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Abstract

Recent advances in deep reinforcement learning have produced unpreceden-

ted results. The success obtained on single-agent applications led to exploring

these techniques in the context of multi-agent systems where several additional

challenges need to be considered. Communication has always been crucial to

achieving cooperation in multi-agent domains and learning to communicate

represents a fundamental milestone for multi-agent reinforcement learning

algorithms. In this thesis, different multi-agent reinforcement learning ap-

proaches are explored. These provide architectures that are learned end-to-end

and capable of achieving effective communication protocols that can boost the

system performance in cooperative settings. Firstly, we investigate a novel

approach where intra-agent communication happens through a shared memory

device that can be used by the agents to exchange messages through learnable

read and write operations. Secondly, we propose a graph-based approach where

connectivities are shaped by exchanging pairwise messages which are then

aggregated through a novel form of attention mechanism based on a graph

diffusion model. Finally, we present a new set of environments with real-world

inspired constraints that we utilise to benchmark the most recent state-of-the-

art solutions. Our results show that communication can be a fundamental

tool to overcome some of the intrinsic difficulties that characterise cooperative

multi-agent systems.
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Chapter 1

Introduction

Reinforcement Learning (RL) allows agents to learn how to map observations to

actions through feedback reward signals [157]. Recently, deep neural networks

(DNNs) [89, 141] have had a noticeable impact on RL [94]. They provide flexible

models for learning value functions and policies, overcome difficulties related to

large state spaces, and eliminate the need for hand-crafted features and ad-hoc

heuristics [29, 121, 122]. Deep reinforcement learning (DRL) algorithms, which

usually rely on deep neural networks to approximate functions, have been

successfully employed in single-agent systems, including video game playing

[111], robot locomotion [97], object localisation [18] and data-center cooling

[38]. Following the uptake of DRL in single-agent domains, there is now a

need to develop improved learning algorithms for multi-agent (MA) systems

where additional challenges arise. Multi-agent reinforcement learning (MARL)

extends RL to problems characterized by the interplay of multiple agents

operating in a shared environment. This is a scenario that is typical of many

real-world applications including robot navigation [162], autonomous vehicles

coordination [15], traffic management [36], and supply chain management

[90]. Compared to single-agent systems, MARL presents additional layers

of complexity. Early approaches started exploring how deep reinforcement

learning techniques can be utilised in multi-agent settings [23, 53, 155], where

it emerged a need of novel techniques specifically designed to tackle MA

challenges.
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Markov Decision Processes (MDP), upon which DRL methods rely, assume

that the reward distribution and dynamics are stationary [58]. When multiple

learners interact with each other, this property is violated because the reward

that an agent receives also depends on other agents’ actions [86]. This issue,

known as the moving-target problem [166], removes convergence guarantees

and introduces additional learning instabilities. Further difficulties arise from

environments characterized by partial observability [23, 128, 151] whereby the

agents do not have full access to the world state, and where coordination skills

are essential.

An important challenge in multi-agent deep reinforcement learning (MADRL)

is how to facilitate communication among interacting agents. Communication

is widely known to play a critical role in promoting coordination between

humans [159]. Humans have been proven to excel at communicating even in

absence of a conventional code [32]. When coordination is required and no

common languages exist, simple communication protocols are likely to emerge

[144]. Human communication involves more than sending and receiving mes-

sages, it requires specialized interactive intelligence where receivers have the

ability to recognize intentions and senders can properly design messages [178].

The emergence of communication has been widely investigated [47, 163], for

example new signs and symbols can emerge when it comes to representing real

concepts. Fusaroli et al. [46] demonstrated that language can be seen as a social

coordination device learnt through reciprocal interaction with the environment

for optimizing coordinative dynamics. The relation between communication

and coordination has been widely discussed [34, 71, 109, 170]. Communication

is an essential skill in many tasks: for instance, in critical situations, where

is of fundamental importance in properly managing critical and urgent situ-

ations, such as emergency response organizations [28], in which is crucial to

establish a clear way of communicating. For example, in order to properly

manage critical and urgent situations, emergency response organizations need a

clear communication that is fundamental and can be achieved through sharing

information amongst different agents involved, which is usually accomplished

through years of common training [28]. In multiplayer video games, it is often
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essential to reach a sufficiently high level of coordination required to succeed,

often acquired via communicating [20]. We believe that communication is

a promising tool that needs to be exploited by MADRL models in order to

enhance their performance in multi-agent environments. When this research

was started, we noticed a lack of methods to enable inter-agent communication,

so we decided to explore this area to contribute to filling a gap that had the

potential for improving the collaboration process in a MA system.

1.1 Research objectives

The aim of this research is to explore novel communication models to enhance

the performance of existing MARL methods. In particular, we focus on cooper-

ative scenarios, which is where communication is needed the most by the agents

in order to properly succeed and complete the assigned tasks. We investigate

different approaches to achieving effective ways of communicating to boost

the level of cooperation in multi-agent settings. The resulting communication

protocols are learned end-to-end so that, at training time, they can be adapted

by the agents to overcome the difficulties proposed by the underlying environ-

mental configuration. In addition, we also aim to analyse the content of the

learned communication content.

1.2 Contributions

The main contributions made in this thesis are summarised as follows:

• in Chapter 3, we propose a novel multi-agent approach where inter-agent

communication is obtained by providing a centralised shared memory

that each agent has to learn to use in order to read and write messages

for the others in sequential order;

• in Chapter 4, we discuss a novel multi-agent model that first constructs

a graph of connectivities to encode pair-wise messages which are then

used to generate an agent-specific set of encodings through a proposed

3



attention mechanism that utilises a diffusion model such as the heat-kernel

(HK);

• in Chapter 5, we propose an environment to simulate drone behaviours in

realistic settings and present a range of experiments in order to evaluate

the performance of several state-of-the-art methods in such scenarios.

1.3 Outline

This section provides an outline of this thesis. The rest of this document is

structured as follows. Chapter 2 reviews the existing MADRL models that

relate to this work, with a special focus on cooperative algorithms. Chapter

3 introduces the first research contribution that proposes a novel form of

communication based on a shared memory cell. Chapter 4 presents the second

research contribution in which a graph based architecture is exploited by a

diffusion model to generate agent specific messages. Chapter 5 proposes a

novel environment to simulate a realistic scenario of drone navigation and

discusses an extensive comparison of several state-of-the-art MADRL models.

Chapter 6 concludes this work with a discussion of the results obtained and

recommendations for future work.

4



Chapter 2

Literature Review

In this chapter, we introduce the RL setting and review the existing works

related to multi-agent reinforcement learning. In Section 2.2, we discuss

significant milestones in single-agent reinforcement learning to establish the

foundational knowledge for the extended or utilized basic learning techniques.

Section 2.2 presents deep learning extensions for the previously mentioned

approaches, serving as a connection between single-agent and multi-agent

methodologies. Moving on to Section 2.3, we focus on how these approaches

have been expanded to operate in multi-agent scenarios, with a particular

emphasis on the training phases that are commonly employed in state-of-the-

art works. We then categorize the multi-agent literature into the following

groups:

• Cooperative methods (Section 2.4): works that concentrate on achieving

cooperation between agents

• Emergence of communication (Section 2.5): works that investigate how

autonomous agents can learn languages

• Communication methods (Section 2.6): works where agents must learn

to communicate to enhance system performance

In this review, we intentionally omitted specific research areas such as

traditional game theory approaches [120, 123, 145], microgrid systems [27,

70, 72], and programming for parallel executions of agents [24, 45, 136]. Our

5



primary focus was on multi-agent works based on reinforcement learning

approaches, with a particular emphasis on communication methodologies.

Some of the methods mentioned in this review have also been chosen as

baselines for the experiments presented in the subsequent chapters, particularly

in Chapter 5, that plays a crucial role as it serves as a practical context

for the proposed multi-agent approaches discussed in Chapters 3 and 4. By

introducing a specifically designed environment to simulate drone behaviours in

realistic settings, Chapter 5 provides indeed a practical platform for evaluating

the performance of state-of-the-art MADRL models that employ different

communication and coordination methods discussed in this chapter.

2.1 Reinforcement learning

Reinforcement learning methods formalise the interaction of an agent (or actor)

with its environments using a Markov decision process [129]. An MDP is

defined as a tuple 〈S,A,R, T , γ〉 where S is the set that contains all the states

of a given environment, A is a set of finite actions that can be selected by

the agent, and the reward function R : S ×A → R defines reward received by

an agent when executing the action a ∈ A while being in a state s ∈ S. A

transition function T : S ×A describes how the environment determines the

next state when starting from a state s ∈ S and given an action a ∈ A. The

discount factor γ balances the trade-off between current and future rewards.

As represented in Figure 2.1, an agent interacts with the environment by

producing an action given the current state and receiving a reward in return.

MDPs are suitable models to take decisions in fully observable environments

where a complete description of all its elements is available to the agents

and can be exploited by techniques such as the value iteration algorithm [9]

which iteratively computes a value function that estimates the potential reward

function of each state. A state-action value instead is calculated when the

potential reward function is estimated using both the state and the action.

When a MDP is solved a stochastic policy π : S × A → [0, 1] is obtained to

map states into actions. RL algorithms often make use of the past agents’
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Figure 2.1: A reinforcement learning setting. The environment provides an
observation while the agent produces an action and receives a reward in return.

experience with interacting with the environment. A well-known algorithm is

the Q-learning [176], a tabular approach that keeps track of the Q-functions

Q(s, a) that estimate the discounted sum of future reward for a given pair

state-action. Every time the agent moves from a state s into a state s′ using

an action a′ the respective tabular entry is updated as follows:

Q(s, a) = Q(s, a) + α
[(
r + γmax

a′
Q(s′, a′)

)
−Q(s, a)

]
(2.1)

where α ∈ [0, 1] is the learning rate.

Policy gradients (PG) methods [157] represent an alternative approach

of Q-learning where the parameters θ of the policy are directly adjusted to

minimise the objective function by taking steps in the direction of the gradient

of J(θ) = Ea∼π[RT ], where RT =
∑T
t=1 γ

tr(st, at) is defined as the γ-discounted

sum of rewards and t ∈ {1, . . . T} is the time-step of the environment. Such

gradient is calculated as follows:

∇θJ(θ) = Ea∼πθ
[
∇θ log πθ(a|s)Q(s, a)

]
(2.2)

The REINFORCE algorithm [179] utilises Eq. 2.2 in conjunction with a Monte

Carlo estimation of full sampled trajectories to learn policy parameters in the
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following way:

θ(t+1) = θt + αRT
∇πθt(at|st)
πθt(at|st)

. (2.3)

Policy gradient algorithms are renowned to suffer from high variance which

can significantly slow the learning process [79]. This issue is often mitigated by

adding a baseline, such as the average reward or the state value function, that

aims to correct the high variation at training time. Actor-critic methods [79]

are composed of an actor module that selects the actions to take and a critic

that provides the feedback necessary for the learning process. When the critic

is able to learn both the state-action and the value functions, an advantage

function can be calculated as the difference between these two estimates. A

popular actor-critic algorithm is the Deterministic Policy Gradient (DPG)

[149], in which the actor is updated through the gradient of the policy, while

the critic utilises the standard Q-learning approach. In DPG the policy is

assumed to be a deterministic function µθ : S → A and the gradient that

minimises the objective function can be written as:

∇θJ(θ) = Es∼D
[
∇θµθ(a|s)∇aQ(s, a)

∣∣
a=µθ(s)

]
(2.4)

whereD is an experience replay (ER) buffer that stores the historical transitions,

µθ and Q(s, a) represent the actor and the critic, respectively.

2.2 Deep reinforcement learning

Deep learning techniques [89] have widely been adopted to overcome the major

limitations of traditional reinforcement learning algorithms, such as learning

in environments with large state spaces or having to provide hand-specified

features [158]. Deep neural networks (DNN) as function approximators allowed

indeed to approximate value functions and agents’ policies [12]. In DQN [110],

the Q-learning framework is extended with DNNs, in order to approximate the

state provided by the environment, while still keeping the historical experience

in an experience replay buffer which is used sample data at training time. DQN

learns to approximate the tabular approach described in Section 2.1 by utilising
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two deep neural networks, a Q-network that approximates the Q-values and

another target network that keeps a copy of the parameters to stabilise the

learning phase. At each iteration the following loss is minimised:

L(θ) = Es,a,r,s′
[(
r + γmax

a′
Q(s′, a′; θ−)

)
−Q(s, a; θ)

]
(2.5)

where θ− are the parameters of the target network that are periodically updated

with the parameters θ of the Q-network, while mini-batches of 〈s, a, r, s′〉 tuples

are sampled from the ER buffer.

Proximal Policy Optimisation (PPO) [143] is a policy gradient RL algorithm

that at training time is defined to avoid choosing parameters that change the

policy too much through a Kullback-Leibler (KL) divergence constraint with

respect to the size of the policy update of a given iteration. Deep Deterministic

Policy Gradient (DDPG) [96] is a popular RL approach that extends the DPG

approach by utilising DNNs to approximate both the actor and critic functions,

respectively µθ and Q(s, a) of Equation 2.4. In addition, DDPG also utilises a

target network to stabilise the learning as in DQN.

2.3 Multi-agent deep reinforcement learning

Multi-agent systems have been widely studied in a number of different domains,

such as machine learning [153], game theory [123] and distributed systems

[147]. Recent advances in deep reinforcement learning have allowed multi-

agent systems capable of autonomous decision-making [3, 59, 118] improving

tabular-based solutions [16]. In [6] the PPO algorithm has been extended to

train independent learning agents with two main contributions to overcome

the issues arising from the MA nature of the problem. The first one introduced

an exploration reward that increases the probability of random actions in the

beginning phase of the training in order to maximise the number of spaces

visited. The second contribution instead proposed to keep a pool of older

versions of the other agents that are then randomly sampled to increase the

robustness of the training process. Another approach that relies on training

agents independently is Asynchronous Advantage Actor-Critic [112], a model
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that parallelises the actor-critic paradigm to allow multiple workers to interact

with a given environment at the same time. Gradients are first computed

and accumulated locally, and then passed to a DNN which performs the

optimisation step to update all the policies asynchronously. Single-agent DRL

algorithms have also been explored in two-player zero-sum game scenarios with

customizable complexity [132] where it emerged a significant variation in the

final performance especially when the difficulty of the proposed games required

a parameter tuning phase on the training algorithms. A weakness of these

independent learning approaches is that they do not consider any mechanism

to boost agents’ cooperation so they do not perform well in scenarios where

coordination and collaboration are needed skills.

One of the main challenges of multi-agent settings is represented by the non-

stationary of the MA environments, also known as moving target problem [64].

When multiple learners interact with each other, the environment becomes non-

stationary from the perspective of individual agents which results in increased

training instability [86, 166]. An approach that has proved particularly effective

consists of training the agents to assume centralised access to the entire system’s

information whilst executing the policies in a decentralised manner (CLDE)

[40, 41, 63, 82, 103]. During training, a critic module has access to information

related to other agents, i.e. their actions and observations. MADDPG [103],

for example, extends DDPG [149] in this fashion: each agent has a centralised

critic providing feedback to the actors, which decide what actions to take. At

training time, each centralised critic receives the observations and actions of

all the other agents in order to produce the Q-values to its associated actor.

At execution time, instead, each policy is independent and receives only its

observation to select the action to take. Figure 2.2 describes the MADDPG

framework. MADDPG represents a crucial milestone in the MADRL domain

and serves as a baseline in all the comparisons presented in the following

chapters. Furthermore, its training approach has been adopted and extended

to create the end-to-end learnable frameworks described in Chapter 3 and

Chapter 4. Both proposed models rely on an actor-critic paradigm governed by

multi-agent versions of DDPG, which have been adapted to be utilized together
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Figure 2.2: The MADDPG framework.

with novel communication modules. A variant of MADDPG has recently been

proposed in [173] to deal with partially observable environments through the

use of recurrent neural networks (RNNs)[60]. In this approach indeed RNNs

have been utilised to extend MADDPG so that both the actors and the critics

were able to see the historical sequence of the state and action pairs of each

sampled trajectory. These recurrent models have been utilised in both phases

of training and execution. Specifically, consider an environment with N agents

which policies are represented as {µθ1 , µθ2 , . . . µθN }, MADDPG extends Eq.

2.4 as follows:

∇θiJ(θi) = Es∼D
[
∇θiµθi(ai|si)∇aQ(s1, . . . sn, a1 . . . sN )

∣∣
ai=µθi (si)

]
where si ∈ S and ai ∈ A.

The major downside of MADDPG is that the input space of the critics

grows linearly with the number of agents, a thing that causes the Q-values to

be more complicated to be obtained and slows the learning process.
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2.4 Cooperative methods

Agents’ cooperation has always been a very important goal of MARL approaches.

In an early approach [160], DQN networks are used to independently train

agents to coordinate and learn how to play two-players pong. The authors of

this work also showed how by just updating the reward function the agents were

able to learn to cooperate rather than compete. DQNs have also been adopted

in the context of sequential social dilemmas in domains where multiple self-

interested independent agents interact in scenarios that include environmental

functions such as resource abundance. The authors show that competition can

emerge when it comes to sharing common resources. Social dilemmas have also

been explored in [91] where DRL was used to show that cooperation can be

maintained to avoid selfish behaviours that can disadvantage the other learning

actors. Agents are constructed by utilising a selfish and a cooperative reward

schemas. Their results show that when cooperation is learned a higher payoff

is reached in the long run. In [42] the DQN approach is instead extended

to stabilise the training process by adapting the data distribution in the ER

to the current state of the environment that changes while the agents are

learning. A common way of achieving cooperation is via sharing the network

parameters. For example, in [53], where a centralised neural network is used

to train all the agents, to boost the overall level of cooperation in a number

of proposed environments. Another renowned approach is COMA [41], a

framework designed to mitigate the issues given by the credit assignment

problem [133] that arises when the shared reward resulting from a joint action

cannot be broken down easily among agents. In COMA, indeed, a centralised

critic provides a counterfactual baseline that goes to enrich the individual

feedback returned to each agent. A limitation of this approach is that it does

not scale well with respect to the number of agents. For this reason value

decomposition networks (VDNs) [156] have been utilised to decompose an

environment reward function as a sum of individual agent rewards in order to

return the proper feedback to each individual learner. Similarly, QMIX [134]

extended this idea by using an agent network to factorises the Q function in
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a set of local values that are then aggregated together by a mixing network

in a non-linear fashion. In a different solution [63], an actor-critic algorithm

is proposed to train decentralised policies where the critics are designed to

attentively select what information needs to be aggregated amongst all the

pairs of observations and actions received. In this approach, a multi-agent

advantage function has also been integrated into the learning process in order

to marginalise the actions of a given agent to help solve the credit assignment

problem. All the methods mentioned in this paragraph represent valid models

capable of increasing the level of the agents’ cooperation in MARL scenarios by

proposing different solutions to enrich the feedback returned to the agents at

training time. The main disadvantage of these approaches is that they do not

provide any kind of communication mechanism that could help the agents to

overcome situations where sharing information is the key to the success. In this

thesis, we investigate communication models to enhance the performance of

cooperative multi-agent systems. The primary objective is to enable agents to

discover communication protocols that facilitate interactions, enabling effective

coordination of behaviour and successful accomplishment of the underlying

task.

