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Abstract

Compilers are large and complex pieces of software, which can be challenging
to work with. Modularity has significant benefits in such cases: building a
complex system from a series of simpler components can make understanding,
maintaining, and reasoning about the resulting software more straightforward.
Not only does this modularity aid the compiler developer, but the compiler user
benefits too, from a compiler that is more likely to be correct and regularly
updated. A good focus for modularity in a compiler lies in the phases that
make up the compiler pipeline.

Often, compiler phases involve transforming some graph structure, in order to
perform program rewriting. Techniques for automatically combining such graph
transformations aim to promote modularity whilst mitigating the increased per-
formance overheads that can occur from an increased number of separate trans-
formations. Nevertheless, it is important that the effectiveness and correctness
of compiler phases is not compromised in favour of modularity or performance.
Therefore, the combined graph transformations need to still satisfy the intended
outcomes of their individual components.

Many existing approaches either take an informal approach to soundness, or
impose conditions that are too restrictive for the kind of graph transformations
found in a realistic compiler. Some approaches only allow transformations to be
combined if the ensuing transformation will produce identical results. However,
certain compiler optimisations behave more effectively in combination, thus pro-
ducing a different but better optimised result. Another limitation of some ap-
proaches is that, although the compiler phases are intentionally modular, the
process of combining them is often tested or reasoned about in a non-modular
way, once they have already been combined.

Thus, this thesis outlines an approach for modular reasoning about success-
fully combining modular compiler phases, where success refers to preserving
only the truly necessary behaviour of transformations. Focusing on postorder
transformations of, first, abstract syntax trees and, then, program expression
graphs, the fusion technique of interleaving transformations combines compiler
phases, reducing the number of graph traversals required. Postconditions al-
low compiler developers to encode the behaviour required of a given compiler
phase, with preservation of postconditions then a significant part of successful
fusion. Building on these ideas, this thesis formalises the idea of postcondition
preserving fusion, and presents criteria that are sufficient to facilitate modular
reasoning about the success of fusion.
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Chapter 1

Introduction

A compiler is generally a large and complex piece of software. Typically, it

needs to take code in an expressive, high-level source language and produce an

equivalent, executable program in a lower-level target language. This requires

many checks and translations, to deal with the high-level language features that

assist the developer but are not useful for the machine that the program even-

tually runs on. Moreover, most modern compilers are optimising, meaning that

they seek to produce efficient target code and eliminate common inefficiencies

introduced by the developer. Again, this can require intricate analysis and

translations of the program being compiled. Therefore, compilers can become

confusing and difficult to work with, unless they are well structured.

The process of compilation tends to be split into a sequence of successive

phases, each transforming or analysing the program in question and passing the

result to the next phase. This typical compiler structure can beneficially exploit

modularity, which is the principle of using small, carefully designed components

to construct a larger and more complex system. For instance, if each compiler

phase performs one task, then it is clear, to the compiler developer, which

part of the compiler is performing which part of the compilation. In this way,

modularity makes it more straightforward to understand, maintain and debug

a complex piece of software, such as a compiler.
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There may, however, be a trade-off between modularity and performance.

Often there are overheads incurred from combining the separate modules in or-

der to construct the required software. This may be because some work is being

repeated across modules that has not been abstracted out as part of the inter-

face. Performance issues may also occur when data structures containing large

amounts of information need to be constructed and passed between modules.

Performance is a crucial property of a compiler. Long compilation times can

have a detrimental impact on the popularity of a compiler, or even the language

that it compiles. It is common practice for developers to compile their code

often, checking for compile-time errors and testing as they go. Moreover, inte-

grated development environments are often set to recompile whenever changes

to the code-base are made. Thus, a slow compiler can massively reduce devel-

oper productivity.

Therefore, in many cases compiler modularity is ignored or sidelined, in

favour of efficiency. Under pressure to improve performance, the compiler de-

veloper will often choose to combine several unrelated tasks into a single com-

piler phase. For instance, a phase originally intended to perform a check on

the program, without making any changes to it, might be co-opted to also in-

clude some program transformations. This kind of ad-hoc manual process can

produce an unwieldy monolithic compiler that is difficult to maintain and very

unapproachable for new contributors.

One approach to compiler structuring that aims to promote both modu-

larity and performance is miniphase fusion [1, 2]. The miniphase framework

imposes a particular structure on all compiler phases, which are specified as

transformations on abstract syntax trees (ASTs). There is then an algorithm

for automatically fusing these transformations by interleaving them at compiler

runtime. This technique reduces the number of AST traversals required to per-

form the required transformations. Hence, the compiler developer can write and

work with modular compiler phases, whilst mitigating some of the impact on

performance. The miniphase framework was used to implement the Dotty Scala

compiler, which demonstrated the real benefits of such an approach. We use
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the miniphase approach as a starting point for much of the work in this thesis.

1.1 Motivation

In addition to modularity and efficiency, another key property of a compiler is

correctness. Compiler verification is a costly and intricate process, and bugs

in a compiler can have drastic safety implications. Therefore it is important

for any compiler technique, such as miniphase fusion, to strongly consider the

effect that it has on correctness. Fusing compiler phases must not detrimentally

change how they behave.

Petrashko et al. [1] set out an informal set of guidelines as to when miniphases

can be successfully fused, relying on developer experience and detailed knowl-

edge of the compiler. These guidelines are augmented by a system of developer-

defined postconditions, for individual miniphase, which are checked during test-

ing. Such an approach has the advantage of allowing the compiler developer

to convey their understanding and expertise of what a given phase needs to

accomplish.

However, it does not take a particularly modular perspective, despite mod-

ularity being the initial motivation for the miniphase framework. Rather, all of

the postconditions for a block of fused miniphases are checked together, on the

result of running the whole fused block. Moreover, relying solely on developer

intuition and testing leaves room for problematic corner cases to slip through

the net.

Since miniphases revolve around transforming an AST, we can look to the

wealth of work on tree transformations to explore other applicable approaches.

In particular, there are various related projects that look at combining or fus-

ing tree traversals. Such related work tends to take a more formal reasoning

approach, and provide very strong soundness guarantees, such that the result of

executing fused tree traversals will be identical to the result of executing them

separately.

Soundness means that if traversals are defined and fused according to the
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rules of a given framework, then that fusion will always be successful. In other

words, those rules are sufficient to ensure successful fusion. The precise defini-

tion of successful fusion varies between different frameworks. A popular defi-

nition is that: the result of running fused tree traversals must be identical to

the same traversals run sequentially. That is, given two tree traversal functions

trav1 and trav2, for any tree t the following must hold:

(fused trav1 trav2) t = trav2 (trav1 t),

where fused trav1 trav2 represents the traversals having been fused within

the relevant framework.

The modularity and formal nature of these tree traversal techniques is ap-

pealing. However, in the context of considering compiler phases, we tend to find

two limitations to such approaches: that they are overly restrictive in terms of

the kind of tree transformations that are permitted, and that they are overly

cautious when deciding whether fusion is allowed. We discuss those two limita-

tions further in the next paragraphs.

Firstly, it is important to note that, these tree traversal techniques are de-

signed for tree traversals, rather than transformations. This means that they

limit the extent of changes that can be made to the tree. For instance, they

might only permit changes to the label of the node being visited, and not permit

changes to the children of the current node. Such assumptions facilitate strong

soundness guarantees, and there are many applications where these kind of

traversals are useful. However, compiler phases often have to make widespread

changes to the tree structure in order to be effective. So, we need to be able to

consider a less restrictive kind of tree transformation.

Secondly, many approaches assume that to be fusible, the fused tree traver-

sals must produce identical results to those from the same traversals run sepa-

rately. However, for compiler phases such as optimisations, the result of fusion

could produce better, and hence not identical, results. That is, optimisations

can sometimes be more effective in combination. The following example demon-

strates an instance of this.
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Example 1. Suppose that we implement two simple AST optimisations, for

specific cases of constant folding. Let the optimisation plus zero perform a

postorder traversal of the AST, and evaluate all cases of adding 0. And let

mult zero also perform a postorder traversal of the AST, and evaluate all cases

of multiplying by 0.

Figure 1.1: A simple AST example.

Figure 1.2: Applying optimisations separately and in combination.

Let t be the tree represented by Figure 1.1. We can easily see that performing

one transformation on the entirety of t, before performing the other, results in

a tree that could still be optimised further. In Figure 1.2, the tree at a) is the

result of applying plus zero and then mult zero to t, whilst the tree at b) is
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the result of applying them in the opposite order.

However, the tree at c) results from interleaving the two transformations,

and having them both try to rewrite each node visited on a single postorder

traversal. Fusing these optimisations, in this way, has made the process more

effective, since the result cannot be optimised further. So the result is not

identical but perhaps we prefer it.

This example is relatively trivial, but it does illustrate the need for a more

permissive definition of fusibility. It does not follow that all optimisations are

more effective in combination: some combinations will be worse. Nor do we nec-

essarily seek, in this thesis, to determine how fusion would affect effectiveness,

in any given case. Rather, by relaxing the requirement for fused transformations

to produce identical results, the compiler developer has more freedom to make

an informed choice about when fusion is appropriate.

1.2 Thesis Contributions

To exploit fusion of compiler phases to maximum advantage, we need a wider

idea of when transformations can be successfully fused. There are cases of trans-

formations that improve with fusion, despite interfering to produce a different

outcome when fused. Thus, to fuse as wide a range of transformations as pos-

sible, we should be less conservative and strive to include such cases. We need

an appropriate definition of fusibility.

Modular Criteria for Postcondition-Preserving Fusion of

Tree Transformations

In the case of tree transformations as compiler phases, each transformation is

generally intended to establish a property of the resulting AST, such as the

absence of a particular language feature. Fusing transformations should not

interfere with the ability of a transformation to do such a job. To this end, we

can define corresponding postconditions that must hold after a transformation
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has run, whether fused or not. This mirrors the approach taken by Petrashko et

al. [1], implementing postconditions for Dotty phases to check during testing.

One issue with the Dotty approach is that such testing only takes place on

the composite fused tree transformations. This is, perhaps, a convenient place

to put postcondition checks, as this testing will take place anyway. However, if

we wanted to reason more formally about whether postconditions are preserved

by fusion, it would be beneficial to avoid the complexities of the resulting fused

transformation. Given that we are aiming to promote modularity in implemen-

tation, we should also seek modularity in reasoning and verification.

Thus, we present and verify modular criteria, relating individual tree trans-

formations and postconditions, that are sufficient to guarantee postcondition-

preserving fusion. This notion of successful fusion is, in effect, parameterised

by the specific postconditions chosen. The criteria are highly modular, in that:

adding another transformation and corresponding postcondition to a set of suc-

cessfully fused tree transformations does not invalidate the established relation-

ships between existing transformations and postconditions. They need only be

checked against the new addition, not rechecked against each other.

Extension to Graph Transformations

In addition to tree transformations, compilers often contain more general graph

transformations, acting on structures such as control flow graphs (CFGs) or

program expression graphs (PEGs). These facilitate useful optimisations, such

as constant folding, dead code elimination and loop optimisations. Given that

we wish to reap the benefits of transformation fusion as widely as possible, it is

advantageous to extend our results about tree transformations to also consider

graph transformations.

The main challenge is that, whilst trees naturally lend themselves to induc-

tive definitions which can easily be dealt with recursively, the typical definitions

of graph structures look very different. Although a spanning tree can form a

tree-like representation of a graph traversal, we still require the extra infor-
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mation about edges which it does not traverse. Hence, we look to Erwig’s [3]

formulation of inductive graphs to aid in this extension.

Using an inductive graph definition, we adapt our work on tree transfor-

mations to consider postcondition-preserving fusion of graph transformations.

This extension is successful in terms of defining and verifying modular criteria.

However, we also discuss the limitations of the inductive definitions, such as the

non-deterministic nature of a representation that depends on the unspecified

order of construction.

1.3 Thesis Overview

The chapters of this thesis proceed as follows, the first half of the thesis dedicated

to setting out context for the work in the latter half.

Chapter 2 details the background ideas against which this thesis is set. This

splits broadly into three sections: compiler structure, compiler correctness, and

more general reasoning techniques. Moreover, the theme of modularity runs

throughout these sections.

Chapter 3 surveys the existing work that relates more directly to the idea

of combining compiler phases or tree transformations, and reasoning about this

process. In particular, we examine how modularity, performance, and correct-

ness are approached in such projects.

Chapter 4 outlines and justifies the methodology employed in this thesis.

This includes specifying the research questions that we are interested in, and

setting out the approach that we have taken to exploring those questions. We

also discuss some of the tools and techniques used in doing this work.

Chapter 5 sets out a series of definitions and proofs for postcondition-

preserving fusion of postorder tree transformations. This essentially formalises

ideas from the miniphase approach and develops a set of modular criteria for

reasoning about fusing tree transformations.

Chapter 6 adapts the work of the previous chapter to consider a more gen-

eral graph transformation definition. To do this we choose an inductive graph

15



representation, in order to smoothly transition from trees to graphs, and we also

discuss the suitability of this choice.

Chapter 7 contains a discussion of the success of this thesis in achieving its

goals, with respect to its contributions and in comparison with related work.

We also outline some potential directions for future work.
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Chapter 2

Background

2.1 Introduction

Modularity in computer programming is the idea that large complex programs

should be constructed from component parts that are smaller and simpler. This

approach has a number of benefits. Modular programs are easier to understand

and maintain, as the location of any given task can be narrowed down to its

corresponding component. Moreover, testing, formal reasoning, and debugging

are all facilitated by the ability to isolate relevant parts and focus in on a given

problem. In addition to this, well written program components can be reused in

multiple places, reducing code repetition and allowing changes to be made effi-

ciently. Therefore, developers tend to incorporate modularity, be it informally

as an aspiration, or using a more formal framework for implementation.

Parnas [4] established the idea of information hiding as a key part of modu-

larity, which had previously focused on code reuse as the central objective. The

essence of information hiding, or abstraction, is that the user or developer should

have exactly the information that they need, that is no more and no less than

strictly necessary. Parnas derived an approach for formally and precisely spec-

ifying program components, but without including excess information within

that specification. In particular, attributes that are likely to change should be
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kept secret. This permits internal reimplementations that do not alter how the

module has to be interacted with externally.

Parnas, Clements and Weiss [5] were keen for formal modular methodologies

to become part of the real-world toolkit, rather than remaining the preserve

of academic conference papers. They argued that information hiding allows

developers to identify which details of components are vital for them to un-

derstand and which are irrelevant. Moreover, if decomposed in a suitable way,

the modules themselves should be simple enough to be easily fully understood.

Rather than overcomplicating the development process, when appropriately im-

plemented, a modular approach can, in fact, be helpful.

Baldwin and Clark [6] worked to clarify the concept of modularity in com-

puter systems, building on the ideas of Parnas, in order to form a theory of how

modularity influences designs and designers. They identified that the crux of

modularity was in a hierarchical structure and the relationships between the el-

ements making up a system. The level of independence of the system’s modules

is significant here. That is, the weaker the links between modules, the greater

the degree of modularity. They also argued that, for a design to be successfully

modular, it is necessary to derive and implement a set of design rules. Resulting

from such stipulations, Baldwin and Clark recognised two specific advantages

of modularity.

1. If a module can be altered independently of the rest of the system, then

the options for updating and improving the system are multiplied.

2. If the design rules for the system are sufficient, then design decisions can

be decentralised, with designers able to make independent and innovative

choices within the scope of the rules.

Thus we see that, a major challenge in implementing modularity lies in the

task of effectively combining the modular components. In order to work well

together, such components should provide an interface that can be relied on,

regardless of how that component is implemented. The method for combining

these components can then utilise their interfaces, meaning that it remains
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unchanged in the case that a component is reimplemented. In addition to this,

tasks such as passing data between components can increase the space or time

overheads of the software as a whole. Therefore, software components need

to be combined carefully, in order to reap the benefits of modularity without

compromising in other important areas.

Since modern software design tends to embrace the concept of modularity,

the tools and techniques that are used for such projects need to take modularity

into consideration. This includes programming languages, methods of reasoning

about software, and implementation strategies. As Baldwin and Clark discov-

ered, the key to realistically useful modularity is to establish a framework which

will enforce the ways in which modules interact, as well as providing an idea of

what a module should look like in a given situation.

For the most part, this thesis explores modular reasoning about modular

compilers. To ground and contextualise this research, we look at existing knowl-

edge about the ideas of modularity, compilers, and reasoning about programs.

These are broad and well-established concepts, and so we focus on: defining

them, outlining their evolution and current position, and exploring the ways in

which they overlap. Most importantly, we can then use this background knowl-

edge to motivate the general problem area of our research. The three main

topics covered in this chapter are as follows.

Compiler Structure First, we look at how compilers can be structured, with

a focus on their inherent modularity. As complex programs, there are obvious

benefits to be gained from a modular approach. Fortunately, the compilation

process can generally be decomposed along intuitive lines, since the phases of the

compiler pipeline provide a convenient basis for modular components. Moreover,

given the wide range of possible source and target languages, along with the

variety of potential optimisations, there is a real necessity for interchangeable

components that facilitate code reuse.
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Compiler Correctness Next, we move on to techniques for reasoning about

compilers and, more specifically, the field of compiler correctness. This has been

researched both intensively and extensively, since the compiler is an integral

part of the software development pipeline. It is vital that target code behaves

as specified, otherwise it is not useful. Most formal reasoning is done on source-

level code so, in order for it to be worthwhile, the compiler must be known to

preserve whatever guarantees are established. However, the process of compiler

verification is complex and costly, so effective techniques, exploiting properties

such as modularity, are crucial.

Reasoning Techniques Finally, we cover more general reasoning techniques

that have a focus on modularity. Many approaches to software correctness are

based on or inspired by Hoare-style logic, using preconditions and postconditions

to specify program properties. This lends itself to a modular perspective because

such conditions naturally form interfaces between segments of code. Formally

verifying, or even exhaustively testing, real-world software can be impractical

due to its complexity. Modularity can allow the problem to be broken down

into related segments that are each of a more manageable size.

Together these background ideas set the scene for the research in this thesis.

There is much to be gained from a modular and rigorously formal approach,

but this has to be applicable to real-world situations to have an impact. This

is a theme that runs through all three of these fields. As we will see, compilers

are complex programs for which correctness is paramount, therefore modular

approaches to implementation and reasoning are particularly valuable.

2.2 Structuring a Compiler

A compiler takes a program written in some source language, and translates it

into a target language. Generally, the source language is high-level and expres-

sive, allowing a developer to write effective code, whereas the target language is
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comparatively low-level and easily executable. During translation, the compiler

will check the program and is able to report certain errors. Many compilers also

perform optimisations, so that the efficiency of the emitted target program is

improved.

2.2.1 Modularity in compilation.

The need for compilers arose, primarily, from the development of higher-level

languages, which make programming more intuitive and approachable for the

programmer. The further abstracted these languages are, from the level of ma-

chine code, the more potential work a compiler will have and the more complex

it will become. Thus, it is vital that the structure of the compiler is clear and

organised, for instance via modularity.

In a 1962 history of the compiler [7], Knuth wrote: “Five years ago it was

very difficult to explain the internal mechanisms of a compiler, since the various

phases of translation were jumbled together into a huge sprawling algorithm. The

passing of time has shown how to distinguish the various components of this

process, revealing a basic simplicity.” This suggests that, even relatively early

in compiler evolution, some kind of modularity had been reached and identified

as an important feature.

Modern compilers lend themselves naturally to a modular structure, since

they perform a conceptually modular process. From analysing and represent-

ing the input program to generating the output code, the compiler pipeline is

naturally divided into a series of separate phases, which can be generalised as

follows.

1. Lexical analysis: eliminates unnecessary program elements like certain

whitespace and comments, and translates other elements into tokens that

can be recognised by the rest of the compiler.

2. Syntax analysis: checks the generated tokens against a specified syntax

for the source language, and constructs structural representations of the

program, such as parse trees and abstract syntax trees.
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3. Semantic analysis: checks that the program is consistent with a specified

semantics of the source language, often examining static types.

4. Intermediate code generation: uses the AST to produce code in an inter-

mediate language, that is a lower-level language than the source which is

still independent from the specific target architecture.

5. Optimisations: performs general optimisations on the intermediate lan-

guage, such as constant propagation and optimisations on loops, which

will ultimately result in more efficient target code.

6. Target code generation: uses the optimised intermediate code to produce

corresponding code in the prescribed target language.

These are common steps in compilation, although some, such as optimisations,

are not essential. Regardless of the languages in question, there are various stan-

dard techniques for each stage which most compilers will exploit. This means

that it is beneficial to implement independent components that can be combined

and specialised to produce a compiler for the required language combination.

Generally, a compiler phase refers to a conceptual segment of the pipeline,

whereas a compiler pass is a traversal of the source code to perform some analysis

or rewrite. Sometimes this entire compilation process can be completed in a

single pass of the source program, which is done in an attempt to improve

memory usage and compilation time. Pascal [8, 9], for example, is a notable

case of a language that lends itself to single-pass compilation. However, multi-

pass compilers are increasingly well supported by modern architectures and

continue to be popular due to an increased preference for modularity in general,

and through the influence of endeavours such as compiler verification. Moreover,

effective optimisations tend to require multiple passes, especially where different

optimisations are working together.

