

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/182292

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/182292
mailto:wrap@warwick.ac.uk

SUBLINEAR TIME APPROXIMATION OF THE COST OF A METRIC K-NEAREST
NEIGHBOR GRAPH∗

ARTUR CZUMAJ † AND CHRISTIAN SOHLER ‡

Abstract. Let (X, d) be an n-point metric space. We assume that (X, d) is given in the distance oracle model, that is,
X = {1, . . . , n} and for every pair of points x, y from X we can query their distance d(x, y) in constant time. A k-nearest
neighbor (k-NN) graph for (X, d) is a directed graph G = (V,E) that has an edge to each of v’s k nearest neighbors. We use
cost(G) to denote the sum of edge weights of G.

In this paper, we study the problem of approximating cost(G) in sublinear time, when we are given oracle access to the
metric space (X, d) that defines G. Our goal is to develop an algorithm that solves this problem faster than the time required
to compute G.

We first present an algorithm that in Õε(n2/k) time with probability at least 2
3
approximates cost(G) to within a factor of

1 + ε. Next, we present a more elaborate sublinear algorithm that in time Õε(min{nk3/2, n2/k}) computes an estimate cost of
cost(G) that satisfies with probability at least 2

3

|cost(G)− cost| ≤ ε · (cost(G) + mst(X)) ,

where mst(X) denotes the cost of the minimum spanning tree of (X, d).
Further, we complement these results with near matching lower bounds. We show that any algorithm that for a given metric

space (X, d) of size n, with probability at least 2
3
estimates cost(G) to within a 1 + ε factor requires Ω(n2/k) time. Similarly,

any algorithm that with probability at least 2
3
estimates cost(G) to within an additive error term ε · (mst(X)+ cost(X)) requires

Ωε(min{nk3/2, n2/k}) time.

Key words. sublinear algorithms, approximation algorithm, nearest neighbors

1. Introduction. Computing or approximating nearest neighbors is a fundamental task in many areas
of computer science, including machine learning, data mining and information retrieval and has been studied
extensively (see [1, 10, 11, 17, 19] for a few examples). In many applications that involve nearest neighbors
there is an input set of objects together with a distance or similarity measure and the idea is that objects
that are near to each other are similar to each other. This is, for example, used in by the k-nearest neighbor
algorithm, which predicts class labels based on the class labels of the k-nearest neighbors of the query object
in a training set.

One way to describe nearest neighbor relations of a set of objects with a distance or similarity measure
is to use the k-nearest neighbor graph. In this directed graph the vertices represent a set of input objects and
there is a directed edge from v to u, if the object represented by u is among the k nearest neighbors of v.

The k-nearest neighbor graph (k-NN) is a fundamental data structure to represent proximity relations
within a set of objects. It is used as part of the non-linear dimensionality reduction algorithm ISOMAP [32],
which first computes a k-nearest neighbor graph (or, alternatively, an ε-neighborhood graph) then computes
the shortest path distances between points and finally uses multi dimensional scaling to embed the points
into fewer dimensions.

In unsupervised learning, the k-nearest neighbor graph is used in the context of spectral clustering (see,
for example, the survey [33]). Spectral clustering describes a class of graph based clustering algorithm that
exploit spectral properties of the graph Laplacian to compute the clusters (see, for example, [25, 31] for
some well-known variants). If the set of input objects comes with a distance or similarity measure, then a
standard approach is to run spectral clustering algorithms on the k-nearest neighbor graph.

Density estimation is an important topic in statistics (see, e.e., [30]). It deals with the problem of
estimating the density of a distribution from empirical samples. The k-nearest neighbor graph can be used
in this context to provide a non-parametric approach (the underlying distribution is not described by a
parameterized statistical model) for this problem. Essentially, the density is predicted from the distance of
the k-th nearest neighbor and the dimensionality of the space.

∗A preliminary version appeared in Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA’20),
pages 2973–2992, Salt Lake City, UT, USA, January 5–8, 2020.

†Department of Computer Science and Centre for Discrete Mathematics and its Applications (DIMAP), University of
Warwick (A.Czumaj@warwick.ac.uk). Research partially supported by the Centre for Discrete Mathematics and its Applications
(DIMAP), by IBM Faculty Award, and by EPSRC award EP/N011163/1.

‡Department of Mathematics and Computer Science, University of Cologne (sohler@cs.uni-koeln.de). Work partially done
while the author was visiting researcher at Google Research, Switzerland.

1

mailto:A.Czumaj@warwick.ac.uk
mailto:sohler@cs.uni-koeln.de

The variety of the above applications motivates us to study k-NN graphs as a fundamental graph
structure. As already described above, computing a k-NN graph requires some distance or similarity measure.
In this paper, we will assume that our points come from a discrete metric space and we are given access to
the distances through a distance oracle, i.e., we assume that we have a description of the input point set and
we can ask an oracle in constant time for the distance between any pair of input points. Since computing
or approximating the k-NN graph in such a general setting requires quadratic time, we will consider the
question whether it is at least possible to approximate the weight of the k-NN graph in subquadratic time,
which would be sublinear in the full description size of the input space. We will also try to find natural
conditions under which we can obtain a better approximation algorithm.

The study of the weight of the k-NN graph is motivated by its use in the context of estimation of basic
statistical properties of a point set. For example, Costa and Hero [7] use the (appropriately scaled) weight
of a k-NN graph for powers of Euclidean distances as an estimator for the intrinsic dimension and entropy
of a data set. The related generalized nearest neighbor graph (which connects to a subset of the k-nearest
neighbors) has been used as an estimator for entropy and mutual information (again after appropriate
scaling) [28].

Since we cannot compute an approximate nearest neighbor graph in subquadratic time, for very large
data sets we have to use a heuristic approach, such as the NN-Descent algorithm by Dong et al. [11], that
starts with a random graph and then locally improves the solution by considering neighbors of neighbors.
While this and similar graph-based approaches have been empirically shown to perform well [11, 24], they
do not come with guarantees. In order to evaluate the quality of the computed solution it is thus desirable
to be able to quickly approximate the cost of the k-NN graph.

Besides of these concrete applications, from a theoretical point of view, our studies are motivated by the
general question of understanding how and under which assumptions we can estimate fundamental properties
of very large structured data sets (e.g., metric spaces) from random samples.

In order to study such and similar questions, we pursue the following approach. We formulate the
problem of computing a k-nearest neighbor graph as an optimization problem on a metric space (X, d) with
the objective to compute a directed graph G = (V,E) with vertex set V = X such that every vertex has
outdegree exactly k and the sum of edge weights is minimized. For a k-nearest neighbor graph G we will use
cost(G) to denote the sum of its edge weights. In this paper we are interested in the task of approximating
cost(G), when we are given oracle access to the metric space (X, d) that defines G.

1.1. Our results. It is not difficult to see that to compute exactly the cost of a k-nearest neighbor
(k-NN) graph G of a metric space (X, d) one requires Θ(n2) oracle access queries to the metric space (X, d)
that defines G, where n = |X|. Similarly, finding even an approximation of a k-NN graph G of a metric
space (X, d) also requires Θ(n2) queries. However, we show that in a sublinear time one can find a very
good approximation of cost(G), and we complement these results by showing that the complexity of our
algorithms is almost optimal.

We develop two randomized sublinear time algorithms to approximate cost(G), the cost of a k-NN graph
G of a metric space (X, d). We assume that our input is given in the distance oracle model, i.e., the set X
of n input points is indexed from 1 to n and we can evaluate the distance between any pair of points in
constant time per evaluation.

Notice that while the directed k-nearest neighbor graph G has nk edges, for a given metric space (X, d)
graph G is given only implicitly, and a näıve algorithm to find G or even to compute cost(G) would query
the distances between all Θ(n2) pairs of points in X.

Our first algorithm performs best for large values of k.

Theorem 1.1. Algorithm ApproximateNNLargek(n, ε, k) computes with probability at least 2
3 a value

cost with

|cost(G)− cost| ≤ ε · cost(G) .

The algorithm performs O
(

n2 logn
ε2k

)
queries to the distance oracle.

In particular, Theorem 1.1 shows that for any k = ω(ε−2 log n), one can estimate to within a (1 ± ε)
factor the cost of a k-NN graph G of a metric space (X, d) with a sublinear number of oracle access queries
to (X, d). And when k is almost linear in n, the running time is also almost linear.

2

While this algorithm runs in sublinear time for large values of k, in arguably the most interesting case
when k is relatively small, the running time is close to O(n2), which can be easily achieved even by a näıve
algorithm (checking all

(
n
2

)
distances). Even if this dependency is undesirable, it is easy to see that such

dependency (or a similar one) is necessary at least in the basic when k = 1. Indeed, consider a set X of n
points, n even, and a random perfect matching on X. Assign to every matching edge a cost close to 0 and
to every other edge a cost 1. It is easy to verify that this is a metric space. Now, assign with probability
1
2 a weight 1 to a random matching edge. Notice that if weight 1 has been assigned to a random matching
edge then cost(X) ∼ 1, whereas cost(X) ∼ 0 otherwise. Therefore, in order to approximate the cost of the
1-nearest neighbor graph with an additive error term of cost(X), any algorithm would have to find out if
such an edge of weight 1 exists. This requires to find a constant fraction of the matching edges, which is
known to require Ω(n2) time [2].

To bypass the negative dependency on k, we present the second algorithm that performs very well for

small values of k (cf. Theorem 1.2) and in Õ
(

nk3/2

ε6

)
time computes a value cost such that with probability

at least 2
3 , we have

|cost(G)− cost| ≤ ε(cost(G) +mst(X)) ,

where mst(X) denotes the cost of the minimum spanning tree of (X, d), that is, the cost of a minimum
spanning tree of the complete weighted graph induced by (X, d). Observe that while this algorithm requires
a sublinear o(n2) time for values of k up to õε(n

2/3), its approximation has an additive error term that
depends on the cost of the minimum spanning tree of (X, d). We remark that this is a fairly weak condition.
For example, if the k-NN graph is connected, then this implies that the approximation becomes a classical
(1 + ε)-approximation.

Theorem 1.2. Algorithm k-NNSizeApproximation(n, ε) in expected time O
(

nk3/2 log3 n log2 k
ε6

)
returns

a value cost such that with probability at least 2
3 , we have

|cost(G)− cost| ≤ ε · (mst(X) + cost(G)) .

The algorithms above can be combined to compute in expected Õ
(
min

{
nk3/2

ε6 , n2

ε2k

})
time an estimate

cost for the cost of the k-NN graph G that satisfies with probability at least 2
3 ,

|cost(G)− cost| ≤ ε(cost(G) +mst(X)) .

The running time is sublinear for every k, and is always at most Õ
(

n8/5

ε18/5

)
.

The bounds above show that one can estimate the cost of the k-NN graph in sublinear time, but it is
natural to ask whether one can obtain even stronger bounds and faster algorithms. For example (for k > 1)

maybe it is possible to provide a good estimation in Õ(nk) time or even in Õ(n) time? We will prove that
this is impossible; we will complement our algorithmic results and provide matching lower bounds showing
that the complexity of our algorithms is essentially optimal.

Theorem 1.3. Let c be any positive constant, c ≤ k. Any algorithm that for a given metric space (X, d)
of size n, with probability at least 2

3 estimates the cost of a k-NN graph to within an additive error term

c · cost(X) requires Ω
(

n2

k

)
queries.1

Theorem 1.4. Let 0 < ε ≤ 1
2 . Any algorithm that for a given metric space (X, d) of size n, with

probability at least 5
6 estimates the cost of a k-NN graph to within an additive error term ε·(cost(X)+mst(X))

requires Ω
(
min

{
nk3/2

ε , n
2

k

})
queries.

1.2. Our techniques. We develop two algorithms, one of them is more suitable for large (Theorem 1.1)
and the other for small (Theorem 1.2) values of k. By choosing the better of the algorithms we obtain the
running time claimed in the abstract. Furthermore, we will complement these bounds and show that these
algorithms are essentially optimal. In the following, we describe the main ideas behind both algorithms, and
then will briefly discussed the ideas behind our lower bounds.

1In fact, the claim holds even for superconstant c; all what we need is c ≤ k.

3

1.2.1. Algorithm for large k and (1± ε)-approximation of cost(G). Our (1± ε)-approximation of
cost(G) that works efficiently for large k (cf. Theorem 1.1) relies on a combination of two random sampling

routines. It first takes Õ
(
n
k

)
samples for each point to determine an approximation of the median cost of

an edge of the k-NN graph (that is, the distance to the k
2 -nearest neighbor). The median edge has several

useful properties that we will use:
(a) Ω(k) times its cost is a lower bound for the contribution of the vertex at hand, and
(b) if there is an edge that is, say, 10 times longer than the median edge, then there is also an edge of similar

length incident to all vertices of distance less than the length of the median edge.
Similar properties are also true for edges with rank close to the median rank of its k nearest neighbors.
Once we have determined an approximation for the median edge, we partition the edges in G into short

and long edges. Short edges have length at most 10 times the length of the (approximate) median edge and
long edges are longer (all edges of G that are not short). We will separately estimate the total cost of all
short edges and the cost of all long edges.

To approximate the contribution of the short edges, we use a form of importance sampling: We sample
each point with probability proportional to the length of its median edge and compute the sum of short
edges incident to the sample point. Then we scale the weight by the inverse of the sampling probability and
the sample size. We analyze the quality of the sampling process using Chebyshev’s inequality. The approach
is required to detect points that are far away from everything: For example, we may have a cluster of n− 1
points that are close to each other and a single point that is far away from the cluster and that dominates
the cost of the solution. In order to find this point, we need to apply non-uniform sampling.

To estimate the cost of the long edges, we use a uniformly random sample of Õ
(

n
ε2k

)
points. By property

(b) outlined above, we can ensure that long edges cannot “hide,” i.e., for every long edge, we have Ω(k)

long edges at other points. This can be used to show that by taking a sample of Õ
(

n
ε2k

)
random points and

determining the costs of the long edges incident to them, we will get a good estimation of the total cost of
all long edges.

Combining the two estimates yields the required bound (cf. Section 3 for more details).

1.2.2. Algorithm for small k. Our algorithm from Theorem 1.2 that for small k in time Õ
(

nk3/2

ε6

)
estimates cost(G) with an additive error term ε · (mst(X) + cost(X)) is more complex and technically more
involved, and uses a different approach. We first derive a formula for the cost of a k-NN graph. We will
assume that the distances are non-negative powers of (1 + ε). We argue in Appendix A why this does not
change the problem significantly (essentially, we are using existing sublinear-time algorithms to approximate
the diameter [20] and the weight of the minimum spanning tree [9] to be able to appropriately scale the edge
lengths and then to round them).

Let G = (V,E) be a k-NN graph. We define subgraphs G(i) = (V,E(i)) to consist of all edges (u, v) ∈ E
with distance d(u, v) ≤ (1 + ε)i. We then show that we can use these “threshold” graphs to derive a concise
formula for the cost of the k-NN graph. The idea to express the cost of a graph structure in terms of the
structure of threshold graphs has been used before in the area of sublinear algorithm, for example, in the
context of the approximation of the cost of a minimum spanning tree (cf. [4, 9]). In our case, we have
a surprisingly simple formula that only depends on vertex degrees. We will use the well-known identity∑r−1

i=0(1 + ε)i = (1+ε)r−1
ε , where r is the exponent of the maximum edge weight, to express the weight of

an edge as a weighted sum over the corresponding edges in the graphs G(i) in which the edge is missing.
Using deg(i)(v) to denote the degree of v in G(i), we apply the identity above to obtain the following central
formula:

cost(G) = nk + ε ·
r−1∑
i=0

(
(1 + ε)i

∑
v∈V

(k − deg(i)(v))

)
.(1.1)

With (1.1) at hand, our problem reduces to the estimation of the sum
∑

v∈V (k−deg(i)(v)), which we will do
by a suitable complex random sampling. For this purpose, for any fixed i, we partition the vertices according
to their values of k− deg(i)(v) into sets V i

j , 0 ≤ j ≤ t with t = 1+ ⌊log1+ε k⌋, such that V i
0 contains vertices

with deg(i)(v) = k, and for 1 ≤ j ≤ t, all vertices in V i
j satisfy (1 + ε)j−1 ≤ k − deg(i)(v) < (1 + ε)j . This

4

leads to a modification of formula (1.1) stating that

cost(G) ≈ nk + ε
∑

0≤i≤r−1,1≤j≤t

(1 + ε)i+j |V i
j | .

Now the main challenge is to approximate the sizes of the sets V i
j and, most importantly, the sets with large

i, i.e., sets that potentially contribute a lot to the sum. In order to cope this challenge and analyze our
approach, we have to combine several ingredients.

The first idea can be illustrated on the following example. Consider an input set of points that can be
divided into two clusters. One cluster contains a single point u and the other one contains the remaining
n − 1 points. The intra-cluster distances are 1 and the distances between the clusters are n2 each, which
results in cost(G) ∼ n2k. How can we correctly approximate the sizes of the sets V i

j in this setting? We

observe that since V i
0 = V \ {u} for all i < r, there is exactly a single set V i

j (with j = t) which is not empty
and contains only a single point u. If we wanted to find u by random sampling, we would need to sample
Ω(n) points. If we were computing the k nearest neighbors of each sample point exactly, this would result
in Ω(n2) running time. What saves us is that in this instance we can quickly verify that a given point x is
in the big cluster: We sample a few neighbors of x and if most of them have distance 1, we know that we
are in the big cluster and we can drop the point x as it cannot contribute to the cost function. Our first
ingredient to the final algorithm is therefore a sampling based filtering routine that allows us to drop such

points when deg(i)(x) = Ω(k) with just Õ
(

n
deg(i)(x)

)
queries. We remark that a somewhat similar filtering

strategy has been used for approximating the cost of a metric minimum spanning tree [9].
Now let us consider as a second example a metric space in which all points have pairwise distance 1 or d,

for some large d ≫ k2. We have m ·k3/2 clusters consisting of k+1 points and m clusters with k−
√
k points

(and hence, the total number of points is n ∼ mk5/2). The intra-cluster distance is 1 and all remaining
distances are d. The cost of this k-NN graph is Θ(mk7/2 + dmk3/2) = Θ(dmk3/2). In this case it seems to
be impossible to use random sampling to distinguish quickly between the case that a point is in a cluster with
k + 1 points or is in the smaller cluster. The reason is that the standard deviation of a sample of linear size
is still Ω(

√
k). However, since there are Ω(mk) points with degree smaller than k (and only those contribute

to the sets V i
j) we can relatively easily estimate their number by random sampling roughly O(k3/2) points

and computing the nearest neighbors for each sample point. The interesting observation is now that in this
case the minimum spanning tree has a relatively large cost as well. And this is not a coincidence. In fact,
our sampling algorithm to estimate the sizes of the sets V i

j uses a sample size that depends inversely on the
cost of the minimum spanning tree (which we can approximate using an algorithm from [9])!