2.5 Emergence of communication

The development of language and communication skills in multi-agent settings

has garnered significant attention due to recent advances in DRL [50, 171].

Many models in this domain rely on referential games, which are a variant of

the Lewis signaling game widely utilized in linguistics and cognitive sciences

[8, 88]. In this context, there is typically a speaker whose aim is to describe an

object to a listener, who in turn attempts to identify it. For instance, in [87],

a speaker agent is implemented as a DNN that receives an image and produces

an encoding, which is then sent to a listener trained to discern the correspond-

ing target label. Likewise, [116] introduced a framework to investigate the

emergence of abstract language arising from the interaction of agents with

their environment. Specifically, agents learn a vocabulary by solving navigation
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tasks that allow for communication. Additionally, their experiments revealed

the acquisition of syntax structures through communication protocols. In [164],

the authors explored a referential game based on the MNIST dataset to invest-

igate how the size of the vocabulary set affects generalization in multi-agent

communication games. They introduced a scheduled entropy regularization

technique to improve final performance without compromising sample efficiency,

particularly when dealing with over-parameterized vocabularies. The work in

[92] proposed a MARL framework to generate compositional language, which

proved to be more effective than less structured alternatives in the context of

referential games. This approach employed long short-term memory (LSTM)

networks for both the speaker and the listener, with the former sharing its hid-

den states with the latter to simulate message transmission. In a similar vein,

[22] designed a two-agent system to address a communication game involving

the recognition of synthetic images depicting single objects. During each round,

a speaker is presented with a random image and produces a message, which

is then transmitted to a listener. The listener also receives a random image

and must determine if it matches the one conveyed by the speaker. Refer-

ential game approaches are indeed an intriguing method for implementing

communication in multi-agent scenarios, particularly when investigating the

emergence of communication patterns. However, it is important to note that

referential games are primarily designed for specific two-agent settings, whereas

our research focuses on more generic environments that can involve multiple

agents.

Although we did not utilize these specific approaches in our research, we

believe it is important to mention this line of research due to its relevance in

the context of multi-agent communication.

2.6 Communication methods

Communication has always played a crucial role in facilitating synchronization

and coordination [43, 65, 138, 177, 180]. Some of the recent multi-agent deep

reinforcement learning approaches facilitate the emergence of novel communica-
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tion protocols through communication mechanisms. For example, in CommNet

[155], the hidden states of an agent’s neural network are first averaged and then

used jointly with the agent’s own observations to decide what action to take.

In this way, the intrinsic encodings learned by the agents are used as messages.

This approach is extended in IC3Net [150], where a gating mechanism decides

whether to allow or block access to other agents’ hidden states. This allows the

agents to filter the information that they consider more relevant and reduce

the noise generated by aggregating too much information in the same vector

space. A disadvantage of this method is that the agents have no option to

select the time and target of the communication. Also, they are not able to

compose a dedicated message but are limited to using the hidden states of

the policy neural networks. Similarly, in [124], communication is enabled by

connecting agents’ policies through a bidirectional recurrent neural network

that can produce higher-level information to be shared. Here the hidden states

of the RNNs are utilised to pass the information from one agent to the other

in a sequential way. Other approaches have introduced explicit communication

mechanisms that can be learnt from experience. For instance, in RIAL [40],

each agent learns a simple encoding that is transferred over a differentiable

channel and allows the gradient of the Q-function to flow; this enables an

agent’s feedback to take into account the exchanged information. The main

limitation of RIAL is the fact that the communication channels are defined to

carry simple messages and the framework does not scale well with the number

of agents. In [74] a message dropout is utilised by an actor-critic paradigm in

a multiagent environment where direct communication is allowed. Dropout

is a technique that prevents overfitting in deep learning models by randomly

dropping learning units at training time. In this MADRL approach the mes-

sages are dropped out during the learning phase to improve the robustness

of the policies at execution time. This technique has the disadvantage that

the resulting messages are harder to interpret. An alternative approach is

instead adopted by MS-MARL-GCM [81] where a proxy agent plays the role

of a master agent that reads all the local observations from agents and returns

a common message. Similarly, in HAMMER [54] a proxy approach is also
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exploited in order to extend the PPO algorithm by introducing a centralised

master agent that sees all the observations and actions to return individual

feedback to each agent. Both these approaches rely on proxy agents that can

make the learning process more complicated and subject to parameter tuning.

In Gated-ACML [106] the hidden states of the agent’s neural networks are

used as messages. These are first filtered by a probabilistic gate and then send

to a message coordinator unit that aggregates all the incoming information

before returning a new set of messages ready to be used together with the

observations to select the next actions to take. In SchedNet [73] the authors

investigate situations where the bandwidth is limited and only some of the

agents are allowed to communicate. In their approach, the agents produce

messages by encoding their observations and a scheduler decides whether an

agent is allowed to use a communication channel. TMC [191] proposes to allow

agents to communicate only when the content of messages is fairly different

from the messages sent before. The past sent messages are memorised into a

buffer which is used to calculate the similarities and eventually to compensate

for missing messages. Both TMC and Schednet are effective methods designed

to work in specific conditions of limited bandwidth. In VBC [190] each agent

produces a message using its current observation and then a mixing network

analyses all the messages and observations in order to return its feedback to

each agent. To improve inter-agent communication a penalty loss is introduced

to discourage high variance in the exchanged information. The introduced

mixing network can be a bottleneck when the number of learners increases.

The research contributions presented in this thesis investigate various

explicit communication mechanisms, where messages serve as signals that

need to be shared within the system to maximize environmental rewards.

Specifically, in Chapter 3, we propose a novel communication approach utilizing

a memory cell as a channel for agents to learn and exchange information.

This extension enhances the coordination and synchronization capabilities

of the MADDPG framework. In Chapter 4, we introduce an alternative

communication method that leverages the formation of graph connectivities.

Agents employ their observations to compose local messages, which collectively
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form a communication graph. Through a diffusion process, this graph facilitates

the acquisition of agent-specific information.

2.6.1 Attention mechanisms to support communication

In a collaborative decision-making context, attention mechanisms [168] are

used to selectively identify relevant information coming from the environment

and other agents that should be prioritised to infer better policies. For example,

in [68], the agents first encode their observations to produce messages; then an

attention unit, implemented as a recurrent neural network, probabilistically

controls which incoming messages are used as inputs for the action selection

network. In ATOC instead [68] an attention mechanism is used to detect and

connect nearby agents who decide to join a common communication group. A

message to boost agents’ coordination is then shared with each member of the

group. A limitation of this approach is that the attention model is done entirely

by a long short term memory network that selects the information to keep

through its internal gates in a sequential manner. Other approaches instead

make use of a proper attentional mechanism that is designed to compose output

messages considering the content of the information to share, the recipient and

the sender. For example, the TarMAC algorithm [31] instead leverages the

signature-based attention model originally proposed in [168]. Here each agent

broadcasts a message that represents the content to share, a signature that

describes who is the sender and produces a query to encode its goal. All this

information is utilised by an attentional mechanism to compose a message to

be used in the action-selecting process. The main disadvantage of TarMAC is

that messages are not targeted as the information is broadcasted to everybody.

In the IS algorithm [75] the agents learn to predict their future trajectories, and

these predictions are utilised by an attention mechanism module to compose

a message determining the next actions to take. In this way, the current

action is selected taking into account of the imagined future trajectories of each

agent. GAXNet [186] generates a set of weights to combine hidden states of

neighbouring agents before sending. In this work, the authors aim to measure

the level of attention amongst the agents in order to reduce the number of
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collisions in a cooperative environment. Another work that is worth mentioning

is I2C [35] where an architecture to learn one-to-one communication is proposed

to generate attentive connections that are established in a bilateral manner by

evaluating the effects of the other agents on its own strategy.

Despite the effectiveness of attention mechanisms in aggregating information

from diverse sources, this research aims to propose alternative approaches.

In Chapter 3, for instance, we explore the aggregation of desired shared

information into a single memory channel using gated learnable operators.

On the other hand, in Chapter 4, we present a framework where encoded

observations form a graph topology. This topology’s properties are harnessed

to control a novel topology-dependent mechanism that selectively attends to

information for determining the next action.

2.6.2 Graph-based communication mechanisms

Graph structures provide a natural framework for modelling interactions in

RL domains [52, 83, 84]. Lately, Graph Neural Networks (GNNs) have also

been adopted to learn useful graph representations in cooperative multi-agent

systems [62, 95, 113, 183, 192]. For instance, in Spatio-Temporal MARL

[175], graphs have been employed to capture spatio-temporal dependencies

in episodes related to traffic light control [175]. Additionally, graphs have

been utilized to infer a connectivity structure among multiple agents, which,

when processed by a Graph Neural Network (GNN), generates the necessary

features for decision-making regarding the appropriate action to take [19, 69, 93].

Heterogeneous graph attention networks [146] have been introduced to learn

efficient and diverse communication models for coordinating heterogeneous

agents. Graph convolutional networks capturing multi-agent interactions have

also been combined with a counterfactual policy gradient algorithm to deal

with the credit assignment problem [154]. GNNs have also supported the

development of multi-stage attention mechanisms. For instance, [101] describe

a two-stage approach whereby multi-agent interactions are first determined, and

their importance is then estimated to generate actions. In GraphComm [185],

the agents share their encoded observations over a multi-step communication
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process; at each step, a GNN processes a graph and generates signals for the

subsequent communication round. This multi-round process is designed to

increase the length of the communication mechanism and favour a longer-range

exchange of information. The MAGIC algorithm [119] consists of learning

to schedule when to communicate and whom to address messages to, and a

message processor to process communication signals; both components have

been implemented using GNNs and the entire architecture is learned end-to-end.

FlowComm presents [37] an approach to learning a directed graph through

a normalizing flow that learns the correlation between agents. To connect

the agents so that communication with each other can happen unilaterally or

bilaterally. In [1] a GNN is adopted to model not only agents, but also other

entities present in the environment, and establish communication amongst all

of them. The intra-agent communication is based on an attention mechanism

that weights the messages coming from the adjacent connections of each

agent. In [104] it was presented a MARL framework where first observations

are encoded and then an attention model produces a set of connectivities

values. This generated graph structure is processed by a GNN to output a

new set of encodings that consider how the agents were connected with each

other and are used to determine the actions to take. In Chapter 4, a graph-

based communication approach is introduced, wherein pairwise connections

are established using the local observations received by each agent. These

connections form a graph, and the topology of this graph is utilized to control

a mechanism that governs the exchange of information.
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Chapter 3

Memory-driven
communication

3.1 Introduction

In this chapter, we propose a framework for multi-agent training using deep

deterministic policy gradients that enables concurrent, end-to-end learning of

an explicit communication protocol through a memory device. During training,

the agents learn to perform read and write operations enabling them to infer a

shared representation of the world. We empirically demonstrate that concurrent

learning of the communication device and individual policies can improve inter-

agent coordination and performance in small-scale systems. Our experimental

results show that the proposed method achieves superior performance in

scenarios with up to six agents and illustrate how different communication

patterns can emerge on six different tasks of increasing complexity. Furthermore,

we study the effects of corrupting the communication channel, provide a

visualisation of the time-varying memory content as the underlying task is

being solved and validate the building blocks of the proposed memory device

through ablation studies.

We consider tasks requiring strong coordination and synchronization skills.

In order to thoroughly study the effects of communication on these scenarios, we

focus on small-scale systems. This allows us to design tasks with an increasing
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level of complexity, and simplifies the investigation of possible correlations

between the level of messages being exchanged and any environmental changes.

We provide empirical evidence that the proposed method reaches very good

performance on a range of two-agent scenarios when a high level of cooperation

is required, but we also present experimental results for systems with up to

six agents. In such cases, being able to communicate information beyond the

private observations, and infer a shared representation of the world through

interactions, becomes essential. Ideally, an agent should be able to remember its

current and past experience generated when interacting with the environment,

learn how to compactly represent these experiences in an appropriate manner,

and share this information for others to benefit from. Analogously, an agent

should be able to learn how to decode the information generated by other

agents and leverage it under every environmental state. We expect that by

interacting with the environment the agents gain knowledge that if shared with

others can easily lead to maximize expected future rewards. This knowledge

can be anything, like a spatial information or to an action to take, and can

depend by both the current state and the past experience. We condition

the policy of each agent with its observation and this shared knowledge that

come from other agents through the implemented communication channel.

The above requirements are captured here by introducing a communication

mechanism facilitating information sharing within the paradigm. Specifically,

we provide the agents with a shared communication device that can be used

to learn from their collective private observations and share relevant messages

with others. Each agent also learns how to decode the memory content in

order to improve its own policy. Both the read and write operations are

implemented as parametrised, non-linear gating mechanisms that are learned

concurrently with the individual policies. When the underlying task to be

solved demands for complex coordination skills, we demonstrate that our

approach can achieve higher performance compared to the MADDPG baseline

in small-scale systems. Furthermore, we demonstrate that being able to learn

end-to-end a communication protocol jointly with the policies can also improve

upon a meta-agent approach whereby all the agents perfectly share all their
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observations and actions in both training and execution. We investigate a

potential interpretation of the communication patterns that have emerged when

training two-agent systems through time-varying low-dimensional projections

and their visual assessment, and demonstrate how these patterns correlate

with the underlying tasks being learned.

3.2 Memory-driven MADDPG

3.2.1 Problem setup

We consider a system with N interacting agents, where N is typically small,

and adopt a multi-agent extension of partially observable Markov decision

processes [98]. This formulation assumes a set, S, containing all the states

characterising the environment; a sequence {A1,A2, . . . ,AN} where each Ai is

a set of possible actions for the ith agent; a sequence {O1,O2, . . . ,ON} where

each Oi contains the observations available to the ith agent. Each oi ∈ Oi
provides a partial characterisation of the current state and is private for that

agent. Every action ai ∈ Ai is deterministically chosen accordingly to a policy

function, µθi : Oi → Ai, parametrised by θi. The environment generates a

next state according to a transition function, T : S × A1 × A2 × · · · × AN ,

that considers the current state and the N actions taken by the agents. The

reward received by an agent, ri : S ×A1 ×A2 × · · · ×AN → R is a function of

states and actions. Each agent learns a policy that maximises the expected

discounted future rewards over a period of T time steps, J(θi) = E[Ri], where

Ri =
∑T
t=0 γ

tri(sti, ati) is the γ-discounted sum of future rewards. During

training, we would like an agent to learn by using not only its own observations,

but through a collectively learned representation of the world that accumulates

through experiences coming from all the agents. At the same time, each

agent should develop the ability to interpret this shared knowledge in its own

unique way as needed to optimise its policy. Finally, the information sharing

mechanism would need to be designed in such a way to be used in both training

and execution.
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3.2.2 Memory-driven communication

We introduce a shared communication mechanism enabling agents to establish

a communication protocol through a memory device M of pre-determined

capacity M (Figure 3.1). The device is designed to store a message m ∈ RM

which progressively captures the collective knowledge of the agents as they

interact. An agent’s policy becomes µθi : Oi ×M→ Ai, i.e. it is dependent

on the agent’s private observation as well as the collective memory. Before

taking an action, each agent accesses the memory device to initially retrieve

and interpret the message left by others. After reading the message, the

agent performs a writing operation that updates the memory content. During

training, these operations are learned without any a priori constraint on the

nature of the messages other than the device’s size, M . During execution, the

agents use the communication protocol that they have learned to read and

write the memory over an entire episode. We aim to build a model trainable

end-to-end only through reward signals, and use neural networks as function

approximators for policies, and learnable gated functions as mechanisms to

facilitate an agent’s interactions with the memory. The chosen parametrisations

of these operations are presented and discussed below.

Encoding operation. Upon receiving its private observations, each agent

maps them on to an embedding representing the agent’s current vision of the

state:

ei = ϕencθei
(oi), ei ∈ RE (3.1)

where ϕencθei
is a neural network parametrised by θei . The embedding ei plays

a fundamental role in selecting a new action and in the reading and writing

phases.

Read operation. After encoding the current information, the agent performs

a read operation allowing to extract and interpret relevant knowledge that has

been previously captured throughM. By interpreting this information content,

the agent has access to what other agents have learned. A context vector hi
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Figure 3.1: The MD-MADDPG framework. During training and testing, each
policy uses its observation and the content of the shared memory to produce
a new action and then update the shared channel. Critics are used during
training only and each one of them takes as input all the observations and
actions.
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is generated to capture spatio-temporal information previously encoded in ei
through a linear mapping,

hi = Wh
i ei, hi ∈ RH ,Wh

i ∈ RH×E

where Wh
i represent the learnable weights of the linear projection. While ei is

defined as general observation encoder, hi is specifically designed to extract

features for the reading operation. The context vector hi can be interpreted

as an agent’s internal representation that uses the observation embedding ei
to extract information to be utilized by the gating mechanism only (Eq. 3.2);

its output is then used to extract information from the memory. The main

function of the context vector is to facilitate the emergence of an internal

representation specifically designed for interpreting the memory content during

the read phase. An ablation study aimed at investigating the added benefits

introduced by hi is provided in Section 3.6. This study supports our intuition

that the context vector is crucial for the proper functioning of the entire

framework on more complex environments. The agent observation embedding

ei, the reading context vector hi and the current memory m contain different

types of information that are used jointly as inputs to learn a gating mechanism,

ki = σ(Wk
i [ei,hi,m]), ki ∈ [0, 1]M ,Wk

i ∈ RM×(E+H+M) (3.2)

where σ(·) is the sigmoid function and [ei,hi,m] means that the three vectors

are concatenated. The values of ki are used as weights to modulate the memory

content and extract the information from it, i.e.

ri = m� ki (3.3)

where � represents the Hadamard product. ki takes values in [0, 1] and its

role is to potentially downgrade the information stored in memory or even

completely discard the current content. Learning agent-specific weights Wh
i

and Wk
i means that each agent is able to interpret m in its own unique way.

As the reading operation strongly depends on the current observation, the
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interpretation of m can change from time to time depending on what an agent

sees during an episode. Given that ri depends on m and ei (from oi in Eq.

3.1), we lump all the adjustable parameters into θζi = {Wh
i ,Wk

i } and write

ri = ζ
θζi

(oi,m). (3.4)

Write operation. In the writing phase, an agent decides what information

to share and how to properly update the content of the memory whilst taking

into account the other agents. The write operation is loosely inspired by

the LSTM [60] where the content of the memory is updated through gated

functions regulating what information is kept and what is discarded. Initially,

the agent generates a candidate memory content, ci, which depends on its

own encoded observations and current shared memory through a non-linear

mapping,

ci = tanh(Wc
i [ei,m]) ci ∈ [−1, 1]M ,Wc

i ∈ RM×(E+M)

where Wc
i are weights to learn. An input gate, gi, contains the values used to

regulate the content of this candidate while a forget gate, fi, is used to decide

what to keep and what to discard from the current m. These operations are

described as follows:

gi = σ(Wg
i [ei,m]), gi ∈ [0, 1]M ,Wg

i ∈ RM×(E+M)

fi = σ(Wf
i [ei,m]), fi ∈ [0, 1]M ,Wf

i ∈ RM×(E+M).