One way of imposing modularity on compilers is through the implementation

of compiler frameworks. The LLVM (Low Level Virtual Machine) [10] is one

extensively used compiler framework, which facilitates modularity. It provides a
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low-level type system that is independent of source language. This means that

sophisticated analysis techniques, such as dependence analysis, can be imple-

mented once and then reused in cases of different source languages. Moreover,

introducing high-level type information to a lower-level representation allows

more transformations to be performed at the same level. Thus, components can

be interchanged in a way that a multi-level approach does not permit.

Some compilers put modularity even more explicitly at the forefront of their

implementation. For example, the miniphase [1, 2] and nanopass [11, 12] frame-

works, both encourage small simple compiler phases which are combined in a

standardised way. Here, we outline these ideas, exploring how, and how effec-

tively, each approach deals with the challenges of promoting modularity. In the

next chapter, we will return to these frameworks, comparing the two approaches

and exploring further how they are relevant to the work in this thesis.

The miniphase framework.

Motivation Scala is a high level, statically typed object-functional language.

The original intention of the development of Scala was to encourage the con-

striction of modular software and reusable components. The initial hypotheses

[13] for the creation of Scala were twofold:

1. “a programming language for component software needs to be scalable”

2. “scalable support for components can be provided by a programming lan-

guage which unifies and generalizes object-oriented and functional pro-

gramming”

Hence, developments in Scala have been instrumental in perpetuating the com-

bination of features from both paradigms, throughout the landscape of program-

ming language design, and promoting a modular approach to programming.

The miniphase framework [1, 2] was created as part of the experimental

Dotty compiler for Scala. The purpose of Dotty was as a platform for trying

out new ideas, which could be implemented as a subsequent official compiler

23



for the launch of Scala 3. In particular, Dotty embraced the idea of having

a deliberately modular structure, with large numbers of simple phases, each

implementing a specific function, being used to build the compiler pipeline.

Here we specifically discuss the version of Dotty outlined in the paper [1] as a

stable and simplified case study.

Prior to Dotty and the introduction of miniphases, the standard Scala com-

piler, scalac, was deemed to be overly difficult to understand, perhaps akin

to the jumbled sprawl that Knuth [7] complained of some fifty years earlier.

There were phases that were nominally determined to perform one task, but

also included some other unrelated tasks. Dotty intended to fix this problem

by imposing modularity as an inherent feature of its compiler phases. This is

particularly significant in an open-source setting such as Scala, where disparate

developers may be working on the language or related tools without compre-

hensive communication.

Framework The miniphase framework provides a template for what a com-

piler phase should look like. In essence, a miniphase is a compiler phase which

does the following.

• utilise a postorder traversal of the abstract syntax tree

• implement a transform method for each tree node type, and a general

transform method that selects from among these the appropriate trans-

formation for any given node

• list the other miniphases that this one must run after, on either a node-

by-node or entire tree traversal basis

• specify a predicate over tree nodes that encodes and checks a postcondition

By standardising the structure of the compiler phases, it is easier to determine

what an unfamiliar phase is supposed to be doing. Furthermore, whilst the first

two of these stipulations pertain to the functionality of the individual miniphase,
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the latter two are used to ensure that miniphases relate to each other correctly.

So, by design, miniphases draw on key principles of modularity.

Development and Challenges The Dotty compiler is written in Scala it-

self, exploiting the object oriented nature of the language to enforce modularity.

The object oriented programming paradigm has modular ideas, such as encap-

sulation, at its core. Encapsulation is a strong form of information hiding. For

example, certain members of a class may be only accessible via given methods,

allowing the class developer strict control over what happens to those members,

as well as the freedom to reimplement the class with minimal effect on its users.

Dotty uses Scala classes to implement the trees and miniphases that it requires,

exploiting inheritance to achieve both code reuse and uniform phase structure.

The predominant challenge that the miniphase approach sought to overcome

was that of performance. By modularising, and thus increasing the number of,

AST transformations, the AST needed traversing many more times. Similar

performance issues had been addressed previously, in scalac, by manually com-

bining the source code of different transformations, and thus losing any sense of

modularity. In attempt to improve on this, the miniphase framework provides a

fusion algorithm for automatically combining miniphase transformations before

they are run. A standardised fusion method is made possible by the strict con-

ditions imposed on how miniphases are implemented and produces a performant

compiler which is still inherently modular. The motivation and implementation

of this miniphase fusion are discussed in further detail in Section 3.1.

Another challenge facing miniphases was in ensuring that the restrictions on

compiler phases are not overly restrictive. The purpose of standardising parts

of miniphases such as the traversal order is to allow them to be automatically

fused, as well as improving clarity. However, the required stages of compilation

still all need to be performed. The Dotty project demonstrated the viability of a

realistic compiler that adheres to this framework, and showed that phases that

previously violated the miniphase specification could be reimplemented within

it.
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Uses and Benefits The version of Dotty outlined in the paper [1] had 54

miniphases, with stated intentions to at least double this number. Together

the phases were sufficient to compile Scala source code down to Java bytecode.

These Dotty miniphases included: analyses and checks on features like abstract

and static members, translations of features like pattern matching and exception

catch cases, and optimisations such as tail recursion elimination and method call

inlining.

The Dotty team also reported that the introduction of miniphases was help-

ful to its developers. The simplified and standardised nature of these phases

allowed new contributors to get started more quickly. Moreover, it was easier

to locate and solve specific problems, without needing to understand a lot of

unrelated surrounding code. In addition to this, the preconditions and post-

conditions that miniphases specify provided a loosely coupled mechanism for

testing the work of loosely connected developers.

The nanopass framework.

Motivation Modularity is often exploited for educational purposes, particu-

larly when learning to implement a complex process such as compilation. Mod-

ular phases provide learners with the ability to break the task into manage-

able chunks, and weakly linked components allow a series of assessments to

be graded independently of one another. This was a concern of Aiken’s Cool

compiler project [14], designed for teaching compiler construction and revolving

around the purpose-built Classroom Object-Oriented Language. Cool was pub-

lished, not only to share resources but, to encourage others to share educational

resources too.

Indeed, the initial nanopass paper [11] was another example of sharing teach-

ing experience and expertise, and similarly championed a modular approach.

The educational nanopass compiler arose from compiler courses at Indiana Uni-

versity. The goal was to present a compiler as made up of small phases, aligning

its implementation with the conceptual process of compilation. Moreover, the
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framework aimed to provide tools to support the development of this kind of

compiler, especially for inexperienced developers.

Framework The nanopass framework standardises the structure of compiler

phases, with common processes such as program traversal abstracted into a

more general separate algorithm. Each nanopass must provide formally specified

input and output languages, along with mappings from input language features

to output language features. These intermediate languages may be very closely

related, in the case that very little is altered. So, the framework allows one

language to extend another existing language, inheriting everything that does

not change. This again reduces the amount of code being repeated in writing

compiler phases.

Development and Challenges Implemented in Scheme, the nanopass frame-

work takes advantage of the macro system to write tools as extensions. This

is significant for achieving code reuse when defining nanopasses and the corre-

sponding intermediate languages, providing the ability to automatically com-

plete certain boilerplate code.

One challenge for the nanopass framework was related to the performance

impact of combining many small compiler phases. The concern was that a slow

compiler would disillusion the students learning how to write it. An advantage

of the modular nanopass approach is that it makes it easier to switch off given

phases, such as particularly time consuming optimisations. This not only al-

lows the student to trivially speed up their compiler if wanted but also gives

them some intuition of which phases impact heavily on performance. However,

performance is not as significant in this case as it would be for a commercial

compiler, and hence is not as high a priority.

Uses and Benefits The original nanopass framework was used by students

to practice implementing a compiler from Scheme to Sparc assembly code, via

over 50 nanopasses. These nanopass phases included: checks such as on the
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uniqueness of bound variables, translations of features not present in the output

language such as converting from basic blocks to linear stream of instructions,

and optimisations such as replacing direct lambda calls with let expressions. The

move away from the monolithic compiler structure allowed students to easily

implement more complex compilation, and the nanopass framework helped to

clarify the educationally meaningful parts of each phase.

Further to this, the nanopass framework has also been used in industrial com-

piler construction. Keep and Dybvig [12] took the original educational frame-

work as a prototype and built on it, for use in the commercial Chez Scheme

compiler, modularising the original 10 phases into around 50 nanopasses. They

improved the usability of the framework, adding features that were specifically

useful to the real-word developer, and put more emphases on performance. Us-

ing the nanopass framework, and including a more expensive register allocation

algorithm, the runtime of the implemented compiler was slower than, but within

a factor of two of, the previous iteration of the Chez Scheme compiler. It also

produced target code which was up to 27% faster than previously produced.

2.2.2 Aspect-oriented approaches.

Another approach to developing modular software, that has been adopted by

some compiler projects, is aspect-oriented programming. These aspect-oriented

approaches focus on automatically weaving together modular components, a

similar idea to that at the heart of miniphase fusion. Whilst miniphases are

focused on mitigating the performance impact of modularity, aspect-oriented

approaches tend to focus on maintainability, reducing the likelihood for devel-

opers to introduce errors when writing compiler phases.

What is aspect-oriented programming?

Aspect-oriented programming centres around the idea of cross-cutting concerns,

that is, an area of functionality which is scattered across a program making

it difficult to cleanly separate out into a meaningful modular component. For

28



example, security is a concern that necessarily touches many parts of a program.

Suppose, in a business application, that some user security clearance level must

be checked before any method can run. Then such an authorisation check must

be implemented at each method that is written.

The aim of aspect-oriented programming, then, is to help the developer

to effectively separate cross-cutting concerns. Aspects represent cross-cutting

concerns, and aspect-oriented languages allow aspects to be defined and then

woven together to construct a program. In this way, modularity can introduced

to situations where it would traditionally be difficult to achieve.

Aspect-oriented programming is not as widespread or popular as paradigms

such as object-oriented programming. It can involve a steep learning curve

for developers who are unfamiliar with effectively using aspects. In addition

to this, mature tooling to support aspect-oriented programming is not always

available. Hence, the separation of cross-cutting concerns must be deemed im-

portant enough to warrant a potentially substantial time investment.

One disadvantage of aspect-oriented approaches, with respect to modularity,

is that it can negatively impact the readability of code. A touted benefit of mod-

ularity is that it makes software easier to understand and maintain. However,

the way that aspect-oriented languages weave together elements of different as-

pects to produce the final program can obscure the control flow. This makes it

difficult to follow what is happening by just looking at source code.

Thus far we have explored compiler modularity in terms of compiler phases,

that is, in terms of the transformations that must be applied to the program

being compiled. However, there is another dimension to consider. The program

itself can be viewed as the composition of various syntactic elements, such as

variables, constants, and operators. These elements are often represented in

compilation as the nodes of an abstract syntax tree (AST), with each transfor-

mation defined to rewrite some of these nodes. However, it can be difficult to

achieve compiler modularity in terms of both transformations and AST nodes,

due to cross-cutting concerns. Aspect-oriented approaches to compiler construc-

tion aim to address these kind of difficulties [15].
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Inheritance patterns vs. visitor patterns in compilers.

A pattern, particularly in object-oriented programming, is a systematic ap-

proach to a common design problem [16]. For instance, inheritance and visitor

patterns are popular approaches to designing modular compilers [17]. Inher-

itance patterns define a super-class for AST nodes, from which each type of

AST node inherits and implements the required AST transformations. On the

other hand, visitor patterns define transformations that each take account of all

possible node types. Inheritance and visitor patterns view modularity in terms

of AST node types and AST transformations, respectively, but have difficulty

in doing both. Thus, modularity in compilers often occurs in one of these two

dimensions. This is a problem of cross-cutting concerns, that can be helped by

an aspect-oriented approach.

Inheritance patterns rely on defining a super-class or super-type for AST

nodes, which all nodes must inherit from. Such a super-class sets out the trans-

formations that every node must implement, that is, each of the AST trans-

lations and optimisations that the compiler performs. Then each node type

specifies how each transformation acts on it. In this way, adding a new type

of AST node is easily done with minimal alteration to the existing nodes. The

new node simply inherits and implements all required transformations for itself.

However, if a new transformation must be added, then each node must be al-

tered to add the appropriate implementation of the new transformation on that

node.

Visitor patterns, conversely, view modularity from the perspective of the

transformations. A super-class is defined for transformations, setting out the

node types that each transformation must be able to deal with. For instance, if

there are node types A, B, and C, then each transformation would have to im-

plement transformA, transformB, and transformC, or some similarly named

methods. This makes it very easy to add a new transformation, since it just

needs to inherit from the super-class and implement the required methods. How-

ever, it is now more difficult to add a new node type, since each transformation
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must be altered to accommodate it.

The conflict between modularity in terms of AST node types and AST trans-

formation, as highlighted by comparing inheritance and visitor design patterns,

is a classic example of cross-cutting concerns, which are difficult to untangle.

Aspect-oriented programming, then, is an obvious contender for addressing such

a problem.

TreeCC: an aspect-oriented compiler-compiler.

One example of an aspect-oriented compiler project is Tree Compiler-Compiler,

or TreeCC [17]. As a solution to the competing problems of frequently changing

AST nodes and frequently changing AST transformations, TreeCC leans on

aspect-oriented ideas. Building on a visitor pattern, which modularises in terms

of transformations, aspects are used to also allow the encapsulation of node

types. TreeCC then includes a domain-specific language for defining node types

and transformations and weaving them together, in an aspect-oriented manner.

A benefit of the TreeCC framework is that the implementations of trans-

formations for different node types can be scattered throughout the codebase.

These definitions are then gathered together when TreeCC builds the compiler.

This means that when a new AST node is added, the new resulting transfor-

mation cases can be implemented in a separate file, rather than having to alter

each original transformation individually. Another key element of TreeCC is a

mechanism for checking that each transformation considers every defined type

of node. This is something that could easily be forgotten when adding a new

node type, but will be flagged automatically, avoiding any resulting bugs.

JastAdd: aspect-oriented compiler construction with Java.

Another project that takes an aspect-oriented approach to compiler construction

is JastAdd [18]. Built in Java, the JastAdd framework revolves around trans-

formations of an object-oriented AST structure. This object-oriented approach

to defining ASTs naturally modularises in terms of node type. Inheritance is
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central to object-oriented programming, and so it would be easy to fall into the

inheritance pattern approach to compiler construction.

In order to also allow modularity in terms of AST transformations, JastAdd

uses a method inspired by inter-type declarations in AspectJ [19], an aspect-

oriented Java extension. These inter-type declarations allow additional methods

or fields to be declared from outside of the type declaration that they belong

to. In JastAdd, different parts of compiler functionality, such as typechecking

and code generation, are defined as aspects. Each aspect has its own file or

module, containing the relevant methods and fields for each AST node type.

The JastAdd system then collects these definitions and automatically weaves

them into complete AST node classes.

One difference between the JastAdd and TreeCC frameworks is that JastAdd

is specifically designed to be implemented in object-oriented language. This

means that it can directly exploit the benefits that object-oriented program-

ming provides when writing modular software. In particular, encapsulation is a

key pillar of the object-oriented paradigm, and is also tied to some of the key

features of modularity. Encapsulation is the principle of restricting access to

the components and implementation of an object. This promotes information

hiding and necessitates a well defined interface for objects to interact with each

other, which are two important elements of modular software.

Whilst JastAdd borrows the concept of inter-type declarations, from As-

pectJ, there are many other parts of aspect-oriented programming that it does

not take on. Wu et al. [20] explore how AspectJ can be used more directly

to facilitate compiler construction. For instance, the join point model of As-

pectJ allows aspects to define functionality that is inserted into the control flow

dynamically, rather than just weaving aspects together statically. This can be

used to encode more elements of the compiler, such as the AST traversal order.
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2.2.3 Graph structures in compilation.

A compiler that is constructed from a series of separate phases requires a mech-

anism for passing information from one phase to another throughout program

compilation. To this end, graph structures are commonly used to represent pro-

grams as they travel along the compiler pipeline. Some compilers use the same

representation throughout, whilst others use different forms of graph structure

for different phases. The most commonly found examples, in practice, include

abstract syntax trees and control flow graphs, although compilers exploit graphs

to represent and manipulate programs in a variety of ways [21].

To illustrate each type of graph structure, we provide an example, in the

form of a corresponding graphical representation of the following pseudocode

snippet.

i := 0

while (i <= 10) {

i := i + 1

}

Figure 2.1: Code snippet for graph structure examples.

Figure 2.2: Abstract syntax tree (AST) for code in Figure 2.1.
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Abstract syntax trees.

Generally used in the early parts of compilation, abstract syntax trees (ASTs)

represent the structure of a given program. An AST contains only necessary

program elements, so it is abstracted from the concrete syntax of the source code.

The inner nodes represent operators with the node’s children representing its

operands. Moreover, since the tree structure itself can encode the hierarchical

nature of a program, certain delimiters, such as parentheses and semicolons, may

be removed. Thus the AST is more compact than a parse tree which represents

the syntax of the given source program more comprehensively.

The AST is often annotated with extra information that the compiler gains

from its analysis phases and makes use of later. Various static analyses can be

performed on the AST as part of compilation. For example, the semantic anal-

ysis phase usually involves static typechecking on the AST. Such typechecking

is a compositional process, according to the nature of type inference rules. The

AST structure facilitates the decomposition of expressions into subexpressions

for this purpose.

Typically, once the frontend analyses have been satisfactorily completed, the

AST can be used to generate either intermediate code, to be optimised, or target

code. This process involves flattening the tree structure into a more linear form,

such as three address code or a different graph based structure.

The Dotty compiler [1, 2], as discussed previously, uses an AST structure

throughout its pipeline of miniphases. Such consistency helps the miniphase

approach to promote modularity. Since all miniphases are AST transformations,

they can easily be interchanged and reused. This would not be the case if

different phases used different intermediate representations.

Directed acyclic graphs.

It is possible to avoid repeating identical subtrees, as happens in ASTs, by

allowing nodes to have multiple parents, that is by forming directed acyclic

graphs (DAGs) instead of trees. For example, in the AST in Figure 2.2 there
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Figure 2.3: Directed acyclic graph (DAG) for code in Figure 2.1.

are multiple nodes representing the variable i. In Figure 2.3, the DAG only

has one node for i, which is shared as required. This DAG representation is

yet more compact than the AST, reducing further the burden on memory and

the number of nodes to traverse. Moreover, the compiler then has information

encoded in the intermediate representation that it can exploit for optimisation.

Identifying shared nodes through constructing this DAG representation can

lead to local optimisations such as common subexpression elimination and dead

code elimination. Such transformations get rid of unnecessary instructions that

are performing computation which has been performed previously or that will

never be reached in the program execution. The DAG also facilitates the move-

ment of statements within a block, by highlighting which statements are inde-

pendent and can therefore be reordered. Essentially, DAGs can represent more

information about dependences in the program than ASTs, which can be useful

for compilation.

Control flow graphs.

Control flow graphs (CFGs) [22] are commonly used to represent programs at

a low-level within the compiler pipeline. Unlike the DAGs discussed previously,

CFGs typically need to contain cycles, in order to explicitly represent the control

flow of a program, that is the order in which instructions should be executed.

To this end, the nodes of a CFG correspond to the program’s instructions or
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Figure 2.4: Control flow graph (CFG) for code in Figure 2.1.

basic blocks, rather than representing its various syntactic elements.

The analysis of control flow is key to many low-level but architecture in-

dependent optimisations. For instance, any parts of the graph, and thus the

program, which are never touched by control flow will play no part in program

execution. Where this can be determined statically, they can therefore be re-

moved from the compiled code. Moreover, examining control flow facilitates the

discovery of loops which naturally provide fruitful optimisation targets. Loops

tend to dominate computation time, and thus this is a significant endeavour.

Figure 2.5: Program expression graph (PEG) for code in Figure 2.1.

Program expression graphs.

Another graphical representation for compiling programs is the program expres-

sion graph (PEG) [23]. This falls somewhere between the AST and the CFG,
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in terms of how it represents programs and how it is typically used. The inner

nodes of a PEG represent operators with the children of the node providing the

necessary arguments. These operators can include special built-in nodes which

have been defined to encode conditionals and loops. Thus, it is easier to identify

and manipulate such features in PEGs than for the ASTs and DAGs previously

discussed.

Figure 2.5 shows a PEG representation of our code snippet example. The

THETA node is used to represent loop variables; in this case it represents i. The

first child of THETA tells us that it is initialised to 0, and the second child tells

us what happens on each loop iteration. The EVAL and PASS nodes are used

to determine the value of THETA at the end of the loop. The descendants of

PASS encode the terminating condition of the loop, denoting that the loop stops

executing if the while loop condition is not met.

