
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/177504 

 

 

 

 
Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/177504
mailto:wrap@warwick.ac.uk


Vector Addition Systems
and their

Applications in the Verification of
Computer Programs

by

Alexander Dixon

Thesis

Submitted to the University of Warwick
in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

November 2022



Contents

List of Tables v

List of Figures vi

Acknowledgments ix

Declarations xi

1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

2 Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract xii

Chapter 1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Background 4

2.1 Early Petri nets and Vector Addition Systems . . . . . . . . . . 4

2.2 Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 The Coverability Problem . . . . . . . . . . . . . . . . . 6

2.2.2 The Reachability Problem . . . . . . . . . . . . . . . . . 7

2.3 Applications of Petri nets . . . . . . . . . . . . . . . . . . . . . 9

2.4 Extensions of Petri nets . . . . . . . . . . . . . . . . . . . . . . 12

2.5 ALGOL and FICA . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Game Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Preliminaries 17

3.1 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . 17

i



3.1.1 Sets, Sequences and Functions . . . . . . . . . . . . . . 17

3.1.2 Fast-Growing Functions . . . . . . . . . . . . . . . . . . 18

3.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Well Quasi Orders and Pointwise Ordering . . . . . . . 20

3.3 Well-Structured Transition Systems . . . . . . . . . . . . . . . . 20

3.4 Vector Addition Systems . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Configurations and Runs . . . . . . . . . . . . . . . . . . 21

3.4.2 VASS Diagrams . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 Petri net Diagrams . . . . . . . . . . . . . . . . . . . . . 25

3.6 Petri nets versus Vector Addition Systems . . . . . . . . . . . . 25

Chapter 4 The Coverability Problem & HCover 30

4.1 Why Coverability? . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Upward-closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Approaches to Coverability . . . . . . . . . . . . . . . . . . . . 32

4.3.1 The Karp-Miller Coverability Procedure . . . . . . . . . 32

4.3.2 Search methods . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.3 Augmented search methods . . . . . . . . . . . . . . . . 34

4.3.4 Coverability by Invariant-driven Pruned Search . . . . . 35

4.4 HCover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Potential Further Work . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 5 Petri Net Reachability & KReach 54

5.1 Why Reachability? . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Kosaraju’s Reachability Algorithm . . . . . . . . . . . . . . . . 55

5.2.1 An Overview of the Algorithm . . . . . . . . . . . . . . 57

5.2.2 Cleaning GVASSs . . . . . . . . . . . . . . . . . . . . . . 63

5.2.3 θ-driven Decomposition . . . . . . . . . . . . . . . . . . 67

5.2.4 Termination . . . . . . . . . . . . . . . . . . . . . . . . . 70

ii



5.2.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 KReach: Implementing Kosaraju’s Algorithm . . . . . . . . . . 72

5.3.1 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Checking θ1 . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Checking θ2 . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.4 Optimisations . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Testing KReach on synthetic instances . . . . . . . . . . 78

5.4.2 Testing KCover on real instances . . . . . . . . . . . . . 79

5.5 Concluding Remarks and Further Work . . . . . . . . . . . . . 80

Chapter 6 Leafy Automata 82

6.1 Automata over infinite alphabets . . . . . . . . . . . . . . . . . 82

6.2 Data Trees & Data Forests . . . . . . . . . . . . . . . . . . . . 83

6.3 Leafy Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Configurations and Runs . . . . . . . . . . . . . . . . . . 86

6.4 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.1 Properties of traces . . . . . . . . . . . . . . . . . . . . . 91

6.5 Complexity analysis of LA . . . . . . . . . . . . . . . . . . . . . 92

Chapter 7 FICA 98

7.1 The FICA Language . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1 Contextual Equivalence . . . . . . . . . . . . . . . . . . 99

7.2 Game Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Arenas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.2 Plays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 From FICA to LA . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 8 Local Leafy Automata 128

8.1 Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Local Leafy Automata . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3 Local FICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

iii



8.3.1 From FICA to LA . . . . . . . . . . . . . . . . . . . . . 146

Chapter 9 Split Automata 152

9.1 Control versus Memory . . . . . . . . . . . . . . . . . . . . . . 152

9.2 Split Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2.1 Configurations and Transitions . . . . . . . . . . . . . . 154

9.3 From FICA to SA . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.4 Restricted-Semaphore FICA . . . . . . . . . . . . . . . . . . . . 165

9.4.1 Restricted-semaphore split automata . . . . . . . . . . . 166

9.5 Idempotent Automata . . . . . . . . . . . . . . . . . . . . . . . 170

9.6 Stuttering Invariant Properties . . . . . . . . . . . . . . . . . . 177

9.7 Remarks on rsFICA . . . . . . . . . . . . . . . . . . . . . . . . 181

Chapter 10 Closing 183

10.1 Petri Net Coverability . . . . . . . . . . . . . . . . . . . . . . . 183

10.2 Petri Net Reachability . . . . . . . . . . . . . . . . . . . . . . . 185

10.3 Leafy Automata, Local Leafy Automata, Split Automata, and
Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

iv



List of Tables

4.1 The number of coverability instances decided by MIST, QCover
and HCover. The number in parentheses is the total number
of instances used from that class. . . . . . . . . . . . . . . . . 47

4.2 Sample values showing the relationship between a vector and
the prime encoding of that vector. . . . . . . . . . . . . . . . . 51

5.1 Sample of test cases. MLE = Memory Limit Exceeded; TLE =
Time Limit Exceeded. . . . . . . . . . . . . . . . . . . . . . . . 80

7.1 The moves in arenas corresponding to the base types of FICA.
The value of i may be any value of type exp (i ∈ {0, · · · ,max}.) 102

8.1 Inductive definition of adx(Q), the applicative depth of variable
x in term Q. Let new ∈ {newvar, newsem}. . . . . . . . . . . . 145

9.1 The effect that each FICA construct has on the local bound of
its corresponding split automaton at even levels. In this table
b(M) denotes the local bound derived from the syntax of the
term M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

v



List of Figures

2.1 A Petri net which might represent a condensation reaction (the
creation of water) from Hydrogen and Oxygen in the presence
of a heat source. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A representation of the postgraduate life cycle, using a Petri
net as an analogue for business process modelling. Temporal
flow is approximately left-to-right. . . . . . . . . . . . . . . . . 10

3.1 An example VASS, Vex. . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The net Nex as defined in Example 3.2, rendered without and
with a marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 The triplet of one-way simulations given below, where Y↠X

means X simulates Y . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 A geometric representation of the search space for forward and
backward coverability search. . . . . . . . . . . . . . . . . . . . 35

4.2 Constructing then running a coverability query via an SMT solver. 40

4.3 The entrypoint of HCover. . . . . . . . . . . . . . . . . . . . . 42

4.4 The PetriNet data type. . . . . . . . . . . . . . . . . . . . . . 42

4.5 The converge fixpoint function. . . . . . . . . . . . . . . . . . 44

4.6 The computation of signInvariant. . . . . . . . . . . . . . . 44

4.7 Symbolic representation of ΦS with SBV. . . . . . . . . . . . . . 46

4.8 The backwards coverability loop in HCover. . . . . . . . . . . . 47

4.9 Speed of operations over values in dense vector representation
(blue) versus integer encoding (yellow). . . . . . . . . . . . . . 52

5.1 An example GVASS with two components, and rigid, constrained
and unconstrained coordinates. . . . . . . . . . . . . . . . . . . 60

5.2 An example VASS, Vex, and its lifting into a GVASS. . . . . . . 61

vi



5.3 A one-component GVASS which does not satisfy θ1. . . . . . . 62

5.4 A one-component GVASS which does satisfy θ1. . . . . . . . . . 62

5.5 A two-component GVASS whose first component satisfies θ2 and
whose second component does not. . . . . . . . . . . . . . . . . 63

5.6 A one-component GVASS which requires SCS decomposition. . 65

5.7 Characterisations of paths through the component of the GVASS
in Figure 5.6 as determined by SCS decomposition. . . . . . . . 65

5.8 The two decompositions of the GVASS in Figure 5.6 as determ-
ined by strongly connected subgraph decomposition. . . . . . . 66

5.9 The first GVASS from Figure 5.8 after undergoing trivial com-
ponent elimination. . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.10 A simple GVASS before and after decomposition by removing a
transition violating θ1. . . . . . . . . . . . . . . . . . . . . . . . 68

5.11 A simple GVASS before and after decomposition by removing a
transition violating θ1. . . . . . . . . . . . . . . . . . . . . . . . 69

5.12 The main loop of the kosaraju function and the checkGVASS
function on which it relies. . . . . . . . . . . . . . . . . . . . . . 73

5.13 The first-order logic sentences that comprise the ILP problem
describing θ1. The sentences encode the Parikh image con-
straints (1), Kirchoff constraints (2-4), initial and final values
for constrained (5-6) and rigid (7-8) values, and adjoinment re-
lationships (9). . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.14 Our original sample case Gex, parameterized over X. . . . . . . 79

5.15 Time against parameter X for G(Vex(X), (0, X), (0, 0)) with the
supported solvers. Shown is the average time taken across 10
runs for each X and for each solver. . . . . . . . . . . . . . . . 79

6.1 The nondeterministic operation of a small leafy automaton over
a short data word. The configurations are given in dashed boxes
(as trees where possible) and labelled by the data values and
states; transitions applied are in solid boxes. . . . . . . . . . . 89

6.2 A configuration of a 1-LA simulating a one-counter. In the
configuration pictured, the counter is storing the value 5. . . . 91

6.3 A configuration of our two-counter 2-LA. In the configuration
pictured, counter c1 has value 3 and counter c2 has value 2. . . 92

6.4 Translation rules which embed the behaviour of a 2-counter
machine M with transition function δ into the moves of a 2-LA. 93

vii



7.1 FICA typing rules . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Inductive rules for computing arenas for non-base FICA types.
Note that λPO

A (m) = O if and only if λOP
A (m) = P . . . . . . . . 102

7.3 The enabling relation for A1 = Jcom→ com→ comK. . . . . . . 103

7.4 The enabling relation for A2 = Jcom→ com→ comK. . . . . . . 103

7.5 A justified sequence over arena A1. . . . . . . . . . . . . . . . . 105

7.6 A justified sequence over arena A2. . . . . . . . . . . . . . . . . 105

7.7 A play over arena A2. The player who makes each move is
denoted below the move. . . . . . . . . . . . . . . . . . . . . . . 109

7.8 Base cases for the construction of an LA from a FICA term. . . 111

7.9 Sketch of the relationship of tree configurations inside the auto-
mata for M1, M2 and M . . . . . . . . . . . . . . . . . . . . . . 113

9.1 Translation rules for building an idempotent automaton A↑ of
depth 2i based on one of depth 2i+ 2. . . . . . . . . . . . . . . 174

10.1 The seven levels currently encoded in Petri Puzzle. The
initial marking is as given; the target marking is the label in
each place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

viii



Acknowledgments

This work would not have been possible without my wonderful supervisors,

Ranko Lazić and Andrzej Murawski. Your phenomenal competence, construct-

ive feedback, and unbounded optimism have been a source of great energy and

comfort, and it has been a privilege and an honour to work with both of you.

Thank you.

Thank you also to the Department of Computer Science at the University

of Warwick, for providing me with a place to work and a phenomenal group

of people to work alongside. I am grateful to the Center for Doctoral Train-

ing in Urban Science and Progress, who funded my studentship, and to the

Engineering and Physical Sciences Research Council for the same.

Thank you to those who I have collaborated with on works over the years,

not least Igor Walukiewicz, for your invaluable insights. Thanks also to those

members of staff at the University of Warwick who have offered advice and

guidance throughout my time as a student.

Thank you to my friends, near and far, for the support which you have

shown, and for putting up with me for far longer than I ever would have. A

particular thanks to Sam, Finnbar, and Rhiannon, for sharing in the highs and

lows of postgraduate life, and a huge thank you to my dear friend Andrew,

without whom I would have gone mad long ago.

Thank you to my family, especially my parents, brother, and grandparents,

for your unwavering love and kindness, and for asking how my thesis was

coming along the bare minimum number of times.

Finally, I would like to thank my darling husband, Jack. I am a better

person for knowing you, and I love you with all my heart.

ix



For Jack



Declarations

This thesis is wholly the author’s own work, except where work is based on

collaborative research, in which case the nature and extent of the author’s

contribution is indicated. This thesis has not been submitted for a degree at

any other university.

1 Publications

Parts of this thesis have been previously published by the author in the fol-

lowing works.

[40] Alex Dixon and Ranko Lazic. KReach: A tool for reachability in Petri

nets. In Proceedings of TACAS, volume 12078 of LNCS, pages 405–412.

Springer, 2020. doi:10.1007/978-3-030-45190-5_22

[41] Alex Dixon, Ranko Lazic, Andrzej S. Murawski, and Igor Walukiewicz.

Leafy automata for higher-order concurrency. In Proceedings of FOSSACS,

volume 12650 of LNCS, pages 184–204. Springer, 2021. doi:10.1007/978-

3-030-71995-1_10

[42] Alex Dixon, Ranko Lazic, Andrzej S. Murawski, and Igor Walukiewicz.

Verifying higher-order concurrency with data automata. In Proceedings

of LICS. IEEE, 2021. doi:10.1109/LICS52264.2021.9470691

2 Funding

This research was funded by the Centre for Doctoral Training in Urban Science

and Progress. The CDT is supported by the University of Warwick and by

EPSRC Grant Number EP/L016400/1.

xi

https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/978-3-030-71995-1_10
https://doi.org/10.1007/978-3-030-71995-1_10
https://doi.org/10.1109/LICS52264.2021.9470691
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/L016400/1


Abstract

Vector Addition Systems (and, equivalently, Petri nets) are a widespread

formalism for modelling across a spectrum of problem domains, from logistics

to hardware simulation. In this thesis, we firstly explore two classic decidab-

ility problems for these models: reachability, whether one can get to a given

configuration, and coverability, whether one can exceed it. These problems are

sufficent to express a wide class of verification properties for models derived

from real-world use cases, including safety and deadlock-freeness. We present

and implement a number of approaches for solving both the coverability and

reachability problems, including KReach, the first known implementation of

a complete decider for the general Petri net reachability problem.

Petri nets offer a natural model of concurrent processes and one of the

most common modern use cases for the model is in the verification of safety

properties for software, especially sofware with concurrency. In the later half

of this work we address some approaches to deciding properties of programs

written in Finitary Idealized Concurrent Algol (FICA), a prototypical language

combining functional, imperative, and higher-order concurrent programming.

We introduce a new family of “leafy” automata models, all based on a novel

representation of internal configurations as a tree structure whose semantics is

inspired by game-semantic interpretations of FICA terms. We give translations

from such terms to our automata and across the work derive decidability of

some useful properties for successively more expressive subsets of terms, using

a variety of methods including via reachability on Petri nets. We believe

these models will help to unify the game- and automata-theoretic views of

programming languages and provide a useful basis on which to further study

the theory of concurrency.

xii



Chapter 1

Introduction

The Petri net is arguably older than the field of theoretical computer science
itself. Petri nets were originally borne not out of the study of mathematical
objects, but as a descriptor of chemical catalytic processes [133, Foreword by
C.A. Petri]. Treating Petri nets as a representation of communication, and not
just arbitrary domain-specific processes, was not a consideration until much
later [125]. It took some time [75] to determine that Petri nets are equivalent to
a parallel programming schema called Vector Addition Systems [87]. Research
into Petri nets and VASs has not slowed in the 80 years since their original
formulation; foundational results about Petri nets are still being discovered,
with the complexity of cornerstone decision problems being closed as recently
as 2021 [30, 102].

It should come as little surprise, then, that Petri nets have a storied his-
tory as a formalism for modelling real-world processes. The expressiveness of
the model allows for the representation of everything from business process
modelling [36] to systemic bug reporting [35]. It is for precisely this reason
that Petri nets and Vector Addition Systems are seen as a viable and fruitful
area of study. By producing tools that can check properties of Vector Addi-
tion Systems, we enable the use of Petri nets to not only model but also verify
properties like safety and the avoidance of deadlocks in a plethora of problem
domains.

Programming is the mechanism by which humans set computers to work.
If we wish for two or more agents to share resources—be that communicating
systems on a network, or multiple threads on the same machine, or anything
else—we enter the world of concurrent and parallel computing and, when that
concurrency is systematised, concurrent and parallel programming. Petri nets
and Vector Addition Systems are a natural fit for modelling these concurrent
computations.

Concurrent and parallel programming has been the subject of study in a
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number of subdomains within theoretical computer science. Petri nets/VAS
are a natural fit from an automata-theoretic perspective. In the world of
programming language theory, entirely new subdomains have been developed
to help us understand the implications of concurrent systems. For example,
in game semantics (the subject of Section 7.2), evaluation of concurrent terms
is modelled as a game played between two players, the term itself and the
environment in which the term is being evaluated [70, 93]. Whether the theory
of game semantics can be fully unified with the theory of automata remains
to be seen.

This thesis can be seen as an homage to Petri nets and Vector Addition
Systems as a tool for the systemic treatment of complex, concurrent, real-
world systems. In the first part of this work we shall look at the cornerstone
problems to which the analysis of properties of such systems can be reduced,
and present a number of new tools that allow for exactly that kind of analysis.
Later we shall dive into the application for which Petri nets have been most
widely studied: the modelling of parallel and concurrent programs. We look at
the game-semantic view of these systems and ally it with our own automata-
theoretic encoding.

1.1 Thesis Outline

In Chapter 2 we lay out the history of Petri nets and Vector Addition Sys-
tems: where they come from, what we can do with them, and what has been
discovered about their properties. We introduce the important results that
act as milestones in the study of Petri nets and Vector Addition Systems, and
give a sampling of some of the problem domains where Petri nets have been
used as a modelling tool.

Chapter 3 introduces formalisms that will be used throughout the re-
mainder of the work, in particular both algebraic and diagrammatic represent-
ations of Petri nets, Vector Addition Systems, and Vector Addition Systems
with States. We shall also show how these three are equivalent, and introduce
some more concepts and notation that will prove useful in further chapters.

In Chapter 4 we focus on the coverability problem for Vector Addition Sys-
tems with States, that asks: can we reach a configuration that is at least some
particular size? We outline a number of approaches by which that question
can be answered, and walk the reader through an implementation of one such
approach.

In Chapter 5 we turn our attention to a much more thorny problem, the
reachability problem, that asks only whether we can reach some specific con-
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figuration. We describe the mechanism by which it was originally proven that
this problem can be decided, and introduce a tool that implements precisely
that mechanism. We also show how that tool can be used to decide instances
of the coverability problem.

Chapter 6 introduces a new form of automaton, the leafy automaton, that
maintains an internal tree that grows and shrinks as it reads in a word over
a particular infinite alphabet. We show that this is capable of representing
properties of a prototypical programming language called (Finitary) Idealized
Concurrent Algol via game semantics in Chapter 7.

In Chapter 8 we devise new ways of restricting undesirable forms of com-
munication within the tree. The variant presented, so-called “local leafy auto-
mata”, impose a restriction on the length of updates when adding or removing
leaves. We show that this corresponds to a particular fragment of FICA where
variables are not allowed to appear more than two free function calls away from
their definition. This allows us to recover decidability of decision problems for
a large fragment of the FICA language, though some constructs (in particular
unbounded iteration) are still forbidden.

In Chapter 9 we create an alternative variant of leafy automata where con-
trol states and memory values are divided and treated separately. This inspires
a notion of idempotence, through which we show decidability of emptiness on
a fragment of FICA that includes every programming construct and excludes
only particular (so-called “deep”) uses of semaphores.

We shall conclude the thesis by revisiting the principal contributions, identi-
fying potential for future work and any questions left open, and sharing in-
sights into some of the work that is already underway.

3



Chapter 2

Background

The history of research into Petri nets and Vector Addition Systems is long
and storied—a superficial inspection of the corpus1 indicates well over 200,000
relevant pieces of literature. To try to present the fullness of the branching,
deeply intertwined and still-ongoing research within this document would be
a Herculean, if not Sisyphean, task. Instead, we shall present in some detail
the “critical path” of Petri net and Vector Addition System research taking
us from the original introduction of the models to this work.

Over the years, Petri nets have gone by a number of different names. In
the latter work of Petri himself they were referred to as special nets in contrast
with the many extensions and variants of the model for which he coined the
umbrella term general nets. In some works [80, 142] they have been called
place/transition nets. We shall exclusively use the term Petri net to refer to
the classic form as laid out in Section 3.5, with no additional augmentations
or restrictions.

2.1 Early Petri nets and Vector Addition Systems

In 1939, Carl Adam Petri wished for a diagrammatic system by which he
could visualise chemical processes [133, Foreword]. In particular, he wanted
to model the way in which some number of chemical compounds could react
in the presence of a catalyst. To this end, he devised a representation whereby
the populations of given chemicals were located in places, and transitions could
move a specific number of each type of compound from one place to another,
hence indicating that a reaction had occurred.

1Read: a Google Scholar search for “Petri nets”.
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Figure 2.1: A Petri net which might represent a condensation reaction (the
creation of water) from Hydrogen and Oxygen in the presence of a heat source.

Owing to a burgeoning academic interest in computational models, Petri’s
seminal presentation of his nets in his thesis Kommunikation mit
Automaten [125] introduced the formalism not as a visual system but as a
mathematical object, with (the imposition or relaxation of) causality as the
primary setting for their study. It was not until later that the natural mod-
elling capabilities across a litany of concurrent problem domains were redis-
covered, in part by Holt and associates [78, 134].

Almost concurrent with the work of Holt et al., Karp and Miller introduced
an alternative schema for the representation of parallel processes, which they
called Vector Addition Systems (VAS) [87]. That work already introduced a
formulation of the reachability and coverability problems for VAS, and gave a
finite construction for a tree representing coverable vectors, a presentation of
which is given in Section 4.3.1.

A decade later in 1979, Hopcroft and Pansiot [79] generalised the Vector
Addition System model to include a notion of control states, which impose an
additional restriction on when transitions may be fired. Moreover they showed
that VAS and VASS are equally expressive up to the dimensionality of vectors
(see Theorem 3.1).

It was readily observed that Petri nets and Vector Addition Systems were
equivalent. In between the introduction of VAS and VASS, Hack [75] form-
alised this notion; and so all three models (VAS, VASS and Petri nets) have
been considered pairwise equivalent since. We will see precisely how the rela-
tionships between the three can be formulated in Chapter 3. In what follows,
we shall intentionally confuse Petri nets and Vector Addition Systems in the
interest of presenting a single coherent timeline of results over both models.

2.2 Decision Problems

The complexity and decidability of problems over Petri nets have long been a
matter of study, with the most long-standing question—the complexity of the
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reachability problem—having finally been closed during the production of this
thesis. The formal definitions of the coverability and reachability problems
are given as Definitions 4.1 and 5.1 respectively; each forms the focus of its
respective chapter.

2.2.1 The Coverability Problem

The coverability problem was one of the first decision problems for Petri nets
to be shown to be decidable. As noted, Karp and Miller’s coverability tree
construction [87] is itself a witness of decidability of the coverability problem,
since the algorithm they give for constructing the tree is guaranteed to ter-
minate. Some time later, Cardoza, Lipton and Meyer [24] and Lipton [120]
showed that the coverability problem requires exponential space, and thus, by
reduction to coverability (via a mechanism described in Proposition 5.1), the
reachability problem inherited an exponential space lower bound. Two years
later, Rackoff gave a proof [128, Theorem 3.5] that the coverability problem
can be solved in space at most 2cn logn nondeterministically—by showing that
there is an upper bound on the maximum length of some covering run, simply
checking all such runs constitutes a terminating algorithm. Rackoff’s work
closed the complexity of coverability; the problem is complete for Expspace.

As computers have become exponentially more powerful, the once-scary
Expspace bound has become less daunting, and numerous successful attempts
have been made to solve the coverability problem in real-world settings. Most
commonly, coverability is approached by either forward or backward search.
In forward search one computes the set of coverable markings from an initial
marking, and checks (at appropriate times) whether the target falls within
that set. The Karp-Miller construction is the prototypical implementation
of such a forward search, and many attempts have been made to hone the
approach [50, 55, 62, 126, 137, 144]. These works revolve around minimising
redundant computation while constructing the coverability tree (or, in some
cases, the coverability set), including by pruning parts which are guaranteed
not to expand the set of covered markings.

Conversely, backward algorithms start from the target marking and seek
to include the initial marking in the set of markings which can cover the tar-
get. This technique revolves around the notion of well-structured transition
systems (see Section 3.3); the prototypical backward coverability algorithm
(Algorithm 2) has been shown to take doubly exponential time [20]. Much
like forward search, backward search is accelerated by pruning. The pruning
criteria are typically derived either from relaxations of the coverability prob-
lem [13] or from static analysis of the nets [63]. Beyond search, a number of
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effective criteria for coverability have been derived in integer programming,
and can be used to quickly rule out coverability with the help of SMT solv-
ers either statically or with iterative refinement of criteria [45, 47, 148]. In
Section 4.3 we discuss and implement some of the more recent approaches for
solving coverability, incorporating a number of these techniques.

2.2.2 The Reachability Problem

Complexity of the reachability problem, in contrast to coverability, proved to
be a significant challenge for many years. That reachability was even decidable
was not claimed until Sacerdote and Tenney [140] in 1977. However, they did
not include a formal proof of the claim. It was not until the 1981 work of
Mayr [107] that we get such a proof; work of Kosaraju published the following
year [90] offered a simplified flavour of Mayr’s proof. (The presentation of
Kosaraju is the focus of Chapter 5, in which we explain, implement and test
Kosaraju’s algorithm on real nets.) Kosaraju’s and Mayr’s presentations of
decidability are infamously involved2. A book of Reutenauer [136] exposes
the algorithm in magnificent detail. That book has since been translated into
English [135]. Three decades later, Lasota [96] revisited the proof to offer
an intuitive and high-level overview of the algorithm. Lambert [95] refined
and simplified Kosaraju’s presentation via a new structure called the “marked
graph-transition sequence”, an alternative treatment of Petri nets with initial
and final markings. In modern parlance, the combined efforts of Sacerdote and
Tenney, Mayr, Kosaraju and Lambert are colloquially known as the KLMST
algorithm [103].

As of 1982, there was no known upper bound, and it was only known that
the KLMST approach required non-primitive-recursive space [114]. Astonish-
ingly, it took another three decades before this state of affairs changed. In
2015, Leroux and Schmitz [103] gave the first ever upper bound for reachabil-
ity in general Petri nets. In making use of then-recent results for termination
in well-structured transition systems (an abstraction into which Petri nets
naturally fit, see Section 3.3), Leroux and Schmitz were able to show that
the general reachability problem could be solved in cubic-Ackermann time
(see Section 3.1.2), by showing that these well-structuring properties also hold
for the decompositions induced by the KLMST algorithm. Not long after,
Leroux and Schmitz further improved on this result [104] by offering signific-
ant refinements of the KLMST algorithm to reduce their earlier upper bound
from cubic-Ackermann to regular Ackermann, and moreover introduced a
primitive-recursive upper bound if the dimension is fixed.

2As devastatingly put by Lambert [95, Introduction]: “The complexity of the two proofs
(especially in [107]) wrapped the result in mystery.”
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In between gradual refinements of the KLMST algorthm, Leroux [83]
offered an alternative proof of decidability using an unrelated scheme, namely
the enumeration and refinement of invariants defined in Presburger arithmetic,
with support of the marked graph sequences of Lambert [95].

Iterating on the lower bounds for reachability proved to be an even tougher
challenge than the upper bounds. Lipton offered the first Expspace lower
bound for reachability in 1976 [120]. From that point, it was long conjectured
unofficially that the problem may be complete for Expspace, and another
forty years passed before this was shown to not be the case. In 2019, work of
Czerwiński et al. [31] showed that the reachability problem was not element-
ary, and more precisely that it was at least Tower-hard (See Section 3.1.2).
This represented a significant step forward, obsoleting or re-proving a number
of results in more expressive formalisms [98, 99] and refuting attempts to solve
the problem more efficiently [19]. The Tower lower bound of [31] is earned
by showing that particular so-called “amplifier” gadgets (sub-nets) can be con-
structed which enforce a factorial relationship between the number of tokens
in some places.

The bounds on the reachability problem snapped shut in 2021, when
Leroux [102] and Czerwiński and Orlikowski [30] independently and almost-
simultaneously3 proved that the reachability problem for Petri nets is not
primitive recursive. The two proofs proceed by different methods, though in
both cases the technique revolves around increasing the power of the ampli-
fying gadgets described in the non-elementary proof of Czerwiński et al. [31].
The work of Leroux introduces several gadgets which, taken together, produce
an Ackermannian amplification. Czerwiński and Orlikowski offer a precise
result [30, Theorem 1]—that, for every k > 3, the reachability problem in
dimension 6k is hard for Fk

4—by recursively building a similar family of gad-
gets to those of Leroux. Ackermann-hardness follows as a corollary. Both of
these results, taken with the upper bound of Leroux and Schmitz [104], give
an exact complexity of Ackermann, and the problem is now closed in the
general case. Very recent work of Lasota [97] simplifies the construction of
Czerwiński and Orlikowski, and in doing so improves the lower bound in fixed
dimension from Fk in dimesnion 6k to Fk in dimension 3k + 2.

As we shall discuss in Chapter 5, the long hiatus of upper bound results
was not conducive to attempts to solve the problem in practice. Prior to
the work of this author [40] no implementations of any reachability algorithm
are known. Very recently, works of Amat, Zilio and Hujsa [6] and Blondin,
Haase and Offtermatt [15] offer implementations of semi-decision procedures

3The proof of Czerwiński and Orlikowski was published online only two days after that
of Leroux.

4F is the hierarchy of fast-growing functions, as defined in Section 3.1.2.
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underpinned by heuristic-driven search, which show encouraging results and
will hopefully spur on further attempts to compute reachability for nets arising
from real-world systems, even if the general problem remains intractable.

Other Decision Problems Due to their relative expressiveness, many
standard automata questions are immediately undecidable on Petri nets. For
example, Jančar [81] showed that trace equivalence and reachability set equal-
ity are both undecidable, via undecidability of bisimilarity. It is sometimes
easier to solve so-called structural variants of Petri net problems than their
specific counterparts, where a structural variant of some property holds for
any possible initial marking. For example, while boundedness (finiteness of
the set of reachable markings) is decided by reduction to coverability [120],
structural boundedness of a net can be decided in polynomial time by reduc-
tion to integer linear programming [109]. Survey works due to Esparza [44]
and Esparza and Nielsen [46] expose the full scope of such problems and their
decidability results (as known up to their respective dates of publication).

2.3 Applications of Petri nets

Petri nets are a natural fit for modelling and checking properties of a wide
variety of systems. It is not uncommon for modelling literature to introduce
a new Petri net formalism which happens to be a perfect fit for their setting;
some such extensions of Petri nets will be discussed in Section 2.4. Here
we shall mostly interest ourselves with applications of standard Petri nets
with no extensions (or only extensions which can be simulated by Petri nets
themselves).

Chemistry As intimated previously, the Petri net was originally conceived
in order to model chemical processes [133, Foreword]. Since their invention,
Petri nets have continued to be used for the modelling of chemical processes.
Chemical reaction networks [127] offer a very similar treatment of chemical
processes to Petri nets: the network places compounds and reactions on ver-
tices and uses weighted directed arcs to connect compounds and reactions
(usually expressed via an incidence matrix) [5]. With no further treatment,
chemical reaction networks are isomorphic to Vector Addition Systems and
can therefore be expressed as, and modelled using techniques for, VAS. (It
is not uncommon for chemists to wish to investigate the dynamical proper-
ties of chemical processes, for which alternative formalisms like population
protocols [8] or augmentations of chemical reaction networks [73] have been
adopted.)
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Biology and Biochemistry Biological applications of Petri nets are of-
ten imported from chemistry. For example, the modelling of metabolic path-
ways [77, 130, 131] is inherently biochemical in nature. Quantitative model-
ling of biochemical processes uses exactly the same analogues between features
of the system and of nets [10, Section 4.1]: compounds and catalysts (here,
enzymes) are represented by places and the presence/quantity thereof repres-
ented by tokens; transitions denote the reactions and interactions between
compounds in the presence of any catalysing agents. Applications in biology
do extend beyond biochemistry, though: Petri net models have been produced
for a number of specific biological domains, including disease prognosis [123].

Business Process Modelling Modelling business processes has been pro-
vocatively referred to as the “killer app” for the formalism [145]. Business
processes do not have a precise definition, though there are some formal ob-
jects that attempt to capture business processes, including UML activity dia-
grams [16] and the Business Process Model and Notation [74]. Both of these are
visually akin to flowcharts and are designed to be both precise (for modelling)
and intuitive (for non-technical users). Figure 2.2 gives a visual representation
of a Petri net, the manual firing of transitions in which might be imagined as
a business process in itself. The role of tokens in a Petri net corresponding to
some operational process is not fixed, though it typically means the fulfilment
of some condition or the presence of some agent in a particular state. (Fig-
ure 2.2 includes instances of tokens in both roles.) One notable instantiation
of Petri nets for business processes is in VERIFAS [36], a tool which can verify
properties of workflows by exploiting the Karp-Miller coverability procedure
for Petri nets.

Applicant Enrol PhD student

Supervisor Publish Publications

Viva Doctor

Examiner

Publish

3

Figure 2.2: A representation of the postgraduate life cycle, using a Petri net as
an analogue for business process modelling. Temporal flow is approximately
left-to-right.

The VERIFAS technique of [36] revolves around modelling a variant of lin-
ear temporal logic specific to the needs of their encoding of processes. In
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fact, Petri nets are useful for verifying temporal properties of concurrent
systems more generally. German and Sistla [65] give a theoretic treatment
of this use case by showing that Vector Addition Systems with States can
verify whether some specification provided in so-called propositional linear
temporal logic (PTL) can be satisfied in runs of computations with unboun-
dedly many concurrent processes. With a more practical bent, Kaiser, Kroen-
ing and Wahl [85] consider the automated verification of concurrent processes
whose concurrency is defined by pthreads, a common architecture- and oper-
ating system-independent parallel execution model [23]. The tool that Kaiser,
Kroening and Wahl present, BFC, is highly optimised for checking coverab-
ility in those models—it consistently outperforms other tools on coverable
nets—but is nevertheless competitive across the gamut of instances in the lit-
erature; BFC, and the instances produced by their modelling, are now part of
the pantheon of classic tools and benchmarks against which new coverability
implementations are often evaluated [13, 63].

Transportation and Logistics Petri nets have also been shown as ap-
plicable to the modelling and verification of transportation networks. Such
systems are naturally discrete, and involve the pointwise interaction of con-
current, fungible agents. Detecting the potential for gridlock—the inability for
any vehicle to make progress—is exactly analogous to the property of (struc-
tural) liveness, which is reducible to checking reachability [115]. Petri nets
have similarly been used model the logistics and transportation of fungible
resources [26].

New Applications The search for new applications for Petri net modelling
is ongoing. The annual Model Checking Contest [1, 7] features a call for
models, in which Petri net community members are encouraged to submit
exemplar models both of academic and industrial interest. Models in the
corpus range from business process modelling of swimming pool facilities5 and
railways6 to verifying coherence in processor caches7 and, most recently, safety
for autonomous vehicles8. Such models are typically derived from programmed
systems and are often parameterised by some variable such as the number of
agents or the scale of the system. The size of models varies from tens of places
and transitions to millions.

5https://mcc.lip6.fr/pdf/SwimmingPool-form.pdf
6https://mcc.lip6.fr/pdf/CircularTrains-form.pdf
7https://mcc.lip6.fr/pdf/ARMCacheCoherence-form.pdf
8https://mcc.lip6.fr/pdf/AutonomousCar-form.pdf
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2.4 Extensions of Petri nets

We shall briefly highlight some extensions of interest that have cropped up
over the years, and some examples of how they have been shown to be fruitful
areas of study.

Coloured Petri nets The inability for tokens to be imbued with informa-
tion often proves troublesome when trying to model systems in which entities
are not completely fungible. A common extension to Petri nets is to allow
tokens to be coloured, which can be considered synonymous with tagged or
possibly typed [64, Section 3]. Along with the standard encoding of places and
transitions, the presence of colours allows the transitions of a net to differenti-
ate between tokens. (As an aside, if the set of colours is finite, then coloured
nets are as expressive as Petri nets, though the dimension of an equivalent Petri
net may be much larger.) First introduced by Jensen in 1986 [82], coloured
Petri nets have been used in a variety of settings, from processor hardware
modelling [22] to air pollution control via traffic management [37]. Of particu-
lar relevance to this thesis, an implementation of (a flavour of) coloured Petri
nets exists in the Haskell programming language [132].

Time-dependent Petri nets In a timed Petri net, transitions take some
amount of time to fire. Depending on the choice of terms, this time may be
fixed [149] or range over some interval [124]. Hence the firing of transitions
is constrained; queries may be posed about whether some action can occur
within some minimum or maximum time span. This is of particular value
when the time taken to achieve a task matters, such as in systems whose
speed is meaningfully bounded by the speed of light such as programmable lo-
gic units [101], or slow-moving logistical systems like international freight [43].
Other time-dependent Petri net models include Time Petri Nets, first intro-
duced by Merlin [110].

Branching VASS Branching VASS (BVASS) are a variant of VASS which in-
clude two flavours of transition. The formalism was first so named by Verma
and Goubalt-Larrecq [147], though models with similar semantics had been
seen prior [129, 146]. As well as the classic state-state transition which modi-
fies the vector as in VASS, BVASS include a transition which splits one config-
uration into two. The descendants each end up in some new state (as dictated
by the transition) and the vectors of the descendants can be split arbitrarily
so long as they sum to the vector of the antecedent configuration. Hence a run
in a BVASS is no longer a path, but a tree labelled by configurations. Being at
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least as expressive as VASS, BVASS inherit the lower bounds for their corres-
ponding coverability, boundedness and reachability problems (among others).
It was shown by Demri et al. [32] that the former two are complete for doubly
exponential time; despite promising recent works [28, 108] the general reach-
ability problem remains open. BVASS have proven useful both for theoretic
and real-world modelling, bearing relationships with timed automata [28], re-
cursively parallel programs [18], and databases [17].

∗ ∗ ∗

Let us turn our attention to the ancestry of the latter half of the thesis—
Chapters 6, 7, 8 and 9, which focus on the verification of properties of computer
programs.

2.5 ALGOL and FICA

The programming language FICA is the focus of Chapter 7, in which the lan-
guage is introduced in detail. FICA, which is short for Finitary Idealized Con-
current ALGOL, is a prototypical language which features support for a variety
of programming paradigms including imperative, functional, and higher-order
concurrent programming. It therefore serves as an interesting testbed for veri-
fication techniques for programming language properties, and especially in
settings which treat concurrency as first-class (including those featured in this
thesis).

The history of FICA, unsurprisingly, begins with ALGOL. It is hard to over-
state the impact that ALGOL has had on programming, both as an engineering
profession and as a theoretical endeavour. ALGOL has underpinned program-
ming language design since the mid-20th century, and is the progenitor of
many programming constructs that are ubiquitous across languages today. It
would be foolish to try and map out the complete ALGOL extended universe
here; we shall only discuss the branch of the family tree that leads us to FICA.

ALGOL, short for ALGOrithmic Language, first appeared as ALGOL58 as
an attempt to provide a unified language for expression of algorithms between
the Association for Computing Machinery (ACM) and the Gesellschaft für
Angewandte Mathematik und Mechanik (GAMM) [9]. The language was a
compromise design and was quickly superseded by ALGOL60, which rose to
supremacy among theoreticians as the language of choice for algorithmic pro-
gramming.

In an chapter of ALGOL-like Languages in 1981, Reynolds [138] lauds the
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original design of ALGOL60 for its prioritisation of high-level semantics over
efficient but low-level routines. To embody the traits that Reynolds viewed
as essential to ALGOL, he introduced a distilled, high-level language called
Idealized ALGOL, or IA.

Reynolds’ claim was this:

Algol is obtained from the simple imperative language by impos-
ing a procedure mechanism based on a fully typed, call-by-name
lambda calculus. [138, page 3]

The formalisation of IA given by Reynolds is exactly that: a unification
of standard imperative programming constructs and a typed lambda calculus
with call-by-name semantics.

The formal semantics of a parallel ALGOL-like language were first intro-
duced at the turn of the millenium with Parallel Algol [21], due to Brookes.
In that work, a blocking await construct controls threaded access to critical
sections of code.

In [70], concurrency was introduced to IA in a similar vein to Brookes’s
Parallel Algol. Here the authors introduce parallel composition of statements
(||) with binary semaphores controlled via fine-grained grab() and release()
primitives. The point of this modified language, now Idealized Concurrent
ALGOL (ICA), was to facilitate analysis of the language through game se-
mantics, which is naturally conducive to modelling concurrency. Indeed, the
game model for concurrency described in [70] is simpler than its sequential
counterpart. We shall discuss the game-semantic concerns of ICA later in this
chapter.

It is in [70], due to Ghica and Murawski, that we first encounter FICA
proper. In this article, ICA is restricted to a single, finitary data type, hence
becoming Finitary ICA. The purpose of the restriction to a finitary datatype
was to find a context in which computer-aided verification (in particular for
[71], (may)-equivalence) of the language could be rendered decidable. We
continue to make progress on that same goal in the remainder of this work.

2.6 Game Semantics

Game semantics (to be explored more concretely in Chapter 7) is a model
by which the evaluation of a term is rendered as a game between the term
itself and the evironment in which it is being evaluated [3, 118]. It has been
described by Harmer and McCusker as a middle-ground between models of
concurrency and domain-theoretic semantics [76].
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Game semantics have long been a means for verifying properties of ALGOL
derivatives. In 1996, Abramsky and McCusker put forth a game semantics for
IA (one of the precursors to FICA, without concurrency) [4]. Malacaria and
Hankin successfully made use of these semantics to present an interpretation
of programs in terms of data flow [106]. While the model of Abramsky and
McCusker is fully abstract—that is, it correctly captures all operational equi-
valences between programs—it is relatively complex and reasoning about the
model proved to be challenging [66, Introduction].

At the turn of the century, Ghica and McCusker showed that some mean-
ingful portions of the game semantics of programming languages like IA can
be captured by simple automata such as an extended form of regular expres-
sions [66]. This result led to a flurry of research into the use of game se-
mantics for program analysis and verification. Follow-up work of Ghica and
McCusker [67] showed that, considering at most second-order terms, the game
semantics of a fragment of IA can be captured with fully abstraction using
only regular expressions. Dimovski and Lazić [39] gave an alternative transla-
tion of the game semantics of a similar second-order fragment into sentences
of the Communicating Sequential Process (CSP) algebra, properties of which
were then able to be checked directly using pre-existing tooling [105]. Con-
textual equivalence of the third-order fragment was shown to be decidable
by Ong [121] by representing the corresponding game semantics with determ-
inistic pushdown automata (and hence inheriting decidability from the de-
cidability of equality for deterministic context-free languages). Furthermore,
Murawski and Walukiewicz [119] showed in 2005 that contextual equivalence
of the third-order fragment is still decidable in the presence of iteration. By
this time, the fourth-order fragment had already been shown undecidable by
Murawski [116].

Given their natural applications to concurrent programming, it is a curi-
osity that game semantics was initially constrained to the sequential universe.
The first occurrence of a game semantics for a concurrent flavour of Algol
was due to Abramsky [2] and was an attempt to model the Parallel Algol of
Brookes [21]. Laird gave a game-semantic account of CSP using an interleaved
representation of concurrency [92], making use of a raft of additional struc-
ture to enforce appropriate constraints on the representation. Later, Ghica
and Murawski [70] introduced Idealized Concurrent Algol and with it a fully
abstract game semantics, again based around interleavings of concurrent pro-
cesses. Further work of Ghica, Murawski and Ong [69] builds out a variant of
the same, in which the number of concurrent threads is embedded in the type
system. In this variant, called Syntactic Control of Concurrency (SCC), their
(fully abstract) game semantics is regular, even when iteration is allowed, and

15



thus bounded contextual equivalence of this fragment becomes decidable. The
same work offered some results on the contextual equivalence of correspond-
ing fragments of FICA: for the second-order fragment it is undecidable, but
for the first-order fragment it is decidable (moreover, that fragment is regular,
because there is no opportunity for unbounded behaviours to occur). Further
work by Ghica and Murawski [68] gives a translation from SCC to CSP.

It is worth noting that earlier approaches such as that of Murawski and
Ong explicitly require a bound to be enforced (syntactically in the case of SCC)
on the amount of concurrency allowed. The work of this thesis seeks to identify
fragments of FICA which include unbounded concurrency and unbounded order
of terms, for which some interesting problems—if not equivalence—can be
shown to be decidable.

The work of this thesis follows an approach to games based on constrained
interleavings of moves. Another popular approach to game semantics involves
event structures [25], which are used to capture dependencies between moves
via explicit partial orders. This approach belongs to the so-called “truly con-
current” tradition in modelling. Investigating the potential for a truly concur-
rent approach to inspire verification routines for FICA is an interesting topic
for potential future work.

16



Chapter 3

Preliminaries

In this chapter we shall lay a foundation and define terms and conventions
which shall reappear throughout the remainder of the work. Most critically,
we shall define the Petri net, the Vector Addition System, and the Vector
Addition System with States, and formally define the relationship between
these three formalisms.

Not all of the terminology, notation, or syntactic conveniences for the thesis
are defined here. In cases where such definitions are only going to be used in
one chapter or section, they will be given in the appropriate chapter or section.
Here we define only those that will reappear throughout the work.

3.1 Mathematical Notation

In the greatest mathematical tradition, we shall use uppercase blackboard
letters to represent sets of numbers. In particular:

• Z is the set of integers;

• N and N+ are the sets of nonnegative integers and positive integers,
respectively (unless specified, the “set of naturals” is taken to mean N);

• Q is the set of rational numbers; and

• R is the set of real numbers.

3.1.1 Sets, Sequences and Functions

Notation for sets and sequences is standard in the literature, with sets denoted
by {braces} and sequences by (parentheses). We shall write ∪ for set union,
and ] when it is a given that the two operands are disjoint. Usage of ] may
be descriptive (naturally arising from previous definitions) or prescriptive (a
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statement the disjointness is a prerequisite for correctness). Any prescriptive
uses of ] can be enforced by tagging the elements of the first and second
operand with 1 and 2 respectively. The shorthand {x, . . . , y} is the set of
integers from x to y inclusive.

We take a (binary) relation R ⊆ A×B to be any set of pairs from A×B,
and a function f : A → B to be any relation where there is exactly one
pair (a, b) ∈ R for each a ∈ A. Standard properties and operations on func-
tions and relations (reflexivity, transitivity, injection, bijection, composition)
are defined in the usual way, and in particular composition is defined outside-
in, so that (f ◦ g)(x)

def
= f(g(x)). A multiset over A is a function S : A→ N.