The ith agent then finally generates an updated message as a weighted linear

combination of old and new messages, as follows:

m′ = gi � ci + fi �m. (3.5)

The update m′ is stored in memoryM and made accessible to other agents. At

each time step, agents sequentially read and write the content of the memory

using the above procedure. Since m′ depends on m and ei (derived from oi in

Eq. 3.1) we collect all the parameters into θξi = {Wc
i ,W

g
i ,W

f
i } and write the
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writing operation as:

m′ = ξ
θξi

(oi,m). (3.6)

Action selector. Upon completing both read and write operations, the

agent is able to take an action, ai, which depends on the current encoding of

its observations, its own interpretation of the current memory content and its

updated version, that is

ai = ϕactθai
(ei, ri,m′) (3.7)

where ϕactθai is a neural network parametrised by θai . The resulting policy function

can be written as a composition of functions:

µθi(oi,m) = ϕactθai
(ϕencθei

(oi), ζθζi (oi,m), ξ
θξi

(oi,m)) (3.8)

in which θi = {θai , θei , θ
ζ
i , θ

ξ
i } contains all the relevant parameters.

Learning Algorithm. All the agent-specific policy parameters, i.e. θi, are

learned end-to-end. We adopt an actor-critic model within a CLDE framework

[40, 103]. In the standard actor-critic model [33], we have an actor to select

the actions, and a critic, to evaluate the actor moves and provide feedback.

In DDPG [97, 149], neural networks are used to approximate both the actor,

represented by the policy function µωi , and its corresponding critic, represented

by an action-value function Qµωi : Oi × Ai → R, in order to maximize the

objective function J(ωi) = E[Ri]. This is done by adjusting the parameters ωi
in the direction of the gradient of J(ωi) which can be written as:

∇ωiJ(ωi) = Es∼D
[
∇ωiµωi(oi)∇aiQµωi (oi, ai)|ai=µω(oi)

]
The actions a are produced by the actor µωi , are evaluated by the critic Qµi

which minimises the following loss:

L(ωi) = Eoi,ai,r,o′
i∼D

[
(Qµωi (oi, ai)− y)2

]
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where o′i is the next observation, D is an experience replay buffer which

contains tuples (oi,o′i, a, r), y = r + γQµ
′
ω(o′i, a′i) represent the target Q-value.

Qµ
′
ωi is a target network whose parameters are periodically updated with the

current parameters of Qµωi to make training more stable. L(ωi) minimises the

expectation of the difference between the current and the target action-state

function.

In this formulation, as there is no interaction between agents, the policies

are learned independently. We adopt the CLDE paradigm by letting the critics

Qµωi use the observations x = (o1,o2, . . . ,oN ) and the actions of all agents,

hence:

∇ωiJ(µωi) = Ex,a∼D
[
∇ωiµθi(oi)∇aiQµωi (x, a1, a2, . . . , aN )|ai=µωi (oi)

]
(3.9)

where D contains transitions in the form of (x,x′, a1, a2, . . . , aN , r1, . . . , rn)

and x′ = (o′1,o′2, . . . ,o′N ) are the next observations of all agents. Accordingly,

Qµωi is updated as

L(ωi) = Ex,a,r,x′∼D
[
(Qµωi (x, a1, a2, . . . , aN )− y)2

]
,

y = ri + γQµ
′
ωi (x′, a′1, a′2, . . . , a′N )}

(3.10)

in which a′1, a′2, . . . , a′N are the next actions of all agents. By minimising Eq.

3.10 the model attempts to improve the estimate of the critic Qµωi which is

used to improve the policy itselfs through Eq. 3.9. Since the input of the

policy described in Eq. 3.8 is (oi,m) the gradient of the resulting algorithm to

maximize J(θi) = E[Ri] can be written as:

∇θiJ(µθi) = Ex,a,m∼D
[
∇θiµθi(oi,m)∇aiQµθi (x, a1, . . . , aN )|ai=µθi (oi,m)

]
where D is a replay buffer which contains transitions in the form of

(x,x′, a1, . . . , aN ,m, r1, . . . , rn). The Qµθi function is updated according to Eq.

3.10. Algorithm 1 provides the pseudo-code of the resulting algorithm, that we

call MD-MADDPG (Memory-driven MADDPG).
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3.2.3 MD-MADDPG decentralised execution

During execution, only the learned actors µθ1 ,µθ2 , . . . ,µθN are used to make

decisions and select actions. An action is taken in turn by a single agent. The

current agent receives its private observations, oi, readsM to extract ri (Eq.

3.3), generates the new version of m (Eq. 3.5), stores it intoM and selects its

action ai using µi. The policy of the next agent is then driven by the updated

memory.

3.3 Experimental settings

3.3.1 Environments

In this section, we present a battery of six two-dimensional navigation envir-

onments (Figure 3.2), with continuous space and discrete time. We introduce

tasks of increasing complexity, requiring progressively more elaborated coordin-

ation skills: five environments are inspired by the Cooperative Navigation

problem from the multi-agent particle environment [103, 115] in addition to

Waterworld from the SISL suite [53]. We focus on two-agent systems to keep

the settings sufficiently simple and attempt an initial analysis and interpret-

ation of emerging communication behaviours. A short description of the six

environments is in order.

Cooperative Navigation (CN). This environment consists of N agents

and N corresponding landmarks. An agent’s task is to occupy one of the

landmarks whilst avoiding collisions with other agents. Every agent observes

the distance to all others agents and landmark positions.

Partial Observable Cooperative Navigation (PO CN). This is based

on Cooperative Navigation, i.e. the task and action space are the same, but

the agents now have a limited vision range and can only observe a portion of

the environment around them within a pre-defined radius.
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Algorithm 1 MD-MADDPG algorithm
1: Inizialise actors (µθ1 , . . . ,µθN ) and critics networks (Qθ1 , . . . , QθN )
2: Inizialise actor target networks (µ′θ1

, . . . ,µ′θN ) and critic target networks
(Q′θ1

, . . . , Q′θN )
3: Inizialise replay buffer D
4: for episode = 1 to E do
5: Inizialise a random process N for exploration
6: Inizialise memory deviceM
7: for t = 1 to max episode length do
8: for agent i = 1 to N do
9: Receive observation oi and the message m←M

10: Set mi = m
11: Generate observation encoding ei (Eq. 3.1)
12: Generate read vector ri (Eq. 3.3)
13: Generate new message m′ (Eq. 3.5)
14: Generate new time dependant noise istance Nt
15: Select action ai = ϕactθi ([ei, ri,m′]) +Nt
16: Store the new message in the memory deviceM←m′
17: end for
18: Set x = (o1, . . . ,oN ) and Φ = (m1, . . . ,mN )
19: Execute actions a = (a1, . . . , aN ), observe rewards r and next ob-

servations x′
20: Store (x,x′,a,Φ, r) in replay buffer D
21: end for
22: for agent i = 1 to N do
23: Sample a random minibatch Θ of B samples (x,x′,a,Φ, r) from D
24: Set y = ri + γQ

µ′
θi (x′, a′1, . . . , a′N )|a′

k
=µ′

θk
(ok,mk)

25: Update critic by minimizing:
26:

L(θi) = 1
B

∑
(x,x′,a,Φ,r)∈Θ

(y −Qµθi (x, a1, . . . , aN ))2

27: Update actor according to the policy gradient:

∇θiJ ≈
1
B

∑
(x,x′,a,Φ,r)

(
∇θiµθi(oi,mi)∇aiQµθi (x, a1, . . . , ai, . . . aN )|ai=µθi (oi,mi)

)
28: end for
29: Update target networks:

θ
′
i = τθi + (1− τ)θ′

i

30: end for

30



Synchronous Cooperative Navigation (Sync CN). The agents need

to occupy the landmarks exactly at the same time in order to be positively

rewarded. A landmark is declared as occupied when an agent is arbitrarily

close to it. Agents are penalised when the landmarks are not occupied at the

same time.

Sequential Cooperative Navigation (Sequential CN). This environ-

ments is similar to the previous one, but the agents here need to occupy

landmarks sequentially and avoid to reach them simultaneuosly in order to be

positively rewarded. Occupying the landmarks at the same time is penalised.

Swapping Cooperative Navigation (Swapping CN). In this case the

task is more complex as it consists of two sub-tasks. Initially, the agents need

to reach the landmarks and occupy them at same time. Then, they need to

swap their landmarks and repeat the same process.

Waterworld. In this environment, two agents with limited range vision have

to collaboratively capture food targets whilst avoiding poison targets. A food

target can be captured only if both agents reach it at the same time. Additional

details are reported in [53].
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(a) Cooperative Navigation (b) Partial Observable CN

(c) Synchronous CN (d) Waterworld

Figure 3.2: An illustration of the environments used in this experimental
session. Blue circles represent the agents; dashed lines indicate the range of
vision; green and red circles represent the food and poison targets, respectively,
while black dots represent landmarks to be reached.

3.4 Experimental results

3.4.1 Main results

In our experiments, we compared the proposed MD-MADDPG against four al-

gorithms: MADDPG [103], Meta-agent MADDPG (MA-MADDPG), CommNet

[155] and MAAC [63]. MA-MADDPG is a variation of MADDPG in which

the policy of an agent during both training and execution is conditioned

upon the observations of all the other agents in order to overcome difficulties

due to partial observability. These methods have been selected to provide

fair comparisons since they offer different learning approaches in multi-agent
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problems. MADDPG is what our method builds on so this comparison can

quantify the improvements brought by the proposed communication mech-

anism; MA-MADDPG offers an alternative information sharing mechanism;

CommNet implements an explicit form of communication; MAAC is a recent

state-of-the-art method in which critics select information to share through

an attention mechanism. We analyse the performance of these competing

learning algorithms on all the six environments described in Section 3.3.1. In

each case, after training, we evaluate an algorithm’s performance by collecting

samples from an additional 1, 000 episodes, which are then used to extract

different performance metrics: the reward quantifies how well a task has been

solved; the distance from landmarks captures how closely an agent has reached

the landmarks; the number of collisions counts how many times an agent

has failed to avoid collisions with others; sync occupations counts how many

times the landmarks have been occupied simultaneously and, analogously, not

sync occupations counts how many times only one of the two landmarks has

been occupied. For Waterworld, we also count the number of food targets and

number of poison targets. Since this environment requires continuous actions,

we cannot use MAAC as this method only operates on discrete action spaces.

In Table 3.1, for each metric, we report the sample average and standard

deviation obtained by each algorithm on each environment.

Environment Metric MADDPG MA-MADDPG CommNet MAAC MD-MADDPG
Reward −2.30± 0.11 −2.29± 0.10 −2.7± 0.26 −4.72± 1.35 −2.27± 0.10

CN Average distance 0.15± 0.051 0.14± 0.05 −0.35± 0.13 1.36± 0.67 0.13± 0.05
# collisions 0.11± 0.76 0.17± 0.90 0.19± 1.06 0.58± 1.42 0.12± 0.82
Reward −2.62± 0.34 −2.67± 0.38 −2.78± 0.43 −3.17± 0.62 −2.68± 0.46

PO CN Average distance 0.30± 0.17 0.33± 0.19 0.39± 0.21 1.26± 2.53 0.34± 0.22
# collisions 0.55± 1.64 0.14± 0.69 0.37± 1.48 0.58± 0.31 0.26± 1.06
Reward 75.83± 72.23 192.92± 29.78 188.02± 35.41 161.35± 80.03 92.90± 69.78

Sync CN # sync occup. 26.71± 19.86 53.96± 20.16 3.62± 12.14 139.56± 63.55 31.6± 19.34
# not sync occup. 21.36± 16.60 41.75± 56.25 46.35± 29.47 44.84± 58.71 17.58± 12.00

Sequential CN Reward 125.98± 33.4 117.52± 35.62 131.67± 19.48 90.11± 21.33 130.15± 35.19
Average distance 260.16± 14.41 114.7± 45.71 102.63± 34.96 101.11± 40.71 99.15± 50.59

Swapping CN Reward 125.60± 50.13 86.99± 68.52 109.55± 56.64 75.71± 69.80 129.63± 47.26
Average distance 76.70± 30.24 132.77± 89.98 123.54± 84.9 152.7± 43.72 53.21± 40.80
Reward 262.29± 141.07 99.31± 118.31 139.29± 121.42 NA 503.96± 103.91

Waterworld # food targets 13.91± 7.30 5.25± 6.07 10.2± 7.1 NA 26.25± 5.41
# poison targets 8.61± 3.32 5.34± 2.45 8.01± 5.22 NA 7.77± 2.95

Table 3.1: Comparison of MADDPG, MA-MADDPG, CommNet, MAAC and
MD-MADDPG on six environments ordered by increasing level of difficulty,
from CN to Waterword. The sample mean and standard deviation for 1, 000
episodes are reported for each metric.
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All algorithms perform very similarly in the Cooperative Navigation and

Partial Observable Navigation cases. This result is expected because these en-

vironments involve relatively simple tasks that can be completed even without

explicit message-passing and information sharing functionalities. Despite com-

munication not being essential, MD-MADDPG reaches comparable performance

to MADDPG and MA-MADDPG. In the Synchronous Cooperative Navigation

case, the ability of MA-MADDPG to overcome partial observability issues by

sharing the observations across agents seem to be crucial as the total rewards

achieved by this algorithm are substantially higher than those obtained by both

MADDPG and MD-MADDPG. In this case, whilst not achieving the highest

reward, MD-MADDPG keeps the number of unsynchronised occupations at

the lowest level, and also performs better than MADDPG on all three metrics.

It would appear that in this case pulling all the private observations together

is sufficient for the agents to synchronize their paths leading to the landmarks.

When moving on to more complex tasks requiring further coordination,

the performances of the three algorithms diverge further in favour of MD-

MADDPG. The requirement for strong collaborative behaviour is more evident

in the Sequential Cooperative Navigation problem as the agents need to

explicitly learn to take either shorter or longer paths from their initial positions

to the landmarks in order to occupy them in sequential order. Furthermore,

according to the results in Table 3.1, the average distance travelled by the

agents trained with MD-MADDPG is less then half of the distance travelled

by agents trained with MADDPG, indicating that these agents were able to

find a better strategy by developing an appropriate communication protocol.

Similarly, in the Swapping Cooperative Navigation scenario, MD-MADDPG

achieves superior performance, and is again able to discover more efficient

solutions. Waterworld is significantly more challenging as it requires a sustained

level of synchronization throughout the entire episode and can be seen as a

sequence of sub-tasks whereby each time the agents must reach a new food

target whilst avoiding poison targets. In Table 3.1, it can be noticed that

MD-MADDPG significantly outperforms both competitors in this case. The

importance of sharing observations with other agents can also be seen here

34



as MA-MADDPG generates good policies that avoid poison targets, yet in

this case, the average reward is substantially lower than the one scored by

MD-MADDPG.

3.4.2 Implementation details

In all our experiments, we use a neural network with one layer (512 unites)

for the encoding (Eq. 3.1), a neural network with one layer (256 units) for

the action selector (Eq. 3.7) and neural networks with three hidden layers

(1024, 512, 256 units, respectively) for the critics. For MADDPG and MA-

MADDPG the actors are implemented with neural networks with 2 hidden

layers (512, 256 units). The size of the m is fixed to 200; this value that has

been empirically found to be optimal given the network architectures (Section

3.6.4 provides a validation study on the choice of memory size). Consequently,

the size of hi and ei is set to 200. We use the Adam optimizer [76] with a

learning rate of 10−3 for critic and 10−4 for policies. The reward discount

factor is set to 0.95, the size of the replay buffer to 106 and the batch size to

1, 024. The number of time steps for episode is set to 1, 000 for Waterworld

and 100 for the other environments. We update network parameters after

every 100 samples added to the replay buffer using soft updates with τ = 0.01.

We train all the models over 60, 000 episodes of 100 time-steps each on all

the environments, except for Waterworld for which we use 20, 000 episodes

of 1, 000 time-steps each for training. The Ornstein-Uhlenbeck process [167]

with θ = 0.15 and σ = 0.3 is a stochastic process which, over time, tends to

drift towards its mean. This is commonly employed within DDPG [97] and in

order to introduce temporally correlated noise. Doing so it is possible to avoid

the effects of averaging random decorrelated signals which would lead a less

effective exploration. Discrete actions are supported by the Gumbel-Softmax,

a biased, low-variance gradient estimator [66]. This estimator is typically used

within the back-propagation algorithm in the presence of categorical variables.

All the computations were performed using Intel(R) Xeon(R) CPU E5-2650 v3

@ 2.30GHz as CPU and GeForce GTX TITAN X as GPU.
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3.4.3 Increasing the number of agents

In this section we investigate settings with a higher number of agents for

Cooperative Navigation and for Partial Observable Cooperative Navigation.

These results show, that the proposed method can be successfully used on

larger systems without incurring any numerical complications or convergence

difficulties. When comparing to other algorithms, MD-MADDPG has frequently

demonstrated better performance. Superior performance are indeed achieved

on Cooperative Navigation with respect to the reward metric. On Partially

Observable Cooperative Navigation, there is no definite winner, nevertheless

MD-MADDPG shows competitive performance, for example it outperforms

all the baselines on the 5 agents scenario. Table 3.2 shows the comparison

of MADDPG, MA-MADDPG, CommNet, MAAC and MD-MADDPG on

Cooperative Navigation when the number of agents increases. MD-MADDPG

have the best performance achieving the highest reward on all the scenarios.

MAAC shows higher performance in collision avoidance and CommNet in

distance travelled (five and six agents).

# agents Metric MADDPG MA-MADDPG CommNet MAAC MD-MADDPG
Reward −4.02± 0.32 −4.03± 0.29 −4.66± 0.35 −7.38± 1.28 −3.75± 0.21

3 Average distance 0.34± 0.1 0.34± 0.09 0.53± 0.11 1.45± 0.43 0.25± 0.07
# collisions 1.24± 3.76 1.18± 2.2 5.94± 11.0 2.95± 5.04 1.15± 2.34
Reward −6.86± 0.68 −7.0± 0.77 −7.47± 0.64 −12.82± 1.87 −6.12± 0.52

4 Average distance 0.7± 0.17 0.73± 0.19 0.81± 0.18 2.19± 0.47 0.51± 0.12
# collisions 7.44± 14.82 9.47± 19.14 23.05± 31.04 4.43± 6.01 7.3± 17.53
Reward −11.46± 1.35 −11.94± 1.38 −11.52± 1.1 −16.92± 3.41 −11.44± 1.48

5 Average distance 1.26± 0.27 1.35± 0.29 1.21± 0.22 2.37± 0.68 1.26± 0.29
# collisions 13.88± 19.94 16.94± 28.21 42.52± 36.86 5.24± 6.53 13.73± 22.98
Reward −18.23± 2.48 −19.07± 2.06 −18.21± 2.24 −29.11± 5.46 −18.08± 2.32

6 Average distance 2.0± 0.41 2.13± 0.35 1.93± 0.37 3.83± 0.91 1.96± 0.38
# collisions 23.43± 26.02 30.72± 33.47 59.9± 30.03 11.04± 10.11 31.06± 35.49

Table 3.2: Comparison of MADDPG, MA-MADDPG, CommNet, MAAC, and
MD-MADDPG on Cooperative Navigation when increasing the number of
agents.