The connection to the spanning tree problem might look surprising at first glance, but as we will see,
there are relatively simple arguments why this works. Consider a fixed value ℓ and (for the analysis) greedily
cluster the graph by selecting an arbitrary point as a center and assign all points at distance at most ℓ to
it. Since the number of cluster centers have pairwise distance at least ℓ, we can derive a lower bound on the
cost of the minimum spanning tree from the number of so greedily constructed clusters. The key property
is that if there are many clusters, then the cost of the minimum spanning tree is high, which allows us to
deal with a bigger estimation error and hence a smaller sampling size. On the other hand, if there are few
clusters then most of them contain many points and thus do not contribute to our cost function; furthermore
this can be also checked quickly by random sampling. This allows us to relate the expected running time
of our sampling approach to the number of clusters and further to the cost of the minimum spanning tree.
Finally, our analysis shows that this cancels out the dependence on the minimum spanning tree cost in the
sample size. From this point we still need to do a few other tricks to obtain our algorithm for small k. See
Section 4.4.2 for more details.

1.2.3. Lower bounds. In order to derive the lower bound for any algorithm approximating the cost of
a k-NN graph, for a given parameter k, we will construct two families of problem instances whose cost differ
substantially and show that no algorithm that queries the oracle less than T times can distinguish between
these instances, for an appropriate value of T .

One family of problem instances consists of point sets (X, d) partitioned into clusters of size k+ 1 each,
where all points within the same cluster are at a very small distance from each other (say, after scaling, at
distance 0), and the distance between any pair of points in different clusters is very large (say, after scaling,
at distance 1). It is not difficult to see that cost(G) ∼ 0 and mst(X) ∼ n

k .

5

The other family of problem instances depend on the parameter k, and on whether we want to consider
the approximation bound to be independent or dependent on mst(X).

Let us first consider the case where we want to provide a lower bound for any algorithm giving a (1+ ε)-
approximation of cost(G) (cf. Theorem 1.3). Then, the second family of problem instances consists of point
sets (X, d) partitioned into clusters of size k + 1, as above, except that we take one random cluster and
split it into one cluster of size k and another consisting of an isolated point (and as before, the inner-cluster
distances are 0 and the outer-cluster distances are 1). Notice that in this case we have cost(G) = 2k. For such
two problem instances, we will show (in a rather complex proof) that any algorithm distinguishing between

inputs from these two families of problem instances requires Ω
(

n2

k

)
queries to the input oracle. The first

straightforward implication is that this result proves that any (1 + ε)-approximation algorithm for cost(G)

requires Ω
(

n2

k

)
time. However, we can extend this analysis also to the case when we allow an additive error

term of at most ε(cost(G) + mst(X)). Indeed, in such problem instances we have not only cost(G) = 2k,
but also mst(X) ∼ n

k . Therefore, if we have k = Ω(
√
n), then the arguments above yield that any algorithm

that approximates cost(G) to within an additive error term of ε(cost(G)+mst(X)) requires Ω
(

n2

k

)
time (cf.

Theorem 1.4).
For smaller values of k, the arguments above (for approximation with the additive error term of

ε(cost(G) + mst(X))) do not hold and so we revise our construction. In the case k = O((εn)2/5), we
partition the input point set into Θ

(
εn
k5/2

)
clusters of size k + 1 +

√
k, the same number of clusters of size

k+1−
√
k, and the remaining all but Θ

(
εn
k3/2

)
points are partitioned into clusters of size k+1; as before, the

inner-cluster distances are 0 and the outer-cluster distances are 1. Notice that cost(G) ∼ εn
k and mst(X) ∼ n

k .
Similarly as before, we will show that to distinguish between inputs from these two families of problem in-

stances requires Ω
(

nk3/2

ε

)
time. As an immediate consequence, this implies that for k = O((εn)2/5), any

algorithm that approximates cost(G) to within an additive error of ε(cost(G) + mst(X)) requires Ω
(

nk3/2

ε

)
time (cf. Theorem 1.4).

The analysis above relies on a central result showing that Ω(nh) time is required to distinguish between
our input instances, (i) one with r · (h+ 2) clusters of size k + 1, and (ii) another where r · h clusters are of
size k + 1 and r clusters are of size k + 1 +

√
k and the same number of r clusters are of size k + 1 −

√
k.

This claim is the core of our analysis and its proof is elaborate. The first central intuition is that in order
to determine Ω(k) of the points from any single cluster in either instance one needs to perform essentially
O(n) queries related to that cluster. Another key intuition is that if one knows only any set of o(k) points
from a single cluster, then one cannot determine with good confidence whether the size of that cluster is
k+1 or k+1±

√
k. By combining these two properties, and by noticing that in the second problem instance

there is one cluster of size k + 1 ±
√
k per Θ(h) clusters of size k + 1, we can then argue that in order to

find a single cluster of size k + 1 ±
√
k, if there is one, one needs to perform Ω(nh) oracle queries. While

these intuitions are rather simple, their formalization requires some elaborate arguments that are presented
in details in Sections 5–6.

1.3. Further related work. Sublinear algorithm for problems in metric spaces have received signifi-
cant attention in the last several years. It is known that one can compute in sublinear time approximations
for the diameter, maximum travelling salesperson, maximum spanning tree, minimum routing cost spanning
tree, average distance [20]. The question of how to approximate the cost of a minimum spanning tree has
been studied both in the metric [9] and non-metric [4] setting. For our work, the algorithm for metric spaces
is more relevant and it computes a (1+ε) approximation of the cost of the metric minimum spanning tree in

time Õ(n/ε7) [9]. Also, the Euclidean minimum spanning tree problem has been studied in a setting where
one can access the input via certain spatial data structure [8]. The cost of the (uniform) facility location
problem can be approximated in sublinear time [2]. For the k-center and k-median problem there are ap-

proximation algorithms with a running time of Õ(nk) [23] as well as bi-criteria approximation algorithms
[20]. The metric maximum cut problem can also be solved in sublinear time [13, 20]. A recent result on
linear sampling from metric spaces can be used to improve a number of previous results [13] like, for example,
reduce the query complexity of maxcut. The cost of metric TSP [5, 6], the size of a maximum matching
[26, 35] and the vertex cover size [26, 27] can also be approximated using sublinear time approximation

6

algorithms. The average degree of a graph can be efficiently approximated as well [14, 18].
Besides the area of sublinear approximation algorithms, random sampling approaches from graphs have

been studied within the framework of property testing. The most relevant result from this area is a recent
work by Fichtenberger and Rhode [15] who studied the problem of testing whether a graph is a k-nearest
neighbor graph for the Euclidean distance and showed both theoretically and empirically that one can
efficiently solve the property testing version of the problem where one wants to accept any true k-nearest
neighbor graph and reject every graph that differs from a k-nearest neighbor graph in more than an ε-fraction
of its edges.

2. Preliminaries.

2.1. Model of computation. We assume that we are given oracle access to a finite metric space
(X, d) with X = {1, . . . , n}: Our algorithm receives n as an input. The algorithm can specify pairs of points
x, y ∈ X (i.e., two numbers from {1, . . . , n}) and query the oracle for their distance d(x, y). Answering each
query takes constant time. We remark that the full description size of the input space is Θ(n2) and so the
algorithms presented in this paper have a sublinear running time in the size of the input object. We assume
that all distances in X are distinct; if this is not the case we use a lexicographical ordering of the edges as
tiebreaker.

Graph representation of (X, d). We will often view the metric space (X, d) as a weighted complete
undirected graph H = (V, F) with vertex set V = X and edge set F . The weight of an edge (u, v) ∈ F
equals the corresponding distance in (X, d), i.e., d(u, v). This allows us to extend the definition of basic
graph theoretic concepts like minimum spanning trees or k-nearest neighbor graphs to metric spaces. With
this in mind, throughout the paper we will use interchangeably the notation mst(X) and mst(H) to denote
the cost of the minimum spanning tree of H.

2.2. Approximating the k-NN graph. The k-nearest neighbor graph is a directed graph G = (V,E)
that has a directed edge [u, v⟩, if v is in the set of k nearest neighbors of u, i.e., the set of k vertices that
have k smallest distance to u. Observe that in general, this graph is not symmetric, i.e., if u is a k-nearest
neighbor of v then not necessarily vertex v is a k-nearest neighbor of u. We refer to G as the k-NN graph
of (X, d).

The k-NN graph can be computed in time O(n2) by computing the vertex at rank k (according to
distances) in the list of neighbors of each vertex v and then doing a linear scan over all neighbors to compute
the set of k neighbors for every vertex. It is also not too hard to see that computing the k-NN graph exactly
requires Ω(n2) time: Pick a metric space where every node has pairwise distance 2 except for a single pair
that has distance 1. This pair belongs to the k-NN graph and finding it requires Ω(n2) time.

For very large data sets, a quadratic running time is typically not feasible. Therefore, we consider the
problem of approximating the k-NN graph. For this purpose, we phrase the problem as an optimization
problem. Given an input metric space, find a graph G = (V,E) that minimizes

cost(G) =
∑

[u,v⟩∈E

d(u, v)

subject to the outdegree of every vertex u ∈ V to be exactly k in G.
Once we have defined an optimization problem, an α-approximation algorithm is an algorithm that

computes a solution with cost at most α · Opt, where Opt is the cost of an optimal solution. In this paper
we consider the question of approximating the cost of the k-NN graph in sublinear time.

3. (1 + ε)-approximation of cost(G) with Õε

(
n2

k

)
queries. In this section we develop a sampling

algorithm ApproximatekNNLargek(n, ε, k) that with Õε

(
n2

k

)
queries returns a (1+ ε)-approximation of

the cost k-NN, cost(G).
Let G = (V,E) be a k-NN graph. For any vertex v ∈ V , let us order all other vertices in V according to

the distance from v, and call the ith vertex in this order the ith nearest neighbor of v, or the v’s neighbor of
rank i. Notice that in the k-NN graph G any vertex v is connected by an edge [v, u⟩ only to vertices u with
rank at most k.

Our algorithm uses the following idea. First, for each vertex v, we approximate a median neighbor uv,
which is a vertex which is approximately the k

2 th nearest neighbor of v. Then we divide the edges into

7

two sets. The set ES of short edges contains all edges of distance at most 10d(v, uv) and the set EL of
long edges contains the remaining edges of G; that is, ES =

⋃
v∈V {[v, u⟩ ∈ E : d(v, u) ≤ 10d(v, uv)} and

EL = E \ ES . We will separately estimate the sum of lengths of short edges and then the sum of lengths
of long edges. We will approximate the contribution of the edges from ES by sampling vertices v with
probability proportional to d(v, uv), relying on the property (cf. Claim 3.2) that by the choice of uv, we have
k ·
∑

v∈V d(v, uv) = Ω(cost(G)). The contribution of the long edges is approximated by uniform sampling of
vertices and computing the length of all incident edges in EL; the central property here is that for every long
edge there is also another edge of roughly the same length from every neighbor of v that has rank smaller
than the rank of uv. We will give more details in the remainder of this section.

We begin with a formal description of our main algorithm to estimate cost(G).2

ApproximatekNNLargek(n, ε, k)
{Returns a (1 + ε)-approximation of cost(G); cf. Lemma 1.1}

for each v ∈ V do

Sample s =
⌈
1000(n−1) logn

k

⌉
vertices i.u.r. from V \ {v}

Check the distances of the sampled vertices to v
Let uv be the vertex of rank ⌈500 log n⌉ in this set

Z1 = ApproximateShortEdges(n, ε/8, k)
Z2 = ApproximateLongEdges(n, ε/2, k)
return Z1 + Z2

In Sections 3.1–3.3 we will prove three central properties of ApproximatekNNLargek, that the ver-
tices uv are good approximations of the median neighbors, and that routines ApproximateShortEdges
and ApproximateLongEdges provide good approximations of the sum of lengths of short edges and long
edges, respectively. We will combine all these claims together in Section 3.4, where we will conclude the
analysis of the properties of algorithm ApproximatekNNLargek in the final Theorem 1.1.

3.1. Approximating median neighbors. Our first lemma shows that for each vertex v ∈ V , vertex
uv found by algorithm ApproximatekNNLargek is an approximate median neighbor v.

Lemma 3.1. Let v be a vertex in H = (V,E) and let its neighbors q1, . . . , qn−1 be sorted by distance to v,
i.e., d(v, qi) ≤ d(v, qj) for i < j. Let uv be the vertex as defined in algorithm ApproximatekNNLargek.
Then with probability at least 1− 1

n4 , we have

k

4
≤ rank(uv) ≤

3k

4
,

where rank(uv) corresponds to the rank of uv in the list q1, . . . , qn−1.

Proof. Fix v ∈ V . Let S be the set of vertices with rank smaller than or equal to k
4 . Let us use Xi

to denote the indicator random variable that we sample a vertex from S in the i-th sampling step; clearly,

E[Xi] =
⌊k/4⌋
n−1 . Observe that rank(uv) <

k
4 iff uv ∈ S, i.e., if the sampled multi-set of s random vertices from

V \ {v} contains at least ⌈500 log n⌉ vertices from S. For that to happen, we need
∑s

i=1Xi ≥ ⌈500 log n⌉.
Notice the following,

E

[
s∑

i=1

Xi

]
≤ s · k

4(n− 1)
≤ 251 log n .

Using the above inequality and then a Chernoff bound, we get that

Pr[uv ∈ S] = Pr

[
s∑

i=1

Xi ≥ ⌈500 log n⌉

]
≤ Pr

[
s∑

i=1

Xi ≥ 4
3 ·E[

s∑
i=1

Xi]

]
≤ e−E[

∑s
i=1 Xi]/27 .

2In algorithm ApproximatekNNLargek, while for every vertex v we sample s vertices i.u.r., and hence with replacement,
we compute the rank in the multi-set of the sampled vertices, that is, to compute the rank we take each sampled copy into
account.

8

Next, we observe that

E

[
s∑

i=1

Xi

]
≥ s · k − 3

4(n− 1)
≥ 125 log n ,

where we assume k ≥ 6 (if k < 6 we can afford to compute the k-NN graph using brute force). Plugging in
the bound on the expectation into the previous inequality yields

Pr

[
rank(uv) <

k

4

]
= Pr[uv /∈ S] ≥ 1− 1

2n4
.

We proceed similarly to prove the second inequality. Consider the set R of all vertices of rank at most
3k
4 . Let Yi be the indicator random variable that we sample a vertex from R in the i-th sampling step; clearly

E[Yi] =
⌊3k/4⌋
n−1 ≥ 3k−3

4(n−1) . Notice that rank(uv) >
3k
4 iff uv /∈ R, i.e., if the sampled multi-set of s random

vertices from V \ {v} contains strictly less than ⌈500 log n⌉ vertices from R, that is, if
∑s

i=1 Yi < ⌈500 log n⌉.
Notice the following,

E

[
s∑

i=1

Yi

]
= s · ⌊3k/4⌋

n− 1
≥ s · 3k − 3

4(n− 1)
≥ 625 log n ,

assuming that k ≥ 6. We combine the above inequality with a Chernoff bound and get

Pr[uv /∈ R] = Pr

[
s∑

i=1

Yi < ⌈500 log n⌉

]
≤ Pr

[
s∑

i=1

Yi ≤ 4
5 ·E[

s∑
i=1

Yi]

]
≤ e−E[

∑s
i=1 Yi]/50 .

Finally, it follows from our lower bound on E[
∑s

i=1 Yi] that the right hand side inequality of the lemma with
probability 1− 1

2n4 , giving the following

Pr

[
rank(uv) >

3k

4

]
= Pr[uv ∈ R] ≥ 1− 1

2n4
.

The union bound then yields that the lemma holds with probability at least 1− 1
n4 .

3.2. Approximating the sum of lengths of short edges. In this section, we present our sampling
routine ApproximateShortEdges(n, ε/8, k) that approximates the sum of lengths of short edges, that is,∑

[v,u⟩∈ES
d(v, u).

We assume that for every vertex v ∈ V we have found a vertex uv ∈ V \ {v} using the routine from
ApproximatekNNLargek(n, ε, k). Then, ES = {[v, u⟩ ∈ E : d(u, v) ≤ 10d(v, uv)}. For every v ∈ V , let
Sv denote the sum of distances to the k nearest neighbors of v in G that are at distance at most 10d(v, uv),
that is, Sv =

∑
[v,u⟩∈ES

d(v, u). We use the following simple claim.

Claim 3.2. Sv ≤ 10k · d(v, uv).
Proof. There are at most k outgoing edges incident to v in G and all such edges in ES have distance at

most 10 · d(v, uv).
Now we define the sampling algorithm.

ApproximateShortEdges(n, ε, k)
{Estimates the length of short edges to within ε · cost(G); cf. Lemma 3.3}

for each v ∈ V compute pv = d(v,uv)∑
w∈V d(w,uw)

for i = 1 to a = ⌈800/ε2⌉ do
Sample a vertex v according to the distribution Pr[v = u] = pu
Compute Sv

Let ϑi = Sv/pv
return Z1 = 1

a ·
∑a

i=1 ϑi

9

Lemma 3.3. Algorithm ApproximateShortEdges(n, ε, k) with O(n/ε2) queries returns an estimate
Z1 such that with probability at least 7

8 , we have

|Z1 −
∑
v

Sv∈V | ≤ εk
∑
v∈V

d(v, uv) .

Proof. Notice that E[ϑi] =
∑

v∈V pv ·
Sv

pv
=
∑

v∈V Sv and hence E[Z1] = E[1a ·
∑a

i=1 ϑi] =
∑

v∈V Sv, and
so Z1 is an unbiased estimator. Next we observe that by Claim 3.2 we get,

Sv

pv
≤ 10k · d(v, uv)

pv
= 10 · k ·

∑
w∈V

d(w, uw) .

Next, for every 1 ≤ i ≤ a, using the inequality above we have

Var[ϑi] ≤ E[ϑ2i] =
∑
v∈V

pv ·
(
Sv

pv

)2

≤
∑
v∈V

pv ·

(
10 · k ·

∑
w∈V

d(w, uw)

)2

= 100 · k2 ·

(∑
w∈V

d(w, uw)

)2

·
∑
v∈V

pv = 100 · k2 ·

(∑
w∈V

d(w, uw)

)2

.

Therefore, by independence of the ϑi it follows that

Var[Z1] = Var

[
1

a
·

a∑
i=1

ϑi

]
=

1

a2
·

a∑
i=1

Var[ϑi] ≤
1

a
· 100 · k2 ·

(∑
w∈V

d(w, uw)

)2

.

Now, we apply Chebyshev’s inequality to obtain

Pr

[
|Z1 −E[Z1]| ≥ εk

∑
v∈V

d(v, uv)

]
≤ Var[Z1]

ε2k2
(∑

v∈V d(v, uv)
)2 ≤ 100

ε2a
.

Finally, the result follows from our choice of a = ⌈800/ε2⌉ in the algorithm.

3.3. Approximating the sum of lengths of long edges. In this section, we present our sampling
routine ApproximateShortEdges(n, ε/8, k) that approximates the sum of lengths of long edges, that is,∑

[v,u⟩∈EL
d(v, u) with EL = {[v, u⟩ ∈ E : d(u, v) > 10d(v, uv)}. For every v ∈ V , let Lv denote the sum of

distances to the k nearest neighbors of v in G that are at distance greater than 10d(v, uv) from v, that is,
Lv =

∑
[v,u⟩∈EL

d(v, u). We start with a simple auxiliary claim.