A PEG can be obtained from a CFG, and vice versa, with a natural corre-

spondence between the two [24]. One notable feature is that making local PEG

changes can have wide-reaching and complex effects on the analogous CFG. For

instance, a series of PEG transformations, applying simple equations to per-

form local rewrites like operator distribution and constant folding, can result

in a corresponding CFG with a vastly different node configuration than it had

before.

2.2.4 Intermediate languages in compilation.

While the various graph structures used in compilation provide different forms

of intermediate representation, compilers can also use the idea of intermediate

languages to formally characterise sections of pipeline. Like an intermediate

representation, an intermediate language provides a stepping stone in between

the source language and target language. This means that part of the compiler is

not wholly dependent on these particular languages. It may be that code in the

intermediate language is obtained from source code and immediately translated

into target code, in which case it simply provides a common point for different
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combinations of frontends and backends to be joined together. Alternatively, it

may facilitate a series of optimisations which can be easily reused.

As we saw previously, formally specified intermediate languages are a key

part of the nanopass framework [11, 12]. In this case, there is not just one

intermediate language but many of them. Each language is a slight perturbation

on the last, starting from the source language and getting incrementally closer

to the target language. This approach precisely specifies the outcome of each

compiler phase, with many intentions and invariants able to be encode within

the definition of a language. It also facilitates compiler verification, by formally

specifying semantics at each level of the compiler which can then be formally

related to each other.

2.3 Reasoning About Compilers

It is important to be able to reason about compilers, since their correctness is

often paramount. Where bugs are introduced into code, by incorrect compila-

tion, the safety and security of that code can be compromised. As compilers are

large and complex pieces of software, it can be difficult to identify or locate the

source of such problems. Moreover, because testing may miss obscure problem-

atic cases, formal reasoning techniques provide stronger correctness assurances.

A correct compiler should preserve the observational behaviour of any pro-

gram it compiles. In other words, the target program must behave in the same

way as the source program would be expected to. There are various formal

definitions of compiler correctness which differ between projects.

2.3.1 The evolution of compiler verification.

Compiler verification is a key component in effectively applying formal methods

to software. It is much easier to reason about a program at the source language

level than, after it has been compiled, at the target language level. The source

language has been chosen, in part, because it is human-readable and allows the
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programmer to express and understand what the program should do. This is

generally not the case for the lower-level language that it will be compiled to.

Otherwise, the program could be written directly in the target language and

there would be no need for a compiler. However, if verification is done at the

source language level, it is vital to ensure that proven guarantees are preserved

by compilation.

Compiler verification is a well established endeavour, first proposed in 1967

[25] and keenly studied since [26]. The main idea is to logically link the source

and target versions of the program being compiled. This means that verification

of source code is sufficient to provide guarantees about the compiled target code,

as well as more informally preserving the programmer’s expectations about how

their program will behave. Developments such as CompCert [27] have shown

that compiler verification is a realistic goal and results in actual benefits, with

respect to compiler bugs [28].

2.3.2 A variety of proof technologies.

Appropriate tooling is vital in facilitating the complex task of compiler verifi-

cation. In general, theorem provers are preferred over solely using automated

processes such as model checking. This is predominantly due to the large and

complex nature of the compiler as a piece of software. Due to the size of the state

space involved, model checking would have to consider a vast number of cases,

in order to provide strong correctness guarantees. Thus model checking is an

unpopular choice for real-world compiler verification, since memory constraints

become problematic.

Early work used the LCF theorem prover for mechanising a simple example

[29]. This kind of approach has continued, with the Coq theorem prover used

in projects such as CompCert and Vellvm [30], and HOL4 used in CakeML

[31]. However, compiler verification still signifies a significant proof effort. For

instance, CompCert required 35 000 lines of code, 87% of which corresponded

to specification and proof.
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Boyer-Moore, Nqthm and ACL2 A number of early projects used the

Boyer-Moore or Nqthm theorem prover, such as the CLI verified stack project

[32]. This looked to verify a Micro-Gypsy to gate level stack [33], building on

a verified translation from Piton assembly language to FM8502 microprocessor

[34]. Projects like these recognised the value of correctness in the pathway from

high level languages to realistic low level implementation. ACL2 is the natural

successor to Nqthm and has seen continued use, being adopted by industry for

software verification. Goerigk [35] used ACL2 to prove partial correctness of a

compiler. The main drawback of using ACL2 is that it only provides a first-

order language, limiting its expressiveness. This allows the prover to make more

general assumptions when considering proof automation. However it does make

it more difficult to specify certain requirements.

PVS Much of the initial interest in compiler correctness came from related

ESPRIT ProCoS projects, which in turn led to the Verifix project. The main

focus of Verifix [36] was to develop generalised methods for compiler verification,

using languages such as Common Lisp, ML and C as case studies. These efforts

mostly used the Prototype Verification System (PVS). This proof tool is based

on a classical typed higher order logic. It provides a collection of theorem

proving procedures, which can be augmented by user defined procedures. As a

result, the user can develop efficient automated elements specific to their needs.

LF, Elf and Twelf The LF logical framework is tailored towards the formal-

isation of various logics and programming language theory. Hannan and Pfen-

ning [37], used an implementation called Elf to verify a compiler from Mini-ML,

a simple functional language, to a simplified version of the Categorical Abstract

Machine (CAM). The reasoning given for this choice of proof tool is the abil-

ity to use the same framework to specify all components, from the syntax and

semantics to the compiling translation.

The latest implementation of LF is Twelf. Although it remains a lightweight

solution for proofs in its specialised domain, it does not provide the automation
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tools of other more general provers. As the general consensus is that some level

of proof automation is invaluable for a system as complex as a realistic compiler,

there are other technologies that are better able to provide this.

HOL and Isabelle The Higher Order Logic (HOL) series of theorem provers

are successors to the LCF proof checker used by Milner and Weyhrauch [29].

Various instances of these are used throughout compiler verification projects. In

particular, post-2000 papers provide a cluster of work using Isabelle, a popular

interactive HOL theorem prover. These include Klein and Nipkow’s [38] verified

bytecode verifier for the JVM. Moving away from the specific area of compilers,

Isabelle was also used for the sel4 verified microkernel project [39]. This was

a significant result in the general field of system verification, and demonstrates

that Isabelle is a potentially suitable tool for attacking these kinds of problems.

HOL4 is another theorem prover based on HOL. It formed a central part

of the the CakeML[31] work towards a verified implementation of ML. This

involved a verified compiler from a major subset of Standard ML to realistic

machine code. It also looked at bootstrapping a correct compiler. CakeML

showed that realistic compiler verification is possible for higher level languages.

One of the main lessons from the project was the importance of constructing

a compiler with verification in mind, such that the required invariants are pre-

served at each stage. The work also fed back into efforts to self-verify the HOL

system itself [40].

Coq The Coq proof assistant has been a stalwart of verification work in recent

years, including the landmark CompCert project [27]. Coq [41] is an interac-

tive theorem prover written in OCaml, which implements a dependently typed

functional language. The constructive logic used is based on the Calculus of In-

ductive Constructions. At the heart of the structure of Coq is the Curry-Howard

Isomorphism, stating the equivalence of proofs and programs, and therefore of

propositions and types.

Hence, Coq provides a type theory called Gallina which is used to specify
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definitions, theorems and proofs, and is equipped with a corresponding type

checker. A layer of syntactic sugar makes this more accessible to the user, and

a tactic language called Ltac can be used to write proof scripts which generate

Gallina proofs. The equivalence of proofs and programs also facilitates the Coq

extraction mechanism. This allows users to develop specifications in Gallina

and then extract the corresponding program in OCaml, Haskell or Scheme.

Extraction to certain other languages is also possible via community developed

plugins.

There are many features that make Coq a valuable proof tool. Coq is de-

pendently typed, which means that types can contain references to the program

itself. Therefore the user can write types which express correctness properties.

This could potentially lead to more elegant proof techniques. In addition to this,

Coq is based on a small kernel language which can be independently verified.

This strengthens the user’s ability to trust the proof tool itself. Furthermore,Coq

provides avenues to a certain degree of proof automation. Alongside some basic

automation tactics within the standard Ltac language, users can write their own

tactics using Ltac or by plugging in ML code.

Across various works, Chlipala [42, 43, 44] argued for the importance of

appropriate automation in compiler verification, choosing Coq as a suitable

tool. With complex proofs,there are often many cases to consider of which only

a handful will embody the crux of the proof. Hence where uninteresting cases

can be made trivial by automation tactics, the user’s time can be better spent

on understanding the core nature of the problem. Moreover, where language

specifications and theorem statements change, fully manual proofs can require

a large amount of editing in order to extend to the new situation. Well written

proof scripts, in a tactic language such as Ltac, can be structured such that

they will adapt to changing specifications.

Chlipala [42] used Coq to certify a type preserving compiler from simply

typed lambda calculus to an idealised assembly language. The paper claimed

that the type preservation and use of typed intermediate representation facil-

itates efficient automation, through a type directed proof search. Where the
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types are rich enough they can inform decisions as to which proof step to take,

with sufficient accuracy to be useful. Hence, Chlipala demonstrated that the

Coq mechanisms are suited to this kind of partially automated reasoning.

2.3.3 CompCert and program simulations.

CompCert [27] was a landmark result, not only demonstrating the feasibility

of compiler verification but also setting out a template for achieving it. The

CompCert compiler is an optimising compiler for Clight, a subset of C aimed

at security critical applications. Leroy argued that it was easier to construct

a compiler with the express intent of verification, rather than trying to verify

an existing compiler. As such, CompCert is structured as a series of compiler

passes, over a series of intermediate languages, all formalised using Coq.

In CompCert, the notion of correctness says that the compiler will either fail

to compile, or produce target code whose behaviour is an acceptable behaviour

of the source code. This is formalised and encoded as semantic preservation.

Intermediate languages each have a small-step operational semantics, specified

as a series of program transitions. Semantic preservation is then proved by

simulation: each transition in the source language must have a corresponding

series of target-level transitions, which have the same observable behaviours and

preserve some relation between source and target execution states.

Subsequent work on compiler correctness has sometimes made use of this

simulation technique. One such example is Lochbihler’s compiler [45] for Java

threads. Using the Isabelle/HOL proof assistant, rather than Coq, Lochbihler

leveraged a similar idea of proof by simulation.

2.3.4 Compositional compiler correctness.

One problem with verification using program simulation is that it assumes

whole-program simulation. In order to, essentially, run source and target code,

the code segments must be complete and self-contained. However, in reality

code is most often written and compiled as components which are then linked
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together and even linked with external elements such as libraries. In which case,

we lack complete programs at source and target levels to reason about.

Compositional compiler correctness looks at being able to verify the compila-

tion of components and how they will behave when linked at target-level. Some

research focuses on extending CompCert to this effect. SepCompCert [46] con-

sidered components that are compiled using the same compiler and then linked.

Further to this, Compositional CompCert [47] aimed to reason about compo-

nents compiled from different languages, but still from one of the CompCert

family of intermediate languages.

Other work has looked more generally at what we mean by compositional

correctness. Patterson and Ahmed [48] aimed to standardise the myriad of com-

positional theorems and proofs, in order to make the field more approachable.

There are typically two dimensions of compositional compiler correctness.

Horizontal compositionality considers whether correct compilation guarantees

are preserved when compiled program components are linked together. Verti-

cal compositionality considers how correctness guarantees propagate through a

compiler with multiple phases.

Rather than translating source code to target code all at once, most com-

pilers perform a series of smaller rewrites. Each one of these rewrites makes a

particular change, eliminating a high-level language feature or optimising the un-

derlying program, advancing towards the target language. In complex software,

like a compiler, such modularity allows for easier maintaining and debugging.

It also makes the compiler easier to reason about.

Most verified compilers are also structured as a series of passes. For instance,

CompCert consists of 14 passes over 8 intermediate languages. This necessi-

tates a formalisation of each intermediate language. However, it also makes

each compiler pass simpler and thus more straightforward to verify. Moreover,

if the correctness property is appropriately chosen, each pass can be verified

individually using the technique most suited to it.

In the majority of verified multi-pass compilers, the correctness property is

chosen to be transitive. This means that if a translation from language A to
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language B is correct and a translation from language B to language C is correct,

then the result of composing these translations, to create a translation from A

to C, will also be correct. Hence, it is possible to verify a multi-pass compiler

by verifying each pass separately.

However, Patterson and Ahmed [48] claimed that transitivity should not be

conflated with vertical compositionality. In many cases, although the correct-

ness property may be transitive, verification of one pass still requires knowledge

of the other passes or intermediate languages in the compiler. For example,

Compositional CompCert relies on an interaction semantics encompassing all

possible languages and memory transformations in the compiler pipeline. There-

fore, if a new language or pass is introduced then the correctness of all other

passes must be re-established. Patterson and Ahmed argued that true vertical

compositionality should allow compiler passes to be verified entirely separately,

with no regard for the rest of the compiler.

2.3.5 Types and compilers.

A significant amount of work on reasoning about compilers has focused on secure

compilation [49]. This is a particular concern where source-level abstractions,

relied upon to enforce some security properties, are not available at target-

level. For example, if a source language is strongly typed, but its corresponding

target language is not, then it is possible for a target-level attacker to violate

the guarantees provided by well-typedness. Therefore, it can be advantageous

for program transformations to preserve types.

For compilation to be type-preserving it must compile well-typed source code

to well-typed target code. This necessitates a typed target language, along with

typed intermediate languages for a multi-pass compiler. Thus, typechecking

can be performed at each stage, ensuring type safety is preserved and aiding in

debugging.

Although it is beneficial, type-preservation is not sufficient to imply secure

compilation. A compiler targeting a unityped language could technically be
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type-preserving, without actually enforcing any of the useful source-level secu-

rity properties. It is therefore important to carefully examine the particular

type systems and type translations involved.

Security-typed [50] programming languages implement types directly repre-

senting security properties, allowing the programmer to label data according to

security levels. For a translation to be security-type-preserving both source and

target type systems must satisfy non-interference, as well as the translation be-

ing type-preserving. Non-interference means that in a well-typed program low-

security outputs depend only on low-security inputs, and will not be changed

by changing high-security inputs. For secure compilation it is also necessary

for the compiler to be correct, and that security levels assigned to target-level

variables are the same as the corresponding source-level variables.

In addition to the security benefits, having typed intermediate and target

languages can also help the compiler to make more effective optimisations. TIL

[51] is a compiler for Standard ML which makes use of typed intermediate lan-

guages to perform type-directed optimisations. Such optimisations are deemed

to have a beneficial performance impact for the resulting program, with respect

to the cost incurred at compile-time.

In TIL types are only propagated up until a certain point in the compiler

pipeline. Morrisett et al. [52] took this further, compiling System F all the

way to a typed assembly language (TAL). This allows the enforcement of source

language abstractions at the level of machine code, with programs in TAL es-

sentially becoming proof carrying code. It also means that, before linking with

and executing untrusted code at target-level, suitable checks can be made.

2.4 Modular Reasoning Techniques

The merits of formal methods with respect to testing have been much debated.

Although it can be costly process, software verification provides proof that soft-

ware will behave as expected for any possible input, as opposed to the generally

limited cases considered by testing. Thus, verification results in more reliable
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software, which carries with it a guarantee of this reliability. In addition to this,

implementing verified software forces the developer to consider what behaviour

is required of it. For instance, writing a postcondition for a program segment

necessarily distils and formalises the intended behaviour of that segment.

Where software is modular, it makes sense for the verification techniques

used on it to also be modular, thus exploiting the benefits, like clarity, robust-

ness and reusability, to the fullest extent. When reasoning about software, there

tend to be two different types of modularity to consider: parallel and sequen-

tial. Parallel modularity draws inspiration from the fields of high performance

computing and concurrency, considering components that are running in par-

allel. Sequential modularity deals with control flowing sequentially from one

component to the next, which more accurately reflects many modular systems.

Fisler and Krishnamurthi [53] developed a technique for modular verifica-

tion of collaboration based software design, of which sequential modularity is

an example. Here collaborations are modules which reflect the features imple-

mented by software, rather than decomposing into modules which represent the

actors which are used to implement such features. The paper argues that this

is a more realistically useful sense of modularity. By combining parallel and

sequential modularity, a feature-oriented approach to modular verification can

closely mimic the modules used in software design [54].

2.4.1 Hoare-style postconditions.

The Hoare logic [55] framework was designed for reasoning about program cor-

rectness. Hoare triples still form the basis of specification in many commonly

used verification techniques. A triple states that if a particular precondition is

true, and a given program is run and terminates, then a given postcondition will

be satisfied. Thus, Hoare triples can be used to express the expected behaviour

of a program. The other key ingredient of Hoare logic is a modular approach to

proofs, designed to echo the structure of modular software.

The Hoare-style postconditions are logical assertions, as are the precondi-
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tions. In essence, such an assertion is a predicate, that is a function mapping

the program state to Boolean values. This is often implemented as a proposition

that captures the variables of the program in question. These assertions serve

a wide variety of purposes in application, including: documenting assumptions

and expectations, specifying theorems for static analysis to check, and forming

conditions to test at runtime.

2.4.2 Design by contract.

Design by contract is a paradigm that involves inserting into the code itself

specifications about the behaviour of the program. In essence, the contract

makes a promise that must be upheld by the resulting program. Drawing on

the earlier ideas of Hoare logic, contracts are made up of assertions, including

preconditions, postconditions and invariants, which can be optionally checked

at runtime to validate corresponding code properties.

First developed as part of the object oriented Eiffel language [56], design

by contract is often associated with object oriented programming [57]. The

aim was to outline a methodology for developing correct and robust software

in the growingly popular object oriented style. The propensity for code reuse

was viewed as a concern with respect to reliability. It means that any bugs are

potentially multiplied across all of the times that a component is used, and that

all possible conditions of use have to be considered when evaluating correctness.

While some languages, such as Eiffel and JML [58], are specifically designed

to incorporate the use of contracts, other languages need to exploit libraries,

such as Scala Predef [59], which mimic a suitable extension. By default, Scala

imports four operations: assert, assume, require, and ensuring. Together these

operations can be used to construct effective contracts within Scala code, which

integrate smoothly with the way that the language handles modularity in gen-

eral.

On a more formal level, contract theory is central to the area of assume-

guarantee reasoning, developed to reason about program interference in cases
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such as concurrency [60]. Assume-guarantee reasoning revolves around specify-

ing triples which contain a component of the system, an assumption about that

system, and a guarantee that will hold as long as the assumption holds. These

triples can then be composed, to reflect how the system components are com-

posed, and to clarify which assumptions must be upheld by the guarantee of any

given component. This idea of safe interference allows modular reasoning about

realistic systems, in which components are likely to share various resources.

2.4.3 Property based testing.

Rather than embedding specifications, some testing frameworks lift the required

properties, such as postconditions, out of the code itself. This makes it easier to

look at the potential interactions of multiple code segments, instead of reasoning

about one point in the code at a time. QuickCheck [61] allows programmers to

implement property based testing within Haskell code. Given a postcondition,

for example, it can automatically generate correspondingly appropriate tests and

execute these on random appropriate inputs. Similar tools for other languages

have been inspired by this approach, such as ScalaCheck.

Property based testing can exploit ideas from design by contract more di-

rectly. For instance, Cheon and Leavens [62] developed an approach to unit

testing using JUnit and JML together to generate useful test cases. JUnit is

a unit testing framework for Java classes which automates some of the details,

thus streamlining the process. JML, or the Java Modelling Language, is a be-

havioural specification language that facilitates the writing of contracts for Java.

Together these tools can be used to automate the implementation of test ora-

cles, using the contract specifications and assertion checker of JML to determine

whether unit tests pass or fail. This not only reduces the developer effort re-

quired, but the written specifications are generally clearer and more compact

than extensive test code.
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2.4.4 Automated theorem proving.

Automated verification techniques are often used as a realistic middle ground

between the relative accessibility of testing and the expressiveness of theorems

proved by more involved means.

Static code analysis tools can also make use of contract-like syntax. For

instance, Leon [63] is a verification tool working over Pure Scala, a functional

subset of the Scala language. It uses Scala contract assertions, like require and

ensuring, to generate corresponding verification conditions, which are handled

automatically by SMT solvers such as Z3 [64] and CVC4 [65]. If a program

meets its specification then Leon will seek to prove this; otherwise it will seek

to find a counterexample.

Finite state machines can be used as a mechanism for specifying the be-

haviour of software. Model checking tools can then automatically check pro-

grams against a corresponding state machine. For example, the MAGIC tool

[66] for modular analysis of programs in C, can be used to verify that a given

state machine is a safe simulation of the C procedure that it relates to. The tool

adheres to modularity, in that it can accept and act on specifications for missing

parts of the system. The modular approach ensures that the components being

verified are of a manageable size, avoiding the danger of state-space explosion,

which is a sticking point for most automated verification efforts.

2.4.5 Interactive theorem proving.

The field of proof engineering revolves around developing verification approaches

that scale to realistic software engineering applications. A significant amount

of this work involves the use of proof assistants, otherwise known as interactive

theorem provers [67]. Proof assistants, such as Coq [41] and Isabelle [68], fa-

cilitate the rigorous development and checking of proofs via a combination of

human input and machine reasoning.

