.3 Particle Move

The particle mover updates the velocity and position of each particle based

on the field values gathered during the field weighting step. This is done via

the method detailed in Section 3.3.3. As the update of each particle is com-

pletely independent from the movement of the others, this kernel also lends

itself well to parallelisation due to the lack of dependencies. This is especially

apparent on GPU-based systems where an extremely large number of threads

can be executed in parallel, combined with high-bandwidth memory. However,

the additional control flow to handle particles crossing process and/or element
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boundaries can lead to warp divergence on GPUs and make achieving satisfac-

tory vectorisation challenging on CPU systems.

In the case where a particle would cross an element boundary the move is

broken up into its segments, and the move routine is applied to each segment in

turn. Consequently, particles that move at a higher velocity or are in areas of the

mesh that are more refined will make more crossings in a time-step than other

particles in the simulation. It is this behaviour that leads to warp divergence on

GPUs. The fundamental principles of the Single Instruction Multiple Thread

(SIMT) paradigm mandate that each thread in a warp must carry out the

same instruction at the same time, i.e., threads in a warp operate in a lock-

step manner. This means threads that were assigned particles that make less

crossings must sit idle while other threads in the same warp finish processing

their particles, thus leading to a performance penalty. When parallelised in

a flat manner using Kokkos this issue is unavoidable, but with the usage of

hierarchical parallelism features it can be somewhat remedied.

By assigning each Kokkos team a chunk of particles, this chunk can then be

drained by the assigned team. The key principle behind the idea is that using

nested parallelism allows threads that are idle to fetch another particle to move,

thus keeping the warps full with useful work. Finally, for Graphics Processing

Unit (GPU) builds, additional team-local data is stored in block shared memory

in order to reduce DRAM traffic. The team-based particle move takes place as

follows:

1. Launch one team per particle chunk, and compute the start and end par-

ticle indices for the team.

2. Each thread in the team carries out one iteration of the move.

3. Execute a team-local parallel reduction, counting how many threads re-

quire a new particle.

4. Execute a team-local parallel prefix sum, determining the chunk offsets of

the new particles to be fetched.
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5. Each idle thread fetches its assigned particle, and the next iteration begins.

This process is repeated until the assigned chunk of particles has been drained

and all threads in the team are idle, a state which is detected by a final parallel

reduction.

4.1.4 Weighting of Particles to Grid

For electrostatic problems each particle must deposit charge to each node of its

current cell at the end of the time step as shown in (3.19), while in electromag-

netic simulations the particle must contribute current to each element crossed

during the particle move, as defined in (3.48).

As there can be many particles occupying the same grid cell at any one

time, there is the possibility of data hazards when executing these procedures

in parallel. This occurs in the form of a write-conflict when multiple threads

attempt to deposit charge or current to the same memory location(s) simulta-

neously. Therefore, some method of protection is required in order to prevent

erroneous results. Possible solutions to the data hazard problem include the use

of colouring methods to ensure that threads write only to non-conflicting loca-

tions, element-local reductions, or keeping thread-local copies of the data, only

requiring an atomic operation or reduction for the final deposit. In this chapter,

we consider three different approaches: the use of atomic writes, the use of data

replication with a follow-up reduction, and element-local reductions. Note that

element-local reductions are considered for electrostatic problems only as the

approach relies on the guarantee that the particles processed do not leave their

cells. This assumption does not apply in electromagnetics as particles make

deposits as they move across cells.

The implementation of these different methods is a relatively simple matter.

Beginning with atomic writes, all Kokkos views have the ability to accept a

Kokkos::MemoryTraits template parameter, that controls various configurable

properties of the view. In our case it is sufficient to specify the memory trait

Kokkos::Atomic to ensure that all updates to the underlying data do not con-
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flict. This ensures that the correct atomic instructions for the target hardware

are emitted during compilation.

Data replication is also handled by Kokkos through the ScatterView con-

struct, which performs the data replication for the user, and provides an access

function which allows a thread to modify its local data. The user can then

invoke a follow-up reduction to aggregate the contributions of each thread into

a destination view – the charge or current arrays, in our case. This implemen-

tation is only tested for CPUs as such a strategy for GPUs would result in

vast amounts of copies of the original view. For example, a V100 would require

80 × 2048 copies of the entire array (the number of streaming multiprocessors

multiplied by the maximum amount of threads for each), which is clearly not

feasible the as device has much less memory capacity than the host.

Implementing an element-local reduction strategy for electrostatics is the

most complex of the three approaches considered here; the use of Kokkos hier-

archical parallelism is required. As the particles are sorted by element after the

move step, we can launch a Kokkos team for each element of the mesh, with

team-local shared memory being used to store the intermediate results. This

process can be summarised as follows:

1. Launch one team per element.

2. Use the threads of each team to perform a nested parallel reduce over

the particles in the assigned element.

3. Contribute the result for each team to the global charge array using atomic

writes.

While this approach may seem poorly suited to problems where the particle

distribution is non-uniform (as we are parallelising over elements at the top

level), in practice the impact of this is low as long as the number of elements

that contain particles is greater than or equal to the maximum number of teams

that can execute in parallel. Again, using a V100 GPU as an example, the mesh
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would need to be made up of at least 80 elements that contain particles; this

will be the case for almost all real problems.

4.2 Results

The specifications of all the hardware used to conduct the experiments presented

here is detailed in Section 2.5, where single-node machines and supercomputers

are listed separately. Every effort has been made to consider a diverse set of

hardware, in terms of both age and type. For Intel CPUs, the usage of both

Broadwell and Cascade Lake generations allows the performance of EMPIRE-

PIC pre- and post-AVX-512 SIMD instructions to be considered. This is also

covered by the Intel Xeon Phi Knights Landing (KNL), which also enables us to

observe the behaviour of the code on a many-core CPU-like architecture, which

typically rely heavily on vectorisation to achieve performance. The final CPU

considered is the Cavium ThunderX2, enabling comparison to non-Intel hard-

ware. Regarding GPUs, we consider three generations of NVIDIA hardware:

Kepler, Pascal, and Volta.

For all runs carried out on Intel CPUs, version 18.0.5 of the Intel compiler

is used, with the highest level of code optimisations enabled (-O3). On the

Broadwell system AVX2 vector instructions are enabled (-xCORE-AVX2), while

for Cascade Lake and KNL, AVX512 is enabled (using -xCORE-AVX512, and

-xMIC-AVX512, respectively). For the runs on the ThunderX2, GNU version

8.3 C and C++ compilers are used, again with level three optimisations, and

ARM SIMD extensions enabled (-march=armv8.1-a+simd). All CUDA builds

of EMPIRE-PIC make use of the GNU compilers version 7.2, combined with

nvcc version 9.2.88. As with other compilers, level three optimisations are

enabled. Finally, we pass the relevant CUDA architecture flags to nvcc (i.e.

-arch=sm [35,60,70] for Kepler, Pascal, and Volta respectively).

Regarding the configuration of the runs performed, a hybrid MPI+OpenMP

approach is taken for all CPU systems, as well as the many-core KNL. One
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Size Num. Elements Num. Particles Particles/Element

S 337.0 k 16.0 M 47.5
M 2.7 M 128.0 M 47.8
L 20.7 M 1.0 B 49.5
XL 166.0 M 8.2 B 49.4
XXL 1.3 B 65.6 B 49.2

Table 4.1: Problem sizes used to test the performance of EMPIRE-PIC.

MPI process is used per-socket in order to account for Non-Uniform Memory

Access (NUMA), and all cores on the socket are then saturated using OpenMP

threads. For the KNL runs, the hardware is launched in quadrant mode. We

therefore use one process per quadrant, with 16 OpenMP threads used per

process. For GPU runs a single process per accelerator card is used.

In this section, we simulate a three-dimensional problem on a tetrahedral

mesh, with both electrostatic and electromagnetic runs considered. The problem

domain is uniformly filled with equal amounts of both electrons and hydrogen

ions to a number density of 1× 1016 m−3, with particles being loaded randomly

within their assigned elements. The initial temperature is set to approximately

10 eV. The plasma is evolved for a time of 6 × 10−10 s over 100 simulation

time-steps, and the Courant-Friedrichs-Lewy (CFL) condition ranges from 3–

30. Full details of all problem sizes are given in Table 4.1. For single node runs

we solely consider problem size S. The larger problem sizes are chosen such that

each subsequent problem is a factor of eight larger than the previous one – this

facilitates both strong and weak scaling studies.

4.2.1 Effects of Optimisations

Write-Conflict Resolution

In order to assess the overhead of the various resolution methods described

above, it is necessary to establish a baseline execution time for both the charge

and current depositions on all of the platforms considered. To this end, both

electrostatic and electromagnetic EMPIRE-PIC simulations were conducted us-

ing unprotected writes to the charge and current arrays. While this means
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Electrostatic Electromagnetic

Architecture No Atomics Atomics No Atomics Atomics

Broadwell 3.459 5.207 18.326 28.711
KNL 6.611 10.808 36.826 56.416
Cascade Lake 1.934 2.631 9.937 15.467
ThunderX2 4.417 6.771 12.800 24.580
K40 2.264 29.451 9.682 49.211
P100 1.190 1.215 6.925 7.445
V100 0.437 0.537 3.650 3.913

Table 4.2: Time spent in charge weighting, and moving particles using no atom-
ics versus atomics (in seconds) for electrostatic and electromagnetic problems,
respectively.

that the code will reach an incorrect answer due to the ensuing data hazards

(therefore making the data slightly unrealistic), it does provide a best-case per-

formance target to aim for. Table 4.2 shows the results of these experiments for

both problem types, and provides a comparison to the performance achieved by

the simplest resolution method considered in this chapter, atomic writes. An

immediately obvious trend in the data is that the overhead of atomic writes is

often higher for electrostatics than electromagnetics. The reasons for this are

twofold: first, in electromagnetics the current deposit is made as part of the

particle move, meaning that the kernel itself contains more work. This means

that atomic contention dominates the kernel runtime more in the electrostatic

case. Secondly, in electrostatics, all charge contributions happen concurrently,

meaning that contention between threads is more likely (i.e. a thread is much

more likely to need to back off and attempt its contribution again).

When comparing across hardware it is also apparent that the NVIDIA P100

and V100 exhibit much less overhead for the use of atomic writes than the

CPU platforms and the Tesla K40 due to the advanced hardware-acceleration

of atomics supported by the Pascal and Volta architectures. With performance

penalties between 2%–7%, the need to focus on deposition schemes that actively

avoid the use of atomics is less relevant on modern NVIDIA accelerators as the

extra work induced by such schemes often has a greater overhead. The same

cannot be said for the CPU systems and K40 where we see overheads ranging

between 36%–63% percent (CPUs), and 400%–1200% (K40). It is clear that
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(a) Electrostatic charge weighting kernel.
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(b) Electromagnetic particle move kernel.

Figure 4.3: Slowdown incurred from various write-conflict resolution strategies.

significant improvements can be made here.

Figure 4.3(a) shows the slowdown (versus unprotected writes) incurred by

each of the write-conflict resolution methods considered in this chapter for the

electrostatic problem. It is clear to see that, as discussed previously, that atomic

writes are the worst option in all cases for the CPU systems. This is also dis-

proportionately the case with the K40, where the lack of specialised atomics

combined with a large degree of parallelism renders the use of atomics imprac-

tical when compared to the other systems. We expect the use of element-local
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reductions via Kokkos teams to result in notable improvements in performance

due to the large decrease in the number of atomic writes required. Specifically,

in our 3D tetrahedral case this method results in 4×Nelem writes to the global

charge array, contrasted to 4 × NP writes for a näıve approach (recall that

Nelem � NP in almost all cases). These improvements are seen across almost

all systems, with the K40 showing a huge reduction from 13× to approximately

2× slowdown. This is not surprising given that the K40 by far had the most to

gain from the decrease in atomics used. The outliers in the data are the P100

and V100, whose worsened performance can be explained by the overhead of

the additional reductions being greater than that of the hardware-accelerated

atomics. Moving on to analyse the data replication and follow-up reduction

approach, we can see that this method is the best choice for all of the CPU

systems, in part due to the total lack of atomic writes. Of particular interest

is that the data replication implementation outperforms the version of the code

where no conflict resolution is implemented for the Cascade Lake and Thun-

derX2 systems. This is due to improved cache behaviour as a result of reduced

false sharing penalties, as each thread now only operates on thread-local data

instead of a shared global Kokkos view, i.e., less cache lines are evicted.

Figure 4.3(b) compares the use of atomic writes to the data replication ap-

proach for the electromagnetic problem. While the only option for the GPUs is

atomics, they are included in the analysis in order to assess the relative over-

head in the particle move for all systems considered. As before, data replication

followed by a reduction results in greatly improved performance versus atomic

updates to the global current array. In this case, all of the CPUs show the

benefit of the improved cache behaviour discussed above, with the exception

of the ThunderX2. As current is accrued to each cell a particle crosses during

its move, an electromagnetic simulation typically results in a greater number of

particle to grid writes, thus increasing the benefit to be had from use of cache.

While the GPU systems continue to use atomics, the overhead is almost in-

significant, resulting in comparable results to the CPUs. This is not the case for
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the K40, which continues to be at a performance disadvantage when considering

this kernel.

Particle Move Scheduling

The graph displayed in Figure 4.4 shows the relative performance of the Kokkos

team-based particle move kernel on all three GPUs used in this thesis, compared

to the version of the kernel parallelised in the traditional flat manner, for both

electrostatic and electromagnetic simulations. Specifically, we consider how the

achieved speedup varies with chunk size, where a chunk size x and team size y

means that a given team is assigned xy particles in total. It is clear from the data

that the use of the hierarchical approach leads to performance gains across all

three of the GPUs used for the analysis, with electromagnetics benefiting more

than electrostatics. This benefit levels off as the CUDA warps become saturated

with useful work and begins to slowly degrade as warps become oversubscribed.

Further tests showed that a chunk size significantly larger than shown here

means that fewer total teams are launched. For example, for the V100, a chunk

size of one thousand resulted in speedup degrading to values less than one.

This is the result of reduced achieved occupancy on GPUs significantly harming

performance due to idle streaming multiprocessors.

The most pronounced improvements occur on the K40 for both of the sim-

ulation types. This is unsurprising for two reasons: (i) as the base particle

move time is much higher, the K40 has the most to gain, and (ii) older GPU

hardware is worse at compensating for warp divergence. This is demonstrated

by the performance improvement steadily decreasing as we move to newer ar-

chitectures such as Volta, where we observe only an approximately ten percent

improvement in runtime. This phenomenon can be explained by hardware im-

provements; NVIDIA GPUs based on the Volta architecture allow individual

threads to have their own call stack and program counter, therefore allowing

independent thread scheduling to achieve greater parallel efficiency [115].

We now consider the overall benefit of the team-based approach on GPUs in
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Figure 4.4: Impact of chunk size on particle move speedup on all GPUs used.
Solid lines and dashed lines denote electrostatic and electromagnetic simula-
tions, respectively.

comparison to CPU systems for the optimal GPU chunk size of ten. Note that

while we do not expect to see performance gains on non-GPU hardware (we

instead expect a penalty), these systems are included in the analysis in order

quantify to what level CPU performance is harmed by such an accelerator-

oriented approach. This allows us to gain an understanding of the performance

portability of the team-based move kernel across multiple architecture types.

This data is shown in Figure 4.5.

As expected, for the CPU systems we observe slowdowns for both problem

classes when using the hierarchical version of the particle move kernel. Recall

that as non-GPU systems do not suffer from thread divergence, the addition of

the extra parallel reductions and scans simply adds more work for no benefit.

This effect is most noticeable for the electrostatic simulations, where this ad-

ditional workload will make up a greater proportion of the time spent in the

particle mover. It is clear that two versions of the move kernel would need to

be maintained in order to reach peak performance on both CPUs and GPUs.
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Figure 4.5: Impact of Kokkos team-based approach on particle move kernel
execution time.

4.2.2 Overall Performance

This section now details the overall performance of the EMPIRE-PIC applica-

tion across a variety of platforms, while also taking into account the previously

detailed optimisations. For CPU runs we use a data replication charge/cur-

rent deposition strategy, and the flat parallelised particle move, while for GPUs

we use atomic writes, and the team-based particle mover. For electrostatic

tests the K40 is set to use element-local reductions to deposit charge. While

the work in this chapter has focused on the implementation and tuning of the

particle-based kernels, we will now also include the time spent solving Maxwell’s

equations for the updated electric and magnetic fields. This allows us to con-

duct our analysis in the context of overall application performance by observing

the Time-to-Solution (TTS) for each run.

Single Node Comparison

We begin our analysis with single node runs of the electrostatic problem across

all platforms. TTS can be seen in Figure 4.6(a). Alongside the total execution

time, Figure 4.6(b) shows the proportion of the execution time spent in each

of the key EMPIRE-PIC kernels. The cost of migrating particles between pro-

72



4. Performance Portable Finite Element Method Particle-in-Cell Simulations

cesses is using MPI included in the move kernel time. Finally, the ‘Other’ time

measurement includes time spent performing Input/Output (I/O), and other

tasks such as filling views at the start of a time-step.

Our results show that the combined total time spent processing the particles

is greater than for the linear solve of Maxwell’s equations for all systems, with

the exception of the V100. We also observe comparable overall results when

contrasting the performance of the ARM ThunderX2 to the Broadwell, with

the ThunderX2 performing better on both the linear solve and most of the

particle kernels, despite having the same peak FLOP rate. This difference can

be explained by the ARM system having double the number of memory channels

of the Broadwell system – a total of eight channels versus four providing an

advantage for traditionally memory-bound algorithms. The traditional CPU

systems also vastly outperform the KNL. This is unsurprising as much of the

complex control flow present in unstructured PIC inhibits vectorisation (which

is key to achieve good performance on KNL due to the low clock rate). When

comparing between GPUs and CPUs it is clear that, when fair comparisons

are made (e.g. P100 vs. BDW, V100 vs. CL), comparable TTS is achieved. The

GPUs tend to perform better on the particle-based kernels due to the high degree

of parallelism and memory bandwidth, but are noticeably slower at solving for

the updated fields, with the P100 outperforming the V100. It is clear that the

performance of the electrostatic field solver should be a key focus of future work.

The same analysis was also carried out for the electromagnetic problem, re-

sulting in the data shown in Figures 4.7(a) and 4.7(b). While the actual time

spent processing particles is much longer, we see similar performance propor-

tions to electrostatics for the particle-based kernels across all systems, with the

particle move increasing in cost as a result of now containing the current deposi-

tion. The weighting of fields to particles, and the follow-up particle acceleration

also takes more time than in electrostatics as we must now handle a magnetic

field. In general, the performance of the particle-based kernels appears to be a

73



4. Performance Portable Finite Element Method Particle-in-Cell Simulations

Weight Fields Accelerate Move Sort

Weight Charge Field Solve Other

B
D
W

K
N
L

C
L

T
X
2

K
4
0

P
1
0
0

V
1
0
0

0

20

40

60

80

100

E
x
ec
u
ti
on

T
im

e
(s
)

(a) Total time.

B
D
W

K
N
L

C
L

T
X
2

K
40

P
1
0
0

V
1
00

0

20

40

60

80

100

%
o
f
R
u
n
ti
m
e

(b) Kernel breakdown.

Figure 4.6: Breakdown of best kernel performance across all platforms for the
electrostatic problem.

function of memory bandwidth. However, the kernels with more compute (such

as the move) also benefit from higher peak FLOP/s, leading to the Cascade

Lake outperforming the ThunderX2, despite having a slightly lower bandwidth.

This also matches the trend seen in electrostatic simulations.

As before, the modern GPUs continue to outperform the CPU systems when

processing particles, with the K40 doing disproportionately worse than the other

cards due to its slower atomic writes. As with electrostatics, the field solver

again vastly dominates the runtime when using GPUs (representing more than

50% of time for all cards), while remaining a relatively low proportion of the

total time on most CPUs. This performance issue means that the advantage

gained through rapid particle processing does not result in significantly faster

TTS when comparing to the other systems, and serves to highlight the difficulty

of achieving performance portability for hybrid workloads such as PIC. As such,

the electromagnetic solver on GPUs should also be a focus of future development

efforts – the resolution of this issue would result in a sizeable TTS performance

gap between GPUs and CPUs.
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Figure 4.7: Breakdown of best kernel performance across all platforms for the
electromagnetic problem.

Scaling Study

Figures 4.8 and 4.9 show the results of both strong and weak scaling studies

of EMPIRE-PIC for all of the supercomputers detailed in Section 2.5.2, for the

electromagnetic problem. We present data for the total time spent processing

particles including MPI communications, the time spent solving for the updated

fields, and the total execution time of the main loop of the application. It is also

important for the reader to note that this scaling study does not seek to directly

compare TTS between the four supercomputers, as such a comparison would

be unfair – particularly with Sierra. Instead, the objective is to assess whether

EMPIRE-PIC achieves acceptable performance and scalability across all systems

when accounting for the age of the hardware, with the aim of demonstrating

the portability of the code.