Claim 3.4. With probability at least 1− 1
n3 , for every vertex v ∈ V we have,

Lv ≤ 40

9k
· cost(G) .

Proof. Let us condition on that the bounds of Lemma 3.1 are satisfied, that is, that for every vertex
v ∈ V we have k

4 ≤ rank(uv) ≤ 3k
4 . This happens with probability at least 1− 1/n3 for all vertices.

Let w1, . . . , wk be the set of the k nearest neighbors of v in G, sorted in order of increasing distance from
v, that is, d(v, w1) ≤ · · · ≤ d(v, wk). Since Claim 3.4 trivially holds when Lv = 0, let us assume that Lv > 0
and define ℓ such that d(v, wℓ−1) ≤ 10 · d(v, uv) < d(v, wℓ). Let Cv = {z ∈ V : d(v, z) ≤ d(v, uv)}. Let x be
an arbitrary vertex in Cv. Notice that for i ≥ ℓ, since d(v, x) ≤ d(v, uv) and d(v, wi) > 10 · d(v, uv), we have

d(v, x) ≤ d(v, uv) ≤ 1
10 · d(v, wi) .

This inequality, when combined with triangle inequality, immediately yields

d(v, wi) ≤ d(v, x) + d(x,wi) ≤ 1
10 · d(v, wi) + d(x,wi) ,

10

and hence

d(v, wi) ≤ 10
9 · d(x,wi) .(3.1)

For a fixed x ∈ Cv, consider all k-nearest neighbors y1, . . . , yk of x in G, and order them so that if a vertex
wi is among the k-nearest neighbors of x then yi = wi. By definition, if yi ̸= wi, then d(v, wk) ≤ d(v, yi), and
hence, by triangle inequality, d(v, wi) ≤ d(v, wk) ≤ d(v, yi) ≤ d(v, x)+d(x, yi). Next, since d(v, x) ≤ d(v, uv)
and 10d(v, uv) < d(v, wi) for i ≥ ℓ, we get for i ≥ ℓ,

d(v, wi) ≤ d(v, x) + d(x, yi) ≤ d(v, uv) + d(x, yi) ≤ 1
10d(v, wi) + d(x, yi) ≤ 10

9 d(x, yi) .(3.2)

If we combine (3.1) and (3.2), then we obtain that for every i ≥ ℓ, it holds

d(v, wi) ≤ 10
9 d(x, yi) ,

and therefore

Lv =

k∑
i=ℓ

d(v, wi) ≤
k∑

i=ℓ

10
9 d(x, yi) ≤

10
9

k∑
i=1

d(x, yi) =
10
9 (Sx + Lx) .

Lv ≤ 10
9 (Sx + Lx) holds for every x in Cv. By Lemma 3.1, we know that |Cv| ≥ k/4, and therefore,

k
4Lv ≤

∑
x∈Cv

Lv ≤
∑
x∈Cv

10
9 (Sx + Lx) ≤

∑
x∈V

10
9 (Sx + Lx) ≤ 10

9 · cost(G) ,

what yields the claim.

With Claim 3.4 at hand, we can now first describe and then analyze the algorithm to estimate the sum
of lengths of long edges ApproximateLongEdges. It samples vertices i.u.r. and uses their contribution to
the sum of lengths of long edges as an estimate.

ApproximateLongEdges(n, ε, k)
{Estimates the length of long edges to within ε · cost(G); cf. Lemma 3.5}

for i = 1 to b =
⌈
36n
ε2k

⌉
do

Sample a vertex v ∈ V i.u.r.
Compute Lv and set li = Lv

return Z2 = n
b ·
∑b

i=1 li

Lemma 3.5. Algorithm ApproximateLongEdges(n, ε, k) with O
(

n2

ε2k

)
queries returns an estimate Z2

such that with probability at least 7
8 , we have

|Z2 −
∑
v∈V

Lv| ≤ ε · cost(G) .

Proof. The number of queries of O
(

n2

ε2k

)
of algorithm ApproximateLongEdges(n, ε, k) follows imme-

diately from our choice of b in the algorithm.
In order to analyze the quality of the estimate Z2, notice first that E[li] =

1
n ·
∑

v∈V Lv and so E[Z2] =

E[nb ·
∑b

i=1 li] =
∑

v∈V Lv. Next, by Claim 3.4, we obtain the following,

Var[li] ≤ E[l2i] =
1

n
·
∑
v∈V

(Lv)
2 ≤ 1

n
·
∑
v∈V

(
Lv ·

40 · cost(G)
9k

)
=

40 · cost(G)
9kn

·
∑
v∈V

Lv ≤ 40 · (cost(G))2

9kn
.

Then, using the independence of the li, we obtain the following,

Var[Z2] = Var

[
n

b
·

b∑
i=1

li

]
=
n2

b2
·

b∑
i=1

Var[li] ≤
n2

b
· 40(cost(G))

2

9kn
=

40n(cost(G))2

9kb
.

11

Now we apply Chebyshev’s inequality to obtain

Pr [|Z2 −E[Z2]| ≥ ε · cost(G)] ≤ Var[Z2]

ε2 · cost(G)2
≤ 40n

9ε2kb
.

Finally, the result follows from our choice of b in the algorithm.

3.4. Proof of Theorem 1.1 about the performance of ApproximateNNLargek. Now we are
ready to complete the analysis of algorithm ApproximateNNLargek(n, ε, k) and prove that it performs

O
(

n2 logn
ε2k

)
queries to the distance oracle and computes with probability at least 2

3 a value cost with |cost(G)−
cost| ≤ ε · cost(G).

Proof of Theorem 1.1. We first note that by Lemma 3.1, with probability at least 1− 1/n3 we have,

cost(G) ≥ k

4
·
∑
v∈V

d(v, uv) .

Thus, using ApproximateShortEdges and ApproximateLongEdges with parameters ε/8 and ε/2,
respectively, by Lemmas 3.3 and 3.5, our approximation of Z1 and Z2 has an additive error of at most
ε · cost(G) with probability at least 1− 3

4 − 1
n3 . This yields the first part of the theorem.

The number of queries of algorithm ApproximateNNLargek follows immediately from our setting of

s = O
(

n logn
k

)
and from Lemmas 3.3 and 3.5.

Repeating the algorithm O(log n) times and returning the median estimate will provide this approxi-
mation with probability at least 1 − 1

n10 . We remark that this algorithm does not require the cost of the
minimum spanning tree to be small.

4. Bypassing Ω̃ε

(
n2

k

)
query complexity by allowing error of ε·mst(X). In this section we develop

another algorithm to approximate cost(G) which improves upon the query complexity bound from Section
3 for small values of k. The improvement is obtained by allowing the additive error term in the estimation
of cost(G) to be ε · (mst(X) + cost(G)), and so, the error term depends also on the cost of the minimum

spanning tree of (X, d). Our new algorithm k-NNSizeApproximation(n, ε) performs Õε(nk
3/2) queries to

approximate the cost of a k-NN graph G to within the additive error term of ε · (mst(X) + cost(G)) (cf.
Theorem 1.2). (Since the problem can be trivially solved with Θ(n2) queries, in this section we assume that
k = o(n).)

4.1. A formula for the cost of a k-NN graph. We begin with deriving a central tool in our
algorithm for small k: a formula for the (approximate) cost of a k-NN graph. In fact, the formula can be
used to express the cost of any weighted directed graph with outdegree exactly k. To simplify our exposition
we will assume that the edge weights are of the form (1 + ε)j with integer 0 ≤ j ≤ r and r = O(log n/ε).
We can always transform our input on the fly into such a space by first approximating the diameter of the
metric space [20] and the cost of the minimum spanning tree [9] and then rescale the space and round edge
weights to the nearest power of 1 + ε (rescaling and rounding is done on the fly). This only slightly affects
the triangle inequality by introducing an additional (1+ ε) factor. Details can be found in Appendix A. The
time to approximate the diameter within a factor of 2 is O(n) [20] and the time required to approximate

the cost of the minimum spanning tree within a factor of 2 is Õ(n) [9]. We will assume that edges with the
same weight are ordered lexicographically.

4.1.1. Threshold graphs G(i). Let G be a graph with outdegree k at every vertex and with edge
weights that are of the form (1 + ε)j for integer values of j. Let G(i) = (V,E(i)) be the subgraph of G that
contains all edges of weight less than or equal to (1 + ε)i, i.e., E(i) = {[u, v⟩ ∈ E : d(u, v) ≤ (1 + ε)i}. We

use deg(i)(v) to denote the outdegree of vertex v in G(i).

Lemma 4.1. Let G = (V,E), |V | = n, be a weighted directed graph such that every vertex has outdegree
k and such that the edge weights are of the form (1 + ε)j for integer 0 ≤ j ≤ r, for some r ∈ N. Let ε > 0.
Then we can write

cost(G) = nk + ε ·
r−1∑
i=0

(
(1 + ε)i

∑
v∈V

(
k − deg(i)(v)

))
.(4.1)

12

Proof. Let [u, v⟩ ∈ E be an edge of weight (1 + ε)ℓ. We will use the well-known identity

ℓ−1∑
i=0

(1 + ε)i =
(1 + ε)ℓ − 1

ε
(4.2)

to express the weight of an edge as a weighted sum over the corresponding edges in the graphs G(i) in which
the edge is missing. By (4.2), we can write

(1 + ε)ℓ = 1 + ε ·
ℓ−1∑
i=0

(1 + ε)i = 1 + ε ·
r−1∑
i=0

(
(1 + ε)i · 1([u, v⟩ /∈ E(i))

)
,

where we use 1(B) to be 1, if expression B is true and 0, otherwise.
We can sum this formula up over all edges in E to obtain

cost(G) =
∑

[u,v⟩∈E

(
1 + ε ·

r−1∑
i=0

(1 + ε)i · 1([u, v⟩ /∈ E(i)

)

= kn+ ε ·
r−1∑
i=0

(
(1 + ε)i ·

∑
[u,v⟩∈E

1([u, v⟩ /∈ E(i))
)

= kn+ ε ·
r−1∑
i=0

(
(1 + ε)i · |E \ E(i)|

)
= kn+ ε ·

r−1∑
i=0

(
(1 + ε)i ·

∑
v∈V

(k − deg(i)(v))
)
.

4.2. Outline: applying Lemma 4.1 to approximate the cost of a k-NN graph. Our goal
is to rely on the formula from Lemma 4.1 to approximate the cost of a k-NN graph G by estimating∑

v∈V (k − deg(i)(v)) for every i, 0 ≤ i ≤ r.

Let us fix i, 0 ≤ i ≤ r, and let t = 1+ ⌊log1+ε k⌋. In order to estimate
∑

v∈V (k−deg(i)(v)), we partition
the vertex set V into subsets V i

0 , V
i
1 , . . . , V

i
t such that

V i
0 = {v ∈ V : deg(i)(v) = k} ,

and for 1 ≤ j ≤ t,

V i
j = {v ∈ V : (1 + ε)j−1 ≤ k − deg(i)(v) < (1 + ε)j} .

We begin with an auxiliary lemma that shows that in order to approximate cost(G) it suffices to estimate
well the sizes of all sets V i

j with 0 ≤ i ≤ r, 1 ≤ j ≤ t.

Lemma 4.2.

cost(G) ≤ nk + ε
∑

0≤i≤r,1≤j≤t

(1 + ε)i+j · |V i
j | ≤ (1 + ε) · cost(G) .(4.3)

Proof. It immediately follows from Lemma 4.1 that

cost(G) = nk + ε ·
r−1∑
i=0

(1 + ε)i
∑
v∈V

(k − deg(i)(v)) = nk + ε ·
r−1∑
i=0

(1 + ε)i
t∑

j=1

∑
v∈V i

j

(k − deg(i)(v))

≤ nk + ε ·
r−1∑
i=0

(1 + ε)i
t∑

j=1

(1 + ε)j |V i
j | = nk + (1 + ε) · ε ·

r−1∑
i=0

(1 + ε)i
t∑

j=1

(1 + ε)j−1|V i
j |

13

≤ nk + (1 + ε) · ε ·
r−1∑
i=0

(1 + ε)i
t∑

j=1

∑
v∈V i

j

(k − deg(i)(v))

= nk + (1 + ε) · ε ·
r−1∑
i=0

(1 + ε)i
∑
v∈V

(k − deg(i)(v))

≤ (1 + ε) ·

(
nk + ε ·

r−1∑
i=0

(1 + ε)i
∑
v∈V

(k − deg(i)(v))

)
= (1 + ε) · cost(G) .

Hence, by the first inequality and the last identity, we have

cost(G) ≤ nk + ε ·
r−1∑
i=0

(1 + ε)i
t∑

j=1

(1 + ε)j |V i
j | ≤ (1 + ε) · cost(G) ,

what can be simplified to (4.3), concluding the claim.

Thanks to Lemma 4.2, in order to estimate cost(G) it is enough to estimate the number of vertices in
each of the sets V i

j and then use expression (4.3) to estimate the cost of a k-NN graph. The problem is that
we do not know G. In principle, we are given G implicitly, because we can identify the outgoing edges of a
vertex v in O(n) time by querying for all of its neighbors, but this can be way too expensive. Instead, we
will consider subgraphs H(i) = (V, F (i)) of H that contains all edges [u, v⟩ with d(u, v) ≤ (1 + ε)i, that is,
F (i) = {[u, v⟩ ∈ F : d(u, v) ≤ (1 + ε)i}. We make the following straightforward observation.

Observation 4.3. Let (X, d) be a metric space and assume all edge weights are at least 1 and are powers

of (1 + ε). Let G(i) = (V,E(i)) and H(i) = (V, F (i)) be defined as above. Let E
(i)
v and F

(i)
v be the outgoing

edges of a vertex v in G(i) and H(i), respectively. Then the following statements hold:
• E(i) ⊆ F (i),

• if |F (i)
v | ≤ k then E

(i)
v = F

(i)
v , and

• if |F (i)
v | > k then |E(i)

v | = k.

The above observation allows us to make statements about G(i) and G by consideringH(i). The challenge
here is to find the right tradeoffs between the sample size required to obtain a good estimation and the time
spent on each sample vertex to approximate deg(i)(G) via approximating the corresponding degree in H(i),

which we denote by degH(i)(v). Notice that deg(i)(v) = min{degH(i)(v), k}.

4.3. The main sampling algorithm to estimate cost(G). We now describe the main sampling
algorithm k-NNSizeApproximation following the framework described by the inequalities from Lemma
4.2. It uses a subroutine EstimateSetSize to compute an approximation Xi,j for the sizes of the sets V i

j .
We assume that the input is normalized as earlier discussed. The precise value of r = O(log n/ε) follows
from scaling the input and the value of t = O(log k/ε) has been set up earlier as the maximum index j for
V i
j (t is the smallest integer such that k < (1 + ε)t, i.e., t = 1 + ⌊log1+ε k⌋).

k-NNSizeApproximation(n, ε)
{Approximation of cost(G) to within ε · (mst(X) + cost(G); cf. Theorem 1.2}

for i = 0 to r do
for j = 1 to t do

Xi,j = EstimateSetSize(n, ε, i, j)
return nk + ε ·

∑
0≤i≤r,1≤j≤t(1 + ε)i+jXi,j

14

EstimateSetSize(n, ε, i, j)
{Estimates |V i

j |; cf. Lemma 4.8}

Sample set S of s =
⌈
100n(1+ε)i+jrt

mst(X)

⌉
vertices u1, . . . , us uniformly at random

for ℓ = 1 to s do
if EstimateVertexDegree(n, ε, k, uℓ, i, j) ∈ [(1 + ε)j−1, (1 + ε)j) then Yℓ = 1
else Yℓ = 0

return n
s ·
∑s

ℓ=1 Yℓ

The main challenge now is to approximate the sizes of the sets V i
j . A standard approach would be

to sample vertices uniformly at random and verify membership in V i
j for each sample vertex and then to

extrapolate. Unfortunately, such a simple approach does not work as we typically cannot afford to ask Θ(n)
queries to compute all neighbors of a sample vertex. Indeed, the example from the previous section suggests
that there are cases where we cannot spend much more than constant time per sample. Therefore, we proceed
as follows. Firstly, for every sample vertex we run the procedure Filter(n, k, v, i), which rejects, if a given
vertex v has degree degH(i)(v) significantly more than k (in which case v does not contribute to our objective
function). The central feature of our implementation of Filter is that we can run Filter(n, k, v, i) with

the expected O
(

n logn
k+deg

H(i) (v)

)
queries, see Lemma 4.4. Thus, if a vertex has a high degree, degH(i)(v)) ≥ k,

we will dismiss it quickly, with O
(

n logn
deg

H(i) (v)

)
queries. We remark that a somewhat similar procedure has

been the crux of the algorithm approximating the cost of the minimum spanning tree [9].
Once we know that a vertex has degree O(k) in H(i), we call it a candidate vertex. For each candidate

vertex we would like to determine whether it is contained in the current set V i
j . Again, it would be way

too slow to decide exactly whether v ∈ V i
j , since it would require Θ(n) queries per every single vertex.

Therefore, we will do it approximately by using fine-tuned random sampling procedure on the input graph
H(i) to estimate the vertex degree. One technical obstacle is that if we use estimates to determine membership
in V i

j instead of exact values, the sets V i
j will depend on the randomness used. Fortunately, there is a simple

argument why this is not an issue, provided that the estimate is within its guaranteed bounds. Instead of
considering an algorithm that takes a random sample of vertices and then runs an estimation procedure
on the sample, we can assume for the analysis that at every vertex we run the estimation procedure first
and then we sample from the set of resulting estimates. This way, we may think of the sets V i

j as being
independent of the randomness used for the sampling.

We now discuss our approach to test whether v ∈ V i
j . We will sample vertices from V \ {v} and query

their distance to v to determine whether they are neighbors of v in H(i). The sample sizes used by our
estimation algorithm will depend on the index j of the set V i

j . The reason is that while we would like to

obtain an approximation for the value of k−deg(i)(v) up to an additive error of ε·(k−deg(i)(v)), our sampling

algorithm estimates only degH(i)(v), and not ε · (k − deg(i)(v)) (in fact, it estimates the number of edges
of length at most (1 + ε)i in H(i), but we can use Observation 4.3 to transform this into an approximation

of deg(i)(v) for the relevant range of parameters). This means that when k − deg(i)(v) is small, then we
need a very good approximation of degH(i)(v). Indeed, if (1 + ε)j is smaller than

√
k, we simply consider all

neighbors of the current vertex. For larger values of j, we can use random samples of different sizes, which
results in different query complexities. Fortunately, the number of queries for larger values of k−deg(i)(v) is
smaller, so that we can take larger samples for items that contribute a lot to the cost function, which allows
us to reduce the variance of the process. The sweet spot is when k − deg(i)(v) = Θ(

√
k), where we require

Ω(n) queries per sample.
What remains is to determine the initial sample size. Here we will exploit the fact that thanks to [9],

with only Õ(n) queries we can estimate mst(X) up to a constant, with probability at least 1 − 1/n10, and

we will therefore pick a sample of size Õ
(

nk(1+ε)i+j

mst(X)

)
. Since every vertex can contribute between 0 and

k · (1 + ε)i to our formula for the k-NN graph cost, such a sample size will suffice to get an additive error
of ε · mst(X) (more details follow in the analysis in Section 4.4). In order to analyze the expected number
of queries of the algorithm, we will then define a simple greedy clustering procedure and use the resulting
clustering to obtain the desired bound on the expected number of queries of the filtering procedure.