Despite the increase in human effort required, interactive methods such as

the use of proof assistants have various benefits over more automated tools. It is
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often possible to develop proofs of properties interactively that would otherwise

be undecidable. Proof assistants also usually depend on a small kernel to check

proofs, according to the de Bruijn criterion, thus reducing the potential impact

of any bugs in the tool itself.

Another verification approach is to combine program code with the use of

a proof assistant. There has been work [69] on translating Pure Scala into

Isabelles/HOL logic, with Isabelle used as a backend for Leon. Moreover, Ko-

pitiam [70] is an Eclipse plugin that allows development of verified Java code

by interfacing with Coq. Methods are annotated with specifications, which are

verified by the developer using Coq and otherwise ignored by Eclipse.

Scala is both object oriented and functional, but the Pure Scala fragment,

typically used in Scala verification efforts, focuses on the functional elements.

Properties of purely functional languages, such as referential transparency, tend

to make verification less complicated. In contrast to this, Kopitiam leverages

intuitionistic higher-order separation logic, in order to effectively reason about

the object oriented features of Java.

2.5 Summary

This chapter took a broad look at the areas of compiler structure, compiler

verification, and general correctness approaches, examined through the lens of

modularity. The selection of background material that we explored, supports

the significance of three key compiler qualities: modularity, performance, and

correctness. Modular compilers are easier to understand, maintain and debug.

Performant compilers are inevitably more popular and contribute to user pro-

ductivity. And correct compilers are vital for avoiding awkward software bugs.

However, we began to see that trying to achieve all of these qualities simul-

taneously results in a tricky balancing act. For instance, improving modularity

can increase the number of compiler phases, which in turn can negatively af-

fect compiler performance. Settings like the miniphase framework [1] seek to

address this via automated fusion techniques. Such approaches maintain that
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phases can be modular from the perspective of the compiler developer, in a way

that avoids actually having large numbers of phases at runtime, and without

added effort for that developer. Standardised compiler phases can be auto-

matically combined in a standardised manner, thus mitigating the overheads of

performing them individually.
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Chapter 3

Related Work

Once compiler modularity and performance have been attained to an accept-

able degree, correctness is the remaining concern. Ensuring the correctness of

compiler phases can be an expensive process, and so it is unproductive for any

automated fusion mechanism to endanger this. The miniphase framework uses

postconditions to allow developers to specify the invariants established by com-

piler phases. These postconditions are then checked during the testing process

of the final fused compiler, an approach which is practical but not particularly

formal or modular.

This chapter narrows the literature focus, to look at ways in which existing

work tries to achieve modularity at the same time as performance and correct-

ness. Rather than thinking about compiler phases in general, we specifically

target approaches that explicitly concern graph transformations, in an effort to

find work that is directly comparable to the tree transformation based miniphase

framework. Furthermore, this chapter explores tree transformations for appli-

cations outside of compiler construction, to look for techniques that could also

be useful for compilers.
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3.1 Miniphase Fusion

Petrashko et al. [1] proposed and implemented miniphase fusion in the Dotty

compiler for Scala. Dotty was originally a platform for experimenting with

ideas for the Scala language, and was intended to form the basis for Scala

3.0. Historically, a frequent Scala complaint had been the length of compile-

time. Hence, a major goal was to make the Dotty compiler faster, whilst also

imposing a more modular approach. The modularity was approached through

the introduction of miniphases, which were billed as “modular and efficient tree

transformations”.

3.1.1 Motivation for miniphase fusion.

The most common technique for compiling Scala to Java bytecode involves a

series of abstract syntax tree (AST) transformations. An AST, produced from

the Scala source code, is gradually transformed to be closer to Java bytecode,

through a process of desugaring and rewriting into lower-level language features.

Ideally these tree transformations would be modular, each performing a small

singular task within its own tree traversal. Modularity is important in the

readability and maintainability of complex systems, such as a compiler.

However, modularity tends to encourage a large number of AST transforma-

tions, which can have a negative impact on performance, due to a correspond-

ingly increased number of tree traversals. Since the ASTs used in compiling

Scala are generally larger than cache size, these traversals can be very expen-

sive. Moreover, the tree nodes are immutable and have no link to their parents,

so trees must be entirely reconstructed each time even a small change is made.

Therefore, a strategy for mitigating these performance issues is needed if a mod-

ular approach is to be viable.

54



3.1.2 The miniphase fusion mechanism.

Previous Scala compilers tended to prioritise performance over modularity, by

manually combining multiple traversals into the same traversal. The burden and

implementation of such decisions is placed solely on the compiler developer. The

result of this is compiler phases which may perform many unrelated tasks, and

so are difficult to understand. These phases are also hard to reason about, as

the vastly different transformations may interact in unexpected ways.

The miniphase approach attempts to standardise and automate the combi-

nation of transformations, mitigating the performance impact whilst maintain-

ing a high level of modularity for the compiler developer. A miniphase class

is implemented which must be extended by all compiler phases, thus impos-

ing a common structure on them. A miniphase has: a separate transformation

method for each type of tree node, a transform method which dispatches one of

these transformations as appropriate for a given node, and a runPhase method

which performs a postorder tree traversal, calling transform at each node.

The standardised postorder traversal is key in allowing miniphases to be

automatically fused together. On a single postorder traversal, each node visited

can be transformed by multiple miniphases, before moving on to the next node.

To this end, two miniphases can be combined to make a new miniphase. A

new transformation method is constructed for each node type which applies the

corresponding transformation from the first miniphase and then, checking the

type of the new resulting node, applies the corresponding transformation from

the second miniphase.

There are several extensions to this basic miniphase idea, that make it more

suited to the Dotty compiler. The fusion process makes certain optimising deci-

sions, such as skipping identity transformations and exploiting transformations

which do not change the type of a node. There is also the addition of prepare

methods, making it possible to implement a groups of transformations which

would otherwise require a non-postorder traversal, due to depending on a node’s

ancestors.
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Petrashko et al. present both experimental and anecdotal evidence for the

success of miniphases in Dotty. In terms of performance, when compiling the

Scala standard library and the Dotty compiler itself, miniphase fusion decreases

the time taken on tree transformations by 37% and 34% respectively, compared

to the same unfused miniphases. This is deemed to be due to more effective

CPU cache use, with a reduction of 49% and 55% respectively in the objects

promoted to old generation.

3.1.3 Reasoning about miniphase fusion.

A key concern in fusing tree transformations is how it changes their behaviour.

Once fused, multiple transformations are performed on a single traversal, as the

transformations are interleaved. Hence, inherent assumptions about the whole

tree, which may hold if a single transformation is performed alone, may be

violated by other transformations working on the tree during the same traver-

sal. Such interactions between transformations have the potential to produce

unintended or incorrect behaviour.

If fusing miniphases stops them from performing the tasks they were designed

for, then fusion is no longer useful, regardless of how modular or efficient the

outcome may be. To address this, Petrashko et al. outline a set of guidelines for

developers, on when miniphases may be successfully fused. A miniphase may

be fused into a block of already fused miniphases if it achieves the the following.

• preserves the invariants established by all prior miniphases in that fused

block

• successfully transforms tree nodes with children that have been trans-

formed by all subsequent phases in that fused block

• successfully transforms nodes in a tree that has not yet been completely

transformed by all prior phases in that fused block

These are described as “high-level criteria” to be “interpreted with an under-

standing of the overall design of the compiler”. The argument against more
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formal criteria is that they would have to be overly conservative and thus inap-

propriate for capturing the complexities of a realistic production compiler.

In addition to these criteria, successful fusion is ensured by a series of dy-

namic checks during testing. Each miniphase has a postcondition check, which

can be implemented to enforce some property of an AST that must hold after be-

ing transformed by that miniphase. The idea is that all subsequent miniphases

must preserve this postcondition, once it has been established. During testing,

an extra pass is inserted after each phase, to check the postconditions of all

miniphases that have run so far.

Dotty miniphases also have the notion of preconditions, expressed in terms

of the postconditions of other miniphases. These preconditions take the form of

lists, runsAfter and runsAfterGroupsOf, denoting miniphases that must have

previously transformed a node or previously transformed the entire tree, respec-

tively. This information is used by compiler developers in ordering miniphases

and splitting them into different fused blocks, and is checked when the compiler

first starts up.

The high-level guidelines, the postcondition checks, and the lists of preceding

miniphases must all be taken into account when determining how the compiler

is structured. Petrashko et al. present a pipeline for the Dotty compiler that

begins with a series of unfused frontend phases, including parsing, typecheck-

ing, and some transformations to ensure the AST is in the format expected by

the rest of the compiler. This is followed by six blocks constructed of fused

miniphases, and ends with a phase to generate target code, such as Java byte-

code.

The miniphases, that comprise the middle section of this compiler, cannot be

all fused into one block due to various conflicts that are alluded to by the high-

level criteria for successful fusion. For example, some miniphases make wide-

reaching changes to the structure of the AST, as they translate very high-level

features into lower-level constructs. One such miniphase translates Scala pattern

matching expressions into a complex series of branches and jumps. Before this

miniphase has entirely transformed the AST, the tree will contain parts of both
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the original pattern matching and its translation. It can then be difficult for

some other miniphases to handle both high-level and low-level constructs in

the AST at the same time, and thus they should not be performed on the same

traversal as the pattern matching miniphase. In this way, miniphases that make

global AST changes can necessitate the separation into multiple fused blocks.

3.1.4 Comparisons with the nanopass framework.

Along with miniphases, the Background chapter introduced the nanopass frame-

work [11, 12], as an alternative approach for implementing structurally modular

compilers. Nanopasses also impose a given structure on compiler phases, which

allows the common functionalities to be abstracted out, and thus promotes

code reuse. Furthermore, the nanopass has also been successfully applied to

a compiler in a commercial setting, validating the approach. Thus, there are

many similarities between the aims and accomplishments of the miniphase and

nanopass frameworks, with respect to modularity.

However, the two approaches diverge somewhat when considering the issues

of performance and correctness. The original nanopass framework [11] was

aimed at students learning how to implement a compiler. As such, it makes

sense that production level performance is not a central concern. There is

no mechanism intrinsic to the nanopass framework for directly addressing the

trade-off between modularity and performance. However, the paper does discuss

as future work the idea of a phase combiner based on deforestation techniques,

which is similar to what miniphase fusion later achieved. The advantage that

miniphases have is that their whole design revolves around the fusion process,

rather than implementing it as an afterthought.

In terms of correctness, where miniphases have postconditions, nanopasses

have formally specified intermediate languages. These elements serve loosely

the same purpose as each other, in that they encode guarantees that need to

hold, after a given compiler phase, about the program being compiled. Each

nanopass has to specify an input language and an output language, as well as
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transformations from input language features to appropriate target language

features. These intermediate languages are well suited to encoding properties

like the absence of a given language feature. However, tying a compiler phase

to a specific point in the compiler pipeline, reduces the opportunities for direct

reuse or easy rearrangements. On the other hand, the miniphase approach uses

the same AST representation throughout the series of tree transformations,

which results in no such restrictions.

3.2 Fusing Tree Traversals

There is a significant body of relevant existing work that focuses on fusing

tree traversals. This provides an appropriate point of reference for assessing

the merits and limitations of the tree based miniphase approach. We make an

important distinction here between the connotations of the terms tree traversal

and tree transformation. A tree traversal generally refers to visiting the nodes

of a tree for the purpose of calculating some value. Changes may be made to the

nodes visited, but tend to be very restricted, making it easier to provide rigorous

static correctness guarantees. A tree transformation, on the other hand, takes

a tree as input and outputs another tree, being not so limited in the changes it

may make.

3.2.1 Exploiting temporal locality.

Miniphase fusion was deemed to be successful in improving performance due

to improved cache locality. There are tree traversal fusion techniques that seek

similarly to exploit temporal locality. By running close together the traversals

which visit the same nodes, the node data will still be in cache, making it less

costly to retrieve.

Given a series of points that traverse and interact with a tree, point blocking

[71] involves sorting these points into blocks, depending on the nodes that they

visit. Each block performs a single tree traversal and, at each node, all points
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in the block that interact with that node are applied. Point blocking relies

heavily on preprocessing to sort the points into appropriate blocks. Traversal

splicing [72] is a similar technique that sorts points dynamically, as they are

being applied, to enhance locality.

3.2.2 Exploiting static dependence analysis.

The original work [71, 72] on point blocking and traversal splicing focused mainly

on independent tree traversals. Weijiang et al. [73] developed a static depen-

dence test to extend these techniques to a wider range of traversals, which may

interact with each other. In analysing the node access path in the traversal al-

gorithms, the test determines whether point blocking or traversal splicing could

be applied safely and when node visits can be reordered.

Rajbhandari et al. [74, 75] looked at automatically finding the optimal fusion

schedule for recursive traversals of k-d trees. In particular, they considered the

MADNESS system, which is designed for numerical scientific simulations. They

examined the data dependences of traversals based on their consumer-producer

relationships and showed that fusing operators by interleaving them can improve

performance by improving locality, as the trees used are often larger than the

cache size.

3.2.3 Exploiting code motion.

TreeFuser [76] is a framework that looks to automatically fuse more general tree

traversals. It employs code motion and partial fusion to perform as much fusion

as possible. Code motion involves rearranging code such that fusion becomes

feasible, for instance by changing the traversal order. Partial fusion considers

traversals that cannot be fused completely, but can be fused over parts of the

tree, still improving performance. TreeFuser produces a dependence graph that

is used to determine when these techniques are applicable.
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3.2.4 Exploiting logical reasoning frameworks.

Qiu and Wang [77] implemented a decidable fragment of the DRYAD logic for

reasoning about trees. DRYADdec is especially suited to analysing tree traver-

sals which calculate some measurement of the tree. One sample DRYADdec

application presented is to check whether the fusion of a certain set of tree

traversals is allowed, that is whether the fused traversals will have identical

behaviour.

3.2.5 Comparisons with miniphase fusion.

All of this work on fusing tree traversals takes a fundamentally different ap-

proach than that of miniphase fusion. Firstly, the tree traversals can only make

minor changes to the nodes being visited. It may be possible to rewrite the data

contained at a node being visited, but it is not possible to dramatically alter

the structure of the tree by changing the children of that node. This is perfectly

fine for some applications. However, AST transformations in a compiler such

as Dotty are required to make more drastic changes.

In addition to this, many authors are concerned with rearranging tree traver-

sals to yield optimal fusion. For instance, point blocking and traversal splicing

purposely sort the tree traversals in order to group them. On the other hand,

miniphases in Dotty are generally written with a specific order in mind, partially

informed by the preconditions stated. This is all the more significant being a se-

ries of tree transformations in which the output of each transformation becomes

the input for the next.

Finally, the definition of successful fusion in these approaches is that the

behaviour of fused traversals should be identical to that of running them con-

secutively. In TreeFuser fusion must preserve work, that is, exactly the same

set of operations must be performed whether fused or not. This makes sense for

traversals which are, for example, calculating a value from the tree. However,

in compiler phases the goal is often not deterministic, for example eliminating a

given syntactic element from the tree. It is possible to preserve this goal without
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requiring fusion to exactly preserve the results.

3.3 Deforestation and Stream Fusion

The miniphase framework claims deforestation as its inspiration. It is common

to find, especially in functional programming, a series of functions applied suc-

cessively to a data structure, such as a list or a tree. The intermediate data

structures generated, as the output of one function and input of the next, can

have a performance impact. Deforestation [78] automatically combines such

sequences of functions so that intermediate data structures are not required.

This allows developers to write complex functions by composing simpler ones,

without the cost to performance effected by intermediate lists or trees. The

Glasgow Haskell Compiler (GHC), for instance, performs a similar optimisation

on code during compilation.

3.3.1 The origins of deforestation.

As originally proposed by Wadler [78], deforestation deals with fusing a very

restrictive set of functions. In order to be fused, the composed functions must be

in treeless form, which means they must be first-order, use all variables linearly,

and not construct any internal data structures themselves. These restrictions

make it possible to prove that the deforestation algorithm will terminate and

that the result will be treeless.

A number of efforts have been made to extend deforestation to a wider range

of functions. Often this involves identifying functions which cannot be fused and

abstracting them out of the process, as with Wadler’s blazed deforestation [78]

which caters to functions whose subterms may have atomic types such as integer

or char.
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3.3.2 Safety definitions in deforestation.

Chin [79] generalised deforestation to all first-order and higher-order functions.

Functions are determined as safe or unsafe to fuse depending on how they pro-

duce and consume data structures. An important distinction is made between

functions that can be safely fused, meaning the algorithm will terminate and

there will be no loss of efficiency, and functions that can be effectively fused,

meaning that intermediate data structures will be eliminated and performance

will be improved.

Similarly, shortcut deforestation [80] for Haskell takes all legal programs as

inputs, guaranteeing that the process will terminate but not that all interme-

diate data structures will be removed. This is done by standardising the way

that lists are produced and consumed, using foldr/build pairs which can be can-

celled. Shortcut deforestation was incorporated into the Haskell List library in

the GHC. This has since evolved further, and the GHC now uses stream fusion

[81, 82] which applies to a wider range of intermediate data structures.

3.3.3 Deforestation and category theory.

Many deforestation and fusion frameworks do not provide formal correctness

guarantees, relying instead on implementation and testing. They often use a

syntactic approach which makes it easy to describe the implementation of fusion,

but difficult to construct appropriate proofs. However, some cases use category

theory to look at the semantics of fusion, which can facilitate the proof process

and generalisations.

Takano and Meijer [83] used category theory to extend shortcut deforestation

[80] beyond lists, to other data structures. Generalising the idea of foldr/build

pairs, a hylomorphism is made up of an anamorphism followed by a catamor-

phism. Like build, the anamorphism produces a set of results and then, like

foldr, the catamorphism combines these results into a single value. Existing

results on the fusion of hylomorphisms [84] can then be applied to the case of

deforestation.
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3.4 Equality Saturation and PEGs

The equality saturation [23, 85, 86] approach to compiler optimisations discards

the traditional sequential method of stringing transformations together. This

technique focuses on the optimisation section of the compiler pipeline, aiming

to tackle the phase ordering problem. In a conventional compiler structure, the

order in which optimisations are applied will have an impact on the quality of

the eventual target code. It may be that one optimisation acts to limit the

effectiveness of subsequent optimisations. Typically, there is no single ordering

that will always ensure the best optimised result for all inputs. Moreover, test-

ing all possible orderings of modular optimisations can be prohibitively costly,

especially in cases where optimisations are designed to be repeatedly applied,

until there is no further change.

Equality saturation avoids this problem by taking an additive approach

rather than a destructive one. The traditional sequencing of optimisations

means that once any given optimisation has been applied, the original unop-

timised program is lost. Only the optimised version is passed on to the next

optimisation. In equality saturation nothing is lost. Instead, each optimisa-

tion simply adds information, in the form of axioms denoting possible rewrites,

without having to prematurely decide on an order. It is then left to an appro-

priate global profitability heuristic to analyse these annotations and determine

the best result, once all information is known.

The structures used for Tate et al.’s [23] presentation of equality saturation

are based on program expression graphs (PEGs). The PEG nodes correspond

to operators, including inbuilt operators that denote conditionals and loops. To

facilitate equality saturation, the E-PEG is a graph that groups PEG nodes into

equivalence classes, thus representing multiple possible optimised versions of a

program at the same time. Essentially, an E-PEG is a PEG augmented with a

set of equalities between nodes.

This kind of program representation allows local graph rewrites that make

significant changes in structure of the respective CFG. Therefore, it is a good
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vehicle for reasoning about realistically useful optimisations, such as loop op-

timisations. PEGs are referentially transparent, which means that there need

be no consideration of side effects when trying to determine equality. Only

the value of a program fragment is significant, and this can be represented by

a single node, rather than having to examine an entire subgraph. Therefore,

equivalence classes of nodes are sufficient for encoding the equivalence of parts

of programs, for use in equality saturation.

3.5 Conclusions: Background and RelatedWork

Fusing transformations is beneficial in terms of both modularity and

performance.

Modularity, by its nature, necessitates joining components together. The sim-

plest ways of doing so are not always the most efficient, due to elements that

make sense for an individual component but not when combined with other

components. Deforestation automatically combines functions to avoid creating

unnecessary intermediate data structures, allowing the developer to concentrate

on modularity with the reassurance of mitigated performance impact.

Building on the idea of deforestation, miniphases in the Dotty compiler allow

automatic fusion of tree transformations. Here the intermediate trees are neces-

sary, as transformations need to consume and produce subtrees. However, there

is also the issue of modularity effecting an increased number of tree traversals,

due to an increased number of transformations, each requiring its own traver-

sal. Instead of applying these transformations consecutively, miniphase fusion

combines multiple transformations into a single traversal.