We will occasionally use the term mapping, which in our work will be
synonymous with function but which implies the use of some syntactic con-
veniences. For example, we may write x 7→ y to state that (x, y) ∈ f for some
contextually-appropriate f . In a similar fashion, g{x 7→ y} is an update to
function g; it represents g except any (x, a) ∈ g is removed and (x, y) is added.

3.1.2 Fast-Growing Functions

Somewhat recently a nomenclature has been adopted for sharing and reasoning
about very large complexity classes. We shall make use of conventions as laid
out by Czerwiński and Orlikowski in their proof of Ackermann-hardness for
reachability [30] which are similar to the presentation by Schmitz [141]. The
idea is to underpin a family of complexity classes by a family of corresponding
fast-growing functions.

The family of functions will be written F , with F1, F2, . . . being the func-
tions in the family. The definition is given recursively as follows:

F1(n) = 2n

Fk(n) = Fk−1 ◦ · · · ◦ Fk−1︸ ︷︷ ︸
n times

(1)

The definition of F coincides with Knuth’s up-arrow notation [89], where

F1(n) = 2n

F2(n) = 2 ↑ n

F3(n) = 2 ↑↑ n

and so on. It may also be described as a specific instantiation of the family
of hyperoperations (multiplication, exponentiation, tetration, pentation, et
cetera).
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It remains to formally define the corresponding family of complexity classes,
which we shall write as F = F2,F3, . . .. We shall say that a problem with
size n is a member of complexity class Fα (α > 1) if it is computable by a
deterministic Turing machine in time O(F c

α(n)) for some constant c.

The complexity class Tower, which was briefly the best lower bound of
the reachability problem, is F3, corresponding to a tower of exponentials of
height n. PR (the complexity class corresponding to the primitive recursive
functions) is included in F ; more precisely, for any primitive recursive func-
tion f there is some k such that f ∈ O(Fk).

We distinguish one special use of F , called Fω, where the corresponding
function Fω(n) is defined as Fn(n). Fω is the complexity class Ackermann;
any Ackermannian function grows faster than any fixed Fk. This notation is
slightly abused to produce variants on Ackermann such as cubic-Ackermann,
written Fω3 . The latter was briefly the best upper bound on the reachability
problem; the problem is now known to be complete for Ackermann (per
Section 2.2.2).

3.2 Vectors

Definition 3.1. A vector v in dimension d is a d-tuple (v[1], v[2], . . . , v[d]).

Each position of a vector is called a coordinate. Note that we choose to
start indexing vectors from 1—there is no “zeroth” coordinate. Indexing into
a vector is performed with square brackets, e.g. in the vector u = (4, 5, 6), the
value of the third coordinate is u[3] = 6. Unless otherwise evident, values in
vectors range over N and so a vector in dimension d is a member of Nd.

Arithmetic operations, namely addition and subtraction, are extended to
vectors pointwise, so that (a, b, . . .) + (x, y, . . .) is (a + x, b + y, . . .). Scalar
multiplication of vectors, of the form λ(a, b, . . .), is defined as (λ · a, λ · b, . . .).
The concatenation of two vectors v and w is written v · w. Vectors will never
be multiplied by vectors.

We shall use a couple of notational shorthands for particular types of vec-
tors. We may wish to refer to a vector composed all of zeroes, or all of ones,
etc. In such cases we shall overline the value with a vector arrow: 0⃗, 1⃗, etc.
The dimensionality of these overlined vectors is not fixed and should be in-
ferred from context. Additionally we may occasionally abuse the notation of
mappings for vectors; a vector denoted by {i 7→ x} is the zero vector with
the ith coordinate set to x. The technical relationship between vectors and
mappings is discussed in Section 4.5.
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3.2.1 Well Quasi Orders and Pointwise Ordering

Many of the algorithms presented in this thesis derive their proof of termin-
ation from a notion of well-quasi-ordering. The Kleene closure A∗ is the set
of finite sequences of elements of A [88]. Let us extend this notion to include
infinite sequences: we define Aω to be the set of infinite sequences over A, and
A⊛ = A∗ ∪Aω all sequences over A.

Definition 3.2. A quasi-ordering (≼, A) over a set A is a reflexive, transitive
binary relation.

Definition 3.3. A well-quasi-ordering (≤, A) over A is a quasi-ordering over A
such that in any infinite sequence (a1, a2, . . .) ∈ Aω there exist some i, j ∈ N+

such that i < j and ai ≤ aj .

Definition 3.4. The pointwise ordering (≤•, A) over a set A of vectors in
dimension d is a relation such that v ≤• w if and only if v[i] ≤ w[i] for all
i ∈ {1, . . . , d}.

Lemma 3.1 (Dickson’s Lemma [38], as reformulated by Figueira et al. [49]).
(≤•,Nd) is a well-quasi-ordering for all d ∈ N.

For the remainder of this work, unless specified otherwise, we shall take ≤
for vectors to be the pointwise ordering ≤•. Lemma 3.1 shall be relied upon
extensively when discussing termination of procedures over systems of these
vectors.

3.3 Well-Structured Transition Systems

Finkel and Schnoebelen give a generally applicable definition of well structured
transition systems, which we shall recapitulate briefly with localised notation.

Definition 3.5 ([52, Section 2.2]). A transition system is any structure which
includes

• A set S of states ;

• A transition relation → ⊂ S × S.

Definition 3.6. [52, Section 2.3] A well-structured transition system is a trans-
ition system equipped with some relation ≤ ⊆ S × S which is:

• a well-quasi-ordering; and

• upward-compatible: if s1 → s2, then for any t1 ≥ s1 there is some t2 ≥ s2

such that (t1, t2) is in the reflexive transitive closure of →.
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3.4 Vector Addition Systems

We will now proceed to the definitions for the automata that form the basis
of this work. To distinguish automata from vectors, automaton constructs
will be written as some tuple in 〈algebraic brackets〉. The distinction between
tuples and automaton constructs is nominal, and such objects can and will be
treated like any other tuple.

Definition 3.7. A Vector Addition System (VAS) in dimension d is a finite
set of transitions W ⊆ Zd.

The definition given above is distinct from the original formulation of Karp
and Miller [87, Chapter IV] in that it omits the initial vector. When we for-
mulate queries such as the reachability and coverability queries of Chapters 4
and 5, we shall include the initial vector as part of the query. This is for
symmetry with the formulation of Petri nets and queries thereover.

A generalised version of VAS, originally defined by Hopcroft and Pansiot
in 1979 [79], includes control states which limits when transitions are allowed
to fire.

Definition 3.8. A Vector Addition System with States (VASS) in dimension d

is a pair V = 〈Q,T 〉, where

• Q is a finite set of states;

• T ⊆ (Q× Nd ×Q) is a finite set of transitions.

It is this formulation that we will make use of in the remainder of the work.
As noted by Hopcroft and Pansiot, the addition of states often reduces the
dimension needed to model a particular system and makes the relationship
between vectors and states more apparent. Observe that any VAS W can be
viewed as a VASS 〈{◦}, {(◦, w, ◦) | w ∈W}〉.

3.4.1 Configurations and Runs

Let us define the semantics of Vector Addition Systems (with states).

The critical piece of VASS semantics, which distinguishes them from ar-
bitary state machines, is this: During operation, the machine maintains a
configuration, which includes a vector. At no point during the operation of a
VASS is any value in the vector of its configuration allowed to become negative.

Definition 3.9. A configuration of a VASS 〈Q,T 〉 in dimension d is a pair
(q, v) for some q ∈ Q and v ∈ Zd. Such a configuration is valid if and only if
v ∈ Nd.
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Definition 3.10. In a VASS V = 〈Q,T 〉, transition t = (q, w, r) is active
(equivalently can be fired or is fireable) from some configuration (q′, v) in V if
and only if q = q′ and (r, v + w) is a valid configuration. If so, we may write

(q, v)
t−−→ (r, v + w).

Operation of a VASS consists of firing transitions which lead to valid con-
figurations. We call such sequences of firings runs.

Definition 3.11. A run on a VASS V = 〈Q,T 〉 is a sequence of transitions
(t1, · · · , tℓ) from T such that (q0, v0)

t1−−→ (q1, v1)
t2−−→ · · · tℓ−−→ (qℓ, vℓ). The

length of such a run is ℓ. (q0, v0) and (qℓ, vℓ) are called the initial and fi-
nal configurations of the run respectively.

Queries on VASSs made in this work will consist of asking whether a run
exists which satisfies certain (equality or inequality) constraints on its initial
and final configurations. In Chapter 5, and in particular Section 44, we shall
also interest ourselves in pseudo-runs: runs where the intermediate configur-
ations (q1, v1), . . . , (qℓ−1, vℓ−1) are not required to be valid. The semantics of
configurations and runs of VAS are derived via the semantics of a VASS with
a single state.

It is often convenient to consider the properties of a run notwithstanding
the precise order of transition. In such cases, we can choose a more succinct
representation of runs. This succinct representation is typically referred to as
the Parikh image, after an analogous technique devised by Parikh for use in
the theory of context-free languages [122].

Definition 3.12. For a run σ = (t1, . . . , tℓ) on a VASS V = 〈Q,T 〉, the Parikh
image πσ : T → N is a count of the number of occurrences of each transition
of T in σ. Formally:

πσ(t) = |{i | i ∈ {1, . . . , ℓ}, ti = t}|

The Parikh image will be of particular value when computing relaxations
of runs in Chapter 5.

3.4.2 VASS Diagrams

We will draw VASS in a way similar to the standard presentation of state-
transition diagrams for finite automata. We render a VASS as a directed
multigraph, where each state q ∈ Q is denoted as a node labelled by q and
each transition (q, v, r) is denoted as an edge from q to r labelled by v. Unlike
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finite automata, initial and final states do not form part of the model (hence do
not appear in the diagram)—instead they are included as part of any queries
asked of it.

Example 3.1. Consider the VASS Vex = 〈Q,T 〉 in dimension 2, where

Q = {q, r}

T = {(q, (−1, 1), q), (q, (0, 1), r)}

The diagram corresponding to Vex is given in Figure 3.1. (We shall make use
of Vex again in Chapter 5.) From the diagram it is evident that, once state r

is reached, it is no longer possible to fire any transitions. Hence we can infer
that transition t1 may be fired at most once in any run on Vex.

Each of the following is a run on Vex:

• (r, (0, 0));

• (q, (1, 0))
t1−−→ (r, (0, 0));

• (q, (2, 2))
t0−−→ (q, (1, 3))

t0−−→ (q, (0, 4)).

q r

t0 [−1, 1]

t1 [0,−1]

Figure 3.1: An example VASS, Vex.

3.5 Petri nets

A Petri net is an alternative formulation of a very similar idea. Instead of
using states and vectors to move between configurations as in VASS, instead
we mark places with tokens and use transitions to shuffle tokens between these
places.

Definition 3.13. A Petri net is a triple N = 〈P, T, f〉, where:

• P is a finite set of places;

• T is a finite set of transitions;

• f : (P × T ) ∪ (T × P )→ N is the flow function.
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Both P and T are arbitrary in the sense that we can use arbitrary labels
for the places and transitions of a Petri net. In this work we endeavour to stick
with p1, . . . , pn and t1, . . . , tn for the places and transitions of a net respectively.
As a notational convenience, we may write (a, b) 7→ n when f(a, b) = n; n is
called the flow from a to b.

3.5.1 Behaviour

Much like VASS configurations, in Petri nets we define a notion of the current
configuration of a Petri net. Configurations of Petri nets are called markings.
A marking is characterised by the placement of so-called tokens. Such tokens
are fungible and so it is sufficient to count them:

Definition 3.14. A marking of a Petri net N = 〈P, T, f〉 is a mapping
M : P → N.

In words, a marking associates to each place the number of tokens that
are currently hosted in that place. We shall use the same pointwise notion of
ordering for markings as for vectors: M ≤ M ′ if and only if M(p) ≤ M ′(p)

for all p ∈ P . The number of tokens in places will increase and decrease over
time as the result of firing transitions:

Definition 3.15. For a Petri net N = 〈P, T, f〉, a transition t ∈ T is enabled
(equivalently can be fired) in a marking M if and only if, for every place
p ∈ P , we have M(p) ≥ f(p, t). The result of firing such a transition is
M ′ = {(p,M(p)− f(p, t) + f(t, p)) | p ∈ P}, and we may write M

t−−→M ′.

Runs are defined analogously to VASS:

Definition 3.16. A run on a Petri net N = 〈P, T, f〉 is a sequence of trans-
itions t1, · · · , tℓ of T such that M0

t1−−→M1
t2−−→ · · · tℓ−−→Mℓ. The length of such

a run is ℓ. M0 and Mℓ are the initial and final markings of the run respectively.

As with VASS, the ability to fire a transition is predicated on having suf-
ficient values in some set of locations as determined by the transition. From
time to time it will be convenient to refer to that set of locations (and some
similarly-defined sets) by name.

Definition 3.17. The pre-set pre(t) of a transition t in net N = 〈P, T, f〉 is
the set of places p ∈ P from which tokens are removed when t is fired. The
post-set post(t) of t is the set of places into which tokens are added when t is
fired. Formally:

pre(t) = {p ∈ P | f(p, t) > 0}

post(t) = {p ∈ P | f(t, p) > 0}
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Note that a place may appear both in the pre-set and post-set of a trans-
ition. As is common, we shall overload the notation to extend the pre-set and
post-set to places as well:

Definition 3.18. The pre-set pre(p) of a place p in a net N = 〈P, T, F 〉 is
the set of transitions t ∈ T that add tokens to p when t is fired. The post-set
post(p) of p is the set of transitions that remove tokens from p when t is fired.
Formally:

pre(p) = {t ∈ T | f(t, p) > 0}

post(p) = {t ∈ T | f(p, t) > 0}

3.5.2 Petri net Diagrams

It is in diagramming Petri nets that the value of the formalism starts to become
apparent. We draw a Petri net N = 〈P, T, f〉 as a directed bipartite graph.
Each place p ∈ P is rendered as a grey circle, and each transition t is rendered
as a black rectangle (the orientation of the rectangle is arbitrary). The directed
edges (often called arcs) between places and transitions are drawn according
to the flow relation. A flow (a, b) 7→ n with value n > 1 is labelled with n;
edges without a label are assumed to have flow 1. Edges with flow zero are
not drawn.

Example 3.2. Consider the Petri netNex = 〈{p0, p1, p2}, {t0, t1, t1}, f〉, where
the nonzero flows in f are

(t0, p0) 7→ 1 (p0, t1) 7→ 1 (p1, t2) 7→ 1 (t1, p2) 7→ 2.

Then we may diagram Nex as in Figure 3.2a. If we wish to diagram a Petri
net with some particular marking M , we put on the circle corresponding to
each place p a number of black discs equal to M(p). Figure 3.2b shows Nex

with marking {p1 7→ 3} and all other places 0. To distinguish an unmarked
net from a net with a marking with all places zero, in an unmarked net we
write the label for each place inside the circle for that place.

3.6 Petri nets versus Vector Addition Systems

One may infer from the definitions given above that Petri nets and Vector Ad-
dition Systems with States are quite similar. Both formalisms revolve around a
notion of transitions, which manipulate values in a number of locations. Both
require that in order for firing those transitions to be allowed, the firing may
not result in values in any of those locations becoming negative. And both
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p0

p1

p2

t0

t2 2

(a) Nex, unmarked.

p1

p0

p2

t0

t2 2

(b) Nex with marking {p1 7→ 3} as denoted by tokens.

Figure 3.2: The net Nex as defined in Example 3.2, rendered without and with
a marking.

have a shared notion of runs, which are sequences of such firings. However,
there are a couple of properties of each that make translation to the other not
immediate. It was quickly established that Petri nets and Vector Addition Sys-
tems are equivalent formalisms—that is, they are equally expressive—and this
was formally shown by Hack in 1974 [75]. We will present a family of trans-
lations between Petri nets and VAS, and in doing so show also that Vector
Addition Systems (the ones without states) are as expressive still.

Definition 3.19. Let us say that X (weakly) simulates Y if we can define an
injective function R from the configurations of Y to the configurations of X
such that there exists a run from a to a′ in Y if and only if there exists a run
from R(a) to R(a′) in X.

Definition 3.19 is designed to abstract over VASs, VASSs, and Petri nets.
We will show equivalence of the three models by giving a triplet of one-way
simulations. Observe that the simulation property is transitive and so we get
that each of the three models can simulate the others.
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Petri nets

VASs VASSs

Thm. 3.3

Thm. 3.1

Thm. 3.2

Figure 3.3: The triplet of one-way simulations given below, where Y↠X means
X simulates Y .

Theorem 3.1 ([79, Lemma 2.1]). For every VASS V = 〈Q,T 〉 in dimension d,
there is a VAS W in dimension d+ 3 that simulates it.

Proof (sketch). The state of any given configuration of V is encoded directly
into the three additional coordinates of W . The simulation property is main-
tained by a clever bookkeeping method.

Without loss of generality, assign some numbering q1, . . . , qk to the k states
of V . For each i ∈ {1 . . . k}, define the intermediate value bi = (k+1)(k+1−i).
We may then define R as

R(qi, v) = v · (i, bi, 0).

Transitions in V are translated to W in the following way. In each of the
following rules, every possible instantiation of the antecedent (above the line)
induces the corresponding consequent (below the line). This notation shall be
reused from Chapter 6 onwards.

i ∈ {1, . . . , k}
0⃗ · (−i, k + 1− i− bi, bk+1−i) ∈W

(1)

i ∈ {1, . . . , k}
0⃗ · (bi, i− (k + 1), i− bk+1−i) ∈W

(2)

(qi, v, qj) ∈ T

v · (j − bi, bj ,−i) ∈W
(3)

The intuition behind the encoding is as follows. Suppose we wish to apply
some transition qi

w−−→ qj . If starting in state qi the system shall have con-
figuration R(qi, v) for some v. Reaching R(qj , v + w) is achieved by first
applying transitions (1) and (2) for i, leaving the last three coordinates in
position (bi, 0, i). Observe that, thanks to the value of bi being greater than
aj for any i, j, it will always be possible to apply those transitions in the de-
sired order. It remains to apply transition (3), which will leave the system at
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(v+w) · (j, bj , 0) = R(qj , v+w), as desired. If i is too great or too small then
transition (3) will not be enabled as either the first or third position would
become negative, and so it is only enabled after firing both (1) and (2) for that
value of i. Hence this scheme does not allow for firings which would result in
visiting erroneous states.

Theorem 3.2. For every VAS W in dimension d there is a Petri net
N = 〈P, T, f〉 that simulates it.

Proof. This is the simplest of the three constructions. Let P = {1, . . . , d},
T = W , and the nonzero flows of f (written f+) be defined as follows.

f+ = fpt ∪ ftp

fpt =
⋃
t∈T
{(p, t) 7→ −t[p] | t[p] < 0}

ftp =
⋃
t∈T
{(t, p) 7→ t[p] | t[p] > 0}

The simulating function R, which identifies a marking of N for each configur-
ation of W , is

R(v) = {i 7→ v[i] | i ∈ {1, . . . , d}}.

R is clearly bijective. Moreover, the encoding of transitions from W as trans-
itions where (p, t) and (t, p) are not both nonzero is also bijective. Observe that
the firing conditions of the transitions in the net are analagous to the firing
conditions of the vectors in the VAS. It follows that N simulates W .

We finish the virtuous triangle by simulating Petri nets in VASS.

Theorem 3.3. For every Petri net N = 〈P, T, f〉, there is a VASS
V = 〈QV , TV 〉 in dimension d = |P | that simulates it.

Proof. Without loss of generality, let us arbitrarily number the places of the
net {p1, . . . , pd}. Markings will be represented as vectors in dimension d.

The minor hurdle to overcome here is that in Petri nets we separate out the
flow into and out of a transition—some transition may remove five counters
to add six back. In VASS we have no such luxury in a single transition, but
we can simulate this behaviour with two consecutive transitions.

For each transition t, we define

vpre(t) = (f(p0, t), f(p1, t), · · · , f(pn, t))

vpost(t) = (f(t, p0), f(t, p1), · · · , f(t, pn))
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Intuitively these vectors correspond to the “in-flow” and “out-flow” for
each transition. Observe that all the values in every coordinate in every vector
vpre(t) or vpost(t) will be nonnegative. It remains to concatenate transitions
corresponding to these vectors in such a way that we can only fire the post-
vector immediately after the pre-vector. QV and TV are as given below.

QV = {midt | t ∈ T} ∪ {•}

TV = Tpre ∪ Tpost

Tpre = {(•,−vpre(t),midt) | t ∈ T}

Tpost = {(midt, vpost(t), •) | t ∈ T}

The state • is a single distinguished state where configurations of V in that
state are exactly the markings of N . The additional states midt are used for
bookkeeping, where the removal part of the Petri net transition occurs first
with vector −vpre(t) and from there the only transition back to • is via the
transition with vector vpost(t), which can always be fired. The simulating
function R is

R(M) = (•, (M(p1),M(p2), . . . ,M(pd))).

It is worth briefly remarking on the algorithmic complexity of these con-
structions. Each of the constructions results in a machine which has the same
dimension (in Petri nets, number of places), with the exception of the trans-
lation from VASS to VAS which increases the dimension from d to d + 3. In
each case the number of transitions in the simulating machine is linear in the
number of transitions in the simulated machine, and the constructions can all
be performed in polynomial time and with logarithmic space.

The upshot of the above results is that Petri nets and Vector Addition
Systems (with or without States) can be considered equivalent formalisms,
and any question posed over one of the models has an analogous question that
can be posed over the others. We shall use this equivalence liberally in the
chapters to come. With this in mind, we are now ready to embark on the
theoretical contributions of this work.
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Chapter 4

The Coverability Problem
& HCover

Let us begin with an exploration of coverability.

As very recently covered in Section 3.6, it is known that Petri nets and
Vector Addition Systems (with or without states) are equivalent formalisms,
such that problems defined over one may be reformulated as problems over
the other. It is commonplace in the literature for theoretical results to be
presented over VAS or VASS, whereas practical applications of the formalisms
will often make use of Petri nets. Sections 3.5 and 3.4 offer examples of the
graphical representation of each of the models.

The coverability problem can easily be formulated over either model. We
present both formulations here.

Definition 4.1. The coverability problem for Petri Nets asks, given a Petri
net N = 〈P, T,F〉, an initial marking M0, and a target marking M , whether
there is any run M0

t0−−→M1
t1−−→ · · · tn−−→M ′ such that M ′ ≥M .

Definition 4.2. The coverability problem for Vector Addition Systems with
States asks, given a VASS V = 〈Q,T 〉, an initial configuration (q0, v0), and a
target configuration (q, v), whether there exists a run

(q0, v0)
t0−−→ (q1, v1)

t1−−→ · · · tn−−→ (q, v′)

such that v′ ≥ v.

The analogy between the two formulations should be obvious, and trans-
lation of problems from one to the other is unremarkable. Recall that both
VASS configurations and Petri net markings make use of the pointwise notion
of ordering defined in Section 3.2.1.

The reason for defining both forms is to justify the use of the theoretically-
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minded Vector Addition Systems formulation of the coverability problem (as
we shall see later in this chapter) to work with instances and examples given
in the more readily diagrammed format of Petri nets.

4.1 Why Coverability?

As remarked on in Chapter 2, Petri nets have applicability across a wide range
of problem domains, and the coverability problem is able to capture a large
number of properties of interest.

Coverability is intrinsically tied to a notion of safety. A Petri net is con-
sidered safe with respect to some predicate f and initial marking M0 if and
only if, for every marking M ′ reachable from M0, f(M ′) holds. Safety predic-
ates are formulated as bounds on individual places, for example “Place p must
have at most 1 token”. Such a safety property can be tested by checking for
(non)coverability of the marking {p 7→ 2}. Such safety properties are sufficient
for many forms of model checking, both in the theory of hardware and soft-
ware (checking for critical section reuse, for example) and further beyond in
business process modelling, resource allocation, or safety-critical systems such
as transportation control infrastructure.

Coverability is also significantly less computationally intensive to check
than reachability, being (worst-case) double-exponential in running time com-
pared to the Ackermannian running time of procedures for reachability. Hence
there is an appetite to reduce problems to coverability instances rather than
reachability wherever possible.

We shall now begin on the technical details of solving the coverability
problem.

4.2 Upward-closure

Many algorithms for solving coverability rely on a notion of upward-closure:

Definition 4.3. A set of vectors V ⊆ Nd is upward-closed if and only if, for all
v ∈ V and v′ ∈ Nd, if v′ ≥ v, then v′ ∈ V . The upward-closure ↑v of a vector v
is the (unique) smallest upward-closed set containing v; the upward-closure of
a set of vectors ↑V is the union of the upward-closures of the members of V .

We define downward closure (↓) identically but with ≤ rather than ≥.
With these definitions in mind, we may reformulate coverability as finding
some run ending at a vector v′ contained in ↑v (or equivalently where v is
contained in ↓v′).
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All upward-closures are infinite, and so it is not possible to immediately use
them in coverability procedures. Instead, we require a way of representing such
upward-closed sets in a finite (preferably small) form. We elect to represent
an upward-closed set in terms of some finite subset of its members.

Dickson’s lemma [38] states that for any such set S, there is some minimal sub-
set of representative elements—and that subset is both finite and unique. We
call that subset the basis for S. The calculation of a basis for an upward-closed
set, given a superset of that basis, is a significant computational bottleneck in
practice. A naive approach would require O(n2d) time, with n the size of the
subset and d the dimension of the vector space. Among other things, we seek
to address this bottleneck as part of the work undertaken in this chapter.

4.3 Approaches to Coverability

A number of approaches have been described for solving coverability since the
problem was formulated by Karp and Miller in 1969 [87]. Here we shall stick to
presenting the theoretical results via Vector Addition Systems without states.

4.3.1 The Karp-Miller Coverability Procedure

Let us define the coverability set ↓V, (q, v) of the VASS V = 〈Q,T 〉 from
configuration (q, v) as the set of all configurations that are coverable in V by
some run starting at (q, v). Asking whether (q′, v′) is coverable from (q, v) in
V is therefore the same as testing for membership of (q′, v′) in ↓V, (q, v).

For this membership test to serve as a meaningful way of deciding coverab-
ility, we would need some algorithm for generating the complete coverability
set in finite time. Fortunately, Karp and Miller [87] have provided us just such
an algorithm.

More precisely, the algorithm will generate the so-called Karp-Miller tree
for a given V and starting configuration (q, v). The Karp-Miller tree is a tree
where every node is labelled by an ω-configuration and every edge is labelled
by a transition from T .

Definition 4.4. For some VASS V = 〈Q,T 〉 in dimension d, an ω-configuration
is a pair (q, vω) ∈ Q× (N ∪ {ω})d.

Intuitively, this gives us the ability to replace any coordinates in a config-
uration by ω. Every configuration of a VASS is also an ω-configuration. When
an ω appears for some coordinate at a node in the Karp-Miller tree, that indic-
ates that that coordinate can be pumped arbitrarily high by repeatedly firing
the transitions labelling some (contiguous) subsequence of the path from the
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root to that node. The set of all labels in the tree is a representation of the
coverability set. We shall see shortly that this representation is finite.

Algorithm 1 Karp-Miller Tree Computation
1: procedure KM-Tree(V = 〈Q,T 〉, (q, v), A (initially ∅))
2: if ∃ (q, va) ∈ A s.t. va ≥ v then
3: return ∅ ▷ A sink; end exploration.
4: end if
5: for (q, va) ∈ A, i ∈ {1, . . . , d} do
6: if va < v ∧ va[i] < v[i] then
7: v[i]← ω ▷ Mark pumped places by ω.
8: end if
9: end for

10: D ←
⋃
{KM-Tree(V, (q′, v′), A∪{(q, v)}) | ∃t ∈ T : (q, v)

t−−→ (q′, v′)}
11: return {((q, v), D)}
12: end procedure

In the version of the Karp-Miller tree construction presented in Algorithm 1,
we denote a node as a pair (c,D) where c is some ω-configuration labelling the
node and D is the set of child nodes. Labels on nodes need not be unique in
the whole tree, but they will be unique on any path to the root. In short, we
exhaustively follow every legal path from the initial configuration (q, v) in V .

At each point, if our node (q, v) is pointwise smaller than or equal to
some ancestor (q, va) with the same state, there are no longer any interesting
configurations to find on this path and we stop expanding it. If our vector
is strictly larger than it was at some ancestor with the same state (taking ω

to be larger than any natural), then we set any coordinates which are strictly
larger to ω and proceed. We compute the set of configurations reachable in
one step from this node and recursively build the tree. In building the set of
configurations reachable in one step, we permit any increase or decrease of an
ω coordinate; that coordinate remains ω.

Consider any path starting at the root. Any time we revisit a state on the
path, either (1) we stop expanding the path; (2) we set at least one coordinate
to ω; or (3) the new and old values are incomparable under pointwise ordering.
Case (2) can only happen at most d times on any path (assuming vectors in
dimension d); by Dickson’s lemma the number of occurrences of (3) is finite.
Hence any path must be finite. Since the branching at any node is bounded
by the (finite) number of transitions, by König’s lemma the tree is finite and
this procedure will terminate.

The Karp-Miller tree is used in a number of other applications. For ex-
ample, this algorithm shall be used in Chapter 5 as a subroutine in KReach,
our implementation of Kosaraju’s algorithm for reachability in VASS. The al-
gorithm has since been extended to post-self-modifying nets [143], ω-recursive
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nets [53], and branching VASS [147]. A work of Blondin, Finkel and Goubalt-
Larrecq [14] provides a holistic appraisal of the Karp-Miller coverability proced-
ure and its applications to many flavours of well-structured transition systems.

4.3.2 Search methods

There are two varieties of search algorithm which can decide coverability.

1. Forward search. From the initial vector v0, all vectors in ↓v0 can trivi-
ally be covered. Forward methods start with ↓v0 and repeatedly fire all
possible transitions, computing a growing downward-closed set of cover-
able vectors, until that set contains the target vector v, or there are no
remaining transitions whose firing grows the set.

2. Backward search. These methods start with the upward closure of the
final vector ↑v and add additive vectors “in reverse”, until v0 is contained
in the set, or there are no remaining ways to grows the set. (We shall
discuss what adding vectors “in reverse” means shortly.)

The two search methods described above are symmetrical in some sense,
but each one admits a different set of optimisations. Both forward and back-
ward search are guaranteed to terminate [52, 87]. Section 4.3.1 outlines a
classic forward search method.

Other methods have been trialled, such as in the MIST coverability check-
ing tool [59], which combine these two mechanisms: running both forward and
backward algorithms at the same time in an attempt to reduce the total space
explored. Figure 4.1 gives a (low-dimension) geometric exposition of the logic
behind this approach; the computational saving increases exponentially as the
dimensionality of the space increases.

However, this dual search mechanism is not ideal for all problem domains.
For example, in cases where the prevalence of coverable instances is very low,
performing both searches may be less efficient, as the entire forward and back-
ward search space may need to be explored before coverability can be ruled
out. In addition, checking for overlap between the sets generated by forward
and backward coverability is itself computationally intensive and introduces
its own significant overhead.

4.3.3 Augmented search methods

More recent approaches to deciding coverability commonly rely on solving
relaxations of the coverability problem. One method of particular interest
relaxes the rules of runs over the vector addition system.
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v0 v

(a) Forward search starts with ↓v0 and
ends when the downward-closed set con-
tains v or cannot be grown.

v0 v

(b) Backward search starts with ↑v and
ends when the upward-closed set con-
tains v0 or cannot be further expanded.

v0 v

(c) By performing forward and backward search at the same time, the overall “radius”
of the search is smaller and less irrelevant search space is explored overall.

Figure 4.1: A geometric representation of the search space for forward and
backward coverability search.

In [13], Blondin et al. make use of reachability and coverability in the
continuous setting, where one may add arbitrary fractions of vectors during
runs. The continuous setting admits some efficient approaches—indeed, Fraca
and Haddad [56] showed that not only Q-coverability, but Q-reachability, is
computable in polynomial time. This relaxation can quickly and effectively
prune the search space, as laid out in Section 28 “Continuous VASS”.

The technique of pruned search was expanded on by Geffroy, Leroux and
Soutre [63] to include more methods of pruning. Their ideas involve computing
inductive invariants of the net that statically preclude sets of vectors fufilling
certain criteria (see Section 30 “Inductive Invariants”) from ever bring part of
a covering run. This further reduces unneeded computation.

4.3.4 Coverability by Invariant-driven Pruned Search

Invariant-driven pruned search, in essence the ICover algorithm of Geffroy,
Leroux and Sutre described in [63], is a backward search exactly of the form
described in Section 4.3.2. We reformulate their description in terms of VASS
for the sake of simplicity.

The backwards search algorithm, presented in Algorithm 2, proceeds as
follows. We begin with a VASS V = 〈Q,T 〉, an initial configuration (q0, v0) and
a target configuration (q, v). The intuition behind the backward coverability
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algorithm is that we inductively compute the set of all vectors which can, by
some run, end up covering our target vector. We start with the upward closure
of our target vector—everything in ↑v trivially covers v, since by definition all
elements of ↑v are at least v with respect to our ordering ≤.

Recalling that we represent upward-closed sets by their minimal basis, we
then, for each element u of that basis U , compute the maximal “pre-set” of
vectors W = maxpre(u) which, by some transition, would result in a vector in
↑u. W is also clearly upward-closed (if w t−−→ u for some t ∈ V , then for any
w′ ≥ w, w′ t−−→ u′ such that u′ − u = w′ −w ≥ 0⃗ and therefore u′ ≥ u). Hence
W has a computable, minimal, finite basis. Taking the union of the pre-set
bases for all such elements u, along with U itself, gives us a new upward-closed
set U ′

Since all elements of U are in U ′, either U ′ strictly contains U or it is
exactly equal to U . It is easy enough to detect either case—if the sets are
the same then their bases are identical. If U ′ stritly contains U (we say it has
“grown”) then either U ′ contains our initial vector, in which case the target
vector is known to be coverable from the initial vector and we finish with YES;
or we can keep searching and we repeat the process described above. If U ′ has
not grown, then we now have the full, upward-closed set of vectors which can
cover v.

Algorithm 2 Simple backward coverability for VAS
1: procedure Back-Cover(V, v0, v) ▷ Is v coverable from v0 in V ?
2: U0 ← ∅
3: U1 ← ↑v
4: i← 1
5: while Ui−1 ⊂ Ui do
6: i← i+ 1
7: Ui ← Ui−1 ∪ ↑

⋃
{maxpre(u) |u ∈ Ui}

8: if v0 ∈ Ui then
9: return YES ▷ v0 has been covered

10: end if
11: end while
12: return NO ▷ The search space is exhausted
13: end procedure

Vectors with nonnegative components form a well-quasi-ordering under
our definition of ≤ [38]. This means that any infinite sequence of distinct
vectors v0, v1, v2, · · · from Nd must contain some pair vi, vj such that i ≤ j

and vi ≤ vj . In our setting, we may equivalently say that there is no infinite
sequence of distinct vectors vi such that v0 ≥ v1 ≥ v2 ≥ · · · . As a corollary,
when considering upward-closed sets Ui of such vectors, any sequence U0 ⊆
U1 ⊆ U2 ⊆ · · · will always stop growing eventually [52, Lemma 2.4]. The
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upshot of this is that we can only ever run a finite number of iterations before
U can no longer grow, and so the procedure will always terminate. (Indeed, the
well-quasi-ordering of vectors is the original derivation of this algorithm, which
was defined generically over all well-structured transition systems.) Invariants
are used to reduce the size of successive U terms and thus cause the procedure
to converge and terminate more quickly. We shall now describe some such
invariants.

Continuous VASS

The first time the continuous treatment of VASS was used as a pruning cri-
terion for search was in [13] by Blondin et al. In the continuous setting, one is
permitted to add non-negative rational amounts of any of the system’s vectors
to the current vector, with all the other constraints of VASS (non-negativity
in runs in particular) respected.

Definition 4.5. A continuous run on a VASS V = 〈Q,T 〉, starting at an
initial configuration (q0, v0), is a sequence

(q0, v0)
x0(t0)−−−−→ (q1, v1)

x1(t1)−−−−→ · · · xn(tn)−−−−→ (q, v),

such that ∀i : vi+1 = vi + xi · ti; vi ≥ 0⃗; xi ∈ Q+; and ti ∈ V . Coverability
where runs are replaced by continuous runs is called Q-coverability.

Q-coverability is a relaxation of coverability: any run in VASS can be
treated as a continuous run where the coefficients are all 1. Therefore we can
use (non-)coverability in the continuous setting as a pruning criterion for the
standard setting. If no run exists with any suitable coefficients, then certainly
no run exists with coefficients 1.

As laid out by Fraca and Haddad [56], it is possible to solve not only
Q-coverability but also the analogous Q-reachability in polynomial time. It
is their Q-reachability algorithm which is used here to empower the pruning
mechanism. The procedure, the details of which are the subject of [56, Al-
gorithm 2], encodes the reachability properties into existential first-order logic
and solves the resulting system via integer linear programming—a technique
which shall reappear several times through Chapters 4 and 5. Constructing a
(Q-)reachability problem from a (Q-)coverability problem is not challenging:
we can augment any VASS with transitions such that, for a given v, v is reach-
able from any vector in ↑v, and so deciding reachability on the augmented
VASS becomes equivalent to deciding coverability on the original. The con-
struction for this is given in Section 5.1. Moreover the augmentation is small
and so the algorithm is still polynomial.
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The experimental results of [13] suggest that this alone is a significant im-
provement over many of the then state-of-the-art coverability checkers. Their
tool QCover outperformed most contemporary solvers on uncoverable in-
stances; only the BFC tool [85] was significantly faster on coverable instances.

Inductive Invariants

The techniques of Geffroy, Leroux and Sutre in [63] are broadly similar. As
with Blondin et al. in [13], the algorithm proceeds by standard backward
coverability and computation of growing upward-closed sets. The difference is
in the pruning criteria.

Whereas Blondin et al. use exclusively Q-coverability as their pruning
criterion, Geffroy, Leroux and Sutre use a number of different efficiently-
computable invariants to minimise the size of the basis set.

Observe that the subtraction of a downward-closed set from an upward-
closed set is itself upward-closed. The approach of [63] is to identify as many
downward-closed invariants as possible (for example, that no vector in ↓v1
could possibly be reachable from v0); and then subtract these downward-closed
sets from the growing set U at each step. This reduces the number of steps
before the series Uk of growing sets stabilises.

As with [13], the invariants are expressed efficiently using integer linear
programming, in this case via a state equation. The state equation can be
viewed as an encoding of the reachability conditions as an integer linear pro-
gram, with the nonnegativity constraint on vector components removed: it
measures only the displacement of each component due to some set of fired
transitions, and ensures that it matches the difference between the initial and
target vectors in that component. Nor does the state equation care about the
order of firing: with the nonnegativity constraint removed, transitions may be
fired in any order. To solve the state equation is to solve a relaxation of stand-
ard reachability. By reformulating the state equation with inequalities instead
of equalities, we get the state inequation, which is the analogous system for
coverability.

The state inequation itself is a downward-closed invariant: it provides an
overapproximation of (the upward-closed set of) vectors from which a target
vector may be coverable. The complement of that set is therefore downward-
closed and represents the set of vectors which can never cover the target vector.

In their tool ICover, Geffroy, Leroux and Sutre removed the Q-coverability
based pruning of Blondin et al.’s QCover and replaced it wholesale with prun-
ing based on their inductive invariants. In experiments, the two tools were
able to decide almost exactly the same number of instances, though ICover
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solved them in 80% of the time of QCover. This is a positive indication that
the techniques of ICover, which are inherently extensible, are at least as com-
petitive as QCover and may present a useful starting point for the exploration
of further invariants for pruning. It is for this reason that the ICover-based
pruning algorithm was used as a basis for the tool presented in this chapter.

4.4 HCover

The coverability procedure outlined above, invariant-driven pruning, includes
the use of state-space search via backward coverability; static computation of
downward-closed invariants; and integer linear programming. Taken together,
the algorithm is something of a grand tour of the highlights of decision proced-
ure techniques for Vector Addition Systems with States. It therefore makes
an excellent introductory topic for a newcomer to this field of study. In this
section we introduce and discuss the implementation of HCover, an imple-
mentation of the ICover algorithm, presented in a performant, digestible,
and extensible way.

As one may anticipate, several iterations of added complexity and improve-
ments over a base algorithm result in a body of work which is not trivial to
understand, both at the theoretical level and in terms of implementation. In
this work, we present the following:

1. a tool, HCover, which boasts (at minimum) feature and performance
parity with the ICover tool of Geffroy, Leroux and Sutre;

2. an explorable, well-documented and modular body of source code for
HCover itself which may present a workable basis for further optimisa-
tions and improvements; and

3. the following text, a complete explanation of the end-to-end decision
procedure in question1, which is approachable for those familiar with
Petri nets and VASS and may serve as an introduction to the pragmatics
of state-of-the-art coverability techniques.

Use of Haskell

The tool HCover is implemented in Haskell. Haskell is a purely-functional,
lazy, strictly typed programming language. As we shall see, each of these
properties makes it an excellent candidate for implementing procedures such

1We acknowledge that this work does not present any novel theoretical improvements over
the algorithm given in [63]—the contribution here is auxiliary to the algorithm itself and not
technical in nature. It is nevertheless of value to the field for the reasons outlined above.
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as this. Further, the Haskell language and ecosystem make significant use of
abstractions: generalisations both of data and control flow. These abstractions
may be seen as additional layers of complexity to a functional programming
newcomer, but appropriate usage of these abstractions can vastly simplify the
presentation of the algorithm’s logic. If pains are taken to produce readable
code, the result can be indistinguishable from pseudocode. Code segments
given in this chapter will be provided as Haskell code; they will be annotated
where appropriate to guide a reader unfamiliar with the language. For example,
here is part of the source code of HCover which runs a continuous coverability
query via an SMT solver:

-- This is the type signature for the function.
checkCoverability
:: PetriNet -- The input net.
-> Initial -- The initial marking.
-> Target -- The target marking.
-> Query SafetyResult -- The result of the query.

checkCoverability vas initial target = do
let problem = constructProblem net initial target

-- Run the encoded problem through the default SMT solver (z3)
result <- runSMT problem
case result of

Nothing -> return Safe
Just counterexample -> return Unsafe

Figure 4.2: Constructing then running a coverability query via an SMT solver.

We see that, in the above code, the checkCoverability function first
constructs an instance of the problem, given a Petri net, an initial marking,
and a target marking. It then runs the problem instance through the SMT
solver and returns Safe if the instance is not coverable, or Unsafe otherwise.
It does not take a deep understanding of functional languages to follow the
code as written, even with minimal comments from the author, since it closely
resembles the form of pseudocode often seen in academic writing.

The first line of the code segment is the type signature of the function
checkCoverability. This formally describes the relationship between the
arguments and the result. Since Haskell is a strictly-typed programming lan-
guage, if the function is provided improper arguments, the program will fail
to compile. By encoding preconditions into the types, as we do here, we are
providing compile-time guarantees that the code is structured properly. This
affords some level of trust in the program’s architecture which is not so easy to
come by in other programming languages such as Python.2 Haskell also guides

2Of course, Haskell is not magical; it is still possible to shoot oneself in the foot. But
many of the typical failure modes seen in other languages—forgetting to initialise a variable,
null references, improper casting—are simply not a concern in Haskell.
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us towards writing shorter, more self-contained functions whose behaviour can
be described by such type signatures.

HCover is able to take advantage of a number of automatic optimisations
introduced by the Haskell runtime:

• There are a number of representations of sequences of values in Haskell.
The two most frequently used are vectors (defined in the vector pack-
age) and lists (defined in the standard library, base). These represent
something akin to arrays in typical languages and linked lists, respect-
ively. Both of these types are amenable to a technique called fusion. If
two consecutive operations would read each value of a vector or list in
turn (for example, modifying each value in the structure and then check-
ing if each value is equal to zero), then those two operations are fused
into a single operation which will visit each value only once. In some
settings, where a sequence of values would need be traversed repeatedly,
this optimisation can drastically improve performance. Vectors, espe-
cially basis vectors, will be compared under ≤ many times in a run of
this procedure, hence the relevance of this optimisation.

• Data structures such as Maps and Sets have both strict and lazy vari-
ants. When making use of their lazy variants, as is done in HCover,
the runtime will only evaluate those elements that will be used in order
to decide the output of a function. For example, if the procedure is
comparing two vectors in N1000 by ≤, but it can determine inequality
only by checking the first two components, then the other 998 will never
be checked, and indeed might never be initialised at all. This has the
capacity to vastly improve the performance of basis minimisation, which
is one of the most computationally intensive parts of the procedure.

4.4.1 Implementation

We shall now describe the implementation of HCover in terms of control flow
through the program.

The entrypoint of the executable is called main. Despite being purely func-
tional, Haskell has a notation called “do” notation, which allows for the writing
of procedural code by relying on the sequential properties of a sainted data
type called IO. Working within the context of IO also gives us access to func-
tions for interacting with the outside world; it forms the interface between
functional purity of non-IO computations and the real world. The type of
main is written as IO (). This indicates that main returns no meaningful
value—() being the unit type—and is built up of pure functions and compu-
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tations defined over IO, to be evaluated sequentially. It begins:

main :: IO ()
main = do

(example:_) <- getArgs
input <- readFile example
let res = parse readSpec example input
...

Figure 4.3: The entrypoint of HCover.

We take the first argument to HCover and use it as a filename to read
the file with that name into a string called input. We then call a pure func-
tion, parse, which will interpret the string as an instance of the coverability
problem. We shall skip any further uninteresting details related to input/out-
put, error handling, and so on in order to focus on the algorithm itself on the
assumption that the given problem instance is well formed.

The HCover procedure, like ICover and QCover is written with Petri
nets as its data representation. This is in contrast to Karp and Miller imple-
mentations which typically use Vector Addition Systems. The explanations
and code segments here will therefore be given in terms of Petri nets.

We start with a little preprocessing of the data. In particular we compute
the pre-set, post-set and flow function for the provided net. The pre-set of a
transition t is the set of places from which tokens are removed when t is fired;
the post-set is the set of places that receive tokens when t is fired. The flow
function prescribes, for each transition, the movement of tokens between places
when that transition is fired. Refer to Section 3.5 for the formal definitions.
These values will be used repeatedly during the coverability procedure so it is
helpful to precompute them.

Our representation now consists of the net itself plus the precomputed
data. The PetriNet data type is presented in Figure 4.4.

The types P and T, shorthand for “place identifier” and “transition identifier”

data PetriNet = PN {
placenames :: Map P String,
flow :: Map T [(Vector,Vector)],

ps :: [P],
ts :: [T],

preset :: Map T [P],
postset :: Map T [P],

}

Figure 4.4: The PetriNet data type.
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respectively, are both represented by integers at runtime. This allows us to
refer to places and transitions without the overhead of passing strings around
the program. . Markings are stored densely as a Vector of integers—we
store the values of all places, including zeroes. Trade-offs of this approach are
discussed in Section 4.5 (“Alternative Representations of Vectors”).