Table 3.3 presents the comparison of MADDPG, MA-MADDPG, CommNet,

MAAC and MD-MADDPG on Partially Observable Cooperative Navigation

when the number of agents increases. It can be noted that MD-MADDPG still

achieves good performance and in some scenarios (e.g. number of agents = 5)

it outperforms other methods.
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# of agents Metric MADDPG MA-MADDPG CommNet MAAC MD-MADDPG
Reward −4.66± 0.76 −4.96± 0.95 −5.15± 0.86 −6.73± 1.44 −4.97± 0.94

3 Average distance 0.54± 0.25 0.65± 0.31 0.7± 0.29 1.21± 0.47 0.65± 0.31
# collisions 2.35± 4.76 1.54± 4.5 4.18± 7.76 9.61± 13.28 2.35± 4.61
Reward −8.11± 1.37 −7.56± 1.17 −9.05± 1.49 −10.79± 2.07 −8.17± 1.44

4 Average distance 1.02± 0.34 0.88± 0.29 1.19± 0.36 1.68± 0.51 1.04± 0.36
# collisions 4.97± 7.56 2.82± 5.47 29.5± 28.71 7.03± 7.18 2.89± 5.24
Reward −16.33± 3.06 −16.56± 2.53 −15.79± 2.61 −16.59± 3.11 −15.29± 3.07

5 Average distance 0.66± 0.18 1.68± 0.5 1.48± 0.51 6.13± 7.44 0.61± 0.18
# collisions 7.86± 8.38 15.64± 17.38 67.01± 44.81 2.31± 0.62 3.38± 4.2
Reward −18.69± 3.18 −20.24± 2.62 −17.11± 2.86 −21.3± 4.61 −39.83± 2.29

6 Average distance 2.09± 0.53 2.31± 0.43 1.72± 0.47 2.53± 0.76 5.63± 0.38
# collisions 13.14± 13.21 35.38± 19.84 76.64± 48.27 8.99± 8.63 6.47± 6.1

Table 3.3: Comparison of MADDPG, MA-MADDPG, CommNet, MAAC and
MD-MADDPG on Partial Observable Cooperative Navigation when increasing
the number of agents.

3.5 Communication analysis

In this section, we explore the dynamic patterns of communication activity

that emerged in the environments presented in the previous section, and look

at how the agents use the shared memory throughout an episode while solving

the required task. For each environment, after training, we executed episodes

with time horizon T and stored the write vector m′ of each agent at every time

step t. Exploring how m′ evolves within an episode can shed some light onto

the role of the memory device at each phase of the task. The analysis presented

first focuses on the write vector as we expect it to be stronger correlated with

the environment dynamics than the other components. The content of the

writing vector corresponds to the content of the communication channel itself,

and is expected to contain information related to the task (e.g. changes in

current environment, agent’s strategy or observed point of interests). In order

to produce meaningful visualisations, we first projected the dimensions of m′

onto the directions maximising the sample variance (i.e. the variance of the

observed m′ across simulated episodes) using a linear PCA.

Figure 3.3 shows the principal components (PCs) associated with the two

agents over time for four of our six simulation environments. Only the first

three PCs were retained as those were found to cumulatively explain over 80%

of variance in all cases. The values of each PC were standardised to lie in [0, 1]

in order to have them in the same range for fair comparisons and are plotted
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(a) Sequential CN (b) Swapping CN

(c) Synchronous CN (d) Waterworld

Figure 3.3: Visualisation of communications strategies learned by the agents in
four different environments: the three principal components provide orthogonal
descriptors of the memory content written by the agents and are being plotted
as a function of time. Within each component, the highest values are in red,
and the lowest values are in blue. The bar at the bottom of each figure indicates
which phase (or sub-task) was being executed within an episode; The memory
usage patterns learned by the agents are correlated with the underlying phases
and the memory is no longer utilised once a task is about to be completed.

on a color map: one is in red and zero in blue. The timeline at the bottom of

each figure indicates which specific phase of an episode is being executed at any

given time point, and each consecutive phase is coloured using a different shade

of grey. For instance, in Sequential Cooperative Navigation, a single landmark

is reached and occupied in each phase. In Swapping Cooperative Navigation,
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during the first phase the agents search and find the landmarks; in the second

phase they swap targets, and in the third phase they complete the task by

reaching the landmarks again. In the Synchronous Cooperative Navigation the

phase indicates if none of the landmarks is occupied (light-grey), if just one

is occupied (dark-grey) and if both are occupied (black). Usually, in the last

phase, the agents learn to stay close to their targets. This analysis pointed out

that in the final phases, when tasks are already completed and there is no need

of coordination, the PCs representing the communication activities assume

lower (blue values), while during previous phases, when tasks are still to be

solved and cooperation is stronger required, they assume higher values (red).

This led us to interpret the higher values as being indicative of high memory

usage, and lower values as being associated to low activity. In most cases, high

communication activity is maintained when the agents are actively working

and completing a task, while during the final phases (where typically there is

no exploration because the task is considered completed) low activity levels

are more predominant.

This analysis also highlights the fact that the communication channel is used

differently in each environment. In some cases, the levels of activity alternate

between agents. For instance, in Sequential Cooperative Navigation (Figure

3.3a), high levels of memory usage by one agent are associated with low ones by

the other. A different behaviour is observed for the other environments, indeed

in Swapping Cooperative Navigation task where both agents produce either

high or low activation value, whereas in Synchronous Cooperative Navigation

the memory activity is very intense before the phase three, while agents are

collaborating to complete the task. The dynamics characterizing the memory

usage also change based on the particular phase reached within an episode. For

example, in Figure 3.3a, during the first two phases the agents typically show

alternating activity levels whilst in the third phase both agents significantly

decrease their memory activity as the task has already been solved and there

are no more changes in the environment. Figure 3.3 provides some evidence

that, in some cases, a peer-to-peer communication strategy is likely to emerge

instead of a master-slave one where one agent takes complete control of the
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shared channel. The scenario is significantly more complex in Waterworld

where the changes in memory usage appear at a much higher frequency due to

the presence of very many sequential sub-tasks. Here, each light-grey phase

indicates that a food target has been captured. Peaks of memory activity seem

to follow those events as the agents reassess their situation and require higher

coordination to jointly decide what the next target is going to be. In Section

3.6.2 we provide further experimental results showing the importance of the

communication by corrupting the memory content at execution time, which

further corroborate the role of the exchanged messages in improving agents’

coordination.

A communication analysis with respect to the read vector ri is also presented

here. The content of the reading vector is an implicit representation internal

to the agent itself that serves to interpret the content of the channel and at

the same time to be utilised in the generation of m′. Figure 3.4 shows the

results of a communication analysis for the read vector. As for the write vector,

communication patterns emerge and seem to point out that communication

is more intense when coordination is highly required. It can be noted that

the read vectors still correlate with the phases. For example, in Synchronous

Cooperative Navigation, the first principal component is highly activated

during phases 1 and 2. This suggests that agents intensely communicate to

reach the landmarks simultaneously. A different behaviour emerges for others

environments like Swapping Cooperative Navigation where the reading vector

is highly activated during the first phase, probably because the agents received

the information about the next landmark to swap (e.g. coordinates). This

analysis has been conducted to better present the behaviour of the agents and

the interactions with their internal components. We believe that the content

of the message, which corresponds to the write vector, is more informative

since it is what the agents are explicitly communicating. On the other side the

read vector can be more difficult to interpret since it is internally used by the

agents together with other components to achieve communication.
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(a) Sequential CN (b) Swapping CN

(c) Synchronous CN (d) Waterworld

Figure 3.4: Visualisation of communication strategies learned by the agents in
four different environments: the three principal components provide orthogonal
descriptors of the read vector content of the agents and are being plotted as a
function of time.

3.6 Ablation studies

In this Section we provide a number of ablation studies that aim to assess the

validity of the choices we have made to formulate the proposed model.

3.6.1 Investigate the memory components

We provide an ablation study showing that the main components of MD-

MADDPG are needed for its correct behaviour. We investigate the effects of
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removing either one of the key components, i.e. context vector, read and write

modules. Removing the context vector reduces the quality of the performance

obtained on CN and on environments which require greater coordination

efforts, like Sequential CN, Swapping CN and Waterworld. On PO-CN no

significant differences in performance are reported, while on Synchronous CN

sync occupations worsen (of approximatively five times the amount) and sync

occupations improve (of approximatively twice the amount). This result is

explained by the fact that in Sync CN, good strategies that do not involve

explicit communication can be learnt to achieve good performance on sync

occupations. The best overall performance method on this scenario is MA-

MADDPG (see Table 3.1). This comparative method implements an implicit

form of communication that is equivalent to a simple information sharing which

can be very effective to overcome the partial observability issue which is the

main challenge in Sync CN. We have observed that without the writing or

reading components the performance worsened on all the run experiments. In

the experiments presented here we study the benefits of each specific component,

such as the context vector and the modules required for communicating, on

final performance. To assess the importance of the context vector (Eq. 3.2.2)

we have run a set of experiments removing hi from the reading module of the

agents. Table 3.4 shows that by using only ei without hi during the reading

phase, the performance overall degrades on almost all the environments. We

have noticed that the role played by the context vector becomes more critical

as the level of communication requires by the underlying task increases, like in

Sequential CN, Synchronous CN and Waterworld. We also run experiments

to assess the performance of the components involved in the functioning of

communication. It resulted that removing either the reading or the writing

modules the performance significantly worsened on every scenario.

3.6.2 Corrupting the memory

Table 3.5 shows the performance of MD-MADDPG when a Gaussian noise

(mean 0 and standard deviation 1) is added to the memory content m at

execution time. It can be noted that the corruption of the communication
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Environment Metric no context no read no write MD-MADDPG
Reward −2.28± 0.1 −35.13± 2.07 −9.04± 5.37 −2.27± 0.10

CN Average distance 0.14± 0.05 16.57± 1.04 3.51± 2.68 0.13± 0.05
# collisions 0.08± 0.59 0.2± 0.96 1.52± 3.32 0.12± 0.82
Reward −2.68± 0.45 −5.4± 0.75 −5.93± 0.07 −2.68± 0.46

PO-CN Average distance 0.34± 0.22 1.7± 0.38 1.96± 0.03 0.34± 0.22
# collisions 0.32± 1.14 0.56± 1.61 0.58± 1.56 0.26± 1.06
Reward 189.8± 38.39 −16.5± 2.69 −16± 0.1 92.90± 69.78

Sync CN # sync occup. 51.61± 58.65 0.1± 0.72 0.2± 0.92 31.6± 19.34
# not sync occup. 103.36± 61.23 21.22± 59.75 2.68± 2.9 17.58± 12.00

Sequential CN Reward 113.33± 48.11 −13.59± 0.77 −13.85± 0.12 130.15± 35.19
Average distance 129.79± 83.56 377.73± 35.6 391.75± 5.87 99.15± 50.59

Swapping CN Reward 75.76± 66.49 −15.53± 0.37 −12.54± 2.52 129.63± 47.26
Average distance 158.39± 108.42 579.23± 10.02 416.8± 86.15 53.21± 40.80
Reward 31.31± 77.31 −1.5± 2.33 21.95 503.96± 103.91

Waterworld # food targets 1.8± 4.04 0.21± 0.11 1.18± 1.12 26.25± 5.41
# poison targets 5.22± 2.95 3.4± 2.22 3.98± 2.28 7.77± 2.95

Table 3.4: An assessment of MD-MADDPG without context vector, MD-
MADDPG without reading operation, MD-MADDPG without writing opera-
tion compared with the standard version MD-MADDPG.

channel causes a general worsening of the performance across metrics. This

Environment Metric MD-MADDPG - noise
Reward −2.28± 0.1

CN Average distance 0.15± 0.051
# collisions 0.11± 0.76
Reward −2.68± 0.45

PO-CN Average distance 0.34± 0.22
# collisions 0.32± 1.14
Reward 187.17± 41.84

Sync CN # sync occup. 33.27± 39.07
# not sync occup. 102.61± 41.43

Sequential CN Reward 124.72± 30.28
Average distance 111.27± 52.66

Swapping CN Reward 124.93± 44.48
Average distance 112.44± 83.88
Reward 24.07± 26.61

Waterworld # food targets 1.65± 1.33
# poison targets 10.37± 3.91

Table 3.5: Performance of MD-MADDPG when Gaussian noise is added to
the memory content at test time.

shows that the messages exchanged by the agents are crucial to achieving good

performance, and that corrupting the memory hinders the communication

which has a negative effect on synchronization.
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3.6.3 Multiple seeds

In this section, we investigate the sensitivity of MD-MADDPG on changes

in random seeds used for setting the initial conditions of the randomness in

the learning process. To show that the presented results are not affected

by a particular choice of the seed that can significantly condition the final

performance, we report the outcome of varying different seeds. Figures 3.5

and 3.6 show respectively the results of MD-MADDPG on Swapping CN and

Sequential CN when changing the seed for training and testing the model. It

can be noted that in both cases, models are not seed-sensitives, indeed varying

the seed does not significantly affect the final results. In order to investigate the

statistical significance of these results, we carried out a MANOVA (Multivariate

ANOVA) [44], assessing the null hypothesis that all the population means are

the same. In both scenarios, there is not enough evidence to conclude that

there is a difference in means at the 0.001 significance level (p-values is 0.1267

on Swapping CN and 0, 8357 on Sequential CN).
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Figure 3.5: Boxplot representing the results of MD-MADDPG on Swapping
CN when changing different seeds. The horizontal axis shows the seed and
the vertical axis the reward. The MANOVA test returned a p-value of 0.1267.
This confirms that there is not enough evidence to conclude that the means
are different.
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Figure 3.6: Boxplot representing the results of MD-MADDPG on Sequential
CN when changing different seeds. The horizontal axis shows the seed and
the vertical axis the reward. The MANOVA test returned a p-value of 0.8357.
This confirms that there is not enough evidence to conclude that the means
are different.
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3.6.4 Multiple memory sizes

Figure 3.7 represents how the memory size affects the resulting reward on

Swapping Cooperative Navigation. It can be noted that given the selected

architecture, the higher reward is obtained using a memory size of 200.

Figure 3.7: Results obtained on Swapping CN using different memory dimen-
sions. The horizontal axis report the memory size and the vertical axis the
reward.

3.7 Summary

In this chapter, we have introduced MD-MADDPG, a multi-agent reinforce-

ment learning framework that uses a shared memory device as an intra-agent

communication channel to improve coordination skills. The memory content

contains a learned representation of the environment that is used to better

inform the individual policies. The memory device is learnable end-to-end

without particular constraints other than its size, and each agent develops

the ability to modify and interpret it. We empirically demonstrated that this

approach leads to better performance in small-scale (up to 6 agents in our

experiments) cooperative tasks where coordination and synchronization are
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crucial to a successful completion of the task and where world visibility is

very limited. Furthermore, we have visualised and analyzed the dynamics

of the communication patterns that have emerged in several environments.

This exploration has indicated that, as expected, the agents have learned

different communication protocols depending upon the complexity of the task.

In this study we have mostly focused on two-agent systems to keep the settings

sufficiently simple to understand the role of the memory. Very competitive

results have been obtained when more agents are used.
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Chapter 4

Connectivity-driven
communication

4.1 Introduction

In this chapter, we present a deep reinforcement learning approach, Connectivity

Driven Communication (CDC), that facilitates the emergence of multi-agent

collaborative behaviour only through experience. The agents are modelled

as nodes of a weighted graph whose state-dependent edges encode pair-wise

messages that can be exchanged. We introduce a graph-dependent attention

mechanisms that controls how the agents’ incoming messages are weighted.

This mechanism takes into full account the current state of the system as

represented by the graph, and builds upon a diffusion process that captures

how the information flows on the graph. The graph topology is not assumed

to be known a priori, but depends dynamically on the agents’ observations,

and is learnt concurrently with the attention mechanism and policy in an end-

to-end fashion. Our empirical results show that CDC is able to learn effective

collaborative policies and can over-perform competing learning algorithms on

cooperative navigation tasks.

We are interested in systems involving agents that autonomously learn how

to collaborate in order to achieve a shared outcome. When multiple agents are

expected to develop a cooperative behaviour, an important need emerges: an

49



adequate communication protocol must be established to support the level of

coordination that is necessary to solve the task. The fact that communication

plays a critical role in achieving synchronization in multi-agent systems has

been extensively documented [34, 40, 71, 109, 150, 155, 170]. Building upon

this evidence, a number of multi-agent DRL algorithms have been developed

lately which try to facilitate the spontaneous emergence of communication

strategies during training. In particular, significant efforts have gone into the

development of attention mechanisms for filtering out irrelevant information

[31, 61, 63, 68, 101, 105, 174].

Our approach relies on learning a state-dependent communication graph

whose topology controls what information should be exchanged within the

system and how this information should be distributed across agents. As such,

the communication graph plays a dual role. First, it represents how every pair

of agents jointly encodes their observations to form local messages to be shared

with others. Secondly, it controls a mechanism by which local messages are

propagated through the network to form agent-specific information content that

is ultimately used to make decisions. As we will demonstrate, this approach

supports the emergence of a collaborative decision making policy. The core idea

we intend to exploit is that, given any particular state of the environment, the

graph topology should be self-adapting to support the most efficient information

flow. Our proposed approach, connectivity-driven communication, is inspired by

the process of heat transference in a graph, and specifically the heat kernel. The

HK describes the effect of applying a heat source to a network and observing

the diffusion process over time. As such, it can be used to characterise the

way in which the information flows across nodes. Spectral graph theory allows

to relate the properties of a graph to its spectrum by analysing its associated

eigenvectors and eigenvalues [14, 26, 30]. The heat kernel falls in this category;

it is a powerful and well-studied operator allowing to study certain properties

of a graph by solving the heat diffusion equation. The HK is determined

by exponentiating the graph’s Laplacian eigensystem [142] over time. The

resulting features can be used to study the graph’s topology and have been

utilised across different applications whereby graphs are naturally occurring

50



data structures; e.g. the HK has been used for community detection [78],

data manifold extraction [85], network classification [25] and image smoothing

[188] amongst others. In recent works, the HK has been adopted to extend

graph convolutional networks [182] and define edge structures supporting

convolutional operators [77].