These methods are used to good effect in practice. Stream fusion, which

evolved from deforestation, is used by the GHC to rewrite Haskell code more

efficiently. Moreover, miniphase fusion in Dotty was shown to reduce the time

taken by tree transformations in compiling code, whilst providing a beneficial

user experience for compiler developers. Therefore, automatically fusing tree
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transformations is a valuable technique.

The standard view of successful fusion exactly preserves outcome, but

this can be overly restrictive.

In most cases, the notion of successful fusion is defined as ensuring that, whether

fused or run consecutively, the outcome of a series of transformations will be

identical. This is a valuable guarantee, meaning that the developer and end

user should see no effect of fusion other than, hopefully, an improvement in

performance.

However, we find in some cases that this requirement is overly restrictive. For

optimisations, fusion may alter the final outcome, and hence make the optimisa-

tions more effective. To achieve this otherwise would require both optimisations

to be performed in a single transformation, thus reducing modularity. There-

fore, we want to consider a broader idea of successful fusion that encompasses

cases such as these, so that fusion may be applied as widely as possible.

Postconditions are common tools for expressing and reasoning about

program requirements.

Miniphases in Dotty do not come with such a formal soundness guarantee.

Instead, they combine a high-level set of guidelines, for the compiler developer

to follow, with postcondition checks for each miniphase. These postconditions

can be used to specify the required outcome of a miniphase, and are used to

ensure that these outcomes are met, even when fusion is performed.

Although, in the case of Dotty, postconditions are checked dynamically dur-

ing testing, postconditions can also be useful for static approaches to correct-

ness. There are various approaches to verifying postconditions, including using

automated static analysis tools and interactive proof assistants. Hence, the

postcondition is a flexible and approachable mechanism for encoding developer

intentions.
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Chapter 4

Methodology

The purpose of this thesis is to develop and evaluate a technique for reasoning, in

an appropriately modular way, about combining modular compiler phases. Over

the previous chapters, we have seen that existing work tends to compromise, ei-

ther on modularity of reasoning or on functionality of program transformations.

We explore the possibility of achieving a useful level of both.

From the literature, we have established that performance, modularity and

correctness are all valuable compiler properties. Automatically combining com-

piler phases can facilitate modularity and whilst mitigating performance loss.

However existing approaches to correctness in such cases tend to have low lev-

els of modularity themselves. Hence, this thesis proposes modular criteria for

successful fusion, which can be verified on separate uncombined compiler phases.

This chapter outlines and justifies the approaches taken in the remainder of

this thesis. The first half of this chapter discusses the research questions being

addressed, setting out the scope of the problem and some of the challenges. The

latter half of this chapter details the corresponding research strategy, including

the tools and techniques used.
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4.1 Research Problem

4.1.1 What does it mean for compiler phases to be fusible?

The purpose of automatically combining compiler phases is to promote both

modularity and efficiency within the compiler. However, it is vital that combined

phases still work as intended. Compiler correctness is highly valued and hard

won, generally requiring substantial effort to confirm. Therefore, we cannot

afford to overlook correctness in the search for other desirable compiler qualities.

A compiler that is elegantly implemented and quick to compile but does not

produce the intended target code is ultimately of limited use.

The related work that we have examined has mostly taken one of two ap-

proaches. Most tree transformation fusion strategies take the conservative choice

of only allowing fusion if the results of fused transformations are identical to the

results without fusion. On the other hand, the miniphase approach uses manu-

ally defined postconditions to express what behaviours of each transformation

must be preserved. This allows, for instance, the fusion of optimisations for

which the fused transformation produces a different but better-optimised result

than the unfused transformations.

If combining compiler phases is generally beneficial, then it makes sense to

seek to apply fusion as widely as possible. This echoes the approach taken

by miniphases, leaving the compiler developer to decide and specify how much

of their phase’s behaviour is necessary and must necessarily be preserved by

fusion. However, it is also important to balance practicality with rigour when

considering correctness issues. The miniphase postconditions are used in testing,

which can only provide limited guarantees due to the multitude of corner cases

inherent in complex software such as compilers. This is where other, more

restrictive, fusion criteria can be useful, providing strict soundness guarantees

due to the strict guarantees they place on their fusible transformations.

Taking these factors into account, we formalise postcondition-preservation

as a notion of fusibility, which provides strong guarantees without unnecessarily
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preventing beneficial fusion. We take inspiration for this from the miniphase

[1] postcondition approach. To formalise these ideas we define a system of tree

rewrite functions, with corresponding postcondition predicates on trees that

encode the desired outcome of each transformation.

4.1.2 Can we determine whether phases are fusible with-

out attempting to combine them?

The purpose of automatically combining compiler phases is to promote both

modularity and efficiency within the compiler. A degree of modularity benefits

complex systems in various ways, such as ease of maintenance and code reuse.

This is one of the fundamental motivating forces behind fusing phases. There-

fore, it makes sense for the fusion process and the methods of reasoning about

that process to also be inherently modular.

Ideally, we want to be able to assess compiler phases for fusibility without

having to actually fuse them. To fully embrace and exploit modularity, there

should be some level of separation between the implementation and the interface

of each compiler phase. This allows a tree transformation to be re-implemented

with minimal disruption to the other transformations in the pipeline. The sur-

rounding literature establishes this as a key part of modularity [6].

The more formal, restrictive approaches to fusing tree traversals are able to

provide criteria for fusibility that are entirely independent of the other trans-

formations involved. As long as the transformations are sufficiently limited, for

instance only able to alter the value at the current node, then any fusion is

allowed and will have no effect on the result of the transformations. However, it

may be that our definition of fusibility is more lenient and our transformations

need to make wider changes on order to be useful.

Conversely, the miniphase approach requires phases to be fused in order to

test whether stipulated postconditions will be preserved. There may be some

developer intuition at the level of individual phases as to whether they can be

successfully fused, but this is far from guaranteed. So, if a phase needs to be
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altered, even slightly, the whole combination will need to be run and tested

again.

Therefore, once we have decided on a definition of fusibility, we are also

looking for a method of confirming this. This method needs to subscribe to

modularity as far as practicable, in order to maintain a consistent approach.

However, it also needs to fit our compiler use-cases to be of any notable benefit.

4.1.3 The scope of the problem.

Since this research problem is complex and nuanced, it is necessary to clearly

define the boundaries of our work. Here we describe some interesting areas that

are beyond the scope of this thesis, in order to better specify the problems that

are being explored in this research.

Firstly, the order in which compiler phases are applied can have a major

impact on the compilation process. In some cases, the correctness of a compiler

phase depends heavily on a previous phase having been performed. In other

cases, such as certain optimisations, the order might impact effectiveness, rather

than correctness. Often, the most effective order of optimisations depends on

the code being compiled. The problem of phase ordering is orthogonal to the

aim of this thesis. As such, we assume that the compiler developer has already

decided on an ordering, and we make no attempt to reorder the transformations.

Secondly, it can be challenging for a developer to fully and accurately specify

the purpose of a compiler phase using postconditions. The postconditions con-

sidered in this research are defined as predicates over graph structures, which

are checked recursively. The examples of postconditions used to illustrate our

results use pattern matching to allow or disallow certain graph patterns. In

this way we can express concepts such as the lack of a particular language fea-

ture, or the termination of a given optimisation. However, further work could

investigate the range of postconditions for realistic compiler phases that can be

expressed within this framework.

Finally, the work in this thesis does not permit for preconditions to be ex-
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pressed by the compiler developer, when specifying transformations and post-

conditions. This is similar to the approach taken in the miniphases of Petrashko

et al. [1], whereby the only form of precondition is to specify which other

miniphases must have already been run. Further research could explore the in-

troduction of formally defined preconditions, and the complex logic that arises

with respect to preconditions when transformations are fused.

4.1.4 Illustrative Examples

This thesis focuses on compiler phases based on graph transformations. In

particular, we look at transformations on ASTs and PEGs, predominantly in-

spired by Dotty miniphases [1] and work on equality saturation [23] respectively.

Therefore, the selected examples are inspired by these sources. We choose trans-

formations that are realistic but simple, to illustrate the situation in a way that

is clear but still applicable to the real world.

Generally, compiler phases on an intermediate representation fall into one

of three categories: analyses of properties about the program, translations of

features in one language to features in another, and optimisations to improve

the performance of target code.

Analyses

We do not explicitly look at analysis passes for our illustrative examples. This is

because we are particularly interested in transformations that make structural

changes to the program representation, such as removing nodes from an AST. In

addition to this, the analysis passes generally fit the restrictions of existing tree

traversal frameworks, which already provide very strong soundness guarantees.

However, if a given analysis can be performed by traversing and annotating the

tree or graph nodes, then it can be considered as a minimal transformation, and

so our definitions and criteria do still apply.
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Translations

At a simplistic level, the main job of a compiler is to sensibly translate code

from one language to code in another. Ideally, these languages are chosen such

that they relate to each other in as straightforward a way as possible. However,

in reality there may be many differences between the two, including different

language features. Therefore, it is important to select an example that trans-

lates one language feature into another equivalent form, in order to assess the

applicability of our work in this necessary case.

Optimisations

Arithmetic Constant Folding Constant folding is a straightforward but

useful compiler optimisation, wherein constant expressions which can be stat-

ically evaluated are replaced by the result of this evaluation. This is a good

illustrative example of a compiler phase, since we only require a simple lan-

guage subset, such as arithmetic expressions, to demonstrate it. Moreover, the

majority of compilers implement some kind of constant folding as, for little

effort, it can have a significant impact on the effectiveness of more complex op-

timisations. We use arithmetic constant folding as a running example, starting

in Section 5.2.2, Example 3.

If Expressions In a similar vein, we can optimise if expressions by removing

program branches that will never be visited. For instance, if the condition of

an if-then-else expression is statically known to be true or false, then it can be

replaced by the corresponding branch. This is another fairly simple optimisation

that can have a major impact on the size of the intermediate representation,

and hence the emitted target code. It can also interact with constant folding on

Boolean expressions in cases that the condition can be optimised to just true or

false. Constant folding on if expressions is used as a running example, starting

in Section 5.2.3, Example 4.
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Loop Optimisations Loops are a common source of optimisation opportu-

nities, because the code within them may be repeated, which amplifies any

performance improvements made. Moreover, there can be significant overheads

involved in executing the loop itself. As such, the world of loop optimisations

provides a wide selection from which to choose an example. Since, the encod-

ing of loops is one of the reasons that we extend our work from trees to graph

representations, it make sense to look at an illustrative loop optimisation. In

particular, we look at loop induction variable strength reduction (LIVSR) in

Section 6.4.2.

A simple source language

As a source language to illustrate these transformations with we use a version

of SIMPLE, a toy programming language used in work on PEGs and equality

saturation [23]. This provides just a few useful program constructs, and avoids

obscuring the examples with unnecessary elements. The grammar of SIMPLE

is as follows.

s ::= s1; s2 | x := e | if (e) then {s1} else {s2} | while (e) {s}

e ::= n | b | x | op (e1, . . . , em)

b ::= true | false

n ::= 0 | 1 | 2 | . . .

We use subsets of this language throughout our examples, for both trees and

graphs, in order to highlight the similarities and differences between the two

kinds of representation.

4.1.5 The Coq Proof Assistant

Any research that relies heavily on specifying theorems and then proving them

needs to communicate clearly the validity of those proofs. There are some fields

in which endless pages of mathematics and symbolic reasoning are welcomed, if
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not expected. However, the very topic of this research seeks to straddle the line

between formalisation and accessibility to a wider audience. We do not simply

wish to derive and verify a set of criteria; we want those criteria to be useful

and rational for practical compiler developers, whose expertise may not lie in

formal methods. Therefore, it is important that a wide variety of reader could

convince themselves of the veracity of the proofs in this thesis.

One major advantage of proof assistants, such as Coq, is the assurance that

proofs have been mechanically checked. The reader is left only to convince

themselves that the theorem in question is accurately expressive. This is often

a less involved task, requiring more knowledge of the use-case than the formal

framework. Moreover, the Coq Proof Assistant is known to be reliable. Hence,

we use Coq to check and mechanise some of the informal proofs in this thesis.

A stable version of these proofs can be found at:

https://github.com/EleanorRD/PhDThesis [87].

A significant point of clarification here is that the work in this thesis is

not specific to Coq. The Coq proof assistant was chosen as a tool, for reasons

including reliability and successful use in similar projects, but there are other

proof assistants and other verification tools that could have been used to similar

effect. However, this choice does promote a somewhat functional and recursive

approach to specification and proof, which also influences the presentation of

this thesis.

4.2 The Remaining Chapters

This chapter has set out the goals for the rest of the thesis, in the context of

wider research questions and with some discussion of how we approach them.

The remaining chapters explore these questions for compiler phases in the form

of, initially, tree transformations and, then, more general graph transformations.

Chapter 5 begins by looking at fusing AST transformations, building on the

existing miniphase approach. We motivate and define a concept of fusibility, in
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terms of compiler phases with postconditions, and derive modular criteria for

reasoning about this fusibility at the level of individual phases. Then we evaluate

these criteria by proving their soundness and considering several illustrative

examples of compiler phases.

Chapter 6 continues the same approach and looks to extend it to a more

general graph structure. We examine why it can be useful to include shared

nodes and loops in a program representation. We then look at an inductive

approach to defining graphs, that naturally extends the inductive tree defini-

tion of the previous chapter. This choice of inductive graphs is what concerns

the latter part of the chapter, discussing the applicability of this definition to

realistic transformations.

Finally, Chapter 7 rounds off the discussion of this work, by means of com-

parison with appropriate related work. It also outlines some potential future

work and sets out the conclusions of our research.
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Chapter 5

Fusing Tree

Transformations

Consider a series of abstract syntax tree (AST) transformations in a compiler.

An initial AST is created by parsing source code. Then, this AST is passed

through a series of transformations, the output of each transformation becoming

the input of the next. These transformations act to remove high-level language

features or to optimise the underlying program. Finally, target code is generated

from the transformed AST.

One approach to using AST transformations effectively is to automatically

fuse them, maintaining modularity for the compiler developer, whilst reducing

the number of AST traversals required when the compiler is run. To this end,

Petrashko et al. [1] proposed and implemented miniphase fusion for the Dotty

Scala compiler. Miniphases impose a structure on AST transforming compiler

phases that allows them to be automatically fused.

Miniphases rely on informal guidelines to advise the compiler developer as

to when transformations may be fused. In most work on fusing tree traver-

sals, soundness is formally proved, yielding stronger correctness guarantees

[71, 72, 74, 75, 76, 77]. However, there are two factors that prevent the solutions
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proposed in such related work being directly useful in the case of miniphase-style

fusion.

Firstly, the traversals being considered tend to involve limited transforma-

tions. In general, changes cannot be made to the children of a node, only to

the data stored at the node itself. This is overly restrictive for compiler phases

which need to make drastic structural AST changes.

Secondly, successful fusion is usually defined as producing a fused transfor-

mation that will always give the same result as running its individual constituent

transformations successively. However, we can demonstrate, with an example,

that this precludes opportunities for fusion that would still be beneficial, par-

ticularly for AST optimising transformations.

We want to exploit fusion as much as possible, whilst still providing strong

correctness guarantees. Therefore, in this chapter, we look at a different for-

malisation approach, that can handle the kind of tree transformations required

in a compiler, and that takes a wider perspective on when fusion is successful.

5.1 What Do We Mean By Successful Fusion?

“The most important property of a program is whether it accomplishes the

intention of its user.” — C. A. R. Hoare [55]

Tree transformations, such as AST transforming compiler phases, are in-

evitably written to perform a given job. For instance, the transformations in

Example 1 were intended to optimise away given syntactic patterns. It is there-

fore vital that, if separately run tree transformations accomplish their intended

behaviours, then so does the result of fusing them.

To preserve the intended behaviour of tree transformations, under fusion,

it is sufficient to preserve all observable behaviour. A common interpretation

of successful fusion is that the observable behaviour of fused transformations

should be identical to that of the same transformations running individually

one after the other. However, Example 1, on page 12, demonstrates that there
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are cases which this does not capture. We are perhaps being overly conservative

in trying to preserve behaviour that was never necessarily wanted.

It is not always possible to accurately determine the intentions of a developer

from the code that they produce. In Dotty miniphases [1] postconditions are

implemented by compiler developers, to encode the intended behaviour of a tree

transformation. Checks during testing then ensure that they are preserved by

fusion. Analogously, we will think of fusibility in terms of fusion that preserves

relevant postconditions, as defined informally below.

Definition 1. Let f1 and f2 be tree transformations, such that the trees they

return always satisfy a given postcondition, p1 and p2 respectively. We say that

f1 and f2 can be successfully fused, with respect to p1 and p2, if fused f1 f2

also ensures both p1 and p2. We refer to this as postcondition-preserving fusion.

This definition parameterises the success of fusion over specific postcondi-

tions. Thus, we ensure that the required behaviour of our tree transformations

will be preserved. There may be cases in which two postconditions clearly can-

not both be satisfied, for example if they are mutually exclusive. However, as

compiler phases are generally working together towards the same endpoint, in

reality, cases such as mutual exclusivity are unlikely.

Moreover, the postconditions specify exactly what the required behaviour is.

If a given postcondition poses an obstacle to fusing transformations, it could, in

some cases, be possible for the compiler developer to refine their expectations

and write a new, less ambitious, postcondition to reflect this. However, the

process of weakening a postcondition in this way is difficult to formalise, as it

depends heavily on the intent and intuition of the developer.

Here we will consider purely functional tree transformations, that is functions

that take a tree and return another tree, without any side-effects. Hence, we

need only look at the inputs and outputs of our transformations, when examining

behaviours. This means that postconditions can be specified as predicates on

trees.
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5.2 Defining Transformations & Postconditions

Here we explain how we have formalised and verified our criteria for successful

fusion, illustrating this with a running example. We have also mechanised work

from the remainder of this chapter, using the Coq proof assistant.

5.2.1 Defining tree structures.

To begin with, we need to define the tree structure that will represent ASTs in

this work. Our tree definition is parameterised over a data type X representing

node labels. To highlight the directly inductive nature of the following defini-

tions, we differentiate between a Leaf and an inner Node, although this is not

strictly necessary as a Leaf is just a Node with an empty list of children.

Definition 2. We define a Tree as: a Leaf labelled from some set of labels, or

a Node with a label and a child list.

Tree := Leaf X | Node X (List Tree)

for some label type X.

Figure 5.1: An AST example.

Example 2. We use the following language for our running example, to perform
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program transformations on.

s ::= if (e) then {s1} else {s2}

e ::= n | b | e1 + e2 | e1 ∗ e2 | . . .

b ::= true | false

n ::= 0 | 1 | 2 | . . .

Therefore, we can define a set of corresponding AST node labels that includes

the following:

X := NAT Nat | BOOL Bool | IF | PLUS | MULT | ...

Note that labels NAT and BOOL are parameterised over sets of natural num-

bers and Boolean values respectively. For instance, NAT 20 would represent the

number 20.

Using the node labels in X, we can specify ASTs inductively, as in Definition

2. For example, the AST in Figure 5.1 can be specified as:

Node PLUS [Leaf (NAT 2), Node MULT [Leaf (NAT 1), Leaf (NAT 0)]].

5.2.2 Defining tree transformations.

Next, we formally define what we mean by a tree transformation. As in the

miniphase framework, we separate the rewrite rules from the process of travers-

ing and transforming the tree. This allows us to impose a standardised postorder

traversal, and hence automatically fuse our transformations.

Definition 3. Let f : Tree → Tree be a function on trees. We define a

function transform that takes f and applies it recursively to a given Tree.

transform f (Leaf x) := f (Leaf x)

transform f (Node x cs) := f (Node x (map (transform f) cs)).

Note that, as in many functional languages, map applies a given function to

each element in a given list, and returns a corresponding list of the results.
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Figure 5.2: arith fold: constant folding for given arithmetic expressions on
ASTs.

Example 3. In Definition 3 we refer to f : Tree → Tree, which could be

any function on trees. In the context of ASTs and compilation, this can be a

rewriting of trees that translates syntactic elements or optimises the underlying

program. Take, for example, arith fold, as illustrated in Figure 5.2, which im-

plements a constant folding optimisation for certain addition and multiplication.

We can specifiy this function in a functional-style pseudocode.

arith_fold (Node PLUS [Leaf (NAT n1), Leaf (NAT n2)])

:= Leaf (NAT (n1 + n2))

arith_fold (Node MULT [Leaf (NAT n1), Leaf (NAT n2)])

:= Leaf (NAT (n1 * n2))

arith_fold t := t

We give the function in terms of pattern matching on the argument, as can be

done in languages like Haskell. The function definition can be interpreted by

comparing the given argument against each case in turn, until a match is found.

For instance:

arith_fold (Node MULT [Leaf (NAT 2), Leaf (NAT 3)]) = Leaf (NAT 6)

and:
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Figure 5.3: Transforming an AST with arith fold on a postorder traversal.
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arith_fold (Leaf (NAT 2)) = Leaf (NAT 2).

Consider the tree in Figure 5.1, namely:

Node PLUS [Leaf (NAT 2), Node MULT [Leaf (NAT 1), Leaf (NAT 0)]].