From here, we compute some inductive invariants of the net, and then
proceed to the coverability loop.

Computing the Sign Invariant

The sign invariant, derived from data-flow sign analysis [29], is one of the
inductive invariants used in the ICover algorithm. Intuitively, the sign in-
variant is an underapproximation of the set of places which will always be zero
on a run starting from the given initial marking. Once we have this set, we
can prune those markings where any of the places in that set have a nonzero
number of tokens. The value of the sign invariant as an invariant depends
on the structure of the net; a very interconnected net with an initial marking
with many tokens is less likely to have a useful sign invariant than a sparse
net with few places used.

The computation in HCover is exactly that described by Geffroy, Leroux
and Sutre [63] adapted to the data types and conventions of our representation.
To restate from [63, Section 6], and recalling the definition of an inductive
invariant from Section 30, we represent the sign invariant by the maximal set
of places Z such that

IZ = {M ∈ Nd |
∧
p∈Z

M(p) = 0}

is an inductive invariant.

Z is reached by a fixpoint computation. A fixpoint is a property of a given
function, which here we shall call the propagator. The propagator is repeatedly
called on its own result until the result is the same as the argument (a fixed
point is found). Fixpoint computations are idiomatic in Haskell—indeed, most
recursive patterns are implemented in terms of fixpoint computations under
the hood. The function converge is a type of fixpoint computation which
starts from an initial value. The definition is as given in Figure 4.5.

If the propagator does not converge to a value, then converge will never
terminate. In this case, since the set of places is finite and the computed
subset of places will grow at each step, we can guarantee convergence. Note
that converge is polymorphic; it can operate over values of any type that
we can compare for equality.
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converge :: Eq a => (a -> a) -> a -> a
converge f x =
let x' = f x in

if x == x'
then x
else converge f x'

Figure 4.5: The converge fixpoint function.

In this case we shall be using converge to successively grow a set of places.
At each step, given the previous subset of places Qk, we compute for each
transition t the value propt(Qk) as defined below (for Petri net N = 〈P, T, f〉).

propt(Q) =

{q ∈ P | f(t, q) > 0} if
∧

p∈P\Q f(p, t) = 0

∅ otherwise

The intuition for the propagation is this. Call Q a set of “tags”. We start
by tagging all the nonzero places in the initial marking (called Q0). Then,
for every transition t where all of the places pre(t) are tagged, we tag all the
places in post(t) as well. The new larger set of tags is Q1. We repeat this
process until Qk+1 is no larger than Qk for some k. The code corresponding
to the computation of the sign invariant is as given in Figure 4.6.

signInvariant :: PetriNet -> Marking -> [P]
signInvariant net m_0 = converge prop q_0
where

prop q = q `union` (unions $ map (prop_t net q) (ts net))
q_0 = filter (>0) m_0

Figure 4.6: The computation of signInvariant.

The result of this computation is Qk, an overapproximation of the set
of places which could ever become nonzero as the result of a sequence of
transitions starting from the initial marking. Hence, the complement of Qk

with respect to P is an underapproximation of the set of places which will
always be zero. This is the set Z.

Recall from Section 30 that an invariant is a downward-closed set of mark-
ings. To turn Z into into a downward-closed set which we can use to prune
the search space, we construct ↓(Z) as follows:

↓(Z) = {M | p ∈ Z →M(p) = 0}.

Any marking that is not part of ↓(Z) is guaranteed to be uncoverable from
the initial marking, and so we can at every step of the backwards search prune
any markings which are not in ↓(Z).
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Shortcutting via Continuous Coverability

As discussed previously, we can view continuous coverability as a relaxation
of coverability. In the continuous setting, coverability checking can be done
in polynomial time. At the beginning of a run of HCover, we check whether
the instance is Q-coverable. If not, we can immediately say that the instance
is not coverable in the integer setting either.

In HCover we run this query through an SMT solver. The SMT solution
used is an excellent library called SBV (SMT Based Verification). SBV intro-
duces an embedded domain-specific language for constructing and evaluating
queries to an SMT solver. It also abstracts over a number of different solv-
ers, allowing the developer to remain agnostic; by default it will run the first
solver it finds on the user’s machine, but the developer can override this to
choose a particular solver which is known to be better for some use case. (This
technique will later be used in Chapter 5 to great effect.)

The high-level code for running the coverability query was given as an
example in Figure 4.2. The procedure itself is as given by Blondin et al. [13,
Section 4]. We shall not present every step of the computation of rational
reachability here, but as a representative sample, the global Q-reachability
relation ΦS is defined as follows. In the terminology of [13], w and x are the
initial and final markings; y is the mapping from transitions to Q representing
the amount each is fired; N is the net itself; Φeqn is the state equation over
rationals; ΦN

fs captures valid firing orders for pre-sets inN ; and ΦN−1
fs captures

the same for post-sets. Then:

ΦS
def
= ∃y : Φeqn(w, x, y) ∧ ΦN

fs(w, y) ∧ ΦN−1

fs (x, y).

The code corresponding to ΦS is given in Figure 4.7. The types SReal and
SBool are purely symbolic variables which can be used to construct first-order
logic sentences. Note that, due to the functionally pure nature of Haskell,
evaluating ΦS (or any other function in the Symbolic context provided by
SBV) is not the same as evaluating or computing the result of the query itself.
Instead, by calling these functions, we are constructing a pure representation
of the entire problem in the first order logic. In order to evaluate the problem
instance, we use the function

runSMT :: Symbolic a -> IO a

which translates from the SBV’s intermediate representation to the solver’s
native language (SMTLib), then interacts with the outside world (in this case,
a solver on the user’s machine) to run the query through the solver and retrieve
the result.
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-- Encoding rational reachability into SMT.
phi_s :: PetriNet -> [SReal] -> [SReal] -> Symbolic SBool
phi_s n w x = do

-- create the vector representing the image of some run
y <- mapM exists ["t_" ++ show t | t <- ts n]

-- Step 1: The rational state equation
pe <- phi_eqn n w x y
-- Step 2: Ensuring firing set membership
pf <- phi_fs n "fwd" w y
-- Step 3: Ensuring REVERSE firing set membership
pf2 <- phi_fs (inverse n) "rev" x y

return (pe &&& pf &&& pf2)

Figure 4.7: Symbolic representation of ΦS with SBV.

The Coverability Loop

With all the static computations complete, it remains to run the backwards
coverability algorithm. The implementation follows the same process as de-
scribed in Algorithm 2 (see page 36) with a small variation: before taking the
upward-closure of the new set of predecessors, we remove those predecessors
in our existing set U and those that fall outside of the downward-closed in-
variant. (In our case, we use the singular downward-closed invariant derived
from sign analysis.) If all the new predecessors are eliminated by this process,
then we know that our set has not grown, and we terminate with a result of
Uncoverable. If we do get new predecessors then they are added to the set
in the usual way and we continue to loop.

The looping code is given in Figure 4.8, with user-facing output removed for
simplicity. There is a clear correspondence between lines 6-10 of the ICover
algorithm [63, Section 4] and the functionality of covLoop.

4.4.2 Results

The source for HCover is online and available on the source code host Git-
Hub.3 It comprises around 550 lines of Haskell code—fewer than QCover and
less than one half of the ICover tool which implements the same procedure.
The code is divided across around a dozen modules, each of which describes a
single piece of the algorithm, such as SignAnalysis for computing inductive
invariants based on sign analysis and UCSet for computing and minimising
upward-closed sets.

While there is always room for improvement, it is believed that the code
base of HCover meets the intended goals: to serve as a end-to-end explanation

3https://github.com/dixonary/hcover
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covLoop :: [Marking] -> Bool
covLoop b =
-- "contains" means contained within the upward closure of b
if b `contains` init

then True -- We found init in our set!
else do
-- Compute new predecessors
let n = pred net b

-- remove any element "m" of n which is in b
-- or is not in I_z
let p = filter prune n
where prune m = not (b `contains` m) && m <= i_z

-- if newPred is empty, return False
-- otherwise union p into b
if null newPred
then False
else covLoop (basis (b `union` p))

Figure 4.8: The backwards coverability loop in HCover.

of the procedure itself which is relatively approachable to newcomers, and to
serve as a potential base for future improvements over the algorithm. Potential
such improvements are described at the end of this chapter.

Benchmarks

HCover was initially benchmarked against two other tools: QCover4 and
MIST. MIST is a competitive solver whose primary feature is the use of Interval
Sharing Trees to represent (upward-closed sets of) markings, as introduced
in [58] and formalised into the tool presented in [60]. MIST is also the originator
of the .spec format that has since been taken by several coverability checkers
as a de-facto standard, hence it serves as a natural choice of tool to use as a
benchmark.

The results of initial benchmarking are presented in Table 4.1.

Benchmark Set MIST QCover HCover
MIST (16) 13 10 12
Soter (50) 0 50 50

Table 4.1: The number of coverability instances decided by MIST, QCover
and HCover. The number in parentheses is the total number of instances
used from that class.

The set of benchmarks used is a subset of those provided alongside the
4Unfortunately there were some technical difficulties in getting the ICover tool to func-

tion, due to changes over time in the Python ecosystem. However, as noted previously, the
performance characteristics of ICover and QCover are broadly comparable.
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MIST tool.5 The results were computed on an early-2017 MacBook Pro with a
2.3GHz dual-core Intel Core i5 CPU and 8GB of LPDDR3 RAM. The timeout
was configured to 1000 seconds. HCover is able to decide every instance that
QCover decided and a couple of additional instances from the MIST set. In the
majority of cases, HCover outperforms QCover significantly. In those cases
where QCover outperforms HCover, the instances are usually very small; the
difference is attributed to the additional overheads induced in parsing the
specification in HCover, which was not a target of optimisations.

Predictably, the MIST tool is very capable of solving the MIST benchmarks,
though it struggles with the magnitude of the SOTER instances. While it
solves only slightly more than HCover within the 1000-second per-instance
time limit, it tends to solve these instances much faster. It is conjectured
that the interval sharing tree format is a major factor in this speedup as
performance breakdowns suggest that basis computation forms the bulk of
time taken in these cases in HCover.

4.5 Potential Further Work

We can safely say that HCover is at least at parity with its progenitors in terms
of performance, and meets its goals of being a readable and extensible code
base. However, HCover is a relatively naïve and unrefined implementation
of the ICover algorithm; there are plenty of opportunities for improvements,
both in the existing code base and through theoretical breakthroughs that have
occurred since the original ICover implementation was posited. It remains
to see whether any or all of these improvements offer a significant boost to
run time performance. Some lines of enquiry are laid out here. Some of these
methods are applicable to HCover, while others are improvements that may
be incorporated into other solvers such as the accelerated implementation of
Karp and Miller that appears in Section 44.

Pruning and Refinement In their conclusion to [13], Blondin et al. conjec-
ture that a tool implementing every acceleration known to date would be cap-
able of solving every benchmark in the literature within 2000 seconds (around
half an hour). One such improvement for forwards coverability may be a
variant of Finkel’s pruning criterion.

In 1991, Finkel [50] presented an aggressive and highly effective method
of pruning the Karp-Miller tree. Informally, while one constructs the Karp-

5The subset chosen corresponds to those that can be parsed according to the definition
of the MIST net specification—several instances do not fit the grammar given and therefore
would require special handling which has not been undertaken here.
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Miller tree, one prunes the tree by deleting all previously seen subtrees which
are rooted at any vector smaller than the current node. The intention of this
pruning criterion was to ensure minimality of the generated tree, since (so
claimed Finkel) every subtree of vector v would naturally be smaller in some
sense than every subtree of v′, for v′ > v.

Unfortunately, it was shown by Geeraerts, Raskin and Van Begin in 2007
[61] that there is an intricate and not-easily-corrected flaw in this approach,
which causes it to underapproximate the minimal coverability set due to overly
aggressive pruning. They then go on to provide a more complex but ultimately
effective strategy for computing the minimal coverability tree.

We note the following:

• a coverability procedure does not require the computation of a minimal
coverability set or tree;

• a minimal coverability tree may be recovered from a non-minimal one,
if necessary; and

• pruning previously-computed parts of the tree is a way of minimising the
tree but will not necessarily reduce the runtime of the algorithm, since
the parts being pruned have already been computed.

Given these remarks, we posit a considerably simpler approach to comput-
ing the coverability tree, which does not rely on the overly aggressive pruning
of Finkel’s acceleration. Firstly, we construct the tree in depth-first order,
rather than breadth-first.6 Secondly, while constructing the tree in the stand-
ard approach of Karp and Miller, we maintain a set M of the maximum vectors
seen. (Using the terminology of the previous section, we consider this a basis
of the downward-closed set of all known-coverable vectors.) If, during our
depth-first construction of the complete Karp-Miller tree, we visit a node v

such that v ∈M , then we may immediately discard it, since (due to the depth-
first order) all vectors coverable from v will already have been covered in the
partially evaluated tree.

Preliminary evaluation of this pruning criterion seems to be fruitful. En-
coding the simplified Karp-Miller implementation into a tool and testing it
separately remains to be done, but it is suspected that this approach is com-
petitive with other Karp-Miller based algorithms, especially in cases where the
entire tree need be explored. If this does prove to result in a significant speed-
up then an implementation and formal explanation may be of publishable
significance.

6The order of computation is not relevant for Finkel, Geerarts, Raskin and Van Begin,
but it is required for correctness in the alternative pruning technique outlined here.
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Alternative Representations of Vectors There are many ways to repres-
ent a list of integers. Two classes of representations can easily be identified:

• Sparse vectors store only the support of the vector—those components
whose values are nonzero—and their associated value. The representa-
tion is typically a mapping from component index to value, with absent
components having their value taken to be zero. Taking a Map as the
typical implementation of such a mapping, sparse vectors have O(logn)
lookup and modification in the size of the support of the vector7. Fur-
thermore, there are few fusable operations like “zipping” (running a func-
tion pairwise across two structures), which means essential component-
wise vector operations like comparison under ≤ may be unoptimised and
slow.

• Dense vectors (or total vectors) are a complete association of com-
ponent to value. The typical representation is an array-like Vector.
These have well-optimised componentwise operations which makes for
fast comparisons under ≤ and they benefit from vector fusion in ways
that maps cannot. However, the obvious downside of total vectors is
that they are of linear size in the dimension of the instance. Memory
may therefore become the limiting factor for any instances where the
basis grows very large, or where the dimensionality is high.

At present, HCover uses total vectors to represent VAS vectors. Given the
timeout of 1000 seconds, this has not posed issues. However, larger instances—
those more likely to take more than 1000 seconds to solve—may have larger
dimension or larger bases and therefore HCover may potentially suffer an
outsized slowdown. One alternative may be to statically inspect the shape of
the input instance: if we determine that the dimension is very high, or the
number of zeroes is likely to be high, then use a sparse vector representation;
otherwise we a total vector representation. This approach may offer the best
chance of efficiently solving both smaller and larger instances.

However, there is an alternative formulation, which has not yet been seen
in any tool, but which may represent an effective strategy, combining the
benefits of total and sparse vectors.

Consider the following strategy. Take the infinite sequence of prime num-
bers (2, 3, 5, . . .), and the vector v = (v0, v1, v2, . . .). Compute the integer
I(v) = 2v0 · 3v1 · 5v2 · · · · . We call I(v) the prime encoding of the vector v. In
code:
primes :: [Integer]

7The underlying representation of the canonical Map data type is a binary tree.
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primes = [2, 3, 5, 7, 11, ...]

-- zipWith applies a binary function componentwise.
primeRep :: [Integer] -> Integer
primeRep vec = product (zipWith (^) primes vec)

Using this encoding, we get that primeRep [0,0,0] is equal to 1,
primeRep [0,0,1] is 5, and primeRep [0,1,2] is 75. This is, in es-
sence, the inverse of computing the prime factorisation of a number.

Proposition 4.1. We have v ≤ v′ if and only if I(v′) mod I(v) = 0.

Proposition 4.1 relates the prime encoding of two vectors to the ordering of
those two vectors under ≤. If I(v′) mod I(v) = 0 then I(v′) is some multiple
of I(v); so there is some k ∈ N such that I(v′) = k · I(v). The fundamental
theorem of arithmetic (due to Gauss) guarantees that k has a unique prime
factorisation; moreover since k is itself a factor of I(v′), its factorisation will
be composed only of primes not exceeding the largest prime factor of I(v′).
If we write the prime factorisation of k as a vector w in the same dimension
as v and v′, then the value of each component of that representation is the
exponent of the corresponding prime. If I(v′) = k ·I(v), then v′ = w+v. Since
all the components of w are clearly nonnegative, it must hold that v ≤ v′. The
same logic holds in reverse. An example of the arithmetic involved is given in
Table 4.2.

I(v′) I(v) k

Prime encoding 2250 50 45
Prime factorisation 21 · 32 · 53 21 · 30 · 52 20 · 32 · 51
Vector representation [1, 2, 3] [1, 0, 2] [0, 2, 1]

Table 4.2: Sample values showing the relationship between a vector and the
prime encoding of that vector.

Proposition 4.1 means that we need only perform a single arithmetic op-
eration in order to check ≤, regardless of the dimensionality of the vectors in
question. Of course, the time taken for that operation will still depend on the
size (dimension and componentwise magnitude) of the vectors. One would be
forgiven for thinking that this approach will obviously be slower than determ-
ining ≤ based on a precomputed factorisation. However, this seems not to be
the case in reality.

By default, Haskell represents large integer values using a library called
GMP (the GNU Multiple Precision Arithmetic Library)8. GMP makes use of
machine integers when working with small values and its own custom imple-
mentation of larger values. GMP has highly optimised assembly code for each

8https://gmplib.org/
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CPU architecture in order to minimise the number of instructions required to
perform operations such as modulo, even on extremely large values.

Figure 4.9: Speed of operations over values in dense vector representation
(blue) versus integer encoding (yellow).

A rudimentary but fair test was constructed to verify that this approach
is feasible. A number of vectors was generated, in dimension 100 (enough to
encode moderately-sized coverability instances). The value of each component
was uniformly chosen from [0, 1000] (higher than the values typically seen in
Vector Addition Systems, but a useful test of how the integer encoding can
cope with exponents). The minimal basis was computed for each set, requiring
at least O(n2) operations. Figure 4.9 shows the results over sets of 10, 100
and 1000 vectors.

The outcome of this synthetic test suggests a speedup of approximately
100× on vectors on up to 100 places. Part of this speedup is likely due to the
overhead of allocating dense vectors, but profiling indicates that the bulk of
time spent is in performing the comparisons. Given the amount of allocation
that is required by the standard procedure anyway, it would be unsurprising
to see commensurate speedup in practice.

This technique is not immediately applicable to all coverability approaches.
For example, the standard Karp-Miller approach requires keeping track of “ω”
values—places whose value is unbounded due to loops in the VAS. Finite
multiplications of primes would not allow for such a construction. However, if
a separate set of “ω-components” were maintained, this approach might have
promise.

There is likely some point at which the big-integer approach becomes un-
tenable. For example, the computation

999999^1000001 `mod` 1000000^1000000 == 0

takes over a second to calculate on the test machine; a sparse vector represent-
ation would be able to compute ≤ almost instantly here. If it were possible
to characterise the inflection point between effectiveness of methods, we could
switch between representations on the fly. (Note that this example would
require a million places and a million tokens in the millionth place; such a
shape of net is unlikely to appear in the wild). It might also be possible to
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statically arrange nets so that places most likely to grow large appear earlier
in the prime representation, to reduce the size of induced integers.

Note also that this approach is only useful for “direct” solutions which
explore the state space, and not to CEGAR (Counterexample-Guided Ab-
straction Refinement) based approaches. While this improvement could be
considered an implementation detail, the resulting speedup may be significant
enough to warrant considerable investigation for practical solving.

GPU based solving To date, there have been no known attempts to solve
coverability in a massively parallel way—that is, by reducing subproblems to a
form distributable across hundreds or thousands of cores at once. Since the de-
velopment of HCover, a Haskell library called accelerate [27] has reached
maturity. This library includes an embedded domain-specific language for rep-
resenting operations over arrays (equivalently, vectors) in such a way that they
can be offloaded to the many computational cores of a modern GPU on-the-
fly. The library has already been used for highly performant implementations
of programs in a variety of domains including hydrodynamic simulations9,10,
image manipulation11, and sudoku solving12. Vector Addition Systems would
appear to be a natural fit; it remains to be seen if the computationally in-
tensive steps of the algorithm, such as basis minimisation, can be parallelised
sufficiently.

9https://github.com/tmcdonell/lulesh-accelerate
10https://github.com/GeneralFusion/gpu-fv-mhd
11https://hackage.haskell.org/package/patch-image
12https://github.com/dpvanbalen/Sudokus
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Chapter 5

Petri Net Reachability
& KReach

With a discussion of the coverability problem on Petri nets and Vector Addition
Systems complete, we shall now move on to reachability. Coverability and
reachability are two intrinsically related problems. As with coverability, we
may formulate the reachability problem both over Petri nets and VASS:

Definition 5.1. The reachability problem for Petri Nets asks, given a Petri
net N = 〈P, T,F〉, an initial marking M0, and a target marking M , whether
there is any run M0

t0−−→M1
t1−−→ · · · tn−−→M in N .

Definition 5.2. The reachability problem for Vector Addition Systems with
States asks, given a VASS V = 〈Q,T 〉, an initial configuration c0, and a target
configuration c, whether there is any run c0

t0−−→ c1
t1−−→ · · · tn−−→ c in V .

The difference between reachability and coverability is this: while cover-
ability queries permitted the net to visit any marking M ′ ≥ M , reachability
requires us to visit exactly the marking M .

Despite the minimal change, the difference in difficulty between the two
problems is immense. While coverability is known to be Expspace-complete,
reachability has only recently been determined to be complete for Acker-
mann [30, 102].

5.1 Why Reachability?

Just as the coverability problem captures many safety properties, reachability
is able to capture liveness properties of systems [75]. Liveness is a characteristic
of transitions, such that a transition t is live if and only if, from every marking
M reachable from the initial marking, there is a run to any marking M ′ where
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t is enabled in M ′. Structural liveness extends the concept of liveness to the
entire net. Liveness can be used to deduce the risk of deadlocking—reaching
some configuration where it is no longer possible to continue firing (some
set of) transitions. One example of the benefit of liveness (and, as a corollary,
deadlock-freeness) is to locate bugs in concurrent systems that share resources.

It is reasonable to view reachability as a strictly more powerful version
of coverability. Analogous to Q-coverability discussed in Section 28, we can
reduce a VASS coverability query to a reachability query only by adding states
and transitions and modifying the target configuration.

Proposition 5.1. The following are equivalent:1

1. The coverability problem for a VASS S = 〈Q,T 〉, with initial configura-
tion c0 and target (q, v);

2. The reachability problem for S ′ = 〈Q ∪ {▽}, T ′〉, with initial configura-
tion c0 and target (▽, 0⃗), where

T ′ = T ∪ {(q,−v,▽)} ∪ {(▽, {i 7→ −1},▽) | i ∈ {1, . . . , d}}.

Proof. First we note that the transition (q,−v,▽) can be fired from some
configuration (q, vk) if and only if vk ≥ v (i.e. if and only if (q, v) is covered).
Secondly we note that (▽, 0⃗) can be reached if and only if (q,−v,▽) can be
fired. The latter is thanks to the newly added set of transitions which do
nothing but reduce each component by 1, which renders (▽, 0⃗) reachable from
any configuration with state ▽. The conjunction of these two facts completes
the proof.

This specific translation shall be used later in this chapter to produce
reachability problem instances from coverability instances.

5.2 Kosaraju’s Reachability Algorithm

We shall focus our attention on one method of deciding the reachability prob-
lem, due to Kosaraju [90], building on the work of Mayr [107] and Sacerdote
and Tenney [140]. The algorithm has since been worked on further by Lam-
bert [95]. This lineage has resulted in the combined work being known as the
KLMST algorithm, and the main component of the algorithm as the KLMST
decomposition. However, in this work we shall focus on the Kosaraju’s con-
structions rather than any simplifications and variations since. We shall refer
to Kosaraju’s algorithm when talking about the treatment from 1982.

1This is essentially folklore—a well-known and established truth, but not easily traced
back to an initial source.
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We believe that prior to this work there were no known implementations
of Kosaraju’s algorithm—or indeed any exact reachability procedure for Petri
nets. Some very recent work of Amat, Zilio and Hujsa [6] offers a capable
semi-decider for reachability based on statically derived properties of the net.
In a similar vein, Blondin, Haase and Offtermatt [15] have produced a semi-
deciding tool which is effective in practice and uses a lightweight overapprox-
imation of reachability to guide traditional search methods like A∗. However,
being optimised towards reachability and not unreachability, both of these
methods are liable to reach dead ends or run indefinitely on particularly thorny
or degenerate shapes of nets.

We believe the relative lack of implementations of full deciders for reachabil-
ity to be due to two primary factors. Firstly, the algorithm was not believed to
be particularly effective (in terms of performance)—as with many decidability
proofs, the runtime speed of the construction was not a concern. The second
reason is that Kosaraju’s algorithm is notoriously complex; it is the subject of
an entire book by Reutenauer [136], since translated into English [135], and
more recently presented in a novel and readable format with contemporary
notation by Lasota [96].

Continuing in the same spirit as Chapter 4, we intend this work to be
meaningful both in terms of practical value—as a tool which can be used—
but also as a piece of pedagogic value for those new to decision procedures for
Petri nets. To that end, we offer the following contributions in this chapter.

• We present and describe a tool, KReach, which we believe to be the first
complete implementation of a decision procedure for the general Petri
net reachability problem.

• Noting that the reachability algorithm is generally regarded with trep-
idation due to its complexity—both in terms of worst-case runtime and
the impenetrability of the decision procedure for newcomers—we offer
an accessible implementation of Kosaraju’s algortihm, which can be used
as an in-depth learning aid.

• The code base of KReach is designed in a modular and extensible way,
which is conducive to development of future modifications. To evidence
this we implement some examples of minor theoretical improvements
over Kosaraju’s original algorithm.

• We provide a full suite of libraries which aid programming with Vector
Addition Systems (with States) in the Haskell programming language.
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5.2.1 An Overview of the Algorithm

We shall begin with an exposition of the structure and logic of Kosaraju’s
algorithm. Unlike the coverability procedure described in Chapter 4, here we
shall stick to Vector Addition Systems with States throughout—Kosaraju’s
algorithm does not make use of Petri nets.

Let us assume for the remainder of this section that we wish to determine
reachability for a VASS V = 〈Q,T 〉, with initial configuration c0 = (q0, v0)

and final configuration c = (q, v).

Kosaraju’s algorithm is a CEGAR (CounterExample-Guided Abstraction
Refinement) based procedure. The counterexamples are derived from a holistic
predicate called θ. The abstraction to be refined is an augmented variant
of VASS, called GVASS (short for Generalised VASS): a sequence of VASSs
which have been augmented with a large amount of metadata. We will interest
ourselves in runs over these GVASSs, which can be considered as a run over
all of the individual components in turn.

Definition 5.3. A GVASS is a pair G = 〈C,A〉, where

• C is a nonempty sequence (C1, . . . , Cℓ) of components, where each com-
ponent is a triskaidecuple2 of the form

Ci = (d,Qi, Ti, qi, q
′
i, Ri, ri, Ci, Ui, C

′
i, U

′
i , vi, v

′
i);

• A is a sequence (a1, . . . , aℓ−1) of adjoinments, where each adjoinment is
of the form ai = (q′i, zi, qi+1) for zi ∈ Zd.

It behooves us to present a brief run-down of the contents of a component.
Recall that each component is in effect its own VASS, with additional metadata
attached. The values d, Qi and Ti are recognisable from VASS:

• d is the dimension of the VASS.
• Qi is the set of states.
• Ti is the set of transitions.

The additional metadata attached to a GVASS component represent suc-
cessive attempts to constrain the portions of runs that take place through that
component. In particular, the run can be unconstrained, constrained, or rigid
(fixed) in any number of coordinates of the vectors at the start and/or end of
the component. The initial and final states are always fixed.

2A 13-tuple.
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• qi/q
′
i are the initial/final states.

• Ri is the set of rigid coordinates.
• ri : Ri → N is the mapping of rigid values.
• Ci/C ′

i are the sets of constrained initial/final coordinates.
• Ui/U ′

i are the sets of unconstrained initial/final coordinates.
• vi : Ci → N/v′i : C ′

i → N are the initial/final constrained vectors.

The intuition behind the three categories of coordinates is as follows.

• If a coordinate is marked as rigid in component Ci (it is in Ri) then
the value of that coordinate is not permitted to change on transitions
inside of Ci. Instead, its fixed value is written in ri, and any changes
corresponding to those moves which would have occurred in the net are
instead added onto the adjoinment that follows the component.

• If a coordinate is initially or finally constrained in Ci (it is in Ci or C ′
i,

respectively) then we know the value of that coordinate as a run on
the GVASS enters or leaves the given component. That known value is
tracked in vi or v′i. These constraints will be used to identify suitable
runs according to the θ condition to be described shortly. A value which
is initially and finally constrained will often be made rigid.

• If a coordinate is initially or finally unconstrained in Ci (it is in Ui or
U ′
i) then its value is allowed to change arbitrarily on runs through the

component. Parts of the θ condition will be explicitly looking at the
behaviour exhibited by unconstrained coordinates and violations of θ

represent opportunities to constrain them.

Definition 5.4. A GVASS is well-formed if all of the following hold.

• The dimension is constant. d is the same for all i ∈ {1, . . . , ℓ}.

• All coordinates are rigid, constrained, or unconstrained.
For all i ∈ {1, . . . , ℓ}:

– Ri ∪ Ci ∪ Ui = R′
i ∪ C ′

i ∪ U ′
i = {1, . . . , d}; and

– |Ri|+ |Ci|+ |Ui| = |R′
i|+ |C ′

i|+ |U ′
i | = d.

• Adjoinments are coherent. For all i ∈ {1, . . . , ℓ − 1} and x ∈ {1, . . . , d},
if x ∈ C ′

i ∩ Ci+1 then zi[x] = v[i] − v′[i]. (Recall that zi is the vector
labelling the adjoinment ai between Ci and Ci+1.)

We shall only interest ourselves with well-formed GVASSs; and moreover
every decomposition will leave us with a well-formed GVASS. Let us briefly
describe how we may “lift” our reachability instance over VASS into a GVASS
form.
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Definition 5.5. For any given VASS V = 〈Q,T 〉 in dimension d, initial con-
figuration c0 = (q0, v0) and target configuration c = (q, v), there is a lifted
GVASS G(V, c0, c) = 〈(C1),A〉, where

C1 = (d,Q, T, q0, q, ∅, ∅, Q, ∅, Q, ∅, v0, v); and

A is the empty sequence.

The functionality of Kosaraju’s algorithm is built around a predicate—the
θ condition—over GVASS, and a notion of decomposition. Both will be covered
in more detail shortly. The result tying them together is as follows.

Proposition 5.2. Given a VASS V = 〈Q,T 〉 in dimension d, configuration c is
reachable from configuration c0 if and only if some GVASS in the decomposition
tree rooted at G(V, c0, c) satisfies θ.

Violations of θ act as counterexamples that induce particular decomposi-
tions. Eventually, either θ will hold for some such decomoposition (the target
is reachable), or there will be no more such decompositions that can be per-
formed (the target is not reachable).

GVASS Notation

In order to give suitable examples of GVASS in the remainder of the chapter, we
shall extend our diagrammatic VASS notation to represent components and the
various constraints that are imposed on those components. Each component
is itself drawn as a VASS and is contained in a box. States and transitions
are labelled as usual. Note that the component has an inbound edge to q and
an outbound edge from r which enter and leave the component with values
denoted by 〈algebraic brackets〉. These represent the initial and final vectors.
Unconstrained initial/final coordinates will be marked by an asterisk ∗. Rigid
coordinates will be marked with an overline and will necessarily have the
same value in the initial and final vector for a component. Adjoinments shall
be denoted like transitions except they will leave one component at its final
state and enter another at its initial state, and will be marked with a dashed
arrow.

Example 5.1. Consider the GVASS diagrammed in Figure 5.1. In the left
component, both coordinates are initially constrained; the first coordinate is
finally unconstrained and the second is finally constrained to 500. In the right
component, the first component is initially unconstrained and finally set to 0;
the second component is rigid at 499.
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q〈0, 0〉

r s

t 〈0, 499〉

t1 [1, 0] t2 [0, 1]

〈∗, 500〉 〈∗, 499〉

[0,−1]

t3 [−1, 0]t4 [0, 0]

Figure 5.1: An example GVASS with two components, and rigid, constrained
and unconstrained coordinates.

We can formally write the given GVASS as 〈(C1, C2), ([0,−1])〉 where d = 2

and the two components are defined as follows.

Q1 = {q, r} Q2 = {s, t}

T1 = {t1, t2} T2 = {t3, t4}

q1 = q q2 = s

q′1 = r q′2 = t

R1 = ∅ R2 = {2}

r1 = ∅ r2 = {2 7→ 499}

C1 = {1, 2} C2 = ∅

U1 = ∅ U2 = {1}

C ′
1 = {2} C ′

2 = {1}

U ′
1 = {1} U ′

2 = ∅

v1 = {1 7→ 0, 2 7→ 0} v2 = ∅

v′1 = {2 7→ 500} v′2 = {1 7→ 0}

As an aside, a run does exist through this GVASS which meets all the require-
ments specified in the metadata—identifying such a run is left to the reader
as an exercise.

Example 5.2 (Lifting). Consider a VASS

Vex = 〈{q, r}, {(q, (−1, 1), q), (q, (0,−1), r)}〉.

We wish to decide reachability from (q, (1, 0)) to (r, (0, 0)). The diagrams for
Vex and G(Vex, (1, 0), (0, 0)) are given in Figures 5.2a and 5.2b respectively.
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q r

t0 [−1, 1]

t1 [0,−1]

(a) Example VASS Vex.

q〈1, 0〉 r 〈0, 0〉

t0 [−1, 1]

t1 [0,−1]

(b) Lifted GVASS G(Vex, (1, 0), (0, 0)).

Figure 5.2: An example VASS, Vex, and its lifting into a GVASS.

We would formally write G(Vex, (1, 0), (0, 0)) as 〈(Cex,1),Aex〉, where

Cex,1 = (2, {q, r}, Tex,1, q, r, ∅, ∅, {q, r}, ∅, {q, r}, ∅, (1, 0), (0, 0))

Tex,1 = {(q, (−1, 1), q), (q, (0,−1), r)}

Aex is the empty sequence.

The θ Condition

Recall that the lifted GVASS corresponding to our reachability query (hence-
forth referred to as G) includes the initial and final configurations as part of
its construction. Intuitively, the θ condition over G represents the presence
or absence of a particular kind of run through G.

We may view the θ as the conjunction of two other predicates. The first
(θ1) is a global condition on G; the latter (θ2) is a condition which must hold
within each component. θ1 is a slight relaxation of reachability, such that the
set of GVASSs for which θ1 and θ2 both hold are those in which reachability is
guaranteed. The correctness of this procedure with respect to the θ condition
is briefly discussed in Section 5.2.5.

The θ1 Condition. The first condition is interested in the presence of so-
called unbounded pseudo-runs through G. A pseudo-run is a relaxation of a
run, where vector coordinates are allowed to vary over Z rather than N. We
wish for these pseudo-runs to be unbounded: they must be able to use every
transition in every component an unbounded number of times, and in doing
so attain unboundedly large values in every unconstrained coordinate. Any
constraints in values in the initial and final positions of any component must
also be met by such a pseudo-run.

For example, consider the simple GVASS given in Figure 5.3.
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q〈0, 0〉 〈0, 500〉

t0 [0, 1]

Figure 5.3: A one-component GVASS which does not satisfy θ1.

While there is a clear pseudo-run (firing t1 500 times forms a valid run),
it is not unbounded—we cannot fire t0 an unbounded number of times while
also completing the run. So the GVASS in Figure 5.3 does not satisfy θ1. By
contrast, the GVASS in Figure 5.4 would satisfy θ1, as we may (for example)
fire t0 n times and fire t1 (n−500) times, for any n > 500. Note that any inter-
leaving of those firings would form a valid pseudo-run, including interleavings
in which the second coordinate goes below zero, since we do not care about
maintaining nonnegativity.

Observe that the first coordinate stays at zero for the entire pseudo-run.
This is not a violation of θ1, since we only need to reach unbounded values
in unconstrained coordinates, and in the GVASS in Figures 5.3 and 5.4 all
coordinates are constrained. The values attained in either coordinate are
irrelevant except for satisfying the initial and final constraints; the important
thing (for this toy example) is that the transitions are fireable an unbounded
number of times.

q〈0, 0〉 〈0, 500〉

t0 [0, 1]

t1 [0,−1]

Figure 5.4: A one-component GVASS which does satisfy θ1.

The θ2 Condition. While θ1 is more interested in the unbounded firability
of transitions, θ2 is solely interested in being able to pump (unconstrained)
coordinates arbitrarily high via some cycle within each component.

The θ2 condition is a property that must be maintained within each com-
ponent of G. In short: each component of G must contain some path from
the initial state back to itself, via which all initially-constrained coordinates
are increased. The reverse property must also hold: If the component is re-
versed (all transitions (q, v, q′) become (q′, v, q)) there must be a path from the
final state to itself along which all finally-constrained coordinates are strictly
decreased.
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q〈1, 0〉

r s

t 〈0, 0〉

t0 [1, 1]
t1 [ 0, 0]
t2 [−2,−2]

〈∗, 500〉 〈∗, 499〉
[0,−1]

t3 [−1,−1]t4 [0, 0]

Figure 5.5: A two-component GVASS whose first component satisfies θ2 and
whose second component does not.

Finding a path on which all coordinates are increased evidences some
amount of “pumpability”: we can repeat this path in order to pump the values
of all unconstrained coordinates arbitarily high.

This is subtly different in a number of ways to the stipulation made in
θ1 that a pseudo-run must exist along which unconstrained coordinates can
become unboundedly large. Firstly, the path satisfying θ2 for some component
must form a (part of a) legal VASS run, and not just a pseudo-run—that is,
the coordinates must not drop below zero on the path. Secondly, we require
that the values are increased by the end of this path, and not only at some
point along it. Finally, all unconstrained coordinates must be increased at
the same time—it is not sufficient that each such coordinate is unbounded on
some path.

Observe that there are a couple of common situations in which θ2 self-
evidently holds. For example, a component comprising one state q with the
initial and final coordinates all constrained will pass θ2, since there is a zero-
length path from q to q on which the value of all unconstrained coordinates
(vacuously) increase. Hence θ2 is not meaningful for the examples in Fig-
ures 5.3 and 5.4. Figure 5.5 includes a more interesting example in which θ2

holds for the first component but not the second.

5.2.2 Cleaning GVASSs

Throughout the algorithm, a number of assumptions are made about the shape
of GVASS components. We must preprocess (“clean”) any given GVASS to
ensure that these assumptions hold. After performing any decomposition, it is
possible that the decomposed GVASSs will once again violate the assumptions;
so these cleaning steps must be repeated after every decomposition.
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Strong Connectedness

It is assumed that every component in every GVASS is strongly connected.
To accomplish this we must decompose the GVASS whenever we find a non-
strongly-connected component.

Definition 5.6. The state-transition graph of a GVASS component C is a
directed (possibly multi)graph whose vertices are labelled by the states of C
and whose edges are (q, r) for each (q, v, r) in the set of transitions of C.

Definition 5.7. A GVASS component C is connected if and only if the vertex
labelled by the final state of C is reachable from the vertex labelled by the
initial state of C in the state-transition graph of C. C is strongly connected
if and only if every vertex is reachable from every other vertex in the state-
transition graph of C.

In our diagrams, the state-transition graph for a component is found by
removing the vectors attached to each transition and ignoring the initial/fi-
nal constraints. Unusually for Kosaraju’s algorithm, the strong connected-
ness property can be determined efficiently—the strongly connected subsets
of states for each component can be determined in time linear in the number
of states and transitions. (We shall discuss how in Section 5.3).

When evaluating strong connectedness, we may learn one of three out-
comes. If the component is not connected, there can never be a GVASS run
through the component. Since a GVASS run must traverse every component,
there can never be such a run and hence we may immediately deduce that the
target is unreachable. (The GVASS decomposition process will never result
in a disconnected component, so if a component is disconnected then the ori-
ginal VASS must also have been disconnected.) If the component is strongly
connected, it requires no further cleaning and we may proceed. If it is connec-
ted but not strongly connected—if there is some vertex in the state-transition
graph of the component that is not reachable from some other—then we must
perform a particular type of decomposition. This is slightly different to the
decompositions described in Section 5.2.3, as it is not derived from violations
of the θ condition.

If the component is not strongly connected, then we are able to partition
the states of the component into n > 1 strongly-connected subgraphs (SCSs)3

such that the edges between any two SCSs X and X ′ either all go from some
state in X to some state in X ′ or vice versa. (If they went both ways, the two
would form one larger SCS.) The decomposition of the component consists of

3In graph theory, the internally strongly connected subgraphs of a graph are called com-
ponents (SCCs). To avoid confusion with the GVASS notion of components we shall stick to
subgraphs (SCSs).

64



characterising the possible paths from the SCS containing the initial state to
the SCS containing the final state, in terms of the edges between these SCSs.

Example 5.3. Consider the GVASS in Figure 5.6, which consists of one con-
nected but not strongly connected component. The vectors on transitions are
arbitrary.

q〈0, 0〉

r

t

s

〈0, 0〉

t1 [0, 1]t0 [1, 0]

t4 [3, 6]

t5 [5, 1]

t2 [0,−1]

t3 [−1, 0]

Figure 5.6: A one-component GVASS which requires SCS decomposition.

Strongly-connected subgraph analysis shows that there are three strongly
connected subgraphs, namely {q, r}, {s}, and {t}. The transitions t2, t4 and t5

label the edges between the subgraphs. Hence the analysis shows us that any
path passing through this component may fire any one of those transitions
at most once. More precisely we can characterise every path through this
component as being of one of the two shapes given in Figure 5.7.

{q, r}〈0, 0〉 {s} {t} 〈0, 0〉

{t0, t1}

t4

{t3}

t2

{q, r}〈0, 0〉 {t} 〈0, 0〉

{t0, t1}

t5

{t3}

Figure 5.7: Characterisations of paths through the component of the GVASS
in Figure 5.6 as determined by SCS decomposition.

(Note that unreachable states will automatically be removed by this pro-
cess, since they will not appear in any of the characterisations of runs through
the component.) The decomposition of a component is dictated by the char-
acterisation of all possible paths through strongly-connected subgraphs. Each
such path gives rise to a new GVASS, where:

• each strongly-connected subgraph becomes its own component, compris-

65



q〈0, 0〉 r s t 〈0, 0〉

t1 [0, 1]

t0 [1, 0]

[5, 1]

〈∗, ∗〉 〈∗, ∗〉
[0,−1]

〈∗, ∗〉 〈∗, ∗〉

t3 [−1, 0]

q〈0, 0〉

r

t 〈0, 0〉

t1 [0, 1]t0 [1, 0]

[3, 6]

〈∗, ∗〉 〈∗, ∗〉

t3 [−1, 0]

Figure 5.8: The two decompositions of the GVASS in Figure 5.6 as determined
by strongly connected subgraph decomposition.

ing only the states and transitions labelling nodes and edges internal to
that subgraph;

• the edges between adjacent subgraphs become the adjoinments between
the two corresponding components, with the vector of that adjoinment
being the vector of the transition labelling that edge; and

• all coordinates are unconstrained, except for the initial coordinates of the
first component and the final coordinates of the last component, which
have the initial and final values (respectively) of the original component.

Continuing Example 5.3, the two shapes of path in Figure 5.7 gives rise to
the two GVASSs in Figure 5.8. Each of the newly decomposed GVASSs satisfies
the strong connectedness requirement in each component. It is notable that
the number of such shapes of path may be exponential in the size of the
component, and so performing this strongly-connected decomposition only
once may result in exponentially many GVASSs, each of which might need
decomposing further. Hence the complexity implications of this intermediate
step alone are alarming.

Trivial component elimination

A component is called trivial if it has zero transitions. In such cases, we can
remove the component entirely and unify the inbound and outbound adjoin-
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q〈0, 0〉 r t 〈0, 0〉

t1 [0, 1]

t0 [1, 0]

[5, 0]

〈∗, ∗〉 〈∗, ∗〉

t3 [−1, 0]

Figure 5.9: The first GVASS from Figure 5.8 after undergoing trivial compon-
ent elimination.

ments and constraints.

The first decomposition in Figure 5.8 contains a trivial component with
state s. We replace it by adjoining the components before and after the trivial
component, with a vector equal to the sum of the inbound and outbound
vectors. If there are any constraints on the initial/final coordinates of the
trivial component, we unify those constraints with the initial/final constraints
of the adjacent components. (If the constraints being moved are incompatible
with those already present at the adjacent components, then no run can exist,
and so we discard the GVASS.) Figure 5.9 shows the effect of eliminating the
trivial component with state s.

5.2.3 θ-driven Decomposition

We call the graph derived from taking every possible (iterated) decomposition
of a graph G the decomposition tree rooted at G. We shall see in Section 5.2.4
that this is indeed acyclic and that it is guaranteed to be finite. Each of the
decompositions that is not the result of cleaning is derived from exactly one
violation of the θ condition. Each type of violation corresponds to a particular
flavour of decomposition. We shall go through each in turn with minimal
representative examples.

It is possible that a GVASS violates both θ1 and θ2, and/or that it violates
them in more than one way at the same time. If this is the case, we expand
on only one of the violations (which may itself result in several children, as
seen shortly). This guarantees that we do not inadvertently rule out lawful
runs by failing to consider interleavings.

Violating θ1

Recall that θ1 mandates that a pseudo-run exists in G on which we can use
every transition an unbounded number of times, and every unconstrained co-
ordinate can reach unboundedly high values. Hence, if θ1 is violated, we know
that some transition may only be used a bounded number of times, or some
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q〈1, 0〉 r 〈0, 0〉

t0 [−1, 1] t1 [0,−1]

[0,−1]
〈∗, ∗〉 〈∗, ∗〉

(a) In this GVASS, transition t may be fired at most once.

q〈1, 0〉 r 〈0, 0〉
[0,−1]

〈∗, ∗〉 〈∗, ∗〉

t1 [0,−1]

q〈1, 0〉 q′ r 〈0, 0〉
[−1, 1]

〈∗, ∗〉 〈∗, ∗〉
[0,−1]

〈∗, ∗〉 〈∗, ∗〉

t1 [0,−1]

(b) The two GVASSs derived from t0’s violation of θ1, one with zero firings of t0 (above)
and one with one (below). After decomposition, both q and q′ would be removed by
cleaning as they are now trivial.