It is clear to see that EMPIRE-PIC achieves near ideal strong scaling for

the particle update on all systems with the exception of Astra when high levels

of strong scaling are applied. This is to be expected as the particle kernels

contain no dependencies, resulting in only minimal communications between

processes when particles must be migrated to a neighbour. The linear solve
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(a) Trinity (Haswell)

1 4 16 64 256 1024 4096
1

4

16

64

256

1024

Nodes

E
x
ec
u
ti
on

T
im

e
(s
)

M L XL XXL

(b) Trinity (KNL)

Figure 4.8: EMPIRE-PIC strong and weak scaling study results for both parti-
tions of the Trinity supercomputer. Squares, circles, and triangles represent the
main time loop, particle update, and field solve respectively.
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Figure 4.9: EMPIRE-PIC strong and weak scaling study results for the Astra
and Sierra supercomputers. Squares, circles, and triangles represent the main
time loop, particle update, and field solve respectively.
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strong scales well on both Haswell and ThunderX2 but there is little strong

scaling benefit observed for either the KNL partition of Trinity or for Sierra. It

is also evident that the field solver is the main performance bottleneck for both

of these supercomputers when strong scaling.

With regards to weak scaling, EMPIRE-PIC scales well across all of the

chosen systems, demonstrating acceptable TTS even as the problem size being

simulated is vastly increased versus the base case. While the number of nodes

used on Sierra is comparatively low relative to the other systems, resulting in

fewer data points, there is no evidence that the CUDA version of the code will

not continue to both strong and weak scale. As a result, we have demonstrated

that EMPIRE-PIC can successfully scale up to greater than one hundred thou-

sand CPUs and two thousand GPUs, facilitating the solution of problems of

great complexity.

4.3 Summary

As we approach the major milestone of Exascale computing, modern compu-

tational architectures will continue to diversify. It is crucial that current and

developing HPC applications can adapt to this ever-increasing hardware het-

erogeneity. As with traditional structured PIC methods, FEM-PIC is highly

parallel, and is thus well-suited to execution on a variety of modern compute

architectures. In this chapter, the implementation of the particle-based kernels

of the EMPIRE-PIC C++ FEM-PIC application using the Kokkos performance

portability framework is documented.

While in most cases the flat parallelism supported by Kokkos’ most basic

parallel patterns was used to express the kernels documented in this chapter,

the use of more advanced hierarchical parallelism features was also explored.

We have seen that the use of nested parallelism can be used to express more

complex algorithms, and that performance gains can be made as a result. Specif-

ically, we have shown that element-local reductions can be used to reduce the
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performance impact of atomic writes on CPU-based systems, as well as older

GPUs with poorer hardware support for atomics. We have also demonstrated

that attempting to address the warp divergence present in a flat particle move

strategy leads to performance gains across all GPUs used in this study, even

where hardware has been designed to reduce the impact of this divergence in

näıve implementations.

Regarding overall performance and portability, we have found that EMPIRE-

PIC performs well across a variety of different compute platforms at the single

node level, including traditional CPUs, many-core CPUs, and NVIDIA GPUs,

while consisting of a single codebase. When fair comparisons are made, the

CPU systems show comparable TTS to systems with accelerators. However,

it is likely that accelerators will outperform the CPU systems in the future if

the performance bottleneck posed by the linear solver for CUDA builds can be

alleviated, particularly for electromagnetic simulations.

When considering multi-node supercomputers, we have observed near-ideal

strong scaling and acceptable weak scaling for the electromagnetic particle-based

kernels. On the Sierra platform, we have seen comparatively low levels of strong

scalability for the linear solver, but good weak scaling is still achieved even up

to problems consisting of more than one-hundred million mesh elements.
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CHAPTER 5
Higher-Order Particle Representation

In Section 3.4, we discussed the background and potential benefits of higher-

order methods for Particle-in-Cell (PIC) algorithms. It was also highlighted

that the use of higher-order elements for PIC necessitates the use of smoother

particle shape functions in order to achieve the desired simulation convergence,

and that the implementation of these shapes in unstructured PIC codes is non-

trivial.

In this chapter we propose modifications to the core algorithm of EMPIRE-

PIC by representing particles as having a smooth quadratic shape, with com-

pact support on a fixed radius, which is numerically integrated against the test

function representing the weak form of the currents or charge densities. This

integration is performed by numerical cubature where the cubature points are

represented by virtual particles surrounding each super-particle. Each virtual

particle has an associated offset and weight derived from Gaussian quadrature

rules and the chosen radius. This approach also has the advantage of requiring

little extension to the core PIC kernels. This chapter documents the algorithmic

implementation of these modifications into EMPIRE-PIC, for both electrostatic

and electromagnetic problems with periodic boundary conditions. The effect

of the algorithm on simulation solutions is explored using four representative

benchmark problems.

While smooth particle shapes have been explored previously by other au-

thors, the use of virtual particles is a key feature of our implementation. This

differs from the approach used by Jacobs and Hesthaven [82], where particles

in a discontinuous Galerkin PIC code are represented as a cloud of constant

size with particles weighted to all elements within the cloud radius. We instead
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examine weighting each virtual particle to/from its associated element in a con-

tinuous Galerkin code. The virtual particle approach also has the advantage of

being able to tune the offsets and weights of the virtual particles to reproduce

a given shape function for the particle cloud with relative ease. Finally, as the

virtual particles are computational, we obtain the additional benefit of adding

increased arithmetic intensity to traditionally memory-bound particle kernels

within the PIC method.

5.1 Higher-Order Particle Shapes

Let us first consider the electrostatic formulation of the standard PIC algorithm

due to its simplicity, as the scheme can be later expanded to electromagnetics.

As discussed previously we must formulate the weak form of Gauss’ Law such

that we can integrate the electric potential with a given test function and gen-

erate a stiffness matrix. Solving Gauss’ Law also requires the charge density ρ

to be computed from the computational particles. These particles are generally

represented as shape functions S in space. In the standard algorithm, the shape

function is generally the Dirac delta function, δ. The charge density can then be

integrated with the test function. One should note that integrating δ with the

linear nodal basis is equivalent to piecewise linear interpolation in Finite Differ-

ence Time Domain (FDTD) PIC. This results in a summation at the particle

locations when S = δ.

∫
Ωj

ρv̂i dV =

NP∑
k=1

∫
Ωj

S (~x− ~xk) qkv̂i dV =

NP∑
k=1

qkv̂i(~xk) (5.1)

This simple integration is valid, independent of the order of the test function.

However, the use of the Dirac delta function results in a particle shape that

is not a smooth representation due to its point-like nature. In the following

section, we show how δ can be replaced with a smooth shape function, and how

this can be implemented through the use of virtual particles.
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Figure 5.1: Example virtual particle layouts of differing orders. Virtual particles
are grey with dashed borders, with the physical location is represented by the
central virtual particle (solid border). Virtual particles are sized proportionally
to their weights.

5.1.1 Smooth Particle Shape Function

In order to solve the problem of a non-smooth particle shape we now propose

representing particles as having some defined fixed size. Specifically, we assume

that particles possess some radius r0, and have a parabolic shape subject to the

following shape function – replacing the usual Dirac delta function. In (5.2) we

also have normalisation constant c = 2/πr 2
0 .

S(~x− ~x0) =


c

[
1−

(
r
r0

)2
]

if r ≤ r0

0 otherwise

(5.2)

The exact integral of the shape function with the test function is given below

in (5.3). However, integration of this shape function with the test function is

generally computationally intractable when spanning more than a single ele-

ment. We therefore handle the integration of this function via the application

of Gaussian numerical quadrature.

∫ r0

0

∫ 2π

0

rc

[
1−

(
r

r0

)2
]
v̂i(r, θ) dθ dr (5.3)
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Point Position xi Weight wi

0 −
√

3
5

5
9

1 0 8
9

2
√

3
5

5
9

Table 5.1: Positions and weights for three-point Gaussian quadrature.

5.2 Implementation

The smooth particle shapes described above are implemented by taking a given

simulation particle, and surrounding it with a set of computational virtual par-

ticles. This allows one to move the quadrature weights from the mesh onto the

virtual particles themselves. In this representation the particle radius is fixed

independently of the size of its containing element, and the central particle is

used to track the physical location of the particle in the simulation space. The

virtual particles represent quadrature points for the particle; each has a fixed

associated position offset ~ov and weight factor wv, where the weight incorporates

Gaussian quadrature weights and the shape function. It should be noted that

the sum over the set of virtual particle weights must be equal to one to ensure

the correct total contribution once all virtual particles are processed. Example

particles represented in this way are shown in Figure 5.1. We now derive virtual

particle weights and offsets using a shape represented by mapping a square to a

circular shape. For 3D problems we instead map a cube to a sphere. The choice

of a circular/spherical shape has certain benefits. Firstly, this shape prevents

the grid biasing that would occur with the use of a square/cube layout. Sec-

ondly, such a shape captures the notion of the Debye sphere [25, 38] and allows

for a better representation of this concept in a simulation.

Given Gaussian quadrature of an arbitrary order, let r0 be the chosen par-

ticle radius, and x and y be the positions of two Gaussian quadrature points.

Additionally, let wx and wy be the weights of these points and J be the deter-

minant of the Jacobian for the mapping at these points, which we include in
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order to correctly map from the reference volume to the mapped volume. For

convenience, Table 5.1 shows the positions and weights for three-point Gaussian

quadrature. We can now calculate x′ and y′ which together make up the offset

for each virtual particle being mapped, and we can also determine the values of

wv. Each permutation (with repetition) of the Gaussian quadrature points used

maps to a single virtual particle; in the case of thee-point Gaussian quadrature

this results in a total of 32 = 9 virtual particles. Equation (5.4) shows the

mapping used for 2D problems, and (5.5) shows the weight calculation. As a

final step, the weights must be normalised to sum to one.

~ov =

x′
y′

 =

x
√

1− y2

2

y
√

1− x2

2

 (5.4)

wv = wxwy
(
1−

(
x′2 + y′2

))
J (5.5)

For 3D problems we additionally define z, z′, and wz and carry out the mapping

as shown below in (5.6) and (5.7). Each permutation (with repetition) of the

Gaussian quadrature points continues to map to a single virtual particle, which

for three-point quadrature results in a total of 33 = 27 virtual particles. As

before, the weights are normalised to sum to one.

~ov =


x′

y′

z′

 =


x
√

1− y2

2 − z2

2 + y2z2

3

y
√

1− z2

2 − x2

2 + x2z2

3

z
√

1− x2

2 −
y2

2 + x2y2

3

 (5.6)

wv = wxwywz
(
1−

(
x′2 + y′2 + z′2

))
J (5.7)

While the shape function of a particle is usually represented by a delta

function when this is put into the weak form it has an action on all the bases

of the element it occupies thus being equivalent to using piecewise linear shape
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Figure 5.2: Graph showing how the absolute error of the modified integration
converges with the number of quadrature points for a single element, and when
spanning two elements.

functions in FDTD-PIC. As described above the delta function is extended to

a quadratic shape with compact support on the specified radius r0 which is

numerically integrated against the test function representing the weak form of

the currents or charge densities. As long as it is guaranteed that the weights

sum to unity then the properties of charge conservation will continue to be

maintained. Errors in the cubature can effectively be thought of as deviations

to the shape function S(r) = c(1− r2/r2
0 + εf(r)) where ε is the cubature error.

Figure 5.2 shows that for a single element ε quickly converges to on the order of

10−15, but much slower convergence is observed once a particle spans multiple

elements. As long as ε is below the statistical convergence rate of
√

(1/N) this

error is expected to be small when compared to other terms.

Given the offsets and weights defined above, the implementation of the PIC

algorithm can now be modified to leverage this new particle shape. One should

note that the positions of the virtual particles do not need to be stored, it is

sufficient to track the physical particle location and apply the assigned offset.

The extension to virtual particles only changes the coupling between the par-

ticles and the mesh, making the extensions to the particle move trivial. The
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modifications made to the PIC algorithm are now described in the subsequent

sections.

5.2.1 Weighting of Fields to Particles

As the electric and magnetic fields are only known on the computational mesh,

they must be interpolated from the mesh to the particles in order to be able

to update the particle forces and velocities. PIC usually accomplishes this by

applying the basis functions to determine the field values at specific particle

locations as described in Section 3.3.2. In our algorithm we use the same ap-

proach to calculate these values at the position of the replicated virtual particles,

and multiplying the field value by the virtual particle’s associated weight. This

can be expressed mathematically as shown in (5.8) and (5.9), where ~xi is the

physical position of particle i, and Nv is the number of virtual particles. Once

this has been done for all virtual particles it is then trivial to accumulate each

individual contribution to the central particle via summation.

~E(~xi) =

Nv∑
v=0

Nedge∑
j=0

Ej êj(~xi + ~ov)wv (5.8)

~B(~xi) =

Nv∑
v=0

Nface∑
j=0

Bj b̂j(~xi + ~ov)wv (5.9)

5.2.2 Particle Acceleration and Movement

Implementing a particle mover using the proposed modifications to the particle

shapes as described is a relatively simple matter. This is due to the offset of each

virtual particle used being fixed relative to the position of the central particle

that is used to track the physical location. As in the standard PIC algorithm we

apply the typical Boris Pusher in order to update the velocities of the central

particles in the simulation (see Section 3.3.3 for details). Additionally, we specify

that the surrounding virtual particles share the same velocity as their associated

central particle, meaning that they do not need to be processed during the

acceleration step.

86



5. Higher-Order Particle Representation

5.2.3 Weighting of Particles to Grid

As described in Section 3.3.4, the particles are coupled to the grid and must

therefore make contributions back to the grid prior to the field solve that will

take place at the beginning of the next time-step. Informally, this can be thought

of as each constituent virtual particle making its own separate charge or current

contribution, scaled by its pre-calculated weight factor. These couplings take

place as defined in (3.19) and (3.48) for charge and current, respectively. The

implementation of the charge weighting for electrostatic problems using the

extension to virtual particles is simple. As the virtual particle weights sum to

one, the total amount of charge deposited will remain unchanged. We define

this modified coupling below, using the same notation as defined previously. Wk

is equal to the number of physical particles represented by simulation particle

k. ∫
Ωj

ρv̂i dV =

NP∑
k=1

Wk

Nv∑
v=1

wv v̂i (~xk + ~ov) qk (5.10)

A similar approach to that employed above can also be applied to the current

weighting procedure with the difference that each virtual particle will make a

contribution during its individual move, instead of all virtual particles making

a deposit at the end of the move step. Additionally, deposits will be made to

all elements crossed by the virtual particle during the move step. Specifically,

the trajectory of each virtual particle is individually split as it passes through

each element. The particle to grid coupling for current deposition using virtual

particles is given below in (5.11). This remains analogous to each virtual particle

making a separate weight-scaled current contribution to the grid. Along with

the base code, we continue to use two-point Gaussian quadrature in the case

of non-simplex elements. As the virtual particle weights sum to one and our

base implementation conserves charge, this current deposition is also charge

conserving.
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∫
Ωj

~J n+1/2 êi dV

=

NP∑
k=1

∆tWk

Nv∑
v=1

wvqk~uk

(
~x
n+1/2
k + ~ov

)
· êi
(
~x
n+1/2
k + ~ov

) (5.11)

5.3 Results

In the following section we present results for four numerical experiments.

These have been selected to be broadly representative of the problems that

can be solved with EMPIRE-PIC. First, a simple 2D electrostatic electron orbit

problem is examined. Second, the 3D simulation of a Transverse Electromag-

netic (TEM) wave propagating through plasma is discussed. Third, we analyse

the effect of our higher-order particle shapes on the amount of numerical heating

observed. Finally, we look at a more complex electrostatic problem – the 1D ex-

pansion of a neutral plasma slab into a vacuum. For the results collected in the

following experiments we used a virtual particle layout as defined in Section 5.2.

We used five-point Gaussian quadrature resulting in 25 virtual particles for the

2D problems, and 125 virtual particles for the 3D problem. For the electrostatic

problems we also examine the effects of particle smoothing when second-order

basis functions are used. This analysis was not conducted for electromagnetics

as higher-order basis functions are not currently available in EMPIRE-PIC for

electromagnetic problems.

5.3.1 Electrostatic 2D Electron Orbit

We first consider the behaviour of our algorithm on a very basic electrostatic

problem, consisting of a stationary H+ ion being orbited by a single electron

for one period. Using this simple test case we examine the effect of varying

particle radius on the accuracy of the tracking of basic particle motion. The

particles are situated on a quadrilateral mesh, the ion positioned at the centre,

and the electron has an orbit radius of rorbit = 5.291 × 10−8 m. The total
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length of the domain in both x and y directions is equal to 3.0 × rorbit, with

initial Nx = Ny = 14. We also specify the problem boundary conditions to

an analytical value defined as the exact value of the potential at the boundary:

φ = q
2πε0

ln
(
r−1
)
.

The initial conditions of the problem can be derived as follows. Given the

electrostatic assumption, we can reduce the Lorentz force to ~F = q ~E. Then,

from centripetal force and Gauss’ Law we can write the following to obtain an

expression for the electric field:

qE (r) = mω2r (5.12)∫
~E · n̂ dA =

∫
V

ρ

ε
(5.13)

We are using an electron that does not deposit charge to the mesh in order to

simplify the boundary conditions, due to having zero charge, but finite charge-

to-mass ratio. Therefore, as the fields are not changed, the above can be simpli-

fied. We can now rewrite and substitute (5.12) and (5.13) in order to derive an

expression for the angular velocity ω, and also velocity v = ωr which can then

be resolved into its x and y components.

E (r) = − 1

2πr

q

ε0
(5.14)

ω2 =
q2

2πmε0
(5.15)

Therefore we can define angular velocity ω =
√
q2/2πmε0. As we know that x =

rorbit cos (ωt) and y = rorbit sin (ωt) it is now trivial to compare the simulated

orbit to every point on the trajectory defined by the analytical solution.

For the base case of this test we place the hydrogen ion at the centre of the

mesh, directly on top of an element vertex. In order to avoid the special case (a

particle will almost never occupy this position in an actual problem), we repeat

the test placing the central particle at 100 randomised positions within the

element quadrant. As a result of all cell quadrants being identical, we can obtain
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Figure 5.3: Graph showing results for the 2D electron orbit experiments on the
structured mesh. Error bars represent one standard deviation in the L1 norm
due to variation in the starting locations.

data that consider a representative range of possible particle positions within

an element. In the remainder of this section we examine the effects of increasing

particle radius on the L1 error of the position of the orbiting electron against

the analytical solution (normalised via the orbit radius), and also consider these

effects at increased levels of problem refinement, where we hold the ratio ∆x/∆t

fixed in order to maintain a constant CFL value. We first examine the effects of

increasing particle radius for the base level of mesh refinement, consisting of 14

elements in both dimensions as defined above. In order to definitively rule out

the influence of time integration on the orbit error due to large time-step size,

we present data collected using a refined ∆t to ensure that the improvement due

to smoothing is visible. In this case, we use 320 time-steps per electron orbit.

Figure 5.3 shows how the L1 error varies as particle radius is increased over

various fractions of the cell size ∆x. The error bars are used to represent the

standard deviation in the error due to the position of the hydrogen ion in the

element quadrant. After the initial radii, it is clear to see that as the particle

radius is increased the computed answer moves much closer to the analytical

solution, with a radius value of 0.9×∆x appearing to be optimal in this case.
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We also observe a significant reduction in the standard deviation due to

altering the position of the central H+ ion within its quadrant, i.e., the level

of statistical noise is lower. However, this improvement in error and statistical

variation is reversed as particle radius continues to increase. From this we can

conclude that some smoothing of the charge distribution of the particle improves

the ability of the PIC algorithm to track basic particle motion, whereas excessive

smoothing has a detrimental effect.

Using second-order basis functions results in a 50% improvement over the

base code in terms of error and standard deviation when no smoothing is applied.

When smoothing is applied the results follow a similar trend to the first-order

basis data, with an optimal radius value of 0.8×∆x. This error value is signifi-

cantly lower than the equivalent data point for the first-order basis. In the best

case the electron position error is approximately 85% lower than the base code,

and the standard deviation in the result is reduced by an order of magnitude.