Applying arith fold directly to this tree would have no effect, as the tree

would only match with the final case of the arith fold definition, and hence

be returned unchanged. The solution is to apply arith fold recursively instead,

as in Figure 5.3, and this is where transform is used, to implement a postorder

tree traversal.

5.2.3 Defining fusion of tree transformations.

We then define the process of fusion, taking two rewrite functions and applying

both to each node visited, during a postorder Tree traversal.

Definition 4. For rewrite functions f1, f2 : Tree → Tree and Tree t, we

define fused as:

fused f1 f2 t := transform (f2 ◦ f1) t

where ◦ is standard function composition.

Figure 5.4: if fold: constant folding for if expressions on ASTs.
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Figure 5.5: Transforming an AST with fused arith fold if fold.
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Example 4. Consider the optimisation if fold, illustrated in Figure 5.4, which

performs constant folding on if expressions where the condition is a known

Boolean value. This can be defined in pseudocode as:

if_fold (Node IF [Leaf (BOOL true), c1, c2]) := c1

if_fold (Node IF [Leaf (BOOL false), c1, c2]) := c2

if_fold t := t

Suppose that we want to apply both optimisations, arith fold (see Example

3) and if fold, during our compilation process. Given that arith fold already

deals with folding addition and multiplication, we could have added some more

cases to the definition that deal with if expressions. However, it then becomes

more difficult to toggle off only the if fold or to alter its implementation.

Instead, we can use miniphase style fusion to automatically create a singe

tree transformation from these two separate definitions. From Definition 4,

we get: fused arith fold if fold = transform (if fold ◦ arith fold).

Thus, by fusing arith fold and if fold, we get a tree transformation that

performs a postorder tree traversal, applying arith fold and then if fold at

each node visited, as in Figure 5.5.

Figure 5.6: int to bool: A translation from integers to Booleans in ASTs.
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5.2.4 Does the order of fusion matter?

Although we are fusing tree transformations, to apply in a single traversal, we

still need to think about the order in which they are fused. The order of fusion

dictates the order in which they are applied to each node visited. This means

that fusing transformations in different orders can still produce different results.

Consider the following tree transformation, as illustrated in Figure 5.6. Sup-

pose that the compiler’s source language allows 0 to be evaluated as false and

all other integers as true, but the target language does not. Then the compiler

needs to translate any integers used as truth values into the respective Boolean,

and enforce the fact that truth values must be Boolean. Hence, we can write

a transformation to identify and rewrite such cases. We define a Tree rewrite

function int to bool to implement this translation for if expressions.

int_to_bool (Node IF [Leaf (NAT 0), c1, c2])

:= Node IF [Leaf (BOOL false), c1, c2]

int_to_bool (Node IF [Leaf (NAT n), c1, c2])

:= Node IF [Leaf (BOOL true), c1, c2]

int_to_bool t := t

Suppose that we wish to fuse int to bool and if fold, as defined in Ex-

ample 4. Given that they both rewrite IF nodes, they will directly interact, and

therefore the order of fusion is particularly significant. In Figure 5.7, transform-

ing the example AST with fused int to bool if fold will result in a partly

optimised graph. However, if the order of fusion is reversed, then the if fold

transformation will not be able to optimise at any node.

5.2.5 Defining postcondition checks.

Now we can think about postconditions for our transformations. We define post-

conditions as predicates over Trees, allowing us to express some Tree property

that must hold after a tree has been transformed. Particularly with AST trans-

formations in compilers, we would commonly want such a property to hold for
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Figure 5.7: Transforming an AST with fused int to bool if fold.

the entire Tree. Hence, we define a function to check recursively that some

predicate holds for a node and all of its descendants.

Definition 5. Let p : Tree → {True, False} be a predicate. We define a

function to check it recursively:

check p (Leaf x) := p (Leaf x)

check p (Node x cs) := p (Node x cs) ∧ ∀ c ∈ cs, check p c

Example 5. We can write postcondition predicates for the example optimisa-

tions that we have already defined. For instance, the purpose of arith fold

is to calculate addition and multiplication of constants at compile time. So,

a potential postcondition is that there are no more such nodes that could be

rewritten. This can be expressed as the following function:

p_arith_fold (Node PLUS [Leaf (NAT _), Leaf (NAT _)] = False

p_arith_fold (Node MULT [Leaf (NAT _), Leaf (NAT _)] = False

p_arith_fold _ = True

Predicate p arith fold corresponds to the idea that function arith fold

will make no further change. However, like arith fold, p arith fold is dealing

with a single node rather than the entire tree. Therefore, check, as specified

in Definition 5, can be used to check p arith fold recursively across the tree,

analogously to the way that transform applies a tree transformation.
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Figure 5.8: Evaluating a predicate on an AST, both directly and using check

to check recursively.

Consider Figure 5.8, in which the predicate p arith fold is being evaluated

on an AST, both directly and using check to check recursively. The nodes

are shaded if they have been visited, and annotated with a check mark ✓ if

p arith fold evaluates to True at that node, or a cross mark ✗ if it evaluates

to False. The AST satisfies p arith fold, when evaluated directly. However

when checked recursively, using check to perform a postorder traversal, the

postcondition is not satisfied. This reflects the fact that arith fold cannot

make further changes, to the example AST, but transform arith fold can.

5.2.6 Tree transformations and their postconditions.

We use postconditions to describe what their related transformations will achieve.

Therefore, we need to assume that an individual tree transformation will en-

sure its related postcondition. If this is not the case before fusion, then its

behaviour after fusion cannot reasonably be expected to be correct either. It is

the compiler developer’s job to confirm that the postcondition that they provide

is appropriate for the corresponding transformation.

Given that all of our rewrite rules are applied recursively, we can assume that

all descendants of a node being rewritten have already been rewritten and hence

already satisfy the postcondition. Therefore, we say that a rewrite function f

ensures a postcondition p if, for any tree t whose descendants satisfy p, the
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result of rewriting t will also satisfy p.

Definition 6. For some function f : Tree → Tree and postcondition p :

Tree → {True, False}, we define ensures as: ensures f p :=

∀ t : Tree, (∀ c ∈ children t, check p c) ⇒ check p (f t)

Example 6. Consider the example tree transformation arith fold, as defined

in Example 3, and corresponding postcondition p arith fold, as defined in

Example 5. We know informally, as the compiler developer, that p arith fold

is an appropriate postcondition to express the desired outcome of arith fold.

Using ensures, we can state this knowledge formally, in a way that can be

verified: ensures arith fold p arith fold.

5.3 Fusing Pairs of Transformations

Having established that postconditions are appropriate for their respective tree

transformations, we define the necessary relationships between a transforma-

tion and the postcondition of the other transformation that it is being fused

with. This relationship is not symmetric, differing depending on whether the

transformation is the first or second of the fused pair.

Consider arbitrary tree transformations f1 and f2, each of which ensures a

postcondition, p1 and p2 respectively. Suppose that we want to fuse these tree

transformations, but also to make sure that both p1 and p2 will hold at the end

of running the fused transformation. It is not practical to expect that the two

transformations will be entirely independent. Therefore we need to guarantee

that the interaction between fused transformations will be safe with respect to

preserving postconditions. We can motivate two criteria which will be sufficient

to ensure postcondition-preserving fusion, as follows.

Fusion Criterion 1. As we visit a node, on our postorder traversal, we first

rewrite it with f1. If we have defined our transformation and postcondition

correctly, then we know that p1 should hold after this rewrite. Next we have to
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rewrite the node with f2. To be sure that p1 will still hold after this rewrite,

we need to know that f2 preserves it, as in Figure 5.9.

Figure 5.9: Illustrating Fusion Criterion 1 (FC1)

Fusion Criterion 2. When applying f2 individually, any children of a node

that it rewrites have just been rewritten by f2 themselves, so we can assume

that they already satisfy p2. If we are applying fused f1 f2 instead, the node

will first be rewritten by f1. So, we need to know that f1 preserves p2 for all

children of the nodes that it rewrites, as in Figure 5.10.

Figure 5.10: Illustrating Fusion Criterion 2 (FC2)

Hence, formally, our fusion criteria for postcondition-preservation are defined

as follows.

Definition 7. For some rewrite function f and postcondition p, we have two
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criteria:

FC1 f p := ∀ t, check p t ⇒ check p (f t)

FC2 f p := ∀ t, (∀ c ∈ children t, check p c)

⇒ ∀ c′ ∈ children (f t), check p c′

These definitions can then be used to express criteria that ensure that fus-

ing two tree transformations will preserve given corresponding postconditions.

Suppose we are fusing f1 and f2, in that order, with postcondition p1 and p2

respectively. We require FC1 f2 p1 so that we know f2 preserves p1. We also

require FC2 f1 p2 so that we know that f1 preserves p2 in any children of the

node that it is rewriting.

Therefore, with our criteria, we can assemble our theorem for postcondition-

preserving fusion of tree transformations.

Theorem 1. Let f1 and f2 be tree rewrite functions, and p1 and p2 be post-

condition predicates. Then:

ensures f1 p1 ∧ ensures f2 p2 ∧ FC1 f2 p1 ∧ FC2 f1 p2

⇒ ∀ t, check p1 (fused f1 f2 t) ∧ check p2 (fused f1 f2 t)

In proving this theorem, and hence verifying our fusion criteria, we can split

it into two lemmas, each considering a different postcondition.

Lemma 1. Let f1 and f2 be rewrite functions and p1 a postcondition. Then:

ensures f1 p1 ∧ FC1 f2 p1 ⇒ ∀ t, check p1 (fused f1 f2 t)

Proof. We prove this lemma by induction, on the structure of the Tree data

type.

Let t = Leaf x. Then fused f1 f2 t becomes f2 (f1 t). We know that

f1 t ensures check p1, due to ensures f1 p1. Hence, f2 (f1 t) also satisfies

check p1, as FC1 requires that f2 preserves p1.

Now, let t = Node x cs. Then fused f1 f2 t becomes f2 (f1 (Node

x (map (fused f1 f2) cs))). Our induction hypothesis is that check p1
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(fused f1 f2 c), for all c in cs. Therefore, f1 (Node x (map (fused f1

f2) cs)) satisfies check p1, due to ensures f1 p1. And so, as before, FC1

ensures that f2 (f1 (Node x (map (fused f1 f2) cs))) also satisfies check

p1.

Lemma 2. Let f1 and f2 be rewrite functions and p2 a postcondition. Then:

satisfies f2 p2 ∧ FC2 f1 p2 ⇒ ∀ t, check p2 (fused f1 f2 t)

Proof. As with the previous lemma, we proceed by induction.

Let t = Leaf x. Then fused f1 f2 t becomes f2 (f1 t). Since t has

no children, FC2 dictates that any children of f1 t must satisfy check p2.

Therefore, f2 (f1 t) satisfies check p2, due to ensures f2 p2.

Now, let t = Node x cs. Then fused f1 f2 t becomes f2 (f1 (Node

x (map (fused f1 f2) cs))). Our induction hypothesis is that check p2

(fused f1 f2 c), for all c in cs. So, any children of f1 (Node x (map (fused

f1 f2) cs)) must satisfy check p2, due to FC2. Therefore, we know that f2

(f1 (Node x (map (fused f1 f2) cs))) satisfies check p2, since we know

ensures f2 p2.

Unit laws and identities.

In this subsection, we detail some unit laws that relate to specialised cases of

tree rewrite functions and postconditions. In particular, we look at cases in

which the rewrite function is the identity function, and also cases in which the

relevant postcondition is always true.

Definition 8. Let id : Tree → Tree be the identity tree rewrite function.

That is, id t := t, for any Tree t.

Lemma 3. Let f be a tree rewrite function and p a postcondition. Then:

ensures f p ⇒ ∀ t, check p (fused id f t)

Lemma 4. Let f be a tree rewrite function and p a postcondition. Then:
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ensures f p ⇒ ∀ t, check p (fused f id t)

Definition 9. We define alwaysTrue : (Tree → Prop) → Prop to be a

predicate denoting that a postcondition evaluates to true for all t : Tree.

That is, for p : Tree → Prop:

alwaysTrue p := ∀ t, p t = True.

Lemma 5. Let f1 and f2 be tree rewrite functions and p a postcondition.

Then:

alwaysTrue p ⇒ ∀ t, check p (fused f1 f2 t)

The unit laws in this subsection are fairly trivial. However, they are included

for the sake of completeness, and to illustrate some cases in which the previously

defined criteria FC1 and FC2 are obsolete in proving that fusion will be successful.

Generalising proofs for similar examples.

It is possible to prove that rewrite rules will always satisfy the criteria, if they

have some other property which is even easier to check. Making generalisations

like this can further reduce the effort required in verification or testing. For

example, in this section we prove that a rewrite function which just acts to

remove a section of the tree will satisfy our fusion criteria with respect to any

postcondition.

Take, for instance, the if fold transformation, which only acts to remove a

part of the tree. This is essentially performing the same operation as a multi-

tude of other optimisations that are eliminating dead or unnecessary subgraphs.

Therefore, the shape of the functions and the shape of the proofs of fusibility

criteria will ineveitably be similar. It is beneficial to be able to generalise and

reuse such proofs, rather than entirely repeating them.

We will call a rewrite function a removal if rewriting a tree always returns

either the tree itself or one of its children. Hence, the transformation is simply

removing part of the tree, if it changes the tree at all. This is the case for

93



the example transformation if fold and for other AST optimisations such as

folding Boolean expressions.

Definition 10. A rewrite function f is a removal if, for every Tree t, either f

t = t or f t ∈ children t. We will denote this property as: removal f.

We can prove that all removal transformations will satisfy both pairwise

fusion criteria FC1 and FC2, for all possible postconditions. This mostly just

falls out of the definitions, since everything is happening recursively.

Lemma 6. Let f be a rewrite function and p a postcondition. Then: removal

f ⇒ FC1 f p.

Proof. Let t be a Tree and suppose that check p t holds. We need to show

that check p (f t) holds. We proceed by case analysis on t.

Let t = Leaf x. Due to removal f, we know that f t is either just t or a

child of t. Since t is a Leaf and thus has no children, it must be the case that

f t = t. And we already know that check p t holds.

Now, let t = Node x cs. If f t = t, then as before, we are done. Oth-

erwise, f t ∈ children t. Due to the recursive nature of check, we already

know that check p c holds for any c ∈ children t.

Lemma 7. Let f be a rewrite function and p a postcondition. Then: removal

f ⇒ FC2 f p.

Proof. Let t be a Tree and suppose that ∀ c ∈ children t, check p c. We

show ∀ c′ ∈ children (f t), check p c′, proceeding by case analysis on t.

Let t = Leaf x. As in the previous lemma, since t has no children, it must

be the case that f t = t. And we have already assumed that ∀ c ∈ children

t, check p c.

Now, let t = Node x cs. Again, if f t = t, we are done. Otherwise, f t

∈ children t and the recursive definition of check grants us what we seek.

Checking that removal f holds should be straightforward and directly re-

lates to the implementation of any given rewrite function. By generalising our
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proofs, in this way, we can yield strong guarantees without having to write

repetitive and similar proofs for similar tree transformations.

5.4 Fusing Three or More Transformations

In order to fully reap the benefits of fusion, we want to be able to fuse a list of

multiple transformations. Hence, in this section we extend our pairwise results

to consider a list of arbitrary-many tree transformations to fuse.

We define compose list, which recursively composes a list of tree rewrite

functions, and which we can use in place of compose in our definition fused list.

Definition 11. For a list of rewrite functions and a Tree t, we define:

compose list [] t := t

compose list (f :: fs) t := compose list fs (f t)

Definition 12. For some list of rewrite functions fs and Tree t, we define:

fused list fs t := transform (compose list fs) t

Now that we can fuse multiple transformations together, we need to consider

how our fusion criteria will scale. We choose an arbitrary rewrite function f,

from our list, with its corresponding postcondition p. Using FC1 and FC2, we

can split our list into three parts before ++ [f] ++ after and derive separate

criteria for the transformations before and after f in the fusion order.

A transformation after f must preserve p so as not to undo the work that

f has done. So all transformations after f must satisfy FC1 with respect to p.

A transformation before f must not introduce children that violate p to ensure

that f can satisfy p. So all transformations before f must satisfy FC2 with

respect to p. Hence we define below our extended criteria.

Definition 13. For some list of rewrite functions fs and postcondition p, we

have two extended fusion criteria:

after FC1 p fs := ∀ f ∈ fs, FC1 f p

before FC2 p fs := ∀ f ∈ fs, FC2 f p

95



The following theorem states that, for any given transformation in our list, if

it ensures its corresponding postcondition, and both extended fusion criteria are

satisfied, then the result of applying our fused list will satisfy that postcondition.

Theorem 2. Let fs ++ [f] ++ fs′ be a list of rewrite functions and p a

postcondition. Then:

ensures f p ∧ before FC2 p fs ∧ after FC1 p fs′

⇒ ∀ t, check p (fused list (fs ++ [f] ++ fs′) t)

The proof of this theorem proceeds by nested induction on various parts of

the list, and on the Tree data type structure. We split this into a number of

lemmas that we will prove before returning to the proof of Theorem 2.

To start with, we prove that a composed list of tree rewrite functions, used

to rewrite a tree node, will preserve a postcondition p on the tree, as long as the

composed functions satisfy criterion after FC1 with respect to p. The criterion

after FC1 states that each of the composed functions will individually preserve

p. Hence, the proof follows naturally from the definition of after FC1.

Lemma 8. Let t be a Tree, p a postcondition, and fs a list of rewrite rules.

Then:

check p t ∧ after FC1 p fs ⇒ check p (compose list fs t)

Proof. We prove this lemma by induction on fs. If fs is an empty list then

compose list fs t is just t, and we are done.

Let fs = f :: fs′. Then compose list fs t becomes compose list fs′

(f t). Our induction hypothesis is, for any Tree t′, check p t′ ⇒ check p

(compose list fs′ t′). Hence, we just need to prove check p (f t), which

directly follows from after FC1 p (f :: fs′).

In the next lemma we prove that, if the first tree rewrite function in a fused

list ensures a given postcondition p, and all subsequent functions in the list

preserve p, then the result of applying the fused list to any Tree will satisfy p.
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Lemma 9. Let [f] ++ fs be a list of rewrite functions and p a postcondition.

Then:

ensures f p ∧ after FC1 p fs

⇒ ∀ t, check p (fused list ([f] ++ fs) t)

Proof. We begin by induction on the list fs.

Let fs be an empty list. Then fused list ([f] ++ fs) t becomes transform

f t. We proceed by induction on t. If t = Leaf x, then transform f t is

just f t, and check p (f t) follows from ensures f p, as t has no children.

Otherwise, we have t = Node x cs, and so transform f t becomes f (Node

x (map (transform f) cs)). Our induction hypothesis is that, for all c in cs,

check p (transform f c). So, we have check p (f (Node x (map (transform

f) cs))), again from ensures f p.

Now, let fs = fs′ ++ [f′]. Our induction hypothesis is, for any Tree t′,

check p (fused list ([f] ++ fs′) t′). We proceed by induction on t.

Let t = Leaf x. Then fused list ([f] ++ fs) t becomes f′ (compose list

fs′ (f t)). From the fs induction hypothesis, we know check p (compose list

fs′ (f t)) holds. From after FC1 p fs we have FC1 f′ p. Therefore, we have

check p (f′ (compose list fs′ (f t))).

Now, let t = Node x cs. Then fused list ([f] ++ fs) t becomes f′

(compose list fs′ (f (Node x (map (fused list ([f] ++ fs)) cs)))).

Our induction hypothesis for t is that check p (fused list ([f] ++ fs) c)

holds, for all c in cs. So, check p (f (Node x (map (fused list ([f] ++

fs)) cs))) follows from ensures f p. Thus, from Lemma 8, we have check p

(compose list fs′ (f (Node x (map (fused list ([f] ++ fs)) cs)))). Fi-

nally, from after FC1 p fs we have FC1 f′ p, and so f′ preserves check p and

we are done.

Our final lemma, before constructing the proof of Theorem 2, considers the

preservation of a postcondition in the descendants of a given node. Namely, we

prove that, if the tree rewrite functions in a composed list would individually

97



preserve postcondition p in a node’s descendants, and the descendants of a given

node satisfy p, then rewriting the given node with the composed function list

will result in a node with descendants that still satisfy p.

Lemma 10. Let t be a Tree, p a postcondition, and fs a list of rewrite rules.

Then:

(∀ c ∈ children t, check p c) ∧ before FC2 p fs

⇒ ∀ c′ ∈ children (compose list fs t), check p c′

Proof. We prove this lemma by induction on fs. If fs is an empty list then

compose list fs t is just t, and we are done.

Let fs = f :: fs′. Then compose list fs t becomes compose list fs′

(f t). Our induction hypothesis is, for any Tree t′, we have (∀ c ∈ children

t′, check p c) ⇒ ∀ c′ ∈ children (compose list fs′ t′), check p c′.