Figure 5.10: A simple GVASS before and after decomposition by removing a
transition violating θ1.

unconstrained coordinate has a maximum value that can be attained in some
component, on any pseudo-run. (If this is true for all pseudo-runs then it is
true for all runs, since pseudo-runs are a relaxation of runs.)

Transition t is bounded. Suppose we learn that transition t in compon-
ent C in GVASS G can only be fired at most n times. If so, we decompose
creating n + 1 copies of G, where in each copy Gi (for i ∈ {0, . . . , n}) the
component C is replaced by i copies of C, each adjoined by the vector of t and
with all non-rigid coordinates unconstrained between copies. We are then able
to remove t from all copies.

Intuitively, each decomposition Gi represents the universe in which we
fire t exactly i times. If a run exists, then it must exist in one of those
universes. Figure 5.10 gives an example of a GVASS (Gex from Example 5.2,
after cleaning) in which transition t0 may only be fired at most once; and the
result after applying this decomposition.

Coordinate x is bounded. If we learn that unconstrained initial or final
coordinate x may not exceed n while (pseudo-)running through component C,
then we may constrain x. We generate n + 1 copies, G0 through Gn, and in
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q〈1, 0〉 r 〈0, 0〉

[1, 0] [−1,−1]

[0, 2]

〈∗, ∗〉 〈∗, ∗〉

(a) In this GVASS, it can be determined that coordinate 2 will never exceed 2 when
entering the second component.

q〈1, 0〉 r 〈0, 0〉

[1, 0] [−1,−1]

[0, 2]

〈∗, ∗〉 〈∗, i〉

(b) The GVASS from (a) decomposes into three GVASSs, G0, G1 and G2, where the
initial value of coordinate 2 in the second component is constrained to i for each Gi.

Figure 5.11: A simple GVASS before and after decomposition by removing a
transition violating θ1.

each Gi the value of x is initially constrained to i in C.

By constraining the intial value of x we are placing a constraint on the
transitions earlier in the GVASS which increase the value of coordinate x,
which might then result in more θ1 based decompositions in future rounds.
In Figure 5.11a, we can learn that coordinate 2 may not exceed 2 initially
in the second component; the result of decomposition is three copies, each
constraining coordinate 2 to a different value from {0, 1, 2}.

Violating θ2

For the sake of simplicity, we shall work on the assumption that the violation
of θ2 is found in the forward version of the condition. If the value was found
to be bounded in the backward version, the process is the same, swapping
“initial” and “final”.

Suppose that θ2 is violated for coordinate x in component C. If so, the
value of coordinate x must be bounded everywhere within the state space of C.
We can learn from the violation the maximum value that coordinate x can
attain; call it n.

The process by which we decompose according to a violation of θ2 depends
on whether the coordinate in question is finally constrained or unconstrained.
If it is finally unconstrained, then we decompose by constraining component n
to all of {0, . . . , n} (in a similar way to the constraints imposed for a bounded
coordinate in θ1).
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If it is already finally constrained, then we now know an initial and fi-
nal constraint for the coordinate and (possibly an overapproximation of) the
complete range of values it may take in the component. Therefore, within C
the value of coordinate x no longer acts as a counter; instead we can treat
it like a finite piece of state. We do this by encoding the possible values of
coordinate x directly into the states of the component by a product construc-
tion. The coordinate x is then marked as rigid, with the rigid value set to the
value to which it was previously initially constrained. If the initial and final
constrained values were different, then when making the coordinate rigid that
delta is no longer part of the final constrained vector. We account for this by
modifying the adjoinment which follows the component by adding v′[i] − v[i]

to the ith component of the adjoinment.

As one may imagine, the result of applying this product construction to
states and transitions results in massive blowup even for relatively small com-
ponents. Thankfully, it is unusual in practice to see θ2 violated without θ1

having been violated first. Since only one violation is considered at a time,
and our implementation checks θ1 before θ2, the problematic components have
usually been decomposed before their θ2 violations would be considered.

5.2.4 Termination

Firstly, note that termination of the reachability procedure is equivalent to
finiteness of the decomposition tree rooted at G. By König’s Lemma, we need
only show that the decomposition tree has finite branching everywhere and
finite depth. Finite branching is easy: each of the decompositions (from clean-
ing and from θ-violations) generates only a finite number of decompositions.
Finite depth is guaranteed by an ingenious encoding of the size of a GVASS.

Definition 5.8. The size |Ci| of a component

Ci = (d,Qi, Ti, qi, q
′
i, Ri, ri, Ci, Ui, C

′
i, U

′
i , vi, v

′
i)

is the triple
(d− |Ri|, |Ti|, |Ui + U ′

i |).

The size |G| of a GVASS G is the multiset of the sizes of the components of G.

Let us define also a refining relation for GVASS sizes. We say that |G′| re-
fines |G| if and only if one can attain |G′| by removing (one copy of) some
triple from |G| and adding (a finite number of) lexicographically smaller triples.
Take ≼ to be the reflexive, transitive closure of the refining relation. Thanks
to Dershowitz and Manna [34], since the size of a GVASS is a multiset over
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lexicographically-ordered triples of natural numbers (themselves forming a
well-quasi-ordering), we know that ≼ is a well-quasi-ordering.

Remark 5.1 ([90, from Theorem 7]). If G′ can be attained by applying a
single decomposition to G, then |G′| refines |G|.

The above remark can be shown by checking each of the different flavours of
decomposition. In every decomposition, exactly one component Cx is replaced
with a family of chains of zero or more components Ci such that in every Ci:

• The number of rigid components is larger than in Cx;

• The number of transitions has been reduced by 1; or

• The number of initially or finally unconstrained coordinates has de-
creased.

In the cases where a decomposition replaces a component by more than
one component (for example, when a transition is found by θ1 to be bounded),
some new components Ci may have more unconstrained coordinates than Cx.
In these cases, the number of transitions has been reduced, and so |Ci| < |Cx|
is maintained. Likewise, the product construction of the θ2 decomposition will
massively increase the number of transitions in a component; but in doing so
the number of rigid components is increased and so the first component of
the size decreases, so maintaining < for the component’s size and hence the
decomposition still results in a refinement of the GVASS’s size.

Since ≼ forms a well-quasi-ordering, and a decomposition of a GVASS G is
always strictly smaller than G under ≼, we can infer that any sequence of de-
compositions must necessarily be finite. Hence the decomposition tree rooted
at any GVASS will only contain paths of finite length and so, by König’s
Lemma, the tree must be finite. Since Kosaraju’s algorithm performs an ex-
haustive search of the decomposition tree, we have that the procedure will ter-
minate.

5.2.5 Correctness

We shall give an informal outline of a correctness argument for Kosaraju’s
algorithm. The intuition behind the use of θ1 and θ2 is as follows: If both θ1

and θ2 are satisfied, then a run can be constructed that pumps unconstrained
coordinates arbitrarily high (via θ2); then performs a pseudo-run (as dictated
by θ1); and finally pumps the unconstrained values back down (by the latter
part of θ2). If the unconstrained values are pumped sufficiently high, then any
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pseudo-run satisfying θ1 will become a run. Furthermore, if such a pseudo-run
exists, then one can be chosen such that the concatenation of pumping-up,
following the pseudo-run, and then pumping down, is guaranteed to reach the
exact value required of the final vector.

An alternative way of formulating the relationship between the two con-
ditions is that θ1 identifies pseudo-runs, while θ2 ensures that, via pumping,
at least one such pseudo-run will be able to operate entirely within the non-
negative integers. Note that the “pumping-up” need not happen in the very
first component of a GVASS; there may be some constrained part before an
unbounded part of a run. The converse is true about the “pumping-down”;
and in fact both of these processes may occur multiple times in the same run.

Any time values become constrained the problem becomes easier. If all
values eventually become constrained, θ2 trivially holds and the problem can
be decided entirely through integer linear programming—either a solution will
exist or it will not, and so θ1 will hold (and the target is reachable) or no valid
decompositions will exist (and the target is unreachable).

A concise and well-reasoned argument for correctness of Kosaraju’s al-
gorithm is due to Lasota [96], which proceeds firstly by formulating the θ

condition over standard VASS before extending it to GVASS.

5.3 KReach: Implementing Kosaraju’s Algorithm

We have implemented Kosaraju’s algorithm in a tool, KReach, which can be
used to decide instances of the general Petri net reachability problem. In
the same spirit as Chapter 4, we shall now present a sampling platter of
implementation details relating to KReach in order to give an insight into the
approaches and challenges involved.

The code segments given in this section are derived from the source code
of KReach, which is available online at GitHub4. The code is written in the
Haskell programming language.

The algorithm is represented as a function kosaraju which initially takes
as input a list of GVASSs, and returns a KResult: either KHolds or KDoes-
NotHold, indicating a result of reachable or unreachable repsectively. Rather
than explicitly building and searching the decomposition tree, we explore the
tree by recursively calling kosaraju on the list of descendants if the θ con-
dition does not hold; only when all children have returned a result of KDoes-
NotHold do we finally return KDoesNotHold overall. By contrast, if any
such child returns KHolds, we immediately return KHolds and terminate the

4https://github.com/dixonary/kosaraju
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1 kosaraju
2 :: [GVASS] -- A list of input GVASSs
3 -> IO KResult -- The result, via some IO
4 kosaraju vs = do
5 let vs' = concatMap clean vs -- Clean every GVASS
6 let decomps = map checkGVASS vs'
7 if
8 -- Search space exhausted
9 | decomps == [] -> return KDoesNotHold

10 -- Answer found
11 | Nothing `elem` decomps -> return KHolds
12 -- More GVASSs to check
13 | otherwise -> kosaraju (takeJusts decomps)
14
15
16
17 checkGVass
18 :: GVASS -- Take one GVASS as input
19 -> IO (Maybe [GVASS]) -- Return refinements or Nothing
20 checkGVASS gvass = do
21 case ( θ₁ gvass, θ₂ gvass) of
22 -- If both θ₁ and θ₂ hold, we are done
23 (ThetaOneHolds, ThetaTwoHolds) -> Nothing
24
25 -- θ₁ is violated ( θ₂ is irrelevant)
26 (thetaOneViol , _ ) -> do
27 decomps <- refine θ₁ gvass thetaOneViol
28 return (Just decomps)
29
30 -- θ₁ holds but θ₂ is violated
31 (ThetaOneHolds, thetaTwoViol ) -> do
32 decomps <- refine θ₂ gvass thetaTwoViol
33 return (Just decomps)

Figure 5.12: The main loop of the kosaraju function and the checkGVASS
function on which it relies.

program.

Figure 5.12 shows the fundamental structure of the main kosraju loop.
Note that, as with HCover, we make use of the IO context to interface with
the outside world. In particular we use it for logging intermediate values such
as the instance size and for communicating with an SMT solver. The structure
of the loop is a breadth-first search rather than a depth-first search; all the
instances at the same “level” of the decomposition tree are checked in succes-
sion. For unreachable instances there is no real difference in approach; for
reachable instances it is conjectured that a breadth-first strategy will reach an
answer of KHolds more quickly (because, in short, every θ-driven decompos-
ition produces a family of “universes” of runs, and only one of those is likely
to result in a real run).
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5.3.1 Cleaning

Firstly the strongly-connected subgraph decomposition is applied to every com-
ponent in every GVASS at each step. For each component this may generate
a family of chains of components. In order to minimise overhead, each com-
ponent is decomposed in this way simultaneously and the Cartesian product
of these chains is taken. Recalling the terminology of Section 5.2.2, if we have
a GVASS of three components, where SCS decomposing the first component
results in three shapes of runs, the second component two shapes of runs, and
the third results in four shapes of runs, the complete subgraph decomposition
results in 2× 3× 4 = 24 total GVASSs.

In KReach, the SCS decomposition is implemented by calling to the
Data.Graph module which forms part of the core containers library. This
module includes a first-class notion of strongly-connected subsets5 and so us-
ing it to compute the subsets is relatively simple. Deriving the state-transition
graph from a given component, and inferring the new components based on
the result of the computation, is more complex but ultimately unproblematic.

5.3.2 Checking θ1

When considering pseudo-runs rather than runs, we eliminate the requirement
that the values of coordinates must be nonnegative. In doing so we remove
most constraints on the order in which transitions can be fired in the machine.
Those that remain can be encoded into first-order logic over Z and handed off
to an SMT solver.

The state equation. The first constraint that must be in place when check-
ing θ1 is the so-called state equation for vector addition systems. The state
equation mandates that the final value in any coordinate is equal to the initial
value in that coordinate plus the sum of the changes undergone by firing of
transitions. To wit, for initial vector v, final vector v′ and run σ = (t1, . . . , tℓ):

∀i ∈ {1, . . . , d} : v′[i] = v[i] +
∑

x∈{1,...,ℓ}

tx[i].

Since the order of transitions is irrelevant, in our encoding we only care about
the number of times each transition fires. This is equivalent to working with
the Parikh image πσ of the run (see Definition 3.12), so we may rephrase the

5https://hackage.haskell.org/package/containers-0.6.4.1/docs/
Data-Graph.html#v:stronglyConnComp
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state equation as

∀i{1, . . . , d} : v′[i] = v[i] +
∑
t∈T

πσ(t) · t[i].

Kirchoff constraints. Secondly we need to enforce the so-called Kirchoff
constraints on transitions. Kirchoff’s first law states that the sum of the flow
into a (non source or sink) node must be equal to the sum of the flow out
of a node. This phrasing is general as it applies to graph theoretic problems
but also in other fields including hydrodynamic and electronic engineering.
The same law must hold in our setting. Consider any walk through the state-
transition graph of a component, starting at the vertex labelled by the initial
state and ending at vertex labelled by the final state. The number of times
each vertex is visited must be equal to the sum of the times in-edges are
traversed to that vertex; and also equal to the sum of the times out-edges are
traversed from that vertex. (At the initial and final vertices, we expect the
out-degree and in-degree to be 1 higher, respectively).

Inherited GVASS constraints. We also impose the constraints derived
from the metadata on GVASS components, namely known initial and final
values of constrained or rigid coordinates in each component, and relation-
ships between final and initial values of adjacent coordinates derived from an
adjoinment.

To encode the above properties into first-order logic, we take the following
set of variables:

• One variable for each of the initial value IC,i and final value FC,i of every
coordinate i in every component C.

• One variable Kt for the number of times each transition t is fired in the
run. (A disambiguating schema is used to avoid naming collisions where
transitions appear in multiple components; we will assume disjointness
of names here.)

This produces the set of sentences given in Figure 5.13. The conjunction
of all of them forms the integer linear programming problem given to the
solver. The universal quantifications and summations are fully expanded in
the version given to the solver, and each sentence is rearranged to leave a sum
of some values on the left and a zero on the right.

The solutions to the integer linear programming problem take the form of a
semilinear set (B,P ) where B is the set of bases and P the set of periods. If an
unconstrained coordinate has a nonzero value in any period, then there must
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FC,i = IC,i +Kt · t[i] ∀ Cx ∈ C, i ∈ {1, . . . , d}, t ∈ Tx (1)

Σt∈ out(s)Kt = Σt∈ in(s)Kt ∀ Cx ∈ C, s ∈ Qx \ {qx, q′x} (2)

Σt∈ out(qx)Kt = Σt∈ in(qx)Kt − 1 ∀ Cx ∈ C (3)

Σt∈ out(q′x)Kt = Σt∈ in(q′x)Kt + 1 ∀ Cx ∈ C (4)

ICx,i = vx[i] ∀ Cx ∈ C, i ∈ Cx (5)

FCx,i = v′x[i] ∀ Cx ∈ C, i ∈ C ′
x (6)

ICx,i = rx[i] ∀ Cx ∈ C, i ∈ Rx (7)

FCx,i = rx[i] ∀ Cx ∈ C, i ∈ Rx (8)

ICx,i = FCx+1,i + z[i] ∀ Cx, Cy ∈ C, (q′x, z, qy) = ax, i ∈ {1, . . . , d} (9)

Figure 5.13: The first-order logic sentences that comprise the ILP problem
describing θ1. The sentences encode the Parikh image constraints (1), Kirchoff
constraints (2-4), initial and final values for constrained (5-6) and rigid (7-8)
values, and adjoinment relationships (9).

be some way in which that coordinate can reach unboundedly high. Conversely,
if there is no period in which the coordinate is nonzero, then there is an upper
bound on the height that value can reach—and moreover that upper bound
is the maximum value in B. The same principle applies for transitions. We
return the first violation found this way and decompose accordingly. If the
ILP problem returns no solutions at all, we know that θ1 will never hold, and
thus we return that we should give up on the GVASS. If the ILP problem
has solutions and all transitions and unconstrained coordinates have nonzero
periods, then we can conclude the existence of a pseudo-run satisfying θ1 and
we report that ThetaOneHolds. Decompositions are as described in Section
5.2.3.

5.3.3 Checking θ2

Recall from Section 4.3.1 the Karp-Miller procedure for computing the cover-
ability tree of a VASS from an initial configuration. θ2 requires that we find
some run by which we can get from the initial state q of our component back
to q, and in doing so strictly increase the values in all constrained coordinates.
For now let us consider only the forward direction.

We can formulate the condition in the following way. For a component
Ci = (d,Qi, . . .), is there some run from (qi, v) to (qi, v

+) for some v+ ≥ v + 1⃗,
in a restricted version of the VASS (Qi, Ti) where we project to the coordinates
of Ci? Astute readers will recognise this as a coverability problem, and indeed
we solve this by reducing to coverability.

However, it is not sufficient only to know whether (qi, v
+) is coverable or

not—we must produce a violation which can be acted upon to decompose the
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GVASS. If (qi, v+) is not coverable, we can infer that at least one coordinate x

must be bounded everywhere. To learn the values that coordinate x can take,
we must look through the whole space of coverable vectors. To do this analysis
we produce and look through the complete Karp-Miller tree for the problem.
Coverability of (qi, v+) is equivalent to the presence of (qi, (ω, . . . , ω)) in the
tree. If it is absent, we return the violation (x,m(x)) where m(c) is the
maximum value of coordinate c on any node in the Karp-Miller tree and x is
the smallest coordinate for which m(x) 6= ω.

To this end, the suite of libraries included as part of the release of KReach
includes karp-miller6, a complete implementation of the Karp-Miller pro-
cedure for determining the coverability tree of a VASS starting from a given
initial configuration. As a separate library, karp-miller does not rely on
any of the logic internal to kosaraju and can easily be repurposed for other
procedures. The high-level algorithm7 comprises less than 40 readable lines
of well-commented, type-directed Haskell code, which hopefully make for edi-
fying reading. The same principles and best practices have been followed in
karp-miller as in kosaraju—it too may serve as a useful learning tool
and/or platform for future improvements such as those of Finkel, Haddad
and Khmelnitsky [54]. The potential exists to spin karp-miller out into a
coverability checker in its own right but this has not yet been done.

5.3.4 Optimisations

In spite of the reprehensible algorithmic complexity of the reachability prob-
lem, some effort was still undertaken to show that the algorithm can be op-
timised. A number of small improvements have been implemented which do
not change the character of the algorithm.

Firstly, consider the decompositions produced by a violation of θ1. Say that
we learn that the number of firings of some t is bounded. This is reflected in
the solution to the integer linear programming problem: the values of Kt in
the periods of the semilinear set will all be zero. Kosaraju’s original algorithm
(as explained in Section 5.2.3) tells us to generate the family of decompositions
where t is fired 0, 1, . . . , n times where n is the maximum value of Kt in any
basis of the semilinear set. However, we can be more precise: the solution is
telling us that the transition may be fired only exactly as many times as the
values of Kt in the bases. So, for example, if the basis values for Kt are 0,
3 and 10, we need only generate those chains corresponding to 0, 3 and 10

firings of t. The same principle applies when constraining coordinates initially
6https://github.com/dixonary/karp-miller
7https://github.com/dixonary/karp-miller/blob/cf24259/src/Data/

VASS/Coverability/KarpMiller.hs#L46
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and finally.

In addition, searching the decomposition tree breadth-first instead of depth-
first allows us to parallelise computation in each level of the tree. We make
use of Haskell’s lightweight concurrency primitives to parallelise the (compu-
tationally intensive) checking of θ for each GVASS at a given level; the result
across all GVASSs (KHolds, KDoesNotHold, or further decompositions) is
computed once those checks are complete.

5.4 Experimental Results

Given that KReach is believed to be (at time of publication) the first complete
implementation of a decider for the general VASS reachability problem, it is
unsurprising that benchmarks and sample tests are difficult to come by. The
experimental results presented in this section are a mixture of synthetic nets
produced to superficially investigate properties of the procedure, and instances
derived from coverability.

5.4.1 Testing KReach on synthetic instances

A simple synthetic example was constructed to investigate how small changes
in problem instances can affect the running time of Kosaraju’s algorithm. We
parameterise the problem instance Vex from Figure 5.2b by X: X is the initial
value of the first coordinate and −X is the value of the second coordinate on
the adjoinment between states a and b. For each such instance there is exactly
one run that reaches the final configuration (X firings of t0 followed by one
firing of t1). The diagram of the lifted GVASS G(Vex(X), (X, 0), (0, 0)) is given
in Figure 5.14.

As noted for HCover, the library used to implement integer linear pro-
gramming in Haskell (SBV) is agnostic towards which solver is used on the
system. However, different solvers have different properties which may be ex-
ploited by certain shapes of problem. Two leading solvers, z3 and cvc4, were
tested against our synthetic problem instance for values of X up to 10. Figure
5.15 shows the relative performance of z3 against cvc4. This preliminary
test suggests that cvc4 far outperforms z3 on all but the smallest instances.
The time taken in z3 grows exponentially whereas in cvc4 it is only slightly
superlinear (this is closer to what is expected; after one round of decompos-
ition, the number of variables in the problem instance will be linear in X).
Observe also that there is a reproducible drop in running time between X = 4

and X = 5 for z3; we conjecture that there is some threshold at which z3
changes the heuristics it uses, and that threshold is met for our instance when
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a〈X, 0〉 b 〈0, 0〉

t0 [−1, 1]

t1 [0,−X]

Figure 5.14: Our original sample case Gex, parameterized over X.
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Figure 5.15: Time against parameter X for G(Vex(X), (0, X), (0, 0)) with the
supported solvers. Shown is the average time taken across 10 runs for each X
and for each solver.

X exceeds 4.

5.4.2 Testing KCover on real instances

Recall from Proposition 5.1 that instances of the coverability problem can be
reduced to instances of the reachability problem. Hence, one way that we
can test KReach is to ask it to solve coverability instances. A sister tool to
KReach, called KCover, is included within the KReach binary; in order to
run KCover one need only add the -c flag when invoking KReach from the
command line.

The procedure implemented by KCover is exactly that described in the
proof of Proposition 5.1: given some coverability query, convert the final vector
into a transition which leads to a distinguished state ▽, in which all coordinates
can be wound down to zero; and then use KReach to check for reachability
of 0⃗. The overheads of converting from a coverability query to a reachability
query are minimal.

KCover allows us to use benchmarks for the coverability problem as a
source of test cases for the reachability algorithm. The suite of benchmarks
provided with the tool includes a number of test cases for various aspects of
the implementation, as well as examples from the non-elementary lower bound
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Instance Outcome MIST (s) QCover (s) ICover (s) KReach (s)
Kanban safe 404 TLE TLE 1
Bingham_h150 safe TLE TLE TLE 533
Manufacturing safe 1 0 0 4
Bug_Tracking_x0 safe MLE 13 33 TLE
PNCSACover unsafe 3 27 59 TLE

Table 5.1: Sample of test cases. MLE = Memory Limit Exceeded; TLE =
Time Limit Exceeded.

construction of Czerwiński et al. [30].

KCover was evaluated against a host of problems and a number of solvers
from the existing literature on coverability checkers. To quickly recapitulate
from Chapter 4: QCover [13] implements coverability based on relaxation to
continuous coverability; ICover [63] refines this further with inductive invari-
ants; MIST [58–60] implements backwards coverability search with a range of
pruning criteria and an efficient representation of upward-closed sets.

Table 5.1 includes some specific instances which are representative of the
broader trends in experimental results. The results shown were computed on
an early-2017 MacBook Pro with a 2.3GHz dual-core Intel Core i5 CPU and
8GB of LPDDR3 RAM. The time limit was set to one hour, with a memory
limit of 4GB RAM. On many safe cases, such as Kanban and Bingham,
KCover is able to determine safety faster than state of the art coverability
solvers by finding zero valid refinements (terminating the search immediately).
On some safe nets such as Manufacturing, KCover cannot immediately rule
out coverability in this way, and the refinement tree must be explored. The
Bug_Tracking examples induced intractably large integer linear program-
ming problems. Unsafe cases such as PNCSACover induced large refinement
trees, which were unable to be explored fully within the time limit.

5.5 Concluding Remarks and Further Work

In addition to the karp-miller library mentioned previously and the
KReach tool itself, a library called vass8 has been created to implement
a modular and extensible interface for working with Vector Addition Systems
with States in the Haskell langauge.

The experimental results above are of particular value for further study,
especially for the uncoverable instances. That Kosaraju’s algorithm is some-
times able to rule out coverability quickly implies that it may be a fruitful
source of static invariants for some classes of Petri nets. One line of further

8https://github.com/dixonary/vass
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work may be to attempt to formally classify those nets for which Kosaraju’s
algorithm is effective in practice.

At present KReach/KCover only implements one parser which is for the
MIST .spec problem specification format. (When reading such files as reach-
ability instances, it replaces ≥ in the specification of the target vector by =).
There are other formats that describe coverability problems. For example,
the Petri Net Markup Language format .pnml9 is an XML-based interchange
format which is generalisable over different types of Petri nets, and is now an
ISO standard. By implementing a parser for this or other interchange formats
it may become possible to use KCover on a wider variety of problem instances.

We noted in passing that KReach uses a breadth-first search strategy for
searching the decomposition tree, and that it is conjectured that this results in
termination more quickly than a depth-first strategy. Determining empirically
whether a breadth-first or depth-first search is more effective in practice may
make for potential future work. Taking inspiration from the recent works of
Amat, Dal Zilio and Hujsa [6] and Blondin, Haase and Offtermatt [15], it may
be possible to introduce clever heuristics for exploring the tree based on which
decompositions are most likely to result in a solution.

There is also plenty of scope for improving the performance of KReach.
For example, there is scope to adapt KReach in light of the theoretical im-
provements over the original 1982 formulation, not least those of Lambert [95].
Further, there may be optimisations that can be derived from the novel the-
oretical developments in the Ackermannian upper bound proof of Leroux and
Schmitz [104]. Finally, there is scope to build some parsers and problem
translators which allow for evaluating instances of problems that are known
to reduce to reachability in Petri nets, for example in logic [33, 86], concurrent
systems [48], or process calculi [111].

9https://pnml.org
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Chapter 6

Leafy Automata

Chapter 5 concludes the first part of this thesis, in which we directly address
decision problems over Petri nets and VASS. We shall now turn our attention
to one of the most common modern use cases for Petri nets: the verification
of properties of concurrent systems.

In this chapter, we will introduce a new model of computation called leafy
automata, or LAs for short. These LAs will provide a basis which we can use
to interpret the semantics of a prototypical programming language Finitary
Idealized Concurrent Algol (FICA). We will then constrain the LA model in a
number of ways, which induces corresponding constraints on FICA. This will
lead us to expressive fragments of FICA on which we can decide a family of
model checking properties.

These motivations will be developed and expounded upon in later chapters.
For now, we will introduce the model itself and discuss its structural and
semantic properties.

6.1 Automata over infinite alphabets

Let us first define the notion of an automaton over an infinite alphabet. When
dealing with “traditional” models of computation such as deterministic fi-
nite automata (DFAs), pushdown automata (PDAs) and Turing machines, the
tokens that the machine will read are finite and known in advance. For ex-
ample, a DFA over binary strings has the alphabet {0, 1}.

Automata defined over infinite alphabets do not have this guarantee. In-
stead, the letters will be pulled from some infinite set. In this thesis we shall
be dealing with automata which operate over an infinite alphabet, but only
have a finite number of transitions.

We may ask: “How can an automaton meaningfully work with an infinite
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alphabet, with only a finite number of transitions?” In short, transitions in
automata over infinite alphabets will often operate via predicates over letters
of the alphabet. An automaton that accepted any natural number n ∈ N as
a token might activate different transitions depending on whether the token
were odd or even; but it would not have entirely different semantics for each
different value of n.

Similarly, the semantics of the automaton might predicate its transitions
both on the letter being read and its relation to the current configuration of
the machine. It may also operate based on some outside knowledge of the
letter, such as its relationship to other letters in the infinite alphabet. Leafy
automata, the model we will define in this chapter, will use both of these
features.

Finally, it sometimes behooves us to make use of “tags” for control flow in
addition to the power of the infinite alphabet. To that end, we might prefer to
have two alphabets, one more reminiscent of a classic finite automaton, usually
denoted by Σ, and one infinite alphabet of the type described above, which
we will choose to denote by D.

For the avoidance of ambiguity in what follows, we will write letter or tag,
denoted by t, when speaking of elements of the finite alphabet Σ. Similarly for
the infinite alphabet D, we will say data value, and denote such data values
by d (and subscripted variants thereof). It is common to use such alphabets
as a Cartesian product; we will call the product Σ × D a data alphabet and
its elements data letters of the shape (t, d) ∈ Σ × D. Sequences of these
data letters, i.e. of type (Σ ×D)∗, will be called data words, and sets of such
sequences data languages.

6.2 Data Trees & Data Forests

The operation of leafy automata is dependent on the infinite dataset that they
operate over, and the structure that we choose to impose on that dataset.

Let us start with a technical definition of our structure. We will say that
D is equipped with a function pred : D → D ∪ {⊥}, such that the following
two conditions hold:

• Infinite branching: pred−1({x}) is countably infinite for all x ∈ D∪{⊥}.

• Well-foundedness: for any d ∈ D, there is some i ∈ N such that pred i+1(d) =

⊥.

The function pred is the parent function over D; that is, if pred(d) = d′, we
will say that d′ is the parent of d. Similarly, pred−1(d) will denote the children
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of d. For convenience, we will also define a new function, level : D → N, such
that level(d) gives us the value i as defined above in the well-foundedness
condition. This represents the “depth” of the value in the set. We will call d
a level-i data value. Data values at level-0 are called roots.

The definition of pred gives us countably infinite branching and countably
infinite depth. Because there are countably many roots, the final structure
imposed on D is that of a countably infinite directed forest.

For notational convenience, and without loss of generality, we will distin-
guish a particular tree inside our countably-infinite forest. Let us write dr

for the root of this tree. Its direct children (the level-1 data values) will be
denoted d0, d1, d2, . . .. The children of d0 will be d00, d01, d02, . . ., and so on.
The subscripted string uniquely identifies the path from the root. In this way,
we are able to succinctly describe some subset of the data values of D, such
that the relationships between them are visually apparent.

6.3 Leafy Automata

We are now in a position to formally define leafy automata.

A leafy automaton is a nondeterministic automaton over data words, whose
internal configuration is a tree. The automaton evolves by adding and remov-
ing leaves to/from its tree configuration in correspondence with the data letters
that it reads. The automaton is said to terminate (or succeed) with respect
to some data word if there is some sequence of transitions by which the root
node is created on reading the first data letter; the configuration evolves while
reading the word; and finally the root is deleted on reading the final letter.
The automaton is said to diverge (or fail) if it is unable to progress according
to any transition.

Note that we are reusing the notion of level in the definition of LA. There
is a direct correspondence between the levels of a leafy automaton and the
levels of D; this relationship will become more apparent when we discuss the
operation of the model.

The formal definition of LA is as follows.

Definition 6.1. A level-k leafy automaton (k-LA) is a quadrupleA = 〈Σ, k,Q, δ〉,
where

• Σ = ΣQ+ΣA is a finite alphabet, partitioned into questions and answers;

• k ≥ 0 is the level parameter;

• Q =
∑k

i=0Q
(i) is a finite set of states, partitioned into sets Q(i) of level-i
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states;

• δ = δQ + δA is a finite transition relation, partitioned into question- and
answer-related transitions;

• δQ =
∑k

i=0 δ
(i)
Q are the question transitions paritioned into layers, where

δ
(i)
Q ⊆ Q[0,i−1] × ΣQ ×Q[0,i] for 0 ≤ i ≤ k;

• δA =
∑k

i=0 δ
(i)
A are the answer transitions partitoned into layers, where

δ
(i)
A ⊆ Q[0,i] × ΣA ×Q[0,i−1] for 0 ≤ i ≤ k.

Let us break down this definition in detail.

• Σ = ΣQ+ΣA is a finite alphabet, partitioned into questions and answers;

The question letters, in ΣQ, are those which correspond to transitions
which add a leaf to the machine’s internal configuration when fired. Sym-
metrically the answer letters in ΣA correspond to those transitions which
remove a leaf. This correspondence is total; there are no other letters,
and no other types of transition, and hence every transition will add or
remove a leaf in the tree. This notion is fundamental to our understand-
ing of LA, at least in this formulation.

• k ≥ 0 is the level parameter;

k identifies the maximum depth (distance from the root) at which leaves
can be added or removed. A machine with level parameter k which reads
a data value of level greater than k will not proceed, since definitionally
it will have no transitions which correspond to such a data value.

• Q =
∑k

i=0Q
(i) is a finite set of states, partitioned into sets Q(i) of level-i

states;

For each level we define the set of states that may be associated to nodes
at that level. It was decided that states should be isolated to levels
rather than shared across the entire machine for two reasons. Firstly,
nodes at different levels perform entirely different roles in the machine,
in comparison to nodes at the same level which are not meaningfully
distinguishable. Secondly, minimising the number of possible states for
any given node significantly reduces the computational load when trying
to compute state spaces for the sake of model checking.

• δ = δQ + δA is a finite transition function, partitioned into question- and
answer-related transitions;

• δQ =
∑k

i=0 δ
(i)
Q are the question transitions paritioned into layers, where

δ
(i)
Q ⊆ Q[0,i−1] × ΣQ ×Q[0,i] for 0 ≤ i ≤ k;
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• δA =
∑k

i=0 δ
(i)
A are the answer transitions partitoned into layers, where

δ
(i)
A ⊆ Q[0,i] × ΣA ×Q[0,i−1] for 0 ≤ i ≤ k.

The notation Q[i,j] denotes the set of all sequences of states

(q(i), q(i+1)), . . . , q(j) ∈ Q(i) ×Q(i+1) × . . .×Q(j).

We distinguish a special case where there is no sequence of states (either
the root has not yet been created, or has been deleted). This occurs for
question and answer transitions where i = 0 (and hence j = −1). In this
case, we write Q[0,−1] = {†}.

When explicitly writing question transitions in full, we will write them
as

(q(0), q(1), . . . , q(i−1))
tQ−→ (r(0), r(1), . . . , r(i−1), r(i)).

The same applies symmetrically for answer transitions. (Side note: ob-
serve the distinction between Q used to denote “question” and q/Q used
for states.)

6.3.1 Configurations and Runs

As described before, the configurations of a leafy automaton are structured as
a tree. Let us now formalise this notion.

A configuration of an LA is a triple κ = (D,E, f). D is a finite subset
of D, that consists of those data values that have been encountered so far.
The elements of D will always label some finite rooted subtree of D. (In our
examples, this subtree will be rooted at dr.) E is a finite subset of D, corres-
ponding to those elements of D that are still present in the current configur-
ation. f : E → Q maps level-i data values onto level-i states. Formally, ∀d ∈
E : level(d) = i =⇒ f(d) ∈ Q(i). We will generalise f so that it also operates
over sequences of data values: f(d0, d1, · · · , dn)

def
= (f(d0), f(d1), ...f(dn)).

The initial configuration is κ0 = (∅, ∅, ∅). Final (terminal) configurations
are of the shape (Dt, ∅, ∅) for some Dt. Evolution of the configuration κ will
proceed according to δ. As noted before, every transition will either add, or
remove, a single leaf from the configuration. Progress can be made only in the
following circumstances:

1. A data letter (t, d) is read such that t ∈ ΣQ and d 6∈ D and pred(d) ∈ E.
That is, the letter is a question letter; the data value is fresh (has not
been seen before); and its parent is present in the tree.

Active transitions are those ones whose first component is equal to the
sequence of states annotating (by f) the data values on the branch from
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the root to pred(d) inclusive. Taking i = level(d), for every transition
(s, t, s′) ∈ δ

(i)
Q we have

(s, t, s′) is active⇐⇒ s = f(pred i(d), · · · , pred(d)).

When activated, a transition rewrites the entire branch from the root
to pred(d) according to its third component, and adds d as a new leaf
as a child of pred(d). Formally, the transition moves the machine from
(D,E, f) to (D ∪ {d}, E ∪ {d}, f ′) where f ′ satisfies the following condi-
tions:

• (f(pred i(d), . . . , pred(d)) , t , f ′(pred i(d), . . . , d)) ∈ δ
(i)
Q ;

• dom(f ′) = dom(f) ∪ {d}; and

• f ′(x) = f(x) for all x 6∈ {pred(d), . . . , pred i(d)}.

2. On reading a letter (t, d) with t ∈ ΣA, d ∈ E, and pred−1({d}) ∩ E = ∅.
That is, we read an answer letter which is accompanied by a data value
which is currently a leaf in the tree.

Symmetrically with question letters, here the fireable transitions will be
those whose first component matches the projection of f onto the branch
from the root to d inclusive. So for every transition (s, t, s′) ∈ δ

(i)
A we

have
(s, t, s′) is active⇐⇒ s = f(pred i(d), · · · , d).

A transition of this type will delete d from configuration, and at the
same time update the branch from the root to pred(d). Formally, we
move from (D,E, f) to (D,E − {d}, f ′), where f ′ satisfies:

• (f(pred i(d), · · · , d) , t , f ′(pred i(d), · · · , pred(d))) ∈ δ
(i)
A ;

• dom(f ′) = dom(f) \ {d}; and

• f ′(x) = f(x) for all x 6∈ {pred(d), . . . , pred i(d)}.

3. The first and last moves of the machine are treated specially, because
pred(dr) = ⊥. On reading (t, d) as the first letter, we may progress
from (∅, ∅, ∅) to ({d}, {d}, {d 7→ r(0)}) for every † t−−→ r(0) ∈ δ

(0)
Q . The

last move is similar; we move from (D]{d}, {d}, {d 7→ q(0)}) to (D, ∅, ∅)
for every q(0)

t−−→ † ∈ δ
(0)
A . Observe that a given data word will always

be rejected by an LA if its first and last data letters have different data
values.

Observe that when the configuration of the machine changes, only the
branch of the tree ending at d (the path from the root to d) will have its states
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changed; the rest of the configuration is unchanged. This gives rise to a notion
of independence which will be explored later when discussing variants of LA.

Example 6.1. We will now go through a small example of leafy automaton
and investigate how it reads a short data word. This will showcase the basic
functionality of leafy automata and some of the notation that we shall use
throughout the remainder of the thesis.

We will use the following notation for defining the transitions of the auto-
maton. All other parameters and values should be assumed to be minimal
with respect to the given set of transitions.1

† start−−−→ 0 † start−−−→ 1 2
end−−→ †

x
add−−→ (x, •) (1, •) del−−→ 2

The maximum depth used for any state or transition in this machine is 1
(level-1 states appear in the add and del transitions), and hence this is a 1-LA.
We can infer also that Q(0) = {0, 1, 2} and Q(1) = {•}.

As alluded to previously, † is a distinguished state which represents the
absence of any branch to update, and is functionally indistinguishable from
the empty sequence. We also write 0 for (0), i.e. we intentionally confuse2 a
state with a length-1 sequence containing only that state. Thus x in the above
example is shorthand for (x), a placeholder for (0), (1) or (2). Note that by
the definition of LA, such single-element sequences always refer to the state at
the root. Hence in this case, the first move may put the root into state 0 or
1; and the root may only be deleted (and the machine accept) if it is in state
2 when end is read. Hence start is a question transition (in δQ) and end is an
answer transition (in δA).

For compactness of representation, it is convenient to denote some states
in these sequences by variables. For example, the move labeled by add uses the
variable x. The x is a wild-card and will match any state. Since x also appears
in the right-hand side of the same transition, we may read this as saying that
on reading tag add, the machine may add a new child to the root regardless of
the current state of the root; and the state of the root will be preserved during
that transition. So in this case, the notation would expand into two transitions:
0

add−−→ (0, •) and 1
add−−→ (1, •). Both transitions are questions, since they add

a leaf when fired.

Lastly we have a delete transition tagged with del. The transition in ques-
1The bullet • is used as a singleton state where no useful information is conveyed.
2The phrase “intentionally confuse” in this context first appeared in the documentation

for the Raku (a.k.a. Perl 6) programming language.
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κ0 = (∅, ∅, ∅)

δr : 0 δr : 1

δr : 0

δ0 : •

δr : 1

δ0 : •

No available
transitions δr : 2

(∅, ∅, ∅)

† start−−−→ 0 † start−−−→ 1

0
add−−→ (0, •) 1

add−−→ (1, •)

(1, •) del−−→ 2

2
end−−→ †

Figure 6.1: The nondeterministic operation of a small leafy automaton over a
short data word. The configurations are given in dashed boxes (as trees where
possible) and labelled by the data values and states; transitions applied are in
solid boxes.

tion will be able to delete any node at level 1 so long as it is in state 0 and its
parent (the root) is in state 1. On activation the parent will be moved to state
2; any other children are unaffected. del is an answer move, as it removes a
leaf when fired.

Let’s now observe the nondeterministic operation of this machine over the
following simple data word:

(start, dr) (add, d0) (del, d0) (end, dr)

In the diagram in Figure 6.1, we start in configuration κ0 = (∅, ∅, ∅). The
configuration tree is empty. Immediately on reading the data letter (start, dr),
the machine nondeterministically branches, applying † start−−−→ 0 in one branch
(left) and † start−−−→ 1 in another branch (right).

On reading (add, d0), the machine determines the level of d0 (which is level
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1) and tries to find transitions in δ
(1)
Q that meet the requirements. Both the left

and right branches find different transitions that fit the preconditions present
in their configurations and proceed accordingly. Since d0 is the child of dr, we
know the child leaf will be added to the node labelled by dr.

Now when reading (del, d0), the left branch has no applicable transition,
since the state path (0, 0) from which d0 is being removed does not match
any transition’s precondition. The nondeterministic branch dies. However the
right thread’s state path (1, 0) does match a transition tagged with del, so
it can progress, moving the root to state 2 in the process. Finally the end
transition 2

end−−→ † can be fired on reading (end, dr) and the root node labelled
by dr is removed. With no more to read, the machine accepts the word.

As a careful reader might surmise by this point, leafy automata will often re-
ject words out-of-hand based on their structure. If a word is not “well-formed”
by some criteria, it cannot possibly be accepted in any LA. The structural
properties of such well-formed words map neatly onto certain applications,
which will be discussed in future sections. The notion of well-formedness is
also relevant when we discuss traces, which we shall proceed to now.

6.4 Traces

Traces are data words which exist with respect to valid evolutions of the con-
figuration of a particular leafy automaton. So, for an LA A = (Σ, k,Q, δ), the
traces of A will be those data words w = (l1, l2, · · · , lh−1, lh) such that

(∅, ∅, ∅) l1−→ κ1
l2−→ · · · lh−1−−−→ κh−1

lh−→ κh.

We say that a trace is complete if and only if κh = (D, ∅, ∅) and h > 0;
that is, a complete trace is both nonempty and ends with the deletion of the
root node.

Example 6.2. Consider the 1-LA A with transitions defined thus:

† start−−−→ 0 0
inc−−→ (0, •) (0, •) dec−−→ 0 0

end−−→ †

The names chosen to label transitions are arbitrary tags; here we use inc and
dec as those reflect the actions occurring in the model we are simulating. In
this machine the inc and dec moves do not change the state at the root. The
effect is that those moves may be performed arbitrarily many times. In this
case they may even be interleaved, so inc moves may proceed and follow dec
moves and vice versa. In terms of the tree structure, inc will add a node at
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Figure 6.2: A configuration of a 1-LA simulating a one-counter. In the config-
uration pictured, the counter is storing the value 5.

level 1 and dec will remove such a node. end may only be fired once the root
is a leaf, i.e. every inc move in the trace has been followed later in the trace
by a corresponding dec move tagged with the same data value.

Taken together this means that the complete traces of A correspond to
valid histories of a single nonnegative counter (those sequences of increments
and decrements such that the value starts and ends at zero, and does not drop
below zero). In this case, all traces are prefixes of some complete trace. This
is not true for all LAs—the LA given in the previous example has traces which
are not prefixes of accepted words. Figure 6.2 shows one configuration of the
automaton. The branching degree of the root node in the configurations of this
automaton corresponds to the value being “stored” in the counter; regardless
of the number stored all of the nodes except the root are at level 1 and thus
the tree is always of height at most 1.

6.4.1 Properties of traces

Traces will always obey certain structural properties.

Remark 6.1. If a leafy automaton successfully reads a data letter (tQ, d) for
some tQ ∈ ΣQ (and level(d) > 0), it must previously have encountered some
data letter (t′q, d

′) where t′Q ∈ ΣQ and d′ = pred(d). Moreover it must not have
yet encountered (t′A, d

′) for any t′A ∈ ΣA.

Remark 6.2. When (t′A, d
′) is successfully read, we know that every child

d ∈ pred−1(d′) which appeared previously in the trace has appeared twice:
once with a question letter and secondly with an answer letter.

Taken together, these two properties comprise a kind of “hierarchical brack-
eting”; that is, entities shallower in the tree must exist while their children
exist. This hierarchical structure appears everywhere in computer science. We
may imagine a similar structure of process trees: a process may only terminate
once all of its child processes have terminated. For a very relevant example
we may think about lexical scopes in a programming language: a lexical scope
can be closed only after its use sites are done with it.
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6.5 Complexity analysis of LA

With the model now fully introduced, we can investigate some of its theoretical
properties, and why we believe leafy automata to be a good candidate to
impose further restrictions on in the search for decidability.

We will start by taking a look at the emptiness problem for (k)-LA. The
problem statement is simple: given an LA A, is there no complete trace of A?
Or equivalently, does A reject every possible data word?

Theorem 6.1. The emptiness problem for 2-LA is undecidable.

Proof. We reduce from the halting problem on 2-counter machines to the
emptiness problem for 2-LA.

Recall the construction from Example 6.2, whose traces correspond to
valid histories on a nonnegative counter. We will extend this idea in order to
represent an n-counter machine—for our purposes, a 2-counter machine—with
an LA of depth 2.

For the sake of this proof, we shall consider a 2-counter machine to be a
tuple (Q, q0, qF , δ) where Q is the set of states, q0 and qF single distinguished
initial and final states, respectively, and δ ⊆ Q×{c1, c2}×{inc, dec, zero?}×Q

the transition function.