In this work, we use the HK to characterise the state-dependent topology

of a multi-agent communication network and learn how the information should

flow within the network. Various metrics obtained from the HK have been

used to organise the intrinsic geometry of a network over multiple-scales by

capturing local and global shapes’ in relation to a node via a time parameter.

The HK also incorporates a concept of node influence as measured by heat

propagation in a network, which can be exploited to characterise how efficiently

the information propagates between any pair of nodes. To the best of our

knowledge, this is the first time that the HK has been used to develop an

end-to-end learnable attention mechanism enabling multi-agent cooperation.

Our approach relies on an actor-critic paradigm [33, 97, 149] and is intended

to extend the centralized-learning with decentralized-execution framework

[40, 103]. In CDC, all the observations from each agent are assumed known

only during the training phase whilst during execution each agent makes

autonomous decisions using only their own information. The entire model is

learned end-to-end supported by the fact that the heat-kernel is a differentiable

operator allowing the gradients to flow throughout the architecture. The

performance of CDC has been evaluated against alternative methods on four

cooperative navigation tasks. Our experimental evidence demonstrates that

CDC is capable of outperforming other relevant state-of-the-art algorithms.

In addition, we analyse the communication patterns discovered by the agents

to illustrate how interpretable topological structures can emerge in different

scenarios.
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4.2 Connectivity-driven communication

4.2.1 Problem setup

We consider Markov Games, partially observable extension of Markov decision

processes [98] involving N interacting agents. We use S to denote the set of

environmental states; Oi and Ai indicate the sets of all possible observations

and actions for the ith agent, with i ∈ 1, . . . N , respectively. The agent-specific

(private) observations at time t are denoted by oti ∈ Oi, and each action

ati ∈ Ai is deterministically determined by a mapping, µθi : Oi → Ai, which is

parametrised by θi. A transition function T : S ×A1 ×A2 × · · · × AN → S

describes the stochastic behaviour of the environment. Each agent receives a

reward, defined as a function of states and actionsri : S×A1×A2×· · ·×AN → R

and learns a policy that maximises the expected discounted future rewards over

a period of T time steps, J(θi) = E[Ri], where Ri =
∑T
t=0 γ

trti(st, at1, . . . , atN )

is the discounted sum of future rewards, where γ ∈ [0, 1] is the discount factor.

4.2.2 Learning the dynamic communication graph

We model each agent as the node of a time-depending, undirected (and un-

known) weighted graph, Gt = (V,St), where V is a set of N nodes and St is

an N ×N matrix of edge weights. Each St(u, v) = St(v, u) = stu,v quantifies

the degree of communication or connectivity strength between a given pair

of agents, u and v. Specifically, we assume that each stu,v ∈ [0, 1] with values

close to 1 indicating strong connectivities, and to 0 a lack of connectivity.

In our formulation, each stu,v is not known a priori. Instead, each one of

these connectivities is assumed to be a time-dependent parameter that varies

as a function of the current state of the environment. This is done through the

following two-step process. First, given a pair of agents, u and v, their private

observations at time-step t are encoded to form a local message,

ctu,v = ctv,u = ϕθc(otu,otv) (4.1)

where ϕθc is a non-linear mapping modelled as a neural network with para-
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Figure 4.1: Diagrammatic representation of CDC at a fixed time-step. Agents’
observations are encoded to generate a graph topology (blue box on the left).
The diffusion process is used to quantify global information flow throughout
the graph and to control the communication process (blue box on the right).
In this example, the line thickness is proportional to communication strength.
At training time, observations and actions are utilised by the critic to receive
feedback on the graph components.
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meter θc. Each local message is then encoded non-linearly to produce the

corresponding connectivity weight,

stu,v = stv,u = σ(ϕθs(ctu,v)) (4.2)

where ϕθs is a neural network parameterised by θs and σ is the sigmoid function.

4.2.3 Learning a time-dependent attention mechanism

Once the time-dependent connectivities in Eq. 4.2 are estimated, the commu-

nication graph Gt is fully specified. Given this graph, our aim is to characterise

the relative contribution of each node to the overall flow of information over

the entire network, and let these contributions define a attention mechanism

controlling what messages are being exchanged. The resulting attention mech-

anism should be differentiable with respect to the network parameters to ensure

that, during backpropagation, all the gradients correctly flow throughout the

architecture to enable end-to-end training.

Our observation is that a diffusion process over graphs can be deployed

to quantify how the information flows across all agents for any given commu-

nication graph, Gt. The information flowing process is conceptualised as the

amount of energy that propagates throughout the network [80]. Specifically, we

deploy the heat diffusion process: we mimic the process of applying a source

of heat over a network and observe how it varies as a function of time. In

our context, the heat transfer patterns reflect how efficiently the information

propagates at time t.

First, we introduce a diagonal matrix D(u) of dimension N × N with

diagonal elements given by

D(u, u) =
∑
v∈V

su,v, ∀u ∈ V.

Each such element provides a measure of strength of node u. The Laplacian of
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the communication graph G is given by

L = D − S

and its normalised version is defined as

L̂ = 1√
D
L 1√

D
.

The differential equation describing the heat diffusion process over time p

[26, 39] is defined as
∂H(p)
∂p

= −L̂H(p). (4.3)

where H(p) is the fundamental solution representing the energy flowing through

the network at time p. To avoid confusion, the environment time-step is denoted

by t whilst p indicates the time variable related to the diffusion process. For

each pair of nodes u and v, the corresponding heat kernel entry is given by

H(p)u,v = φ exp[Λp]φᵀ =
N∑
i=1

exp[−λip]φi(u)φi(v) (4.4)

where H(p)u,v quantifies the amount of heat that started in u and reached v at

time p, φi represents the ith eigenvector, φ = (φ1, . . . , φN ) is a matrix with the

corresponding eigenvectors as columns and Λ = diag(λ1, . . . , λV ) is a diagonal

matrix formed by the eigenvalues of S ordered by increasing magnitude.

In practice, Eq. (4.4) is approximated using Padé approximant [2],

H(p) = exp[−pL̂].

A useful property of H(p) is that it is differentiable with respect to neural

network parameters that define the Laplacian. This allows us to train an

architecture where all the relevant quantities are estimated end-to-end via

backpropagation. Additional details are provided in Section 4.2.4.

We leverage this information to develop an attention mechanism that

identifies the most important messages within the system, given the current

graph topology. First, for every pair of nodes, we identify the critical time
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point p̂ at which the heat transfer drops by a pre-determined percentage δ and

becomes stable, i.e. for each pair of u and v, we identify that critical value

p̂(u, v) such that ∣∣∣Ht(p+ 1)u,v −Ht(p)u,v
Ht(p)u,v

∣∣∣ < δ. (4.5)

In practice, the search of these critical values is carried out over a uniform

grid of points. Once these critical time points are identified, we use them to

evaluate the HK values, and arrange them into an N ×N matrix,

Ht
u,v = Ht(p̂(u, v))

which is used to define a multi-agent message-passing mechanism. Specifically,

the final information content (or message) for an agent u is determined by a

linear combination of the local messages received from all other agents,

mt
u =

∑
v∈V

Ht
u,vc

t
u,v (4.6)

where the HK values are used to weight the importance of the incoming

messages. Finally, the agent’s action depends deterministically by its message,

atu = ϕθpu(mt
u) (4.7)

where ϕθpu is a neural network with parameters θpu. A lack of communication

between a pair of agents results when no stable HK values can be found. In

such cases, for a pair of agents (u, v), the corresponding entry in Ht
u,v will be

zero hence no value of p̂(u, v) satisfies Eq. 4.5.

4.2.4 Heat kernel: additional details and an illustration

The heat kernel is a technique from spectral geometry [142], and is a funda-

mental solution of the heat equation:

∂Ht(p)
∂p

= −L̂tHt(p). (4.8)
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Given a graph G defined on n vertices, the normalized Laplacian L̂, acting on

functions with Neumann boundary conditions [21], is associated with the rate

of heat dissipation. L̂ can be written as

L̂ =
n−1∑
i=0

λiIi

where Ii is the projection onto the ith eigenfunction φi. For a given time p ≥ 0,

the heat kernel H(p) is defined as a n× n matrix:

H(p) =
∑
i

exp[−λip]Ii = exp[−pL̂]. (4.9)

Eq. 4.9 represents an analytical solution to Eq. 4.8. Furthermore, the heat

kernel H(t) for a graph G with eigenfunctions θi satisfies

H(p)u,v =
∑
i=1

exp[−λip]φi(u)φi(v).

The proof follows from the fact that

H(p) =
∑
i

exp[−λip]Ii

and

I(u, v) = φi(u)φi(v).

In this work the heat kernel is used to introduce a mechanism for the

selection of important edges in a network to support communication between

nodes. In this context, the importance of an edge is determined by both its

weight and the role it plays to allow agents to exchange information correctly

in the network structure. Figure 4.2 illustrates the advantages of selecting

edges through the heat kernel features over a naive thresholding approach. The

heat diffusion considers the edge weights as well as their relevance within the

graph structure, e.g. edge connecting two communities.
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(a) (b) (c)

Figure 4.2: An illustration of two edge selection methods. Starting from
graph (a), we want to remove the less relevant edges. The relevance of an
edge is measured considering both its weight and structural role in allowing
information to pass through the network. The edge connecting nodes 0 and 5,
despite its relatively low weight (0.3), has an important structural role as it
serves as bridge connecting two communities hence allowing the information to
propagate throughout the entire network. In (b), removing edges with smaller
weights (e.g. all those falling below the 40th percentile of the edge weight
distribution) results in the loss of the bridge. In (c), edges are selected based
on the heat kernel weights, which recognise the importance of the bridge.

4.2.5 Reinforcement learning algorithm

In this section, we describe how the reinforcement learning algorithm is trained

in an end-to-end fashion. We extend the actor-critic framework [33] in which

an actor produces actions and a critic provides feedback on the actors’ moves.

In our architecture, multiple actors, one per each agent, receive feedback from

a single, centralised critic.

In the standard DDPG algorithm [97, 149], the actor µθ : O → A and the

critic Qµθ : O ×A → R are parametrised by neural networks with the aim to

maximize the expected return,

J(θ) = E
[ T∑
i=1

r(ot, at)
]
.

where θ is the set of parameters that characterise the return. The gradient
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∇θJ(θ) required to update the parameter vector θ is calculated as follows,

∇θJ(θ) = Eot∼D
[
∇θµθ(ot)∇atQµθ(ot, at)|at=µθ(ot)

]
.

whilst Qµθ is obtained by minimizing the following loss,

L(θ) = Eot,at,rt,ot+1∼D

[(
Qµθ (ot, at)− y

)2]
where

y = rt + γQµ
′
θ(ot+1, at+1).

Here, Qµ′
θ is a target critic whose parameters are only periodically updated

with the parameters of Qµθ , which is utilised to stabilize the training.

Our developments follow the CLDE paradigm [40, 82, 103]. The critics are

employed during learning, but otherwise only the actor and communication

modules are used at test time. At training time, a centralised critic uses the

observations and actions of all the agents to produce the Q values. In order to

make the critic unique for all the agents and keep the number of parameters

constant, we approximate our Q function with a recurrent neural network

(RNN). We treat the observation/action pairs as a sequence,

zti = RNN(oti, ati|zti−1) (4.10)

where zti and zti−1 are the hidden state produced for the ith and i− 1th agent,

respectively. Upon all the observation and action pairs from all the N agents

are available, we use the last hidden state ztN to produce the Q-value:

Q(ot1, . . . ,otN , at1, . . . , atN ) = ϕθQ(ztN )

where ϕ is a neural network with parameters θQ. The parameters of the ith

agent are adjusted to maximize the objective function J(θi) = E[Ri] following

the direction of the gradient J(θi),

∇θiJ(θi) = Eoti,ati,rt,ot+1
i ∼D

[
∇θiµθi(mt

i)∇atiQ(x)|ati=µθi (mt
i)
]

(4.11)
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where x = (ot1, . . . ,otN , at1, . . . , atN ) and Q minimizes the temporal difference

error, i.e.

L(θi) = Eoti,ati,rt,ot+1
i ∼D

[
(Q(x)− y)2

]
where

y = rti + γQ(ot+1
1 , . . . ,ot+1

N , at+1
1 , . . . , at+1

N ).

The differentiability of the heat kernel operator allows the gradient in Eq.

4.11 to be evaluated. Since the actions are modelled by a neural network

parametrised θu in Eq. 4.7, we have that

∇θuµθu(mt
u) = ∇θuϕθu(mt

u).

which can be rewritten using the Leibniz’s notation [165] and integrated with

Eq. 4.6 to obtain:

∂ϕ(mt
u)

∂ϕθu
=
∂ϕ
( ∑
v∈V

Ht
u,vc

t
u,v

)
∂ϕθu

=
∑
v∈V

∂ϕ(Ht
u,vc

t
u,v)

∂ϕθu

=
∑
v∈V

(∂ϕ(Ht
u,v)

∂ϕθu
ctu,v +Ht

u,v

∂ϕ(ctu,v)
∂ϕθu

)
.

whilst the gradients of the HK values are

∂ϕ(Ht
u,v)

∂ϕθu
=
∂ϕ(Ht

u,v(p̂))
∂ϕθu

= ∂ϕ(exp[−p̂L̂])
∂ϕθu

=
∂ϕ(exp[−p̂ 1√

D
L 1√

D
])

∂ϕθu

=
∂ϕ(exp[−p̂ 1√

D
(D − S) 1√

D
])

∂ϕθu

which is a composition of differentiable operations. Algorithm 2 summarises

the learning algorithm; the proposed architecture is presented in Figure 4.1.
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Algorithm 2 CDC
1: Inisialise actor (µθ1 , . . . ,µθN ) and critic networks (Qθ1 , . . . , QθN )
2: Inisialise actor target networks (µ′

θ1
, . . . ,µ′

θN
) and critic target networks

(Q′θ1
, . . . , Q′θN )

3: Inisialise replay buffer D
4: for episode = 1 to E do
5: Reset environment, o1 = o1

1, . . . ,o
1
N

6: for t = 1 to T do
7: Generate Ct (Eq. 4.1) and St (Eq. 4.2)
8: for p = 1 to P do
9: Compute Heat Kernel H(p)t (Eq. 4.3)

10: end for
11: Build Ht with stable Heat Kernel values (Eq. 4.5 )
12: for agent i = 1 to N do
13: Produce agent’s message mt

i (Eq. 4.6)
14: Select action ati = µθi(mt

i)
15: end for
16: Execute at = (at1, . . . , atN ), observe r and ot+1

17: Store transition (ot,at, r,ot+1) in D
18: end for
19: for agent i = 1 to N do
20: Sample minibatch Θ of B transitions (o,a, r,o′)
21: Update critic by minimizing:
22:
23: L(θi) = 1

B

∑
(o,a,r,o′)∈Θ(y −Q(o,a))2,

24: where y = ri + γQ(o′,a′)|a′
k
=µ′

θk
(m′

k
)

25: in which m′k is global message computed using target networks
26: Update actor according to the policy gradient:
27: ∇θiJ ≈ 1

B

∑(
∇θiµθi(mi)∇aiQµθi (o,a)|ai=µθi (mi)

)
28: end for
29: Update target networks:
30: θ

′

i = τθi + (1− τ)θ′

i

31: end for

4.3 Experimental settings

4.3.1 Environments

The performance of CDC has been assessed in four different environments.

Three of them are commonly used swarm robotic benchmarks: Navigation

Control, Formation Control and Line Control [1, 5, 108]. A fourth one, Pack

Control, has been added to study a more challenging task. All the environments

have been tested using the Multi-Agent Particle Environment [103, 115], which

allows agents to move around in two-dimensional spaces with discretised action
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spaces. In Navigation Control there are N agents and N fixed landmarks. The

agents must move closer to all landmarks whilst avoiding collisions. Landmarks

are not assigned to particular agents, and the agents are rewarded for minimizing

the distances between their positions and the landmarks’ positions. Each agent

can observe the position of all the landmarks and other agents. In Formation

Control there are N agents and only one landmark. In this scenario, the agents

must navigate in order to form a polygonal geometric shape, whose shape

is defined by the N agents, and centred around the landmark. The agents’

objective is to minimize the distances between their locations and the positions

required to form the expected shape. Each agent can observe the landmark

only. Line Control is very similar to Formation Control with the difference

that the agents must navigate in order to position themselves along the straight

line connecting the two landmarks. Finally in Dynamic Pack Control there are

N agents, of which two are leaders and N − 2 are members, and one landmark.

The objective of this task is to simulate a pack behaviour, where agents have

to navigate to reach the landmark. Once a landmark is occupied, it moves to

a different location. The landmark location is accessible only to the leaders,

while the members are blind, i.e. they can only see their current location.

Typical agent configurations arising from each environment we use here are

reported in Figure 4.3.
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(a) Navigation Control N = 3 (b) Navigation Control N = 10

(c) Formation Control N = 4 (d) Formation Control N = 10

(e) Line Control N = 4 (f) Line Control N = 10

(g) Pack Control N = 4 (h) Pack Control N = 8

Figure 4.3: Typical agent configurations for all our environments.63



For each environment we have tested two versions with different number of

agents: a basic one focusing on solving the designed task when 3− 4 agents are

involved, and a scalable one to show the ability to succeed with 8− 10 agents.

The performance of competing MADRL algorithms has been assessed using

a number of metrics: the reward, which quantifies how well a task has been

solved (the higher the better); the distance, which indicates the amount of

navigation carried out by the agents to solve the task (the lower the better);

the number of collisions, which shows the ability to avoid collisions (the lower

the better); the time required to solve the task (the lower the better); the

success rate, defined as the number of times an algorithm has solved a task over

the total number of attempts; and caught targets, which refers to the number

of landmarks that the pack managed to reach.

4.3.2 Implementation details

For our experiments, we use neural networks with two hidden layers (64 each)

to implement the graph generation modules (Eq. 4.2, 4.1) and the action

selector in Eq. 4.7. The RNN described in Equation 4.10 is implemented as a

long-short term memory (LSTM) network [140] with 64 units for the hidden

state.

We use the Adam optimizer [76] with a learning rate of 10−3 for critic and

10−4 for policies. Similarly to [1, 175], we set θ1 = θ2 = · · · = θN in order

to make the model invariant to the number of agents. The reward discount

factor is set to 0.95, the size of the replay buffer to 106, and the batch size

to 1, 024. At each iteration, we calculate the heat kernel over a finite grid of

P = 300 time points, with a threshold for getting stable values set to s = 0.05.

This value has been determined experimentally (see Table 4.5). The number

of time steps for episode, T , is set to 50 for all the environments, except for

Navigation Control where is set to 25. For Formation Control, Line Control

and Pack Control the number E of episodes is set to is set to 50, 000 for the

basic versions (30, 000 for scalable versions), while for Navigation Control is

set to 100, 000 (30, 000 for scalable versions).