We now examine the effect of mesh refinement on this problem via a con-

vergence study, with a base level of ∆x = 1.13× 10−8 m, ∆t = 4.615× 10−11 s

and Nx = Ny = 14 grid elements. This results in a CFL condition value of

~v∆t/∆x ≈ 0.0742. Figure 5.4 shows the results of this study for various parti-

cle radii, using the L1 norm of the electron position as the error metric, as in

the previous test. As seen in Figure 5.4(a), a particle radius of approximately

0.9×∆x appears to be optimal for the majority of refinement levels used for the

convergence study when considering the first-order basis. Figure 5.4(b) shows

that when using a second-order basis the optimal radius remains consistent as

the problem is refined. These results show a consistent improvement in the L1

norm across a wide range of ∆x values, consistent with the previous results

for the coarse mesh. The error reduction appears to be approximately a stable

factor of two when comparing results for the vanilla code against runs using

the optimal radius value for the first-order basis, and a factor of seven for the

second-order basis. It is also evident from these results that the use of smoother

particles causes earlier solution convergence then the standard PIC algorithm,
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Figure 5.4: Convergence study results for the 2D orbit problem on the structured
mesh.
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indicating that this may provide acceptable convergence rates while allowing

the use of coarser meshes which are less computationally expensive.

Finally, in order to assess the benefits of particle smoothing for non-regular

grids, we carried out an additional parameter scan over r0/∆x using an un-

structured mesh of 2272 triangular elements. This mesh and its dimensions are

shown in Figure 5.5(a), with the base orbit trajectory shown in red. The mesh

has an average ∆x value of approximately 7 × 10−9 m. As with the previous

experiments, data was collected for each input using 100 randomised starting

locations, this time varying the starting position by at most ±0.5× rorbit m in

each dimension. In this way we can determine the variation in the result due

to the electron travelling through various levels of mesh distortion. We now use

a refined time-step of 640 steps per orbit in order to rule out time integration

error1. Figure 5.5(b) shows the results of this experiment, with error bars again

representing 1 standard deviation in the error due to the variation in orbit po-

sition. As in the radius scan experiment that was conducted for the structured

mesh we again see a smooth reduction in average error as particle radius is in-

creased. In this case we have an optimal value of r0/∆x = 1.3, suggesting that

greater amounts of smoothing may be beneficial on a distorted mesh. However,

due to the high level of mesh distortion the improvements in the standard devi-

ation are less significant. A similar trend is observed for the second-order basis

where improvements are visible, but more pronounced than for the first test.

Using the second-order basis causes the optimal amount of smoothing to become

similar to the results in Figure 5.3. In the best case both the electron position

error and standard deviation are reduced by an order of magnitude. From these

results it is clear to see that the altered algorithm is capable of coping with such

varying distortion, particularly when using a second-order basis.

1The increase in step count serves to maintain a similar CFL to the structured mesh tests.
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(a) Mesh used for unstructured orbit tests. The orbit base case is shown in red.
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(b) Parameter scan of particle radius for the unstructured orbit tests

Figure 5.5: A parameter scan where (a) represents the geometry being studied
and (b) shows the L1 norm of the error in the electron position.
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5.3.2 3D Transverse Electromagnetic Wave

To test the performance of our algorithm for 3D and electromagnetic problems

we now consider an infinite, planar TEM wave propagating through an infinite

neutral plasma made up of H+ ions and electrons. This problem was chosen

as an electromagnetic case study and has an analytical solution, given certain

assumptions. The solution is given in Chen [38], which derives the differences

between a TEM wave in a vacuum and a TEM wave in a plasma where the wave

vector is held constant.

In this problem we choose the key controlling parameters as follows: we

have the plasma number density as n0 = 1015 m−3, initial temperature of 0 K,

with a maximum electric field magnitude of Emag = 100 V/m, and the vacuum

frequency of the wave fv ≈ 1.420 GHz, and ωv = 2πfv. Additionally, we

assume that the electromagnetic wave is of such a high frequency that the ions

within the plasma remain stationary throughout the simulation, and also that

the ~J× ~B forces on the particles are negligible. This has the effect that electrons

are assumed to only oscillate linearly in the plane of the electric field. We have

the plasma frequency and actual wave frequency as follows:

ωp =

√
n0q2

meε0
≈ 1.784× 109 rad/s (5.16)

f =
ω

2π
=

1

2π

√
ω2
p + ω2

v ≈ 1.448 GHz (5.17)

As the wave is an infinite, steady wave, we can derive the constant phase velocity:

vp =

√
f

fv
c ≈ 1.02c > c (5.18)

This gives the maximum initial electron velocity as defined below, which is then

initialised in phase with the electric field. The values of vx and vz are initialised

to zero.

vy =
qEmag
meω

≈ 1932.5 m/s (5.19)
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The velocity ~u of a given particle can now be calculated as follows, where p is

the particle position projection onto the wavevector (0, 0, 1):

~u = ~v sin
(
p+

π

2

)
m/s (5.20)

Finally, we define the maximum magnitude of the magnetic field such that it is

congruous with the magnitude of the electric field.

Bmag =
λ

2π

Emag
c2

(
n0q

2

meε0ω
+ ω

)
≈ 3.53× 10−7 T (5.21)

Using the derivation above it is simple to formulate a computational description

of the problem. We set up the problem on a three-dimensional grid of hexahedral

finite elements with periodic simulation boundaries in all directions, effectively

creating infinite space for the TEM wave, which we simulate for one wave period.

The wave is defined to travel in the z dimension of the computational mesh, with

the majority of grid elements also in the z dimension. The x and y dimensions

are each defined to have a constant 4 elements, while the z dimension has 24

elements. As we assumed the ions to be stationary in our derivation, we force

them to remain immobile during the simulation. The computational particles

are placed randomly within each element and weighted in order to achieve our

previously specified plasma number density. Each cell is loaded with an equal

amount of particles of each species. We additionally ensure that the initial

electron velocity is confined to the transverse direction in the plane of the electric

field.

We now present results for this problem for a variety of Particles per Cell

(PPC) counts, showing the average of 100 runs using random initial particle

loads, using error bars to represent the standard deviation in the data. Fig-

ures 5.6 and 5.7 show the effect of increased particle radius on the average L1

error of the simulated electric and magnetic fields at the end of the simulation,

presented as a breakdown of the field components. As the problem is set up with

plane wave polarisation with only non-zero Ey and Bx, we refer to these com-
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Figure 5.6: Graphs showing variation in L1 norm of electric field components
as particle radius is increased.
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Figure 5.7: Graphs showing variation in L1 norm of magnetic field components
as particle radius is increased.
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ponents as the signal components, and the remaining components as non-signal

components. As each of the non-signal components for a given field behave in

the same manner, we choose to show data for Ex and By for these components,

and Ey and Bx for the signal components. At first it is clear that we observe

a smooth reduction in the L1 error of the electric field which is reflected in the

results shown for both the signal and non-signal components. This improve-

ment continues to occur beyond the previously optimal value of r0 = 0.9×∆x

observed in the orbit problem, showing no signs of stopping even as the value

of r0/∆x approaches 1.5. Additionally, we see a slight overall reduction in the

variation from the initial seeds, but this effect appears to be negligible. It should

be noted that, especially for low particle per cell counts (specifically 1 and 2),

the maximum benefit from particle smoothing leads to a greater reduction in

L1 error than doubling the amount of particles per cell for the zero radius case.

Also of interest is that the error reduction due to smoothing for the non-signal

field components is much greater than that observed in the component that

contains the wave itself, suggesting that the noise in the wave is more sensitive

to the particle coupling used. These differences are apparent in Figures 5.6(a)

and 5.6(b). Of particular note is that the Ey error converges to an approximate

value of 0.014, whereas the other components continue to improve by tending

towards zero at higher particle counts. We therefore conclude that the remain-

ing Ey error is due to error in the scheme, and can be reduced by refining the

problem further in space and/or time. This was verified through additional con-

vergence tests, where we found that the remaining error decreases in line with

second-order convergence as the problem is refined.

Secondly, we examine the effects of particle smoothing on the computed

result for the magnetic field. In accordance with the electric field data, we see a

smooth reduction in L1 error for both the signal and non-signal magnetic field

components as particle radius is increased. There is good reduction in the Bx

error, particularly as increasing the number of computational particles per cell

has a negligible effect when compared to smoothing. However, the same does not
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hold true for the non-signal components where both smoothing and increasing

particle count show good results, with smoothing performing particularly well

at low particle counts. At higher particle counts smoothing reduces the error

in these components to near zero. Regarding the statistical noise shown by the

error bars, the Bx component shows almost no reduction in noise, in keeping

with the trend observed regarding the electric field. Interestingly, the opposite

holds true for the By component, showing a large reduction in statistical noise

as radius is increased.

In general we conclude that, for this problem, the application of particle

smoothing has the primary effect of reducing the noise in the solution for both

the electric and magnetic fields in various ways. Specifically, where the solution

should be zero there is a large reduction in the error in these components,

and where the solution should be non-zero the errors converge to a seemingly

constant value representing the space and time errors.

As a final note, we also examined the effect of smoothing on the frequency

distribution of the error in the final result by applying a Fast Fourier Transform

(FFT) to the Ey component of the electric field. However, we do not show

these results in this thesis as there appears to be little to no observable effect,

beneficial or otherwise, on the resultant frequency distribution for this problem.

5.3.3 Numerical Heating

It is well documented that PIC codes are particularly susceptible to a phe-

nomenon known as numerical heating, which leads to an erroneous growth in

the Kinetic Energy (KE) of the system over the course of a simulation. This

has previously been studied in detail by various authors [72, 75, 93], and is par-

ticularly prevalent in momentum conserving schemes such as that employed in

EMPIRE-PIC [24]. This heating is typically controlled by three factors: (i) cell

size, (ii) time-step size, and (iii) the number of computational particles used in

the simulation. It has also been shown that the use of higher-order weighting

schemes can significantly suppress such heating, even in cases where the De-
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Figure 5.8: Ratio of final kinetic energy to starting kinetic energy for various
particle radii.

bye length is not completely resolved by the spatial grid [126, 135]. We now

present our findings from numerical heating experiments within EMPIRE-PIC,

with and without using the implemented higher-order particle shapes presented

in this chapter. To this end, we examine the total KE of a neutral plasma con-

sisting of electrons and hydrogen ions over 1000 plasma periods, at an initial

temperature of 1.0 eV. Therefore we derive the key parameters of this problem

as follows. We chose a number density of n0 = 1015 m−3 resulting in a plasma

frequency ωp ≈ 1.784×109 rad/s, assuming the thermal motion of the electrons

can be ignored. Computationally, we use a 16× 16 mesh of triangular elements

with periodic boundaries in x and y, 10 time-steps per plasma period, with var-

ious amounts of particles per grid element and a range of particle radii. We also

keep the amount of grid elements fixed, instead altering the size of the problem

domain in order to determine the ratio between the Debye length and the cell

size, ∆x.

Figure 5.8 shows the variation of the growth in simulation KE as the ratio

of particle radius relative to ∆x is increased, for problems using 16, 32, and

64 computational particles per cell. Additionally, the ratio of ∆x to the Debye
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Figure 5.9: Kinetic energy change over time for the vanilla code vs the optimal
particle radius, for resolved and under-resolved λD.

length is set at one of three levels: 1, 2, or 4. As expected, when the Debye

length is severely under-resolved we observe large increases in the overall KE at

the end of the simulation against that at the beginning. However, we see that

such growth rapidly decreases as the particles are made smoother, particularly

for the ∆x/λD = 4 case. Interestingly, as we approach the optimal radius of

r0 = ∆x, we observe very little difference in the growth of KE for the problems

with ∆x/λD ≤ 2 at both 16 and 32 particles per cell. This is promising in terms

of performance, as we can maintain similar KE stability while using less grid

cells and super-particles, reducing both computational requirements and load

on the memory system.

The results are further validated in Figure 5.9, which shows the growth

of the system KE at each simulated plasma period for values of ∆x/λD of 1

and 4, for the vanilla code and the optimal radius value of r0 = ∆x, using 16

and 64 particles per grid cell. Where the Debye length is under-resolved we

observe extremely rapid growth in the KE of the system, increasing by 50% in

approximately 300 periods for the 16 particle per cell case. In the case where

∆x/λD = 1, the smoothed particles all but eliminate the numerical heating

effects, with only very mild growth throughout the simulation. The benefits
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are also significant for the under-resolved case, with optimal particle smoothing

resulting in a heating trend similar to that of the base code with a resolved

mesh. Additionally, these results remain consistent for Figure 5.9(b), exhibiting

good reduction in heating effects. Again, the smooth particles almost eliminate

self heating where λD is resolved, and continue to show good performance on an

under-resolved mesh – on par with the r0/∆x = 0 results in the resolved case.

5.3.4 Electrostatic Plasma Slab Expansion

In order to properly assess the behaviour of our algorithm for electrostatic PIC

simulations it is prudent to examine a more complex test case than the simple

orbit discussed in Section 5.3.1. We now consider the 1D expansion of a colli-

sionless slab of plasma into a vacuum, a benchmark problem that has previously

been used for verifying PIC simulations [41]. As EMPIRE-PIC is a 2D/3D PIC

code, it cannot be used to directly simulate an entirely 1D problem. We there-

fore set up a 2D mesh with fixed Ny = 2, using periodic simulation boundaries

for the y direction, and quadrilateral elements. We use a Dirichlet boundary

condition in the x direction, setting the electric potential to zero in order to en-

sure that the problem is well-posed. The problem starts with a charge neutral

slab with a thickness of 2 mm placed at the centre of a domain of length 1 cm,

allowed to expand for a total time of 2.5× 10−9 s. The ions are initialised cold,

whereas the electrons are assigned a finite initial temperature of 1 eV. Addi-

tionally, the ions have a mass of 10×me. We choose such an artificially low ion

to electron mass ratio in order to accelerate the expansion of the plasma slab.

Each grid cell of the simulation that contains plasma is initially loaded with

8000 particles of both species, weighted such that we achieve a plasma number

density of n0 = 1 × 1018 m−3. Given these parameters, we can now derive the

plasma frequency and Debye length as follows. ωp ≈ 5.641 × 1010 rad/s, and

λD ≈ 6.89× 10−6 m. This allows us to choose a base Nx such that ∆x/λD ≈ 1,

and ∆t such that ωp∆t < 0.1. We now have Nx = 1600, Ny = 2, and N∆t = 250.
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Figure 5.10: Graphs showing the noise in the simulated ion density for the
vanilla code and smoothed particles. (a) and (b) use 8000 particles per cell, (c)
and (d) use 800 particles per cell. Smooth particles use r0/∆x = 1.

We now show results for the simulated cell-centred ion density for this

problem for the base code, and for the smooth particle implementation with

r0/∆x = 1. The number of computational particles used per cell is kept con-

stant for all runs at NPcell = 8000 as specified above. As the density solution

output by the vanilla code is extremely noisy, we filter the data using a one-

dimensional Gaussian filter with σ = 3. We display the error in the ion density

as a shaded area, which shows the standard deviation in the raw data used to

generate a given filtered point.

Figure 5.10 shows the results of these experiments. It is clear to see from
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Figure 5.10(a) that the vanilla code exhibits a very high amount of noise in

the simulated ion density, with most of this noise building up at the interface

between the slab of plasma and the vacuum. It is also evident that the use of

a second-order basis can reduce this noise. Figure 5.10(b) shows the results of

the same experiment for the smoothed particle representation. The magnitude

of the noise in the solution is greatly reduced by particle smoothing, both at

the interface and in the centre of the plasma slab to the point of being only

marginally visible. Close inspection reveals that the second-order basis continues

to outperform the first-order basis.

These experiments were also repeated using 800 particles per cell. These re-

sults are shown in Figures 5.10(c) and 5.10(d). When comparing Figure 5.10(a)

to Figure 5.10(d) we can see that using 800 smoothed particles produces a result

that is significantly less noisy than when 8000 traditional particles are used for

both basis orders. This is significant as we can use an order of magnitude less

particles while also maintaining a greatly improved solution over the base code.

We also examined the error in simulated electric potential for both a resolved

and under-resolved Debye length. This error did not appear to be sensitive to

particle smoothing in this case. This result is interesting as it suggests that the

large reduction in density noise has negligible effect on the simulated potential.

5.3.5 Comparison to Other Schemes

It is also prudent to compare our implementation to that of other higher-order

weighting schemes, as traditional implementations weight the particles to all grid

cells within the range of the particle shape function, whereas we only handle el-

ements in which a virtual particle resides. The method proposed by Jacobs and

Hesthaven [71, 82] tests a similar shape function to the one used in our algorithm

(see (5.2)) for discontinuous Galerkin FEM-PIC, as distinct from the continuous

Galerkin algorithm of EMPIRE-PIC. A key difference between the implementa-

tion in EMPIRE-PIC versus the Jacobs-Hesthaven method is that our approach

is charge conserving from first principles, whereas Jacobs-Hesthaven requires an
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additional correction procedure to be executed every time-step in order to en-

sure Gauss’ law remains enforced. In terms of error reduction there is little

difference between the two schemes – this is unsurprising given the similarity in

the shape functions that are used. Of particular note is that both implemen-

tations demonstrate near elimination of numerical grid heating, even in cases

where the Debye length is poorly resolved by the computational mesh. This

analysis also applies to the cell mean value approach presented by Stindl et al.

whose results generally agree with those of Jacobs and Hesthaven [81, 139].

It is difficult to directly compare the modified EMPIRE-PIC scheme with the

charge conserving particle-to-grid weighting method introduced by Pointon [123],

as the latter only considers structured grid meshes of regular cells. However,

comparisons can be made again with regards to numerical heating, and also

the slab problem (see Section 5.3.4). As with Jacobs-Hesthaven, this method

also demonstrates greatly reduced heating on low resolution meshes. However,

of particular interest is that for a similar electrostatic slab problem, Pointon

also observes that a higher-order weighting scheme is often required to achieve

a simulation that is not dominated by noise. This result largely agrees with the

data shown in Figure 5.10.

Thirdly, we consider the moving least squares weighting approach included

in the HOPIC method presented by Essex and Bridson [53]. The most notable

difference is that HOPIC converges to analytical solutions much more quickly

than EMPIRE-PIC. This is unsurprising given that the scheme in HOPIC uses

a fourth-order accurate Runge-Kutta method – recall that EMPIRE-PIC is

second-order accurate in both space and time. Additionally, the particle shape

function used by Essex and Bridson is also of a greater order, namely a cubic

polynomial. However, the modified EMPIRE-PIC remains competitive in terms

of numerical heating, seeing similar results to HOPIC. Finally, HOPIC provides

no guarantees on the conservation of charge.

Finally, we note that all of the studies included in the above comparison

provide little detail regarding the effect of higher-order particle shapes on the
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performance of their associated PIC applications, meaning that a meaningful

cost-benefit comparison cannot be made to other methods. Therefore, we cover

this specific issue for EMPIRE-PIC in Chapter 6, where we provide a detailed

performance study, and examine the trade-offs between the increased computa-

tion time and solution accuracy brought about by the algorithmic modifications

that have been made.

5.4 Summary

As the need to simulate the behaviour of plasmas under various conditions

using complex geometry continues to grow, PIC algorithms must adapt to these

changing requirements. As a result, both higher-order PIC methods and the use

of unstructured FEM-PIC has become an area of great interest to the plasma

simulation community. While higher-order methods show promise, they also

impose the additional requirement that the particles being simulated possess

some smooth shape instead of the usual Dirac delta function.

In this chapter, we have proposed a higher-order representation of parti-

cles in PIC algorithms, where each particle has a smooth shape function with

compact support on some finite radius, and implemented this representation in

EMPIRE-PIC. A unique feature of our approach is that the implementation

of this smooth representation is achieved by surrounding super-particles with

delta shape computational virtual particles that have fixed offsets and weights

derived from Gaussian quadrature rules. As this moves the quadrature from the

mesh to a set of points surrounding the particle we can use the same PIC pro-

cedures as the base code with minimal modifications. The applications of this

representation are broad as the offsets and weights may be tuned to represent

any desired shape of the particle cloud.

The accuracy of the modified algorithm was examined and compared to the

behaviour of the base code. Our results show approximately 70% improvement

in the tracking of basic particle motion on a distorted mesh, with this increas-
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ing to an order of magnitude improvement when a second-order basis is used.

We additionally show extremely successful suppression of numerical heating for

both resolved and under-resolved grids, and a significant reduction in noise of

the simulated ion density in an electrostatic plasma slab expansion while being

able to use an order of magnitude less super-particles. We have also demon-

strated that, for the selected problems, the optimal particle radius appears to be

problem-dependent. Consequently, the work presented in this chapter represents

a step towards more accurate PIC applications, enabling improved simulations

of plasma phenomena.
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CHAPTER 6
Performance of Higher-Order Particle Representation

So far in this thesis we have considered how an unstructured Particle-in-Cell

(PIC) code can be implemented in a C++ template-based performance porta-

bility library, namely the Kokkos framework. In Chapter 5 we examined an

algorithmic change to particle representation in the FEM-PIC algorithm that

offers both improved solution accuracy and increased floating point intensity

for the particle-based kernels of EMPIRE-PIC. In this chapter we aim to tie

together the work previously presented in this thesis by analysing and quan-

tifying the performance of the modified FEM-PIC algorithm such that it can

be compared and contrasted to the base EMPIRE-PIC implementation. As we

continue to make use of Kokkos as our parallel programming model, we con-

duct this analysis for the hardware types previously considered in Chapter 4,

specifically: Intel Central Processing Units (CPUs), Intel’s Xeon Phi Knights

Landing (KNL), ARM ThunderX2, and NVIDIA Tesla Graphics Processing

Units (GPUs).