Consider a 2-LA whose two level-1 states are distinguished with states c1

and c2. The subtrees of these level-1 states will act as counters of the same
shape as those in Example [something]. The tags on the level-1 states are such
that each transition will only affect one counter or the other. The nodes at
level 2 will have an arbitrary state. During operation, the root node’s state
will directly correspond to the state of the two-counter machine. In sum, the
tree configuration of the 2-LA will be of the shape exemplified in Figure 6.3.

q
ooo

ooo OOO
OOO

c1
|| BB

c2
|| BB

⋆ ⋆ ⋆ ⋆ ⋆

Figure 6.3: A configuration of our two-counter 2-LA. In the configuration
pictured, counter c1 has value 3 and counter c2 has value 2.

The translation of transitions from a 2-counter machine into 2-LA is given
in Figure 6.4. Increment and decrement of counter c (either c1 or c2) directly
maps onto the addition and removal of children of the level-1 node in state c.
In order to zero-test counter c we delete the node in state c and add a fresh
one, also in state c. Of course this will only succeed if that node is a leaf in
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† start−−−→ q⊥1 q 1
start1−−−→ (q⊥2, c1) q⊥2

start2−−−→ (q0, c2)

(qF , c1)
end1−−−→ q>1 (q>1, c2)

end2−−−→ q>2 q>2
end−−→ †

q −−→ (c, inc, q′) ∈ δ c ∈ {c1, c2}

(q, c)
incc−−→ (q′, c, ⋆)

q −−→ (c, dec, q′) ∈ δ c ∈ {c1, c2}

(q, c, ⋆)
decc−−−→ (q′, c)

q −−→ (c, zero?, q′) ∈ δ c ∈ {c1, c2}

(q, c)
zero?−−−→ qzero,c,q′ qzero,c,q′

zero!−−−→ (q′, c)

Figure 6.4: Translation rules which embed the behaviour of a 2-counter ma-
chine M with transition function δ into the moves of a 2-LA.

the la, i.e. it has no children and hence represents a value of 0; so a failed zero
test will cause the automaton to reject as intended.

In order to support the translation into LA, we must provide a number of
anciliary states at level 0. This is due to the restriction that only one branch of
a leafy automaton may be modified at a time. In particular, note the sequence
of intermediate introductory and final states (q⊥1, q⊥2) and (q>1, q>2). These
are used as markers to enforce that valid traces must start with the sequence
of letters (start, start1, start2) and end with the sequence (end1, end2, end). This
guarantees that the level-1 counters are set up and cleaned up correctly. Note
also that the zero-testing transitions of the shape q

ϵ−−→ (c, zero?, q′) in M re-
quire a pair of related transitions in the LA to simulate them, as the counter
node labelled by c must be deleted and recreated. This also requires an ad-
ditional top-level state to ensure the next transition fired will recreate the
counter and move to the appropriate state.

The reduction should now be clear. Given a two-counter machineM with
alphabet Σ, we construct a 2-LA AM with the mechanism described above.
AM will have a complete trace if and only if there is some word w ∈ Σ∗ such
that M halts on reading w.

Recall the complexity class Ackermann from Section 3.1.2.

Theorem 6.2. The emptiness problem for 1-LA is Ackermann-complete.

Proof. The proof is in two parts. Firstly we give a exponential-time reduction
from emptiness of 1-LA to reachability in Vector Addition Systems with States
(VASS); and then we will given a polynomial-time reduction in the other dir-
ection. Per the results of [30, 102, 104], we get Ackermann-completeness of
emptiness for 1-LA.
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We start with the translation from a VASS V in dimension d to a 1-LA AV .
As in Theorem 6.1, we represent values in unary, but in this case we maintain
all leaves at level 1. The state of each level-1 leaf will be drawn from {1, . . . , d}.
Adding a value of 1 to component i in the VASS is achieved by adding a new
level-1 leaf in state i; subtraction corresponds to removing a leaf in the same
way.

VASS updates are given in binary, and so this construction induces an
exponential blow-up: an update of n bits in one component of the vector
will require up to 2n transitions in the LA. In order to accommodate this,
additional transitory states are introduced at level 0. Suppose the VASS is of
dimension 2 and includes a transition t = (q, (−1, 3), r). Then the LA would
need four transitions (with three transitory states) at level 0, which would
manage the deletion of one level-1 child in state 1 and the addition of three
further children in state 2.

Translating from a 1-LA to a VASS is fairly straightforward. The state at
level-0 in the LA can be modelled as a triple of coordinates in the VASS, using
the same encoding as in Theorem 3.1. For each level-1 state we assign one co-
ordinate, such that the value of that coordinate in a configuration of the VASS
corresponds to the number of level-1 children in that state in a configuration
of the LA. Nonemptiness of the LA can then be modelled as reachability to a
marking which is zero in all places except the triple of coordinates representing
the machine’s state, which will encode some distinguished end state.

Theorem 6.3. The equivalence problem for 1-LA is undecidable.

Proof. We proceed by reducing from the halting problem for deterministic two-
counter machines, which was shown to be undecidable in [113, pp. 255–258].

The input to this problem is a deterministic two-counter machine C =

(QC , q0, qF , T ), where

• QC is the set of states;

• q0, qF ∈ QC are the initial and final state, respectively;

• T : QC \ {qF } → (INC ∪ JZDEC) is the step function.

Steps in INC are of the form (i, q′) ∈ {1, 2} ×QC (increment counter i and
go to state q′). Steps in JZDEC are of the form (i, q′, q′′) ∈ {1, 2} × QC × QC

(if counter i is 0 then go to state q′; else decrement counter i and go to state
q′′). The question is whether, starting from q0 with both counters zero, C
eventually reaches qF with both counters zero.

94



We first construct a 1-LA that recognises the language of all data words
such that the following two properties hold:

1. The underlying word (i.e., the projection onto the finite alphabet) en-
codes a path through the transition relation of C from the initial state
to the final state. In other words, the word encodes a pseudo-run such
that the non-negativity of counters and the correctness of zero tests are
ignored.

2. The occurrences of the letters that encode increments and decrements
of C form pairs that are labelled by the same level-1 data values, where
each increment is earlier than the corresponding decrement. Assuming
that both counters are zero initially, this ensures their non-negativity
throughout the pseudo-run and their being zero at the end.

The second 1-LA is slightly more complex. It accepts data words that have
the same properties as those accepted by the first 1-LA, and in addition:

3. There exists some increment followed by a zero test of the same counter
before a decrement with the same data value has occurred. In other
words, there is at least one incorrect zero test in the pseudo-run.

The two sets of accepted traces will be equal if and only if all pseudo-runs
that satisfy the initial, non-negativity and final conditions necessarily contain
some incorrect zero test, i.e. if and only if C does not halt as required. We
give the formal construction below.

The two LAs we compute are AC1 = 〈Σ, 1, Q, δ1〉 and AC2 = 〈Σ, 1, Q, δ2〉.

The alphabet, Σ = ΣQ ∪ ΣA, is defined as follows:

ΣQ = {start, inc1, inc2, zero1, zero2} ΣA = {end, dec1, dec2, zero′1, zero′2}

Traces of AC1 and AC2 represent pseudo-runs of C, i.e. sequences of steps of
the machine. Aside from start and end, each letter in the trace corresponds to
the machine performing either an INC step (inc), the “then” of a JZDEC step
(zero), or the “else” of a JZDEC step (dec). The zero′ transition is a necessity
which allows us to erase leaves added by zero. Each of inc, dec, zero, and zero′

has two variants which encode i, the counter number in the corresponding
step. We will say that two letters match if they are accompanied by the same
data value.

By construction AC1 will accept exactly the data words with the following
properties, which correspond to the high-level description of our first 1-LA:
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• The first letter in the trace is start and the last is a matching end.

• For each occurrence of inci, there is a matching deci later in the trace.

• For each occurrence of zeroi, there is a matching zero′i later in the trace.

• The letters in the trace (excluding start and end) form a sequence
(a0, . . . , an−1); there exists some sequence of states (s0, . . . , sn) ∈ Qn+1

C
such that for all i ∈ (0, . . . , n − 1), si+1 appears as the second or third
component of T (si), and ai is a step which may be performed at state
si (irrespective of counter values).

The state space of the root, Q(0) = QC ×{◦, ⋆, 1, 2}, comprises pairs where
the first component corresponds to a state of C and the second tracks an
observation of some invalid sequence. The second component is only used in
AC2. We denote the pair at the root by square brackets. The states of the
leaves at level 1 are Q(1) =

⋃{
{i, 0i, i⋆}

∣∣ i ∈ {1, 2}
}

, where 0i denotes
a temporary leaf generated by zeroi, i denotes a counter, and i⋆ denotes a
counter being observed in AC2.

The transition function δ1 of AC1 is defined as follows.

† start−−−→ 1[q0, ◦] [qF , ◦]
end−−→ 1 †

q
INC−−→ (i, q′) ∈ T

[q, ◦] inci−−→ 1([q′, ◦], i)

q
JZDEC−−−−→ (i, q′, q′′) ∈ T

([q, ◦], i) deci−−→ 1[q′′, ◦] [q, ◦] zeroi−−−→ 1([q′, ◦], 0i)

q ∈ QC

([q, ◦], 0i)
zero′i−−−→ 1[q, ◦]

By construction AC2 accepts exactly those traces of AC1 where at least one
zeroi letter occurs in between an inci letter and the matching letter deci. In
other words, the “then” of a JZDEC step has been taken while the counter
was nonzero. This is not a legal step, and so such a trace does not represent
a computation of C. This implements the high-level description of our second
1-LA.

In order to accept a word, AC2 must change the second component of
the root’s state from ⋆ to ◦. It does this by nondeterministically choosing to
observe some INC transition. From here, it proceeds as in AC1 until either it
meets the matching JZDEC, in which case the automaton rejects, or it meets
an ifz transition on the same counter, at which point it marks the second
component with ◦ and proceeds as in AC1.
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The transition function δ2 of AC2 is defined as follows:

† start−−−→ 2[q0, ⋆] [qF , ◦]
end−−→ 2†

q
INC−−→ (i, q′) ∈ T x ∈ {◦, ⋆, 1, 2}

[q, x]
inci−−→ 2([q′, x], i) [q, ⋆]

inci−−→ 2([q, i], i⋆)

q
JZDEC−−−−→ (i, q′, q′′) ∈ T x ∈ {◦, ⋆, 1, 2}

[q, x]
zeroi−−−→ 2([q′, x], 0i) [q, i] zeroi−−−→ 2([q′, ◦], 0i)

q ∈ QC x ∈ {◦, ⋆, 1, 2}

([q, x], 0i)
zero′i−−−→ 2[q, x]

q
JZDEC−−−−→ (i, q′, q′′) ∈ T x ∈ {◦, ⋆, 1, 2}

([q, x], i)
deci−−→ 2[q′′, x] ([q, ◦], i⋆) deci−−→ 2[q′′, ◦]

AC1 captures every correctness condition for halting computations of C
except the legality of zero steps. Hence, AC2 accepts exactly those accepted
traces of AC1 which are not halting computations of C, and so C performs a
halting computation if and only if AC1 6= AC2.

The above results are a smörgåsbord of undecidability and computational
intractability. From the perspective of model checking, this is not encouraging.
However, the leafy automaton lends itself nicely to a variety of restrictions
which make for a computational model both strongly representative of its
domain and amenable to verification. It is these that we shall investigate
in later chapters. First though, we shall discuss the language FICA and its
relationship to leafy automata.
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Chapter 7

FICA

In this chapter, we shall discuss the prototypical language Finitary Idealized
Concurrent ALGOL (FICA). In particular, we shall identify what properties
of the language make it a valuable substrate for programming language the-
ory. Later, we investigate how our Leafy Automaton construct, set out in
Chapter 6, can be employed to make FICA more conducive to model checking
and computer-aided verification.

For a history of FICA, refer to Section 2.5. Here we shall dive straight into
the definitions and applications of the language.

7.1 The FICA Language

As outlined above, Finitary Idealized Concurrent Algol (FICA) is a language
with a variety of syntactic constructs for different methods of programming,
including higher-order and imperative programming constructs, and control
flow for sequential and parallel computation.

The types of FICA are defined by the following simple grammar:

θ ::= β | θ → θ β ::= com | exp | var | sem

com is the type of commands (that is, computations which do not re-
turn a value); exp is the type of expressions, whose values are in the range
{1, . . . ,max}; var is the type of variables (the “names” in our call-by-name
semantics); and sem is the type of binary semaphores.

The full typing rules for FICA are given in Figure 7.1. The imperative
constructs should be familiar: if-then-else and while are used to implement
branching and iteration, respectively; observe that branches of if-then-else
must have the same type and the main block of the while loop must be of type
com. Variables are declared with newvar-in, and assigned to with the (:=)
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Γ ` skip : com Γ ` divθ : θ Γ ` i : exp
Γ `M : exp

Γ ` op(M) : exp

Γ `M : com Γ ` N : β

Γ `M ;N : β
Γ `M : com Γ ` N : com

Γ `M ||N : com

Γ `M : exp Γ ` N1, N2 : β

Γ ` ifM thenN1 elseN2 : β

Γ `M : exp Γ ` N : com
Γ ` whileM doN : com

Γ, x : θ ` x : θ

Γ, x : θ `M : θ′

Γ ` λx.M : θ → θ′
Γ `M : θ → θ′ Γ ` N : θ

Γ `MN : θ′

Γ `M : var Γ ` N : exp
Γ `M :=N : com

Γ `M : var
Γ `!M : exp

Γ `M : sem
Γ ` release(M) : com

Γ `M : sem
Γ ` grab(M) : com

Γ, x : var `M : com, exp
Γ ` newvarx := i inM : com, exp

Γ, s : sem `M : com, exp
Γ ` newsem s inM : com, exp

Figure 7.1: FICA typing rules

operator. To dereference a variable, i.e. to get the value currently assigned to
a name, it is prefixed by (!). Statements are sequenced with (;), as in many
modern programming languages.

Function abstraction and function application are reminiscent of the typed
lambda calculus. We assume that the only mathematical operators op are succ
for successor and pred for predecessor; as we take the type of expressions in
FICA to be finite, we can construct more exciting mathematical operators
with conditionals.

Parallel composition of terms is achieved with the (||) operator. Sema-
phores are introduced with newsem, with the same syntax as newvar but
without an initial value. Semaphores are manipulated with two new primit-
ives: grab(s) will block a thread until semaphore s is free and take control
of it; release(s) will release semaphore s under that thread’s control. Two
further concurrency primitives are also introduced: skip represents a trivially
terminating computation, and div a trivially diverging computation.

7.1.1 Contextual Equivalence

One point of note is that well-formed FICA terms may contain free variables:
variables not explicitly introduced via newvar within the term. Such a term
is called open. The existence of open terms gives rise to a notion of contextual
dependence: an open term’s semantics may change depending on the context
that the term is evaluated with. This notion of contexts is strongly related
to the game-semantic view of FICA. We are most interested in contextual
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equivalence: whether two terms are indistinguishable in every context.

Ghica, Murawski and Ong showed in [71] that the problem of contextual
equivalence for FICA is already undecidable with only second-order functions
and without recursion. This gives us some indication of the amount of restric-
tion that we must impose to achieve decidability of contextual equivalence in
general. In this work, we choose to focus on a specific instantiation of con-
textual equivalence, which is equivalence with div. If a term is contextually
equivalent to div, then there is no context in which the term is used and in
which it terminates. There is a natural parallel here with automata-theoretic
emptiness problems, and indeed we will see that correspondence borne out
shortly.

Contextual equivalence with div still gives us the power to perform verific-
ation of a large class of properties. In particular, for some open term M , we
can determine whether there is a context for M which leads to an undesirable
state.

Example 7.1. Suppose that we have some term x : var `M : θ which makes
use of a free variable x. (We use the single turnstile ` to indicate a typing
context; the term here is called M , and it has type θ.) The following term
will be contextually equivalent to div if and only if x is never set to 13 during
a terminating execution:

f : θ → com ` newvarx :=0 in (f(M) || if !x = 13 then skip else div)

Observe that f is free, and may be arbitrarily complex in how it uses its
argument M (including using it across multiple threads, and unboundedly
many times). f is left to be determined by the context; this should give some
indication of the power of quantification over all contexts.

7.2 Game Semantics

In order to unify our automata-theoretic model of computation with the pro-
gramming language theory of FICA, we shall introduce a third foundational
theory: game semantics. Game semantics is a field which uses the theoretic
presentations of games to model the logic of other branches of mathematics.
We present here only a distilled summary of game semantics as it relates to
FICA, the majority of which was first outlined in [70].

In game semantics, it is typical that games are dialogues between exactly
two players. The classical notions of winners or payoffs are not of interest; the
“players” are not viewed as in direct competition, but as two actors moving
the state of play forward according to their own available move sets.

100



The Proponent player, written P, can be viewed as the “evaluator” of a
term. The moves that they take will correspond to the shape of the term. The
Opponent (O) represents the context that the term is evaluated in. While in
the sequential setting it is expected that players alternate, when modelling
concurrency this is no longer true—valid sequences of moves may see either
player taking many moves in a row.

7.2.1 Arenas

These dialogue games take place in an arena, defined below.

Definition 7.1 (Arenas). An arena is a triple 〈MA, λA,`A〉, where:

• MA is a set of moves;

• λA : MA → {O,P}×{Q,A} is a function which, for each move m ∈MA,
determines whether it is an Opponent or Proponent move, and a question
or an answer move; we write λOP

A and λQA
A for the first and second

projections over λA; and

• `A is the “enabling relation” over MA, which satisfies the following:

1. if there is no m such that m `A n, then λA(n) = (O,Q);

2. if m `A n then λA(m) 6= λA(n); and

3. if m `A n then λQA
A (m) = Q.

If m `A n, then we say m enables n. The moves which are enabled by
no move are called initial moves, and the set of such moves is denoted IA.
(Observe that all such moves are Opponent question moves, per condition (1)
on the enabling relation in Definition 7.1.) The arena corresponding to some
type θ is written JθK. We will write O-move and P-move for moves belonging
to the Opponent or the Proponent, respectively. If those moves are known
to be question or answer moves, we may instead call them O-questions and
O-answers (and likewise for P).

For any given term, there is some arena which interprets that term. The
shape of moves permitted for each player is dictated by the type(s) present in
the term.

Arenas are defined inductively. To interpret a term of a given type θ, we
construct the arena for the sub-types of θ and unify them using one of two
constructions.

The base case of this induction is at the base types of the language: com,
var, exp, and sem. Each of these has an arena corresponding to it. In these
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Arena O-question P-answers Arena O-question P-answersJcomK run done JexpK q iJvarK read i JsemK grb ok
write(i) ok rls ok

Table 7.1: The moves in arenas corresponding to the base types of FICA. The
value of i may be any value of type exp (i ∈ {0, · · · ,max}.)

arenas, all questions are initial O-questions, and all answers are P-answers.
The moves of the arena are given in Table 7.1.

Arenas for types defined on these base types, through the judgements given
in Figure 7.1, are interpreted using the product (A × B) and arrow (A ⇒ B)
constructions, given in Figure 7.2.

MA×B = MA +MB

λA×B = [λA, λB]
`A×B = `A + `B

MA⇒B = MA +MB

λA⇒B = [〈λPO
A , λQA

A 〉, λB]
`A⇒B = `A + `B + { (b, a) | b ∈ IB and a ∈ IA}

Figure 7.2: Inductive rules for computing arenas for non-base FICA types.
Note that λPO

A (m) = O if and only if λOP
A (m) = P .

We will write JθK for the arena corresponding to some type θ.

Observe that unions in Figure 7.2 are expected to be disjoint, but mul-
tiple instances of the same move could appear in an inductively defined type.
In order to distinguish between multiple copies of the same move, we shall
modify the instances with a scheme of superscripts. All moves start off with
an empty superscript. When an arena A is used as part of an inductive type,
the prefixes of all of the moves in its move set MA are prepended a new (1-
indexed) natural number which uniquely identifies the arena at that level. For
notational convenience we will omit separators between such integers, since in
our examples every integer will be one digit.

The arena for a function type θA → θB uses the arrow construction:

JθA → θBK = JθAK⇒ JθBK.
Example 7.2. Consider the type T1 = com→ com→ com. We shall diagram
the enabling relation `A1 for the arena A1 = Jcom→ com→ comK correspond-
ing to T1.
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O run
ttt
t

iiii
iiii

iii

P run2 run1 done

O done2 done1

Figure 7.3: The enabling relation for A1 = Jcom→ com→ comK.
Observe that the two instances of run are at the same level are distin-

guished by their different superscripted integers.

Example 7.3. Consider the type T2 = (var → com) → com. We shall
diagram the enabling relation `A2 for the arena A2 = J(var→ com)→ comK
corresponding to T2.

O run
ttt
t

P run1
ppp

pp
hhhhh

hhhhh
hhhh

done

O read11 write(i)11 done1

P i11 ok11

Figure 7.4: The enabling relation for A2 = Jcom→ com→ comK.
In this case, the usage of var may involve reading or writing, and hence

both O-moves read11 and write(i)11 are enabled by the Proponent playing run1.
The moves read11, write(i)11, i11, and ok11 all occur under two applications of
arrow construction, and hence their superscripts are of length 2.

Indeed, by inductive construction, all question moves with (non-empty) su-
perscript s1 · · · sn−1sn will be enabled by some question move with (possibly-
empty) superscript s1 · · · sn−1; and answer moves with superscript s will be
enabled by question moves with the same superscript s. This notion is visual-
ised in Examples 7.2 and 7.3.

7.2.2 Plays

In order to derive meaning from arenas, we interest ourselves with sequences
of moves made within them. We want to define a notion of a (legal) play:
a sequence of moves which follows a structure corresponding to some valid
interpretation of a term.

Consider a sequence of moves m0m1 · · · mn. If that sequence of moves is
to be considered a legal play, we want evidence that each move was valid at the
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time it was made. This evidence is given in the form of a justification pointer:
a reference to some earlier move which enabled it. Formally:

Definition 7.2 (Justification).

A justified sequence is a (non-empty) sequence s = m0 (m1, p1) (m2, p2) · · · in
which every move after the first is justified.

A justified move is a pair (mk, pk) where mk is a move and pk identifies one
move mj in s such that j < k and mj enables mk.

The precise mechanism by which we identify preceding moves by pointers
will be described in Section 7.3. The first move is necessarily initial (from IA),
and therefore has no enabling move, so we leave it unjustified. When a move
n is justified by a previous move m, we say that m justifies n. In the case
where n is an answer, we say n answers m. A question move is called pending
if it has not yet been answered—hence every question in a justified sequence
is either pending or answered.

Not every justified sequence is a legal play: there are still requirements
that such a sequence must fulfil in order to be considered legal. These require-
ments comprise a well-formedness condition: any started sub-computations
must terminate before the parent computation terminates. This is formalised
with the following pair of conditions.

Definition 7.3 (Legal plays). The set PA of (legal) plays over some arena
A consists of the set of all finite justified sequences m0 (m1, p1) (m2, p2) · · · ∈
λA · (λA × N)∗ satisfying both of the following conditions:

FORK: In any prefix · · · (mi, pi) · · · (mj , pj) of s such that mi justifies mj , the
(question) move mi must be pending in · · · (mi, pi) · · · (mj−1, pj−1).

WAIT: In any prefix · · · (mi, pi) · · · (mj , pj) of s such that mj answers mi, all
questions justified by mi must be answered.

Note that as only question moves enable other moves, all pointers must
point to questions. Each question admits exactly one answer justified by it in
any legal play, though it may also justify further question moves.

To obviate a full exposition of the pointer scheme here, and to aid in
digestion of examples, when diagramming a justified sequence we will prefer
to draw arrows between moves, such that an arrow pointing from move mj

back to move mi indicates that the pointer pj identifies mi as the move which
justified mj .
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Example 7.4. Pictured are two legal plays, the former over A1 defined in
Example 7.2 and the latter over A2 defined in Example 7.3.

run run1 run2 done1 done2 done

Figure 7.5: A justified sequence over arena A1.

run run1 read11 011 write(0)11 ok11 read11 111

Figure 7.6: A justified sequence over arena A2.

Both justified sequences in example 7.4 are legal plays, satisfying both the
FORK and WAIT conditions. Observe that in the play in Figure 7.5, every
question is answered. Such plays we call complete; there is no move which can
legally extend the play. The justified sequence in Figure 7.6 is not complete,
as there are pending questions. In particular, run and run1 are both pending.

Observe also that the same move may appear multiple times in the same
play. In this case, read11 is played more than once. This is a valid interpreta-
tion: with a var in argument position, a function provided by the context may
read from and/or write to it arbitrarily many times.

Definition 7.4 (Strategies).

A subset σ of the set PA of plays over A is called O-complete if and only if
s ∈ σ and s · o ∈ PA implies s · o ∈ σ, for every O-move o.

A strategy σ over an arena A is a prefix-closed, O-complete subset of PA. If σ
is a strategy over A, we write σ : A.

The above is sufficient for defining the arenas for types, but we wish to
evaluate terms in context. This requires us to define an arena corresponding
to both a term, and the context in which the term is situated.

Let Γ = {x1 : θ1, . . . , xl : θl} be a context, and Γ ` M : θ some FICA
term in that context. We shall construct the arena for a term-in-context by
constructing the whole as a function from context to the term’s type. HenceJΓ ` θK is defined as Jθ1K× . . .× JθlK⇒ JθK.

Ghica and Murawski show in [70] that a strategy can be assigned to the
type of any FICA term-in-context Γ `M : θ. We will denote that strategy by
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JΓ `MK. For example, we have that JΓ ` divK = {ϵ, run}, and JΓ ` skipK =

{ϵ, run, run done}. We denote by comp(σ) the set of non-empty complete
plays in σ. (Note that in particular comp(JΓ ` divK) is empty, since div cannot
terminate.)

Two terms M1 and M2 are said to be may-equivalent (Γ ` M1
∼=may M2)

if and only if M1 placed into any context Γ may terminate if and only if M2

may terminate in the same context.

Definition (Full abstraction [112]). A model is fully abstract if and only if
may-equivalence coincides with equality with respect to interpretations.

The definitions in this section are sufficient to give us full abstraction with
respect to may-equivalence:

Theorem 7.1 (Full abstraction, [70]). Per the game model given in this sec-
tion,

Γ `M1
∼=may M2 if and only if comp(JΓ `M1K) = comp(JΓ `M2K).

Hence this game model is fully abstract.

As we will focus on equivalence with div, we will tend to be asking the
decision problem of whether comp(JΓ `M1K) = ∅.
7.3 From FICA to LA

With the game model cemented, it is time to investigate the relationship
between terms of FICA (or more precisely, plays over those terms) and leafy
automata. We shall start by showing that every FICA term has an LA whose
complete traces correspond to complete plays of the term.

Let T = Γ ` M : θ be a term-in-context, and A be the automaton to
construct. The first step is to define the finite alphabet that the A will read
letters of.

Recall that the base moves of our game model are

M = MJcomK ∪MJexpK ∪MJvarK ∪MJsemK
= {run, done, q, read, grb, rls, ok} ∪ {i,write(i)|0 ≤ i ≤ max}.

The finite alphabet of the machine will correspond to these moves. As
with the game model we shall be making use of a specially-crafted scheme
of subscripts to distinguish between different instantiations of the same letter.
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The scheme is similar, making use of a sequence of natural numbers to identify
the provenance of a move; but we also encode justification pointers into the
superscript, such that the enabling move can be recovered.

Suppose that Γ = {x1 : θ1, · · · , xl : θl}; that i⃗ ∈ N∗ is an integer sequence
(called the indexing vector); and that ρ ∈ N. Then the superscripts we use
will be of one of two shapes, depending on the source of the move:

• Moves from the term’s type θ will have superscripts (⃗i, ρ); and

• Moves from each context type θj will have superscripts (xi, i⃗, ρ).

So for any move m ∈ M, we shall write either m(⃗i,ρ) or m(xi ,⃗i,ρ). In the
cases where ρ = 0, we may choose to omit it; likewise when i⃗ = ϵ. So a move
m on its own is shorthand for m(ϵ,0).

The following definition explains how the i⃗ superscripts are linked to moves
from θ. For each move m, given that X ⊆ {m(⃗i,ρ) | i⃗ ∈ N∗, ρ ∈ N} and
y ∈ N∪{x1, . . . , xl}, let us write y ·X for {m(y·⃗i) | m(⃗i,ρ) ∈ X}. In words, y ·X
represents the prefixing of the indexing vectors of all superscripted moves of
X with some index y. This procedure for inductively nesting moves was also
described in Section 7.2.

Definition 7.5 (Term(-in-context) alphabets). For any type θ, the corres-
ponding alphabet Tθ is defined as follows.

For base types β = com, exp, var or sem:

Tβ = {m(ϵ,ρ) |m ∈MJβK, ρ ∈ N }.

For inductively defined types θ = θh → · · · → θ1 → β:

Tθ =
h⋃

u=1

u · Tθu ∪ θβ .

For a context Γ = {x1 : θ1, · · · , xl : θl}, the alphabet TΓ`θ is defined as:

TΓ` θ =

l⋃
v=1

xv · Tθv ∪ Tθ.

Example 7.5. Consider a context f : com → com, x : com for some term of
type com. The alphabet Tf :com→com,x:com` com is{

run(f1,ρ), done(f1,ρ), run(f,ρ), done(f,ρ),
run(x,ρ), done(x,ρ), run(ϵ,ρ), done(ϵ,ρ)

∣∣∣∣∣ ρ ∈ N

}
.
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The partitioning of these alphabets into question and answer letters exactly
follows the definitions of question and answer moves from the game semantics.

The alphabets defined above are more than what we need to represent the
game semantics of terms in context with LA. Indeed, we shall only use finite
subsets of TΓ`θ to represent a term Γ ` θ, because the paramater ρ will be
structurally bounded by the term itself, as we will now see.

Recall that configurations of LA have a tree structure, backed by the tree
structure imposed on our infinite set of data values D. The justification point-
ers used in the game-semantic world are encoded as a combination of the
indexing vector and the value of ρ for that letter, and the data values that are
read alongside that letter.

Occurrences of questions are represented directly with data values. An
answer for a pending question is uniquely identified by the data value it is
attached to: no auxiliary information is needed, and the pertinent question
is trivially identified. (We leave ρ set to 0.) An answer not enabled by any
question is illegal, as is an answer for an answered question; we do not need
to represent those.

It remains to define the justification of question moves. Initial question
moves have no pointer—these are also trivially identified, and we leave ρ set
to 0. For non-initial questions, we use a combination of ρ and the attached
data value. Note that, per Remark 6.1, when a leafy automaton reads some
(non-level-0) data letter (ti, di) as the next data letter of trace w, it must have
previously read exactly one data letter (t′, d′) such that pred(d) = d′, and
moreover t is a question move. We can extend this logic all the way back to
the root: there must be some unique subsequence (t0, t0) · · · (ti−1, di−1) of w
such that pred(dx) = dx−1, and all such dx have appeared exactly once in
the trace so far. We use ρ to mark which of these data letters justified the
move. ρ = 0 indicates the parent (the move that was tagged with di−1) is
the justifier; ρ = 1 the grandparent; and so on. In general, the justification
pointer for non-initial question data letter (t(⃗i,ρ), i) goes to the data letter
(ti−ρ−1, di−ρ−1).

For certain purposes it shall become useful to have questions which do not
correspond to a specific move. We will write ϵQ and ϵA for such question letters
and answer letters; and transition rules making use of these will be such that
ϵA must always succeed ϵQ. The introduction of these letters means that there
may be multiple data words which represent the same play.
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Example 7.6. Fix the following subtree of D, rooted at d0:

d0

d1

d2 d′2

d3 d′3

and the following data word, w:

(run, d0) (runf , d1) (runf1, d2) (runf1, d′2) (run(x,2), d3) (run(x,2), d′3) (donex, d3)

Then w represents the following play.

run runf runf1 runf1 runx runx donex

O P O O P P O

Figure 7.7: A play over arena A2. The player who makes each move is denoted
below the move.

Example 7.7. Consider the term T = f : com → com, x : com ` fx. Then
we can construct the LA AT corresponding to T as follows.

AT = 〈Q, 3, σ, δ〉, where:

• Q(0) = {0, 1, 2}, Q(1) = {0}, Q(2) = {0, 1, 2}, and Q(3) = {0};

• ΣQ = {run, runf , runf1, run(x,2)} and ΣA = {done, donef , donef1, donex};
and

• δ is defined by the following transitions:

† run−−→ 0 0
runf

−−−→ (1, 0) (1, 0)
donef−−−−→ 2 2

done−−−→ †

(1, 0)
runf1

−−−→ (1, 0, 0) (1, 0, 0)
run(x,2)

−−−−−→ (1, 0, 1, 0)

(1, 0, 1, 0)
done(x,0)−−−−−→ (1, 0, 2) (1, 0, 2)

donef1−−−−→ (1, 0)

The traces of AT are all the plays in the strategy σ = JT K, including the
play given in Example 7.6. Moreover, the language L(AT ) represents comp(σ).
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Example 7.8. It may be desirable to reduce the depth of the automaton
given in Example 7.7. For example, we may imagine that the following data
subtree is sufficient:

d0

d1 d′1 d′′1

d2 d′2

The play from Example 7.6 would then be of the form

(run, d0) (runf , d1) (runf1, d2) (runf1, d′2) (runx, d′1) (runx, d′′1) (donex, d′1)

hence “lifting” the interpretation of x to the top level. However, this
cannot be done. Each instantiation of runf1 will enable exactly one runx. So
to be faithful to the set of complete plays, the automaton must track the
number of instantiations of each to confirm that they are the same. Given the
isolated nature of the branches in the LA configuration tree, the only point of
synchronisation would be the root; which cannot be used to store the number
of instantiations, since it is potentially unbounded and only finite amounts of
information may be stored on nodes in LA.

We note some structural properties of the automata construction defined
above. Recall (from Section 6.3.1) that reading a question letter always creates
a leaf, and reading an answer letter always deletes one. The translation and
iterative construction of the alphabet is such that letters corresponding to P-
moves will always add leaves at odd levels (questions) and remove leaves at
even levels (answers); while those corresponding to O-moves will add leaves at
even levels and remove leaves at odd levels. Lastly, the automata construction
fulfils an unusual property which we call even-readiness: we can structurally
guarantee that, at the point where an even-level node is attempted to be
removed, it will be a leaf.

This property of even-readiness is a consequence of the game-semantic
WAIT condition (Definition 7.3). The condition captures the requirement that
concurrent interactions be well-nested, i.e. that all child computations must
terminate before their parent must terminate. In the case where data letters
correspond to P-answers, it turns out this property always occurs. Formally,
if the automaton arrives at configuration κ = (D,E, f) then for any even level
2i data value d ∈ E, if there exists some transition

f(pred2i(d), · · · , pred(d), d) t−→ f ′(pred2i(d), · · · , pred(d)) ∈ δ
(2i)
A
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then d is guaranteed be a leaf. This is because the evolution of such even-level
nodes is structural based on the term; the node will only reach a state of finality
once the corresponding sub-computations are known to have completed. The
same property does not hold for O-answers: the leafy automaton must check
that odd-level nodes it is tasked with removing are leaves.

Theorem 7.2. For any FICA-term T = Γ `M : θ, there exists an even-ready
leafy automaton AT over a finite subset of TΓ` θ + {ϵQ, ϵA} such that the set
of plays represented by traces of AT is exactly JΓ `M : θK. Moreover, the
language L(AT ) of complete traces of AT represents comp(JΓ `M : θK) in the
same sense.

Proof. We present an inductive construction of a leafy automaton based on
syntactic composition of normal-form FICA terms.

The base-case constructions are given here. As in Chapter 6, when giving
an automaton we shall prescribe the transition relation of that automaton;
all other parameters (finite alphabet, depth parameter, and set of states) are
taken to be minimal with respect to the set of given transitions.

Where similarly named states appear at different levels, they are distin-
guished by their level to maintain the disjoint union of state levels. We shall
use inference lines ( ) to indicate that for every possible instantiation of
the variables above the line meeting the given conditions, a corresponding
transition should be created in the automaton of the shape below the line. At
each step we are building a new automaton such that the antecedent of the
rule (above the line) is replaced by the consequent (below the line). Where
rules combine automata from multiple subterms, we shall use −−→i to indicate
which of the subterms Mi the antecedent is derived from.

Γ ` skip : com
† run−−→ 0 0

done−−−→ †

Γ ` divcom : com
† run−−→ 0

Γ ` divθ : θ

θ = θl → · · · → θ1 → β m ∈MJβK is a question move
† m−−→ 0

Γ ` i : exp
† q−−→ 0 0

i−−→ †

Figure 7.8: Base cases for the construction of an LA from a FICA term.
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Even-readiness is immediate in the base constructions: no configuration of
any of the four LAs may have any node other than the root (since they are all
0-LAs), and so the root is always a leaf.

The remaining cases are inductive, and cover all remaining term-level con-
structs shown in the typing judgments of Figure 7.1. In all cases, take m to
be from TΓ` θ + {ϵQ, ϵA}, and j from {−1, . . . , k}; recall also that a move m

listed without a superscript is shorthand for m(ϵ,0). In some cases, different
constructions will result in machines of different depths. Without loss of gen-
erality we shall assume that all constructions result in automata of the same
depth; a k-LA can be viewed as a (k + n)-LA where the lower n levels are
uninhabited.

Γ ` op(M1) : exp

Applying a unary operation to an expression requires only minimal change.
The computation for an expression terminates with a move returning the final
value of that expression. We alter the transition to apply op to that returned
value. The set of states is unchanged (Q(j) = Q

(j)
1 ).

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6= i

(q
(0)
1 , · · · , q(j)1 )

m−−→ (r
(0)
1 , · · · , r(j

′)
1 )

q
(0)
1

i−−→1 †

q
(0)
1

ôp(i)−−−→ †

In the above, observe the special case where j = −1, and hence the se-
quence (q

(0)
1 , · · · , q(j)1 ) is empty (likewise for j′). Recall from Section 6.3.1

that the empty sequence in these cases is semantically the same as †. Hence
the general transition on the left covers all cases including the initial and final
transitions, except for the single transition labelled by i. Even-readiness is
obviously maintained by this construction, because neither the configuration
graph nor the shape of any transition has changed.

Γ `M1||M2 : com

When performing parallel composition, we take the configuration graphs
of our automata for M1 and M2 and “join” them at the root. The joining
procedure is as follows: The root becomes the product of the states from the
respective roots; at lower levels, we take only the disjoint sum of the respective
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states.

Q(0) = Q
(0)
1 ×Q

(0)
2 Q(j) = Q

(j)
1 +Q

(j)
2 (1 ≤ j ≤ k)

We may imagine that the evaluation of the terms in parallel is performed in
a “split-brain” fashion: transitions will modify children belonging only to the
original M1 part, and the corresponding part of the root; or they will modify
children belonging to the original M2 part, and the corresponding part of the
root. As branches are isolated from each other, and the parallel-composed
terms cannot interfere with each other below the root (by construction), every
subtree rooted at a level-1 node will belong exclusively to either the M1 part
or the M2 part.

(a) Some configuration of
the automaton for M1.

(b) Some configuration of
the automaton for M2.

(c) The same configura-
tions from (a) and (b),
unified by parallel com-
position in M .

Figure 7.9: Sketch of the relationship of tree configurations inside the auto-
mata for M1, M2 and M .

The following transitions will activate and terminate the two components
respectively. Note that this enforces that both sub-computations must have
reached their own final states in order to delete the composite root node.

† run−−→1 q
(0)
1 † run−−→2 q

(0)
2

† run−−→ (q
(0)
1 , q

(0)
2 )

q
(0)
1

done−−−→1 † q
(0)
2

done−−−→2 †

(q
(0)
1 , q

(0)
2 )

done−−−→ †

The following transitions allow the automaton to make progress on one
subcomputation or the other.

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) q

(0)
2 ∈ Q

(0)
2 m 6= run, done

((q
(0)
1 , q

(0)
2 ), · · · , q(j)1 )

m−−→ ((r
(0)
1 , q

(0)
2 ), · · · , r(j

′)
1 )

q
(0)
1 ∈ Q

(0)
1 (q

(0)
2 , · · · , q(j)2 )

m−−→2 (r
(0)
2 , · · · , r(j

′)
2 ) m 6= run, done

((q
(0)
1 , q

(0)
2 ), · · · , q(j)2 )

m−−→ ((q
(0)
1 , r

(0)
2 ), · · · , r(j

′)
2 )

Here, when we wish to make progress in the transitions from our automaton

113



for M1, we treat the component of the root state corresponding to M2 as
arbitrary, by making a new transition for each possible value of that part of
the state). We then modify the component corresponding to M1 as well as
the branch which is known to originate from M1 (as states from M1 will be
uniquely identifiable). The same logic applies symmetrically for updating M2.

Even-readiness at level 2 and later follows directly from even-readiness for
the subterms’ automata, since the evolution of those subtrees is not changed
by this construction. At level 0, the construction of done is such that the
transition can only be fired if done could have been fired in the automata for
both M1 and M2; by their own even-readiness they have no children at that
point, and so the root of our composite automaton must also have no children.
So this automaton is even-ready.

Γ `M1;M2 : com

This construction is a special case of the next, which covers Γ `M1;M2 : β

for all base types β. We present this case separately to help illuminate the
main points of the construction.

Recall that the sequential composition operator ; requires M1 : com. Given the
two automata for M1 and M2, we shall compose the two such that all the trans-
itions of M1 will run except for the final done; followed by all the transitions
of M2 except for the initial run. This is mostly automatic: since states from
the automata are taken to be disjoint, transitions from each automaton will
never refer to states that appear in the other. We need only ensure that the
handover from the first automaton to the second is performed appropriately.

The states of our new automaton are the union of those from the two
sub-automata:

Q(i) = Q
(i)
1 +Q

(i)
2 (0 ≤ i ≤ k).

Running the first automaton requires no changes beyond removing the
done transition:

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6= done

(q
(0)
1 , · · · , q(j)1 )

m−−→ (r
(0)
1 , · · · , r(j

′)
1 )

and running the second automaton requires no changes beyond removing the
run transition:
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(q
(0)
2 , · · · , q(j)2 )

m−−→2 (r
(0)
2 , · · · , r(j

′)
2 ) m 6= run

(q
(0)
2 , · · · , q(j)2 )

m−−→ (r
(0)
2 , · · · , r(j

′)
2 )

.

So it only remains to manage the handoff from the first to the second.
Whenever the M1 automaton could have finished, we replace the transition to
† to a transition to some first move (after initialising the root) in M2.

q
(0)
1

done−−−→1 † † run−−→2 q
(0)
2 q

(0)
2

m−−→2 (r
(0)
2 , · · · , r(j

′)
2 ) m 6= run

q
(0)
1

m−−→ (r
(0)
2 , · · · , r(j

′)
2 )

In the above construction, j′ will always be either 1 or −1 for a well-formed
LA: the first question move after adding the root may only either add a level-1
node, or delete the root again (with done).

This construction makes heavy use of the even-readiness property, and in
particular the even-readiness of the automaton for M1. As we move into the
automaton for M2, there will no longer be any transitions that delete nodes
in states originating in M1. So any level-1 children remaining from M1 would
no longer be removable, and the automaton would not be able to terminate.
Thanks to even-readiness, we know that when the M1 automaton could fire
its done transition, its root was a leaf. As these are exactly the situations in
which we move to M2, the root must be a leaf when we move to M2. The even-
readiness of the M2 automaton guarantees even-readiness of our composite
automaton from that point onward, since we reuse M2’s transitions.

Γ `M1;M2 : β

In the general case, we must track which initial move was played in order
to identify the move to M2 correctly. We use a product construction with the
states from M1 at the root in order to track the initial move that was made,
along with unmodified M2 states; and as in the com case, we take the disjoint
sum of states at lower levels.

Q(0) = (Q
(0)
1 × I) +Q

(0)
2 Q(i) = Q

(i)
1 +Q

(i)
2 (1 ≤ i ≤ k)

We parameterise these constructions by the set I of initial moves, depend-
ent on the base type β. (These are the same as the base moves listed in Section
7.2.)
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The set I is defined as follows for each value of β.

β I

com {run}
exp {q}
var {read}+ {write(i) | i ∈ {0, . . . ,max}}
sem {grb, rls}

The transitions are as follows.

† run−−→1 q
(0)
1 x ∈ I

† x−−→ (q
(0)
1 , x)

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6= done x ∈ I

((q
(0)
1 , x), · · · , q(j)1 )

m−−→ ((r
(0)
1 , x), · · · , r(j

′)
1 )

(q
(0)
2 , · · · , q(j)2 )

m−−→2 (r
(0)
2 , · · · , r(j

′)
2 ) m 6∈ I

(q
(0)
2 , · · · , q(j)2 )

m−−→ (r
(0)
2 , · · · , r(j

′)
2 )

q
(0)
1

done−−−→1 † † x−−→2 q
(0)
2 q

(0)
2

m−−→2 (r
(0)
2 , · · · , r(j

′)
2 ) x ∈ I m 6∈ I

(q
(0)
1 , x)

m−−→ (r
(0)
2 , · · · , r(j

′)
2 )

The first rule attaches the given move x at the top level; the second en-
sures that M1 is interpreted correctly for all except the final done; the third
ensures that M2 is interpreted correctly for all except the initial run and the
fourth hands off from M1 to M2, ensuring that the correct opening move is
played. Even-readiness follows from M1 and M2 as in the div case described
previously.

Γ ` newvarx := i inM1 : β

Ghica and Murawski give in [70] a process by which we can deriveJΓ ` newvarx := i inM1K from JΓ, x `M1K:
• firstly, restrict JΓ, x `M1K to only plays in which each readx,write(n)x

is immediately followed by its answer;

• restrict further to only those plays in which an answer to each readx

move is consistent with any preceding write(n)x move (or i, if there is
no such move);
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• erase all moves relating to x, e.g. those of the form m(x,ρ).

This process serves to change the variable x from a free variable in
Γ, x ` M1 into a contained variable in Γ ` newvarx := i inM1 which behaves
coherently. To implement this procedure, we install a root-level lock tag such
that the only valid move while the lock is in place is to play the answer move
which removes it, after which point the automaton can continue freely. We will
also maintain the current value of x at the root to ensure read moves receive
the correct value, and write moves modify the value correctly. Eventually, all
moves with the x subscript will be replaced with ϵQ, ϵA to model hiding.

As described, our root-level state shall be a pair, where the first compon-
ent is a level-0 state from M1, with or without a lock tag, and the second
component is the current value of the variable x.

Q(0) = (Q
(0)
1 +(Q

(0)
1 ×{lock}))×{0, . . . ,max} Q(j) = Q

(j)
1 (1 ≤ j ≤ k)

We initialise our stored value of x to i, and allow the computation to
complete with x arbitrary:

† m−−→1 q
(0)
1

† m−−→ (q
(0)
1 , i)

q
(0)
1

m−−→1 † 0 ≤ n ≤ max
(q

(0)
1 , n)

m−−→ †
.