15

4.4. Approximating cost(G) by estimating the sizes of V i
j . We continue the discussion of our

Õε(nk
3/2)-queries algorithm k-NNSizeApproximation to approximate the cost of a k-NN graph G. We

will now describe in details how the estimation of the sizes of the sets V i
j is done and then show how

to approximate cost(G) using Lemma 4.2. Our algorithm EstimateSetSize uses a subroutine Estimat-
eVertexDegree to approximate the degree degH(i)(v) of a given vertex in H(i). For now, it will be
convenient to think of EstimateVertexDegree to return a correct estimate; the precise description of
algorithm EstimateVertexDegree is given in Section 4.5. (We remark that we can replace mst(X) with
its 2-approximation.)

Before we will present details of our algorithm EstimateVertexDegree(n, ε, k, v, i, j) to approximate
the degree degH(i)(v) of a vertex in H(i), we will first provide some basic tools useful for the analysis. Our
algorithm EstimateVertexDegree performs two steps: It first checks by a sampling procedure called
Filter whether the vertex degree is significantly more than k. If this is the case, the vertex does not
contribute to the cost function and we can ignore it. If the vertex passes our test, we know that with high
probability its degree is no more than 4k. In this case, we continue our analysis depending on the relation
between j and k; if (1 + ε)j ≤

√
k then we compute its degree exactly with O(n) queries, and otherwise, if

(1+ε)j >
√
k, then we use a special sampling routineNeighborhoodSize(n, γ, k, v, i) to estimate degH(i)(v)

to within γk; cf. Section 4.5.1. We will first describe the filtering algorithm and then proceed to the analysis
of our algorithm.

4.4.1. An auxiliary tool: Filtering vertices with many neighbors. Our first subroutine will
be used to quickly filter vertices that have more than k neighbors and thus do not contribute to our cost
function. The algorithm draws random samples of increasing size until it obtains a good estimate of the
number of neighbors of a given query vertex or with high probability the vertex has O(k) neighbors. The
idea to use geometrically increasing sample sizes to approximate the vertex degree ℓ with O(n log n/ℓ) queries
has been previously used in [9]. We modify their method for our purposes.

Filter(n, k, v, i)
{Determines whether degH(i)(v) = O(k); cf. Lemma 4.4}

q = n− 1
repeat

a = 1000n−1
q log n

q = 2
3q

Sample v1, . . . , va independently and uniformly at random from V \ {v}
Let q′ be the number of vertices in v1, . . . , va that are neighbors of v in H(i)

until q′ ≥ 1000 log n or q ≤ 2k
if q ≤ 2k then return True
else return False

Lemma 4.4. Given access to a vertex v, algorithm Filter(n, k, v, i) asks in expectation O
(

n logn
k+deg

H(i) (v)

)
queries and with probability at least 1− 1

n10 returns the following value:3

• False: if degH(i)(v) ≥ 4k;
• True: if degH(i)(v) ≤ k;
• either True or False, otherwise.

Proof. We will consider separately two cases, when degH(i)(v) ≥ 4k and degH(i)(v) ≤ k.
Let us first assume that degH(i)(v) ≥ 4k. Then at some point the algorithm reaches an iteration of

the for-loop, such that q ≤ 3k or it has returned False before within the running time bound of the
lemma. We now let Xj to be the indicator variable for the event that vertex vj is a neighbor of v. We have

3As we will make it explicit later, when presenting algorithm EstimateVertexDegree (cf. Lemma 4.7), one could trivially

obtain in expectation O

(
min

{
n, n logn

k+deg
H(i) (v)

})
queries by switching to computing degH(i) (v) exactly when one performs

more than n distance queries.

16

Pr[Xj] =
deg

H(i) (v)

n−1 and hence,

E

 a∑
j=1

Xj

 = a · degH(i)(v)

n− 1
=

1000 log n · degH(i)(v)

q
≥ 4

3
· 1000 log n .

Chernoff’s bound implies that

Pr

 a∑
j=1

Xj < 1000 log n

 ≤ Pr

 a∑
j=1

Xj ≤
3

4
·E[

a∑
j=1

Xj]

 ≤ e−E[
∑a

j=1 Xj]/32 ≤ 1

n10
.

This implies that if degH(i)(v) ≥ 4k, then algorithm Filter returns False in time O
(

n logn
deg

H(i) (v)

)
with

probability at least 1− 1/n10.
Now we assume that degH(i)(v) ≤ k. We observe that for q > 2k, we have

E

 a∑
j=1

Xj

 = a · degH(i)(v)

n− 1
=

1000 log n · degH(i)(v)

q
≤ 1000 log n · k

2k
= 500 log n .

We apply Chernoff bound (if λ ≥ 2E[
∑a

j=1Xj] then Pr[
∑a

j=1Xj ≥ λ] ≤ e−λ/6) to get,

Pr

 a∑
j=1

Xj ≥ 1000 log n

 ≤ e−166 logn ≤ 1

n10
.

Therefore the probability that the algorithm returns False is at most 1
n10 . The running time is dominated

by the last iteration of the for-loop, which requires O
(

n logn
k

)
time.

4.4.2. An auxiliary tool: The clustering connection and MST. In this section we connect a
term used in the running time of parts of our algorithms with mst(X).

Lemma 4.5. Let k < n−1
4 . For every i, 0 ≤ i ≤ r, the following holds,

∑
v∈V :deg

H(i) (v)≥1

1

degH(i)(v)
≤ 2 +

24 ·mst(X)

(1 + ε)i
.

Furthermore, the number of vertices with degree at most 4k in H(i) is at most 120·k·mst(X)
(1+ε)i .

Proof. We begin with an auxiliary clustering algorithm:

GreedyClustering(n, σ)
{Computes greedily a partition of X into clusters of radius σ and

returns the number of clusters c; cf. Lemma 4.5}

c = 0
for each x ∈ X do

c = c+ 1
let Cc be the set of points (including x) with distance at most σ from x
remove Cc from X

return c

All cluster centers have pairwise distance at least σ, and therefore if c is the returned number of clusters,
then 1

3 (c− 1)σ is a lower bound on the cost of the minimum spanning tree, that is,

1
3 (c− 1)σ ≤ mst(X) .(4.4)

17

This follows, because the minimum spanning tree connects all cluster centers and using additional vertices
can only reduce the cost of the tree by a factor of 3. We remark that in this place we are applying the
triangle inequality in the original metric space, that is, after we scale but before we round the distances
to powers of (1 + ε). Therefore, we are losing slightly more than the usual factor of 2 (because edges are
rounded afterwards).

Let us run GreedyClustering(n, σ) on our input instance (X, d) with σ = 1
4 (1 + ε)i. Notice that if

any two points are in the same cluster, then the distance between them is at most 4σ (which is also true in
our space of rounded distances). Therefore for two such points, their distance is at most (1 + ε)i and thus
if we consider the graph H(i), then these two points are adjacent in H(i). Hence, for any cluster C and any
point v ∈ C, we have

degH(i)(v) ≥ |C| − 1 .(4.5)

Therefore for every cluster C, we have 1 =
∑

v∈C
1
|C| ≥

∑
v∈C

1
deg

H(i) (v)+1 and so c ≥
∑

v∈V
1

deg
H(i) (v)+1 .

We can combine this bound with (4.4) to obtain the following,

(1 + ε)i

(∑
v∈V

1

degH(i)(v) + 1
− 1

)
= 4σ

(∑
v∈V

1

degH(i)(v) + 1
− 1

)
≤ 4σ(c− 1) ≤ 12 ·mst(X) .(4.6)

With (4.6) at hand, we can conclude the first claim as follows:∑
v∈V :deg

H(i) (v)≥1

1

degH(i)(v)
≤ 2 ·

∑
v∈V

1

degH(i)(v) + 1
≤by (4.6) 2 +

24 ·mst(X)

(1 + ε)i
.

Next let us consider the second claim, and we want to bound the number of vertices of degree at most
4k in H(i). Assume first that c ≥ 2. Since by (4.5), for any cluster C and any vertex v ∈ C, we have
degH(i)(v) ≥ |C| − 1, any cluster C contains at most 4k+1 vertices of degree at most 4k in H(i). Therefore,
in particular, the number of vertices of degree at most 4k in H(i) is at most c · (4k + 1). Next, we use (4.4)
to simplify this bound as follows:

c · (4k + 1) ≤ 2(c− 1) · (5k) ≤ 10k · 3 ·mst(X)

σ
=

120 · k ·mst(X)

(1 + ε)i
,

which yields the second claim (notice that in the first inequality we use c ≥ 2).
The claim above assumed that c ≥ 2 and let us now consider the case c = 1. In this case, since we run

GreedyClustering(n, σ) with σ = 1
4 (1 + ε)i and ended up with a single cluster, there is a point x ∈ X

such that all other points in X are at distance at most σ = 1
4 (1 + ε)i from x. Hence, the diameter of X

is at most 2σ = 1
2 (1 + ε)i and thus H(i) is a clique on n vertices. This immediately implies that since we

assumed that 4k < n − 1, the number of vertices with degree at most 4k in H(i) is zero, which is less than
120·k·mst(X)

(1+ε)i .

4.5. Algorithm EstimateVertexDegree. In this section we present an algorithm EstimateV-
ertexDegree to estimate the degree of a vertex, which will be later playing central role in algorithm
EstimateSetSize (cf. page 15) to estimate the sizes of the sets V i

j , which in turns is then used to analyze
our main algorithm k-NNSizeApproximation(n, ε) that estimates cost(G).

We assume that the input is normalized as earlier discussed. The value of r = O(log n/ε) follows from
scaling the input and the value of t = O(log k/ε) is set as the maximum index j for V i

j .
Our algorithm for estimating vertex degrees relies on a random sampling approach that approximates

the size of the neighborhood of a given vertex in H(i) up to some additive error. The main point is that for
larger values of k − degH(i)(v) we need more samples (as there can be fewer points that together contribute
significantly to the cost function), but we can use fewer samples to get a sufficient approximation for k −
degH(i)(v).

Our algorithm EstimateVertexDegree performs two steps: It first checks by a sampling procedure
Filter (cf. Lemma 4.4 and Section 4.4.1) whether the vertex degree is significantly more than k. If this is
the case, then the vertex does not contribute to the cost function and we can ignore it. If the vertex passes

18

our test, then we know that with high probability its degree is no more than 4k. In this case, we continue our
analysis depending on the relation between j and k; if (1+ε)j ≤

√
k then we compute its degree exactly, and

otherwise, if (1 + ε)j >
√
k, then we call algorithm NeighborhoodSize(n, γ, k, v, i) to estimate degH(i)(v)

to within γk; cf. Section 4.5.1.

4.5.1. Algorithm NeighborhoodSize. We begin with description of our auxiliary algorithm Neigh-
borhoodSize(n, γ, k, v, i) to estimate degH(i)(v) to within γk using random sampling, assuming degH(i)(v)
is small.

NeighborhoodSize(n, γ, k, v, i)
{Estimates degH(i)(v) to within γk; cf. Lemma 4.6}

Let b =
⌈
500n lnn

kγ2

⌉
Sample u1, . . . , ub independently and uniformly at random from V \ {v}
For every 1 ≤ ℓ ≤ b, let Xℓ = 1 if uℓ is a neighbor of v in H(i), and 0 otherwise

return n−1
b

∑b
ℓ=1Xℓ

The following central lemma shows the properties of NeighborhoodSize.

Lemma 4.6. Let degH(i)(v) ≤ 4k. Given v as input, NeighborhoodSize(n, γ, k, v, i) in time O
(

n logn
kγ2

)
returns a value d̂ that with probability at least 1− 1

n10 satisfies the following:

|d̂− degH(i)(v)| ≤ γk .

Proof. The running time of NeighborhoodSize follows from the value of s in the code.

To analyze the value of d̂, let X =
∑b

ℓ=1Xℓ and Y := d̂ = n−1
b X. We have E[Xℓ] =

deg
H(i) (v)

n−1 for

1 ≤ ℓ ≤ b, and thus E[X] =
b·deg

H(i) (v)

n−1 ≥ 500 lnn deg
H(i) (v)

kγ2 , E[Y] = degH(i)(v).

Let us start with the case degH(i)(v) ≤ 1
2γk. We define δ = γk

2 deg
H(i) (v)

≥ 1. By Chernoff inequality we

get the following:

Pr[Y > γk] ≤ Pr[Y > (1 + δ) ·E[Y]] = Pr[X > (1 + δ) ·E[X]] ≤ e−δ·E[X]/3 ≤ n−10 .

Next, consider the case degH(i)(v) > 1
2γk. We again define δ = γk

2 deg
H(i) (v)

≤ 1. We get

Pr[Y −E[Y] > γk] ≤ Pr[Y > (1 + δ) ·E[Y]] = Pr[X > (1 + δ)E[X]] ≤ e−δ2E[X]/3 ≤ n−10/2 .

Furthermore,

Pr[E[Y]− Y > γk] ≤ Pr[Y < (1− δ) ·E[Y]] = Pr[X < (1− δ)E[X]] ≤ e−δ2E[X]/2 ≤ n−10/2 .

By the union bound, this implies the claim in the second case when degH(i)(v) > 1
2γk.

4.5.2. Algorithm EstimateVertexDegree and its properties. Now we can introduce our algo-
rithm to estimate the vertex degrees.

EstimateVertexDegree(n, ε, k, v, i, j)
{Estimates k − deg(i)(v); cf. Lemma 4.7}

if Filter(n, k, v, i) = False then return 0
else

if (1 + ε)j ≤
√
k then compute d̂ = degH(i)(v) exactly

else

d̂ =NeighborhoodSize(n, ε(1 + ε)j/k, k, v, i)

return max{k − d̂, 0}
(if at any moment one queries Θ(n) distances then stop and compute k − degH(i) (v) exactly)

19

Lemma 4.7. Let j ≤ t. EstimateVertexDegree(n, ε, k, v, i, j) satisfies the following:

• If degH(i)(v) ≥ 4k then EstimateVertexDegree runs in O
(
min

{
n, n logn

deg
H(i) (v)

})
expected time

and with probability at least 1− 1
n10 returns 0.

• If degH(i)(v) < 4k then
⋄ the expected running time of EstimateVertexDegree is either O(n) if (1 + ε)j ≤

√
k, or

O
(
min

{
n, nk logn

ε2(1+ε)2j

})
if (1 + ε)j >

√
k, and

⋄ either degH(i)(v) ≥ k+ε · (1+ε)j and EstimateVertexDegree with probability at least 1− 2
n10

returns 0, or
⋄ degH(i)(v) < k+ε·(1+ε)j and EstimateVertexDegree determines d̂ such that with probability

at least 1− 2
n10 it holds that |d̂− degH(i)(v)| ≤ ε · (1 + ε)j.

Proof. Consider two separate cases, depending on whether Filter(n, k, v, i) returns False or not.
By Lemma 4.4, if Filter(n, k, v, i) returns False then with probability at least 1 − 1

n10 we have that
degH(i)(v) > k. Therefore, indeed, EstimateVertexDegree(n, ε, k, v, i, j) returns the correct value 0 of k−
deg(i)(v). Further, by Lemma 4.4, algorithm Filter runs in expected time O

(
n logn

k+deg
H(i) (v)

)
, and so since with

probability at least 1− 1
n10 we have that degH(i)(v) > k, algorithm EstimateVertexDegree(n, ε, k, v, i, j)

runs in expected time O
(
min

{
n, n logn

deg
H(i) (v)

})
(the min{n, ⋆} term is because of the last line of the code).

Next, let us consider the case when Filter(n, k, v, i) returnsTrue. By Lemma 4.4, then with probability
at least 1 − 1

n10 we have that degH(i)(v) < 4k; let us now condition on that degH(i)(v) < 4k. In that case,

the expected running time of algorithm Filter is O
(
min

{
n, n logn

k

})
, but EstimateVertexDegree will

still perform some more work.
If ε, j, and k satisfy (1 + ε)j ≤

√
k, then algorithm EstimateVertexDegree will spend O(n) time

and exactly compute the value of degH(i)(v). Therefore in this case, the expected running time of Estimat-

eVertexDegree(n, ε, k, v, i, j) is O
(
min

{
n, n logn

k

})
.

Otherwise, let us consider the case (1 + ε)j ≤
√
k, with degH(i)(v) < 4k. Then, after calling Filter, we

invoke algorithm NeighborhoodSize(n, ε(1 + ε)j/k, k, v, i). By Lemma 4.6, algorithm Neighborhood-

Size(n, ε(1 + ε)j/k, k, v, i) in time O
(

nk logn
ε2(1+ε)2j

)
returns a value d̂ that with probability at least 1 − 2

n10

satisfies |d̂ − degH(i)(v)| ≤ ε(1 + ε)j . Therefore, the expected running time of algorithm EstimateV-

ertexDegree(n, ε, k, v, i, j) in this case is O
(
min

{
n, n logn

k + nk logn
ε2(1+ε)2j

})
, which for j ≤ t (and hence

ε(1 + ε)j = O(k)) simplifies to O
(
min

{
n, nk logn

ε2(1+ε)2j

})
.

We obtain the main claim by combining the cases above.

4.6. Analysis of the running time of algorithm EstimateSetSize. With Lemma 4.7 at hand,
we are ready to analyze algorithm EstimateSetSize from p. 15.

Lemma 4.8. The expected runtime of EstimateSetSize(n, ε, i, j) is O
(

nk3/2 log2 n log k
ε4

)
.

Proof. (Let us remind that we have assumed that k = o(n), and hence Lemma 4.5 (which requires
k < n−1

4) holds.) We first observe that the guarantee from Lemma 4.7 suffices to make sure that with
probability at least 1 − 2

n10 a vertex is only counted towards membership in V i
j when it is either in the

class or a neighboring class (see Section 4.6.1 for a brief discussion how to avoid double counting in different
classes).

Let us fix i and j, and we will analyze the expected running time to evaluate a single sample vertex
by algorithm EstimateVertexDegree(n, ε, k, v, i, j). We assume that the expected running time is the
average over all vertices as the expected running time of the filtering algorithm holds with probability
(1− 1/n10) in the worst case (cf. Lemma 4.4). Let us partition V into two sets V1 and V2, with V1 = {v ∈
V : degH(i)(v) > 4k} and V2 = {v ∈ V : degH(i)(v) ≤ 4k}. We will split our analysis into two separate cases,
depending on whether (1 + ε)j ≤

√
k or (1 + ε)j >

√
k.

20

Case 1. We begin with the case when (1 + ε)j ≤
√
k. The expected running time to evaluate a single

sample vertex by algorithm EstimateVertexDegree(n, ε, k, v, i, j) is

1

n
·

(∑
v∈V1

O

(
n log n

degH(i)(v) + k

)
+
∑
v∈V2

O(n)

)
.