6.1 Implementation

In order to reduce the engineering burden of implementing the modified PIC

algorithm in Kokkos, we choose to extend the existing particle-based kernels

that were documented in Chapter 4. As EMPIRE-PIC is a production code

under constant development, this also allows us to examine the change in per-

formance behaviour as a result of our algorithmic modifications in isolation from

any changes made in the primary codebase. This section documents the imple-

mentation of the modified EMPIRE-PIC kernels using Kokkos, and quantifies

the amount of additional memory required in order to use virtual particles.
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6.1.1 Additional Memory

While a key feature of our modifications to the algorithm in EMPIRE-PIC is

increased floating point intensity, this does come at the cost of some additional

data being stored in memory. The first of these is the offsets used to locate the

virtual particles relative to their central particle, and the weights used to scale

their field accumulations, and charge or current depositions. As these offsets and

weights are currently fixed and shared by all simulation particles, they can be

precomputed and stored prior to the main time loop of a run. Assuming a three-

dimensional case this results in 8×Nv additional bytes for the weights, and 24×

Nv additional bytes for the offsets, where Nv is the number of virtual particles

used per simulation particle. Therefore, if five-point Gaussian quadrature is used

(as is the case in the experiments in Chapter 5) the total additional memory

used for this data is approximately four kilobytes. As particles in the base code

consist of 125 bytes, this is equivalent to using an additional 33 particles, an

almost insignificant increase in the context of the size of a typical problem.

Additionally, as the offsets and weights will be frequently used by all threads

during execution, they are likely to remain in cache for a significant proportion

of kernel runtime. As a result, a significant number of the reads of these values

will result in cache hits, thus improving performance.

It is also necessary to track the containing element of each virtual particle

(see Section 6.1.3) throughout a simulation. This results in storing a single

integer per virtual particle, per particle, i.e., 4 × NvNp extra bytes, where Np

is the number of simulation particles. It now follows that when 4 × Nv ≈ 125

the memory increase from virtual particles is the same as using a factor of

two more simulation particles. Looking more closely, this result can be used

to roughly quantify the increase in the ratio of Floating-Point Operations per

Second (FLOP/s) performed per byte moved from DRAM due to the use of

virtual particles. From the above expression we can see that using approximately

32 virtual particles per simulation particle increases the amount of operations

by a factor of the same amount, while only increasing memory pressure by a
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factor of two, i.e., a 16× growth in the ratio of FLOP/s per byte.

6.1.2 Weighting of Fields to Particles

Both flat and hierarchical Kokkos approaches were considered for the interpola-

tion of the mesh data to the particles. As the collation of the contributions from

a given simulation particle’s virtual particles can be expressed as a reduction

over the virtual particles, it is possible to perform a nested parallel reduce

for each particle to carry out this operation. In initial tests a flat approach

performed best across all hardware due to additional overhead introduced by

the reductions so we use a flat kernel in the final implementation. Finally, for

CUDA builds, we use the team scratch memory exposed by Kokkos to store

any common values in GPU shared memory. This includes the particle weights

and offsets, the velocity and position of the central particle associated with its

virtual particles, and the electric and magnetic field data.

6.1.3 Particle Move

As detailed in Section 5.2.2, no modifications to the acceleration step are nec-

essary. However, despite having a fixed location relative to a given central

particle, it is not possible to ignore the virtual particles during the position up-

date. Firstly, in an electromagnetic PIC simulation, each virtual particle must

make a current contribution to any cells it crosses during the move step, as is

the case with a standard PIC super-particle. Secondly, as EMPIRE-PIC is an

unstructured code, it is necessary to update the values of the array that stores

the element a virtual particle currently resides in. While it is possible to locate

the new element number manually, initial experimentation determined that it

is cheaper computationally to move the virtual particles along with their asso-

ciated central particle, and store this result in a Kokkos view of size Np ×Nv.

Regarding the implementation of the modified move kernel using Kokkos, for

OpenMP builds we continue to use a flat parallel for approach, as the use of

hierarchical parallelism resulted in no change in kernel performance, beneficial
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or otherwise. For builds using the Kokkos CUDA backend, we again make use

of the hierarchical approach detailed in Section 4.1.3. However, we are now

able to use the full three levels of nesting: chunks of particles are assigned to

teams; the threads of each team handle process particles contained in the chunk,

and the third (vector) level loops over the virtual particles. Additionally, we

continue to use Kokkos scratch memory to store any common values in GPU

shared memory when compiling for CUDA.

6.1.4 Weighting of Particles to Grid

Apart from the the additional processing of the virtual particles, the charge and

current deposition kernels are largely unchanged from those described in Sec-

tion 4.1.4. We continue with a data replication approach for OpenMP builds,

and atomic writes for CUDA builds. However, the K40 must now also use

atomic writes for charge deposition in electrostatic simulations, as the assump-

tion that all charge will be deposited to the element of the simulation particle

no longer holds; virtual particles may occupy any of the surrounding elements.

The resultant performance penalty means that it is not viable to use virtual

particles on this hardware.

6.2 Experimental Setup

In order to examine the performance of our modified algorithm we must com-

pare its behaviour to that of the base EMPIRE-PIC implementation for both

electrostatic and electromagnetic FEM-PIC schemes. To this end we make use

of two problems used earlier in this thesis, both for convenience and continuity.

For electrostatics we consider the the expansion of a collisionless slab of plasma

into a vacuum, the derivation and formulation of which can be found in Sec-

tion 5.3.4. As before we consider a mesh of size 1600 × 2 grid cells, simulated

for 250 time-steps. We also repeat the experiments at several different particle

counts, in order to investigate both how performance changes with problem size.
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Intermediary problem sizes are generated by increasing the number of particles

by a factor of two, where 215 particles is the base case. When using virtual

particles we choose a radius of r0 = ∆x as this gives the optimal result in terms

of error for this problem (see Section 5.3.4).

For electromagnetics we consider the three-dimensional simulation of the

Transverse Electromagnetic (TEM) wave propagating through a plasma, as de-

rived in Section 5.3.2. In our analysis in this chapter we modify the parameters

of this problem by refining the simulation such that 200 simulation time-steps

are carried out, with a grid of dimensions 100 × 4 × 4 = 1600 grid cells. The

reasons for this are twofold: (i) the previous problem was small enough that

there is a realistic possibility that the entire problem would fit in CPU cache

regardless of particle count, resulting in unrealistic performance results, and (ii)

refining the problem in space and time maximises the visibility of error reduc-

tion due to particle smoothing, allowing us to examine the trade-off between

increased time spent processing particles and error reduction in the simulation

as a result of a smoother particle representation. In a less refined simulation

with large amounts of particles it is likely that the improvement in the solution

would quickly become limited by the space and time errors, meaning that the

true benefits of particle smoothing cannot be observed. As with the electrostatic

problem, subsequent problem sizes are generating by doubling the number of

particles used (again with a base case of 215 particles), and when using vir-

tual particles we choose the optimal particle radius for this problem, specifically

r0 = 2.5∆x (see Section 5.3.2).

We test EMPIRE-PIC on the following compute architectures: NVIDIA

Pascal and Volta GPUs; Intel Broadwell and Cascade Lake CPUs; Intel’s KNL;

and the ARM-based ThunderX2. We exclude the NVIDIA Tesla K40 used in

Chapter 4 from this analysis as initial testing found that the use of smooth

particle shapes via virtual particles is not viable in terms of Time-to-Solution

(TTS) on this hardware1. For the purposes of this work, all systems used consist

1Initial testing showed that the K40 was greater than one order of magnitude slower than
the next slowest system.
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of a single node, and experiments conducted on GPUs make use of a single

accelerator card. For the experiments run on the traditional CPU systems, we

use a single socket in order to ensure that threads remain in the same Non-

Uniform Memory Access (NUMA) region to avoid the performance penalty for

inter-socket memory traffic. The socket is then saturated with OpenMP threads

bound to cores, with hyperthreading disabled as preliminary testing found that

this resulted in the best performance. On the KNL we found that using bound

threads, with two hyperthreads per core, lead to the best results, therefore we

used a total of 128 threads for the KNL experiments.

6.3 Results

In this section we seek to numerically quantify the difference in performance

behaviour between the base implementation of EMPIRE-PIC, and the version

that has been extended to use higher-order representation via virtual particles.

To achieve this we present a raw performance comparison between the two

versions for a range of particle counts. We then present an on-node strong

scaling study of each implementation on the CPU systems, in order to examine

how the performance changes as the number of processors is varied. Finally, we

show a cost versus error analysis to establish whether the error reduction due to

the use of virtual particles is worth the cost in terms of application performance.

6.3.1 Raw Performance Comparison

Figures 6.1(a) and 6.1(b) show the performance of the modified version of

EMPIRE-PIC across all hardware for a variety of total particle counts. Ad-

ditionally, we compare two quadrature orders resulting in 10 and 26 virtual

particles per simulation particle, for three- and five-point quadrature, respec-

tively. Using five-point quadrature results in a runtime approximately 2.5×

longer than using three-point quadrature – this is in line with our expectations

given the relative difference in the resultant number of virtual particles to be
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Figure 6.1: Particle update execution time using smoothed particles at various
particle counts for the electrostatic problem at differing quadrature orders. (a)
and (b) show the raw performance; (c) and (d) consider the relative slowdown
in contrast to the base implementation.

processed. As was seen in Chapter 4, the GPUs are best suited to executing

particle-based kernels due to the high degree of parallelism and memory band-

width on offer. Of the CPU systems, the results are consistent with those seen

previously – the ThunderX2 and Cascade Lake perform the best due to having

a higher memory bandwidth available, with the Intel system performing slightly

better due to its higher peak performance. Unlike previous tests the KNL out-

performs the Broadwell, however this would likely change if both sockets of the

Broadwell were used. We additionally observe linear scaling with particle count

for all hardware used, with the exception of lower particle counts where the
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Figure 6.2: Particle update execution time using smoothed particles at various
particle counts for the electromagnetic problem at differing quadrature orders.
(a) and (b) show the raw performance; (c) and (d) consider the relative slowdown
in contrast to the base implementation.

sub-linear scaling can be explained by cache effects.

Figures 6.1(c) and 6.1(d) present a different view of the data by displaying

the relative slowdown versus an equivalent particle count for the base code, al-

lowing us to quantify the overhead of enabling particle smoothing. The results

are positive in the sense that the cost of virtual particles is lower than what

we would expect theoretically for all hardware, at both quadrature orders. For

three-point quadrature we would expect a 10× slowdown, while for five-point

quadrature this penalty would increase to 26×. This is explained by two phe-

nomena. Firstly, much of the data used by a simulation particle is shared by its
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associated virtual particles; this means that this data will likely have already

been loaded into cache and thus we gain the associated performance benefits.

Secondly, as the particle-based kernels are heavily memory-bound, we are ob-

serving the effects of the increased FLOP to byte ratio discussed previously – we

are making better use of the compute performance available on the hardware.

The trends also suggest that the overhead will become constant once a large

enough problem size is reached, representing the point where performance is

totally memory bandwidth limited.

Figure 6.2 shows the results of the same experiments, this time carried out

for the three-dimensional electromagnetic problem. We observe similar trends

to the electrostatic simulation; notably that the performance of all platforms

relative to each other is generally unchanged. The overall runtime continues

to scale linearly with particle count, as expected. Sub-linear scaling at lower

particle counts is now less common due to the inclusion of a magnetic field

consuming additional space in cache. As before, the use of virtual particles has

less overhead than one would expect (here we expect 26× and 126× slowdown for

three- and five-point quadrature, respectively). Again, this is due to increased

cache usage and arithmetic intensity. While the Cascade Lake shows a high

overhead, this is of little consequence – in terms of absolute performance it

remains the fastest of all CPUs considered. As with electrostatics, we see that

the CPU systems eventually reach a constant overhead at larger problem sizes.

While this is not the case for the GPUs, we conjecture that they would eventually

reach such a point were the problem size increased further. The final point

of interest here is that we reach the maximum overhead later than for the

previous problem. This is due to electromagnetic simulations requiring more

FLOP/s than their electrostatic counterparts; as current is deposited each time

a particle crosses an element, the expensive evaluation of the basis functions

must be performed multiple times per particle, per time-step. As a result, a

larger problem size is required to cause this problem to become totally memory-

bound.
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6.3.2 Strong Scaling

We now seek to quantify how the usage of virtual particles affects the scalability

of both electrostatic and electromagnetic PIC simulations in contrast to the

algorithm implemented in the original EMPIRE-PIC codebase. To this end

we perform a strong scaling study on the CPU systems with virtual particles

disabled, and enabled – again considering three- and five-point quadratures. For

the base code we use the a problem size of 220 particles. We modify the particle

counts used for the runs where virtual particles are enabled such that the level

of work performed in all runs is identical, i.e., for virtual particle tests we divide

the total particle count by Nv, such that Np,base = NvNp,smooth . This enables

us to examine how the shift in work from memory to computation affects the

scalability of the particle-based kernels, and facilitates a fairer comparison as, in

general, we would always expect a larger workload to scale better than a smaller

one.

We begin our analysis by considering the electrostatic problem; this data

is shown in Figure 6.3, with reference lines to facilitate comparison to ideal

speedup. It is clear from Figure 6.3(a) that the base implementation of EMPIRE-

PIC scales near perfectly up to four cores on all systems, but rapidly degrades

beyond this point. This is unsurprising, given the memory-bound nature of

the code. Figure 6.3(b) considers the same experiment for three-point quadra-

ture. It is clear to see that shifting the workload to consist of a higher compute

component greatly improves the strong scalability of the particle update on all

systems. This is especially true for the KNL and ThunderX2, where we see ap-

proximately 43× and 24× speedup when using all available cores, contrasted to

16× and 14× speedup for the equivalent data points for the base code. As these

machines possess the highest core counts, it is unsurprising that they benefit

the most from this workload shift. When comparing to five-point quadrature

(Figure 6.3(c)), we see a similar improvement over the base code to when three-

point quadrature is used. The only discernible difference is that the KNL gains

a slight improvement to a speedup of 45× when using all 64 cores available, due
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(c) Five point quadrature.

Figure 6.3: Strong scaling results for the particle update on the electrostatic
problem.
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Figure 6.4: Strong scaling results for the particle update on the electromagnetic
problem.
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to having the greatest amount of parallelism available. This data shows that the

benefits of increasing the amount of computation and decreasing total memory

usage has diminishing returns in terms of performance. Therefore, when choos-

ing between three- and five-point quadrature, one should consider the effects of

the level of smoothing on the problem solution to inform this decision.

Figure 6.4 repeats this experiments for the electromagnetic simulation. It

is clear to see from the graph shown in Figure 6.4(a) that the base implemen-

tation of EMPIRE-PIC maintains good strong scalability for much longer than

in the electrostatic test. As explained in Section 6.3.1, this is the result of the

electromagnetic scheme already containing a larger compute component for a

similar amount of memory usage. In this case, the use of virtual particles with

three-point quadrature (Figure 6.4(a)) has no effect on the scaling of either the

Broadwell or Cascade Lake systems. However, we continue to see benefits for

the ThunderX2 and KNL, improving from 50× and 25× speedup to 54× and

28×, respectively. This again is due to the high levels of parallelism on offer.

Consistent with the results for the electrostatic test, we again observe that mov-

ing to five-point quadrature has a negligible effect on scaling (relative to using

three points) with the exception of the KNL, where full-scale speedup improves

marginally to 56×. As a result, we conclude that three-point quadrature should

be used unless the problem benefits greatly from quadrature of higher orders.

6.3.3 Cost Versus Error Analysis

We now seek to quantify whether the reduced error in problem solutions due

to the use of virtual particles is worth the additional computational cost that

is incurred. This analysis is performed for the electromagnetic test; the ready

availability of an analytical solution to the problem means that the change in

error can be easily quantified, facilitating the error comparison. For this test,

we continue to use the plasma parameters defined in Section 5.3.2, and we cover

the same range of Particles per Cell (PPC) values. When using virtual par-

ticles we continue to use the optimal radius specified earlier in this chapter.
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Figure 6.5 shows a comparison of both three- and five-point quadrature to the

base EMPIRE-PIC implementation, in terms of solution error, and the total

execution time required to complete the run. In the graphs shown, solid points

represent the base implementation, while hollow points denote the tests using

virtual particles. Each successive shape represents a level of simulation refine-

ment, with squares showing data for the coarsest mesh and largest time-step

size. Each level of refinement decreases the cell spacing and time-step size by

a factor of two, in order to maintain a constant ratio in the CFL condition.

Here, the base case consists of a mesh of 4 × 4 × 50 cells, and 100 time-steps,

one level of refinement higher than was used in Section 5.3.2. This facilitates a

meaningful performance analysis by ensuring the smallest problem size runs for

a reasonable amount of time. All performance data is collected using a single

NVIDIA Tesla V100 GPU. As the code is deterministic, the usage of different

systems will only influence the TTS, and not the resultant error. As we have

seen how the other systems used perform relative to each other on this problem,

this analysis is applicable to all of them.

We begin our analysis with the usage of three-point quadrature, shown in

Figures 6.5(a) and 6.5(b), which consider the L1 error in the x and y components

of the electric field. Recall that this covers both the main signal (Ey) and

the noise (Ex) in the field solution; the problem is set up with plane wave

polarisation so Ez will have the same behaviour as Ex. Beginning with the

noise component we see that refining the simulation has very little effect on

the error while noticeably raising the TTS; this is true for both the base code,

and when using higher-order particle representation. However, we observe that

increasing the particle count, or enabling smoother particles moderately reduces

this error while resulting in a comparatively low increase in application runtime.

This suggests that the noise in the simulation is dominated by the particle

distribution – refining the simulation in space and/or time would only have a

noticeable effect if the PPC value was increased significantly. Comparing the use

of the higher-order representation to simply adding more simulation particles,
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Figure 6.5: Error versus cost analysis for the electromagnetic problem. (a) and
(b) show three-point quadrature. (c) and (d) show five-point quadrature. Closer
to the origin is better.

the data suggests that in general it is more cost effective to simply increase the

number of basic particles used. Moving on to the Ey component, we can see

that once sufficient numbers of particles are used refining the simulation reduces

the error in the solution. Note that this point occurs at lower PPC counts

when using higher-order representation due to the particle error dominating the

solution to a lesser degree. As with the noise component of the electric field, it

appears that the usage of a virtual particles approach is less cost effective than

increasing the number of standard simulation particles. Looking at both field

components it is apparent that carefully choosing simulation parameters while
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using the higher-order representation can result in improved solutions over the

base code at comparable or reduced runtimes. This usually occurs when both

PPC and problem refinement are reduced together, causing the particle count

to decrease significantly. However, similar data points can also be found for

the base implementation. We observe similar trends for the runs using five-

point quadrature (Figures 6.5(c) and 6.5(d)), with the difference that the larger

number of virtual particles means that the use of particle smoothing results

in a much larger growth in runtime. This data makes it clear that, for this

problem, the additional error reduction gained by using more virtual particles

to represent the underlying shape function is not worth the extra costs.

As the usage of virtual particles results in an increased arithmetic intensity,

the poor vectorisation in EMPIRE-PIC is a larger factor in the high cost of

using the method rather than limited memory bandwidth availability. Achieving

vectorisation using portability libraries such as Kokkos is challenging – in order

to maintain portability we must rely on the compiler to vectorise the scalar

instructions. The addition of a portability layer makes this more difficult; it

is harder for the compiler to detect vectorisation opportunities and prove that

data dependencies do not exist. If satisfactory vectorisation could be realised,

the additional performance costs would be greatly reduced as vector units could

process multiple virtual particles simultaneously via SIMD instructions. This

would mean that the results shown in Figure 6.5 could look very different in the

future as compilers become more advanced. Specifically, this would result in

a reduced performance gap versus the base implementation, while maintaining

the same level of error reduction.