We do not care about x for the sake of moves other than readx, write(z)x,
zx and okx, so we merely lift such transitions from M1 so that they preserve
the current value of x stored at the root:

m 6= readx, zx,write(z)x, okx

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) j, j′ ≥ 0 0 ≤ n ≤ max

((q
(0)
1 , n), · · · , q(j)1 )

m−−→ ((r
(0)
1 , n), · · · , r(j

′)
1 )

.

When we readx or write(z)x, we add a lock at level 0. This lock is removable
only by a corresponding zx or okx move—the lock guarantees that any prior
reads/writes have already been answered, so only one move will be playable.
Naturally, the values of reads and writes must be consistent with the value of
x recorded at level 0. Observe that, in order to simulate hiding, we use ϵQ and
ϵA rather than named letters here.

(q
(0)
1 , · · · , q(j)1 )

write(z)(x,ρ)−−−−−−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) 0 ≤ n, z ≤ max

((q
(0)
1 , n), · · · , q(j)1 )

ϵQ−−→ (((r
(0)
1 , lock), z), · · · , r(j

′)
1 )
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(q
(0)
1 , · · · , q(j)1 )

read(x,ρ)

−−−−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) 0 ≤ n ≤ max

((q
(0)
1 , n), · · · , q(j)1 )

ϵQ−−→ (((r
(0)
1 , lock), n), · · · , r(j

′)
1 )

(r
(0)
1 , · · · , r(j

′)
1 )

okx−−→1 (t
(0)
1 , · · · , t(j)1 ) 0 ≤ n ≤ max

(((r
(0)
1 , lock), n), · · · , r(j

′)
1 )

ϵA−−→ ((t
(0)
1 , n), · · · , t(j)1 )

(r
(0)
1 , · · · , r(j

′)
1 )

nx

−−→1 (t
(0)
1 , · · · , t(j)1 ) 0 ≤ n ≤ max

(((r
(0)
1 , lock), n), · · · , r(j

′)
1 )

ϵA−−→ ((t
(0)
1 , n), · · · , t(j)1 )

The basic operations of M1 are not altered by this construction. Indeed,
by the time we reach a finishing state from M1 any addition or removal of
nodes corresponding to these readx and write(z)x moves must necessarily have
been cleaned up (due to the locking). So even-readiness will be maintained in
our new automaton.

Γ ` newsem s inM1 : β

This follows a similar pattern to newvarx := i inM1. As FICA semaphores
are binary, we restrict its root-stored value to {0, 1}. We use the same lock-
ing mechanism as described in the newvarx := i inM1 case to enforce that
questions are immediately followed by their answers.

Q(0) = (Q
(0)
1 + (Q

(0)
1 × {lock}))× {0, 1} Q(j) = Q

(j)
1 (1 ≤ j ≤ k)

We always initialise our semaphore as 0 to signify that it has not been
grabbed by any computation. We allow computations to terminate while still
in possession of the semaphore, so when finishing the automaton the value of
the semaphore may be arbitrary.

† m−−→1 q
(0)
1

† m−−→ (q
(0)
1 , 0)

q
(0)
1

m−−→1 † z ∈ {0, 1}
(q

(0)
1 , z)

m−−→ †

Transitions which correspond to moves not concerning the semaphore
(i.e. those other than grb(x,ρ)), rls(x,ρ)), and okx) proceed as before, taking
the value of the semaphore to be arbitrary and preserving it through the
transition.

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) z ∈ {0, 1} m 6= rls(x,ρ), grb(x,ρ), okx

((q
(0)
1 , z), · · · , q(j)1 )

m−−→ ((r
(0)
1 , z), · · · , r(j

′)
1 )
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As with the newvarx := i inM1 case, we lock the automaton when we play
the question moves for the semaphore (grb(x,ρ) or rls(x,ρ)), removable only when
reading the answer move (okx). Again we simulate hiding by the use of our
pseudo-epsilon-transitions ϵQ and ϵA.

(q
(0)
1 , · · · , q(j)1 )

grb(x,ρ)

−−−−−→1 (r
(0)
1 , · · · , r(j

′)
1 )

((q
(0)
1 , 0), · · · , q(j)1 )

ϵQ−−→ (((r
(0)
1 , lock), 1), · · · , r(j

′)
1 )

(q
(0)
1 , · · · , q(j)1 )

rls(x,ρ)−−−−→1 (r
(0)
1 , · · · , r(j

′)
1 )

((q
(0)
1 , 1), · · · , q(j)1 )

ϵQ−−→ (((r
(0)
1 , lock), 0), · · · , r(j

′)
1 )

(r
(0)
1 , · · · , r(j

′)
1 )

okx−−→1 (t
(0)
1 , · · · , t(j)1 ) z ∈ {0, 1}

(((r
(0)
1 , lock), z), · · · , r(j

′)
1 )

ϵA−−→ ((t
(0)
1 , z), · · · , t(j)1 )

The same even-readiness argument from newvar works here too: thanks
to the locking, any nodes introduced by grb(x,ρ) and rls(x,ρ) will be cleaned up
in the very next move, and the automaton will never be in a finishing state in
between. With all other moves being lifted from M1 directly, even-readiness
is maintained.

Γ ` fMh · · ·M1 : com where f : θh → · · · → θ1 → com ∈ Γ

Observe that this also covers the case f : com (take h = 0).
In this construction, we will add two new levels at the “top” of the automaton
for M1. These will manage the computation spawning copies of M1, . . . ,Mh.
Our top-level state will have three values {0, 1, 2}. The level-1 state is mean-
ingless and will not change; we arbitrarily choose 0. Beyond that, we take the
(as always, disjoint) union of level-j states in the automata for M1, . . . ,Mh to
be our states at level-(j + 2).

Q(0) = {0, 1, 2} Q(1) = {0} Q(j+2) =
⋃

u∈{1,...,h}

Q(j)
u (0 ≤ j ≤ k)

At the root, state 0 means “just created”; 2 means “about to finish”; and
1 means that f is currently being evaluated. State 1 is the only state in which
the root shall have a child. We start with transitions corresponding to calling
and returning from f :

† run−−→ 0 0
runf

−−−→ (1, 0) (1, 0)
donef−−−−→ 2 2

done−−−→ † .
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Once we have the level-1 node in state 0, we want the environment to
be able to spawn an unbounded number of copies of each of Γ ` Mu : θu (for
u ∈ {1, . . . , h}). In what follows, note that we do not vary the level-0 or level-1
state; hence the transitions can be applied multiple times to summon many
instances. Recall also that when j or j′ are −1, the corresponding sequence is
taken to be empty.

All moves originate either from some Mu : θu, or from Γ.

• For moves m(⃗i,ρ) from Mu : θu, we annotate them further with f and
with the index of the argument position u they appeared in. This allows
us to easily distinguish which automaton the moves originated from.

(q
(0)
u , · · · , q(j)u )

m(⃗i,ρ)

−−−−→u (q
(0)
u , · · · , q(j

′)
u )

(1, 0, q
(0)
u , · · · , q(j)u )

m(fu⃗i,ρ)

−−−−−→ (1, 0, q
(0)
u , · · · , q(j

′)
u )

As pointers are depth-relative, moving all these transitions two layers
deeper into the automaton will not change their meaning. We should
adjust the initial moves from Mu so that it correctly points to runf . As
we use ρ = 0 to indicate the absence of a pointer, initial moves in the
automata for M1 . . .Mh will already be set to 0, which as a non-initial
move will point to the parent, which is runf . So our pointer arithmetic
is still correct without modifications.

• Moves from Γ are those of the form m(xv⃗i,ρ), where 1 ≤ v ≤ l and
(xv : θv) ∈ Γ. We wish the question moves to be justified by run, which
requires some adjustments to the value of ρ. To achieve this, we simply
add 2 to ρ for question moves, and preserve ρ otherwise.

(q
(0)
u , · · · , q(j)u )

m(xv,ρ)

−−−−−→u (q
(0)
u , · · · , q(j

′)
u ) m is a question

(1, 0, q
(0)
u , · · · , q(j)u )

m(xv,ρ+2)

−−−−−−→ (1, 0, q
(0)
u , · · · , q(j

′)
u )


(q

(0)
u , · · · , q(j)u )

m(xvi⃗,ρ)

−−−−−→u (q
(0)
u , · · · , q(j

′)
u )

and
i⃗ 6= ϵ or (⃗i = ϵ and m is an answer)


(1, 0, q

(0)
u , · · · , q(j)u )

m(xvi⃗,ρ)

−−−−−→ (1, 0, q
(0)
u , · · · , q(j

′)
u )

Even-readiness of this construction at level 0 is clear, since the root’s sin-
gular child will be deleted by the transition into state 2, the only state from
which the root itself may be deleted. All other even levels are simply (lowered)
copies of the automata for M1 . . .Mh, so even-readiness follows directly from
those.
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Γ ` fMh · · ·M1 : exp

In the case where f returns a value i , we simply propagate i through the
answers. The four transitions affecting levels 0 and 1:

† run−−→ 0 0
runf

−−−→ (1, 0) (1, 0)
donef−−−−→ 2 2

done−−−→ †

are replaced by these:

† q−−→ 0 0
qf

−−→ (1, 0) (1, 0)
if−−→ 2i 2i

i−−→ † .

with all other constructions remaining the same.

Γ ` fMh · · ·M1 : var

Terms of type var have two initial moves (read and write(x)) and two
corresponding final moves (i and ok). To distinguish between reads and writes
we replace the root state 1 by two copies, 1r and 1w. Similarly we distinguish
between 0 (reading) and 0i (writing), and 2 (reading) and 2i (writing). The
opening and closing moves become these:

† read−−→ 0 0
readf

−−−→ (1r, 0) (1r, 0)
if−−→ 2i 2i

i−−→ †

† write(i)−−−−→ 0i 0i
write(i)f−−−−−→ (1w, 0) (1w, 0)

ok−−→ 2 2
ok−−→ † .

In addition, each of the transitions copied from Mu or Γ must now have
two versions, where (1, 0, · · · ) is instead (1r, 0, · · · ) and (1w, 0, · · · ).

Γ ` fMh · · ·M1 : sem

This case is similar to the var case. Here the questions are grb and rls, and
the answer is always ok.

† grb−−→ 0g 0g
grbf

−−−→ (1g, 0) (1g, 0)
okf−−→ 2g 2g

ok−−→ †

† rls−−→ 0r 0r
rlsf−−→ (1r, 0) (1r, 0)

ok−−→ 2r 2r
ok−−→ † .
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Like in the var case, each of the transitions copied from Mu or Γ must now
have two versions, where (1, 0, · · · ) is instead (1g, 0, · · · ) and (1r, 0, · · · ).

Γ ` λx.M1 : θh → · · · → θ1 → β

Consider the automaton for Γ, x : θh ` M1 : θh−1 → · · · → θ1 → β. Our
construction need only rename some labels in that automaton to achieve ab-
straction over x. In particular, transitions tagged with m(x⃗i,ρ) should instead
be tagged with m(h⃗i,ρ), h being the new height of the term.

(q
(0)
1 , · · · , q(j)1 )

m(x⃗i,ρ)

−−−−→1 (r
(0)
1 , · · · , r(j)1 )

(q
(0)
1 , · · · , q(j)1 )

m(h⃗i,ρ)

−−−−→ (r
(0)
1 , · · · , r(j)1 )

Γ ` ifM1 thenM2 elseM3 : β

This case is superficially similar to the Γ `M1;M2 case: we must first run
M1, then hand control off to the second automaton. Here though M1 has type
exp, and its result dictates which of M2 or M3 will be run.

The states are as follows (recall the use of the initial move set I from the
Γ `M1;M2 case):

Q(0) = (Q
(0)
1 × I) +Q

(0)
2 +Q

(0)
3

Q(j) = Q
(j)
1 +Q

(j)
2 +Q

(j)
3 (1 ≤ j ≤ k)

We tag states from M1 by x to denote which of the initial moves will be
played by M2 or M3, so that the transition between them is smooth. We
initialise x arbitrarily:

† q−−→1 q
(0)
1 x ∈ I

† x−−→ (q
(0)
1 , x)

.

Transitions in M1 progress normally, albeit lifted to pass through the new
x tag at the root:

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6∈ {0, · · · ,max} x ∈ I

((q
(0)
1 , x), · · · , q(j)1 )

m−−→ ((r
(0)
1 , x), · · · , r(j

′)
1 )

.

Moves in M2 and M3 progress normally, beyond their initial move:
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(q
(0)
2 , · · · , q(j)2 )

m−−→2 (r
(0)
2 , · · · , r(j

′)
2 ) m 6∈ I

(q
(0)
2 , · · · , q(j)2 )

m−−→ (r
(0)
2 , · · · , r(j

′)
2 )

.

(q
(0)
3 , · · · , q(j)3 )

m−−→3 (r
(0)
3 , · · · , r(j

′)
3 ) m 6∈ I

(q
(0)
3 , · · · , q(j)3 )

m−−→ (r
(0)
3 , · · · , r(j

′)
3 )

.

These final two transitions are those which guide whether to fire off the
automaton for M2 or M3 based on the result of M1. Only one transition or
the other will be fired: observe that the former will be fireable only when M1

returns with a nonzero value; and the latter only when M1 returns with 0.

q
(0)
1

i−−→1 † i > 0 † x−−→2 q
(0)
2 q

(0)
2

m−−→2 (r
(0)
2 , · · · , r(j

′)
2 ) x ∈ I m 6∈ I

(q
(0)
1 , x)

m−−→ (r
(0)
2 , · · · , r(j

′)
2 )

q
(0)
1

0−−→1 † † x−−→3 q
(0)
3 q

(0)
3

m−−→3 (r
(0)
3 , · · · , r(j

′)
3 ) x ∈ I m 6∈ I

(q
(0)
1 , x)

m−−→ (r
(0)
3 , · · · , r(j

′)
3 )

Even-readiness follows from the same logic used in the Γ `M1;M2 case.

Γ ` whileM1 doM2 : com

The while case requires surprisingly little accounting - we take the states
to be the unions of the states from M1 and M2:

Q(j) = Q
(j)
1 +Q

(j)
2 (0 ≤ j ≤ k)

We start by evaluating M1, and terminate only in the case where M1 gives
back a value of zero. All other moves from M1 are allowed to continue as
normal with no modification.

† q−−→1 q
(0)
1

† run−−→ q
(0)
1

q
(0)
1

0−−→1 †

q
(0)
1

done−−−→ †

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6∈ {q, 0, · · · ,max}

(q
(0)
1 , · · · , q(j)1 )

m−−→ (r
(0)
1 , · · · , r(j

′)
1 )

When M1 returns a nonzero value, we run M2. Where we would initialise
the automaton for M2 we skip straight to the first move. We know, because
M2 : com, that the automaton for M2 will start with run and end with done.
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So instead we jump straight to the second move.

q
(0)
1

i−−→1 † i > 0 † run−−→2 q
(0)
2

m−−→2 (r
(0)
2 , r

(1)
2 ) m 6= done

q
(0)
1

m−−→ (r
(0)
2 , r

(1)
2 )

Sometimes there will be no such second move. We must handle this case
specially, such that we skip straight back to evaluating M1 again.


q
(0)
1

i−−→1 † i > 0 † run−−→2 q
(0)
2

done−−−→2

and
† q−−→1 r

(0)
1

m−−→1 (u
(0)
1 , u

(1)
1 ) m 6∈ {0, . . . ,max}


q
(0)
1

m−−→ (u
(0)
1 , u

(1)
1 )

The automaton for M2 progresses simply.

(q
(0)
2 , · · · , q(j)2 )

m−−→2 (r
(0)
2 , · · · , r(j

′)
2 ) m 6∈ {run, done}

(q
(0)
2 , · · · , q(j)2 )

m−−→ (r
(0)
2 , · · · , r(j

′)
2 )

When M2 is finished, instead of using its own done transitions we instead
reinitialise the automaton for M1, completing the loop.

q
(0)
2

done−−−→2 † † q−−→1 q
(0)
1

m−−→1 (r
(0)
1 , r

(1)
1 ) m 6∈ {0, . . . ,max}

q
(0)
2

m−−→ (r
(0)
1 , r

(1)
1 )

Completing the loop in this way isn’t possible when M1 is trivial (i.e. sum-
mons no child nodes). In such cases, we are permitted to immediately termin-
ate (when i = 0), or immediately return to M2 (when i > 0).

q
(0)
1

i−−→1 † i > 0 † run−−→2 q
(0)
2

done−−−→2 † † q−−→1 r
(0)
1

0−−→ 1†

q
(0)
1

done−−−→ †

q
(0)
2

done−−−→2 † † q−−→1 q
(0)
1

0−−→ 1†

q
(0)
2

done−−−→ †
q
(0)
2

done−−−→2 † † q−−→1 q
(0)
1

i−−→1 † i > 0

and
† run−−→2 r

(0)
2

m−−→2 (u
(0)
2 , u

(1)
2 ) m 6= done


q
(0)
2

m−−→ (u
(0)
2 , u

(1)
2 )

As with other cases where we run automata sequentially (with minimal
glue), even-readiness is inherited. No pointers need adjusting.
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Γ ` !M1 : exp

When dereferencing M1, M1 must be of type var. To model dereferencing
we need only replace instances of read tags with q tags. The set of states is
unchanged: Q(j) = Q

(j)
1 (0 ≤ j ≤ k).

Transitions relevant to dereferencing M1 are copied from the automaton
for M1 as follows.

† read−−→1 q
(0)
1

† q−−→ q
(0)
1

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6= read,write(i), ok

(q
(0)
1 , · · · , q(j)1 )

m−−→ (r
(0)
1 , · · · , r(j

′)
1 )

With no changes to the structure of transitions or states, even-readiness
follows immediately from M1.

Γ `M1 :=M2 : com

For assignment, we start by running M2; the final move i is the value to
assign to M1, and we shall treat it as if write(i) was played. Once again we
will take the unions of the states from the automata for M1 and M2:

Q(j) = Q
(j)
1 +Q

(j)
2 (0 ≤ j ≤ k).

We start with M2:

† q−−→2 q
(0)
2

† run−−→ q
(0)
2

(q
(0)
2 , · · · , q(j)2 )

m−−→ 2(r
(0)
2 , · · · , r(j

′)
2 ) m 6∈ {0, . . . ,max}

(q
(0)
2 , · · · , q(j)2 )

m−−→ (r
(0)
2 , · · · , r(j

′)
2 )

Once M2 is completed (i is ready to be fired), we start off the automaton
for M1 as if write(i) was played. Recall (again) that (r

(0)
1 , · · · , r(j

′)
1 ) may be †.


q
(0)
2

i−−→2 † i ∈ {0, · · · ,max} † write(i)−−−−→1 q
(0)
1

and
q
(0)
1

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6= ok


q
(0)
2

m−−→ (r
(0)
1 , · · · , r(j

′)
1 )

The automaton for M1 now progresses, but further reads or writes to/from
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M1 are ignored.
(q

(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 )

and
m 6∈ {read,write(0), . . . ,write(max), 0, . . . ,max, ok}


(q

(0)
1 , · · · , q(j)1 )

m−−→ (r
(0)
1 , · · · , r(j

′)
1 )

Finally, M1 is allowed to complete.

q
(0)
1

ok−−→1 †

q
(0)
1

done−−−→ †

No pointer adjustments are needed here, and again even-readiness follows
directly from even-readiness in the automata for M1 and M2.

Γ ` grab(M1) : com and Γ ` release(M1) : com

These two cases are the same. We simply rename the initial instance of grb
(respectively, rls) to run, and the final ok to done. Even-readiness is obviously
maintained, as correctness of pointers.

For grab(M1):
† grb−−→1 q

(0)
1

† run−−→ q
(0)
1

q
(0)
1

ok−−→1 †

q
(0)
1

done−−−→ †

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6= grb, rls, ok

(q
(0)
1 , · · · , q(j)1 )

m−−→ (r
(0)
1 , · · · , r(j

′)
1 )

.

For release(M1):
† rls−−→1 q

(0)
1

† run−−→ q
(0)
1

q
(0)
1

ok−−→1 †

q
(0)
1

done−−−→ †

(q
(0)
1 , · · · , q(j)1 )

m−−→1 (r
(0)
1 , · · · , r(j

′)
1 ) m 6= grb, rls, ok

(q
(0)
1 , · · · , q(j)1 )

m−−→ (r
(0)
1 , · · · , r(j

′)
1 )

.

The above shows that leafy automata are capable of faithfully modelling
the game semantics of FICA terms, such that a term’s plays can be exactly
represented in the traces of a constructed automaton, and its language com-
prises the complete plays. This encoding alone is not enough to give us any
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decidability results, of course. However, restricting or altering the structure of
our leafy automaton may be a fruitful new mechanism through which to dis-
cover corresponding properties or restrictions of the language. In the following
chapters we shall explore that approach in a number of different ways.
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Chapter 8

Local Leafy Automata

In Chapter 6, we relayed that many problems on general leafy automata are
undecidable. This naturally poses some difficulties when trying to solve in-
stances of verification problems via LA. Across the next two chapters, we shall
expound two new varieties of leafy automata: firstly local leafy automata in
this chapter; and then split automata in Chapter 9. In both cases, we identify
a fragment of the FICA language which can be translated to the restricted
automaton variant, and show that certain problems over that fragment are
decidable by reduction to their respective variant.

8.1 Boundedness

In order to derive value from the local model described here, we must first
discuss a notion of boundedness. Boundedness is a property of an individual
automaton—it is not structurally guaranteed by any of the models we shall
discuss, and does not form part of the definition of those models. The property
can be inferred from an automaton based on its transitions taken as a whole;
when making use of boundedness for any given automaton we shall first show
that it holds.

Definition 8.1. A leafy automaton A (be that a k-LA or any variant thereof)
is bounded at level i if and only if there is some b ∈ N such that each node
at level i may create at most b children during any run. The maximum value
of b across all bounded levels in any automaton A with at least one bounded
level is called the branching bound.

For the remainder of this work, we shall assume that for any automaton
with at least one bounded level, all such levels share the same bound, simply
called b. (Over-estimating the branching bound will not cause any issues, and
the proofs are made simpler as a result.)
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Definition 8.2. An automaton is even-bounded if it is bounded at every even
level 2i for i ∈ N.

The above definition will be convenient for our proofs; later we shall see
that this property naturally occurs in certain local leafy automaton construc-
tions.

8.2 Local Leafy Automata

Local leafy automata (LLA) are a restriction of the general leafy automata from
Chapter 6. We shall therefore borrow much of the notation, semantics and
terminology described in that chapter when discussing local leafy automata,
and LLA shall primarily be discussed in terms of the differences between them
and LA.

Definition 8.3. A level-k local leafy automaton (k-LLA) is a quadruple
A = 〈Σ, k,Q, δ〉, where

• Σ = ΣQ+ΣA is a finite alphabet, partitioned into questions and answers;

• k ≥ 0 is the level parameter;

• Q =
∑k

i=0Q
(i) is a finite set of states, partitioned into sets Q(i) of level-i

states;

• δ = δQ + δA is a finite transition relation, partitioned into question- and
answer-related transitions;

• δQ =
∑b k

2
c

i=0 δ
(2i)
Q + δ

(2i+1)
Q are the question transitions, paritioned into

odd and even layers such that

– δ
(2i)
Q ⊆ Q[2i−2, 2i−1] × ΣQ ×Q[2i−2, 2i]

– δ
(2i+1)
Q ⊆ Q[2i−2, 2i] × ΣQ ×Q[2i−2, 2i+1]

• δA =
∑b k

2
c

i=0 δ
(2i)
A +δ

(2i+1)
A are the answer transitions, partitoned into odd

and even layers such that

– δ
(2i)
A ⊆ Q[2i−2, 2i] × ΣA ×Q[2i−2, 2i−1]

– δ
(2i+1)
A ⊆ Q[2i−2, 2i+1] × ΣA ×Q[2i−2, 2i]

We shall assume, with no loss of generality1, that there are always an even
number of levels in any LLA.

1To treat a k-LLA as a (k + 1)-LLA, fix Q(k+1) = ∅. No further changes are required.
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The definition of LLA is, in many respects, the same as that of LA. The
critical distinction lies in the transition function δ. There are two important
differences between the transition function as described in LA and that in LLA.

Foremost, the automaton no longer has the ability to define transitions
with respect to the states along an entire branch from root to leaf when adding
or removing a leaf. Instead, the scope of observations up the tree is limited to
only two or three levels.

Secondly we distinguish between whether a level is odd or even (that is,
whether the level number is 2i or 2i + 1 for some integer i). We do this so
that odd levels are permitted access to one additional level up the tree when
adding or removing states according to the transition function.

The two changes above can be briefly summed up as follows: The addition
or removal of any node, whether at an odd or even level, may not read nor
write further than the nearest even level’s grandparent. So additions/removals
at level 2i or 2i + 1 may make changes as far as level 2i − 2, but no further.
Of course, the restriction still applies that these changes must take place only
on the path between the newly added/removed node and the root. This is
where the “local” in “local leafy automata” comes from: transitions adding a
leaf may only make use of the local part of the branch to which said leaf is
being added. The semantic effect of this change will be described later in this
chapter.

It may be surprising to learn that this change is already sufficient to make
certain problems decidable.

Theorem 8.1. The emptiness problem for even-bounded k-LLA is decidable.

Proof. Let us set the scene with a quick sketch of the proof, before giving the
full working.

Fix b as the branching bound of our even-bounded k-LLA. The main obser-
vation is this: once a node d at even level 2i has been created, all subsequent
actions of descendents of d access (that is, read and/or write) the states at
levels 2i− 1 and 2i− 2 at most 2b times. The shape of the transition function
dictates that this can happen only when children of d at level 2i+1 are added
or removed. Similarly, it is not possible for any node at level < (2i− 2) to be
accessed at the same time as d or any of its descendents.

We make use of this observation to construct summaries of nodes on even
levels which completely describe all possible lifetimes of nodes at that level,
from their creation until their removal, and in between performing at most
2b read-writes of the parent and grandparent states. A summary (formally
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described below) is a complete record of a valid sequence of read-writes and
the corresponding stateful changes for any node at level 2i.

We shall prove by induction that, given the summaries for nodes at level
2i+2, we can construct the summaries for nodes at level 2i. We will construct
a program for testing whether some set of the correct shape is a valid summary
at level 2i, based on the summaries at level 2i+2. The program will be written
in a simple language over infinite counters, which can then be executed on
VASS. Since there are finitely many possible summaries at any (even) level,
we can enumerate them all and hence compute all summaries at all such levels
in decreasing order. We proceed until level 2, at which point we can reduce to
reachability on a VASS.

The complete proof follows.

∗ ∗ ∗

We split the proof into two parts. The first part induces a notion of sum-
maries, which describe all valid sequences of possible states and reads-writes
that a node at a given level may perform. Secondly, we use that summary
notion to give an algorithm for generating summaries at level 2i based on
summaries at level 2i+ 2, which then powers the inductive argument.

8.2.1 Summaries

The structure of k-LLA transitions gives rise to a notion of a domain for data
values. The domain of a data value d ∈ D is the set of data values whose
associated state may be modified by a transition that adds or removes d (in
other words, when reading a data letter which has d as its data value.) Recall
the definition of pred from Section 6.2.

dom(d) =

{pred2(d), pred(d), d} if d is at an even level

{pred3(d), pred2(d), pred(d), d} if d is at an odd level

Observe that this definition is not well-formed for any data value d at level
0, 1, or 2. This case is treated separately at the end of the proof.

We shall also make use of a notion of independence which is based on these
domains. Two data letters (t1, d1), (t2, d2) are said to be independent if the
domains of d1 and d2 are disjoint. Independence is a strong condition with
implications for the set of traces:
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Lemma 8.1. If w is a trace of some LLA A, then every sequence obtained by
permuting adjacent independent letters of w is also a trace of A. Moreover
the final configuration of all such traces is the same.

Proof. Consider a trace u(t1, d1)(t2, d2) such that (t1, d1) and (t2, d2) are inde-
pendent, with u some arbitrary trace. Note that the domain of d2 corresponds
to those data values whose nodes’ states may be read and/or written when
adding or removing d2 as a leaf. If d1 is not in that domain, then the move
adding or removing d2 cannot be predicated on the existence of d1 nor on any
state modified by the addition or removal of d1. Hence if u(t1, d1)(t2, d2) is
a trace then u(t2, d2) is also a trace. Symmetrically, since d2 is not in the
domain of d1, we can see that if u(t2, d2) is a trace then u(t2, d2)(t1, d1) must
also be a trace. It follows that the states of all nodes after trace u(t1, d1)(t2, d2)

are the same as those after u(t2, d2)(t1, d1).

We need not worry about the case where (say) d2 is a descendent of d1,
but d1 is not in the domain of d2 because it’s too far down the tree; such
letters could never be adjacent in a trace as any intermediate nodes must be
created/destroyed in between such occurrences.

Let us fix an even-bounded k-LLA A = 〈ΣA, kA, QA, δA〉, with branching
bound b.

Suppose that, in an accepting trace on A, we encounter some data value d

at even layer 2i. In any such trace, d must appear exactly twice. The first
occurrence corresponds to adding d, and the second to deleting d. Let w be
the part of the trace in between, and including, these two occurrences of d.
We can classify each data letter (t′, d′) of w into one of three categories:

1. d-internal, when dom(d′) is entirely within the subtree rooted at d;

2. d-external, when dom(d′) is disjoint from the subtree rooted at d;

3. d-frontier, when dom(d′) contains d and its parent.

These three classes partition the set of all data letters in w. The frontier
letters are those with data values d and the children of d (the latter being
from level 2i+1). Data letters with data values from levels > 2i+1 are either
d-internal or d-external.

Note that no child of d will appear in the trace outside of w, since (per
Remarks 6.1 and 6.2) there will be an unanswered question associated with d

any time a child of d is created or destroyed. Since d has even level, and A
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is even-bounded, the number of children that d gains across a run is bounded
by b, and thus the total number of d-frontier letters in w is at most b+ 1.

We now split w into subwords, such that the boundaries of these subwords
are the d-frontier letters. This creates a sequence of transitions:

κ1
m1−−→ κ′1

w1−−→ κ2
m2−−→ κ′2

w2−−→ . . . κl
ml−−→ κ′l

wl−−→ κl+1
ml+1−−−→ κ′l+1 (8.1)

In Equation 8.1, m1, . . . ,ml are the d-frontier data letters. The first and
last are distinguished: m1 adds the node annotated by d to the tree and ml+1

deletes it.

Configuration κ′1 is the first in which d appears in the tree, so d is a leaf
node in κ′1. Likewise, κl+1 is the last configuration in which d appears, as it
is removed by ml+1, so (per Remark 6.2) d is a leaf node in κl+1.

We may now make use of the independence properties of the data letters in
subwords. Every word wj contains only d-internal and d-external data letters.
Since d-internal and d-external data letters will necessarily be independent, we
can safely rearrange wj into two words uj ·vj such that uj is the subword of wj

consisting only of the d-internal letters, and vj is the subword of wj consisting
only of the d-external letters. u1 and ul will be empty.

From here, we can see that the d-internal parts u1, · · · , ul of w only in-
teract with the d-external parts v1, · · · , vl at a bounded number of positions,
and those positions exactly correspond to the frontier transitions m2, · · · ,ml.
Hence, if we could characterize the interactions that can occur at level 2i,
then we could replace the sequences of transitions on every uj by some single
short-cut transition. This would eliminate the need for levels ≥ 2i in the
automaton.

We introduce the notion of a summary to implement such short-cut trans-
itions. A summary for level 2i is a function

f : {1, . . . , 2(l + 1)} −→ Q2i−2 ×Q2i−1 (8.2)

for some l ≤ b+ 1.

Intuitively, from a trace w expanded as in Equation 8.1, we can extract
f such that f(2j − 1) is a pair of states labelling pred2(d) and pred(d) in κj ,
while f(2j) is a pair of states labelling these nodes in κ′j . Of course we do
not construct f based on any particular runs of A in practice; instead we
shall decide, for any given f , whether f is a summary based on the transition
function of A, using the process described below.

To formalise the idea of summaries for a given automaton, we will introduce
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the notion of a cut automaton. Intuitively, the behaviour of a cut automaton
A↓(2i, f) will represent the behaviours of A contained within some subtree
rooted in a data value at layer 2i, and following some summary f . The in-
formation that is “cut” is all the states and transitions at levels {0 . . . 2i− 1}.

The states and transitions of A↓(2i, f) are those of A but modified so that
level 2i becomes the root level. Recall that, since these transitions are local
(their reach is bounded), we do not need to modify any values within the
transitions themselves.

Q↓(l−2i) = Q(l)

δ
↓(l−2i)
Q = δ

(l)
Q

δ
↓(l−2i)
A = δ

(l)
A

 for l ≥ 2i+ 2

The two topmost layers, 2i ⇒ 0 and (2i + 1) ⇒ 1, must be treated specially
since their parents and grandparents are “cut” by this procedure. Hence we
use an adjusted annotation for those levels. We also annotate the state at
the root by some integer from the domain of f , which shall be used by the
transitions at layer 1.

Q↓(0) = Q(2i) × dom(f)

Q↓(1) = Q(2i+1)

Before defining the transitions of A↓(2i, f) we introduce some further nota-
tion. For a summary f we write max(dom(f)) for the maximal element in the
domain of f . We shall also make use of an abbreviated notation for transitions.
Recall that within a summary, f(j) and f(j + 1) are definitionally linked (for
odd j) such that f(j) and f(j + 1) intuitively correspond to the values being
“read” and “written” (respectively) by addition or removal of nodes in the d-
frontier. So if f(j) = (q(2i−2), q(2i−1)), and f(j + 1) = (q′(2i−2), q′(2i−1)), then
we write

f(j)
a−−→ (f(j + 1), q′(2i))

instead of
(q(2i−2), q(2i−1))

a−−→ (q′(2i−2), q′(2i−1), q′(2i)) .

The transitions of A↓(2i, f) at levels 0 and 1 are adaptations of those of
levels 2i and 2i + 1 in A. A node that was at level 2i is now the root, and
so it has no predecessors. The initial and final moves of A↓(2i, f) will create
and destroy the root. These transitions make use of f in order to create and
destroy the root (i.e. the node labelled by d) in a way which is faithful to A.

In the translation rules given below, the antecedent (above the line) is
some transition that exists in A, and the consequent (below the line) is the
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induced transition in A↓(2i, f).

f(1)
a−−→ (f(2), q′(2i)) ∈ δ

(2i)
Q

† a−−→ (q′(2i), 3) ∈ δ
↓(0)
Q

(f(r), q)
a−−→ f(r + 1) ∈ δ

(2i)
A

(q, r)
a−−→ † ∈ δ

↓(0)
A

for r = max(dom(f))− 1

Lastly we have transitions that add and delete nodes at level 1:

(f(r), q(2i))
a−−→ (f(r + 1), q′(2i), q′(2i+1)) ∈ δ

(2i+1)
Q

(q(2i), r)
a−−→ ((q′(2i), r + 2), q′(2i+1)) ∈ δ

↓(1)
Q

(f(r), q(2i), q(2i+1))
a−−→ (f(r + 1), q′(2i)) ∈ δ

(2i+1)
A

((q(2i), r), q(2i+1))
a−−→ ((q′(2i), r + 2)) ∈ δ

↓(1)
A

We can now formally define the set of summaries for an even layer 2i:

Summary(A, 2i) = {f | A↓(2i, f) accepts some trace}

The next step is to define an automaton that uses such a set of summaries.
The idea is that when a node at level 2i is created it is assigned a summary
from the set of summaries. Then all moves below this node are simulated by
consulting this summary, and hence we will never need to directly emulate the
levels past 2i.

Let S be a set of summaries at level 2i. We will now define A↑(2i,S) as
a (2i+ 1)-LLA. The states and transitions of A↑(2i,S) are exactly the states
and transitions of A for levels {0, · · · , 2i− 1}. The set of states at level 2i is

Q(2i) = {(f, r) : f ∈ S, r ∈ dom(f)} .

So a state at layer 2i is a summary function and a use counter indicating the
part of the summary that has been discharged so far in a run.

For technical reasons2 we will also need one state at layer 2i + 1. We set
Q(2i+1) = {•}.

2Per the definition of LLA, changing the state at level 2i requires the addition or removal
of a descendant. The child that is added in this way does not itself bear any meaning.
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The transitions of δ↑(2i)Q and δ
↑(2i)
A are defined as follows.

f(1)
a−−→ (f(2), (f, 3)) ∈ δ

↑(2i)
Q for f ∈ S

(f(r), (f, r))
a−−→ f(r + 1) ∈ δ

↑(2i)
A for r = max(dom(f))− 1

These transitions imply that for every node created at level 2i, the auto-
maton nondeterministically guesses a summary and sets the summary’s use
counter to 3. (It is 3 and not 1 because the first two values of f are used
for the creation of the node.) The node can be deleted once this bounded
counter value is maximal—this corresponds to all children of the simulated
node having been removed, and the state itself being in a removable condition
as per the original definition of A.

Finally, we define the transitions of δ↑(2i+1)
Q and δ

↑(2i+1)
A .

(f(r), (f, r))
a−−→ (f(r + 1), (f, r + 2), •) ∈ δ

↑(2i+1)
Q if r < max(dom(f))− 1

(f(r), (f, r), •) a−−→ (f(r), (f, r)) ∈ δ
↑(2i+1)
A if r = max(dom(f))− 1

Whenever the automaton follows one of the above question transitions it dis-
charges another step in some node’s summary and creates a trivial node (•)
as a child of that node. The use counter of that node is increased by 2 at
such a transition. Once the use counter cannot be increased any more, δ↑(2i+1)

A
provides transitions for repeatedly deleting those trivial nodes. No other trans-
itions are applicable at this point. Once there are no children, the simulated
node can be removed by a δ

↑(2i)
A transition.

For illustrative purposes, consider some node n at level 2i. Recall the meaning
of the transitions whose first component is f(. . .): these are states of the parent
and grandparent of the summarizing node n. When the summary-progressing
transition fires, it does so on the condition that its grandparent and parent
states are as dictated by f(r) and the result is that the parent and grandparent
states are set to f(r+1). The node’s summary is able to progress again when
the states at the parent and grandparent are configured according to f(r+2),
and so on. If f(r + 1) and f(r + 2) coincide then this can be immediate;
otherwise it can occur by some sibling of n changing the states of n’s parent
and grandparent in the same way.

The next lemma formally states the relationship between the two automata
we have introduced (cut automata A↓ and the simulating automata A↑) and
the original A.

Lemma 8.2. For every k-LLA A and level 2i < k, A accepts a trace if and
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only if A↑(2i,Summary(A, 2i)) accepts a trace.

Proof. We will first construct an accepting trace w↑ of A↑(2i,Summary(A, 2i))
based on an accepting trace w of A.

Since w is accepting, for each data value d at level 2i that appears in w, d
must appear exactly twice in w: once to add the node corresponding to d and
then later to remove it. Hence the subsequence of w comprising data letters in
the subtree of d must itself be an accepting trace of A↓(2i). The data letters
of w can be partitioned into those at levels < 2i and those at levels ≥ 2i. The
former are maintained in our new accepting trace. The latter may be further
partitioned into some number of accepting traces of A↓(2i). Each such trace
is rooted in some data value d↓ at level 2i, and hence corresponds to some
summary in A↑(2i,Summary(A, 2i)).

Letters in such traces are either d↓-internal or d↓-frontier. The d↓-frontier
letters are maintained in w↑: they allow us to progress the summaries at
level 2i. For each d-frontier data letter in w we replace it by a pair of data
letters which allow us to progress those summaries per the transitions of
A↑(2i,Summary(A, 2i)). The d↓-internal letters are no longer required; the
behaviours corresponding to those letters are exactly those being summarised.

We now show that if an accepting trace w↑ ofA↑(2i,Summary(A, 2i)) exists
then an accepting trace w of A must also exist. This is done by stitching runs
of A↑ and A↓ and proceeds symmetrically to the previous argument.

If w↑ is accepting, then w↑ consists of data letters at levels < 2i, data
letters at level 2i, and some number of data letters at level 2i + 1 which
facilitate moving through summaries. By definition, each summary at level 2i
corresponds to a sequence of additions/removals of nodes in the subtree rooted
at some data value d at level 2i, starting with the addition of d and ending
with its removal. Hence each such summary must correspond to an accepting
trace of A↓(2i). So the data letters of some accepting trace of A↓(2i) rooted
at d (for each such d), taken together with the data letters at level < 2i from
w, in some interleaving, form an accepting trace of w.

The next lemma declares that we can use summaries of level 2i + 2 to
compute summaries at level 2i.

Lemma 8.3. Take a summary f of some level 2i, and consider B = A↓(2i, f).
Then B accepts some trace if and only if B↑(2,Summary(A, 2i + 2)) accepts
some trace.
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Proof. Observe that Summary(A, 2i + 2) = Summary(B, 2), since the beha-
viours at level 2i + 2 in automaton A and level 2 in B are the same. The
result follows from this and from Lemma 8.2. Observe that a summarising
automaton with depth 2i + 2 is itself a (2i + 2)-LLA. Hence, it can be itself
summarised by a summarising automaton with depth 2i.

We repeatedly apply Lemma 8.3 to reduce the depth of the simulating
automaton from 2k to depth at most 3. The task of computing summaries
then reduces to checking emptiness of 3-LLA. In the second part of the proof
we show how to reduce the latter problem to reachability in VASS. This turns
out to be a degenerate case of computing summaries, so the same technique
as for computing summaries is used.

We now proceed to explain the summary computation procedure.

Computing summaries

Computation of summaries relies on the following fact:

Lemma 8.4. For any i, the number of summaries at level 2i is bounded.

Proof. Per Equation 8.2, summaries are drawn from the set

{1, . . . , 2(l + 1)} −→ Q2i−2 ×Q2i−1

where l is the maximum number of children that may be born to a node at
level 2i. By definition this does not exceed B. Taking the size of Q as a
constant in the automaton, the total size of the set of possible summaries is
at worst exponential in B.

Since the number of summaries is bounded, it shall suffice to enumerate and
check each candidate summary in turn. Observe that enumerating summaries
is simple; checking the summaries is performed as follows.

We compute Summary(A, 2i) assuming that Summary(A, 2i+2) is known.
We reduce testing emptiness of B↑(2,Summary(A, 2i+2)) from Lemma 8.3 to
reachability on a VASS. Since constructing a VASS directly would not make
for a readable proof, we instead present a nondeterministic algorithm writ-
ten in a simple procedural pseudo-langauge. The program will use variables
ranging over bounded domains, and some fixed set of non-negative counters.
By construction, every counter will be tested for 0 only at the end of the
computation.
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The simplicity of this pseudo-language is such that it can be encoded dir-
ectly into the transition system of a VASS, in such a way that acceptance by
the program is equivalent to reachability of a particular configuration in that
VASS.

The variables of the program are as follows:

r̂ ∈ dom(f̂)

state ∈ Q2i ∪ {⊥}

state[j] ∈ Q2i+1 ∪ {⊥,>} j ∈ {1, . . . , b}

children[j, f, r] ∈ N f summary at level (2i+ 2), r ∈ dom(f)

Intuitively, state and r̂ represent a state from Q(0) of
B↑(2,Summary(A, 2i + 2)). The initial configuration is empty, so state = ⊥.
Each variable state[j] represents the state of the jth child of the root. By
the boundedness property, the root will never have more than b children in
its lifetime, so we can give each child a unique index from {1, . . . , b}. A
value of ⊥ for state[j] means that the j-th child has not yet been yet added,
and state[j] = > indicates that that child has been removed. The counter
children[j, f, r] indicates the number of children of the j-th child of the root
with a particular summary f of level 2i + 2 and usage counter r. Since we
are simulating LLA, it follows that children[j, f, r] will always be zero when
state[j] ∈ {⊥,>}.

Following these intuitions the initial values of the variables are r̂ = 1,
state = ⊥, state[j] = ⊥ for every j, and children[j, f, r] = 0 for every j, f ,
and r.

The program TEST(f̂) we are going to write is a set of rules to be executed
nondeterministically. Either the program will eventually ACCEPT, or it will
block with no further rules that can be applied. We later show that the
program accepts for f̂ if and only if f̂ ∈ Summary(A, 2i). The rules of the
program are derived from the transitions of A and B↑(2,Summary(A, 2i+ 2))

from Lemma 8.3. They are formally defined as follows.

Initializing the root We have a rule

if state = ⊥

then state := q′(2i)

r̂ := 3
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for every transition
f(1)

a−−→ (f(2), q′(2i)) ∈ δ
(2i)
Q .

Removing the root and accepting. The program is able to accept when
it has completed all simulated interactions. Observe that this is the only time
that the counters are tested for zero. Since this occurs at the end of the
program, it can be easily checked by VASS reachability.

if state = q(2i)

r̂ = max(dom(f̂))− 1

∀j : state[j] = >

∀(j, f, r) : children[j, f, r] = 0

then ACCEPT

for every transition

(f(r̂), q(2i))
a−−→ f(r̂ + 1) ∈ δ

(2i)
A .

Adding a node at level 2i+1. We ensure that we are in the correct state
and ensure that the summary we are testing aligns with some transition from
the automaton.

if state = q(2i)

f̂(r̂) = (q(2i−2), q(2i−1))

f̂(r̂ + 1) = (q′(2i−2), q′(2i−1))

r̂ + 2 < max(dom(f̂))

∃j : state[j] = ⊥

then state := q′(2i)

state[j] := q′(2i+1)

r̂ := r̂ + 2

for every transition

(q(2i−2), q(2i−1), q(2i))
t−→ (q′(2i−2), q′(2i−1), q′(2i), q′(2i+1)) ∈ δ

(2i+1)
Q .

Removing a node at level 2i + 1. We delete a child according to some
transition from δ

(2i+1)
Q . While the zero test (ensuring j is a leaf) is not per-

formed here directly, no further operations will be made on children counters
of this child and hence a zero test performed at the end of the simulation is
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equivalent to one performed at the point of removal.

if state = q(2i)

f̂(r̂) = (q(2i−2), q(2i−1))

f̂(r̂ + 1) = (q′(2i−2), q′(2i−1))

r̂ + 2 < max(dom(f̂))

∃j : state[j] = q(2i+1)

then state := q′(2i)

state[j] := >

r̂ := r̂ + 2

for every transition

(q(2i−2), q(2i−1), q(2i), q(2i+1))
t−→ (q′(2i−2), q′(2i−1), q′(2i)) ∈ δ

(2i+1)
A .