Hence, we just need to show ∀ c ∈ children (f t), check p c, which fol-

lows directly from before FC2 p (f :: fs′).

Now we can use Lemmas 8, 9 and 10, to prove Theorem 2, which states

that extended fusion criteria after FC1 and before FC2 are sufficient to ensure

that a given postcondition is preserved by an arbitrary length list of fused tree

transformations.

Proof of Theorem 2. Let fs ++ [f] ++ fs′ be a list of rewrite functions and p

a postcondition. Suppose: ensures f p and before FC2 p fs and after FC1

p fs′. We want to show that:

∀ t, check p (fused list (fs ++ [f] ++ fs′) t).

We begin by case analysis on the list fs. If fs is the empty list, then we

are just considering functions [f] ++ fs′, which is exactly the case covered by

Lemma 9.

Instead, let fs = g :: gs. We proceed by induction on t.

Let t = Leaf x. Then we know that fused list (fs ++ [f] ++ fs′) t

is compose list hs (f (compose list gs (g t))). Since t is a Leaf, and
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consequently has no children, we can say that ∀ c ∈ children t, check p

t. Therefore, we have ∀ c ∈ children (compose list gs (g t)), check p

t, due to Lemma 10 and before FC2 p fs. From ensures f p, we then have

check p (f (compose list gs (g t))). And, check p (compose list fs′

(f (compose list gs (g t)))) follows from Lemma 8.

Let t = Node x cs. Then fused list (fs ++ [f] ++ fs′) t becomes

compose list fs′ (f (compose list gs (g t′))), where t′ = Node x (map

(fused list (fs ++ [f] ++ fs′)) cs). Our induction hypothesis is that, for

all c in cs, we know check p (fused list (fs ++ [f] ++ fs′) c) holds.

Thus, we can follow the same reasoning as the Leaf case to complete the

proof.

5.5 Fusing Blocks of Fused Transformations

In the previous section, we extended the results for fusing two transformations,

to look at fusing a list of arbitrary many tree transformations. That approach

considered each transformation on its own, when defining postconditions and

criteria for successful fusion. However, it may also be useful to examine fusion at

the level of blocks, consisting of transformations that have already been fused.

In this section, we analyse how our previous results apply in such a case.

Figure 5.11: Blocks of fused transformations.
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5.5.1 Considering blocks as tree transformations.

The first thing to note is that we can view these blocks in terms of the tree

transformations themselves. Suppose that b1 and b2 are blocks of fused tree

transformations, defined as follows.

b1 := fused f1 f1′ = transform (f1′ ◦ f1)

b2 := fused f2 f2′ = transform (f2′ ◦ f2)

Since ◦ is standard function composition, we know that f1′ ◦ f1 and f2′ ◦ f2

both have type Tree → Tree. Hence, we can use them as tree rewrite functions

to plug into our previous results.

Similarly, suppose postconditions p1, p1′, p2 and p2′ have been defined for

rewrite functions f1, f1′, f2 and f2′ respectively. Then we can obtain a single

postcondition for each block. For instance, fun t => p1 t ∧ p1′ t would then

be a suitable postcondition for f1′ ◦ f1 in block b1.

From these observations, we can plug the components of blocks b1 and b2

into Theorem 1 as follows.

ensures (f1′ ◦ f1) (fun t => p1 t ∧ p1′ t)

∧ ensures (f2′ ◦ f2) (fun t => p2 t ∧ p2′ t)

∧ FC1 (f2′ ◦ f2) (fun t => p1 t ∧ p1′ t)

∧ FC2 (f1′ ◦ f1) (fun t => p2 t ∧ p2′ t)

⇒ ∀ t, check (fun t => p1 t ∧ p1′ t) (fused (f1′ ◦ f1) (f2′ ◦ f2) t)

∧ check (fun t => p2 t ∧ p2′ t) (fused (f1′ ◦ f1) (f2′ ◦ f2) t)

Hence, in the resulting formalisation, the fusion of b1 and b2 boils down to:

fused (f1′ ◦ f1) (f2′ ◦ f2)

or equivalently:

transform (f2′ ◦ f2 ◦ f1′ ◦ f1).
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5.5.2 Reusing established properties.

One of the key benefits of a modular approach is the ability to reuse components.

In this block-based situation, if we have already reasoned about fusion within

the blocks, then we have established some useful relationships. These can be

reused as stepping stones when proving the required hypotheses for successful

fusion between the blocks.

For instance, suppose that in block b1 we have proved f1 and f1′ can be

successfully fused with respect to corresponding postconditions p1 and p1′. If

this has been done using the criteria in Theorem 1, then we have previously

established both FC1 f1′ p1 and FC2 f1 p1′. Using this, we already know that

f1′ ◦ f1 ensures both p1 and p1′, as is detailed in the following two lemmas.

Lemma 11. Let f1 and f1′ be tree rewrite functions and p1 a postcondition.

Then:

ensures f1 p1 ∧ FC1 f1′ p1 ⇒ ensures (f1′ ◦ f1) p1

Lemma 12. Let f1 and f1′ be tree rewrite functions and p1′ a postcondition.

Then:

ensures f1′ p1′ ∧ FC2 f1 p1′ ⇒ ensures (f1′ ◦ f1) p1′

Having the knowledge, then, that f1′ ◦ f1 ensures both p1 and p1′, makes

it trivial to establish: ensures (f1′ ◦ f1) (fun t => p1 t ∧ p1′ t), and

an analogous approach can be taken for the components of b2. Thus it would

only remain to check that: FC1 (f2′ ◦ f2) (fun t => p1 t ∧ p1′ t) and

FC2 (f1′ ◦ f1) (fun t => p2 t ∧ p2′ t) hold.

5.5.3 How useful is this block-based approach?

One problem with viewing fused transformations as blocks in this way is that

the resulting transformations and their postconditions grow increasingly com-

plicated. Thus it can be increasingly difficult to reason about these components.

It becomes necessary to consider f1′ ◦ f1 and fun t => p1 t ∧ p1′ t rather
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than f1, f1′, p1, and p1′ separately. In this sense, some of the benefits of modu-

larity are lost. Instead it may be more useful to take the view outlined in Section

5.4 and continue to consider the originally defined components individually.

In the end, one benefit of this framework is that the user could take either

of these approaches: either cumulatively building components into more com-

plex components, or continuing to view everything as collections of very simple

components. Ultimately it depends on the user and use-case in question.

5.6 Preserving Correctness

Thus far we have considered tree transformation in terms of satisfying a devel-

oper prescribed postcondition. However, the usual metric for determining the

correctness of compiler phases is to look at the preservation of program seman-

tics. This is a more fundamental and nonnegotiable requirement for program

transformations within the compiler. The postconditions that we have been fo-

cusing on are more a measure of effectiveness than correctness. For example, a

postcondition that states that there should be no remaining instances of adding

0, says nothing about the correctness of compilation: the resulting AST could

evaluate to something entirely different than the original AST.

Therefore, it is important to examine how the tree transformations and fu-

sion framework that we have developed interact with compiler correctness. An

essential stipulation for fusion of any compiler phases has to be that individ-

ually correct phases that are fused must remain correct. That is, as well as

postcondition-preserving fusion, we need to have correctness-preserving fusion.

The approach that we take here is simplistic, and in line with the simple

examples that we will consider in the next section. We look at an evaluation

strategy for the program represented by an AST, whereby the value of each

node depends only on the node label and the value of its children. There is

certainly more sophisticated future work to be done, looking at preserving a

more realistic operational semantics.

Where X is our arbitrary set of node labels, we assume that leafVal and
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nodeVal are evaluation functions, mapping leaves and inner nodes, respectively,

to an arbitrary set of possible values. We can then define a function eval that

applies these mappings recursively to evaluate the AST.

Definition 14. Let Value be a set of possible values. And let leafVal : X →

Value and nodeVal : X → List Value → Value be mappings from nodes

to values. Then we can evaluate a Tree recursively as follows.

eval (Leaf y) := leafVal y

eval (Node x cs) := nodeVal x (map eval cs)

Having defined the evaluation mechanism, we define our notion of correctness

as preservesEval. Essentially, the result of a correct program transformation

must evaluate to the same value as the original program.

Definition 15. Let f be a Tree rewrite function. Then we define the predicate

preservesEval as follows.

preservesEval f := ∀ t, eval (f t) = eval t

Finally we have all of the components to formulate a theorem stating that the

result of fusing two evaluation-preserving tree transformations is also evaluation-

preserving. In other words, fusion preserves preservesEval. The proof of this

theorem is then fairly straightforward, via induction on tree structure.

Theorem 3. Let f1 and f2 be Tree rewrite functions, and t a Tree. Then:

preservesEval f1 ∧ preservesEval f2

⇒ eval (fused f1 f2 t) = eval t

Proof. This proof proceeds by induction over the structure of Tree.

Let t = Leaf x. Then fused f1 f2 t becomes f2 (f1 t). We know

that eval (f1 t) = eval t, due to preservesEval f1. Hence, eval (f2

(f1 t)) = eval (f1 t) = eval t, due to preservesEval f2.

Now, let t = Node x cs. Then fused f1 f2 t becomes f2 (f1 (Node x

(map (fused f1 f2) cs))). The induction hypothesis is that eval (fused
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f1 f2 c) = eval c, for all c in cs. So, map eval (map (fused f1 f2) cs)

= map eval cs.

Thus, eval (Node x (map (fused f1 f2) cs) = nodeVal x (map eval

(map (fused f1 f2 cs))) = nodeVal x (map eval cs) = eval (Node x cs).

So, due to preservesEval f1 and preservesEval f2, we have eval (fused

f1 f2 t) = eval (f2 (f1 (Node x (map (fused f1 f2) cs)))) = eval

(Node x (map (fused f1 f2) cs)) = eval t.

Note that, it similarly follows that: (fused f2 f1 t) = eval t. This is

because the premises simply state that both f1 and f2 preserve the value of the

Tree they are transforming. Thus, the order of transformations, whilst possibly

having an effect on the resulting Tree, will not have an effect on its value.

There are, of course, many nuances that this definition of correctness fails to

account for. For example, where a programming language involves side effects,

it is insufficient to look solely at the result of some such evaluation function.

However, for the minimal, referentially transparent programs that we have been

considering, this basic approach is a start.

5.7 Discussion

This chapter has detailed a method for modular reasoning about fusing modular

tree transformations, such as those found in compiler phases. By imposing

a uniform traversal order on these transformations, in this case postorder, it

is possible to fuse them by interleaving, and thus reduce the number of tree

traversals required. We specify that this fusion can only take place if it preserves

the postconditions defined for each transformation by the compiler developer.

This allows us to ensure that they still behave as required.

To decide whether a series of tree transformations is fusible, without fusing

them, we have derived and verified a set of fusion criteria relating pairs of

individual transformations and postconditions. These criteria can be checked

prior to fusion, thus providing a modular approach. The benefits are that each
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check or proof is simpler, and that the postconditions form an interface between

transformations which allows for a degree of refactoring.

We have also used simple examples of program transformations, which trans-

late given features of perform optimisations, to assess how applicable the work in

this chapter is. These examples demonstrate that it is straightforward to imple-

ment realistically useful transformations within this framework. However, these

transformations are simplistic in the scheme of real-world compiler phases, and

as such it would be beneficial to consider some more complex examples. More-

over, the postconditions that we have implemented for optimisation tend to

specify that no more rewriting could be done by that particular transformation.

This does not capture ideas such as correctness and improvement, which would

be interesting to also consider.
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Chapter 6

Fusing Graph

Transformations

In the previous chapter, we examined postcondition-preserving and correctness-

preserving fusion of AST transformations. Now we look to extend these ideas, to

apply to a wider range of typical compiler phases. As the Background chapter

indicated, many types of graphs have been used for implementing compilers,

with the AST and the CFG perhaps the most common. Therefore, it would be

useful to broaden the criteria that we have developed accordingly, beyond solely

considering trees.

Many compilers use more general graph structures for program representa-

tion, in addition to or instead of tree representations. This is because graphs

with shared nodes and cycles can allow for better encoding of useful program

information, such as explicit control flow. In turn, this extra information can fa-

cilitate more sophisticated optimisations. Moreover, avoiding the duplication of

shared nodes leads to a more compact representation which can reduce storage

requirements.

This chapter explains how the work in the previous chapter can be gener-

alised to a less restricted graph structure. The first two sections outline the
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possible limitations of AST transformations in a compiler, and the performance

gains to be made in identifying and optimising loops. The remaining sections

take the formalisation from the previous chapter and extend the specification

to instead consider graphs in general, before evaluating whether the definitions

remain applicable on various examples.

To achieve this, we start by exploring an inductive definition of graphs.

Conceptually, it seems that it should be easy to transition from working on

trees to working on other graphs, since they are apparently similar structures.

However, the recursive definition of trees that underpins our work so far is not

so obviously applicable when graphs contain shared nodes. Hence, we look to

the inductive graph definition by Erwig [3], in order to make the adjustments

from trees to graphs as straightforward as possible. This approach leads to

modular criteria for reasoning about combining modular graph transformations.

The recursive nature of the graph definition mirrors the functional style of the

formalisation, in a way that is reasonably clear and elegant.

6.1 Limitations of the AST Representation

The AST is ubiquitous in compiler design, generally seen as the most appropriate

representation for the frontend phases. However, very few compilers find it

practical to use an AST all the way down. Indeed, whilst the Dotty miniphase

compiler has a great number of AST transformations, it is only compiling as far

as Java bytecode, which will usually be processed at a lower level by the JVM.

There are several properties of the AST that make it less suited to some of the

compilation process.

The information presented by the AST is strongly linked to program syntax,

which can sometimes obscure the program semantics. Compared to the initial

parse tree, the AST does contain a more focused selection of information, re-

solving some structural ambiguity and abstracting away syntactic elements that

are only specific to the source language. However, for representing complicated

expressions, the AST can still require a large amount of nodes. Moreover, there
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are no shared nodes, leading to repeated subtrees and masking some useful

optimisation targets.

In addition to this, the greater number of nodes results in greater memory

requirements. The AST can contain information that stops being useful after

the frontend of the compiler pipeline. There are more compact graph structures

for directly representing the control flow and dependence information that the

later phases require. Therefore, after the AST has served its primary purpose

there may be other graphical intermediate representations that are better suited

for the rest of compilation.

6.2 Optimising Loops

Loops can provide conspicuous and rewarding targets for compiler optimisations.

There is potential for significant overhead performance costs for using loops,

even when the implementation is relatively efficient. In addition to this, any

inefficiencies inside the loop are multiplied by the number of times the loop

is executed, which could be many. So, where the compiler can make relevant

improvements there are major performance gains to be made.

By using a suitable graph representation, it is straightforward to identify

the loops that are prime for optimisation, as they are encoded explicitly. In an

AST, the only way to locate a loop, for example, is to search for an appropri-

ately labelled node. There is no structural representation, in terms of edges, to

indicate the presence or semantics of a loop. In a CFG, on the other hand, pro-

gram loops are generally represented by loops in the graph. This makes them

more apparent and exposes how they behave.

Another graphical intermediate representation that overtly pays attention

to loops is the program expression graph (PEG) [23], as discussed in Section

2.2.3. Similarly to the AST, the inner PEG nodes represent program operators,

with the operands coming from the node’s children. However, there are inbuilt

loop operators and the PEG itself can contain loops, unlike ASTs. Therefore,

PEGs are a suitable basis for loop optimising. Moreover, the correspondence
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between PEGs and CFGs is such that wide changes can be made to the CFG

structure by local PEG node rewrites.

6.3 Extending the Formalisation

The formalisation and framework, set out in the previous chapter, is a good

foundation for considering more general graphs and their transformations. First,

we need to look at how graphs can be represented, in a way that suits the

functional and recursive nature of our work so far. Then the definitions and

proofs can be appropriately extended. Once this is done, we can discuss how

well this extension fits the kind of graph transformations that a compiler might

implement.

6.3.1 Representing graphs inductively.

Trees naturally lend themselves to being inductively defined. The formalisation,

in the previous chapter, and the corresponding Coq mechanisation make integral

use of this feature. Graphs, on the other hand, tend to be represented as distinct

sets of nodes and edges, in order to easily take account of cycles and shared

nodes. This does not fit as well with the functional approach that we have

taken so far.

Even though we are no longer dealing with trees, performing a depth first

traversal of any graph will yield a related spanning tree. This encodes the path

taken through the graph, but omits information about any edges not traversed.

Hence, we will still need to represent the graph in its entirety, to avoid losing

useful program information. Moreover, given the functional approach that we

are taking, this representation would ideally be inductive.

Erwig’s formalisation of inductive graphs [3] aims to address such situations

and can be outlined, informally, as follows.

• Each node is represented by a unique integer, and has a label associated

with it.
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• A graph is then either: the empty graph, or the extension of another

graph, formed by adding in a new node along with the lists of its parent

and child nodes in the existing graph.

Thus, we can easily alter the definition that we had for Tree to an analogous

definition for Graph.

Definition 16. A Ctxt is a tuple (parents, id, label, children), where

id is an integer node id, label is an element of some arbitrary set of graph

node labels, and parent and children are corresponding lists of node id. We

define a Graph as: an Empty graph, or a Ctxt added to an existing Graph with

the operator Amp.

Graph := Empty | Amp Ctxt Graph

This definition cannot guarantee to yield a unique representation of a given

graph. The order in which the nodes are added into a graph will determine the

exact form of its graph type. For instance, consider the graph in Figure 6.1.

Figure 6.1: A simple graph example.

We could represent this in numerous ways, depending on the order of con-

struction. For instance: Amp ([1], 4, x4, [2, 3]) (Amp ([], 3, x3, [1])

(Amp ([], 2, x2, [1]) (Amp ([], 1, x1, []) Empty))), and: Amp ([2,

3], 1, x1, [4]) (Amp ([4], 2, x2, []) (Amp ([4], 3, x3, []) (Amp ([],

4, x4, []) Empty))), both represent this graph.

Erwig proves a number of properties about this formalisation. Indeed, one

motivation for defining graphs iteratively is for ease and clarity of proof. Having
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defined a gmap function to map a function over the graph, the paper formulates

and proves a fusion law, stating that mapping composed functions is equivalent

to composing the mapped functions.

Definition 17. Let f : Ctxt → Ctxt be a rewrite function. Then gmap is

defined as:

gmap f Empty := Empty

gmap f (Amp ctxt g) := Amp (f ctxt) (gmap f g)

Theorem 4. The fusion law states: gmap f ◦ gmap f′ = gmap (f ◦ f′).

The fusion theorem for gmap is similar to the problems that we are interested

in looking at, but clearly more restrictive. The functions being variously mapped

and composed, in this case, are only making very local changes. They take a

Ctxt and return a Ctxt, meaning that we can alter the label stored at the node

itself and add or remove the edges that are stored in that Ctxt. The functions

that we consider need to be from Graph to Graph, able to change the structure

more widely, as befits an effective compiler phase.

6.3.2 Rebuilding the model.

Having found a graph definition that mirrors the inductive nature of our tree

based theorems, we can now rebuild the formalisation of the previous chapter

to be able to consider graphs.

Graphs, transformations and postconditions.

Given that the existing gmap for inductive graphs is too local for our transfor-

mation needs, we instead modify our previous transform definition. Rather

than a necessarily postorder traversal, the graph traversal follows the inductive

structure of the graph. The rewrite functions that we want to consider touch

the node in question, as well as its subgraph according to the representation.

Hence, the transform function transforms the subgraph before applying the

rewrite at the node being visited.
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Definition 18. We define a function transform that applies a given rewrite

function f : Graph → Graph recursively to a given Graph.

transform f Empty := f Empty

transform f (Amp ctxt g) := f (Amp ctxt (transform f g))

So, the graph transformations are applied very similarly to the tree transfor-

mations, the difference being that the subgraph g will not necessarily contain the

children of the node. Thus, the definition for applying fused rewrite functions

remains as follows.

Definition 19. For two rewrite functions f1, f2 : Graph → Graph and a

Graph g, we define fused as:

fused f1 f2 g := transform (f2 ◦ f1) g

where ◦ is standard function composition.

Moving on to the postconditions for graph transformations, we can once

again decompose the graphs along the lines of the inductive representation.

So, the definition of our check function, for checking postcondition predicates,

remains similar.

Definition 20. For a predicate p : Graph → {True, False}, we define a

recursive check function:

check p Empty := True

check p (Amp ctxt g) := p (Amp ctxt g) ∧ check p g

Next, we want to appropriately extend the definition of ensures, which

states that a graph rewrite function ensures its corresponding postcondition

if, for a graph whose subgraph satisfies the postcondition check, the result of

applying the rewrite to that graph also satisfies the postcondition check.

The definition of ensures for Tree, used the list of children and trivially

handled cases in which that list was empty. Here we have a single subgraph, or

no subgraph if the Graph is Empty. So we must first formally define subgraph,

and we also define an ifexists predicate to handle cases with no subgraph. To
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do so, instead of a list, we use option types which will either be Some subgraph

or None.