All network parameters are updated every time 100 new samples are added
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to the replay buffer. Soft updates with target networks use τ = 0.01. We adopt

the low-variance gradient estimator Gumbel-Softmax for discrete actions in

order to allow the back-propagation to work properly with categorical variable,

which can truncate the gradient’s flow. All the presented results are produced by

running every experiment 5 times with different seeds (1,2001,4001,6001,8001)

in order to avoid that a particular choice of the seed can significantly condition

the final performance. Computations were mainly performed using Intel(R)

Xeon(R) CPU E5-2650 v3 at 2.30GHz as CPU and GeForce GTX TITAN X as

GPU. With this configuration, the proposed CDC in average took approximately

8.3 hours to complete a training procedure on environments with four agents

involved.

4.4 Experimental results

4.4.1 Main results

We have compared CDC against several different baselines, each one represent-

ing a different way to approach the MA coordination problem: independent

DDPG [97, 149], MADDPG [103], CommNet [155], MAAC [63], ST-MARL

[175], When2Com [99] and TarMAC [31] and Intention Sharing (IS1) [75].

Independent DDPG provides the simplest baseline in that each agent works

independently to solve the task. In MADDPG each agent has its own critic

with access to combined observations and actions from all agents during learn-

ing. CommNet implements an explicit form of communication; the policies

are implemented through a large neural network with some components of

the networks shared across all the agents and others agent-specific. At every

time-step each agent’s action depends on the local observation, and on the

average of all other policies (neural network hidden states), used as messages.

MAAC is a state-of-the art method in which an attention mechanism guides
1In our implementation, the number of steps to be predicted is set to one, i.e. each agent

predicts the next step of every other agent. In the original paper, this is the equivalent to
IS(H=1). In addition, in order to maintain a fair comparison with the other baselines, a
message at time t is used to generate the next actions, i.e. we do not rely on previously
generated messages.
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Navigation Control N = 3 Navigation Control N = 10
Reward # collisions Distance Reward # collisions Distance

DDPG −57.3± 9.94 1.24± 0.39 4.09± 6.92 −115.93± 21.26 8.83± 6.41 3.6± 0.85
MADDPG −45.23± 6.59 0.77± 0.24 3.16± 5.74 −112.17± 13.23 12.29± 7.45 3.44± 0.53
CommNet −48.95± 6.25 0.92± 0.24 3.49± 5.09 −104.49± 10.45 12.21± 6.87 3.14± 0.41
MAAC −43.18± 6.44 0.71± 0.24 1.46± 2.97 −107.38± 11.81 9.04± 6.46 3.26± 0.46
ST-MARL −55.36± 8.17 1.54± 3.56 1.2± 0.33 −110.69± 15.75 32.73± 32.77 3.27± 0.57
When2Com −40.7± (5.33) 0.61± (0.21) 1.06± (3.26) −112.51± (14.48) 13.68± (11.29) 3.45± (0.57)
TarMAC −44.9± (6.22) 0.77± (0.24) 2.14± (4.36) −110.67± (13.76) 9.81± (7.66) 3.39± (0.54)
IS −42.6± (6.70) 0.70± (0.29) 1.22± (3.56) −111.67± (9.18) 12.28± (7.27) 3.39± (0.68)
CDC −39.16± 4.77 0.56± 0.19 0.4± 1.66 −102.68± 10.1 9.03± 9.36 3.06± 0.4

Formation Control N = 4 Formation Control N = 10
Reward Time Success Rate Reward Time Success Rate

DDPG −39.43± 12.37 50± 0.0 0± 0.0 −49.27± 6.11 50± 0.0 0± 0.0
MADDPG −19.86± 6.04 50± 0.0 0± 0.0 −20.65± 7.11 50± 0.0 0± 0.0
CommNet −7.77± 2.06 45.8± 10.19 0.18± 0.38 −10.22± 1.03 48.89± 5.5 0.04± 0.2
MAAC −5.77± 1.53 26.66± 17.2 0.66± 0.47 −9.63± 1.35 50± 0.0 0± 0.0
ST-MARL −20.24± 3.0 50± 0.0 0± 0.0 −19.81± 5.74 50± 0.0 0± 0.0
When2Com −17.00−±(4.16) 48.21± (10.11) 0.12± (0.31) −18.49± (1.23) 48.72± (0.9) 0.01± (0.1)
TarMAC −14.25± (2.58) 47.35± (12.87) 0.13± (0.45) −19.06± (1.23) 49.44± (5.6) 0.01± (0.1)
IS −18.72± (3.43) 49.79± (9.96) 0.1± (0.41) −18.30± 4.36 50± 0.0 0± 0.0
CDC −4.22± 1.46 11.82± 5.49 0.99± 0.12 −7.51± 1.06 15.21± 9.23 0.99± 0.1

Line Control N = 4 Line Control N = 10
Reward Time Success Rate Reward Time Success Rate

DDPG −33.45± 10.58 49.99± 0.22 0± 0.0 −68.19± 10.2 50± 0.0 0± 0.0
MADDPG −18.75± 2.32 47.32± 9.14 0.08± 0.27 −12.69± 2.11 48.48± 7.12 0.04± 0.21
CommNet −10.99± 2.24 46.97± 8.93 0.12± 0.33 −9.58± 1.28 37.73± 14.85 0.47± 0.5
MAAC −7.38± 2.09 17.08± 12.17 0.89± 0.32 −8.58± 1.52 22.55± 16.09 0.76± 0.43
ST-MARL −23.87± 7.77 50± 0.0 0± 0.0 −19.24± 6.26 50± 0.0 0± 0.0
When2Com −16.45± (3.01) 46± (0.0) 0.11± (0.3) −10.1± (2.8) 49.55± 4.24 0.01± (0.12)
TarMAC −17.75± (4.24) 47.00± (0.0) 0.09± (0.31) −11.83± (1.63) 49.91± 1.12 0.01± (0.09)
IS −16.11± (4.24) 45.20± (0.0) 0.10± (0.15) −11.90± (1.52) 49.84± 1.15 0.01± (0.03)
CDC −5.97± 1.73 10.42± 5.58 0.98± 0.13 −7.96± 1.19 15.06± 12.02 0.91± 0.29

Dynamic Pack Control N = 4 Dynamic Pack Control N = 8
Reward Distance Targets caught Reward Distance Targets caught

DDPG −224.77± 87.65 3.52± 1.67 0± 0.0 −279.67± 70.18 4.58± 1.4 0± 0.0
MADDPG −116.15± 71.37 1.46± 0.72 0.2± 0.13 −110.86± 28.66 1.22± 0.28 0.0± 0.05
CommNet 293.35± 446.89 1.11± 0.12 0.81± 0.89 −76.18± 138.73 1.13± 0.25 0.07± 0.28
MAAC −95.29± 61.65 1.25± 0.21 0.01± 0.12 −105.15± 46.42 1.15± 0.28 0.01± 0.09
ST-MARL −107.02± 71.84 1.26± 0.3 0.02± 0.14 −123.91± 16.89 1.42± 0.36 0± 0.0
When2Com −108.47± (73.58) 1.32± (0.33) 0.02± (0.14) −111.47± (73.58) 1.32± (0.33) 0.02± (0.14)
TarMAC 50.47± (73.58) 1.20± 0.21 0.3± 0.55 −78.18± 42.5 1.18± 0.76 0.05± 0.21
IS 235.74± 446.89 1.06± 0.35 0.80± 0.63 50.19± 310.44 1.10± 0.29 0.34± 0.98
CDC 369.5± 463.92 1.09± 0.1 0.96± 0.93 58.03± 279.05 1.12± 0.14 0.35± 0.56

Table 4.1: Comparison of DDPG, MADDPG, CommNet, MAAC, ST-MARL,
When2Com, TarMAC, IS and CDC on all environments. N is the number of
agents. Results are averaged over five different seeds.

the critics to select the information to be shared with the actors. ST-MARL

uses a graph neural network to capture the spatio-temporal dependency of

the observations and facilitate cooperation. Unlike our approach, the graph

edges here represents the time-depending agents’ relationships, and capture

the spatial and temporal dependencies amongst agents. When2Com utilises

an attentional model to compute pairwise similarities between the agents’

observation encodings, which results in a fully connected graph that is sub-
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sequently sparsified by a thresholding operation. Afterwards, each agent uses

the remaining similarities scores to weight its neighbor observations before

producing its action. TarMAC is a framework where the agents broadcast

their messages and then select whom to communicate to by aggregating the

received communications together through an attention mechanism. In IS [75]

the agents generate their future intentions by simulating their trajectory and

then an attention model aggregate this information together to share it with

the others. Differently from the methods above, CDC utilises graph structures

to support the formation of communication connectivities and then use the

heat kernel, as an alternative form of attention mechanism, to allow to each

agent to aggregate the messages coming from the others.

Type of com-
munication

How information is
aggregated

Has a
graph-based
architecture

Is communication
delayed

DDPG NA NA No NA

MADDPG Implicit
Observation and

action concatenation
No Yes

CommNet Explicit
Sharing neural-networks

hidden states
No No

MAAC Implicit Attention No Yes

ST-MARL Implicit RNN + Attention Yes No

When2Com Implicit Attention Yes No

TarMAC Explicit Attention No Yes

IS Explicit Attention No No

CDC Explicit Heat Kernel Yes No

Table 4.2: A comparative summary of various MARL algorithms according to
how communication is implemented.

In Table 4.2 we provide a summary of selected features for each MADRL

algorithm used in this work. First, we have indicated whether the communica-

tion is implicit or explicit. The former refers to the ability to share information

without sending explicit messages, i.e. communication is inherited from a

certain behaviour rather than being deliberately shared [13]; studies have
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shown that this approach is used by both animals and humans [107, 131, 139]

and has discussed in a number of multi-agent reinforcement learning works

[31, 51, 93, 114, 124, 150, 155]. Explicit communication assumes the exist-

ence of a specific mechanism deliberatively introduced to share information

within the system; this is considered to be the most common form of human

communication [48, 56] and has also been widely explored in the context of

reinforcement learning [40, 75, 99]. This categorization can help interpret the

performance achieved in certain environments, such as Dynamic Pack Control,

where explicit communication is more beneficial.

We also report on how the information is aggregated amongst agents,

whether the algorithm relies on a graph-based architecture, and whether the

communication content is delayed, i.e. it only utilised in the future but does

not affect the current actions. For example, in TarMAC, each message is

broadcasted and utilised by the agents in the next step, while in MAAC and

MADDPG the communication happens through the critics and affect future

actions once the policy parameters get updated.

Table 4.1 summarises the experimental results obtained from all algorithms

across all the environments. The metric values are obtained by executing

the best model (chosen according to the best average reward returned during

training) for an additional 100 episodes. We repeated each experiment using 5

different seeds, and each entry of Table 4.1 is an average over 500 values.
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Navigation Control N = 3 Navigation Control N = 10

Line Control N = 4 Line Control N = 10

Figure 4.4: Learning curves for 9 competing algorithms assessed on Navigation
Control and Line Control. Horizontal axes report the number of episodes, while
vertical axes the achieved rewards. Results are averaged over five different
runs.
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Formation Control N = 4 Formation Control N = 10

Dynamic Pack Control N = 4 Dynamic Pack Control N = 8

Figure 4.5: Learning curves for 9 competing algorithms assessed on Formation
Control and Dynamic Pack Control. Horizontal axes report the number of
episodes, while vertical axes the achieved rewards. Results are averaged over
five different runs.

It can be noted that CDC outperforms all the competitors on all four

environments on all the metrics. In Navigation Control (N = 3), the task is

solved by minimizing the overall distance travelled and the number of collisions,

with an improvement over MAAC. In Formation Control (N = 4), the best

performance is also achieved by CDC, which always succeeded in half of time

compared to MAAC.

When the number of agents is increased, and the level of difficulty is

significantly higher, all the baselines fail to complete the task whilst CDC still

maintains excellent performance with a success rate of 0.99. In Line Control,

both scenarios (N = 4 and N = 10) are efficiently solved by CDC with higher

success rate and less time compared to MAAC, while all other algorithms fail.

For Dynamic Pack Control, amongst the competitors, only CommNet does
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not fail. In this environment, only the leaders can see the point of interest,

hence the other agents must learn how to communicate with them. In this

case, CDC also outperforms CommNet on both the number of targets that are

being caught and travelled distance. Overall, it can be noted that the gains

in performance achieved by CDC, compared to other methods, significantly

increase when increasing the number of agents.

Learning curves for all the environments, averaged over five runs, are shown

in Figures 4.4 and 4.5. Here it can be noticed that CDC reaches the highest

reward overall. The Dynamic Pack Control task is particularly interesting as

only three methods are capable of solving it, CommNet, IS and CDC, and all

of them implement explicit communication mechanisms. The high variance

associated with CDC and CommNet in Dynamic Pack Control can be explained

by the fact that, when a landmark is reached by all the agents, the environment

returns a higher reward. These are the only two methods capable of solving the

task, and lower variance is associated to other methods that perform poorly.

The performance of CDC when varying the number of agents at execution time

is investigated (see Appendix, Section 4.4.2).

4.4.2 Varying the number of agents

# agents DDPG CDC
3 2.34± 0.61 1.06± 0.12
4 3.52± 1.67 1.09± 0.1
5 3.90± 1.68 1.08± 0.15
6 4.44± 1.7 1.08± 0.18
7 5.21± 1.98 1.12± 0.12
8 6.49± 2.17 1.13± 0.11

Table 4.3: Comparison of DDPG and CDC on Dynamic Pack Control. Both
algorithms were trained with 4 agents and tested with 3-8. The performance
metric used here is the distance of the the farthest agent to the landmark.

We tested whether CDC is capable of handling a different number of

agents at test time. Table 4.3 shows how the performance of DDPG and CDC

compares when they are both trained using 4 learners, but 3-8 agents are used
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at test time. We report on the maximum distance between the farthest agent

and the landmark, which is invariant to the number of agents. It can be noted

that CDC can handle systems with a varying number of agents, outperforming

DDPG and keeping the final performance competitive with other methods that

have been trained with a larger number of agents (see Tables 4.1 and 4.3).

4.5 Communication analysis

In this section, we provide a qualitative evaluation of the communication

patterns and associated topological structures that have emerged using CDC

on the four environments. Figures 4.6 and 4.7 show the communication

networks GtH evolving over time at a given episode during execution: black

circles represent the landmarks, blue circles indicate the normal agents, and

the red circles are the leaders. Their coordinates within the two-dimensional

area indicate the navigation trajectories. The lines connecting pairs of agents

represent the time-varying edge weights, Ht. Each Ht
u,v element quantifies the

amount of diffused heat between the two nodes.
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(a) Navigation Control N = 3

(b) Navigation Control N = 10

(c) Line Control N = 4

(d) Line Control N = 10

Figure 4.6: Examples of communication networks Gt evolving over different
episode time-steps on Navigation Control and Line Control. Black circles
represent landmarks; agents are represented in blue. Connections indicate the
heat kernel connectivity weights generated by CDC.
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(a) Formation Control N = 4

(b) Formation Control N = 10

(c) Dynamical Pack Control N = 4

(d) Dynamical Pack Control N = 8

Figure 4.7: Examples of communication networks Gt evolving over different
episode time-steps on Formation Control and Dynamic Pack Control. Black
circles describe landmarks; agents are represented in blue, leader agents in red.
Connections indicate the heat kernel connectivity weights generated by CDC.

As expected, different patterns emerge in different environments; see Figure

4.6 and Figure 4.7. For instance, in Formation Control, the dynamic graphs

are dense in the early stages of the episodes, and become sparser later on when

the formation is found. The degree of topological adjustment observed over

time indicate initial bursts of communication activity at the beginning of an

episode; towards the end the communication, this seems to have stabilised and

consists of messages shared only across neighbours, which seems to be sufficient

to maintain the polygonal shape. A different situation can be observed in
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Dynamic Pack Control; see Figure 4.7. Here, there is an intense communication

activity between leaders and members at an early stage, and the emerging

topology approximates a bipartite graph between red and blue nodes. This is

an expected and plausible pattern, given the nature of this environment; the

leaders need to share information with the members, which otherwise would

not know be able to locate the landmarks.

In addition to the above qualitative interpretation based on graph topologies,

we can also quantify the emergence of different communication patterns by

looking at changes in the statistics of the degree centrality (i.e. the number of

connections of each agent) over time. Specifically, we compare the statistics

attained at the beginning and end of an episode using the connectivity graph

generated by CDC. Table 4.4 shows the mean and variance of the centrality

degree, across all nodes, for each environment. Changes in variance, for instance,

may indicate the formation of clusters. Here it can be noted that in Navigation

Control, Line Control and Formation Control, the variance is significantly

lower at the end of the episodes; this is expected since the best strategy in

such tasks consists of spreading the number of connections across all nodes.

A different pattern emerges in Dynamic Pack Control where the formation of

clusters is necessary since the workers need to connect with the leaders. These

clusters are also visible in Figure 4.7.

Average Degree Centrality
Environment Beginning of episode End of episode
Navigation Control N = 10 1.7± (1.5) 2.4± (0.5)
Line Control N = 10 2.5± (0.9) 1.8± (0.4)
Formation Control N = 10 2.2± (1.7) 2.1± (0.3)
Dynamic Pack Control N = 8 1.4± (0.91) 1.6± (1.4)

Table 4.4: Mean and standard deviation for the centrality degree calculated
using the connectivity graphs generated by CDC. Metrics are calculated utilising
the graph produced in the first (beginning) and last step (end) of the episodes
at execution time.
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(a) Navigation Control N = 3 (b) Navigation Control N = 10

(c) Line Control N = 4 (d) Line Control N = 10

Figure 4.8: Averaged communication graphs for Navigation Control and Line
Control. On the left side of each figure, the node sizes describe the eigenvector
centrality, the connections represent the heat kernel values and the numbers
indicate the node labels. On the right, the heat kernel values are shown as
heatmaps, where axis numbers correspond to node labels.
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(e) Formation Control N = 4 (f) Formation Control N = 10

(e) Dynamic Pack Control N = 4 (f) Dynamic Pack Control N = 8

Figure 4.9: Averaged communication graphs for Formation Control and Dy-
namic Pack Control. On the left side of each figure, the node sizes describe
the eigenvector centrality, the connections represent the heat kernel values and
the numbers indicate the node labels. On the right, the heat kernel values are
shown as heatmaps, where axis numbers correspond to node labels.

Further appreciation for the role played by the heat kernel in driving

the communication strategy can be gained by observing Figures 4.8 and

4.9 which provide visualisations for all the environments. On the left, the

connection weights are visualised using a circular layout. Here the nodes

represent agents, and the size of each node is proportional to the node’s

eigenvector centrality. The eigenvector centrality is a popular graph spectral

measure [11], utilised to determine the influence of a node considering both

its adjacent connections and the importance of its neighbouring node. This

measure is calculated using the stable heat diffused values averaged over an

episode, i.e. Hu,v = (
∑T
t=1H

t
u,v)/T . The resulting graph structure reflects the

overall communication patterns emerged while solving the given tasks. On the

right, we visualise the squared N ×N matrix of averaged pairwise diffusion

values as a heatmap (red values are higher). It can be noted that, in Pack

Control, two communities of agents are formed, each one with a leader. Here, as

expected, leaders appear to be influential nodes (red nodes), and the heatmap
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shows that the connections between individual members and leaders are very

strong. A different pattern emerges instead in Formation Control, where there

is no evidence of communities since all nodes are connected to nearly form

a circular shape. The corresponding heatmap shows the heat kernel values

connecting neighbouring agents tend to assume higher values compared to

more distant agents.