Using Lemma 4.5, this bound can be simplified to O
(

mst(X) logn
(1+ε)i + k·mst(X)

(1+ε)i

)
. Plugging this into the bound

above, we obtain an expected running time of EstimateSetSize(n, ε, i, j) (with s being the number of

sampled vertices by EstimateSetSize, s =
⌈
100n(1+ε)i+jrt

mst(X)

⌉
):

s ·O
(
mst(X) log n

(1 + ε)i
+
k ·mst(X)

(1 + ε)i

)
=
n(1 + ε)i+jrt

mst(X)
·
(
(k + log n) ·mst(X)

(1 + ε)i

)
= O(n(k + log n)(1 + ε)jrt) .

Since r = O(log n/ε), t = O(log k/ε), and (1 + ε)j ≤
√
k, we can simplify this bound to conclude that the

expected running time of EstimateSetSize(n, ε, i, j) is

O

(
n(k + log n)

√
k log n log k

ε2

)
= O

(
nk3/2 log2 n log k

ε2

)
.(4.7)

Case 2. Next, we consider the case when (1 + ε)j >
√
k. By Lemma 4.7, the expected running time to

evaluate a single sample vertex by algorithm EstimateVertexDegree(n, ε, k, v, i, j) satisfies the following:

1

n
·

(∑
v∈V1

O

(
n log n

degH(i)(v) + k

)
+
∑
v∈V2

O

(
nk log n

ε2(1 + ε)2j

))
.

Using Lemma 4.5, this bound can be simplified to

O

(
mst(X) log n

(1 + ε)i
+
k2 ·mst(X) log n

ε2(1 + ε)i+2j

)
= O

(
mst(X) log n

(1 + ε)i
·
(
1 +

k2

ε2(1 + ε)2j

))
.

Since (1 + ε)j >
√
k and ε · (1 + ε)j ≤ ε · (2k) ≤ 2k, we can simplify it further to

O

(
mst(X) log n

(1 + ε)i
·
(
1 +

k2

ε2(1 + ε)2j

))
= O

(
mst(X) log n

(1 + ε)i
· k3/2

ε2(1 + ε)j

)
.

Using this bound, we obtain the expected running time of EstimateSetSize(n, ε, i, j) :

s ·O
(
k3/2 ·mst(X) log n

ε2 · (1 + ε)i+j

)
= O

(
n(1 + ε)i+jrt

mst(X)
·
(
k3/2 ·mst(X) log n

ε2 · (1 + ε)i+j

))
= O

(
nk3/2rt log n

ε2

)
.

Since r = O(log n/ε), t = O(log k/ε), the expected running time of EstimateSetSize is

O

(
nk3/2 log2 n log k

ε4

)
.(4.8)

We can combine the two cases in (4.7) and (4.8) to conclude the proof of Lemma 4.8.

4.6.1. Consistency. In order to avoid double counting, we need to make sure that our answers are
consistent. In order to ensure this with high probability, we will assume as a thought experiment that we
run algorithm EstimateVertexDegree for different values of j. We will use the estimate for the largest
value of j such that the error interval is such that the vertex could be placed into at most two different sets
V i
j . Once this happens, we put the vertex into the set that is determined by its estimate. If all estimates

are correct, then we will be at most ”one class” off. Note that whenever the confidence interval intersects
more than one class, we will assume that the vertex is not contained in the corresponding class, i.e., the
vertex does not contribute to our estimate. We observe that we can always simulate this process in the same
running time as before, if a vertex is in more than one sample set. We start by evaluating the largest j and
proceed in decreasing order until the class is determined (or all j have been evaluated).

21

4.7. Analysis of the performance of k-NNSizeApproximation. In this section we analyze the
running time and the approximation guarantee of algorithm k-NNSizeApproximation. For this purpose,
we will assume that algorithm EstimateVertexDegree always provides the correct answer. This happens
with probability at least 1− 1/n10. We first analyze the quality of EstimateSetSize.

Lemma 4.9. For every 0 ≤ i ≤ r, 1 ≤ j ≤ t,

|V i
j | · (1 + ε)i+j ≤ cost(G) .

Proof. V i
j is the set of vertices v with (1 + ε)j−1 ≤ k − deg(i)(v). Therefore any vertex v ∈ V i

j has at

least (1 + ε)j−1 neighbors in G whose cost is strictly greater than (1 + ε)i, and thus at least (1 + ε)i+1.
Hence, a vertex in V i

j contributes at least (1 + ε)i+j to cost(G), which yields the result.

Lemma 4.10. For every 0 ≤ i ≤ r, 1 ≤ j ≤ t, Xi,j in k-NNSizeApproximation(n, ε) is a random
variable that satisfies the following inequality:

Var[Xi,j] ≤
mst(X) · cost(G)

100 · (1 + ε)2(i+j) · r · t
.

Proof. Fix i and j, 0 ≤ i ≤ r, 1 ≤ j ≤ t. For a fixed i, j, EstimateSetSize(n, ε, i, j) samples

s = s(i, j) =
⌈
100n(1+ε)i+jrt

mst(X)

⌉
random vertices u1, . . . , us, for which it then calls EstimateVertexDegree.

Let Yℓ be the number returned by EstimateVertexDegree when applied to the sampled vertex uℓ in
EstimateSetSize(n, ε, i, j). Yℓ is an indicator random variable for the event uℓ ∈ V i

j (for an i.u.r. choice

of uℓ in V), and thus Pr[Yℓ = 1] = Pr[uℓ ∈ V i
j] =

|V i
j |
n and Var[Yℓ] ≤ Pr[Yℓ = 1] =

|V i
j |
n . Hence, since

Xi,j =
∑s

ℓ=1 Yℓ, we obtain,

Var[Xi,j] = Var

[
n

s
·

s∑
ℓ=1

Yℓ

]
=
n2

s2
·

s∑
ℓ=1

Var[Yℓ] ≤
n2

s2
· s ·

|V i
j |
n

=
n

s
· |V i

j | ≤
n

s
· cost(G)

(1 + ε)i+j

≤ mst(X) · cost(G)
100 · (1 + ε)2(i+j) · r · t

,

where the penultimate inequality follows from Lemma 4.9 and the last inequality follows from the fact that

s =
⌈
100n(1+ε)i+jrt

mst(X)

⌉
.

4.7.1. Proof of Theorem 1.2 about the performance of k-NNSizeApproximation. Now, we

prove Theorem 1.2 and show that k-NNSizeApproximation(n, ε) in O
(

nk3/2 log3 n log2 k
ε6

)
expected time

returns with probability 2
3 a value cost with |cost(G)− cost| ≤ ε · (mst(X) + cost(G)).

Proof of Theorem 1.2. The running time of algorithm k-NNSizeApproximation(n, ε) follows immedi-
ately from Lemma 4.8 and since r = O(log n/ε) and t = O(log k/ε).

Next, let us analyze the performance guarantee of algorithm k-NNSizeApproximation(n, ε). Algo-
rithm k-NNSizeApproximation(n, ε) returns a value

cost = nk + ε ·
r∑

i=0

t∑
j=1

(1 + ε)i+jXi,j ,

where Xi,j are random numbers studied in Lemma 4.10. Since the first term is deterministic, our goal is to

analyze the concentration of
∑r

i=0

∑t
j=1(1 + ε)i+jXi,j around its mean.

We condition on the event that all calls to algorithm EstimateVertexDegree provide the correct
answer; by Lemma 4.7, this happens with probability at least 1− 1/n10.

We use Chebyshev’s inequality to analyze the concentration of
∑r

i=0

∑t
j=1(1 + ε)i+jXi,j :

Pr

∣∣∣∣∣∣
r∑

i=0

t∑
j=1

(1 + ε)i+jXi,j −E

 r∑
i=0

t∑
j=1

(1 + ε)i+jXi,j

∣∣∣∣∣∣ ≥ mst(X) + cost(G))

22

≤
Var[

∑r
i=0

∑t
j=1

(
(1 + ε)i+jXi,j

)
]

(mst(X) + cost(G))2
=

∑r
i=0

∑t
j=1

(
(1 + ε)2(i+j)Var[Xi,j]

)
(mst(X) + cost(G))2

≤(by Lemma 4.10)

∑r
i=0

∑t
j=1

(
(1 + ε)2(i+j) ·

(
mst(X)·cost(G)

100·(1+ε)2(i+j)·r·t

))
2 ·mst(X) · cost(G)

=
(r+ 1) · t
200 · r · t

≤ 1

100
.

We remark that the bound also holds when we use a factor 2 approximation for mst(X) in the sample
size. Finally, we need to rescale ε by some constant to take care of the additional errors introduced by
rounding and the formula using the set V i

j .

Let us apply (4.3) to bound cost(G) − cost. Let X =
∑r

i=0

∑t
j=1(1 + ε)i+jXi,j and notice that E[X] =∑r

i=0

∑t
j=1(1 + ε)i+j · |V i

j | and that cost = nk + ε · X. By Lemma 4.2 we have,

cost(G) ≤ nk + ε ·E[X] ≤ (1 + ε) · cost(G) ,

and by our analysis above, with probability at least 1− 1
100 we have

|X−E[X]| < mst(X) + cost(G) ,

what is equivalent to

|(nk + ε · X)− (nk + ε ·E[X])| < ε · (mst(X) + cost(G)) ,

yielding the following (with probability at least 1− 1
100):

|cost− (nk + ε ·E[X])| < ε · (mst(X) + cost(G)) .

This implies that with probability at least 1− 1
100 the following holds:

|cost(G)− cost| ≤ ε · (mst(X) + cost(G)) .

5. Lower bound of Ω
(

n2

k

)
for (1+ε)-approximation of cost(X). In this section we prove Theorem

1.3: we show that any approximation algorithm for the cost of a k-NN graph that for any metric space (X, d)
of size n, computes with probability at least 2

3 an estimate cost(X) with |cost(X) − cost(X)| ≤ ε · cost(X)

has complexity Ω
(

n2

k

)
.

We begin with an auxiliary framework of balanced clustered graphs in Sections 5.1 and 5.2, and then,
in Section 5.3, we incorporate this framework (and in particular, Theorem 5.4) to prove the main result of
this section, Theorem 1.3.

5.1. Revealing vertices in balanced clustered graphs. Let G = (V,E), V = {1, . . . , n}, be an
undirected and unweighted graph with n = m · ℓ vertices that is a collection of m disjoint cliques of size
ℓ. Without loss of generality, we assume that the vertices iℓ + 1, . . . , (i + 1)ℓ form a clique. Let A be the
adjacency matrix of G. Let Sn be the permutation group of {1, . . . , n}. For a given permutation π ∈ Sn we
use Gπ to denote the graph that is obtained by applying π to V . Also, let Aπ be the corresponding matrix,
i.e., Aπ[i, j] = A[π−1(i), π−1(j)].

Now consider an arbitrary algorithm Alg that has access to the adjacency matrix A of an input graph
G. Alg learns the input graph by querying unordered pairs of vertices i, j, and each such a query returns 1
if i and j are adjacent in G, and returns 0 otherwise. We use □ to denote the entries in A which have not
been queried by the algorithm. We can now define a query history.

Definition 5.1. An n× n symmetric matrix with entries from {0, 1,□} is called query history.

Definition 5.2. At any point of time the query history of algorithm Alg is the query history H
that satisfies,

• H[i, j] = □, if Alg did not query entry {i, j}, and
23

• H[i, j] = x for x ∈ {0, 1}, if Alg queried entry {i, j} and received answer x.

For the analysis we allow Alg to make some queries for free and assume that the algorithm always
makes all free queries. Queries that are not free are called paid queries. An entry from {0, 1} in the query
history is free, if it was obtained by a free query and is paid, if is was obtained by a paid query.

Definition 5.3. We say an algorithm Alg reveals a vertex i ∈ V if and only if the i-th row of its
query history H contains at least one entry 1.

Now, we are ready to state our main technical result of this section.

Theorem 5.4. Let G be an undirected graph on vertex set {1, . . . , n} that is a collection of m ≥ 1 disjoint
cliques of size ℓ ≥ 1 each. Let π ∈ Sn be a uniformly random permutation of {1, . . . , n}, Gπ be the graph that
is obtained by applying π to the vertex set of G, and Aπ be the adjacency matrix of Gπ. Then any algorithm
that queries Aπ in at most T places reveals in expectation O

(
Tℓ
n

)
vertices.

Before we proceed with the proof, let us first discuss the intuitions behind this theorem. Theorem 5.4
says that, informally and approximately, in order to reveal a vertex i ∈ V , any algorithm has to query (in
expectation) at least Ω

(
n
ℓ

)
neighbors of i. Intuitively, this is what we should expect: if a vertex does not

know any of its neighbors in its clique, then Alg can only query for “random” neighbors of i, and since only
ℓ − 1 of them are in the same clique, we expect Ω

(
n
ℓ

)
queries to detect the first neighbor from the same

clique. A formal proof formalizing this claim is complex, and is presented in Section 5.2 below.

5.2. Proof of Theorem 5.4. In order to prove Theorem 5.4 we need further definitions.

Definition 5.5. A basic event is any matrix B := Aπ obtained by applying to the adjacency matrix A
an arbitrary permutation π to the vertices of V .

Definition 5.6. Let H be a query history and B be a basic event. H and B are consistent, if B and
H agree on the entries of H that are not □.

We call a query history H consistent if it is consistent with at least one basic event.

In our analysis we have to consider explicit information revealed by the algorithm, as well as its impli-
cations that provide some implicit knowledge. For example, we have to carefully consider the case when for
some vertices i, j ∈ V we have H[i, j] = 1, since then we also know that for any vertex r ∈ V , if H[i, r] = 1
then also Aπ[j, r] = 1, and if H[i, r] = 0 then also Aπ[j, r] = 0. Similarly, we have to deal carefully with the
scenarios when Alg has queried many neighbors of a given vertex: if almost all entries in row i are in {0, 1},
then this can reveal some additional information about the □-entries. To quantify these observations, we
introduce the notions of fully explored vertices, saturated vertices, and explored vertices.

Definition 5.7. We say an algorithm Alg fully explores a vertex i ∈ V if and only if the i-th row of
its query history contains only entries from {0, 1}.

Notice that if Alg fully explores a vertex i ∈ V then we know the entire clique of i.

Definition 5.8. Let H be a query history, B be a basic event that is consistent with H, and i ∈ V be a
vertex that is not fully explored. Let C(i) be the set of vertices in the same clique of G as vertex i in B. Let
NB(C(i)) = {j ∈ V : ∃i′∈C(i)H[i′, j] ̸= □}. We call vertex i ∈ V saturated if |NB(C(i))| ≥ n

10 .

While Definition 5.8 refers to cliques, it has also implications for individual vertices.

Claim 5.9. Let H be a query history and let i ∈ V . If vertex i is not saturated for some basic event B
that is consistent with H, then |{j ∈ V : H[i, j] ̸= □}| < n

10 .

The notion of saturated vertices depends on both, on the query history H and on a given basic event B
that is consistent with H. Our next notion of explored vertices relies only on H.

Definition 5.10. We call a vertex i ∈ V explored, if conditioned on a consistent query history, vertex
i is saturated with probability at least 1

4 (the probability is over all basic events consistent with the query
history).

In order to focus our analysis on “nice” query histories, and with this, to cope with implicit information
available to the algorithm Alg, we will give Alg additional power: the oracle shows for free all entries of
explored vertices. If a vertex i is explored then we make it at once fully explored. Notice that then all
vertices from its clique C(i) become explored and then fully explored. Therefore, once a vertex i becomes

24

explored we perform the operation of uncovering the entire clique C(i) at once, making all vertices from
C(i) fully explored. Notice that uncovering gives away O(ℓn) free queries. In fact, our construction ensures
that all free queries are caused by the uncovering operation — all other queries in Alg are paid.

If multiple vertices become explored at the same point of time, then we break ties by uncovering for
free the entire clique C(i) of the smallest explored vertex i (we assume V = {1, . . . , n}). This process is
repeated until no explored vertices are left. Observe that this operation transforms every explored vertex
and its clique into fully explored vertices.

Now we describe a class of query histories of our interest.

Definition 5.11. A query history H is nice iff H is consistent with at least one basic event and there
are no explored vertices.

From now on, we will focus only on nice query histories and on algorithms that always perform free
queries. Let us list some straightforward properties of fully explored vertices.

Claim 5.12. Let Alg be an algorithm running on Aπ. Then the following properties hold:
(a) If Alg fully explores i ∈ V and Aπ[i, j] = 1 for some j ∈ V , then Alg fully explores j.
(b) If Alg fully explored r vertices then these vertices are coming from r

ℓ cliques in Aπ.
(c) If Alg fully explored sℓ vertices then Alg performed at most sℓn free queries.

5.2.1. Properties of deterministic algorithms. We begin with our first technical lemma that de-
scribes properties of a query about two vertices i, j with H[i, j] = □. For a nice query history H we write
Pr[Aπ[i, j] = 1 | H] to denote the probability of Aπ[i, j] = 1 conditioned on Aπ agreeing with the query
history H.

Lemma 5.13. Let H be a nice query history and sssume that the number of revealed vertices is at most
1
2n. Let i ∈ V and let j ∈ V be a not revealed vertex with H[i, j] = □. Then,

• Pr[vertex i or j is saturated | Aπ[i, j] = 1, H] ≥ 1
2 , or

• Pr[Aπ[i, j] = 1 | H] ≤ 100ℓ
n .

Proof. If ℓ ≥ n
100 the statement of Lemma 5.13 is trivial. Therefore, let us assume that ℓ < n

100 .
Let B be the set of basic events that are consistent with our query history H. Observe that we can write

the event “Aπ[i, j] = 1” conditioned on H as the union of basic events B ∈ B with B[i, j] = 1. Call the

latter set B(1) and let B(0) = B \ B(1). Notice that Pr[Aπ[i, j] = 1 | H] = |B(1)|
|B| .

Let B(1)
S be the subset of B(1) such that i or j is saturated. Observe that

Pr[vertex i or j is saturated | Aπ[i, j] = 1, H] =
|B(1)

S |
|B(1)|

.

Therefore, if |B(1)
S | ≥ 1

2 |B
(1)| then Pr[vertex i or j is saturated | Aπ[i, j] = 1, H] ≥ 1

2 and we are done.

Hence, we will assume that |B(1) \ B(1)
S | > 1

2 |B
(1)| and our goal is to prove that in that case Pr[Aπ[i, j] =

1 | H] = |B(1)|
|B| ≤ 100ℓ

n , which we do by showing that
|B(1)\B(1)

S |
|B| ≤ 50ℓ

n .

For a given basic event B ∈ B(1) \ B(1)
S we will want to swap vertex j with some other vertex z, and we

consider the case when such a swap gives a basic event4 Bz ∈ B(0) (and hence, that is consistent with H and
has Bz[i, j] = 0). We have the following auxiliary claim.

Claim 5.14. Let ℓ < n
100 . Let B be a basic event from B(1) \ B(1)

S . There are at least 29n
100 vertices z ∈ V

such that the basic event Bz is consistent with H and has Bz[i, j] = 0.