Adding a node at level 2i+2. Firstly we ensure that there is some child j

where such a node can be appended. We simulate creation of a child by
nondeterministically choosing a summary and increasing the corresponding
unbounded counter. As described earlier in the proof, the child jumps to
index 3 (see the use of children[j, f, 3]) because we automatically perform the
initial pair of reads and writes described in that summary when adding the
given node.

if state = q(2i)

∃j : state[j] = q(2i+1)

then state := q′(2i)

state[j] := q′(2i+1)

children[j, f, 3] += 1

for some f ∈ Summary(2i+ 2)

s.t. f(1) = (q(2i), q(2i+1))

and f(2) = (q′(2i), q′(2i+1))

Progressing a child at level 2i + 2. We identify an appropriate child j

which itself has a child in state (f, r). We use the test r + 2 < max(dom(f))

to ensure that the last interaction of the node is reserved for deletion of our
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root node.
if state = q(2i)

∃(j, f, r) : state[j] = q(2i+1)

and f(r) = (q(2i), q(2i+1))

and f(r + 1) = (q′(2i), q′(2i+1))

and (r + 2) < max(dom(f))

and children[j, f, r] ≥ 1

then state := q′(2i)

state[j] := q′(2i+1)

children[j, f, r + 2] += 1

children[j, f, r] −= 1

Observe that the test children[j, f, r] ≥ 1 can be simulated by a VASS
because we have children[j, f, r] −= 1 as a consequence.

Removing a node at level 2i + 2. We find a child which has completed
its summary to the point that it can now be removed. We use the last values
in f to determine how to remove the node.

if state = q(2i)

∃(j, f, r) : state[j] = q(2i+1)

and f(r) = (q(2i), q(2i+1))

and f(r + 1) = (q′(2i), q′(2i+1))

and (r + 1) = max(dom(f))

and children[j, f, r] ≥ 1

then state := q′(2i)

state[b] := q′(2i+1)

children[j, f, r] −= 1

Lemma 8.5. Program TEST(f̂) accepts if and only if f̂ ∈ Summary(A, 2i).

Proof. By definition, f̂ ∈ Summary(A, 2i) if automaton B = A↓(2i, f̂) accepts
a trace. By Lemma 8.3 this is equivalent to B↑(2,Summary(A, 2i+2)) accept-
ing some trace. It can be checked that the instructions of TEST(f̂) correspond
one-to-one to transitions of B↑(2,Summary(A, 2i+2)). So an accepting run of
TEST(f̂) can be obtained from a trace accepted by B↑(2,Summary(A, 2i+2)),
and vice versa.
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Completing the Induction

Since we now have a terminating process for determining the summaries at
level 2i based on summaries at level 2i + 2, we can proceed by induction to
reduce from emptiness of a k-LLA to emptiness of the corresponding 3-LLA
which summarises it.

The base case for this induction is the original k-LLA. We assumed (without
loss of generality) that k is even, and hence the lowest level of the automaton
(k − 1) is an odd level. The summaries at the level above, the bottom-most
even level of the automaton, can be computed easily as follows.

Since nodes in level (k − 1) of the automaton will never have children,
their state can never change, per the definition of LLA. The level above that,
which is even, can then follow the same procedure for the computation of
summaries as described in Computing summaries, with the simplification
that children[j, f, r] is always zero and all sections related to “nodes at level
2i+ 2” can be ignored. (Indeed, since this elides all unbounded counters, the
resulting automaton is completely finite and checking reachability is trivial.)

Emptiness of the 3-LLA

The final 3-LLA consists of levels 0 and 1, exactly as they appear in A, with
levels 2 and below being summarized at level 2. Previously we have worked
with the assumption that grandparents exist for any given node; at low levels
this is not true. In particular, we are unable to construct summaries at level 0,
since summaries (as described earlier in this proof) relate to the levels above,
and there are no levels above 0.

Instead, for this final case, we modify the procedure described in Com-
puting summaries such that initialising the root, adding a node at level
2i+ 1 (i.e. 1), and removing a node at level 2i+ 1 are not preconditioned on
any f̂ . The simulation of level 2 proceeds as normal, since that level does not
refer above level 0 (f̂ does not appear).

This minor change is sufficient to use the Computing summaries proced-
ure to conclude the emptiness problem: the k-LLA A is nonempty if and only
if the summary procedure on our final summarising 3-LLA returns a nonempty
set of summaries for level 0. Since we apply the summarisation procedure a
bounded number of times, each of which terminates, this procedure as a whole
will terminate.
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8.3 Local FICA

With the “local” of local leafy automata now fully defined, we can proceed to
the fragment of FICA which corresponds to this restriction.

The identification of such a fragment is propelled by the translation from
FICA to LA defined in Chapter 7. We will reiterate the essential structure of
that translation now.

Depth in the automaton is introduced by function application in the FICA
term in question. More precisely, each function application (call it f(M))
introduces two new levels below its corresponding node (call it d at level 2i).

• Level 2i+ 1 is bounded in the number of nodes spawned as a child of d
across a run. The nodes spawned and their transitions are uncomplicated
and defined exactly by the translation from FICA to LA.

• The level below that (2i + 2) is unbounded in the number of nodes
spawned as a child of those child nodes at level 2i+ 1. The level-2i+ 2

nodes correspond to the unbounded number of threads spawned which
may evaluate M .

This is the only source of depth in the automaton, with the exception of
transient read/write actions which may be replaced by ε-transitions (and in
any case whose added depth does not exceed 1).

Recall also from the Chapter 7 translation that a newvar . . . in M or
newsem . . . in M expression induced a product of states at the root of the
subtree corresponding to M . Hence the notion of variable scope is already
encoded in the original LA translation.

We shall now give two equivalent definitions of the restrictions over FICA.
The first (below) is less formal.

Definition 8.4. A FICA term Γ `M : θ is in LFICA if:

1. M does not contain while; and

2. there is no variable x, free variables f, g, and binder
new ∈ {newvar, newsem} such that any subterm of the form

new x := i in . . . f(. . . g(. . . x . . . ) . . . ) . . .

appears in M .
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Constraint 1 gives us boundedness at even levels. Currently while is the
only construct which allows unbounded iteration in a term, and hence the
only construct by which unboundedly many children may be spawned by an
even-level node in a leafy automaton. In removing while, we bound all even
levels immediately.

Intuitively, constraint 2 prevents the scope of a variable x from traversing
two occurrences of free variables. Recalling the translation from Chapter 7,
this corresponds to information within the leafy automaton not being able to
traverse two even layers in the same transition. It should now be clear how
that restriction maps to the structural constraint on LLA.

Per the two restrictions given above, the following terms are in LFICA:

(a) newvarx :=0 inx :=1 || f(x :=2),

(b) newvarx :=0 in f(newvar y :=0 in f(y :=1) ||x := !y)

But the following terms are not in LFICA:

(c) newvarx :=0 in while !x = 0 dox := succ(!x)

(d) newvarx :=0 in f(f(x :=1))

as they violate conditions 1 and 2 respectively.

We shall now redefine LFICA formally by induction over FICA terms. Let
us introduce the notion of applicative depth of a variable x : β inside some
term Q in βη-normal form. This is a measure of the number of free variables
through occurrences of which x is visible. The applicative depth of x is defined
inductively as given by Table 8.1.

shape of Q adx(Q)

x 1

y (y 6= x), skip, div, i 0

op(M), !M, release(M), grab(M) adx(M)

M ;N, M ||N, M :=N, whileM doN max(adx(M), adx(N))

ifM thenN1 elseN2 max(adx(M), adx(N1), adx(N2))

λy.M, new y := i inM adx(M [z/y]),where z is fresh
fM1 . . .Mk 1 + max(adx(M1), . . . , adx(Mk))

Table 8.1: Inductive definition of adx(Q), the applicative depth of variable x
in term Q. Let new ∈ {newvar, newsem}.
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Per Table 8.1, terms (a)-(d) have applicative depth of x 2, 2, 1, and 3,
respectively3. In (b), the applicative depth of y is also 2.

Definition 8.5. A FICA term Γ `M : θ is in LFICA if:

• while does not appear in M ; and

• for every subterm of shape newvarx := i inN or newsemx := i inN in
the βη-normal form of M , we have adx(N) ≤ 2.

It should be clear that the formal definition (8.5) and the natural definition
(8.4) are equivalent.

8.3.1 From FICA to LA

We now proceed to show that this notion of local FICA terms is compatible
with the restrictions of LLA.

Theorem 8.2. For any LFICA term Γ ` M : θ, the LA AM obtained by the
translation given in the proof of Theorem 7.2 can be presented as an LLA A′

M .
Moreover, the recovered LLA is even-bounded.

Proof. The proof makes significant use of the locality condition (condition 2)
of LFICA and the fact that nontrivial depth in the automaton is introduced
only by function application. We again give an inductive argument, in this case
showing that the translation for each term preserves the locality conditions of
LLA and the even-boundedness property.

We shall introduce some shorthand notation to simplify the inductive trans-
lation. We will describe an LA as being LLAcompatible if its transitions are
conducive to translation to LLA.

Let j↑ be j − 2 for even j and j − 3 for odd j.

Definition 8.6. A set of transitions C(j) ⊆ δ(j) is LLA-compatible iff

• Every transition in C(j) is of the shape

(q(0), · · · , q(j↑−1), q(j
↑), · · · , q(j)) m−−→ (q(0), · · · , q(j↑−1), r(j

↑), · · · , r(j′))
(8.3)

3This is assuming succ to be some known function and not a free variable.
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• For every transition in the shape of (8.3), and every
(s(0), · · · , s(j↑−1)) ∈ Q(0) × · · · ×Q(j↑−1), the transition

(s(0), · · · , s(j↑−1), q(j
↑), · · · , q(j)) m−−→ (s(0), · · · , s(j↑−1), r(j

↑), · · · , r(j′))

must also appear in C(j).

If, for every i, δ
(i)
M can be partitioned into LLA-compatible subsets, then

AM is LLA-compatible.

Lemma 8.6. Any LLA-compatible LA, A, can be translated (in log-space) to
an LLA, A′, such that A and A′ have the same set of accepting traces. If A is
even-bounded then A′ is also even-bounded.

Proof. If an LA is LLA-compatible, then all its transitions are such that, for
any j, the states above j↑ convey no information about whether any transition
in δ(j) can be fired, and those states are not affected by any such transition.
That being the case, the following translation rule can be used to convert any
LA transition in δ(j)(j > 1) to an LLA transition in δ′(j):

(q(0), · · · , q(j
↑−1)

1 , q
(j↑)
1 , · · · , q(j)1 )

m−−→ (q(0), · · · , q(j
↑−1)

1 , r
(j↑)
1 , · · · , r(j

′)
1 )

(q
(j↑)
1 , · · · , q(j)1 )

m−−→ (r
(j↑)
1 , · · · , r(j

′)
1 )

The translation of the initial and final transitions is immediate:

† q−−→ r(0)

† q−−→ r(0)

q(0)
a−−→ †

q(0)
a−−→ †

It remains to show that LLA-compatibility and even-boundedness is main-
tained by each construction from the proof. For the sake of symmetry, the
cases in this proof are given in the same order and style as the cases in
the proof of Theorem 7.2. The cases of particular import to this proof are
Γ ` fMh · · ·M1 : β (function application) and Γ ` newvarx := i inM : β (vari-
able binding).

Γ ` skip : com Γ ` divcom : com Γ ` divθ : θ Γ ` i : exp

These base cases do not interact with the locality condition and their trans-
lation rules are LLA-compatible. They are trivially even-bounded.
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Γ ` op(M1) : exp

The only modification made on seeing this term is to label the i-transition
marking the returned value by ôp(i) instead. This does not interact with the
locality condition and hence the op-adjusted transitions are LLA-compatible.
As no new transitions are introduced, they are even-bounded by the inductive
hypothesis.

Γ `M1||M2 : com

Recall from the proof that running M1 and M2 in parallel requires us to
take the product of the states at level 0 and the disjoint sum of levels >

0. Moreover the states at level 0 corresponding to each of M1 and M2 do
not interact with each other; and this translation does not itself induce any
extra levels or any unboundedness into the automaton. Hence the locality
condition is preserved by parallel composition and induced transitions are
LLA-compatible. The number of children spawned at level 1 will be the sum
of the children spawned by M1 and M2 individually, and hence is still even-
bounded.

Γ `M1;M2 : β

As with parallel composition, sequential composition does not introduce
any new depth to the machine and so the transitions are LLA-compatible by
the inductive hypothesis. Again as per number of children spawned at level 1
will be the sum of the children spawned by M1 and M2 individually, and hence
is still even-bounded.

Γ ` newvarx := i inM : β

By the inductive hypothesis, Γ ` M : β is an LFICA term, and therefore
so is Γ, x : var `M : β, and adx(M) ≤ 2.

Occurrences of x at applicative depth 1 will induce reads and writes
(i.e. read(x,ρ), write(i)(x,ρ), ok(x,ρ) and i(x,ρ) transitions) which add and remove
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nodes at level 1. Occurrences of x at applicative depth 2 will induce reads and
writes which add and remove nodes at level 3. The number of reads and writes
(hence the number of nodes created in this way) is bounded by the number of
occurrences in the term itself, since while is forbidden.

In the newvarx := i inM construction, the state is stored at the root by
a product construction, and reads and writes are simulated by modifying the
component of the root’s state corresponding to that variable. Since j↑ is 0 for
j = 3, the reads and writes at levels 1 and 3 are allowed to interact with the
state at the root. So this construction preserves locality and even-boundedness
without interfering with the simulation of variables. All transitions unrelated
to x are not affected by this construction and trivially maintain both even-
boundedness and LLA-compatibility.

The logic for Γ ` newsemx := i inM : β is symmetrical.

Γ ` fMh · · ·M1 : β

The function application construction adds two new levels at the “top” of
the automaton. The topmost level defines control flow through the machine
and admits exactly one child at level 1, which is then used to spawn an un-
bounded number of copies of the automata for Mu (u ∈ {1, . . . , h}). Since
the automata for Mu are shifted down by exactly 2 levels, and (by the in-
ductive hypothesis) their LA are already even-bounded, even-boundedness is
preserved.

There is a minor wrinkle in the LLA-compatibility condition of the original
translation from the proof. The translation is reproduced here:

(q
(0)
u , · · · , q(j)u )

m(⃗i,ρ)

−−−−→u (q
(0)
u , · · · , q(j

′)
u )

(1, 0, q
(0)
u , · · · , q(j)u )

m(fu⃗i,ρ)

−−−−−→ (1, 0, q
(0)
u , · · · , q(j

′)
u )

Observe that this translation specifies (1,0) as the states at level 0 and 1.
However, it is a structural property of this particular translation that children
at level 2 and below can only ever exist when the level-0 state is 1; and
Q(1) = {0}. So we can rewrite this rule as

(q
(0)
u , · · · , q(j)u )

m(⃗i,ρ)

−−−−→u (q
(0)
u , · · · , q(j

′)
u ) ϕ ∈ {0, 1, 2}

(ϕ, 0, q
(0)
u , · · · , q(j)u )

m(fu⃗i,ρ)

−−−−−→ (ϕ, 0, q
(0)
u , · · · , q(j

′)
u )

which produces an LLA-compatible set of transitions.
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Γ ` ifM1 thenM2 elseM3 : β

As with sequential composition, even-boundedness is maintained—the new
bound is the bound for M1 plus the greater of the bounds of M2 and M3.
Since the construction simulates M1 followed by one of M2 and M3, LLA-
compatibility follows by the inductive hypothesis.

Γ ` whileM1 doM2 : com

This construct is forbidden in LFICA; we shall take a second to show why.

Consider this term:

newvarx :=1 in whilex = 0 dox := succ(!x)

In this term, the while loop will never terminate, and the do block creates
at least one child while reading and writing x. Hence we cannot place an upper
bound on the number of children spawned by this term, and since this term
would exist at an even level, it would violate the even-boundedness property,
which is required for decidability of emptiness in LLA.

Γ ` !M1 : exp

Dereferencing relabels some transitions but otherwise has no impact on
the running of the automaton; even-boundedness and LLA-compatibility follow
trivially.

Γ `M1 :=M2 : com

As with sequential composition, the new even bound is the sum of the
bounds of M1 and M2, and LLA-compatibility is not impacted by the transla-
tion.
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Γ ` grab(M1) : com and Γ ` release(M1) : com

These cases induce a renaming on some transitions but otherwise do not
impact the automaton. Even-boundedness and LLA-compatibility follow.

Corollary 8.1. For any LFICA term Γ ` M : θ, the problem of determining
whether comp(JΓ `MK) is empty is decidable.

The corollary is implied by Theorems 7.1, 8.1, and 8.2. Moreover, Theorem
7.1 gives us that checking for emptiness is equivalent to checking equivalence
with a term which always diverges. In cases where this equivalence does not
hold, we can (by the argument for Theorem 8.1) extract some distinguishing
trace, which can then be fed to the Definability Theorem (Theorem 41, [70]).
This is a valuable property, since in the concurrent setting bugs can be difficult
to replicate. Such a mechanism allows us to explore the context in which a
property is violated, hence (in a verification setting) not only revealing to the
end user that a bug exists but also the nature of the setting in which it may
occur or be exploited.
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Chapter 9

Split Automata

Restricting communication in leafy automata led to some interesting and
meaningful decidability results in Chapter 8. In the following work we continue
in the same spirit, identifying a new way to augment the tree-based automaton
structure with new information and at the same time limiting branch-based
communication. In doing so, we shall find a new way to represent certain
FICA terms and effective procedures for deciding verification problems over
such terms.

Like leafy automata and LLA, split automata are defined over an infinite
data forest D, which maintains the infinite branching and well-foundedness
properties described in Section 6.2. To fully enjoy this chapter, it is recom-
mended to (re-)familiarize oneself with the preliminaries of game semantics
found in Section 7.2.

9.1 Control versus Memory

Configurations in split automata are slightly different to those in LA and LLA.
A configuration will still be defined as a finite subtree of D labelled with states.
However, in this case, states consist of exactly one control state, and zero or
more memory cells. Memory is kept only at even levels; nodes at odd levels
will never have memory cells associated to them.

Control states and memory cells are interacted with differently and sep-
arately by transitions in the machine. Control states are reminiscent of the
states attached to nodes in LA/LLA, with the exception that only the imme-
diate parent may be referred to when adding or removing a node. Transitions
which add or remove nodes have no access to the memory cells at all.

Memory cells are interacted with entirely through a new form of transition
called EPS (short for “epsilon”). Transitions of this form allow for the read
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and/or write of any one control state at some node n, and at the same time to
read and/or write some memory cell on the path from the root to n. As with
ϵ-transitions in other automata models, EPS transitions do not read the input,
so an arbitrary number of such transitions may be fired. EPS transitions have
no access to any other control states.

In this way, we cleanly divide the logic of the program between transitions
which read the input, and always add or remove a leaf with only local ac-
cess; and transitions which do not read the tape but have more power. As
we shall see, this structural separation has meaningful implications for our
representation of FICA terms.

Each split automaton is parametrized by two values, k and N . The para-
meter k is the depth of the automaton, as in our previous models—we may
occasionally refer to k-SA in the same fashion, meaning an SA with depth
parameter k. N is the maximum number of memory cells stored at each state.
For the sake of simplicity, we shall fix that each node has the same number of
memory cells; not all such memory cells will be used.

9.2 Split Automata

The complete formal definition of split automata is as follows.

Definition 9.1. A split automaton (SA) is a tuple A = 〈Σ, k,N,C, δ〉, where:

• Σ = ΣQ+ΣA is a finite alphabet, partitioned into questions and answers;

• k ≥ 0 is the depth parameter;

• N ≥ 0 is the local memory capacity;

• C =
⋃
{C(i) : i = 0, . . . , k} is a finite set of control states, partitioned

into sets C(i) of level-i control states;

• δ is the transition function, with transitions in δ partitioned according
to their type and level on which they operate. (In what follows, take
c(i), d(i) ∈ C(i)):

– ADD(i) transitions are c(i−1) q−−→ (d(i−1), d(i)), and † q−−→ c(0) for the
special case of i = 0, with q ∈ ΣQ,

– DEL(i) transitions are (c(i−1), c(i))
a−−→ d(i−1), and c(0)

a−−→ † for the
special case of i = 0, with a ∈ ΣA,

– EPS(2j, 2i) transitions read v ∈ V from memory cell h ∈ {1, . . . , N}
at level 2j ≤ 2i and update it to v′ ∈ V , but do not read the input:
(2j, h, v, c(2i))

ϵ−−→ (v′, d(2i)).
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Transitions cannot modify control states at odd layers: if
c(2i−1) q−−→ (d(2i−1), d(2i)) ∈ δ or (c(2i−1), c(2i))

a−−→ d(2i−1) ∈ δ then
c(2i−1) = d(2i−1).

9.2.1 Configurations and Transitions

A configuration of a split automaton is a tuple (D,E, f,m), where:

• D is a finite subset of D, consisting of those data values that have been
read so far in a word;

• E is a finite subtree of D rooted at a level-0 data value, representing the
shape of the tree in the current configuration;

• f : E → C is a level-preserving function1 which maps data values to
control states; and

• m : E ⇀ V N is a partial function which maps each even-level data value
onto a vector representing the current values of its node’s memory cells.

A split automaton starts reading a word in the empty configuration κ0 =

(∅, ∅, ∅, ∅) and proceeds according to the transitions of δ as explained below.
Let κ = (D,E, f,m) be the current configuration.

With ADD and DEL transitions, the main difference between the beha-
viour of split automata and leafy automata (local or otherwise) is that only
the parent node may be read or written when adding or removing a leaf. In
other respects they function the same as question and answer transitions (re-
spectively) from the former models.

We shall write f [· · · ] for an extension or update of f . More precisely,
f [x 7→ y] is exactly (f \ {(x, f(x))})∪{(x, y)}. The same notation is extended
to arbitrary numbers of updates, so f [x 7→ y, a 7→ b] means the same as
f [x 7→ y][a 7→ b]. We shall also use f [x 7→ y] as a precondition on a transition;
those cases are discussed separately later in the chapter.

An ADD transition from κ is possible on a data letter (t, d) when t =

q ∈ ΣQ is a question letter and d 6∈ D is a fresh level-i data value such
that pred(d) ∈ E (the parent of d is in the configuration). In this case, the
automaton adds a new leaf d to the configuration and updates the control
state. The new leaf gets the control state determined by the transition. If
it is on an even level, its memory is initialised. Formally, A goes from κ to
κ′ = (D ∪ {d}, E ∪ {d}, f ′,m′) provided one of the following conditions holds:

1By level-preserving we mean that if D is a level-i data value then f(d) ∈ C(i).
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• On transition c(i−1) q−−→ (d(i−1), d(i)) when f(pred(d)) = c(i−1), f ′ =

f [pred(d) 7→ d(i−1), d 7→ d(i)], and

m′ =

m if i is odd

m[d 7→ 0N ] if i is even

• On transition † q−−→ d(0) when D = ∅, f ′ = [d 7→ d(0)], and
m′ = [d 7→ 0N ].

On reading a data letter (t, d) with t = a ∈ ΣA an answer letter and d ∈ E

a level-i data value, a transition is possible only if d is a leaf in E. A DEL
transition deletes d and updates the parent control state without modifying the
associated memory (if any). Formally, the automaton changes its configuration
to κ′ = (D,E \ {d}, f ′ \ {d},m \ {d}) provided one of the following conditions
holds:

• On transition (c(i−1), c(i))
a−−→ d(i) when f(pred(d)) = c(i−1), f(d) = c(i),

and f ′ = f [pred(d) 7→ c(i−1)].

• On transition c(0)
a−−→ † when f ′ = f .

Observe that the last transition is possible only when d is a leaf of E and at
level 0 at the same time; the result of the transition is that E is the empty tree.

EPS transitions are silent—they do not read a data letter from the in-
put. They apply at even levels only and do not change the data values
seen (D) nor the tree (E). However, they may read/write one control state
and read/write one memory location situated at the same level or another
even level above. Formally, the automaton can go to κ′ = (D,E, f ′,m′) on
transition (2j, h, v, c(2i))

ϵ−−→ (v′, d(2i)) if there is a level-2i data value d ∈ E

such that m(pred2i−2j(d))(h) = v, f(d) = c(2i), f ′ = f [d 7→ d(2i)] and
m′(pred2i−2j(d)))(h) = v′, and m′ is the same as m otherwise.

Note that the 2j parameter is used as an offset from the level of the control
state; if 2j = 0 then we modify the memory cells and the control state at the
same node.

We use analogous definitions of language, traces and accepting traces to
those in Chapters 6 and 8. In particular, a configuration is accepting if the data
subtree E is empty, and a trace is accepting if some sequence of configurations
exists with transitions corresponding to the data letters of the trace and with
the final configuration accepting. The language L(A) of an automaton A is
the set of words resulting in accepting traces. Likewise, game-semantic notions
and terminology are shared between earlier chapters and this work.
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9.3 From FICA to SA

The modified structure of split automata, as compared to (local) leafy auto-
mata, is motivated by finding a good fit for the game semantics of FICA, and
in particular finding a model which neatly accommodates a similar translation
to the one outlined in the previous chapter. Like LA, but unlike LLA, SA are
able to express the full game semantics of FICA. As such most verification
problems (including the emptiness problem) are undecidable.

We shall now provide the translation from FICA terms to split automata
in full. Afterwards, we shall evaluate this translation in comparison to the
original translation to LA. Some (but not all) of the notation and high-level
concepts used will be analogous.

We begin by recalling the game-semantic notions that underpin the trans-
lation. Within the game semantics of FICA the moves, arenas, and terms-in-
context are exactly as described at the beginning of Section 7.3 and we shall
use those definitions from hereon out.

Example 9.1. Consider the split automaton A = 〈Q, 3, 0,Σ, δ〉, where

• Q(0) = {0, 1, 2}, Q(1) = {3}, Q(2) = {4, 5, 6}, Q(3) = {7},

• ΣQ = {run(ϵ,0), run(f,0), run(f1,0), run(x,2)},

• ΣA = {done(ϵ,0), done(f,0), done(f1,0), done(x,0)}, and

• δ is given by

† run(ϵ,0)

−−−−→ 0 0
run(f,0)

−−−−−→ (1, 3) (1, 3)
done(f,0)−−−−−→ 2

2
done(ϵ,0)−−−−−→ † 3

run(f1,0)

−−−−−→ (3, 4) 4
run(x,2)

−−−−−→ (5, 7)

(5, 7)
done(x,0)−−−−−→ 6 (3, 6)

done(f1,0)−−−−−−→ 3.

Then the traces of Tr(A) represent exactly the plays from
σ = Jf : com → com, x : com ` fx : comK, including the play from Ex-
ample 7.6, and L(A) represents comp(σ).

Recalling our notion of justification pointers and the ρ based scheme from
Section 7.3, one may wonder why we did not use the parent structure of D to
represent justification pointers (this would correspond to ρ = 0 in all cases).
Unfortunately, this simplified scheme would not work with split automata: in
the above example, the number of run(x,2) moves has to be the same as the
number of run(f1,0) moves. If we used level-1 data values for runx, we would
not be able to use the automaton to enforce this property.
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Below we state the main result linking FICA with split automata. As per
an earlier remark in this chapter, we note that question moves correspond
to ADD transitions and answer moves correspond to DEL transitions. ADD
transitions at odd levels are used for P-questions and at even levels O-questions;
DEL transitions at odd levels are used for O-answers and at even levels P-
answers. EPS transitions are neither questions nor answers.

Theorem 9.1. For any FICA term Γ `M : θ, there exists a split automaton
AM over a finite subset of TΓ` θ such that the set of plays represented by
data words from Tr(AM ) is exactly JΓ `M : θK. Moreover, L(AM ) represents
comp(JΓ `M : θK).
Proof. The proof will proceed by the inductive construction over terms. The
language of the constructed automata correspond to the (complete) plays of
such terms. Continuing the interleaving based approach of earlier chapters,
the automata allow for interleaved progression of subterms as in the game
semantics, with synchronisation used to model sequential composition and
related syntactic constructs like if.

It is well established [11] that any FICA term can be reduced to β-normal,
η-long form (that is, a term that is both β-normal (there are no remaining
expressions that can be reduced by applying standard function application
rewrite rules), and η-long (no functions are partially applied))2. This proof is
by induction over terms that have been normalised in this way.

In order to establish correctness we rely on two additional technical invari-
ants to strengthen the inductive hypothesis.

P1 If the automaton reaches a configuration in which the control state at
the root is c and there exists a transition c

a−−→ † then the root has no
children, i.e. the transition can fire.

P2 Let x : β, where β = var, sem. The following pairs (qx, ax) of tags will
be referred to as matching pairs: (write(i)(x,ρ), ok(x,0)) and (read(x,ρ) i(x,0))
(for β = var) and (grb(x,ρ), ok(x,0)) or (rls(x,ρ), ok(x,0)) (for β = sem).

For every matching pair (qx, ax), if the automaton generates a trace
of the form l1 · · · lh(qx, d)lh+1 · · · lh′(ax, d)lh′+1 · · · lh′′ , where lj ∈ (Σ ×
D)+{ϵ}, then it also generates l1 · · · lh(qx, d)(ax, d)lh+1 · · · lh′ lh′+1 · · · lh′′ .
Note that above we take ϵ-steps into account.

P2 is a weak version of the game-semantic saturation condition stated at the
level of automata for moves corresponding to free variables of type var and sem.

2Reduction to β-long η-normal form may in general induce an exponential blowup; dealing
with that is beyond the scope of this work.
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P1 and P2 will be helpful when it comes to interpreting sequential composition
and variable/semaphore binding respectively.

We use the same notation for translation rules as previously. When refer-
ring to the inductive hypothesis for a subterm Mi, we use the subscript i to
refer to the automata components, e.g. Q(j)

i , m−−→ i, etc. In contrast, Q(j), m−−→
will refer to the automaton that is being constructed. Inference lines indicate
that wherever the premises (above the line) are fulfilled in the given compon-
ents, the consequents (below the line) should be added to the automaton under
construction.

We shall now proceed by induction over the structure of β-normal η-long
forms. We consider each case in turn.

M ≡ skip. k = 0, N = 0, C(0) = {0}.

† run−−→ 0 0
done−−−→ †

M ≡ i. k = 0, N = 0, C(0) = {0}.

† q−−→ 0 0
i−−→ †

M ≡ divθ, where θ ≡ θ1 → · · · → θ1 → β. Recall that IJβK stands for the
set of initial questions in JβK, e.g. IJcomK = {run}. Since div diverges, there is
no closing move. k = 0, N = 0, C(0) = {0}.

x ∈ IJβK
† x−−→ 0

P1 and P2 clearly hold in the above three cases, which together form the
base cases of the induction.

M ≡ op(M1). Here we only need to adjust the final answers, i.e. k = k1,
N = N1, C(j) = C

(j)
1 (0 ≤ j ≤ k). Formally, we copy all transitions for M1

except DEL(0), and add the following ones.

c(0)
i−−→ 1 † i ∈ {0, . . . ,max}

c(0)
ôp(i)−−−→ †

P1 and P2 are inherited.

M ≡M1||M2.
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k = max(k1, k2), N = N1 +N2,

C(0) = C
(0)
1 × C

(0)
2 , C(i) = C

(i)
1 + C

(i)
2 (i > 0).

This construction requires us to interleave M1 and M2 while gluing the initial
and final moves. M1 will be using the left segment of memory, while M2 uses
the right one. Consequently, we add N1 when embedding EPS transitions
from M2.

ADD(0), DEL(0):

† run−−→ 1c
(0)
1 † run−−→ 2c

(0)
2

† run−−→ (c
(0)
1 , c

(0)
2 )

c
(0)
1

done−−−→ 1 † c
(0)
2

done−−−→ 2†

(c
(0)
1 , c

(0)
2 )

done−−−→ †

ADD(1):

c
(0)
1

ℓ−−→ 1(d
(0)
1 , d

(1)
1 ) c ∈ C

(0)
2

(c
(0)
1 , c)

ℓ−−→ ((d
(0)
1 , c), d

(1)
1 )

c ∈ C
(0)
1 c

(0)
2

ℓ−−→ 2(d
(0)
2 , d

(1)
2 )

(c, c
(0)
2 )

ℓ−−→ ((c, d
(0)
2 ), d

(1)
2 )

DEL(1):

(c
(0)
1 , c

(1)
1 )

ℓ−−→ 1d
(0)
1 c ∈ C

(0)
2

((c
(0)
1 , c

(0)
2 ), c)

ℓ−−→ (d
(0)
1 , c)

c ∈ C
(0)
1 (c

(0)
2 , c

(1)
2 )

ℓ−−→ 2d
(0)
2

((c, c
(0)
2 ), c

(1)
2 )

ℓ−−→ (c, d
(0)
2 )

ADD(i),DEL(i),EPS(2j, 2i) (i, j > 0) are simply copied over (in a way that
respects state disjointness).

It remains to consider EPS(0, 2i).

i > 0 (where h1 = h, h2 = N1 + h):

(0, h, v, c(2i))
ϵ−−→ j (v′, d(2i))

(0, hj , v, c(2i))
ϵ−−→ (v′, d(2i))

i = 0:
(0, h, v, c(0))

ϵ−−→ 1(v
′, d(0)) c ∈ C

(0)
2

(0, h, v, (c(0), c))
ϵ−−→ (v′, (d(0), c))

c ∈ C
(0)
1 (0, h, v, c(0))

ϵ−−→ 2(v
′, d(0))

(0, N1 + h, v, (c, c(0)))
ϵ−−→ (v′, (c, d(0)))

Because the automaton can terminate only if both components reach states
in which they can terminate, P1 follows from the inductive hypothesis. P2 is
preserved because we can appeal to P2 for the relevant component and if
moves from the other component interfere they can be postponed, because
the automaton accepts the full interleaving.
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M ≡M1;M2.

k = max(k1, k2), N = N1 +N2 + 1,

C(0) = (C
(0)
1 × IJβK) + C

(0)
2 , C(i) = C

(i)
1 + C

(i)
2 (i > 0).

Here we need to run M1 before M2. There is a subtlety related to handling
initial moves. The initial move needs to be remembered while the automaton
for M1 is running so that we can start M2 with a suitable move. Recall that
M2 may be of any base type β.

As with parallel composition, M1 uses the left segment of memory, and M2

the right. We use the same strategy again when embedding EPS transitions.
We also use an extra memory cell just to pass from M1 to M2. This is only
because our definition of SA does not include a non-memory-modifying form of
epsilon transition; this could be eliminated by introducing pure ϵ-transitions
that do not manipulate memory.

ADD(0), DEL(0):

† run−−→ 1c
(0)
1 i ∈ IJβK

† i−−→ (c
(0)
1 , i)

c
(0)
1

done−−−→ 1 † † i−−→ 2c
(0)
2

(0, N, 0, (c
(0)
1 , i))

ϵ−−→ c
(0)
2

c
(0)
2

a−−→ 2†
c
(0)
2

a−−→ †

Other transitions are defined in the following way.

• All transitions different from ADD(0), DEL(0) for M1 are copied into
the new automaton. Those referring to level-0 control states must addi-
tionally carry initial moves IJβK, which are copied during the transition.

• All transitions different from ADD(0), DEL(0) for M2 are copied into
the automaton. The only change required is the adjustment of memory
operations: instead of 2j, h, v we need to use 2j, h+N1, v.

P1 holds since, on firing of the ε transition introduced by the second rule,
we know there will be no children of the root thanks to P1 for M1, as the firing
conditions for the new rule correspond to the firing rules for done in M1. It
remains to observe that all children of M2 are cleaned up by the time the a
transition introduced by the third rule is fired, which follows from P1 for M2

in the same way. P2 follows from the inductive hypothesis.

M ≡ while M1 do M2.

k = max(k1, k2), N = N1 +N2 + 1,

C(0) = C
(0)
1 + C

(0)
2 + {◦0, ◦1, . . . , ◦N}, C(i) = C

(i)
1 + C

(i)
2 (i > 0).
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We need to run M1 and, depending on the final move, direct it to M2 or
terminate. When M2 is about to finish, we redirect to M1. Because we only
delete the root at the very end, we need to re-initialise the memory explicitly
on each iteration.

M1 will be using the left segment of memory, M2 works on the right one.
As before, the extra reference is used to implement ϵ-transitions between M1

and M2.

ADD(0), DEL(0):

† q−−→ 1c
(0)
1

† run−−→ c
(0)
1

c
(0)
1

0−−→ 1†

c
(0)
1

done−−−→ †

c
(0)
1

i−−→ 1 † i > 0 † run−−→ 2c
(0)
2

(0, N, 0, c
(0)
1 )

done−−−→ (0, c
(0)
2 )

c
(0)
2

done−−−→ 2 † † q−−→ 1 c
(0)
1{

(0, N, 0, c
(0)
1 )

ϵ−−→ (0, ◦0) (0, j, 0, ◦j−1)
ϵ−−→ (0, ◦j) (1 ≤ j ≤ N1 +N2)

(0, N, 0, ◦N1+N2)
ϵ−−→ (0, c

(0)
2 )

}

Other transitions are copied across as per sequential composition above: all
transitions except ADD(0), DEL(0) for M1 are copied into the new automaton;
likewise M2 with the proviso that instead of 2j, h, v we need to use 2j, h+N1, v

in any EPS transitions.

The construction makes use of P1 for M1: it was necessary to ensure that,
when we move to M2, the first one is really finished. To establish P1 for the
resultant automaton we can appeal to P1 for M2.

P2 follows from the fact that the resulting automaton accepts the concat-
ention of traces from the two components.

M ≡ newvar x in M1. k = k1, N = N1 + 1, C(i) = C
(i)
1 (0 ≤ i ≤ k).

Here we add an extra cell at level 0 to store x. All transitions are copied
over from M1 except those labelled with x, which are handled as specified
below.

Correctness follows from the fact that it suffices to restrict the work of M1

to traces in which the relevant moves follow each other [70]. By P2, it suffices
to consider scenarios in which the corresponding transitions follow each other.

Writing x:
c(2i)

write(j)(x,ρ)−−−−−−−→ 1(d
(2i), d(2i+1))

ok(x,0)−−−−→ 1e
(2i)

(0, N, v, c(2i))
ϵ−−→ (j, e(2i)) (0 ≤ v ≤ max)

(9.1)
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Reading x:
c(2i)

read(x,ρ)

−−−−−→ 1(d
(2i), d(2i+1))

j(x,0)−−−→ 1e
(2i)

(0, N, j, c(2i))
ϵ−−→ (j, e(2i))

(9.2)

Both P1 and P2 for the resultant automaton follow by appealing to the
inductive hypothesis for the automaton for M1.

M ≡ newsem s in M1. k = k1, N = N1 + 1, C(i) = C
(i)
1 (0 ≤ i ≤ k).

This is very similar to the previous case but the added transitions will both
read and write in a single step.

Similarly, we add an extra cell at level 0 to store values of s. All transitions
are copied over from M1 except those labelled with s, which are handled as
specified below.

Grabbing:
c(2i)

grb(s,ρ)

−−−−−→ 1(d
(2i), d(2i+1))

ok(s,0)−−−−→ 1e
(2i)

(0, N, 0, c(2i))
ϵ−−→ (1, e(2i))

Releasing:
c(2i)

rls(s,ρ)−−−−→ 1(d
(2i), d(2i+1))

ok(s,0)−−−−→ 1e
(2i)

(0, N, 1c(2i))
ϵ−−→ (0, e(2i))

M ≡ f Ml · · ·M1. Suppose Γ ` fMl · · ·M1 : β with (f : θl → · · · → θ1 →
β) ∈ Γ. Let IJβK be the set of initial question-moves of JβK. Given q ∈ IJβK, we
write Aq for the set of corresponding answers.

We take k = 2 + max1≤i≤l ki, N = max1≤i≤l Ni,

Q(0) = {0q, 1q, 2a | q ∈ IJβK, a ∈ Aq},
Q(1) = {3q | q ∈ IJβK},

Q(j+2) =
l∑

i=1
Q

(j)
i (0 ≤ j ≤ k).

First we add transitions corresponding to calling and returning from f :

q ∈ IJβK a ∈ Aq

† q−−→ 0q 0q
qf−−→ (1q, 3q) (1q, 3q)

af−−→ 2a 2a
a−−→ †

In state 3q we want to enable the environment to spawn an unbounded
number of copies of each of Γ ` Mu : θu (1 ≤ u ≤ l). This is done through
the following rules, which embed the actions of the automata for Mu while
relabelling the moves. We use □L,□R to refer to arbitrary left- and right-
hand sides of transitions, which are to be copied by the rule.
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• Moves from Mu corresponding to θu obtain an additional annotation fu,
as they are now the uth argument of f : θl → · · · → θ1 → com.

† m(ϵ,0)

−−−−→ uc
(0)
u

3q
m(fu,0)

−−−−−→ (3q, c
(0)
u )

c
(0)
u

m(ϵ,0)

−−−−→ u†

(3q, c
(0)
u )

m(fu,0)

−−−−−→ 3q

□L
m(⃗i,ρ)

−−−−→ u□R i⃗ 6= ϵ

□L
m(fu⃗i,ρ)

−−−−−→□R

The pointer structure is simply inherited in this case, but an additional
pointer needs to be created to qf from formerly initial moves for Mu

(i.e. m(ϵ,0)), which did not have a pointer earlier. Fortunately, because
we also use ρ = 0 in initial moves to represent the lack of a pointer, by
copying 0 now we indicate that the move m(fu,0) points one level up,
i.e. at the qf move, as required.

• Moves from Mu that originate from Γ, i.e. moves of the form m(xv⃗i,ρ),
where (xv ∈ θv) ∈ Γ, need no relabelling except for question-moves
m(xv ,ρ) that need to point at the initial move m(ϵ,0). Leaving ρ unchanged
in this case would mean pointing at m(fu,0), whereas we need to point
at m(ϵ,0) instead. To readjust such pointers, we simply add 2 to ρ in the
relevant moves, and preserve ρ in other moves.

□L
m(xv,ρ)

−−−−−→ u□R m is a question

□L
m(xv,ρ+2)

−−−−−−→□R

□L
m(xvi⃗,ρ)

−−−−−→ u□R i⃗ 6= ϵ or (⃗i = ϵ and m is an answer)

□L
m(xvi⃗,ρ)

−−−−−→□R

• Memory-related transitions are also included but because all states are
now two levels deeper, we need to adjust the level that is being accessed
by 2.

(2j, h, v, c(2i))
ϵ−−→ u(v

′, d(2i))

(2j + 2, h, v, c(2i))
ϵ−−→ (v′, d(2i))

After the construction P1 is satisfied, because we create only singleton nodes
at levels 0 and 1, and the only way to arrive at the 0-level state 2a is by
deleting the unique node at level 1. So, when the automaton arrives at 2a, the
root is the only node.

P2 is satisfied by appealing to P2 for each Mu and noting that the construc-
tion implements all possible interleaving between them, so swapping trans-
itions that come from different Mu leads to another trace.

M ≡ λx.M1 : θl → · · · → θ1 → β. This case is dealt with simply by renaming
labels in the automaton for Γ, x : θl ` M1 : θl−1 → · · · → θ1 → β: tags of the
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form m(x⃗i,ρ) must be renamed as m(l⃗i,ρ). P1 and P2 are inherited.

M ≡ !M1. Here we need to perform the same transitions as the automaton
for M1 would, if started from read. While doing so, read has to be relabelled
as q. It suffices to copy all ADD(i), DEL(i) (i > 0) transitions as well as EPS
transitions, with ADD(0) and DEL(0) transitions defined as follows.

† read−−→ 1c
(0)

† q−−→ c(0)

P1 and P2 are inherited from M1.

M ≡ grab(M1). Here we want to perform the same transitions as the auto-
maton for M1 would, if started from grb. At the same time, grb and the
corresponding answer ok have to be relabelled as run and done respectively.
As with the previous case, we copy all ADD(i), DEL(i) (i > 0) transitions
as well as EPS transitions, with ADD(0) and DEL(0) transitions defined as
follows.

† grb−−→ 1c
(0)

† run−−→ c(0)

c(0)
ok−−→ 1†

c(0)
done−−−→ †

As previous, P1 and P2 are inherited from M1.

M ≡ release(M1). This case is the same as the previous one, albeit
substituting grb with rls.

M ≡ if M1 then M2 else M3. This case is similar to M1;M2. Once M1 termin-
ates, the automaton for either M2 or M3 must be activated, depending on
the final move. The automaton for M1 must remember the initial move and
carry it. Below we give concrete rules for ADD(0) and DEL(0). All other
transitions must be copied, except that transitions for M1 must propagate
the initial moves, and EPS transitions from M2,M3 must have their memory
indices incremented by N1.

k = max(k1, k2, k3),

N = N1 + max(N2, N3) + 1,

Q(0) = (Q
(0)
1 × I) +Q

(0)
2 +Q

(0)
3 ,

Q(i) = Q
(i)
1 +Q

(i)
2 +Q

(i)
3 (0 < i ≤ k).

and the newly induced transitions are as follows.
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† q−−→ 1c
(0) x ∈ I

† x−−→ (c(0), x)

c(0)
i−−→ 1 † i > 0 † x−−→ 2d

(0)

(0, N, 0, c(0))
ϵ−−→ (0, d(0))

c(0)
0−−→ 1 † † x−−→ 3d

(0)

(0, N, 0, c(0))
ϵ−−→ (0, d(0))

P1 and P2 follow from the inductive hypothesis.

M ≡M1 :=M2. This case is also similar to M1;M2. First we direct the
computation into the automaton for M2 and, depending on the final move
i, continue in the automaton for M1 as if write(i) were played.

k = max(k1, k2), N = N1 +N2 + 1, Q(i) = Q
(i)
1 +Q

(i)
2 (0 ≤ i ≤ k).

† q−−→ 2c
(0)

† run−−→ c(0)

c(0)
i−−→ 2 † † write(i)−−−−→ 1d

(0)

(0, N, 0, c(0))
ϵ−−→ (0, d(0))

c(0)
ok−−→ 1†

c(0)
done−−−→ †

All transitions different from ADD(0) and DEL(0) need to copied (while
respecting disjointness), again adding N1 to the indices of memory cells for
any EPS transitions from M2.

The proof above is superficially similar to the proof given of Theorem 7.2
over leafy automata, and indeed many of the constructions employ a similar
structure. The main difference is in the reduced scope of ADD and DEL
transitions, and the new usage of EPS to represent variables whose values
were previously managed in control states. However, this shift in power in SA
away from tree-based communication (still used in LLA) and towards shared
memory informs an entirely new set of restrictions over FICA terms, which we
shall now investigate.

9.4 Restricted-Semaphore FICA

Given the translation from FICA to SA above, we are able to observe and
identify structural properties of the automata that are generated. The prop-
erty which interests us most with regards to split automata is idempotency of
transitions, to be defined shortly. In this section we shall present a new frag-
ment of FICA for which certain problems (namely emptiness) are decidable,
and show how this decidability arises through the lens of idempotency.