4.6 Ablation studies

We have carried out a number of studies to assess the relative importance of

all the architectural choices that we have made throughout this research.

4.6.1 Investigating the heat-kernel components

First, we investigate the relative merits of the heat kernel over two alternative

and simpler information propagation mechanisms: (a) a global average approach,

where the observations of all other agents are averaged and provided to the

agent to inform its action, and (b) the nearest neighbours approach, where only

the observations of the agent’s two nearest neighbours are averaged. For each

one of these two mechanisms, we compare a version using our proposed critic

(Section 4.2.5), which uses a recurrent architecture (specifically an LSTM),

and a version using a traditional critic, i.e. based on a feed-forward neural

network. To better characterise the benefits of a recurrent network, we have

also investigated an LSTM-based version of MADDPG. In addition, we have

implemented a version of CDC that use a softmax attention, i.e. the heat kernel

connectivity weights have been replaced by a softmax function. To ensure a

fair comparison, only the necessary architectural changes have been carried out

in order to keep the modelling capacity across different versions comparable.

In Figure 4.10, it can be noted that the proposed CDC using the heat

kernel achieves the highest performance by a significant margin. The other

modified versions of CDC, with and without LSTM, also outperform the simpler

communication methods. There is evidence to suggest that averaging local

information coming from the nearest neighbours is a better strategy compared
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Figure 4.10: Learning curves of different versions of the proposed model on
Formation Control (N = 4).

to using a global average; the latter cannot discard unnecessary information

and results in noisier embeddings and worse communication. Overall, we have

observed that the LSTM-based critic is beneficial compared to the simpler

alternative. This is an expected result because, by design, the LSTM’s hidden

state filters out irrelevant information content from the sequence of inputs.

Another observed finding is that the order of the agents does not affect the

final performance of the model. This is explained by the fact that each of

LSTM-based critics observe the entire sequence of observations and actions

before producing the feedback to return. Furthermore, the softmax version

of CDC has been found to be less performant that the original CDC thus

confirming the important role played by the heat kernel in aggregating the

messages across the communication network.

4.6.2 Heat-kernel threshold

In order to choose an appropriate threshold for the heat kernel equation (see Eq.

4.5) we have run a set of experiments whereby we monitor how the success rate

behaves using different parameter values. Table 4.5 reports on the performance
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of CDC on Formation Control when the threshold parameter s varies over a

grid of possible values. In turn, this threshold determines whether the heat

kernel values are stable or not. The best performance is obtained using s = 0.05,

which is the value used in all our experiments. To select the specific thresholds

reported in Table 4.5, we tried a range of values suggested in related works

[25, 181].

Method Formation Control N = 4
Reward Time Success Rate

CDC s = 0.01 −4.48± (1.62) 13.52± (9.83) 0.93± (0.21)
CDC s = 0.025 −4.33± (1.28) 14.01± (9.74) 0.94± (0.24)
CDC s = 0.05 −4.22± (1.46) 11.82± (5.49) 0.99± (0.1)
CDC s = 0.075 −4.34± (1.43) 12.88± (9.13) 0.95± (0.22)
CDC s = 0.1 −4.31± (1.57) 12.52± (8.39) 0.96± (0.2)

Table 4.5: Comparison of CDC results using different values for threshold s.

4.7 Summary

In this work, we have presented a novel approach to deep multi-agent reinforce-

ment learning that models agents as nodes of a state-dependent graph, and uses

the overall topology of the graph to facilitate communication and cooperation.

The inter-agent communication patterns are represented by a connectivity

graph that is used to decide which messages should be shared with others, how

often, and with whom. A key novelty of this approach is represented by the fact

that the graph topology is inferred directly from observations and is utilised as

an attention mechanism guiding the agents throughout the sequential decision

process. Unlike other recently proposed architectures that rely on graph convo-

lutional networks to extract features, we make use of a graph diffusion process

to simulate how the information propagates over the communication network

and is aggregated. Our experimental results on four different environments

have demonstrated that, compared to other state-of-the-art baselines, CDC

can achieve superior performance on navigation tasks of increasing complexity,

and remarkably so when the number of agents increases. We have also found

that visualising the graphs learnt by the agents can shed some light on the role
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played by the diffusion process in mediating the communication strategy that

ultimately yields highly rewarding policies. The current LSTM-based critic

could potentially be replaced by a graph neural network equipped with an

attention mechanism capable of tailoring individual feedback according to the

agents’ needs.
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Chapter 5

Benchmarking MARL
methods for cooperative
missions of unmanned aerial
vehicles

5.1 Introduction

Unnamed aerial vehicles, also known as drones, are finding their way into a

variety of practical applications and their adoption is expected to increase in

the coming years. For instance, drones are currently used for goods shipping,

surveillance, and crop spraying. Often, multiple cooperative drones are required

to work together in a fully automated manner to complete the task at hand

as efficiently as possible. Multi-agent reinforcement learning proposes a wide

number of approaches to train policies capable of succeeding in tasks that

require complex multi-agent coordination skills. The goal of this chapter is to

explore the potential of these models in unmanned aerial vehicle settings. Our

contribution is twofold: firstly, we introduce a novel environment to simulate

the cooperation of drones under a variety of realistic constraints, and secondly,

we present a benchmarking of several state-of-the-art methods to analyse how
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different algorithms react to the proposed challenges.

Initially developed for military goals, unnamed aerial vehicles (UAVs) - also

known as drones - are now being used for a variety of purposes such as enter-

tainment [135], agriculture [55], search and rescue [130], and firefighting [172].

It is predicted that drones will soon be pervasive throughout most economic

sectors and that between a few thousand and several hundred thousand of

them will be flying over Europe by the year 2050 [193]. Several applications

involve the deployment of multiple cooperating drones that execute a task as

effectively and safely as possible [57].

Multi-agent reinforcement learning [16, 17, 148] is deemed the most prom-

ising approach to sequential decision-making. In MARL, a group of agents

interact with the environment to learn the joint decision-making strategy, or

policy, that produces the greatest long-term reward. The benefits of MARL

over hard-coded rules developed by human experts include the following: (1)

autonomous agents may discover policies outside the realm of human expert-

ise, especially in complex environments; (2) once trained, extracting the best

action from the policy requires less computational resources than traditional

optimisation techniques like mixed-integer programming; and (3) MARL does

not necessitate the laborious design of rules. All of these factors have contrib-

uted to the rise in popularity of MARL, particularly in applications involving

autonomous agents working together cooperatively. Multi-agent deep reinforce-

ment learning [50, 189] integrates MARL techniques with deep learning models

[89], such as neural networks [137], to approximate agents’ policies and/or the

extraction of features. MADRL algorithms allowed to achieve unprecedented

results [4, 10, 169] in multi-agent settings where achieving cooperation is a

challenge that has been faced in multiple ways. A common approach is to

adopt a centralised learning approach that at training time [40], allows utilising

information which is not available at execution time [103]. Communication

is also a fundamental tool that is widely explored to facilitate the agents

synchronisation and collaboration [138, 180, 187]. Many approaches have been

proposed in order to explore different ways of learning to communicate, such as

utilising a differential channel to exchange messages [40], sharing information
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through a memory cell as discussed in Chapter 3 or utilising an attention

mechanism to aggregate encodings coming from other agents [31].

In this chapter, we make two main contributions. Firstly, we develop

a simple but sufficiently realistic simulator of a fleet of UAVs performing a

cooperative task; the simulator allows us to evaluate a number of scenarios of

increasing complexity where certain factors, such as wind speed and battery

life, impose additional constraints on the environment. A 2D Unity-based

visualisation tool has also been developed. Secondly, we empirically compare

the relative performance of selected MADRL algorithms, each one implementing

a different communication mechanism, for cooperative tasks under different

scenarios. The competing algorithms have been selected to represent different

learning and communication mechanisms. The resources that we deployed

for this chapter are available in a GitHub repository that includes the UAV

simulator for MARL settings 1. The rest of the chapter is organised as follows.

In Section 5.2 we provide details of the proposed MARL environment to

simulate the navigation UAVs in realistic conditions. In Section 5.3 we discuss

state-of-the-art MADRL methods. In Section 5.4 we describe the experimental

setup for our experiments, which results are discussed in Section 5.5. Finally,

we discuss our findings in Section 5.6 and share our conclusion thoughts in

Section 5.7.

5.2 Proposed drone environment

Our developments leveraged the well-known multi-agent particle environ-

ment [115]. To avoid the complexity of a three-dimensional (3D) environment,

we assumed that the drones perform a task in an open space at roughly the same

altitude. This allows for the reduction of the state space to a two-dimensional

(2D) region. We assume a finite set N of drones (the agents) and a finite set

L of targets. The drones are required to reach their targets whilst avoiding

colliding with any other drones. The targets can be either stationary or moving.

The agents interact with landmarks and other agents in the environment by
1https://github.com/emanuelepesce/unmanned-aerial-vehicles-marl-env
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performing physical actions.

State space and dynamics. Each agent’s state x ∈ R5 is composed of

the position vector in a Cartesian plane p ∈ R2, the speed vector ṗ ∈ R2 and

the battery level b ∈ R≥0. The discretised dynamics of the state vector are

given by: 
p

ṗ

b


t+1

=


p+ (ṗ+w) ∆

γṗ+ p̈∆

b+ ḃ∆


t

, (5.1)

where ∆ ∈ R≥0 is the episode step time (i.e., fixed amount of time by which the

episode advances at each step); γ ∈ [0, 1] is the damping factor, which roughly

emulates the energy dissipation due to drag; and w ∈ R2 is the wind vector,

whose North (wn) and East (we) components are computed from the wind

speed w ∈ [0, wmax] and direction θ ∈ [0, 2π) using trigonometric operations:

wn = w sin θ; we = w cos θ (5.2)

with wmax ∈ R≥0 the fastest wind speed that is achievable. Both wind speed

and direction are considered to be constants across the space and stationary

for the sake of simplicity. When starting each episode, the wind direction and

speed are sampled from a uniform distribution within their respective ranges.

The acceleration is determined by the force action u ∈ R2 (the result of the

policy) and the (constant) mass m ∈ R≥0 of the drone according to the 2nd

Newton’s law: p̈ = u
m . Regarding the battery level, it is approximated as

a linear function of the force’s magnitude so that stronger forces lower the

battery level faster, i.e., ḃ = −α − ‖u‖β, where α ∈ R≥0 and β ∈ R≥0 are

predefined hovering and action battery level rate parameters, respectively. It

should be noted that (1) all drones start with the same battery level, namely

b0 ∈ R≥0, (2) when a drone is hovering, then the magnitude of the 2D force

is ‖u‖ = 0 and the battery level decreases by α∆, and finally, (3) drones are

immobile after their batteries are exhausted, i.e., they cannot perform actions.

The remainder of this section covers the observation vector, the action space

and the reward function of each individual agent (i.e., drone), respectively.

85



Observation vectors. The observation vector of each drone oi is com-

posed of its own speed vector and battery level, the wind speed and direction, as

well as some information about the observed drones and landmarks. Specifically,

each drone also observes the relative position −−→pipj , relative speed −−→ṗiṗj , as well

as the battery level bj of each observed drone j, as well as the relative position
−−→pipk of each observed landmark k. Let us denote by Ni ⊆ N \ i and Li ⊆ L\ i

the set of drones and landmarks observed by drone i, respectively. According

to this definition, the size of the observation vector is 5 (1 + |Ni|) + 2|Li|.

Parameter m γ α β ∆ Dsafe φ

Value 1 0.25 10 1 0.1 0.1 50

Table 5.1: Common parameters of the environments

Figure 5.1: Rendering of the provided environment. Drones have to reach the
target that has the same color. Wind speed and direction, and battery levels
are represented in the bar at the bottom.
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Action space. The action space of each drone is discrete and contains five

actions, i.e., Ai = {Hover, Pitch up, Pitch down, Roll right, Roll left}.

It should be mentioned that yaw motions were not taken into account in

the experiment in an effort to minimise the number of alternative actions

and enhance algorithm convergence. These actions are all translated into a

normalised 2D force as follows: Hover: u = [0, 0], Pitch up: u = [0,+1],

Pitch down: u = [0,−1], Roll right: u = [+1, 0], and Roll left: u =

[−1, 0].

Reward signal. Drones actually have two competing objectives: (1) to

reach the target as quickly as possible, and (2) to accomplish (1) whilst avoiding

collisions with other drones. Accordingly, the reward signal is composed of

two terms: the first term encourages drones to reach their target as quickly

as possible by penalising the current distance to the target, so that agents

that are far away from the target are strongly penalised; and the second term

penalises collisions:

ri = −‖−−→pipli‖ − φ
∑

j∈N\{i}

(
‖−−→pipj‖ < Dsafe

)
(5.3)

where Dsafe ∈ R≥0 is a parameter representing the minimum safe distance

between drones, i.e., drones separated by less than this distance are considered

be in a collision, and φ ∈ R≥0 represents the amount of penalty resulting from

a single collision. Avoiding collisions is obviously more important, therefore

φ should be somewhat high. It should be noted that agents who reach the

target (i.e., complete the task) or run out of battery are given a reward equal

to 0 until the end of the episode. A Unity rendering of the environment is

represented in Figure 5.1.

5.3 Competing algorithms

To assess the performance of MADRL algorithms on our proposed environments,

we carefully selected a set of state-of-the-art algorithms that represent various

categories of approaches, ensuring diversity in problem-solving strategies. Our
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selection process was driven by an extensive review of recent literature, focusing

on algorithms specifically designed for cooperative multi-agent scenarios and

demonstrating exceptional performance in prior studies. A crucial criterion

for our selection was the availability of open-source code or the clarity of

presentation in terms of technical details, which facilitated effective algorithm

implementation.

The chosen algorithms include Independent DDPG [149], MADDPG [103],

MD-MADDPG (presented in Chapter 3), MAAC [63], CDC (presented in

Chapter 4), ST-MARL [175], When2Com [99], TarMAC [31], and IS [75].

These algorithms were selected based on their diverse communication mechan-

isms, targeted communication capabilities, methods for aggregating information

from other agents, and the use of graph-based architectures to facilitate com-

munication. Explicit communication refers to the ability of a method to create

communication messages while. Targeted communication summarises the pos-

sibility of a method to communicate to a specific set of selected agents. We

also include if a method uses a graph based architecture. Finally we also report

what is the main logic behind the data aggregation module of each method.

Table 5.2 offers an overview of these algorithms and their key characteristics.

These algorithms generally employ various techniques to tackle the chal-

lenges of cooperative multi-agent scenarios, including communication, coordin-

ation, and joint exploration. Some utilize explicit communication mechanisms

where there are components explicitly designed to produce a message, while

others employ implicit communication or rely on the agents’ shared observa-

tions. Additionally, some algorithms incorporate attention mechanisms for

selectively focusing on relevant information, while others leverage graph-based

architectures to facilitate communication and information aggregation.

Overall, the selected algorithms encompass a wide range of approaches and

techniques, exhibiting strong performance in various cooperative multi-agent

scenarios. By comparing their performance on our proposed environments, we

aim to provide insights into the strengths and limitations of different approaches

and identify the most effective strategies for diverse scenarios. In the remainder

of this section, we offer a brief summary of each method.
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Single-agent DDPG [149] The naive approach to MARL is to use

independent learning agents [161]. In our experiments, we show the results of

this simple approach by adopting DDPG as a baseline algorithm and using it

to train each agent individually in each given environment. In DDPG, each

agent is trained through an actor-critic paradigm where there is a policy that

produces the actions and a critic that, at learning time, uses the observations

and actions sampled by an experience replay buffer in order to provide feedback

to its associated policy. Both actor and critic are implemented as neural

networks. We believe DDPG is an important baseline as it represents the base

case when no MARL mechanisms and all the involved agents solve the problem

by ignoring all the others, so there are no communication or cooperation

mechanisms involved in the process.

Multi-agent DDPG [103]. MADDPG is an extension of DDPG where

the execution part remains the same while the critic of each agent can see all

the observations and actions of all the others before sending the feedback to its

associated policy. By augmenting the critic in this way, the signal returned to

the agents is richer because it takes into account how each agent is progressing

while the learning process is taking place. MADDPG is empirically shown

to learn more robustly than DDPG. This method has been inserted into our

comparison list as it is considered a MADRL milestone and represents the

baselines of many MARL approaches.

MD-MADDPG (presented in Chapter 3). This algorithm extends

MADDPG by proposing an explicit communication mechanism. Here the

agents are equipped with a shared memory cell that is used as a communication

channel: before taking action, the content of the medium needs to be read,

and then a response needs to be written. Both read and write operations are

defined as learnable operators, so the agents can learn what to share with

and acquire from the others. The policies use the communication channel in

both phases of learning and execution, while each receives all the observations,

actions, and memory content before returning its feedback. We introduce this

approach in the set of our baselines in order to show the results of an explicit

form of communication based on a shared memory channel.
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CDC (presented in Chapter 4). This algorithm implements a graph-

based, explicit communication mechanism. First, a fully connected graph of

pairwise connections is generated to allow the agents to exchange messages,

and then an attention model is built via a diffusion model such as the heat

kernel in order to associate a weight to each edge, and then an agent-specific

message is composed as a weighted sum of incoming messages. Here, the critic

module is centralised and implemented through recurrent neural networks

(RNNs) that iterate over all the observations and actions before returning the

feedback. In CDC, the communication is not targeted, as it is each agent that

decides what to pass to the action selector. CDC has been chosen in order to

provide a MARL baseline based on a graph structure that utilises an explicit

form of communication.

MAAC [63] . In MAAC the MADDPG idea is further extended by

introducing an attention mechanism that is shared by the critics to select the

relevant information for each individual agent. In this approach, the policies

still work in a centralised way and the critics see all the observations and

actions. The novelty is that there is an attention model, shared amongst

all agents, that produces a set of weights for each pair of observations and

actions that will be used to determine what information has to be selected or

discarded. MAAC contributes to providing a comparison with an approach

where cooperation is achieved by enriching the feedback coming from critics

rather than through communication.

TarMAC [31]. A different approach is used in TarMAC, where the agents

select the relevant information at execution time. In particular, each agent

receives an observation and an aggregated message and produces an action

and a targeted message that contains a signature. The aggregated message

is composed using a soft attention model that combines all the broadcast

messages in order to output a content that is specifically produced by each

individual agent. In this way, an explicit form of communication is implemented

in order to boost the agents’ cooperation. TarMAC has been inserted in our

comparisons to provide an example of an explicit communication approach

where the content to share is broadcasted to everybody instead of targeting a
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specific agent.