Proof. In order to ensure that the basic event Bz is consistent with H with Bz[i, j] = 0, we must be able
to swap vertices j and z without violating entries that are determined in H, so that in Bz vertex j belongs
to the clique of z in B (call it C(z)), in Bz vertex z belongs to the clique of j in B (call it C(j)), and the

clique of j is distinct from the clique of z. For that, we will prove that for a given basic event B ∈ B(1) \B(1)
S ,

4That is, for any x, y ∈ V , we have Bz [x, y] =

B[x, y] if x, y ∈ V \ {j, z},
B[x, z] if y = j,

B[x, j] if y = z.

25

if we choose vertex z uniformly at random from V , then with constant probability j and z are in different
cliques and we can swap j and z to obtain a basic event Bz that is consistent with H.

We will prove this property by bounding the success probability for five operations for Bz to be consistent
with H: that j and z are in different cliques in B, that j can be removed from its clique C(j) in B, that z
can be removed from its clique C(z) in B, that j can join C(z), and that z can join C(j).

• The probability that a random vertex z ∈ V is in the same clique as j in B is ℓ
n <

1
100 .

• Since j is not revealed, j is not “committed” in H to any clique (i.e., H[j, x] ∈ {0,□} for every
x ∈ V) and thus j can be removed from C(j) in B without violating H.

• Since there are at most 1
2n revealed vertices, vertex z is not revealed with probability at least 1

2 , in
which case z can be removed from its clique in B without violating H.

• Since j is not saturated, for all except at most n
10 vertices x ∈ V , we have H[y, x] = □ for all vertices

y ∈ C(j). Hence, H[j, x] ̸= □ for at most n
10 vertices x ∈ V , and so with probability at most 1

10 we
cannot connect j to the clique of a random z ∈ V .

• Similarly, since j is not saturated, for all except at most n
10 vertices x ∈ V , we have H[y, x] = □

for all vertices y ∈ C(j). Hence, for all except at most n
10 vertices z, we have H[x, z] = □ for all

vertices x ∈ C(j), and so with probability at most 1
10 we cannot connect a random vertex z ∈ V to

the clique of j without violating H.
Combining all cases above, we obtain that with probability at least 29

100 , we can swap j with a random
vertex z ∈ V without violating H, as required.

Claim 5.14 ensures that for every B ∈ B(1) \ B(1)
S there are at least 29

100n basic events Bz ∈ B(0). Next,

we observe that for any fixed z ∈ V , the events Bz obtained from the different B ∈ B(1) \ B(1)
S are distinct

(because Bz is obtained from B ∈ B(1)\B(1)
S by swapping vertices j and z). Therefore, if we choose a random

vertex z ∈ V , then with a positive constant probability, for a constant fraction of basic events B ∈ B(1) \B(1)
S

we will have basic events Bz ∈ B(0) with Bz[i, z] = 1, and all these basic events will be distinct. In particular,
there must be 1

5n vertices z ∈ V such that

Pr[Aπ[i, j] = 1 | H] ≤ 20 ·Pr[Aπ[i, z] = 1 | H] .(5.1)

Since the ith row of any basic event B has at most ℓ entries 1, we must have that
∑

z∈V

∑
B∈B 1B[i,z]=1 ≤

|B| · ℓ. Therefore, for vertex z∗ ∈ V with the 1
5n-th largest value of the sum

∑
B∈B 1B[i,z∗]=1, we have∑

B∈B 1B[i,z∗]=1 ≤ 5·|B|·ℓ
n . This bound combined with (5.1) yields

Pr[Aπ[i, j] = 1 | H] ≤ 20 ·Pr[Aπ[i, z
∗] = 1 | H] = 20 ·

∑
B∈B 1B[i,z∗]=1

|B|
≤ 100 · ℓ

n
.

5.2.2. Completing the proof of Theorem 5.4 (bounding revealed vertices). We are now ready
to prove Theorem 5.4. Our analysis relies on Yao’s principle [34], which implies that in order to prove a lower
for the running time of a randomized algorithm it suffices to show a lower bound for the average running
time of a deterministic algorithms over an adversarially chosen distribution of inputs. We will show that no
deterministic algorithm with at most T queries reveals ω(Tℓ

n) vertices in expectation. This will imply the
result also for randomized algorithms.

In what follows, we consider deterministic algorithms for a random input instance of a graph G = (V,E),
V = {1, . . . , n}, with n = m·ℓ vertices that form m ≥ 1 disjoint cliques of size ℓ ≥ 1. The input’s randomness
comes from the random choice of the permutation of the vertices.

Consider an arbitrary deterministic algorithm Alg that makes at most T queries and suppose that

T ≤ n2

6400 ℓ . We assume that the algorithm always makes all free queries, and hence we restrict ourselves to
nice query histories (Definition 5.11). We begin with an auxiliary lemma that bounds the number of fully
explored vertices by any deterministic algorithm.

Lemma 5.15. Let ℓ ≤ n
4500 . Consider a deterministic algorithm Alg that asks at most T paid queries

with T ≤ n2

6400ℓ . Then Alg fully explores at most 320ℓT
n vertices in expectation.

Proof. Algorithm Alg is querying about the input graph and is gradually exploring some vertices. Every
time a vertex i ∈ V becomes explored by Alg, we uncover its entire clique, making all vertices from the

26

clique first explored and then fully explored. This will make ℓ new fully explored vertices and give away up
to ℓn free queries (cf. Claim 5.12).

We split the run of Alg into two phases: first phase lasts until at most n
20 vertices become fully explored

by Alg, after which there is the second phase.
Let us focus on the first phase and consider the case when some vertex i ∈ V becomes explored as the

first vertex from its clique. Since i becomes explored, in this moment, with probability at least 1
4 vertex i is

saturated. We claim that if i is saturated, then at least n
20 paid queries have been asked about the neighbors

in the clique C(i) of i (queries of the form {x, y} with x ∈ C(i)). Indeed, since we are in the first phase,
there are at most n

20 fully explored vertices and since vertex i is saturated, C(i) has at least n
10 distinct

neighbors (|NB(C(i))| ≥ n
10), out of which at most n

20 might have been obtained via free queries. Therefore,
with probability at least 1

4 , at least
n
20 paid queries were made to vertices in C(i) before we uncovered the

clique C(i).
Notice that the arguments above imply that Lemma 5.15 is trivial for T < n

20 : if Alg asks less than n
20

paid queries then no vertex can become explored. Hence, we assume that T ≥ n
20 .

Every time algorithm Alg explores a vertex as the first vertex in its clique, Alg uncovers the entire
clique and with probability at least 1

4 , Alg asks at least n
20 paid queries to its vertices (and a single query

is about two vertices). Therefore, in the first phase, the expected number of uncovered cliques is at most
2T

1
4 ·

n
20

= 160T
n (the factor 2 is because the T paid queries are about T pairs of vertices), and so the expected

number of fully explored vertices in the first phase is at most 160ℓT
n .

Next, let us consider the second phase. Notice that in the second phase, Alg can fully explore as many
as all n vertices (minus n

20 vertices fully explored in the first phase).

Claim 5.16. Let ℓ ≤ n
4500 ,

n
20 ≤ T ≤ n2

6400ℓ . The second phase happens with probability at most 160ℓT
n2 ,

that is, the probability that Alg fully explores more than n
20 vertices is at most 160ℓT

n2 .

Proof. By our arguments above, in the first phase, every uncovering of a clique is caused by a vertex
that is saturated with probability at least 1

4 , and every saturated vertex can be charged to at least n
20 paid

queries. Let Ui be the number of paid queries charged to the vertices in the ith uncovered clique. (Since a
single query is about two vertices, every query is charged half to each of the two vertices in the query.) Notice
that if a vertex from the ith uncovered clique is saturated, we must have Ui ≥ n

40 . Therefore, since that
vertex is saturated with probability at least 1

4 , the random variables U1, U2, . . . are stochastically dominating
(that is, Pr[Ui ≥ x] ≥ Pr[Si ≥ x] for every real x) a sequence of independent random variables S1, S2, . . .
such that

Pr
[
Si =

n

40

]
=

1

4
and Pr [Si = 0] =

3

4
.

Since Alg performs at most T paid queries, if Alg uncovered q cliques and q ≤ n
20ℓ (hence, Alg is still

in the first phase), then we must have U1 + . . . Uq ≤ T . Therefore,

Pr[Alg uncovered q cliques] ≤ Pr[U1 + · · ·+ Uq ≤ T] ≤ Pr[S1 + · · ·+ Sq ≤ T] .

Let q∗ = n
20ℓ . Observe that since T ≤ n2

6400ℓ , E[U1 + · · ·+Uq∗] ≥ E[S1 + · · ·+Sq∗] = q∗n
160 ≥ 2T , and thus the

probability that Alg will enter the second phase should be low. To formalize these intuitions, let Xi =
40
n Si

for every i, 1 ≤ i ≤ q∗. Notice that Xi is a 0–1 random variable with E[Xi] =
1
4 . Let X =

∑q∗

i=1Xi and
observe that E[X] = 1

4q
∗ = n

80ℓ .
We use the following Chernoff bound for the sum of q∗ 0–1 independent random variables,

Pr

[
X ≤ 1

2
·E[X]

]
≤ e−

1
8E[X] .

Our goal is to prove that e−
1
8E[X] ≤ 160ℓT

n2 , which will yield the claim. Let α = n
640ℓ and let us analyze

function ψ(α) = Teα

4αn , to show that with our parameters we have ψ(α) ≥ 1 (this is equivalent to e−α ≤ T
4αn ,

and hence, e−
1
8E[X] ≤ 160ℓT

n2). Notice that since ψ′(α) = eα(α−1)T
4α2n > 0 for α > 1, ψ(α) is increasing for

α > 1. Further, observe that for T ≥ n
20 , we have ψ(7) ≥ 1, and hence if T ≥ n

20 then Teα

4αn ≥ 1 for every

27

α ≥ 7. Therefore, in particular, if T ≥ n
20 and ℓ ≤ n

4500 then e−
n

640ℓ ≤ 160ℓT
n2 . This immediately yields the

following final claim.

Pr[Alg uncovered q∗ cliques] ≤ Pr

 q∗∑
i=1

Si ≤ T

 ≤ Pr

 q∗∑
i=1

Si ≤
n2

6400ℓ

 = Pr
[
X ≤ n

160ℓ

]
= Pr

[
X ≤ 1

2
E[X]

]
≤ e−

1
8E[X] = e−

n
640ℓ ≤ 160ℓT

n2
.

With Claim 5.16 at hand, we can conclude that the expected number of fully explored vertices by Alg
is at most 160ℓT

n in the first phase plus n · 160ℓTn2 in the second phase, and hence the expected number of fully

explored vertices by Alg is at most 320ℓT
n .

Now we are ready to bound the number of vertices revealed by any deterministic algorithm.

Lemma 5.17. Let ℓ ≤ n
4500 . Let Alg be an arbitrary deterministic algorithm that makes at most T paid

queries with T ≤ n2

6400ℓ . Then, in expectation, Alg reveals O
(
Tℓ
n

)
vertices.

Proof. Consider a deterministic algorithm Alg that makes at most T paid queries. Algorithm Alg
queries the input graph and is gradually revealing and exploring some vertices. We split the runtime of
algorithm Alg into two phases: first phase is until at most 1

2n vertices are revealed and until at most n
20

vertices become fully explored by Alg; the second phase starts after the first phase finishes. We will upper
bound the expected number of vertices revealed in the first phase, and then we will show that the second
phase is unlikely to happen.

Let us consider the first phase. We will analyze the process of revealing new vertices by Alg, first for
paid queries and then for free queries.

Let us fix the current nice query history H and consider any paid query {i, j}; clearly, we can assume
without loss of generality that H[i, j] = □. Furthermore, if the query returns 0 then there are no changes
in the set of revealed vertices and so we will only consider the case when Aπ[i, j] = 1, combined with the
bound for the probability that this happens.

Firstly, if both i and j are already revealed in H, then no new vertex is revealed by the query. Therefore
we only have to consider the case when at least one of vertices i or j is not revealed; without loss of generality,
suppose that j is not revealed.

Since in the first phase at most 1
2n vertices are revealed in H, all pre-conditions of Lemma 5.13 are

satisfied, and so Pr[vertex i or j is saturated | Aπ[i, j] = 1, H] ≥ 1
2 or Pr[Aπ[i, j] = 1 | H] ≤ 100ℓ

n .
If Pr[vertex i or j is saturated | Aπ[i, j] = 1, H] ≥ 1

2 then in this case one of vertices i or j are explored
by Alg if Aπ[i, j] = 1; in that case all vertices in the clique of i and j will be uncovered. Since Alg performs
at most T paid queries, by Lemma 5.15 this case can happen in expectation not more than 320T

n times.

Hence, in expectation, the number of vertices revealed by saturating one of vertices i or j is at most 320ℓT
n ,

across the entire Alg.
Otherwise, we know that Pr[Aπ[i, j] = 1 | H] ≤ 100ℓ

n , and so vertices i and j will be revealed with

probability at most 100ℓ
n . Therefore with at most T such queries, in expectation we reveal at most 2T · 100ℓn =

200ℓT
n such vertices.
Next, let us consider free queries. Notice that all free queries will return 1 only for the fully explored

vertices (cf. Claim 5.12). And since Alg performs at most T paid queries, by Lemma 5.15, in expectation,
the number of fully explored vertices is at most 320ℓT

n . Therefore, in expectation, the number of vertices

revealed by free queries is at most 320ℓT
n .

In summary, if we consider Alg until it fully explores at most n
20 vertices and reveals at most 1

2n vertices,

in expectation, the number of revealed vertices is at most 840ℓT
n .

Next, let us consider the second phase. Notice that in the second phase, Alg can reveal as many as all
n vertices (minus 1

2n vertices revealed in the first phase). We bound the probability that the second phase
will happen (that is, that either more than 1

2n vertices are revealed by Alg or that more than n
20 vertices

are fully explored by Alg).

Claim 5.18. Let ℓ ≤ n
4500 and n

20 ≤ T ≤ n2

6400ℓ . The second phase happens with probability at most
161ℓT
n2 , that is, the probability that Alg reveals more than 1

2n vertices or that Alg fully explores more than

28

n
20 vertices is at most 161ℓT

n2 .

Proof. First let us recall that by Claim 5.16, the probability that Alg fully explores more than n
20

vertices is at most 160ℓT
n2 . Therefore from now on, we will condition on that at most n

20 vertices have been
fully explored by Alg and we will bound the probability that Alg reveals more than half of the vertices
with at most T paid queries.

By our analysis above, some vertices will be revealed by saturating vertices or in the process of uncovering
some clique, and some other vertices will be revealed by paid queries {i, j} with neither i nor j saturated.
The former will take place at most n

20 times, since at most n
20 vertices have been fully explored by Alg.

Therefore, we only have to consider the case of revealing a new vertex j via a query {i, j}.
We will mimic the analysis from the proof of Claim 5.16. By Lemma 5.13, if we condition on the

fact that until now at most 1
2n vertices have been revealed and that at most n

20 vertices have been fully

explored, the probability that a new vertex will be revealed is at most 100ℓ
n . Therefore, the probability

that more than 1
2n vertices will be revealed (conditioned on that at most n

20 vertices are fully explored) is
stochastically majorized by the probability that the sum of identically distributed independent 0–1 random
variables X1, . . . , XT with E[Xi] =

100ℓ
n satisfies

∑T
i=1Xi >

1
2n.

Let X =
∑T

i=1Xi. By Chernoff bound, for any κ ≥ 6 ·E[X], we have Pr[X ≥ κ] ≤ 2−κ. Notice that since

T ≤ n2

6400ℓ , in our case E[X] = 100ℓT
n ≤ n

64 , and hence 1
2n ≥ 6 ·E[X]. Therefore, using the fact that n2 ≤ 2n/2

for n ≥ 16, we obtain that for n ≥ 16:

Pr

[
X ≥ 1

2
n

]
≤ 2−n/2 ≤ n−2 ≤ ℓT

n2
.

This immediately imply that the probability that more than 1
2n vertices will be revealed (conditioned

on that at most n
20 vertices have been fully explored) is upper bounded by Pr[X ≥ 1

2n] ≤
ℓT
n2 .

Therefore, we have proven that the probability that Alg fully explores more than n
20 vertices is at most

160ℓT
n2 , and conditioned on that, the probability that more than 1

2n vertices will be revealed is at most ℓT
n2 .

This implied that the probability that the second phase happens is at most 161ℓT
n2 .

Now we are ready to complete the proof of Lemma 5.17. By Claim 5.18, the expected number of vertices
revealed by Alg is at most 840ℓT

n in the first phase plus n · 161ℓTn2 in the second phase, and hence the expected

number of vertices revealed by Alg is at most 1001ℓT
n .

Now we can conclude the proof of Theorem 5.4. Observe that if ℓ > n
4500 then Theorem 5.4 is trivial,

since then O
(
Tℓ
n

)
is Ω(T) and any T -steps randomized algorithm can reveal at most O(T) vertices. Similarly,

Theorem 5.4 is trivial for T > n2

6400ℓ , since then O
(
Tℓ
n

)
is Ω(n), and any randomized algorithm can reveal at

most O(n) vertices (since there are only n vertices). Otherwise, if ℓ ≤ n
4500 and T ≤ n2

6400ℓ , then by Lemma

5.17 the expected number of vertices revealed by a deterministic algorithm that performs T queries is O
(
Tℓ
n

)
,

and therefore Yao’s principle implies that the result holds also for randomized algorithms.

5.3. Lower bound for (1 + ε)-approximation of cost(X): proof of Theorem 1.3. Now we are
ready to prove the following implication of Theorem 5.4: Theorem 1.3, which states that for any c ≤ k, any
algorithm that for any metric space (X, d) of size n, with probability at least 2

3 estimates the cost of a k-NN

graph within an additive error term c · cost(X) requires Ω
(

n2

k

)
queries.

Proof of Theorem 1.3. For the simplicity of presentation, we will assume that n is a multiple of k + 1;
it is easy to extend the arguments to the general case though.

In what follows, we will consider metric spaces (X, d) defined by partitioning X into clusters, such that
two points in the same cluster are at distance 0 apart, and two points from distinct clusters are at distance
1 apart. (To ensure that so defined (X, d) is a metric space, one should think about distance 0 like about
an arbitrary small positive number ≪ 1.)

Consider two problem instances (cf. Figure 5.1):
• (X , d): consists of n

k+1 clusters of size k + 1 each, and
• (X ′, d): consists of n

k+1 − 1 clusters of size k + 1 each, one cluster of size k and one isolated point
(cluster of size 1).

29

(X , d) (X ′, d)

Fig. 5.1. Instance (X , d) and instance (X ′, d) obtained from (X , d) by taking a point from its cluster.

In short, instance (X ′, d) is obtained by taking one of the clusters in the instance (X , d) and removing from
it a single point. Notice that the cost of the first instance is cost(X) = 0, whereas the cost of the second
instance is cost(X ′) = 2k.

We claim that Theorem 5.4 implies that any algorithm that can distinguish between these two instances

requires Ω
(

n2

k

)
queries.