6.4 Summary

In this chapter we have documented the implementation of the extensions to the

PIC algorithm introduced in Chapter 5 using the Kokkos performance porta-

bility library, and contrasted its performance to the particle representation in-
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cluded in the base EMPIRE-PIC code. Specifically, we have shown that our

method scales linearly with particle count, and the performance penalty in-

curred through the use of virtual particles is less than what would be theoreti-

cally expected due to shared data improving cache reuse. Additionally, we have

seen that using virtual particles to shift the PIC workload to be more compute-

focused improves the strong scaling of the particle-based kernels on CPUs with

many cores, namely the ARM-based ThunderX2, and Intel’s KNL. This ef-

fect is most noticeable on electrostatic simulations, as electromagnetics already

possesses a larger compute component in the base case. Finally, a cost versus

error analysis comparing the use of virtual particles to the base EMPIRE-PIC

implementation using a three-dimensional TEM wave problem was conducted.

Broadly, we observe that the use of three-point quadrature is more cost ef-

fective than five-point quadrature, and that in general, it is preferable from

a performance perspective to increase the number of simulation particles used

in the base code instead of enabling the higher-order particle representation.

However, we find that virtual particles can outperform the base EMPIRE-PIC

implementation on specific inputs while maintaining a comparable error in the

problem solution. We concluded the chapter by postulating that, as compilers

become better at vectorising performance portable code, the performance gap

between the base implementation and the use of virtual particles could signifi-

cantly narrow in the future.
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CHAPTER 7
Conclusions and Future Work

The work presented in this thesis has focused on modern computational plasma

physics simulations that make use of the Particle-in-Cell (PIC) algorithm, specif-

ically those that represent the problem space using an unstructured mesh via

the Finite Element Method (FEM). In particular we have examined the per-

formance of FEM-PIC codes on both current and emerging High Performance

Computing (HPC) architectures, the portability of such codes across these ar-

chitectures, and algorithmic modifications that are expected to be better suited

for massively parallel hardware. This research is likely to become even more

relevant as computational hardware continues to diversify as we pursue the key

milestone of Exascale computing. While we have focused on the FEM-PIC

C++ code, EMPIRE-PIC, the research detailed in this thesis is also applica-

ble to other codes, especially those that make use of performance portability

libraries such as Kokkos.

Specifically, Chapter 4 has demonstrated that through the use of Kokkos it

is possible to run FEM-PIC simulations on a variety of current and emerging

compute architectures. Machine-specific tuning was also explored through the

use of hierarchical parallelism features to express more complex algorithms that

are better suited to modern hardware. Through this work we have alleviated

performance issues in both the particle move and charge deposition PIC pro-

cedures, which typically represent a performance bottleneck in traditional PIC

codes. This culminated in up to 3× speedup for the particle mover, and a large

reduction in the number of atomic operations used when conducting charge de-

position. Additionally, we have observed that we can also achieve portability

across radically different architecture types, including traditional CPUs, many-
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core CPUs, and NVIDIA GPUs. Chapter 4 concluded with a scaling study on

three production U.S. Department of Energy (DOE) supercomputers, showing

scalability of the EMPIRE-PIC code up to more than two thousand GPUs, and

greater than one hundred thousand CPUs.

Chapter 5 extends the core algorithm of EMPIRE-PIC to use a higher-order

representation of simulation particles for both electrostatic and electromagnetic

unstructured FEM-PIC simulations with periodic boundaries. This method

makes use of a smooth quadratic shape function with compact support on a fi-

nite radius to model the particles more smoothly, in contrast to the delta-shape

particles typically used in FEM-PIC. A defining feature of the approach is the

representation of this shape by surrounding simulation particles with computa-

tional virtual particles with delta shape, with fixed offsets and weights derived

from the chosen radius and Gaussian quadrature rules. Along with raising sim-

ulation accuracy, the changes increase the arithmetic intensity of traditionally

memory-bound particle kernels with only a minor increase in memory usage,

with the aim of leveraging the high compute performance of modern hardware.

Using four representative benchmark problems that cover both electrostatics

and electromagnetics, the modified algorithm is both validated and shown to

reduce the error in the problem solutions as the particles are made smoother,

with the optimal radius appearing to be problem-dependent. Notably, we ob-

served improvement in the tracking of basic particle motion on both uniform

and distorted meshes, and suppressed numerical heating effects on resolved and

under-resolved grids. Also of note is the near-elimination of the noise in simu-

lated ion density for a plasma slab expansion problem.

Finally, Chapter 6 built on all of the work previously presented in this thesis,

by documenting the Kokkos implementation of the changes to particle repre-

sentation in EMPIRE-PIC and quantifying the resultant change in performance

behaviour. Specifically, we observed that the performance penalty incurred

through the use of virtual particles is less than what would be theoretically

expected due to cache effects, i.e., an overhead less than a factor of the num-
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ber of virtual particles used due to the reuse of shared data. Additionally, we

have seen that using virtual particles to shift the balance between FLOP/s and

memory bandwidth can lead to improved strong scalability of FEM-PIC simu-

lations. In the best case, this shift improved parallel efficiency by up to 2.5× on

electrostatic simulations. Chapter 6 concluded with a cost versus error analysis

comparing the cost-effectiveness of both versions of EMPIRE-PIC. We observed

that, in general, it remains preferable to increase the number of traditional par-

ticles used in the base code instead of enabling smoother particles. We ended

the chapter by theorising that the performance gap between the base implemen-

tation and the modified algorithm could reduce in the future, as both hardware

and compilers become more advanced.

7.1 Limitations

The primary limitation of the work presented in this thesis is that the research

focuses on a single code, namely the EMPIRE-PIC unstructured PIC applica-

tion. While this may seem to limit the general applicability of the analyses

and extensions carried out, much of the algorithmic features of EMPIRE-PIC

are commonplace in other PIC codes. For example, particle movers based on

the Boris method [29], and charge/current deposition schemes derived from the

charge-conserving method presented by Villasenor and Buneman [148] are con-

sidered to be the de facto standard methods used in PIC. As such, the findings

of this thesis could be extrapolated to these other codes. This is particularly true

of the work presented in Chapter 5; a key feature of the proposed particle shape

representation is the ability to be implemented with minimal modifications to

existing PIC infrastructure.

A further limitation of this thesis is that EMPIRE-PIC has been directly

developed using the Kokkos performance portability library, i.e., there is no

‘plain’ C++ implementation to compare to in order to establish the overheads

incurred through the use of Kokkos. This is especially relevant to the work
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detailed in Chapters 4 and 6. However, the overhead of Kokkos has previously

been assessed by multiple authors on a variety of scientific applications and has

been shown to be low in many cases [9, 52, 88, 96]. When considered alongside

the performance data shown in this thesis, there is no evidence to suggest that

the runtime of EMPIRE-PIC is significantly impacted by Kokkos overheads. It

is also important to note that this work seeks to examine the process of devel-

oping a new unstructured PIC code with performance portability from a single

codebase being a key aim from the beginning. As a consequence, the develop-

ment and maintenance of a second version of the code would be antithetical to

this objective. Rather, the work documented in Chapter 4 provides the reader

with a realistic view of the development process and performance expected when

writing a performance portable plasma simulation code.

Regarding the algorithmic changes proposed in Chapter 5, one limitation is

that the modified PIC algorithm is mostly tested on simple problems with read-

ily available analytical solutions, and more realistic ‘production’ simulations are

not considered. While this makes reasoning about the effects of the algorithm

on the solution to such problems challenging, much of the results presented

can still be applied to more complex cases. The simple problem considered in

Section 5.3.1 demonstrated that the use of a smooth particle representation in-

creased the accuracy of the tracking of particle motion when using first- and

second-order basis functions. Section 5.3.3 illustrated that the use of smooth

particles significantly improved Kinetic Energy (KE) stability in EMPIRE-PIC,

especially in simulations where coarse meshes are used. Both of these improve-

ments would be beneficial to PIC simulations as a whole. Additionally, the

problems were chosen to be broadly representative, covering electrostatics and

electromagnetics, and also considering both two- and three-dimensional geome-

tries.

One final limitation of the work presented in this thesis is that the smooth

particle representation featured in Chapters 5 and 6 is not extended for use in

multi-node settings. While this means that comprehensive large-scale strong and
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weak scaling studies could not be performed, the primary goal of the work was

to assess whether the use of ‘virtual particles’ is viable on modern hardware even

at the single node level. The extension of this representation to a distributed

memory MPI + Kokkos paradigm is an ongoing research effort. Section 7.2.3

partially addresses this issue by outlining how this might be achieved.

7.2 Future Work

The work documented in this thesis is open to extension in a variety of ways.

In general, these can be split into two categories: (i) further extension to the

smooth particle representation added to EMPIRE-PIC in Chapter 5, and (ii)

additional performance studies to expand the experiments conducted in Chap-

ters 4 and 6. In this section we present an overview of these additional research

avenues and provide details on how they could be initially explored.

7.2.1 Non-Periodic Boundaries for Virtual Particles

A key limitation of this thesis discussed in Section 7.1 is that the version of

EMPIRE-PIC extended to support higher-order particle shape functions was

not tested on a realistic production problem. One of the major limiting factors

preventing this is that the modified algorithm does not currently handle simu-

lation boundaries that are non-periodic, i.e., boundaries that result in particle

reflection, absorbtion, or emission. The addition of any or all of these boundary

conditions would greatly expand the amount of problems that could be tested

using virtual particles. However, the implementation of these boundaries us-

ing virtual particles is non-trivial – it is not immediately clear how to handle

a situation where some virtual particles collide with the boundary and others

do not. Pointon has previously proposed a method for handling non-periodic

boundary conditions while using higher-order particle shapes where the shape

function is smoothly transitioned back to first-order as a particle approaches a

boundary [123]. In our case, this would involve slowly reducing the radius of a
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particle back to zero on the approach so that the particle is ‘point-like’ once the

boundary is hit. It is thought that this method would be feasible to implement

in EMPIRE-PIC.

7.2.2 Variable Radius for Virtual Particles

While the existing version of the extended PIC algorithm has been shown to

be able to cope with distorted meshes with elements of varying size (see Sec-

tion 5.3.1), it is likely that this ability would be improved if the defined radius

of a particle could change as it moves through the problem domain. This is a

consequence of the optimal particle radius being some fraction of the cell size,

meaning that the value of this optimum depends on the size of the element

in which the particle currently resides. The addition of variable radius parti-

cle shapes would also facilitate the implementation of the Pointon boundary

conditions described above. This further extension could be implemented via

modifications to the particle move step of the algorithm. Instead of advancing

all of the virtual particles in lock-step, we would first move the central particle

that represents the true position to its updated location. The new radius could

then be determined, allowing the new virtual particle offsets and weights to

be calculated. The virtual particles would then be moved to their new posi-

tions using the standard move routine as normal; as all element crossings would

continue to be tracked, the resulting current deposition scheme would remain

charge-conserving as long as the newly calculated weights continue to sum to

one.

7.2.3 Distributed Memory for Virtual Particles

Perhaps the most significant limitation of the work documented in this thesis

is that the smooth particle representation using virtual particles implemented

in EMPIRE-PIC is not extended to function in an MPI + Kokkos, distributed

memory paradigm. The primary issue with such an implementation is that it

is not obvious how to handle the case where a portion of a particle’s associated
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virtual particles are outside the domain of the current owning processor. In

its current form, the particle migration scheme within EMPIRE-PIC does not

make use of a halo of ghost cells – particles are moved to the edge of the current

processor’s domain, and after the current move iteration all marked particles

are migrated to their neighbour and moved again. This process is repeated

until it is detected that no particles have migrated during an iteration of the

move kernel. It would be necessary to introduce such halo regions in order to

handle the virtual particle case – the ghost layer would need to be as thick as

the maximum particle radius at the process boundary. Note that due to the

use of an unstructured mesh, the extra halo regions would vary in terms of cell

count and thickness depending on the resolution of the mesh in the occupied

area. Once the central particle has entered the halo region it, and its associated

virtual particles, could be migrated to the destination processor as normal.

7.2.4 Evaluation of Emerging Architectures

The increasing diversity of compute architectures and their associated program-

ming models has been a core theme of much of the work presented in this thesis.

While every attempt has been made to consider a variety of hardware types and

generations, many of the currently emerging architectures have not been cov-

ered. The most notable examples include Intel’s upcoming line of Xe-HPC data-

centre grade GPUs, as well as AMD’s EPYC CPUs (codenamed ‘Rome’) and

Radeon Instinct GPUs. These hardware items are of particular interest to the

scientific community as the upcoming supercomputers Aurora and Frontier will

be based on Intel and AMD Graphics Processing Units (GPUs), respectively. As

the EMPIRE-PIC codebase is written entirely using the Kokkos performance

portability framework, extending the work presented in Chapters 4 and 6 to

include performance comparisons to these emerging hardware types would be

simple to achieve – being able to tolerate new hardware releases is a core design

goal of both Kokkos and EMPIRE-PIC. In theory, testing could begin immedi-

ately once appropriate Kokkos backends have been made available; in the case
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of Intel GPUs this would be OneAPI/DPC++ or OpenCL compatibility, and

in the case of Radeon Instinct this would be ROCm/HIP capability.

7.3 Final Remarks

While the work presented in this thesis has not resulted in the increased perfor-

mance that was hoped for, we have shown that the use of higher-order methods

can be used to alter the balance between FLOP/s and the amount of data that

is moved to and from main memory, and that scalability can be improved as

a consequence of this. The relevance of higher-order algorithms is expected to

increase as the hardware of the Exascale age becomes steadily more parallel,

and memory capacity and bandwidth grows at a slower rate. This is primarily

due to their increased arithmetic intensity improving application performance

and scalability by making better use of the available hardware.

The use of higher-order methods for FEM schemes also improves simulation

accuracy and robustness, relative to their low-order counterparts commonly used

by the algorithms of today. Potential benefits include: improved simulation

convergence, more accurate representation of curved geometries, and reduced

simulation constraints. This will allow domain scientists to capture and simulate

phenomena that cannot be represented in traditional simulations, thus aiding

scientific research and discovery. With this in mind, the key themes of this thesis,

namely the use of diverse hardware and higher-order methods, will continue to

be relevant throughout the Exascale era that is rapidly approaching.
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APPENDIX A
Performance Portable Finite Element Method

Particle-in-Cell Simulations

Table A.1: Comparison of various write-conflict resolution methods for the elec-
trostatic problem.

Approach BDW KNL CL TX2 K40 P100 V100

No Atomics 3.459 6.611 1.934 4.147 2.264 1.191 0.437
Atomics 5.207 10.808 2.631 6.771 29.451 1.215 0.537
Local Reduction 4.220 8.235 1.985 4.659 4.381 1.31 10.099
Data Replication 3.787 7.373 1.852 3.359 - - -

Table A.2: Comparison of various write-conflict resolution methods for the elec-
tromagnetic problem.

Approach BDW KNL CL TX2 K40 P100 V100

No Atomics 18.326 36.826 9.937 12.800 31.758 9.361 3.650
Atomics 28.711 56.416 15.467 24.580 161.832 10.064 3.913
Data Replication 17.538 35.383 9.813 14.720 - - -

Table A.3: Comparison of base and team particle move for the electrostatic
problem.

Approach BDW KNL CL TX2 K40 P100 V100

Base 5.723 11.125 3.541 5.861 9.134 2.460 1.033
Team 9.059 20.319 4.667 8.975 3.269 1.890 0.922

Table A.4: Comparison of base and team particle move for the electromagnetic
problem.

Approach BDW KNL CL TX2 K40 P100 V100

Base 28.711 56.416 15.467 24.580 161.832 10.064 3.913
Team 31.759 62.510 16.741 26.922 49.211 7.445 3.456

Table A.5: Final EMPIRE-PIC kernel timings for the electrostatic problem.

Timer BDW KNL CL TX2 K40 P100 V100

MainTimeLoop 50.971 98.203 27.949 42.847 83.309 42.315 34.076
WeightFields 5.546 10.917 2.731 3.923 8.810 3.632 1.299
Accel 1.325 2.754 0.658 1.045 6.685 1.162 0.399
Move 4.182 7.951 2.517 6.131 3.267 1.890 0.923
Sort 21.589 29.380 9.674 8.530 26.594 10.822 4.035
WeightCharge 3.815 7.344 1.858 3.359 4.381 1.214 0.529
LinearSolve 5.518 21.859 5.504 12.739 29.485 15.697 23.066
Other 8.996 17.998 5.007 7.120 4.0872 7.898 3.825
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Table A.6: Final EMPIRE-PIC kernel timings for the electromagnetic problem.

Timer BDW KNL CL TX2 K40 P100 V100

MainTimeLoop 99.124 188.213 52.399 90.249 308.963 79.748 42.742
WeightFields 10.429 18.983 4.977 8.043 8.800 3.850 1.602
Accel 4.905 11.551 2.555 3.810 4.936 3.898 0.981
Move 17.871 35.432 10.043 14.858 50.778 5.805 3.865
Sort 21.474 29.420 9.692 8.863 26.594 11.943 4.035
LinearSolve 24.773 54.063 14.494 46.485 195.875 41.831 24.986
Other 19.672 38.764 10.638 8.190 21.980 12.421 7.273

Table A.7: EMPIRE-PIC scaling study data for the Haswell partition of the
Trinity supercomputer.

Nodes Size Main Loop Particle Update Linear Solve

1 S 80.598 47.368 15.897
2 S 41.938 23.856 9.089
4 S 22.595 11.551 6.403
8 S 13.169 5.787 4.645
8 M 89.565 49.698 21.808

16 M 48.837 25.213 14.084
32 M 27.418 12.933 9.346
64 M 17.224 6.907 7.205
64 L 105.538 56.484 30.164

128 L 63.338 28.977 23.832
256 L 33.889 14.676 13.941
512 L 23.673 7.700 12.962
512 XL 120.624 62.916 36.646

1024 XL 68.633 33.448 24.487
2048 XL 44.354 17.934 20.411
4096 XL 24.030 9.127 11.839
4096 XXL 137.447 72.898 42.771

Table A.8: EMPIRE-PIC scaling study data for the KNL partition of the Trinity
supercomputer.

Nodes Size Main Loop Particle Update Linear Solve

2 M 614.087 324.435 165.355
4 M 287.993 165.509 59.3571
8 M 165.615 89.5499 42.9057

16 M 101.556 47.7837 35.9743
16 L 693.95 459.307 97.5325
32 L 332.234 200.43 61.2402
64 L 189.42 104.91 48.1343

128 L 115.258 53.9081 42.4353
128 XL 756.543 494.701 117.035
256 XL 372.662 217.116 81.1241
512 XL 219.196 111.798 68.5907

1024 XL 143.168 59.0876 64.0335
1024 XXL 848.423 531.4 165.077
2048 XXL 468.36 248.278 141.591
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Table A.9: EMPIRE-PIC scaling study data for the Astra supercomputer.

Nodes Size Main Loop Particle Update Linear Solve

2 M 207.979 131.461 32.9873
4 M 110.077 66.2716 21.9528
8 M 62.4437 35.2526 15.642

16 M 38.0486 18.7408 13.0905
16 L 240.136 151.749 39.688
32 L 132.539 78.751 28.0151
64 L 77.3367 40.8379 23.1358

128 L 49.1968 20.7963 21.3378
128 XL 266.24 163.824 47.5031
256 XL 148.838 84.5286 36.3649
512 XL 87.055 43.3115 29.455

1024 XL 86.6114 52.4775 26.8783
1024 XXL 307.225 177.231 73.3913
2048 XXL 176.804 92.3953 55.8536

Table A.10: EMPIRE-PIC scaling study data for the Sierra supercomputer.

Nodes Size Main Loop Particle Update Linear Solve

1 M 43.728 20.817 15.987
2 M 28.107 11.006 12.945
4 M 19.993 6.076 11.333
8 M 17.144 3.680 11.570
8 L 46.958 23.989 14.928

16 L 30.499 13.298 12.075
32 L 21.211 7.459 10.508
64 L 17.098 4.451 10.445
64 XL 57.138 27.658 19.729

128 XL 35.890 14.566 15.592
256 XL 26.283 8.355 14.185
512 XL 20.764 4.915 13.335
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Table B.1: Parameter scan results for the electron orbit tests using the struc-
tured mesh.