When2Com [99]. This algorithm is designed to determine who commu-

nicates to whom and when. First, a fully connected graph was obtained by

computing the similarities between the agents’ observation encodings. Then

the generated connections are sparsified by a thresholding operation done via

calculating the correlation between the sender and the receiver. An attention

mechanism is adapted to generate the score used to establish a connection

channel to exchange the observation encodings. When2Com has been chosen

for its targeted communication mechanism that makes this method different

from all the others as the agents are trained in order to be able to decide both

the recipient and the time of communication.

ST-MARL [175]. This algorithm uses GNNs to model spatio-temporal

dependencies between agents. Graphs are used to model how the agents’

observations change over the temporal timesteps and utilised by an attention

model to generate a set of features which is passed into an LSTM network [60].

The outcome of this operation is used in a deep neural network that generates

the Q values of each agent. ST-MARL has been selected in order to enrich our

set of experiments with a method capable of modelling the spatio-temporal

dependencies of agent interactions.

Intention Sharing (IS) [75]. This algorithm introduces an intention

sharing mechanism which is proposed in order to equip the agents with a module

that allows communicating their implicit future plans. At each step, each agent

first generates an imagined trajectory and then evaluates the importance of

each generated step using an attention module. The imagined trajectory and

its step weights are then encoded and utilised as a message that together with

the current observation is used to select the next action. IS has been integrated

into the results we show in order to provide a method with an explicit form

of communication where the content of the messages is represented by the

predicted future intentions of the agents.
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Has explicit
communica-

tion?

Is communica-
tion

targeted?

How other agents
information is
aggregated

Has a
graph-based
architecture?

DDPG NA NA NA No

MADDPG No NA
Observation and

action concatenation
No

MD-
MADDPG

Yes No Memory Cell No

CDC Yes No Heat-Kernel Yes

MAAC No NA Attention No

ST-MARL Yes No RNN + Attention Yes

When2Com Yes Yes Attention Yes

TarMAC Yes No Attention No

IS Yes No Attention No

Table 5.2: A summary to compare the main features of the selected MARL
algorithms.

5.4 Experimental settings

Our experiments are defined in order to assess the performance of several

state-of-the-art MADRL approaches on UAV simulated tasks. We test the set

of baselines discussed in Section 5.3 on a battery of six different variations of

the proposed drone environment. Each variation is designed to represent a

specific world condition that can affect the agent behaviours in both phases of

learning and testing. The goal of each agent is to maximise its reward function

(Eq. 5.3) by reaching its target while avoiding collisions and running out of

battery.

The proposed variations can be summarised as follow:

• Normal conditions: the targets are stationary, and the agents have full

observabity, i.e. they can observe every other drone in the environment.

The battery level of each agent is initially high, and the wind speed is

low;

• Partial observability: same as in Normal conditions, but the agents have

a limited vision range;

• Strong wind: full observability, high initial battery level, but significantly
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higher wind speed;

• Low battery: the initial battery level is drastically reduced while keeping

full observability, static targets and low wind speed;

• Moving targets: the targets are also moving, posing a new difficulty for

the agent to overcome;

• Extreme conditions: partial observability, strong wind, low initial battery

level and moving target.

Environment wmax b0 Observability Targets

Normal conditions 1.0 1.0 Full Static

Partial Observability 0.1 1.0 Partial Static

Strong Wind 1.0 1.0 Full Static

Low Battery 1.0 0.2 Full Static

Moving Target 0.1 1.0 Full Moving

Extreme Conditions 1 1 Partial Moving

Table 5.3: Environment parameters

Each variation has a different difficulty level and is obtained by setting different

values to the parameters that define the initial battery level b0 and the maximum

wind speed wmax, as described in Section 5.2. We also report the observability

conditions and whether the targets are static or moving. In the case of partial

observability, the agents have a limited vision range that gives them access

only to a portion of the environment around them within a radius which

size is defined as the 15% of the environment longest side. When targets are

defined as moving it means that at each time-step they move to an adjacent

location which direction is defined by a uniform distribution of probability.

The characteristics of the proposed scenarios are particularised in Table 5.3.

For our experiments, we use neural networks with two hidden layers (64

each) to implement the action selector and encoding modules. We use the

Adam optimizer [76] with a learning rate of 10−3 for critics and 10−4 for policies.

The number of time steps for episode, T , is set to 75 for all the environments.

All network parameters are updated every time 100 new samples are added
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to the replay buffer. Soft updates with target networks use τ = 0.01. All

the presented results are produced by running every experiment 5 times with

different seeds (1,2001,4001,6001,8001) in order to avoid that a particular choice

of the seed can significantly condition the final performance. Computations

were mainly performed using Intel(R) Xeon(R) CPU E5-2650 v3 at 2.30GHz

as CPU and GeForce GTX TITAN X as GPU.

Normal conditions Partial Observability
Reward # Reached Targets Reward # Reached Targets

DDPG −117.46± 121.49 1.35± 0.66 −156.19± 77.93 0.72± 0.65
MADDPG −93.56± 65.78 1.38± 0.56 −110.24± 79.41 0.99± 0.58
MAAC −87.65± 72.73 2.9± 0.33 −100.86± 80.63 1.88± 0.33
TarMAC −109.15± 76.1 1.56± 0.44 −98.4± 80.53 2.67± 0.6
When2Com −112.68± 82.88 1.51± 0.51 −99.56± 75.35 2.51± 0.7
ST-MARL −103.25± 81.52 1.81± 0.88 −102.17± 132.85 1.01± 0.77
MD-MADDPG −110.30± 62.12 1.78± 0.59 −101.88± 70.7 1.56± 0.49
CDC −111.13± 68.12 1.91± 0.39 −99.66± 76.1 2.34± 0.55
IS −94.39± 60.31 1.29± 0.39 −101.15± 85.86 1.35± 0.74

Strong Wind Low Battery
Reward # Reached Targets Reward # Reached Targets

DDPG −121.83± 92.39 1.42± 0.92 −123.21± 93.94 1.11± 0.74
MADDPG −110.27± 92.50 1.50± 0.86 −108.58± 106.41 1.44± 0.77
MAAC −105.63± 92.38 2.51± 0.66 −104.53± 92.85 1.70± 0.79
TarMAC −106.21± 90.7 2.60± 0.81 −113.05± 103.39 1.14± 0.75
When2Com −122.16± 92.85 1.19± 0.99 −108.2± 96.45 1.63± 0.86
ST-MARL −125.46± 100.58 1.07± 0.71 −123.79± 103.62 0.63± 0.72
MD-MADDPG −122.41± 95.55 1.08± 0.69 −122.88± 11.8 1.73± 0.60
CDC −105.96± 95.92 2.49± 0.74 −109.31± 70.7 1.91± 0.63
IS −121.59± 99.85 1.4± 0.55 −120.65± 101.87 1.13± 0.78

Moving targets Extreme conditions
Reward # Reached Targets Reward # Reached Targets

DDPG −143.66± 119.93 1.30± 0.64 −167.06± 110.03 0.75± 0.78
MADDPG −103.76± 74.88 1.04± 0.71 −134.7± 119.76 1.1± 0.72
MAAC −96.08± 77.44 2.21± 0.2 −121.84± 110.5 1.46± 0.9
TarMAC −98.83± 76.28 2.20± 0.73 −125.23± 106.44 1.4± 0.94
When2Com −110.09± 76.93 1.16± 0.8 −122.25± 115.74 1.56± 0.9
ST-MARL −93.37± 85.53 2.42± 0.83 −141.67± 91.72 1.1± 0.51
MD-MADDPG −120.64± 97.78 1.45± 0.13 −142.88± 11.8 1.23± 0.60
CDC −94.52± 58.66 2.22± 0.59 −129.11± 100.47 1.41± 0.82
IS −94.32± 75.95 2.51± 0.74 −134.22± 132.99 1.36± 0.61

Table 5.4: Experimental results for each difficulty level.

5.5 Experimental results

All results are summarised through the learning curves provided in Figure

5.2 and the metrics gathered at test time which are summarised in Table 5.4.

On the Normal conditions environment, which represents the basic version of
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this kind of environment, all the presented methods are able to achieve the

convergence with some, like MAAC, CDC, MADDPG and IS being slightly

better than the others. In Partial observability where we instead limit the vision

of each agent to only its surrounding area, TarMAC, CDC and When2Com

seem to be the best performers. This is likely due to their ability to make the

agents able to communicate and share knowledge with each other and select

the right recipients respectively. When instead we increase the strength of

the wind, in Strong wind, MAAC, CDC and TarMAC are the best models.

Here it is clear that selecting the next recipient is not so effective because the

wind can affect the agents’ actions so individual messages become less effective

than broadcasting to everybody. A scenario that seems to be different when

instead we decrease the initial battery level of each agent in Low Battery, where

together with MAAC, methods like MADDPG, and When2Com obtain the

best results. This is probably because the main challenge here is to make the

best use of the limited battery capacity, that means the agents have less time

to decide so communication might not be the best choice as it might require

more steps to be efficient.

In Moving targets it seems that ST-MARL is the model that obtains the

best results, while IS is the second. This can be explained by the fact that

both methods try to predict the next location or intention of the other agents,

a thing that clearly helps when the landmarks are not static but are moving.

Finally, we have Extreme conditions that contain all the difficulties mentioned

so far. The first thing that can be noted is that the independent DDPG is not

able to get any convergence in such a complex scenario. Another interesting

aspect is that the performance of ST-MARL, which was the best method on

Moving Targets here have significantly worsened as a clear sign that the other

conditions, like wind, battery and PO, negatively affect this method. The best

performance is instead obtained by methods like MAAC, where there is no

explicit communication, and When2Com, where the communication is targeted

with respect to the time and recipient.
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Normal conditions Partial observability

Strong Wind Low Battery

Moving Targets Extreme conditions

Figure 5.2: Learning curves. The horizontal axes report the number of episodes
and vertical axes the achieved rewards. Results are averaged over five different
runs.

5.6 Discussion

From experimental results, it is clear that state-of-the-art MADRL models

react in different ways to the proposed environments that aim to simulate

realistic conditions for UAV navigation. The first finding is that the single-
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agent DDPG is capable of achieving competitive performance on the easiest

scenarios, while it drastically fails only on Extreme Conditions. This would

seem to show that the more complicated the environment the more compelling

the need to have effective MARL mechanisms in place. Another finding is that

there is no clear category of algorithms that emerge as the most performant

and that the type of task to solve is crucial when it comes to determining the

best method to use. For example, to overcome partial observability issues, the

explicit communication mechanisms provided by TarMAC and When2Com

have been proven to be effective. When instead it comes to dealing with low

battery levels, MAAC is the most performant algorithm probably because it

avoids spending energy in sending and interpreting messages. Finally, the last

finding is that communication needs to be properly used when there are many

constraints involved, like in Extreme conditions. In this configuration indeed,

MAAC and When2Com are the best performers which is most likely due to the

fact that the first approach does not use an explicit form of communication,

while in the second communication happens only in a targeted manner.

5.7 Summary

In this chapter, we address the situation of small unmanned aircraft systems

(UAS) flying autonomously from the premises of a service provider (the source)

to the site of service (the target). Such missions could include, for instance,

the transport of small goods [7, 152]. In particular, we propose a battery of six

environments that simulate the behaviour of drones in different scenarios that

present real worlds challenges such as wind conditions or battery management

that can affect the job done by the drones. We propose a benchmark of 9

MARL baselines to study how different approaches solve the presented tasks.

Overall, results vary come environment to environment, but there is a set of

MARL approaches, such as MAAC, TarMAC, CDC and Who2Com, that seem

to have better generalization skills and were able to achieve good performance

on most of the given tasks.
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Chapter 6

Conclusions and future work

6.1 Conclusion

In this research, we have explored the role of communication in multi-agent

reinforcement learning. After analysing the current state-of-the-art approaches,

we proposed a novel MADRL model, called MD-MADDPG, that utilises a

memory cell as a communication channel. Each agent has to learn to write

and read to and from a shared medium in order to exchange information

with the others. This approach showed significant benefits in improving

the performance obtained in small-scale scenarios. The messages exchanged

through this approach could easily be interpreted by analysing the content of

both the reading and writing phases to study what the agents were trying to

communicate. In terms of limitations, a first disadvantage that we reported

was the lack of scalability with respect to the number of agents. This is due

to the fact that the memory becomes inevitably more complicated to utilise

in large-scale environments. A second disadvantage of MD-MADDPG is the

increased time required for both phases of training and execution. This is

due to the fact that the shared memory needs to be accessed by the agents

in a sequential manner. Overall, through this research step, we showed that

small-scale scenarios with a high level of coordination represent a big challenge

for many MADRL methods and that an explicit form of communication can be

crucial to achieving good results in these kinds of tasks. It has indeed emerged
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that methods like MADDPG and MAAC, which only rely on policies that do

not share information at execution time, might not be the best choices to solve

the proposed scenarios.

A second contribution of this thesis was to propose a novel form of commu-

nication based on a graph approach. In CDC, the agents first establish a graph

of connectivities by exchanging pairwise messages and then an attention mech-

anism based on a diffusion model helps to generate the messages to exchange.

The idea is to exploit the generated graph structure in order to attentively

aggregate the incoming information of each agent. This approach proposed a

new form of explicit intra-agent communication to improve the overall level of

coordination while avoiding the limitations that emerged in MD-MADDPG. As

already discussed, we recognised that the idea of a centralised memory, despite

having its advantages, can strongly limit the scalability with respect to the

number of agents. This is why in CDC the agents exchange their message and

shape intra-agent connections in a decentralised manner. This process leads

to a graph structure which properties depend on the underlying environment.

We utilised this network of connectivities to generate the final messages to be

exchanged. In particular, we adopted the heat kernel, a graph diffusion model

capable of capturing how information flows over a network structure. The heat

kernel can also be written as a differentiable operation to be easily integrated

into a MADRL framework. The result was a novel form of multi-agent atten-

tion mechanism based on a graph diffusion model. The obtained results of

CDC showed to be effective in a number of environments that required a high

level of cooperation skills. The proposed algorithm was able to maintain the

performance even when increasing the number of agents, which we consider a

valuable achievement in line with the proposed objectives. The main limitation

of CDC is the feedback coming from the critics that follows a fairly standard

approach. This could be extended with an attentional model like in [63] or with

a counterfactual baseline as in [41] in order to further stabilise the learning

process.

Finally, we have presented a series of environments that simulate the drones’

behaviours in real-world scenarios. The idea behind this contribution was to
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simulate realistic conditions such as wind gusts, limited battery capacity, partial

observability and moving targets all on the same task. We have proposed a

benchmark of 9 baselines in order to study how different approaches react to

these proposed challenges. The results showed that there is no universal best

MADRL algorithm, but each has its own peculiarities. Also, our experiments

showed that both of the approaches we proposed in this thesis, MD-MADDPG

and CDC, are competitive models capable of achieving good results in this

kind of setting too. A possible limitation of the proposed MARL environment

is its lack of consideration with respect to the vertical axis which is necessary

to simulate 3D flights and make the scenarios even more realistic.

6.2 Future work

Throughout these research years, we have detected different areas of improve-

ment that are worth investigating. For example, the MD-MADDPG algorithm

could be improved to overcome its limit on large-scale environments. A pos-

sible approach may consist of deploying agent selection mechanisms based on

attention so that only a relevant subset of agents can modify the memory at

any given time, or impose master-slave architectures. Possible improvements

could also be explored in CDC. For instance, further constraints could be

imposed on the graph edges to regulate the overall communication process,

e.g. using a notion of flow conservation [67]. Further investigations could be

directed towards the effects of adopting a decentralised critic modelling the

communication content together with the agents’ state-action values to provide

richer individual feedback. Regarding instead the MARL simulator proposed in

Chapter 5, we definitely think that it could be extended by adding the vertical

axis so that the navigation is done considering the altitude as well. Despite

this constraint would make the scenarios even more realistic, it would ease the

difficulty of the proposed tasks. The addition of a vertical dimension will indeed

reduce the probability of having an agent collision. We have also identified

some possible scenarios that could be worth investigating and that can cause

troubles to the current state-of-the-art methods. An interesting case study
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would be an environment where each actor is forced to explore spaces where

the reward function would drastically worsen before reaching its target. The

problem for the agents here would be to avoid finishing stuck in points of local

minima where the goal is close but not fully reached. Finally, another direction

that we believe to be interesting would consist in equipping the agents’ critics

with the ability to predict and communicate their future intentions. In this

way the feedback returned to each actor will keep into account the intentions

of the other learners, in addition to the current observations.

Overall, this research has contributed to showing how crucial the role of

communication is for MADRL algorithms. Our conclusions are that intra-

agent communication is a crucial skill that needs to be properly learned

in order to improve the level of cooperation in MARL systems. We also

aim to shed light on the remaining open problems and the need for further

research in this thesis. Most current studies operate under the assumption

of homogeneous agents, which facilitates the learning process by allowing

the reuse or sharing of the same neural network to train different agents’

policies. However, real-world scenarios often involve heterogeneous agents,

a constraint that is frequently relaxed in state-of-the-art methods. Another

promising direction worth exploring is the integration of recent advancements

in generative language models, such as ChatGPT [100], to design a novel

communication mechanism. This mechanism should be capable of generating

effective messages that can be easily interpreted not only by other agents

but also by humans. Despite the significant progress in the field, MADRL

approaches still face challenges posed by multi-agent environments, including

partially observable states, nonstationarity, and scalability. We believe that

further research to address these fundamental aspects would be beneficial,

ultimately leading to the development of more efficient and versatile MARL

models.
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6.3 Ethical implications

Multi-agent reinforcement learning research must always consider the ethical

and social implications of its findings. It is crucial to design systems that align

with the values and ethics of our society. Modern machine learning frameworks

need to address important aspects such as privacy, discrimination, and the

prevention of harm to humans [49, 102, 117, 184].

Privacy is a critical concern, ensuring that trained models do not leak sens-

itive data of any kind. In our research, this principle is upheld since our models

do not rely on training data that contains personal or sensitive information.

We use data from simulated environments that mimic the navigation of virtual

agents in a controlled space, thus eliminating the need for any anonymization

process. Discrimination is another crucial consideration, as fairness towards

all groups and individuals must be ensured. The work presented in this thesis

strictly avoids any form of discrimination. We do not rely on or simulate

scenarios where discriminatory behaviours are executed or tolerated. Further-

more, reinforcement learning models should be designed to minimize harm and

mitigate risks to our society. In our research, we address this principle in two

ways. Firstly, all our work is based on environment simulations rather than

real-life scenarios, minimizing potential harm. Secondly, we focus on cooper-

ative settings where agents collaborate to solve specific scenarios, promoting

positive interactions. Moreover, we envision the long-term potential impacts of

multi-agent reinforcement learning to involve drones deployed for exploration or

rescue missions in remote areas. While the current state-of-the-art in MARL is

still far from this milestone, we hope that this thesis represents a step forward

towards achieving such accomplishments.
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