Let us transform the input instances into the framework of balanced clustered graphs from Section 5.1.
We define an undirected unweighted graph G = (X,E) such that two vertices are adjacent in G if and only
if the corresponding points are in the same cluster in (X, d). Notice that for (X , d), the underlying graph G
consists of n

k+1 cliques of size k + 1 each, and for (X ′, d), one of the cliques in G is split into a clique of size
k and an isolated vertex.

Let us randomly permute the vertices of G and consider the two instances above. By Theorem 5.4, any
randomized algorithm Alg that considers the first instance (X , d) and queries the input in T places reveals
in expectation O

(
Tk
n

)
vertices. Now notice that the single point that is removed from a cluster to define the

second instance is a random point, and so if algorithm Alg is run on the second instance (X ′, d), it will see
a difference in its queries only if it reveals that single point in (X , d), and for that it requires (in expectation)

O
(

n2

k

)
queries. Therefore, no algorithm Alg that queries the first instance (X , d) in o

(
n2

k

)
queries will able

to distinguish it (with probability at least 2
3) from the second instance (X ′, d).

While the lower bound in Theorem 1.3 shows that our first algorithm performing O
(

n2 logn
ε2k

)
queries (cf.

Theorem 1.1) is asymptotically almost optimal, such a claim does not extend to the case when one allows the
estimation error to be a function of mst(X) and k = O(

√
n). Indeed, it is easy to see that the construction

in Theorem 1.3 has mst(X) = n
k+1 − 1 for the first instance X1, and mst(X ′) = n

k+1 for the second instance

X ′. Therefore, for k = O(
√
n) an error of Θ

(
n

k+1

)
is Ω(k), and hence it is of the same order as the cost of

(X ′, d). (On the other hand, if k = ω(
√
n) then the claim in Theorem 1.3 still holds even if we allowed an

additive error of ε ·mst(X).) To obtain an asymptotically tight lower bound that would contain the additive
error term of the form ε · (cost(X)+mst(X)), we need more elaborate arguments that we will present in the
next section.

6. Lower bound of Ω
(
min

{
nk3/2

ε , n
2

k

})
for approximating cost(X) to within ε·(cost(X)+mst(X)):

Proof of Theorem 1.4. In this section we show Theorem 1.4, that any randomized algorithm that com-

putes cost(X) with |cost(X) − cost(X)| ≤ ε(cost(X) + mst(X)) requires Ω
(
min

{
nk3/2

ε , n
2

k

})
queries. Our

construction relies on a design of two metric spaces that are undistinguishable with o
(
min

{
nk3/2

ε , n
2

k

})
queries, and for which finding an estimate for their costs would allow to distinguish between them.

Let h be an integer parameter (which we set to h = O
(

k3/2

ε

)
if k ≤ (4εn)2/5, and h = O

(
n
k

)
otherwise).

Let r be an integer such that r(h + 2)(k + 1) = n; notice that r = Θ
(

n
kh

)
. (In the arguments below we

assume that r and
√
k are integer; extension to the general case is straightforward.) In our analysis, the

metric space has only two types of distances, 0 or 1.
Let us define two metric spaces X and X ′ on n points (see also Figure 6.1).

30

(X , d) (X ′, d)

Fig. 6.1. Instance (X , d) with r · (h+ 2) = 12 cluster point sets of size k + 1 each, and instance (X ′, d) obtained

by moving in (X , d) r = 3 sets of
√
k points between some clusters.

Construction of two metric spaces X and X ′ on n points:
Constraints for positive parameters n, k, r, h:

√
k, r, h ∈ N, k ≤ n, r(h+ 2)(k + 1) = n

• Let X consist of the following:
⋄ r · (h + 2) cluster point sets of k + 1 points each, with pairwise distance 0 and distance 1 to
everybody else.

• Let X ′ consist of the following:
⋄ r ·h cluster point sets of k+1 points each, with pairwise distance 0 and distance 1 to everybody
else;

⋄ r cluster point sets with k + 1 −
√
k points each, with pairwise distance 0 and distance 1 to

everybody else;
⋄ r cluster point sets with k + 1 +

√
k points each, with pairwise distance 0 and distance 1 to

everybody else.

It is easy to see that so defined X and X ′ are two properly defined metric spaces on n points (assuming,
as we do throughout the paper, that distance 0 is an arbitrary small positive number ≪ 1.). One can
construct X ′ from X by taking r random pairs of the clusters and then, in each pair, by moving

√
k points

from one of the cluster to the other cluster in the pair.
The following straightforward claim describes some basic properties of X and X ′.

Claim 6.1. cost(X) = 0 and cost(X ′) = r · (k + 1−
√
k) ·

√
k.

Further, the cost of a minimum spanning tree is mst(X) = mst(X ′) = r · (h+ 2)− 1.

Next, we state our main claim that any algorithm that distinguishes between the input instances of
metrics X and X ′ must have query complexity Ω(nh). We defer the proof of Lemma 6.2 (which relies on the
approach from Section 5, cf. Theorem 5.4) to Section 6.1.

Lemma 6.2 (Main). Any algorithm that with probability at least 5
6 distinguishes between X and X ′

requires Ω(nh) time.

With Lemma 6.2 at hand, we can conclude with the proof of our main Theorem 1.4.

Proof of Theorem 1.4. Let us first notice that the claim trivially holds when k3/2/ε = O(1) or when
k = Ω(n). To see that Ω(n) is always a lower bound (which takes care of the case k = Ω(n)), consider
the following two instances: one in which all points are clustered together, and another in which there is
a single point at a large distance from all other points. It is known that there is no o(n)-time algorithm
that can distinguish between these two input instances with probability at least 5

6 , and so for any k, no
o(n)-time algorithm can (with probability at least 5

6) approximate cost(X) with an additive error term
1
2 · (cost(X) +mst(X)).

In view of that, from now on we assume that
⌈
k3/2

48ε

⌉
≥ 2and k = o(n) (to ensure the existence of h ∈ N

satisfying (h+ 2)(k + 1) ≤ n).

We show that for an appropriate value for h, Ω
(
min

{
nk3/2

ε , n
2

k

})
queries are necessary to distinguish

31

between the input instances X and X ′. We prove this by first showing that if k ≤ (4εn)2/5 then one requires

Ω
(

nk3/2

ε

)
queries and then show that if k > (4εn)2/5 then one requires Ω

(
n2

k

)
queries. This gives the

required lower bound of Ω
(
min

{
nk3/2

ε , n
2

k

})
. (The difference between the two cases, when k ≤ (4εn)2/5 and

when k > (4εn)2/5, is that in the first case we use r > 1 (and h = Θ(k3/2/ε)) and in the second case we use
r = 1 (and h = Θ(n/k), to ensure r = Θ

(
n
kh

)
).)

Small k. Let us begin with the case k ≤ (4εn)2/5, in which case we set h =
⌈
k3/2

48ε

⌉
− 1 (and by the

comments above, we have h ≥ 1). Notice that then (h+ 2)(k + 1) ≤ n/2, and hence the constructions of X
and X ′ are valid.

Assume, for the purpose of contradiction, that we have an algorithm that in time o(nh), with probability
at least 5

6 estimates the cost of a k-nearest neighbor graph for an arbitrary metric space (X, d) of size n
to within an error term ε · (cost(X) + mst(X)). We will argue that this algorithm would also be able to
distinguish our input instances X and X ′ in o(nh) time, which by Lemma 6.2 would lead to contradiction.

If we run this algorithm to our input instances X and X ′, then with probability at least 2
3 it would

return two values costX and costX ′ that satisfy the following inequalities,

|costX − cost(X)| ≤ ε · (cost(X) +mst(X)) and |costX ′ − cost(X ′)| ≤ ε · (cost(X ′) +mst(X ′)) .

In particular, with probability at least 2
3 we have

costX ≤ (1 + ε) · cost(X) + ε ·mst(X) and costX ′ ≥ (1− ε) · cost(X ′)− ε ·mst(X ′) .

By Claim 6.1, and since ε ≤ 1
2 , the bound above implies that with probability at least 2

3 we have

costX ≤ (1 + ε) · cost(X) + ε ·mst(X) = 0 + ε · (r · (h+ 2)− 1) ≤ 3 · ε · r · h ,(6.1)

and

costX ′ ≥ (1− ε) · cost(X ′)− ε ·mst(X) ≥ (14 · k3/2 − 3 · ε · h) · r .(6.2)

Next, notice that if we set h =
⌈
k3/2

48ε

⌉
− 1, then we have that 3εh < 1

8k
3/2 − 3εh and thus,

costX ≤ 3 · ε · r · h <
(

1
8 · k3/2 − 3 · ε · h

)
· r ≤ costX ′ ,

where the first inequality follows from (6.1) and the last one follows from (6.2).
But this implies that with probability at least 2

3 we have costX < costX ′ , and thus we can use our algo-
rithm to distinguish the input instances X and X ′ in o(nh) time, which by Lemma 6.2 leads to contradiction.
Therefore, there is no o(nh)-time algorithm that with probability at least 5

6 estimates the cost of a k-NN

graph to within an additive error term ε · (cost(X) +mst(X)), assuming k ≤ (4εn)2/5 and h =
⌈
k3/2

48ε

⌉
− 1.

Large k. The analysis above requires k to be not too large and we assumed k ≤ (4εn)2/5 to ensure the

necessary constraint (h+ 2)(k + 1) ≤ 1
2n with h =

⌈
k3/2

48ε

⌉
− 1. When k is larger, we have to take consider a

smaller value of h and we set r = 1.
Let k > (4εn)2/5 and k = o(n) (to ensure the existence of h ∈ N satisfying (h+ 2)(k + 1) ≤ n). In our

analysis above, assuming that r = 1 (which is what we have now), the claim relies on a single inequality,
3εh < 1

8k
3/2 − 3εh. We set h =

⌊
n

12k

⌋
to ensure that this inequality holds. Thus, as above, assuming

k > (4εn)2/5, we obtain a lower bound of Ω(nh), which is Ω
(

n2

k

)
.

6.1. Lemma 6.2 and testing hypergeometric distributions. In this section we prove Lemma 6.2.
We will first provide some tools, and then will link the task of distinguishing between X and X ′ to the
problem of testing hypergeometric distributions.

6.1.1. Testing hypergeometric distributions. We consider the standard model of distribution
testers to access the unknown distribution by getting independent and identically distributed samples from
it (see, e.g., [3]). Let D be a fixed distribution over some domain Ω. A sampling oracle for D is an oracle that

32

when queried, returns an element x ∈ Ω, where the probability that x is returned is D(x), independently of
all previous calls to the oracle. (Notice that this standard definition immediately implies that all distribution
testers in this standard model are essentially non-adaptive.)

Denote by HN,M,S the hypergeometric distribution with parameters N ,M , and S, that is, for is a random

variable Z with distribution HN,M,S , we have Pr[Z = r] =
(Mr)·(

N−M
S−r)

(NS)
. Similarly, denote by B(S, p) the

binomial distribution with parameters S and p, that is, for a random variable Z with distribution B(S, p),
we have Pr[Z = r] =

(
S
r

)
· pr · (1− p)S−r.

Let us recall that the total variation distance between two discrete probability distributions D and
D′ over the same domain Ω is equal to the half of the first norm distance between these distributions,
∥D′ −D∥TV = 1

2∥D
′ −D∥1 = 1

2

∑
ω∈Ω |PrD′ [ω]−PrD[ω]|.

It is known that the hypergeometric distribution and the binomial distribution are very similar. Indeed,
the hypergeometric distribution is a discrete probability distribution that describes the probability of r
successes (random draws for which the object drawn has a specified feature) in S draws, without replacement,
from a finite population of size N that contains exactly M objects with that feature, wherein each draw is
either a success or a failure. In contrast, the binomial distribution describes the probability of r successes in
S draws with replacement, where the success probability p corresponds to the ratio of the number of objects
with a given feature to the total population. To quantify this similarity between HN,M,S and B(S,M/N),
Freedman [16] showed that the total variation norm between sampling with and without replacement is small
if S2/N is small, and then Ehm [12] and Künsch [22] extended this to larger values of S:

Lemma 6.3. [12, 22] If S ·M/N · (1−M/N) ≥ 1, then

∥HN,M,S − B(S,M/N)∥TV ≤ S − 1

N − 1
.

Next, let us remind the result due to Paninski [29, Theorem 4] (we state this result only in the most
basic case of the support size of the uniform distribution to be equal to 2).

Lemma 6.4. [29] If S · ε2 = o(1), then

∥B(S, 12)− B(S, 12 + ε)∥TV = o(1) .

In particular, no tester that samples only o(ε−2) elements can distinguish with probability at least 2
3 between

the uniform distribution on two elements and a distribution that assigns probability 1
2 +ε to one element and

1
2 − ε to the other element.

Now, we combine Lemmas 6.3 and 6.4 to obtain our main Lemma 6.5. Observe that to distinguish
between two different hypergeometric distributions, we have to consider a (non-adaptive) tester that out
of a finite population of size N that contains exactly M objects with a special feature, samples S random
elements from the population (equivalently, one performs S steps of sampling without replacement a single
element from the population). Our goal is to determine the value of M and in our case, to distinguish
between the case M = 1

2N and M = 1
2N + c

√
N . This would mean that we can distinguish between two

hypergeometric distributions HN, 12N,S and HN, 12N+c
√
N,S .

Lemma 6.5. Let c be an arbitrary positive constant. Let X be a random variable with hypergeometric
distribution HN, 12N,S and let Y be a random variable with hypergeometric distribution HN, 12N+c

√
N,S. If

S = o(N), then ∥X − Y∥TV = o(1).
In particular, no tester that samples only o(N) elements can distinguish with probability at least 2

3 between
HN, 12N,S and HN, 12N+c

√
N,S.

Proof. It is enough (cf. the arguments in [29]) to show only the first claim, that if S = o(N), then
∥X − Y∥TV = o(1).

We will use the triangle inequality on the norms which ensures the following:

∥HN,N/2,S −HN,N/2+c
√
N,S∥TV ≤(6.3)

∥HN,N/2,S − B(S, 12)∥TV + ∥B(S, 12)− B(S, 12 + c√
N
)∥TV + ∥HN,N/2+c

√
N,S − B(S, 12 + c√

N
)∥TV .

33

To use this bound, first we obtain by Lemma 6.3,

∥HN,N/2,S − B(S, 12)∥TV ≤ S − 1

N − 1

and

∥HN,N/2+c
√
N,S − B(S, 12 + c√

N
)∥TV ≤ S − 1

N − 1
.

Next, by Lemma 6.4, since S = o(N), we have

∥B(S, 12)− B(S, 12 + c√
N
)∥TV = o(1) .

Since S = o(N), we combine the bounds above with the triangle inequality (6.3) to obtain

∥HN,N/2,S −HN,N/2+c
√
N,S∥TV ≤ S − 1

N − 1
+ o(1) +

S − 1

N − 1
= o(1) .

6.1.2. Testing two clusters. We will relate the problem of distinguishing between hypergeometric
distribution HN, 12N,S and hypergeometric distribution HN, 12N+c

√
N,S from Lemma 6.5 to a clustering testing

problem.
Consider the following clustering problem. We are given a graph G with N vertices, which consists of

two disjoint cliques, one of size M , M < N , and another of size N −M . Suppose that we know that either
M = 1

2N , or that M = 1
2N + c

√
N for some small positive constant c. Consider an algorithm Alg that is

allowed only to query the adjacency matrix of G, i.e., to query whether a pair of vertices are connected by
an edge. How many queries algorithm Alg must ask to distinguish between the two cases, when M = 1

2N

and M = 1
2N + c

√
N? We prove the following.

Lemma 6.6. Let c be a positive constant. Let G1 and G2 be two graphs on the vertex set V = {1, . . . , N},
N even, such that G1 consists of two disjoint cliques of size 1

2N each, and G2 consists of two disjoint cliques

of size 1
2N + c

√
N and 1

2N − c
√
N , respectively. Then, no algorithm that queries entries of the adjacency

matrix of the input graph only about o(N) vertices can distinguish with probability at least 2
3 between G1

and G2.

Proof. The proof is by reduction to the problem of testing hypergeometric distribution.
Let us first set up our framework. Fix N ∈ N. For any natural M ≤ N , let G⟨M⟩ be a graph on the

vertex set V = {1, 2, . . . , N} which consists of two disjoint cliques, one of size M and another of size N −M .
Let Alg be any algorithm that queries the entries of the adjacency matrix of the input graph G∗, and on
the basis of the queries decides whether G∗ = G⟨M⟩ or G∗ = G⟨M ′⟩, for two distinct M and M ′. We will
consider any algorithm Alg that queries at most T vertices in the adjacency matrix of the input graph. We
will show that if M = 1

2N and M ′ = 1
2N + c

√
N , then in order to distinguish with probability at least 2

3

between G⟨M⟩ and G⟨M ′⟩, we must have T = Ω(N).
We first notice that in the case of two cliques, the behavior of any algorithm Alg can be slightly modified

to follow a very simple format. One first queries an arbitrary pair of vertices x0 and y0:
• if {x0, y0} ∈ E then we will assign both x0 and y0 to the first clique C1;
• otherwise, if {x0, y0} /∈ E then we will assign x0 to C1 and y0 to C2.

Then, we will ensure that the following invariant is maintained:
• if we have already queried for any edge incident to a vertex x then we have already determined
whether x ∈ C1 or x ∈ C2;

• however, if we have not queried yet for any edge incident to x, then we cannot determine the cluster
of x (and the algorithm cannot be sure whether x is in C1 or in C2).

In order to maintain the invariant, we will enhance Alg: except for the initial, first query (which checks
if {x0, y0} ∈ E), if Alg is querying for a pair x, y:

• we will give away one free query to Alg to determine whether {x, x0} ∈ E.
Notice that since we know that x0 ∈ C1, then the additional query {x, x0} ∈ E? uniquely determines if x ∈ C1

or x ∈ C2, and hence together with the query {x, y} ∈ E? it uniquely determines whether y ∈ C1 or y ∈ C2.

34

This ensures that the invariant is satisfied. (To ensure that this is always possible, we additionally require
that Alg queries at most min{M,N −M} vertices, which is what we require from our input parameters.)
Notice that since for any two vertices queried before we have already determined whether they are adjacent,
algorithm Alg has no reason to ask queries involving two vertices queried earlier.

Now, suppose that there is an algorithm Alg that asks queries about at most T vertices to determine
whether the input graph is G1 or G2. We can assume, without loss of generality, that every time Alg queries
for an edge {x, y} with x or y as a new yet non-visited vertex, then the new vertex is a random vertex among
all non-visited-yet vertices (since no information about these vertices is known to the algorithms and since
we have started with randomly permuting all vertices). Therefore, every time Alg queries a new vertex
(and it can query up to two vertices with a single query), one can think that the algorithm checks the status
of a new vertex.

We will show that Alg can be used to distinguish between hypergeometric distributions HN, 12N,S and

HN, 12N+c
√
N,S , with S ≤ T , and hence, by Lemma 6.5, we must have T = Ω(N).