Basis 1 Basis 2

r0/∆x L1 σ L1 σ

0.0 7.00×10−3 2.88×10−3 3.07×10−3 1.13×10−3

0.1 6.86×10−3 2.85×10−3 2.97×10−3 1.08×10−3

0.2 6.52×10−3 2.67×10−3 2.70×10−3 9.62×10−4

0.3 6.07×10−3 2.34×10−3 2.29×10−3 8.08×10−4

0.4 5.47×10−3 1.88×10−3 1.81×10−3 6.38×10−4

0.5 4.74×10−3 1.39×10−3 1.32×10−3 4.73×10−4

0.6 3.92×10−3 9.04×10−4 8.82×10−4 3.01×10−4

0.7 3.08×10−3 5.86×10−4 5.27×10−4 1.55×10−4

0.8 2.50×10−3 4.97×10−4 4.13×10−4 1.02×10−4

0.9 2.28×10−3 6.23×10−4 4.63×10−4 1.42×10−4

1.0 2.39×10−3 8.35×10−4 4.92×10−4 1.72×10−4

1.1 2.63×10−3 1.01×10−3 4.88×10−4 2.19×10−4

1.2 2.97×10−3 1.13×10−3 5.04×10−4 2.37×10−4

1.3 3.16×10−3 1.46×10−3 6.88×10−4 2.16×10−4

1.4 3.19×10−3 1.84×10−3 9.91×10−4 2.47×10−4

1.5 3.28×10−3 1.96×10−3 1.27×10−3 3.83×10−4

1.6 3.58×10−3 1.98×10−3 1.54×10−3 6.49×10−4

1.7 4.14×10−3 2.09×10−3 1.89×10−3 9.14×10−4

1.8 4.68×10−3 2.37×10−3 2.11×10−3 1.03×10−3

1.9 4.94×10−3 2.69×10−3 2.18×10−3 1.06×10−3

2.0 5.02×10−3 2.95×10−3 2.17×10−3 8.55×10−4

Concluded

Table B.2: Convergence study results for the electron orbit tests.

r0/∆x Basis ∆x ∆x/2 ∆x/4 ∆x/8

0.0 1 7.00×10−3 1.27×10−3 3.13×10−4 7.64×10−5

0.1 1 6.86×10−3 1.24×10−3 3.07×10−4 7.47×10−5

0.2 1 6.52×10−3 1.16×10−3 2.90×10−4 7.02×10−5

0.3 1 6.07×10−3 1.06×10−3 2.68×10−4 6.45×10−5

0.4 1 5.47×10−3 9.46×10−4 2.42×10−4 5.87×10−5

0.5 1 4.74×10−3 8.60×10−4 2.20×10−4 5.47×10−5

0.6 1 3.92×10−3 8.22×10−4 2.12×10−4 5.32×10−5

0.7 1 3.08×10−3 7.95×10−4 2.09×10−4 5.24×10−5

0.8 1 2.50×10−3 7.54×10−4 2.03×10−4 5.10×10−5

0.9 1 2.28×10−3 7.24×10−4 2.00×10−4 5.03×10−5

1.0 1 2.39×10−3 6.98×10−4 1.97×10−4 5.00×10−5

1.1 1 2.63×10−3 6.68×10−4 1.94×10−4 4.98×10−5

1.2 1 2.97×10−3 6.60×10−4 1.94×10−4 5.05×10−5

1.3 1 3.16×10−3 6.62×10−4 1.95×10−4 5.12×10−5

1.4 1 3.19×10−3 6.85×10−4 2.01×10−4 5.23×10−5

Continued on next page

154



Higher-Order Particle Representation

r0/∆x Basis ∆x ∆x/2 ∆x/4 ∆x/8

1.5 1 3.28×10−3 7.50×10−4 2.16×10−4 5.49×10−5

0.0 2 3.07×10−3 4.83×10−4 8.17×10−5 1.53×10−5

0.1 2 2.97×10−3 4.66×10−4 7.91×10−5 1.48×10−5

0.2 2 2.70×10−3 4.17×10−4 7.19×10−5 1.33×10−5

0.3 2 2.29×10−3 3.48×10−4 6.11×10−5 1.13×10−5

0.4 2 1.81×10−3 2.69×10−4 4.82×10−5 8.93×10−6

0.5 2 1.32×10−3 1.91×10−4 3.49×10−5 6.58×10−6

0.6 2 8.82×10−4 1.22×10−4 2.29×10−5 4.50×10−6

0.7 2 5.27×10−4 7.40×10−5 1.44×10−5 3.07×10−6

0.8 2 4.13×10−4 6.65×10−5 1.27×10−5 2.88×10−6

0.9 2 4.63×10−4 8.07×10−5 1.41×10−5 3.10×10−6

1.0 2 4.92×10−4 8.76×10−5 1.50×10−5 3.25×10−6

1.1 2 4.88×10−4 8.28×10−5 1.45×10−5 3.15×10−6

1.2 2 5.04×10−4 9.18×10−5 1.49×10−5 3.35×10−6

1.3 2 6.88×10−4 1.33×10−4 2.27×10−5 4.68×10−6

1.4 2 9.91×10−4 1.88×10−4 3.26×10−5 6.34×10−6

1.5 2 1.27×10−3 2.46×10−4 4.27×10−5 8.09×10−6

Concluded

Table B.3: Parameter scan results for the electron orbit tests using the unstruc-
tured mesh.

Basis 1 Basis 2

r0/∆x L1 σ L1 σ

0.0 4.33×10−3 2.70×10−3 1.43×10−3 5.84×10−4

0.1 4.21×10−3 2.58×10−3 1.38×10−3 5.59×10−4

0.2 3.92×10−3 2.33×10−3 1.24×10−3 4.90×10−4

0.3 3.51×10−3 2.02×10−3 1.04×10−3 3.99×10−4

0.4 3.10×10−3 1.67×10−3 8.03×10−4 2.97×10−4

0.5 2.67×10−3 1.38×10−3 5.67×10−4 2.01×10−4

0.6 2.32×10−3 1.18×10−3 3.57×10−4 1.24×10−4

0.7 2.04×10−3 1.07×10−3 1.96×10−4 7.74×10−5

0.8 1.85×10−3 1.01×10−3 1.42×10−4 5.83×10−5

0.9 1.71×10−3 1.01×10−3 1.66×10−4 6.67×10−5

1.0 1.59×10−3 9.82×10−4 1.89×10−4 7.23×10−5

1.1 1.47×10−3 9.54×10−4 1.88×10−4 8.26×10−5

1.2 1.38×10−3 9.02×10−4 1.93×10−4 1.11×10−4

1.3 1.33×10−3 8.52×10−4 2.58×10−4 1.36×10−4

1.4 1.35×10−3 8.36×10−4 3.76×10−4 1.62×10−4

1.5 1.44×10−3 8.37×10−4 5.04×10−4 1.99×10−4

1.6 1.57×10−3 8.38×10−4 6.31×10−4 2.48×10−4

1.7 1.71×10−3 9.13×10−4 7.50×10−4 3.01×10−4

1.8 1.84×10−3 1.05×10−3 8.52×10−4 3.42×10−4

1.9 1.94×10−3 1.15×10−3 9.25×10−4 3.67×10−4

2.0 1.99×10−3 1.20×10−3 9.59×10−4 3.70×10−4

Concluded
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Table B.4: Parameter scan results for electric field in the TEM wave tests.

Ex Ey

PPC r0/∆x L1 σ L1 σ

1 0.0 1.56×10−2 1.27×10−3 2.18×10−2 1.27×10−3

1 0.1 1.53×10−2 1.33×10−3 2.19×10−2 1.33×10−3

1 0.2 1.49×10−2 1.29×10−3 2.17×10−2 1.29×10−3

1 0.3 1.43×10−2 1.29×10−3 2.14×10−2 1.29×10−3

1 0.4 1.36×10−2 1.23×10−3 2.10×10−2 1.23×10−3

1 0.5 1.29×10−2 1.17×10−3 2.05×10−2 1.17×10−3

1 0.6 1.20×10−2 1.14×10−3 2.00×10−2 1.14×10−3

1 0.7 1.12×10−2 1.09×10−3 1.95×10−2 1.09×10−3

1 0.8 1.03×10−2 1.05×10−3 1.89×10−2 1.05×10−3

1 0.9 9.38×10−3 1.00×10−3 1.83×10−2 1.00×10−3

1 1.0 8.47×10−3 9.34×10−4 1.77×10−2 9.34×10−4

1 1.1 7.70×10−3 8.62×10−4 1.70×10−2 8.62×10−4

1 1.2 6.98×10−3 8.00×10−4 1.63×10−2 8.00×10−4

1 1.3 6.26×10−3 7.27×10−4 1.56×10−2 7.27×10−4

1 1.4 5.56×10−3 6.51×10−4 1.50×10−2 6.51×10−4

1 1.5 4.86×10−3 5.57×10−4 1.43×10−2 5.57×10−4

1 1.6 4.16×10−3 4.87×10−4 1.38×10−2 4.87×10−4

1 1.7 3.51×10−3 4.28×10−4 1.34×10−2 4.28×10−4

1 1.8 2.87×10−3 3.74×10−4 1.29×10−2 3.74×10−4

1 1.9 2.37×10−3 3.15×10−4 1.24×10−2 3.15×10−4

1 2.0 2.18×10−3 2.77×10−4 1.21×10−2 2.77×10−4

1 2.1 2.21×10−3 2.74×10−4 1.21×10−2 2.74×10−4

1 2.2 2.20×10−3 2.69×10−4 1.22×10−2 2.69×10−4

1 2.3 2.16×10−3 2.66×10−4 1.24×10−2 2.66×10−4

1 2.4 2.07×10−3 2.38×10−4 1.26×10−2 2.38×10−4

1 2.5 1.96×10−3 2.19×10−4 1.27×10−2 2.19×10−4

1 2.6 1.86×10−3 2.12×10−4 1.29×10−2 2.12×10−4

1 2.7 1.75×10−3 1.80×10−4 1.31×10−2 1.80×10−4

1 2.8 1.65×10−3 1.79×10−4 1.33×10−2 1.79×10−4

1 2.9 1.61×10−3 1.68×10−4 1.34×10−2 1.68×10−4

1 3.0 1.50×10−3 1.49×10−4 1.35×10−2 1.49×10−4

2 0.0 1.10×10−2 9.54×10−4 1.76×10−2 9.54×10−4

2 0.1 1.08×10−2 8.89×10−4 1.76×10−2 8.89×10−4

2 0.2 1.05×10−2 8.78×10−4 1.75×10−2 8.78×10−4

2 0.3 1.00×10−2 8.47×10−4 1.73×10−2 8.47×10−4

2 0.4 9.55×10−3 8.10×10−4 1.71×10−2 8.10×10−4

2 0.5 9.03×10−3 7.89×10−4 1.68×10−2 7.89×10−4

2 0.6 8.44×10−3 7.89×10−4 1.65×10−2 7.89×10−4

2 0.7 7.83×10−3 7.38×10−4 1.62×10−2 7.38×10−4

2 0.8 7.21×10−3 7.18×10−4 1.58×10−2 7.18×10−4

2 0.9 6.60×10−3 6.76×10−4 1.55×10−2 6.76×10−4

2 1.0 5.96×10−3 6.50×10−4 1.51×10−2 6.50×10−4

2 1.1 5.41×10−3 6.10×10−4 1.47×10−2 6.10×10−4

2 1.2 4.90×10−3 5.75×10−4 1.43×10−2 5.75×10−4

2 1.3 4.41×10−3 4.98×10−4 1.39×10−2 4.98×10−4

2 1.4 3.89×10−3 4.24×10−4 1.36×10−2 4.24×10−4

2 1.5 3.40×10−3 3.73×10−4 1.32×10−2 3.73×10−4

2 1.6 2.93×10−3 3.24×10−4 1.29×10−2 3.24×10−4

2 1.7 2.48×10−3 2.79×10−4 1.26×10−2 2.79×10−4

2 1.8 2.04×10−3 2.61×10−4 1.24×10−2 2.61×10−4

2 1.9 1.68×10−3 2.04×10−4 1.21×10−2 2.04×10−4

2 2.0 1.55×10−3 1.99×10−4 1.19×10−2 1.99×10−4
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Ex Ey

PPC r0/∆x L1 σ L1 σ

2 2.1 1.57×10−3 2.00×10−4 1.19×10−2 2.00×10−4

2 2.2 1.56×10−3 1.91×10−4 1.19×10−2 1.91×10−4

2 2.3 1.53×10−3 1.77×10−4 1.19×10−2 1.77×10−4

2 2.4 1.47×10−3 1.68×10−4 1.20×10−2 1.68×10−4

2 2.5 1.38×10−3 1.60×10−4 1.21×10−2 1.60×10−4

2 2.6 1.31×10−3 1.64×10−4 1.22×10−2 1.64×10−4

2 2.7 1.25×10−3 1.49×10−4 1.23×10−2 1.49×10−4

2 2.8 1.19×10−3 1.35×10−4 1.24×10−2 1.35×10−4

2 2.9 1.16×10−3 1.19×10−4 1.25×10−2 1.19×10−4

2 3.0 1.07×10−3 1.00×10−4 1.26×10−2 1.00×10−4

4 0.0 7.80×10−3 7.29×10−4 1.53×10−2 7.29×10−4

4 0.1 7.64×10−3 7.01×10−4 1.53×10−2 7.01×10−4

4 0.2 7.42×10−3 6.51×10−4 1.52×10−2 6.51×10−4

4 0.3 7.13×10−3 6.41×10−4 1.51×10−2 6.41×10−4

4 0.4 6.80×10−3 6.38×10−4 1.50×10−2 6.38×10−4

4 0.5 6.44×10−3 6.11×10−4 1.48×10−2 6.11×10−4

4 0.6 6.03×10−3 5.98×10−4 1.46×10−2 5.98×10−4

4 0.7 5.58×10−3 5.60×10−4 1.45×10−2 5.60×10−4

4 0.8 5.14×10−3 5.41×10−4 1.43×10−2 5.41×10−4

4 0.9 4.69×10−3 5.19×10−4 1.40×10−2 5.19×10−4

4 1.0 4.24×10−3 4.91×10−4 1.38×10−2 4.91×10−4

4 1.1 3.86×10−3 4.42×10−4 1.36×10−2 4.42×10−4

4 1.2 3.50×10−3 3.96×10−4 1.34×10−2 3.96×10−4

4 1.3 3.14×10−3 3.44×10−4 1.32×10−2 3.44×10−4

4 1.4 2.77×10−3 3.05×10−4 1.29×10−2 3.05×10−4

4 1.5 2.41×10−3 2.74×10−4 1.27×10−2 2.74×10−4

4 1.6 2.07×10−3 2.42×10−4 1.25×10−2 2.42×10−4

4 1.7 1.75×10−3 2.18×10−4 1.23×10−2 2.18×10−4

4 1.8 1.43×10−3 1.97×10−4 1.21×10−2 1.97×10−4

4 1.9 1.18×10−3 1.54×10−4 1.20×10−2 1.54×10−4

4 2.0 1.10×10−3 1.37×10−4 1.18×10−2 1.37×10−4

4 2.1 1.11×10−3 1.38×10−4 1.18×10−2 1.38×10−4

4 2.2 1.10×10−3 1.32×10−4 1.17×10−2 1.32×10−4

4 2.3 1.06×10−3 1.31×10−4 1.17×10−2 1.31×10−4

4 2.4 1.02×10−3 1.23×10−4 1.17×10−2 1.23×10−4

4 2.5 9.75×10−4 1.22×10−4 1.17×10−2 1.22×10−4

4 2.6 9.21×10−4 1.16×10−4 1.18×10−2 1.16×10−4

4 2.7 8.67×10−4 1.13×10−4 1.18×10−2 1.13×10−4

4 2.8 8.30×10−4 1.02×10−4 1.19×10−2 1.02×10−4

4 2.9 8.12×10−4 7.89×10−5 1.20×10−2 7.89×10−5

4 3.0 7.55×10−4 7.65×10−5 1.22×10−2 7.65×10−5

8 0.0 5.52×10−3 5.18×10−4 1.42×10−2 5.18×10−4

8 0.1 5.42×10−3 4.92×10−4 1.42×10−2 4.92×10−4

8 0.2 5.28×10−3 4.66×10−4 1.42×10−2 4.66×10−4

8 0.3 5.08×10−3 4.42×10−4 1.41×10−2 4.42×10−4

8 0.4 4.83×10−3 4.34×10−4 1.40×10−2 4.34×10−4

8 0.5 4.57×10−3 4.10×10−4 1.40×10−2 4.10×10−4

8 0.6 4.27×10−3 4.08×10−4 1.39×10−2 4.08×10−4

8 0.7 3.96×10−3 3.95×10−4 1.38×10−2 3.95×10−4

8 0.8 3.65×10−3 3.95×10−4 1.37×10−2 3.95×10−4

8 0.9 3.32×10−3 3.62×10−4 1.35×10−2 3.62×10−4

8 1.0 2.99×10−3 3.28×10−4 1.34×10−2 3.28×10−4

8 1.1 2.72×10−3 3.03×10−4 1.33×10−2 3.03×10−4

8 1.2 2.47×10−3 2.70×10−4 1.31×10−2 2.70×10−4

8 1.3 2.22×10−3 2.50×10−4 1.29×10−2 2.50×10−4
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Ex Ey

PPC r0/∆x L1 σ L1 σ

8 1.4 1.95×10−3 2.30×10−4 1.28×10−2 2.30×10−4

8 1.5 1.69×10−3 2.01×10−4 1.26×10−2 2.01×10−4

8 1.6 1.46×10−3 1.73×10−4 1.24×10−2 1.73×10−4

8 1.7 1.23×10−3 1.50×10−4 1.23×10−2 1.50×10−4

8 1.8 1.01×10−3 1.28×10−4 1.21×10−2 1.28×10−4

8 1.9 8.28×10−4 9.99×10−5 1.20×10−2 9.99×10−5

8 2.0 7.77×10−4 1.04×10−4 1.18×10−2 1.04×10−4

8 2.1 7.89×10−4 1.06×10−4 1.17×10−2 1.06×10−4

8 2.2 7.86×10−4 9.63×10−5 1.16×10−2 9.63×10−5

8 2.3 7.64×10−4 8.54×10−5 1.16×10−2 8.54×10−5

8 2.4 7.26×10−4 8.45×10−5 1.15×10−2 8.45×10−5

8 2.5 6.89×10−4 8.15×10−5 1.15×10−2 8.15×10−5

8 2.6 6.50×10−4 7.50×10−5 1.15×10−2 7.50×10−5

8 2.7 6.14×10−4 6.78×10−5 1.16×10−2 6.78×10−5

8 2.8 5.82×10−4 6.37×10−5 1.16×10−2 6.37×10−5

8 2.9 5.69×10−4 5.52×10−5 1.17×10−2 5.52×10−5

8 3.0 5.35×10−4 5.48×10−5 1.19×10−2 5.48×10−5

16 0.0 3.89×10−3 3.25×10−4 1.39×10−2 3.25×10−4

16 0.1 3.81×10−3 3.39×10−4 1.38×10−2 3.39×10−4

16 0.2 3.70×10−3 3.34×10−4 1.38×10−2 3.34×10−4

16 0.3 3.56×10−3 3.25×10−4 1.38×10−2 3.25×10−4

16 0.4 3.39×10−3 3.14×10−4 1.37×10−2 3.14×10−4

16 0.5 3.20×10−3 3.01×10−4 1.37×10−2 3.01×10−4

16 0.6 3.00×10−3 3.02×10−4 1.36×10−2 3.02×10−4

16 0.7 2.79×10−3 3.00×10−4 1.35×10−2 3.00×10−4

16 0.8 2.57×10−3 2.90×10−4 1.34×10−2 2.90×10−4

16 0.9 2.35×10−3 2.70×10−4 1.33×10−2 2.70×10−4

16 1.0 2.11×10−3 2.49×10−4 1.32×10−2 2.49×10−4

16 1.1 1.92×10−3 2.26×10−4 1.31×10−2 2.26×10−4

16 1.2 1.75×10−3 2.07×10−4 1.30×10−2 2.07×10−4

16 1.3 1.57×10−3 1.93×10−4 1.28×10−2 1.93×10−4

16 1.4 1.38×10−3 1.68×10−4 1.27×10−2 1.68×10−4

16 1.5 1.19×10−3 1.45×10−4 1.25×10−2 1.45×10−4

16 1.6 1.04×10−3 1.25×10−4 1.24×10−2 1.25×10−4

16 1.7 8.76×10−4 1.07×10−4 1.22×10−2 1.07×10−4

16 1.8 7.14×10−4 9.31×10−5 1.21×10−2 9.31×10−5

16 1.9 5.80×10−4 6.99×10−5 1.19×10−2 6.99×10−5

16 2.0 5.43×10−4 6.55×10−5 1.18×10−2 6.55×10−5

16 2.1 5.58×10−4 6.06×10−5 1.17×10−2 6.06×10−5

16 2.2 5.55×10−4 5.99×10−5 1.16×10−2 5.99×10−5

16 2.3 5.43×10−4 5.89×10−5 1.15×10−2 5.89×10−5

16 2.4 5.15×10−4 6.06×10−5 1.15×10−2 6.06×10−5

16 2.5 4.93×10−4 5.56×10−5 1.15×10−2 5.56×10−5

16 2.6 4.63×10−4 5.49×10−5 1.15×10−2 5.49×10−5

16 2.7 4.34×10−4 5.54×10−5 1.15×10−2 5.54×10−5

16 2.8 4.11×10−4 5.17×10−5 1.16×10−2 5.17×10−5

16 2.9 4.03×10−4 4.25×10−5 1.16×10−2 4.25×10−5

16 3.0 3.77×10−4 3.76×10−5 1.18×10−2 3.76×10−5

32 0.0 2.72×10−3 2.41×10−4 1.38×10−2 2.41×10−4

32 0.1 2.67×10−3 2.52×10−4 1.38×10−2 2.52×10−4

32 0.2 2.60×10−3 2.52×10−4 1.38×10−2 2.52×10−4

32 0.3 2.49×10−3 2.42×10−4 1.38×10−2 2.42×10−4

32 0.4 2.37×10−3 2.27×10−4 1.37×10−2 2.27×10−4

32 0.5 2.24×10−3 2.16×10−4 1.37×10−2 2.16×10−4

32 0.6 2.10×10−3 1.92×10−4 1.36×10−2 1.92×10−4
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Ex Ey