Definition 21. We define the subgraph of a Graph as follows.

subgraph Empty := None

subgraph (Amp ctxt g) := Some g

Definition 22. We also define ifexists to deal with option types. Given a

predicate p and an option Graph:

ifexists p None := True

ifexists p (Some g) := p g

Definition 23. For a given rewrite function f and postcondition p, we define

ensures as:

ensures f p := ∀ g, ifexists (check p) (subgraph g)

⇒ check p (f g)

Thus, we have adapted the definitions of the Tree framework to apply to a

broader sort of inductive graph, with minimal changes. The key choice is that

the graphs are decomposed along this non-deterministic inductive structure,

rather than necessarily looking at the connections within the graph itself. The

next step is to examine the effects on the fusibility criteria.

Fusing pairs of transformations.

The criteria for postcondition-preserving fusion also require very few alterations.

Consider Graph rewrite function f1 and f2 with corresponding postconditions

p1 and p2 respectively. Suppose the rewrites are to fused in that order, and we

wish to ensure that both postconditions are always satisfied by the result. Then

we have the following criteria, which we explain informally and then define more

formally.

Criterion 1. For every Graph g that satisfies postcondition p1, the result of

rewriting g with f2 must also satisfy p1. This ensures that, once p1 has been

established by f1, it will be preserved.
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Criterion 2. For every Graph g whose subgraph g′ satisfies postcondition p2,

the subgraph of the result of rewriting g with f1 must also satisfy p2. As, due

to fusion, g′ will have been rewritten by f2 prior to g being rewritten by f1,

this ensures that the resulting subgraph will still satisfy p2, as it will not be

revisited to reestablish this postcondition.

Definition 24. For some rewrite function f and postcondition p, we have two

criteria:

FC1 f p := ∀ g, check p g ⇒ check p (f g)

FC2 f p := ∀ g, ifexists (check p) (subgraph g)

⇒ ifexists (check p) (subgraph (f g))

Having adapted all of the definitions to apply to Graph, the resulting theorem

for postcondition-proving remains essentially the same.

Theorem 5. Let f1 and f2 be Graph rewrite functions, and p1 and p2 be

postcondition predicates. Then:

ensures f1 p1 ∧ ensures f2 p2 ∧ FC1 f2 p1 ∧ FC2 f1 p2

⇒ ∀ g, check p1 (fused f1 f2 g) ∧ check p2 (fused f1 f2 g)

Consequently, this theorem can be proved as a corollary of two lemmas as

in the previous chapter, and indeed the proofs follow the same steps, the details

of which we do not reiterate here.

Lemma 13. Let f1 and f2 be rewrite functions and p1 a postcondition. Then:

ensures f1 p1 ∧ FC1 f2 p1 ⇒ ∀ g, check p1 (fused f1 f2 g)

Lemma 14. Let f1 and f2 be rewrite functions and p2 a postcondition. Then:

ensures f2 p2 ∧ FC2 f1 p2 ⇒ ∀ g, check p2 (fused f1 f2 g)

Fusing three or more transformations.

Given that the pairwise fusion criteria extend easily to the inductive Graph defi-

nition, it is clear that the criteria for fusing multiple transformations will follow

suit. Thus the definitions of the criteria for postcondition-preserving fusion and
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the ensuing theorem are almost unchanged from the Tree formulation. We will

restate them here, but avoid repeating the proof details, which are in essence

identical.

Definition 25. For some list of rewrite functions fs and postcondition p, we

have two fusion criteria:

after FC1 p fs := ∀ f ∈ fs, FC1 f p

before FC2 p fs := ∀ f ∈ fs, FC2 f p

Theorem 6. Let fs ++ [f] ++ fs′ be a list of rewrite functions and p a

postcondition. Then:

ensures f p ∧ before FC2 p fs ∧ after FC1 p fs′

⇒ ∀ g, check p (fused list (fs ++ [f] ++ fs′) g)

6.4 Illustrative Examples

To evaluate the applicability of these graph transformations, and identify the

differences from the previous AST transformations, we once again consider some

illustrative examples. We use the following subset of SIMPLE for this purpose.

s ::= s1; s2 | x := e | while (e) {s}

e ::= n | b | x | e1 + e2 | e1 ∗ e2 | . . .

b ::= true | false

n ::= 0 | 1 | 2 | . . .

The corresponding set of node labels includes: X := NAT Nat | BOOL Bool

| VAR Var | THETA | ASG | SEQ | PLUS | MULT | .... The THETA label is

taken from the nodes used in PEGs to represent while loops. The PEG has other

nodes such as eval to encode parts of the loop such as checking the condition.

But for clarity we only consider the θ node, which represents the loop induction

variable.
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6.4.1 Constant folding

We revisit one of the optimisations from the previous chapter, namely constant

folding for arithmetic expressions.

Example 7. We define a Graph rewrite function arith fold to implement a

constant folding optimisation for arithmetic expressions.

arith_fold (Amp ([], i3, PLUS, [i1, i2])

(Amp ([], i2, NAT n2, [])

(Amp ([], i1, NAT n1, []) g')))

= Amp ([], i3, NAT (n1 + n2), []) g')

arith_fold (Amp ([], i3, MULT, [i1, i2])

(Amp ([], i2, NAT n2, [])

(Amp ([], i1, NAT n1, []) g')))

= Amp ([], i3, NAT (n1 * n2), []) g')

arith_fold g = g

As before, we define the postcondition to state that this transformation can

make no more changes.

p_arith_fold (Amp ([], i3, PLUS, [i1, i2])

(Amp ([], i2, NAT _, [])

(Amp ([], i1, NAT _, []) _)))

= false

p_arith_fold (Amp ([], i3, MULT, [i1, i2])

(Amp ([], i2, NAT _, [])

(Amp ([], i1, NAT _, []) _)))

= false

p_arith_fold _ = true

We can see that this pattern matching approach to rewrites will be less effec-

tive than when considering tree transformations. Given that one graph can be

represented in numerous ways, the pattern matching would have to consider
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many possible cases. This makes the definitions more complicated and harder

to write, but it is still possible to use a pattern matching approach, especially

if the inductive graph representations are constructed in a standardised way.

6.4.2 Loop induction variable strength reduction

Consider the following generalised code snippets [88], where k and c are constant

integers. For the left hand case, every time the loop body is executed, we use the

result of multiplying the induction variable by the same constant c, before the

induction variable is incremented by 1. Since multiplication is generally a more

expensive operation that addition, we can optimise this program by eliminating

the multiplication, to obtain the equivalent right hand case.

x := 0 x := 0

i := 0 i := 0

while (i <= k) { while (i <= c*k) {

x := i * c x := i

i := i + 1 i := i + c

} }

Figure 6.2: Loop induction variable strength reduction on pseudocode.

Figure 6.3: Loop induction variable strength reduction on PEGs.

This loop induction variable strength reduction (LIVSR) optimisation is

illustrated on PEGs in Figure 6.3, representing a fragment of the code above.

Note that θ, or THETA, nodes in PEGs are used to represent the induction
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variables of while loops. The left child holds the start value and the right child

represents how the variable is updated. Having this information encoded directly

into the graph definition allows patterns like this one to be easily identified. This

is also where the functionality of Amp nodes to encode parents is significant,

otherwise it is not possible to inductively represent the cycles in our graphs.

Example 8. We define a Graph transformation to perform the above LIVSR.

livsr (Amp ([], i6, MULT, [i5, i4])

(Amp ([], i5, NAT c, [])

(Amp ([i3], i4, THETA, [i3, i2])

(Amp ([], i3, PLUS, [i1])

(Amp ([], i2, NAT 0, [])

(Amp ([], i1, NAT 1, []) g'))))))

= Amp ([i3], i4, THETA, [i3, i2])

(Amp ([], i3, PLUS, [i1])

(Amp ([], i2, NAT 0, [])

(Amp ([], i1, NAT c, []) g')))

livsr g = g

Again, we see that defining transformations in this way depends on the chosen

construction of the Graph.

6.5 Traversal Order & Inductive Representation

As we have demonstrated, the tree transformation framework adapts naturally

to an inductive notion of graphs. This inductive definition is the key that allows

the extension to easily propagate through. Therefore, it is important to establish

that the definition makes sense. The criteria and theorems are meaningless if

they do not accurately reflect the situation at hand.

A significant observation is that, in this formalisation, the graph traver-

sal order is determined by the order in which the inductive representation is

constructed. The subgraph of a given graph represented this way is entirely
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dependent on the construction, and may not necessarily contain any of the chil-

dren of the node in question. This does not affect the soundness of such an

approach, but may limit its usefulness.

However, if we make sure to use a depth-first order to construct the inductive

representation, then we will essentially create a spanning tree which encodes the

information of all graph edges. The order in which nodes are added to the graph

dictates the order in which the nodes are visited by transformations. This means

that the traversal order can be enforced by conditions on the graph structure

itself.

Moreover, the graphs that we deal with in a compiler are constructed by some

part of the compiler pipeline itself, often based on an intermediate language.

This means that we already know, to some extent, what the graph structure is

likely to look like. An interesting avenue of further research would be to examine

how best to construct these inductive graph definitions to work effectively in a

compiler.

6.6 Discussion

This chapter has adapted the work of the previous chapter to consider a more

general form of graph. Although tree structures are commonly found in the

frontend of compilers, many optimisations further down the pipeline rely on in-

formation that is more easily encoded in graphs with shared nodes and loops. To

extend from trees to graph transformation fusion, we have selected an inductive

graph definition. This makes the transition as smooth as possible.

As we did for tree transformation fusion, we have looked at simple compiler

transformations in order to evaluate the actual usefulness of the definitions and

criteria specified. These examples show that is possible to define realistic trans-

formations in this way, however it is not always easy to make them effective. In

particular, although the inductive definition of graphs makes the specifications

and proofs nicer, it does make transformations based on pattern matching less

useful, since the representation of a graph could change depending on the order
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in which the nodes are added.

In addition to this, the traversal order for transformations is also dependent

on the order of nodes in the inductive representation. As such, we cannot

simply assume that the subgraph of a node contains all or, indeed, any of its

children. This means that the traversal is determined by the graph rather than

the transformations or the framework at large. Hence, to make transformations

properly useful we would need to specify conditions on the graph construction

process, essentially imposing a consistent traversal order.
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Chapter 7

Discussion & Conclusions

7.1 Thesis Contributions

The Methodology chapter set out the research questions that we wanted to

explore in this thesis. Now we can revisit these questions and examine the

extent to which our work has addressed them.

First, to define the scope of the work in this thesis, we specified the kind

of compiler phases to consider. We defined the tree and graph structures, and

corresponding transformations, that we were interested in. Due to taking the

miniphase framework [1] as a basis, and since they are so ubiquitous, we started

with abstract syntax trees (ASTs) as our intermediate representation. We then

moved on to more general graph structures, taking inductive graphs [3] and

program expression graphs (PEGs) [23] as inspiration.

What does it mean for compiler phases to be fusible?

Having looked at different ideas of fusibility from similar related work, we set-

tled on postcondition-preservation, such as is used for miniphases, as a useful

approximation. Postconditions that are defined by the compiler developer can

encompass the necessary outcome of a given compiler phase. This tells us which

parts of the transformation need to be preserved by the fusion process, and al-
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lows us to widely permit fusion as long as it does preserve them.

This definition is better suited to fusing optimisations than approaches that

strictly require fused and unfused transformations to produce identical results.

Optimisations are often more effective when working together and this can be

one of the benefits of fusion. However, postconditions cannot always precisely

capture the nuances of optimisation. Hence, there may be other qualities that

could be considered to augment the definition of fusibility, along with postcon-

dition preservation.

Can we determine whether phases are fusible without attempting to

combine them?

We have developed criteria, namely FC1 and FC2 as specified in Section 5.3

Definition 7, for assessing fusibility before phases have been fused. This is

key to being able to reason modularly about modular compiler phases. Each

criterion considers only one transformation and one postcondition, making them

simpler and easier to check, as well as more robust against local implementation

changes within the compiler. Moreover, since the criteria are parameterised over

the defined postconditions, it may be possible to weaken the postcondition in

order to permit fusion.

We have also verified that these criteria are sound, so that any transforma-

tions which satisfies them will always preserve the postconditions in question.

This formal underpinning gives us strong guarantees. It is worth noting, how-

ever, that there is no reason to assume that the criteria are complete. So, there

could be cases that are fusible but that the criteria do not pick up.

After defining an appropriate idea of fusibility and deriving modular criteria

for reasoning about this, we assessed the feasibility of the work by looking at

several simplistic examples. From this we could determine that the modular

approach had potential. We could apply it to simple cases of transformations

found in realistic compiler phases.

However, there is much more scope for attempting to implement a more
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complex real-world compiler, and analysing the outcome. This would provide

further indication as to whether the modular reasoning approach is usable or

useful. Furthermore, in trying to implement examples, we found that some

design choices that facilitated the specification and proof process, made the

application process more difficult. Hence, such findings could be used to refine

the framework further, in terms of developer experience.

7.2 Using Modular Criteria

The main reason behind developing a set of formal criteria for postcondition-

preserving fusion is to allow modular reasoning. We can think about f1 and

f2 individually, rather than having to determine whether fused f1 f2 will

always establish the relevant postconditions. Namely, for pairwise fusion, we

are checking:

ensures f1 p1, ensures f2 p2, FC1 f2 p1, and FC2 f1 p2,

rather than:

∀t, check p1 (fused f1 f2 t) ∧ check p2 (fused f1 f2 t).

This imparts the advantages of modularity. For instance, a developer work-

ing on a specific transformation, does not need to understand the implementa-

tion of other transformations, in order to assess fusibility. Instead, they only

need the postconditions of those transformations. They can then check these

postconditions and their own transformation against the relevant fusibility cri-

terion. The postconditions and the assurances of their suitability form an inter-

face between the transformations that allows an appropriate level of information

hiding.

Moreover, the modularity allows components to be changed without affect-

ing the entire system. This is particularly relevant when a large number of
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transformations is being fused. Without modularity, the entire fused series of

transformations needs to be reevaluated for postcondition-preservation, includ-

ing transformations and postconditions that remain the same. With modular

criteria, only the relationships with changed components need to be reestab-

lished. So only a fraction of the checks need to be rechecked, while the rest

remain valid.

In this section, we briefly explore a range of techniques that could be used

to check the criteria prior to fusion. Each of these approaches has its benefits

and may be suited to different situations. Modularity is beneficial in each of

these cases.

7.2.1 Using a proof assistant.

Proof assistants, or interactive theorem provers, allow developers to implement

software and formally prove that it satisfies desired properties, such as our

fusion criteria. Having simple modular tree transformations to reason about will

make this process easier for the inexperienced user, as there is generally a steep

learning curve in using proof assistants. Moreover, if the proofs are reasonably

simple, there is more chance that the small amounts of proof automation, present

in such tools, will be helpful.

The Coq proof assistant [41] is a popular choice for verifying software. We

have used Coq to mechanise and check the formalisation and proofs in this paper.

This not only substantiates the work, but also leaves behind a framework that

could be used as a template to implement specific tree transformations and

prove that the fusion criteria hold.

Verified code implemented in Coq can be directly extracted into a number

of languages, such as OCaml and Haskell. Hence, the software does not need

to be implemented a second time for verification. There are also projects like

hs-to-coq [89, 90], which aims to automatically translate Haskell code into

Gallina, the Coq specification language. Such tools help to bridge the gap

between verification, via theorem proving, and software implementation.
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7.2.2 Automated static analysis.

Another, more automated, possibility is to use some form of static code analysis

software. Static analysis examines the behaviour of a program without executing

it, and can exploit tools like SMT solvers to check that given properties hold.

Such approaches tend to be less expressive than using a proof assistant, but

provide the benefit of automation.

With automated verification methods, modularity is valuable. Having smaller

components and simpler properties to check helps to avoid issues such as state-

explosion. Moreover, many such methods search for a counterexample input, if

a proof cannot be found. A counterexample is most useful if it can be directly

linked with a specific section of code, to effectively diagnose the problem. This

is more likely to happen if the verification effort is highly modular.

7.2.3 Runtime checks.

Contract syntax is often used to express properties to be checked at runtime.

This can exist in native form in a language, such as JML, or as part of a library,

such as Predef in Scala. Keywords like require and ensuring are used to

express preconditions and postconditions at a given point in code. Exceptions

may be raised if these conditions are not met. Contracts can be permanently in

place during runtime or toggled for use only during testing.

If we are implementing modular tree transformations, it is necessary for the

conditions that we are checking to also be modular. It is not straightforward to

express, using contracts, a property referring to multiple tree transformations

which are defined in different parts of code. Therefore, our criteria are useful

here, in that each only relates to one tree transformation. Postconditions can

then be expressed as part of the contract syntax.

7.2.4 Property-based testing.

Property-based testing frameworks are designed to test for specific properties,

using a large number of appropriate random inputs. This can be used in a
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similar way as contract syntax, during testing, however it removes the required

properties from the code itself. It also allows the user to express properties

about multiple elements, rather than just one point in the code.

The advantage of modularity here, is that the tests can be very specific. If a

given test fails, it is easy to localise which criteria was not met, as well as which

particular tree transformation caused the problem.

7.3 Potential Future Work

The work in this thesis has suggested an approach for achieving modular, effi-

cient, and correct program transformations, via formal and modular reasoning

techniques. We have also proved that these techniques are sound and demon-

strated with simple examples that they could be useful. However, there are

many areas that this thesis does not touch on, and that could form the basis of

interesting future work.

7.3.1 Realistic compiler implementation.

Whilst the examples that illustrate this work are transformations that would

commonly be found in a realistic compiler, they only represent a small fraction

of the work that a compiler necessarily does. Therefore, a good method of eval-

uating the usability of the modular reasoning approach that we have developed

would be to use it in implementing a more substantial example. Given that the

inspiration for these ideas was the Dotty miniphase compiler [1], that would be

an obvious place to start, especially since the source code is readily available.

Moreover, taking the JVM as a target provides a good starting point for look-

ing at compiling any other languages that typically choose to run on JVM. A

realistic application of the framework would then facilitate other research, as

we detail below.
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7.3.2 Evaluating modularity gains.

Throughout this thesis, we have taken modularity to be an imprecise and un-

measured quantity, validated by anecdotal evidence. However, there are frame-

works and techniques for quantifying the modularity of a piece of software and

the value that that modularity adds. For instance, design structure matrices can

model modular designs and evaluate the benefits [6, 91]. In such approaches,

real options techniques can be used to consider the added value of being able

to easily replace components if better implementations are discovered.

7.3.3 Evaluating performance gains.

We have not, thus far, directly discussed the performance impact of fusing

compiler phases, instead relying on positive results from other work such as the

Dotty compiler [1]. Therefore, another implementation of this kind of compiler

would provide the opportunity for further rigorous benchmarking of performance

gains. In addition to this, if the criteria for fusibility are checked with any degree

of automation, it would be useful to compare the time spent on this compared

to checking less modular criteria.

7.3.4 Sophisticated compiler correctness.

The approach to compiler correctness in this work has been somewhat naive

and simplistic compared to the plethora of work focused on verifying real-world

compilers. Hence, there is plenty of room to explore how the fusion techniques

and modular reasoning criteria with respect to existing compiler correctness

projects. In particular, many successfully verified compilers, such as CompCert

[27], are directly extracted from their proofs of correctness. As modularity is

already key in verification efforts, if a compiler is to be realistically used then

performance also needs to be taken into account. Thus, it may be that fusion

is of benefit in such situations.
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7.4 Thesis Conclusions

Ordinarily the increased number of compiler phases promoted by modularity

would result in an increased number of graph traversals and, hence, worse per-

formance. Automatically fusing graph transformations can avoid this trade-off

of modularity against performance. Fusion allows multiple transformations to

be performed in a single traversal, mitigating the performance impact. Such a

strategy has been successfully adopted for AST transformations as miniphases

in the Dotty Scala compiler, implemented by Petrashko et al. [1].

A crucial consideration, when fusing compiler phases, is correctness. Fused

phases must continue to be useful, by performing their intended task. Most

work on fusing tree traversals or transformations deems fusion successful if the

fused transformations will produce an identical outcome to the same separate

transformations run consecutively. However, this precludes some fusion oppor-

tunities that would still be beneficial. Moreover, many related techniques focus

on a highly restricted set of transformations, in order to prove such soundness

guarantees.

Instead, we have argued for a broader notion of what we allow to be fusible,

namely postcondition-preserving fusion. We use postconditions to encode the

required behaviours of a graph transformation, allowing the developer of the

transformation to specify what particular behaviour is important to them. We

can then reason about whether that behaviour is preserved, rather than trying

to preserve behaviour that is merely coincidental.

We have also derived and verified criteria that are sufficient to guarantee

that a given set of graph transformations can be successfully fused, with respect

to a given set of postconditions. Instead of reasoning about the final fused

transformation, we are able to reason about the transformations individually.

This will allow modular verification or testing which appropriately complements

the modularity of the implemented compiler phases.
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