Consider an instance of the problem of testing hypergeometric distribution: there is a finite population
of size N that contains exactly M objects with a special feature, one performs S steps (with S ≤ T) of
sampling an element from the population — without replacement. Our goal is to determine the value of M ,
to distinguish between the case M = 1

2N and M = 1
2N + c

√
N . We will model this task by considering

a graph G on N vertices and distinguishing between the case when G is G⟨ 1
2N⟩ or G⟨ 1

2N+c
√
N⟩. Let us

randomly permute the vertices of G, to ensure, as claimed above, that every time Alg queries a new vertex
(and it can query up to two vertices with a single query), one can think that the algorithm checks the status
of a new random vertex from G.

In order to distinguish between hypergeometric distributions HN, 12N,S and HN, 12N+c
√
N,S , we run Alg

on G that is either G⟨ 1
2N⟩ or G⟨ 1

2N+c
√
N⟩. In each step, algorithm Alg queries for at most two new random

vertices; a query about a new vertex x determines whether x is in cluster C1 or in C2. This can be modeled
by choosing S random (distinct, so without replacement) vertices, S ≤ T , and learning which of them belong
to C1 and which of them belong to C2. Let ϑ1 be the number of sampled vertices belonging to C1 and ϑ2
be the number of sampled vertices belonging to C2. Notice that if G is equal to G⟨M⟩ then either ϑ1 is a
random variable with hypergeometric distribution HN,M,S , or ϑ2 = S − ϑ1 has hypergeometric distribution

HN,M,S . Therefore, by distinguishing in T steps on whether G is either G⟨ 1
2N⟩ or G⟨ 1

2N+c
√
N⟩, we also would

be able to distinguish on whether ϑ1 (or, symmetrically, ϑ2) has hypergeometric distribution HN, 12N,S or

hypergeometric distribution HN, 12N+c
√
N,S , which is known to require Ω(N) random samples, by Lemma 6.5.

This proves that algorithm Alg queries T = Ω(N) vertices.

6.1.3. Testing many clusters. We now give a simple extention of the framework from Section 6.1.2
and Lemma 6.6 to the case of many clusters. We will prove the following lemma.

Lemma 6.7. Let c be a positive constant and r be a positive integer. Let H1 and H2 be two graphs on
the vertex set V = {1, 2, . . . , rN}, N even, such that

• H1 consists of 2r disjoint cliques of size 1
2N each, and

• H2 consists of 2r disjoint cliques: r cliques of size 1
2N + c

√
N and r cliques of size 1

2N − c
√
N .

Then, no algorithm that queries entries of the adjacency matrix of the input graph only about o(N) vertices
can distinguish with probability at least 2

3 between H1 and H2.

Proof. For the purpose of contradiction, suppose that there is an algorithm Alg that queries entries of
the adjacency matrix of the input graph about o(N) vertices and distinguishes between H1 and H2 with
probability at least 2

3 . We argue that Alg could be used to distinguish between the two instances, as defined
in Lemma 6.6. Indeed, suppose we have two graphs G1 and G2 on the vertex set V = {1, 2, . . . , N}, as in
Lemma 6.6. Then H1 is obtained by taking r disjoint copies of G1 and H2 is obtained by taking r disjoint
copies of G2 (with relabeling of the vertices). Hence, we can distinguish between G1 and G2 by applying
Alg to distinguish between H1 and H2, without loss of complexity. This would distinguish G1 from G2 with
o(N) queries, contradicting Lemma 6.6.

6.1.4. Completing the proof of Lemma 6.2. Now we are ready to complete the proof of Lemma
6.2, that to distinguish X from X ′ one needs Ω(nh) time. Our analysis relies on the tools from Section 5
(Theorem 5.4) and from Section 6.1.3.

35

Consider any algorithm Alg that distinguishes between the instances X and X ′ (cf. page 30 and Figure
6.1). For the purpose of contradiction, suppose that Alg performs T = o(nh) queries.

One can model the input instances X and X ′ by an undirected graph G on V = {1, 2, . . . , n}, such that
two vertices are adjacent if and only if they are in the same cluster in the input instance. To use this setting,
let us first consider the framework analyzed in Lemma 6.7. Let H1 and H2 be two graphs on 2(k + 1)r
vertices such that H1 consists of 2r disjoint cliques of size k+ 1 each, and H2 consists of 2r disjoint cliques:
r cliques of size k + 1 +

√
k and r cliques of size k + 1−

√
k.

Observe that graph G consists of either 1
2h+ 1 copies of graphs H1, or

1
2h copies of graphs H1 and one

copy of H2, depending on whether the input to Alg is X or X ′. Thus if Alg can distinguish between X or
X ′, it can also distinguish between the instances for the undirected graph G.

LetH be a graph that is isomorphic either toH1 orH2. By Lemma 6.7, there is no algorithm that queries
entries of the adjacency matrix of H only about o(k) vertices and that can distinguish with probability at
least 2

3 whether H = H1 or H = H2. Our proof of Lemma 6.2 is by contradiction: we will show (by observing
G) that any algorithm that distinguishes X from X ′ with o(nh) queries can be used to distinguish H1 from
H2 with o(k) queries.

One can view X and X ′ in the context of pairs of clusters: X ′ is obtained from X by taking r random
pairs of the clusters and then, in each pair, of moving

√
k points from one of the cluster to the other cluster.

Let us call a pair of clusters of size k+1 each balanced and a pair of clusters of sizes k+1±
√
k unbalanced.

In view of the above, for the sake of the analysis, we will consider both X and X ′ as defined by pairs of
clusters: we assume that X consists of 1

2r(h+ 2) random pairs of balanced clusters and X ′ is obtained from

X by taking r of these random pairs of clusters and then, in each pair, of moving
√
k points from one of the

cluster to the other cluster, making these r pairs unbalanced (any point is in the same pair of clusters in
both problem instances).

The definition of pairs of clusters naturally extends to pairs of cliques in the graphs G and H. If there
is a pair of clusters in X or X ′, then we pair the corresponding cliques in G. Similarly, graphs H1 and H2

consist of r pairs of cliques, in H1 the two cliques in each pair are of size k + 1, and in H2 the pair consists
of a clique of size k + 1 +

√
k and a clique of size k + 1−

√
k.

Let us set up an instance for algorithm Alg corresponding to G as a single copy of the input graph H
and 1

2h copies of graphs H1. Permute the vertices using a random permutation π ∈ Sn. As before, this
describes precisely either the input instance X or X ′, and so if Alg distinguishes between X and X ′, then
it also determines whether H = H1 or H = H2. In this framework we will project Alg on H: Every time
Alg queries for two vertices from the selected pairs of clusters (corresponding to H), we will apply identical
query to H (in our tester that aims to distinguish H1 from H2). However, all queries about at least one
vertex from outside H are ignored in our tester.

Let us call a point x revealed by Alg, if Alg queried entry {x, y} for another vertex y that is in the
same pair of clusters as x. Let τ be the expected number of vertices revealed by algorithm Alg. Notice
that by Theorem 5.4, we have τ = O

(
Tk
n

)
= o(kh).

We now apply algorithm Alg to distinguish H1 from H2 with o(k) queries. We run Alg until it reaches
the threshold of 20τ

h+2 revealed points in the r copies of the pairs of clusters on which X and X ′ differ (which
we call selected pairs of clusters). Notice that with that, our algorithm queries entries of the adjacency
matrix of the input graph H on at most 20τ

h+2 = o(k) vertices of H.

We consider two cases, depending on whether algorithm Alg reveals at least 20τ
h+2 points in the r copies

of the selected pairs of clusters, or it does not.
When Alg is run on X , then all pairs of clusters are balanced and look identical. Therefore, because

of the random permuting of the vertices, since the expected number of vertices revealed by Alg is τ , every
pair of clusters (there are 1

2r(h + 2) such pairs) has in expectation 2τ
r(h+2) revealed vertices. Therefore, by

Markov’s inequality, algorithm Alg reveals at least 20τ
h+2 vertices from the r copies of the selected pairs of

clusters with probability at most 1
10 . Thus, if Alg reveals at least 20τ

h+2 points in the r copies of the selected
pairs of clusters, then we return H = H2. Indeed, since in this case the input to Alg is X with probability
at most 1

10 , the probability that H = H2 is at least 9
10 . Hence, our algorithm distinguishes between H1 and

H2 with probability at least 9
10 .

Next, let us consider the other case, when algorithm Alg reveals less than 20τ
h+2 points in the r copies

of the selected pairs of clusters. In this case we return H1 when Alg returns X , and return H2 otherwise.

36

Since Alg with probability at least 2
3 correctly distinguishes between X and X ′, our algorithm correctly

distinguishes between H1 and H2 with probability at least 2
3 .

Let us summarize our analysis above. We have shown that if there is an algorithm Alg that performs
T = o(nh) queries and distinguishes with probability at least 2

3 between the problem instances X and X ′,
then there is an algorithm that queries the entries of the adjacency matrix of the input graph H about at
most 20τ

h = o(k) vertices and distinguishes with probability at least 2
3 between H1 and H2. This contradicts

Lemma 6.6, and thus any algorithm that with probability at least 2
3 distinguishes between X and X ′ requires

Ω(nh) queries. This yields Lemma 6.2.

REFERENCES

[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions.
Communications of the ACM, 51(1): 117–122, 2008.

[2] Mihai Bǎdoiu, Artur Czumaj, Piotr Indyk, and Christian Sohler. Facility location in sublinear time. Proceedings of the
32nd International Colloquium on Automata, Languages and Programming (ICALP’05), pp. 866–877, 2005.

[3] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing closeness of discrete
distributions. Journal of the ACM, 60(1):4:1-–4:25, February 2013.

[4] Bernhard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Estimating the minimum spanning tree weight in sublinear time.
SIAM Journal on Computing, 34(6): 1370–1379, 2005.

[5] Yu Chen, Sampath Kannan, and Sanjeev Khanna. Sublinear algorithms and lower bounds for metric TSP cost estimation.
Proceedings of the 47th International Colloquium on Automata, Languages and Programming (ICALP’20), pp. 30:1–
30:19, 2020.

[6] Yu Chen, Sanjeev Khanna, and Zihan Tan. Sublinear algorithms and lower bounds for estimating MST and TSP cost in
general metrics. Arxiv, CoRR abs/2203.14798, 2022.

[7] Jose Costa and Alfred O. Hero III. Entropic graphs for manifold learning. Proceedings of the 37th Asilomar Conference
on Signals, Systems & Computers, pp. 316–320, 2003.

[8] Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt Rubinfeld, and Christian Sohler. Ap-
proximating the weight of the Euclidean minimum spanning tree in sublinear time. SIAM Journal on Computing,
35(1): 91–109, 2005.

[9] Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning trees in sublinear time. SIAM
Journal on Computing, 39(9): 904–922, 2009.

[10] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme based on p-stable
distributions. Proceedings of the 20th Symposium on Computational Geometry (SoCG’04), pp. 253–262, 2004.

[11] Wei Dong, Moses Charikar, and Kai Li. Efficient k-nearest neighbor graph construction for generic similarity measures.
Proceedings of the 20th International Conference on World Wide Web (WWW’11), pp. 577–586, 2011.

[12] Werner Ehm. Binomial approximation to the Poisson binomial distribution. Statistics & Probability Letters, 11(1): 7–16,
1991.

[13] Hossein Esfandiari and Michael Mitzenmacher. Metric sublinear algorithms via random sampling. Proceedings of the 59th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’18), pp. 11–22, 2018.

[14] Uriel Feige. On sums of independent random variables with unbounded variance and estimating the average degree in a
graph. SIAM Journal on Computing, 35(4): 964–984, 2006.

[15] Hendrik Fichtenberger and Dennis Rhode. A theory-based evaluation of nearest neighbor models put into practice. Pro-
ceedings of the 32nd Conference on Neural Information Processing Systems (NeuRIPS’18), pp. 6743–6754, 2018.

[16] David Freedman. A remark on the difference between sampling with and without replacement. Journal of the American
Statistical Association, 72(359):681, 1977.

[17] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing. Proceedings of the
25th International Conference on Very Large Databases (VLDB’99), pp. 518–529, 1999.

[18] Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random Structures & Algorithms, 32(4):
473–493, 2008.

[19] Piotr Indyk. On approximate nearest neighbors in non-Euclidean spaces. Proceedings of the 39th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’98), pp. 148–155, 1998.

[20] Piotr Indyk. Sublinear time algorithms for metric space problems. Proceedings of the 31st Annual Symposium on Theory
of Computing (STOC’99), pp. 428–434, 1999.

[21] Piotr Indyk. High-Dimensional Computational Geometry. Doctoral Dissertation, Stanford University, 2001.
[22] Hans Rudolf Künsch. The difference between the hypergeometric and the binomial distribution. Note, ETH Zürich, May

1998.
[23] Ramgopal Mettu and Greg Plaxton. Optimal time bounds for approximate clustering. Machine Learning, 56(1–3): 35–60,

2004.
[24] Bilegsaikhan Naidan, Leonid Boytsov, and Eric Nyberg. Permutation search methods are efficient, yet faster search is

possible. Proceedings of the VLDB Endowment, 8(12): 1618–1629, 2015.
[25] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. Proceedings of the 14th

Conference on Neural Information Processing Systems (NIPS’01), pp. 849–856, 2001.
[26] Huy Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local improvements. Proceedings of the

49th Annual Symposium on Foundations of Computer Science(FOCS’08), pp. 327–336, 2008.
[27] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-time algorithm for approximat-

37

ing the minimum vertex cover size. Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’12), pp. 1123–1131, 2012.

[28] Dávid Pál, Barnabás Póczos, and Csaba Szepesvári. Estimation of Rényi entropy and mutual information based on
generalized nearest-neighbor graphs. Proceedings of the 23rd Conference on Neural Information Processing Systems
(NIPS’10), pp. 1849–1857, 2010.

[29] Liam Paninski. A coincidence-based test for uniformity given very sparsely-sampled discrete data. IEEE Transactions on
Information Theory, 54:4750–4755, 2008.

[30] Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied
Probability 26, Chapman and Hall, 1986.

[31] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8): 888–905, 2000.

[32] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500): 2319–2323, 2000.

[33] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing 17(4): 395–416, 2007.
[34] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity. Proceedings of the 18th

Annual IEEE Symposium on Foundations of Computer Science (FOCS’77), pp. 222—227, 1977.
[35] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation algorithm for maximum

matchings. Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC’09), pp. 225–234, 2009.

Appendix A. Assumptions on the input space.
Let (X, dX) be our input metric space. We will assume in various places of the paper that the minimum

distance is 1 and the maximum distance is n(O(1)) and that the cost of the k-NN graph is at least nk
ε .

Furthermore, we will assume that all distances are powers of (1 + ε). In the following we show how we can
always achieve this setting when we work with a slightly weaker form of the triangle inequality.

Definition A.1. We say that (Y, d) is an ε-near metric space, if it satisfies all properties of a metric
space except for the triangle inequality, which is relaxed to be:

d(x, y) ≤ (1 + ε) · (d(x, z) + d(z, y))

for all x, y, z ∈ Y .

We first approximate the diameter D of the metric space within a factor of 1
2 using a sublinear time

algorithm of Indyk [20]. The algorithm takes an arbitrary vertex v and computes its furthest neighbor u and

returns it as an estimate D̂ for the diameter. By the triangle inequality, D̂ = d(u, v) ≥ D/2. We normalize

distances by multiplying them with kn/(εD̂), which results in distances between 0 and 2kn/ε. Let (X ′, d′X)
be the resulting metric space (which is just a scaled version of (X, dX). We observe that the cost of the
minimum spanning tree of the metric space (X ′, d′X) is at least kn/ε. Then we round every distance smaller
than 1 to be 1 and every distance with weight more than one is rounded up to the closest power of (1 + ε).
Let (Y, d) be the resulting space. Let GX′ be a k-NN graph of (X ′, d′X) and let GY be a k-NN graph of
(Y, d). Then we have the following.

Lemma A.2.

cost(GX′) ≤ cost(GY) ≤ (1 + ε) · cost(GX′) + ε ·mst(GX′) ,

and

mst(GX′) ≤ mst(GY) ≤ (1 + 2ε) ·mst(GX′) .

Proof. Since we are rounding up all distances, the lower bounds are immediate. For the first upper
bound, we observe that there are at most kn edges in the k-NN graph. Every edge that is rounded to 1 can
increase the cost by at most 1, which gives an overall increase of kn. This is at most ε ·mst(GX′). The other
term follows immediate since we round the remaining edge weights to the closest power of (1 + ε). For the
second statement, we observe that the mst has at most n− 1 edges. The rest of the argument is similar to
above.

Lemma A.3. (Y, d) is an ε-near metric space.

Proof. We need to show that (Y, d) satisfies the relaxed triangle inequality. Consider three points
x, y, z ∈ Y and let x′, y′, z′ be their counterparts in (X ′, d′X). We note that the inequality is always true,
when d(x, y) = 1. Hence we may assume that d(x, y) > 1 and so it was rounded up to the closest power of
(1 + ε). We get

d(x, y) ≤ (1 + ε)d′X(x′, y′) ≤ (1 + ε)(d′X(x′, z′) + d′X(z′, y′)) ≤ (1 + ε)(d(x, z) + d(z, y)) .

38

We will therefore assume throughout the entire paper that (Y, d) is an ε-near metric space. In fact, our
formula for the cost of the k-NN graph will work for every graph with outdegree k and edges weights that
are powers of (1 + ε).

39

	Introduction
	Our results
	Our techniques
	Algorithm for large k and (1)-approximation of cost(G)
	Algorithm for small k
	Lower bounds

	Further related work

	Preliminaries
	Model of computation
	Approximating the k-NN graph

	(1+)-approximation of cost(G) with O"0365O(n2k) queries
	Approximating median neighbors
	Approximating the sum of lengths of short edges
	Approximating the sum of lengths of long edges
	Proof of Theorem 1.1 about the performance of ApproximateNNLargek

	Bypassing "0365(n2k) query complexity by allowing error of mst(X)
	A formula for the cost of a k-NN graph
	Threshold graphs G(i)

	Outline: applying Lemma 4.1 to approximate the cost of a k-NN graph
	The main sampling algorithm to estimate cost(G)
	Approximating cost(G) by estimating the sizes of Vji
	An auxiliary tool: Filtering vertices with many neighbors
	An auxiliary tool: The clustering connection and MST

	Algorithm EstimateVertexDegree
	Algorithm NeighborhoodSize
	Algorithm EstimateVertexDegree and its properties

	Analysis of the running time of algorithm EstimateSetSize
	Consistency

	Analysis of the performance of k-NNSizeApproximation
	Proof of Theorem 1.2 about the performance of k-NNSizeApproximation

	Lower bound of (n2k) for (1+)-approximation of cost(X)
	Revealing vertices in balanced clustered graphs
	Proof of Theorem 5.4
	Properties of deterministic algorithms
	Completing the proof of Theorem 5.4 (bounding revealed vertices)

	Lower bound for (1+)-approximation of cost(X): proof of Theorem 1.3

	Lower bound of ({n k3/2, n2k}) for approximating cost(X) to within (cost(X) + mst(X)): Proof of Theorem 1.4
	Lemma 6.2 and testing hypergeometric distributions
	Testing hypergeometric distributions
	Testing two clusters
	Testing many clusters
	Completing the proof of Lemma 6.2

	References
	Appendix A. Assumptions on the input space