PPC r0/∆x L1 σ L1 σ

32 0.7 1.96×10−3 1.88×10−4 1.35×10−2 1.88×10−4

32 0.8 1.81×10−3 1.78×10−4 1.34×10−2 1.78×10−4

32 0.9 1.64×10−3 1.67×10−4 1.33×10−2 1.67×10−4

32 1.0 1.47×10−3 1.64×10−4 1.32×10−2 1.64×10−4

32 1.1 1.33×10−3 1.55×10−4 1.31×10−2 1.55×10−4

32 1.2 1.21×10−3 1.45×10−4 1.29×10−2 1.45×10−4

32 1.3 1.08×10−3 1.24×10−4 1.28×10−2 1.24×10−4

32 1.4 9.52×10−4 1.01×10−4 1.27×10−2 1.01×10−4

32 1.5 8.32×10−4 8.54×10−5 1.25×10−2 8.54×10−5

32 1.6 7.23×10−4 7.86×10−5 1.24×10−2 7.86×10−5

32 1.7 6.13×10−4 7.20×10−5 1.22×10−2 7.20×10−5

32 1.8 5.01×10−4 6.18×10−5 1.21×10−2 6.18×10−5

32 1.9 4.09×10−4 4.84×10−5 1.19×10−2 4.84×10−5

32 2.0 3.81×10−4 4.73×10−5 1.18×10−2 4.73×10−5

32 2.1 3.95×10−4 4.57×10−5 1.17×10−2 4.57×10−5

32 2.2 3.93×10−4 5.13×10−5 1.16×10−2 5.13×10−5

32 2.3 3.82×10−4 4.75×10−5 1.15×10−2 4.75×10−5

32 2.4 3.63×10−4 4.24×10−5 1.15×10−2 4.24×10−5

32 2.5 3.47×10−4 3.69×10−5 1.14×10−2 3.69×10−5

32 2.6 3.26×10−4 3.85×10−5 1.14×10−2 3.85×10−5

32 2.7 3.07×10−4 4.00×10−5 1.14×10−2 4.00×10−5

32 2.8 2.91×10−4 3.96×10−5 1.15×10−2 3.96×10−5

32 2.9 2.85×10−4 3.35×10−5 1.16×10−2 3.35×10−5

32 3.0 2.71×10−4 2.86×10−5 1.17×10−2 2.86×10−5

64 0.0 1.93×10−3 1.64×10−4 1.38×10−2 1.64×10−4

64 0.1 1.90×10−3 1.63×10−4 1.38×10−2 1.63×10−4

64 0.2 1.84×10−3 1.54×10−4 1.38×10−2 1.54×10−4

64 0.3 1.77×10−3 1.48×10−4 1.37×10−2 1.48×10−4

64 0.4 1.69×10−3 1.37×10−4 1.37×10−2 1.37×10−4

64 0.5 1.59×10−3 1.29×10−4 1.36×10−2 1.29×10−4

64 0.6 1.48×10−3 1.31×10−4 1.36×10−2 1.31×10−4

64 0.7 1.38×10−3 1.20×10−4 1.35×10−2 1.20×10−4

64 0.8 1.26×10−3 1.13×10−4 1.34×10−2 1.13×10−4

64 0.9 1.15×10−3 1.08×10−4 1.33×10−2 1.08×10−4

64 1.0 1.04×10−3 1.04×10−4 1.32×10−2 1.04×10−4

64 1.1 9.50×10−4 9.96×10−5 1.31×10−2 9.96×10−5

64 1.2 8.59×10−4 9.38×10−5 1.29×10−2 9.38×10−5

64 1.3 7.67×10−4 8.26×10−5 1.28×10−2 8.26×10−5

64 1.4 6.79×10−4 7.07×10−5 1.26×10−2 7.07×10−5

64 1.5 5.94×10−4 6.51×10−5 1.25×10−2 6.51×10−5

64 1.6 5.16×10−4 6.24×10−5 1.24×10−2 6.24×10−5

64 1.7 4.37×10−4 5.36×10−5 1.22×10−2 5.36×10−5

64 1.8 3.56×10−4 4.41×10−5 1.21×10−2 4.41×10−5

64 1.9 2.92×10−4 3.59×10−5 1.20×10−2 3.59×10−5

64 2.0 2.69×10−4 3.30×10−5 1.18×10−2 3.30×10−5

64 2.1 2.75×10−4 3.31×10−5 1.17×10−2 3.31×10−5

64 2.2 2.75×10−4 3.57×10−5 1.16×10−2 3.57×10−5

64 2.3 2.70×10−4 3.30×10−5 1.15×10−2 3.30×10−5

64 2.4 2.58×10−4 3.05×10−5 1.15×10−2 3.05×10−5

64 2.5 2.46×10−4 2.89×10−5 1.14×10−2 2.89×10−5

64 2.6 2.34×10−4 2.95×10−5 1.14×10−2 2.95×10−5

64 2.7 2.22×10−4 2.73×10−5 1.14×10−2 2.73×10−5

64 2.8 2.08×10−4 2.52×10−5 1.15×10−2 2.52×10−5

64 2.9 2.01×10−4 1.99×10−5 1.16×10−2 1.99×10−5

64 3.0 1.90×10−4 1.98×10−5 1.17×10−2 1.98×10−5
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Table B.5: Parameter scan results for magnetic field in the TEM wave tests.

Bx By

PPC r0/∆x L1 σ L1 σ

1 0.0 1.14×10−2 6.27×10−4 7.22×10−5 6.27×10−4

1 0.1 1.14×10−2 6.24×10−4 7.16×10−5 6.24×10−4

1 0.2 1.14×10−2 6.23×10−4 6.99×10−5 6.23×10−4

1 0.3 1.14×10−2 6.22×10−4 6.48×10−5 6.22×10−4

1 0.4 1.13×10−2 6.21×10−4 6.04×10−5 6.21×10−4

1 0.5 1.12×10−2 6.19×10−4 5.41×10−5 6.19×10−4

1 0.6 1.12×10−2 6.17×10−4 4.83×10−5 6.17×10−4

1 0.7 1.11×10−2 6.17×10−4 4.24×10−5 6.17×10−4

1 0.8 1.09×10−2 6.16×10−4 3.66×10−5 6.16×10−4

1 0.9 1.08×10−2 6.14×10−4 3.09×10−5 6.14×10−4

1 1.0 1.07×10−2 6.13×10−4 2.54×10−5 6.13×10−4

1 1.1 1.05×10−2 6.12×10−4 2.05×10−5 6.12×10−4

1 1.2 1.04×10−2 6.11×10−4 1.63×10−5 6.11×10−4

1 1.3 1.02×10−2 6.09×10−4 1.27×10−5 6.09×10−4

1 1.4 1.01×10−2 6.06×10−4 9.66×10−6 6.06×10−4

1 1.5 9.93×10−3 6.03×10−4 7.19×10−6 6.03×10−4

1 1.6 9.77×10−3 6.01×10−4 5.22×10−6 6.01×10−4

1 1.7 9.63×10−3 6.00×10−4 3.72×10−6 6.00×10−4

1 1.8 9.48×10−3 6.00×10−4 2.60×10−6 6.00×10−4

1 1.9 9.33×10−3 6.00×10−4 1.77×10−6 6.00×10−4

1 2.0 9.18×10−3 5.99×10−4 1.30×10−6 5.99×10−4

1 2.1 9.04×10−3 5.97×10−4 1.03×10−6 5.97×10−4

1 2.2 8.92×10−3 5.93×10−4 7.93×10−7 5.93×10−4

1 2.3 8.82×10−3 5.84×10−4 6.23×10−7 5.84×10−4

1 2.4 8.74×10−3 5.81×10−4 4.98×10−7 5.81×10−4

1 2.5 8.68×10−3 5.75×10−4 4.11×10−7 5.75×10−4

1 2.6 8.63×10−3 5.72×10−4 3.55×10−7 5.72×10−4

1 2.7 8.63×10−3 5.67×10−4 3.15×10−7 5.67×10−4

1 2.8 8.67×10−3 5.59×10−4 2.91×10−7 5.59×10−4

1 2.9 8.74×10−3 5.53×10−4 3.05×10−7 5.53×10−4

1 3.0 8.83×10−3 5.45×10−4 3.14×10−7 5.45×10−4

2 0.0 1.13×10−2 4.16×10−4 3.50×10−5 4.16×10−4

2 0.1 1.13×10−2 4.15×10−4 3.43×10−5 4.15×10−4

2 0.2 1.13×10−2 4.15×10−4 3.28×10−5 4.15×10−4

2 0.3 1.13×10−2 4.14×10−4 3.06×10−5 4.14×10−4

2 0.4 1.12×10−2 4.13×10−4 2.80×10−5 4.13×10−4

2 0.5 1.12×10−2 4.12×10−4 2.55×10−5 4.12×10−4

2 0.6 1.11×10−2 4.11×10−4 2.30×10−5 4.11×10−4

2 0.7 1.10×10−2 4.10×10−4 2.00×10−5 4.10×10−4

2 0.8 1.09×10−2 4.08×10−4 1.75×10−5 4.08×10−4

2 0.9 1.08×10−2 4.07×10−4 1.48×10−5 4.07×10−4

2 1.0 1.07×10−2 4.07×10−4 1.22×10−5 4.07×10−4

2 1.1 1.05×10−2 4.07×10−4 9.75×10−6 4.07×10−4

2 1.2 1.04×10−2 4.07×10−4 7.73×10−6 4.07×10−4

2 1.3 1.02×10−2 4.09×10−4 6.01×10−6 4.09×10−4

2 1.4 1.01×10−2 4.08×10−4 4.51×10−6 4.08×10−4

2 1.5 9.91×10−3 4.06×10−4 3.44×10−6 4.06×10−4

2 1.6 9.76×10−3 4.05×10−4 2.55×10−6 4.05×10−4

2 1.7 9.62×10−3 4.04×10−4 1.82×10−6 4.04×10−4

2 1.8 9.48×10−3 4.03×10−4 1.25×10−6 4.03×10−4

2 1.9 9.34×10−3 4.03×10−4 8.53×10−7 4.03×10−4

2 2.0 9.19×10−3 4.01×10−4 6.25×10−7 4.01×10−4
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Bx By

PPC r0/∆x L1 σ L1 σ

2 2.1 9.04×10−3 4.02×10−4 5.02×10−7 4.02×10−4

2 2.2 8.91×10−3 4.00×10−4 3.86×10−7 4.00×10−4

2 2.3 8.82×10−3 3.98×10−4 3.09×10−7 3.98×10−4

2 2.4 8.75×10−3 3.94×10−4 2.35×10−7 3.94×10−4

2 2.5 8.69×10−3 3.92×10−4 1.94×10−7 3.92×10−4

2 2.6 8.64×10−3 3.88×10−4 1.63×10−7 3.88×10−4

2 2.7 8.63×10−3 3.88×10−4 1.53×10−7 3.88×10−4

2 2.8 8.68×10−3 3.85×10−4 1.49×10−7 3.85×10−4

2 2.9 8.75×10−3 3.81×10−4 1.58×10−7 3.81×10−4

2 3.0 8.83×10−3 3.77×10−4 1.58×10−7 3.77×10−4

4 0.0 1.13×10−2 3.08×10−4 1.85×10−5 3.08×10−4

4 0.1 1.13×10−2 3.08×10−4 1.83×10−5 3.08×10−4

4 0.2 1.13×10−2 3.08×10−4 1.77×10−5 3.08×10−4

4 0.3 1.12×10−2 3.07×10−4 1.67×10−5 3.07×10−4

4 0.4 1.12×10−2 3.07×10−4 1.53×10−5 3.07×10−4

4 0.5 1.11×10−2 3.06×10−4 1.39×10−5 3.06×10−4

4 0.6 1.11×10−2 3.05×10−4 1.22×10−5 3.05×10−4

4 0.7 1.10×10−2 3.05×10−4 1.05×10−5 3.05×10−4

4 0.8 1.09×10−2 3.04×10−4 8.90×10−6 3.04×10−4

4 0.9 1.08×10−2 3.03×10−4 7.45×10−6 3.03×10−4

4 1.0 1.07×10−2 3.03×10−4 6.06×10−6 3.03×10−4

4 1.1 1.05×10−2 3.02×10−4 4.89×10−6 3.02×10−4

4 1.2 1.04×10−2 3.02×10−4 3.92×10−6 3.02×10−4

4 1.3 1.02×10−2 3.01×10−4 3.07×10−6 3.01×10−4

4 1.4 1.01×10−2 3.01×10−4 2.31×10−6 3.01×10−4

4 1.5 9.91×10−3 3.00×10−4 1.72×10−6 3.00×10−4

4 1.6 9.76×10−3 2.96×10−4 1.26×10−6 2.96×10−4

4 1.7 9.63×10−3 2.93×10−4 9.07×10−7 2.93×10−4

4 1.8 9.49×10−3 2.93×10−4 6.19×10−7 2.93×10−4

4 1.9 9.35×10−3 2.92×10−4 4.23×10−7 2.92×10−4

4 2.0 9.20×10−3 2.91×10−4 3.12×10−7 2.91×10−4

4 2.1 9.05×10−3 2.90×10−4 2.61×10−7 2.90×10−4

4 2.2 8.92×10−3 2.90×10−4 2.12×10−7 2.90×10−4

4 2.3 8.83×10−3 2.85×10−4 1.65×10−7 2.85×10−4

4 2.4 8.77×10−3 2.82×10−4 1.28×10−7 2.82×10−4

4 2.5 8.71×10−3 2.81×10−4 1.00×10−7 2.81×10−4

4 2.6 8.65×10−3 2.79×10−4 7.87×10−8 2.79×10−4

4 2.7 8.63×10−3 2.77×10−4 6.70×10−8 2.77×10−4

4 2.8 8.69×10−3 2.74×10−4 6.67×10−8 2.74×10−4

4 2.9 8.76×10−3 2.72×10−4 6.89×10−8 2.72×10−4

4 3.0 8.84×10−3 2.70×10−4 7.23×10−8 2.70×10−4

8 0.0 1.13×10−2 2.21×10−4 8.98×10−6 2.21×10−4

8 0.1 1.13×10−2 2.21×10−4 8.71×10−6 2.21×10−4

8 0.2 1.12×10−2 2.21×10−4 8.57×10−6 2.21×10−4

8 0.3 1.12×10−2 2.21×10−4 8.06×10−6 2.21×10−4

8 0.4 1.12×10−2 2.20×10−4 7.37×10−6 2.20×10−4

8 0.5 1.11×10−2 2.20×10−4 6.67×10−6 2.20×10−4

8 0.6 1.10×10−2 2.19×10−4 5.97×10−6 2.19×10−4

8 0.7 1.10×10−2 2.19×10−4 5.22×10−6 2.19×10−4

8 0.8 1.09×10−2 2.18×10−4 4.41×10−6 2.18×10−4

8 0.9 1.08×10−2 2.18×10−4 3.68×10−6 2.18×10−4

8 1.0 1.06×10−2 2.17×10−4 3.02×10−6 2.17×10−4

8 1.1 1.05×10−2 2.17×10−4 2.44×10−6 2.17×10−4

8 1.2 1.04×10−2 2.16×10−4 1.95×10−6 2.16×10−4

8 1.3 1.02×10−2 2.16×10−4 1.53×10−6 2.16×10−4
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Bx By