The new language fragment to be defined here is restricted-semaphore
FICA, or rsFICA for short.
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Definition 9.2. A FICA term Γ ` M : θ is restricted-semaphore if its β-
normal, η-long form is such that subterms of the form f Ml · · ·M1 (l > 0) do
not contain free variables of type sem. The language of all such FICA terms
is restricted-semaphore FICA (rsFICA).

The restrictions imposed on FICA to produce rsFICA are relatively min-
imal. rsFICA retains all sequential features of FICA, such as unrestricted
types, state, and looping constructs. It still even allows for some “shallow”
use of semaphores.3 For example, the term

(a) newsem s in grab(s); f(skip); release(s)

is restricted-semaphore, but

(b) newsem s in f(grab(s))

is not. Moreover, as an indication of the relative expressiveness of FICA
compared to our previous restricted language LFICA, the interesting terms

(c) newvarx :=0 in while !x = 0 dox := succ(!x)

(d) newvarx :=0 in f(f(x :=1)),

which violated the locality restriction of LFICA, are permitted in rsFICA.
Restricted-semaphore FICA is not a strict improvement over local FICA though:
term (b) above is local and so it is in LFICA but not rsFICA.

9.4.1 Restricted-semaphore split automata

Rather than introducing a new variant of split automata which structurally
enforces the restricted-semaphore condition, instead we shall consider what
restricted-semaphore FICA looks like within the context of the original model.
We shall then use that as the basis for the decidability result to follow.

The first property we identify is one that we have seen before, namely
even-boundedness. As with the translation of FICA to LA, our translation to
SA maintains the property that nodes at even levels have an upper bound on
the number of children they will have at any one time (local even-boundedness).
However, unlike local LA, we do not maintain the stronger property that the
total number of children of any even-level node across a run is bounded (global
even-boundedness), as we cannot accommodate iteration while maintaining
global even-boundedness. The local bound is derived directly from the syntax
of the term; see Table 9.1 for how each construct affects the local bound.

3The reason for this is that in our construction shallow uses of semaphores always occur
at the same level as its declaration, and so usage of the semaphore can be interpreted entirely
through control states.
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Term M Local bound b(M)

skip 1
i 1
divθ 1
op(M1) b(M1)
M1||M2 b(M1) + b(M2)
M1;M2 max(M1,M2)
while M1 do M2 max(M1,M2)
newvar x in M1 b(M1)
newsem s in M1 b(M1)
f Ml · · ·M1 max(Ml, . . . ,M1)
λx.M1 b(M1)
!M1 b(M1)
grab(M1) b(M1)
release(M1) b(M1)
if M1 then M2 else M3 max(M1,M2,M3)
M1 :=M2 max(M1,M2)

Table 9.1: The effect that each FICA construct has on the local bound of its
corresponding split automaton at even levels. In this table b(M) denotes the
local bound derived from the syntax of the term M .

The second is the restricted-semaphore condition and it is specific to trans-
lation of the restricted-semaphore fragment of FICA. The restricted-semaphore
property describes the constrained ways in which memory is manipulated by
an automaton corresponding to an rsFICA term. Recall that memory is mod-
ified only through EPS transitions, which check the value of some memory
cell and modify it atomically. This allows us to check whether a semaphore is
free and then grab it immediately if so. This is in contrast to the read/write
operations defined over non-semaphore variables, which either read the value
of a memory cell without modification, or write to it without checking it.

Let us describe the restricted-semaphore condition in terms of the trans-
itions of a split automaton. EPS transitions are of the form

(2j, h, v, c(2i))
ϵ−−→ (v′, d(2i)).

Such a transition finds a data value d at level 2i, labelled with control state c(2i);
checks that the ancestor 2j levels above d has the value v in the h-th cell of
its memory; and if so changes the value to v′ and changes the control state
at d to d(2i).4 In this way, EPS transitions are completely atomic, reading and
writing simultaneously.

By contrast, the transitions corresponding to reading and writing non-
4As with all previous models, if the preconditions are not met then the transition cannot

be fired.
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semaphore variables are as follows (cf. translation rules 9.1 and 9.2). This as-
sumes the variables are not free, i.e. they have been bound by some
newvar . . . in construct.

Transitions for writing variables (M :=N) are of this shape:

(0, N, v, c(2i))
ϵ−−→ (j, e(2i)) (0 ≤ v ≤ max).

Transitions for reading variables (!M) are of this shape:

(0, N, j, c(2i))
ϵ−−→ (j, e(2i)).

Observe that the write transitions will fire regardless of the value held in
the memory cell, since the same transition exists with v set to any possible
value. Note also that the read transition always sets the value after the read
to the same as it was before the read. In this sense, neither the reading nor
writing transitions perform an atomic read/write operation despite making
use of EPS transitions; and these are the only time such transitions appear in
the translation except for semaphores. With this insight we are now ready to
formalise the definition of the restricted-semaphore condition for SA.

Definition 9.3. A split automaton is restricted-semaphore if, for every trans-
ition

(2j, h, v, c(2i))
ϵ−−→ (v′, d(2i))

with v 6= v′, there also exist transitions

(2j, h, v′′, c(2i))
ϵ−−→ (v′, d(2i))

for all v′′ ∈ V .

Furthermore we can formally define the notion of shallowness with regards
to the usage of a semaphore.

Definition 9.4. A semaphore s is shallow in a term Γ ` newsem s inM : θ

if and only if there are no subterms M ′ of M of the form f(N) such that s

appears in N .

To borrow terminology from the previous chapter, we may say a semaphore
is shallow if and only if its applicative depth is zero.

Uses of shallow semaphores may be adjusted to suit restricted-semaphore
split automata in the following way. Suppose we are performing this adjust-
ment while inductively translating rsFICA terms as per the proof of Theorem

168



9.1. A shallow use of a semaphore will initially be translated into

(0, N, 0, c(0))
ϵ−−→ (1, d(0)) (grb)

or (0, N, 1, c(0))
ϵ−−→ (0, d(0)) (rls).

The memory cells and control states are at the same level, i.e. only one
node, the node at level 0, is involved in such a transition. Such transitions can
be simulated by using the level-0 control state as memory. Let us subscript by 1

the components of the original automaton derived from the translation. Then
we take C(0) = C

(0)
1 ×{0, 1}, C(i) = C

(i)
1 (i > 0), and N = N1+1. Transitions

with access to the control state at the root must be modified accordingly. In
all cases take j from {0, 1}.

ADD(0), DEL(0):
† q−−→ 1d

(0)

† q−−→ (d(0), 0)

c(0)
i−−→ 1†

(c(0), j)
i−−→ †

ADD(1), DEL(1):

c(0)
q−−→ 1(d

(0), d(1))

(c(0), j)
q−−→ ((d(0), j), d(1))

(c(0), c(1))
i−−→ 1d

(0)

((c(0), j), c(1))
i−−→ (d(0), j)

EPS(0,0), excluding uses of the semaphore introduced by newsem in :

(0, h, v, c(0))
ϵ−−→ 1(v

′, d(0)) h < N

(0, h, v, (c(0), j))
ϵ−−→ (v′, (d(0), j))

And finally the use of the semaphore itself is translated as follows.

(0, N, l, c(0))
ϵ−−→ 1(l

′, d(0))

(0, N, 0, (c(0), l))
ϵ−−→ (0, (d(0), l′))

(9.3)

Note that the translation moves the value of the semaphore out of the
memory cell and into the second component of the control state. We still use
an epsilon transition, but the value of the memory cell accessed is always zero
and so has no bearing on the operation of the transition. The antecedent of
translation rule 9.3 does not fulfil the restricted-semaphore condition given in
Definition 9.3, but the consequent does, and so the automaton resulting frm
this translation is restricted-semaphore.

All transitions except those described above are copied directly from the
derived automaton into the new one, which is now restricted-semaphore. Since
the term we were translating is itself restricted-semaphore, the only dangerous
occurrences of semaphores have been discharged as above.
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Corollary 9.1. For any given rsFICA term Γ ` M : θ, we may construct a
split automaton which is both locally bounded and restricted-semaphore, whose
traces are the game-semantic plays of the Γ `M : θ and whose accepting traces
are the complete plays of Γ `M : θ.

We shall now go on to show how to decide emptiness for split automata for
which these two properties hold. In order to make this proof more digestible,
we will reformulate the restricted-semaphore property in a more abstract way
as a form of idempotency over transitions of the automaton.

Recall that, in some configuration of the automaton, each even-level data
value is labelled by one control state and zero or more memory cells. Let us
write 〈m(2i), c(2i)〉 for the pair where the first component is a vector from V N

representing the stored memory mapped to by d, and the second component
is the control state at d. In this scheme, split automaton EPS-transitions such
as

(2j, h, v, c(2i))
ϵ−−→ (v′, d(2i))

can be written as

(〈m(2j)[h 7→ v], c(2j)〉, 〈m(2i), c(2i)〉) ϵ−−→ (〈m(2j)[h 7→ v′], c(2j)〉, 〈m(2i), d(2i)〉).

For restricted-semaphore split automata, we further get that

(〈m(2j)[h 7→ v′], c(2j)〉, 〈m(2i), c(2i)〉) ϵ−−→ (〈m(2j)[h 7→ v′], c(2j)〉, 〈m(2i), d(2i)〉).

Taking q(2i) and r(2i) to range over the combined memory-control states
described above, we have discovered that the restricted-semaphore property
implies the following property, which we call idempotence:

if (q(2j), q(2i))
ϵ−−→ (r(2j), r(2i))

then (r(2j), q(2i))
ϵ−−→ (r(2j), r(2i)).

If we interpret the first transition as putting constraints on when q(2i) can
be changed to r(2i), the idempotence property mandates that if this change can
be done in one node of the configuration tree, it can be done in an arbitrary
number of nodes, and arbitrarily many times. This property is crucial for the
decidability argument in the next section.

9.5 Idempotent Automata

We shall now prove that the emptiness problem is decidable for split automata
which are both locally bounded and idempotent, and hence that a class of
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verification problems for rsFICA is decidable.

The decidability result will not be proven directly over split automata, but
over a slightly more abstract model which makes use of similar notions to
the combined transitions presented above. The memory-control division was
instrumental to expressing properties of the translation of rsFICA to automata.
For the decidability proof, all that matters is that the local-boundedness and
idempotency properties hold, and so we do not need to work in the split
setting.

We shall work again with pairs 〈m(2i), c(2i)〉 representing the combination
of memory cells and control states, respectively, associated to some data value.
Recall that the mapping from data value to vector of memory cells is partial.
We will take the empty vector when the image of a data value is undefined.
In particular, nodes at odd levels will have an empty first component, and at
even levels a vector of length N . q(i) and r(i) will continue to be used for such
combined states.

We will now define idempotent automata. These are functionally the same
as split automata with the exception that control and memory are taken to-
gether, and the idempotence and local-boundedness properties are enforced.

Definition 9.5. An idempotent automaton is a tuple 〈Q, k,Σ, δ〉, where:

• k is the depth parameter;

• Q =
⋃
{Q(i) : i = 0, . . . , k} is a finite set of states;

• Σ = ΣQ +ΣA is the alphabet; and

• δ contains transitions of the shape given below, taking i > 0, q ∈ ΣQ,
a ∈ ΣA, and q(i), r(i) ∈ Q(i).

ADD(0) † q−−→ r(0)

DEL(0) q(0)
a−−→ †

ADD(2i) q(2i−1) q−−→ (q(2i−1), r(2i))

DEL(2i) (q(2i−1), q(2i))
a−−→ q(2i−1)

ADD(2i+ 1) q(2i)
q−−→ (r(2i), r(2i+1))

DEL(2i+ 1) (q(2i), q(2i+1))
a−−→ r(2i)

EPS(2j, 2i) (q(2j), q(2i))
ϵ−−→ (r(2j), r(2i)) j ≤ i

We require two conditions:
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• Idempotence:

For every transition (q(2j), q(2i))
ϵ−−→ (r(2j), r(2i))

We have (r(2j), q(2i))
ϵ−−→ (r(2j), r(2i));

• Local boundedness: there exists some (minimum) bound B such that,
in every configuration reachable from the initial configuration κ0, every
even-level node has at most B children.

With memory and control states combined in idempotent automata, con-
figurations become triples (D,E, f) where f is now a function from data values
to combined states 〈m, c〉. The initial configuration is κ0 = (∅, ∅, ∅).

The definitions of a run and acceptance are as for split automata. It should
be clear that restricted-semaphore, locally-bounded split automata can be
simulated by idempotent automata by using the combined states in idempotent
automata to represent control states combined with memory. As discussed in
the previous section, the bound B in the local boundedness condition can
be derived from the syntax of the term. Observe that, due to the shape of
transitions, the states at odd levels never change. (As an aside, the local
boundedness condition is formulated as a semantic property, but it could be
enforced in the syntax—and hence in the structure of the automaton—by
maintaining a count of children at each node as part of that node’s control
state, with ADD transitions on children of the node incrementing that counter
and corresponding DEL transitions decrementing it.)

We interest ourselves with the emptiness problem over idempotent auto-
mata (and hence over locally-bounded restricted-semaphore split automata):
does a given idempotent automaton accept any word? We show the decidab-
ility of this problem via a lemma which allows us to reduce the depth of such
an automaton. The lemma effectively eliminates two levels of data values. By
repeatedly applying the lemma we will eventually reach an automaton with
depth parameter k ≤ 2, whose emptiness problem reduces to emptiness of
standard finite automata.

Lemma 9.1. For every idempotent automaton A with 2i + 2 levels, one can
construct an idempotent automaton A↑ with 2i levels such that the language
of A is nonempty if and only if the language of A↑ is nonempty.

Proof. Take B to be an upper bound on the number of children a node at an
even level can have. The bound comes from the local boundedness property
of A. The states of A↑ are the states of A, except for at level 2i:

Q↑(2i) =Q(2i) × ({1, . . . , B}⇀ (Q(2i+1) × P(Q(2i+2))))
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where the second argument is the set of partial functions as displayed. We
write ∅ for the empty function, and g(i) = ⊥ when g is not defined at i.

The intention is to supplement the state at level 2i with a second com-
ponent, describing the subtrees rooted at level 2i + 1 that are eliminated by
the construction. A node at level 2i can have at most B children, hence the
second component is a partial function with domain {1, . . . , B}. The values
of this function are representations of subtrees rooted at the children of the
node: the label of a node at level 2i + 1, and the set of labels of children of
this node. The representation loses information about the precise number of
children with each label. Consequently, there are fintely many representations
of subtrees at level 2i+ 1.

For a configuration (D,E, f) and a data value d ∈ E, we write fE(d) for
the labelled subtree rooted at d. A pair (q(2i+1), S) ∈ Q(2i+1) × P(Q(2i+2))

represents a subtree rooted at a node of level 2i + 1: the root is labelled
by q(2i+1), and the set of labels of the children of the root is S. We write
setrep(fE(d(2i+1))) for this representation of the subtree rooted at d(2i+1).

A state (q(2i), g) ∈ Q↑(2i) represents a subtree rooted at a node of level 2i
with q(2i) the label of the node, and g representing at most B subtrees rooted
at the children of the node as described above.

The transitions of A↑ reflect this representation of subtrees by states. The
way to modify the transitions is presented in Figure 9.1. We continue with the
same treatment of translation rules: the antecedent (above the line) existing
in A implies the existence of the consequent (below the line) in A↑. Observe
that only transitions involving levels 2i, 2i + 1, and 2i + 2 are modified; all
others are copied directly.

The intuition behind these rules follows the intuition behind the definition
of Q↑(2i) we saw earlier. For example, consider the first rule, ADD(2i). This
creates a new node at level 2i labelled by r(2i). The rule is changed to an
ADD(2i) rule that creates a new node labelled by (r(2i), ∅), where ∅ is the
empty function representing that the newly-created node has no children.

Another example is the last rule, EPS(2i+2, 2i+2). This form of transition
in automaton A changes the state at a node at level 2i+2. This is replaced by
the change of one of the elements in the set S. The notation we use actually
describes two possible ways to instantiate the rule, depending on the runtime
configuration of the automaton:

• There may be no q(2i+2) in S after firing the transition. In this case,
q(2i+2) is removed and replaced by r(2i+2) in S.

• There may still be q(2i+2) remaining in S. The transition adds r(2i+2) to
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ADD(2i):
q(2i−1) q−−→ (q(2i−1), r(2i))

q(2i−1) q−−→ (q(2i−1), (r(2i), ∅))
DEL(2i):

(q(2i−1), q(2i))
a−−→ q(2i−1)

(q(2i−1), (q(2i), ∅)) a−−→ q(2i−1)

EPS(2j, 2i):
(q(2j), q(2i))

ϵ−−→ (r(2j), r(2i))

(q(2j), (q(2i), g))
ϵ−−→ (r(2j), (r(2i), g))

ADD(2i+ 1):

q(2i)
q−−→ (r(2i), r(2i+1))

(q(2i), g[l 7→ ⊥]) q−−→ (r(2i), g[l 7→ (r(2i+1), ∅)])

DEL(2i+ 1):

(q(2i), q(2i+1))
a−−→ r(2i)

(q(2i), g[l 7→ (q(2i+1), ∅)]) a−−→ (r(2i), g[l 7→ ⊥]))

ADD(2i+ 2):

q(2i+1) q−−→ (q(2i+1), r(2i+2))

(q(2i), g[l 7→ (q(2i+1), S)])
q−−→ (q(2i), g[l 7→ (q(2i+1), S ∪ {r(2i+2)})])

DEL(2i+ 2):

(q(2i+1), q(2i+2))
a−−→ q(2i+1)

(q(2i), g[l 7→ (q(2i+1), S ∪ {q(2i+2)})]) a−−→ (q(2i), g[l 7→ (q(2i+1), S)])

EPS(2j, 2i+ 2):

(q(2j),q(2i+2))
ϵ−−→ (r(2j),r(2i+2)) 2j < 2i

(q(2j),(q(2i),g[l 7→(q(2i+1),S∪{q(2i+2)})]))
ϵ−−→ (r(2j),(q(2i),g[l 7→(q(2i+1),S∪{r(2i+2)})]))

EPS(2i, 2i+ 2):

(q(2i), q(2i+2))
ϵ−−→ (r(2i), r(2i+2))

(q(2i), g[l 7→ (q(2i+1), S ∪ {q(2i+2)})]) ϵ−−→ (r(2i), g[l 7→ (q(2i+1), S ∪ {r(2i+2)})])

EPS(2i+ 2, 2i+ 2):

q(2i+2) ϵ−−→ r(2i+2)

(q(2i), g[l 7→ (q(2i+1), S ∪ {q(2i+2)})]) ϵ−−→ (q(2i), g[l 7→ (q(2i+1), S ∪ {r(2i+2)})])

Figure 9.1: Translation rules for building an idempotent automaton A↑ of
depth 2i based on one of depth 2i+ 2.
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S without removing q(2i+2).

The two ways are useful: the first corresponds to a situation when there is
exactly one child labelled by q(2i+2), the second when there is more than one.

Observe that all transitions affecting levels (2i+ 1) and (2i+ 2) are trans-
lated to EPS(2i, 2i) transitions, except for EPS(2j, 2i + 2) for 2j < 2i + 2.
The idempotence property of the resulting automaton A↑ follows from the
idempotence of A.

We need to show that A accepts some data word if and only if A↑ accepts
some, possibly different, data word. The two data words will be different when
the one accepted by A uses data at levels below 2i; these are not accessible
for A↑.

For the proof we introduce a concept of indexed runs of A. In prac-
tice this means we add a fourth component to configurations that assigns
numbers to some nodes. An indexed configuration is (D,E, f, ind) where
ind : E ⇀ {1, . . . , B} is a partial function defined for all data of level 2i + 1

in E. Intuitively, ind gives unique identifiers to siblings at level 2i+ 1. When
a new node at level 2i+ 1 is created, it gets the smallest index different from
the indices of its siblings. The node keeps this index until the node is removed
by a DEL transition. Since a node at level 2i can have at most B children at
once, we have enough indices to uniquely map each contemporaneous child to
a unique number. An accepting indexed run has the form:

(∅, ∅, ∅, ∅) b1−−→ · · · (Dl, El, fl, indl)
bl−−→ · · · (∅, ∅, ∅, ∅)

where as before every bl is either ϵ or a data letter (tl, dl) consisting of a letter
tl ∈ Σ and a data value dl ∈ D. The indexing functions allow us to define
state( ¯flEl(d

(2i)), indl) ∈ Q↑(2i) for every d(2i) ∈ El:

state( ¯flEl(d
(2i)), indl) = (fl(d

(2i)), g)

where g(indl(d(2i+1))) = setrep( ¯flEl(d
(2i+1))) for every child d(2i+1) of d(2i)

in El.

From an indexed run ν of A, we construct a run of A↑ by induction. Sup-
pose that we have constructed a run µ↑ of A↑ corresponding to a prefix µ of
the run of A. Run µ↑ reaches a configuration (D↑, E↑, f↑) while run µ reaches
(D,E, f, ind). We assume that the following invariants hold:

(1) When restricted to levels ≤ 2i, set D↑ is the same as D, and E↑ is the
same as E.

(2) For every d ∈ E↑ of level < 2i we have f↑(d) = f(d).
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(3) For every d(2i) ∈ E↑ (of level 2i), we have f↑(d(2i)) = state(fE(d(2i)), ind).

We consider the next transition on the run ν. If it does not concern level 2i or
below then the same transition can be executed by A↑ without modification. If
it does we examine the possible cases transition of A↑ preserves the invariants.
This way we prolong µ and µ↑ while keeping the invariants. Property (1)
implies that µ↑ is accepting if µ is.

For the other direction we consider an accepting run ν↑ of A↑. Let ℓ be
the length of ν↑. By induction, for every prefix µ↑ of this run we construct a
run µ satisfying the same invariant as above, and moreover:

(4) Every node of level 2i+ 2 in (D,E, F ) has at least 2ℓ−|µ↑| siblings with
the same label.

The construction of µ is by cases depending on the type of transitions in the
run of A↑. We need sufficiently big multiplicities of leaves to simulate set
operations where the state on the left hand-side does not disappear (cf. our
discussion above concerning EPS(2i + 2, 2i + 2)) rule). We can get arbitrary
multiplicities thanks to the idempotency of the rules.

Let us examine a representative case of the EPS(2j, 2i+2) rule for 2j < 2i.
Suppose A↑ applies the following transition at node d(2i):

(q(2j), (q(2i), g[l 7→ (q(2i+1), S ∪ {q(2i+2)})]))
ϵ−−→

(r(2j), (q(2i), g[l 7→ (q(2i+1), S ∪ {r(2i+2)})]))

By the invariant f↑(d(2i)) = state(fE(d(2i)), ind), consider d(2i+1) with
ind(d(2i+1)) = l. We have that it has a child labeled q(2i+2). By invariant
(4), it has at least 2ℓ−|µ↑| children labeled q(2i+2). On the side of automaton
A we can then fire the corresponding EPS(2j, 2i+ 2) transition

(q(2j), q(2i+2))
ϵ−−→ (r(2j), r(2i+2)),

followed by some number of transitions

(r(2j), q(2i+2))
ϵ−−→ (r(2j), r(2i+2)).

If q(2i+2) does not appear in S ∪ {r(2i+2)} then the above rule is used to
change all occurrences of q(2i+2) below d(2i+1) to r(2i+2). If it does appear
then 2(ℓ−|µ↑|)−1 occurrences are changed, leaving the rest. This reestablishes
the fourth invariant both for q(2i+2) and r(2i+2). Observe that if invariant (4)
talked about (ℓ− |µ↑|) siblings instead of 2ℓ−|µ↑| then it would not be possible
to reestablish it at this point.
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Repeated applications of Lemma 9.1 reduce the emptiness problem of an
idempotent automaton to the emptiness problem of a standard finite auto-
maton. Indeed, an idempotent automaton whose depth parameter is 0 is just
a finite automaton. Hence:

Theorem 9.2. Emptiness of idempotent automata is decidable.

Idempotent automata exhibit the same behaviours as split automata, ex-
cept that the memory and control components are no longer split (since
this property is not required for our purposes once idempotence of trans-
itions has been shown). It follows that we can reduce the emptiness prob-
lem on restricted-semaphore split automata to the emptiness problem on
idempotent automata. Hence, since we can (per Theorem 9.1) construct
a restricted-semaphore split automaton whose language faithfully represents
complete plays of a given rsFICA term, we get that

Theorem 9.3. It is decidable whether, given an rsFICA term Γ `M : θ, there
exists a context C such that

• ` C[M ] : com; and

• C[M ] may terminate by some computation in which C uses M .

9.6 Stuttering Invariant Properties

With may-termination of rsFICA terms proven to be decidable using the above
construction, it remains to ask: what can we do with rsFICA? In this section
we endeavour to provide some meaningful examples of properties that can be
verified in the rsFICA language.

As we have seen, it is possible to translate any rsFICA term into an auto-
maton whose language faithfully represents the set of complete plays in the
game semantics for the given term. The automaton operates over a data tree
of some depth, which reflects the syntactic structure of the underpinning λ-
term. We fix some level 2i of the data tree, and for every node at level 2i we
look at the sequence of control states visited by the node during a run. We
check if some, or every, such sequence satisfies some given regular property.
Later we shall see how to express certain common classes of program analysis
properties in this way.

We first describe automata constructions, and then give some applications.
We try to give an idea of the constructions without going to excessive details
that are not difficult but tedious. To fix the notation, consider an idempotent
automaton A, and a level 2i of the dataset. We assume that we are given a
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standard finite automaton C defining interesting sequences of states at level 2i.
So the alphabet of C is Q(2i), i.e. the set of states of A at level 2i. We use qc

to refer to states of C. The initial state of C is qcinit, and the set of accepting
states of C is FinC .

We want to check if there is an accepting run of A such that every node
at level 2i goes through a sequence of states accepted by C. In other words, if
there is an accepting run such that for every data value d of level 2i appearing
in the run the sequence of states that label d is accepted by C. If this holds,
we say that there is an accepting run where every level-2i sub-run satisfies C.

We convert an idempotent automaton A into an idempotent automaton
A∀C such that: A∀C has an accepting run if and only if A has an accepting
run where every level-2i sub-run satisfies C. This reduces the question to the
emptiness of idempotent automata that, as we have seen, is decidable.

For this construction to work we require that automaton C describes a
property that is closed with respect to stuttering:

Definition 9.6. An automaton C is stuttering-invariant if and only if, for
every b in the alphabet of C,

w1bw2 ∈ L(C)⇐⇒ w1bbw2 ∈ L(C).

We assume in what follows that C is a minimal deterministic automaton.
Observe that if C is stuttering-invariant then, for every transition qc1

b−−→ qc2,
it has also the transition qc2

b−−→ qc2. (In particular, this will only hold in the
minimal automaton, and only when the automaton is deterministic).

To construct A∀C we modify the the states at level 2i of A, and transitions
involving this level. The new set of sates at level 2i is Q(2i) × Qc—we add
states of C as an additional component.

Transitions are modified in the following way:

ADD(2i)
q(2i−1) q−−→ (q(2i−1), r(2i))

q(2i−1) q−−→ (q(2i−1), (r(2i), qc))
if qcinit

r(2i)−−−→ qc

DEL(2i) (q(2i−1), q(2i))
a−−→ r(2i−1)

(q(2i−1), (q(2i), qc))
a−−→ q(2i−1)

if qc ∈ FinC

ADD(2i) transitions initialise the C component. DEL(2i) transitions allow
the removal of a level-2i node provided the C component is in an accepting
state.

We modify other transitions involving level 2i so that the C component is
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updated as expected. Supposing qc1
r(2i)−−−→ qc2 is a transition of C:

EPS(2j, 2i) (q(2j),q(2i))
ϵ−−→ (r(2j),r(2i))

(q(2j),(q(2i),qc1))
ϵ−−→ (r(2j),(r(2i),qc2))

ADD(2i+ 1) q(2i)
q−−→ (r(2i),r(2i+1))

(q(2i),qc1)
q−−→ ((r(2i),qc2),r

(2i+1))

DEL(2i+ 1) (q(2i),q(2i+1))
a−−→ r(2i)

((q(2i),qc1),q
(2i+1))

a−−→ (r(2i),qc2)

EPS(2i, 2j) (q(2i),q(2j))
ϵ−−→ (r(2i),r(2j))

((q(2i),qc1),q
(2j))

ϵ−−→ ((r(2i),qc2),r
(2j))

Observe that we have two types of EPS transitions to handle, depending
on whether 2i is the lower or the upper level. Note that EPS transitions of the
first kind are idempotent in A∀C if they were in A. Similarly for the second
kind, but here additionally we rely on stuttering-invariance of C.

Lemma 9.2. If A is an idempotent automaton and C is a stuttering-invariant
minimal deterministic automaton then A∀C is an idempotent automaton.
Moreover, A has an accepting run whose level-2i sub-runs all satisfy C if
and only if A∀C has an accepting run.

We can modify the above construction to answer a different question: is
there any accepting run with at least one 2i sub-run satisfying C? Automaton
A∃C for this question is constructed from A∀C . The idea is that once one of
the sub-runs at level 2i reaches an accepting state, it stores this fact in the
root state. At the same time we should ensure that this sub-run terminates
after this action. In the universal case we could use termination detection to
collect acceptance information: in an accepting run all components at level
2i needed to disappear, and they could disappear only when they reached
an accepting state. In the existential case we need to implement an ad-hoc
mechanism for terminating the automaton once a suitable sub-run has been
observed anywhere in the machine.

In A∃C , the set of states at level 0 becomes Q(0) × {tt, ff}; the second
component indicating if there has yet been a 2i sub-run satisfying C. The
modification of transitions reflects this intuition:

ADD(0) †
q−−→ r(0)

†
q−−→ (r(0),ff)

DEL(0) q(0)
a−−→ †

(q(0),tt) a−−→ †

The ADD transition says that we initialize the second component to ff, the
DEL transition says that an accepting run should end with the second com-
ponent set to tt.
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For other transitions of A∃C , we take transitions of A∀C with some modifica-
tions. Transitions involving level 0 are modified so that they leave the second
component unchanged. The second component at the root can be changed
only by a new ϵ-transition at level 2i that we introduce now. In A∃C the set of
states at level 2i is Q(2i) ∪ (Q(2i) ×Qc). So a state at level 2i of A∃C is either
a state of A∀C or a state of A at this level. The idea is that at the end of a
sub-computation simulated at some node at level 2i, the automaton can set
the component at level 0 to tt if the computation finished in an accepting state
of C. We have the following for arbitrary states and arbitrary α ∈ {tt, ff}.

EPS(0, 2i): ((q(0), α), (q(2i), qc))
ϵ−−→ ((q(0), tt), q(2i)) if qc ∈ F

EPS(0, 2i): ((q(0), α), (q(2i), qc))
ϵ−−→ ((q(0), α), q(2i))

It is clear that these transitions are idempotent. The other transitions are as
in automaton A∀C except for the transitions of type DEL(2i) which are instead
copied from A:

DEL(2i) : (q(2i−1), q(2i))
a−−→ r(2i−1)

The idea behind this is that DEL(2i) can be performed only after one of the
above EPS(0, 2i) transitions has fired, which in turn can only occur once some
accepting sub-run at level 2i has been witnessed.

Lemma 9.3. If A is an idempotent automaton and C is a stuttering-invariant
minimal deterministic automaton then A∃C is an idempotent automaton.
Moreover, A has an accepting run whose some level-2i sub-run satisfies C
if and only if A∃C has an accepting run.

Proposition 9.1. The following questions are decidable, for idempotent auto-
maton A, data level 2i, and stuttering-invariant finite automaton C:

(1) Is there an accepting run of A, all level-2i sub-runs of which satisfy C?

(2) Is there an accepting run of A, some level-2i sub-run of which satisfies C?

(3) Do all accepting runs of A have some level-2i sub-run satisfying C?

(4) Do all accepting runs of A have all level-2i sub-runs satisfying C?

Questions (1) and (2) are solved directly by the two lemmas above. The
remaining two are obtained by considering the dual question for an automaton
whose language is the complement of A. Observe that the complement of
a stuttering invariant language is also stuttering invariant. In fact, this is
the only point where we need the full stuttering invariance of C—in all of
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the arguments until this point, we have required only that C is closed under
stuttering expansion.

This proposition allows the verification of rsFICA terms to be reduced
to emptiness checking of idempotent automata. Given a term we use the
translation from the proof of Theorem 9.1 to obtain a split automaton. This
automaton is an idempotent automaton by Corollary 9.1. We can then take
an automaton C expressing a property of interest. With stuttering invariant
finite automata C we can express such properties as:

• Is a given variable ever set to a given value?

• Is a given variable invariant in a loop?

• Is a given variable ever read after being set?

As a side note, recall that in rsFICA reads are silent: reads are simulated
by epsilon-transitions in split automata. As a result, reads do not directly
appear in traces. In order to check the last property above, therefore, some
additional gadgetry will need to be used to ensure that the read to be checked
has some visible side-effect. For example, we could instrument a term such
that whenever such a read occurs, some visible effect is triggered (for example
some function is called or some command is executed).

Proposition 9.1 gives a method to verify these properties for all quanti-
fication combinations: every/some accepting run ν, and every/some sub-run
of ν. Indeed, the proposition effectively reduces verification of all these ques-
tions to emptiness checking of a suitable idempotent automaton. The latter
is decidable by Theorem 9.2.

9.7 Remarks on rsFICA

As remarked previously, restricted-semaphore FICA is significantly more ex-
pressive than LFICA in a number of ways. For example, the ability to rep-
resent unbounded iteration and arbitrarily nested function calls in rsFICA
makes it capable of expressing a much larger fragment of the FICA language’s
constructs—indeed, all sequential constructs of FICA can appear in rsFICA.

However, the restriction on the use of semaphores corresponds to removing
unbounded synchronisation in rsFICA terms. This is a limitation on the ability
to express more complex parallel programs. LFICA is only slightly better in
this regard: while unbounded use of semaphores can occur in rsFICA, no data
(variables or semaphores) may traverse an applicative depth (nested calls to
free functions) of more than 1, which places an implicit upper bound on the
amount of usefulness that any such semaphore can offer.
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By relating our model to the game-semantic view of the idealized concur-
rent ALGOL we are able to verify properties in arbitrary contexts. The ability
to check properties using arbitrary quantification is a particular strength of
this approach. It is of particular note that while recursion is not permitted in
rsFICA, we do still permit unbounded iteration—so there is a striking differ-
ence between the relative power of iteration and recursion in this setting.

In this work we have primarily focused on the emptiness problem for these
automata, as that alone is enough to empower checking of a large class of
verification properties. The complexity of other decision problems for split
automata (restricted-semaphore or otherwise) remains uninvestigated. In par-
ticular, we believe that it is worth investigating the potential of decidability
of equivalence for the mode. If decidable, this could be used for testing con-
textual equivalence for rsFICA terms. (However the encoding of terms into
plays is not injective—several different plays may represent the same term. As
such, checking equivalence directly on representations of plays may produce
false negatives. Additional machinery would need to be devised to deal with
this.)

As a closing remark, while we proved that emptiness for idempotent auto-
mata is decidable, we did not wrestle with complexity bounds for the problem.
The procedure as given in this work has complexity equivalent to a tower
of exponentials whose height is dependent on the depth parameter of the
idempotent automaton in question (and hence, when verifying properties over
rsFICA terms, to the applicative depth of the given term). We believe that
there may be scope to reduce this complexity—doing so would be of value if
idempotent automata are to be used for practical verification.
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Chapter 10

Closing

This work respresents the culmination of five years of ongoing research in
concert with a number of esteemed research colleagues. We shall close out
the thesis by revisiting the various contributions made, and along the way
identifing further avenues of research that extend those contributions. We
shall also lightly touch on some other work that the author has undertaken to
complete, each of which relates to some of the content from Chapters 4 to 9.

10.1 Petri Net Coverability

Depending on one’s accounting, this work includes three distinct complete
implementations of decision procedures for the general Petri net (equivalently
VASS) coverability problem: the Karp-Miller tree derivation procedure from
Section 4.3.1 implemented as a Haskell library; the HCover tool shared in
the latter part of Chapter 4; and the KCover tool that is embedded in the
KReach software that is the focus of Chapter 5. Each of these implementations
is available online1,2,3 and usable as a coverability checker in its own right.

However, only in HCover have meaningful steps been taken to improve per-
formance characteristics; it is the only checker of the three that is intentionally
competing against other state-of-the-art coverability checkers such as ICover
and MIST. And as Section 4.5 intimates, there is still low-hanging fruit even
there for meaningful performance gains, especially for certain classes of nets.
Using a prime representation for vectors looks to be particularly exciting, if
the indicated improvements are borne out in practice. The sample case used
in Section 4.5 is non-ideal in some sense as it induces very large vectors; very
sparse nets, especially 1-safe nets, whose prime representation is small, are
liable to see significantly greater performance gains. There may certainly be

1https://github.com/dixonary/hcover
2https://github.com/dixonary/karp-miller
3https://github.com/dixonary/kosaraju
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scope for a fourth coverability checker—a VCover, perhaps—implementing a
prime vector representation, possibly with some other improvements derived
from the literature.

Karp’s and Miller’s tree construction for generating the minimal coverab-
ility set has been iterated on and improved [144] since its original presenta-
tion [87]. Finkel and others have constructed a way of identifying the clover,
a unique canonical representation of the coverability graph for any Petri net
starting from some marking [50, 51]. This representation is used to build
out a suite of “commodified” accelerations for the general Karp and Miller
construction [55]. The latter work included a tool for generating this min-
imal coverability graph and testing it against a number of alternatives; results
indicate that it is competitive. Implementing that approach, and in doing
so making use of some of the natural benefits of working with a compiled,
strictly typed language, may prove valuable; alternatively it may be possible
to replace the unoptimised Karp and Miller procedure in Chapter 5 by calling
out directly to the implementation of Finkel, Haddad and Khmelnitsky.

Another potential avenue of research, as discussed at the end of Chapter 4,
is into the ways that we can exploit the properties of modern computing ar-
chitectures to speed-up the so-called “wall clock time” taken for coverability
procedures. Theoretical improvements for these procedures from the literat-
ure tend to be in favour of minimising the number of nodes visited in the
given search space. This minimises the total CPU time taken. However, most
modern CPUs have eight, twelve, or more cores which might be used at the
same time. Tools implemented in Python are rarely able to make use of these
since the Python interpreter is fundamentally non-parallel; MIST (the only
readily accessible such tool not implemented in Python) appears also to be
single-threaded.

In theory, any state-space exploration should be conducive to parallelism.
The problem arises when one wishes to prune the exploration; this requires
access to a shared list of visited nodes. If the time taken accessing this list
can be minimised, then meaningful speedup might still be in reach. If the
exploration is not driven by pruning, then parallelising is unproblematic. This
is particularly true in Haskell, where data parallelism is lightweight [84].

Beyond the CPU, most modern desktop and notebook personal computers
come with a discrete graphics card; such cards modernly have dozens or
even hundreds of cores. The global leaders in retail GPU manufacturing,
NVIDIA [72] and more recently AMD [139], and open-source computing re-
search and engineering collectives [94, 100] have made ubiquitous the notion of
a GPGPU : a GPU which can be used for general-purpose computing. Given
their common use case of graphics manipulation, GPUs make an excellent
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candidate for accelerated vector mathematics. A propensity of libraries [27]
now exist to make this accessible to the Haskell programmer, and a tool built
around them would likely be of interest in its own right (to the practical solving
community, or to Haskell programmers, or to those interested in applications
of general-purpose GPU computing).

10.2 Petri Net Reachability

The reachability checker KReach is, as far as the authors can tell, the first
complete implementation of any algorithm for the reachability problem on
Petri nets. Of course, we now know thanks to the diligent work of Czerwiński
and Orlikowski [30] and Leroux [102] and others that the reachability problem
is complete for Ackermann, and so theoretical improvements will only be
able to get us so far. Recent results have been primarily concerned with how
practically intractable reachability is; we hope that the work of Chapter 5 is
some indication that optimism in the world of reachability is not all lost.

That Kosaraju’s alogrithm can statically rule out reachability in certain
cases derived from coverability instances warrants further attention. Notwith-
standing decompositions based on θ, Kosaraju’s alogrithm represents the com-
putation of some complex static properties of a VASS, some of which are not
dissimilar to the inducive invariants of Blondin et al. (see Section 30). It is
possible that the conjunction of these properties makes for a robust set of
invariants which could be abstracted out to speed up non-reachability based
coverability algorithms.

Furthermore, testing revealed that KReach responded in one of four ways
to any given nets: either it immediately fulfilled the θ condition; or it was im-
mediately deduced that θ was unsatisfiable for that net; or it required a small
number of decompositions; or the procedure timed out. Trying to classify
which nets fall into which category may reveal some new structural properties
of those classes, which may offer insight into the types of nets on which reach-
ability can be easily decided. For example, consider a Petri net in which the
total number of tokens never increases. If the final marking has more tokens
than the initial marking, the θ1 condition (Section 44) immediately rules out
reachability using only the state equation.

Very recently, and further to the work of Amat, Dal Zilio and Hujsa [6] and
Blondin, Haase and Offtermatt [15], some (as yet unpublished) work by others
tries to solve the reachability problem by pragmatic means, including the use of
machine learning and artificial intelligence. One may view this as an automatic
form of the classification process described above. Since most nets encountered
on a regular basis will not be of the algorithmically-catastrophic variety of
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those seen in proofs of lower bounds [30, 31, 102], such an approach may be
workable for nets derived from real-world problems. It seems unlikely that such
a model would be good at identifying nonreachable instances, as determining
nonreachability requires exhaustive search. (A probabilistic approach may,
however, respond with some confidence whether or not a solution exists.)

Petri Puzzle

One may ask: if artificial intelligence might offer a way to solve reachability
queries, can “non-artifical” intelligence do the same? Computationally hard
problems often make for good puzzles. A famous collection of Simon Tatham4

includes 40 such puzzles, many of which are recognisable as NP-complete prob-
lems5. In the same spirit, we undertook to implement the Petri net reachability
problem as a puzzle. Other than fun, the goals of this were twofold: firstly to
determine how difficult solving simple Petri net reachability problems feels in
practice; and secondly to give people a practical and hands-on way to learn
about the formalism.

The preliminary version of Petri Puzzle includes seven reachability quer-
ies as given in Figure 10.1. The representation in the program is almost exactly
that described in Section 3.5.2 and used throughout this thesis. Some conveni-
ences are included to help users to become acquainted with the semantics. For
example, a place turns green if the number of tokens in a marking is equal
to the number in the target marking for that place; transitions go a lighter
colour if they are not firable in the current marking. Each query shows a dif-
ferent feature of the model, including sources, sinks, non-unit arcs, and so on.
Extending the format to more exotic variants, such as Petri nets with reset
arcs or post-self-modifying nets, would be simple.

The Petri Puzzle program includes a Petri net designer in which one
can plan out nets of the type included in the main game. Moreover, Petri
Puzzle is a use case for KReach: When designing such nets, the program
will call out to KReach to determine whether the puzzle has a solution (that
is, whether the goal is reachable from the initial marking). It does the same
thing during play: if KReach returns that the player has found a marking
from which the goal marking is unreachable, the game will instruct the player
to restart the game. Since all these nets are small, KReach is able to perform
this check in real-time.

Petri Puzzle has not yet been released, but it may be of interest to the
Petri net community and possibly to educators in formal methods.

4https://www.chiark.greenend.org.uk/~sgtatham/puzzles/
5A recreational pastime of a particular flavour of computer scientist is to pick a puzzle

from the list and try to determine its algorithmic complexity.
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(a) “One” (b) “Multi” (c) “Trace” (d) “Doubler”

(e) “Modular” (f) “Engine” (g) “Distribution”

Figure 10.1: The seven levels currently encoded in Petri Puzzle. The initial
marking is as given; the target marking is the label in each place.

10.3 Leafy Automata, Local Leafy Automata, Split
Automata, and Beyond

The work in the second half of this thesis introduces a family of ways to unify
game semantics and automata theory in the context of programming languages
with concurrency. Each of the formalisms introduced (LA, LLA, SA) makes use
of the same underlying structure: a tree configuration backed by a data forest,
which pegs a relationship between the game-semantic interpretation of plays
of terms and the operational semantics of those terms. As the works progress,
it is possible to spot a trend: at each stage we reduce the amount of commu-
nication that takes place in the tree in some meaningful way, and in doing so
permit a wider class of constructs to exist within the language. In leafy auto-
mata (Chapter 6), all constructs of Finitary Idealized Concurrent Algol are
permitted, but all decision problems are trivially undecidable. In local leafy
automata (Chapter 8), we require that variables are “local”, i.e. that variables
may not pass through two calls to free functions. In doing so, we recover decid-
ability for may-termination of FICA terms, but we must exclude unbounded
iteration (while). In split automata (Chapter 9), we allow for only minimal
communication in the tree through control states, and instead mandate that
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communication occur through shared memory. The only constraints placed
on that memory is that reads and writes may not occur together atomically
(corresponding to bounding the applicative depth of semaphores). Via SA we
get that may-termination of FICA terms obeying this semaphore restriction
is decidable, and all language constructs are permitted including while.

A number of open questions remain about the complexity of other decision
problems over LLA and SA. In introducing and exploring these models we
focused on the emptiness problem, which is sufficient to encode a variety of
interesting properties. The equivalence problem is also a potential source of
value: if equivalence turns out to be decidable in either setting, that may open
the door to checking terms for contextual equivalence. As noted before, there
are some challenges present with checking for contextual equivalence due to
the representation we use for game-semantic plays—there are a plurality of
encodings that may represent the same term, and therefore comparing terms
is not quite the same as comparing LLA/SAs for language equivalence. Hence
some additional work would need to go into producing some canonical encoding
for a given term and, ideally, enforcing that canon in the automaton.

As a model of concurrency, there exists plenty of scope to further situate
these tree-configuration-based models within the field of concurrency research.
For example, we might seek to apply the concurrent games framework [25]
for the sake of verification, or investigate contextual equivalence with respect
to semaphore-free contexts [117]. It would also be interesting to look for
connections with abstract machines [57], the geometry of interaction [91], and
the π-calculus [12].

From the game semantics perspective, there are still some properties of
our translation that could be improved. For example, the game semantics in-
cludes a natural notion of interleavings: closure under certain rearrangements
of moves. An ideal encoding of the game semantics would represent these
interleavings faithfully. A new formalism called saturating automata has been
devised that does precisely that—they can encode this saturation condition
while forbidding languages that do not obey it. Saturating automata are an-
other tree-configuration-based automaton and they represent the final step in
the trend towards removing control-state-based communicative power between
nodes in the data tree: such communication is entirely forbidden. The al-
gorithmic complexity of decision problems over saturating automata remains
to be seen, but regardless we hope that they will provide a useful substrate
for thinking about game-semantic problems in automata-theoretic terms and
possibly act as a vector through which results in automata can be imported
to the world of game semantics.
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