PPC r0/∆x L1 σ L1 σ

8 1.4 1.00×10−2 2.15×10−4 1.16×10−6 2.15×10−4

8 1.5 9.89×10−3 2.17×10−4 8.54×10−7 2.17×10−4

8 1.6 9.75×10−3 2.19×10−4 6.19×10−7 2.19×10−4

8 1.7 9.62×10−3 2.19×10−4 4.41×10−7 2.19×10−4

8 1.8 9.49×10−3 2.18×10−4 3.06×10−7 2.18×10−4

8 1.9 9.35×10−3 2.18×10−4 2.01×10−7 2.18×10−4

8 2.0 9.20×10−3 2.17×10−4 1.50×10−7 2.17×10−4

8 2.1 9.04×10−3 2.17×10−4 1.25×10−7 2.17×10−4

8 2.2 8.90×10−3 2.18×10−4 1.00×10−7 2.18×10−4

8 2.3 8.83×10−3 2.19×10−4 7.97×10−8 2.19×10−4

8 2.4 8.77×10−3 2.18×10−4 6.27×10−8 2.18×10−4

8 2.5 8.70×10−3 2.17×10−4 4.97×10−8 2.17×10−4

8 2.6 8.64×10−3 2.16×10−4 4.07×10−8 2.16×10−4

8 2.7 8.62×10−3 2.15×10−4 3.58×10−8 2.15×10−4

8 2.8 8.69×10−3 2.14×10−4 3.52×10−8 2.14×10−4

8 2.9 8.76×10−3 2.13×10−4 3.54×10−8 2.13×10−4

8 3.0 8.83×10−3 2.12×10−4 3.79×10−8 2.12×10−4

16 0.0 1.13×10−2 1.51×10−4 4.47×10−6 1.51×10−4

16 0.1 1.12×10−2 1.51×10−4 4.47×10−6 1.51×10−4

16 0.2 1.12×10−2 1.51×10−4 4.34×10−6 1.51×10−4

16 0.3 1.12×10−2 1.51×10−4 4.10×10−6 1.51×10−4

16 0.4 1.12×10−2 1.50×10−4 3.76×10−6 1.50×10−4

16 0.5 1.11×10−2 1.50×10−4 3.44×10−6 1.50×10−4

16 0.6 1.10×10−2 1.50×10−4 3.04×10−6 1.50×10−4

16 0.7 1.09×10−2 1.50×10−4 2.68×10−6 1.50×10−4

16 0.8 1.09×10−2 1.49×10−4 2.32×10−6 1.49×10−4

16 0.9 1.07×10−2 1.49×10−4 1.95×10−6 1.49×10−4

16 1.0 1.06×10−2 1.48×10−4 1.59×10−6 1.48×10−4

16 1.1 1.05×10−2 1.48×10−4 1.28×10−6 1.48×10−4

16 1.2 1.04×10−2 1.48×10−4 1.01×10−6 1.48×10−4

16 1.3 1.02×10−2 1.47×10−4 7.83×10−7 1.47×10−4

16 1.4 1.00×10−2 1.47×10−4 5.94×10−7 1.47×10−4

16 1.5 9.87×10−3 1.50×10−4 4.37×10−7 1.50×10−4

16 1.6 9.74×10−3 1.52×10−4 3.18×10−7 1.52×10−4

16 1.7 9.61×10−3 1.52×10−4 2.25×10−7 1.52×10−4

16 1.8 9.48×10−3 1.52×10−4 1.55×10−7 1.52×10−4

16 1.9 9.34×10−3 1.51×10−4 1.00×10−7 1.51×10−4

16 2.0 9.19×10−3 1.51×10−4 7.26×10−8 1.51×10−4

16 2.1 9.04×10−3 1.51×10−4 6.04×10−8 1.51×10−4

16 2.2 8.89×10−3 1.54×10−4 4.90×10−8 1.54×10−4

16 2.3 8.82×10−3 1.54×10−4 3.99×10−8 1.54×10−4

16 2.4 8.76×10−3 1.53×10−4 3.22×10−8 1.53×10−4

16 2.5 8.69×10−3 1.52×10−4 2.63×10−8 1.52×10−4

16 2.6 8.63×10−3 1.52×10−4 2.17×10−8 1.52×10−4

16 2.7 8.61×10−3 1.52×10−4 1.86×10−8 1.52×10−4

16 2.8 8.67×10−3 1.51×10−4 1.78×10−8 1.51×10−4

16 2.9 8.74×10−3 1.50×10−4 1.81×10−8 1.50×10−4

16 3.0 8.82×10−3 1.49×10−4 1.92×10−8 1.49×10−4

32 0.0 1.12×10−2 1.11×10−4 2.32×10−6 1.11×10−4

32 0.1 1.12×10−2 1.11×10−4 2.33×10−6 1.11×10−4

32 0.2 1.12×10−2 1.11×10−4 2.25×10−6 1.11×10−4

32 0.3 1.12×10−2 1.11×10−4 2.11×10−6 1.11×10−4

32 0.4 1.11×10−2 1.11×10−4 1.95×10−6 1.11×10−4

32 0.5 1.11×10−2 1.10×10−4 1.73×10−6 1.10×10−4

32 0.6 1.10×10−2 1.10×10−4 1.52×10−6 1.10×10−4

Continued on next page

162



Higher-Order Particle Representation

Bx By

PPC r0/∆x L1 σ L1 σ

32 0.7 1.09×10−2 1.10×10−4 1.32×10−6 1.10×10−4

32 0.8 1.08×10−2 1.10×10−4 1.14×10−6 1.10×10−4

32 0.9 1.07×10−2 1.09×10−4 9.50×10−7 1.09×10−4

32 1.0 1.06×10−2 1.09×10−4 7.75×10−7 1.09×10−4

32 1.1 1.05×10−2 1.09×10−4 6.26×10−7 1.09×10−4

32 1.2 1.03×10−2 1.09×10−4 4.98×10−7 1.09×10−4

32 1.3 1.02×10−2 1.08×10−4 3.87×10−7 1.08×10−4

32 1.4 1.00×10−2 1.08×10−4 2.93×10−7 1.08×10−4

32 1.5 9.85×10−3 1.11×10−4 2.17×10−7 1.11×10−4

32 1.6 9.72×10−3 1.13×10−4 1.56×10−7 1.13×10−4

32 1.7 9.59×10−3 1.13×10−4 1.10×10−7 1.13×10−4

32 1.8 9.46×10−3 1.12×10−4 7.60×10−8 1.12×10−4

32 1.9 9.32×10−3 1.12×10−4 5.04×10−8 1.12×10−4

32 2.0 9.17×10−3 1.12×10−4 3.80×10−8 1.12×10−4

32 2.1 9.02×10−3 1.12×10−4 3.16×10−8 1.12×10−4

32 2.2 8.86×10−3 1.14×10−4 2.50×10−8 1.14×10−4

32 2.3 8.80×10−3 1.14×10−4 1.99×10−8 1.14×10−4

32 2.4 8.74×10−3 1.14×10−4 1.58×10−8 1.14×10−4

32 2.5 8.67×10−3 1.13×10−4 1.29×10−8 1.13×10−4

32 2.6 8.61×10−3 1.12×10−4 1.06×10−8 1.12×10−4

32 2.7 8.59×10−3 1.13×10−4 9.08×10−9 1.13×10−4

32 2.8 8.66×10−3 1.12×10−4 8.84×10−9 1.12×10−4

32 2.9 8.73×10−3 1.11×10−4 9.62×10−9 1.11×10−4

32 3.0 8.80×10−3 1.10×10−4 1.00×10−8 1.10×10−4

64 0.0 1.12×10−2 7.30×10−5 1.10×10−6 7.30×10−5

64 0.1 1.12×10−2 7.30×10−5 1.09×10−6 7.30×10−5

64 0.2 1.12×10−2 7.30×10−5 1.05×10−6 7.30×10−5

64 0.3 1.12×10−2 7.29×10−5 9.88×10−7 7.29×10−5

64 0.4 1.11×10−2 7.28×10−5 9.01×10−7 7.28×10−5

64 0.5 1.11×10−2 7.27×10−5 8.09×10−7 7.27×10−5

64 0.6 1.10×10−2 7.25×10−5 7.07×10−7 7.25×10−5

64 0.7 1.09×10−2 7.23×10−5 6.16×10−7 7.23×10−5

64 0.8 1.08×10−2 7.22×10−5 5.30×10−7 7.22×10−5

64 0.9 1.07×10−2 7.20×10−5 4.43×10−7 7.20×10−5

64 1.0 1.06×10−2 7.19×10−5 3.62×10−7 7.19×10−5

64 1.1 1.05×10−2 7.17×10−5 2.90×10−7 7.17×10−5

64 1.2 1.03×10−2 7.15×10−5 2.29×10−7 7.15×10−5

64 1.3 1.02×10−2 7.12×10−5 1.78×10−7 7.12×10−5

64 1.4 1.00×10−2 7.10×10−5 1.36×10−7 7.10×10−5

64 1.5 9.84×10−3 7.19×10−5 1.00×10−7 7.19×10−5

64 1.6 9.71×10−3 7.17×10−5 7.30×10−8 7.17×10−5

64 1.7 9.58×10−3 7.15×10−5 5.25×10−8 7.15×10−5

64 1.8 9.45×10−3 7.13×10−5 3.62×10−8 7.13×10−5

64 1.9 9.31×10−3 7.11×10−5 2.36×10−8 7.11×10−5

64 2.0 9.16×10−3 7.09×10−5 1.72×10−8 7.09×10−5

64 2.1 9.01×10−3 7.07×10−5 1.43×10−8 7.07×10−5

64 2.2 8.85×10−3 7.07×10−5 1.17×10−8 7.07×10−5

64 2.3 8.79×10−3 7.07×10−5 9.35×10−9 7.07×10−5

64 2.4 8.73×10−3 7.04×10−5 7.53×10−9 7.04×10−5

64 2.5 8.67×10−3 7.01×10−5 6.06×10−9 7.01×10−5

64 2.6 8.60×10−3 6.97×10−5 5.14×10−9 6.97×10−5

64 2.7 8.58×10−3 6.92×10−5 4.70×10−9 6.92×10−5

64 2.8 8.65×10−3 6.87×10−5 4.54×10−9 6.87×10−5

64 2.9 8.72×10−3 6.82×10−5 4.67×10−9 6.82×10−5

64 3.0 8.80×10−3 6.78×10−5 5.02×10−9 6.78×10−5
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Table B.6: Parameter scan results for numerical heating tests.

λD

PPC r0/∆x ∆x ∆x/2 ∆x/4

16 0.0 1.2291 1.2596 2.2231

16 0.1 1.2069 1.2516 2.1692

16 0.2 1.1769 1.1959 2.0251

16 0.3 1.1433 1.1526 1.8078

16 0.4 1.1075 1.1067 1.6103

16 0.5 1.0814 1.0730 1.4038

16 0.6 1.0498 1.0439 1.2609

16 0.7 1.0348 1.0249 1.1521

16 0.8 1.0179 1.0120 1.0779

16 0.9 1.0158 1.0053 1.0413

16 1.0 1.0070 1.0017 1.0204

16 1.1 1.0073 1.0017 1.0165

16 1.2 1.0040 1.0018 1.0108

16 1.3 1.0020 1.0027 1.0117

16 1.4 1.0024 1.0042 1.0149

16 1.5 1.0008 1.0034 1.0199

32 0.0 1.0818 1.1323 1.6853

32 0.1 1.0820 1.1215 1.6411

32 0.2 1.0668 1.1032 1.5731

32 0.3 1.0580 1.0775 1.4551

32 0.4 1.0429 1.0538 1.3443

32 0.5 1.0328 1.0362 1.2234

32 0.6 1.0227 1.0188 1.1448

32 0.7 1.0144 1.0115 1.0836

32 0.8 1.0099 1.0062 1.0409

32 0.9 1.0064 1.0020 1.0203

32 1.0 1.0038 1.0008 1.0121

32 1.1 1.0033 1.0002 1.0070

32 1.2 1.0019 1.0015 1.0040

32 1.3 1.0014 1.0010 1.0049

32 1.4 1.0016 1.0007 1.0099

32 1.5 1.0006 1.0014 1.0129

64 0.0 1.0385 1.0695 1.3834

64 0.1 1.0373 1.0602 1.3565

64 0.2 1.0328 1.0528 1.2991

64 0.3 1.0259 1.0416 1.2396

64 0.4 1.0190 1.0260 1.1779

64 0.5 1.0154 1.0182 1.1193

64 0.6 1.0107 1.0099 1.0715

64 0.7 1.0074 1.0053 1.0432

64 0.8 1.0047 1.0030 1.0210

64 0.9 1.0039 1.0014 1.0108

64 1.0 1.0017 1.0009 1.0052

64 1.1 1.0014 1.0006 1.0037

64 1.2 1.0014 1.0001 1.0026

64 1.3 1.0003 1.0002 1.0028

64 1.4 1.0005 1.0006 1.0030

64 1.5 1.0003 1.0007 1.0044
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Table C.1: PPC scaling using smooth particles with three-point quadrature for
electrostatics.

Count BDW KNL CL TX2 P100 V100

215 12.638 16.036 6.152 10.885 4.850 2.794
216 24.448 28.034 12.193 17.286 7.964 4.947
217 48.246 53.697 23.961 30.372 14.435 8.805
218 95.483 99.916 47.721 58.545 27.224 16.751
219 190.407 201.696 97.496 119.896 52.936 32.009
220 380.364 397.226 194.597 232.573 102.376 62.578

Table C.2: PPC scaling using smooth particles with five-point quadrature for
electrostatics.

Count BDW KNL CL TX2 P100 V100

215 31.577 36.147 14.923 19.788 11.602 5.845
216 62.798 60.926 29.954 35.489 19.436 11.583
217 125.676 121.851 60.794 76.922 37.624 22.427
218 249.527 240.099 121.394 152.292 70.580 42.751
219 497.373 473.640 241.924 297.179 139.138 82.638
220 993.782 931.088 484.818 586.873 265.918 160.581

Table C.3: PPC scaling using smooth particles with three-point quadrature for
electromagnetics.

Count BDW KNL CL TX2 P100 V100

215 49.702 44.527 24.348 29.155 19.909 8.889
216 98.587 81.819 48.564 54.477 30.420 13.493
217 196.380 157.910 95.711 104.827 50.896 22.647
218 392.636 313.926 190.931 207.618 92.895 40.798
219 785.835 629.013 382.645 416.210 177.084 78.482
220 1572.320 1241.760 766.342 828.313 345.717 155.461
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Table C.4: PPC scaling using smooth particles with five-point quadrature for
electromagnetics.

Count BDW KNL CL TX2 P100 V100

215 221.610 177.498 108.720 117.608 67.360 30.449
216 443.003 350.737 216.546 231.420 115.007 52.423
217 885.496 698.394 429.134 464.816 208.516 94.777
218 1769.360 1401.660 851.952 925.406 398.444 178.080
219 3540.050 2796.960 1710.160 1844.310 783.678 349.510
220 7077.140 5524.040 3420.340 3686.580 1562.870 695.983

Table C.5: Smooth particles slowdown versus base code with three-point quadra-
ture for electrostatics.

Count BDW KNL CL TX2 P100 V100

215 5.535 1.191 6.158 1.346 2.544 1.924
216 6.550 2.313 6.487 2.056 3.109 2.524
217 6.694 2.912 6.654 2.915 3.581 2.743
218 7.347 3.161 6.777 3.245 3.871 3.157
219 7.740 3.409 7.023 4.539 3.764 3.418
220 7.772 3.433 6.986 5.104 4.160 3.449

Table C.6: Smooth particles slowdown versus base code with five-point quadra-
ture for electrostatics.

Count BDW KNL CL TX2 P100 V100

215 13.830 2.685 14.938 2.448 6.087 4.025
216 16.824 5.027 15.935 4.221 7.589 5.910
217 17.436 6.607 16.882 7.382 9.333 6.987
218 19.200 7.595 17.240 8.442 10.037 8.058
219 20.219 8.006 17.427 11.249 9.893 8.826
220 20.306 8.047 17.405 12.879 10.806 8.850

Table C.7: Smooth particles slowdown versus base code with three-point quadra-
ture for electromagnetics.

Count BDW KNL CL TX2 P100 V100

215 19.771 6.286 23.317 5.553 6.284 5.054
216 22.605 9.686 24.369 8.765 8.668 5.896
217 22.914 16.726 25.085 12.832 11.280 7.881
218 23.832 18.651 25.470 14.468 14.124 10.328
219 24.212 21.302 25.684 18.498 16.483 12.757
220 24.267 21.233 25.412 20.075 18.164 15.188

Table C.8: Smooth particles slowdown versus base code with five-point quadra-
ture for electromagnetics.

Count BDW KNL CL TX2 P100 V100

215 88.154 25.059 104.118 22.399 21.261 17.313
216 101.574 41.521 108.660 37.235 32.771 22.908
217 103.320 73.974 112.473 56.900 46.213 32.981
218 107.395 83.277 113.650 64.487 60.582 45.083
219 109.069 94.720 114.790 81.967 72.945 56.812
220 109.226 94.455 113.419 89.348 82.115 67.993
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Table C.9: Broadwell particle update strong scaling data.

Electrostatic Electromagnetic

Cores Base Three-Point Five-Point Base Three-Point Five-Point

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.943 1.982 1.980 1.976 1.978 1.986
4 3.371 3.544 3.592 3.585 3.588 3.574
8 5.346 6.056 6.100 6.122 6.166 6.161

14 7.917 9.827 9.865 10.075 10.174 10.220

Table C.10: Cascade Lake particle update strong scaling data.

Electrostatic Electromagnetic

Cores Base Three-Point Five-Point Base Three-Point Five-Point

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.879 1.921 1.931 1.926 1.936 1.933
4 3.436 3.637 3.688 3.699 3.691 3.675
8 6.315 7.114 7.191 7.259 7.212 7.269

16 9.942 12.745 12.989 13.313 13.139 13.206
24 12.084 16.820 17.254 17.431 17.554 17.628

Table C.11: KNL particle update strong scaling data.

Electrostatic Electromagnetic

Cores Base Three-Point Five-Point Base Three-Point Five-Point

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.875 1.945 1.949 1.951 1.954 1.950
4 3.346 3.695 3.708 3.743 3.760 3.744
8 5.862 7.214 7.309 7.431 7.481 7.447

16 9.007 13.279 13.594 14.269 14.404 14.418
32 8.770 16.615 15.927 19.665 21.328 21.474
64 15.865 42.944 45.060 49.582 53.995 55.986

Table C.12: ThunderX2 particle update strong scaling data.

Electrostatic Electromagnetic

Cores Base Three-Point Five-Point Base Three-Point Five-Point

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.948 1.991 1.984 1.990 1.997 1.989
4 3.685 3.933 3.930 3.947 3.984 3.954
8 6.597 7.765 7.724 7.703 7.929 7.892

16 10.654 14.627 14.918 14.645 15.619 15.499
32 13.713 24.257 24.034 25.110 27.938 27.968
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Table C.13: Error versus cost results for the base code.

Refine PPC Ex Ey Time

1 1 1.50×10−2 1.80×10−2 7.584

1 2 1.16×10−2 1.36×10−2 7.560

1 4 7.84×10−3 9.47×10−3 7.641

1 8 5.81×10−3 7.17×10−3 7.683

1 16 3.43×10−3 5.11×10−3 7.829

1 32 2.58×10−3 4.21×10−3 7.740

1 64 2.00×10−3 3.56×10−3 8.053

2 1 1.43×10−2 1.74×10−2 20.554

2 2 1.14×10−2 1.30×10−2 20.448

2 4 8.32×10−3 9.46×10−3 20.188

2 8 5.71×10−3 6.46×10−3 20.624

2 16 3.69×10−3 4.34×10−3 21.101

2 32 2.74×10−3 3.27×10−3 20.842

2 64 1.91×10−3 2.31×10−3 21.800

3 1 1.51×10−2 1.76×10−2 64.354

3 2 1.15×10−2 1.33×10−2 63.056

3 4 7.88×10−3 9.07×10−3 62.965

3 8 5.58×10−3 6.46×10−3 64.003

3 16 3.69×10−3 4.52×10−3 65.048

3 32 2.69×10−3 3.28×10−3 70.616

3 64 1.96×10−3 2.30×10−3 74.791

4 1 1.57×10−2 1.84×10−2 195.229

4 2 1.14×10−2 1.35×10−2 197.448

4 4 7.93×10−3 9.24×10−3 192.805

4 8 5.57×10−3 6.55×10−3 201.532

4 16 3.81×10−3 4.39×10−3 209.761

4 32 2.82×10−3 3.29×10−3 215.343

4 64 1.95×10−3 2.26×10−3 243.668

Concluded

Table C.14: Error versus cost results for three-point cubature..

Refine PPC Ex Ey Time

0 1 4.75×10−3 1.36×10−2 3.379

0 2 3.72×10−3 1.27×10−2 3.236

0 4 2.72×10−3 1.21×10−2 3.281

0 8 1.83×10−3 1.17×10−2 3.433

0 16 1.11×10−3 1.16×10−2 3.598

0 32 8.81×10−4 1.19×10−2 4.000

0 64 6.71×10−4 1.19×10−2 4.771

1 1 4.97×10−3 7.98×10−3 8.432

1 2 3.69×10−3 5.97×10−3 8.230

1 4 2.53×10−3 4.60×10−3 8.687

1 8 1.97×10−3 3.88×10−3 9.055

1 16 1.09×10−3 3.24×10−3 9.730

1 32 8.70×10−4 2.97×10−3 10.941

1 64 7.22×10−4 2.76×10−3 13.407

2 1 5.05×10−3 7.62×10−3 24.118

2 2 3.82×10−3 5.78×10−3 23.972

2 4 2.81×10−3 3.99×10−3 24.315

2 8 1.99×10−3 2.93×10−3 26.183

Continued on next page
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Refine PPC Ex Ey Time

2 16 1.28×10−3 2.00×10−3 30.564

2 32 9.28×10−4 1.54×10−3 37.623

2 64 6.77×10−4 1.24×10−3 51.852

3 1 5.17×10−3 7.88×10−3 72.407

3 2 3.78×10−3 5.55×10−3 74.762

3 4 2.57×10−3 3.87×10−3 83.884

3 8 1.88×10−3 2.87×10−3 101.520

3 16 1.24×10−3 2.01×10−3 136.851

3 32 9.14×10−4 1.46×10−3 198.215

3 64 6.92×10−4 1.02×10−3 323.609

4 1 5.30×10−3 8.08×10−3 211.388

4 2 3.78×10−3 5.75×10−3 246.184

4 4 2.65×10−3 3.95×10−3 284.260

4 8 1.89×10−3 2.81×10−3 373.819

4 16 1.29×10−3 1.91×10−3 542.866

4 32 9.30×10−4 1.43×10−3 860.872

4 64 6.55×10−4 1.02×10−3 1496.260

Concluded

Table C.15: Error versus cost results for five-point cubature..

Refine PPC Ex Ey Time

0 1 1.97×10−3 1.21×10−2 3.917

0 2 1.63×10−3 1.22×10−2 3.813

0 4 1.14×10−3 1.17×10−2 4.247

0 8 7.67×10−4 1.16×10−2 4.656

0 16 4.33×10−4 1.16×10−2 4.961

0 32 3.19×10−4 1.18×10−2 7.030

0 64 2.22×10−4 1.18×10−2 9.872

1 1 2.15×10−3 4.36×10−3 9.390

1 2 1.54×10−3 3.68×10−3 9.449

1 4 9.78×10−4 3.11×10−3 10.237

1 8 8.12×10−4 2.84×10−3 11.372

1 16 4.51×10−4 2.77×10−3 15.108

1 32 3.53×10−4 2.76×10−3 21.204

1 64 2.84×10−4 2.70×10−3 32.972

2 1 2.04×10−3 3.65×10−3 29.753

2 2 1.61×10−3 2.65×10−3 30.807

2 4 1.17×10−3 1.86×10−3 33.313

2 8 8.03×10−4 1.32×10−3 42.806

2 16 4.86×10−4 1.02×10−3 62.851

2 32 3.54×10−4 8.68×10−4 95.305

2 64 2.60×10−4 8.03×10−4 159.957

3 1 2.11×10−3 3.62×10−3 94.600

3 2 1.60×10−3 2.54×10−3 108.346

3 4 1.02×10−3 1.75×10−3 149.248

3 8 7.58×10−4 1.26×10−3 230.604

3 16 4.71×10−4 9.06×10−4 388.879

3 32 3.56×10−4 6.47×10−4 673.549

3 64 2.72×10−4 4.71×10−4 1235.850

4 1 2.22×10−3 3.73×10−3 308.424

4 2 1.62×10−3 2.73×10−3 421.746

4 4 1.09×10−3 1.83×10−3 631.858
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Refine PPC Ex Ey Time

4 8 7.72×10−4 1.30×10−3 1012.030

4 16 5.21×10−4 8.69×10−4 1788.800

4 32 3.82×10−4 6.36×10−4 3255.650

4 64 2.65×10−4 4.52×10−4 6151.890
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